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Abstract 
 

 
Paralysis resulting from spinal cord injury (SCI) is devastating, dramatically reducing the 

independence of affected individuals. Currently, functional electrical stimulation (FES), controlled by a 

patient’s residual movements, is used clinically to restore a limited range of voluntary movement. However, 

if FES could be controlled using signals recorded from the brain, it might allow patients with high-level SCI 

to regain even more natural and sophisticated movements. Cortically-controlled FES has been successfully 

used in animal experiments and in preliminary human clinical trials, but it needs refinement before it can be 

fully translated to the clinic. Here I present three distinct studies, each of which addresses the improvement 

of a system control strategy. Taken together, my three studies offer insights that will improve the future 

implementation of cortically-controlled FES.  

In my first study, I evaluated the ability to use peripheral nerve stimulation to selectively activate 

muscles for FES. I demonstrated that the Flat Interface Nerve Electrode (FINE) can selectively stimulate a 

subset of wrist and hand muscles, and that this stimulation is stable over a period of 4 months. In future 

implementations of FES, nerve stimulation can therefore be used to selectively stimulate a subset of 

muscles without the need to implant these muscles individually. This method may be especially useful for 

muscles which are difficult to individually implant and stimulate intramuscularly without current spillover.  

  Cortically-controlled FES also relies on the ability to accurately predict muscle signals (EMG) from 

neural activity in motor cortex (M1) using a mathematical algorithm, or neural “decoder”. In my second and 

third studies, I address the question of how accurate a decoder needs to be, both for making accurate EMG 

predictions across behaviors, and for facilitating intuitive user control. No decoder can be expected to be 

perfect, but I also evaluate the brain’s ability to adapt to imperfect decoders, which may ultimately enable 

the successful restoration of movement. I first examine the accuracy of a single decoder for predicting 

actual wrist EMG across three highly varied dynamical conditions: isometric forces, unloaded movements, 

and movements against an elastic load. To allow a decoder to perform well across these tasks, it needs to 

be trained on data from all three, and furthermore, needs to be nonlinear. Second, I evaluate the ability of 

monkeys to learn two different kinds of altered decoders: one that preserved the natural coactivation 
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patterns of muscles, and one that didn’t. The monkeys are better able to learn to use the former decoder, 

and never accomplish all task goals in the latter case. Taken together, my results suggest that neural 

decoders should include robust multi-task training, and should account for nonlinearities in the motor 

system. They also suggest that imperfect EMG decoders can be learned, as long as they take into account 

the natural activation patterns of muscles. Overall, the results presented in this dissertation offer insights 

and tools that will improve the future implementation of cortically-controlled FES. 
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Preface 

 
In 1818, Mary Shelley published her famed novel Frankenstein, detailing the story of a scientist 

who creates a fearsome living being out of cadaver parts and a “spark” (Shelley 1818).  While fantastical, 

some of her ideas were not completely foreign for the time. A few decades prior, Luigi Galvani had 

successfully elicited muscle contractions from dissected frog legs using electric current (Galvani 1791). His 

experiments were purportedly the inspiration behind Shelley’s story, but even more importantly, they set 

the stage for a future of electrical stimulation to medically treat the human body. Today, as we rapidly 

approach the bicentennial of Frankenstein’s publication, and are more than 200 years past Galvani’s frog 

studies, several medical devices exist in the market that electrically stimulate the body, either to provide 

and restore functionality, or to treat illness.  These devices include cochlear implants, which electrically 

stimulate the auditory nerve to provide a mode of hearing to the profoundly deaf (Wilson and Dorman 2017), 

and deep brain stimulation, which can treat the symptoms of Parkinson’s disease, dystonia and even 

obsessive-compulsive disorder (Perlmutter and Mink 2006). There is also functional electrical stimulation 

(FES), a technique that uses electrical stimulation to activate muscles that have been paralyzed by spinal 

cord injury, or other movement disorders. Researchers have recently developed a cortically-controlled FES 

system, which promises to allow paralyzed individuals to control muscle stimulation directly from their own 

neural activity (Moritz, Perlmutter, and Fetz 2008; Pohlmeyer et al. 2008; C Ethier et al. 2012). Such a 

system has recently been demonstrated in human clinical trials with some degree of success (Bouton et al. 

2016; Ajiboye et al. 2017), but control strategies need to be refined before this technology can completely 

translate into the clinic. In this thesis, I address ideas for improving the implementation of cortically-

controlled FES, with the hope that it may one day join the ranks of the remarkable neurostimulation devices 

currently in the market. 
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1.1 Functional Electrical Stimulation 

 
Functional electrical stimulation (FES) is a technique that is used to electrically activate paralyzed 

muscles (Lynch and Popovic 2008). This technique can be used for a variety of rehabilitation purposes, 

such as for restoring bladder and respiratory control, relieving pressure sores, to counter muscle atrophy, 

and for the general restoration of movement. FES can be a viable option for individuals with spinal cord 

injury, stroke, or other movement disorders. It typically works by stimulating the nerves that innervate 

muscles, rather than the actual muscle fibers themselves. During FES, an electrical pulse is delivered to 

the nerve, which causes an action potential to propagate down the nerve to the neuromuscular junction – 

where the motor neuron synapses onto muscle – mimicking the process that occurs during the normal 

control of muscle contraction. For individuals who do have denervation, FES is technically possible, but it 

would have to be used to stimulate the individual muscle fibers directly. This would require high levels of 

current that would be unsafe, especially with prolonged FES use (Lynch and Popovic 2008). 

During natural movement, the nervous system sequentially activates motor units to cause a single 

muscle to contract, and this asynchronous recruitment works to prevent the muscle from fatiguing quickly. 

FES systems, however, cannot stimulate muscle fibers in this asynchronous pattern. Frequencies between 

20-40 Hz are typically required to stimulate all the fibers synchronously and produce a sustained contraction 

(Lynch and Popovic 2008). While effective, this method also leads to rapid muscle fatigue, which remains 

a major challenge for FES. Fatigue is also difficult to avoid because FES reportedly recruits fast-twitch 

fibers before slow-twitch fibers, opposite to the natural order of recruitment. This is because fast-twitch 

fibers, which fatigue more rapidly than their slow-twitch counterparts, are innervated by larger axons, and 

therefore easier to stimulate. 

The main components of an FES system includes a power source, a control unit, sensors, a stimulator, 

and stimulating electrodes (Ragnarsson 2008). The stimulating electrodes can either be placed on the 

surface of the skin, implanted on the surface of the actual muscle, or implanted in the muscle belly. Muscles 

can also be stimulated using electrodes that interface with a major nerve trunk, either by wrapping around 

the nerve, or by penetrating nerve fascicles (see BMI methodology). The two major methods for stimulation 
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include pulse width modulation (PWM) and pulse amplitude modulation (PAM). Both methods are used for 

eliciting muscle contraction in this dissertation (Chapter 2). 

 

1.2 FES for grasp 

 
According to a national survey, the highest priority for quadriplegics is the restoration of hand and 

arm function (Anderson 2004). The first FDA-approved FES system for grasp was the Freehand System, 

which received FDA approval in 1997 (Peckham et al. 2001). This system restored muscle activity to 

individuals with C5-C6 level spinal cord injury. Shoulder muscles are not affected at this level of spinal cord 

injury, and were therefore used as a control signal for the system. An external position sensor was placed 

over the contralateral shoulder, requiring the user to move the shoulder to activate two types of grasp. The 

first grasp type, lateral pinch, allows the thumb to press down against the index finger in such a way that 

could allow the hand to grasp a tool, such as a spoon or a pen. The second grasp type, called palmar 

prehension or palmar grasp, brings the thumb to meet the fingers in a way that allows for a wider grasp, as 

might be employed to pick up a block, or a glass of water. For various reasons, the Freehand System 

eventually went off the market in 2001.  

The next generation version of the Freehand System is the Implanted Stimulator Telemeter Twelve-

channel System (IST-12) (Kilgore et al. 2008).  This system improves upon the original design by including 

more stimulating electrodes, and gets rid of the external shoulder position sensor in favor of implanted 

recording electrodes. Depending on the subject, these electrodes are implanted in residual shoulder, neck, 

or face muscles, and are implanted on the same side of the body as the device. In addition to the two types 

of grasp described above, the IST-12 could also stimulate the arm to produce forearm pronation and elbow 

extension. 

In addition to the Freehand System and the IST-12 system, both of which were developed at Case 

Western University, other FES systems have been developed in the past few decades. One such system 

is the Bionic Glove, which was developed at the University of Alberta in 1989 to serve level C6-C7 spinal 

cord injury patients (Prochazka et al., 1997). This technology consists of a fingerless glove that uses surface 

muscle stimulation to produce grasp. It is currently marketed by Rehabtronics, Inc as the ReGrasp 
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stimulator system, and uses residual wrist movement as a control signal to stimulate finger extensors and 

flexors. Yet another FES for grasp device is the NESS H200, or Handmaster, which is currently marketed 

by Bioness, Inc. in southern California (Snoek et al. 2000; Venugopalan et al. 2015). This device consists 

of a forearm splint, which is used to hold surface electrodes in place over forearm muscles. The system 

can activate three different exercise modes for rehabilitation, as well as the usual key/pinch and palmar 

grasp to restore functional capabilities. Stimulation is controlled by a remote with push buttons that are 

controlled by the user. The Handmaster is best suited for SCI users with C4-C6 injury levels, as well as 

victims of stroke or other movement disorders that cause impairment of grasp. 

 

Shortcomings of current FES systems and how to move forward 
 

Despite the development of a number of FES systems for grasp, these systems generally share similar 

shortcomings. All of these systems, for example, provide only a few grasp possibilities to the user – typically 

a pinch grasp, a palmar grasp, and sometimes other types of muscle activation such as elbow extension or 

forearm pronation. Unfortunately, systems do not facilitate individuated finger movements. This may in large 

part be due to the difficulty in stimulating the intrinsic muscles of the hand. The small size of these muscles 

make them difficult to implant, and furthermore difficult to stimulate individually without current spillover to 

adjacent muscles. Another reason may be the limitations of the FES controller, which at present is very 

simple. In many systems, a simple control signal activates a preprogrammed grasp. This single degree-of-

freedom control does not allow for the sophistication required to activate fingers individually. 

Other FES system shortcomings include the unintuitive methods of control. Actions such as a shrugging 

the shoulder to activate the hand, for example, impose unusual cognitive load on the user, who has to adopt 

new patterns of movement in order to restore simple grasp. For systems that require control of a push 

button on a remote, this adds extra steps to the production of simple grasp. Furthermore, the users must 

still have enough residual abilities to control the remote.  These types of controllers are therefore impractical 

for patients with very high-level SCI, who may not have any residual limb or even neck movements. For 

these patients, the brain is the remaining practical and natural controller post-injury.  
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Recording from the brain, however, allows for a natural and sophisticated controller, and using neural 

signals for control can potentially direct a wider range of movements for the patient. Neuroscience research 

in fact has demonstrated the ability to make predictions of individual muscle activity based on neural activity 

in motor cortex (M1). These principles have recently been used to develop cortically-control FES systems 

(Moritz, Perlmutter, and Fetz 2008; Pohlmeyer, Oby, et al. 2009; Ethier et al. 2012). In these systems, 

neural activity in M1 is decoded to predict intended EMG activity, and these predictions are translated into 

stimulation commands that in turn activate the muscles (Figure 1-1). These FES systems have been used 

to restore functional grasp in monkeys (C Ethier et al. 2012), and are now also being tested in paralyzed 

human subjects (Bouton et al. 2016; Ajiboye et al. 2017). This early success is promising, but there is still 

a need for the refinement of the control strategies that are currently being used for cortically-controlled FES. 

This includes improving ways to activate individual muscles, and improving the decoding methods for 

predicting EMG activity. These are the main topics that will be addressed in this dissertation. However, to 

understand how to refine a cortically-controlled FES system, which serves as a substitute for the motor 

system, one must first understand how motor cortex controls movement. 

 

Figure 1-1. Cortically-controlled FES system. Signals recorded from motor cortex are routed to a 
computer, which using an algorithm, called a neural “decoder” to translate signals into predictions of muscle 
activity. These predictions are then mapped to pulse width parameters, which are used to stimulate the 
muscles to produce grasp. 

1.3 How motor cortex controls movement 

Despite decades of research and a variety of experimental paradigms, a conclusive understanding 

of how motor cortex produces movement remains elusive. In recent decades, different camps of thought 

have arisen, each with their own ideas on how neural activity in motor cortex relates to movement. Most of 

these groups employ similar physiological methods for recording signals, but vary with regard to the 

movement variables they focus on. Some experiments examine the relationship between neurons and 

kinematic variables such as limb position and velocity. Others aim to describe how neural activity correlates 
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to individual muscle activity or force. A seminal study, which evaluated the relationship of M1 to movement 

variables, was performed by Evarts in 1968. He recorded from individual pyramidal tract neurons (PTNs) 

in monkeys while they performed a task that required making flexion and extension movements about the 

wrist. The force that the monkeys had to exert was dissociated from movement direction, in order to 

separate out the variables (Evarts 1968). Overall, Evarts found that PTNs correlated more strongly to force 

and dF/dt than to displacement.  

Similar studies over the next few decades added to this general finding. In 1970, Humphrey and 

colleagues repeated the general premise of the Evarts experiment, but with the ability to record from more 

than one neuron simultaneously (Humphrey, Schmidt, and Thompson 1970). This allowed them to compute 

simple relationships between neural activity and movement variables using linear regression. They 

predicted position, velocity, force, and dF/dt, and found that they could best predict force from their small 

population of neurons, though the other three variables could also be predicted, just with less accuracy. A 

few years later, Thach revisited the general Evarts and Humphrey experimental paradigm to evaluate the 

relationship of neurons in M1 and the cerebellum to muscle activity, wrist joint position, and intended 

movement direction. He reported that M1 cells could be split into three categories, each relating to a 

different movement variable. However, M1 cells that were related to wrist joint position were often also 

related to movement direction, and vice versa (Thach 1978). Other notable studies from this era include an 

experiment by Cheney and Fetz to characterize the relationship of corticomotoneural (CM) cells to active 

force (Cheney and Fetz 1980). They reported correlations between CM discharge and active torque during 

an isometric task and movements against an elastic load, and also described the different firing rate 

characteristics of the CM cells. While some cells fired tonically in relation to ramp-and-hold torque, for 

example, others ramped their firing, while others still fired with a phasic burst, followed by tonic or ramp 

activity. Taken together, these studies demonstrate the ability of M1 firing to correlate to a variety of 

movement variables, such as EMG, position, and principally force and torque. 

A new theory on how motor cortex encodes movement arose in the 1980s, which for many 

introduced a significant shift of thought ( a P. Georgopoulos et al. 1982; A. Georgopoulos et al. 1983; A. P. 

Georgopoulos, Schwartz, and Kettner 1986). The seminal study came from Georgopoulos and colleagues, 
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who evaluated M1 firing rates while monkeys made arm movements in eight directions, spaced equally at 

45 degree intervals. For 75% of their 241 task-relevant neurons, they were able to identify a  “preferred 

direction”, or PD (A. P. Georgopoulos et al. 1982). This preferred direction could be described by the 

equation, Firing Rate = b0 + c1*cos(θ – θ0), where b0 and c1 are regression coefficients, θ is the direction of 

movement, and θ0 is the preferred direction, or the direction at which the neuron fired maximally. This study 

promulgated the idea that cells could change their firing rates in an orderly fashion with movement direction, 

and furthermore, that cells fired maximally for a particular movement direction. 

Following the introduction of the preferred direction theory, a number of studies began to highlight 

the relationship between neural activity in motor cortex and kinematic variables. Several of these early 

studies came from Schwartz and colleagues, who demonstrated the correlation between M1 firing rates 

and both speed and direction (Moran and Schwartz 1999; Schwartz 1993; Schwartz and Moran 2000; 

Schwartz 1992), though many other groups have also demonstrated M1’s relationship to kinematic 

variables (i.e. Alexander and Crutcher 1990; Caminiti, Johnson, and Urbano 1990; Fu et al. 1995; Paninski 

et al. 2004) These kinematic studies, taken into consideration with the number of experiments that relate 

M1 activity to force and EMG, demonstrate the ability of M1 to encode a number of movement variables. 

There remains no unanimous consensus on which variable may be the most reliably represented in M1, 

though some studies have demonstrated the superior robustness of the M1 to EMG relationship over 

kinematics across both workspaces and loads (Morrow, Jordan, and Miller 2007; Cherian, Krucoff, and 

Miller 2011). 

While researchers may not completely agree on which movement variable is more reliably encoded 

by M1, the fact that many variables can be decoded is advantageous for the development of medical 

devices that restore movement. By using M1 to predict endpoint position and velocity, for example, a system 

can be developed that controls a cursor or a robot using a person’s neural activity alone. These types of 

devices would be useful for people with paralysis or amputees, either to complete tasks using a computer, 

or by using a robotic limb to interact with the world. Alternatively, by using M1 to predict muscle activity, an 

FES system can be developed that allows individuals to control muscle stimulation using neural activity. All 

of these types of devices are in fact currently in development, and are referred to as motor brain-machine 
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interfaces (BMIs). They offer enormous potential for helping individuals with movement disorders resume 

activities of daily living, and future research will continue to increase their clinical viability in coming years. 

 

1.4 Motor brain-machine interfaces 

Motor BMIs involve computing a “neural decoder”, the term used to describe any algorithm that 

correlates neural activity to an external movement variable, such as force, muscle activity, joint angles, or 

endpoint position, velocity, or acceleration. In many of the BMI studies performed in monkeys, researchers 

develop the neural decoders by first having the monkey complete a task with its arm or hand, and 

simultaneously collecting neural and movement data (force, kinematics, muscle activity). Other experiments 

use compute “observation-based decoders”, where the subject typically observes the motion of a computer 

cursor as it acquires targets on a screen. In all cases, neural activity as well as movement data is 

simultaneously recorded during this training period in order to compute the neural decoder. In the next step 

of the experiment, the subject is asked to modulate its neural activity in order to use the decoder to complete 

a task, such as controlling a computer cursor, a robot, or muscle stimulation for FES. 

 The earliest demonstration of a real-time motor BMI was shown in rats, in a simple experiment where 

rats were able to activate neurons in order to control the proportional 1D movement of a lever (Chapin et 

al. 1999). The same group followed up this experiment with a study in monkeys, where they demonstrated 

that three-dimensional signals could be used to control the endpoint position of robotic arms (Wessberg et 

al. 2000). While in this experiment, the monkey did not see the predicted robot movements, Serruya et al. 

(Serruya et al. 2002), as well as Taylor, Helms Tillery, and Schwartz subsequently demonstrated the 

importance of a “closed-loop” BMI paradigm where visual feedback about predictions are provided, allowing 

the monkey to make corrective movements and adapt (Taylor, Helms Tillery, and Schwartz 2002). Schwartz 

subsequently followed up this study with an experiment that demonstrated the cortically-controlled use of a 

robotic arm for self-feeding (Velliste et al. 2008). 

Not long after the initial BMI successes in monkeys, researchers at Brown University began piloting 

experiments in human subjects using a BMI system dubbed BrainGate. In 2004, Matthew Nagle became 

the first human subject to test the system. Nagle had suffered a spinal cord injury three years prior to the 
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clinical trial, the result of a knife wound between the C3 and C4 vertebrae. Despite this injury, he was able 

to successfully modulate neurons in motor cortex to control the position of a cursor on a computer 

(Hochberg et al. 2006). This opened a new world of control for him, enabling him to check email, operate a 

television, and even play the classic computer game Pong. He was further able to demonstrate the ability 

to open and close a robot hand using one-dimensional proportional control, and could use a simple robot 

to move objects from point A to point B. 

Since Nagle, BMIs have increased in sophistication. In the BrainGate2 clinical trials, two human 

subjects with tetraplegia due to brainstem stroke were able to use a BMI to control two-different types of 

robotic arms to perform a reach-to-grasp task (Hochberg et al. 2012). One subject was further able to 

demonstrate to ability to feed herself by moving the robot to bring a cup of coffee to her mouth, which she 

was able to drink from using a straw. While this study used velocity-predictions to translate the robotic hand 

in space, other clinical trials extended the capabilities of a BMI to predicting orientation as well as 

translation. In a trial performed at the University of Pittsburgh, a 52-year old tetraplegic with spinocerebellar 

degeneration was able to control 7 degrees of freedom (DoF) of a robot arm (Collinger et al. 2013). This 

included the ability to control three dimensions of translation, three dimensions of orientation, and one-

dimension for hand grasp. This subject was later able to control 10 DoF, where the one-dimensional grasp 

was replaced with four types of hand shapes: pinch, scoop, finger abduction, and thumb opposition 

(Wodlinger et al. 2015). 

While the above BMIs are centered on predicting kinematic variables such as position and velocity, 

BMI use has also been successful for FES applications. The first example of a BMI for FES came from the 

University of Washington, where researchers demonstrated the ability to use single cells from motor cortex 

to control the stimulation of temporarily paralyzed wrist extensors (Moritz, Perlmutter, and Fetz 2008). 

Pohlmeyer and colleagues at Northwestern University subsequently published a study that further 

established the viability of neural decoders for FES (Pohlmeyer, Oby, et al. 2009) In this study, they 

demonstrated the ability of monkeys to control the stimulation of four wrist muscles. Later, the same lab 

extended the use of cortically-controlled FES to the restoration of functional grasp (Ethier et al. 2012). In 

this experiment, the monkeys were able to use neural decoders to control stimulation of wrist and finger 
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flexors in order to grasp and drop a ball down a tube. They were further able to control varying and distinct 

levels of grasp force. 

Aside from monkey experiments, human clinical trials for cortically-controlled FES have also 

recently begun. One collaboration between Ohio State University and the research firm Battelle in Ohio 

demonstrated successful FES use in a 24-year old patient with a C5/C6 level spinal cord injury (Bouton et 

al. 2016). They used a flexible sleeve of surface stimulation electrodes that wrapped around the forearm to 

activate muscles, and the subject was able to able to control wrist and isolated finger movements, and 

could complete several functional tasks, such as grasping objects, and pouring from a bottle. In another 

experiment, researchers at Case Western Reserve University have recently demonstrated BMI use for FES 

in a BrainGate2 clinical trial (Ajiboye et al. 2017). Their subject was a 53-year old man with a level C4 spinal 

cord injury. While he maintained residual shoulder girdle movement, he was paralyzed below the shoulder 

with no sensory feedback. Using his BMI, he was able to cortically-control muscle activation patterns and 

could complete functional activities, such as drinking a beverage and self-feeding. 

 

1.5 Neural decoders for BMIs 

In addition to the impressive demonstrations of BMI use above, countless studies have been performed, 

primarily in monkeys, to further develop these systems. As described above, neural decoders for BMI 

translate neural activity into movement variables, such as position, velocity, force, or muscle activity. Most 

decoders typically use neural activity from M1 as their input, but others use activity from other brain areas 

such as premotor cortex, particularly dorsal premotor cortex (PMd) (i.e. Wessberg et al. 2000; Carmena et 

al. 2003). Decoder algorithms may be linear filters, such as the Wiener or Kalman filter, or may involve 

more advanced machine learning, such as artificial or recurrent neural networks. Rather than directly 

predicting movement variables such as position or EMG, some groups also implement musculoskeletal 

models into their decoders that may account for the dynamics of the arm (i.e. Héliot et al. 2010; Chhatbar 

and Francis 2013). 

Other decoder considerations include the fact that neural decoders are not perfect, and often require 

user adaptation. Several BMI studies have studied the ability to adapt to various types of decoders. For 



28 
 
example, monkeys can better learn to use BMIs to control velocity over time (Lebedev et al. 2005), and can 

also improve kinematic control of a robot arm and gripper across experiment sessions (Carmena et al. 

2003). Monkeys can even learn to adapt to nonbiomimetic decoders. For example, Ganguly and Carmena 

demonstrated that monkeys could adapt to a BMI where the decoder weights were shuffled among neurons 

(Ganguly and Carmena 2009). In another example, Jarosiewicz and colleagues show monkeys can learn 

to use altered decoders, where the relationship between M1 and kinematics is rotated for only a subset of 

the BMI neurons used for control (Jarosiewicz et al. 2008) 

Despite these apparent abilities to learn to use nonbiomimetic decoders, recent work has also 

demonstrated that there do exist limitations to the ability to readily adapt to decoders. In a seminal BMI 

study on the neural constraints of learning, Sadtler and colleagues recently demonstrated that some 

decoders are more difficult to learn that others, and that these difficult decoders explicitly require neurons 

to co-modulate in abnormal ways (Sadtler et al. 2014). Various groups are currently following up this study 

in order to further evaluate the extent of these limitations on learning. 

Finally, in addition to user adaptation, the decoders methods themselves can be designed to adapt 

or otherwise facilitate improved use (Shenoy and Carmena 2014). In one example, the user is eased into 

100% brain control of a BMI through a process called “assistive training”. Here, the user begins by 

controlling a plant, such as a computer cursor, using brain-control mixed in with external assistance that 

helps the cursor move toward the target. As the user becomes more proficient at using the BMI, the 

percentage of assistive training is gradually reduced to zero. This type of facilitated adaptation has been 

primarily used in studies by researchers at the University of Pittsburgh (Velliste et al. 2008; Collinger et al. 

2013). Another example is the SmoothBatch closed-loop decoder adaptation algorithm, developed at the 

University of California, Berkeley. This algorithm updates decoders on a 1-2 minute time scale using a 

weighted average, and improves decoder performance even with shuffled initial weights (Orsborn et al. 

2012).   Adaptation has also been built into EMG decoders that may be directly applicable for FES. For 

example, an adaptive EMG decoder designed by Ethier and colleagues used a starting template of muscle 

pulling directions, and updated decoder weights using gradient descent as monkeys went through trial and 

error to use the BMI to control force (Ethier et al. 2016).  
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1.6 BMI methodology 

 
Beyond neural decoder development, there are many other facets involved in implementing a BMI system 

for FES, including implanting electrodes to record from the brain and stimulate muscles, and simulating 

temporary paralysis in order to test the system in intact animals. The sections below describe various 

methods for both general neurophysiology and the development of BMI systems.  

 
Intracortical Neural Recording for Systems Neuroscience 

Single-unit recording: Single-unit recording is typically hailed as the “gold standard” of neural recording. 

This method involves using a drive to move individual electrodes into the brain to find individual neurons, 

which are recorded extracellularly.  The electrodes used for this type of recording often have a single 

recording site at the tip of the electrode, but other designs also include multiple recording sites along the 

shank of a single electrode. While this type of recording is useful for neurophysiology experiments, and 

even single neurons can be used to simple control of muscle stimulation (Moritz, Perlmutter, and Fetz 

2008), it is not practical for implementing an effective BMI system, which usually relies on a population of 

neurons for sophisticated control.  

 

Multi-unit recording: Recording multi-unit activity (MUA) typically involves implanting an electrode array 

into the brain, and recording from a population of neurons from many electrodes at once. There are various 

types of electrode arrays that provide for multi-unit recording. The most well-established electrode in the 

BMI field is arguably the “Utah array”, which was developed by Richard Normann’s laboratory at the 

University of Utah (Campbell et al. 1991). This array is currently commercialized by Blackrock Microsystems 

in Salt Lake City, Utah, and is a silicon-based, 96-electrode implant that is pneumatically inserted into the 

brain. Other types of electrodes include floating microelectrode arrays (FMAs), which allow the 

customization of individual electrode-lengths up to 10mm for reaching deeper structures. Other arrays still, 

such as the “Michigan probe”, now commercialized by NeuroNexus, or Linear Microelectrode Arrays 

(Microprobes for Life Science, Gaithersburg, Maryland), include multiple recording sites spaced out along 

each electrode shank. Figure 1-2 shows examples of three types of cortical arrays implanted in M1. 
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Figure 1-2. Cortical arrays implanted in M1. This intraoperative photo shows a multi-unit electrode Utah 

array, two FMAs, and two pairs of LMAs implanted in the motor cortex of a rhesus macaque. 

 

Local Field Potentials: Local field potentials (LFPs) are brain signals that are collected below a certain 

frequency, typically 200-300Hz. These signals exclude action potentials from single neurons, but still carry 

information that can be used for decoding both kinematic variables and EMG (Flint, Wright, and Slutzky 

2012; Flint et al. 2017). LFPs can also provide long-term stable recordings that may be used for decoding 

once an electrode array old, and is no longer recording discernable spikes from individual neurons (Flint et 

al. 2012; Flint et al. 2013). 

 

Sorting Neurons 

While single-unit recording is considered the “gold-standard” of neural recording, BMI studies do not 

necessarily require the use of discriminable neurons. In fact, many studies use a combination of single and 

multi-unit activity for decoding. Furthermore, BMI researchers have reported that spike-sorting is not 

necessary for quality neuroprosthetic control (Fraser et al. 2009). Threshold crossing has therefore become 

a popular method for collecting data, where all incoming data that cross a certain threshold (usually an 

RMS multiplier) are counted as neural activity. The main practical advantage of using threshold crossings 

is that researchers do not have to sort through neurons at the beginning of every experimental session. If 

a researcher is fortunate enough to have a prolific array of neurons, sorting could be time-consuming, and 
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would detract time from the actual experiment. A more scientific advantage of threshold crossing over spike-

sorting is that the latter method discards extra signals that are in fact useful for decoding (Todorova et al. 

2014)   

Ultimately, the decision to sort neurons may depend on the scientific or engineering question at the 

heart of the experiment. In the experiments described in this thesis, I used both methods. In Chapter 3, I 

sorted cells because I was initially interested in evaluating the activity of single neurons and their 

relationship to the different experimental tasks. On the other hand, I used threshold crossings for my 

decoder-use study in Chapter 4. This is because I was less interested in the specific characteristics of 

individual neurons, and more interested in general decoder performance using a population of neural 

activity. 

 

Activating muscles for FES 
 
Muscle stimulation 

EMG electrodes for both recording and stimulation can be accomplished using surface, epimysial, 

or intramuscular electrodes (Navarro et al. 2017). Surface electrodes, true to their name, sit on the surface 

of the skin. These types of electrodes are the least invasive, but also provide the least reliable and 

reproducible results, as they require daily placement and recalibration. Epimysial muscles, by contrast, sit 

on the surface of the actual muscle. Their signal has better signal-to-noise than surface electrodes, but 

their implantation requires an invasive surgery. The electrodes do not penetrate the muscle but are sutured 

or otherwise anchored to the surrounding epimysium. Intramuscular electrodes, on the other hand, are 

placed within the muscle belly. These electrodes can be inserted percutaneously, where a needle is used 

to drive a hooked wire into the muscle without surgery. The remainder of the wire remains outside of the 

body. For a more permanent setup, these electrodes can also be implanted intraoperatively. In this case, 

the exposed end of the wire is threaded into the muscle belly, while the rest of the wire is tunneled under 

the skin until it reaches a connector, which is usually percutaneous. For the experiments included in this 

dissertation, we uniquely used intramuscular electrodes to record EMGs, shown in Figure 1-3. These same 

electrodes were also used for cortically-controlled FES experiments (see Appendix). 
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Figure 1-3. Intramuscular EMG wires and connector. In a long surgical procedure, we implant around 
20 twisted wire pairs into the muscle belly of forearm and hand muscles. The wires are tunneled under the 
skin over the shoulder and to the back. They then exit out of the back, where they attach to a percutaneous 
connector (Samtec, Inc., New Albany, Indiana) like the one shown here. 

 
Nerve cuff stimulation 

In the second chapter of this dissertation, I evaluate the ability of nerve cuffs to elicit selective 

muscle activation. In particular, I evaluate the Flat Interface Nerve Electrode (FINE) cuff, which was 

developed at Case Western University in Cleveland, Ohio (Tyler and Durand 2002). The advantages of 

nerve cuffs over individual muscle electrodes are multifold. First of all, the surgery to implant a cuff requires 

a single implant site, rather than the many implant sites that may be involved when implanting individual 

muscles in the upper arm, forearm, and hand. This reduces both the length and complexity of the surgery. 

Second, nerve stimulation may offer the ability to better stimulate intrinsic muscles, which are difficult to 

implant with intramuscular electrodes, and challenging to individually stimulate without current spillover. Yet 

another advantage to nerve stimulation is that its current amplitudes requirements are less than 

intramuscular amplitudes by an order of magnitude.  

There are various types of electrodes for nerve stimulation. Extraneural cuff electrodes, such as 

the FINE cuff, wrap around the nerve and do not penetrate fascicles. Cuff electrodes are not generally 

intended to manipulate nerve shape, although the FINE is specifically designed to gently reshape the nerve 

so the electrode contacts are closer to the fascicles.  Intrafascicular electrodes, in contrast to the extraneural 

cuffs, do penetrate the fascicles. These types of electrodes include the Utah Slant-Electrode Array (USEA), 

which consists of electrodes of various lengths that are inserted into the nerve (Ledbetter et al. 2013). 
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Another type of intrafascicular electrode is the longitudinal intrafascicular electrode (LIFE) (Yoshida 1993), 

which involves implanting electrodes in individual fascicles, parallel to the axons. The transverse 

intrafascicular multi-electrode (TIME) (Boretius et al. 2010) is also a type of intrafascicular electrode, which 

is implanted perpendicular to the axons and penetrates a number of fascicles along the diameter of the 

nerve. While cuff electrodes may only stimulate superficial nerve fascicles, LIFEs excite a single fascicle, 

while TIMEs excite several different fascicles along the diameter of the nerve. 

These various types of cuffs offer tradeoffs between invasiveness, ease of stimulation, and 

selectivity. For example, while nerve cuffs are the least invasive, they have also been shown to require 

higher stimulation thresholds than the TIME and LIFE. However, they were more also more selective than 

the LIFE in an experiment that compared the use of the three electrodes to stimulate the rat sciatic nerve 

(Cutrone et al. 2011). Future studies should continue to evaluate the relative benefits of each type of cuff. 

 
Nerve block to simulate paralysis 
 

While various methods for nerve blocks have been developed, here I describe the methods 

primarily used by our lab, which involve drug delivery to the major nerves of the arm. 

 

Short-term block with lidocaine 

For our current FES experiments in the Miller Limb Lab, we temporarily paralyze the monkey’s 

working arm with a local nerve block. These methods, described in detail in (Pohlmeyer, Jordon, et al. 

2009), allow us to selectively block the radial, ulnar, and median nerves in the upper arm. In a surgical 

procedure, we implant subdermal injection ports (Access Technologies, Skokie, Illinois) under the skin in 

the upper arm, which route to silicone tubes that lead to a silicone sheet wrapped around the nerve (Figure 

1-4.) This implant allows us to inject a nerve block agent into the port to block the nerve for experiments. 

We typically deliver 0.8-1mL of lidocaine mixed with epinephrine (1:100,000) per nerve to induce a nerve 

block that can last around 1-2 hours. 
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Long-term nerve block with infusion pump 
 

The next major project in our lab is to conduct continuous wireless FES experiments in the 

monkey’s home cage. This will require a long-term nerve block, lasting as long as days or weeks. While 

our standard paradigm is to deliver lidocaine to the nerve, as described above, prolonged lidocaine use is 

neurotoxic, and can therefore injure the nerve (Johnson 2004). As part of my PhD, I led the development 

of a new protocol for a long-term nerve block using low doses of tetrodotoxin (TTX), a sodium channel 

blocker. During experiments, we can now route TTX to the nerve using a fully implanted infusion pump, 

which can be programmed to perform drug delivery at rates as slow as 2uL/hour (iPRECIO, Tokyo, Japan). 

The pump routes to a catheter, which then connects to a silicone sheet sutured around the nerve. To test 

the viability of this block, we conducted TTX experiments in rats and monkeys. In the rat, we were able to 

block the nerve for at least a month, and see a full recovery after replacing the pump’s reservoir with a 

saline flush. In the monkey, the longest block we attempted was a week long, after which the monkey fully 

recovered. The list of flow rates and concentrations we tested is listed in Table 1-1, and a photograph 

demonstrating the successful block of the radial nerve in a monkey is shown in Figure 1-5. 

 

 

 

Figure 1-4. Nerve cuffs in the rat and monkey. (A) Nerve cuff ready for placement around a rat sciatic 

nerve. (B) Nerve cuff sutured around a monkey nerve. 
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Table 1-1. Parameters for a TTX nerve block. 

 
 
 

 

 

 
Figure 1-5. A successful radial nerve block in a rhesus monkey. This figure demonstrates the result 
of a successful radial nerve block using TTX. The radial nerve innervates wrist and finger extensors, and 
the monkey’s flexed hand posture here demonstrates his inability to activate his extensors. 
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1.7 Summary 

 
The overarching theme of this dissertation is the refinement of control strategies for cortically-

controlled FES. The two control strategies I explore involve understanding how to more efficiently and 

selectively activate muscles, and how to better understand the relationship between M1 and EMG in order 

to build better neural decoders. 

In Chapter 2, I evaluate the ability to selectively activate muscles in the forearm using nerve cuffs. 

Specifically, I evaluate the performance of the Flat Interface Nerve Electrode (FINE), which was developed 

at Case Western Reserve University (CWRU) (Tyler and Durand 2003). This chapter was the result of a 

collaboration between Lee Miller’s lab at Northwestern University, and Dustin Tyler’s lab at CWRU. The 

goal of the study was to evaluate the ability of FINE cuff stimulation to produce selective muscle activation. 

The results reported here are relevant to all general FES for grasp applications, and not just cortically-

controlled systems. 

In Chapters 3 and 4, I evaluate the robustness of the relationship between M1 and EMG. These studies 

serve both to add to the neural control of movement knowledge base, and to inform future neural decoder 

development. In Chapter 3, I evaluate whether a single linear M1-EMG decoder can span three dynamically 

different wrist tasks: an isometric task, an unloaded movement task, and a spring-loaded movement task. 

I also compare the performance of the linear decoder to a nonlinear recurrent neural network (RNN). In 

Chapter 4, I evaluate the ability of monkeys to learn to use two different types of decoders: one that 

preserves the natural patterns of muscle activation, and one that does not. This study addresses the ability 

of M1 neurons to readily dissociate from natural muscle biomechanics to successfully learn to control a 

BMI. 
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2 Evaluation of high-density, multi-contact nerve cuffs for activation of grasp muscles in monkeys 
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2.1 Introduction 

 
Paralysis resulting from spinal cord injury (SCI) is devastating, dramatically reducing the 

independence of affected individuals. In addition to the direct effects, a number of secondary complications 

emerge as a result of disuse, such as muscle atrophy, contractures and pressure sores (Ragnarsson 2008; 

Baldi et al. 1998). However, if the motor neurons remain intact after injury, muscles can be made to contract 

through functional electrical stimulation (FES) (Peckham and Knutson 2005). FES has been used to assist 

or restore gait (Daly et al. 2011; Granat et al. 1993; Thrasher, Flett, and Popovic 2006), the ability to grasp 

objects (Alon and McBride 2003; Peckham and Knutson 2005; Peckham et al. 2001; Peckham, Marsolais, 

and Mortimer 1980; Popovic, Popovic, and Keller 2002) and to augment bowel and bladder function (Gaunt 

and Prochazka 2005).  

 While some hand grasp systems use transcutaneous muscle stimulation (Ijzerman et al. 1996; 

Prochazka et al. 1997) (e.g., Bioness, Myndtech, Belgrade Gasping System), FES often requires an 

invasive procedure where surgeons must identify and implant electrodes in every muscle of interest. In this 

case, the intrinsic muscles of the hand present a particular challenge. In addition to being difficult to implant, 

their small size often results in current spillover to adjacent muscles (Kilgore et al. 1990), rendering selective 

activation difficult to achieve. In the case of larger, extrinsic muscles with spatially distributed motor units, 

it is difficult to recruit the fibers of the entire muscle, resulting in partial and ineffective recruitment (Fisher 

et al. 2008). 

 Nerve trunk stimulation is an alternative that may address these challenges, and a variety of multi-

contact nerve-based electrodes exist (Polasek, Schiefer, et al. 2007; Polasek, Hoyen, et al. 2007; Boretius 

et al. 2010; Ledbetter et al. 2013; Tyler and Durand 2002; Yoshida 1993; Lago et al. 2007; Lawrence, 

Dhillon, and Horch 2003). These electrodes vary in how they interface with the nerve, but are similar in that 

a single implant site can potentially access all the muscles innervated by that nerve. This more efficient 

access to muscles means a less extensive and shorter surgery, potentially improving outcomes and 

reducing risks. There is also about a 10-fold decrease in the required stimulation intensity for nerve cuffs 

compared to intramuscular stimulation, thereby simplifying stimulator design, increasing battery life, and 

reducing stimulation artifact in cases when concurrently recorded biosignals are used for control.  
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 In this study, we evaluate a particular type of electrode, the Flat Interface Nerve Electrode (FINE), 

for use in upper extremity hand grasp systems. The FINE is an extraneural electrode designed to gently 

reshape the nerve and thereby increase access to nerve fascicles (Tyler and Durand 2002). It offers the 

potential to activate muscles strongly and selectively and has been shown to be stable over several years 

for restoring sensation in humans (D. W. Tan et al. 2014; D. Tan et al. 2013; Schiefer et al. 2016). It is 

therefore an attractive candidate for use in motor recruitment for FES. In the experiments presented here, 

we collected recruitment curves from FINEs implanted in six monkey arms. We evaluated the ability to 

generate selective activation of several functionally synergistic muscle groups as well as certain individual 

muscles. Our ultimate goal is to use this technology in tandem with intramuscular stimulation in the 

development of FES systems, including a cortically-controlled FES system that uses signals in motor cortex 

to control the time-varying stimulation of multiple muscles (Moritz, Perlmutter, and Fetz 2008;  Pohlmeyer 

et al. 2012).  

 

2.2 Methods 

We implanted and tested 12 and 16-channel FINE cuffs on the median, radial, and ulnar nerves of 

six monkeys: four rhesus macaques (Macacca mulatta, Monkeys 1, 2, 3, and 4) and two long-tailed 

macaques (Macaca fascicularis, Monkeys 5 and 6) (Table 1). We collected recruitment curves by varying 

either pulse amplitude or pulse width of single, biphasic, charge-balanced stimulus pulses and recorded 

the evoked EMG twitch response of all implanted muscles (Polasek, Schiefer, et al. 2007). Four 

experiments, monkeys 1-4, were 36-hour non-recovery procedures. Two experiments, monkeys 5 and 6, 

were chronic experiments to evaluate the performance of chronically implanted FINE cuffs. Measurements 

were collected under sedation. Monkey 5 was implanted for 6 months, and was involved in 12 stimulation 

experiments. The study in Monkey 6 spanned 15 weeks, and involved weekly, standardized, eight-hour 

recording sessions to collect a series of recruitment curves. All methods were fully consistent with the Guide 

for the Care and Use of Laboratory Animals and conducted in accordance with a protocol approved by the 

Northwestern University Institutional Animal Care and Use Committee. 
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Table 2-1. Nerves implanted with FINEs in each monkey. This table shows the number of contacts for 
all the cuffs included in the current paper’s analysis. The number of contacts for each cuff ranged from 12 
to 16. In Monkey 6, we implanted clinical-grade CFINE nerve cuffs. All radial cuffs were implanted proximal 
to the elbow. The difference between the proximal and distal median cuffs is relative to the nerve branch to 
the pronator teres muscles. The distal ulnar cuffs were just proximal to the wrist, while the proximal cuffs 
were closer to the elbow. 

 

 

2.2.1 Electrode Design and Fabrication.  

We designed the FINE electrodes with specific dimensions so they would appropriately fit around 

the nerves (Figure 2-1Figure 1-2 (a-c)). We used previously acquired histology of the monkey nerve cross-

section to design the nerve cuff opening height (Figure 2-1 (c)) to fall between the diameter of the second 

and third largest fascicles. The opening width provided the cuff lumen a cross-sectional area of 1.4 times 

the expected cross-sectional area of the nerve. Nerve cuffs constructed at Case Western Reserve 

University (Monkeys 1-5) had opening heights of 1.5 mm (radial implant), 0.7 mm (ulnar distal implant), and 

1.4 mm (median elbow and proximal implants). The contact dimensions were 0.25 x 0. 25 mm with an edge-

to-edge value modified to equally space the contacts across each cuff width. For Monkey 6, we implanted 

clinical-grade Composite Flat Nerve Interface Electrodes, made with a high performance poly-ether-ether-

ketone (PEEK) polymer to minimize bulk (CFINE) (Ardiem Medical, Indiana, Pennsylvania). Each CFINE 

cuff housed 16 contacts, eight on each side. All cuffs were wired to a connector with 7-strand 316L VM 

stainless-steel, PFA-coated wires (Fort Wayne Metals, Fort Wayne, Indiana). The dimensions of the 

individual contacts of the CFINE were 0.35 mm (width) x 1.5 mm (height) with an edge-to-edge contact 

spacing of 0.25 mm. 
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Figure 2-1. Experiment Setup. (a) CFINE cuff made out of poly-ether-ether-ketone (PEEK) with 16 
contacts. (b) Placement of the cuff around the radial nerve of a macaque. (c) Schematic illustrating the 
arrangement of contacts around the nerve. (d) Schematic illustrating the flow of experiment. The 
computer sent commands to the stimulator, which stimulated the appropriate contact on the FINE cuff. 
This produced a muscle twitch, which was amplified and sent back to the computer to be saved. (e) 
Examples of muscle twitches elicited by nerve stimulation on a single contact. 

 
FINE cuff implantation 

We implanted up to four FINE cuffs in each arm of the acute study monkeys, on the median and ulnar 
nerves ( 
 
 
 

Table 2-1). During surgery, we dissected a 2 cm length of nerve free from surrounding tissue, 

placed the cuff around the nerve and secured the ends with a suture (Figure 2-1 (a) and 1(b)). Contacts 

near the cuff hinge, especially contacts 8 and 9, did not always touch the nerve (Figure 2-1(a-c)). 

 

2.2.2 EMG electrode implantation  

We implanted pairs of multi-stranded, Teflon coated stainless steel wires (Cooner 632) in each 

muscle after stripping 2 to 3 mm of insulation from the end of each wire and separating the deinsulated 

tips by approximately 1 cm (Table 2-2). In surgery, we exposed and identified each muscle based on its 

response to electrical stimulation. For the acute experiments, we either sutured the wires to the muscle 
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surface (epimysial) or inserted them into the muscle belly using hypodermic needles (intramuscular). We 

placed two needles in the shoulder to serve as the stimulation return (anode) and the EMG reference. For 

the chronic experiments, we also implanted a reference wire near the elbow, along with a return electrode 

on the upper arm. All electrodes were intramuscular, and routed together with the FINE leads to a 

percutaneous implant on the monkey’s back that included three connectors (Samtec Inc., New Albany, 

Indiana) on a printed circuit board. 

 

Table 2-2. Muscles implanted with electrodes for each monkey. The list of muscles for each monkey 
includes flexor digitorum profundus (FDP), flexor digitorum superficialis (FDS), opponens pollicis (OP), 
palmaris longus (PL), pronator teres (PT), abductor pollicis longus (APL), brachioradialis (Brad), extensor 
carpi radialis brevis (ECRb), extensor carpri radialis longus (ECRl), extensor digitorum communis (EDCr 
and EDCu to dictate the relative location of electrode pairs), extensor carpi ulnaris (ECU), abductor digiti 
minimi (ADM), adductor pollicis (AdP), flexor carpi ulnaris (FCU), first dorsal interosseous (FDI), flexor 
pollicis brevis (FPB), flexor digiti minimi brevis (FDMb), and first lumbrical (Lum1),. Hypothenar and 
thenar refer to electrodes implanted in the hypothenar and thenar eminence, but that were not more 
specifically identified. 

 

 

2.2.3 Data Collection  

During the acute experiments (Monkeys 1-4), we used two battery-powered, computer-controlled 

stimulators (custom devices by Crishtronics, Cleveland, OH) to deliver charge-balanced, biphasic, 

rectangular pulses. We acquired EMG at 2.4kHz, amplified, AC coupled (2nd order, 10 Hz HPF cutoff) and 

low-pass filtered (2nd order, 1 kHz). 

For the chronic experiments with Monkey 6, we conducted experiments every 1-2 weeks for 15 

weeks. We induced sedation with either Telazol or a ketamine-midazolam cocktail IM, and maintained an 

experimental level of sedation with IV propofol. A MATLAB user interface controlling a 16-channel stimulator 

(Tucker-Davis Technologies, Alachua, FL) sent stimulus pulses to the cuffs and collected EMG signals. 

The EMG data were sampled at 3kHz, amplified, AC coupled (2nd order, 10 Hz HPF cutoff), low-pass filtered 

at 1 kHz. 
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For both acute and chronic trials, we used a binary search routine to generate pulse-width and 

pulse-amplitude modulated recruitment curves. For each curve, we held one parameter (amplitude or width) 

constant and varied the other. For each session with Monkey 6, we collected up to four sets of recruitment 

curves per nerve: two sets with pulse amplitude values of either 0.10 mA or 0.25 mA and varied pulse width, 

and two sets with pulse width of either 10µs or 20µs with varied pulse amplitude. We used a stimulation 

frequency of 4 Hz to minimize the experimental time without fusing muscle twitches (Polasek, Hoyen, et al. 

2007). At the beginning of each session, we determined the maximum activation for each muscle by 

stimulating all contacts in the nerve cuff with a pulse width of 100 s and pulse amplitude of 0.20 mA 

(Recorded Max Value). 

 

2.2.4 Data Analysis  

We analyzed the recruitment curves to determine the stimulation thresholds and selectivity of each 

contact.  We used peak-to-peak EMG amplitude to quantify the magnitude of muscle contraction and 

normalized to the peak-to-peak of the Recorded Max Value described above. We defined the selectivity of 

individual muscles as the percent activation of a given muscle before any other muscle reached 20% of the 

Recorded Max Value (Figure 2-2).  

To evaluate muscle selectivity over time, we used two different types of analysis. In the “Fixed 

Contact” analysis, we chose the contact that yielded the highest selectivity across all weeks, and computed 

its selectivity in each session. In the “Best Contact” analysis, we computed selectivity for each session 

using the most selective contact for that session. 
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Figure 2-2. Median Nerve Recruitment Curve. These recruitment values are for the right arm of Monkey 
1, who had a FINE cuff implanted around the median nerve proximal to the elbow. The dotted line at 20% 
shows the threshold for determining selectivity. In this example, the first muscle to reach 20% is the 
Pronator (PT), and it remains the only muscle above this line until it reaches 90% activation, which is 
when the next muscle, FDP, reaches 20%.  The selectivity value for the Pronator in this example is 
therefore 0.90. 
 

 

 

2.3 Results 

2.3.1 Activation Thresholds  

For all monkeys, we evaluated activation thresholds for all contacts in the median nerve cuffs. As 

the cuffs were somewhat larger than the nerves, contacts at either end were typically the farthest from the 

fascicles (Figure 2-1 (a-c)), and had somewhat higher thresholds. The highest thresholds were for contacts 

8 and 9, located at the hinge of the cuff, and often not in direct contact with the nerve (Figure 2-1(c)). The 

thresholds across all muscles, regardless of monkey and nerve, were mirrored for the top and bottom of 

the cuff, such that opposing pairs of contacts had comparable thresholds (Figure 2-3). The intraoperative 

thresholds were initially high for Monkey 5, but decreased at five weeks and at further at six months during 

the terminal experiment. Figure 2-4 shows thresholds for Monkey 6 in more detail for each nerve. For the 

radial nerve, the thresholds for contacts 1 and 16 were low, a result of being in close proximity with the 

nerve in this particular case (Figure 2-1 (b)). 
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Figure 2-3. Stimulation thresholds for all monkeys for the median nerve cuff. The data from each 
monkey are centered around the hinge at contact 8 and 9 because not all cuffs had 16 channels. Missing 
data points indicate that the contact could not activate muscle, or that the data were not collected. 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2-4. Thresholds. These plots show the mean charge at threshold (0.2 EMG value) of each 
muscle at each contact across all three nerves in trials collected after 2 months post implant in Monkey 6. 
 

2.3.2 Selective recruitment of muscles with FINES 

We were able to achieve at least partially selective activation of muscles in all monkeys (Figure 

2-5). In all cases where the median nerve cuff was implanted just proximal to the pronator teres (PT) branch, 
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we could recruit that muscle with a selectivity value of 0.62 to 0.90 (Figure 2-5(a)). The best results for the 

proximal implant were in Monkey 1 (Left arm) with selective activation of four muscles: PT (Selectivity=0.9), 

FDP (0.8), FCR (0.7), and FDS (0.3). For Monkey 3, the selectivity of activation of intrinsic thumb muscles 

in the thenar eminence was 0.45. 

To avoid dominance of PT recruitment in Monkeys 4-6, we placed the median nerve cuffs distal to 

its nerve branch. This enabled selective activation of finger and wrist flexors for these three monkeys. For 

Monkeys 4 and 6, FDP and FDS were active selectively, which demonstrates an ability to control finger 

flexors. In Monkey 6, four muscles were selectively activated, including both finger: FDP (0.6), FDS (0.4) 

and wrist flexors: PL (0.35), FCR (0.25), at 6 days post-surgery.  

The ulnar nerve cuffs in Monkeys 1-4 were implanted proximal to the elbow and activated flexor 

carpi ulnaris (FCU), the first muscle to branch distal to the cuff, with selectivity ranging from 54% to 100%. 

In Monkeys 5 and 6, the ulnar cuff was implanted just proximal to the wrist, well past the nerve branch to 

FCU. Using these cuffs, we recruited FDI and ADM at 55% and 34% selectivity, respectively.  

 

 

Figure 2-5. Summary of selective muscle activation for the median nerve. Each plot represents the 
highest selectivity value for each muscle across the range of pulse amplitudes and widths tested. 
Selectivity for each muscle was therefore achieved using different stimulation parameters. All data were 
collected intraoperatively except the data for Monkey 6, which were collected 6 days post-implantation. 
The background shading of each polar plot separates the muscles into functional groups, showing the 
ability to get functional selectivity in addition to muscle selectivity. 
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2.3.3 Recruitment Order 

Order of recruitment of multiple muscles, especially functionally synergistic muscles, affects the 

functional result of stimulation. Recruitment order two months post-implant in Monkey 6 shows multiple 

different recruitment orders from single contact stimulation (Figure 2-6). For example, contact 6 on the 

radial nerve (Figure 2-6(a)) first activated the finger extensors EDCr and EDCu, then the wrist extensor, 

ECU, and finally thumb abductor, APL. In contrast, contact 5 first activates wrist extensors, ECRb and ECRi, 

then finger extensors EDCr and EDCu. For the radial nerve, there were 11 unique recruitment orders for 

16 contacts. For the median nerve (Figure 2-6(b)), there were 10 unique recruitment orders for 16 contacts. 

Four of the five muscles of the radial nerve (APL, Brad, EDC, ECR, and ECU) were activated first 

by at least one of the electrodes. Only the brachioradialis was not activated first by any contact. Each of 

the four muscles innervated by the median nerve (FDS, FDP, ECR, and ECU) were recruited first by at 

least two contacts. Of the four muscles in the ulnar nerve (ADM, FDMb, FDI, and First Lumbrical) all 

contacts always activated the muscles in the same order of ADM, FDMb, FDI, and First Lumbrical (not 

shown in figure). Only contact 13 reversed the order of the FDI and First Lumbrical activation. 

 
Figure 2-6. Recruitment order. The order for muscle recruitment for each contact in Monkey 6 at 2 
months post implant. Muscles depicted closest to the nerve were recruited first. The muscles are grouped 
according to functional synergy. 
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2.3.4 Stability of muscle selectivity for chronically implanted cuffs. 

To evaluate the stability of muscle recruitment over time for Monkey 6, we obtained recruitment 

curves for the most selective muscle recruited by each cuff, and averaged the recruitment curves for 

experimental sessions 9 through 14 (Figure 2-7). For these recruitment curves, pulse width was held static 

at 10 or 20 µs while pulse amplitude varied. Ulnar nerve stimulation selectively recruited ADM, an intrinsic 

hypothenar muscle, with selectivity values of 0.69 ± 0.06. For the radial nerve, the muscle with the highest 

selectivity value was APL, (0.51 ± 0.05 at 20 µs). For the median nerve, FDP was most selective (0.83 ± 

0.05). These three muscles not only had the highest selectivity, but were also recruited with the highest 

stability across weeks, indicated by their low standard deviations. Conversely, the muscles that were 

activated with the least stability across sessions, FCR and PL, were only selective for 3 sessions (selectivity 

means of 0.29 and 0.30, respectively). Due to external factors, FCR and PL were only tested in 5 of 6 

sessions. 

2.3.5 Achieving selectivity with more than one contact 

In many cases the same muscles were selectively activated by more than one contact, and we 

therefore evaluated selective muscle activation across sessions using two different analyses (Figure 2-8). 

The Fixed Contact analysis (Figure 2-8a)) shows selectivity of a single contact across all sessions for 

Monkey 6, while the Best Contact analysis (Figure 2-8(b)) shows results for the contact that produces the 

greatest selectivity in a given session. The largest difference in selectivity between the Fixed and Best 

contact results is seen in the wrist flexor functional group, where selectivity using the Best contact was 

better by more than 15% for weeks 3, 8, and 11 (Figure 2-8(a) and (b), Median Nerve). The difference in 

selectivity between the Fixed and Best contact for the finger flexors was more than 10% for weeks 5, 13, 

and 14 (Figure 2-8(a) and (b), Median Nerve). In another example, the wrist extensor functional group, 

selectivity using the Best contact was better by more than 15% at week 2. (Figure 2-8(a) and (b), Radial 

Nerve). These examples demonstrate the ability to improve selectivity by switching to another contact. 
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Figure 2-7. Mean recruitment curves of selective muscles. These curves average data from trials 
collected after 1.5 months post-implant in Monkey 6. The dotted line indicates one standard deviation 
from the mean (solid line). The mean is calculated across all recruitment curves for the contact and pulse 
width that produced the most selective recruitment. 
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Figure 2-8. Selectivity over time. (a) Selectivity, as calculated by the Fixed Contact Analysis, for the 
three nerves in Monkey 6. (b) Selectivity, as calculated by the Best Contact Analysis. 
 

2.3.6 Multiple-contact stimulation 

In a brief experiment in Monkey 6, we used the FINEs to activate muscles using multiple contacts from the 

median and radial cuffs simultaneously. Based on recruitment curve information, we identified contacts that 

drove the hand from a posture with the fingers extended to a posture with the fingers closed in a fist 

(Supplementary Video A). In another trial, we caused the fingers to spread, an action mediated largely by 

the dorsal interossei (Supplementary Video B). By stimulating on multiple contacts, we were able to achieve 
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strong wrist extension in tandem with finger flexion. In both videos, the monkey’s wrist extends, and remains 

extended while all fingers flex. This type of activation is crucial for restoring effective grasp. 

 

2.4 Discussion 

In the current study, we demonstrate the feasibility of using extraneural FINE cuffs for evoking 

muscle activity, a promising avenue for improving FES. FINEs offer an advantage over individual muscle 

stimulation in part because their implantation requires much less extensive surgery. Implanting a cuff 

requires surgery at a single site rather the multiple sites required for all the muscles innervated by that 

nerve. In particular, FINEs also improve access to the small, intrinsic muscles, the size and location of 

which make them particularly difficult to implant with individual intramuscular electrodes. Furthermore, the 

small distance between intrinsic hand muscles makes them prone to current spillover, even at relatively low 

intensity stimulation. Another limitation of intramuscular electrodes is the limited force that may be produced 

through partial activation of the muscle. In particular, activation of finger flexors during a power grasp, also 

causes wrist flexion torque which can overpower the torque produced by intramuscular activation of the 

much weaker wrist extensors. We found this not to be in the case in our multiple-contact stimulation 

experiment (Supplemental Videos A and B). In both videos, the monkey’s wrist extends, and remains 

extended while all fingers flex. This type of activation is crucial for restoring effective grasp. 

 

2.4.1 Selective activation of muscles and functional muscle groups 

While recent studies have demonstrated the successful chronic use of 8-channel FINEs in humans for 

evoking sensory percepts [25-26], here we focus on the viability of 12, 14, and 16-channel designs for motor 

applications. The more closely spaced electrodes may explain why adjacent contacts often activated 

muscles in a similar sequence. In many cases, we could achieve similar selective activation of a given 

muscle or functional group using multiple contacts. This meant that for sessions where we could not achieve 

great selective activation using a particular contact, we could often instead use a neighboring contact. The 

high-density design provides a redundancy that allows more contact options to choose from, which is helpful 
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for maximizing selective activation of muscles and functional groups, and could also contribute to long-term 

stability of selective activation. 

 

2.4.2 Monkey as a model for evaluating nerve stimulation 

In the current study, the monkey proved to be a valuable model to evaluate and improve stimulation 

algorithms more readily than would be possible with human subjects. While the experiments described here 

are important for exploring ways to improve stimulation techniques, they are time consuming and therefore 

not ideal for human experiments. Our chronic experiments spanned as much as eight hours, while the acute 

ones spanned as much as thirty-six hours. These long sessions permitted a comprehensive evaluation of 

the feasibility of the FINE cuffs, allowing us to test muscle responses to stimulation using a wide range of 

pulse widths and amplitudes. As reported elsewhere (Natalie Brill 2015), we also developed a genetic 

algorithm (GA) to optimize parameters for multiple-contact stimulation, and our 8-hour experiments allowed 

us to run several GAs. Use of a monkey model further afforded us the ability to investigate other practical 

issues, including the posture dependence of the stimulation, which proved to be minimal, and the ability to 

form functional grasps using multi-contact stimulation. 

However, anatomical differences between the monkey and human should be taken into account when 

considering how our results will translate to the clinic. Monkeys have considerably fewer fascicles than the 

human, a difference that is important, given that selectivity improves with increasing number of fascicles 

(Brill et al. 2009). It is likely then, that selectivity in humans will be better than what we report here in 

monkeys. 

2.4.3 The use of FINES for FES 

Although FINEs offer advantages over intramuscular electrodes, challenges to implementing real-time 

control with them remain. Implementing FINEs in an FES system will also require developing methods to 

map FINE cuff stimulation parameters to desired EMG output. For muscles that cannot be selectively 

activated with FINEs, it may also be necessary to supplement nerve stimulation with intramuscular 

stimulation. 
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2.5 Conclusions 

Here we present results from several acute and chronic experiments conducted under sedation with six 

monkeys. We were able to achieve selective activation of individual muscles, or distinct functional groups 

of muscles. The high-density cuff design led to overlap in the sets of muscles activated by different contacts, 

allowing the ability to choose contacts that provided the most selective activation. Overall, the monkey 

model allowed us to test a wide range of stimulation parameters, and will continue to be a valuable model 

for exploring FINE capabilities.  
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3.1 Introduction 

       It is easy to take for granted the range of forces and dynamical conditions over which we can make 

accurate, stable movements. Whether for turning the page of a book, or carrying heavy loads, the motor 

system can accommodate a tremendous range of dynamic conditions and load forces. Understanding the 

control of these wide-ranging motor behaviors by neurons in the primary motor cortex (M1) has been an 

on-going challenge, even before Evarts first made recordings in M1 from behaving monkeys over a half 

century ago (Evarts 1968). Motor cortical activity leads directly to muscle activity and force generation, but 

this relationship appears to be context-dependent. Some corticomotoneurons are more active during 

precision grip than power grasp, despite much lower EMG occurring in their target muscle (Buys et al. 1986; 

Muir and Lemon 1983). In another study, the relation between M1 neurons and precision grip force 

depended on the anticipated range of required forces in any given block of trials (Hepp-Reymond et al. 

1999). Likewise, during supination / pronation movements, MI activity appeared to be especially important 

in controlling precise, fine movements at low forces (Evarts et al. 1983). 

Brain-machine interfaces (BMIs) are a promising technology, and may allow the restoration of 

movement for patients with spinal cord injury or other forms of paralysis. BMIs typically translate neural 

signals from the brain into kinematic control signals that can be used to move computer cursors or robotic 

arms (Taylor and Tillery, 2002; Serruya et al. 2002; Carmena et al. 2003; Hochberg et al. 2006; Velliste et 

al. 2008). However, beyond the kinematics of movement, an ideal BMI might allow a user to reproduce the 

wide range of movement dynamics that normally occur as a person moves at different speeds and interacts 

with objects of different mass and compliance. Although it is well known that the primary motor cortex (M1) 

contains a great deal of information about forces and movement dynamics (Evarts 1968; Humphrey, 

Schmidt, and Thompson 1970; Hepp-Reymond et al. 1999; Cheney and Fetz 1980) this information is 

ignored by kinematic decoders. Instead, movement dynamics are handled by the controller rather than the 

user. 

Arguably the earliest BMI study made predictions of both force and kinematic variables using as many 

as five neurons. While force was predicted the most accurately of the movement-related signals, it required 

that the decoder gains be scaled across tasks with different ranges of applied force (Humphrey, Schmidt, 
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and Thompson 1970), consistent with several of the single-neuron studies reviewed above. More recently, 

a few groups have attempted to control reaching with BMIs that combined kinematic and torque decoders 

(Chhatbar and Francis 2013; A. Suminski et al. 2011) or incorporated musculoskeletal models into their 

decoders (H. K. Kim et al. 2007; Héliot et al. 2010). Perhaps the most direct control of movement dynamics 

has been achieved by predicting the intended activity of paralyzed muscles and using those predictions to 

control electrical stimulation that causes them to contract (Moritz, Perlmutter, and Fetz 2008; Pohlmeyer, 

Oby, et al. 2009; C Ethier et al. 2012; Bouton et al. 2016; Ajiboye et al. 2017). Functional Electrical 

Stimulation (FES) is already in broad use clinically, typically controlled only by the patient’s residual 

movements (Venugopalan et al. 2015; Snoek et al. 2000; AM et al. 2005). With a BMI-controlled FES 

prosthesis, a user might control limb impedance directly through muscle co-contraction, as well as 

compensate for external interaction forces. Given the increasingly successful development of wireless BMI 

technology (Yin et al. 2014; Borton et al., 2013), one can imagine the use of BMI-controlled FES for normal 

activities of daily living in completely unconstrained environments. 

The varied evidence of context dependence in the relation between M1 and motor output suggests that 

a gain control function may be implemented downstream of M1. In this case, a single linear M1-to-EMG 

decoder may be inadequate for the broad range of movement dynamics we envision. When EMG decoders 

have been tested across different postures or in the presence of different loads, they tended to generalize 

more successfully than did predictions of kinematic decoders (Cherian, Krucoff, and Miller 2011; Morrow, 

Jordan, and Miller 2007; Oby, Ethier, and Miller 2013) (Cherian, Krucoff, and Miller 2011; Morrow, Jordan, 

and Miller 2007).  However, even for this relatively limited range of movement dynamics, the generalization 

was considerably less than complete.   

Here we examine the ability of decoders to predict wrist EMG across three highly varied dynamical 

conditions: isometric force production, unloaded movements, and movements against an elastic load. 

Neither linear Wiener filters nor nonlinear recurrent neural networks (RNNs) extrapolated well to tasks 

beyond those they was trained on. Only the RNN works well when trained on all three tasks. To allow the 

Wiener filter to also perform well across tasks, we needed to incorporate a task specific gain. Furthermore, 

most of this gain effect can be attributed to mechanisms downstream of cortex.  
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3.2 Materials and Methods 

3.2.1 Behavioral tasks 

We trained two male rhesus monkeys (Macaca mulatta: Monkey J, 10.5kg, and Monkey K, 11.4 

kg) to sit in a chair with the forearm restrained, and to grasp a wrist-operated joystick. The monkeys either 

applied flexion/extension forces (Isometric task), or made flexion/extension movements against no load 

(Movement task), or against an elastic load (Spring task). For the Movement and Spring tasks, endpoint 

position of the hand was represented by a computer cursor displayed on a computer screen placed at eye-

level. For the Isometric task, the cursor position instead displayed force. A trial began when the monkey 

moved the cursor to a central target, which for all three tasks meant that the wrist was in a neutral position 

with the forearm and hand aligned. After a hold time of 500ms, a second target appeared, chosen randomly 

from three extension and three flexion targets of different magnitude. To complete a trial successfully and 

receive a liquid reward the monkey had to reach this target within five seconds and hold it for 500ms. We 

recorded 15 minutes of data per task during each experimental session. All methods were approved by 

Northwestern University’s IACUC committee and were done in accordance with the Guide for the Care and 

Use of Laboratory Animals.  

3.2.2 Surgical Procedures 

After training both animals to perform all three tasks, we implanted a 96-channel microelectrode 

array (Blackrock Microsystems, Salt Lake City, Utah) into the hand area of primary motor cortex (M1). 

During the surgery, we identified the hand area through sulcal landmarks and by stimulating the surface of 

motor cortex to elicit twitches of the wrist and hand muscles. In a separate procedure, we implanted 24 

pairs of intramuscular electrodes into wrist and hand muscles. The muscles most relevant to the tasks we 

focus on in this paper were the wrist flexors and extensors: flexor carpi ulnaris (FCU), flexor carpi radialis 

(FCR), extensor carpi ulnaris (ECU), and extensor carpi radialis (ECR). 

3.2.3 Data collection 

We recorded neural activity, EMG and force using a 128-channel Cerebus data acquisition system 

(Blackrock Microsystems, Salt Lake City). Data collected during the Spring task are shown in Figure 3-1. 

We discriminated action potential waveforms and their corresponding time-stamps using 
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Figure 3-1. Spring task data. Neural activity, EMG activity, and applied force during the Spring task.  
 

Offline Sorter (Plexon Inc, Dallas, Texas), and subsequently binned firing rates of single neurons into 50ms 

bins. We collected both flexion/extension and radial/ulnar force data at a sampling rate of 2000 Hz. EMG 

was amplified (500x), band-pass filtered (80-500Hz) and sampled at 2000 Hz. The EMG signals were then 

rectified, low-pass filtered at 10Hz, and down-sampled to 20Hz to correspond to the bin size of the neurons. 

We evaluated EMG quality by examining the power spectral density of the raw signals, and omitted any 

from a session that were corrupted by noise. Before computing decoders, we normalized the EMG data 

across tasks to the 99th percentile of EMG in each session. For some of the data from Monkey J, we also 

identified and removed brief artifacts. Examples of EMG data from all three tasks are shown in Figure 3-2. 

 

3.2.4 M1-to-EMG decoder development 

For each experimental session, we computed separate M1-to-EMG decoders for each muscle for 

each task. For each task, we used 10 minutes of data for training the decoder, and the remaining five 

minutes for testing. We refer to Within decoders for cases where we trained and tested a decoder on data 
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from the same task. Across decoders were trained on a single task, and tested on data from another task. 

We computed both linear and nonlinear versions of each decoder using a linear Wiener filter and a recurrent 

neural network (RNN), respectively. All decoders used 10 lags, resulting in a total filter length of 500ms.  

The nonlinear decoder we used was a long short term memory (LSTM) network, a type of RNN. 

The inputs and outputs were z-scored, and the inputs fed into a single recurrent layer with 200 or 400 units, 

depending on whether three or four muscles were being predicted, respectively. The recurrent units were 

densely connected to the output units. We used a dropout rate of 25% to avoid overfitting (Agarwal, 

Negahban, and Wainwright 2012). The model was implemented using the Keras package and the LSTM 

weights were fit to minimize the mean squared error using the RMSprop algorithm.   

 We also trained linear and nonlinear Hybrid decoders using training sets consisting of ten minutes 

of data from each task. To avoid biasing in the linear decoders toward the data with the greatest variance, 

we used weighted least mean squares regression to calculate our decoders, weighting the squared error 

of each data point according to the variance of EMG relative to Isometric EMG. For the nonlinear decoders, 

we also altered the objective function to weight the squared error of each data point inversely to the task’s 

EMG variance relative to Isometric EMG.  

 

Figure 3-2. Differences in EMGs across tasks. The movement task required the lowest muscle activation, 
while the Isometric and Spring tasks required similar levels of muscle activation. 
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3.2.5 Modified Hybrid Decoders 

To understand why a single linear M1-to-EMG decoder did not work across all tasks, we tested 

whether a downstream gain and/or threshold that was independent for each task could explain the 

differences in mappings across tasks. To do so, we computed additional parametric decoders that 

cascaded task-specific gain and/or thresholds after a Wiener filter that was shared for all tasks. The Hybrid-

GT decoder had independent gain and threshold parameters for each task. The Hybrid-G decoder had the 

same threshold for all tasks followed by an independent gain for each task. The Hybrid-T decoder had an 

independent threshold parameter for each task.  

 The original Within and Hybrid decoders did not have any threshold, while the gain and threshold 

models did. In order to be able to facilitate a fair comparison to the gain and threshold models, we therefore 

created 1) a modified Within decoder that included a threshold unique to each task; and 2) a modified 

Hybrid decoder that included a threshold shared by all tasks. A summary of the features of each decoder 

is summarized in Table 3-1. 

 

Table 3-1. Modified decoder parameter summary. This table describes which parameters were shared 
across tasks and which were independent. 

 

 

We used the Keras package to implement these models, fitting all parameters simultaneously. For 

example, for the Hybrid-G model, the Wiener filter parameters and gain parameters were fit simultaneously, 

rather than sequentially fitting a Wiener filter and then gain parameters. Thresholds were implemented as 

a bias term followed by a rectified linear unit to set all negative values to zero. All parameters were optimized 

using the Adam algorithm (Kingma and Ba 2015). 
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To evaluate whether cortical or downstream gain changes led to changes in EMG, we analyzed 

the fit parameters of the Hybrid-G model. We defined cortical contribution as the 95th percentile of the output 

of the Wiener filter portion of the model. The downstream gain was simply the value of the gain parameter. 

In this Hybrid-G model, the cortical contribution multiplied by the downstream gain is what resulted in the 

95th percentile of predicted EMG. However, the actual values of the cortical contribution and downstream 

gain were meaningless by themselves. This is because there was an extra degree of freedom when fitting 

the models – it is possible to multiply the gain by a constant, K, and divide the cortical contribution by K to 

get an identical model fit. We estimated this constant to more meaningfully compare the two parameters, 

and to analyze how these parameters changed between small to large EMGs.  

To demonstrate the difference between cortical contribution and downstream gain, we evaluated 

these parameters versus the 95th percentile of EMG. We estimated the constant K for each model fit, which 

was fit separately for each muscle and session. To estimate K, we assumed that, at the minimal EMG of 

0.03, there was a gain of 1 and a cortical contribution of 0.03. For each model fit, we first fit a line to the 

cortical contributions in each task. For example, if the value of the line at EMG=0.03 was C0, we found K 

so that C0*K=0.03. In other words, we simply scaled the line so that it met our assumption. We multiplied 

all cortical contributions by K and divided all the gain parameters by K. Finally, to plot the results, we scaled 

the cortical contributions so that the line of best fit had a y-intercept at 1, in order to more easily interpret 

the rate of growth. It is important to note that the specific assumption that there is a gain of 1 and cortical 

contribution of 0.03 at EMG=0.03 is irrelevant for looking at the increase of gain and cortical contribution 

over increasing EMG. For instance, assuming a gain of 2 and cortical contribution of 0.015 would give 

equivalent results, because we are simply scaling all values by a constant. The important measure here 

was the ratio between the cortical contribution and gain at the minimum and maximum EMG values, and 

not the exact values of the points. 

3.2.6 System analysis 

For each day, we input white noise into the three types of single-task decoders (Isometric, 

Movement, Spring). We computed the mean power of the output between 0 and 1 Hz, which is in the 
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frequency range of normal hand movement. We then plotted the mean power of each output between 0 

and 1 Hz versus the mean power between 0 and 1Hz of the actual EMG.   

3.2.7 Evaluation of decoder performance 

In order to evaluate the quality of fit between actual and predicted signals, we computed the 

variance accounted for (VAF) using the following equation: 

𝑉𝐴𝐹 = 1 −  
∑ (𝑠̂𝑖−𝑠)2𝑁

𝑖=1

∑ (𝑁
𝑖=1 𝑠𝑖−𝑠̅)2    (Eq. 1) 

where N is the number of data samples, 𝑠𝑖 is an actual signal sample, 𝑠̂𝑖 is a predicted signal sample, and 

𝑠̅ is the mean of the actual signal. VAF is similar to the coefficient of determination, but requires a match 

between the two signals rather than just a correlation, making it a more appropriate metric for evaluating a 

control signal. As a consequence, if the variance of the prediction is larger than that of the actual signal, 

VAF can be negative (Nemati et al. 2007).  

 To summarize prediction quality across muscles, we computed a multivariate mVAF, a slight 

modification of Eq. 1: 

     𝑚𝑉𝐴𝐹 = 1 −  
∑  𝑀

𝑚=1 ∑ (𝑠̂𝑖,𝑚−𝑠𝑖)2𝑁
𝑖=1

∑  𝑀
𝑚=1 ∑ (𝑁

𝑖=1 𝑠𝑖,𝑚−𝑠̅)2          (Eq. 2) 

where M is the number of muscles. This equation can also be written as 

𝑚𝑉𝐴𝐹 = 1 −
∑ 𝑆𝑆𝑟𝑒𝑠,𝑚

𝑀
𝑚=1

∑ 𝑆𝑆𝑡𝑜𝑡,𝑚𝑀
𝑚=1

             (Eq. 3) 

where 𝑆𝑆𝑟𝑒𝑠  is the residual sum of squares and 𝑆𝑆𝑡𝑜𝑡  is the total sum of squares, both computed across all 

muscles. We also computed the ratio between the sum of squared errors of each Across or Hybrid decoder 

over the sum of squared errors (SSE) of the Within decoder: 

𝑆𝑆𝐸𝑟𝑎𝑡𝑖𝑜 =
SSEAcross/Hybrid

SSEWithin
             (Eq. 4) 

This metric summarizes the performance of each Across or Hybrid decoder relative to the Within 

performance for each task. We chose this metric instead of a ratio of VAFs to avoid the complications that 

arise from negative VAF. To evaluate differences between the mVAFs or SSEratio for each decoder across 

days, we used one-sided Wilcoxon signed-rank tests. 
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3.3 Results  

Our goal here was to evaluate the extent to which several different types of decoders could make 

accurate EMG predictions across three dynamically different tasks, and to investigate the mechanisms that 

make this multi-task decoding a challenge. We recorded data from two rhesus monkeys during performance 

of isometric, spring-loaded, and free movement wrist tasks. We computed both linear and nonlinear 

decoders, trained with data from various combinations of these tasks, and tested the accuracy of the 

predictions on each task.  

3.3.1 Single task linear prediction performance 
 

To evaluate decoder performance, we computed Within task and Across task predictions for all 

combinations of training and testing data. Within predictions for the Isometric and Spring data (made using 

training and testing data from the same task) typically were generally more accurate than for the Movement 

task, perhaps due to the small magnitude of those EMGs, or their dynamically more complex structure. For 

the examples shown in Figure 3-3, the variance accounted for (VAF) computed between actual and 

predicted EMG was 0.74, 0.46, and 0.70 for the Isometric, Movement, and Spring Within predictions, 

respectively.  

 In contrast, Across prediction accuracy was significantly poorer. Predictions of Isometric data using 

decoders trained with Spring data tended to overshoot (in this example in Figure 3-3A, the VAF between 

the predicted and actual signals was 0.38), while the corresponding predictions using Movement-trained 

decoders dramatically undershot the actual EMG (VAF = -0.12). Across prediction performance of 

Movement data was even worse. In a representative example (Figure 3-3B), the Isometric and Spring 

decoders both produced predictions which overshot the signal, with negative VAF (-0.47 and -0.88, 

respectively). For Spring data (Figure 3-3C), the Isometric and Movement decoders also undershot 

(VAF=0.40 and -0.18).  

3.3.2 Accurate predictions spanning all tasks require a nonlinear decoder 
 

Given the failure of the single-task decoders to generalize across tasks, we tested the accuracy of 

decoders when trained with data from all three tasks, which we refer to as Hybrid decoders (see Materials 

and Methods). Importantly, to prevent the Hybrid decoder from being dominated by the task with the 
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greatest signal power, we weighted the squared error of each data point according to the variance of EMG 

relative to Isometric EMG. While the Hybrid decoder predictions were significantly more accurate than the 

Across predictions (Figure 3-5) they remained poorer than the Within decoders. In these examples, the 

Hybrid predictions of both Isometric (Figure 3-4A; VAF=0.53) and Spring EMG (Figure 3-4C; VAF=0.46), 

tended to undershoot. The Movement data were also fit relatively poorly, (VAF = 0.30), but with no obvious 

gain error (Figure 3-4B). 

 

 

Figure 3-3. Across Predictions for the Three Tasks. Each panel in this figure shows the actual 
normalized EMG trace for each task in black. The other traces show predictions made using the Isometric 
decoder (pink), the Movement decoder (green), and the Spring decoder (blue). 



65 
 

 

Figure 3-4. Hybrid Linear predictions. The black trace in each panel shows an example the actual 
normalized EMG trace for each of the three tasks. The cyan traces show predictions made from the Hybrid 
decoder, while the third trace in each panel shows the respective Within predictions. 

  

Consistent with the examples, the Across decoders performed significantly worse than Within on 

all experimental days for both monkeys (Figure 3-6, top panels). To summarize prediction quality, we 

developed a multivariate VAF (mVAF) metric that allows us to report goodness of fit across all muscles, 

discounting muscles that were not well activated in any given task  (see Materials and Methods). As shown 
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in the mVAFs in Figure 3-5, all Across decoders were significantly less accurate than the Within decoders 

(one-sided Wilcoxon signed rank tests, largest p value p=0.02).  The linear Hybrid decoder results fell 

between those of the Within and Across decoders. This can be seen most clearly in terms of the SSE ratio 

comparing each decoder’s performance to the corresponding Within decoder (Figure 3-5, bottom panels). 

The SSE ratio for the Hybrid decoder ranged from 0.53-0.79 for Monkey J and 0.70 and 0.85 for Monkey 

K, all significantly better than the Across decoders (largest p=0.049 for Monkey J, largest p=0.03 for Monkey 

K ) , but consistently poorer than the Within performance (largest p=0.02 for Monkey J, largest p=0.03 for 

Monkey K). 

To further understand the modest multi-task performance of the Hybrid decoder, we also explored 

nonlinear methods, repeating our analyses using an RNN (see Materials and Methods). Across-task 

predictions with the RNN did not generalize, similar to linear decoder results (Supplementary Figure 3-11), 

but a Hybrid RNN generally outperformed the linear Hybrid for all three tasks, as demonstrated in the 

examples in Figure 3-6. In these examples, the Hybrid RNN captured the Isometric EMG trace very well, 

while the linear Hybrid failed to capture the full magnitude of actual signal (Figure 3-6A; VAF=0.82 for RNN 

Hybrid, VAF=0.53 for Wiener Hybrid example). During movement (Figure 3-6B), the RNN Hybrid followed 

the Actual trace well, yielding a VAF of 0.71 compared to the analogous linear result of 0.30. Although the 

RNN Hybrid did not capture all peaks of the Spring data (Figure 3-6C), it nonetheless performed remarkably 

well, with a VAF of 0.80. The linear Hybrid trace modulated but failed to capture either baseline or peaks of 

Spring muscle activity (VAF=0.45). 

 Overall, the nonlinear decoders outperformed their linear counterparts (Figure 3-7, largest p=0.02 

and p=0.03 for Monkey J and K, respectively). SSE ratios of each Hybrid decoder compared to its respective 

linear or nonlinear Within values are shown in the bottom panel of Figure 3-7. The SSE ratios for the 

nonlinear Hybrid predictions ranged from 0.85 to 0.98 in Monkey J, and from 0.87 to 1.05 in Monkey K. 

Overall, these ratios demonstrate the nonlinear Hybrid decoder’s improved performance over the linear 

Hybrid. 
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Figure 3-5. Summary for all linear decoders. The top panel shows the mVAF for all the muscle 
predictions averaged across all experiment days for Monkeys J and K. The bottom panel shows the SSE 
ratio of each decoder’s predictions relative to the Within decoder. 
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Figure 3-6. Examples of linear and nonlinear predictions. For all three tasks, the Hybrid RNN decoder 
outperformed the Hybrid linear decoder, as shown for the example predictions shown here. 
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Figure 3-7. Linear versus Hybrid RNN Summary. The top panels of this figure show the absolute mVAF 
across muscles for predicting EMG in the three tasks. The Hybrid decoders are shown in black, while the 
Within decoders are shown in the color corresponding to each task. The bottom panels show the SSE ratio 
between the SSE of Hybrid decoder relative to the SSE of the Within decoder predictions. 
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3.3.3 Mechanisms downstream of cortex  
 

If the nonlinearity captured by the RNN decoders were simple task-dependent gain or filter 

characteristic, it might be apparent in the output of the linear decoders. To test this hypothesis, we input 

white noise into each decoder and examined the output. We plotted the power of the predicted output from 

0-1Hz against the power of the actual EMG at 0-1Hz, as shown in Figure 3-8. Surprisingly, there was a 

generally linear relationship between predicted and actual EMG power, related not simply to the task, but 

rather the EMG power. This is demonstrated in the figure, where ratio between predicted and actual EMG 

increased with increasing EMG power independently of the task, and even across muscles. These results 

suggests that mechanisms downstream of our recordings in M1, unaccounted for by the linear decoders, 

substantially transformed the signals. 

The linear relationship in Figure 3-8Figure 1-1 could be explained by either a signal-dependent 

gain, or a fixed threshold, gradually exceeded by an increasing proportion of the descending signal. Both 

functions have been proposed to exist with spinal circuitry (Humphrey, Schmidt, and Thompson 1970; Wei 

et al. 2014). We therefore explored this question by including explicit gain and threshold parameters 

separately, and in combination, following the linear dynamic component of the Hybrid decoder (see 

Materials and Methods). A Hybrid decoder that included both parameters was able to capture 82-88% of 

the nonlinear Hybrid RNN for Monkey J, and 86-93% of the Hybrid RNN for Monkey K, as demonstrated by 

the means in Figure 3-9. 

The order of the gain and threshold functions made no difference. Including only the gain parameter 

yielded performance almost as good as the gain+threshold decoder, and significantly better than threshold-

only decoder (significant for Spring and Movement tasks across both monkeys, p=0.0009 and 0.0001, 

respectively). Overall, these results suggest that the spinal cord may play mostly an autogain role that 

reduces the required dynamic range of cortical activity. If there is also a spinal threshold function, it would 

appear to play a more minor role. 

 Lastly, we evaluated the relative magnitude of the postulated downstream gain effect relative to the 

“cortical contribution” –  the output of the Wiener filter portion of the model – by computing their respective 

contributions as a function of actual EMG (refer to Materials and Methods) (Figure 3-10). For Monkey J, the 
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gain component increased by a factor of 15 over the range of normalized EMG (from 0.03 to 0.6), while 

cortical gain increased by a factor of only 1.3. For monkey K, downstream gain increased eight-fold, and 

cortical gain by 2.5. These results suggest that a downstream gain mechanism plays a very large and 

important role as cortical output spans its full dynamic range.  

 

 

 

 

 

Figure 3-8. System gain. For each muscle, we show the relationship between the power of the output of 
the signal when white noise is input into each decoder, versus the power of the actual EMG signal. Power 
is computed as the mean from 0 to 1Hz, which is in the range of natural movement. 
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Figure 3-9. Modified hybrid decoder predictions. Summary mVAF values for the modified Hybrid 
decoders, which either included a gain parameter, a threshold parameter, of both. The Hybrid RNN mVAFs 
are shown here (red) for reference. 
 

 

Figure 3-10. Cortical contribution and downstream gain. These subplots show the cortical contribution 
and downstream gain parameters from the Hybrid-G model versus the 95th percentile of EMG.  
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3.4 Discussion 

3.4.1 Summary 

We have studied the role of M1 in controlling tasks that have widely varied dynamics: one involving 

isometric torques about the wrist, another unloaded wrist movements, and a third requiring elastically-

loaded movements.  These tasks also spanned a broad range of muscle activity. We used the quantitative 

methods of BMI technology to compute M1 to EMG “decoders” that predicted EMG from multi-electrode 

M1 signals. We showed that decoders trained with data from one or even two tasks failed to generalize 

accurately across tasks, whether the decoder was a simple linear map or nonlinear recurrent neural 

network. Furthermore, only a nonlinear “Hybrid” decoder, trained with data from all three tasks, could make 

accurate predictions for all three. We could account for much of this apparent nonlinearity between M1 and 

EMG by explicitly modeling a signal-dependent gain following a linear decoder. Our analysis also revealed 

that a surprisingly large proportion of muscle activity at high levels of contraction is due to downstream 

mechanisms. These results have important implications for our understanding of the descending control of 

normal limb movements, and also in the design of more robust BMIs.  

 

3.4.2 A context-dependence between M1 and EMG that is driven by the magnitude of cortical output 

A number of studies have suggested that the relationship between M1 and movement may be 

context-dependent. In his seminal 1970 paper, Don Humphrey described the ability to decode force, dF/dt, 

position, and velocity using a small handful of simultaneously recorded M1 neurons (Humphrey, Schmidt, 

and Thompson 1970). As in the earlier single-neuron experiments of Evarts (Evarts 1968), force was 

generally the best-predicted variable. However, Humphrey discovered that when the mass against which 

the monkey moved was changed, although predictions remained well correlated with actual force, it was 

necessary to scale the regression coefficients between M1 and force. In later experiments, Evarts found 

what might be a similar nonlinearity among pyramidal tract neurons during a supination-pronation task. Well 

over half of the neurons were disproportionately active (relative to EMG) during small, corrective 

movements compared to rapid, ballistic ones (Fromm and Evarts 1977). The net effect was that M1 

modulation was disproportionately large for small force ranges. Similar observations have been made for 
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wrist movements (Werner, Bauswein, and Fromm 1991). Finally, in a precision grip task that required a 

sequence of force levels, Hepp-Reymond and colleagues found that firing rates depended on the 

anticipated range of forces. Among 85 neurons displaying similar finger-related discharge across all trial 

types and showing significant force modulation, 15 (18%) appeared to remap their range of firing rates 

depending on the expected range of required force (Hepp-Reymond et al. 1999). Notably, this effect 

disappeared when the subjects when the force range cue was removed from each trial. 

Other types of context-dependence have also been reported, including in pyramidal tract neurons 

(PTNs), which are motor neurons that originate in cortex and terminate in the spinal cord or brainstem. 

These PTNs have been shown to vary their relation to muscle activity between rake use, picking up treats, 

and precision grip (Muir and Lemon 1983; Quallo, Kraskov, and Lemon 2012).  More recently, Rasmussen 

and colleagues demonstrated a kinematic context-dependent firing of M1 position predictions between a 

2D and a 3D task (Rasmussen, Schwartz, and Chase 2017).  While the motor control system may be 

subject to different kinds of context dependence, here we specifically demonstrate an EMG-dependence, 

similar to the results of Humphrey, Evarts and colleagues, and Hepp-Reymond and colleagues. Like 

Humphrey (Humphrey, Schmidt, and Thompson 1970), we were able to improve predictions across a broad 

range of muscle activity by implementing a gain parameter. While some of this gain could be attributed to 

differences in cortical firing, we also found that much of this gain was implemented downstream of cortex.  

 

3.4.3 The downstream gain mechanism may be due to the regulation of persistent inward currents 

Persistent inward currents (PICs), present in spinal motoneurons, are one possible explanation for 

the downstream gain adjustments we observe here.  PICs are generated by voltage-sensitive sodium and 

calcium currents that are slow to inactivate, and are therefore capable of prolonging depolarization. In 

motoneurons, PICs are mostly concentrated in the dendrites, and are dependent on descending drive from 

monoamines such as serotonin and norepinephrine. Serotonin production is signaled by neurons in the 

raphe nucleus, where conduction velocities for two different groups of raphe-spinal neurons are between 

0.7-1.0m/s and 3.1-6.0m/s (Wessendorf, Proudfit, and Anderson 1981). This means that serotonin can 

reach the spinal cord of primates on the order of about a second or less. Once in the spinal cord, serotonin 
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and norepinephrine in turn influence the initiation of PICs, which have an onset time constant of about 

50ms. PICs can have a remarkably strong effect on motoneuron firing, potentially amplifying the effect of 

synaptic input five-fold or more (Heckman et al. 2009; Lee and Heckman 2000). The magnitude of this 

effect is compatible with the apparent contribution of downstream gain to EMG production that we have 

observed (Figure 3-10). The timing of descending neuromodulatory drive and PIC effect also generally 

aligns with our task, where monkeys typically acquired targets between 0.8 to 4 seconds after target 

presentation, a time frame during which PICs can potentially influence motoneuron excitability on a trial-by-

trial basis. 

The large effect of PICs on synaptic input has been demonstrated in decerebrate and pentobarbital-

anesthetized cats, where synaptic input scaled with increasing neuromodulatory drive (Lee and Heckman 

2000). By monitoring their effect on the spinal stretch reflex, Wei and colleagues showed that serotonin 

reuptake inhibitors and agonists can modify the gain of descending signal transmission in humans (Wei et 

al. 2014). Voluntary activation of one muscle group caused widespread effects that dissipated about two 

seconds after the contraction ended. The downstream effect of these mechanisms has also been observed 

in the behavior of spinal-projecting serotonergic neurons. In their 2002 study, Jacobs and Fornal reported 

that these neurons, recorded from the caudal raphe nuclei of cats, vary their tonic firing rates in proportion 

to the speed of locomotion. The tonic relation of these neurons to overall speed, rather than each phase of 

locomotion, suggests that these cells set the overall state of the spinal locomotor apparatus (Jacobs, 

Martín-Cora, and Fornal 2002). Similarly, these cells may increase neuromodulatory input for tasks 

requiring increases in muscle activation. In light of these studies, our results suggest that when the motor 

system expects to produce more output, it increases the presence of neuromodulators in the spinal cord, 

which amplifies the excitability of motor neurons. 

 

3.4.4 Other mechanisms beyond gain that may explain the inability to predict across tasks 

In addition to a downstream gain-regulatory function potentially mediated by PICs, other factors 

may also have affected our ability to predict muscle activity across tasks with a linear decoder. For instance, 

despite requiring similar magnitudes of muscle activation, predictions of Isometric data using a Spring 
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decoder, and vice-versa, did not generalize completely. Differences in firing across-tasks might therefore 

be due to the M1 encoding of muscle properties, such as the force-velocity and length-tension relationship, 

which differed among tasks. In one example, Fromm demonstrates that  M1 activity reflects the length-

tension relationship of muscles (Fromm 1983). In a single-unit study, he showed differences in M1 firing 

between an isometric and an isotonic, load-bearing task, similar to the Spring task here. M1 firing varied as 

a function of muscle length even during a constant load.  

Differences in afferent feedback from muscle spindles and Golgi tendon organs about muscle 

length and tension are especially important considering that proprioceptive signals reach motor cortex (P L 

Strick and Preston 1982; Zarzecki and Asanuma 1979), and evidence that output from M1 may be modified 

by differences in proprioceptive feedback (Gandolla et al. 2014). This latter point was demonstrated in a 

study where nerve stimulation was used to alter proprioceptive information, resulting in a greater facilitatory 

effect of M1 on S1. 

Another explanation for difficulties in across-task decoding is that there may exist different control 

systems for movement and posture (Brown, Rosenbaum, and Sainburg 2017; Scheidt and Ghez 2017; 

Humphrey and Reed 1982). Evidence for this comes partially from the activity of neurons with load-related 

activity that differs during posture and movement tasks (Kurtzer, Herter, and Scott 2005). This may be the 

reason that a dual-state movement / posture decoder led to better BMI performance than a simple linear 

decoder (Sachs et al. 2016).  

 

3.4.5 Few BMIs currently give the user control of dynamics 

There have been impressive demonstrations of BMI use in recent years (Hochberg et al., 2006, 

2012a; Velliste, Perel, Spalding, Whitford, & Schwartz, 2008), including a tetraplegic human user who 

learned to control a robotic limb using seven and later ten degrees of freedom (Collinger et al. 2013; 

Wodlinger et al. 2015). In all of these experiments, however, the user modulated neural activity to control 

only kinematics, such as speed or endpoint position of a robotic arm, while the robotic controller took care 

of dynamics (Vogel et al. 2015). By design, these kinematic decoders leave the control of dynamics to be 

handled by an external controller. There has therefore been rather little investigation into how well neural 
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decoders might take advantage of the rich force and movement-dynamics-related information in M1 (Evarts 

1968; Humphrey, Schmidt, and Thompson 1970; Cheney and Fetz 1980; Evarts et al. 1983). If these 

variables were also decoded from M1 activity, the user might be able to control movement in a more nearly 

natural manner that allows for the modulation of impedance and for dealing with interaction forces.  

A small number of studies have evaluated BMI use across dynamically-different conditions, though 

most of these have included only offline predictions, as in the current study (Suminski et al. 2011; Chhatbar 

and Francis 2013). In one example, a BMI was designed to estimate both kinematic variable and joint 

stiffness, using EMG-like inputs to a musculoskeletal model of the arm (Héliot et al. 2010). In another study, 

Cherian and colleagues evaluated the accuracy of proximal arm EMG, hand position, and velocity 

predictions for reaching movements made in two different workspaces, and with and without added forces 

(Cherian, Krucoff, and Miller 2011). EMG predictions made across these force-field and normal conditions 

had R2 values that were approximately 50-70% of those for within-task conditions. The generalization in 

that study was substantially greater than ours, though the relative force differences they studied were 

smaller. Furthermore, that study focused on the proximal arm, which is dynamically more complex than the 

hand.  

 

3.4.6 Future development of multi-task BMI decoders 

Clinically-viable BMIs should execute all types of movements with user effort that feels natural, 

whether for simply making a rapid pointing movement, or for interacting with objects of varied weight. We 

show here that it may be possible to give a BMI user full control of movement dynamics by accounting for 

downstream gain differences across dynamic tasks. Letting the user, rather than a controller, handle 

dynamics also increases user autonomy. Furthermore, using a BMI to control muscle activity allows for 

natural impedance control, as the user can appropriately contract the muscles to change arm stiffness as 

he or she deals with different loads and interaction forces. This natural impedance control will allow the 

user to successfully operate their BMI during a variety of daily activities that vary dynamically, such as 

lightly turning the page of a book or lifting a full thermos of coffee. Decoders that work for all the 
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unconstrained activities of daily living will become more important as fully implantable, continuously 

available wireless prostheses become feasible (Yin et al. 2014; Borton et al. 2013; Schwarz et al. 2014).  

Importantly, another major challenge to real-life multi-task decoding remains that human SCI 

patients do not have muscle activity with which to compute M1-to-EMG decoders. Current decoders in 

human clinical trials are computed using observation-based methods (Collinger et al., 2013; Hochberg et 

al., 2006, 2012; Wodlinger et al., 2015). In human BMI-FES trials, neural activity is correlated to the 

activation levels of muscle stimulation patterns as the subjects imagine producing coordinated grasp 

(Ajiboye et al. 2017; Bouton et al. 2016). For practical multi-task decoding, these systems will also need to 

incorporate a gain parameter into their calibration. Iterative decoder recalibration, as is employed in many 

BMI studies, will also help to fine-tune gain parameters as the subject undergoes initial trial and error with 

their system. 

Future animal experiments, where EMG is available for decoder-building, will further evaluate the 

potential of robustly designed Hybrid decoders. While we have shown here that a nonlinear Hybrid decoder 

trained on multiple tasks can make accurate predictions for those tasks, we have not demonstrated the 

viability of the Hybrid decoder for extrapolating to new activities.  It is unclear how the Hybrid decoder will 

perform on the continuum of behavior confronted in an unconstrained environment. Another question will 

be how to appropriately train new Hybrid decoders with data from various unconstrained tasks. Changes in 

EMG magnitude will be more nuanced as unconstrained BMI users progress from grooming, to grasp, to 

free movement, and other activities. Unlike the current experiment, where we could weigh the objective 

function according to signal size in the three discrete tasks, this weighting will be less clear with more rapid 

changes in EMG magnitudes. A first pass may require training a multi-task decoder on a number of 

unconstrained activities without any weighting, and evaluating performance. 
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3.5 Supplementary Material 

 

 

Figure 3-11. Across-task RNN predictions. These plots show the performance of the RNN for within and 
across-task predictions of actual EMG for the three different tasks, where color reflects the type of task 
used to train the decoder. Values below zero are not shown. 
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4 Superior performance using BMI decoders that preserve natural muscle activation patterns 

 
 
 

 
 

 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



81 
 

4.1 Introduction 

We are constantly faced with the need to learn new motor tasks, from handling a new tool to the 

undertaking of a new hobby, be it tennis, skiing, or dancing. Many psychophysical studies have quantified 

this ability to learn new tasks by imposing perturbations on the movement, including visuomotor rotations 

(Krakauer et al. 2017), prisms that shift the visual field (Martin et al. 1996), and force fields that displace 

the hand (Shadmehr and Mussa-Ivaldi 1994; Lackner and Dizio 1994). The cerebellum is involved in motor 

learning (Ito 2000; Llinás and Welsh 1993), as is motor cortex. For example, preferred directions in M1 

change during adaptation to a force field task (Li, Padoa-Schioppa, and Bizzi 2001). Understanding the 

involvement of M1 in learning may be important for the development of brain-machine interfaces (BMI), a 

remarkable new technology, capable of restoring movement to amputees and patients with spinal-cord 

injury, stroke, and other movement disorders.  

Motor BMIs typically translate neural signals from primary motor cortex (M1) into kinematic control 

signals for computer cursors or robotic arms (Taylor, Helms Tillery, and Schwartz 2002; Serruya et al. 2002; 

Hochberg et al. 2006; Hochberg et al. 2012; Velliste et al. 2008; Wodlinger et al. 2015; Collinger et al. 

2013). In a few cases, BMIs have been used to predict muscle activity, and in turn stimulate the muscles 

to restore movement (Pohlmeyer et al. 2009; Ethier et al. 2012; Bouton et al. 2016; Ajiboye et al. 2017). 

Despite these impressive capabilities, BMI decoders are realistically less than perfect for numerous 

reasons, including the differences in feedback between brain control and normal conditions, as well as the 

altered dynamics of the plant being controlled (i.e. cursor control versus hand control). Decoders therefore 

require user adaptation. Understanding the limits of a user’s ability to adapt to these imperfect decoders is 

important to developing useful BMIs for patient populations.  

BMI studies have already shown that users can adapt to a variety of kinematic decoders. This 

includes adaptation to decoders that are nonbiomimetic, where the decoder weights for individual neurons 

have been shuffled (Ganguly and Carmena 2009), or in cases where the relationship between M1 and 

kinematics for a subset of BMI-control neurons has been rotated (Jarosiewicz et al. 2008). However, some 

decoders are easier to adapt to than others. For example, Sadtler et al. recently demonstrated that 

kinematic decoders that require M1 neurons to change their covariance structure are more difficult for 
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monkeys learn than those that do not (Sadtler et al. 2014). A conceptually similar study by Berger et al. 

described differences in the learning rates between two kinds of muscle-to-force decoders (Berger et al. 

2013). Decoders that preserved muscle synergies were easier to learn than those that disrupted synergies. 

To our knowledge, no study has extended this finding to neural decoders that predict muscle activity, which 

would probe ability of M1 to adapt to muscle-based decoder perturbations. 

Here we trained rhesus macaques to complete a center-out isometric task using both hand and 

brain control. We used a BMI to evaluate the initial and adapted performance when using two types of 

altered decoders: one that preserved the natural patterns of muscle activation, and one that did not. 

Ultimately the monkeys were able to use the decoders that preserved the natural patterns of muscle 

activation more successfully than those that disrupted this relationship.  

 

4.2 Materials and Methods 

4.2.1 Experimental task and design 
 

We trained two rhesus macaques (Macaca mulatta, Monkey J, 11kg, and Monkey K, 9kg) to 

perform a center-out isometric wrist task. During the task, the forearm was held in the mid-prone position 

by a sled that supported the forearm, elbow, and upper arm, to encourage the monkeys to only use torques 

about the wrist to complete the task. The monkey’s working hand was placed in a padded box, and a force-

torque sensor measured force applied about the wrist. The monkeys sat in a chair facing a computer screen, 

which delivered visual feedback about the task, including target and cursor positions. Feedback about X 

and Y force was displayed by the cursor, which the monkey had to direct into the different targets. To begin 

a trial, the monkeys held the cursor in a center target for between 0.2 and 0.5 seconds. After the center-

hold time, a second target appeared on the screen. The appearance of the target served as a Go Cue, 

indicating that the monkeys were free to move to the target. If they acquired and held the cursor in the 

target within the specified reach time (4 seconds for Monkey J, 8 and 10 seconds for Monkey K during short 

and long perturbation sessions, respectively), they received a water reward. 

We recorded neural activity from primary motor cortex (M1), muscle activity (EMG) from the wrist 

muscles, and force data while the monkeys completed the hand control (HC) version of the task (Figure 
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4-1). These data were used to compute a two-step M1-EMG-Force decoder. We gave the monkey normal 

and altered versions of this decoder (see Decoders) and evaluated performance during Brain Control (BC). 

All surgical and experimental procedures adhered to the standards listed in the National Institutes of Health 

Guide for the Care and Use of Laboratory Animals, and were approved by Northwestern University’s 

Institutional Animal Care and Use Committee. 

4.2.2 Surgeries 

After training both monkeys to complete the isometric task under hand control, we implanted a 96-

channel microelectrode array (Blackrock Microsystems, Salt Lake City, Utah) into hand area of M1. We 

identified hand area intraoperatively by stimulating the surface of cortex and identifying where stimulation 

produced hand twitches. In a separate surgery, we implanted 24 pairs of bipolar wire electrodes (Cooner 

632) into the arm and hand muscles. Here we focus only on the four major wrist muscles: extensor carpi 

radialis (ECR), extensor carpi ulnaris (ECU), flexor carpi radialis (FCR), and flexor carpi ulnaris (FCU). 

 

Figure 4-1. Experiment setup. (A) Utah array implanted in hand area of motor cortex. (B) Cross-section 
of the forearm depicting the four implanted muscles. Both monkeys did the task with their left hand, which 
meant that flexion targets were on displayed on the right half of the computer display, while extension 
targets were displayed on the left half. (C) Cartoon depicting the isometric hand task, where X and Y 
force were applied about the wrist to control a computer cursor. (D) Center-out task timeline. 
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4.2.3 Data Collection 
 

We simultaneously acquired neural, EMG, and force data using a 128-channel Cerebus system 

(Blackrock Microsystems, Salt Lake City, Utah). We collected multi-unit neural activity from M1 using 

threshold crossings (-6xRMS) on every channel of the electrode array. We recorded X and Y force data 

and EMG from each muscle at 2000 Hz. The EMG signals were amplified (500x), band-passed filtered (80-

500Hz), and then rectified and low-pass filtered at 10Hz. Both neural signals and EMG were then down-

sampled to 20 Hz to compute neural decoders. 

4.2.4 Decoders 
We computed a two-step decoder made of two multiple-input, linear filters: one to decode EMG 

from neural activity, and a second to decode force from EMG. The filter length for the M1-to-EMG decoder 

was 500ms, while the EMG-to-Force decoder was 250ms. We determined these lengths by comparing 

offline decoder performance for a variety of lengths. While we computed a new M1-to-EMG decoder on 

every experimental day, we did not do the same for the EMG-to-force decoder, as this relationship was 

assumed to be stable. 

 In addition to the Normal decoder, we designed two additional “perturbation” decoders in order to 

study adaptation. The first was a synergy-preserving, Rotated decoder that used an EMG-to-force decoder 

that was trained using data from sessions where the monkey performed the task with the forearm rotated 

90 degrees to the pronated position. We also designed a Radial-Swap decoder, in which the EMG-to-force 

weights for ECR and FCR were swapped, reflecting their lines of action across their insertions at the wrist, 

and simulating an anatomically impossible configuration. The differences in decoder design are delineated 

in Figure 4-2. 

4.2.5 Block design 

For each experimental day, the monkeys first performed the isometric task using hand control. 

These data were used to train the M1-EMG part of the decoder. The EMG-Force part of the decoder was 

assumed to be stable, and was retrained only weekly. For initial experiments with Monkey K, we alternated 

15-minute blocks of the Normal decoder with one of the perturbation decoders, for a total of six blocks. In 

later experiments with monkey K and in all experiments with monkey J, we tested a single perturbation 
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decoder per session, preceded and followed by the Normal decoder. On any given day, we only tested one 

perturbation decoder, chosen at random. 

 

 

Figure 4-2. Decoder design. (A) Equations describing the cascade of two linear decoders we computed 
in order to make predictions from M1 to EMG to X and Y Force. (B) Cartoon depicting the different 
decoder configurations. 
 

4.2.6 Data Analysis 

To evaluate the monkeys’ performance during brain control, we computed several task metrics, 

including percent success, initial trajectory error, and normalized path length. Initial trajectory error was 

defined as the angle between the monkey’s initial force trajectory and a vector pointing to the target. We 

computed the vector for the predicted force trajectory between 200ms and 400ms after the Go Cue. For 
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the ideal trajectory, we computed a vector from monkey’s actual starting point 20ms after Go Cue to the 

center of the target.  

Normalized path length was defined as the ratio of the integrated path length over the distance 

directly to the target center. The integrated path length was computed by summing the Euclidean distance 

between the predicted forces at each time step from the time of the Go Cue until the end of each trial. A 

normalized path length above one meant that the monkey made a trajectory longer than the straight path 

to the target, and suggested that the monkey was trying to reach the target. If the monkeys did not attempt 

to acquire the target, the normalized path length would be less than 1. Although Monkey K’s allotted reach 

times were different between the initial (8 seconds), and later experiments (10 seconds), we consistently 

calculated path length up to 8 seconds for all Monkey K sessions.  

4.2.7 Statistics 

To examine across-session performance for a given decoder for path length and trajectory error, 

we evaluated differences for the first 10 trials per target between the first and last two sessions using a one-

way repeated measures ANOVA, where time was the independent variable, and the related dependent 

groups were targets. We used Tukey’s test for post-hoc multiple comparison. We used a similar approach 

for within-session learning, using a one-way repeated measures ANOVA to compare the first and last 10 

trials per target in a single session. Percent success, unlike the other metrics, is binary for individual trials, 

and required a different approach. Instead, we evaluated both within and across-session learning using a 

chi-squared test for the same sets of trials described above.  

 

4.3 Results 

We compared brain control performance using two different types of decoders: a muscle synergy-

preserving Rotated decoder, and a Radial-Swap decoder that disrupted natural muscle synergies. The 

monkeys were ultimately more successful with the Rotated decoder, which they were able to use to acquire 

all eight task targets. However, they were never able to acquire more than four out of eight targets using 

the Radial-Swap decoder, and were unable to acquire targets that required adaptation.  While both 
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monkeys improved their normalized path length across both types of perturbation sessions, the 

improvement was greater for Rotated sessions. 

4.3.1 Influence of Decoder Remapping on Initial Target Acquisition Difficulty 

We first evaluated the effect of the EMG-to-force remapping by passing neural activity recorded 

during normal hand control through each of the perturbation decoders. We plotted the resulting force and 

evaluated the initial trajectories to each target, as shown in Figure 4-3.  The mean percent of target 

acquisition across sessions using these unadapted force trajectories are shown for each target. The Radial-

Swap decoder allowed the acquisition of a few targets without adaptive changes because it only swapped 

the action of ECR and FCR, while the action of ulnar-deviation muscles, FCU and ECU, remained unaltered. 

Both monkeys could still acquire Targets 6 and 7, which primarily involved the ulnar deviators. Both 

monkeys were also able to acquire Target 3, which required equal activation of FCR and ECR. However, 

because the action of these two muscles were swapped, if the monkeys made an error going to this target, 

they would have needed to account for the new mechanics when correcting their path.  

4.3.2 Percent Success 

To evaluate both monkeys’ ability to adapt and successfully acquire targets using the two decoders, 

we evaluated percent success for each target across experiment days. These results for both the Rotated 

and Radial-Swap decoders are shown in Figure 4-4. Both monkeys were able to adapt to acquire all targets 

in the Rotated case, but not in the Reflected case. Furthermore, monkey J and monkey K significantly 

improved performance across Rotated sessions for 6 and 5 targets, respectively (chi-squared test, largest 

p=0.002 for monkey J, and p=0.035 for monkey K). For monkey J, this improvement included all but two 

targets in the radial deviation hemisphere (Figure 4-4A, blue markers, Targets 2 and 3, p =1.00 and p 

=0.490, respectively) while monkey K, improved for all targets except those in the flexion hemisphere 

(Figure 4-4B, blue markers, Targets 8, 1, and 2, p=0.311, 0.527, and 1.00, respectively). 

Using the Radial-Swap decoder, the monkeys were able to acquire at most four targets. Of these, 

monkey J significantly improved percent success targets primarily requiring ulnar deviation (Targets 6 and 

8, p=0.035 and p=~0, respectively). There was no significant difference across sessions for Target 3, which 

he acquired with 100% success throughout (p=1). There was also no significant difference for Targets 1, 2, 
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4, and 5, which he was never able to acquire. Of the 4 targets monkey K could acquire, he only significantly 

improved his percent success for Target 3 (p=~0).   

While across-session improvements in percent success were significant, within session improvements 

were minimal. At best, monkey J significantly improved his success for two targets in a given Rotated 

session and one target in a given Radial-Swap session. Monkey K at best improved his success for one 

target in any given Rotated and Reflected session. 

 

 
Figure 4-3. Decoder effect. These figures show the initial trajectories from Go to Go+500ms when 
neural activity during hand control is input into the two types of decoders. The numbers in each target box 
show the mean percent success across days when using these unadapted force trajectories for a 
particular target. A legend with target numbers is shown in the center. 
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Figure 4-4. Percent success per target. Each subplot shows percent success for an individual 
Target across experiment sessions. The top subplots show Rotated success, while the bottom 
Subplots show Radial-Swap success. 
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4.3.3 Relationship between acquired targets and target difficulty 

Using the Rotated decoder, both monkeys were able to adapt in order to acquire all targets. 

However, using the Reflected decoder, neither monkey adapted over the course of the experiment to 

acquire the targets that were initially difficult. 

A summary of final percent success versus the target difficulty percent success from Figure 4-3  is 

shown in Figure 4-5. For both monkeys, most of the points for the Rotated decoder (left panels) are close 

to the y-axis, indicating that percent success without adaptation was close to zero while actual success was 

greater. On the other hand, when using the Radial-Swap decoder, both monkeys continued to acquire the 

targets that did not require a change in adaptive strategy, but almost never acquired any other targets 

(Figure 4-5, right panels). 

4.3.4 Actual Trajectories and Initial Trajectory Error 

To understand how the monkeys were adapting in order to acquire targets, we examined the trajectories 

to each target during brain control. Successful initial trajectories to each target for early and late perturbation 

sessions are shown in Figure 4-6. Using the Rotated decoder, monkey J never straightened his initial 

trajectories to the target, but maintained a strategy of correcting his trajectory later in the trials. Monkey K, 

on the other hand, did slightly improve his trajectories, though he started with smaller initial errors than did 

monkey J. Using the Radial-Swap decoder, both monkeys acquired only a subset of targets, and made 

trajectories that matched the Radial-Swap decoder effect trajectories shown in Figure 4-3. These results 

suggest that the monkeys did not adapt to acquire the harder targets. The occasional success with target 

2 on the last Radial-Swap session for monkey K was an exception, but he acquired this target only on this 

day, with only 3% success. 

To quantify improvements in the monkeys’ trajectories, we calculated initial trajectory error. This metric 

compared the monkey’s initial vector with a vector pointing directly to the center of the target (see Methods). 

If the monkeys internalized the perturbation decoder models over time, we would expect to see the 

trajectory error decrease across sessions. Using the Radial-Swap decoder, this was not the case for either 

monkey (Figure 4-7A, repeated measures ANOVA, p=0.285 and p=0.339 for monkey J and monkey K 

respectively). However, using the Rotated decoder, monkey J significantly reduced trajectory error across 
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sessions (Figure 4-7A, top left, p=~0), though monkey K did not (p=0.648). Oddly, while Monkey J 

significantly improved trajectory error for targets in the ulnar-flexion quadrant (repeated measures ANOVA, 

Tukey test, Targets 7 and 8, p=~0and p=~0), his trajectory error significantly increased between the early 

and late sessions for the targets in the radial-deviation quadrant (repeated measures ANOVA, Tukey test, 

Targets 2, 3, 4, p=0.020, p=~0, p=0.011).  With respect to within-session learning, both monkeys showed 

little evidence of significant initial trajectory error changes. Both monkey J and monkey K significantly 

modified trajectory error for one Rotated session and two Radial-Swap sessions.  

 

 

Figure 4-5. Actual success versus percent success without adaptation. Here, the average success 
for the first 10 trials per target in the last two sessions are plotted against the mean percent success 
without adaptation across all sessions. Percent success without adaptation is the percent success using 
the force trajectories that result from putting normal neural activity through each perturbation decoder. 
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Figure 4-6. Successful target trajectories. Mean initial trajectories from Go Cue to Go Cue + 1200ms for 

successfully acquired targets. 

 

4.3.5 Normalized path length 

Since initial trajectory error could not fully explain the monkeys’ ability to learn to acquire targets, we 

also evaluated the normalized path length to the target. If the monkeys learned to make straighter 

trajectories to the targets over time, this metric would approach one. For both perturbation conditions, both 

monkeys significantly changed their normalized path length to targets between the first and last two 

sessions (repeated measures ANOVA, monkey J p=0.009 Rotated, p=~01 Radial-Swap, monkey K p=~0 

Rotated, p=~0). Figure 4-8 summarizes path length per target for the first two sessions (blue traces) 

compared to the last two sessions (purple traces). While both monkeys changed their path lengths overall, 

their performance across targets was not uniform. For example, using the Rotated decoder, monkey J 

significantly shortened path length for some targets (Targets 5, 6 and 7, largest p=0.002), while the others 

were unchanged (Figure 4-8, top left, smallest p=0.052). Similarly, monkey K significantly improved path 

length for the ulnar-extension quadrant (Targets 7 and 7, p=~0 and p=~0), but became worse at targets in 

the radial-flexion quadrant (Figure 4-8, top right, Targets 1 and 2, p=0.001 and p=0.004). The  
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Figure 4-7. Trajectory error across sessions. These plots show the average and standard error of the 
initial trajectory error for the first 10 trials per target for the first (early) and last (late) two sessions for each 
type of perturbation decoder. 
 
 
improvements using the Radial-Swap decoder were also non-uniform across targets, as shown in the 

Figure 4-8, but were generally smaller than with the Rotated decoder.  

Figure 4-9 shows examples of normalized path lengths within single sessions for both monkeys 

and both types of decoders. Monkey J’s path length did not change significantly in either the first or the 

last Rotated session (Figure 4-9A, top, repeated measures ANOVA, p=0.124 and p=0.061). Monkey K 

had large differences in path length to each target during the first Rotated session that didn’t change 

significantly by the end of that single session (Figure 4-9A, bottom, repeated measures ANOVA, 

p=0.748). However, by the last Rotated session, he had improved his path length for all but three of the 

difficult targets, and within-session learning for this session was significant (p=~0). 

 



94 
 

 

Figure 4-8. Normalized path length across sessions. These plots show the average and standard error 
of the normalized path length for the first 10 trials per target for the first (early) and last (late) two sessions 
for each type of perturbation decoder. 

 

Figure 4-9. Within-day normalized path length. These panels show normalized path length for the first 
and last session for each perturbation. Each trace is a different target, and the trial traces were smoothed 
with a moving average filter using five samples.  
 

With the Radial-Swap decoder, monkey J did not significantly modify his path length in the first session 

(Figure 4-9B). However, during the last session, the only one with a significant change, path length  
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improved for nearly half the targets. For monkey K, the traces in first Radial-Swap session demonstrate 

that he was most efficient at Target 6, the only target he could acquire at this point. His overall path length 

did not change significantly within this session (repeated measures ANOVA, p=0.355). On the other hand, 

during the last Radial-Swap session, his path length improved for Target 7, which he could successfully 

acquire, as well as for all the difficult targets that he couldn’t acquire (repeated measures ANOVA, Tukey 

test, p=0.001.) Overall, monkey K, in particular, shortened his path length in four and five out of eight 

Rotated and Radial-Swap sessions, respectively (repeated measures ANOVA, largest p=0.020 for 

Rotated, and largest p=0.007 for Radial-Swap). On the other hand, path length for monkey J only 

improved in one Rotated and one Radial-Swap session (repeated measures ANOVA, p=~0 for Rotated, 

and p=0.026 for Radial-Swap). 

4.3.6 Effort during Radial-Swap decoder use 

We also used normalized path length to determine whether the monkeys were actually trying during 

the difficult Radial-Swap trials for targets that were never acquired. If the monkey did not try, the normalized 

path length value would be less than one. Figure 4-10 shows path length for each session for two example 

targets that were never successfully acquired by either monkey: Targets 1 and 5. In all cases, normalized 

path lengths greatly exceeded 1, suggesting that the monkey was indeed attempting to move to the target. 

To ensure that this metric was not influenced by noise in the cursor prediction, which could have resulted 

in a high value without the monkey’s effort to produce force, we also calculated path length during the 

center target hold period at the beginning of each trial. All these values were well below 1, demonstrating 

that when the monkey did not try to move the cursor, the normalized path length was low. 
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Figure 4-10. Effort during difficult trials. To demonstrate that the monkey was trying to acquire difficult 
targets, we plotted normalized path length during Radial-Swap sessions for two example targets that 
were never acquired by either monkey. Each trace represents path length for a different session. The 
shorter traces for monkey K show normalized path length for the first perturbation block for the sessions 
where the normal and perturbation decoders were alternated. Trial values were smoothed using a moving 
average filter using five samples. As a comparison, the gray traces show normalized path length during 
the hold period, when the monkeys held the cursor in the center target.  
 
 

4.4 Discussion 

After millions of years of evolution, the ability to learn to use novel tools remains largely unique to 

primates. The advent of the brain-machine interface has introduced an entirely new tool that presents new 

learning challenges and new opportunities to explore the limits of motor learning. We have pursued this 

problem by asking monkeys to learn to use two different BMIs, one that resembles a routine postural 

variation of a normal hand movement (Rotated decoder), and another that represents an anatomical 

impossibility (Radial-Swap decoder). Although the Rotated decoder caused greater alteration of the 

mechanics of force production, ultimately, both monkeys learned to use it successfully for all targets, but 
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achieved at best only four targets using the Radial-Swap decoder. Furthermore, the successful targets 

using the Radial-Swap decoder were those that required relatively little adaptation.  

Importantly, hypotheses to explain the extent of learning in the current study are complicated by 

the different effect of the Radial-Swap decoder between targets. The ulnar deviation targets, for example, 

could still be acquired using largely normal muscle activation. Targets that were difficult to acquire, however, 

required the monkey to produce an unnatural pattern of muscle activation. For example, to acquire the 

flexion target, the monkey had to activate ECR and FCU without activating FCR and ECU, a combination 

that does not occur normally. In contrast, the targets in the Rotated case required new patterns of muscle 

activation, but these patterns corresponded to those needed when the forearm is physically rotated 90 

degrees; for all these targets, both monkeys ultimately learned to acquire. The particular inability to acquire 

the difficult targets in the Radial-Swap case suggests that on a short time-scale, M1 neurons cannot be 

activated in a way that is necessary to produce unnatural muscle activations.  

4.4.1 Neural constraints on learning 

The inability to use the Radial-Swap decoder may be related to constraints on the ability to alter 

the firing patterns of neurons independently, and therefore the neural population cannot readily change its 

covariance structure. The poor performance using the Radial-Swap decoder may therefore have been 

because acquisition of the difficult targets required the neural population to change its normal covariance, 

while the easy targets did not. This explanation is similar to the conclusions of a study by Sadtler and 

colleagues, who evaluated the ability of monkeys to learn to use altered decoders that either did or did not 

require changes in neural covariance. The former decoders, which they refer to as “out-of-manifold” 

decoders, were rarely learned in a single session (Sadtler et al. 2014). However, the Rotated decoder may 

have been similar to the Sadtler “within-manifold” decoder, which required different patterns of neural firing, 

but ones that are likely preserved for other normal tasks, such as those where the forearm is rotated. 

Other studies support the idea that there exist constraints on the ability to modulate neurons 

independently in a short time frame, closely related to the idea that a neural population cannot readily 

change its covariance structure. Hwang and colleagues demonstrated this idea in a BMI learning study in 

the parietal reach region (PRR), an area that encodes planned target reach locations (Hwang, Bailey, and 
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Andersen 2013b). They used a subset of their recorded neurons for decoding, and evaluated changes in 

neural firing between neurons involved and excluded from BMI use, similar to a previous study in M1 

(Ganguly et al. 2011). Similar to the M1 result, they report that both groups of neurons alter their firing, even 

though the activity of the excluded neurons had no relationship to task reward, suggesting that neurons are 

not adapted individually. Importantly, they also describe the ability of monkeys to learn seemingly arbitrary 

neural activations, but that these patterns of activations always belonged to a response set for normal 

reaching movements. 

The Hwang et al. observations, to the extent they are relevant for M1, further support the Sadtler 

result that “out-of-manifold” decoders, which require neurons to change their covariance structure of their 

mutual activity patterns, are not readily learnable. Similarly, Fetz and Baker operantly conditioned the firing 

patterns of individual neurons, and found that some adjacent neurons similarly modulated their activity (Fetz 

and Baker 2017). However, they also found evidence of adjacent units that could indeed be independently 

controlled, demonstrating that there are exceptions to the ability of neuron groups to change their co-

modulation. These exceptions are important to consider, but these studies may also suggest that the difficult 

Radial-Swap targets were hard to acquire because of actual neural constraints on modifying neural 

covariance.  

4.4.2 Limitations in the extent of neural space exploration 

In this experiment, both monkeys improved across sessions, especially when using the Rotated 

decoder. The greater success with the Rotated decoder may have been because a successful strategy was 

more readily apparent. To acquire the Rotated targets, the monkeys initially aimed toward the wrong target, 

but later made seemingly corrective movements to hit the right target. This is similar to the strategy 

employed by monkeys in a study by Jarosiewicz and colleagues, in which monkeys adapted to a decoder 

where the relationship to kinematics between some but not all BMI neurons was rotated (Jarosiewicz et al. 

2008). In early trials, the monkeys corrected their trajectory at around 400ms into the movement, based on 

observation of the cursor error. After learning, their initial trajectories went straight for the intended targets. 

However, in the current experiment, the initial trajectories still had large errors in the final experimental 

session. This suggests that while the monkeys had adopted an adequate strategy, they had not yet 
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developed an accurate internal model of the dynamics of the Rotated decoder, which would have resulted 

in more direct initial trajectories to the targets. On the other hand, using the Radial-Swap decoder, the 

monkeys almost never acquired the targets that required the most strategic and neural adaptation. Not only 

were they not able to internalize the new dynamics of the decoder, they were also unable to identify a 

corrective strategy in order to adjust their trajectories.  

Another possible explanation for the monkeys’ inability to learn to use the Radial-Swap decoder is 

that they did not fully explore the space of readily possible neural activations, not requiring covariance 

changes, during the experiment. In this study, we chose a decoder perturbation type randomly each day, 

instead of giving the monkeys the same type over a series of days. We also recomputed the M1-to-EMG 

decoder in every experimental session, with the original intention of evaluating short-term rather than long-

term adaptation. We found that the Radial-Swap decoder was more difficult to learn than the Rotated 

decoder, but within-session learning of both types may have been limited by the short length of each 

session. Learning across sessions may also have been limited by the interchange of decoder type. As 

demonstrated by Ganguly and Carmena, using fixed decoders, provided the neural inputs remain stable, 

facilitates long-term learning (Ganguly and Carmena 2009).  

While the limited time to explore more of the neural space may in part explain the inability to use 

the Radial-Swap decoder, the main explanation may be the need to generate new neural covariance 

patterns. Providing direct evidence for the latter explanation is not trivial. Because the monkeys were able 

to use the normal and Rotated decoders, it is possible to compare differences in neural activation during 

the two tasks. However, because the monkeys never successfully used the Radial-Swap decoder, it is 

difficult to compute hypothetical neural activations for success. Comparing these hypothetical neural 

activations to the neural patterns during normal decoder use could reveal whether successful decoder use 

required abnormal modifications in neural covariance or not. Further work will be required to better address 

this question. 
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4.4.3 The influence of afferent feedback on learning 

The disruption of normal afferent feedback in the perturbation sessions may also have affected the 

monkeys’ ability to learn, especially because somatosensation is implicated in motor learning. Ablation of 

somatosensory cortex, for example, has prevented monkeys from learning a new task, though this lesion 

did not affect the retention of learned motor skills (Pavlides, Miyashita, and Asanuma 1993). Proprioceptive 

information from the limb also synapses in primary motor cortex (Peter L. Strick and Preston 1978b; 

Zarzecki and Asanuma 1979), where it may also have an effect on motor learning. Proprioceptive 

information from the limb is important to consider, especially since afferent conditions often differ between 

decoder training and testing conditions.  

To maintain similar afferent conditions between decoder training and testing conditions, some 

groups compute “observation-based decoders”, where the decoder is trained through visual observation of 

movement rather than actual movement (Wahnoun, He, and Helms Tillery 2006; Tkach, Reimer, and 

Hatsopoulos 2007; Hochberg et al. 2006). This method is becoming increasingly common, especially 

because it is required for human BMI users, who cannot make movements with which to train decoders. In 

observation-based experiments, the limb is not engaged in the task during either decoder training or use, 

and therefore afferent feedback from the limb may be similar in both cases. Part of this approach may also 

include recalibrating decoders during initial brain control to further reduce differences between training and 

testing conditions, such as is done using the ReFIT decoder algorithm (Gilja et al. 2012). In cases where 

observation-methods and decoder recalibration are not used, animal subjects make movements during 

decoder training, but afferent feedback during this condition may not match feedback during brain control, 

where the limb might not be engaged in the task in the same way.  Despite these discrepancies, however, 

monkeys can still learn the use the decoders (Lebedev et al. 2005; Velliste et al. 2008).  

In nearly all monkey BMI studies including ours, animals have intact proprioception during BMI 

control. In the current study, the monkeys retained proprioception consistent with a mid-prone forearm 

position. This type of proprioception was incongruent with the virtual muscle configuration imposed by the 

perturbation decoders. In the Rotated sessions, for instance, real afferent feedback was rotated from the 

decoder configuration. However, the afferent feedback during Radial-Swap sessions may have been 
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especially confusing, because of the unnatural muscle configuration. Ultimately, despite incongruities in 

proprioceptive feedback, the monkeys were able to acquire all targets with the Rotated but not the Radial-

Swap decoder. This may be because the monkey’s disparate feedback conditions during Rotation were still 

natural, and therefore the monkey could understand how to account for them.   

It is also possible that correct proprioceptive information was not necessary for learning, at least 

for the Rotated decoder. Contrary to studies that report the importance of accurate afferent feedback for 

learning and performing tasks, Ingram and colleagues present a slightly different view (Ingram et al. 2000). 

In a 2000 study, they compared learning in normal subjects versus learning in a subject who had lost the 

sense of proprioception below the neck. The deafferented subject was able to adapt to a visuomotor 

perturbation, requiring single-joint arm movements to visual targets. This study suggests that proprioception 

is not a requirement for adaptation. Jones and colleagues show that proprioceptive feedback is reduced 

during visuomotor adaptation (Jones, Wessberg, and Vallbo 2001). Spindle firing rates were decreased in 

83% of the adaptation trials during a center-out reach task, where feedback about hand position was rotated 

45o. They propose that the decrease in sensory signals was a way to reduce the effect of the discrepancy 

between visual and proprioceptive feedback during visuomotor adaptation. While the Rotated decoder was 

not a simple visuomotor rotation, the two share some characteristics, such that it may be applicable to the 

arguments put forth here. The successful use of the Rotated decoder may have been facilitated because 

the altered proprioception was still natural, but also because proprioceptive feedback may have been 

somewhat reduced during decoder use. In the Radial-Swap case, the less natural disparity between normal 

afferent feedback and the imposed mechanics of the decoder may have led to a decrease in proprioceptive 

signaling, as in the example above, but could also have in part hindered learning. Overall, while 

proprioceptive signals may not be absolutely necessary for learning, accurate proprioceptive feedback does 

improve performance (Suminski et al. 2010) .  

 

4.4.4 Implications for future BMI development 

BMI adaptation studies are complicated by the fact that current studies are performed in lab settings 

for only a few hours in a given session. At the end of the session, animal subjects are returned to their 
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cages, and human subjects go home, where they cannot continue decoder use. However, unconstrained 

use of a BMI, facilitated by wireless technology, could allow researchers to evaluate decoder use for 

extended periods of time, and  these methods are becoming rapidly available thanks to recent advances in 

wireless BMI technology (Borton et al. 2013; Yin et al. 2014; Schwarz et al. 2014). Giving the subjects a 

decoder to learn without interruption may reveal new insights into the time course and extent of learning. 

More time to fully explore their neural space with extended decoder use could also help determine whether 

decoders are difficult to learn because of time or actual neural constraints. 

BMI adaptation is especially important to understand because decoders will never be perfect for 

many reasons. For one, BMIs use a very limited number of individually noisy neurons for control, and 

therefore provide an oversimplified interface for neural control. They also do not directly account for 

processes downstream of cortex, such as the activity of interneurons, which may modulate descending 

commands between M1 and movement output in a nonlinear, context-dependent manner (Hepp-Reymond 

et al. 1999; Humphrey, Schmidt, and Thompson 1970). Other considerations include differences in afferent 

feedback between decoder training and testing conditions, namely in cases where observation-based 

decoders are not used, as well as differences in the dynamics of the plant being controlled and those of the 

user’s actual arm. For these reasons, users will have to adapt in order to use their decoders successfully. 

One main goal for BMI development is to design decoders that require minimal adaptation, in order to 

facilitate quick and intuitive BMI use.  

 In the current experiment, the short experimental sessions may have limited the extent of learning. 

However, the inability to acquire all Radial-Swap targets may also have been due to neural constraints that 

prevent changes in neural covariance. In light of studies that support this idea (Sadtler et al. 2014; Hwang, 

Bailey, and Andersen 2013a; Fetz and Baker 2017) and the implications of the current results, the optimal 

approach to building an intuitive decoder should preserve natural patterns of neural covariance. This will 

facilitate a more rapid rate of learning, allowing users to more readily manage their BMI in both normal and 

new tasks, and reduce the cognitive load required to adapt.  

Designing decoders that require only normal neural covariance patterns, however, may not always 

be possible. Fortunately, difficult decoders may still be learnable with proper algorithm design. Researchers 
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are beginning to show that even out-of-manifold perturbations, such as the ones described by Sadtler and 

colleagues, can eventually be learned with coaching, with decoder weights gradually modified with learning 

(Oby et al. 2015). Gradual learning, in fact, has been shown to improve adaptation. For example, in a prism 

adaptation study, incremental visual rotation resulted in a greater level of adaptation than adaptation to a 

single rotation, and also had larger negative after-effects (Michel et al. 2007). In summary, while coaching 

may eventually improve decoder learning, BMI users would obviously prefer not to undergo extensive 

training to use a decoder for real-world tasks if it were not necessary. Decoder design for rapid and intuitive 

use should therefore require natural patterns of neural activation, and avoid the need to modify the neural 

covariance structure to the extent possible. 
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5.1 The refinement of control strategies for cortically-controlled FES 

 In this dissertation, I have presented three research studies, each focusing on a different approach 

to improving control strategies for FES, such as stimulation techniques, and decoder design. First, in 

Chapter 2, I evaluated the ability to use a nerve cuff, the FINE, to activate muscles selectively. My results 

showed that FINEs can indeed be used to activate a subset of muscles for grasp, and that selectivity is 

relatively stable across time. We further showed the ability to use multi-contact stimulation to produce 

different types of grasp. These results are useful for both standard and BMI-FES systems. Furthermore, 

FINE stimulation in future human clinical trials are likely to produce better selective muscle activation than 

what we report in the monkey, because of the much higher fascicle count in humans. Fascicle count is 

important because fascicles are thought to facilitate selective muscle activation due to their insulating 

perineurium (Brill et al. 2009). Still, while the monkey may not be the perfect model, it is useful for the 

continued evaluation of FINE stimulation routines.  

In Chapters 3 and 4, my focus was on the relationship between M1 and EMG, both in an attempt to 

better understand the neural control of movement, and with an eye for developing more useful decoders 

for cortically-controlled FES. My results in Chapter 3 revealed strong evidence for a gain-mechanism 

operating downstream of motor cortex, which amplifies the relationship between M1 neurons and EMG 

depending on the magnitude of required EMG. Including gain parameters when computing neural decoders 

may therefore be useful for FES systems for tasks that require different dynamics and magnitudes of muscle 

activation. In Chapter 4, I evaluate the ability to use and adapt to two different types of FES decoders: one 

that preserves natural patterns of muscle activation and one that does not. I report that neither of the two 

monkey subjects was able to acquire all the targets using the less natural decoder. This suggests that M1 

cannot readily change its firing patterns to control force when the decoder relationship between muscle 

activation and force is unnatural, at least in the short term. Decoders that are easy to use should therefore 

be designed in a manner that preserves the biomechanical structure of the motor system. 
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5.2 Designing decoders that reflect the structure of the motor control system 

BMIs are remarkable in that they can make use of a very small population of neurons to accurately 

predict a variety of movement variables. Their performance is especially impressive considering that BMI 

decoders inevitably provide an oversimplified interface for control, especially as they do not perfectly 

capture the complexity of the neural control of movement, such as the nonlinear downstream modulations 

of movement signals that may vary across behaviors. In many cases, there are discrepancies in afferent 

feedback between BMI training and testing conditions, as well as differences in the dynamics between the 

natural arm and the plant being controlled. With this in mind, in this dissertation I address the major question 

of how accurate a decoder needs to be for effective BMI use. Specifically, I evaluate the ability to use a 

single linear decoder for making accurate predictions across dynamically-different tasks, and how 

biomimetic a decoder needs to be to facilitate learning and intuitive use. 

The results I report in this dissertation suggest that for the continued successful development of 

BMIs, it is important to build structure into the BMI that reflects the natural motor control system. I first 

discuss this in Chapter 3, where I evaluate the ability of a single linear decoder to span three dynamically 

different tasks: an isometric task, an unloaded movement task, and a spring-loaded task. These tasks also 

spanned a broad range of muscle activations. I ultimately demonstrate that a nonlinear relationship spans 

the three tasks more than a linear relationship does, but that the decoder has to be robustly trained with 

data from all three tasks. I also show that much of this nonlinearity is due to a gain mechanism downstream 

of cortex that is dependent on the magnitude of EMG output.  

My results from Chapter 3 add to the knowledge base of how the motor system naturally controls 

movement, and specifically expand upon the ideas of context-dependence and gain that have been 

considered by researchers in the past (Hepp-Reymond et al. 1999; Humphrey, Schmidt, and Thompson 

1970). Understanding the nature of downstream gain mechanisms also improves BMI design. My results 

demonstrate the increased value of accounting for gain with a nonlinear decoder, by showing that 

predictions across tasks with this nonlinear decoder are significantly better than linear predictions, provided 

both decoders are robustly trained.  
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Accounting for EMG-dependent gains will be particularly important for the future development of 

cortically-controlled FES systems, which require the prediction of individual muscle activity. Real-life BMIs 

should work for a variety of tasks requiring different dynamics and interactions with various kinds of loads. 

To make accurate predictions across these conditions, one should therefore incorporate knowledge about 

the nonlinear structure of the motor control system into a decoder, and include gain parameters that are 

specific to levels of EMG production.  

The results here may also broadly apply to BMI experiments that use kinematic decoders, which 

currently use a controller to alter the dynamics of a robotic arms (Collinger et al. 2013; Wodlinger et al. 

2015; Velliste et al. 2008; Hochberg et al. 2012). As information on how the motor system controls dynamics 

increases, group that only use neural data for predicting kinematic variables may ultimately incorporate 

these insights to allow BMI users to control dynamics themselves with cortical activity. This could mean an 

increased use of musculoskeletal models, or other methods that would allow the user to employ neural 

activity to control the stiffness of their robotic prosthesis. This type of control would allow for natural dynamic 

movements that are completely under the volition of the user, giving them full control over their prosthetic 

device. 

****** 

While it may seem like an obvious conclusion that decoder design should reflect the structure of 

the motor system, this conclusion is not entirely essential in light of the brain’s ability to adapt to various 

types of BMIs. In fact, monkeys have demonstrated the ability adapt even to nonbiomimetic BMI decoders, 

as in cases where the decoder weights were shuffled across neurons (Ganguly and Carmena 2009), and 

during a task that rotated the relationship between a subset of BMI neurons and cursor velocity (Jarosiewicz 

et al. 2008). There are also the many circumstances under which the activity of cortical neurons can become 

dissociated from movement, such as during mental imagery and visuomotor dissociation, where visual 

feedback does not match limb position (Schieber 2011). This phenomenon is especially helpful for BMI 

control, where the brain seems to recognize that a “native limb no longer is being controlled” and neurons 

can therefore alter their firing rates to complete seemingly unnatural tasks, such as the use of the 

nonbiomimetic decoders described above. 
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Despite the ability to adapt, there do exist neural constraints on the ability to learn to use BMI, and 

one challenge for the BMI field is to identify the extent of these limitations. In Chapter 4, I explore limitations 

on BMI use by evaluating the ability of monkeys to learn to use two altered decoders: one that preserved 

the natural patterns of muscle activation, and one that did not. The design for my learning study was 

influenced by recent findings from Sadtler and colleagues (Sadtler et al. 2014) as well as a study by Berger 

and colleagues (Berger et al. 2013). Sadtler et al. evaluated the ability of monkeys to learn two different 

types of altered decoders. To do so, they first computed what they call an “internal manifold” using factor 

analysis to reduce the dimensionality of their neural space to 10 factors. They gave the monkey two different 

types of decoders, ones that altered the relationship between neural activity and these ten factors (outside-

manifold), and ones that altered the relationship between these factors and cursor kinematics (within-

manifold). Ultimately, the monkeys were able to learn to use decoders with within-manifold perturbations 

much better than ones with outside-manifold perturbations, the latter of which required a change in neuron 

covariance structure. In the second study, Berger and colleagues designed a learning experiment that 

evaluated the ability of human subjects to learn to use two types of muscle-to-force decoders. They 

identified synergies from EMG patterns, and then asked the human subjects to use decoders that altered 

these synergies in ways that were either compatible or incompatible. Ultimately, the subjects were better 

able to use the compatible decoders, and could never acquire certain targets using incompatible decoders. 

My experiment was intended to combine the ideas of constraints on learning from both the Berger 

and Sadtler studies by evaluating a muscle-based analog of the Sadtler BMI experiment. I found that the 

monkeys were unable to learn the Radial-Swap decoder, which required unnatural activation patterns. In 

Chapter 4, I conjecture that this result may be because the monkeys did not have enough experimental 

time to fully explore the possible neural space not requiring changes in covariance structure. However, 

another hypothesis could be that the decoder did require the neural population to change its covariance 

structure, similar to the limitation described in the Sadtler et al study. The overall implications here for 

cortically-controlled FES are that future decoders should preserve as much of the natural structure of the 

motor system as possible, including the biomechanics of how muscles produce force. At least in the short 

term, M1 firing cannot dissociate from these limb mechanics to differentially control muscles in a way that 
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is not natural. More broadly, these results suggest that both kinetic and kinematic BMI decoders for rapid 

and intuitive use should require natural patterns of neural activation, and avoid the need to modify the 

neural covariance structure to the extent possible. 

 

5.3 The importance of afferent feedback 

One main consideration, critical to the future development of motor BMIs, is the importance of 

afferent feedback. In the absence of sensory feedback, even the most robust motor system fails. For 

example, in rare conditions where motor capabilities are retained but proprioception is lost, individual 

experience enormous difficulty in producing movement. Such was the case for Ian Waterman, an individual 

who lost proprioception below the neck (Cole 1995). Unlike other individuals with similar conditions, 

however, he was able with great difficulty to learn to move again, relying on vision to focus on the individual 

steps required to move. Cutaneous feedback, in addition to proprioception, is also important to normal 

motor control. Without it, as shown by experiments where the digits of the hand are numbed with 

anesthesia, the ability to appropriately adapt grip force when lifting objects deteriorates, and objects are 

more readily dropped as slip cannot be easily detected  (Augurelle 2002; Nowak et al. 2002; Schenker et 

al. 2006). 

In BMI experiments, the afferent feedback available during decoder use is often different from the 

conditions under which the decoder was trained. For instance, as discussed in Chapter 4, in some 

experiments, the decoder is trained using data collected while monkeys complete a reaching task or move 

a manipulandum. In these experiments, the monkeys are moving their arms and receiving natural feedback 

relevant to the task. However, during brain control, the monkeys arms might be restrained, or they might 

move their arm less on their own volition after discovering that movement is not needed for decoder use (in 

example: Carmena et al. 2003; Velliste et al. 2008). In these cases, information about limb state is quite 

different between decoder training and testing. While the monkeys can still learn to use decoders even with 

incongruent feedback compared to training conditions, this performance may be less optimal than if the 

feedback in the two conditions matched. Relatedly, in an experiment  by Suminski and colleagues, monkeys 
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were able to use a BMI where visual and proprioceptive feedback aligned, while performance decreased  

when visual and proprioceptive feedback of arm position did not match (Suminski et al. 2010). 

The difference in afferent conditions between decoder training and testing may have influenced the 

results I present in this dissertation. In Chapter 3, for example, I demonstrate an inability to make across-

task predictions among an isometric, unloaded movement, and spring-loaded movement task. While I 

attribute these results mostly to an EMG-dependent gain mechanism between M1 and EMG, I also discuss 

the differences in afferent feedback between the three tasks. The three cases span the dynamic range of 

movement, and there are therefore differences in the ways the muscles change length and produce force 

between tasks. This would mean that sensory receptors, such as muscle spindles and Golgi tendon organs, 

are signaling information about muscle length and force differently in the three tasks. This information may 

in turn have an influence on M1 firing, especially considering the anatomical connections from sensory 

receptors in the limb to motor cortex ( Strick and Preston 1978; Zarzecki and Asanuma 1979) 

In Chapter 4, I also describe differences in afferent feedback as a possible explanation for why the 

monkeys struggled to use the Radial-Swap decoder. We did not employ a nerve block during this 

experiment, and therefore the monkeys retained proprioception during brain control that was congruent 

with the mid-prone position of the limb. This feedback was especially incongruent when compared to the 

unnatural limb configuration imposed by the Radial-Swap decoder, and the mismatch in feedback may have 

been a factor in hindering performance. While there was also a mismatch in afferent feedback between 

training and testing of the Rotated decoder, the rotated decoder still corresponded to a natural limb 

configuration, and therefore the feedback mismatch may not have been as important. 

All of these considerations relate to cortically-controlled FES, where BMI users may also 

experience a loss of both sensation and movement. However, afferent feedback may also not always be 

an issue. For example, in cases of incomplete SCI, individuals may retain somatosensation while movement 

capabilities are lost. Similarly, victims of stroke may also experience movement but not sensory deficits. It 

is possible – given what we know about the importance of somatosensation – that BMI users with 

proprioception may be more proficient at control than deafferented individuals because of their intact 

afferent feedback. If true, this further highlights the importance of sensory feedback for a BMI. To evaluate 
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this, it is possible to design an experiment that could more directly evaluate the influence of afferent 

feedback simply by comparing BMI performance with and without proprioceptive and cutaneous feedback. 

Our well-established nerve block protocol puts us in a unique position to address this question. My first 

experiment in the lab, in fact, attempted this, and I piloted an experiment to evaluate differences in BMI 

performance under normal afferent conditions and during a nerve block. My preliminary results did not 

indicate a significant difference in behavior between the two conditions, as indicated by task metrics, such 

as Time to Target and Path Length. While this was an interesting result, the nerve cuffs implanted in the 

monkey subject were several years old and the monkey unfortunately had to be explanted not long after 

these preliminary experiments. The study was never revisited. However, it could provide valuable insights 

into the influence of afferent feedback on BMI use, and is a project worth pursuing again in the future. 

 

5.3.1 Methods for providing sensory feedback 

Researchers are developing methods in both the central and peripheral nervous systems that may 

one day restore sensation to individuals. One method for providing sensory feedback is by directly 

stimulating somatosensory cortex (S1) using intracortical microstimulation (ICMS). However, understanding 

how to provide sensory feedback has long been a challenge for a variety of reasons. One main issue is 

researchers cannot know how many neurons are being affected by intracortical microstimulation (ICMS), 

though researchers have attempted to better understand the effects of ICMS through computational 

modeling (Overstreet, Klein, and Helms Tillery 2013). Another obstacle to understanding how to provide 

sensory feedback up until recently has been the fact that most sensory studies are performed in animals, 

who obviously cannot verbally inform the experimenter about the sensations they are feeling. To learn about 

the effects of sensation, scientists must therefore train animals on cleverly designed tasks that allow them 

to report what they are feeling. For example, in our lab, we were able to instruct monkeys to move to targets 

in order to report their ability to distinguish different types of microstimulation (London et al. 2008). In recent 

years, however, somatosensory studies have begun in human subjects, which has allowed for explicit 

descriptions of the sensory percepts that are evoked with stimulation. In these experiments, subjects can 

simply report what they feel, such as pressure and perceptions of intensity changes, without the need for 
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complicated task design (Flesher et al. 2017). The continuation of these types of studies may rapidly expand 

the knowledge base of what is possible with ICMS. 

Sensory feedback can also be provided at the level of the periphery.  In fact, researchers have 

recently demonstrated the viability of FINEs, which I discuss in Chapter 2, for restoring sensation. The 

ability of the FINE to provide sensory feedback has recently been established in human clinical trials, where 

it has been used to elicit sensation corresponding to different locations on the phantom limbs of upper-limb 

amputees (Tan et al. 2014; Schiefer et al. 2016). The amputees further cite many of the receptive fields of 

sensation as being relatively small, which demonstrates that feedback of cutaneous sensation can be 

delivered to patients with a high degree of precision. The ability of FINEs to both activate muscles and 

provide sensory feedback is an exciting prospect for FES systems. However, because sensory and motor 

axons are mixed together in the nerve, a future challenge will be to separate out stimulation of paralyzed 

limbs with the restoration of feedback.   

 

5.4 Future experiments 

Future FINE experiments 

The FINE experiments described in Chapter 2 primarily consisted of stimulating single electrodes and 

recording recruitment curves to characterize the effect of stimulation. While we did try to elicit functional 

grasp in one brief session using multi-contact stimulation, we did not pursue this further. Future experiments 

will need to further examine how to combine the abilities of multiple contacts in order to produce useful 

muscle activation patterns. While we can conduct these experiments in anesthetized monkeys, the next 

challenge will then be to add FINEs to the cortically-controlled FES system with a behaving monkey. This 

may not be a trivial task, as it is yet unclear how to appropriately control stimulation of the FINES. Future 

studies will require finding a way to translate recruitment curve information into pulse-width stimulation 

trains in order to stimulate a set of muscles. 

Future decoder experiments 

Despite progress in decoding techniques and general BMI sophistication, the majority of motor BMI 

experiments have been constrained to short-term laboratory settings. During experiments, subjects use the 
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BMI for at most a few hours, and then return home without the device. This setup is likely to experience 

widespread change in the next few years, as groups are actively working to develop wireless devices that 

will allow for continuous and unconstrained BMI use (Borton et al. 2013; Yin et al. 2014; Schwarz et al. 

2014). Doing so will allow researchers to more effectively address questions regarding long-term and 

generalizable decoder use, as well as adaptation, which can more efficiently be studied in a continuous-

use paradigm. 

In our lab, we have begun implementing a wireless system for long-term, unconstrained, cortically-

controlled FES (see Appendix). This setup will greatly facilitate generalizability and adaptation studies, 

which will allow for follow-up experiments to the ones I have described in this dissertation. With respect to 

multi-task decoding, one major challenge to successful FES in the cage will be developing a decoder that 

will make accurate muscle predictions for the unconstrained tasks that the monkeys will attempt. In Chapter 

3, I provide strong evidence that facilitating multi-task decoding will not be trivial. One of my conclusions 

from that study is that multi-task decoding requires robust training with different types of tasks (“Hybrid” 

decoders).  To develop my “Hybrid” decoders, I also had to explicitly weight the error when computing my 

decoders, according the differences in variance between the three tasks (see Chapter 3, Materials and 

Methods). This may be more difficult to implement in a cage setting, where there will be a gradient of muscle 

activations in the training set rather than distinct tasks. 

Future experiments to further address the issue of multi-task decoding will include building decoders 

from unconstrained data acquired from the monkey’s cage. Already in the lab, we have begun to record 

multi-hour neural and EMG data while monkey subjects are in their cage (Appendix Figure 8-4). During this 

time, the monkey ambulates about the cage, interacts with an experimenter to accept treats, and completes 

a bimanual grasp task in order to receive a liquid reward. Going forward, these types of datasets will be 

valuable for examining the ability of decoders to make accurate predictions for a variety of unconstrained 

tasks. We will be able to ask questions about the number of tasks that should be included in a multi-task 

decoder dataset, as well as the nature of these tasks (high force production, free reaching, et cetera).   

Additionally, beyond addressing questions about multi-task decoding, the cage setup will also facilitate 

follow-up adaptation experiments to the one I present in Chapter 4. In that chapter, the data I present 
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suggest that decoders for cortically-controlled FES should preserve the natural activation patterns of 

muscles for ready easy-of-use. However, my experiment did not evaluate long-term decoder use. In each 

individual session, I did not give the monkeys a lot of time to adapt. Furthermore, due to technical reasons, 

namely the loss of electrodes, I was also unable to extend the overall numbers of sessions in both monkeys. 

However, a potential follow-up experiment would be to give the monkey the Radial-Swap decoder, or 

another type of decoder perturbation, during a multi-day cage experiment, to see if the continuous use of 

this decoder facilitates learning. 

 

5.5 Other challenges to building clinically-viable BMIs 

Beyond improving control strategies for BMI systems, there are also other practical issues that may 

impede their full translation to the clinic. One major challenge to contend with is the longevity of electrodes. 

Electrode longevity may depend on the type of the electrode, or unknown variables, perhaps related to the 

quality of the initial electrode insertion during surgery. One prevailing theory is that electrodes may be 

subject to “glial scarring”, where glial cells migrate toward the foreign array, and act as a buffer between 

electrode and neuron (Griffith and Humphrey 2006). Electrodes may also have to be explanted for the more 

practical reason of mechanical failure, or intractable infection. Despite these types of issues, Utah arrays 

have shown the ability to last for a number of years, though certainly not indefinitely. In a long-term study 

that evaluated Utah array failure modes in 78 cases, John Donoghue’s research group reported a recording 

duration that ranged from 0 to 5.75 years (Barrese et al. 2013). Failures could be attributed both to 

mechanical problems, often due to connector issues, or to biological failures. They also predicted that a 

Utah array would maintain signals for about eight years in the absence of acute interruptions.  

 Unfortunately, for a device to be clinically viable, it should reliably last more than several years. For 

the time being, there are a few options for extending the lifetime of electrodes. One is through electrode 

‘rejuvenation’, where voltage pulses applied through array electrodes can improve neural recordings, by 

getting rid of cellular or acellular debris that has migrated around the recording site  (Otto, Johnson, and 

Kipke 2006). The use of LFPs as a decoding signal may also help extend the viability of a BMI long after 

discriminable spikes have disappeared (Flint et al. 2012; Flint et al. 2013). Ultimately, however, the issue 

of electrode longevity may primarily be a biomaterials problem to solve. Future advances in biocompatible 
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technology will hopefully hold the key to extending the lifetime of electrodes, which will help usher BMI 

technologies more seriously into the clinic.  

 

5.6 Keeping the end-user in mind 

 In the medical device industry, the design process necessitates that product developers 

continuously keep their customers in mind. This is done through surveys and other evaluations of customer 

needs, often resulting in the development of a “House of Quality” – a correlation matrix that explicitly depicts 

customer needs versus product features. On the other hand, the goals of research labs are more typically 

to advance knowledge, and not to directly develop a product. In our lab, however, as in most BMI labs, we 

are in a unique position. Our research goals are both to expand the neurophysiology knowledge base, as 

well as to contribute to the practical development of a BMI system. To better inform the achievement of the 

latter task, it is important to step outside the lab from time to time to check in with potential customers, or 

appropriate representatives (see also Ethical Considerations, The unexpected resistance to new 

technologies). 

One way to understand customer and patient needs is through survey studies. For example, a 

widely cited study with respect to spinal cord injury comes from the efforts of Kim Anderson, who surveyed 

both paraplegics and quadriplegics to reveal their priorities for improving their quality of life (Anderson 

2004). Of course, another way to understand patient needs is to talk to individual patients in person. The 

Shirley Ryan AbilityLab, formerly the Rehabilitation Institute of Chicago, recently made a substantial change 

to facilitate these kinds of interactions. Its new physical floor design puts researchers in direct daily proximity 

to clinicians and patients, with the hope that the various groups will naturally interact more, thereby 

improving the translation of research ideas to the clinic. Northwestern University has a very strong 

connection with this newly designed research and rehabilitation hospital, which is home to many of its 

biomedical engineering labs. Time will tell how the new setup will influence cross-discipline relationships 

and the bench-to-bedside process. 

In the Miller Limb Lab, we better inform our FES experiments by keeping in touch with fellow 

researchers and clinicians at the Cleveland FES Center in Ohio. These individuals work directly with 



116 
 
patients/subjects on a regular basis, and understand both their needs as well as the practical challenges 

that they face when using FES devices. Other times, we go straight to the FES users themselves. For 

example, as part of our process to brainstorm new FES experiments, our team met over Skype with a 

woman named Jennifer French. French has a C6-C7 incomplete spinal cord injury, and has benefitted from 

an FES system from the Cleveland center that allows her to stand and walk (French 2012). She is also the 

co-founder of the NeuroTech Network, a nonprofit that advocates for access to neurotechnology for the 

impaired, and is therefore often acts as a representative for the SCI population. During our discussion with 

her, she stressed the importance of the restoration of bilateral function, especially for tasks such as tooth 

brushing and self-feeding. 

While implanting our monkeys bilaterally is unfortunately not practical for our current experiments, 

we recently took French’s advice to design a cortically-controlled FES system that facilitates self-feeding. 

This involved implanting and providing for the control of muscles such as pronator and supinator. This 

design was an improvement over our previous experiments by providing the extra degrees of freedom 

necessary to properly orient the hand and forearm for feeding tasks. Successful use of cortically-controlled 

FES for self-feeding during a median and ulnar nerve block is shown in Figure 5-1. While this is just a start, 

we hope our upcoming cage FES experiments will further demonstrate the use of our system for self-

feeding, as well as for many other activities of daily living. 

 

Figure 5-1. Successful use of cortically-controlled FES for self-feeding. In this experiment, the monkey 
had to use a spoon to deliver apples to his mouth using his FES system during a median and ulnar nerve 
block. During catch trials, where the FES system was off, he could not grasp the spoon. However, when 
the FES system was on, he could grasp the spoon, and control muscle activation throughout the entire trial 
to get the spoon and apple to his mouth. 
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This thesis would not be complete without discussion of the ethical implications of the work 

described herein. I firmly believe researchers have a responsibility to consider the ethical implications of 

their work, and to discuss these topics with their colleagues. In my time as a graduate student, I have been 

fortunate to interface with scientists, clinicians, and ethicists both at Northwestern and elsewhere about 

topics in research and clinical ethics. My experiences have involved the publication of a book chapter, 

leadership in organizing an ethics symposium and journal club, as well as the oversight of a pilot program 

to grant graduate students in ethics exposure to laboratory settings. All of these experiences have been 

very rich and thought provoking, and have hopefully encouraged others to keep in mind the greater 

implications of their everyday work. Although there are countless subtopics of ethics relevant to the work 

described in this dissertation, here I very briefly introduce a few of the topics that I have either presented 

on or written about in recent years.  

 

6.1.1 Responsible Resource Use 

Non-human primate (NHP) research remains controversial. In most of Europe, monkey research is 

minimal, while invasive research with chimpanzees was recently outlawed in the United States. There are 

also movements like The Great Ape Project, founded by Peter Singer and Paulo Cavalieri, which claim that 

non-human great apes are deserving of the same moral rights afforded to human beings, such as liberty 

and the right to life (Cavalieri and Singer 1993). This movement very decisively shuts down any possibility 

of non-human great ape research, especially as these apes are unable provide verbal consent to participate 

in experiments. 

Whether or not the high extent of contention about animal research is merited should not change the 

fact that the ability to conduct animal research is a privilege, and should not be taken for granted. 

Researchers must therefore continue to ensure that they conduct non-human primate research effectively 

and responsibly. While NHP research is already heavily regulated, there remain ways to improve upon the 

current use of animals as research subjects. In accordance with the accepted research framework to 

Reduce, Refine, and Replace, one way to responsibly conduct research is by maximizing the scientific 

contribution of each animal, while still balancing this effort with the animal’s overall well-being. Better use 
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of data ensures that the work of these animals contributes to society, and that their research lives have not 

been lived in vain. It may also reduce the need for more animal subjects for future studies. 

Optimizing the use of data from NHPs can increase their scientific contribution, but is not always simple. 

It is true that in a number of labs, very large amounts of data are collected from animal subjects, but not all 

of these data are eventually included in a publication. This may be due to various reasons – perhaps a 

particular analysis did not pan out, or the data were collected without a well-defined experiment in mind, 

though the signals are still valid. The unpopularity of publishing negative results in well-established science 

journals is also a problem. Many studies that do not reveal exciting results do not get published. This is 

especially unfortunate because other researchers cannot learn from these efforts. It could also mean that 

monkey subjects may be involved in multi-year studies that do not end up contributing to societal 

knowledge, simply because results that are not deemed interesting enough are not written up. Fortunately, 

there do exist a few forums and journals that publish negative results, though these avenues are not always 

taken advantage of. A hope for the future is that the dissemination of negative results becomes more widely 

accepted so that all attempted studies can inform future endeavors. 

Another way to optimize data use is by encouraging future researchers in the lab group to revisit and 

analyze old data. This is useful because it allows for scientific productivity without the need to use other 

resources, such as more animals or equipment. It helps the data go the distance, and is also useful for 

better using the researchers themselves as a resource. For example, for early-stage PhD students who 

attend classes and can’t spend a lot of time in the lab, this gives them a way to be productive early on, with 

minimum need to spend time setting up equipment and collecting data for new experiments. 

Other options for efficient data use include collaborations with computational lab groups. These latter 

groups could run their own specialized analyses on NHP data and perhaps come up with a scientific story 

that the original lab may not have thought of, or not have been interested in on their own. In the Miller Limb 

Lab, we implement this idea by collaborating with Konrad Kording’s computational lab, among others at 

Northwestern. For groups that are not in close physical proximity to other labs with whom they can establish 

a connection, conferences are also useful for valuable networking. There also exist online platforms, like 
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the newly formed Rheaply (rheaply.com), which puts laboratories in contact with each other so that can 

establish collaborations, or trade research equipment, supplies, and even animal subjects. 

In fact, collaborations where different labs can share the research primates themselves are yet another 

way to facilitate efficient subject use. At Northwestern University, we have the benefit of being physically 

close to colleagues who are doing similar research at the University of Chicago (UC), only a few miles south 

of our lab. We recently implemented policies that allow us to readily transfer monkey subjects between the 

universities, depending on need. In another instance of animal sharing, our lab has also acquired monkeys 

from the pharmaceutical industry. As veteran subjects, these monkeys are often already chair-trained, 

which means we can more quickly train the animals on our specific experimental tasks. Using the same 

monkey for multiple studies is helpful because it minimizes the overall number of animals that become 

laboratory subjects. However, it must be noted that there are regulations in place that impose limitations on 

how many procedures a single monkey can undergo. This limits the ability to reuse animals in numerous 

studies. 

Finally, in addition to caring for non-human primates during their tenure in research labs, there is also 

the issue of their status once they are no longer useful for experiments. Interestingly, even the idea of 

research subject retirement is met with resistance from some groups, who feel that research monkeys 

should be put out of their misery at the end of experiments and put down. The rationale from these groups 

is that research animals, despite being provided with enrichment toys and roommates, still generally live a 

life in the lab that is lacking in normal socialization. They would therefore not be able to acclimate well to a 

sanctuary environment, which would likely put them in social situations that they would not be able to 

handle. Most sanctuaries, however, are aware of this concern, and incorporate therapy into their programs 

to encourage a smooth transition from research to sanctuary life.    

For those who do not believe that euthanasia should be a default end to an animal’s research life, 

sanctuaries are a reasonable option (McAndrew and Helms Tillery 2016). However, because they include 

programs such as therapy and other amenities, sanctuaries may be cost-prohibitive. The price of retiring a 

monkey can be $20,000. Few labs can allocate these funds for retiring animals at the end of the study. In 

cases where histology is not necessary, this usually means that the animal is put down simply because 
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there is no other viable option. In response to this need, two of my former colleagues recently founded the 

Research Animal Retirement Foundation (RARF, rarfoundation.org). RARF is a non-profit organization that 

aims to raise funds to send research primates and other animals to retirement sanctuaries. This 

organization sets a great example for taking action to improve the treatment of monkeys as a resource, and 

will retire its first four monkeys by the end of this year. A number of scientists sit on its board of directors, 

including me, and our hope is that more researchers take action to value both the data they get from their 

animal subjects, as well as the ultimate welfare of the subjects themselves. 

 

6.1.1 Facilitating interactions between researchers and ethicists 

Today’s political climate in America has not been a friend to scientific pursuit, to the point of spurring a 

national March for Science, where citizens argued for trust in science and defended its role in society. Now 

perhaps more than ever, it is important for society as whole to advocate for science, and to also engage in 

discussions about the societal implications of research findings. This means including researchers, 

ethicists, medical folks, politicians, and even laymen together in a mutual discussion. As a small step toward 

facilitating a greater mutual understanding, my colleagues and I recently piloted a program at ASU that 

brought together two of these groups, researchers and ethicists (Naufel 2011). 

For the pilot semester, we selected three graduate students in ethics to do a rotation in a scientific lab, 

where they would be assigned to help a graduate student with a small research project.  This program was 

designed to both expose graduate students in research ethics to a real lab environment, and researchers 

to the ideas of these ethics trainees. The hope was to encourage naturalistic conversations between the 

ethics trainee and the student researcher. The benefit here was to be twofold – the ethicists could learn 

more about biomedical topics that would be useful for their own publications, while the researchers would 

have more opportunities to discuss the wider implications of their work. These discussions could also inspire 

the researchers to develop new strategies for conducting experiments, which could result in positive 

outcomes such as more responsible resource use.  

I was able to help oversee this program while at Northwestern, and also traveled to ASU for a mid-

semester check-in with the students and their PIs. In the end, the program was an enriching experience for 



122 
 
the students who were interested in it, but it was hard to motivate the others to fully engage in their project. 

We were, however, lucky to have identified enthusiastic research PIs who were interested in the spirit of 

the program. They readily welcomed the ethics trainees into their lab, and were happy to meet with us to 

discuss program goals. Wider implementation of this program will need to facilitate the continued 

identification of receptive PIs, and will also require finding ways to further incentivize the students. However, 

I was recently encouraged to learn that other departments around the country are implementing similar 

programs, and time will tell how widely this concept catches on. 

 

6.1.2 The unexpected resistance to new technologies 

What does it mean to be normal? Neuroprosthetic devices are incredible technologies, capable of 

restoring hearing to the deaf, sight to the blind, sensation to the paralyzed, and movement to the lame. 

However, a point of contention, which may be surprising to some, is that those whom society regards as 

disabled do not see themselves as such, and may not readily welcome technologies designed to “help” 

them. The Deaf community, for example, does not fully embrace cochlear implants with open arms, despite 

the ability of these devices to provide hearing for even the profoundly deaf. Rather, some members of the 

community do not want these devices or to outfit their children with them. Being Deaf is a defining part of 

their culture, they are proud to be Deaf, and they do not want to lose that (Tucker 1998).  

In another example, ethicist Gregor Wolbring, a thalidomide baby who was born without legs, expresses 

his disapproval that doctors during the thalidomide era so readily prescribed prosthetic limbs, as if it were 

an obvious solution to a perceived “problem” (Wolbring 2003). He contends that the prostheses available 

at the time were primitive, not largely functional, and excluded other possibilities that were useful for getting 

around, such as crawling. Moreover, the thalidomide population did not want or feel the need for them. 

Wolbring writes, “Like most thalidomiders, I did not view my body as deficient and did not see artificial legs 

as a sensible solution to my primary problem: dealing with a world that saw me first and foremost in terms 

of my defects, and accorded me so little respect or human dignity that I was not even allowed to choose 

how I wanted to move around” (Wolbring 2003).  
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As it would seem, the assumptions unimpaired individuals make about life with impairment can greatly 

miss the mark. The extent of this discrepancy with respect to SCI was explicitly highlighted in a 1994 survey 

study from Gerhart and colleagues. In this study, uninjured emergency health professionals were asked to 

imagine themselves with an SCI and answer questions accordingly (Gerhart et al. 1994). These answers 

were compared with responses from those with a true SCI. As it turned out, the responses from the 

uninjured group were far more negative than the SCI group’s responses. For example, while only 18% of 

intact individuals guessed they would be glad to be alive with a severe SCI, 92% of the SCI comparison 

group answered in the affirmative. 

These examples of resistance to technology and inaccurate perceptions should give pause to 

researchers and clinicians for the way they go about designing and prescribing devices. As I discuss earlier 

in this dissertation, it is imperative to bear in mind the customer or patient when researching, designing, or 

prescribing medical devices as end-all solutions. This does not mean simply imagining the desires of the 

target population, because, as has been described, assumptions can be wrong and even offensive. It does, 

however, mean finding meaningful ways to regularly engage with the target population to address their true 

needs and desires. 

 

6.1.3 Select topics in neuroethics 

Neurostimulation of the brain has shown potential both for restoring capabilities, such as vision 

(Brindley and Lewin 1968), and for treating the symptoms of neurological disease (i.e. deep brain 

stimulation). To do so, these devices must intimately interface with the brain and affect neural circuitry. 

However, because a full understanding of how neural circuits function remains elusive, device developers 

do not comprehensively understand how their devices affect the complex organ that is the brain. For 

example, although the FDA has granted approval to devices for deep brain stimulation to treat Parkinson’s 

disease, dystonia, and even obsessive-compulsive disorder, its effect on the brain can reach beyond 

treatment of these diseases. DBS in fact can cause subtle side effects like personality and behavioral 

changes (Castelli et al. 2006). 



124 
 

Importantly, the notion of personhood is challenged by these technologies that intimately interact with 

the brain (Naufel 2013).  If a technology can affect an individual’s behavior and personality, what does this 

mean for the person’s sense of self? How does it influence the way their peers see them? Furthermore, 

how are they seen in the eyes of greater society, and even in the law? One major societal question with 

regard to DBS, for example, is how to ascribe responsibility in cases where individuals whose brain implant 

may have adversely affected their faculties have committed crimes (Klaming and Haselager 2017). While 

there are no quick answers to any of these questions and issues, these are important topics to think and 

even develop policy about. 

********** 

Other topics in neuroethics include concerns about possibilities that may still be beyond the horizon. 

These topics include a fear of “neuro-hacking”, where nefarious individuals or groups may find a way to 

infiltrate wireless neuroprosthetic devices in ways that can change stimulation parameters, or other device 

capabilities. This type of offense could effectively result in mind control, where malevolent use of the device 

could alter the way neurons respond to, process, and even send out information to the rest of the body. In 

the more distant future, neuro-hacking could even include the ability to download or alter people’s 

memories.  

While these concepts may currently seem far-fetched, the possibilities may become more tangible as 

BMIs and other neuroprostheses begin to branch out from the lab and into the commercial realm. Elon 

Musk, for example, recently launched a company called Neuralink, with the aim of connecting human brains 

to computers with the ultimate goal of merging the brain and artificial intelligence. Facebook is also starting 

to explore brain-machine interface applications. It may not be long before other companies follow suit, 

launching BMIs and other neurotechnologies into the mainstream. As these technologies increase in 

popularity, it will become important to address the ethical and society considerations that these new 

innovations invite. 
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8 Appendix 

 

 
Figure 8-1. Wireless FES setup. This figure delineates the major components for wireless FES: wireless 
neural recording, EMG recording, and stimulation. Wireless neural recording requires a neural transmitter 
that attaches to the electrode array pedestal on the head, as shown here (not to scale). The EMG recording 
and stimulation components are housed in a backpack the monkey wears (shown in red). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8-2. Wireless FES in the lab. The monkey was able to use the wireless system to restore 
functional grasp of finger flexors during a median nerve block. This figure demonstrates the ability to 
control a power grasp to squeeze a pneumatic tube and generate varying levels of force. During a 
catch trial, the stimulator was turned off, and despite the monkey’s attempts, he was unable to 
generate force with his paralyzed flexors. 
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Figure 8-3. Wireless cage setup. During wireless FES experiments, the monkey is housed in a plastic 
cage (A) surrounded by antennas for wireless neural data acquisition. The cage includes holes through 
which the experimenter can give the monkey treats. There is also a bimanual grasp task set up at one end 
of the cage (B-D), with interchangeable manipulanda for pinch, key, or power grasp.  
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  Figure 8-4. Example of wireless in-cage recordings of neural activity and EMG. This 
figure demonstrates the ability to wirelessly record neural activity and EMG activity in the 
monkey’s home cage. These data were collected while the monkey performed a series of 
three power grasps using a manipulandum installed on one of the cage walls. 

 


