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ABSTRACT

Learning Visual Matching From Small-Size Samples

Jiahuan Zhou

Visual matching is an important and fruitful research topic in computer vision area. Starting

from the early face recognition, super-resolution, object tracking to the most recent person re-

identification, cross-model retrieval, visual matching plays an important role as the core compo-

nent in these tasks. The quality of visual matching directly and largely influence of the ultimate

performance of these tasks.

This dissertation concentrates on developing effective and efficient visual matching learning

algorithms to facilitate the critical small-size sample challenges in visual matching, that only

very few labeled positive, even only one sample is available for a particular instance. A specific

human-centric visual matching task, image-based person re-identification, is adopted to evaluate

our proposed works. The goal of person re-identification generally refers to evaluating the

similarity of a probe image from an unknown identity against a set of gallery images with

known identities. The gallery images may be obtained from different cameras at a different time.

Person re-identification still remains a critical yet very challenging task in video surveillance

due to the general difficulties of the large and complex variations in the visual appearances
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of a person under various views, poses, illumination and occlusion conditions. Besides the

aforementioned difficulties, another critical issue that the very few labeled positive samples of

one identity and severely imbalanced negative samples significantly constricts the quality of

learning visual matching in person re-identification.

This dissertation presents various effective and efficient techniques to address the critical

small-size sample challenges in visual matching across images: a global metric learning algo-

rithm based on a novel proposed similarity constraint, termed reference constraint, only needs

few-shot positive samples for learning without any requirement of negative samples; an online

local metric adaptation algorithm which is adoptable to any feature descriptors and any global

metrics by using only one positive and extra unlabeled negative samples for metric learning;

an extended online joint multi-metric learning method to learn multiple sharing-based joint

Mahalanobis metrics for the given unlabeled data, no supervision label is requirement; and a

two-stage hierarchical local metric adaptation algorithm to joint enhance the local discriminant

of both unlabeled and labeled data. All the aforementioned methods aim to solve the severe

small-size sample problem by relaxing the requirement of a large number of labeled positives

for learning. Extensive experiments under different task setting on different datasets have vali-

dated the effectiveness and efficiency of the proposed approaches in the domain of image-based

person re-identification.
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CHAPTER 1

Introduction

1.1. Background

1.1.1. Visual Matching Across Images

Visual matching is an important and fruitful research topic in computer vision area. Starting

from the early face recognition, super-resolution, object tracking to the most recent person re-

identification, cross-model retrieval, visual matching plays an important role as the core compo-

nent in these tasks. The quality of visual matching directly and largely influence of the ultimate

performance of these tasks.

The definition of visual matching is aiming to evaluate how similar a given image x and a

target image y is. In other words, visual matching across images needs to measure whether the

given images x and y are matched based on some matching metric M. From this definition we

can see, there are two main important factors in visual matching: the feature representation for

the images and the measurement metric for matching. As for the feature representations, for dif-

ferent visual matching tasks and different data, different feature descriptors can be used, either

handcrafted features or the learned features from training samples. Once the feature representa-

tion is determined, another key-point in visual matching is the matching metric. Generally, the

Euclidean distance is directly used for visual matching due to its simplicity and flexibility. In

order to improve the visual matching performance, a discriminative metric, e.g., Mahalanobis

distance, is learned from training samples and used for visual matching.
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This dissertation concentrates on developing effective and efficient visual matching learn-

ing algorithms for a robust matching performance. A specific human-centric visual matching

task, image-based person re-identification, is evaluated by our proposed works. The term “re-

identification” is firstly defined by Alvin Plantinga in 1961 as: “To re-identify a particular,

then, is to identify it as (numerically) the same particular as one encountered on a previous

occasion”. For person re-identification, the goal of it generally refers to evaluating the simi-

larity of a probe image from an unknown identity against a set of gallery images with known

identities. The gallery images may be obtained from different cameras at a different time. Per-

son re-identification still remains a critical yet very challenging task in video surveillance due

to the general difficulties of the large and complex variations in the visual appearances of a

person under various views, poses, illumination and occlusion conditions. Besides the afore-

mentioned difficulties, another critical issue is known as the small-size sample challenge, that

only very few labeled positive, even only one sample is available for a particular instance, sig-

nificantly constricts the quality of learning visual matching in person re-identification. Such

small-size positive samples and large-scale negative samples for one identity caused a severely

imbalanced data distribution, the learning of visual matching is dominated by the large-scale

negatives which results in poor learning quality.

1.2. Human Centric Visual Matching: Person Re-Identification (P-RID)

In this dissertation, we focus on a human-centric visual matching task, called Person re-

identification (P-RID), which is a critical yet very challenging task in video surveillance [90]. It

generally refers to evaluate the similarity between a probe image of an unknown person against

a set of gallery candidates with known identities. The gallery images are usually taken from
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different camera-views at different times. Based on different input probes, the P-RID can be

mainly categorized into three main branches. If the input probe is represented by a single

image, we call it single-shot person re-identification (SsP-RID), in where the visual matching is

performed as an image-to-image matching. If the given probe is a set of multiple discrete images

for the same identity, or a set of continuous image frames from a video sequence, both of them

are called multi-shot person re-identification (MsP-RID). Therefore the visual matching is a

set-to-set matching or sequence-to-sequence matching respectively for them. This dissertation

will cover the research of all three scenarios in person re-identification.

Research efforts have been devoted to single-shot person re-identification [50, 52, 51, 112,

119, 103] in recent years. However, besides viewpoint changes, the quality of the only given

probe image can be severely degraded by various unpredictable conditions such as illumination

changes, partial occlusion, low-resolution, etc. Thus SsP-RID still remains a very challeng-

ing problem. In fact, practical scenarios in video surveillance can provide continuous video or

multiple images for the same person, which has motivated the research of multi-shot person

re-identification [29, 79, 95, 109, 66] that utilizes multiple images for the same person from the

same camera-view, expecting to improve the performance. The performance of visual match-

ing in person re-identification is mainly influenced by two key factors, feature representation

of images and matching measurement metric. In the past years, there are abundant researches

focusing on these two directions. Robust hand-crafted feature descriptors [51, 104] are de-

signed to minimize the within-identity variation of visual appearances. Due to the limitation

of human designation, more and more attention has been paid to learning discriminative and

robust feature embeddings to facilitate visual matching. On the other hand, another branch of

works aims to learn discriminative matching metrics instead of using the traditional Euclidean
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distance metric [52, 50, 112, 103, 4]. Such methods generally propose to pull the same-identity

samples closer as well as push different-identity samples far away so that various constraints,

e.g., contrastive constraint, triplet constraint, structure constraint, etc, are proposed to mini-

mize the within-class scatters and maximize the between-class scatters. Therefore promising

performance has been achieved by metric learning-based approaches. In recent years, due to

the success of deep learning in various computer vision tasks, deep neural network-based ap-

proaches [85, 40, 96, 92] dominate the person re-identification area due to the surprising perfor-

mance. Besides, the metric learning idea is incorporated into the deep neural network to learn a

deep metric from large-scale training data, which is known as deep metric learning [108].

In our research, we mainly focus on how to learn robust and discriminative matching metrics

to facilitate visual matching in person re-identification. However, besides the aforementioned

general challenges of appearance variation, a critical challenge in learning visual matching is

the small-size sample issue, that for one specific instance, there are very few positives available

for learning but much more negatives provided. Such issue is even more severe in instance-level

visual matching tasks, like single-shot person re-identification, there is usually one single image

provided for each identity, but hundreds of thousands of images from the other identities are

given. Such extremely imbalanced data distribution will largely influence the learning quality

since the learning is dominated by the large-scale negative constraints and the power of small-

size positive constraints is suppressed.
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1.3. Organization

Various novel methods are proposed to address the critical visual matching problem, fo-

cusing on different human-centric tasks such as single-shot person re-identification, multi-shot

person re-identification, etc. Therefore this dissertation is organized as follows:

• Chapter 2 demonstrates a novel global metric learning approach to tackle to multi-shot

person re-identification problem by utilizing only the given few positive samples. Al-

though the given positive and negative samples are extremely imbalanced, our method

tackle such issue by using a novel proposed reference constraint to facilitate metric

learning. In Sec. 2.2, we briefly review the existing metric learning-based works to

solving multi-shot person re-identification problem. Sec. 2.3 demonstrates the de-

tails of our proposed novel learning constraint, reference constraint, and three optimal

transport learning-based schemes are designed to automatically generate different ref-

erence constraints. A ridge-regression based metric learning method with closed-form

solution is proposed to utilize the generated reference constraint for metric learning.

A theoretical analysis of the generalization ability of our proposed reference-based

metric learning method is presented in Sec. 2.4. Extensive experiments are shown in

Sec. 2.5 and discussions are given in Sec. 2.6.

• Chapter 3 presents a novel online local metric adaptation methods by using only one

positive for learning to tackle the special challenge on the online testing stage of person

re-identification, that only one positive sample is given for visual matching. Some ex-

isting solution for online learning of person re-identification and related researches are

introduced in Sec. 3.2. Then Sec. 3.3 presents the proposed novel online metric adap-

tation algorithm by using only one positive and unlabeled negative samples. Three
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theoretical sound justifications of the proposed method are demonstrated in Sec. 3.4,

including both the asymptotic and practical scenarios. Sec. 3.5 presents various exper-

iments to verify the effectiveness and efficiency of the proposed method. The chapter

concludes in Sec. 3.6.

• Chapter 4 describes a novel unsupervised joint multi-metric learning methods from un-

labeled samples for online local adaptation. Instead of performing individual learning

for each sample as in Chapter 3, the visual similarity relationship of unlabeled samples

are utilized for joint learning. Therefore, a novel sharing-based multi-metric learning

algorithm is introduced in Sec. 4.3. Some justifications of the proposed method and

comparisons with the related works are presented in Sec. 4.3.2. Sec. 4.5 shows ex-

tensive experimental results to support the proposed method. Finally, conclusions and

discussions are made in Sec. 4.6.

• Chapter 5 presents a novel two-stage hierarchical local metric learning method for bi-

directional local discriminant enhancement of the given samples consisting of both

labeled and unlabeled samples. In Sec. 5.2, some related works about online re-

ranking of visual matching and the state-of-the-art methods are introduced. Our pro-

posed method is presented in Sec. 5.3. Extensive experimental results of our proposed

method are shown in Sec. 5.4 and conclusions are made in Sec. 5.5.

• Chapter 6 summarizes the dissertation by four typical small-size sample learning prob-

lems, i.e., global metric learning from few positives, instance-level local metric adapta-

tion from one-shot positive, group-level local metric learning from unlabeled samples

and a hierarchical local metric learning scheme from both labeled and unlabeled sam-

ples.
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1.4. Contribution

Inspired by the insufficient existing solutions and inherent challenges to the different person

re-identification problems in visual matching, this dissertation proposes various metric learning

methods based on small-size samples, including few-shot positives, only one positive, and unla-

beled samples, etc. As illustrated, all these small-size sample settings are the critical issues that

must be addressed to facilitate the learning of visual matching as well as make the applications

of visual matching in the intelligent video surveillance better. To summarize, the following

contributions have been made in the dissertation:

• A novel learning constraint called reference constraint is proposed to facilitate the poor

and difficult metric learning solution caused by the large-scale and imbalanced con-

straints used before. Our proposed reference constraint aims to associate the samples

from the same class to one or multiple By utilizing our proposed reference constraint,

a ridge-regression based global metric learning from few positives and no negatives is

proposed to learn a discriminative metric. A closed-form solution can be obtained for

our metric learning objective so that the learning is not only effective and also efficient

compared with the related metric learning approaches [52, 51, 112].

• In order to address the two critical issues of the proposed global metric learning work,

including the failure on one-shot positive scenario which is an extremely challenging

small-size sample setting and the failure on handling the hard negative distractors, a

novel online instance-specific local metric learning is proposed by using only one pos-

itive but a large number of negatives for learning. Our proposed online local metric

adaptation algorithm can be applied to any offline learned baselines on any features,

and an efficient optimization solution is proposed to our method which requires very
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trivial online learning cost. Three theoretical sound justifications guarantee the im-

provement of our method under both the asymptotic scenario and practical learning

scenario.

• A novel online joint multi-metric learning algorithm is designed via learning from

unlabeled samples. By considering the given matching samples as an unlabeled batch-

shot query set, the intrinsic visual similarity sharing relationships among the sam-

ples can be utilized by mining different sharing-subsets. For each sharing-subset, the

samples share the same visual similarity relationship are grouped from which a joint

Mahalanobis metric is learned to jointly adapt the local distribution of all the subset

samples. Compared with our instance-specific local metric adaptation work, our joint

multi-metric learning algorithm is not only more effective for matching performance

improvement but also has lower online learning cost.

• A novel bidirectional local discriminant enhancement from the combination of few-

shot labeled and unlabeled samples is proposed to perform a two-stage hierarchical

local metric adaptation for both the probe and gallery samples in visual matching.

Unlike the previous method which only focus on the local discriminant enhancement

of the given matching probes, the local discriminant of the gallery samples is also en-

hanced by our method so that the “hard” gallery distractors which are indistinguishable

will be well tackled by our method.

An interesting note is that for our four proposed works, although they rely on different

approaches to learn a discriminative matching metric to facilitate the severe small-size sample

problem in visual matching, actually they have strong research connection to each other. The

Chapter 3, Chapter 4 and Chapter 5 can be readily implemented on Chapter 2 by using it as
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the baseline model. Chapter 4 aims to address the intrinsic issue in Chapter 3 by learning from

sharing, and Chapter 5 focuses on how to improve the performance of Chapter 3 and Chapter 4

by a bi-directional local discriminant enhancement strategy.
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CHAPTER 2

Learning From Few-Shot Positives: Global Metric Learning From

Reference Constraint

2.1. Introduction

In this chapter, we propose a novel algorithm to solve the multi-shot person re-identification

(MsP-Rid) [95, 29, 109, 79] problem in computer vision area. One common solution to MsP-

Rid is to treat the multiple images as a sequence of consecutive frames which prefers to utilize

the temporal information or motion to extract more sophisticated features for identification. In

practice, the motion information may not be discriminative nor reliable enough for MsP-Rid.

Firstly, the dynamic background and temporal misalignment of the image sequences impede

the reliable motion pattern estimation [57] (Fig. 2.1(a)). Secondly, motion patterns may not be

discriminative enough for identification since different persons may walk in the same walking

pattern [95] (Fig. 2.1(d) and (e)). Because MsP-Rid is a non-contextual long-term identification

problem, the same person may exhibit different walking behaviors at different times. As shown

in Fig. 2.1(b) and (c), a person is walking with luggage captured by one camera. At a differ-

ent time, the same person is viewed by another camera but without the luggage. Such large

intra-class variation in motion and dynamics across different camera-views along a long time

duration is very difficult to handle. As a result, the performance of this approach is still far from

satisfactory even additional motion/dynamics features are utilized.
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Figure 2.1. (a) The background occlusion completely conceals the motion in-
formation on the legs; (b) & (c) Even for the same person, the walking behavior
can be very different; (d) & (e) For different persons, they may share very similar
walking patterns.

Another approach [41, 49] treats the multiple images as separate samples, paying more at-

tention to the variations in their visual appearances. Efforts have been made to design specific

appearance features [51, 104, 57], but there is still room for performance improvement. Recent

methods have been focused on learning discriminative visual metrics to facilitate identification.

Many such methods [51, 122, 95, 52] learn a global Mahalanobis-like distance metric that re-

duces the intra-class variation and enlarges the inter-class variation. In practice, there are several

difficulties to be overcome. Firstly, these methods use pair-wise [52] or triple-wise [122] data

similarity and dissimilarity constraints. The scale order of such constraints is quadraticO(n2) or

cubic O(n3) to the number of data points n. As a result, these constraints can be enormous, and

it is computationally demanding to obtain optimal solutions that satisfy all these constraints.

When adopting computationally-feasible but sub-optimal solutions, their performances suffer

significantly. In addition, although having more samples sounds appealing, not all of them are
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Figure 2.2. The proposed reference constraint correlates the original indis-
criminative same class data to the common discriminative reference points (note:
there can be multiple reference points to handle the multiple-mode distribution
of same class data).

actually necessary or helpful for learning. The computational complexity induced by the redun-

dant samples will largely slow down the optimization process in learning, and a small portion of

“adverse” inputs will significantly jeopardize the learning quality [76]. Moreover, in practice,

the positive and negative samples are significantly imbalanced. As the learning can be largely

dominated by the negative pairs [52], it leads to unstable and non-discriminative learning re-

sults.

To overcome these difficulties, in this chapter, we propose a novel type of similarity con-

straints which assigns given sample points to a set of pre-determined points with explicit mean-

ings, as shown in Fig. 2.2. We call the pre-determined points references, and the constraints

between the original samples and the references reference constraints. Such reference points

are automatically generated based on different criteria. Several optimal transport-based schemes

for determining the reference points and assignments are proposed and studied. The proposed
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reference constraints can be readily used for a regressive metric learning model [18, 71] to learn

a discriminative metric with a closed-form solution.

Our contributions are three-fold. (1) In contrast to the existing methods that use a O(n2)

or O(n3) number of constraints, our method only uses a linear O(n) number of reference con-

straints, which is much easier to deal with. (2) The proposed reference constraints can be

readily used for a general regression-based string-to-string mapping framework [18] for metric

learning, the closed-form solution and its general non-linear version can be easily obtained. (3)

Compared with the state-of-the-art MsP-Rid methods based on appearance features, our method

significantly outperforms them by a large margin in terms of both identification accuracy and

running speed. Besides, even no temporal information is used, our model still achieves com-

parable even better performance against the ones using both appearance and temporal features.

Extensive experiments have demonstrated the superiority of our method on several multi-image

benchmarks including the CAVIAR [15], the PRID 2011 [35], the iLIDS-VID [95] and the

Market-1501 [119] datasets.

The rest of this chapter is organized as follows: Sec. 2.2 briefly reviews the existing met-

ric learning-based works to solving multi-shot person re-identification problem. In Sec. 2.3,

we demonstrates our proposed novel learning constraint, reference constraint, and three opti-

mal transport learning-based schemes are designed to automatically generate different reference

constraints. A ridge-regression based metric learning method with closed-form solution is pro-

posed to utilize the generated reference constraint for metric learning. A theoretical analysis of

the generalization ability of our proposed reference-based metric learning method is presented

in Sec. 2.4. Extensive experiments are shown in Sec. 2.5 and discussions are given in Sec. 2.6.
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2.2. Previous Work

In this section, we would like to give a brief overview of P-Rid problem, especially for the

multiple-image based ones. For a though survey, feel free to check [7, 90].

Person re-identification problem is closely related to various research topics such as track-

ing, identification, etc. Firstly, re-identification approaches could be categorized into three

groups based on a classical categorization system in [79]: short-term, contextual long-term and

non-contextual long-term re-identification. The so-called short-term re-identification is known

as the famous tracking problem that is to associate the target frame by frame based on appear-

ance features. Contextual long-term re-identification aims to differentiate the target from the

other extractors by learning online models based on the context of a single static camera in the

scene. Since the identification is only restricted in the same camera, the contextual information

is available to give aid to identify the same target. The last problem, non-contextual long-term

re-identification, is exactly the recent person re-identification problem that the identification is

applied across arbitrary cameras and viewpoints. The camera topology is unknown and the

photo capturing time can vary along a pretty long-term time span. On the other hand, based

on the data type to deal with, existing person re-identification works can be categorized into

four different scenarios: single image, multiple images without motion information, multiple

temporally-aligned video fragments and the whole unaligned video. For each type of algorithm,

either specific appearance/motion feature is designed or learned for view-point or illuminant in-

variant representation, or learning robust metrics or sub-spaces for matching across-cameras. In

the following overview, we are only interested in the last three scenarios.
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A novel multi-task maximally collapsing metric learning (MtMCML) model was proposed

by Ma et al. [62] for multi-image re-identification in camera networks. Simonnet et al. [79] uti-

lized the widely-used Dynamic Time Warping (DTW) algorithm in action recognition to solve

the video-based person re-identification problem. Wang et al. [95] proposed a walking cycle

extraction method to further divide the video into multiple aligned walking sequences. Then

a sequence fragment selection and ranking framework are adopted for person matching. Liu

et al. [57] built a new spatio-temporal appearance representation for video-based person re-

identification in order to handle the temporal alignment problem. Karanam et al. [41] aimed

to learn a dictionary that is capable of discriminatively and sparsely encoding features repre-

senting different people. You et al. [109] introduced a top-push distance learning model (TDL)

to select the most discriminative video feature for robust matching. Li et al. [49] presented

a subspace learning algorithm maximizing the Fisher criterion for discriminative feature ex-

traction. Recently, a large-scale video benchmark dataset for person re-identification, named

Motion Analysis and Re-identification Set (MARS), is proposed by Zheng et al. [118] which

makes deep neural network methods available to solve this problem. McLaughlin et al. [66]

proposed a novel recurrent neural network (RNN) to tackle video-based person re-identification

problem. Both color and optical flow map are used as input for network training to provide both

the appearance and motion information.

2.3. Our Solution: Learning from Reference Constraints

2.3.1. Problem Setup

In this work, we aim to learn a discriminative positive semi-definite (PSD) Mahalanobis met-

ric M = LLT by utilizing the proposed reference constraints. Given a labeled dataset S =
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{(xi, li)}ni=1, we construct a new learning set Sr = {(xi, ri)}ni=1, where xi is the data point,

li ∈ L = {1, 2, 3, ..., c} is its label and ri is the associated reference point to xi determined by its

label li (details see Sec. 2.3.2). For the sake of convenience, let’s denote X = (x1, x2, ..., xn)T

and R = (r1, r2, ..., rn)T . It’s worth mentioning that the reference point set R can be drawn

from another distribution D′ so that R ⊆ Rd′ . If d′ � d, the learned Mahalanobis metric M

automatically perform the dimension reduction on the original samples.

2.3.2. Automatic Reference Constraint Generation

In this section, we will show how to automatically generate the reference constraints under a

general optimal transport (OT) framework [91]. The motivation of regressing the original given

data X to a reference set R is the poor discriminative power of X can be enhanced by the “good

quality” reference set R, then the coupling between X and R can be modeled as an optimal

transport procedure [19, 70, 21]:

(2.1) arg min
T

〈T ,C〉F + G(T )

where T is the optimal transformation, C is the cost matrix between X and R. The first transport

cost term is the Frobenius dot product between T and C, and G(T ) is a regularization term to

constrain T . In the following, three different schemes are proposed to automatically determine

R and find optimal T based on different C and G(T ).

2.3.2.1. R from Camera Viewpoint Alignment. The major challenge for P-Rid is rendered

by the large appearance variation due to the camera viewpoint changes. Identifying the same
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Figure 2.3. (a) is the result of an unsupervised OT method [21]; (b) is a semi-
supervised OT method [19]; (c) is our proposed supervised OT method with
cross-bin cost function Eqn. 2.2. Different colors (Red, Blue, Purple) represent
different classes, and different shapes mean different distributions.

person across a significant viewpoint change is difficult because of the visually spatial misalign-

ment [76]. An intuitive idea to generate R is to directly re-align the data from different camera

viewpoints.

The alignment can be achieved via a supervised optimal transport learning. Traditionally,

OT methods are un-supervised since no class label information is used. Hence the correlations

between two distributions are completely unconstrained (Fig. 2.3(a)) which will be problematic

in the P-Rid problem, where the identity label is given for each sample. In [19], a novel semi-

supervised OT method is proposed to utilize the label of source data while the labeling for target

distribution is unknown. Under this condition, although one target sample is not assigned to the

source samples from different classes, the mis-matching between different classes still exists
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(Fig. 2.3(b)). In contrast to these methods, we propose a novel cross-bin cost function CA to

fulfill the fully supervised learning requirement of P-Rid:

(2.2) CA(i, j) = ‖xAi − xBj ‖2I(lAi = lBj ) +∞ · I(lAi 6= lBj )

where I(·) is a binary indicator, xAi is the ith sample with class label lAi from camera space A,

so as the xBj . Therefore we formulate the alignment between two camera viewpoint spaces via

an optimal transport TA as Eqn. 2.3:

(2.3)

arg min
TA

〈TA,CA〉F +
1

λ

∑
i,j

TA(i, j) log TA(i, j)

+ η
∑
j

∑
c

‖TA(lAi = c, j)‖pq

where the λ and η are the regularization parameters. The second regularization aims to compute

the entropy of the transport TA. The third sparsity regularization is to group the samples from

the same class together that TA(lAi = c, j) corresponds to the jth column of TA where the label

is c. The desired optimal transport TA is a matrix with the same size as CA ∈ R|A|×|B|.

By utilizing the proposed CA, the transport cost term will be optimal only if the transports

are restricted within the same class samples. The mis-matching occurred in the existing methods

( [19, 70, 21]) as illustrated in Fig. 2.3(a) and (b) can be avoided, and thus a clean transport flow

can be achieved (Fig. 2.3(c)). The objective Eqn. 2.3 can be efficiently solved via the alterna-

tion between the Sinkhorn-Knopp algorithm[21] and the Majoration-Minimization strategy[19].

The parameters of lq-norm in the third term are p = 1
2

and q = 1. Once the optimal transport

TA is learned, the corresponded reference constraint set is R = XTA
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Figure 2.4. Moderate positive mining for a local unimodal data distribution.

2.3.2.2. R from Class-based Discriminative Space. An efficient and straightforward idea is

to explicitly determine the R in a class-based discriminative space (CDS). Let ui ∈ R|L| be a

unit vector (1 ≤ i ≤ |L|) in a |L|-dimensional feature space, R = {ui}|L|i=1 contains all such ui.

The optimal transport from X to R can be modeled as optimizing:

(2.4) arg min
TC

〈TC ,CC〉F

with CC(xi, uj) = 0 · I(#li = j) +∞ · I(#li 6= j) that #li is the label index. Obviously, a

naive optimal solution to TC is

(2.5) TC (xi, li) = u#li

that all the samples in X from the same class #li will be transported into one single point u#li in

R to guarantee a zero within-class distance, and large distances between the collapsed points can

be explicitly guaranteed to avoid mixing classes after transformation. If the class number |L|

is much smaller than the dimensionality d of X, TC is equivalent to learn a lower-dimensional

embedding where the samples drawn from different classes become much more discriminative.
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Figure 2.5. The comparison of three related algorithms: MLCC [30],
DNSL [112] and our CDS method.

Optimality of R from CDS: The similar idea of our CDS is shared by many existing works

like the well-known metric learning algorithm MLCC [30] and a recently state-of-the-art P-Rid

algorithm DNSL [112]. As illustrated by Fig. 2.5, all the three approaches will collapse the

same class samples into one single point in the projected space, so as to enforce the within-class

distance to be zero. However, three methods have completely different strategies to handle

the between-class distance. Let’s take the Fisher discriminant criterion J (L) =
LTSbL
LTSwL

into

consideration. The larger the J (L) is, the more discriminative the learned projection L is. All

of MLCC, DNSL and CDS will give us zero within-class scatter LTSwL = 0, but MLCC simply

omits the between-class scatter part, DNSL only requires LTSbL > 0. Our CDS will strictly

require LTSbL = c to a constant margin.

2.3.2.3. R from Local Moderate Positive Mining. Another approach to obtain good quality

R is from the intrinsic distribution of X directly which is inspired by the SMOTE algorithm
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for imbalanced learning [12]. We propose to mine a set of “moderate” representations from X

which are conceptually not too close to the hard negatives around the classification boundary,

but also convey enough discriminative information.

A moderate positive mining (MPM) algorithm is proposed to mine the references R in a

local manner. Denote by Xc = {xci} for a subset containing all the samples from class c, and by

Xc̄ = {xc̄i} for a subset including different class samples. For each xci in Xc, its corresponded

“hardest” negatives {xc̄i,h}
|Xc|
i=1 are obtained from Xc̄. The pair (xc, xc̄h) = maxi d(xci , x

c̄
i,h) with

the largest distance to its “hardest” negative is retrieved. Then another sample xc̄e that is farthest

away from xc is retrieved from the obtained hardest negative set {xc̄i,h}
|Xc|
i=1 which is the “easiest-

hardest” negative for xc. Finally, the reference points for all Xc is the synthetic point:

(2.6) rc =
1

2
(1 +

dc2h
dc2e

)xc +
1

2
(1− dc2h

dc2e
)xc̄e

where the weighting parameter dc2e = d(xc, xc̄e) and dc2h = d(xc, xc̄h)
1. Various conditions

of dc2h and dc2e are shown in Fig. 2.4 which indicates our MPM algorithm can always mine

the moderate representations no matter how the local data distribution is. Finally, by solving

a similar Eqn. 2.4 with CM(xi, r
j) = ‖xi − rj‖2

2 · I(#li = j) +∞ · I(#li 6= j), the optimal

transport to associate X to R is:

(2.7) TM(xi, li) = r#li

Since real-world data generally exhibit multiple-mode distribution due to various compli-

cated conditions, in order to eliminate the influence of the high-density modes, firstly we adopt

Mean-shift clustering [17] to Xc to divide Xc into several sub-class clusters, thus each cluster

1It is obvious that dc2h ≤ dc2e is alway true.
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bears a unimodal distribution. Then the proposed MPM algorithm is further performed to these

unimodal clusters. Therefore even for the same class data Xc, they may be assigned different

moderate points as references.

2.3.3. Metric Learning from R via Regression

Once the reference set R is determined, we aim to learn a positive semi-definite (PSD) Maha-

lanobis metric M = LLT by solving the following regularized regression problem [18, 71]:

(2.8) L∗ = min
L

1

n
‖XL− R‖2

F + λ‖L‖2
F

where the λ is a weighting parameter to balance the two terms. The closed-form solution to

objective Eqn. 2.8 can be derived.

Theorem 1. The optimal solution of objective Eqn. 2.8 has a closed form, as shown in the

following two equivalent solutions:

(2.9) L = (XTX + λnI)−1XTR

(2.10) L = XT (XXT + λnI)−1R

PROOF. Compute the derivative of Eqn. 2.8:

(2.11)
∂f(L,X,R)

∂L
= 2

(
1

n
XTX + λI

)
L− 2

n
XTR
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By setting this derivative to zero we can obtain:

(2.12) L = (XTX + λnI)−1XTR

�

Theorem 2. The optimal solutions Eqn. 2.9 and Eqn. 2.10 of objective Eqn. 2.8 are exactly

equivalent.

PROOF. For Eqn. 2.9, we perform Taylor expansion to the (XTX + λnI)−1XT part:

(2.13)

(XTX + λnI)−1XT =
1

λn
(I +

1

λn
XTX)−1XT

=
1

λn

∞∑
1

(−1)n(
1

λn
)n(XTX)nXT

=
XT

λn

∞∑
1

(−1)n(
1

λn
)n(XXT )n−1XXT

=
XT

λn

∞∑
1

(−1)n(
1

λn
)n(XXT )n

=
XT

λn
(I +

1

λn
XXT )−1

= XT (XXT + λnI)−1

Therefore Eqn. 2.13 proves that Eqn. 2.9 and Eqn. 2.10 are exactly the same solution for the

proposed objective Eqn. 2.8. �

From Eqn. 2.9, we obtain the Mahalanobis metric M:

(2.14) M = LLT = (XTX + λnI)−1XTRRTX(XTX + λnI)−1
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As we can see from Eqn. 2.14, the bottleneck to compute the metric kernel M is the inversion

of a d× d matrix, where d is the data dimension. In the case of a large d, appropriate dimension

reduction techniques are needed before learning.

2.3.4. Non-Linear Extension by Kernelization

The linear model in Sec. 2.3.3 may not be powerful enough to handle complicated metrics, but

we can extend it to a nonlinear form via kernelization.

Assume a kernel function isK(x, x′) = φ(x)Tφ(x′) where the φ(x) is a nonlinear projection

function. For the learning set X, we are able to compute the kernel distance matrix KX ∈

Rn×n, where the element kij is equal to K(xi, xj) = φ(xi)
Tφ(xj). Rewrite KX = φ(X)Tφ(X),

where φ(X) = (φ(x1), φ(x2), ..., φ(xn))T . So the kernelized version of L is defined as LK =

φ(X)T (KX + λnI)−1R, which can be easily obtained by kernelizing Eqn. 2.10. Therefore the

kernelized Mahalanobis metric MK is written as:

(2.15) MK = φ(X)T (KX + λnI)−1RRT (KX + λnI)−1φ(X)

The squared Mahalanobis distance between x and x′ can be easily computed by:

d2
MK

(x, x′) =

φ(x)TMKφ(x) + φ(x′)TMKφ(x′)− 2φ(x)TMKφ(x′)

that each term can be written as:

φ(x)TMKφ(x) =

KX(x)T (KX + λnI)−1RRT (KX + λnI)−1KX(x)
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where KX(x) = (K(x, x1), K(x, x2), ..., K(x, xn))T . For the kernelized version MK , we need

to compute the inversion of a n× n matrix where n is the number of samples.

2.4. Generalization Ability Analysis

For our objective Eqn. 2.8, the empirical error risk is E (L,Sr) = 1
n
‖XL − R‖2

F , which is

to measure how close the projected samples XL are to the reference points R after learning.

We still care about how large the true error risk E (L,DR) = E(xi,ri)∼DR‖xTL− rT‖2
2 is for the

whole data distribution DR. Here, we prove that once a low empirical error E (L,Sr) can be

obtained, with a very high probability, a low true error E (L,DR) is bounded [8].

Theorem 3. Assume ‖r‖2 ≤ Br for any r ∈ R, and ‖x‖2 ≤ Bx for any x ∈ X . With

probability 1 − δ, for any matrix L which is the optimal solution of Eqn.2.8 with stability β =

8B2
xB

2
r

λn

(
1 +

Bx√
λ

)2

, we have:

(2.16) ‖E(L,DR)− E(L,Sr)‖ ≤

1 +

(
2n+

λn

8B2
x

)√
ln 1

δ

2n

 β

As shown by Theorem. 3, with a convergence rate O(1/
√
n), the difference between empir-

ical error risk and true error risk converges to zero. The proof of Theorem. 3 can be found in

our supplementary materials. More specifically, if a zero-empirical error can be obtained during

training E(L,Sr) ≈ 0, the true error risk over the whole unknown distribution will approach to

0 with convergence rate O(1/
√
n).
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2.5. Experiment Results

2.5.1. Experimental Setup

Dataset. To evaluate our proposed method, we conduct thorough experiments on four widely-

used multi-shot benchmarks: the CAVIAR [15], the PRID 2011 [35], the iLIDS-VID [95] and

the Market-1501 [119] datasets. The CAVIAR dataset contains 1220 images of 72 individuals

from two non-overlapped cameras in a shopping mall. For the 72 individuals, 50 of them

appear in both camera views and the remaining 22 persons only appear in one camera view.

Each identity has 10 to 20 images and the resolutions vary from 17× 39 to 72× 144. The PRID

2011 dataset consists of video pairs recorded from two static surveillance cameras. There are

385 persons recorded in camera view A, as well as 749 persons in camera view B. Among all

the persons, 200 persons are recorded in both camera views. The videos in PRID 2011 have

5 to 675 image frames, with an average of 100 for each. The iLIDS-VID dataset is generated

from images captured in a busy airport arrival hall so the videos suffer severe occlusions caused

by people and luggages. 600 videos of 300 randomly sampled people are recorded so that each

person has one pair of videos from two different non-overlapped camera views. The video

in iLIDS-VID is comprised of 23 to 192 image frames, with an average of 73 for each. The

Market-1501 [119] is the latest and biggest benchmark dataset to date which contains 32668

bboxes of 1501 identities. Each person is recorded by six cameras at most, and two at least.

Feature. In all the experiments, only the image-level appearance feature descriptor is uti-

lized. The high-dimensional feature LOMO [51] is adopted as the visual feature representation.

Since it is not practical to directly use such a high dimensional feature in metric learning, we
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employ principal component analysis (PCA) to reduce the feature dimension to a reasonable

scale, 2000 dimensions.

Setting. To conduct fair comparisons, we follow the same experimental protocols as in [103,

13, 95, 109]. For the 50 persons who are captured by both cameras in CAVIAR, we randomly

select 14 of them for training 2 and the remaining 36 persons are used for testing. As for the

PRID 2011, we only utilize the 200 persons who appear in both cameras. For iLIDS-VID, the

300 persons are randomly divided into 150 for training and the other 150 for testing, so that

there are p = 36, p = 100 and p = 150 individuals in the test sets of CAVIAR, PRID 2011

and iLIDS-VID respectively. As for the Market-1501 dataset, the pre-determined 12936 images

from 750 identities are used for training, and the other 19732 images from disjointed identity set

are for testing. In order to get statistically reliable results, 10 times random-splitting procedures

are repeated to report the average performance. The multi-shot evaluation is adopted to report

the Cumulated Matching Characteristic (CMC) results. The weighting parameter λ in Eqn. 2.8

is chosen as λ = 0.01 for all the experiments, which empirically produces both small training

errors and stable solutions.

State-of-the-art. For the comparison experiments, we select three state-of-the-art metric

learners: MLAPG [52], XQDA [51], DNSL [112] whose code is publicly available and the

feature descriptor can be replaced. We compare our method with the above approaches under

the completely same experimental setting and using the same LOMO feature. In addition, the

results reported in the most recent papers are also presented for a thorough comparison.

2Training set of CAVIAR also includes the other 22 single-camera-view persons, so totally 36 persons are used for
training)
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Method Ave Time Method Ave Time
TC-L 0.03 TC-K 0.17
TM -L 0.37 TM -K 0.54
TA-L 4.86 TA-K 4.14

Table 2.1. Comparison of training time (seconds) on CAVIAR. -L meas linear
model, and -K means kernelized model.

2.5.2. The Learning Efficiency Analysis

In order to validate the learning efficiency of the used reference-driven regression scheme, a

running cost experiment is firstly conducted on a small-size dataset, CAVIAR. Different refer-

ence generation schemes are tested for both linear and kernelized learning scenarios. Table. 2.1

shows the average training time of 10 random trials on CAVIAR. All the experiments are con-

ducted on the same desktop PC with an Intel i7-2600 @3.40GHz CPU and 8G memory.

As we analyzed in Sec. 2.3.3, the computational complexity of learning the metric M is

quadratic to the training sample number n or data dimension d. Table. 2.2 shows the comparison

results of training time with other state-of-the-art learners on the large-size benchmark, Market-

1501. All the experiments are conducted on a remote server with an Intel i7-5930K @3.50GHz

CPU and 32G memory. 3 Compared with the other metric learners, our models are the most

efficient except the TA-based ones which are a little slower than the kLFDA. This is because the

optimization procedure requires computing the cost matrix C which is pretty time-consuming

for a large number of data. And it is worth mentioning that the DNSL [112] also has a closed-

form solution, but it requires many times of SVD operation for the kernelized data matrix, which

is indeed time-consuming.

3The overall training time of our method includes the reference constraint generation, data kernelization and metric
learning steps.
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Method XQDA MLAPG kLFDA DNSL TC-L

Training Time 3233.8 2732.8 995.2 3149.7 1.32

Method TM -L TA-L TC-K TM -K TA-K

Training Time 290.08 1194.2 166.29 446.78 1319.2

Table 2.2. Comparison of training time (seconds) on Market-1501.

Method
1

n
‖XL− R‖2

F Method
1

n
‖XL− R‖2

F

TC-L 0.189 TC-K 1.1e-04
TM -L 0.261 TM -K 1.4e-04
TA-L 0.256 TA-K 1.3e-04

Table 2.3. The average empirical training error on CAVIAR.

2.5.3. Empirical Training Error Verification

Theorem. 3 proves that with a sufficient number of samples, a low empirical error E(L,Sr)

guarantees a low true risk E(L,Dr) with high probability. In the experiments, we study how

large the empirical training error 1
n
‖XL − R‖2

F actually is after learning. Taking the CAVIAR

dataset as an example, we quantitatively verify that a low empirical training error can be ob-

tained by our proposed algorithm. For a fair comparison, the training data are firstly normalized

by {x̂i = xi/‖xi‖2}ni=1 to get a constant-1 l2-norm. The average training error of 10 random

trials on the CAVIAR dataset under different algorithm settings is shown in Table. 2.3. The

non-linear model has a much smaller training error than the linear ones since the non-linearity

introduced by kernelization is able to better fit the high-dimensional feature space. The visual-

ization result of affinity matrix refinement is shown in our supplementary material.
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Input Method PRID 2011 iLIDS-VID From
R=1 R=5 R=10 R=20 R=1 R=5 R=10 R=20

Image

TDL 30.20 59.10 74.00 88.40 9.81 27.52 46.10 62.19 [109]
MLAPG(lomo) 45.60 58.20 63.80 69.80 30.54 45.58 53.02 60.78 [52]
XQDA(lomo) 47.50 60.20 66.20 72.00 30.66 44.48 51.84 59.53 [51]
DNSL(lomo) 51.00 63.40 68.60 74.10 24.44 34.11 39.68 46.85 [112]

DVDL 40.60 69.70 77.80 85.60 25.90 48.20 57.30 68.90 [41]
Salience 25.80 43.60 52.60 62.00 10.20 24.80 35.50 52.90 [116]
KISSME 28.54 59.78 72.13 83.26 10.67 28.33 39.80 57.00 [42]

LFDA 26.40 56.07 69.89 81.12 7.80 23.93 36.47 50.80 [69]
LADF 8.20 20.45 29.89 42.25 4.33 14.00 21.20 32.13 [50]
LDA 27.64 58.09 69.66 82.47 10.27 27.40 39.80 55.27 [26]

Video

SMP 80.90 95.60 98.80 99.40 41.70 66.30 74.10 80.70 [59]
DGM+IDE 56.40 81.30 88.00 96.40 36.20 62.80 73.60 82.70 [107]
CNN+KISS 69.90 90.60 - 98.20 48.80 75.60 - 92.60 [118]

TDL 56.74 80.00 87.64 93.59 56.33 87.60 95.60 98.27 [109]
Co&LBP+DVR 37.60 63.90 75.30 88.30 34.50 56.70 67.50 77.50 [95]

KISSME 34.38 61.68 72.13 81.01 36.53 67.80 78.80 87.07 [42]
LFDA 43.70 72.80 81.69 90.89 32.93 68.47 82.20 92.60 [69]
LADF 47.30 75.50 82.69 91.12 39.00 76.80 89.00 96.80 [50]
LDA 15.84 41.46 55.51 70.67 42.06 79.13 89.40 94.47 [26]

Linear
TC-L 70.10 79.10 83.30 87.10 44.67 57.33 63.33 68.67 Ours
TM -L 64.80 77.00 80.20 84.30 38.67 56.67 61.67 70.67 Ours
TA-L 70.40 80.90 85.60 88.40 42.67 58.67 63.33 72.07 Ours

Kernel
TC-K 66.90 77.10 80.80 84.60 37.33 47.73 54.53 60.67 Ours
TM -K 65.10 77.30 78.70 85.30 39.33 56.00 59.33 65.74 Ours
TA-K 70.90 78.70 82.70 87.30 42.00 52.67 60.03 66.67 Ours

Table 2.4. Comparison results on PRID 2011 and iLIDS-VID under the multi-
shot and video-based matching settings.

2.5.4. Extensive Comparisons on Benchmarks

Due to the page limitation, the full CMC curves of comparison results are shown in the supple-

mentary material.

Experiments on CAVIAR: Although the CAVIAR is a multi-shot dataset, most existing

methods use it under the single-shot setting [13, 58, 103]. Due to the success of SsP-Rid on



47

Method R@1 R@5 R@10 R@20
MLAPG(lomo)[52] 50.00 71.85 84.25 93.11
XQDA(lomo)[51] 51.18 75.59 90.33 96.86
DNSL(lomo)[112] 53.54 77.17 86.61 94.69

SSCDL-S[58] 49.10 80.20 93.50 97.90
MLAPG(lomo)-S[52] 40.60 71.70 83.30 95.70
XQDA(lomo)-S[51] 42.20 69.90 82.50 95.50
DNSL(lomo)-S[112] 47.60 75.66 87.37 96.20

MFA-χ2-S[103] 40.20 70.20 83.90 95.10
EPKFM-S[13] 40.10 65.60 78.00 90.50

PCCA-χ2
RBF -S[103] 33.20 65.90 81.90 95.20

LFDA-S[69] 32.00 56.30 70.70 87.40
LADF-S[50] 30.30 62.80 78.00 92.60
TC-L 65.25 86.49 91.89 96.33
TM -L 70.90 88.73 93.24 98.36
TA-L 68.73 87.84 94.21 97.88
TC-K 66.80 88.61 94.02 97.30
TM -K 73.36 88.32 93.03 97.95
TA-K 61.02 84.36 92.47 96.72

Table 2.5. Comparison results on CAVIAR under the multi-shot matching set-
ting. ’-S’ means the single-shot result.

CAVIAR, we would like to also report the state-of-the-art single-shot results, including SS-

CDL [58], MFA-χ2 [103], EPKFM [13], PCCA-χ2
RBF [103], LADF [50] and LFDA [69]. It

can be observed from Table. 2.5 that the proposed method outperforms the existing state-of-

the-art algorithms with a significant improvement in both multi-shot and single-shot settings.

For our models, the kernelized cases are slightly better than the linear cases except for the TA.

The TM -K model performs the best, with a 37% relative improvement compared to the best

player DNSL on Rank-1 accuracy. This is because the complex multi-modal data distribution

of CAVIAR can be well captured by the TM reference constraints.

Experiments on PRID 2011: The recent state-of-the-art results on PRID 2011 are shown in

Table. 2.4. As we can see, all of our proposed reference-based methods consistently outperform
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Method Sing-Q Multi-Q From
R@1 R@1

Baseline 35.84 44.36 [119]
MLAPG(lomo) 38.80 61.33 [52]
XQDA(lomo) 44.80 55.82 [51]
DNSL(lomo) 51.73 57.70 [112]

KISSME(lomo) 40.50 N/A [119]
MFA-χ2(lomo) 45.67 N/A [103]
kLFDA(lomo) 51.37 52.67 [103]

Hist-Loss 59.47 N/A [89]
TC-L 57.73 68.27 Ours
TM -L 54.67 64.53 Ours
TA-L 51.07 72.40 Ours
TC-K 63.20 73.87 Ours
TM -K 60.93 70.40 Ours
TA-K 56.03 68.93 Ours

Table 2.6. Comparison results on Market-1501.

the state-of-the-art multi-shot based methods with a large margin. For the most important Rank-

1 evaluation, the proposed TA-K model improves the performance with an impressive relative

39.0% improvement against the best player, DNSL. Although no temporal feature is used in our

models, we are still able to achieve comparable, even better performance against the state-of-

the-art video-based approaches which use both the temporal and appearance features together

for learning.

Experiments on iLIDS-VID: For the iLIDS-VID dataset, the methods tested on the PRID

2011 benchmark are also compared here. As shown in Table. 2.4, our models achieve a signif-

icant improvement on Rank-1 evaluation against the other multi-shot based approaches, whose

best Rank-1 performance is only 30.66%. Even compared to the video-based methods, our

models still achieve comparable performances on Rank-1 accuracy. For the Rank-20 accuracy

rate, the multi-shot based methods, including ours, can not compete against the video-based
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methods. Because a lot of images in the iLIDS-VID dataset suffer severe occlusion from the

background, which significantly deteriorates the appearance features, and thus degrades the

identification rate. Under video-based setting, such bad influence might have been alleviated by

considering the whole sequence as one probe/gallery.

Experiments on Market-1501: The comparison results on the Market-1501 benchmark are

presented in Table. 2.6. The baseline [119] uses the BoW-based features and l2-Norm distance.

Besides, the state-of-the-art results based on the same LOMO feature are also included here

for comparison (their detailed experimental settings might be slightly different). A recently

proposed deep embedding-based method, Hist-Loss [89] is also compared. As can be seen, no

matter under the single-shot or multi-shot scenarios, our methods outperform the others with a

large margin improvement. On the Rank-1 evaluation, the proposed TC-K model improves the

state-of-the-art from 59.47% to 63.20%.

2.6. Discussion

In this chapter, we propose a novel solution to the important yet challenging MsP-RID

problem. In contrast to the existing metric learning-based MsP-RID methods which rely on the

data similarity/dissimilarity constraints produced by both positive and negative samples, a novel

linear-scaled constraint, called reference constraint, is proposed which assigns the given sam-

ples to the pre-determined reference points. Three different optimal transport-based schemes

are proposed and studied to automatically generate the discriminative reference constraints. A

regression-based metric learning model with a closed-form solution can be adopted to learn



50

a discriminative distance metric from the proposed reference constraints efficiently and effec-

tively. Extensive experiments on the widely-used multi-shot benchmarks have clearly shown

that our proposed approach is superior to the state-of-the-art algorithms.

However, there still are two main issues remaining in learning a global metric from our

proposed reference constraints. The first one is that our proposed global learning method can not

handle the extremely challenging small-size sample setting, that only one positive is available

for each identity. Since the proposed reference constraint can not be constructed by using

only one positive. Although some other constraints, like contrastive constraint, can work under

such one-shot positive situation, only one positive constraint can be generated but hundreds of

thousands negative constraints can be obtained, thus the learning of visual matching is totally

dominated by the imbalanced constraints. Another critical issue is learning a single global

metric can not handle the hard negative distractors in visual matching which are around the

classification boundary. Since the learned single metric is not able to capture all the different

instance-specific characteristics for different samples. Therefore, the above two issues motivate

our work in Chapter 3.
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CHAPTER 3

Learning From One-Shot Positive: Efficient Online Local Metric

Adaptation From Negative Samples

3.1. Introduction

Recent attempts, including our work in Chapter 2, were based on learning a visual metric

to better capture the visual similarities [52, 51, 62, 122, 123], and reported encouraging results.

These methods typically attempt to train a faithful global metric offline, hoping to cover the

enormous visual appearance variations so as to directly use it online for all test probes. The

training data for such metric learning are generally sample pairs: a positive pair refers to two

images of the same identity, and a negative pair otherwise. These methods usually demand a

huge set of positive/negative training pairs to facilitate the learning. In practice, although it is

relatively easy to collect negative pairs, it is in general difficult to obtain many positive pairs

for a specific person. Therefore, the metrics learned from insufficient positive training data

are likely to be biased. In addition, most methods [52, 51, 123] aim to learn a positive semi-

definite (PSD) Mahalanobis metric, but it is computationally intensive to learn such a strictly

PSD metric, while ignoring the PSD constraint leads to unstable and noisy metrics [52].

In contrast to these methods, this chapter advocates a different paradigm: shifting part

of the metric learning to the online local metric adaptation. Specifically, for each online

probe at the testing time, our new approach learns a dedicated local metric with a nominal com-

putational cost. Combining a global metric with local metric adaptation achieves an adaptive
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Figure 3.1. The overall idea of our proposed online local metric adaptation al-
gorithm. Unlike existing methods that learn a single global metric for all probes,
we exploit negative samples to learn a dedicated local metric for each online
probe.

nonlinear metric. In our approach, its online learning is special, because there are no positive

training pairs available at all for the testing probe, as its identity is unknown.

An attractive property of our proposed method is that it only uses negative data from a

negative sample database (NDB) for adaptation learning. We call it OL-MANS for short of

Online Local Metric Adaptation via Negative Samples. For a given testing probe, a subset of

samples from NDB are selected to form informative negative pairs with this testing probe. These

utilized samples from NDB are visually similar to the probe, but are guaranteed to have different
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identities from the probe (at least with a very large probability). These negative samples provide

effective local discrimination for further constraining the local metric tuning, by pushing away

local false positives (shown in Fig. 3.1). For each testing probe, our method learns a strictly

PSD local metric efficiently, via solving a kernel SVM problem. Comparing to offline global

learning, the computational cost of the proposed online adaptation is negligible. Moreover, our

method is generally applicable to be used on top of any global metric.

Another significant property of our proposed OL-MANS is that it is justified and backed

up with a theoretical guarantee to improve the performance of the underlying global metric.

This chapter gives in-depth theoretical analysis to well justify the proposed method. We first

prove that this new method guarantees the reduction of classification error asymptotically when

there are an infinite number of training data. Then we pursue the best approximation of the

asymptotic case by using a finite number of training data, since we can prove that the learning

objective of the proposed local metric adaptation is equivalent to the optimal approximation of

the asymptotic case. In addition, we also provide consistency and sample complexity analysis to

guarantee the generalization ability of our proposed OL-MANS method. These theoretical anal-

yses indicate that the learned local metric is bound to improve the P-Rid performance. These

properties have been confirmed to be very effective and practical by our extensive experiments

and comparative studies on almost all the important P-Rid benchmarks (VIPeR, QMUL GRID,

CAVIAR, iLIDS, P-Rid 450S, CUHK Campus, CUHK03 and Market-1501).

The rest of this chapter is organized as follows: Section. 3.2 summarizes the previous works

on P-Rid and metric learning. We describe our proposed algorithm in Section. 3.3, and illustrate

its performance on many benchmark datasets in Section. 3.5. In Section. 3.4, we theoretically

analyze some important properties of our proposed algorithm.
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3.2. Previous Work

3.2.1. Person Re-identification

Global Learning in P-Rid: Existing metric learning-based P-Rid methods either learn a single

global metric or a local discrimination to facilitate identification. Zheng et al. [122] proposed

a relative distance comparison method (PRDC) to maximize the probability of a positive pair

to have a smaller distance than a negative pair. Hirzer et al. [36] relaxed the PSD constraint

to simplify the computation. Liao et al. [51] learned a discriminant subspace and a global

distance metric simultaneously for dimension reduction and optimal dimensionality. A logistic

metric learning called MLAPG was proposed by Liao et al. [52] for a global PSD metric via an

asymmetric sample weighting strategy.

Local Learning in P-Rid: Many methods are based on local learning strategies. Zhang

et al. [111] formulated the P-Rid problem as a local distance comparison problem to handle

the multi-modal distributions of the visual appearances. Li et al. [50] proposed the Locally-

Adaptive Decision Functions (LADF) which integrates a traditional distance metric with a local

decision rule. Pedagadi et al. [69] employed the Local Fisher Discriminant Analysis (LFDA)

which combines the fisher discriminant analysis (FDA) and Local Preserving Projections (LPP)

to exploit the local geometrical information of samples. Liong et al. [53] developed a regular-

ized local metric learning (RLML) method to combine global and local metrics, so as to utilize

the local data distribution to alleviate over-fitting. Zhang et al. [114] proposed LSSCDL to learn

a specific SVM classifier for each training sample, then the weight parameters of a new sample

can be inferred. A novel multi-task maximally collapsing metric learning (MtMCML) model

was proposed by Ma et al. [62].
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Figure 3.2. The improvement of ranking result by our OL-MANS on
VIPeR [31]. BLUE boxes: input probes, RED: gallery targets. For each case,
the top row is the result from the baseline [52], and the bottom row is our result.
(Best view in color and enlarged)

Deep Learning in P-Rid: Recently, deep learning has shown excellent performance for

P-Rid. The convolutional neural network-based P-Rid approaches aim to integrate the feature

extraction and metric learning into one end-to-end framework, in which a neural network is

built to extract from each pedestrian image a feature that satisfies certain ranking criterion. Li

et al. [47] firstly utilized deep learning method to extract more effective and discriminative

features to facilitate P-Rid. Ding et al. [23] proposed a scalable deep feature learning model for

P-Rid via relative distance comparison based on triplet loss. Shi et al. [76] proposed a novel

moderate positive mining method to embed robust deep metric for P-Rid. Ustinova et al. [89]

suggested a new loss for learning deep embeddings and demonstrate competitive results of the

new loss on a number of P-Rid datasets.

In contrast to the methods learning a global metric, our proposed method is mainly fo-

cused on learning local metrics specifically adaptive to individual testing probes. Different

from RLML that requires clustering in advance to obtain the local data distributions, our new
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approach does not need clustering but is rather instance-based learning, and thus avoiding the

risk of inaccurate clustering results. Also note that MtMCML learning still follows the global

manner although it learns different metrics for different cameras. In contrast to LADF that needs

a large number of positive sample pairs to drive the local decision function learning, our new ap-

proach only uses negative sample pairs which are much easier to obtain. LSSCDL also requires

a lot of positive training pairs for offline learning, but ours performs online learning per probe

without the requirement of positive pairs. By considering the deep learning-based method as a

global mapping learning framework, our proposed OL-MANS method can be readily applied

on top of it to further boost the performance.

3.2.2. Metric Learning

Metric learning is an active research area and Mahalanobis distance learning becomes more

and more important since [102]. Among these approaches, the Large Margin Nearest Neigh-

bor Learning (LMNN) [99] has reported outstanding performances. It learns a Mahalanobis

metric to improve the k-Nearest neighbor classifier, by pulling together the data from the same

class, while pushing away data from different classes by a large margin. Besides LMNN, In-

formation Theoretic Metric Learning (ITML) [22] and Logistic Discriminant Metric Learning

(LDML) [32] are other effective methods in Mahalanobis distance learning.

There have been recent advances in learning local metric. Discriminant Adaptive Nearest

Neighbor classification (DANN) [33] attempts to learn local metrics by shrinking neighbor-

hoods in directions orthogonal to the local decision boundaries and enlarging the neighborhoods

parallel to the boundaries. Generative Local Metric Learning (GLML) [67] learns local met-

rics by minimizing the expected classification error of nearest neighbor classifier to alleviate
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overfitting. Unlike these methods that learn a number of local unrelated metrics, Parametric

Local Metric Learning (PMLM) [94] exploits an instance-based learning strategy, aiming to

find an adaptive local Mahalanobis metric for each data point. It shares a similar idea as in the

Exemplar-SVMs [63], which is a conceptually simple but surprisingly powerful method to learn

a discriminative object classifier. Exemplar-SVMs is defined over a single positive instance and

millions of negatives, and thus the learned classifier is specific to its positive exemplar.

Our proposed approach attempts to achieve online adaptive local metric tuning on top of a

global metric. For this approach, the choices for the global metric are flexible, and its novelty

lies in the proposed local metric tuning method that only exploits negative data. It is related to

but sufficiently different from Large Margin Nearest Neighbor Learning (LMNN) [99], Gener-

ative Local Metric Learning (GLML) [67] and Exemplar-SVMs [63]. Compared to LMNN, the

new method does not demand positive samples and it is much more weakly supervised. Our

method is completely different from PMLM, as PMLM uses global constraints and cannot work

with weakly supervised data as in the proposed method. In addition, our proposed method is

different from Exemplar-SVMs because we learn local Mahalanobis metrics that are positive

semi-definite.

3.2.3. Online Re-ranking

Re-ranking technique [106, 105, 55, 44, 28, 2, 16, 127] has been initially studied in the instance

retrieval tasks, recently the P-Rid community has paid tremendous attention to how to boost re-

identification accuracy via re-ranking. Some works [93] requires human inter-action to derive

re-ranking. Li et al. [45] tried to re-rank the initial result by analyzing both the relative and

direct information of near neighbor of the images. Garcia et al. [28] proposed an unsupervised



58

re-ranking model by taking advantage of the content and context information in the ranking

list. Leng et al. [44] aimed to re-evaluate the initial ranking list by performing a novel bidirec-

tional ranking algorithm with a fusion similarity of both content and contextual similarity. Ye et

al. [105] revised the rank list by considering both the nearest neighbors of the global and local

features. And in [106], in order to compute both the similarity and dissimilarity, a k-nearest

neighbor set is adopted to different methods. Zhong et al. [127] proposed a k-reciprocal en-

coding method to re-rank the initial re-ID rank list based on a hypothesis that gallery image is

similar to the probe in the k-reciprocal nearest neighbors, it is more likely to be a true match.

Both our proposed method and re-ranking share the same appealing online manner, but

our algorithm outperforms the re-ranking by several unique merits which will be detailedly

discussed in Sec. 3.3.5.

3.3. Our Solution: Online Local Metric Adaptation From Negative Samples

3.3.1. Problem Setup

A single-shot P-Rid dataset consists of n pairs of identity images {(xpi , x
g
i )}

n
i=1 collected from

two different disjoint cameras: xpi is from the probe camera and xgi is from the gallery camera.

The index i = {1, 2, ..., n} represents the identity label of n different persons. For training and

testing in P-Rid, all identity pairs can be divided into two disjoint subsets {u1, u2, ..., um′} and

{v1, v2, ..., vm} where n = m+m′ and

(3.1)
Xtrain = Xp

train ∪ Xg
train =

{
xpui
}m′
i=1
∪
{
xgui
}m′
i=1

Xtest = Xp
test ∪ Xg

test =
{
xpvi
}m
i=1
∪
{
xgvi
}m
i=1
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So that Xtrain is used as the training set and Xtest is the test set. In our algorithm, an additional

negative sample database, denoted by Yneg = {yi}ki=1, is needed, and will be discussed shortly

in Sec. 3.3.3.

3.3.2. Conventional Global Metric Learning

Conventional learning-based P-Rid methods [51, 122, 95, 52] aim to learn a single global Ma-

halanobis distance metric MG by using the training set Xtrain. The learned metric MG projects

the original samples into another feature space, and the matching between one probe xpi and one

gallery image xgj at test stage is measured by:

(3.2) dMG

(
xpi , x

g
j

)
=
∥∥xpi − xgj∥∥2

MG
=
(
xpi − x

g
j

)TMG

(
xpi − x

g
j

)
where MG = WTW � 0 needs to be positive semi-definite, as W is the learned projection.

Different methods adopt different loss functions to learn MG, and a good solution to MG should

align the similarity structure in the projected feature space, so as to pull the samples from the

same identity group closer and to make different identities more discriminative. Due to the fact

that the global metric does not aim to fit the local distributions for all the samples specifically,

it may lead to large biases and distortions in some places in the feature space. As illustrated in

Fig. 3.1, our new approach puts an instance-based online local metric adaptation on top of the

global metric.



60

3.3.3. Instance-Specific OL-MANS

In this section, we propose an online local metric adaptation algorithm called OL-MANS to

adaptively adjust the metric dedicated to specific test probes with minimum online training by

utilizing only negative training samples.

Specifically, for a probe image xpvi in the probe set Xp
test, we aim to learn a local Mahalanobis

distance Mi
L only using the samples in a negative sample database Yneg as training data. This

negative sample database provides rather faithful negative samples to the tests with a large

probability. There are many ways to collect Yneg, e.g., data from a different benchmark can

be used, or false positive matches from images that do not contain humans. The insight here

is that all such negative samples are “hard negatives” for the probes. In this research, we have

investigated how Yneg influences the performance in the experiment section.

As the global projection W learned by the global metric learning maps Xp
test to a low dimen-

sional subspace X̂
p

test = WXp
test =

{
x̂pvi
}m
i=1

, we propose to further adjust the local similarity

for each specific x̂pvi by an online learned local metric Mi
L which is solely learned from Yneg.

In other word, for one probe x̂pvi , only the negative samples and the probe are used to learn its

local adaptation Mi
L.

We propose to pursue an optimal PSD Mahalanobis metric Mi
L for the local adaptation, by

maximizing the distance to the closest (or “hardest” conceptually) negative sample of x̂pvi , as

shown in Fig. 3.3:

(3.3) Mi
L = arg max

Mi
L�0

(
min

1≤j≤k

(
x̂pvi − ŷj

)TMi
L

(
x̂pvi − ŷj

))
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Figure 3.3. The local metric Mi
L for x̂pvi can push the closest negative sample ŷj

of x̂pvi away from the local region Ω(x̂pvi)

where ŷj = Wyj is the projected negative sample based on the global metric. We regularize Mi
L

for a stable solution. This can be done via minimizing the norm under a fixed margin constraint,

instead of maximizing the margin under a fixed norm constraint [25], so the alternative objective

is:

(3.4)

Mi
L = arg min

Mi
L

1

2

∥∥Mi
L

∥∥2

sub to :
(
x̂pvi − ŷj

)TMi
L

(
x̂pvi − ŷj

)
≥ 2, ∀1 ≤ j ≤ k

Mi
L � 0

where the constant 2 is arbitrary only for manipulation convenience. While this is a convex

semi-definite programming problem, it can be very slow for high dimensional data, even for the

state-of-the-art PSD solvers.

In the proposed OL-MANS approach, we relax the PSD constraint requiring Mi
L � 0,

but we prove below that the relaxed objective is equivalent to a kernel SVM problem with a

quadratic kernel. And thus the solution is still a PSD metric. In addition, it can be readily solved

with off-the-shelf SVM solvers such as LIBSVM [10]. More importantly, we also prove that



62

this learning objective is equivalent to the best approximation to the asymptotic classification

error, which is proved to be lower than the global metric (details see Sec. 3.4).

Theorem 4. The solution to Eqn. 3.4 is equivalent to a kernel SVM with k(x, y) = 〈x, y〉2

on {ỹ0, ỹ1, ỹ2, ..., ỹk} where ỹj = x̂pvi − ŷj (for j ≥ 1), and ỹ0 = x̂pvi − x̂
p
vi

= 0.

PROOF. Define auxiliary labels by:

(3.5) ζj =

 −1, j = 0

1, j 6= 0

so the objective Eqn. 3.4 can be rewritten as:

(3.6)
Mi

L = arg min
Mi

L

1

2

∥∥Mi
L

∥∥2

sub to : ζj
(
ỹTj Mi

Lỹj − 1
)
≥ 1,∀ 0 ≤ j ≤ k

Eqn. 3.6 is exactly an SVM problem with quadratic kernel and with bias fixed to one. Next

we prove the solution to objective Eqn. 3.6 is exactly the same as that to the original objective

Eqn. 3.4. Consider the dual of the SVM, the optimal solution Mi
L has the form:

(3.7) Mi
L =

k∑
j=0

αjζj ỹj ỹ
T
j , αj ≥ 0

Since ỹj ỹTj is PSD for j ≥ 1 ( ỹ0ỹ
T
0 = 0 ) and ζj = 1 for j ≥ 1, so we have:

(3.8) Mi
L =

k∑
j=0

αjζj ỹj ỹ
T
j =

k∑
j=1

αj ỹj ỹ
T
j � 0

�
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It is obvious that the positive semi-definiteness of Mi
L is guaranteed even if no PSD con-

straint is explicitly imposed in our learning objective Eqn. 3.6.

3.3.4. Person Re-identification via OL-MANS

At the online test stage, for a probe xpvi from X p
test and one gallery image xgvj from X g

test, our

method combines a global metric MG (with flexible choices) with our local metric adaptation

Mi
L to achieve an adaptive nonlinear metric:

(3.9)
d(xpvi , x

g
vj

) = dMG
(xpvi , x

g
vj

) + λdML
(xpvi , x

g
vj

)

= (xpvi − x
g
vj

)TWT (I + λMi
L)W(xpvi − x

g
vj

)

where MG = WTW is an learned global metric and Mi
L is the local metric adaptation specific

for xpvi . λ is the weighting parameter which can be decided by cross-validation. In our work,

we set λ by Eqn. 3.10 in all the experiments which can be explained in Sec. 3.5.

(3.10) λ = max
1≤j≤m′

(
dMG

(xpvi , y
g
vj

)
)
/ max

1≤j≤m′

(
dML

(xpvi , y
g
vj

)
)

At first, we find that even simply using only the learned local metric for re-identification,

the results are still much better than using the original global metric. Further, when combining

the global and local metrics, we are able to obtain much better and more stable performances.

The reason behind it can be explained by the idea of boosting. Either the global metric or the

local metric can be considered as a “weak” classifier for P-Rid, and their combination forms a

“stronger” classifier. As proved by the boosting theory, this combination is able to improve the

classification error.
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3.3.5. OL-MANS vs Re-ranking

Both our proposed OL-MANS algorithm and the re-ranking technique can be readily combined

with the other P-Rid methods in the online phase without modifying the original P-Rid frame-

work. But our OL-MANS owns more unique merits than re-ranking in both the efficiency and

effectiveness facets. More comparison experiment results will be presented in Sec. 3.5.

Data: Most re-ranking methods require no additional training samples, but utilize the given

testing probe and gallery sets to help refine the ranking. In contrast, our OL-MANS takes

advantage of a set of easily-available negative samples, based on which it finds online adaptation

for the optimal local metric.

Effectiveness: The effectiveness of re-ranking depends heavily on the quality of the initial

ranking list (if the true match is not in the top-k ranks). It may hurt the initial rank result, because

the true match may have a lower rank after re-ranking if the false matches are included in the

top-k list. Thus re-ranking may degrade the performance. The performance of our OL-MANS

model relies on the quality of the set of negative data, as illustrated by Theorem. 5, even if the

quality of the given NDB is pretty bad (no hard negatives are provided), OL-MANS still won’t

degrade the original performance. Comparing to re-ranking, our OL-MANS has a unique and

plausible advantage: it does not degrade the performance of the original methods (the original

global metric) in theory. As indicated in the objective Eqn. 3.4, when the negative samples

are not good (i.e., they are already far away from the positive point under the original global

metric), the learned local metric ML will be the same as the original global metric MG, since

the constraints in Eqn.4 have already been fulfilled by MG. So OL-MANS won’t give a worse

performance than the original method. As described in Sec. 3.4, our theoretical analysis has
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shown that asymptotically our negative-augmented approach always improves the identification

performance, and can be very close to the Bayesian error.

Efficiency: Another merit of our OL-MANS compared with re-ranking is its high efficiency.

OL=MANS is very efficient even if there are a lot of negative samples available for local adap-

tation. Because the learned local metric ML is only related to a handful set of hard negatives,

not all the negatives. In contrast, other methods, such as re-ranking (depend on data number

and nearest neighbor number k), transfer learning, domain adaptation techniques, are usually

time-consuming.

3.4. Theoretical Analysis and Justification

We first prove that the asymptotic error by using the proposed OL-MANS is bound to be

lower than that without. When the negative samples are truly hard negative ones, the asymptotic

error by using OL-MANS can be very close to the Bayesian error (Sec. 3.4.1). Besides this

theoretically meaningful result, we prove that this strong asymptotic error can actually best

approximated by using finite data, which is practically also meaningful. More importantly, we

prove that this approximation is actually achieved by OL-MANS (Sec. 3.4.2). We also present

its consistency and sample complexity analysis in Sec. 3.4.3.

3.4.1. Asymptotic Error is Reduced

The core of P-Rid is indeed a two-class (ω+ and ω−) 1-Nearest neighbor (NN) classification

problem by using the gallery set D. If there is infinite number of data, it is well-known that its

asymptotic error P(e|x) is bounded by 2 times the Bayesian error [20]:

(3.11) P∗ ≤ P(e|x) = 2P (ω+|x)P (ω−|x) ≤ 2P∗
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where P∗ is the Bayesian error. In our work, we prove that by adding the hard negative samples

xa to D to form an augmented dataset Da, the asymptotic error Pa(e|x) by using Da is always

smaller than P(e|x):

(3.12) Pa(e|x) ≤ P(e|x)

Theorem 5. For an input x, its NN is x′ inDa. Define the probability that x′ is an augmented

data xa, i.e., x′ ∼ xa as P (x′ ∼ xa) = q; otherwise, x′ is not an augmented data xa, i.e., x′¬xa,

P (x′¬xa) = 1− q, where 0 ≤ q ≤ 1. The asymptotic error Pa(e|x) by using Da is:

(3.13) Pa(e|x) =
(2− q)P(e|x)

2− 2qP(e|x)
≤ P(e|x)

PROOF. Denote by D the original data set (i.e., the gallery set), and by Da the augmented

data set by adding hard negatives. Except for the augmented hard negative data (denoted by

xa), the rest in Da are the same as D.

Let’s consider the two-class 1-NN classification, without losing the generality. The asymp-

totic error for 2-class 1-NN using D is

P(e|x) = 2P (ω+|x)P (ω−|x)

Let’s consider the asymptotic error for 2-class 1-NN using Da. We denote it by P a(e|x). Our

goal is to prove:

(3.14) Pa(e|x) ≤ P(e|x)
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The prove is the following. For an input x, its nearest neighbor x′ inDa (denoted by x ∼ x′)

has two cases:

• case 1: the nearest neighbor of x′ is an augmented data xa, i.e., x′ ∼ xa. Its probability

P (x′ ∼ xa) = q;

• case 2: the nearest neighbor of x′ is not an augmented data xa, i.e., x′¬xa. Its proba-

bility P (x′¬xa) = 1− q.

We denote the nearest neighbor of x′ in D by x′′(x′). There are two cases. If x′ is xa, then

its nearest neighbor in D is x′′(xa) whose class label is ω+ (because xa are all hard negative

samples). If x′ is not xa, then its nearest neighbor in D is x′′(x′) = x′.

Now we consider the asymptotic probability of assigning ω+ to x′. In case 1, we need to

guarantee both x and x′′(x′) to be ω+ (i.e., the hard negative data is actually useful). In case 2,

we only need to guarantee x to be ω+ (i.e., the hard negative data is not effective). So we have:

φ(ω+|x′) ∝ P 2(ω+|x)q + P (ω+|x)(1− q)

Similarly, the asymptotic probability of assigning ω− to x′ is:

φ(ω−|x′) ∝ P 2(ω−|x)q + P (ω−|x)(1− q)

Because φ(ω+|x′) + φ(ω−|x′) = 1, we have:

φ(ω+|x′) =
P 2(ω+|x)q + P (ω+|x)(1− q)

(1− q) + q[1− 2P (ω+|x)P (ω−|x)]

φ(ω−|x′) =
P 2(ω−|x)q + P (ω−|x)(1− q)

(1− q) + q[1− 2P (ω+|x)P (ω−|x)]

(3.15)
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Therefore, we can compute the 2-class 1-NN asymptotic error for x on Da:

Pa(e|x) = φ(ω+|x′)P (ω−|x) + φ(ω−|x′)P (ω+|x)

=
[2(1− q) + q]P (ω+|x)P (ω−|x)

(1− q) + q[1− 2P (ω+|x)P (ω−|x)]

=
(2− q)P(e|x)

2(1− q) + 2q(1− P(e|x))

=
(2− q)P(e|x)

2− 2qP(e|x)

(3.16)

Because 0 ≤ q ≤ 1, it is easy to see:

if Pa(e|x) ≤ P(e|x)⇔ (2− q)P (e|x)

2− 2qP (e|x)
≤ P (e|x)

⇔ (2− q) ≤ 2− 2qP (e|x)

⇔ 2qP (e|x) ≤ q

⇔ P (e|x) ≤ 1

2

(3.17)

Since the error rate P (e|x) ≤ 1
2

is always true, the proof in Eqn. 3.17 is true, and Theorem. 5

holds. �

Since q is the probability of P (x′ ∼ xa), 0 ≤ q ≤ 1. If q = 0 which indicates that

the augmented negative data are useless, then we have P a(e|x) = P (e|x). Another extreme is

when q = 1 implying the negative data are abundant and effective to constrain the classification,

then we have 1

(3.18) Pa(e|x) =
P(e|x)

2[1− P(e|x)]
≤ P(e|x)

1P(e|x) ≤ 1

2
is always true.
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In this case, when P(e|x) is very small, we have

(3.19) Pa(e|x) ' P(e|x)

2
' P∗(e)

The asymptotic error of our negative-augmented approach can be very close to the Bayesian

error.

3.4.2. Finite Approximation to Pa(e|x)

The asymptotic error Pa(e|x) in Eqn. 3.13 is only meaningful when the sample size is infinite,

n → ∞. However, in practice, only finite number of samples are available. To make it practi-

cally meaningful, we prove that it can be best approximated by the practical error rate Pn(e|x)

(n is finite) by finding a local metric ML. And this local metric turns out to be the one for the

proposed OL-MANS.

Still consider the 2-class 1-NN rule scenario (on the negative-augmented data Da). To

make the notation less cluttered, here we use P(e|x) to indicate Pa(e|x) without confusion.

Given a sample x and its nearest neighbor x′ from the finite dataset containing n samples. The

probability of error for x is:

Pn(e|x) = P (ω+|x)P (ω−|x′) + P (ω−|x)P (ω+|x′)

= P(e|x) + [P (ω+|x)− P (ω−|x)][P (ω+|x)− P (ω+|x′)]

Our goal is to find a best local metric Mx for x such that the conditional MSE:

min
Mx

E{[Pn(e|x)− P(e|x)]2|x}
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is minimized. Since [P (ω+|x) − P (ω−|x)] is constant for a given x, so the minimization is

equal to:

(3.20) min
Mx

E{[P (ω+|x)− P (ω+|x′)]2|x}

Because P (ω+|x′) ' P (ω+|x) + ∇P (ω+|x)T (x′ − x), Eqn. 3.20 is approximately equivalent

to:

(3.21) min
Mx

E{‖∇P (ω+|x)T (x′ − x)‖2|x}

The core here is to compute the gradient of posterior ∇P (ω+|x). Recall our proposed OL-

MANS approach, a local linear classifier w where Mx = wwT is learned for sample x via a

standard kernel SVM framework. So the posterior of x in a logistic sigmoid function form is:

(3.22) P (ω+|x) =
1

1 + eζx(wT x+b)−γ , P (ω−|x) = 1− P (ω+|x)

The gradient of P (ω+|x) can be easily computed:

(3.23) ∇P (ω+|x) = ζxP (ω+|x)P (ω−|x)w

Substituting Eqn. 3.23 for∇P (ω+|x) in Eqn. 3.21 gives us:

(3.24)
min
Mx

E{‖ζxP (ω+|x)P (ω−|x)wT (x′ − x)‖2|x}

= min
Mx

(x′ − x)TwwT (x′ − x)

Recall our optimization objective Eqn. 3.6, for the positive samples, we have 1 − (x′ −

x)TMx(x
′ − x) ≥ 1 which is equal to (x′ − x)TMx(x

′ − x) ≤ 0. On the other hand, (x −
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x′)TMx(x − x′) ≥ 0 is always true for a PSD Mx, so (x′ − x)TMx(x
′ − x) ≡ 0 always holds.

It is obvious Eqn. 3.24 is always optimized by adopting the local metric Mx learned by our

algorithm Eqn. 3.6.

3.4.3. Consistency and Sample Complexity Analysis

A set of samples {x0, x1, ..., xk} is identically drawn from a D-dimensional space D ∈ RD

where li is the label of xi, then a paired sample set Spairk = {si}ki=1 = {(x0, xi)}ki=1 of size k is

formed. For our proposed objective Eqn. 3.6, the true risk over the whole distribution D and the

empirical error based on Spairk are defined as:

Errλ(ML,D) = Exi,xj∼Dφλ(ML, (xi, xj))

Errλ(ML, S
pair
k ) =

1

k

k∑
i=1

φλ(ML, si)

where φλ (ML, si) is the hinge loss function:

φλ(ML, si) = λ[ζi
(
(xi − x0)TML(xi − x0)

)
− γζi ]+

where ζi = −1 if li = l0 and 1 otherwise, [A]+ = max(0, A) is the hinge loss and γζi is the

desired margin. The empirical risk minimizing metric based on Spairk can be readily defined as

M∗L = arg minML
Errλ(ML, S

pair
k ). Our goal is to compare the generalization performance of

M∗L over the unknown D.
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Theorem 6. Let φλ(ML, si) be a distance-based loss function that is λ-Lipschitz in the first

argument. Then with probability at least 1 − δ over {s1, ..., sk} from an unknown B-bounded-

support (each (x, l) ∼ D, ||x|| ≤ B) distribution D, we have:

(3.25)
Sup

ML∈M

[
Errλ(ML,D)− Errλ(ML, S

pair
k )

]
≤ O

(
λB2

√
D ln(1/δ)/k

)
Theorem. 6 proves that to achieve an estimation error rate ε, k = Ω ((λB2/ε)2D ln(1/δ))

samples are sufficient. The brief proof is shown here. Let P be the probability measure induced

by the random variable (X;L), where X := (x, x′), L := 1[l = l′]. Define function class:F :=

{X 7→ ‖x−x′‖ML
} and consider our loss function φλ(ML, si) = λ[ζi

(
(xi − x0)TML(xi − x0)

)
−

γζi ]+ which is λ-Lipschitz in the first argument. Then, we are interested in bounding the quan-

tity

Sup
(X;L)∈P

[
φλ(fML

(X),L)− 1

k

k∑
i=1

φλ(fML
(Xi),Li)

]
Define x̂i := x0−xi for each pair si, then the Rademacher complexity2 of our function class

F (with respect to the distribution P) is bounded, since (let σ1, σ2, ..., σk denote independent

uniform ±1-valued random variables):

2See the formal definition of the Rademacher complexity in [6]
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(3.26)

R(F ,P) := EXi,σi

[
Sup
fML
∈F

1

k

k∑
i=1

σifML
(Xi)

]

=
1

k
EXi,σi Sup

ML∈F

[
k∑
i=1

σix̂
T
i MLx̂i

]

=
1

k
EXi,σi Sup

ML∈F ,[ajk]jk=ML

[∑
j,k

ajk
k∑
i=1

σix̂
j
i x̂
k
i

]

(3.27)

R(F ,P) ≤ 1

k
EXi,σi Sup

ML∈F

‖ML‖F

∑
j,k

(
k∑
i=1

σix̂
j
i x̂
k
i

)2
1/2


≤
√
D

k
EXi,i∈[k]

Eσi,i∈[k]

∑
j,k

(
k∑
i=1

σix̂
j
i x̂
k
i

)2
1/2

=

√
D

k
EXi,i∈[k]

(∑
j,k

k∑
i=1

(x̂ji )
2(x̂ki )

2

)1/2

=

√
D

k
EXi,i∈[k]

(
k∑
i=1

‖x̂i‖4

)1/2

=

√
D

k
E(x0,xi)∈(D×D),i∈[k]

(
k∑
i=1

‖xi − x0‖4

)1/2

≤
√
D

k
E(x0,xi)∈(D×D),i∈[k]

(
‖xi − x0‖4

)1/2 ≤ 4B2

√
D

k

Recall that D has bounded support (with bound B). Thus, by noting that φλ is 8B2 bounded

function that is λ-Lipschitz in the first argument, we can readily apply the Theorem.8 in [6]

to obtain the desired uniform deviation bound. We can further generate Theorem. 6 to find a

tighter bound.
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Theorem 7. Let ML be any class of weighting metrics on the feature space X = RD, and

define d := SupML∈M ‖ML‖2
F . Following the same parameter setting in Theorem. 6, we have:

(3.28)
Sup

ML∈M

[
Errλ(ML,D)− Errλ(ML, S

pair
k )

]
≤ O

(
λB2

√
d ln(1/δ)/k

)
Let P be the probability measure induced by the random variable (X;L), where X :=

(x, x′), L := 1[l = l′]. Define function class:

F := {X 7→ ‖x− x′‖ML
}

Following the same steps in the proof of Theorem. 6, we can conclude that the Rademacher

complexity of F is bounded. In particular,

Rk(F) ≤ 4B2

√
SupML∈M ‖ML‖2

F

k

Finally, we note that φλ is λ-Lipschitz in the first argument, so that we can readily apply Theo-

rem.8 in [6].

From Theorem. 7, we observe that if the learned metric ML has a low metric learning com-

plexity d � D, it can help sharpen the sample complexity result, yielding a dataset-dependent

bound. Recall our objective Eqn. 3.6, d := SupML∈M ‖ML‖2
F is already optimized via our

proposed learning objective. Therefore, the bound is further tighter under the same number of

samples.
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3.5. Experiments

3.5.1. Experiment Settings

Data & Evaluation. We have performed thorough experiments and comparative studies to

evaluate our method on eight most widely-used benchmark datasets: VIPeR [31], QMUL

GRID [60], CAVIAR [15], iLIDS [121], PRID 450S [74], CUHK Campus [46], CUHK03 [47]

and Market-1501 [119]. The last three large-scale datasets are pretty challenging due to the

extremely complicated variance of person appearance and abundant distractors. For a fair com-

parison, the training data of each dataset are used as the negative training samples for itself

Yneg = Xtrain, so no more extra information is utilized in the experiment. For all the ex-

periments, the single-shot evaluation setting (except for the CUHK Campus dataset where the

multi-shot matching setting is applied) is adopted and all the average results of 10 random trials

are shown in the form of Cumulated Matching Characteristic (CMC) curves.

Feature. The recently proposed high-dimensional feature LOMO [51] is adopted as the

visual feature representation. Since it is not practical to directly use such a high dimensional

feature (usually 26960-dim for the original LOMO feature) in metric learning, we employ prin-

cipal component analysis (PCA) to reduce the feature dimension to a reasonable scale.

Baselines. For fair comparisons, several global metric learning approaches [52, 51, 112]

whose code is available to access and the feature can be replaced are compared to our proposed

method under the same experiment setting and using the same LOMO feature. Besides, the

most recent state-of-the-art published results are also reported for a thorough comparison. For

all the experiments, the global metric learner, MLAPG [52] is chosen as the underlying baseline

so that our online local metric adaptation algorithm is applied on top of it.
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Figure 3.4. The influence of the quality of global metric. The x-axis means the
maximum iteration time for global metric learning and the y-axis is the identifi-
cation rate (Rank@1, Rank@5 and Rank@10 on VIPeR).

3.5.2. Influence of Global Metric Learning Quality

Our proposed OL-MANS algorithm is applied on top of a global metric MG, thus its overall

performance may depend on the learning quality of adopted global metric learner. In order

to verify whether our OL-MANS can always be helpful, global metrics obtained at various

learning stages of a global metric learner [52] are tested, as in general the performance of a

global metric learner improves with more training (e.g., more training iterations). As shown in

Fig. 3.4, even the learned global metric does perform poorly (in its early training stages), our

online local metric adaptation is able to consistently and significantly improve the performances

by a large margin. This is because the local discriminative information introduced by hard

negative samples is able to capture the specific crux of one identity which is quite helpful for

identification.

3.5.3. Influence of Global Metric Learner Choice

An interesting question is whether our OL-MANS can always work for any global metric learn-

ers as promised. To verify it, we conduct the following experiment that different kinds of global
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Methods GRID VIPeR
R@1 R@20 R@1 R@20

Euc 9.12 29.76 15.32 50.66
Euc+OL-MANS 20.88 45.12 21.99 56.11
XQDA[51] 12.96 43.52 38.99 91.94
XQDA+OL-MANS 29.20 50.96 43.54 92.15
MLAPG[52] 17.60 56.08 40.28 93.39
MLAPG+OL-MANS 30.16 59.36 44.97 93.64
DNSL[112] 15.12 53.12 40.19 93.54
DNSL+OL-MANS 28.96 56.96 43.67 93.61

Table 3.1. Comparison of identification rate with/without OL-MANS on VIPeR
and GRID. All the experiments are under the same setting and use the same
LOMO feature. +OL-MANS means implementing our OL-MANS on the orig-
inal global metric learner. Red represents the better results.

metric learners, Euclidean distance, XQDA [51], MLAPG [52] and DNSL [112] are adopted

as the underlying global metric that our OL-MANS algorithm will be readily applied on. For

each learner, we compare the identification rates without and with our online local metric adap-

tation. The 10-run-average results on VIPeR and GRID datasets are reported in Table. 3.1, as

well as the complete CMC curves in Fig. 3.5. We observe that for all the learners, our proposed

online local metric adaptation algorithm is able to boost the identification performance with

a significantly improvement, even double the identification accuracy (on GRID). Even for the

most state-of-the-art global metric learner [112], applying our OL-MANS to it can still achieve

a non-trivial improvement.

3.5.4. Influence of the Weighting Parameter λ

The parameter λ in Eqn. 3.9 is used to balance the underlying global metric and the learned

local metric. Different λ will have different influences to the identification performance. We

conducted an experiment on the VIPeR dataset to determine the value of λ, the results of which
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Figure 3.5. We conducted the experiment to figure out the influence of the
choice of global metric learner. (a) and (d) are the results on VIPeR and GRID
directly using the Euclidean distance; (b) and (e) are XQDA [51] results; (c) and
(f) are MLAPG [52] results.

are shown in Fig.3.6. We need to point out some special λ values: The λ = 0 is the baseline re-

sult from [52] without our local metric tuning and λ = max represents that λ is set as Eqn. 3.10.

As we can see, setting λ =
max

1≤j≤n−m
(DG(xpvi ,x

g
vj

))

max
1≤j≤n−m

(DL(xpvi ,x
g
vj

))
achieves the best result because it normalizes

the norm scales of the global and local metric distances.

3.5.5. Influence of Negative Sample Database

For our OL-MANS, a negative sample database (NDB) is used to provide the negative training

data. Because there are various strategies to collect NDB, we conduct the following experiments
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Figure 3.6. We conducted the experiment to determine the value of λ. The x-
axis means the value of λ and the y-axis is the identification rate. Here are the
identification results at Rank@1, Rank@5 and Rank@10 on VIPeR.

to investigate the influences of different NDB choices. The first two experiments are conducted

on the VIPeR dataset [31] and the challenging CAVIAR [15] is used in the third experiment.

Moreover, the global metric learning method proposed in [52] is adopted as the baseline method

for the global metric learning MG.

Using the training data Xtrain from the same benchmark as negative sample: Here the

training samples Xtrain in VIPeR which have different identities from Pi(the training data for

global metric learning) are used as negative samples. It guarantees that the obtained NDB is

clearly meaningful. The accuracy in P-Rid is given in Table.3.2 as Our-SAME.

Using different benchmark datasets as the NDB: In this experiment, we utilize other

benchmarks as the NDB. The QMUL GRID [60] and CAVIAR [15] are combined into one

dataset then used as the NDB in this experiment, so that we can guarantee that the identities of

all the negative samples in the NDB are different from Pi. For each identity Pi, the k nearest

negative samples are found in the NDB (under MG) and used for our OL-MANS. Different

values of k (50, 100, 500) are chosen for further comparisons. The experiment results Our-

D-50/100/500 are shown in Table.3.2. Moreover, an additional experiment Our-D-RAM that
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uses 50 random negative samples from the NDB for OL-MANS is compared. This experiment

validates the insight of our method that the effective negative samples are those that are close to

the probe in the feature space (e.g., strong false positives).

The NDB includes the false negative samples: We investigate how the “contamination”

in the NDB impacts our proposed method. In this situation, some negative samples in the NDB

are deliberately collected from the same identity to Pi. We call them false negative samples,

in addition to the use of the probe image set of CAVIAR [15] as the rest of the NDB. Since

there are multiple images of the same identity in CAVIAR, they can be considered as the false

negative samples. The experiment results Our-NoFN, Our-FN are shown in Table. 3.2. Our-

NoFN refers to a “clean” NDB with no false negative samples in it, and Our-FN refers to a

“contaminated” NDB that includes false negative samples for all the probe images.

From Table. 3.2, it can be observed that Our-SAME performs the best because the negative

data from the same benchmark dataset are most discriminative. Results on Our-D-50/100/500

also largely outperform the baseline by consistent improvements. Moreover, the false nega-

tive sample may influence and degrade the performance of Our-NoFN, but not significantly.

Nevertheless, a clean NDB with hard negatives is useful and effective.

3.5.6. Influence of Feature Descriptors

In the past yeas, deep features [80, 80, 34] have been widely used in many computer vi-

sion tasks no except of P-Rid. In this part, we compared various different feature descrip-

tors for P-Rid problem to verify that the performance of our OL-MANS is independent of the

choice of feature. Several hand-crafted features, LOMO [51] and deep features, CaffeNet [43],

VGG-16 [80] and ResNet-50 [34] are examined. The above pre-trained CNN models from
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Set Method R@1 R@5 R@10 R@20

VIPeR

Baseline [52] 40.73 69.94 82.34 92.37
Our-D-RAM 39.87 70.51 82.28 91.77
Our-SAME 44.97 74.43 84.97 93.64
Our-D-050 42.63 73.63 84.81 93.54
Our-D-100 43.04 73.86 84.30 93.42
Our-D-500 42.53 73.89 84.15 93.35

CAVIAR
Baseline [52] 40.63 71.72 83.34 95.67
Our-NoFN 51.68 76.36 86.38 96.55
Our-FN 50.34 74.83 85.72 96.03

Table 3.2. Comparison of different NDBs on VIPeR (P=316) and CAVIAR (P=36).

Dataset Method Euclidean MLAPG XQDA DNSL

VIPeR

LOMO 15.32/21.99 40.28/44.97 38.99/43.54 40.19/43.67
CaffeNet 17.72/21.84 18.35/19.30 20.41/28.16 20.38/23.26
VGG-16 20.25/26.27 20.25/23.73 23.45/29.02 23.86/26.52
ResNet-50 22.78/27.22 23.42/26.58 31.93/40.47 33.70/38.01

GRID

LOMO 9.12/20.88 17.60/30.16 12.96/29.20 15.12/28.96
CaffeNet 2.40/13.60 5.60/10.42 10.24/21.92 7.28/16.72
VGG-16 6.40/18.44 7.20/16.84 12.72/21.52 10.24/17.36
ResNet-50 12.84/23.22 12.40/19.12 21.44/34.96 17.36/29.44

Table 3.3. Comparison of different feature choices on VIPeR and GRID under
different metrics (10-folds average Rank@1 performance is reported). For each
result, the former one is the result without our OL-MANS, and the last one is
our OL-MANS result.

which we have removed the final fully-connected (FC) layer are further fine-tuned by the large-

scale Market-1501 datasets (their R-1/mAP performances are: CaffeNet=44.31/0.24, VGG-

16=63.93/0.425 and ResNet-50=77.22/0.561), then they are used to extract the features for the

other P-Rid datasets. As can be seen from Table. 3.3, the performance improvement by our

OL-MANS method is independent from the used feature descriptors.
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3.5.7. Local Metric Rank Analysis

Feature descriptors used in our experiment are generally high dimensional in order to handle the

complex appearance variations. In practice, most existing methods apply PCA blindly to reduce

the feature dimension without clear justification and effectiveness. In contrast, our OL-MANS

can be performed in the original high dimensional space while allowing the selection of a low

rank local metric. The effectiveness of the low rank metric is also verified in [52] and [39].

For our proposed OL-MANS, we solve the original time-consuming positive semidefinite

(PSD) problem by solving an efficient kernel SVM instead, as in Eqn. 3.6. The obtained local

metric Mi
L is formed as Eqn. 3.29:

(3.29) Mi
L =

k∑
j=0

αjζj ỹj ỹ
T
j =

k∑
j=1

αj ỹj ỹ
T
j =

k′∑
j=1

αrj(ỹ
r
j )(ỹ

r
j )
T � 0

where αrj 6= 0. It is obvious that Mi
L is the linear combination of all the support vectors of

{ỹrj}k
′
j=1. Therefore, the rank of Mi

L is bounded by the number of support vectors, k′. In practice,

the local metric is constrained by the strong negative samples (the hard negatives). In other

words, the coefficient vector A = [α1, α2, ..., αk] should be sparse.

To validate this, we have conducted an experiment that we compute the ranks of all the

learned local metrics for all the probes in different benchmarks (VIPeR, GRID, CAVIAR,

iLIDS, P-Rid 450S and CUHK Campus). The result is presented in Fig. 3.7, where it is ev-

ident that almost all the learned local metrics are pretty low rank, even though the size of the

negative database (NDB) is large. This negative database has over 10,000 negative samples, and

more than 500 strong negative samples are generally selected for each datum to learn its local
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Figure 3.7. Histogram distributions of metric rank for all the learned local met-
rics on different benchmark datasets.

metric. This clearly shows an advantage of our proposed method, as it allows us to work in a

high dimensional space while most existing methods do not.

3.5.8. Training Cost Analysis and Comparison

Although every test probe needs to learn a local Mahalanobis metric at the test stage, solving a

kernel SVM problem instead of solving the original PSD problem makes the learning efficient

and largely reduces the training time. Table. 3.4 3 provides a thorough comparison of aver-

age training time of various state-of-the-art metric learning-based methods on VIPeR dataset.

Besides, Table. 3.5 shows the training time of different advanced global metric learners on a
3The total learning time of OL-MANS includes the local metric adaptation time and gallery ranking time for all
probes.
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Method ITML [22] MLAPG [52] LADF [50]
Ave Time 20.5 25.8 31.7
Method LMNN [98] PRDC [123] OL-MANS
Ave Time 152.9 394.6 4.8

Table 3.4. Average training time (seconds) on VIPeR.

Method XQDA [51] MLAPG [52] MFA [103]
Train Time 3233.8 2732.8 437.8
Method kLFDA [103] DNSL [112] OL-MANS
Train Time 995.2 3149.7 19.60

Table 3.5. Training time (seconds) on Market-1501.

large-scale dataset, Market-1501. All the experiments are conducted on a remote server with

an Intel i7-5930K @3.50GHz CPU and 32G memory. The total average training time of our

method on VIPeR is only 4.81 seconds for the adaptation of all the 316 probes, much shorter

than learning a single global metric in 25.82 seconds. For the large scale dataset Market-1501,

the efficiency advantage of ours is much more pronounced. Our local metric adaptation time is

10 ∼ 100 times less than the other global metric learners. So the extra time spent in our local

metric adaptation is indeed nominal compared with learning a global metric.

3.5.9. Comparison with Re-ranking Results

As we discussed in Sec. 3.3.5, both the re-ranking technique and our proposed OL-MANS can

be applied to other P-Rid methods to further boost the identification accuracy. In this part, we

will evaluate our proposed OL-MANS algorithm and a state-of-the-art re-ranking method [127]

on the Market-1501 dataset. XQDA [51] and MLAPG [51] are selected as the baseline metric

learners. The Rank@1 performance results are shown in Table. 3.6 which demonstrates that

our OL-MANS our-performs the re-ranking method with a large margin. The re-ranking may
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Figure 3.8. Comparison of CMC curves and Rank@1 identification rates on
benchmark (a) VIPeR, (b) CUHK Campus, (c) CUHK03-Labeled and (d)
CUHK03-Detected datasets.

Methods Market-1501 CUHK03-Labeled CUHK03-Detected
XQDA[51] 45.87 49.7 44.6
XQDA[51]+Re-rank[127] 48.34 50.0 45.9
XQDA[51]+OL-MANS 51.87 56.41 52.34
MLAPG[51] 43.87 57.96 51.15
MLAPG[51]+Re-rank[127] 42.79 56.24 50.76
MLAPG[51]+OL-MANS 44.93 61.68 62.71

Table 3.6. Comparison between our proposed OL-MANS and the state-of-
the-art re-ranking method under single-shot evaluation and LOMO feature.
Rank@1 result is reported. Red represents the best result.

not work even degrade the original performance while our OL-MANS can always boost the

performance which has been theoretically guaranteed.
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Method R@1 R@5 R@10 R@20
Ours 44.97 74.43 84.97 93.64
LSSCDL[114] 42.66 - 84.27 91.93
DNSL[112] 42.28 71.46 82.94 92.06
MLAPG[52] 40.73 69.94 82.34 92.37
XQDA[51] 40.00 68.13 80.51 91.08
TMA[64] 39.88 - 81.33 91.46
KISSME[42] 34.81 60.44 77.22 86.71
ITML[22] 24.64 49.78 63.04 78.39
LMNN[98] 29.43 59.78 73.51 84.91
kCCA[54] 30.16 62.69 76.04 86.80
MFA[103] 38.67 69.18 80.47 89.02
kLFDA[103] 38.58 69.15 80.44 89.15

Table 3.7. Comparison results on VIPeR. All the methods use the same
LOMO feature. RED is the best result and BLUE is the second best one.

3.5.10. Extensive Comparisons on Benchmarks

Experiments on VIPeR: The VIPeR dataset [31] is a widely used benchmark dataset for P-Rid.

It contains 632 pedestrian image pairs taken from 2 different cameras in an outdoor environ-

ment. We follow the widely adopted experimental protocol on VIPeR: 632 pairs are randomly

divided into half for training and the other half for testing. We conducted the comparison exper-

iment under the same experiment setting and using the same LOMO feature and the results are

reported in Table. 3.7. Our proposed algorithm achieves the best performances on all the ranks.

For the important Rank@1 evaluation, our performance 44.97% outperforms the second best

approach LSSCDL by 2.31%. This promising performance indicates that the proposed local

metric adaptation method is consistently effective, several representative examples are shown

in Fig. 3.2.

The Table. 3.8 which shows that our method is still the best one. One interesting observation

is our performance at Rank@20 is a little bit lower than the latest TSRPR [77] method. This is
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Method R@1 R@5 R@10 R@20
Ours 44.97 74.43 84.97 93.64
SCNCD[104] 37.80 68.50 81.20 90.40
EPKFM[13] 36.80 70.40 83.70 91.70
K-Ensb2[103] 36.10 68.70 80.10 85.60
IDLA[1] 34.81 - - -
TSRPR[77] 31.10 68.60 82.80 94.90
kBiCov[61] 31.11 58.33 70.71 82.44
LADF[50] 30.22 64.70 78.92 90.44
SalMatch[115] 30.16 - 65.54 79.15
Mid-L-F[117] 29.11 - 65.95 79.87
MMCML[62] 28.83 59.34 75.82 88.51
eSDC[116] 26.74 50.70 62.37 76.36
SSCDL[58] 25.60 53.70 68.10 83.60
PRDC[123] 15.66 38.40 53.86 70.09
Table 3.8. More comparison results on VIPeR.

expected as our local metric becomes less effective when the true positive gallery image is far

from the probe in the feature space. Nevertheless, our method still beats all the other approaches

at Rank@20.

Experiments on QMUL GRID: The GRID dataset [60] contains 250 pedestrian image

pairs taken from 8 disjoint camera views and 775 additional images that do not belong to the 250

persons. GRID is also a pretty tough dataset because of the large viewpoint variations and the

low-resolution image quality. The experimental protocol for GRID is the same as [52, 13, 62]:

we randomly divide the 250 identities into half for training and the other half for testing as

well as the extra 775 images are used as distractors to enlarge the gallery set. The average

performance of 10 random trials is provided in Table. 3.9. It can be clearly observed that the

proposed algorithm outperforms all the existing algorithms at Rank@1 by a very significant

7.76% improvement on the identification rate. From the results we can see that the GRID
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dataset is more challenging than the VIPeR dataset, but our proposed algorithm can still handle

it well by adapting the local similarity structure of each probe.

Experiments on P-Rid 450S: The P-Rid 450S [74] is another recent dataset. It consists

of 450 image pairs recorded from two different, static surveillance cameras. Since it is a more

recent benchmark, few methods have been tested on it. We adopt the experimental protocol

in [77]: all the images are normalized to 168 × 80 pixels and the persons are split to 225 for

training and 225 for testing. The final results are presented in Table. 3.10, from which we can

observe our proposed method achieves a pretty large improvement against the state-of-the-art

approaches. The 22.41% increase of identification rate at Rank@1 verifies the strength of our

adaptive online local metric tuning strategy.

Experiments on iLIDS: The iLIDS dataset [121] is generated from video images captured

in a busy airport arrival hall so the images suffer from severe occlusions caused by people and

luggage. With an average of 4 images for each person, it contains a total of 476 shots of 119

people captured by multiple non-overlapping cameras. We follow the experimental protocol

in [103]: The persons are randomly split to 59 for training and 60 for testing. Under each

partition, one image for each person in the testing set is randomly selected as the gallery image

and the rest of the images are used as probes. Compared to the state-of-the-art in Table. 3.10,

our proposed method is much better by 15.57% from the current best Rank@1 identification

rate reported obtained from DFL-RDC [23].

Experiments on CAVIAR: The CAVIAR dataset [15] contains 1220 images of 72 indi-

viduals from 2 cameras in a shopping mall. For the 72 individuals, 50 of them appear in both

camera views and the remaining 22 persons only appear in one camera view. Each identity has
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Method R@1 R@5 R@10 R@20
Ours 30.16 42.64 49.20 59.36
LSSCDL(LOMO)[114] 22.40 - 51.28 61.20
DNSL(LOMO)[112] 15.12 31.92 40.72 53.12
MLAPG(LOMO)[52] 17.60 33.52 43.36 56.08
XQDA(LOMO)[51] 12.96 26.80 34.56 43.52
EPKFM[13] 16.30 35.80 46.00 57.60
MtMCML[62] 14.08 34.64 45.84 59.84
PRDC[123] 9.68 22.00 32.96 44.32

Table 3.9. Comparison results on GRID.

10 to 20 images and the resolutions vary from 17 × 39 to 72 × 144. We use the same experi-

mental protocol with [103, 13, 50] that the persons are randomly split to 36 for training and 36

for testing. It can be observed from Table. 3.10 that the proposed method outperforms all exist-

ing algorithms at Rank@1. We also have the second best performances at Rank@5, Rank@10

and Rank@20, except for the SSCDL [58] algorithm which slightly outperforms our method.

The reasons might be due to the following two facts: [1] the SSCDL exploits the 22 persons

appearing in only one camera as its specific unlabeled training data while our method does not

employ this additional information; [2] the number of identities in this dataset is very small so

the training data (only 36 identities) is not sufficient.

Experiments on CUHK Campus: The CUHK Campus dataset [46] consists of 971 persons

captured from two camera views in a campus environment, two images per person in each

camera view. We split the set to 485 for training and 486 for testing and multi-shot matching

scenario is applied to CUHK Campus dataset for evaluation [51, 1, 77, 103]. We evaluate

the performance by fusing scores of all the probe images of the same identity. As shown in

Table. 3.11, the proposed method consistently outperforms other state-of-the-art methods in all

Rank@1, Rank@5, Rank@10 and Rank@20 identification rates.
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Benchmark Method R@1 R@5 R@10 R@20

PRID 450S

Ours 65.51 86.27 92.27 96.00
XQDA [51] 61.42 - 90.84 95.33
LSSCDL[114] 60.49 - 88.58 93.60
TMA[64] 54.22 73.78 83.11 90.22
TSRPR[77] 43.10 70.50 78.20 86.30
SCNCD[104] 41.60 68.90 79.40 87.80
KISSME[42] 33.00 - 71.00 79.00

iLIDS

Ours 67.67 86.17 90.17 95.00
D-RDC[23] 52.10 68.20 78.00 88.80
LTR[68] 50.34 - - -
MLAPG[52] 49.83 67.50 88.17 93.33
K-Ensb2[103] 40.30 66.70 78.10 89.60
PRDC[123] 37.83 63.70 75.10 88.40

CAVIAR

Ours 51.78 76.57 86.82 96.62
SSCDL[58] 49.10 80.20 93.50 97.90
MLAPG[52] 40.63 71.72 83.34 95.67
MFAχ2[103] 40.20 70.20 83.90 95.10
EPKFM[13] 40.10 65.60 78.00 90.50
χ2
RBF [103] 33.20 65.90 81.90 95.20

LADF[50] 30.30 62.80 78.00 92.60
LFDA[69] 32.00 56.30 70.70 87.40

Table 3.10. Comparison results on P-Rid 450S, iLIDS and CAVIAR.

Method R@1 R@5 R@10 R@20
Ours 68.44 87.16 92.67 95.88
LSSCDL[114] 65.97 - -
DNSL(LOMO)[112] 64.98 84.96 89.92 94.36
MLAPG(LOMO)[52] 64.24 85.41 90.84 94.92
XQDA(LOMO)[51] 63.21 83.89 90.04 94.16
kFLDA(LOMO)[103] 54.63 80.45 86.87 92.02
MFA(LOMO)[103] 54.79 80.08 87.26 92.72
kCCA(LOMO)[54] 54.63 80.45 86.87 92.02
IDLA[1] 47.53 - - -
Mid-L-F[117] 34.30 - 64.96 74.94
TSRPR[77] 32.70 51.20 64.40 76.30
K-Ensb2[103] 24.00 38.90 46.70 55.40

Table 3.11. Comparison results on CUHK Campus.
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Method R@1 R@5 R@10 R@20
Ours 61.68 88.39 95.23 98.47
MLAPG(LOMO) [52] 57.96 87.09 94.74 98.00
XQDA(LOMO) [51] 52.20 82.23 92.14 96.25
DNSL(LOMO) [112] 58.90 85.60 92.45 96.30
DeepReID[47] 20.65 51.50 66.50 80.00
Im-Deep[1] 54.74 86.50 93.88 98.10
Table 3.12. Comparison results on CUHK03 Labeled.

Method R@1 R@5 R@10 R@20
Ours 62.71 87.59 93.80 97.55
MLAPG(LOMO)[52] 51.15 83.55 92.05 96.90
XQDA(LOMO)[51] 46.25 78.90 88.55 94.25
DNSL(LOMO)[112] 53.70 83.05 93.00 94.80
DeepReID[47] 19.89 50.00 64.00 78.50
Im-Deep[1] 44.96 76.01 83.47 93.15
Table 3.13. Comparison results on CUHK03 Detected.

Experiments on CUHK03: The CUHK03 dataset [47] is a large-scale dataset which con-

tains 13164 images of 1360 pedestrians. All the images are captured by six surveillance cameras

over months. Each person is observed by two disjoint camera views with an average of 4.8 im-

ages in each view. Two kinds of data are provided: manually cropped pedestrian images and

images detected with a state-of-the-art pedestrian detector. We follow the same experimental

protocol [47, 52, 51]: splitting all the pedestrians into a training set of 1160 persons and a test

set of 100 persons. The results in Table. 3.12 and Table. 3.13 show that for both two datasets, the

proposed algorithm achieves the best performances at all ranks. It outperforms the second best

approach by almost 10% in Rank@1 rate, even for the data under such a complicated practical

situation, which is very significant.
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Methods Single-Q Multi-Q
R@1 R@20 R@1 R@20

Baseline[119] 35.84 67.64 44.36 73.25
Kissme(LOMO)[119] 40.50 N/A N/A N/A
MFA-χ2(LOMO)[103] 45.67 N/A N/A N/A
kLFDA(LOMO)[103] 51.37 N/A 52.67 N/A
Hist-Loss[89] 59.47 91.09 N/A N/A
Euc(LOMO) [119] 32.93 63.87 40.33 69.40
Euc+OL-MANS 40.93 74.06 51.45 80.98
MLAPG(LOMO)[52] 43.87 88.40 61.33 96.40
MLAPG+OL-MANS 44.93 89.20 62.40 94.27
XQDA(LOMO)[51] 45.87 81.73 56.27 85.07
XQDA+OL-MANS 51.87 84.40 74.00 94.00
DNSL(LOMO)[112] 51.73 88.67 57.70 88.59
DNSL+OL-MANS 60.67 91.87 66.80 92.19

Table 3.14. Comparison results on Market-1501 under both the single-shot and
multiple-shot evaluation settings. Red represents the better result.

Experiments on Market-1501: Market-1501 [119] is the largest image-based P-Rid bench-

mark dataset to date which contains 32668 bboxes of 1501 identities. Each person is recorded

by six cameras at most, and two at least. For training and testing, the given fixed training and

test set are utilized and both single-shot and multi-shot settings are used for evaluation. All the

results are presented in Table. 3.14. We perform our online local metric adaptation algorithm to

different global metric learners [52, 51, 112] based on the same LOMO features and experiment

setting. As shown by the result, for all the global metric learners, a significant improvement on

Rank@1 can be achieved by performing our OL-MANS algorithm to it, no matter under the

single-shot or multi-shot evaluation setting.
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3.6. Discussion

In this chapter, we proposed a novel online local metric adaptation algorithm to learn a

dedicated Mahalanobis metric for each probe at the test stage. This new approach only uses

negative samples for metric adaptation, which is practical in real situation. It largely reduces

the demand for a large number of positive training data as in existing P-Rid methods, and it only

incurs minimum computational costs to perform online training. In-depth theoretical analysis

well justifies our algorithm and extensive experiments also demonstrate that our new approach

consistently and significantly outperforms the state-of-the-art methods.

The main issue in our proposed OL-MANS method is that even multiple probe images for

matching are given at once, no matter they are from the same identity or different identities, our

OL-MANS will handle them individually, the relationships among the given images are simply

ignored by OL-MANS. Such an individual-specific learning strategy is not the most efficient

and effective way for online local metric adaptation. We expect the utilization of the intrinsic

sharing information among samples could refine the OL-MANS to a better solution, that not

only the performance can be further improved, but also the online metric learning burden can

be largely reduced. So that we will present how we achieve this refined solution in Chapter 4.
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CHAPTER 4

Learning From Unlabeled Samples: Joint Local Metric Adaptation From

Sharing

4.1. Introduction

In the past years, most existing P-Rid researches focus on obtaining discriminative metrics

and feature representations offline to better capture the variation of visual appearances [52,

51, 62]. However, limited and imbalanced labeled training samples and the distribution gap

between training and testing data (the training and testing sets contain entirely different classes)

severely constrain the performance. Therefore more attention has been paid to the post rank

Figure 4.1. (a) The batch-shot setting is more practical during online testing
phase. (b) Even no supervision information is available, the visual similarity
sharing among queries is intrinsic.
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refinement during online testing stage. Various re-ranking methods [106, 28, 2, 127, 129, 5, 3]

have achieved promising performance for rank refinement of existing P-Rid baselines, which

rely on either the initial ranking list or extra learning samples. However, no matter for the single-

shot or multi-shot query (Fig. 4.1), the aforementioned online re-ranking methods always treat

each query individually because of the lack of supervision information (identify label) of the

given testing probes.

In practice, the all given probe data can be considered as a batch query set (Fig. 4.1(a)).

These images in the batch usually exhibit different intrinsic sharing relationships in the visual

similarity, but always be ignored and considered to be trivial by the previous re-ranking meth-

ods. As shown in Fig. 4.1(b), even no identity information is known, the red clothes, blue jeans,

raised arms are actually shared visually among these images. Instead of treating each query

separately, we aim to take advantage of such visual similarity sharing by considering the given

query probes as a batch with the expectation that the identification performance should be better

than dealing with them separately. The effectiveness of exploring sharing relationship among

data has been verified by the Multi-Task Learning (MTL) [9] research. The success of MTL

relies on discovering the latent sharing relationships among tasks, which cannot be found by

learning each task independently. Learning from sharing is good at handling such condition

that only a limited number of training data are available for each task by taking the sharing

relationship as a kind of data augmentation. Such sharing strategy is particularly suitable for

P-Rid in where each testing probe itself is the only positive sample available for learning.

In this chapter, we propose a novel Joint Multi-Metric Learning algorithm for online re-

ranking (Fig. 4.2). On the online testing stage, instead of re-ranking each query individually, we

prefer to consider all the testing probes as a batch query set. By automatically mining different
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sharing-subsets that each one contains a group of the visually similar queries, a joint local

Mahalanobis metric is efficiently learned for all the probes in the subset. Therefore a series of

sharing-based local Mahalanobis metrics for all the queries are learned to jointly adjust the local

distributions. The contributions of this chapter are three-fold: (1) We propose a novel online

joint multi-metric learning algorithm which extends the state-of-the-art re-ranking scheme to a

more generalized and feasible model. A theoretical sound optimization approach is proposed

for efficient optimization. (2) By considering the given query probes as a batch query set, the

intrinsic visual sharing relationship is explored. Therefore the total number of the learned local

metrics is largely reduced, as opposed to the linear growth O(n) with independently learned

local metrics. (3) A better re-ranking performance can be achieved via a multi-kernel late fusion

scheme for the jointly learned metrics which has been verified by the extensive experiments on

several P-Rid benchmarks.

This following sections in this chapter are: our proposed novel sharing-based multi-metric

learning algorithm is introduced in Sec. 4.3. Some justifications of the proposed method and

comparisons with the related works are presented in Sec. 4.3.2. Sec. 4.5 shows extensive exper-

imental results to support the proposed method. Finally, conclusions and discussions are made

in Sec. 4.6.

4.2. Related Work

4.2.1. Online Rank-Refinement For P-Rid

In recent years, online rank-refinement technique has attracted more attention in P-Rid commu-

nity [105, 28, 127, 5, 106, 3, 129]. Garcia et al. [28] proposed an unsupervised re-ranking model

by taking advantage of the content and context information in the ranking list. Ye et al. [105]
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revised the ranking list by considering the nearest neighbors of both the global and local fea-

tures. A ranking aggregation algorithm is proposed by Ye. et al. [106] to utilize both similarity

and dissimilarity evidence from various baseline methods. Bai et al. [3] aimed to refine the

ranking results by estimating the similarity between two samples in the context of other pairs

of references under the proposed Supervised Smoothed Manifold (SSM). Zhong et al. [127]

proposed a k-reciprocal encoding method for re-ranking by assuming that a gallery image is

more likely to be a true match if it is similar to the probe in the k-reciprocal nearest neighbors.

Zhou et al. [129] proposed a novel instance-specific local metric adaptation algorithm to learn

different Mahalanobis metrics for different probes by using extra negative samples. Barman

et al. [5] focused on how to make a consensus-based decision for retrieval by aggregating the

ranking lists from multiple algorithms, only the matching scores are needed. Compared with

the aforementioned online re-ranking approaches, the most important difference in our method

is to fully utilize the similarity sharing information with a low learning burden by considering

the given probes as a batch query, instead of treating them separately. More appealing merits of

our method are discussed in Sec. 4.4 in detail.

4.2.2. Multi-Task Learning For P-Rid

Multi-task learning-based P-Rid methods [27, 65, 83, 62] are proposed to facilitate the small-

size sample (SSS) issue in P-Rid [112] by learning from sharing. A multi-task maximally col-

lapsing metric learning (Mt-MCML) model is proposed by Ma et al. [62] to jointly learn mul-

tiple Mahalanobis distance kernels for data from different distributions. Recently, McLaughlin

et al. [65] made use of multi-task learning for deep network model design in order to prevent

over-fitting to the small-size training data. Gao et al. [27] proposed a multi-task CNN combining
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Figure 4.2. Unlike existing online re-ranking approaches, our proposed method
aims to improve the ranking results by utilizing the sharing information among
given queries to learn a set of dedicated local metrics for all the testing probes.
The affinity matrix of given queries is computed based on their extracted features
by a baseline method, then a series of sharing-subsets is automatically mined to
cluster queries into different visually similar groups. Thus multiple sharing-
subset specific metrics are jointly learned by our proposed algorithm which are
further utilized by a multi-kernel late fusion module for re-ranking. (Best view
in color)

the Softmax loss with Siameses loss for retrieval. A novel multi-task learning with low-rank

attribute embedding (MTL-LORAE) framework is proposed by Su et al. [83] to address the

multi-modal data distribution issue. However, these multi-task learning-based approaches only

utilize the sharing relationships on the offline training stage, no instance-specific local adapta-

tion is considered for the unseen testing samples. So the performance is indeed limited due to

the shifted testing data distribution, that samples for testing are drawn from different classes.

Our proposed method addresses this issue by jointly learning multiple local metrics for different

testing queries via exploring the intrinsic sharing relationships among them.
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4.3. Joint Multi-Metric Learning From Sharing

4.3.1. Definition of Problem

The given testing datasets contain: a query set Q and a gallery set G

(4.1)
Q = {(qi, lq,i)}nq

i=1

G = {(gi, lg,i)}ng

i=1

that qi and gi are feature representations by either hand-crafted [104, 61, 51] or offline learned

(metric learning [112, 52], deep embedding [43, 80, 87, 34], etc). lq,i and lg,i are the corre-

sponded class labels. All the samples in Q and G are drawn from c classes. Here we consider

the closed-set condition that both the Q and G contain samples from all the c classes respec-

tively.

P-Rid aims to obtain a ranking list of G for each query qi based on the visual similarity

between qi and gj:

(4.2) d (qi, gj) = ‖qi − gj‖2

Our goal is to refine the initial ranking results by boosting the rank of true-matches for qi.

4.3.2. Unsupervised Sharing-Subset Mining

Although the supervision information (identity label) {lq,i} ofQ is unknown on online stage, the

intrinsic visual similarity amongQ implies salient sharing relationships, regardless of the super-

vision information exists or not. Therefore an unsupervised sharing-subset (SSSet) mining al-

gorithm (Alg.1) is proposed to automatically groupQ into different sharing-subsets {Ri}nr
i=1, in
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where all the samples inRi share strong visual similarity to each other. Typically such sharing-

subset mining is a combinatorial problem suffering from exponential computation complexity

O(2n), inspired by the boosting research [88], we solve the sharing-subset mining problem via

an efficient heuristic greedy solution.

The affinity matrix A ∈ Rnq×nq of Q is defined as:

(4.3) Ai,j =

 exp
(
−d(qi,qj)

2σ

)
, i 6= j

0, i = j

where σ is the variance parameter of distance matrix from Q so that Ai,j represents the visual

similarity between qi and qj . A is further normalized to a soft-max affinity distribution matrix

As:

(4.4) As
i,j =

Ai,j∑
j Ai,j

that the i-th row of As represents the similarity distribution between qi and the other samples in

Q. In order to mine the most reliable sharing relationships, a threshold Θ defined as the average

affinity of the top-k nearest neighbors for all Q is used for outlier filtering:

(4.5) Θ =

∑nq

i=1

∑k
j=1 As

i,Ni(j)

k · np

where Ni(j) is the index of j-th largest element in i-th row of As. Therefore, a binary index

map B is obtained by:

(4.6) Bi,j =

 1, As
i,j ≥ Θ

0, As
i,j < Θ
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The non-zero Bi,j implies the strong similarity sharing relationship between qi and qj . Finally,

each mined sharing-subset is one of the nr non-zero rows of B:

(4.7) Ri = {qj}, ∀Bi,j = 1

Algorithm 1 Unsupervised Sharing-Subset Mining
Require: The given query set Q
Ensure: nr sharing-subsets {Ri}nr

i=1

1: Compute the normalized affinity matrix As of Q by Eqn. 4.3 and Eqn. 4.4;
2: Compute the threshold Θ by Eqn. 4.5;
3: Compute the binary index map B by Eqn. 4.6;
4: Mine each sharing-subset by Eqn. 4.7;
5: Return {Ri}nr

i=1

4.3.3. Joint Multi-Metric Learning ForRi

Once the SSSets {Ri}nr
i=1 are obtained via Alg.1, our goal is to jointly learn nr sharing-based

Mahalanobis metrics from {Ri}nr
i=1 in order to collapse the same-SSSet samples together mean-

while push the different-SSSet samples far away. So the designed objective is:

(4.8)

Mr = arg min
Mr

1

2
‖Mr‖2

w.r.t : Mr � 0(
qposi − q

neg
j

)T Mr

(
qposi − q

neg
j

)
≥ 2, ∀qposi ∈ Rr, q

neg
j ∈

⋃
k 6=r

Rk

(
qposi − q

pos
j

)T Mr

(
qposi − q

pos
j

)
= 0, ∀qposi , qposj ∈ Rr
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For the r-th SSSetRr, a specific Mahalanobis metric Mr is learned by Eqn. 4.8 which is shared

by all the samples inRr. For simplicity, we reduce the size of inequality and equality constraints

in Eqn. 4.8.

Theorem 8. The objective Eqn. 4.8 has an exactly equivalent form by only keeping the con-

straints related to one anchor sample qpos in Rr, that qpos can be any sample in Rr. Therefore

the equivalent form is Eqn. 4.9:

(4.9)

Mr = arg min
Mr

1

2
‖Mr‖2

w.r.t : Mr � 0(
qpos − qnegj

)T Mr

(
qpos − qnegj

)
≥ 2, ∀qnegj ∈

⋃
k 6=r

Rk

(
qpos − qposj

)T Mr

(
qpos − qposj

)
= 0, ∀qposj ∈ Rr

PROOF. Revisit Eqn. 4.8, the equality constraints in it propose to collapse all qposi ∈ Rr

together. Therefore keeping only the equality constraints related to the anchor sample qpos

achieves the same collapsing performance. So as to the inequality constraints in Eqn. 4.8.

Finally we can reduce the constraint size by only considering qpos. The re-written objective

Eqn. 4.9 has only O(n) linear-scale constraints, while the scale of constraints in the original

objective Eqn. 4.8 is quadratic O(n2). �

The Eqn. 4.9 can be efficiently optimized by solving a much easier version [25]:

Theorem 9. All the vectors qpos− qposj can form a spanning space S = span(
∑

j λj(q
pos−

qposj )). The Eqn. 4.9 is equivalent to replace qpos−qnegj by yj , which is the projection of qpos−qnegj

to S⊥, that S⊥ is the orthogonal space of S.
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PROOF. Since Mr is positive semi-definite, the constraint
(
qpos − qposj

)T Mr

(
qpos − qposj

)
=

0 is equivalent to Mr

(
qpos − qposj

)
= 0 which means the Mrs = 0 for all s ∈ S. Project

qpos − qnegj to S and S⊥ generates two orthogonal bases xj and yj respectively, so qpos − qnegj =

xj + yj . Replace the inequality constraints in Eqn. 4.9 by xj + yj:

(4.10)

(
qpos − qnegj

)T Mr

(
qpos − qnegj

)
= (xj + yj)

T Mr (xj + yj)

= yj
TMryj

Now Eqn. 4.9 has an equivalent form as:

(4.11)

Mr = arg min
Mr

1

2
‖Mr‖2

w.r.t : Mr � 0

yj
TMryj ≥ 2, ∀qnegj ∈

⋃
k 6=r

Rk

Mrs = 0, ∀s ∈ S

�

Finally, we prove that Eqn. 4.11 has the same solution to Eqn. 4.8 by solving a kernel SVM

problem without its PSD constraint Mr � 0 and equality constraints, and the solution is still

PSD.

Theorem 10. The solution to Eqn. 4.8 is exactly the same as solving the Eqn. 4.11 by

relaxing its equality and PSD constraints, since they are indeed off-the-shelf.
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PROOF. If we get rid of the equality and PSD constraints in Eqn. 4.11, the new form is:

(4.12)

Mr = arg min
Mr

1

2
‖Mr‖2

w.r.t : yj
TMryj ≥ 2, ∀qnegj ∈

⋃
k 6=r

Rk

Eqn. 4.12 is exactly the same form of the objective in [129]. As proved by the Theorem.1

in [129], the positive semi-definiteness of Mr is guaranteed even if no PSD constraint is ex-

plicitly imposed in Eqn. 4.12 since Mr =
∑
αiϕ(yi) =

∑
αiyi · yTi � 0. For the equality

constraints in Eqn. 4.11, given a member s of S, we have:

(4.13) Mrs =
(∑

αiyi · yTi
)
s =

∑
αiyi · (yTi s) = 0

which proves that the solution to Eqn. 4.12 satisfies the equality constraints as well. �

4.3.4. Multi-Metric Late Fusion For P-Rid

Our proposed objective Eqn. 4.8 can be efficiently solved via Theorem. 10. Therefore a set

of sharing-based local metrics {Mr}nr
r=1 are readily obtained. For one query probe qi, it may

be contained by multiple sharing-subsets so that there will be multiple learned metrics Mr

associated to qi. The final metric Mqi for qi is a boosting-form multi-kernel late fusion [82, 81]:

(4.14) Mqi =
nr∑
r=1

Br,iMr

For a gallery image gj , the distance between qi and gj is:

(4.15) dMqi
(qi, gj) = (qi − gj)T Mqi (qi − gj)
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4.4. Justification and Comparison

Compared with the closely related state-of-the-art re-ranking technique [127] and [129], our

proposed algorithm owns more appealing merits which are verified by the comparison experi-

ments in Sec. 4.5.6.

Ours vs [129]: As proved by Theorem. 10, [129] is just a special case of ours. Therefore our

method outperforms [129] by three main advantages. (1) our method is more robust to over-

fitting than [129] since the sharing-subset is a kind of positive data augmentation. Compared

with using the only one testing query as positive for learning, the usage of sharing-subset in

our method will increase the diversity and reduce the variation of the given queries. (2) Our

proposed method has better and more stable performance than [129], since each jointly learned

metric Mr owns the exact same property as [129], so the error bound of Mr is reduced. The late

fused metric kernel Mqi =
∑nr

r=1 Br,iMr for query qi performs better than each single Mr in

practical identification problems verified by previous research [81, 82]. (3) The last merit is the

low computational burden of our method. [129] needs to learn nq individual local metrics for all

Q which is linearly ordered, while by utilizing visual similarity sharing, our method only needs

to learn much fewer sharing-based joint metrics but achieves better performance (As shown in

Sec. 4.5.5).

Ours vs [127]: Compared with re-ranking technique [127], our method takes advantage of

the visual similarity sharing relationship among the unlabeled query set Q to find the optimal

online local metric adaptation. (1) For effectiveness concern, [127] depends heavily on the

quality of initial ranking list (if the true match is not in the top-k ranks). It may hurt the initial

rank result, because the true match may have a lower rank after re-ranking if the false matches

are included in the top-k list. Instead, the performance of our method relies on the quality of
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Dataset VIPeR GRID PRID450S PRID2011 CUHK01 Mkt-1501 Duke
# identities 632 250 450 200 971 1501 1404
# cameras 2 8 2 2 2 6 8
# distractors 0 775 0 0 0 2793 408
# BBoxes 1264 500 900 >20000 1942 32668 36411

Table 4.1. The statistics of different P-Rid benchmark datasets.

the mining sharing-subsets [129]. For the worst case that the quality of sharing-subsets is pretty

bad, no hard negatives are provided and the query set shares nothing within itself, our method

still will not degrade the original performance but degenerate to the previous special case [129].

(2) Another merit of our method is its high efficiency. The optimization of our method is

efficient even if there are a lot of query samples available. Because the learned sharing-based

joint metric Mr is only related to a handful set of hard negatives in
⋃
k 6=rRk.

4.5. Experiments

4.5.1. Experimental Settings

Datasets. Several P-Rid datasets are tested including the VIPeR [31], QMUL GRID [60], PRID

450S [74], PRID 2011 [35], CUHK 01 [46], Market-1501 [119] and DukeMTMC-reID [124].

The statistic details of the above datasets are summarized in Table. 4.1. For the VIPeR, GRID,

PRID 450s and PRID 2011 datasets, we follow the widely adopted experimental protocol [52,

13] that all the persons in each dataset are randomly divided into half for training and the other

half for testing, then 10-run-average performance is reported. For CUHK 01, which consists of

971 persons captured from two camera views with two images per person in each camera view,

we split the persons into 485 for training and 486 for testing [51, 103]. For Market-1501 and

DukeMTMC-reID, the given fixed training and testing sets are directly utilized.
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Figure 4.3. The comparison of re-ranking improvement on VIPeR. For each
probe, its top-10 ranking results (from left to right) are retrieved by the baseline
(1st row) [52], OL-MANS (2nd row) [129], and our method (3th row). (Best
view in color and enlarged)

Evaluation. For a fair comparison, all the experiments are conducted in the same experi-

mental setting. For evaluation, the single-shot evaluation setting is adopted 1 and all the results

are reported in the form of Cumulated Matching Characteristic (CMC) at several selected ranks.

For Market-1501 and DukeMTMC-reID, mean average precision (mAP) is also reported.

Features and Baselines. Both the hand-crafted and deep features are tested. The LOMO [51]

feature is selected as the hand-crafted representation. Besides, several deep features, Caf-

feNet [43], VGG16 [80], GoogLeNet [87] and ResNet50 [34] are chosen as deep feature repre-

sentatives. Several state-of-the-art global metric learning approaches, MLAPG [52], XQDA [51]

and DNSL [112], are selected as the baselines. Finally, two recently proposed online re-ranking

methods, [129] and [127] are compared with our algorithm.

1multi-shot evaluation is applied to CUHK 01
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Figure 4.4. The influence of parameter k in Eqn. 4.5. The x-axis is the rank and
the y-axis is the identification rate.

4.5.2. Influence of Parameter k in Eqn. 4.5

Recall Eqn. 4.5, the parameter k influences the quality of sharing-subset by influencing the

threshold Θ, which will further influence the re-ranking performance of our method. If k is

too small, the sharing information cannot be fully explored; while if k is too large, the sharing-

subset will be polluted. Fig. 4.4 shows the influence of different choices of k on both the VIPeR

and PRID 2011 datasets. If the given queries convey sufficient sharing information (PRID

2011), the larger the k is, the better the performance is. While for the single-shot VIPeR dataset,

the testing probes are indeed visually discriminative to each other so small k will guarantee the

purity of sharing information. In our experiments, we normally set k = 6.

4.5.3. Influence of Baseline Quality

Our method can be applied on top of any offline learned P-Rid baselines, thus its overall per-

formance may depend on the learning quality of the baseline. In order to verify whether our

proposed method can always be helpful, a global metric learner baseline MLAPG [52] is tested

that different MLAPG results are obtained at different learning stages to serve as baselines.

Fig. 4.5 shows even the learned baseline does perform poorly (in its early training stages), our
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Figure 4.5. The influence of learning quality of f(·). The x-axis is the max-
learning iteration and the y-axis is the identification rate.

algorithm is still able to consistently and significantly improve the performances at all ranks by

a large margin.

4.5.4. Influence of Baseline Choice

To verify that our method should work for any offline learned baseline models and any kinds

of features, we conduct the experiments that different combinations of baselines (Euclidean

distance, XQDA, MLAPG and DNSL) and feature descriptors (illustrated in Sec. 4.5.1) are

tested with(w/) and without(w/o) our proposed method. A thorough comparison result is shown

in Table. 4.2, no matter for the hand-crafted feature (LOMO) or the learned deep features, no

matter on the small-size GRID dataset or the larger-scale Market-1501 benchmark, our method

can always achieve non-trivial improvement on Rank@1 performance, even double the accuracy

on GRID.

4.5.5. Influence of Computational Cost

We conduct experiments to verify that the total number of jointly learned metrics by our method

is sub-linear. Fig. 4.6 shows the number of learned local metrics and how many probes are
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Dataset Rank@1 Euclidean MLAPG[52] XQDA[51] DNSL[112]

VIPeR

LOMO[51] 15.3→22.3 40.3→44.6 39.0→44.3 40.2→43.6
CaffeNet[43] 18.4→22.4 19.0→19.5 23.1→27.9 23.1→24.5
VGG16[80] 17.4→20.1 20.0→20.2 23.5→29.3 24.9→27.1
GoogLeNet[87] 22.3→25.8 24.8→26.6 21.7→29.8 25.9→29.4
ResNet50[34] 22.0→25.7 23.7→25.8 33.6→41.6 34.1→39.5

Dataset Rank@1 Euclidean MLAPG[52] XQDA[51] DNSL[112]

GRID

LOMO[51] 08.2→21.5 16.5→27.9 16.5→33.0 14.6→31.0
CaffeNet[43] 07.4→13.5 08.1→11.4 12.2→23.6 11.6→19.1
VGG16[80] 06.3→12.2 07.5→10.2 09.9→20.7 09.8→16.6
GoogLeNet[87] 15.3→21.1 14.2→17.9 15.4→29.4 15.4→22.6
ResNet50[34] 10.3→18.6 10.3→16.2 23.1→39.9 18.6→31.9

Dataset Rank@1(mAP) Euclidean XQDA[51]

Market-1501

CaffeNet[43] 64.7(41.9)→71.9(47.4) 63.6(36.3)→76.3(50.6)
VGG16[80] 63.9(42.5)→71.9(48.7) 64.0(38.4)→76.9(53.9)
GoogLeNet[87] 75.4(53.9)→82.9(60.9) 74.6(50.9)→85.7(65.4)
ResNet50 [34] 77.2(56.1)→82.7(61.8) 77.4(53.7)→85.0(64.4)

Table 4.2. Comparison of Rank@1 performance with/without our method us-
ing different features under different baselines. For each result, the format is
baseline result w/o ours→ our result

covered by the learned local metrics under different k on different datasets. For the traditional

individual learning methods [114, 129], np testing probes need np individually learned metrics

to cover. However, our method needs much fewer jointly learned metrics. With the increase

of k, fewer joint metrics are needed but more probes are covered since each joint metric will

cover more visually similar query probes. The results of PRID 2011 (Fig. 4.6(a)) show even

fewer joint metrics are used when k grows larger, better performance can be achieved due to the

exhaustive utilization of the sharing information.
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Figure 4.6. Computational cost comparison. The x-axis is the parameter k and
the y-axis is the number of learned local metrics

4.5.6. Comparison with Re-Ranking Methods

We compare the aforementioned state-of-the-art recently methods in Sec. 4.4 with our method

on different datasets. For a fair comparison, our method and [129] use the same NDB, and

various parameters of [127] are tested to report the best performance. The Rank@1 performance

is reported in Table. 4.3. If the original ranking result is pretty bad, [127] will further degrade

the baseline performance. In contrast, [129] and ours will not harm the original result, while

our method outperforms [129] by a large margin due to joint learning from sharing-subsets.

Besides, our method can easily combine [127] to further boost the performance. Visual results

are shown in Fig. 4.3, even for these “hard” queries that [129] cannot work well, our method is

still able to handle them.

4.5.7. Comparison with the State-of-the-art

Experiments on VIPeR: The comparison results are reported in Table. 4.4. Our method

achieves the second-best performance on all the ranks except for the recent SCSP[114]. But

we can use the weak XQDA/MLAPG learners to beat the other strong learners by a large mar-

gin.
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Method VIPeR GRID CUHK01 Market1501
Euc 15.3 08.1 17.0 75.4(53.9)
Euc+[127] 11.8 09.5 16.8 78.2(66.2)
Euc+[129] 22.0 21.5 33.8 81.4(60.5)
Euc+Ours 22.3 21.5 34.3 82.9(60.9)
Euc+[127]+Ours 21.6 20.4 33.9 81.3(66.9)
XQDA 39.0 16.5 63.9 74.6(50.9)
XQDA+[127] 38.9 15.7 63.3 78.7(66.8)
XQDA+[129] 41.9 32.1 67.8 82.3(60.9)
XQDA+Ours 44.3 33.0 68.9 85.7(65.4)
XQDA+[127]+Ours 44.2 31.8 68.9 82.9(69.0)
DNSL 40.2 14.6 65.9 66.3(41.9)
DNSL+[127] 40.0 13.7 64.3 68.0(54.1)
DNSL+[129] 42.0 30.7 65.9 69.1(44.7)
DNSL+Ours 43.6 31.0 69.5 71.1(47.2)
DNSL+[127]+Ours 43.9 29.8 68.7 69.4(53.8)

Table 4.3. Comparison of different online re-ranking methods. Rank@1 or
Rank@1(mAP) performance is reported.

Experiments on Market-1501: Table. 4.4 shows the comparison results on Market-1501

by performing our method to different deep learning models. As can be seen, a significant

improvement on Rank@1(mAP) can be achieved by performing our algorithm to it.

Experiments on DukeMTMC-reID: Table. 4.4 shows the poor performances of the weak

XQDA/MLAPG learners can be boosted to the state-of-the-art level by utilizing our method.
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4.6. Conclusion

In this chapter, unlike existing P-Rid re-ranking approaches which treat different query

probes individually, we consider all the given testing queries as a batch query set. By uti-

lizing their visual similarity sharing relationships, a novel joint multi-metric learning algorithm

is proposed to simultaneously learn a set of sharing-based local Mahalanobis metrics for all

the queries in the batch. Extensive experiments demonstrate that our method consistently and

significantly outperforms the state-of-the-art methods.

No matter for our OL-MANS work in Chapter 3 and this joint multi-metric learning work in

this chapter, both of them only focus on how to enhance the local discriminant of the probe-side

samples in visual matching. However, for the counterpart gallery samples, no effort is paid to

them but directly using them for visual matching. But the “hard” gallery samples which are

still indistinguishable under the learned probe-specific local metrics will significantly influence

the visual matching performance. In order to address these “hard” gallery distractors, the local

discriminant of gallery samples still needs to be enhanced.
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CHAPTER 5

Learning From Mixture Of Labeled and Unlabeled Samples: Online

Bi-directional Local Discriminant Enhancement

5.1. Introduction

Person Re-Identification (P-Rid), focusing on retrieving the same identity images of a query

probe from a gallery set, still remains a challenging task in computer vision. In order to address

the challenges of large variations in human pose, camera viewpoint, illumination change, and

background clutter, the existing P-Rid research mainly focuses on offline discriminative met-

ric learning [52, 51, 112, 4] or feature embedding [48, 56, 92]. However, due to the critical

distribution shifting issue of testing data, that the samples for testing are drawn from totally

different distributions against the training data, the performance of the offline learned metrics

and features is limited.

To narrow the gap between training and testing data distribution, various online rank refine-

ment methods [105, 28, 127, 129, 5] are proposed for the sake. However, most online re-ranking

methods [105, 28, 127, 5] simply treat different probes equally without considering the individ-

ual characteristics, so that their improvement performance is neither significant nor stable. To

enhance the local discriminant of different probes, several algorithms [114, 129] are proposed

to learn an instance-specific local metric for each query probe, while the involved gallery data

is simply ignored in learning but only used for final retrieval. Even a discriminative local met-

ric for one probe can be learned, the “hard”gallery samples with large intra-class variance and
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Figure 5.1. For a query probe, the extreme challenging hard negative distractors
in the gallery set (in blue box) will significantly influence the retrieval accuracy
(1st row). Even using the state-of-the-art online rank refinement method [129]
(2nd row), the ground-truth (in red box) still has a lower rank than the distractors.
By taking advantage of our proposed bi-directional local discriminant enhance-
ment method, the true-match is successfully re-ranked to the top (3rd row).

small inter-class variance will tremendously degrade the retrieval performance (Fig. 5.1) since

such “hard” gallery samples are still indistinguishable under the learned probe-specific metric.

In this chapter, a novel online ranking refinement algorithm is proposed to fully utilize all

the given probe and gallery data. By taking advantage of the instance-specific bi-directional

local discriminant enhancement, a two-stage hierarchical local adaptation algorithm is designed

as illustrated in Fig. 5.2. The local discriminant of a given probe is firstly enhanced via an ex-

tended probe-specific metric adaptation method to obtain a re-ranking list of the gallery samples.

For the top-ranked gallery candidate, an instance-specific local discriminant enhancement algo-

rithm is adopted to further refine its local similarity distribution. By performing a bi-directional
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retrieval matching based on the bi-directional local discriminant enhancement result, a final re-

ranking list is determined. Our main contributions of this work are three-fold: (1) To handle

the severe shifted data distribution issue in P-Rid, we propose a novel instance-specific rank

refinement algorithm by taking advantage of bi-directional local discriminant enhancement,

which extends the state-of-the-art re-ranking scheme [129] to a more generalized and feasible

model. (2) To fulfill the time-efficient requirement of re-ranking, a theoretical sound optimiza-

tion solution is proposed for efficient learning which is theoretically proven to guarantee the

improvement of baseline performance. (3) While we present our algorithm in the context of

P-Rid, it can be potentially applied to any other general visual retrieval-based tasks. The effi-

ciency and effectiveness of our proposed algorithm are verified by the extensive experiments on

four large-scale P-Rid benchmarks (CUHK03, Market1501, DukeMTMC-reID and MSMT17).

The organization of the following sections are: in Sec. 5.2, some related works about online

re-ranking of visual matching and the state-of-the-art methods are introduced. Our proposed

method is presented in Sec. 5.3. Extensive experimental results of our proposed method are

shown in Sec. 5.4 and conclusions are made in Sec. 5.5.

5.2. Related Work

5.2.1. CNN-based Feature Extraction For P-Rid

CNN-based feature extraction has achieved the state-of-the-art performance in P-Rid owning to

a better spatial alignment of local image parts. A novel Harmonious Attention CNN (HA-CNN)

proposed by Li et al. [48] tries to jointly learn attention selection and feature representation in a

CNN by maximizing the complementary information of different levels of visual attention (soft

attention and hard attention). Liu et al. [56] proposed a network called CAN which combines
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Figure 5.2. For online testing, a query probe and a gallery set is directly tested
by a baseline method to achieve the initial ranking list. By performing probe-side
local discriminant enhancement, a refined ranking list is obtained. For the top-Ng

ranked gallery images, the gallery-side local discriminant enhancement is further
performed to adjust the local similarity distributions of galleries. Therefore the
final ranking list is obtained by a bi-directional retrieval matching.

attention methods with LSTM to obtain discriminative attention feature of the whole image.

Wang et al. [92] proposed a novel deeply supervised fully attentional block that can be plugged

into any CNNs to solve P-Rid problem, and a novel deep network called Mancs is designed

to learn stable features for P-Rid. However, these well-trained networks are directly used for

the testing data for deep feature extraction, no local adaptation is in the loop. The data shift-

ing between training and testing samples definitely limits the performance of learned models.

Therefore, our proposed method is suitable to any CNNs for sample-specific local adaptation in

inference stage, which can handle the data shifting problem well and gain a further performance

improvement.
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5.2.2. Local Metric Learning For P-Rid

In recent years, more attention has been focused on learning local metrics to facilitate P-Rid.

To tackle the multi-modal distributions of the person appearances, Zhang et al. [111] utilized

the local distance comparison in P-Rid to obtain an accurate matching. Pedagadi et al. [69]

proposed to combine the FDA and Locality Preserving Projections (LPP) together to exploit the

local geometrical information of samples. Li et al. [50] combined a traditional distance metric

with a local decision rule to form a Locally-Adaptive Decision Function (LADF) which aims to

improve the local discriminant of given data. To handle the common over-fitting issue in P-Rid,

a regularized local metric learning (RLML) method designed by Liong et al. [53] aims to utilize

the merits of both the global and local metrics. A sample-specific SVM classifier is learned in

Zhang et al. [114] for each training sample, then the weight parameters of a testing sample can

be inferred. In order to relax the large-number labeled image pair requirement in P-Rid, a novel

one-shot learning approach is proposed by Baket al. [4] which only requires a single image

from each camera for training, thus the learning result is specific to the only sample. However,

these local metric learning methods still perform an offline global-learning procedure, a large

number of labeled data are required. Their performance is indeed limited if testing data are

from different distributions. To address this issue, our proposed method adopts an online local

adaptation manner to adapt the offline learned baselines to each testing sample specifically.

5.2.3. Online Rank Refinement For P-Rid

Online rank refinement technique is widely adopted for further performance improvement in

P-Rid. Ye et al. [105] revised the ranking list by considering the nearest neighbors of both the

global and local features. An unsupervised re-ranking model proposed Garcia et al. [28] by
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taking advantage of the content and context information in the ranking list. Zhong et al. [127]

proposed a k-reciprocal encoding approach for re-ranking, which relies on a hypothesis that if

a gallery image is similar to the probe in the k-reciprocal nearest neighbors, it is more likely

to be a true match. Recently, Zhou et al. [129] proposed a novel online local metric adaptation

algorithm to learn an instance-specific Mahalanobis metric for each query sample, and only the

negative data are utilized for learning. Barman et al. [5] focused on how to make a consensus-

based decision for retrieval by aggregating the ranking results from multiple algorithms, only

the matching scores are needed. Unlike [105, 28, 127, 5] that simply treat different probes

equally without considering the instance-specific characteristics, our method aims to handle

different probes via different local discriminant enhancement. Compared with the probe-centric

re-ranking algorithm [129], our method jointly utilizes both the probe and gallery data to achieve

a better re-ranking performance.

5.3. Our Proposed Method

5.3.1. Problem Settings and Notations

Denote the three given disjoint training set T , probe set P and gallery set G, as

(5.1)

T =
{(
ti, l

t
i

)}nt

i=1

P = {(pi, lpi )}
np

i=1

G = {(gi, lgi )}
ng

i=1

that ti, pi, gi ∈ Rd are the extracted feature representations from a baseline model, either hand-

craft feature or learned deep feature via T . lti ∈ {1, 2, ..., ct} is the training sample label from

ct classes, and all the samples in P and G are drawn from the other c different classes which
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have no overlap with the above ct classes. The common-used closed-set condition is adopted

that both the P and G contain samples from all the c classes respectively. Follow the setting

in [129], an additional negative sample database (NDB), denoted by Z = {zi}ki=1 is provided.

5.3.2. Adapt P via Slacked-OLMANS

The goal of OLMANS [129] is to adaptively adjust the local similarities for all the samples in

P by solely utilizing the NDB Z . Revisit the objective in [129]:

(5.2)

Mpi = arg min
Mpi

1

2
‖Mpi‖

2

w.r.t : Mpi � 0

(pi − zj)T Mpi (pi − zj) ≥ 2, ∀1 ≤ j ≤ k

Eqn. 5.2 can be efficiently solved by a kernel-SVM solver in [129]. However, the original

objective Eqn. 5.2 has strict margin requirement by the inequality constraints, which will result

in over-fitting on non-separable distributions and performance degradation on the severe cases.

In order to introduce more flexibility, we modify Eqn. 5.2 by adding the slack variables {ξj} in

the loop so that the very few extremely hard negatives is tolerated during learning.

(5.3)

Mpi = arg min
Mpi

1

2
‖Mpi‖

2 + Θ
∑

ξj

w.r.t : Mpi � 0

(pi − zj)T Mpi (pi − zj) ≥ 2− ξj, ∀1 ≤ j ≤ k

ξj ≥ 0, ∀1 ≤ j ≤ k
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Follow a similar proof in [129], by eliminating the PSD constraint in Eqn. 5.3, the above

objective still can be solved via a kernel-SVM solver with slack variable constraints.

5.3.3. Adapt G via Local Discriminant Enhancement

Once Mpi is learned, a re-ranking list Rpi = {g1,pi , g2,pi , ..., gNg ,pi} containing the top-Ng re-

trieval results for pi is obtained via:

(5.4) DMpi
(pi, gj) = ‖pi, gj‖2

Mpi
= (pi − gj)TMpi(pi − gj)

However, as we present in Fig. 5.1, the re-ranking list Rpi (2nd row) may suffer from am-

biguous distractors. The similar gallery images from different identities will significantly de-

grade the discriminant of Mpi since such distractors are still indistinguishable under Mpi . So

the local discriminant of these indistinguishable gallery samples needs to be further enhanced.

To facilitate the reading, we re-write Rpi = {g1, g2, ..., gNg} for simplicity and their identity

label is {lg1 , lg2 , ..., lgNg
}. Thus for each gj ∈ Rpi , we optimize the following objective:

(5.5)

Mgj = arg min
Mgj

1

2

∥∥Mgj

∥∥2
+ Θ+

∑
ξposj + Θ−

∑
ξnegj

w.r.t : Mgj � 0(
gj − gposj

)T Mgj

(
gj − gposj

)
≤ ξposj ,

∀gj, gposj ∈ Rpi , lgj = lgposj(
gj − gnegj

)T Mgj

(
gj − gnegj

)
≥ 2− ξnegj ,

∀gj, gnegj ∈ Rpi , lgj 6= lgneg
j
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The Eqn. 5.5 proposes to collapse the same-identity galleries gposj together to reduce inter-

identity variation, meanwhile push the different-identity ones gnegj far away, so that the local

discriminant of gj is enhanced. By transforming Eqn. 5.5 via a spanning space projection, the

optimization of Eqn. 5.5 is proved to be solving a projected version [25]:

Theorem 11. Define the spanning space S = span{gj − gposj }j and its orthogonal space

S⊥, then project gj − gnegj on S⊥ to obtain a projected vector denoted as vj . The solution of

Eqn. 5.5 is equivalent to solve a re-formed objective Eqn. 5.6.

(5.6)

Mgj = arg min
Mgj

1

2

∥∥Mgj

∥∥2
+ Θ−

∑
ξnegj

w.r.t : Mgj � 0

vj
TMgjvj ≥ 2− ξnegj , ∀gnegj ∈ Rpi

Mgjs = 0, ∀s ∈ S

PROOF. Since Mgj is PSD, the constraint
(
gj − gposj

)T Mr

(
gj − gposj

)
≤ ξposj is equivalent

to Mgj

(
gj − gposj

)
= 0 which means the Mgjs = 0 for all s ∈ S . By projecting gj − gnegj on

S and S⊥ to obtain two projected vectors denoted as sj and vj respectively, each gj − gnegj is

equivalent to the summation of this two orthogonal bases, gj − gnegj = sj + vj . So the negative

constraints in Eqn 5.5 is re-written as:

(5.7)

(
gj − gposj

)T Mgj

(
gj − gposj

)
= (sj + vj)

T Mgj (sj + vj)

= vj
TMgjvj
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Now we can re-form Eqn. 5.5 via replacing the negative constraints in Eqn. 5.5 by Eqn. 5.7,

which gives us the equivalent object Eqn. 5.6. �

Revisit Eqn. 5.6, we prove that it is equivalent to a kernel slacked-SVM problem by relaxing

its PSD constraint Mgr � 0 and equality constraints, and the solution is still a PSD metric.

Theorem 12. The solution to Eqn. 5.5 is actually equivalent by relaxing the equality and

PSD constraints in Eqn. 5.6, since they are indeed off-the-shelf.

PROOF. Eliminating the equality and PSD constraints in Eqn. 5.6 gives us:

(5.8)
Mgj = arg min

Mgj

1

2

∥∥Mgj

∥∥2
+ Θ−

∑
ξnegj

w.r.t : vj
TMgjvj ≥ 2− ξnegj , ∀gnegj ∈ Rpi

Eqn. 5.8 is exactly the same form of the objective in [129] but with slack variables. So the

positive semi-definiteness of Mgr is guaranteed even if no PSD constraint is explicitly imposed

since Mgr =
∑
αiϕ(vi) =

∑
αivi · vTi � 0. For the equality constraints in Eqn. 5.6, ∀s ∈ S,

we have:

(5.9) Mgjs =
(∑

αivi · vTi
)
s =

∑
αivi · (vTi s) = 0

so the equality constraints is satisfied as well. �
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5.3.4. Re-Ranking From Bi-Directional Retrieval

Finally, for a query probe image pi ∈ P and an enrolled gallery image gj ∈ G, the final distance

between them is:

(5.10)

D(pi, gj)Mpi+λMgj

= ‖pi, gj‖2
Mpi

+ λ‖pi, gj‖2
Mgj

= (pi − gj)T (Mpi + λMgj)(pi − gj)

where the λ is a weight parameter to balance the importance of Mpi and Mgj . For each pi

and ∀gj ∈ Rpi , based on D(pi, gj)Mpi + λMgj , a refined ranking list R∗pi is obtained as the

final retrieval result. Previous proofs in [129] have guaranteed the improvement of rankings

by Mpi . As proved by Theorem. 11 and Theorem. 12, the local discriminant enhancement via

Mgj also guarantees the improvement of rankings since the learning of Mgj is equivalent to

the learning of Mpi . Eqn. 5.10 is a late fusion of Mpi and Mgj , the fused result is better than

each single kernel which has been verified by previous multi-task and multi-kernel learning

researches [88, 81, 82].

5.4. Experiments

5.4.1. Experimental Settings

Datasets. We mainly focus on four large-scale challenging P-Rid benchmarks: CUHK03 [46],

Market1501 [119], DukeMTMC-reID [124] and MSMT17 [97]. The statistic details of the

above datasets are summarized in Table. 5.1. For CUHK03 1, the new splitting protocol pro-

posed by [127] is adopted in our experiment so that 767 identities are used for training as well

1In our experiment, the CUHK detected dataset is utilized
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as the left 700 identities are used for testing. As for the other three benchmarks, Market1501,

DukeMTMC-reID and MSMT17, the pre-determined probe and gallery sets are directly utilized

with no modification.

Dataset cuhk03[46] market[119] duke[124] msmt17[97]
#T-IDs 767 751 702 1040
#P-IDs 700 750 702 3060
#G-IDs 700 751 1110 3060
#cam 2 6 8 15
#images 28192 32668 36411 126441

Table 5.1. The statistics of CUHK03 [46], Market1501 [119], DukeMTMC-
reID [124] and MSMT17 [97] benchmarks.

Baselines. Several most recent CNN-based P-Rid models are selected as our baselines to

implement our proposed method to: ResNet50 [34], DenseNet121 [37] and HA-CNN [48].

Besides, the other state-of-the-art P-Rid methods [38, 75, 113, 85, 86, 11, 84] are further com-

pared. Moreover, some online rank refinement methods including the OLMANS [129] and a

recently proposed re-ranking approach [127] are compared with our algorithm. Various ablation

studies of our proposed model are explored in Sec. 5.4.5.
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Evaluation. For evaluation, we follow the same official evaluation protocols in [119, 124,

46, 97], the single-shot evaluation setting is adopted and all the results are shown in the form of

Cumulated Matching Characteristic (CMC) at several selected ranks and mean Average Preci-

sion (mAP).
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Method CUHK03 Market1501 DukeMTMC
HA-CNN[48] 48.0(47.6) 90.6(75.3) 80.7(64.4)
HA-CNN+RR [127] 54.8(55.7) 91.4(79.0) 82.5(69.9)
HA-CNN+OL [129] 62.3(56.5) 92.7(78.9) 83.7(67.8)
HA-CNN+Ours 69.8(63.5) 96.3(85.2) 87.1(72.2)
HA-CNN+RR [127]+Ours 67.2(63.7) 95.8(85.2) 86.4(72.5)
Dense121[37] 41.0(40.1) 88.2(69.2) 78.6(58.5)
Dense121+RR [127] 48.1(51.5) 90.2(85.0) 83.7(76.9)
Dense121+OL [129] 53.1(49.3) 90.4(74.0) 80.2(64.1)
Dense121+Ours 61.6(54.4) 95.3(81.2) 84.9(68.0)
Dense121+RR [127]+Ours 56.7(56.0) 94.2(85.3) 86.3(74.7)

Table 5.4. Comparison of different online rank refinement methods.
Rank@1(mAP) performance is reported.

5.4.2. Implementation Details

All the experiments are conducted in the same experimental setting for a fair comparison. The

NDB Z is simply determined as the unlabeled probe set P for Mp learning, so no extra data is

utilized. For efficiency and effectiveness consideration, for each probe pi, not all the samples

in Z are used but we only choose the top-Np hard negatives in Z for learning (the same Np

setting is also applied to [129]). So we set Ng = Np = 100 for the learning of Eqn. 5.3 and

Eqn. 5.5. A GPU-based SVM solver, ThunderSVM [100] is used for the optimization of our

method, the slack variables ξj, ξ
pos
j , ξnegj are set to be 1 as default. The well-trained parameters

for ResNet-50 [34], DenseNet121 [37] and HA-CNN [48] by a Pytorch implementation 2 are

utilized which achieve the comparative results as in the papers. The weighting parameter λ in

Eqn. 5.10 is set to be 1 for all the experiments. All the experiments are conducted on a remote

server with 256G memory and four Titan X Pacal GPUs.

2https://github.com/KaiyangZhou/deep-person-reid
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Figure 5.4. The full CMC plot of DenseNet121 on DukeMTMC-reID dataset.
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Figure 5.5. The influence of λ on (a) CUHK03, (b) Market1501 and (c)
DukeMTMC-reID based on HA-CNN baseline.

5.4.3. Comparison with the State-of-the-arts

Evaluation on CUHK03: The experimental results under the novel 767/700 splitting proto-

col are presented in Table. 5.2 and Table. 5.3. Our method significantly boosts the baseline

Rank@1(mAP) performance of ResNet50, DenseNet121 and HA-CNN, from 47.9%(46.8%),

41.0%(40.1%) and 48.0%(47.6%) to 66.9%(60.7%), 61.6%(54.4%) and 69.8%(63.5%), respec-

tively with a 40.0%(29.7%), 50.2%(35.7%) and 45.4%(33.4%) relative improvement. Even

compared with the state-of-the-art results in Table. 5.3, our model can still beat them by a large
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Figure 5.6. The efficiency-effectiveness trade-off on CUHK03 based on HA-
CNN baseline.

Method CUHK03 Market1501
R@1 R@20 mAP R@1 R@20 mAP

HA-CNN[48] 48.0 85.4 47.6 90.6 98.3 75.3
Our only w/ Mp w/o ξj 62.3 86.5 56.5 92.7 98.3 78.9
Our only w/ Mp 63.4 87.6 63.5 93.8 98.8 81.2
Our only w/ Mg 65.4 86.2 57.3 94.2 98.4 79.1
Our-Full 69.8 88.8 63.5 96.3 98.9 85.2
Method DukeMTMC-reID MSMT17

R@1 R@20 mAP R@1 R@20 mAP
HA-CNN[48] 80.7 94.3 64.4 61.8 85.8 34.6
Our only w/ Mp w/o ξj 83.7 94.8 67.8 66.1 86.7 37.0
Our only w/ Mp 83.9 95.3 69.0 66.6 87.3 37.9
Our only w/ Mg 83.6 94.4 65.7 63.1 83.3 33.4
Our-Full 87.1 95.8 72.2 68.0 87.8 37.8

Table 5.5. The ablation study about the influence of each component in our algorithm.

margin. The visualization results of rank improvement shown in Fig. 5.3 also demonstrate the

effectiveness of our method.

Evaluation on Market1501: Table. 5.2 and Table. 5.3 show the comparison results of our

method on the baselines and against the state-of-the-art results. Although the state-of-the-art

approaches have achieved a pretty high performance (≥ 90%) on Market1501, the improvement
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Setting Ng=10 Ng=50 Ng=100 Ng=200
Np=10 54.1(47.1) 65.3(58.2) 67.1(59.7) 67.4(60.3)
Np=50 60.2(52.2) 69.1(62.3) 70.1(63.4) 70.1(63.8)
Np=100 60.4(52.4) 70.0(62.6) 70.2(63.5) 70.1(63.8)
Np=200 60.1(52.4) 69.4(62.5) 70.0(63.5) 69.9(63.8)

Table 5.6. The ablation study about the influence of the number of negative
sample. The Rank@1(mAP) results of HA-CNN on CUHK03(767/700) are re-
ported.

of our method is over 6%(10%) on Rank@1(mAP) for all the three baselines by handling the

“hard” galley samples well (Fig. 5.3).

Evaluation on DukeMTMC-reID: DukeMTMC-reID is a recent benchmark proposed for

P-Rid, but the lasted methods have obtained promising performances. As show in Table. 5.3,

the recently published methods, SPreID [40], PCB [86] and Part-aligned [84], boost the state-

of-the-art to 85.9%(73.3%). By implementing our proposed method on HA-CNN, the Rank@1

(mAP) result is boosted from 80.7%(64.4%) to 87.1%(72.2%), which beats SPreID by a large

margin.

Evaluation on MSMT17: MSMT17 is the latest and largest benchmark proposed recently.

The extreme large-scale identities and a large number of distractors make this dataset pretty

challenging. We evaluate the performance of the baselines on the MSMT17 dataset with(w/)

and without(w/o) our algorithm which are reported in Table. 5.2. Our method improve the

DenseNet121 Rank@1(mAP) performance from 66.0% (34.6%) to a state-of-the-art 75.5%

(43.1%).
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5.4.4. Comparison with Related Works

Two state-of-the-art online rank refinement methods, OL [129] and RR [127], are compared

with our algorithm. The comparison results in Table. 5.4 show that our proposed method

performs better than the other two approaches by a large margin at both Rank@1 and mAP

evaluation. OL [129] works better on improving Rank@1 performance but has little improve-

ment on mAP due to the lack of gallery-specific local discriminant enhancement. In contrast,

since RR [127] considers the k-reciprocal nearest neighbors of both probe and gallery data, it

achieves a large improvement on mAP but with limited improvement on Rank@1 owing to the

lack of instance-specific local adaptation. By integrating the RR [127] result with our method,

its Rank@1(mAP) performance is further boosted which is also shown in Fig. 5.4.

5.4.5. Ablation Study

The Influence of Model Components: The final retrieval performance of Eqn. 5.10 relies on

a bi-directional retrieval matching, so the performance of keeping each component is shown in

Table. 5.5. As can be seen, the introduction of slack variable actually helps. By only keeping

the probe-side adapted metric Mp or the gallery-side one Mg, we still can achieve a significant

improvement. While by performing bi-directional matching as a full-model, the performance is

further boosted by a large margin.

The Influence of λ in Eqn. 5.10: The weighting parameter λ in Eqn. 5.10 will balance

the importance of bi-directional local discriminant enhancement. The full CMC performances

w.r.t λ of HA-CNN on CUHK03, Market1501 and DukeMTMC-reID are plotted in Fig. 5.5

respectively. As can be seen, setting λ = 1 gives the best performance since we perform
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Figure 5.7. The influence of Np and Ng on CUHK03 based on HA-CNN baseline.

max normalization to both Mp and Mg during learning, over-weighting either side is prone to

suppress the other side’s impact.

The Influence of Np and Ng: As proved in [129], although massive negatives can be ac-

cessed, the performance of Eqn. 5.3 and Eqn. 5.5 rely on the small-amount hard negative sam-

ples, which is controlled by the parameters Np and Ng. The influence of both Np and Ng is

explored in Table. 5.6. If Np or Ng is too small, few useful negatives are utilized resulting in a

poor learning performance. While if Np or Ng is too large, the further performance improve-

ment is trivial but causes an increase of computational burden.

The Efficiency-Effectiveness Trade-off: The extra testing time introduced by our pro-

posed method includes the local discriminant enhancement of both probes and gallery data.
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Such extra time is controlled by the values of Np and Ng, meanwhile different negative sam-

ple numbers give different performances (As shown in Table. 5.6). Therefore we study the

efficiency-effectiveness trade-off of our method based on HA-CNN baseline which is presented

in Fig. 5.6. By increasing Np and Ng gradually, the time cost still increases, but the Rank@1

performance is prone to be fixed. Therefore, by choosingNp = 100 andNg = 100, the trade-off

between extra computation time and performance improvement is acceptable.

5.5. Discussion

Existing online rank refinement methods for P-Rid either handle different probes equally

without considering the individual characteristics or only perform probe-centric learning by ig-

noring the gallery data. Therefore their re-ranking performance is neither significant nor stable.

In this work, we propose a two-stage hierarchical local discriminant enhancement algorithm

to simultaneously refine the local metric for each probe/gallery instance specifically. Our pro-

posed method can be readily applied to any existing P-Rid baselines with the guarantee of

performance improvement, and a theoretical sound optimization solution keeps a low online

computational burden. Compared with the other state-of-the-art rank refinement approaches,

our method achieves significant improvement on Rank@1(mAP) performance. Moreover, by

implementing our method to the state-of-the-art baselines, their performance is further boosted

by a large margin on four main large-scale P-Rid benchmarks.
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CHAPTER 6

Chapter 6. Conclusion

The visual matching problem plays an important role in computer vision area. Many com-

puter vision tasks rely on it as the core component, including the landmark-based face recogni-

tion [24], template-based object tracking [126], exemplar-based super resolution [128], image-

based person re-identification [121], etc. The quality of visual matching directly determines

the performances of these tasks. In order to obtain robust and discriminative visual matching,

various approaches are proposed among which the metric learning ones proved to be a power-

ful tool for learning good quality visual matching. However, due to severe small-size sample

problem of visual matching data, the learning ability of metric learning methods is significantly

limited.

In order to address the critical small-size sample problem in visual matching, this disserta-

tion proposes various metric learning methods based on small-size positive samples, including

few-shot positives, only one positive, unlabeled samples and the mixture of labeled and unla-

beled samples. All these small-size sample settings are the critical issues that must be addressed

to facilitate the learning of visual matching as well as make the applications of visual matching

in the intelligent video surveillance better. To summarize, the following contributions have been

made in the dissertation:
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• A novel learning constraint called reference constraint is proposed to facilitate the poor

and difficult metric learning solution caused by the large-scale and imbalanced con-

straints used before. Our proposed reference constraint aims to associate the samples

from the same class to one or multiple By utilizing our proposed reference constraint,

a ridge-regression based global metric learning from few positives and no negatives is

proposed to learn a discriminative metric. A closed-form solution can be obtained for

our metric learning objective so that the learning is not only effective and also efficient

compared with the related metric learning approaches [52, 51, 112].

• In order to address the two critical issues of the proposed global metric learning work,

including the failure on one-shot positive scenario which is an extremely challenging

small-size sample setting and the failure on handling the hard negative distractors, a

novel online instance-specific local metric learning is proposed by using only one pos-

itive but a large number of negatives for learning. Our proposed online local metric

adaptation algorithm can be applied to any offline learned baselines on any features,

and an efficient optimization solution is proposed to our method which requires very

trivial online learning cost. Three theoretical sound justifications guarantee the im-

provement of our method under both the asymptotic scenario and practical learning

scenario.

• A novel online joint multi-metric learning algorithm is designed via learning from

unlabeled samples. By considering the given matching samples as an unlabeled batch-

shot query set, the intrinsic visual similarity sharing relationships among the sam-

ples can be utilized by mining different sharing-subsets. For each sharing-subset, the

samples share the same visual similarity relationship are grouped from which a joint
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Mahalanobis metric is learned to jointly adapt the local distribution of all the subset

samples. Compared with our instance-specific local metric adaptation work, our joint

multi-metric learning algorithm is not only more effective for matching performance

improvement but also has lower online learning cost.

• A novel bidirectional local discriminant enhancement from the combination of few-

shot labeled and unlabeled samples is proposed to perform a two-stage hierarchical

local metric adaptation for both the probe and gallery samples in visual matching.

Unlike the previous method which only focus on the local discriminant enhancement

of the given matching probes, the local discriminant of the gallery samples is also en-

hanced by our method so that the “hard” gallery distractors which are indistinguishable

will be well tackled by our method.
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APPENDIX A

Appendix A.

A.1. Theorem. 3 in Sec. 2.4

Once the reference point set R is obtained, we aim to learn a positive semi-definite (PSD)

Mahalanobis metric M = LLT by optimizing the following objective:

(A.1) L∗ = min
L

1

n
‖XL− R‖2

F + λ‖L‖2
F

Theorem 13. Assume ‖r‖2 ≤ Br for any r ∈ R, and ‖x‖2 ≤ Bx for any x ∈ X . With

probability 1 − δ, for any matrix L which is the optimal solution of Eqn.A.1 with stability

β =
8B2

xB
2
r

λn

(
1 +

Bx√
λ

)2

, we have:

(A.2) ‖E(L,DR)− E(L,Sr)‖ ≤

1 +

(
2n+

λn

8B2
x

)√
ln 1

δ

2n

 β

To prove Theorem. 13, we need to prove five important lemmas to facilitate our proof.

Lemma 1. L is the optimal solution of Eqn. A.1, so that:

(A.3) ‖L‖F ≤
Br√
λ
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PROOF. Since L is the optimal solution, so we have: f(L,X,R) ≤ f(0,X,R)

⇔ 1

n
‖XL− R‖2

F + λ‖L‖2
F ≤

1

n
‖X0− R‖2

F + 0

⇔ λ‖L‖2
F ≤

1

n
‖X0− R‖2

F

⇔ λ‖L‖2
F ≤

1

n

∑
‖r‖2

2

⇔ λ‖L‖2
F ≤ B2

r

⇔ ‖L‖F ≤
Br√
λ

�

Lemma 2. Our loss l = ‖xTL− rT‖2
2 has an upper bound Bl = B2

r

(
1 +

Br√
λ

)2

PROOF.

‖xTL− rT‖2
2 ≤ (‖xT‖2‖L‖F + ‖rT‖2)2

≤
(
Bx

Br√
λ

+Br

)2

≤ B2
r

(
1 +

Br√
λ

)2

�

Lemma 3. Our loss l = ‖xTL− rT‖2
2 is σ-admissible with σ = 2BxBr

(
1 +

Br√
λ

)

PROOF. A loss function l is σ-admissible [8] if it is convex with respect to its first argument

and the following condition holds:

∀L,L′ ∈ Rd×d′ ,∀(x, r), |l(L, (x, r))− l(L′, (x, r))| ≤ σ‖L− L′‖F
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So that

|‖xTL′ − rT‖2
2 − ‖xTL− rT‖2

2|

= |‖xTL′ − rT‖2 − ‖xTL− rT‖2||‖xTL′ − rT‖2 + ‖xTL− rT‖2|

≤ ‖xTL′ − rT − xTL + rT‖2|‖xTL′ − rT‖2 + ‖xTL− rT‖2|

≤ ‖L′ − L‖F2BxBr

(
1 +

Br√
λ

)
(A.4)

�

Then we would like to prove that our algorithm is uniformly stable. For simplicity, in the

following Ê(L) is the empirical risk over dataset Sr, and Êi(L) is the empirical risk over a

new dataset S ir obtained from Sr by replacing the ith sample. f and f i denote the functions to

optimize in our objective using the sets of examples S ir and Sr respectively.

Lemma 4. Let f and f i be the optimization functions. L and Li are the optimal solutions

respectively. Let ∆L = L− L′, for any t ∈ [0, 1] we have:

(A.5) ‖L‖2
F − ‖L− t∆L‖2

F + ‖Li‖2
F − ‖Li + t∆L‖2

F ≤
4tBxBr

λn
(1 +

Bx√
λ

)‖∆L‖F

PROOF. Since Ê is a convex function, for any t ∈ [0, 1], we have:

Êi(L− t∆L)− Êi(L) ≤ t(Êi(Li)− Êi(L))

Êi(Li + t∆L)− Êi(Li) ≤ t(Êi(L)− Êi(Li))

(A.6)

Summing the above two inequalities gives:

(A.7) Êi(L− t∆L)− Êi(L) + Êi(Li + t∆L)− Êi(Li) ≤ 0
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And we also have:

f(L)− f(L− t∆L) ≤ 0

f i(Li)− f i(Li + t∆L) ≤ 0

(A.8)

Summing Eqn. A.7 and Eqn. A.8, we have:

Êi(L− t∆L)− Êi(L) + Ê(L)− Ê(L− t∆L)

+ λ‖L‖2
F − λ‖L− t∆L‖2

F + λ‖Li‖2
F − λ‖Li + t∆L‖2

F ≤ 0

(A.9)

So that we can write:

(A.10) λ‖L‖2
F − λ‖L− t∆L‖2

F + λ‖Li‖2
F − λ‖Li + t∆L‖2

F ≤ Bconst

with Bconst = Êi(L)− Êi(L− t∆L) + Ê(L− t∆L)− Ê(L). Using Lemma. 3 we have:

Bconst ≤ |Êi(L)− Êi(L− t∆L) + Ê(L− t∆L)− Ê(L)|

≤ | 1
n

∑
(x,r)∈Sr

l(L− t∆L, (x, r))− 1

n

∑
(x,r)i∈Sir

l(L− t∆L, (x, r)i)

+
1

n

∑
(x,r)i∈Sir

l(L, (x, r)i)− 1

n

∑
(x,r)∈Sr

l(L, (x, r))|

≤ 1

n
|l(L− t∆L, (xi, ri))− l(L− t∆L, (xi, ri)i) + l(L, (xi, ri)i)− l(L, (xi, ri))|

≤ 1

n
|l(L− t∆L, (xi, ri))− l(L, (xi, ri))|

+
1

n
|l(L, (xi, ri)i)− l(L− t∆L, (xi, ri)i)|

≤ 4tBxBr

n

(
1 +

Bx√
λ

)
‖∆L‖F

(A.11)

�
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Lemma 5. Recall the definition of uniform stability in [8], our algorithm has a uniform

stability in β =
8B2

xB
2
r

λn

(
1 +

Bx√
λ

)2

PROOF. Recall the definition of uniform stability in [8] that an algorithm A has uniform

stability β with respect to the loss function l if the following holds:

∀Sr,∀i, sup
(x,r)∼Dr

|l(ASr , (x, r))− l(ASir , (x, r))| ≤ β

By setting t = 1
2

in Lemma. 4, the LHS is:

‖L‖2
F − ‖L−

1

2
∆L‖2

F + ‖Li‖2
F − ‖Li +

1

2
∆L‖2

F =
1

2
‖∆L‖2

F

So that

1

2
‖∆L‖2

F ≤
2BxBr

λn

(
1 +

Bx√
λ

)
‖∆L‖F

⇒ ‖∆L‖F ≤
4BxBr

λn

(
1 +

Bx√
λ

)
Consider Lemma. 3, we have:

|l(L, (x, r))− l(Li, (x, r))| ≤ 2BxBr

(
1 +

Bx√
λ

)
‖∆L‖F

≤ 8B2
xB

2
r

λn

(
1 +

Bx√
λ

)2

�

Recall the Theorem 12 in [8]. Let A be an algorithm with uniform stability β w.r.t. a loss

function l such that 0 ≤ l(ASr , (x, r)) ≤ Bl for all (x, r) and all sets Sr. For any n ≥ 1 the
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following bound holds with probability at least 1− δ over the random draw of the sample Sr:

E(ASr) ≤ Ê(ASr) + β + (2nβ +Bl)

√√√√ ln
1

δ
2n

We have already shown that our algorithm is uniformly stable and that our loss is bounded,

hence we can directly apply this theorem to obtain our Theorem. 13 using the bound on the loss

presented in Lemma. 2 and the uniform stability of our algorithm proven in Lemma. 5.
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