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ABSTRACT

Modeling of Structural Plasticity and Synchronization in the Rodent Olfactory Bulb

John Hongyu Meng

To survive, animals, including human beings, have developed an amazing ability

to learn the constantly changing environment. Specifically, detecting specific odor-

ants in a noisy, variable background is crucial for finding food and water, mating,

and avoiding potential dangers. For this purpose, rodents have developed an ol-

factory system that is powerful enough to detect even small relative changes in a

specific odor in a complex mixture by learning. Recent experiments have shown that

part of this learning occurs in the olfactory bulb, which is the first region to receive

odor information in the brain. As a result of the learning, the neuronal activity

patterns that represent odors in the output of the bulb are more decorrelated than

the corresponding patterns in the input.

In this dissertation, we try to understand the mechanism behind this discrim-

inability from different aspects. The olfactory bulb is one of the few regions that
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show prominent structural plasticity even when the animal has fully matured. The

reciprocal dendro-dendritic connection between mitral and granule cells, which are

the major principal cells and interneurons within the bulb, show around 20% rewiring

at a 2-day interval. In addition, this modification of the network depends on the ac-

tivity of mitral and granule cells. Chapter 1 of this dissertation discusses how a

Hebbian-type rule of structural plasticity can explain the learning behavior observed

in the olfactory bulb. We further argue that basic memory function is observed in

the olfactory bulb and learning of similar but not dissimilar odor pairs leads to the

loss of previously learned odors due to interference. We also discuss the impacts of

varying the major parameters of the model.

The olfactory bulb is also a brain area that displays extensive rhythmic activity,

particularly in the beta- (13 to 30 Hz) and gamma-band (30 to 100 Hz). It has

also been observed in experiments that the power of gamma-oscillations increases

more when a rodent tries to distinguish more similar odorants after learning. During

the study of structural plasticity, we observed that as a result of the learning the

network of the olfactory bulb model develops a subnetwork structure reflecting the

learned odors. This observation makes us wonder under what condition the rhythms

in subnetworks can be synchronized. In chapter 2, during the study of this ques-

tion, we discover and explain an interesting counter-intuitive phenomenon, which
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is how independent noise can synchronize population rhythms arising in intercon-

nected subnetworks. We show that by including noise, a negative feedback control

loop stabilizes synchronization between different rhythms. Further, the results on

synchronization by noise are likely to be relevant beyond the olfactory bulb, since

γ-rhythms are arise in many brain areas and can exhibit task-dependent coherence.

Finally, we demonstrate the generality of this type of synchronization in different

classes of oscillators and network connectivities.

Altogether, this dissertation describes two topics that are both motivated by

observations in the olfactory system.
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1.1 Cartoon of our model. (A) We simplify the neuronal network in

the olfactory bulb into stimuli input, mitral cells, and granule cells.

Mitral cells are excitatory cells and granule cells are inhibitory cells.

Connections between mitral cells and granule cells are reciprocal.

Mitral cells are the output cells of the bulb which innervate piriform

cortex. (B) A sketch of the reciprocal dendro-dendritic connection

between mitral and granule cells. Spines are on the dendrite of

granule cells. Mitral cells generate feed-forward excitation to

cortex. 35

1.2 Examples of different stimuli in our model. (A) Toy guassian

stimuli (B) Naturalistic stimuli. 36

1.3 Plotted is φ/τf for φ > 0 and φ/τr for φ < 0 (cf. Eq. 1.7 and 1.8) 42

1.4 Training with pure odorants by using toy stimuli. (A) Training toy

stimuli. Noticing different mitral cells respond to the same odor

differently. (B) A simplified example for the reciprocal connection
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between mitral and granule cells. (C) An effective self-inhibited

network of mitral cells that are calculated from (B). The numbers

beside the connections represent the effective inhibition strength.

For example, the 1st and 3rd mitral cells both connect to the

1st and 3rd granule cells, thus the effective inhibition strength

between the 1st and 3rd mitral cells is 2. (D) The mitral cell

activity before training. (G) The mitral cell activity after training.

(E, H) The connectivity between mitral cells and granule cells

before and after training, respectively. Each white dot represents a

connection between the corresponding mitral and granule cell. (E)

is a homogeneous random network in which each granule cell has

the same number of connections. (F, I) The effective connectivity

of the self-inhibited network. The color represents the number of

granule cells that pair of mitral cells is connected to. As a result,

the color also indicates the effective coupling coefficients between

mitral cell pairs. 45

1.5 Memory effect of the model. (A) Training protocol to show the

memory effect. We first train our model with the same pair of

odors as in Figure 1.4A. Then we train with new odor pair 2. (B,

D) The stimuli of odor pair 2 and pair 1 are dissimilar and similar,
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respectively. (C, E) The effective connectivity matrix W (mm)

when two pairs are dissimilar and similar, respectively. Previously

trained network as in Figure 1.4H is circled by white dashed box.

(C) If the two pairs are dissimilar, the eventually trained network

remembers the previously trained structure; (E) otherwise, the

previously trained structure is forgotten. 47

1.6 Training with mixture odors by toy stimuli. (A) Training protocol

to mimic the experiment. (B) Pre-training easy stimuli. (C)

Training mixture stimuli. Two mixture odors are represented by

different linear combinations of two Gaussian activation curves

(0.6 : 0.4 vs. 0.4 : 0.6). (D, F) Mitral cell activity before training

(after pre-training) and after training, respectively. See text for

details. (E, G) Effective connectivity matrix before and after

training, respectively. (H) Activity difference before and after

training, represented by the black and red lines, respectively. The

grey line is the difference of stimuli input. (I, J, K) Training results

like (F, G, H) without a pre-training phase. (I, J) Mitral cell

activity before and after training. (K) Activity difference before

and after training. 50
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1.7 Training of an easy task to discriminate pure stimuli with a

pre-training phase. The training protocol is the same as in Figure

1.6A. The pre-training stimuli are as in Figure 1.6B. The training

stimuli are as in 1.4A . (A to C) are organized as Figure 1.6F to H. 51

1.8 Modeling results of training with naturalistic stimuli and

comparison with experimental results with γ = 1.7e−4. (A)

The training protocol. (B) Color-coded contour chart illustrating

patterns of glomerular evoked by an odorant, which is used as

inputs to mitral cells in our model. The figure is regenerated

from [1]. (C) Stimuli of the model as the easy pair and hard pair.

(D) Naturalistic stimuli show less correlation between the mean

response amplitude and the response difference. Top, activation

of stimulus SA over stimulus SB for each mitral cell. Bottom,

|SA − SB| over (SA + SB)/2 for each mitral cell. (E, F) Temporal

evolution of the number of responsive mitral cells and divergent

mitral cells by training of easy task and hard task, respectively. (G,

H) Fisher Discriminant as a measurement to compare with D-prime

in the experiment. Plotted is the temporal evolution of Fisher

Discriminant of the easy task and the hard task, respectively. (I)

Two cases for different individual mitral cell behaviors. (I1) Mitral
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cell changes from excited by both odors to excited by only one of

the odors. (I2) Mitral cell changes from being inhibited by both

odors to being inhibited by only one of the odors. 55

1.9 Mitral cells with asymmetric activity. (A) Changing of mitral cell

response over mean mitral cell activity before and after training.

Each dot comes from one mitral cell. The X-axis is the mean mitral

cell response before training and the Y-axis is the mean mitral cell

response after training. The color means the change in response

differences. Bigger dots denote the mitral cells of which activity is

at least 0.1 bigger after training than before training. The activity

of mitral cells is closer to 0 after training, which represents the

re-organization of the network. The cases in Figure 1.8 I1 and I2

are in 1st and 3rd quadrant, respectively. (B) The activity of a

mitral cell that falls in the 2nd quarter of (A). 58

1.10 Interference should lead to forgetting. (A) Training protocol. The

model is trained on odor pair 1 first, then switched to odor pair

2, then switched back to odor pair 1. (B) Stimuli of odor pair 1.

(C) Stimuli of odor pair 2 as interference. Left, weak interference:

an odor pair with little overlap with odor pair 1. Right, strong

interference: an odor pair with large overlap with odor pair 1.
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(D) Effective network structure W (mm) at end of training phases

by training with dissimilar stimuli. The network remembers the

previously trained structure. (E) Same as (D) but for training

with similar stimuli. The network forgets most of the previously

trained structure. (F) Fisher discriminant of odor pair 1 as a

function of training time when training with the dissimilar odor

pair during phase 2. The value remains high after initial training,

which indicates that the memory is not forgotten. (G) Same as (F)

but for using the similar odor for phase 2. The Fisher-discriminant

of pair 1 decreases during phase 2, indicating that interference

introduces forgetting. After re-training with odor pair 1 in phase

3, the Fisher discriminant returns to the original value, which

indicates the learning ability is intact. Note that the re-training

speed is faster than the training. 60

1.11 Alternating training does not impair learning ability. (A)

Expanding the training protocol as in 1.10A to 10 phases. (B) The

fisher discriminant of odor pair 1 (top) and pair 2 (bottom). Notice

that the learning speed (of increasing of Fisher discriminant for one

pair) and forgetting speed (of decreasing of Fisher discriminant for



18

the other pair) are not the same. (C) Effective connectivity W (mm)

oscillates as expected. 62

1.12 Qualitative results of fraction of simulated cells do not depend

on the threshold θ for the responsive and divergent cells. (A, B)

Results of analyzing naturalistic stimuli by using different threshold

θ to classify responsive cells or divergent cells. The results in Figure

1.8 D, E are based on θ = 0.25. (C, D) As (A, B) but of analyzing

toy stimuli. As shown here, within some reasonable range, the

choice of threshold θ does not qualitatively change our results. 63

1.13 The overall inhibition of the model does not depend on the number

of granule cells. The results here are generated by training the

toy easy stimuli in Figure 1.4A with a random initial network

as in Figure 1.4E. (A, B) The maximum and mean mitral cell

activity after training as a function of the ratio of the number of

granule cells. (C) Number of activated granule cells as a function

of the ratio of the number of granule cells. If a granule cell has

activity bigger than G(1), it is classified as activated. (D to F)

Results by doubling the granule cell number. (C) The number of

activated granule cells N
(act)
gc does not depend on the number of

granule cells. If one granule cell has more synapses than Nconn, it is
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called activated. (D) is mitral cell activity after training, which is

comparable with Figure 1.4 H. (E) is connectivity W (mg), which is

comparable with Figure 1.4 I. (F) is effective connectivity W (mm),

which is comparable with Figure 1.4 J, except the background is

brighter. However, noticing the mitral cell at the background is

almost 0, even though the background connection is indeed denser,

it does not contribute much to the overall inhibition. 64

1.14 The overall inhibition of the model does not depend on the

inhibitory strength γ. The results are organized in figure 1.13

except varying the rescaled inhibitory strength γ instead of number

of granule cells. To allow a direct comparison, N
(new)
gc and W (mm)

have been rescaled in (C) and (F) by γ(new)

γ
. (F) is comparable with

Figure 1.4 J, except the background is brighter. However, as stated

in Figure 1.13, the overall inhibition is not impacted. 65

1.15 Increasing G(1) impairs the ability to form connections between

activated mitral cells and granule cells. The results here are

generated by training with easy stimuli in Figure 1.4A with a

random initial network as in Figure 1.4 E. (A, B) The maximal

and mean mitral cell activity after training as a function of G(1),

respectively. The grey line indicates the theoretical maximum by
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removing all the inhibition as is the case when γ = 0. (C to E)

Model results by training with G(1) = 0.5. (C) Mitral cell activity

after training. (D) Connectivity between mitral and granule cells

W (mg). (E) Effective connectivity matrix W (mm). (F to H) are as

(C to E) except with G(1) = 5. By increasing G(1), the activated

mitral cell receive fewer connections with granule cells after training

as shown in (A, B), which are reflected by the sparser density in

W (mg) (D, G) and the cooler color in W (mm) (E, H). As a result, the

mitral cell activity is higher (C, F). In (H), when G(1) = 5, most

of the granule cells cannot reach this high threshold. As a result,

the synapses that connect to the activated mitral cells are removed

faster than the background. Thus, the effective connectivity among

the activated mitral cells is lower than the background. 67

1.16 Learning ability is not influenced by different G(0). The results

here are generated by training with the easy stimuli in Figure 1.4A

with a random initial network as in Figure 1.4E. The results here

are organized as Figure 1.15. (C to E) Model results by training

with G(0) = 0. (F to H) Model results by training with G(0) = 2.

The forgetting effect is changed though by having different G(0),

which we will discuss in the next figure, Figure 1.17. 68
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1.17 Increasing G(0) leads to less forgetting when trained with an

interfering protocol. The results are generated by first training

the model with one pair of hard stimuli (odor pair 1, blue curves

in (A)), then by training with another pair of hard stimuli (odor

pair 2, green curves in (A)), which is the same as the two pairs in

Figure 1.10A before the switch 2. (A) Training stimuli. The model

is first trained with odor pair 1, indicated by the two blue curves,

which is the same as in Figure 1.10B, then the model is trained

with odor pair 2, indicated by two green curves in, which is the

same as in Figure 1.10C right figure. (B) The discriminability of

odor pair 1 before and after the training with the interfering odor

pair 2 (1.10C right figure) as a function of G(0). (C, D) Results

for G(0) = 0 after training with the odor pair 2. For G(0) = 0,

the model does not have the ability to remember: the connections

between the mitral cells that are active by the odors in pair 1

have been removed (cool color in the center of W (mm)) (C). (E, F)

Results for G(0) = G(1) = 2 after training with a similar odor pair.

For G(0) = G(1), the model does not include an activity-dependent

removal mechanism. In this case, previously learned network
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structure is intact, and the discriminability is not impaired (as in

B). See discussion for more details. 69

1.18 Selectivity of granule cells is influenced by the number of

connections for each granule cell. The results here are generated by

training with the easy stimuli in Figure 1.4A with a random initial

network as in Figure 1.4E. (A, B) The maximal and mean mitral

cell activity after training, respectively. (C, D) Mitral cell activity

after training with N
(new)
conn /Nconn = 1, 2, respectively. (E) The

selectivity of the granule cells is impaired by increasing the number

of connection. A population of cells that respond to both odors

emerges (indicated by the red line) when the number of connections

is large. (F) Decreasing G(1) does not impair selectivity. The data

is the same as in Figure 1.15. 70

1.19 Diagram for the modified activation function φ(G). The modified

activation function (red line) is the difference between the formation

function (blue line) and the removal function (green curve). The

black line is the original activation function. The thicker line

indicates the situation when P = P0. Here P0 is the equilibrium

point of the resource pool size. The thin lines indicates the

changing of the activation function when P 6= P0. 72
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1.20 Realization of competition by a common resource pool. The results

here are generated from the modified model by training with a

hard or an easy task after pretraining with an easy task, which

is the same protocol as in Figure 1.6 and in Figure 1.7. (A)

The pretraining stimuli. (B) Effective connectivity W (mm) after

pretraining. (C to E, I to K) Result of training with an easy task.

(C) Training stimuli. (D) Mitral cell activity after training. (E)

Effective connectivity W (mm) after training. (I) Activity difference

of mitral cells before and after training. (J) fraction of responsive

and divergent cells as a function of trials. (K) Fisher discriminant

as a function of trials. (F to H, L to N) Result of training with a

hard task. Figures are organized as (C to E, I to K). All the results

are comparable with the original model. 76

2.1 Interacting rhythms in two coupled oscillator networks. Each

oscillator receives inhibition from the oscillators in its own network

and from the oscillators in the other networks. In addition, each

oscillator receives uncorrelated noisy input. 84

2.2 In the relaxation oscillator (equations (2.10,2.11,2.12)) the coupling

field S reflects the oscillation wave form and affects the stability

of the fixed point. a) Temporal evolution of x, y, and S for
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the relaxation oscillator and b) corresponding projection onto

the (x, y)-phase plane. Black: x-nullcline, gold: y-nullclines

corresponding to the minimal (solid) and the maximal (dashed)

value of S along the limit cycle. Parameters: ε = 0.05, β = 3,

µ = 0.2, λ = 0.05, ν = 2, κlocal = 5, κglobal = 0.15, x
(1)
0 = −2,

x
(2)
0 = −1.2, γ = 2.5, σ = 0. 92

2.3 Increasing the uncorrelated noise in the inputs to the individual

neurons synchronizes the population rhythms of interconnected

networks of IF-neurons. A: Temporal evolution of the phases φ(α)(t)

of the population rhythms V̄ (α)(t) of the N = 100 networks. A1:

For weak noise (σ2 = 0.04s−1) the rhythms are not synchronized;

shown is φ(α)(t) for α = 4, 8, 12, . . . 100. A2: Strong noise

(σ2 = 2s−1) synchronizes the rhythms. B: The time-averaged order

parameter rglobal of the interconnected networks (lower panel)

increases hysteretically with increasing strength of the uncorrelated

noise (error bars denote standard deviation). The order parameters

r(α) of the individual networks (upper panel) decrease with noise,

time-averaged r(1) and r(100) are shown. Parameters: γ0 = 0.0065,

gsyn = 0.021, µ = 200s−1, τ = 20ms, τ1 = 4ms, τ2 = 5ms, τd = 2ms,

Vrest = −55mV, Vθ = −45mV, Vr = −65mV, Vrev = −85mV,
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ρ(α) = 1− 0.25 α
N . The parameters γ0 and gsyn have been scaled so

that the overall conductances of the connections within and across

the networks correspond to those in the 2-network case discussed

below (Fig.2.5). 96

2.4 Uncorrelated noise synchronizes the networks at the frequency of

the fastest network. Upper panels: for low noise, σ2 = 0.04s−1,

the networks are not synchronized. Fourier spectra of the LFPs

V̄ (α) of 25 of the 100 interconnected IF-networks shown in Fig.2.3

vary significantly in frequency. Lower panels: For stronger noise,

σ2 = 2s−1, all networks are essentially synchronized, showing

only a weak subharmonic component (note the logarithmic scale).

Left (right) panels show the spectra for the networks with weaker

(α > N /2) and stronger (α ≤ N /2) injected current. Parameters

as in Fig.2.3. 99

2.5 Uncorrelated noise synchronizes population rhythms of two coupled

networks. A) Sketch of the two coupled networks. B) (B1-3)

Fourier spectra of LFP V̄ (1) (upper panel) and LFP V̄ (2) (lower

panel) of network 1 and 2, respectively, on a logarithmic scale for

ρ(2) = 0.83 and different noise strengths (σ2 = 0.9s−1, σ2 = 0.14s−1,

σ2 = 0.01s−1). (B4-6) attractors for the corresponding values of
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σ2. (B7) Spectral power for network 1 as a function of noise and

frequency for ρ(2) = 0.83. Green arrows indicate noise values in

(B1-3). (B8) as (B7) for network 2. (B9) Phase diagram. Color hue

and saturation indicate frequency ratio and logarithmic power ratio

of the characteristic Fourier modes (marked with red arrows in

panels B2,3), respectively. Synchronization is obtained in the white

region labeled 1:1. Parameters: Nα = 500, τ = 20ms, τ1 = 4ms,

τ2 = 5ms, τd = 2ms, Vrest = −55mV, Vθ = −45mV, Vr = −65mV,

Vrev = −85mV, gsyn = 0.0042, γ0 = 0.64, µ = 200s−1. 100

2.6 Uncorrelated noise synchronizes population rhythms of two coupled

IF-networks with random connectivity. Phase diagram showing

transitions between different phase-locked and synchronized states

as a function of noise and input ratio. Color hue and saturation

indicate frequency ratio and logarithmic power ratio of the

dominant Fourier modes (cf. Fig.2.5). Parameters: Nα = 500,

ε1 = 0.56, ε2 = 0.24, τ = 20ms, τ1 = 4ms, τ2 = 5ms, τd = 2ms,

Vrest = −55mV, Vθ = −45mV, Vr = −65mV, Vrev = −85mV,

gsyn = 0.015, γ0 = 1.5, µ = 200s−1. 102

2.7 Noise increases the frequency range of entrainment of periodically

inhibited rhythm. A) of the periodically forced single network 2.
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B) Phase diagram for a single network with periodic inhibition.

Each neuron in the network receives uncorrelated noise, which

synchronizes the rhythm with the forcing in the white region

marked 1:1. Parameters and colors as in Fig.2.5B9. 103

2.8 Correlations between rhythms and between individual oscillators

respond oppositely to noise. A) The correlation 〈V̄ (1), V̄ (2)〉 between

the LFP of network 2 and the periodic inhibition increases with

increasing noise (cf. Fig.2.7). B) The average of the equal-time

correlations 〈V (2)
j , V

(2)
k 〉 between individual neurons j and k in

network 2 decreases monotonically with increasing noise strength.

Parameters as in Fig.2.7. 104

2.9 Noise increases the synchronizability of rhythms by allowing a

variable number of neurons to spike. Time-dependence of the

voltage distribution function of the oscillators in the periodically

forced network 2 with color indicating the number of neurons in

bins of size 0.2mV. Also shown is the lag θn in each cycle. The red

(green) arrow marks spiking (non-spiking) neurons. Parameters as

in Fig.2.7 except for ρ(2) = 1.02, γ0 = 0.81, σ2 = 0.3s−1. 107

2.10 Synchrony is lost and replaced by a 3-cycle when the self-inhibition

is rendered independent of the spiking fraction fspiking(t) via the
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control defined by equation (2.15) at t = 2s. Parameters as in

Fig.2.7 except for ρ(2) = 0.975, σ2 = 2s−1. 108

2.11 The iterated map for the lag θn of a periodically forced IF-network

exhibits a period-doubling bifurcation (cf. Fig.2.9). Different colors

show θn-sequence for one initial condition for different values of

the noise σ2. With increasing σ2 the dynamics go from disordered

to a noisy 2-cycle to a noisy fixed point. Parameters as in Fig.2.7

except for Nα = 5, 000, ρ(2) = 1.03, γ0 = 0.81, gsyn = 4.2× 10−5. 109

2.12 Noise synchronizes also coupled networks of type-2 Morris-Lecar

neurons. (A) Phase diagram showing synchronization of two

networks with increasing noise (inset shows blow-up). Colors as

in Fig.2.7. (B) Loss of synchrony after turning on the control

(equation (2.15)) for ρ(2) = 0.84, σ2 = 2.5. 112

2.13 Phase diagrams for networks of type-2 Morris-Lecar neurons

demonstrate that increasing noise synchronizes the rhythms for

fast (κ = 1) and slow inhibition (κ = 3) and over a large range in

reversal potential Vrev. Parameters as in Fig.2.12 with Vθn = 2mV. 113

2.14 Phase diagrams for networks of type-1 Morris-Lecar neurons

demonstrate that increasing noise synchronizes the rhythms for

fast (κ = 1) and slow inhibition (κ = 3) and over a large range in
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reversal potential Vrev. Parameters as in Fig.2.12 with Vθn = 12mV.

114

2.15 The synchronization via reverse period-doubling can be captured

in a heuristic map model. A) Temporal evolution of the normalized

mean voltage V̄ , with lag θ̄n indicated and plotted in terms of the

cycles of the periodic inhibition. B) Map given by equation (2.21).

The fixed point becomes stable with increasing noise level σ2
map. 117

2.16 Synchronization by noise requires a minimal network size Nα. A)

Spectrum of the LFP of network 2 indicating the frequency range

included in the total power Stot and the subharmonic power Ssub.

B) Stot depends only moderately on noise strength and network

size (network sizes as given in the legends of panel C). C) Only

for sufficiently large networks the subhamornic spectral power

Ssub decreases strongly with increasing noise strength indicating

synchronization (note the logarithmic scale). Network sizes Nα: 50

(red), 100, 200, 500, 1,000, 2,000 (blue). Other parameters as in

Fig.2.7. 120

2.17 Noise synchronizes interconnected networks of relaxation oscillators

. A) Space-time diagram of x
(α)
i (t) for 50 of the N = 200 networks

with Nα = 80 oscillators each. Networks are not synchronized for
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vanishing noise, σ = 0 (A1). Partial, oscillatory synchronization

for σ = 0.025 (A2). Almost complete synchronization for σ = 0.07

(A3). B) Lower panel: temporal mean and standard deviation of

the global order parameter rglobal showing a discontinuous transition

to an ordered regime as the uncorrelated noise is increased. Upper

panel: mean local order parameter r̄local decreases with noise. 122
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CHAPTER 1

Hebbian type model of structural plasticity

1.1. Introduction

Reorganization of connectivity between neurons through activity-dependent func-

tional modification has shown potential in explaining the mechanisms behind learning

and memory. In motor cortex, the synaptic connections in vivo can show an increased

turn-over rate within hours when trained with a novel motor skill [2]. In addition,

The specific stabilization of newly formed spines, which constitute the postsynaptic

portion of excitatory synapses, correlates with memory function [2, 3]. Furthermore,

specifically removal of these newly formed spines deteriorates the performance of the

animals [4]. These results suggest a close correlation between cognitive functions and

structural plasticity in the motor cortex.

The olfactory bulb, which is the first brain region to receive odor information,

also shows significant structural plasticity even in mature animals [5], while most

brain areas have remarkably stable dendritic spines in adult life [6, 7, 8]. Over a

2-day interval, newly formed spines between mitral and granule cells, which are the

principal cells and interneurons in the olfactory bulb, respectively, can count for 20%
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of total spines in the adult olfactory bulb of mice [9]. However, the functional role

of this structural plasticity is not clear.

As proposed a century ago by Ramón y Cajal, the pioneer of the field, the dy-

namism of connections underlies learning in an experience-dependent manner [10].

Indeed, mice can show extraordinary ability in learning odors on a timescale similar

to that of structural plasticity [11], which suggests that the structural plasticity may

be related to the learning process. This learning can be reflected by the extent of

pattern separation in mitral cells, which is not observed in the input to the bulb

[12]. Complicatedly, the mitral cells can show different behavior depending on the

difficulty of the tasks [11]. The mechanisms behind these rich dynamics are still

unclear.

Besides structural plasticity, neurogenesis and synaptic weight plasticity can also

contribute to the learning of the bulb. In the rodent, new granule cells keep inte-

grating into the existing network throughout life. Without adult-born neurons, mice

show deteriorated ability in fine discrimination [13]. However, this malfunction is

not shown in discriminating very different odorants [13]. Further, the neurogenesis

in the adult olfactory bulb is a species-specific behavior and it is absent beyond age

2 in humans [14], which limits the generality of the functional role of neurogenesis.

Synaptic weight plasticity has been studied by experiments and models for decades.

Though synaptic plasticity between the mitral and granule cells has been observed in
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the bulb, most of the common experimental protocols that trigger a consistent change

of synaptic weight in other brain regions lead to potentiation in some of the synapses

and depression in others in the olfactory bulb, and these weight changes are limited

within 20% of the initial value [15]. Based on these results, synaptic weight plastic-

ity in the olfactory bulb seems less likely to be connected with learning-dependent

behaviors.

In contrast to synaptic weight plasticity, structural plasticity in the olfactory

bulb clearly shows activity dependence. In the olfactory bulb, the dendrites of the

granule cells form and remove filopodia, which have been observed as to be precursors

of dendritic spines, on a timescale around 10 minutes [16]. Filopodia are also formed

on the spine heads. Lifetime and orientation of these spine head filopodia indicates

the subsequent amplitude and direction of spine displacement on the granule cells in

the olfactory bulb, respectively [17]. Further, directional motions of filopodia respond

to mitral cell stimulation [17]. In addition, the formation of filopodia depends on

N-methyl-D-aspartate (NMDA) receptor activation on the granule cell dendrites [16].

Further, in general, the activation of NMDAR depends on the voltage of the dendrite

[18], which implies the formation of the filopodia depends on the granule cell activity.

Taken together, structural plasticity in the olfactory bulb likely follows a Hebbian-

type rule.
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Here we show how a Hebbian-type model of structural plasticity can explain the

dynamics of mitral cells in the olfactory bulb at both the ensemble and individual

levels. Further, we predict mice should perform worse when switching between simi-

lar tasks. At the same time, we suggest the emerging of self-organized subnetworks,

which may serve as functional units in the neuron network. Last, we discuss the im-

pact of varying the major parameters in our model. Overall, our biologically feasible

parsimonious model reveals how the local self-organizing mechanism of structural

plasticity can contribute to olfactory learning and memory.

1.2. Model

1.2.1. Mitral cells and granule cells

We now describe the specifics of our model. The neuronal networks in the olfactory

bulb can be simplified into two layers of neurons with inputs from glomeruli in the

syperficial layer (Figure 1.1A, also seen in [19]). As in [9, 20], mitral and granule cells

are described by firing-rate models governed by the ordinary differential equations:

dM

dt
= −M + FM(S − γW (mg)G), (1.1)

τG
dG

dt
= −G+ FG(

(
W (mg)

)T
M − gthr). (1.2)

Here M and G are vectors of size NMC and NGC , respectively, representing the

firing rates of NMC mitral cells and NGC granule cells. The mitral cells receive sensory
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Figure 1.1. Cartoon of our model. (A) We simplify the neuronal net-
work in the olfactory bulb into stimuli input, mitral cells, and granule
cells. Mitral cells are excitatory cells and granule cells are inhibitory
cells. Connections between mitral cells and granule cells are reciprocal.
Mitral cells are the output cells of the bulb which innervate piriform
cortex. (B) A sketch of the reciprocal dendro-dendritic connection be-
tween mitral and granule cells. Spines are on the dendrite of granule
cells. Mitral cells generate feed-forward excitation to cortex.

inputs S and inhibitory input from granule cells, with γ denoting the inhibitory

strength. The granule cells receive excitation from mitral cells, with gthr > 0 setting

a non-zero firing threshold for the granule cells. The non-decreasing non-negative

activation functions for M,G are FM,G, respectively.

Since our model does not have recurrent excitation, for steady input and fixed

connectivity W (mg), the neuronal activities always converge to a global steady state

[21]. Further, the chosen timescale doesn’t impact the steady state of the system.
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Figure 1.2. Examples of different stimuli in our model. (A) Toy guas-
sian stimuli (B) Naturalistic stimuli.

For simplicity, in our simulation, the timescale for granule cells is τG = 0. As a

result, the granule cells activity is always at the fixed point in 1.2. In the following,

neuronal activities M ,G always refer to the firing rates in this steady state. We

solve the equations via ODE45 in Matlab.

1.2.2. Sensory Inputs

For the sensory inputs S, we use toy stimuli for illustrating the mechanism and use

naturalistic stimuli to compare with the experimental data (Figure 1.2). The toy

stimuli are gaussian distributions over different mitral cells with constant sponta-

neous activity added. The naturalistic stimuli are generated from experimental data

as follows:
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The original glomeruli data comes from Leon’s lab [1], which contains 2-d imaging

z-scores of the glomeruli responses for a variety of odorants.

The odorants we used in our simulations are carvone, citronellol (pre-training),

ethylbenzene, heptanal (training, pure and mixture). In the original data, not all

pixel values were available for all odorants. We only keep the common set of them.

The total number of data points remaining is 2074. We further downsample the data

to 240 sample points S(orig).

The original z-score S(orig) does not include the baseline activity of the glomeruli.

A z-core of 0 means the activity equals the average activity across the whole popu-

lation, but does not mean the activity is not changed when an odor is presented. To

obtain a rough calibration of the mean activity we use the observation that around

60% of mitral cells are activated by any given strong stimuli [22]. Since no other

information seems available, we use this as a guide to re-calibrate the 40% percentile

z-score S(40%) as 0. Then, we normalize the data by their maximum. As a result,

we have the modified value S̃ = S(orig)−S(40%)

max(S(orig)−S(40%))
. Further, mitral cells are activated

by the air flow even without any odorants and odor representations change mostly

linearly with the concentration of odorants [23]. Based on that observation, for any

given mixture with concentration p of odor A and (1− p) of odor B, we take as the

mixture stimulus

S = [p S̃(A) + (1− p) S̃(B) + S̃(0)]+
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with S̃(0) = 0.1 is an air stimulus and [·]+ is the rectifier: [x]+ = max(x, 0).

For pure odorants, we just set p = 0 or p = 1 for the corresponding odor.

In the experiments [11], when the mice are trained to distinguish a pair of odor

S+/S-, only S+ or S- is presented in a trial with equal probability. In the comparison

with these experiments, in each trial of our simulation, the stimulus S is randomly

chosen as A or B from a given pair of odors A and B.

1.2.3. Activation function

The neuronal network within the olfactory bulb is an excitatory-inhibitory network.

To guarantee the firing rate is positive, the activation function is required to be pos-

itive. Further, mitral cells within the olfactory bulb experience saturation behavior.

In [23], the authors recorded responses of mitral cells when the concentration of odor-

ant changes within 10-fold. Among the recorded cells, 38% of mitral cells respond

linearly to stimuli and 29% of the mitral cells experience saturation behavior. This

saturation may be a result of saturated stimuli input or the saturation behavior of

mitral cells. In this study, we are interested in the mixture of odors and the con-

centration of an odorant changes linearly. Based on the experiments from [24], the

olfactory sensory neurons saturate on a log scale of odor concentration that changes

1000-fold. Therefore a change in the concentration by a factor of 10 will probably not

lead to significant saturation. Thus, we assume the activation function of mitral cells
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saturates and it saturates on a linear scale. Taken together, the activation functions

in our model are:

FM(IM) = [tanh(IM)]+, (1.3)

FG(IG) = [(IG)]+, (1.4)

1.2.4. Connectivity

We record the presence or absence of a reciprocal dendrodendritic synapse between

a mitral and a granule cell in a connectivity matrix W (mg). Since in the experiment,

learning-dependent structural plasticity is observed [16, 17] and the origin of the

synaptic weight plasticity is still unclear [15], we assume that the birth of synapses

happens at a faster timescale and the weight of matured synapses is a constant. As

a result, only synapses with weight zero or a fixed value should be observed. For

simplicity, in our model, the synapses in our model are binary, which means the

entries in W (mg) are 1 and 0. It is possible to include synaptic weight values other

than 0 to 1 to represent synaptic weight plasticity. However, since it is not the focus

of this study, we will not include it in the current model.

Since it is suggested that the lateral inhibition in the olfactory bulb is only weakly

spatial specific [25, 26], we do not include any spatial limitations of the connections
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in this model. Thus, the ordering of the mitral cells is arbitrary. In our model, as

an initial condition, each granule cell randomly connects to the same number Nconn

of mitral cells, which means each column of W (mg) has Nconn non-zero entries. The

number of synapses on each granule cell is able to be modified by activity-dependent

plasticity, which is explained below.

1.2.5. Activity-dependent structural plasticity

The focus of this model is the structural plasticity of the synapses, and recent stud-

ies [16, 17] support an activity-dependent evolution of W (mg). In experiments, the

lifetime and orientation of filopodia, which have been observed as to be precursors

of spine heads, shows correlation with amplitude and direction of spine heads move-

ment, respectively [17]. In addition, these dynamics are triggered by pre-synaptic

glutamate release [17]. At the same time, the frequency of birth and death events of

filopodia shows correlation with N-methyl-D-aspartate receptor activation. In gen-

eral, the NMDAR activation triggers a rise in [Ca2+] and has a bidirectional control

to either grow or shrink the spine head [27, 28]. For convenience, the direction of

a reciprocal synapse in this dissertation is defined by the excitation, which means

mitral cells are pre-synaptic and granule cells are post-synaptic. Thus, in our model,

the formation and removal of a synapse is assumed to depend on the firing rates of
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the pre-synaptic mitral cell i and of the post-synaptic granule cell j that are con-

nected by that synapse. Inspired by the BCM model [29], we express the formation

and removal rates in terms of a single rate function,

Rij(Mi, Gj) = Mi φ(Gj) (1.5)

Here Mi, Gj are the ith and jth mitral and granule cell steady activity, respec-

tively. The activation function φ(Gj) changes sign at a threshold G(1) (figure 1.1B),

which means the structural plasticity has a bidirectional dependence on the granule

cell activity

φ(Gj) = [Gj −G(0)]+ (Gj −G(1)), (1.6)

Here G(0) is a threshold below which the structural change is negligible and G(1)

is a threshold that controls whether a synapse is formed or an existing synapse gets

removed.

Specifically, in each trial with length ∆t, which is one step in our simulation, the

probability of the formation of a new synapse is

P+
ij = 1− exp

(
−

[Rij]+ ∆t

τf

)
, if W

(mg)
ij = 0. (1.7)

Conversely, the probability of removal of an existing synapse is

P−ij = 1− exp

(
−

[−Rij]+ ∆t

τr

)
, if W

(mg)
ij = 1 . (1.8)
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Figure 1.3. Plotted is φ/τf for φ > 0 and φ/τr for φ < 0 (cf. Eq. 1.7
and 1.8)

Here τf , τr are the formation and removal timescale, respectively. The effect of ac-

tivity of a granule cell on the formation/removal of synapses on the same granule

cell is shown in Figure 1.3.

Further, since in experiments the change in the total number of synapses appears

to be limited [30, 31], we hypothesize that there exist some stability mechanisms to

keep the total number of synapses on the same granule cell within a reasonable range,

which is a common requirement for Hebbian plasticity models [32]. For simplicity,

we introduce top-k competition as a normalization mechanism as follows. If there

are more than k synapses, where k = κNconn with a factor κ > 1, that are on the

same granule cell, only the top k synapses with largest Rij would survive to the

next step. As a result, the number of synapses on each granule cell is limited below
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∣∣∣∣∣∣∣∣∣∣∣∣

NMC 240 NGC 1000
Nconn 60 κ 1.1
τG 0 ∆t 1
gthr 4.4 γ 5e−4
G(0) 1 G(1) 4
1/τf 0.005 1/τr 0.05

∣∣∣∣∣∣∣∣∣∣∣∣
Table 1.1. Table of parameters. The parameters for the model unless
stated otherwise.

k = κNconn while the initial number of synapses is Nconn. This top-k competition can

be realized by a resource-pool competition with additional assumptions, as discussed

later. However, since other mechanisms like scaling [33] or the ABS (Artola, Bröcher

and Singer) rule [34] may alternatively restrict the total number of synapses one

granule cell can have, and the stability mechanism is not the focus of this project,

we will keep the top-k competition without directly stating which specific biologically

feasible mechanism causes it.

1.2.6. Summary of the model

Here is a summary of our algorithm. In each step with size ∆t in the simulation,

we first calculate the steady state of the firing rate of mitral M and granule cells

G by given a random odor S from the learning odor pairs. Then, we calculate the

formation/removal rate Rij of all the pairs between mitral cells and granule cells.

At last, we evolve our connecting matrix based on Rij by following two steps: first,

if there are more than k synapses on any granule cells, only the top k synapses
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with largest Rij remain. We will refer to this as a normalization step. Second,

evolve the connectivity based on Hebbian learning rules 1.7, 1.8, which is refered

to a learning step. The learning step is always preceded by the normalization step

to avoid potential artificial oscillations. We simulate the model long enough till the

connectivity reaches a statistically steady state based on the discriminability (defined

later).

The parameters of our model are listed in table 1.1 unless specified otherwise.

1.3. Results

1.3.1. Hebbian-learning rule explains the gain-control mechanism in the

case of pure odorants

Previous experiments showed that both perceptual learning [35] and passive learning

[22] can elevate the inhibitory drive on mitral cells. We first test whether this is also

the case in our model.

We first use a pair of pure Gaussian odorants as input (Figure 1.4A) for our

model. We start the simulation with a homogenous random network as the initial

homogenous network (Figure 1.4E). The mitral cell activity when using odor A,

B and air as input is shown by different color in Figure 1.4D, G. After training,

denser connections with activated mitral cells emerge (Figure 1.4H). Accordingly,

responsive mitral cells receive more inhibition (Figure 1.4G, comparing to Figure
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Figure 1.4. Training with pure odorants by using toy stimuli. (A)
Training toy stimuli. Noticing different mitral cells respond to the same
odor differently. (B) A simplified example for the reciprocal connection
between mitral and granule cells. (C) An effective self-inhibited net-
work of mitral cells that are calculated from (B). The numbers beside
the connections represent the effective inhibition strength. For exam-
ple, the 1st and 3rd mitral cells both connect to the 1st and 3rd granule
cells, thus the effective inhibition strength between the 1st and 3rd mi-
tral cells is 2. (D) The mitral cell activity before training. (G) The
mitral cell activity after training. (E, H) The connectivity between mi-
tral cells and granule cells before and after training, respectively. Each
white dot represents a connection between the corresponding mitral
and granule cell. (E) is a homogeneous random network in which each
granule cell has the same number of connections. (F, I) The effec-
tive connectivity of the self-inhibited network. The color represents
the number of granule cells that pair of mitral cells is connected to.
As a result, the color also indicates the effective coupling coefficients
between mitral cell pairs.
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1.4D). To better illustrate the impact on mitral cells, we introduce the effective

connectivity matrix W (mm) = W (mg)W (mg)T based on the connectivity matrix W (mg)

(Figure 1.4B, C), where the entries in W
(mm)
ij represent the number of granule cells

through which the mitral cells i and j inhibit each other disynaptically. The effective

connectivity matrix shows a clear organized structure after it has been evolved using

Hebbian learning (Figure 1.4F, I).

“Cells that fire together, wire together” is the key element in any Hebbian model

([36], p.70). Our Hebbian model is no exception. If a granule cell responds to the

stimulus by integrating excitatory inputs from the connected mitral cells, the other,

not yet connected activated mitral cells also have a high chance to form a connection

with that granule cell. As a result, if a pair of mitral cells both respond to the same

stimulus, the number of granule cells they both connect to increases if the model is

trained by the stimulus, which is reflected by the two square components along the

diagonal of the effective connectivity matrix (indicated by the hotter color in Figure

1.4I).

1.3.2. Memory effects could be captured by Hebbian-learning

The Hebbian type model is capable of sustaining long-term memory. To test whether

our model has a memory or not, we sequentially train our model with two odor pairs

(Figure 1.5A). Depending on the similarity of the two training pairs, our model
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Figure 1.5. Memory effect of the model. (A) Training protocol to
show the memory effect. We first train our model with the same pair
of odors as in Figure 1.4A. Then we train with new odor pair 2. (B,
D) The stimuli of odor pair 2 and pair 1 are dissimilar and similar,
respectively. (C, E) The effective connectivity matrix W (mm) when
two pairs are dissimilar and similar, respectively. Previously trained
network as in Figure 1.4H is circled by white dashed box. (C) If the
two pairs are dissimilar, the eventually trained network remembers
the previously trained structure; (E) otherwise, the previously trained
structure is forgotten.
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shows different behavior. If the second training pair is sufficiently different from

the first training pair (Figure 1.5B), the eventual connectivity clearly reflects both

odor pairs (Figure 1.5C); if the second training pair is similar to the first training

pair (Figure 1.5D), the connectivity only reflects the latter odor pair but not the

first odor pair (Figure 1.5E). The behavior here means that if the sequential training

stimuli interfere with each other, the learning of the new task may be at the expense

of forgetting of the previously learned task.

Since our model can ”remember” the learned odors by changing its connectivity

matrix W (mg), using a homogeneous random network as initial connectivity is some-

what arbitrary since animals in real life always have odor-related memory. The mice

used in the experiments have at least smelled food, water, urine and so on in their

cages before they were trained to do specific odor discrimination tasks. If a model

does not have memory, which means the final output has no correlation with the

initial condition, then it can be safely assigned an arbitrary initial condition. How-

ever, our Hebbian model does remember previously learned structure, which means

we need to discuss the effect of previously learned memory on the current training

task.

To test the effect of memory on the learning ability, we test our model based on the

experiments [11]. Before we train our model with the pair of pure odorants (Figure

1.4A), we first pre-train our model with another pair of pure odorants (Figure 1.6B).
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The initial activity of mitral cells is influenced by the pre-training network (Figure

1.7A). However, at the end of the training, the activity of the mitral cells in response

to the stimuli pair is almost the same as in the case without pre-training (Figure 1.7

B). In this case, the learning ability of the model is independent of previous memory.

Moreover, due to the similarity between the pre-training and training pairs, the

resulting connectivity reflects only the training pair, which is similar to the situation

in Figure 1.5E.

1.3.3. Hebbian-learning rule explains the increasing of discriminability

during the course of training in the mixture odorants case

The same experiment [11] also shows that the learning-induced change in the activity

of mitral cells depends on the difficulty of the training tasks. To specify the effect, the

authors of [11] classified the mitral cells as responsive cells, which means the activity

of the mitral cell in response to either of the odor is larger than some significance

level, and divergent cells, which means the activity difference between the responses

to two different odors is larger than another significance level. After pre-training with

an easy odor pair, if the mice are trained with an easy task, the number of divergent

cells goes down during the course of training as does the number of responsive cells.

This behavior can be explained by non-selective increasing of inhibition on every

mitral cell, which can be achieved via up-regulating the strength of inhibition in an
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Figure 1.6. Training with mixture odors by toy stimuli. (A) Training
protocol to mimic the experiment. (B) Pre-training easy stimuli. (C)
Training mixture stimuli. Two mixture odors are represented by dif-
ferent linear combinations of two Gaussian activation curves (0.6 : 0.4
vs. 0.4 : 0.6). (D, F) Mitral cell activity before training (after pre-
training) and after training, respectively. See text for details. (E, G)
Effective connectivity matrix before and after training, respectively.
(H) Activity difference before and after training, represented by the
black and red lines, respectively. The grey line is the difference of
stimuli input. (I, J, K) Training results like (F, G, H) without a pre-
training phase. (I, J) Mitral cell activity before and after training. (K)
Activity difference before and after training.
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Figure 1.7. Training of an easy task to discriminate pure stimuli with a
pre-training phase. The training protocol is the same as in Figure 1.6A.
The pre-training stimuli are as in Figure 1.6B. The training stimuli are
as in 1.4A . (A to C) are organized as Figure 1.6F to H.

all-to-all network. However, if the mice are trained with a difficult task, which is

to discriminate mixtures of two odorants but with different weights, the number of

divergent cells does not go down, it may even increase, while the number of responsive

cells goes down. This phenomenon cannot be explained by non-selective inhibition.

In the following subsection, we discuss how it can be explained by our Hebbian

model.

We first describe the definitions of responsive cells and divergent cells in our

model, which are adapted from [11]. To start with, we define the response of the

mitral cell as the change in activity when given a stimulus in addition to air, which

is the background odor in the experiment. Specifically, if a mitral cell has activity

M (A,B) in response to stimuli S(A,B), and it has activity M (0) when presenting air as

stimulus S(0), then we define the response to odor A,B as dM
(A,B)
i = M

(A,B)
i −M0

i .
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Further, for a given threshold θ, if the response to one odor in an odor pair is

bigger than that threshold, max(dM
(A)
i , dM

(B)
i ) > θ, then the cell is classified as a

responsive cell. Further, if the response difference is bigger than the same threshold,

|dM (A
i − dM

(B
i | > θ, the cell is classified as a divergent cell. Here, we use the same

threshold θ to detect responsive cells and divergent cells.

In the training with an easy pair, or in the easy task, most cells that respond to

one of the odors in the pair do not respond to the other odor too much. This means

the response amplitude to this odor is almost the same as the response difference

within the pair. When the new reciprocal synapses are formed between the activated

mitral cells and the granule cells, the response amplitude and the response difference

both decrease. Using one specific mitral cell as an example (marked dots in Figure

1.4D, G), the response to the pair and the difference both drop from 0.7 to 0.27. As

a result, most cells show a decreasing response amplitude and difference. With pre-

training, this is also the case. The activity difference goes down with the amplitude

of response (Figure 1.7 C). The fraction of responsive and divergent as a function of

time shows a similar trend as observed in the experiment (Figure 1.12C).

Consider now training the model with a mixture odorant pair, or hard odor

pair (Figure 1.6A, B, C). The mitral cell firing rates are influenced (Figure 1.6D)

by the pre-trained network (Figure 1.6E) as expected. After training, the response

amplitude decreases as in the previous case of two pure odorants (Figure 1.6F),
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which is a result of the reorganized network connection (Figure 1.6G). However, in

this case, the response difference is not decreased along with the maximum response

amplitude. In fact, there is a large fraction of mitral cells experiencing an increase

in the response difference (Figure 1.6H).

The major difference in the mixture case compared to the case of two pure odor-

ants is that the overlapping of the receptive fields of stimuli is much larger. Just as

we discussed in the case of two pure odorants, the mitral cells that are co-activated

form more effective inhibitory connections. Because of the overlapping of the recep-

tive fields, the effective connectivity matrix has off-diagonal components in addition

to the diagonal components (Figure 1.6G). These off-diagonal components have a

similar function as lateral-inhibition, which inhibits the lesser activated mitral cells

and further increases the discriminability between the pair of stimuli. As a result,

the response difference is maintained or even increased while the maximum response

amplitude decreases.

We further show that the results is qualitatively similar even without pre-training.

To do that, we directly train the model with the homogeneous random network

as initial connectivity matrix, as we did in the previous session. At the starting

point of the training, the response patterns of the mitral cells in the two cases are

different, which reflects that the initial connectivity matrix is different (Figure 1.6D,

I). However, after the training, the response patterns are similar to each other (Figure
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1.6F, J). Even though quantitative differences remain, in both cases a fraction of

mitral cells experience an increase in the activity difference during the course of

training (Figure 1.6H, K).

1.3.4. Comparison by naturalistic stimuli: no artificial correlation

So far, we have used toy stimuli to explain the mechanism behind our Hebbian type

model. However, the toy stimuli we use introduce an artificial correlation between

the response amplitude and response difference of a pair of stimuli (Figure 1.8D,

black dots). To avoid this, we use naturalistic stimuli (Figure 1.8C) which were

directly adapted from published data from Leon’s lab [1]. The naturalistic stimuli

do not have the same degree of correlation anymore (Figure 1.8D, red dots).

In this part, our model is pre-trained by a naturalistic pair of two pure odorants

and then trained by a naturalistic pure (easy) or mixture (hard) odorant pair (Figure

1.8A). The key difference between the stimuli of the pair is significantly smaller in

the hard case than in the easy case. By using these stimuli, our parsimonious model

successfully reproduces several experimental observations.

In the easy case, the number of divergent cells decreases along with the number of

responsive cells (Figure 1.8E); while in the hard case, the number of divergent cells

increases by a small amount though the number of responsive cells still decreases

(Figure 1.8F).
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Figure 1.8. Modeling results of training with naturalistic stimuli and
comparison with experimental results with γ = 1.7e−4. (A) The train-
ing protocol. (B) Color-coded contour chart illustrating patterns of
glomerular evoked by an odorant, which is used as inputs to mitral
cells in our model. The figure is regenerated from [1]. (C) Stimuli
of the model as the easy pair and hard pair. (D) Naturalistic stimuli
show less correlation between the mean response amplitude and the
response difference. Top, activation of stimulus SA over stimulus SB
for each mitral cell. Bottom, |SA − SB| over (SA + SB)/2 for each mi-
tral cell. (E, F) Temporal evolution of the number of responsive mitral
cells and divergent mitral cells by training of easy task and hard task,
respectively. (G, H) Fisher Discriminant as a measurement to compare
with D-prime in the experiment. Plotted is the temporal evolution of
Fisher Discriminant of the easy task and the hard task, respectively.
(I) Two cases for different individual mitral cell behaviors. (I1) Mitral
cell changes from excited by both odors to excited by only one of the
odors. (I2) Mitral cell changes from being inhibited by both odors to
being inhibited by only one of the odors.
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In the experiment [11] , to measure the dissimilarity of two responding patterns,

they define D-prime of each divergent neuron as follows

d′i =
|µ(1)
i − µ

(2)
i |

pooled standard deviation

Here µ
(1,2)
i represents the average trace of the GC activities. The pooled standard

deviations include temporal variance and noise in the experiment. Then the D-prime

for the task is the average of the D-prime of the individual neurons.

D-prime = mean(d′i)

They observed that D-prime decreased in the easy task while increased in the

hard task. They argued this reflected a balance between efficiency and robustness

[11].

In our simulation, we use the Fisher-discriminant to measure the same dissimi-

larity. The original definition of Fisher-discriminant between the representations of

two stimuli from N channels, which are the mitral cells in our case, is as follows

F =
(w · (µ(1) − µ(2)))2

wT (Σ(1) + Σ(2))w

where µ(1,2) is a vector with entries µ
(1,2)
i which represent the average activity from

mitral cell i of the 1st, 2nd representation, respectively; Σ(1,2) is the covariance from



57

the 1st and 2nd representation, respectively; w is a weight vector. To achieve the

optimal F , we use the optimal weight w defined by w = (Σ(1) +Σ(2))−1(µ(1)−µ(2)).

As discussed in [37], assuming the firing events follow an independent Poisson

process for different mitral cells, we have Σ
(1,2)
ii = mean(µ

(1,2)
i ) and Σij = 0, i 6= j.

Further, we replace µ
(1,2)
i by M

(1,2)
i .

As a result, the Fisher discriminant is simplified into the expression

F =

NMC∑
i=1

(M
(1)
i −M

(2)
i )2

M
(1)
i +M

(2)
i

with M
(1)
i ,M

(2)
i are the steady firing rates of mitral cell i of the 1st, 2nd representa-

tion, respectively.

The relationship between Fisher-discriminant and D-prime is as follows

F ∼
NMC∑
i=1

(d′i)
2

As expected, the Fisher-discriminant successfully reproduces the trend observed

in the D-prime (Figure 1.8G, H).

Furthermore, our model reproduces the observation of individual mitral cells. In

the experiment, some mitral cells show significant excitation for both odors on day

1 but only for one of the odors on day 7, which we refer to as asymmetric inhibition.

Some other mitral cells show significant inhibition for both odors on day 1 but only

for one of the odors on day 7, which we refer to as asymmetric disinhibition. In
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Figure 1.9. Mitral cells with asymmetric activity. (A) Changing of
mitral cell response over mean mitral cell activity before and after
training. Each dot comes from one mitral cell. The X-axis is the mean
mitral cell response before training and the Y-axis is the mean mitral
cell response after training. The color means the change in response
differences. Bigger dots denote the mitral cells of which activity is
at least 0.1 bigger after training than before training. The activity
of mitral cells is closer to 0 after training, which represents the re-
organization of the network. The cases in Figure 1.8 I1 and I2 are in
1st and 3rd quadrant, respectively. (B) The activity of a mitral cell
that falls in the 2nd quarter of (A).

the model, the mitral cell response is defined as the change in activity when given

a stimulus in addition to the air. It therefore can be positive, if the odor induces

excitation of the mitral cells, and also negative, if the odor induces inhibition of the

mitral cells. Both asymmetric inhibition and disinhibition are captured in our model

(Figure 1.8I). Further, we find that only a small population of mitral cells shows a

significant increase in activity difference (Figure 1.9), which is consistent with the

insignificant increase in the number of divergent cells.
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1.3.5. Prediction of forgetting when the trained animal is switched back

and forth between similar tasks

After successfully capturing the observation of the experiments, our model predicts

that just by having structural plasticity, the olfactory bulb can store memory by

connectivity. Furthermore, a typical memory effect like forgetting triggered by inter-

ference is also predicted to be observable in the bulb. The hypothesis is that when

the system is exposed to interfering information, the discriminability between the

learned pair should be impaired, or, the system ”forgets” the learned task.

To directly show this, we train our model with sequential tasks in three phases

(Figure 1.10A). We first train the model with the 1st hard odor pair (phase 1), then

switch to train with the 2nd hard odor pair (phase 2). To further show the learning

ability is intact and make a connection with real experiment, the model is further

trained with the 1st pair again (phase 3, re-training phase).

Indeed, depending on the similarity of the two pairs (Figure 1.10B, C), we observe

different behavior from the model. When the two odor pairs are dissimilar, the

network structure remembers the previously learned structure (Figure 1.10D), and

the Fisher-discriminant of pair 1 remains at a high level after the initial learning

(Figure 1.10F). However, if the training odors are similar, interference is observed.

In this case, the previously learned structure is forgotten during the training with

the interfering odor pair in phase 2. The previously learned structure is re-learned



60

0 100 200
0

0.5

1

1.5

0 100 200
0

0.5

1

1.5

0 100 200
0

0.5

1

1.5

𝑾(𝒎𝒎)𝑾(𝒎𝒎)

1 2 3
5

10

15

1 2 3
5

10

15

Figure 1.10. Interference should lead to forgetting. (A) Training pro-
tocol. The model is trained on odor pair 1 first, then switched to
odor pair 2, then switched back to odor pair 1. (B) Stimuli of odor
pair 1. (C) Stimuli of odor pair 2 as interference. Left, weak interfer-
ence: an odor pair with little overlap with odor pair 1. Right, strong
interference: an odor pair with large overlap with odor pair 1. (D) Ef-
fective network structure W (mm) at end of training phases by training
with dissimilar stimuli. The network remembers the previously trained
structure. (E) Same as (D) but for training with similar stimuli. The
network forgets most of the previously trained structure. (F) Fisher
discriminant of odor pair 1 as a function of training time when training
with the dissimilar odor pair during phase 2. The value remains high
after initial training, which indicates that the memory is not forgot-
ten. (G) Same as (F) but for using the similar odor for phase 2. The
Fisher-discriminant of pair 1 decreases during phase 2, indicating that
interference introduces forgetting. After re-training with odor pair 1
in phase 3, the Fisher discriminant returns to the original value, which
indicates the learning ability is intact. Note that the re-training speed
is faster than the training.
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by re-training with odor pair 1, which reflects that the learning ability is intact

(Figure 1.10E). This result is directly implied by the Hebbian learning rule in our

model. For the Fisher-discriminant of pair 1, the value decreases during phase 2.

The value increases to the previous value after re-training (Figure 1.10G). Both

re-learned connectivity and the re-gained Fisher-discriminant of pair 1 shows the

learning ability of the model is intact.

The results for the Fisher-discriminant of pair 1 predict that the mice in a biolog-

ical experiment should experience deteriorated performance if they are trained with

interfering information. Assuming mice are trained under the same experimental

protocol (Figure 1.10A), the behavior of the mice at the second switch (Figure 1.10

F, G) should depend on the similarity of the training pairs. If the training pairs

are dissimilar, the Fisher-discriminant of pair 1 is comparable at the end of phase 1

and the beginning of phase 3, which predict the similar success rate of the animal at

the corresponding time points. However, if the training pairs are similar, or interfer-

ing with each other, the Fisher-discriminant of pair 1 shows a significantly decreased

value at the later time point, which predicts the mice should have worse performance

after training with an interfering odor. In addition, the re-learning speed is faster

than the initial learning in our model. At last, we showed that alternating training

does not impair the learning ability (Figure 1.11 ).
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Figure 1.11. Alternating training does not impair learning ability. (A)
Expanding the training protocol as in 1.10A to 10 phases. (B) The
fisher discriminant of odor pair 1 (top) and pair 2 (bottom). Notice
that the learning speed (of increasing of Fisher discriminant for one
pair) and forgetting speed (of decreasing of Fisher discriminant for
the other pair) are not the same. (C) Effective connectivity W (mm)

oscillates as expected.

1.3.6. Impact of major parameters of the model

To test the robustness of our model, we vary the major parameters of the model and

see the impact of such modification.
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Figure 1.12. Qualitative results of fraction of simulated cells do not
depend on the threshold θ for the responsive and divergent cells. (A,
B) Results of analyzing naturalistic stimuli by using different threshold
θ to classify responsive cells or divergent cells. The results in Figure
1.8 D, E are based on θ = 0.25. (C, D) As (A, B) but of analyzing
toy stimuli. As shown here, within some reasonable range, the choice
of threshold θ does not qualitatively change our results.

First, we test the threshold θ for detecting responsive cells and divergent cells

(Figure 1.12). We also showed that, even for the toy stimuli, the fraction of responsive

and divergent cells follows the same trend as observed in the experiments [11] before

and after training (Figure 1.12D).
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Figure 1.13. The overall inhibition of the model does not depend on
the number of granule cells. The results here are generated by training
the toy easy stimuli in Figure 1.4A with a random initial network as
in Figure 1.4E. (A, B) The maximum and mean mitral cell activity
after training as a function of the ratio of the number of granule cells.
(C) Number of activated granule cells as a function of the ratio of
the number of granule cells. If a granule cell has activity bigger than
G(1), it is classified as activated. (D to F) Results by doubling the

granule cell number. (C) The number of activated granule cells N
(act)
gc

does not depend on the number of granule cells. If one granule cell
has more synapses than Nconn, it is called activated. (D) is mitral
cell activity after training, which is comparable with Figure 1.4 H. (E)
is connectivity W (mg), which is comparable with Figure 1.4 I. (F) is
effective connectivity W (mm), which is comparable with Figure 1.4 J,
except the background is brighter. However, noticing the mitral cell at
the background is almost 0, even though the background connection
is indeed denser, it does not contribute much to the overall inhibition.
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Figure 1.14. The overall inhibition of the model does not depend on
the inhibitory strength γ. The results are organized in figure 1.13
except varying the rescaled inhibitory strength γ instead of number of

granule cells. To allow a direct comparison, N
(new)
gc and W (mm) have

been rescaled in (C) and (F) by γ(new)

γ
. (F) is comparable with Figure

1.4 J, except the background is brighter. However, as stated in Figure
1.13, the overall inhibition is not impacted.

Second, we test whether the inhibition is impacted by the number of granule

cells or the inhibitory strength γ. The influence of such modification is minimal even

when either value is doubled (Figure 1.13A, B, 1.14A, B). The effective inhibition

remains almost the same. Because of the reciprocal character of the connections, the

formation of new connections means the mitral cells receive more inhibition, which

means the total excitation to the granule cell decreases, which in turn inhibits the
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formation of new connections. This stopping point does not depend on the number

of granule cells, or inhibitory strength.

Third, we test whether the turning point G(1) in the activation function φ(G)

influences the formation of synapses. The turning point G(1) indicates the unstable

fixpoint in the dynamics of the activity of the granule cells. Only granule cells with

activity larger than G(1) form more synapses that in turn generate more selective

inhibition. By having more synapses, these cells in turn have higher activity. This

positive feedback loop stops when the number of synapses reaches k, the upper limit

of the number of synapses a granule cell can have. As a result (Figure 1.15A, B),

larger G(1) means fewer granule cells have initial activity larger enough, which in

turn reduces the selective inhibition.

Fourth, we test whether changing the value of G(0) will influence the selective

inhibition. As shown in Figure 1.16, the value of G(0) does not influence the mitral

cell activity after training when presenting the learned odor, which is a result from the

definition of the model: G(0) affects the removal but not the formation of synapses.

However, when G(0) is smaller, the granule cells that primarily connect to the inactive

mitral cells would remove the connections with the active mitral cells more easily.

To discuss this removal effect in detail, we test the model with a second task that

interferes with the previously learned one (Figure 1.17). G(0) controls the threshold

to maintain a memory. If G(0) = 0, any weak activity (0 < G < G(1)) would lead
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Figure 1.15. Increasing G(1) impairs the ability to form connections
between activated mitral cells and granule cells. The results here are
generated by training with easy stimuli in Figure 1.4A with a random
initial network as in Figure 1.4 E. (A, B) The maximal and mean mitral
cell activity after training as a function of G(1), respectively. The grey
line indicates the theoretical maximum by removing all the inhibition
as is the case when γ = 0. (C to E) Model results by training with
G(1) = 0.5. (C) Mitral cell activity after training. (D) Connectivity
between mitral and granule cells W (mg). (E) Effective connectivity
matrix W (mm). (F to H) are as (C to E) except with G(1) = 5. By
increasing G(1), the activated mitral cell receive fewer connections with
granule cells after training as shown in (A, B), which are reflected by
the sparser density in W (mg) (D, G) and the cooler color in W (mm) (E,
H). As a result, the mitral cell activity is higher (C, F). In (H), when
G(1) = 5, most of the granule cells cannot reach this high threshold.
As a result, the synapses that connect to the activated mitral cells are
removed faster than the background. Thus, the effective connectivity
among the activated mitral cells is lower than the background.
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Figure 1.16. Learning ability is not influenced by different G(0). The
results here are generated by training with the easy stimuli in Figure
1.4A with a random initial network as in Figure 1.4E. The results here
are organized as Figure 1.15. (C to E) Model results by training with
G(0) = 0. (F to H) Model results by training with G(0) = 2. The
forgetting effect is changed though by having different G(0), which we
will discuss in the next figure, Figure 1.17.

to the removal of spines. Thus, even weak interference leads to the forgetting of

all previously learned structure. However, if G(0) is large, then previously learned

structure is maintained.
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Figure 1.17. Increasing G(0) leads to less forgetting when trained with
an interfering protocol. The results are generated by first training the
model with one pair of hard stimuli (odor pair 1, blue curves in (A)),
then by training with another pair of hard stimuli (odor pair 2, green
curves in (A)), which is the same as the two pairs in Figure 1.10A before
the switch 2. (A) Training stimuli. The model is first trained with odor
pair 1, indicated by the two blue curves, which is the same as in Figure
1.10B, then the model is trained with odor pair 2, indicated by two
green curves in, which is the same as in Figure 1.10C right figure.
(B) The discriminability of odor pair 1 before and after the training
with the interfering odor pair 2 (1.10C right figure) as a function of
G(0). (C, D) Results for G(0) = 0 after training with the odor pair 2.
For G(0) = 0, the model does not have the ability to remember: the
connections between the mitral cells that are active by the odors in pair
1 have been removed (cool color in the center of W (mm)) (C). (E, F)
Results for G(0) = G(1) = 2 after training with a similar odor pair. For
G(0) = G(1), the model does not include an activity-dependent removal
mechanism. In this case, previously learned network structure is intact,
and the discriminability is not impaired (as in B). See discussion for
more details.
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Figure 1.18. Selectivity of granule cells is influenced by the number of
connections for each granule cell. The results here are generated by
training with the easy stimuli in Figure 1.4A with a random initial
network as in Figure 1.4E. (A, B) The maximal and mean mitral cell
activity after training, respectively. (C, D) Mitral cell activity after

training with N
(new)
conn /Nconn = 1, 2, respectively. (E) The selectivity of

the granule cells is impaired by increasing the number of connection.
A population of cells that respond to both odors emerges (indicated by
the red line) when the number of connections is large. (F) Decreasing
G(1) does not impair selectivity. The data is the same as in Figure
1.15.

Fifth, we test the effect of the number of connections for each granule cell. In

this case, mitral cell activity is decreasing with increasing the number of connections

on each granule cell (Figure 1.18 A, B). This is expected because more connections

means each granule cell receives input from more mitral cells and it becomes easier
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for its activity to surpass the threshold G(1). More activated granule cells with more

synapses on each cell lead to an increase in inhibition. However, the increasing in the

number of connections impairs the selectivity. Here, if the activity of a granule cell

after training is bigger than G(1) for odor A or B, then the cell is called responsive

to odor A or B. When the number of connections is large, a fraction of granule cells

that responds to both odors emerges (Figure 1.18 E, red line), which is due to the

lack of competition. This effect is not observed when varying G(1) (Figure 1.18F)

1.3.7. Realization of competition through a resource-dependent mecha-

nism

To keep a Hebbian model stable, different compensatory processes can be imposed in

addition to the homeosynaptic learning [32]. In our model, we use top-k competition

because of its simplicity without identifying a specific biologically feasible mechanism.

In this subsection, we discuss one possibility to realize this competition.

The idea behind the competition is that within a single neuron, resources used

for the formation of synapses is limited. In a hippocampal CA1 neuron, stimulating

neighboring spines leads to the shrinkage of the unstimulated spine [38]. An intuitive

explanation of this phenomenon is that some resource is not plentiful enough within

a cell. This idea has been discussed in the literature of synaptic plasticity [39].

Following this idea, we assume the activation function φ(G) now depends on the
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Figure 1.19. Diagram for the modified activation function φ(G). The
modified activation function (red line) is the difference between the
formation function (blue line) and the removal function (green curve).
The black line is the original activation function. The thicker line
indicates the situation when P = P0. Here P0 is the equilibrium point
of the resource pool size. The thin lines indicates the changing of the
activation function when P 6= P0.

current resource pool size P . Further, we assume the activation function φ(G) (Figure

1.19, red curve) has an activity-dependent formation term φform (Figure 1.19, blue

curve) and a removal term φremove (Figure 1.19, green curve):

φ(rG, P ) = φform(rG, P )− φremove(rG). (1.9)
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And the formation term depends on both activity of granule cell and the current size

of the resource pool,

φform(G, P ) = (tanh(κform (G− rform)) + 1 +R0)
P

P0

, (1.10)

φrem(G) = (tanh(κrem (G− rrem)) + 1 +R0) (1.11)

where P0 is the equilibrium resource pool size and the current resource pool depends

on the number of synapses n as P = P (all) − n where P (all) is the total amount of

the resource in the cell, which is assumed to have the same constant value for all

the granule cells. For the initial condition, we have P0 = P (all) − Nconn. Similar to

the original model, we can define G̃(0), G̃(1), G̃(0) < G̃(1) as the intersection points of

activation function and the X-axis.

In the experiments [11], mice are exposed to the odors only when they are on the

training stage. When they are back in the cage, the training odors are absent and the

activities of granule cells are supposed to be low. At the same time, the activation

function φ(G) in the original model is kept as 0 when G < G(0), which means synapses

are not formed or removed. Thus, according to the original model, the network does

not evolve when the mice stay in the cage. However, in the modified model, the

activation function φ(G) is not always 0. As a result, it is necessary to include trials

during which only spontaneous activity is presented. Thus, in the current training

protocol, we insert after every four training trials a rest trial during which the model
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is only given spontaneous activity as input. During the rest trial, the synapses are

spontaneously formed or removed depending on the size of the respective resource

pool.

Now we discuss the changing of the activation function φ when the resource

pool size is different. First, we consider the intersection of φ(G,P ) and Y-axis. This

point represents the dynamics of a granule cell when the activity of the granule cell is

G = 0. When the resource pool is at the equilibrium point P = P0, then φ(0, P ) = 0

and nothing changes; if the resource pool P is less than P0, then φ(0, P ) < 0 and

the synapses on the cell are randomly removed, which increases the resource pool

and returns it back to the equilibrium point P0,; if the pool is larger than P0, then

φ(0, P ) > 0 and new synapses are formed to randomly chosen mitral cells and also

returns it to the equilibrium point P0, (Figure 1.19). Thus, if the activity of a granule

cell is 0, the size of the resource pool always goes to P0 eventually. It also means that

the number of the synapses on the granule cell goes to the initial value n = Nconn

eventually.

Second, we consider the impact on the turning point G̃(1) of the activation func-

tion. If the resource pool is depleted, then G̃(1) slides to the right and makes the

corresponding granule cell harder to form new synapses, which indicates the com-

petition between synapses on the cell is stronger; if the resource is plentiful, then

G̃(1) moves to the left and make it easier to form new synapses (Figure 1.19), which
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means the competition is weaker. This is a reminiscent of the sliding threshold in

BCM model which studies synaptic weight plasticity [29]. However, the sliding here

is caused by the changing of a limited resource instead of temporal average of the

previous history.

Third, the change in threshold G̃(0) is accompanied by an opposite change in

the turning point G̃(1) when the resource pool size changes, which may offer an

explanation of why large G(0) may not be biologically feasible in the original model.

In the modified model, when a granule cell makes a lot of connections, the resource

pool is depleted and G̃(0) slides to the left, which is opposite to that G̃(1) slides to

the right. As a result, the difference |G̃(1) − G̃(0)| gets larger. This indicates the

competition mechanism and the difference |G̃(1) − G̃(0)| is correlated in the modified

model. In the original model, the top-k competition means very strong competition

when the number of connection reaches k: a new formed synapse is at the cost of

removal of an existing synapse. In the modified model, a strong competition means

the resource pool is depleted and the difference |G̃(1) − G̃(0)| gets larger. When G̃(1)

is fixed, this leads to a small G̃(0), which contradicts to a large G̃(0) in the original

model.

Indeed, our modified model shows qualitatively similar results as we observed in

our original model (Figure 1.20). The additional parameters we use in this section

are listed in Table 1.2.
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Figure 1.20. Realization of competition by a common resource pool.
The results here are generated from the modified model by training
with a hard or an easy task after pretraining with an easy task, which
is the same protocol as in Figure 1.6 and in Figure 1.7. (A) The pre-
training stimuli. (B) Effective connectivity W (mm) after pretraining.
(C to E, I to K) Result of training with an easy task. (C) Training
stimuli. (D) Mitral cell activity after training. (E) Effective connectiv-
ity W (mm) after training. (I) Activity difference of mitral cells before
and after training. (J) fraction of responsive and divergent cells as a
function of trials. (K) Fisher discriminant as a function of trials. (F to
H, L to N) Result of training with a hard task. Figures are organized
as (C to E, I to K). All the results are comparable with the original
model.
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∣∣∣∣∣∣∣∣∣∣
κform 2.5 κrem 5
rform 2 rrem 1
R0 0.8 P0 20
∆t 1 γ 1.7e−3
τf 1 τf 1

∣∣∣∣∣∣∣∣∣∣
Table 1.2. Table of parameters that used in resource-pool dependent competition.

1.4. Discussion

In the olfactory bulb, structural plasticity happens at a comparable timescale

with learning, which raises the question what role structural plasticity plays in the

learning process. In this study, we proposed a parsimonious Hebbian type model of

structural plasticity. Our model offers a biologically plausible explanation of how a

self-evolving reciprocal network within the olfactory bulb endows the animal with an

enhanced power to discriminate odors and with a memory of the odors involved.

Even though our model is focused on the specific reciprocal connection between

mitral and granule cells, which is not common in other brain areas, it suggests the

advantages of structural plasticity in general. First, our model shows the potential to

use a Hebbian-learning mechanism, which only requires local pre- and post-synaptic

activity but not global optimization function, to train a system to acquire a spe-

cific function: decorrelating representations of similar input in our case, which helps

to shed light on the link between local biophysical mechanisms and global cogni-

tive functions. Second, after training with this Hebbian-type rule, the number of
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synapses on each mitral cell and the response of each mitral cell have a positive cor-

relation (Figure 1.4G, I), and the trained granule cells are selective to only one of the

odor pairs. This result is reminiscent of the argument that this kind of connectivity

can optimize inference from the neurons in the latter layer, which are selectively

responsive to one of the contexts after training [40]. Third, our model shows how

a structural plasticity model can maintain previously learned memory without an

explicit history-dependent term. In another study focusing on the memory capacity

of a network [41], they show that learning by activity-dependent structural plastic-

ity, but not synaptic weight plasticity, avoids catastropic forgetting without the aid

of history, while many artificial neural network models require an explicit history-

dependent term [42].

In the adult rodent olfactory bulb, new granule cells keep integrating into the

original network. The adult-born granule cells generated through neurogenesis have

different features compared to early-born granule cells [43, 44]. It is shown that the

adult-born cells are required for mice to learn the subtle differences between similar

odors [13], and to detect the difference of perceptually close odorants after passive

exposure to these odors in a complex environment [35, 43]. However, neurogenesis is

absent in humans while humans do improve their ability to discriminate odors with

experience [45], which raises the question of the necessity of neurogenesis for learning

across different species. One of the features of adult-born granule cells is that they
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are more plastic in structure than early-born granule cells [46]. This feature offers

leverage for the adult-born granule cell population even though the total number is

relatively small compared to the early-born granule cells. Another feature is that the

network size increases overtime by having adult-born granule cells [47]. This growth

of the network happens at a timescale of months, which is longer than the timescale

considered in our study. Thus, we assume the size of network during learning is fixed.

Still, the size of the network is different for different ages of the same animal in the

experiment [47], and a network which is larger may has a stronger learning ability.

In this study, we assumed adult-born granule cells and early-born granule cells all

having the same level of structural plasticity while the total number of granule cells is

fixed. We show that the structural plasticity is sufficient for the learning process and

the results are robust over a wide range of the number of granule cells (Figure 1.13).

As a result, our model underlines the importance of strong structural plasticity of

adult-born neurons during learning, and also implies the irrelevance in the number of

total inhibitory neurons. However, further research is needed to illustrate the effects

of neurogenesis on rodents during learning.

In our model, we use a binary synaptic weight for the synapses instead of a

continuous value. While non-binary changes in the weights of the reciprocal synapses

have been observed, it is not yet understood what determines whether they are

potentiated or depressed [15]. However, whether some learning rules for synaptic
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weight plasticity can explain the same experimental observation [11] remains to be

determined. To fully understand the learning related behavior in the olfactory bulb,

further experimental and modeling studies are still required.

Our model also suggests the subnetwork structure (Figure 1.10D, E) is closely

related to the memory function. In our model, the formed reciprocal connection

increases the discriminability between the responses of similar stimuli. Forgetting

the corresponding subnetwork structure also leads to the deterioration of the dis-

criminability. Thus, our model suggests that the subnetwork structure may serve

as a functional unit in the neuron network. Indeed, a modeling study also suggests

that the formation of clusters that are functionally specialized for different cognitive

processes can optimize the performance of the whole neuron network [48].

Another important question is that γ-rhythms can be generated from excitatory-

inhibitory neuronal networks, of the type arising in our model by pyramidal in-

terneuron gamma (PING) mechanism. γ-rhythms may play an important role in the

communication between brain areas [49, 50], and it is observed in the olfactory bulb

[51]. Further, the power of the γ-oscillation in the olfactory bulb is enhanced with

task demand after learning [52], which implies that the learning process may impact

the rhythms in the bulb. In this study, we show that by having structural plasticity,

the resulting connectivity is different due to different training stimuli. It is unclear

whether different configurations of connectivity would lead to the different levels of
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power of γ-oscillation and to what extent. This will be an interesting question for

the future.

Last, even though we recover our major results by replacing our top-k competition

with a more biologically plausible resource-dependent competition, we want to point

out that different brain areas may have different normalization mechanisms, which

limits the generality of resource-dependent competition. Further, resource-dependent

competition may be a very local mechanism, which cannot be detected from a few

µm away as observed in hippocampal CA1 Neurons [38]. Thus, it is not likely

that there is direct competition across different dendrites, even less likely across the

whole neuron. In addition, heterosynaptic plasticity may be signal dependent rather

than resource-dependent [38]. For these reasons, we leave open the question how to

implement the normalization mechanism.

1.5. Conclusion

We have developed a Hebbian-type structural model which successfully explains

the experimentally observed temporal evolution of the number of responsive and

divergent cells as well as individual asymmetric mitral cell behavior. Further, the

model explains why learning improves discriminability of difficult odors but deteri-

orates that of simple odors. We predict that the recalling of the previously learned

task of the mice would be compromised if the animal was trained subsequently with

similar odors. At last, we have pointed out potential questions for the future.
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CHAPTER 2

Synchronization by uncorrelated noise: interacting rhythms

in interconnected oscillator networks

2.1. Introduction

In the previous chapter, in our model, the subnetwork structure emerges after

learning by activity-dependent plasticity in the olfactory bulb. We expect that γ-

rhythms can be generated from the excitatory-inhibitory neuron network via the

pyramidal interneuron gamma (PING) mechanism. How these γ-rhythms from dif-

ferent subnetworks interact is an interesting question. In this chapter, we study

the synchronization conditions of the rhythms from interconnected subnetworks that

generalized from the olfactory bulb.

Substantial progress has been made in the understanding the collective dynam-

ics of oscillators that are coupled in a network; particularly the conditions for their

synchronization are quite well understood [53, 54]. Synchronization is important in

many technologically relevant systems (e.g. [55, 56, 57, 58]). It plays also a a central

functional role in many biological systems like the heart [59] and the suprachiasmatic

nucleus of the brain, which controls the circadian rhythm [60]. In the brain, coherent
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activity of large ensembles of neurons manifests itself in macroscopically observable

rhythms, which have been found in many brain regions [61]. Among them the widely

observed γ-rhythm (30-100 Hz), which may play an important role in the communi-

cation between brain areas [62, 63, 64, 65, 66, 49, 50], has been studied particularly

extensively [67, 68, 69, 70, 71, 72].

In synchronous regimes the collective oscillations constitute a rhythmic popula-

tion activity of a whole network of oscillators and can be thought of as the dynamics

of a single oscillator. Using a mean-field approach, this allows a first step towards the

description of the interaction between multiple, interconnected such networks, which

has, for instance, been used in ecological studies to capture the spatial interaction

between different population oscillations [73]. Since such interconnected or modular

networks are quite common [74, 75], the interaction between multiple networks, each

supporting its own rhythm or collective oscillation, is of great interest.

For interconnected networks the stability of a globally synchronous state and its

dependence on the connectivity within and between the networks has been studied

using the master stability function [76, 77]. In the limit of weak coupling, which

allows a phase description of the oscillators in terms of variants of the Kuramoto

model, interconnected networks have been investigated for weak heterogeneity and

weak noise [78, 79, 80, 81]. A feature shared by both these approaches is that the
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Network 1

Network 2
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Rhythm 1
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Figure 2.1. Interacting rhythms in two coupled oscillator networks.
Each oscillator receives inhibition from the oscillators in its own net-
work and from the oscillators in the other networks. In addition, each
oscillator receives uncorrelated noisy input.

dynamics of the oscillators within each of the interconnected networks are quite

homogeneous; in particular, all their oscillation amplitudes are very similar.

However, there are important, strong population rhythms in which the individ-

ual oscillation amplitudes fluctuate substantially and not all oscillators participate

in each cycle of the collective oscillations. Neuronal γ-rhythms are a characteristic
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example [67]. This raises the question whether the interaction between intercon-

nected networks can couple sufficiently strongly to the internal degrees of freedom of

the individual networks to modify the internal workings of the collective oscillations.

Can this induce qualitative changes in the ability of the collective oscillations of

the different networks to synchronize with each other or to an external pacemaker?

In investigating these questions we are particularly motivated by the ubiquitous γ-

rhythms [72] and their behavior-dependent coherence across different brain areas [65]

as well as the simultaneous observation of multiple, different γ-rhythms in a single

brain area that is presumably modularly organized [82, 83, 84, 9, 85].

Our key finding is that in interconnected networks (Fig.2.1) noise can synchronize

the collective oscillations (population rhythms) that are generated by each of the

oscillator networks. Importantly, the noise induces this synchronization even though

it is uncorrelated between different oscillators and networks. This is in sharp contrast

to the well-studied stochastic synchronization where the synchronization of different

oscillators is due to the correlations in their input [86, 87, 88]. In that case the

synchronization essentially reflects the transfer of correlations from the input to the

output [89, 90, 91].

We identify the mechanism that drives the synchronization of the different rhythms

as a network mechanism; it arises from the noise-driven phase heterogeneity of the

oscillators within each network, which allows the inter-network coupling to suppress
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the activity of a variable fraction of oscillators in a given cycle of the rhythm. Thus,

desynchronization within each network enhances the mutual synchronizability of the

networks.

This type of synchronization arises quite generally. We demonstrate it for net-

works comprised of various types of synaptically pulse-coupled neuronal oscillators

(integrate-fire neurons, Morris-Lecar neurons of Type 1 and of Type 2) as well as for

interconnected networks of relaxation oscillators that are coupled by rapid diffusion.

Moreover, we find this synchronization in networks with all-to-all connectivity and

in random networks.

2.2. Model

To illustrate the generality of our results we use three different types of oscil-

lators as the nodes of the networks. Motivated by the relevance of the interac-

tion of population rhythms for the communication between different brain areas

[63, 61, 65, 50], we consider two different neuronal models: the single-component,

discontinuous integrate-fire model and the continuous two-component Morris-Lecar

model (type 1 and type 2). In both cases the interaction between the neurons is

through synapses that provide pulse-like inhibition with a stereotypical wave form

that is triggered when the presynaptic neuron surpasses a threshold. In the third

model we go beyond the neuronal context and use relaxation oscillators that are
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continuously coupled. They can be thought of as individual cells that interact via a

rapidly diffusing substance, similar to quorum sensing [92, 93, 94].

2.2.1. Integrate-Fire Neurons

Each neuron i in network α is characterized by the depolarization Vi(t), i = 1 . . . N ,

which satisfies

τ V̇i = Vrest − Vi +RI
(syn)
i (t) +RI

(ext)
i (t). (2.1)

To avoid cluttering the equations, we do not indicate the network α for each neuron

in this section. Here I
(ext)
i (t) denotes a noisy external excitatory input and I

(syn)
i (t)

the total synaptic current the neurons receives, which provides the coupling between

the neurons within network α and across networks. The parameters τ and R are

the membrane time constant and the membrane resistance, respectively. When Vi(t)

reaches the firing threshold Vθ, a spike is triggered and the voltage is reset to the reset

voltage Vr. In integrate-fire neurons the oscillation frequency increases continuously

from 0 when the spiking threshold is surpassed [95].

The synaptic currents are modeled as the difference of two exponentials, triggered

by spikes of presynaptic neurons j at times t
(k)
j ,

I
(syn)
i =

gsyn
R

(
A

(2)
i − A

(1)
i

)
(Vrev − Vi) , (2.2)
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with

Ȧ
(1,2)
i = −A

(1,2)
i

τ1,2

+
N∑
j=1

∑
k

Wij δ
(
t− t(k)

j − τd
)
. (2.3)

Here gsyn denotes the dimensionless synaptic strength and τd the synaptic delay.

Being conductance-based, the synaptic current depends on the post-synaptic voltage

Vi relative to the reversal potential Vrev, which is strongly negative for the inhibitory

synapses considered here. The connectivity matrix is denoted by W with its non-

zero elements given by Wij = 1 if neuron i and j belong to the same network, while

Wij = γ0 < 1 if they belong to different networks.

The external input of each neuron i is modeled as an independent Poisson-train

of δ-spikes at times t
(ext)
ik ,

I
(ext)
i (t) =

Vθ − Vr
R

∆vi τ
∑
k

δ(t− t(ext)ik ). (2.4)

Thus, the noisy external inputs to different neurons are uncorrelated. The dimen-

sionless input strengths ∆vi are scaled such that for ∆vi = 1 a single pre-synaptic

input spike is sufficient to trigger a spike in the post-synaptic neuron. The input

strengths are equal for all neurons within a network, but differ between networks:

∆vi = ∆v(α) for neurons in network α. The input ratio ρ(α) ≡ ∆v(α)/∆v(1) deter-

mines the frequency ratio of the rhythms of the uncoupled networks.
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Instead of the spike rates λ(α) of the Poisson trains and the strengths ∆v(α) we

use the mean input µ(α) = λ(α)∆v(α) and its variance σ2 = λ(α)(∆v(α))2 as inde-

pendent parameters. Thus, the noise strength characterized by σ2 is the same for

all neurons in all networks. The spike rates used in this paper are of the order

O(10, 000 s−1), which corresponds to each neuron in the network receiving external

input from O(200) neurons, each firing at a rate of O(50 s−1).

2.2.2. Morris-Lecar Neurons

For weak coupling the synchronization between individual neuronal oscillators de-

pends strongly on their phase-response curve, i.e. on the change in their oscillation

phase in response to a small δ-spike input. To go beyond integrate-fire neurons,

which have a type-1 phase-response curve, we also investigate synchronization in

Morris-Lecar neurons, which are of type 1 or type 2 depending on the parameter

values. They are described by a voltage V and a gating variable n for the potassium

conductance,

CmV̇i = −gl (Vi − Vleak)− gCam∞(Vi) (Vi − VCa)

−gK n(Vi) (Vi − VK)

+
∑
j

WijI
(syn)
ij + I

(ext)
i , (2.5)

τn(Vi) ṅi = n∞(Vi)− ni. (2.6)
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Here

m∞(V ) =
1

2
(1 + tanh

V − Vθm
Vsm

), (2.7)

n∞(V ) =
1

2
(1 + tanh

V − Vθn
Vsn

), (2.8)

τn(V ) =
1

φ cosh
V−Vθn
2Vsn

. (2.9)

As for the IF-neurons, the external current I
(ext)
i consists of Poisson spike trains with

mean µ and variance σ2 (cf. equation (2.4)) and the synaptic currents are given by

equation (2.2).

We use here Cm = 20µF/cm2, gCa = 4ms/cm2,gK = 8ms/cm2, gL = 2ms/cm2,

φ = 1/15s−1, VCa = 120mV, VK = −80mV , VL = −60mV, Vθm = −1.2mV, Vsm =

18mV, Vsn = 17.4mV. For Vθn = 12mV these equations describe then a type-

1 neuron, while for Vθn = 2mV one obtains a type-2 neuron [96]. The synaptic

parameters are γsyn = 0.0084, τ1 = 4ms, τ2 = 5ms.

2.2.3. Relaxation Oscillators

To go beyond the coupling by stereotypical pulses that is characteristic for neuronal

systems, we consider a minimal model of relaxation oscillators that communicate

through a rapidly diffusing substance S, reminiscent of the quorum sensing used in
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models for the synchronization of genetic, cellular oscillators [93, 94]. Each oscillator

i in network α is described by

ẋi = xi − x3
i − yi

(
xi − x(1)

0

)
+ ξxi, (2.10)

ẏi = ε (−yi + βxi + γi + µSi) + ξyi, (2.11)

Ṡi = −λSi + ν
(
xi − x(2)

0

)
(2.12)

−κlocal (Si − Slocal)− κglobal (Si − Sglobal) + ξSi.

Here x, y, and S can be thought of as deviations in the concentrations of the re-

spective substances from a mean value. Slocal is the average of Si within network α

and Sglobal is the average of Si across the oscillators of all networks. The strength

of the coupling within each network is given by κlocal, whereas the global interaction

among all oscillators is given by κglobal. Thus, within and across the networks the

interaction of the oscillators is all-to-all. Each component of each oscillator is driven

by Gaussian white noise ξx,y,z with the same variance σ2; the noise is δ-correlated in

time and uncorrelated across components and oscillators.

The dynamics of this model are shown in Fig.2.2 for an individual oscillator.

The reactant S responsible for the interaction is produced for xi > x
(2)
0 . Thus, its

amount depends on the waveform of the oscillation, particularly on its amplitude.
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Figure 2.2. In the relaxation oscillator (equations (2.10,2.11,2.12)) the
coupling field S reflects the oscillation wave form and affects the sta-
bility of the fixed point. a) Temporal evolution of x, y, and S for the
relaxation oscillator and b) corresponding projection onto the (x, y)-
phase plane. Black: x-nullcline, gold: y-nullclines corresponding to
the minimal (solid) and the maximal (dashed) value of S along the
limit cycle. Parameters: ε = 0.05, β = 3, µ = 0.2, λ = 0.05, ν = 2,

κlocal = 5, κglobal = 0.15, x
(1)
0 = −2, x

(2)
0 = −1.2, γ = 2.5, σ = 0.

An increase in S shifts the y-nullcline to the left, shifting the fixed point and reducing

the oscillation frequency. For sufficiently large S the fixed point becomes stable.

2.2.4. Order Parameters

In the IF-model the voltage trace V (t) does not include the action potential (spike)

itself. When taking the mean across the network to obtain V̄ (α), we therefore add



93

a spike of size Vspike = 45mV to the voltage in the time step when V reaches the

threshold Vθ. This enhances the diagnostics in terms of the order parameter. To

characterize the degree to which the different LFPs V̄ (α) are synchronized we use the

temporal average of the order parameter rglobal defined as

rglobal(t) e
iψglobal(t) =

1

N

N∑
α=1

eiφ
(α)(t). (2.13)

Here the phase φ(α) is the argument of the analytic signal of V̄ (α), which is obtained

via a Hilbert transform. Analogously, the local order parameter

r
(α)
local(t) e

iψ
(α)
local(t) =

1

Nα

Nα∑
k=1

eiφ
(α)
k (t) (2.14)

measures the synchronization within network α. Here φ
(α)
k (t) is the argument of the

analytic signal of oscillator k in network α.

For the networks of relaxation oscillators we use an overall order parameter

that is based on the argument φ(α) of the analytic signal of the averages x̄(α)(t) ≡
1
Nα

∑Nα
k=1 x

(α)
k (t) within each network α. The distribution function P(φ(α)), when

sampled uniformly in time, turns out to be strongly non-uniform. This reflects the

fact that in these relaxation oscillations the oscillators - and also the collective os-

cillations - spend much more time in specific parts of phase space and φ(α) evolves

quite nonlinearly in time. Because of this bias in P(φ(α)) the unweighted average

N−1
∑N

α=1 e
iφ(α)(t) across the N interconnected networks does not vanish even if the
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averages x̄(α)(t) of all of the networks are completely uncorrelated and N is large.

We therefore define the order parameter via the weighted average

rglobal(t) e
iψglobal(t) =

1

N

N∑
α=1

1

P (φ(α)(t))
eiφ

(α)(t).

We approximate P(φ(α)(t)) using a 6th-order polynomial fit to the histogram of φ(α).

With this correction the order parameter is appropriately very small when the col-

lective oscillations are uncorrelated. In principle, the same correction should be used

for the order parameters r
(α)
local of the individual networks. However, for the strong

order found within the individual networks introducing the weights has only little

impact. We therefore forgo this slight improvement, which requires substantial com-

putational effort, and use the unweighted local order parameter r
(α)
local as defined in

equation (2.14) based on the analytic signal of x
(α)
k (t).

2.3. Results

We investigate the interaction of population rhythms in interconnected networks

of synaptically coupled integrate-fire (IF) neurons, of synaptically coupled Morris-

Lecar neurons, and of diffusively coupled relaxation oscillators. The network connec-

tivities are taken to be either all-to-all or random, with an effective coupling strength

that is stronger within each network than across networks. In all of the cases the

individual oscillators (neurons) receive noisy inputs whose means are the same within
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each network, but differ across networks. Importantly, the noisy inputs to different

neurons belonging to the same or to different networks are uncorrelated.

2.3.1. Noise-Induced Synchronization of IF-Networks

To illustrate the synchronization of populations by uncorrelated noise we first show

results for a large number (N = 100) of interconnected networks of integrate-fire

neurons. While for brain rhythms the interaction of only a few rhythms is expected

to be particularly relevant, key elements of the synchronization can be visualized and

characterized better using many networks, because they allow not only the definition

of an order parameter rlocal for the within-network synchrony, but also of a global

order parameter rglobal for the synchrony across networks (cf. Eqs.(2.13,2.14)).

Thus, each row in Fig.2.3A1,2 shows the collective oscillation of one of the net-

works. The input to each neuron consists of an independent Poisson spike train.

The mean spike rate of these spike trains and with it the natural frequency of each

neuron is equal for all neurons in a network but decreases with increasing index α

of the network (for clarity only 25 networks are shown). We characterize the noise

in each spike train by the variance σ2 of its spike rate. Each neuron in network α

receives strong inhibition from all Nα = 100 neurons in the same network and weaker

inhibition from all neurons in the other networks. Due to the strong within-network



96

 

 

3 3.1 3.2

20

40

60

80

100

−2

0

2

 

 

3 3.1 3.2

20

40

60

80

100

−2

0

2

Time [s] Time [s]

N
et

w
or

k 
N

um
be

r

A1 A2 B

Figure 2.3. Increasing the uncorrelated noise in the inputs to the indi-
vidual neurons synchronizes the population rhythms of interconnected
networks of IF-neurons. A: Temporal evolution of the phases φ(α)(t)
of the population rhythms V̄ (α)(t) of the N = 100 networks. A1: For
weak noise (σ2 = 0.04s−1) the rhythms are not synchronized; shown
is φ(α)(t) for α = 4, 8, 12, . . . 100. A2: Strong noise (σ2 = 2s−1) syn-
chronizes the rhythms. B: The time-averaged order parameter rglobal of
the interconnected networks (lower panel) increases hysteretically with
increasing strength of the uncorrelated noise (error bars denote stan-
dard deviation). The order parameters r(α) of the individual networks
(upper panel) decrease with noise, time-averaged r(1) and r(100) are
shown. Parameters: γ0 = 0.0065, gsyn = 0.021, µ = 200s−1, τ = 20ms,
τ1 = 4ms, τ2 = 5ms, τd = 2ms, Vrest = −55mV, Vθ = −45mV,
Vr = −65mV, Vrev = −85mV, ρ(α) = 1 − 0.25 α

N . The parameters
γ0 and gsyn have been scaled so that the overall conductances of the
connections within and across the networks correspond to those in the
2-network case discussed below (Fig.2.5).

inhibition the neurons within each network synchronize, resulting in a collective oscil-

lation (population rhythm) that corresponds to an interneuronal network γ-rhythm

(ING) [97, 98, 71, 99]. We characterize the rhythm in network α via the mean V̄ (α)

of the voltage Vi across all neurons i of network α, using it as a proxy for the local



97

field potential (LFP) of network α that would typically be measured experimentally.

To characterize the degree to which the different LFPs V̄ (α) are synchronized we use

the temporal average of the order parameter rglobal(t), which is based on the analytic

signal of V̄ (α) (cf. Eqs. (2.2.4)). Analogously, we use a local order parameter r
(α)
local(t)

to quantify the synchronization within network α, which is based on the analytic

signal of the individual oscillators in network α (Eqs.(2.13,2.14)).

Without or with very weak noise σ2 the LFPs V̄ (α) of the different networks do not

synchronize (Fig.2.3A1); instead they oscillate at different frequencies reflecting the

different mean inputs ρ(α) that the neurons in the different networks receive, ρ(α) =

ρmax − α
N (ρmax − ρmin) with ρmax = 1 and ρmin = 0.75. Correspondingly, the global

order parameter rglobal is small (Fig.2.3B). However, as the noise is increased above a

critical value σ2
c+ = 0.44s−1 the system undergoes a discontinuous transition reflected

in a large jump of the order parameter rglobal. The LFPs of most networks are

now synchronized (Fig.2.3A2). If the noise amplitude is now reduced adiabatically,

synchronization across the networks persists up to a lower value σ2
c− = 0.24s−1,

revealing hysteresis. Why does this network of oscillator networks become more

coherent when it is exposed to stronger uncorrelated noise?

A characteristic feature of the synchronization mechanism is that noise allows the

slower network to speed up, but it does not slow down the faster network (cf. Fig.

2.5). This is also seen in the spectra of the large interconnected network of Fig.2.3.
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For low noise the spectrum of each network is broad (Fig.2.4 top panels). However,

in the ordered regime at larger noise, the frequencies of most networks has increased

to the value of the fastest network.

To identify the mechanism by which uncorrelated noise can synchronize intercon-

nected networks of oscillators we reduce the complexity of the system in two steps.

We first consider two coupled networks and then the even simpler case in which

network 2 is exposed to strictly periodic inhibition. We present here the results for

2 networks with all-to-all coupling.

Consistent with our results for many interconnected networks (Fig.2.3), increas-

ing the strength σ of the uncorrelated noise - at fixed coupling strength - can enhance

the synchrony of the two rhythms of the two coupled networks (Fig.2.5). For van-

ishing and very weak noise the two rhythms exhibit 2:3 phase-locking, as is apparent

from the attractor, here represented in terms of the LFPs V̄ (α) of the two networks

(Fig.2.5B6 for ρ(2) = 0.83), and the corresponding LFP-spectra (Fig.2.5B3). In this

regime the two networks behave like two individual oscillators. For somewhat larger

noise the attractor becomes smeared out and the spectra suggest a transition to

noisy 1:2 phase locking (Fig.2.5B2,5). Strikingly, a further increase in noise strength

‘cleans up’ the attractor (Fig.2.5B4). This is reflected in a strong reduction of the

low-frequency components of the Fourier spectra, which for sufficiently strong noise

reveal 1:1 phase locking, i.e. synchronization of the two rhythms (Fig.2.5B1). More
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Figure 2.4. Uncorrelated noise synchronizes the networks at the fre-
quency of the fastest network. Upper panels: for low noise, σ2 =
0.04s−1, the networks are not synchronized. Fourier spectra of the
LFPs V̄ (α) of 25 of the 100 interconnected IF-networks shown in Fig.2.3
vary significantly in frequency. Lower panels: For stronger noise,
σ2 = 2s−1, all networks are essentially synchronized, showing only a
weak subharmonic component (note the logarithmic scale). Left (right)
panels show the spectra for the networks with weaker (α > N /2) and
stronger (α ≤ N /2) injected current. Parameters as in Fig.2.3.
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Figure 2.5. Uncorrelated noise synchronizes population rhythms of two
coupled networks. A) Sketch of the two coupled networks. B) (B1-3)
Fourier spectra of LFP V̄ (1) (upper panel) and LFP V̄ (2) (lower panel)
of network 1 and 2, respectively, on a logarithmic scale for ρ(2) = 0.83
and different noise strengths (σ2 = 0.9s−1, σ2 = 0.14s−1, σ2 = 0.01s−1).
(B4-6) attractors for the corresponding values of σ2. (B7) Spectral
power for network 1 as a function of noise and frequency for ρ(2) = 0.83.
Green arrows indicate noise values in (B1-3). (B8) as (B7) for network
2. (B9) Phase diagram. Color hue and saturation indicate frequency
ratio and logarithmic power ratio of the characteristic Fourier modes
(marked with red arrows in panels B2,3), respectively. Synchronization
is obtained in the white region labeled 1:1. Parameters: Nα = 500,
τ = 20ms, τ1 = 4ms, τ2 = 5ms, τd = 2ms, Vrest = −55mV, Vθ =
−45mV, Vr = −65mV, Vrev = −85mV, gsyn = 0.0042, γ0 = 0.64,
µ = 200s−1.
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detailed simulations show that the spectral peak characterizing the 1:2 phase locking

decreases to very small values smoothly (Fig.2.5B7,8; 1), indicating that synchrony

is reached by undergoing a continuous (super-critical) period-doubling bifurcation in

reverse (cf. Fig.2.11 below).

The frequency ratio of the two rhythms in the absence of noise depends on the

ratio ρ(2) of the mean inputs µ(α) of the two networks. Delineating the different

phase-locked states as a function of ρ(2) and of the noise strength σ leads to domains

akin to Arnold tongues in which, strikingly, the coupling strength is replaced by the

noise strength as the second control parameter. In Fig.2.5B9 the color hue indicates

the ratio ω2 : ω1, where ω1 is the frequency of the dominant spectral peak of network

1 and ω2 is the frequency of the dominant peak of network 2 that satisfies ω2 < ω1

(arrows in Figs.2.5B2,3). The saturation of the color gives the corresponding ratio

A2(ω2)/A2(ω1) of the amplitudes of the peaks on a logarithmic scale. Thus, over

quite some range in the input ratio ρ(2) noise induces synchrony (white region labeled

1:1) via a continuous period-doubling bifurcation, as signified by the fading-away of

A2(ω2)/A2(ω1) with ω2 : ω1 = 1 : 2. Depending on ρ(2), the 1:2 phase-locked state

can arise directly at vanishing noise or via a transition from the 2:3 tongue.

1For clarity the frequency resolution has been reduced in Fig.2.5B7,8; for each bin the maximal
value of the power in that bin is shown.
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Figure 2.6. Uncorrelated noise synchronizes population rhythms of two
coupled IF-networks with random connectivity. Phase diagram show-
ing transitions between different phase-locked and synchronized states
as a function of noise and input ratio. Color hue and saturation in-
dicate frequency ratio and logarithmic power ratio of the dominant
Fourier modes (cf. Fig.2.5). Parameters: Nα = 500, ε1 = 0.56,
ε2 = 0.24, τ = 20ms, τ1 = 4ms, τ2 = 5ms, τd = 2ms, Vrest = −55mV,
Vθ = −45mV, Vr = −65mV, Vrev = −85mV, gsyn = 0.015, γ0 = 1.5,
µ = 200s−1.

To demonstrate the robustness of the synchronization with respect to changes in

the connectivity we also consider the impact of uncorrelated noise on two coupled

IF-networks with random connectivity.

Each oscillator receives ε1Nα random inhibitory connections from its own network

and a smaller number ε2Nα of random inhibitory connections from the other network.

Thus, all oscillators have the same in-degree, but not the same out-degree. We have

avoided the heterogeneity that would be associated with variable in-degree in order

to focus on the synchronization by temporal noise. As shown in Fig.2.6, the overall
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odically inhibited rhythm. A) of the periodically forced single network
2. B) Phase diagram for a single network with periodic inhibition.
Each neuron in the network receives uncorrelated noise, which syn-
chronizes the rhythm with the forcing in the white region marked 1:1.
Parameters and colors as in Fig.2.5B9.

behavior of these random networks is very similar to the networks with all-to-all

coupling with the noise synchronizing the two networks (Fig.2.6).

Analogous to the case of the network of networks (Fig.2.3), where in the synchro-

nized state the overall frequency of the system is close to that of the fastest network

(Fig.2.4), the two networks synchronize at the frequency of the faster network. This

suggests that the mechanism does not require the mutual interaction of the two net-

works, but can also operate in a single network that is exposed to strictly periodic

inhibition. We implement periodic forcing by giving tonic input to network 1 and

removing the inhibition it receives from network 2 (Fig.2.7A). Network 1 therefore

acts as a pacemaker for network 2, a situation that is, for instance, relevant for

circadian rhythms with the dark-light schedule functioning as pacemaker. Indeed,



104

Figure 2.8. Correlations between rhythms and between individual os-
cillators respond oppositely to noise. A) The correlation 〈V̄ (1), V̄ (2)〉
between the LFP of network 2 and the periodic inhibition increases
with increasing noise (cf. Fig.2.7). B) The average of the equal-time

correlations 〈V (2)
j , V

(2)
k 〉 between individual neurons j and k in network

2 decreases monotonically with increasing noise strength. Parameters
as in Fig.2.7.

depending on ρ(2), as the noise is increased the periodically inhibited single network

2 undergoes transitions between different phase-locked states and eventually reaches

the synchronized 1 : 1-state via a continuous period-doubling bifurcation (Fig.2.7B).

In parallel, the correlation between the rhythm in network 2 and the periodic forc-

ing increases (Fig.2.8A). Fig.2.7B shows also that the frequency range over which

the rhythm can be entrained 1:1 by the external forcing increases substantially with

noise. Thus, noise enhances the synchronizability of the rhythm.
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The synchronization of the population rhythms does not imply the synchroniza-

tion of individual oscillators. To demonstrate this we measure the equal-time corre-

lation between the voltages of the individual neurons within network 2 (〈V (2)
j , V

(2)
k 〉)

and compare it with the correlation between the LFP of network 2 and the periodic

forcing (〈V̄ (2), V̄ (1)〉). For the latter we determine the phase shift between the two

signals from the difference in the phases of their dominant Fourier modes and plot

in Fig.2.8A the correlation for that delay as a function of the noise and the input

ratio ρ(2). Mirroring the phase diagram of the periodically forced network (Fig.2.7)

the correlation between the LFP of network 2 and the periodic forcing increases with

noise. However, the voltage correlations between the individual neurons within net-

work 2 decrease monotonically with increasing noise strength (Fig.2.8B), reflecting

the decrease in the local order parameters in Fig.2.3B.

2.3.2. Within-Network Desynchronization Enhances Synchronizability of

Networks

Insight into the synchronization mechanism is gained from the temporal evolution of

the voltage distribution function of the neurons in the periodically forced network 2

(Fig.2.9, cf. Fig.2.7). The tonically driven neurons in network 1, which provides the

periodic forcing, reach the threshold Vθ = −45mV at the times marked by double-

arrowed lines; they spike and their voltage is reset to Vr = −65mV. At the dashed
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line the ensuing delayed inhibition reaches network 2. Even though all neurons within

network 2 receive the same mean external input, the uncorrelated noise in that input

reduces their correlation (Fig.2.8B) and induces a spread in their voltage. While

that spread is not large in Fig.2.9, it is sufficient to split the neuron population into

two groups: a faster group that has already spiked when the inhibition arrives and a

slower, lagging group that is kept from spiking by the strong inhibition. In contrast to

the instantaneous voltage reset to Vr associated with spiking (red arrow), the voltage

of the slower group of neurons decreases smoothly (green arrow). Eventually, due

to the strong inhibition originating from the spiking neurons in network 2 the two

groups of neurons in network 2 merge again before the cycle resumes.

Importantly, the self-inhibition of network 2 delays the time to its next spiking

volley. Consequently, when the inhibition from network 1 keeps the lagging neurons

in network 2 from spiking, the total self-inhibition within network 2 is reduced,

speeding up its rhythm in that cycle. If network 2 catches up, more of its neurons

escape the inhibition by network 1 and spike (cf. cycle starting at θn+1 in Fig.2.9),

increasing self-inhibition of network 2 and slowing down its rhythm. Thus, even

though the inhibition from network 1 briefly delays each neuron in network 2, overall

it speeds up the rhythm of network 2 in a phase-dependent fashion. This provides a

stabilizing feedback and allows the network to adjust its population frequency over

a wide range.
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Figure 2.9. Noise increases the synchronizability of rhythms by allow-
ing a variable number of neurons to spike. Time-dependence of the
voltage distribution function of the oscillators in the periodically forced
network 2 with color indicating the number of neurons in bins of size
0.2mV. Also shown is the lag θn in each cycle. The red (green) arrow
marks spiking (non-spiking) neurons. Parameters as in Fig.2.7 except
for ρ(2) = 1.02, γ0 = 0.81, σ2 = 0.3s−1.

To confirm this synchronization mechanism we remove the stabilizing feedback

by adjusting in each cycle the strength gsyn of the self-inhibition in network 2 to

compensate for the variable fraction fspiking(t) of spiking neurons,

gsyn → gsyn
f̄spiking
fspiking(t)

, (2.15)
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Figure 2.10. Synchrony is lost and replaced by a 3-cycle when the self-
inhibition is rendered independent of the spiking fraction fspiking(t)
via the control defined by equation (2.15) at t = 2s. Parameters as in
Fig.2.7 except for ρ(2) = 0.975, σ2 = 2s−1.

where f̄spiking is the time average of fspiking(t) before the control is turned on. Indeed,

synchronization is lost when this control is applied, as is apparent from the resulting

strongly varying spiking fraction (Fig.2.10).

2.3.3. Period-Doubling

The phase diagrams shown in Figs.2.5,2.7 suggest that in this parameter regime

synchronization is reached via a continuous period-doubling bifurcation. To confirm

this explicitly for the single network with periodic forcing (Fig.2.7), we extract from
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Figure 2.11. The iterated map for the lag θn of a periodically forced IF-
network exhibits a period-doubling bifurcation (cf. Fig.2.9). Different
colors show θn-sequence for one initial condition for different values of
the noise σ2. With increasing σ2 the dynamics go from disordered to
a noisy 2-cycle to a noisy fixed point. Parameters as in Fig.2.7 except
for Nα = 5, 000, ρ(2) = 1.03, γ0 = 0.81, gsyn = 4.2× 10−5.

the simulations an iterated map for the lag θn ≡ Vθ−V̄ (2)(tn) where V̄ (2) is the LFP of

network 2 and tn is the time when neurons in network 1 spike in the nth cycle; the θn

are marked by double arrows in Fig.2.9. For small noise (σ2 = 0.05s−1) the iterates

of θn trace out an almost continuous noisy attractor, corresponding to irregular
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dynamics (Fig.2.11). When the noise is increased to σ2 = 0.2s−1, this attractor

changes to two domains, corresponding to a noisy 2-cycle. With a further increase

in the noise (σ2 = 0.6s−1) the two domains merge to a single, noisy fixed point that

corresponds to the synchronized state. Conversely, when the noise is decreased, the

synchronous state becomes unstable via a period-doubling bifurcation. In view of

Fig.2.9 this instability can be understood intuitively by noting that for weak noise

the voltage distribution of the neurons is narrow and even small changes in the

timing of network 2 strongly affect its fraction fspiking of spiking neurons, resulting

in a large gain in the feedback via self-inhibition. If that gain is too large, i.e. if

the voltage distribution is too narrow, the feedback destabilizes the fixed point via

a period-doubling bifurcation.

2.3.4. Networks of Morris-Lecar Neurons

The key elements of the synchronization are the heterogeneity of spike timing and the

dependence of the frequency of the rhythm on the strength of the inhibition. This

suggests that synchronization by uncorrelated noise should be found more generally

in network rhythms that arise from inhibition. To test this we replace the IF-neurons

with type-2 Morris-Lecar neurons (Fig.2.12). They have a very different phase-

resetting curve than the IF-neurons, i.e. they respond very differently to weak δ-

spike inputs. Consequently, for weak coupling individual Morris-Lecar neurons have
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very different synchronization properties than individual IF-neurons [100]. As for

the IF-neurons, the interaction between the Morris-Lecar neurons is taken to be via

stereotpical inhibitory synaptic pulses that are triggered when V reaches a threshold

of Vθ = 10mV and are described by equations (2.2,2.3). In these simulations we use

a random, sparse connectivity in which each of the Nα oscillators in each network has

a fixed number ε1Nα of randomly chosen incoming connections from the oscillators

within the same network and a lower, fixed number ε2Nα of connections from the

other network. Thus, the in-degree, but not the out-degree, of each oscillator is fixed.

Again, uncorrelated noise synchronizes the population rhythms (Fig.2.12A). For

the parameters in Fig.2.12A rhythms other than 1:2 and 1:1 arise only for very

small noise (inset of Fig.2.12A). As found for IF-neurons, turning on the feedback

control (equation (2.15)), gsyn → gsynf̄spiking/fspiking(t), destroys the synchronization

(Fig.2.12B), confirming the same synchronization mechanism.

2.3.5. Dependence of Synchronization on the Duration of Inhibition and

the Reversal Potential

To assess the generality of the synchronization mechanism we vary key aspects of

the inhibition: its temporal evolution and its reversal potential Vrev. To vary the

effective delay and the duration of the inhibition we rescale the rise and decay times
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Figure 2.12. Noise synchronizes also coupled networks of type-2
Morris-Lecar neurons. (A) Phase diagram showing synchronization
of two networks with increasing noise (inset shows blow-up). Colors as
in Fig.2.7. (B) Loss of synchrony after turning on the control (equation
(2.15)) for ρ(2) = 0.84, σ2 = 2.5.

τ1,2 by a common factor κ,

Ȧ
(1,2)
i = −A

(1,2)
i

κ τ1,2

+
N∑
j=1

∑
k

Wij δ
(
t− t(k)

j − τd
)
. (2.16)

For κ > 1 this shifts the decay and the peak of the inhibition to later times. The latter

amounts to an increase in the effective delay. The reversal potential Vrev determines

the dependence of the inhibition on the voltage of the cell receiving the inhibition,

I
(syn)
i = g0

gsyn
R

(
A

(2)
i − A

(1)
i

)
(Vrev − Vi) . (2.17)
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Figure 2.13. Phase diagrams for networks of type-2 Morris-Lecar neu-
rons demonstrate that increasing noise synchronizes the rhythms for
fast (κ = 1) and slow inhibition (κ = 3) and over a large range in
reversal potential Vrev. Parameters as in Fig.2.12 with Vθn = 2mV.

We have included a factor g0 in Eq.(2.17), which indicates the change in the synaptic

strength used in Figs.2.13,2.14 compared to the main part of the paper.

If the reversal potential is significantly below the resting potential of the cell, the

conductance-based inhibition is very similar to inhibition by a fixed negative current.

It shifts the voltage of the fixed point that corresponds to the non-spiking state to

more negative (hyperpolarized) values. However, if the reversal potential is at the

resting potential, inhibition vanishes for the non-spiking cell and the location of the

fixed point is not affected. Nevertheless, synaptic input increases the conductance

of the cell and functions as a shunt for any excitatory inputs, stabilizing the fixed
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Figure 2.14. Phase diagrams for networks of type-1 Morris-Lecar neu-
rons demonstrate that increasing noise synchronizes the rhythms for
fast (κ = 1) and slow inhibition (κ = 3) and over a large range in
reversal potential Vrev. Parameters as in Fig.2.12 with Vθn = 12mV.

point. With respect to the formation of a γ-rhythm within an individual network

it is known that with shunting inhibition type-2 neurons tend to synchronize only

poorly and the γ-rhythms themselves tend to be ffragile [101].

We find that uncorrelated noise synchronizes the rhythms over a wide range of

the time scale of the inhibition and of the reversal potential for networks of type-1

neurons (Fig.2.14) and of type-2 neurons (Fig.2.13). Here we use the Morris-Lecar

model for both types of neurons. Interestingly, in some cases the synchronization

does not involve a period-doubling bifurcation (Figs.2.13A, 2.14A,C). For values of

the reversal potential close to the resting potential synchronization does not occur
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for type-2 Morris-Lecar neurons, reflecting the fragility of the γ-rhythms themselves

[101].

2.3.6. A Heuristic One-dimensional Map Model

The simplicity of the mechanism identified in our simulations (Fig.2.9) suggests that

its essence may be captured in a simplified model. The temporal evolution of the

voltage distribution of the neurons in network 2 shows that the voltage distribution is

quite sharply peaked. Moreover, shortly before the times when the periodic inhibition

arrives in network 2 the distribution is close to unimodal and can be characterized

by the LFP of network 2 and its lag relative to network 1 or the periodic inhibition.

This allows us to develop a phenomenological Poincare map for the lag θ.

Figs.2.13,2.14 indicate that the synchronization mechanism is not very sensitive

to the voltage dependence of the inhibition. For simplicity we therefore assume that

the inhibition resets the voltage of an oscillator by an amount proportional to its

voltage and write the evolution of a normalized mean voltage (LFP) V̄ as

˙̄V = ρmap − g1 V̄ (t)
∞∑

n=−∞

δ (t− (n+ τd)) (2.18)

−g2 P (V̄ (t− τd)) V̄ (t),

with V̄ being reset to V̄ = 0 instantaneously when it reaches V̄ = 1. The second

term in equation (2.18) represents a periodic external forcing with strength g1 and
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period 1. The third term models the self-inhibition of the network. Its strength

depends on the number P (V̄ (t)) of oscillators that are at the spike threshold when

the LFP has the value V̄ . The evolution of V̄ (t) is shown in Fig.2.15A.

P (V̄ (t)) reflects the voltage distribution of the oscillators, which results in a

heterogeneity in the spike times of the oscillators in network 2. The simulations of

the integrate-fire model indicate that this heterogeneity plays a central role (Fig.2.9).

Instead of considering an evolution equation for the voltage distribution, for our

minimal model we consider it time-independent and of the form

P (V̄ ) =


1

σmap
V̄ ∈ [0, 1

2
σmap] ∪ [1− 1

2
σmap, 1)

0 otherwise.
(2.19)

Thus, for V̄ ∈ [0, σmap/2] neurons in the trailing half of the distribution are firing,

while for V̄ ∈ [1− σmap/2, 1) neurons in the leading half are firing.

With n + τd the time at which the periodic inhibition arrives in the nth-cycle

and letting tn be the time at which V̄ reaches threshold, V̄ (tn) = 1, we focus on the

situation in which the external inhibition arrives before any of the self-inhibition sets

in that is triggered by the oscillators in network 2,

n+ τd < tn −
σmap
2ρmap

+ τd.
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Figure 2.15. The synchronization via reverse period-doubling can be
captured in a heuristic map model. A) Temporal evolution of the
normalized mean voltage V̄ , with lag θ̄n indicated and plotted in terms
of the cycles of the periodic inhibition. B) Map given by equation
(2.21). The fixed point becomes stable with increasing noise level σ2

map.
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The external inhibition induces a reset

V̄ (n+ τd)→ e−g1V̄ (n+ τd).

For sufficiently strong coupling g1 it keeps the trailing oscillators from spiking and

from contributing to the self-inhibition. Thus, self-inhibition lasts from

t<n = tn −
σmap
2ρmap

+ τd

to

t>n = min

(
n+ 2τd, tn +

σmap
2ρmap

+ τd

)
.

During that time ∆t ≡ t>n − t<n it induces a voltage change that leads to

V̄ (t>n ) = e
−g2

ρmap
σmap

∆t
V̄ (t<n ) +

σmap
g2

(1− e−g2
ρmap
σmap

∆t
). (2.20)

Combining equation (2.20) with the voltage evolution during the remaining time

yields a Poincare map for the lag θ̄n ≡ 1− V̄ (n) of network 2 relative to the periodic

inhibitory input (Fig.2.15B),

θ̄n+1 = F (θ̄n). (2.21)

The fixed point θ̄FP = F (θ̄FP ) corresponds to a 1:1 synchronized state. Its stability

depends on the slope F ′(θ̄FP ). It is only stable (
∣∣F ′(θ̄FP )

∣∣ < 1) for large widths σmap
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of the distribution P , i.e. for sufficiently strong noise, and becomes unstable via a

period-doubling bifurcation at F ′(θ̄FP ) = −1 as the noise is reduced.

Thus, this simple map model extracts the key role of the noise-induced hetero-

geneity of the spike times in network 2 in the synchronization of the population

rhythms found in the full network simulations (Figs.2.5,2.7,2.12) and gives further

support for the mechanism that we extracted from our simulations (Figs.2.9,2.12).

Thus, desynchronization of the neurons within a network can enhance the syn-

chronizability of the collective oscillation of a network with externally applied peri-

odic inhibition or with the inhibition provided by rhythms in other networks.

2.3.7. Minimal Network Size for Synchronization

The synchronization mechanism identified in Fig.2.9 is specific to population rhythms

of networks rather than oscillations of individual neurons, since it requires the number

of spiking neurons and the associated inhibition within the network to decrease with

increasing lag of the network. The discreteness of the network size suggests that in

small networks the inhibition will be too coarsely quantized to stabilize synchrony.

This is indeed the case. While the total spectral power Stot of the LFP of network

2, which characterizes the strength of the rhythm itself, depends only weakly on

noise and network size (Figure 2.16B), the subharmonic spectral power Ssub of that

LFP, which includes only the frequencies below the dominant frequency, decreases
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Figure 2.16. Synchronization by noise requires a minimal network size
Nα. A) Spectrum of the LFP of network 2 indicating the frequency
range included in the total power Stot and the subharmonic power
Ssub. B) Stot depends only moderately on noise strength and network
size (network sizes as given in the legends of panel C). C) Only for
sufficiently large networks the subhamornic spectral power Ssub de-
creases strongly with increasing noise strength indicating synchroniza-
tion (note the logarithmic scale). Network sizes Nα: 50 (red), 100,
200, 500, 1,000, 2,000 (blue). Other parameters as in Fig.2.7.

substantially with increasing noise in large networks, confirming the synchronization

(note the logarithmic scale in Figure 2.16C). As the network size is reduced, however,

this decrease in Ssub with noise becomes smaller and for networks of size Nα < 100

the subharmonic power is quite independent of the noise, indicating that noise does

not synchronize the rhythms in such small networks.
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2.3.8. Diffusively Coupled Networks of Relaxation Oscillators

In the neuronal models the interaction between the oscillators is via synaptic inhibi-

tion that is triggered by the oscillator and that has a stereotypical, possibly delayed

waveform, the amplitude and duration of which are independent of the waveform and

frequency of the oscillator. In particular, an oscillation that barely reaches threshold

provides full inhibition, whereas a slightly smaller oscillation generates no inhibition

at all. To address the question whether uncorrelated noise can synchronize popula-

tion rhythms beyond this neuronal context we investigate interconnected networks of

relaxation oscillators that are coupled via an additional field that is driven directly

by one of the oscillator variables in a graded fashion (equations (2.10)-(2.12)). The

coupling therefore reflects the waveform, amplitude, and duration of the ongoing os-

cillation and is similar to that used in various models of quorum sensing [92, 93, 94].

To assess the synchronization among a large number of interconnected networks

we use a weighted overall order parameter rglobal(t) that corrects for the non-uniform

evolution of the phase, when it is based on the analytic signal of the relaxation

oscillator. Fig.2.17 shows results for N = 200 networks with Nα = 80 oscillators

each. In contrast to Fig.2.3 where the temporal evolution of the phase φ(α)(t) of

the population rhythm is shown, Fig.2.17A shows the evolution of x
(α)
i (t) of indi-

vidual oscillators. For clarity only the oscillators in every fourth network are dis-

played. To vary the natural frequency of the oscillators in different networks we
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Figure 2.17. Noise synchronizes interconnected networks of relaxation

oscillators . A) Space-time diagram of x
(α)
i (t) for 50 of the N = 200

networks withNα = 80 oscillators each. Networks are not synchronized
for vanishing noise, σ = 0 (A1). Partial, oscillatory synchronization
for σ = 0.025 (A2). Almost complete synchronization for σ = 0.07
(A3). B) Lower panel: temporal mean and standard deviation of the
global order parameter rglobal showing a discontinuous transition to an
ordered regime as the uncorrelated noise is increased. Upper panel:
mean local order parameter r̄local decreases with noise.
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set γ
(α)
i = 1.9 + 1.2(α − 1)/(N − 1), α = 1 . . .N . The strong coupling within

each of the interconnected networks synchronizes the oscillators within each net-

work, but for vanishing noise these collective oscillations are not synchronized or

phase-locked (Fig.2.17A1). Thus, the average r̄local of the order parameters r
(α)
local of

the individual networks is high, but the time-averaged global order parameter rglobal

is low (Fig.2.17B). However, similar to the case of the IF-networks (Fig.2.3), as the

uncorrelated noise is increased - at fixed coupling strength - the system undergoes

a discontinuous transition to a state in which the rhythms of most networks are

synchronized, reflected in a jump in rglobal (Fig.2.17A2,B).

Close to the transition point the system intermittently jumps between the ordered

and the disordered branch; for this system size no true hysteresis is obtained. In this

regime the individual order parameters r
(α)
local are much lower for the networks with

low natural frequency than for the faster networks, with a sharp transition between

them (Fig.2.17A2). As the noise is increased further, the global order parameter

rises further, while the average r̄local of the individual order parameters decreases

(Fig.2.17A3,B). In the IF-networks the slower networks can keep up with the faster

ones because their neurons spike only in fewer cycles, i.e. their spiking fraction is

reduced. Similarly, the relaxation oscillators in the slower networks less often reach

the right branch of the x-nullcline (cf. Fig.2.2) than those in the faster networks,

resulting in a smaller production of the rapidly diffusing substance that provides
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the coupling between the oscillators. This speeds up the slower networks. For yet

stronger noise, not only the individual order parameteres r
(α)
local decrease, but also the

global order parameter rglobal.

Interestingly, for 0.019 ≤ σ ≤ 0.025 the global order parameter rglobal exhibits

slow oscillations in the ordered state, which are reflected in its large standard devi-

ation. They reflect an ’invasion’ of the stronger disorder of the slower networks into

the faster networks and a subsequent sudden retraction of this front (Fig.2.17A2).

Since the coupling between the networks is all-to-all, this invasion indicates that the

slower networks are more susceptible to perturbations than the faster ones. The

oscillations become weaker as the noise is increased. A study of these interesting

oscillations is beyond the scope of this paper.

2.4. Discussion

We have considered interconnected networks of oscillators for strong coupling of

the oscillators within and across networks. This regime is beyond the weak-coupling

limit and does not allow a reduction to a phase description within the framework

of Kuramoto models. We have focussed on the collective oscillations (population

rhythms) that emerge from the synchronization of the oscillators within each of

the networks and have addressed the question to what extent these rhythms can

synchronize with each other or to an external periodic pace-maker. Strikingly, we

have found that uncorrelated noise can substantially enhance this synchronization.
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As a key component of the underlying mechanism we have identified that the

strong inter-network coupling - combined with the noise - can render the dynam-

ics within each network highly heterogeneous with a variable subset of oscillators

skipping cycles in an irregular fashion. More specifically, the synchronization of the

rhythms arises from the following core aspects of the systems:

1. The synchronization of oscillators within each network is quite robust. To

ensure this robustness in the neuronal models we included an explicit delay in the

interaction to avoid that the neuronal populations of the uncoupled networks form

clusters rather than being fully synchronized [102].

2. The frequency of the rhythm of each network decreases with increasing cou-

pling between the oscillators within the network. This is a characteristic feature of

the ubiquitous neuronal γ-rhythm generated by the ING- or PING mechanism [72].

3. The strength of the interaction between the oscillators depends on their os-

cillation amplitude. This allows the overall coupling within a network and with it

the frequency of the rhythm to depend on the degree to which the oscillators par-

ticipate in the collective oscillation. This is naturally the case in neuronal systems

with chemical synapses where the output of a neuron depends on whether the neuron

spikes or not. In cellular oscillators, e.g. genetic oscillators, such a coupling is likely

to arise if the production of the substance that provides the communication between

the cells depends on one of the oscillating variables [93, 94].
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4. The inter-network coupling is sufficiently strong and acts on a time scale

that allows to impact oscillators differently depending on whether they are leading

or lagging the collective oscillation. In the models discussed here the inter-network

coupling suppresses the oscillations of the lagging oscillators, which modifies the fre-

quency of the rhythm they are participating in. This feedback enhances the stability

of the synchronized state.

Noise is essential for the synchronization, since it spreads out the phases of the os-

cillators, which then allows the inter-network coupling to suppress the trailing but not

the leading oscillations. In essence, the enhanced synchronizability of these collective

oscillations emerges from the noise-induced desynchronization within each network.

Importantly, the synchronization of different population rhythms does therefore not

imply the synchronization of the oscillators within a network or across networks. In

fact, with increasing noise the within-network correlations decrease.

Since the within-network desynchronization plays a key role in the synchroniza-

tion mechanism, our analysis suggests that population rhythms could also be syn-

chronized by heterogeneity in the natural frequencies of the oscillators within each

network [103].

Since the external inhibition acting on each network modifies the self-inhibition

of that network and with it its frequency, the synchronization mechanism has some

similarity with that proposed in [104] for the flash synchronization in certain species
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of fireflies. However, there the external flash leads to a slow and persistent adaptation

of the intrinsic frequency of the rhythms of the fireflies, while in the systems discussed

here the frequency change is quite fast and - at least for very strong self-inhibition - it

does not persist very long. This may be different for weaker self-inhibition, for which

the synchronization transition does not always involve a period-doubling bifurcation

(cf. Fig.2.13A).

Most of the results presented here are formulated in terms of neuronal systems,

motivated by the wide-spread appearance of γ-rhythms in the brain and by the

widely investigated hypothesis that coherence of γ-rhythms in different brain areas

is an important element of information transmission between these areas [62, 63, 64,

65, 66, 49, 50]. The synchronization of different γ-rhythms can also be relevant in

intertwined subnetworks of a single, modularly structured brain area [82, 83, 84, 9,

85]. In this context, our results point to a possible new constructive role of noise

in the communication between different brain areas and the information processing

within a single area.

It should be noted that most, but not all [99], neuronal networks of the brain that

exhibit γ-rhythms comprise inhibitory as well as excitatory neurons. Depending on

the balance between excitatory and inhibitory coupling and on the associated time

scales the rhythms generated by these networks can be closer to an ING-rhythm or

a PING-rhythm (pyramidal interneuron network gamma) [69]. A general analysis
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of the effect of noise on the interaction of rhythms in two excitatory-inhibitory (EI)

networks is very complex, since it involves 4 different types of connections (II, EI,

IE, EE) among the neurons of the two networks. In order to be able to isolate and

elucidate the synchronization mechanism in detail, we have focused in this paper on

the core property that is common to ING and PING γ-rhythms, which is the delay

of spiking by inhibition.

The noise-induced synchronization in interconnected networks is not limited to

neuronal rhythms. Our results for relaxation oscillators show that it can be relevant

for rhythms more generally [105]. In fact, our model is similar to a model proposed

for the interaction of genetic oscillators [93]. In such systems molecular noise can be

an integral component due to the small copy number of some of the participating

reactants. More specifically, the synchronization of the collective oscillation of a

single network of oscillators by an external forcing (cf. Fig.2.7) is, for instance,

relevant in the entrainment of the rhythm generated by the biomolecular circadian

oscillators in the ∼ 20, 000 cells of the suprachiasmatic nucleus by the day-night cycle

[106]. Interestingly, there it has been observed that transient desynchronization of the

oscillations of the individual cells accelerates the entrainment of the overall rhythm

after shifts in the light schedule [107]. Whether the phase-heterogeneity of the cells

plays a role similar to that described here is not clear.
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In cyanobacteria the coupling between the circadian rhythms of different bacteria

is extremely weak [108]. However, within each bacterium the coupling between the

proteins that constitute the individual oscillating units is strong [109, 110]. This

raises the possibility that molecular noise may enhance the entrainment of this cir-

cadian rhythm by the day-night cycle.

The type of synchronization identified here could also be amenable to experi-

mental investigations in chemical oscillations like the Belousov-Zhabotinsky reaction

where the reaction can be localized on a large number of beads and the interaction

can be supplied by feedback that exploits the light sensitivity of the reaction [111].

The global order parameter of interconnected networks can exhibit non-trivial

dynamics [112]. For the networks of relaxation oscillators we find that on the up-

per, ordered branch, which is reached in a discontinuous transition as the noise is

increased, the order parameter exhibits persistent oscillations that are associated

with the invasion and retraction of front-like structures that separate more tightly

synchronized networks from less synchronized ones. The origin of these dynamics is

not yet understood.
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Caillé, Joëlle Sacquet, Claire Benetollo, Killian Martin, Marion Richard, Anne
Didier, et al. Role of adult-born versus preexisting neurons born at p0 in olfac-
tory perception in a complex olfactory environment in mice. Cerebral Cortex,
2019.

[44] Antoine Nissant, Cedric Bardy, Hiroyuki Katagiri, Kerren Murray, and Pierre-
Marie Lledo. Adult neurogenesis promotes synaptic plasticity in the olfactory
bulb. Nature neuroscience, 12(6):728, 2009.

[45] C. Jehl, J. P. Royet, and A. Holley. Odor discrimination and recognition mem-
ory as a function of familiarization. Perception & psychophysics, 57(7):1002–
1011, 1995.

[46] Gabriel Lepousez, Matthew T Valley, and Pierre-Marie Lledo. The impact of
adult neurogenesis on olfactory bulb circuits and computations. Annual review
of physiology, 75:339–363, 2013.

[47] Jean-Claude Platel, Alexandra Angelova, Stephane Bugeon, Thibault Ganay,
Ilona Chudotvorova, Jean-Christophe Deloulme, Christophe Beclin, Marie-
Catherine Tiveron, Nathalie Core, and Harold Cremer. Neuronal integration
in the adult olfactory bulb is a non-selective addition process. bioRxiv, page
289009, 2018.

[48] Guangyu Robert Yang, Madhura R Joglekar, H Francis Song, William T New-
some, and Xiao-Jing Wang. Task representations in neural networks trained to
perform many cognitive tasks. Nature neuroscience, 22(2):297, 2019.

[49] G. Buzsaki and E. W. Schomburg. What does gamma coherence tell us about
inter-regional neural communication? Nature Neuroscience, 18(4):484–489,
April 2015.

[50] Pascal Fries. Rhythms for cognition: Communication through coherence. Neu-
ron, 88:220–235, Oct 2015.

[51] Nathalie Buonviso, Corine Amat, Philippe Litaudon, Stephane Roux, Jean-
Pierre Royet, Vincent Farget, and Gilles Sicard. Rhythm sequence through the



136

olfactory bulb layers during the time window of a respiratory cycle. European
Journal of Neuroscience, 17(9):1811–1819, 2003.

[52] Jennifer Beshel, Nancy Kopell, and Leslie M. Kay. Olfactory bulb gamma oscil-
lations are enhanced with task demands. Journal of Neuroscience, 27(31):8358–
8365, 2007.

[53] F. Dörfler and F. Bullo. Synchronization in complex networks of phase oscilla-
tors: A survey. Automatica, 50(6):1539–1564, June 2014.

[54] F. A. Rodrigues, T. K. D. M. Peron, P. Ji, and J. Kurths. The Kuramoto
model in complex networks. Physics Reports-Review Section of Physics Letters,
610:1–98, January 2016.

[55] R. A. York and R. C. Compton. Quasi-optical power combining using mutually
synchronized oscillator arrays. IEEE Transactions on Microwave Theory and
Techniques, 39(6):1000–1009, June 1991.

[56] H. Bruesselbach, D. C. Jones, M. S. Mangir, M. Minden, and J. L. Rogers.
Self-organized coherence in fiber laser arrays. Optics Letters, 30(11):1339–1341,
June 2005.

[57] K. Wiesenfeld, P. Colet, and S. H. Strogatz. Synchronization transitions in
a disordered Josephson series array. Phys. Rev. Lett., 76(3):404–407, January
1996.

[58] M. A. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen,
and M. Lipson. Synchronization of micromechanical oscillators using light.
Physical Review Letters, 109(23):233906, December 2012.

[59] D. C. Michaels, E. P. Matyas, and J. Jalife. Mechanisms of sinoatrial pacemaker
synchronization - a new hypothesis. Circulation Research, 61(5):704–714, No-
vember 1987.

[60] C. Liu, D. R. Weaver, S. H. Strogatz, and S. M. Reppert. Cellular construction
of a circadian clock: Period determination in the suprachiasmatic nuclei. Cell,
91(6):855–860, December 1997.



137

[61] X.-J. Wang. Neurophysiological and computational principles of cortical
rhythms in cognition. Physiol. Rev., 90(3):1195–1268, July 2010.

[62] T. Womelsdorf, P. Fries, P.P. Mitra, and R. Desimone. Gamma-band synchro-
nization in visual cortex predicts speed of change detection. Nature, 439:733,
Dec 2006.

[63] C. Börgers and N.J. Kopell. Gamma oscillations and stimulus selection. Neural
Comput, 20(2):383–414, Feb 2008.

[64] G. G. Gregoriou, S. J. Gotts, H. H. Zhou, and R. Desimone. High-frequency,
long-range coupling between prefrontal and visual cortex during attention. Sci-
ence, 324(5931):1207–1210, May 2009.

[65] Conrado A Bosman, Jan-Mathijs Schoffelen, Nicolas Brunet, Robert Oosten-
veld, Andre M Bastos, Thilo Womelsdorf, Birthe Rubehn, Thomas Stieglitz,
Peter De Weerd, and Pascal Fries. Attentional stimulus selection through se-
lective synchronization between monkey visual areas. Neuron, 75:875–888, Sep
2012.

[66] M. J. Roberts, E. Lowet, N. M. Brunet, M. Ter Wal, P. Tiesinga, P. Fries,
and P. De Weerd. Robust gamma coherence between macaque V1 and V2 by
dynamic frequency matching. Neuron, 78(3):523–536, May 2013.

[67] N. Brunel and V. Hakim. Fast global oscillations in networks of integrate-and-
fire neurons with low firing rates. Neural Comput., 11(7):1621–1671, October
1999.

[68] M. A. Whittington, R. D. Traub, N. Kopell, B. Ermentrout, and E. H. Buhl.
Inhibition-based rhythms: experimental and mathematical observations on net-
work dynamics. Int. J. Psychophysiol., 38:315, 2000.

[69] N. Brunel and X. J. Wang. What determines the frequency of fast network oscil-
lations with irregular neural discharges? I. Synaptic dynamics and excitation-
inhibition balance. J. Neurophysiol., 90(1):415–430, July 2003.



138

[70] C. Börgers and N. Kopell. Synchronization in networks of excitatory and in-
hibitory neurons with sparse, random connectivity. Neural Comput., 15(3):509–
538, March 2003.

[71] Paul Tiesinga and Terrence J. Sejnowski. Cortical enlightenment: Are atten-
tional gamma oscillations driven by ING or PING? Neuron, 63(6):727–732,
September 2009.

[72] György Buzsaki and Xiao-Jing Wang. Mechanisms of gamma oscillations. An-
nual Review of Neuroscience, Vol 35, 35:203–225, 2012.

[73] B Blasius, A Huppert, and L Stone. Complex dynamics and phase synchro-
nization in spatially extended ecological systems. Nature, 399:354–359, May
1999.

[74] E. Ravasz, A. L. Somera, D. A. Mongru, Z. N. Oltvai, and A. L. Barabasi.
Hierarchical organization of modularity in metabolic networks. Science,
297(5586):1551–1555, August 2002.

[75] E. T. Bullmore and O. Sporns. Complex brain networks: graph theoretical
analysis of structural and functional systems. Nature Reviews Neuroscience,
10(3):186–198, March 2009.

[76] K. Park, Y.C. Lai, S. Gupte, and J.W. Kim. Synchronization in complex
networks with a modular structure. Chaos, 16(1):015105, Mar 2006.

[77] F. Sorrentino and E. Ott. Network synchronization of groups. Physical Review
E, 76(5):056114, November 2007.

[78] E. Oh, K. Rho, H. Hong, and B. Kahng. Modular synchronization in complex
networks. Physical Review E, 72(4):047101, October 2005.

[79] A. Arenas, A. Diaz-Guilera, J. Kurths, Y. Moreno, and C. S. Zhou. Syn-
chronization in complex networks. Physics Reports-review Section of Physics
Letters, 469(3):93–153, December 2008.

[80] S. G. Guan, X. G. Wang, Y. C. Lai, and C. H. Lai. Transition to global
synchronization in clustered networks. Physical Review E, 77(4):046211, April



139

2008.

[81] Y. Kawamura, H. Nakao, K. Arai, H. Kori, and Y. Kuramoto. Phase syn-
chronization between collective rhythms of globally coupled oscillator groups:
Noisy identical case. Chaos, 20(4):043109, December 2010.

[82] K. R. Neville and L. B. Haberly. Beta and gamma oscillations in the olfactory
system of the urethane-anesthetized rat. J. Neurophysiol., 90(6):3921–3930,
December 2003.

[83] Leslie M. Kay and Philip Lazzara. How global are olfactory bulb oscillations?
Journal of Neurophysiology, 104(3):1768–1773, Sep 2010.

[84] S.-F. Chow, S. D. Wick, and H. Riecke. Neurogenesis drives stimulus decorre-
lation in a model of the olfactory bulb. PLoS Comp. Biol., 8:e1002398, 2012.

[85] W. Adams, J. N. Graham, X. Han, and H. Riecke. Top-down inputs drive neu-
ronal network rewiring and context-enhanced sensory processing in olfaction.
PLoS Computational Biology, 15:e1006611, January 2019.

[86] A.S. Pikovsky. Synchronization and stochastization of nonlinear oscillators by
external noise. In R.Z. Sagdeev, editor, Nonlinear and Turbulent Processes in
Physics, page 1601. Harwood Academic, Singapore, 1984.

[87] C. S. Zhou and J. Kurths. Noise-induced phase synchronization and syn-
chronization transitions in chaotic oscillators. Physical Review Letters,
88(23):230602, June 2002.

[88] J. Teramae and D. Tanaka. Robustness of the noise-induced phase synchro-
nization in a general class of limit cycle oscillators. Physical Review Letters,
93(20):204103, November 2004.

[89] A. F. Mainen and T. J. Sejnoswki. Reliability of spike timing in neocortical
neurons. Science, 268:1503, 1995.

[90] E. Shea-Brown, K. Josic, De La Rocha J., and B. Doiron. Correlation and
synchrony transfer in integrate-and-fire neurons: Basic properties and conse-
quences for coding. Phys. Rev. Lett., 100(10):108102, March 2008.



140

[91] Aushra Abouzeid and Bard Ermentrout. Correlation transfer in stochastically
driven neural oscillators over long and short time scales. Phys Rev E Stat
Nonlin Soft Matter Phys, 84(6 Pt 1):061914, Dec 2011.

[92] M B Miller and B L Bassler. Quorum sensing in bacteria. Annual Review of
Microbiology, 55:165–199, 2001.

[93] David McMillen, Nancy Kopell, Jeff Hasty, and J J Collins. Synchronizing
genetic relaxation oscillators by intercell signaling. Proceedings of the National
Academy of Sciences of the United States of America, 99:679–684, January
2002.

[94] J. Garcia-Ojalvo, M. B. Elowitz, and S. H. Strogatz. Modeling a synthetic mul-
ticellular clock: Repressilators coupled by quorum sensing. Proceedings of the
National Academy of Sciences of the United States of America, 101(30):10955–
10960, July 2004.

[95] S.H. Strogatz. Nonlinear Dynamics and Chaos. Westview Press, 2015.

[96] K. Tsumoto, H. Kitajima, T. Yoshinaga, K. Aihara, and H. Kawakami. Bi-
furcations in Morris-Lecar neuron model. Neurocomputing, 69(4-6):293–316,
January 2006.

[97] P. H. Tiesinga and J. V. Jose. Robust gamma oscillations in networks of in-
hibitory hippocampal interneurons. Network-Computation in Neural Systems,
11(1):1–23, 2000.

[98] I. Vida, M. Bartos, and P. Jonas. Shunting inhibition improves robustness
of gamma oscillations in hippocampal interneuron networks by homogenizing
firing rates. Neuron, 49(1):107–117, January 2006.

[99] M. A. Whittington, M. O. Cunningham, F. E. N. LeBeau, C. Racca, and
R. D. Traub. Multiple origins of the cortical gamma rhythm. Developmental
Neurobiology, 71(1):92–106, January 2011.

[100] B. Ermentrout. Type I membranes, phase resetting curves, and synchrony.
Neural Comput., 8(5):979, July 1996.



141

[101] Christoph Börgers, Martin Krupa, and Stan Gielen. The response of a classical
Hodgkin-Huxley neuron to an inhibitory input pulse. J. Comput. Neurosci.,
28(3):509–526, June 2010.

[102] B. Ermentrout. Complex dynamics in winner-take-all neural nets with slow
inhibition. Neural Netw., 5(3):415–431, August 1992.

[103] Xize Xu, John Hongyu Meng, and Hermann Riecke. Enhancing the synchro-
nization of coupled gamma rhythms through intrinsic network heterogeneity.
In Society for Neuroscience Conference 2019, 465.21, 2019.

[104] B. Ermentrout. An adaptive model for synchrony in the firefly pteroptyx-
malaccae. Journal of Mathematical Biology, 29(6):571–585, 1991.

[105] A. Goldbeter, C. Gérard, D. Gonze, J-C. Leloup, and G. Dupont. Systems
biology of cellular rhythms. FEBS Lett, 586(18):2955–2965, Aug 2012.

[106] J J Tyson, C I Hong, C D Thron, and B Novak. A simple model of circadian
rhythms based on dimerization and proteolysis of per and tim. Biophysical
journal, 77:2411–2417, November 1999.

[107] S. An, R. Harang, K. Meeker, D. Granados-Fuentes, C. A. Tsai, C. Mazuski,
J. Kim, F. J. Doyle, L. R. Petzold, and E. D. Herzog. A neuropeptide speeds
circadian entrainment by reducing intercellular synchrony. Proceedings of the
National Academy of Sciences of the United States of America, 110(46):E4355–
E4361, November 2013.

[108] M Amdaoud, M Vallade, C Weiss-Schaber, and I Mihalcescu. Cyanobacterial
clock, a stable phase oscillator with negligible intercellular coupling. Proceed-
ings of the National Academy of Sciences of the United States of America,
104:7051–7056, April 2007.

[109] Gopal Pattanayak and Michael J Rust. The cyanobacterial clock and metabo-
lism. Current Opinion in Microbiology, 18:90–95, April 2014.



142

[110] Hiroshi Ito, Hakuto Kageyama, Michinori Mutsuda, Masato Nakajima, Tok-
itaka Oyama, and Takao Kondo. Autonomous synchronization of the circa-
dian KaiC phosphorylation rhythm. Nature Structural & Molecular Biology,
14:1084–1088, November 2007.

[111] Simbarashe Nkomo, Mark R Tinsley, and Kenneth Showalter. Chimera and
chimera-like states in populations of nonlocally coupled homogeneous and het-
erogeneous chemical oscillators. Chaos (Woodbury, N.Y.), 26:094826, Septem-
ber 2016.

[112] Daniel M. Abrams, Rennie Mirollo, Steven H. Strogatz, and Daniel A. Wi-
ley. Solvable model for chimera states of coupled oscillators. Physical Review
Letters, 101(8):084103–084103, August 2008.


	ABSTRACT
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Chapter 1. Hebbian type model of structural plasticity
	1.1. Introduction
	1.2. Model
	1.3. Results
	1.4. Discussion
	1.5. Conclusion

	Chapter 2. Synchronization by uncorrelated noise: interacting rhythms in interconnected oscillator networks
	2.1. Introduction
	2.2. Model
	2.3. Results
	2.4. Discussion

	References

