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ABSTRACT

Geomechanical Modeling of Inception and Propagation of Compaction Bands in Porous

Rocks

Ghassan Shahin

The term compaction band identifies a rich variety of structural features of the Earth’s crust that

affect formations of sedimentary rocks. The most common definition for compaction band often

found in the literature describes them as narrow planar zones of concentrated porosity reduction,

which may involve limited to none shear offset between adjacent rock volumes. These structures

occur through spatio-temporal processes in media characterized by intrinsic heterogeneity which

have so far eluded complete understanding. Examples include their emergence in geological settings

characterized by very different tectonic regimes, and thus characterized by different subsurface

stress fields and background tectonic strain. The outcomes of such variability are concentrated

compaction zones with different thickness, length and spacing.

This thesis investigated compaction banding in porous rocks by means of analytical and com-

putational geomechanics. In this context, constitutive laws based on a standard strain-hardening

plasticity and involving tunable hardening and softening variables were used to reproduce the phe-

nomenology of selected porous rocks. The model is augmented by incorporating rate effects to

capture the inherent viscosity of these materials and their long-term inelastic deformability. This
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work led to the calibration and the assessment of the performance against data for two porous

rocks, a siliciclastic sandstone and a carbonate rock, displaying a distinct hardening behavior and

very different compaction band patterns. Compaction banding is simulated as a form of mate-

rial instability of porous viscoplastic solids. For this purpose, the controllability theory and the

mathematical tools for nonlinear differential systems are employed to develop criteria for identify-

ing the time of incipient instability. The importance of material heterogeneity in the context of

compaction localization analysis was examined on the bases of synthesized and real porosity maps

connected from computerized tomography images to finite element models through a novel mapping

scheme based on the concept of representative elementary volume. The analysis focused on the role

played by the spatial heterogeneity in generating delayed compaction bands, determining the zones

where the localized compaction nucleates, and controlling the extent of its propagation. This role

is further quantified in the presence of interfering factors, specifically frictional boundaries, that

could induce heterogeneous stress fields, and the bias that they could generate in the context of

assessing the compaction banding characteristics. This thesis also involves numerical analyses of

field-scale problems, where theoretical models are used to elucidate the interactions taking place

between layers of sandstone prone to compaction localization and bounding elastic layers in multi-

strata systems. Various scenarios and combinations of geological processes and tectonic settings

are tested to understand the conditions promoting the coexistence of various modes of compaction

banding in natural formations.

The analyses of delayed compaction bands based on viscoplastic idealization revealed that

pulses of overstress correspond to stages of inception and propagation of new compaction bands.

Intimate relations between the spatial patterns of deformation bands and the temporal dynamics

of deformation are demonstrated. While homogeneous compaction develops with decaying rates

of accumulation, localized compaction occurs through stages of accelerating deformation. Spatial
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variations in the local yielding resistance provide hotspots for inelastic deformation, eventually

generating delayed compaction bands under moderated levels of loading. Furthermore, the spatial

heterogeneity is shown to play a predominant role in determining the location at which compaction

banding nucleates and the extent of its propagation. In frictionless specimens, the onset of com-

paction localization is promoted in zones characterized by higher porosity (i.e., lower strength). Yet,

this role is critically affected by the existence of interfering conditions, such as frictional boundaries

in laboratory testings which were found to nearly eliminate the impact of material heterogeneities,

such that compaction localization is forced to occur at the specimen boundaries. Furthermore,

the analyses revealed the existence of an intermediate range of platen-specimen friction coefficient

which favors the emergence of a transitional regime of strain localization at which material hetero-

geneity and boundary effects concurrently control the compaction banding patterns. The analyses

show marked dependence of the three zones on the degree of heterogeneity, showing that increasing

values of boundary friction are necessary to offset the effect of material weaknesses in strongly

heterogeneous samples. Furthermore, it was found that the effects of boundary friction can be

strong enough to bias the identification of compaction banding characteristics. Field-scale simu-

lations show that the nucleation and propagation of compaction bands in sandstone formation in

multi-strata systems are influenced by the contrast elasticity of the bounding layers. As a result

of Poisson effects, stiffer bounding layers promote higher mean stress and lower deviatoric stresses,

eventually shifting the point of intersection of the stress path with the yield surface, and hence the

angle of compaction localization. It is also shown that the sequential growth of compaction bands

induces deviations in the field of local stress responses leading to varying types of compaction band

along rock formations. The coexistence of various types of band, however, is generated by a rich

loading history, suggesting that, contrary to some hypotheses, the sequencing of compaction band

formation may not be contemporaneous. These findings feature the importance of geomechanical
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modeling when performed in conjunction with strain localization analyses in providing a useful

guidance to explain the origin of natural formations and reduce the uncertainty involved in the

geological reconstruction of field observations.
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CHAPTER 1

Introduction

1.1. Motivation and Objectives

The rapid growth of our hydrocarbon-based economy has raised enormous pressure on

the development of increasingly aggressive subsurface geo-technologies, as well as major

challenges to guarantee a safe and sustainable supply of fossil fuels, while minimizing the

negative impacts of greenhouse gases on the Earth’s climate. Increasing the efficiency of

hydrocarbons recovery and the geologic storage of carbon dioxide represent possible strate-

gies to address these challenges, which yet require major technological developments and

scientific breakthroughs. In fact, developing adequate solutions cannot be accomplished un-

less the mechanics of underground reservoirs is fully understood. In this regard, the role of

geomechanics is pivotal to elucidate the key factors involved in the spatially-heterogeneous,

multi-scale deformation processes of porous rocks, i.e. some of the basic building block of

geological reservoirs (Fig. 1.1).

High-porosity rocks are among the most interesting materials of the shallow crust. One

of the most remarkable features of these materials is their marked pressure-sensitivity, which

allows them to transition from a brittle-like response characterized by fracture and dilative

slip to a plastic behavior displaying pore collapse, macroscopic hardening, and homogeneous

deformation [Wong and Baud , 2012]. What makes the behavior of porous rocks even more

subtle is the existence of intermediate patterns of behavior between these end-members (Fig.
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Figure 1.1. Illustration of the multiscale nature of the geomechanics problems
involved in energy technology, spanning from intergranular contacts (i.e., mi-
crometer or sub-micrometer scale) up to the field-scale (i.e., order of several
km), summarizing the experimental and modeling strategies of each scale.

1.2). In fact, porous rocks are known to exhibit elusive forms of failure referred to as com-

paction banding [Olsson, 1999]. This mode of deformation localization leads to narrow zones

of intense material destructuration that develop sub-perpendicular to the main compressive

stress [Holcomb et al., 2007; Wong and Baud , 2012]. Aside from porous rock, compaction

banding was documented in a variety of natural and artificial materials including metal foams

[Bastawros et al., 2000; Park and Nutt , 2001], polycarbonate honeycombs [Papka and Kyr-

iakides , 1998], gasbeton [Castellanza et al., 2009], and more recently in snow [Barraclough

et al., 2017].

Understanding this form of transition from homogeneous to heterogeneous compaction is

a major challenge for modern geomechanics, as it affects numerous geotechnologies and geo-

physical processes including the gradual activation of faults [Cruz-Atienza et al., 2018; Deng

et al., 2015a; Fortin et al., 2006], the short- and long-term quality of hydrocarbon reservoirs

[Hettema et al., 2002], aquifer production [Deng et al., 2015a; Sternlof et al., 2006], and

the stability of target formations for CO2 sequestration [Wawersik et al., 2001] and nuclear
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Figure 1.2. Deformation band spectrum (inspired by Fossen et al. [2007a]).

wastes disposal [Rass et al., 2017; Torabi et al., 2015]. Research on compaction bands has

provided evidence of non-negligible deterioration in local and regional hydraulic conductiv-

ity (Fig. 1.3), and therefore accounting for them in the context of reservoirs permeability

assessment has become crucial for an accurate prediction of productivity and cost-efficiency.

This thesis contributes to the effort that has been devoted to establish a robust mechanistic

interpretation of compaction bands, with a focus on the heterogeneous spatio-temporal pro-

cesses that lead to their emergence and propagation at both the laboratory and field scale.

1.2. Structure of the Thesis

This thesis is organized in seven chapters and five appendices. Chapter 2 provides a

review of the state of the art on compaction banding, detailing field and laboratory evi-

dence, permeability implications, patterns of propagation, and the theories and constitutive

models used for their investigation. Chapter 3 presents a mechanics-based theory for the

interpretation of material instability in viscoplastic solids and its use for the formation of
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Figure 1.3. Schematic illustration of the impacts of compaction bands on the
conductivity of hydrocarbon reservoirs.

closed-form stability indices characterizing the onset of compaction banding over time. The

chapter further presents a theoretical analysis of the role of the spatial heterogeneity of ma-

terial properties in generating delayed compaction banding, and its influence on the rate of

compaction creep. Chapter 4 examines the role of material heterogeneity in the determina-

tion of the zones of first nucleation of strain localization. The study is based on a rich dataset

available for a high-porosity limestone from central Europe characterized through mechani-

cal testing aided by concurrent x-ray tomography scanning. Material behavior is reproduced

through a strain-hardening plasticity with multiple internal variables, whose calibration and

validation are reported in the context of the chapter. Chapter 5 inspects a possible role of

boundary effects on the triggering of compaction localization, as well as on the determina-

tion of the extension of the compaction banding domain in the stress space. It also inspects

the relative role of boundary effects such as friction and material heterogeneity, and the role
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played by boundary effects in introducing a bias over the characterization of compaction

banding domain is also inspected. The analyses provided in this chapter rely on previous

calibration of two porous rocks for which available evidence in the lab shows very differ-

ent modes of compaction localization, one characterized by tabular, discrete bands, and the

other by a propagating compaction front. Chapter 6 discusses the numerical modeling of

field-scale problems relevant to compaction bands, including sandstone layers inter-bedded

between elastic layers, and the geological factors leading to the emergence of compaction

bands with various modes of strain localization. The chapter tackles these geological-scale

problems from a mechanics standpoint by interpreting the emergence of compaction bands

and their geometrical characteristics in light of inelastic constitutive modeling and strain

localization theory. Chapter 7 provides conclusions and research perspectives.
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CHAPTER 2

State of the Art

Compaction banding occurs at stress conditions typical of cap plasticity [Baud et al.,

2004; Charalampidou et al., 2011; Fortin et al., 2006; Holcomb and Olsson, 2003; Olsson et al.,

2002; Tembe et al., 2008] and is characterized by the appearance of zones with concentrated

porosity loss that spread until covering the whole sample [Olsson and Holcomb, 2000; Olsson,

2001]. As a result, deformation in the compaction banding regime involves considerable

porosity loss [Aydin et al., 2006] and may lead to a deviatoric stress plateau during the

propagation of compaction fronts (Fig. 2.1), followed by stages of re-hardening [Wong et al.,

1997].
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Figure 2.1. Illustration of mechanical characteristics typical of compaction
banding, showing that yielding occurs in the cap regime (left), associated with
flat to modest hardening post-yielding plateau (right) (data and sub-figures
after [Fortin et al., 2005]).
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2.1. Field and Laboratory Evidence

Compaction bands were first documented in the United States, in south-central Utah

[Mollema and Antonellini , 1996], and southeastern Nevada [Hill , 1989; Sternlof et al., 2004,

2005, 2006]. Pictures from these locations are presented in Fig. 2.2 and 2.3. Similar struc-

tures were also found at numerous locations worldwide, including France [Ballas et al., 2013;

Klimczak et al., 2011; Saillet and Wibberley , 2010], Germany [Soliva et al., 2016], the United

Kingdom [Griffiths et al., 2018], New Zealand [Nicol et al., 2013], and the Middle East [Gajst

et al., 2018]. Compaction bands in such locations were found in sandstone outcrops, Few

cases in carbonate rocks were further documented including Italy [Cilona et al., 2012; Mi-

carelli et al., 2006; Rustichelli et al., 2012; Tondi et al., 2006], Spain [Robert et al., 2018;

Tavani et al., 2018], Austria [Baud et al., 2017; Rath et al., 2011], Malta [Rotevatn et al.,

2016]. The rarity of these structures in carbonate formations may be attributed to the re-

active nature of such rocks, which specifically favours chemo-mechanical processes (e.g., dis-

solution and cementation) associated with development of compaction bands [Cilona et al.,

2012]. Rare cases of compaction bands in volcaniclastic rocks and chalks were reported from

Taiwan [Soliva et al., 2016] and Norway [Wennberg et al., 2013]. The study of chalks con-

stituted a particularly intriguing contribution as it not only documented compaction bands

in this class of rocks, but also provided for the first time evidence of strain localization in

samples collected from the subsurface, specifically from wells in the hydrocarbons field of

Oseberg, in the Norwegian part of the North Sea (Fig. 2.4). More recently, evidence of

compaction bands in hydrocarbon sandstone reservoirs has been made available based on

samples collected from oil wells in the Holstein Field, in the Gulf of Mexico, USA (Fig. 2.5).
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Figure 2.2. Outcrop expression of compaction bands exposed as resistant for-
mation in Utah (after Schultz [2009]).

Figure 2.3. Compaction bands in the Aztec Sandstone in the Valley of Fire
State Park of southeastern Nevada. (a) Aerial photograph showing an outcrop
area. Individual, cm thick compaction bands cropping out as distinct fins over
an area of more than 150,000 m2. (b) A typical outcrop pattern of subparallel
compaction bands. Compositional backscatter electron images of the sand-
stone (c) just outside and (d) inside a compaction band (after Sternlof et al.
[2006]).
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Figure 2.4. Compaction bands in the Shetland Chalk in the Oseberg Field.
(a) Backscattered Electron image of a subsurface sample collected from an
operation well. The white box indicates the area shown in (b). (c) Porosity
profile across the deformation band, calculated from the binarized image in (b)
using a sampling window parallel to the deformation band of 10 pixels (edited
fromWennberg et al. [2013]).

Figure 2.5. Compaction bands in sandstone cores from wells in the Holstein
Field, Gulf of Mexico, USA. (b) Core plug with horizontal deformation bands,
and (b) sketch based on the CT scan (edited fromWilkins et al. [2019]).

The most common type of compaction bands found in the field are compactive shear

bands, i.e. structures involving an amount of compaction clearly smaller than shear compo-

nent. Less common are shear-enhanced compaction bands that involve comparable amounts

of shear and compaction. Pure compaction bands seem to be the least common with the

only two sites where they are well described are Buckskin Gulch in Utah [Mollema and
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Figure 2.6. Compaction bands in Navajo Sandstone, east Kaibab monocline,
Utah. (a) Picture showing compaction bands observed in the compressional
quadrant at the tip of a deformation band fault. (b) Mechanical model of the
system in (a) (after Mollema and Antonellini [1996]).
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Antonellini , 1996] and the Valley of Fire State Park area in Nevada [Sternlof et al., 2004].

Despite their infrequent appearance in the field, pure compaction bands were successfully

reproduced in physical experiments on sandstones [Baud et al., 2004; Olsson, 1999; Townend

et al., 2008] and carbonates [Baud et al., 2015; Baxevanis et al., 2006]. Therefore, the reasons

of their scarcity in nature remains an open question [Fossen et al., 2011].

Compaction bands appear in the field either as primary structures or subsidiary structures

to other primary mechanisms. Examples of the former include compaction bands arrays in

the Valley of Fire State Park, southeastern Nevada (Fig. 2.3) and the Buckskin Gulch in

Utah (Fig. 2.2). On the other hand, the subsidiary structures are typically found in the

close proximity of faults, such as those seen, for example, in the compressional quadrant

at the tip of a deformation band fault in east Kaibab monocline, Utah (Fig. 2.6). Other

examples of subsidiary compaction bands include those that were seen in the proximity of the

Bartlett Fault in Utah (Fig. 2.7), a normal faulting regime. Such arrays are considered a key

mechanism in the off-fault damage accumulation during the stages of deformation preceding

faulting, especially in high-porosity sandstones [Shipton and Cowie, 2003]. Faulting, in fact,

is thought to emerge as a result of the transition from strain hardening associated with

compaction bands development to localised strain softening as a slip-surface develops (Fig.

2.8).

Various forms of compaction bands may develop in the same formation, such as those

that were found in the Buckskin Gulch (Fig. 2.9). Pure compaction bands occur as sub-

vertical structures, These structures were found bisecting conjugate sets of shear-enhanced

compaction bands. The shear-enhanced compaction bands commonly form two oppositely

dipping sets that mutually cross-cut each other [Schultz and Siddharthan, 2005]. Such sys-

tems carry numerous questions about their causation, sequentiality, whether one of them
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Figure 2.7. Illustration of typical deformation-band fault damage zones in
porous sandstones. (a) Fault damage zone of Bartlett Fault, Utah. (b)
Schematic illustration of the typical conjugate arrangement of deformation
bands in the damage zone around a simple fault (modified from Fossen and
Bale [2007]).

Figure 2.8. Conceptual model of faulting activation following compaction
banding. Stress paths AC are for dilatant shear bands, and DF for com-
pactional shear bands. Loading in the compaction regime of hardening rocks
leads to expansion in the yield surfaces, showing an activation of faulting by
engaging the frictional mechanism (adapted from [Schultz and Siddharthan,
2005]).

leads to the other, and the possible geological conditions promoting their emergence. De-

spite the existence of many theories, much speculation is involved and a robust mechanistic

interpretation has not yet been established.
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Figure 2.9. Sets of pure compaction bands (PCB) overprinted by shear-
enhanced compaction bands (SECB) (adapted from [Fossen et al., 2011]).

Apart from the external factors, the microstrucural factors promoting compaction band-

ing were inspected in petrophysical and geomechanical studies. Most of these studies centered

attention on porosity, grain size, and cement content and showed that compaction bands are

common in high porosity rocks with a relatively uniform grain size distribution [Cheung

et al., 2012; Fossen and Bale, 2007; Katsman et al., 2005; Schultz and Siddharthan, 2005;

Wang et al., 2008]. This trend was found insensitive to the mean grain size [Cheung et al.,

2012]. The grain size, however, was found to influence the persistent band thickness (Fig.

2.10). Studies conducted on Leitha limestones brought up intriguing observations, showing

that the development of compaction bands occured in some of the less cemented samples,

while more cemented end-members failed by cataclastic flow in the compaction regime (i.e.,

they reached a deviatoric stress plateau through a stage of homogeneous plastic compaction)

[Baud et al., 2017].
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Figure 2.10. Deformation band thickness vs. grain size for chalk, carbonate
grainstone and sandstone (after [Wennberg et al., 2013]).

A range of inter-related grain-scale mechanisms, including pore collapse [Aydin et al.,

2006], cement debonding [Wong and Baud , 2012], grain crushing [Haimson and Klaetsch,

2007], sub-critical cracking [Atkinson, 1984], and intergranular pressure solution creep [Croize

et al., 2013; Schutjens , 1991] formed the bases for interpreting the inelastic processes accu-

mulated inside compaction bands. Combinations of these mechanisms appear a nominal

characteristic of porous rocks prone to compaction banding. Pore collapse, however, is the

most persistent mechanism. Grain crushing and shattering, by contrast, may be absent. For

example, in a study conducted on specimens of St. Peter sandstone with different porosity

[Haimson and Klaetsch, 2007], compaction bands in lower-porosity samples involved heavily

crushed grains, while higher-porosity samples developed compaction bands with negligible

grain crushing (Fig. 2.11).
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Figure 2.11. Backscattered electron images of the area ahead of the breakout
tip in laboratory simulations of borehole stability problem conducted on St.
Peter sandstone with intact porosity (a) 18.1% and (b) 12.0% (the intact rock
is shown on the right-hand side). The images reveal compaction localization
with a zone of porosity collapse with almost intact grains in the high-porosity
sample, whereas porosity collapse is blended with grain crushing and shattering
in the lower porosity sample (adapted from [Haimson and Klaetsch, 2007]).

2.2. Implications for Subsurface Fluid Flow

The pore collapse and solid destructuration render compaction bands structures with

detectable deterioration of the hydraulic properties [Baud et al., 2012; Vajdova et al., 2004].

The decay in permeability could be as acute as many orders of magnitude (e.g., Fig. 2.12).
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Compaction bands in the Aztec Sandstone, for example, display one order of magnitude

permeability reduction [Aydin and Ahmadov , 2009], while in other locations, such as the

Buckskin Gulch bands in Utah and the Eisenstadt-Sopron Basin on the border between

Austria and Hungary showed greater loss in permeability, up to 4 orders of magnitude

[Fossen et al., 2011; Rath et al., 2011].

Figure 2.12. Plot of compaction band permeability vs. the host rock perme-
ability. (after Ballas et al. [2013]).

The precise causes of the high contrasts in permeability deterioration is not yet fully

understood. It is widely accepted, however, that pore collapse and grain crushing are among

the most influential factors. Studies based on data synthesized from field and laboratory

examples connected the permeability loss primarily to the intensity of grain-crushing [Ballas

et al., 2015]. Specifically, higher permeability reduction was found in cataclasite and ultracat-

aclasite bands (e.g. [Torabi and Fossen, 2009]), which are typically found in association with

normal-faults and at modest (1-3 km) burial depths [Fossen et al., 2007b]. Such conditions

are inferred to promote shear-enhanced compaction banding and compactive shear banding.
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Inspections of the rock lithologies suggested that the properties of the host-material consti-

tute a second-order factor with high porosity, coarse grain-size and good grain-sorting that

were linked to resulting compaction bands with greater permeability variation. The elimina-

tion of connected pore space and increased tortuosities due to the porosity decrease are the

major factors contributing to the permeability reduction [Sun et al., 2011]. The influence

of such local conductivity loss on regional flow and transport characteristics was examined

through numerical studies [Sternlof et al., 2006]. These studies pointed out possibilities of

aggravation in the pressure gradient required to drive flow through bands arrays up to three

times, subsequently leading to more than 50% decay in production efficiency. More recent

studies conducted based on sandstone simulations showed that in order for the band to exert

influence over reservoirs conductivity, its permeability contrast with reference to the host

rock has to exceed 3 orders of magnitude [Zuluaga et al., 2016]. Further studies conducted

with reference to carbonate outcrops demonstrated that such a thresholds is dependent on

the host-rock permeability [Rotevatn et al., 2017]. Specifically, low-permeability host rocks

are more sensitive to the presence of deformation bands compared to host rocks with higher

permeability. Such studies have further identified a set of geometrical factors that are rele-

vant to conductivity, including the configuration and connectivity of deformation bands and

their mean thickness, and most importantly flaw direction with respect to the alignment of

compaction bands.

In this context, compaction banding studies have to address one of the fundamental

questions regarding the effects of the mechanical anisotropy of porous rocks on strain lo-

calization[Cilona et al., 2014]. The directional disturbance that anisotropy introduces over

the stress-strain relationship could inhibit the emergence of compaction bands in specific

directions, while promoting them in other directions [Louis et al., 2009]. It could also affect
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Figure 2.13. Photographs showing examples of various geological structures
and their overprinting patterns in the Aztec Sandstone exposed in the Valley
of Fire State Park, Nevada. High-angle and bed-parallel compaction bands in
cross-section view (after Zhou et al. [2014]).

the geometry of the band and its inclination [Tembe et al., 2008] and subsequently be cen-

tral to the directional permeability of the rock reservoirs [Baud et al., 2012]. Such effects

were unequivocally reported from the Aztec Sandstone in Nevada, USA, where the deposi-

tional architecture took a marked control over the formation and orientation of compaction

localization, resulting in low-angle bed-parallel bands [Deng and Aydin, 2012; Deng et al.,

2015a,b; Zhou et al., 2014].

2.3. Patterns of Formation and Propagation

By making reference again to the geometrical factors influencing conductivity, field sur-

veys pointed out various forms of compaction-band dispositions, including discrete-band
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arrays (Fig. 2.2 & 2.3) and band clusters (Fig. 2.14). Band arrays involve multiple bands

at almost constant spacing. Band clusters, in contrast, appear as a thick structure of com-

pacted rock with a thickness that could be as big as two orders of magnitude of the thickness

of discrete bands. Band clusters are less frequent than band arrays and typically detected

in geological systems that involve large deformation (Fig. 2.15). Such variety of dispositions

could be explained on the basis of the propagation patterns observed through laboratory

studies which have often reported forms of discrete bands growth (Fig. 2.16-a) and thicken-

ing bands (Fig. 2.16-b).

Figure 2.14. Deformation-band cluster in the Entrada Sandstone, San Rafael
Desert, Utah (after [Fossen and Bale, 2007]).

Despite being frequently observed, the precise causes of these various propagation pat-

terns continue to be elusive. Theoretical and numerical studies suggested that hardening
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Figure 2.15. Thickness-displacement data for deformation bands (single bands
and clusters) (after [Fossen and Bale, 2007]).

Figure 2.16. Patterns of compaction band propagation: band growing in thick-
ness indicated by a red double-headed arrow (left) and thin bands spread across
the specimen indicated by red arrows (right) (source: Ref.s [Fortin et al., 2005;
Tsopela, 2014])

characteristics take major control over the form of compaction propagation. Specifically,

materials with strain hardening properties tend to display compaction banding in form of
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discrete bands, while materials with softening characteristics tend to compact with thicken-

ing bands [Chemenda, 2009]. Another theory for interpreting the discrete bands involved

viscoplastic analyses explaining discrete bands as the outcome of periodic stress singularities

[Veveakis and Regenauer-Lieb, 2015; Veveakis et al., 2014]. Although such theory of stress

singularities suggests that media with a first-order dissipating mechanism do not develop dis-

crete bands, recent numerical and constitutive models provide contradictory evidence [Das

and Buscarnera, 2014]. Substantial questions remain surrounding propagation patterns. It

is not yet understood whether band thickening and discrete banding are truly different forms

of compaction band propagation or simply band thickening is a sub-process that occurs in-

side a thicker discrete band. The role of material heterogeneity in the context of activating

several thickening bands, eventually appearing as discrete bands, has not yet been addressed.

This is to say, despite the effort that has been done on this topic, much work has to be done

to reach a satisfactory interpretation of propagation patters.

Questions of such kind are corroborated by experimental evidence illustrating the inti-

mate connections between material heterogeneity and compaction propagation. In a study

of Bleurswiller sandstone, samples displayed discrete bands propagation (Fig. 2.16-a) over

a wide range of confinements [Baud et al., 2015; Fortin et al., 2006]. Early studies [Fortin

et al., 2006] attributed the onset of these bands to failure in porosity clusters, whereas more

recent studies [Baud et al., 2015] suggested that the poorly sorted granular systems associ-

ated with these clusters render them inhibitors of band propagation. More recent studies

on Leitha limestone aided by microstructural monitoring provided evidence of major pore

collapses in conjugation with compaction localization [Huang et al., 2019]. At variance with

these studies, evidence of compaction front propagation from the specimen ends towards its

center was very often reported in laboratory simulations (Fig. 2.16-b), and was attributed
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to the frictional interactions between the specimen and the apparatus platens [Baud et al.,

2004; Castellanza et al., 2009; DiGiovanni et al., 2007; Klein et al., 2001; Valdes et al., 2012;

Wong et al., 2001]. Such influence of boundary friction of the mode of compaction localiza-

tion has never been verified. The duality of propagation patterns, however, could indicate

a complex interplay between the possible triggering factors, i.e., boundary friction and ma-

terial heterogeneity. This laboratory-scale problem exemplifies questions of the same kind

emerging at larger scale of observation, specifically at the field scale, where more complex

boundary conditions and more subtle field heterogeneity are involved.

The rich datasets available about the spatial patterns of compaction bands formation

and propagation was recently expanded by laboratory studies focused on their temporal

evolution under constant-traction [Heap et al., 2015]. Specifically, transient stages of accel-

erated deformation have been observed in conjunction with the initiation and propagation

of compaction zones during creep tests conducted on samples of Bleurswiller sandstone, a

porous rock known to exhibit compaction localization [Fortin et al., 2005]. The samples were

subjected to a constant stresses, at and below the level of the inferred yielding threshold,

and left to creep over time, revealing growth of compaction zones. Most notably, distinct

patterns of temporal evolution of the axial deformation were found (Fig. 2.17), with trends

of decaying or growing deformation rate which were assessed as stable and unstable, respec-

tively. Despite the intriguing implications of these findings in terms of long-term prediction

of crustal deformations and reservoir quality deterioration, the literature offers limited tools

to explain them and replicate their patterns through computational analyses.
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2.4. Analytical Theories and Constitutive Modeling

Theories explaining compaction banding appeared following the work of Olsson [1999],

who used instability considerations to explain some features of the stress-strain responses

obtained through compaction experiments on Castlegate Sandstone. A robust theoretical

interpretation of compaction banding, however, was established by Issen and Rudnicki [2000],

where the constitutive instability formalism of dilating shear bands [Rudnicki and Rice, 1975]

was shown to encompass also compaction localization for a range of material parameters

typical of highly-porous rocks. The strain localization theory represents the main reference

to identify the conditions at which bifurcated solutions emerge leading to narrow deformation

bands. This criterion was combined with elastoplasticity by Chambon [1986], suggesting that

the criterion of bifurcation can be written as follows:

A(θ) = det[nj(θ)(C
ep
ijkl)nl(θ)] ≤ 0 (2.1)
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Figure 2.17. Creep test on Bleurswiller sandstone showing the development
of time-dependent compaction with distinct patterns of (a) decaying axial
deformation rate associated with diffuse (non-localized) compaction, and (b)
stages of growing axial deformation rate (hatched zone) associated with the
emergence of discrete compaction bands (data after Heap et al. [2015]).
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Where θ is the angle of a unit vector, nj, normal to the band, identified with respect to

Cartesian coordinate, and Cep
jjkl is a fourth-order elastoplastic constitutive tensor. The ex-

pression above enables the computation of a localization profile for a given stress state, i.e.

a representation of the determinant of the acoustic tensor A(θ) as a function of the band

angle θ, thus identifying the states with potentials for strain localization.

The same condition of instability was obtained by Buscarnera and Nova [2011] using

the so-called ”controllability theory”, which inspects the ability of a material to sustain in-

cremental perturbations enforced through combinations of stress and/or strain increments

[Imposimato and Nova, 1998]. In this approach, the uniqueness of the elastoplastic response

is examined for a purely compactive mode of localized deformation. The strain jump associ-

ated with a compaction band involves a discontinuity of the axial strains and radial stresses

(Fig. 2.18). By assuming that the stress-strain response of the material inside and outside

the band is represented by the same constitutive tensor, the mechanical response inside the

band can be expressed, as follows:


∆σ̇1

∆σ̇2

∆σ̇3

 =


D11 D12 D13

D21 D22 D23

D31 D32 D33




∆ε̇1

∆ε̇2

∆ε̇3

 (2.2)

where ∆ represents a jump of stress and/or strain measures across the band, andDij indicates

the component of the constitutive tensor. Equilibrium conditions require the continuity of

the stresses acting normal to the band (i.e., ∆σ̇1 = 0). Similarly, compatibility requires

the continuity of the strain rate components in the plane of the discontinuity (i.e., ∆ε̇2 =

∆ε̇3 = 0). These conditions can be expressed by collecting the strain increments controlled

by compatibility in a vector, ∆ε̇β = [∆ε̇2 ∆ε̇3]T , while its work-conjugate counterparts are
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Figure 2.18. Schematic illustration of the kinematic and static conditions as-
sociated with compaction banding, showing strain jumps in the axial deforma-
tion, and discontinuities in the radial stresses between inside and outside the
band.

collected in the stress vector ∆σ̇β = [∆σ̇2 ∆σ̇3]T . Rearranging these controls, it follows:∆σ̇1 = 0

∆ε̇β = 0

 =

D11 −D1βD
−1
ββDβ1 D1βD

−1
ββ

−D−1
ββDβ1 D−1

ββ


∆ε̇1

∆ε̇β

 = X

∆ε̇1

∆ε̇β

 (2.3)

where D1β, D−1
ββ , Dβ1 are partitions of the constitutive matrix. Singularities of the control

matrix, X, allow for nontrivial solutions for the axial strain jump and hence for localized

compaction. The determinant of X can be expressed as follows [Zhang , 2006]:

detX = det(D11)det(D−1
ββ ) (2.4)
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which boils down to the condition det(D11) ≤ 0, which coincides with the compaction local-

ization criterion obtained through the bifurcation theory [Rudnicki , 2002].

These two approaches to material instability analyses offer a platform for interpreting

instability conditions, especially in rate-independent elastoplastic idealizations [Chambon,

1986; Nova et al., 2003]. In this context, the literature offers numerous constitutive models

developed for the purpose of reproducing the mechanics of high-porosity rocks. Sophisticated

constitutive laws were very often required, as geomaterials display elusive tendencies to dilate

or contract depending on the loading path [Menéndez et al., 1996; Wong and Baud , 2012;

Wong et al., 1997]. This rich variety of deformation responses derives from the competition

between numerous inelastic processes, which leads to either softening or hardening depending

on the dominant mechanism [Bésuelle, 2001; Bésuelle and Rudnicki , 2004]. Typical strategies

used to replicate the behavior of porous rocks include cap plasticity [DiMaggio and Sandler ,

1971; Fossum et al., 2000; Grueschow and Rudnicki , 2005; Rudnicki , 2004] and critical state

plasticity [Carroll , 1991; Cuss et al., 2003; Wood , 1990]. Despite being able to replicate

yielding conditions, this class of models often lacked the ability to simultaneously inspect

the deformation response and the formation of compaction bands [Issen and Rudnicki , 2000;

Issen, 2002]. In this context, improvements were proposed by Challa and Issen [Challa and

Issen, 2004] who used multiple yield surfaces to capture this variability. The approach was

proved effective in capturing the onset and inclination of the compaction band, yet clear

evidence on rheological characteristics has never been demonstrated.

At variance with this class of models, the literature involves sophisticated models that

account for the rich mechanisms active in the brittle-ductile transition regime. Models specif-

ically based on the Breakage Mechanics theory [Das et al., 2011] connected internal variables

to their underlying micromechanics, thus were particularly useful to illustrate the significance
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of the grain size distribution and pore collapse on the formation of compaction bands. In the

same direction of research, multi-scale modeling approaches, specifically FEMxDEM, were

also used to explain the micromechanics associated with compaction banding[Wu et al.,

2020]. These studies showed that the phenomenological signatures of compaction banding

can be obtained even in the absence of grain crushing.

The strain-hardening elasto-plasticity model adopted in the current study aims to accu-

rately reproduce pre- and post-localization deformations, while enabling the representation

of pressure-dependent strain localization patterns. The model was developed in a series of

contributions by Nova and coworkers [Gens and Nova, 1993; Lagioia and Nova, 1995; Nova

et al., 2003], and has been selected by virtue of its proven success in capturing the incep-

tion and development of plastic compaction under different stress paths and for a variety of

boundary conditions [Arroyo et al., 2005; Buscarnera and Laverack , 2014; Das and Buscarn-

era, 2014]. The structure of the model is inspired by classical critical state plasticity laws

such as Cam clay [Wood , 1990], in which a single yield surface evolves homothetically upon

plastic deformation is used. The expression proposed by Lagioia et al. [1996], was used to

describe both the yield surface and the plastic potential, as follows:

f

g

 =
(
A
K1h/Ch
h ·B−K2h/Ch

h

)
P ? − P ?

c = 0 (2.5a)

Ah = 1 +
η?

K1hMh

(2.5b)

Bh = 1 +
η?

K2hMh

(2.5c)

Ch = (1− µh)(K1h −K2h) (2.5d)
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d =
ε̇pv
ε̇pd

=
∂g/∂p

∂g/∂q
= µg(Mg − η?)(

αgMg

η?
+ 1) (2.6)

with the functions K1h,2h defined as:

K1h/2h =
µh (1− αh)
2 (1− µh)

(
1±

√
1− 4αh (1− µh)

µh (1− αh)2

)
. (2.7)

p and q represent the mean and deviator stresses, respectively, while η? is the corresponding

stress ratio, defined as follows:

p =
1

3
σijδij q =

√
3

2
sijsij η? =

q

p+ Pt
(2.8)

in which sij = σij − pδij, δij is the Kronecker delta. Under axisymmetric compression, p and

q are be specified as following:

p =
σ1 + 2σ3

3
q = σ1 − σ3, (2.9)

with σ3 the minimum principal stress. The variable P ?
c represents the hydrostatic yield stress

and is defined through an additive combination of the hardening variables Ps and Pm (i.e.,

P ?
c = Ps + Pm + Pt where Pt indicates the tensile strength and is equal to Pt = kPm). The

former variable incorporates the contribution of the skeleton packing, while Pm mimicks the

inter-granular cementation. The shape of the two surfaces in Eqs. (C.9) is controlled by the

shape parameters, Mh, µh, and αh, for which the subscript h makes reference to either the

yield surface (h ≡ f) or the plastic potential (h ≡ g). These expressions provide considerable

flexibility to fit experimental data, in that distinct sets of shape parameters can be used to

adjust the degree of non-associativity and the shape of the elastic domain. The evolution of
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the hardening variables (i.e., Ps and Pm) is governed by the following rules:

Ṗs =
Ps
Bp

ε̇pv (2.10)

Ṗm = −ρmPm(|ε̇pv|+ ξmε̇
p
s), (2.11)

where Bp, ρm and ξm are material parameters. Ps reproduces mechanisms associated with

porosity changes (thus incorporating hardening in compacting geomaterials and softening

in dilative geomaterials). By contrast, Pm introduces softening mechanisms due to both

volumetric and deviatoric plastic strain. The interplay between these variables leads to a

homothetical contraction/expansion of the yield surface, which affects the accuracy with

which localization processes and post-localization deformation are captured. This constitu-

tive law can be used in its original rate-independent form, according to which the plastic

strains are obtained through a standard consistency condition, as follows:

ε̇pij = Λ
∂g

∂σij
(2.12)

with Λ being a non-negative plastic multiplier. However, a simple adaptation of the model

to viscoplastic form allows the simulation of rate-dependency and creep. For this purpose,

the inelastic strain rate in Eq. (12) can be replaced by the viscoplastic strain rate, ε̇vpij ,

which is computed through a viscous nucleus function Φ which depends on the violation of

the plastic constraints (i.e., on the distance between the stress state lies outside the elastic

domain and the yield surface, often referred to as overstress):

ε̇vpij = Φ(f)

[
∂g

∂σij

]
. (2.13)
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Φ(f) = µ

[
〈f〉
Pco

]
(2.14)

where Pco is the initial hydrostatic yielding stress, the symbol 〈•〉 indicates the McCauley

brackets and µ is a fluidity parameter (i.e., the inverse of viscosity). Isotropic linear elasticity

is here employed to compute the increment of the stress state σ̇ij through the standard

relation:

σ̇ij = De
ijkl ˙εkl

e (2.15)

where εekl is the elastic strain tensor, and De
ijkl is the isotropic linear elastic tensor.

2.5. Thesis Goals

The research presented in this thesis addresses some open questions that are singled

out here below, while the following chapters illustrate the work that has been conducted to

achieve that.

• Is it possible to establish a unified theoretical framework to identify both the time-

dependent and time-independent unstable compaction?

• How do the spatial heterogeneity and boundary conditions interact to affect the

nucleation and propagation of compaction bands?

• Can geomechanical models explain the coexistence of different forms of compaction

bands and identify whether their emergence is contemporaneous of not?
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CHAPTER 3

Viscoplastic Interpretation of Compaction Localization∗

Compaction localization is usually interpreted through the bifurcation theory, based on

which critical values of hardening modulus associated with the vanishing of the acoustic

tensor can be defined at the onset of compaction bands [Issen and Rudnicki , 2000]. These

methods, however, are applicable for elastoplastic constitutive laws, which are notoriously

unable to reproduce time-dependent features. Viscoplastic constitutive laws are used as

alternatives to simulate the rate- and time-dependence of the rock behavior, and as a regu-

larization strategy to suppress the ill-posedness associated with full-field strain localization

analyses. In such cases, however, localization analyses cannot be conducted through the

same techniques developed for rate-independent plastic models, in that a tangent constitu-

tive tensor between stress and strain increments is no longer defined [Needleman, 1988].

In this chapter, these limitations are circumvented by providing an interpretation of

stable and unstable compaction creep which reflects the temporal dynamics underlying the

viscoplastic rock behavior, but at the same time it is also consistent with the standard

indices used to differentiate homogeneous and localized compaction. Specifically, reference

is made to the mathematical formalism introduced by Pisanò and di Prisco [2016] to identify

instabilities in viscoplastic solids. According to this approach, the delayed deformation of

∗The content of this chapter is published in:

• Shahin, G., Marinelli, F., and Buscarnera, G. (2019). Viscoplastic interpretation of localized compaction
creep in porous rock. Journal of Geophysical Research: Solid Earth, 124(10), 10180-10196.

• Shahin, G. and Buscarnera, G. (2019, August). Numerical simulation of localized compaction creep in
heterogeneous porous rock. In 53rd US Rock Mechanics/Geomechanics Symposium. American Rock
Mechanics Association.



53

a viscoplastic material can be expressed in terms of multiple ordinary differential equations

(ODEs), each associated with a stress/strain variable describing the evolution of the current

state. From a mathematical standpoint, this methodology bears resemblance with the study

of Lyapunov stability in multi-variable dynamic systems [Hale and Koçak , 2012]. From a

geomechanical standpoint, it is an effective platform to cope with kinematics constraints due

to the presence of pore fluids, as recently shown for the liquefaction of loose granular solids

at variable degrees of saturation [Marinelli and Buscarnera, 2018; Marinelli et al., 2017].

Hereafter, it will be shown how this formalism can be generalized to compaction creep in

porous rocks, especially for problems characterized by a marked potential for compaction

localization.

3.1. Stability Criteria for Viscoplastic Solids

The time-dependent behavior of porous rocks is modeled through the overstress approach

proposed by the pioneering work of Perzyna [Perzyna, 1966], which has been successfully

used to reproduce the rate-dependent characteristics of a wide range of granular solids,

[di Prisco et al., 2000; Lazari et al., 2018; Tommasi et al., 2000; Yin et al., 2010]. Under

suitable conditions, such constitutive framework can suppress the ill-posedness associated

with strain localization and restore the uniqueness of the field equations [Needleman, 1988].

However, material instability can still be found in the form of sharp variations in the temporal

evolution of the material response. In this context, Oka et al. [1994] formulated a strategy to

detect the onset of instabilities by showing that the inception of accelerating trend of behavior

during creep (i.e., an unstable response) can be identified by rearranging the constitutive

equations into an ODE. More recently, Pisanò and di Prisco [2016] generalized this idea

to multidimensional systems characterized by a wider set of kinematic constraints, thus
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providing a direct link between the inception of accelerating response and the instability

indices derived through controllability analyses [Buscarnera et al., 2011; Imposimato and

Nova, 1998; Nova, 1994].

According to this approach, the constitutive response can be reformulated as follows:

Ẋ = AX + F (3.1)

where X and Ẋ are the rate and the acceleration of the selected response variables, respec-

tively. A is a constitutive operator governing the evolution of the system, and F is a forcing

term associated with the imposed controls. It can be readily shown that, during stages of

creep, the external forcing vanishes and the spontaneous evolution of the system in proximity

of a given stress state is uniquely controlled by the local characteristics of A, which can be

inspected by studying the corresponding set of eigenvalues. Specifically, negative eigenvalues

indicate local exponential decay of the response variables (i.e., a response characterized by a

stable trend of behavior), while positive eigenvalues indicate an incipient accelerating growth

of the same variables (i.e., unstable response).

Time-dependent compaction localization can also be studied through this formalism,

which yet requires the development of consistent instability criteria. As a result, Eq. 3.1 is a

useful tool to accomplish this goal, provided that the local static/kinematic conditions active

within a deformation band formation can be defined. This is simple for pure compaction

bands, in that they involve a local strain jump characterized by uniaxial deformation (i.e.,

orthogonal to the band and characterized by lack of lateral extension/contraction [Issen

and Rudnicki , 2000]). These conditions resemble the kinematic constraints applied during

oedometric (radially constrained) compression [Arroyo et al., 2005; Buscarnera and Laverack ,
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2014] and can be readily inspected at a material-point level by considering axisymmetric

stress conditions. Specifically, a potential compaction band during creep would involve a

constant axial stress (i.e., σ̇a = 0), as well as a constrained radial strain (i.e., ε̇r = 0) as

controlled variables (Fig. 2.18). For this multi-variable system, the kinematics of the strain

jump in the active zone of localized compaction can be described through a system of ODE

compatible with Eq.3.1 in which the axial strain and the radial stress define the vector of

the response variable X (i.e., X = ε̇a , σ̇r). As a result, the underlying system of ODEs

governing this particular uniaxial deformation process can be written as follows:


ε̈a

2σ̈r

 =


−∂Φ

∂f
HCB

ν

1− ν
Φ
∂2g

∂σ2
r

+ Φ
∂2g

∂σa∂σr

0 −∂Φ

∂f
HCB −

2E

(1− ν)
Φ
∂2g

∂σ2
r



ε̇a

2σ̇r

+ F (3.2)

where E and ν indicate the Young’s modulus and Poisson’s ratio, respectively, while HCB

represents the instability index for the selected controlled conditions, defined as:

HCB = H −Hχ +
Hσε

Φ
. (3.3)

Where Hσε is a term dependent on the loading rate, H is the hardening modulus and

Hχ represents the controllability index derived by Buscarnera and Laverack [2014] in the

framework of rate-independent plasticity by enforcing the kinematic conditions typical of a

pure compaction band:

Hχ = − ∂g

∂σr

E

2(1− ν)

∂f

∂σr
. (3.4)

The derivations leading to this system of ODEs are provided in Appendix A. It is worth

remarking that, in case of creep, the ODEs described in Eq. 3.2 can be rewritten in a



56

compact form (i.e., Ẋ = AX) resulting from the lack of forcing (i.e., Fε ≡ 0 and Fσ ≡ 0,

as well as Hσε=0). As a result, due to the lack of coupling between the response variables,

ε̇a and σ̇r, the local stability of the system can be evaluated by tracking the sign of the

eigenvalues of A, which correspond to the diagonal terms:

λ(A)→


λεa = −∂Φ

∂f
HCB

λσr = λεa −
2E

(1− ν)
Φ
∂2g

∂σ2
r

(3.5)

The process is locally stable if both eigenvalues are negative [Pisanò and di Prisco, 2016], thus

implying that the response variables exhibit a decaying trend of behavior. By contrast, if at

least one of the two eigenvalues is non-negative, the process can be regarded as unstable, in

that it exhibits an accelerated evolution of the corresponding response variable. Furthermore,

by observing Eq. 3.5, it can be noticed that when the stress state implies λεa ≥ 0, the

eigenvalue λσr , related with the radial stress is either positive or could be negative depending

on the magnitude of its second term. This result indicates that the evaluation of λεa is

sufficient to assess the stability of the stress state.

3.2. Constitutive Modeling of Bleurswiller Sandstone

The material selected for this study is the Bleurswiller sandstone, a porous rock known to

develop compaction bands over a wide range of confinements [Fortin et al., 2005], and recently

studied by Heap et al. [2015] through triaxial creep experiments. In this context, Marinelli

and Buscarnera [2015] proposed the use of a constitutive model based on prior contributions

by Nova and coworkers [Lagioia and Nova, 1995; Nova et al., 2003] and discussed in (Section

2.4).
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Figure 3.1. Compaction band analysis for Bleurswiller sandstone. (a) Yield
surface and measured yielding points at which compaction band was detected;
the thick line indicates the predicted domain of localized compaction. (b-
c) Localization profile at two different stress states (marked as 1 and 2 in
(a)), showing the evolution of the acoustic tensor determinant as a function
of the band angle. (d) Computed instability index showing compatibility with
predictions based on the bifurcation theory.

The calibration procedure conducted by Marinelli and Buscarnera [2015] for the Bleur-

swiller sandstone(Table 3.1) was based on the experimental data reported by Fortin et al.

[2005]. Such procedure relied on the strain localization theory, thus identifying the condi-

tions at material point level that are conductive of bifurcated solutions. An example of this

strategy is illustrated in Fig. 3.1 in which the stress states predicting localized compaction

in the form of horizontal bands (i.e., θmin = 0) are plotted at initial yielding with a solid blue

line, thus identifying the so-called localization domain. In particular, a transition from pure
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Table 3.1. Constitutive parameters and internal variables for Bleurswiller
sandstone calibrated by Marinelli and Buscarnera [2015].

Definition

K [MPa] Bulk modulus 9100
G [MPa] Shear modulus 6000
ρm Parameter governing volumetric destructuration 3.0
ξm Parameter governing deviatoric destructuration 2.0
Bp Isotropic plastic compressibility 0.026
µf Shape parameter of yield surface 1.01
αf Shape parameter of yield surface 0.11
Mf Shape parameter of yield surface 1.06
µg Shape parameter of plastic potential 1.55
αg Shape parameter of plastic potential 1.2
Mg Shape parameter of plastic potential 1.75
κ Expansion of yield surface in the tensile stress domain 0.01
µ [MPa.s] Fluidity factor 5.0E-4

Pso [MPa] Initial size of the elastic domain (cohesionless medium) 15
Pmo [MPa] Lithification-induced expansion of the initial elastic domain 106

compaction bands (i.e., θmin = 0) and shear-enhanced compaction bands (i.e., θmin > 0) can

be seen in Fig. 3.1c, thus emphasizing the possible coexistence of different strain localiza-

tion mechanisms. From Fig. 3.1a it is readily apparent that the bifurcation conditions are

satisfied over a wide range of confinements spanning from 40 to 112 MPa, consistently with

the experimental evidence reported in Fig. 3.1a (i.e., data points showing stress states at

which compaction localization was observed). These results, here obtained by employing the

localization theory [Rudnicki and Rice, 1975], can be recovered also by using controllability

indices [Imposimato and Nova, 1998; Nova, 1994] adapted for the control conditions char-

acterizing the kinematics of a compaction band. Specifically, as shown by Buscarnera and

Laverack [2014], it is possible to make reference to the index HCB = H−Hχ associated with

pure compaction bands (Fig. 3.1d).

The performance of the model is further illustrated with reference to a set of simulated

triaxial compression tests. Fig. 3.2 shows the predicted response under 40-, 60-, 80-, and 100-

MPa confinement pressure. The comparison against corresponding measurements illustrates

a satisfactory agreement between model simulations and experimental data. As a result,
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Figure 3.2. Comparison between (a) experiments and (b) material point simu-
lations of triaxial compression on Bleurswiller sandstone specimens (data after
Fortin et al. [2005]).

this constitutive law will be used in the following to discuss the temporal development of

compaction bands in light of a viscoplastic enhancement of the constitutive equations.

3.3. Interpretation of Compaction Creep

To illustrate the connection between the phenomenology of compaction creep and con-

cepts of viscoplastic instability, a particular stress path has been computed at the material

point level. Such path consists of two stages: i) a triaxial compression used to bring the

stress state in the proximity of the initial yield surface, ii) a creep stage performed to ana-

lyze the evolution of the strain over time, in which the control conditions were switched to

radially-constrained deformation in order to replicate the kinematics of compaction bands.

Two values of initial confinement have been selected as end-members of creep compres-

sion, namely P1 = 80 MPa (at which the creep phase starts from a stress state within the

localization domain) and P2 = 115 MPa (at which the creep phase starts from a stress state

outside the localization domain). The results of the analyses are illustrated in Fig. 3.3 which

are here explained in light of the theory presented in Section 3.1.
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Figure 3.3. Material point analyses of constant-stress axisymmetric test pre-
ceded by triaxial loading. (a) Path P1 with initial confinement of 80 MPa,
intersecting with the yield surface inside the compaction localization domain
predicted based on the theory of Bifurcation. (b) Path P2 with initial confine-
ment of 115 MPa, intersecting with the yield surface outside the localization
zone. (c) Axial strain evolution during creep stage for both paths. The first
path displays a transition from accelerated to decelerated axial strain rate (the
point of transition is marked by a hollow square); the second path displays a
decay pattern over the entire simulation. (d) Evolution of deviatoric stress.
(e) Mobilized overstress (P1 exhibits a peak, whereas P2 displays an overall de-
caying trend). (f) Variation of the instability index HCB for both paths, where
the first path is associated with initially negative value indicating unstable re-
sponse. The second path displays positive index indicating stable response. T
indicates the current creep time, while Tc is the total creep time.
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It can be seen that, in both cases, the creep stage involved an expansion of the yield

surface, with a stress path typical of constant axial-stress deformation. A close look at the

simulation of 80 MPa reveals that the evolution of the stress state and the expansion of the

yield surface display detectable differences in terms of the rate of evolution. Specifically,

upon setting the material under oedometric conditions the stress response evolves rapidly.

The expansion of the yield surface appears to develop at a markedly lower rate. When the

stress response reaches what appears as a stabilization state, the accumulated deformation is

around half the total required deformation necessary to diminish the accumulated overstress.

To further elucidate these dynamics, the evolution of the axial strain is depicted in Fig. 3.3c,

plotted as a function of the normalized time (i.e., the ratio between the actual elapsed time

and the whole duration of the creep simulation). It can be seen that distinct patterns of strain

evolution are associated with these stress paths. The strain response associated with P1 can

be characterized by an initially growing rate of evolution, followed by stages of deceleration.

At variance, the strain response associated with P2 is characterized by a decaying trend of

evolution throughout. Similar patterns of evolution can be seen in the radial stress responses

(Fig. 3.3d ), where P1 is accompanied with an initially accelerating stress response followed

by stages of deceleration, whereas P2 evolves with a decelerating form along the entire path.

As mentioned above, the adopted viscoplastic model allows the stress state to lay outside

the yield surface. This violation controls the magnitude of the overstress, Φ, and in turn

the viscoplastic strain rate. As a result, the temporal dynamics of creep (i.e., whether

the strain accelerates or decelerates) depends on the relative movement of the stress state

and yield surface, which are in turn controlled by the static/kinematic constraints (i.e.,

the strain jump) and the hardening characteristics of the material. Fig. 3.3e presents the

evolution of the overstress for the two stress paths. It can be seen that P1 is associated with
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a simultaneous pulse of overstress with a peak that coincides with the point of transition

from the domain of instability to the domain of stability (Fig. 3.3f). At variance, the

overstress evolves with a decaying trend in P2, where the instability index indicates stable

states throughout (Fig. 3.3f). The white marker indicates the point of transition from

accelerating to decelerating growth rate in the axial strain, revealing that the stages of

instability, spontaneous mobilization of overstress pulses, acceleration in the radial stress,

and the accelerated growth in the axial strain are nearly synchronized.

On the ground of this analysis, the domain of instability in the stress space can be iden-

tified through numerical integration. Along triaxial probes, the local instability is evaluated

by tracking the sign of the instability index along the path. The domain of instability is

displayed along with the stress paths, P1 and P2, in Fig. 3.4b. It can be noticed that the

point of intersection between P1 and the yield surface occurs within the zone of instability,

followed by stress growth that stabilizes at the boundaries of the instability domain. By

contrast, the intersection between P2 and the yield surface and its entire evolution locates

outside the instability domain.

.

3.4. Finite Element Simulation of a Creep Test

Material-point analyses describe idealized homogeneous processes which should be re-

garded only as approximations of real experiments. Hereafter, a numerical simulation based

on the Finite Element (FE) method is used to illustrate the spatio-temporal richness of lo-

calized compaction creep, as well as to explain the full-field behavior of rock samples in light

of the viscoplastic theory discussed previously.
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Figure 3.4. Identification of stress states of unstable creep. (a) Stress paths
used to identify unstable states (shaded region). Triaxial probes at various
confinement pressures are integrated and the state is marked unstable if the
corresponding index is negative. (b) Depiction of the location of the stress
paths P1 and P2 with respect to the detected instability zone. Path P1 crosses
the yield surface within the unstable zone, whereas path P2 is always located
outside the shaded area.

The numerical test is conducted with reference to a cylindrical specimen with aspect

ratio height/diameter = 2. The purpose of the analysis is to replicate the testing procedure

discussed by Heap et al. [2015] in a controlled numerical setting. The specimen is discretized

by a finite element mesh consisting of more than 75, 000 4-node tetrahedral linear elements.

A single element is assigned 98% of the hydrostatic yielding pressure prescribed throughout

the rest of the domain. This weak element promotes the triggering of strain localization by

altering the homogeneity of deformation field. The boundary conditions set at the base of

the specimen include fixed vertical displacements and a node with no horizontal translation

to prevent rigid body motion. The numerical specimen is subjected to two-step loading

paths consisting of a displacement-controlled shearing followed by force-controlled creep. An

initial confinement pressure (here 80 MPa) is imposed by applying on each boundary a normal
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Figure 3.5. Illustration of the finite element model used for triaxial test simula-
tions. (a) Specimen section showing the finite element mesh and the boundary
conditions; (b) Location of the weak element in a 3D cylindrical sample.

pressure in equilibrium with an equivalent internal stress state. The radial pressure is then

kept constant and the nodes at the top boundary are translated vertically during triaxial

shearing, and then subjected to constant traction during creep. The imposed axial strain

rate during the shearing stage is set to 1.0E−5 s−1, in agreement with the experiments here

used as a reference. Once the desired stress level is attained, the traction at the top boundary

is kept constant and the specimen is left to creep over time. A schematic illustration of the

FE model and its boundary conditions are illustrated in Fig. 3.5.

The response of the specimen is inspected from two standpoints. First, the averaged

vertical traction at the base (i.e., the reaction provided by the specimen to the imposed axial

deformation) is reported along with the response computed based on displacement-controlled

simulation in Fig. 3.6a. The vertical displacement at the top boundary is reported as a

function of time in Fig. 3.6b (continuous line). It can be seen that the numerical specimen

has reproduced essential features of the physical experiment of Heap et al. [2015] (see also
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to Fig. 2.17), specifically exhibiting three stages of deformation: initially a decaying trend

of evolution followed by stages of acceleration and then deceleration in creep deformation.

The evolution of the strain field that accompanies these forms of deformation response

is illustrated in Fig. 3.6d, which shows the volumetric plastic strain field at various defor-

mation intervals, noted by Ci where i = 1− 6. It can be seen that the specimen exhibits a

propagation of discrete bands which spread sequentially across the domain, starting from the

second interval C2 and span up to C4. Afterwards, compaction propagates in the form of a

band thickening from the compacted zones at C4 until the entire specimen is compacted. By

comparing the strain field evolution with its counterpart obtained from compression loading

(Fig. 3.6c-Li where i = 1 − 6.), it can be readily seen that the propagation patterns are

comparable, in that both cases display similar forms of discrete bands propagation followed

by thickening bands. These predictions are also in part corroborated by experimental obser-

vations based on maps of acoustic emission measurements documented by Heap et al. [2015],

which reported the location of active compaction banding by identifying multiple discrete

bands that formed across the specimen during the initial stages of compaction propagation.

Although the resolution of the measurements does not provide conclusive evidence for the

presence of a subsequent stage of band thickening, other tests conducted by Fortin et al.

[2009] on the same sandstone suggest a more wide spread emission zone adjacent to discrete

bands, which may be consistent with the band thickening process predicted by the numerical

model.

Despite the similarities between the imposed-deformation simulation and the traction-

fixed simulation, some important differences can be seen. For example, the emergence of

a well-defined compaction band required a larger deformation interval in the displacement-

controlled simulation. The first band can be seen after considerable interval of deformation
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Figure 3.6. Finite element simulation of constant-stress test shown compared
against a simulation of imposed deformation at constant strain rate. (a) Re-
sponse of the specimen for constant-traction and constant-deformation-rate
simulations. (b) Temporal evolution of vertical deformation normalized by the
specimen height. The shadowed domain in a and b indicates the creep stage.
(c) The cumulative volumetric plastic strain field of the constant-strain-rate
simulation (indicated by the letter L in subfigure (a)). (d) The cumulative
volumetric plastic strain field of the constant-traction test simulation shown
at several intervals (indicated by the letter C in subfigure (a)). A comparison
of the strain fields, in c and d, reveals that in both cases compaction propa-
gates initially in a series of discrete bands, followed by a propagation in the
form of band thickening.
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Figure 3.7. Gauss point computations extracted from a finite element simula-
tion of a triaxial-creep test. (a) The stress path is shown together with the
yield surface and instability zone, where the path violates the yield surface at
point 1, and progresses in a quasi-axisymmetric path to point 2. The stress
state remains then almost unaltered up to point 3. (b) Temporal evolution
of the axial strain. (c) Temporal evolution of the instability index HCB. (d)
Temporal evolution of the viscous nucleus Φ.

(L4), while the first band in the creep simulation can be detected at C2. Differences can

also be seen in terms of the global deformation response (Fig. 3.6b). Specifically, variations

in the temporal evolution of deformation develop starting from the early stages of the phase

of creep. At, for instant, an axial strain of 0.0175 the delay in deformation is about 1000

minutes, while this delay exacerbates up to about 2000 minutes by the end of the simulation

(at L6/C6).
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Although a one-to-one causal connection between globally unstable behavior and local

material instabilities is not possible, the index of locally unstable compaction response de-

fined in Section 3.1 can be used here as a diagnostic tool to explain from a qualitative

standpoint the numerical results. For this purpose, Gauss point computations at a ran-

domly selected element is reported in Fig. 3.7. The evolution of the stress state is shown in

Fig. 3.7a plotted along with the zone of instability. It can be seen that the local stress path

resembles those known to be typical of constant axial-stress compression (i.e., q/p = ±2/3),

and limited by the boundaries of the instability zone. When the stress state reaches the

outer boundary of the instability zone, (i.e., at point (2)), stress evolution changes direction,

thus marking the deactivation of a previously active strain localization zone. Kinematically,

when viscoplasticity initiates at point (1), the local response exhibits an acceleration in the

axial strain (Fig. 3.7b), which continues across the entire stage between (1) and (2). This

unstable response is related to a negative sign of (H − Hχ) (i.e. positive instability index)

as can be seen in Fig. 3.7c, and is associated with a spontaneous increase in the overstress,

which has a peak at the end of this stage (Fig. 3.7c). Between (2) and (3) the stress state

remains almost unaltered, yet significant accumulation of axial strain develops, reflecting

the activation of delayed deformation inside the compaction zone. Later, the overstress di-

minishes, indicating that after (3) there is no longer accumulation of plastic strain. This

analysis illustrates that the insights gained from the local viscoplastic interpretation share

numerous features with the spatially heterogeneous dynamics of time-dependent compaction

instability resulting from the finite element analyses.

To further inspect the simulations, a number of elements at the central axis and along

the height of the specimen were selected, and the associated evolution of the axial strain,

overstress ratio, and H − Hχ are reported in Fig. 3.8. The point at which the instability
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Figure 3.8. Temporal evolution during the simulated creep test of (a) axial
strain, (b) overstress, and (c) instability index HCB at Gauss points located
along the axis of the specimen. HCB=0 is marked on all plots to show that the
proposed instability index is capable of identifying the conditions of unstable
creep response.

index switches sign (i.e., H −Hχ = 0) is marked in all plots. Although the use of this index

in the context of a boundary value problems should be regarded as an approximation, in that

it is affected by potential shifts in local stress paths and cycles of unloading-reloading, this

result suggests that heterogeneous delayed compaction localization can be interpreted as a

time-dependent instability of the axial strain response. It can also be seen that the point

of transition from an unstable response to a stable response appears to be correspond with

peaks of overstress (i.e., a spike of viscoplastic strain rate). This result can be corroborated

by inspecting the spatial field of incremental variables. For example, Fig. 3.9 shows the



70

Ov
ers

tre
ss

Inc
rem

en
tal

 Vo
lum

etr
ic

Pla
sti

c S
tra

in 

Ma
x

Mi
n=

0

C1 C2 C3 C4 C5 C6

C1 C2 C3 C4 C5 C6

Ma
x

Mi
n=

0
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activated zones. (Lower) Overstress field at the same intervals confirming
coincidence of overstress peaks with the active strain field.

simultaneous fields of the incremental volumetric strain and the overstress, confirming once

again that the active zones of compaction are associated with zones of high overstress.

3.5. Simulation of a Relaxation Test

While the previous section focused on conditions mimicking recent laboratory tests, here-

after the model is employed to predict compaction band growth under boundary conditions

not yet explored in experimental settings. Specifically, tests conducted at constant axial

deformation (also referred to as relaxation tests) have been simulated to assess changes in

the spatio-temporal dynamic of localized compaction. Such conditions are relevant for a

variety of underground activities such as hydrocarbon reservoirs depletion [Pijnenburg et al.,

2018]. In addition, they may provide useful insights to explore boundary conditions relevant
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Figure 3.10. Full-Field simulations of relaxation test compared with a creep
test simulation. (a) Axial force evolution reported as a function of time. (b)
Volumetric plastic strain field taken at the temporal intervals marked in (a).

for geophysical processes but rarely tested in conjunction with viscoplastic behavior. This

additional set of simulations is based on the same specimen geometry discussed in previ-

ous sections. To facilitate visualization, the location of the weak element is placed at the

middle of the specimen. The specimen is first subjected to a given confinement pressure

and then sheared by lowering the upper boundary at a constant rate (equivalent to nominal

axial strain of 1.0%) while maintaining the lateral stress constant. The shearing stage has

been defined such that viscoplastic deformation is initiated. The vertical velocity of the

upper boundary is then set to zero and the specimen is left to relax. In order to compare

the outcome of fixed-displacement simulations with those of constant-traction conditions,

the same simulation has been repeated by replacing the relaxation stage by a creep phase

characterized by the same (constant) nominal axial stress attained prior to the start of the

relaxation path.
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Fig. 3.10a displays the mechanical responses associated with the relaxation test, where

it can be seen that the specimen exhibited sequential stages of axial stress loss. The first

of such stages occurs right at the beginning of relaxation (R1 → R2) and results in a 10%

loss of axial force carried by the specimen. Afterwards, an additional stage of stress loss

is obtained, resulting in an overall 40% decay of the sustained axial force. Both stages of

axial force decay are characterized by an initial sharp relaxation, followed by stabilizing

stress conditions. Fig. 3.10b shows snapshots of the volumetric strain field at various time

intervals along the relaxation/creep phase, from which it can be seen that both conditions

lead to compaction localization. While compaction localization during relaxation results into

a single band growing at the middle of the specimen (i.e., exactly in correspondence of the

weak zone), constant-traction conditions lead to multiple bands scattered throughout the

sample volume. Such patterns are consistent with those shown in the previous section, thus

emphasizing that creep simulations are not significantly affected by the location of the weak

element. These results indicate that the fixed boundaries inherent with relaxation conditions

promote the formation of isolated deformation structures in proximity of existing flaws, as

well as that the resulting force decay is sufficient to shield much of the sample volume from

inelasticity. By making reference to the axial stress loss, it can be noticed that the first

phase corresponds to the initial lateral growth of the band (R1 → R2), while the second

phase of axial force decay corresponds to a stage of band thickening (R2 → R5). These

features indicate that creep and relaxation tests display similar key stages of compaction

band growth. In addition, they suggest that creep may be suitable to study features such as

band spacing, while relaxation may be convenient to identify the geometric characteristics

of a single band and isolate a dominant weakness zone.
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3.6. Creep Simulations based on Heterogeneous Specimens

The use of homogeneous specimens with weak elements to simulate rock specimens is a

simplification of the real full-field experiments. This idealization implies that geomaterials

are treated homogeneous, but because this class of materials rarely satisfies this idealization,

full field analyses have to account for their inherent heterogeneity. In the laboratory, two

levels of heterogeneity are perceived. At the microscopic level, rock compaction involves com-

plex micro-structural mechanisms including cement debonding, intergranular slipping, and

grain crushing [Wong and Baud , 2012]. These processes are mainly governed by microstruc-

tural heterogeneity and microcracking, thus explaining the tendencies of porous rocks to

deform under constant loads as an outcome of a spontaneous subcritical fractures growth

driven by stress concentrations at the extremities of existing cracks. At higher scale of obser-

vation, i.e., the mesoscale, material heterogeneity is identified by the fluctuation of material

properties (such as porosity and strength) around the overall averaged value (see App B).

While subcritical fracture may explain the role of the microstructural heterogeneities on

creep behavior, the role of the mesoscale heterogeneities is still under-explored, as readily

apparent from the not yet fully understood role of the spatial fluctuation of material prop-

erties on triggering strain localization [Borja et al., 2013; Shahin et al., 2016]. This section

explores the complex links between microstructural heterogeneity, rock constitutive behavior

and delayed strain localization.

For this purpose, numerical simulations based on the finite element method are used here-

after to simulate unstable creep in heterogeneous specimens of Bleuswiller sandstone. This

qualitative study is based on porosity fields generated through random processes character-

ized by a normal distribution with different values of standard deviation. The specimens are
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generated by first identifying a unique random process characterized by a normal distribution

with mean/standard deviation=0/1. A single realization (R) is generated (Fig. 3.11a) and

then is rescaled by choosing specific values of standard deviation. Each realization is then

shifted by centering it around a mean value of 1, and then multiplied by the averaged value

of the porosity (i.e., φo= 0.24). Fig. 3.11b depicts a set of random porosity fields associated

with three different levels of standard deviation (i.e., STD= 0.1%, 0.5% and 1.5%).

The features of the constitutive model used in this study require conversion procedures

to integrate the porosity field in the numerical analyses. In this context, a rule is proposed

in Appendix B and here is adopted. According to this rule, data set with a normal distri-

bution of porosity converts into a log-normal distribution of yielding thresholds, as can be

seen in Fig. 3.11c. Fig. 3.11d shows the heterogeneous simulations with porosity fields of

STD=0.1%, 0.5% and 1.5% displayed with the associated field of Pso and denoted by S01,

S05 and S15, respectively.

Each numerical specimen has been tested with three different levels of creep stress (i.e.,

40-, 42-, and 44-MPa). These levels were chosen to be lower than the yielding stress (45.9

MPa) characterized through triaxial compression-loading on homogeneous specimens (i.e.,

the tests are conducted in the apparent linear stage, see Fig. 3.12). The response of the

specimen is inspected with reference to the vertical displacement at the top boundary nor-

malized by the initial height of the specimen ”nominal axial strain” (NAS) is reported as a

function of time.

The obtained results are reported in Fig. 3.13 , where it can be seen that under both levels

of stress (i.e., 42- and 44-MPa), all specimens have displayed creep deformation associated

with stages of deceleration and acceleration similar to those observed in previous sections.

Most notably, the simulations reveal a significant role of the heterogeneity on creep behavior,
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Figure 3.11. Generating numerical specimens with random porosity fields. (a)
A unique realization of normally distributed data with mean= 0 and standard
deviation=1. (b) Scaling the random field to the desired standard deviation
(i.e., 0.1%, 0.5%, 1.5%) and then shifting to the desired mean value (i.e., φ0 =
0.26). (c) Converting the porosity field to model-specific parameter (i.e., Pso).
(d) FEM simulation after embedding the random porosity field.

in that the heterogeneity has allowed the specimen to display inelastic behavior at stress levels

below the nominal threshold. By making reference to these results again, it can be noticed

that the rate of deformation appears to be connected with the intensity of heterogeneity.

The rate of deformation associated with the specimen of the modest heterogeneity (STD=

0.1%) appears to be the lowest among the other specimens with a stronger heterogeneity.

For example, the delay between the specimens of the strongest and modest heterogeneity is
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Figure 3.13. Deformation response of three different heterogeneous specimens
with various values of standard deviation (i.e., STD=0.1%, 0.5% and 1.5%
). The specimens are simulated under constant-traction. (a) Response under
traction of 44 MPa. (b) Response under traction of 42 MPa.

about 400 minutes at 0.015 axial strain. Despite the differences in the rate of deformation,

all specimens tend to stabilize around the same level of total compaction (i.e., close to 0.022

axial strain) after an elapsed time interval of 3000 minutes.
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The simulations reveal also an important role of the stress level on the rate of deformation.

A comparison between the specimen’s behavior under different levels of constant-traction

(i.e., 40-, 42-, and 44-MPa) is presented in Fig. 3.14.

First, it can be seen that under 40 MPa traction, all specimens display no deformation

responses over time. In contrast, the specimens exhibited a clear tendency to accumulate

creep deformation at higher levels of traction. The rate of deformation appears dependent on

the intensity of traction. Specifically, the specimens under higher levels of traction displayed

a tendency to accumulate deformation at higher rates. By making reference to the subset Fig.

3.14a where the results associated with S01, it can be seen that after an elapsed time of 1000

minutes, the specimen under 44 MPa has accumulated a total deformation of NAS=0.65%,

while under 42 MPa it has accumulated 33% less deformation (NAS=0.4%).

Fig. 3.14 also presents the strain fields associated with these simulations, inspected at

the same deformation intervals (i.e., 0.5, 1.0, 1.5, and 2.0 axial strain). It can be seen that

all specimens have undergone compaction localization. The activation of the bands appears

to occur instantaneously, as can be seen in the first interval of all simulations. The bands

that were activated at this stage accumulate further deformation over time as can be seen

at the second interval. Compaction then propagates in a form of band thickening (third and

fourth intervals). In this context, it can be observed that neither the intensity of stresses

nor the intensity of heterogeneity has affected the pattern of propagation.

3.7. Conclusions

This chapter discussed a mathematical approach based on nonlinear dynamics and vis-

coplasticity to interpret the evolution of delayed compaction bands during stages of creep.
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For this purpose, the constitutive equations have been recast in the form of an ODE spe-

cific for the kinematic control conditions associated with the strain jump within an active

compaction band. In particular, an instability index connected with the eigenvalues of the

constitutive operators governing the temporal dynamics during localized compaction creep

was derived and used to detect the transition from stable to unstable deformation in mate-

rial point simulations. The acceleration of response variables in the simulated deformation

was shown to be caused by a pulse of overstress related with the coordinated evolution of

stress state and yield surface. This framework was shown to be a useful tool to explain the

emergence and propagation of compaction bands in full-field analyses of compaction creep

based on finite element simulations. An intimate relation between the spatial patterns of

compaction and their temporal progression was found, revealing that the pulses of overstress

and viscoplastic strain rate concentrate at discrete locations. These spatial patterns were

accompanied by a global response characterized by an accelerating stage of deformation fol-

lowed by a stage of decaying axial deformation rate. While the accelerating stage was found

to correspond to the formation of multiple compaction bands, the decelerating stage indi-

cated the homogeneous development of stable compaction throughout the specimen, with no

remaining pulses of overstress and localized strain acceleration.

The second part of the chapter explored the role of the spatial heterogeneity on the

emergence of delayed compaction banding and the temporal evolution of global subsidence

under creep. For this purpose, heterogeneous specimens were generated by adopting a sin-

gle realization that is scaled up with respect to its standard deviation to obtain different

intensities of material property variation. The specimens were tested under different levels

of constant-traction, all lower than the nominal yielding stress known from homogeneous

simulations. It was found that the fluctuation in material properties enabled the specimen
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to display inelastic deformation under stress levels lower than those associated with nominal

yielding. The intensity of the spatial heterogeneity was found to play an important role on

the rate of deformation accumulation, in that specimens with greater intensity of heterogene-

ity tended to display higher rates of creep deformation. The stress level was found to also

affect the rate of the response, in that lower levels of constant traction were accompanied

by lower rates of compaction. These results emphasize the importance of accounting for

material heterogeneity in localization analyses and provide tools and concepts to study the

interplay between delayed deformation and material spatial variability.
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CHAPTER 4

Effects of Spatial Heterogeneity on Compaction Propagation∗

Modern experimental geomechanics offers an unprecedented access to characterize local

material properties through non-invasive techniques such as x-ray computed tomography

[Alshibli and Hasan, 2008; Desrues and Viggiani , 2004]. The use of these technologies in

conjunction with mechanical testing has enabled the examination of the material response

across length scales by tracking the evolution of the microstructure along with the the global

response [Desrues et al., 1996; Hall et al., 2010]. These technologies were recently applied

to examine compaction banding in Maastricht Tuffeau [Papazoglou et al., 2017, 2019], a

limestone from central Europe susceptible to compaction banding [Baxevanis et al., 2006].

Compaction bands propagating from the specimen ends were observed. Along with mechan-

ical data, the initial and evolving porosity maps were collected.

The rich dataset collected through such experiments offers a unique opportunity to in-

vestigate the role of material heterogeneity in triggering compaction localization. In this

context, a mapping strategy that allows for integrating x-ray micro-tomography measure-

ments in continuum-based numerical analyses has to be established. To this end, numerous

∗The content of this chapter is published in:

• Papazoglou, A., Shahin, G., Marinelli, F., Dano, C., Buscarnera, G., and Viggiani, G. (2017, May).
Localized Compaction in Maastricht Tuffeau: Experiments and Modeling. In International Workshop on
Bifurcation and Degradation in Geomaterials (pp. 481-488). Springer, Cham.

• Shahin, G., Papazoglou, A., Marinelli, F., and Buscarnera, G. (2019). Simulation of localized compaction
in Maastricht Tuffeau based on evidence from X-ray tomography. International Journal of Rock Mechanics
and Mining Sciences, 121, 104039.

• Shahin, G., Viggiani, G. , and Buscarnera, G. (In review). Simulating spatial heterogeneity through a
CT-FE mapping scheme discloses boundary effects on emerging compaction bands. International Journal
of Solids and Structures.
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questions have to be addressed beforehand. For example, the scale gap between rock samples

and the numerical models (the FE simulations) raises questions about how the microscale

discrete observables can be inferred to macroscopic continuum quantities, and the size of

material volume necessary for the inference. Mapping local measurements further requires

the identification of the attributes most relevant to the mechanical properties (e.g., porosity,

cement, and/or grain size distribution). In fact, dealing with a multi-phase material (such

as cemented granular materials) further increases the complexity of the problem, in that

the size of the material volume suitable to map local properties may vary from one phase

to another. Dedicated studies are required to understand how the heterogeneities emerg-

ing form different phases (i.e., porosity, cement, and grains) interact among each other and

across the specimen. The study presented in this chapter considers first-order heterogeneities

based on the initial porosity, where the alteration/concentration in stress and strain spaces

caused by material porosity can be argued to play a major factor in activating heterogeneous

deformation mechanisms.

4.1. Tomography to Finite Element Mapping Scheme

Incorporating spatial heterogeneities in numerical analyses has been an active topic of

research. For example, Gudehus and Nübel [2004] projected the FE mesh onto optical images

of sand specimens, so that the averaged value over the material volume encapsulated by

each FE is assigned to the corresponding integration points. The same strategy was utilized

by Borja et al. [2013] on CT-images of sand specimens. Although the method succeeded in

capturing effects of spatial heterogeneity, it may lead to potential inconsistencies between the

characteristic scale of the material and the length of the discretization (e.g., mesh refinement

may generate elements with size comparable or even smaller than individual grains/pores).
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In other contexts, material heterogeneities were reproduced by relying on the concept of

image-based (data-driven) modeling, in which data sets provided by imaging methods allow

the characterization of an underlying random field and the generation of corresponding

equivalent computational domains [Chen et al., 2012; Kim and Santamarina, 2006]. This

approach implies the determination of a correlation function that is used in combination with

statistical reconstruction to reproduce equivalent realizations [Andrade et al., 2008; Chen

et al., 2012]. Despite its success in preserving the statistical characteristics, this approach

leads to the loss of the original fields, thus hindering spatial accuracy.

In this work, a mapping scheme to connect CT measurements and FE simulation (hence,

referred to as CT-FE scheme) is discussed. The focal point of this proposed scheme is to

produce a numerical replica of the physical specimen while preserving a realistic depiction

of material heterogeneity at the continuum scale. For this purpose, the concept of represen-

tative elementary volume (REV) is used to homogenize discrete measurements and transfer

them into continuum quantities applicable for integration in numerical models [Drugan and

Willis , 1996; Hill , 1963]. This is, in fact, motivated by an extensive application of the REV

concept to study the mechanics and physics of heterogeneous media, where it was applied

for obtaining a homogenized continuum from materials with inherently random microscopic

architecture. The REV is defined by considering the smallest volume of material at which the

fluctuations of average physical quantities stabilize [Ando, 2013; Matheron, 1989]. See also

Appendix D. Examples of its application include the determination of effective properties

of composite material such as effective elasticity [Castañeda, 2002; Hashin and Shtrikman,

1963]. In such cases, the medium is postulated to extend to infinity and therefore the REV

provides ”asymptotic” estimates [Hassani and Hinton, 1998]. Problems of homogenization

were also addressed by using the idealization of the microstructure based on evidence from
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tomography scans. In that case, the notion of REV was used to conduct statistical inference

of macroscopic quantities from microscopic observables by identifying material volumes that

are sufficiently large to be statistically representative [Bruchon et al., 2013a] (see also Appen-

dix D). This implies that sampling volumes must include a sufficient number of microscopic

heterogeneities (e.g. grains, cement, fluid, pores) in order to generate stable estimates of

the statistics of the whole domain [Andrade et al., 2012; Desrues et al., 1996; Hall et al.,

2010; Kanit et al., 2003]. The size of the volume, however, has to remain small enough to be

considered as a volume element in terms of continuum mechanics [Bonet and Wood , 1997].

The relation between continuum level, elementary volume and microscale is governed by

the principle of scale separation. This principle states that the scale of the microstructure

fluctuation, l, must be much smaller than the size of the representative volume, L, which in

turn has to be much smaller than the characteristic fluctuation length of the macroscopic

deformation field, D:

l� L� D (4.1)

Continuum mechanics focuses on the homogeneous scale, D, with the elementary volume

behavior, L, characterized through constitutive relations. Recently, this paradigm was en-

riched by the emergence of multiscale frameworks that incorporated refined microstructural

simulations serving as material models. This is inspired by the pioneering work of Tad-

mor et al. [1996], who proposed a quasi-continuum method by making use of the so-called

CauchyBorn rule to obtain an energy density function from molecular dynamics computa-

tions. Later, Liu and McVeigh [2008] proposed a virtual power domain decomposition to do
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concurrent and hierarchical simulations in solids with heterogeneities at multiple scales. Ag-

gregation of discontinuities across scales has came through double continua (FE2) multiscale

methods [Belytschko et al., 2008; Van den Eijnden et al., 2016], and discontinuum-continuum

(discrete elements method × finite element method) multiscale schemes [Andrade et al., 2011;

Guo and Zhao, 2014; Meier et al., 2008; Miehe et al., 2010; Nitka et al., 2011; Shahin et al.,

2016]. Pivotal to this class of models is the REV concept that made it possible to bridge

the gap between the different length scales.

In this work the fundamental concept of REV is employed to obtain a robust connec-

tion between experimental data and numerical analyses. Upon idealization of the physical

specimen by a finite element model, integration points are assigned state quantities and/or

material properties directly from the in-situ measurements. Typically, a unified value is as-

signed to all Gauss points, that is the averaged value recovered from the physical specimen

with the assumption of homogeneous material. The proposed mapping scheme suggests the

determination of selected state variables and material properties for each integration point

directly from the CT-image. The conceptualization of the proposed scheme is illustrated in

Fig. 4.1a. First, the coordinates of the integration point (Fig. 4.1b) are projected onto the

CT-image (Fig. 4.1c) where each integration point is associated with a material subdomain

(Fig. 4.1d). The subdomain is defined by the size of the REV identified particularly for

the property of interest [Gitman, 2006; Kanit et al., 2003]. This size may be determined

statistically [Matheron, 1989], by combining basic morphological tools with stereological

and image analyses techniques in order to describe the geometrical dispersion across the

specimen domain (see e.g., [Bruchon et al., 2013a]). More details about the statistical pro-

cedure to define the representative elementary volume based on digital images are provided

in Appendix D, with reference to a particular case of microscopic heterogeneity caused by
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reactive-transport. Microscopic observables are finally averaged over the REV domain and

the homogenized value is assigned to the corresponding integration point.

This scheme will be applied to benefit from the rich dataset available with the experi-

ments on Maastricht Tuffeau. An essential step, however, has to be first accomplished by

establishing a constitutive model capable of replicating the mechanics of the limestone, a

step that will be conducted throughout the next two sections.

(a) 

Figure 4.1. Illustration of REV-based mapping scheme connecting x-ray in-situ
measurements to finite element analyses. (a) Conceptual schematic displaying
the identification of state variables of two Gauss points from the CT-image.
Mapping is conducted by (b) extracting Gauss points coordinates, (c) detecting
the coordinate on the binarized CT-image, (d) identifying the sub-volume (the
REV) for each Gauss point, over which the observable of interest is homog-
enized. The homogenized value is then assigned to the corresponding Gauss
point in the FE mesh.

4.2. Constitutive Modeling of Maastricht Tuffeau

The strain-hardening model discussed in Chapter 2 is here retained to replicate the

mechanical behavior of Maastricht Tuffeau. While available measurements of the limestone

reveal non-negligible anisotropy [Papazoglou et al., 2019], the following analysis is conducted

under the assumption of isotropy for simplicity. While further analyses of the effects of
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anisotropy on comapction localization characteristics can be conducted with reference to the

model developments and calibration presented in Appendix C. The model calibration has

been conducted following the two-step procedure discussed by Das and Buscarnera [2014];

Marinelli and Buscarnera [2015]. First, the mechanical measurements are used to tune

a preliminary set of parameters which is subsequently augmented through the bifurcation

theory on the basis of evidence of strain localization (Sec. 2.4).

4.2.1. Parameter Calibration based on Global Measurements

The yield surface is calibrated based on data-points recovered from the triaxial-compression

and the isotropic-compression tests. The yielding points detected through such experiments

are located in the p − q stress space. The mathematical expression of the yield surface is

tuned by adjusting the shape parameters, Mf , µf , and αf , as shown in Fig. 4.2a. The shape

parameters associated with the plastic potential, i.e., Mg, µg, and αg, are defined on the basis

of the underlying stress-dilatancy relationship (Eq. 2.6). This function defines the ratio of

volumetric and deviatoric plastic strains computed for a given imposed stress level. These

ratios can be reported in the η? − d space, as shown in Fig. 4.2b, and used to calibrate the

plastic potential. This procedure relies on global measurements taken in the post-yielding

regime (i.e., where the specimen exhibits a structural response with heterogeneous defor-

mation patterns). Data-points, however, are expressed in the form of a normalized strain

ratio, thus are regarded as representative of the material behavior inside the active zone and

the first-order insight it provides on the expected plastic flow characteristics will be later

assessed through full-field analyses.

The internal variables, Pso and Pmo, and the hardening parameter associated with vol-

umetric straining, Bp, are calibrated with reference to the isotropic compression behavior.
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Figure 4.2. Calibration of the shape-parameters of the yield surface and plastic
potential from (a) the initial yield points and (b) relation between dilatancy
and stress-ratio obtained from triaxial compression data.

The first stress point at which the volumetric deformation changes drastically is considered

the hydrostatic yielding point, Pco (where Pco = Pso + Pmo). The ratio Pso/Pmo controls the

compressibility of the material, i.e., the magnitude of volumetric deformation that separates

the point of first yielding and the point at which material displays re-hardening. This set of

parameters can be readily calibrated from the hydrostatic compression curve, Fig. 4.3a. The

material compressibility during the phase of re-hardening, where inter-particle bonds have

been fully destructured, is governed by Bp. As a result, this constant regulates the porosity

hardening emerging upon volumetric deformation in a completely reconstituted material.

Thus, Bp is calibrated on the grounds of the experimental dataset obtained from hydrostatic

compression on destructured material (Fig. 4.3b).

It can be noted that the model overestimates the compressibility in the plastic regime.

In fact, as it will be shown in the subsequent sections, higher volumetric softening was

necessary to augment the porosity loss during shearing and match the elongation of the

deviator stress plateau exhibited by the limestone during triaxial compression. The final

set of isotropic compression parameters was, in fact, a compromise aimed at obtaining a
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Figure 4.3. Isotropic compression tests used to calibrate the compressibility
parameters (i.e., Bp, ρm, and the ratio Pso/Pmo): (a) is the intact sample and
(b) the destructured material.

reasonable match with the measurements, while prioritizing the model performance in the

compaction localization regime.

4.2.2. Calibration based on Strain Localization Analyses

The data used in the calibration above were derived from global measurements of specimens

deformed in localization regime. During this phase, strain localization promotes a transition

from homogeneous to heterogeneous deformation fields. Measurements performed in the

localization regime might have considerable deviations from the material point behavior,

thus not being able to solely provide reliable information for model calibration. To overcome

this obstacle, enhancements are possible by using evidence about the onset and pressure-

dependence of strain localization modes, as recently proposed by Marinelli and Buscarnera

[2015]. This procedure is based on the modes of strain localization predicted by the model

for a given set of parameters, which can be optimized in order to match the evidence of

pressure-dependent compaction banding. With reference to the model used in this work, ξm,
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ρm, and Mg were used for such optimization. By controlling these parameters, the material

rheology, as well as the strain localization characteristics, can be successfully captured.

Strain localization analyses (Sec.2.4) have been conducted for this purpose. An illustra-

tion of these analyses is reported in Fig. 4.4, where the localization profile is computed for

triaxial stress paths at varying confinements. This plot depicts the pressure dependence of

the strain localization potential of the selected material. In particular, a transition from the

development of conjugate shear-enhanced compaction bands at lower confinements (i.e., state

I, II, III) to the potential formation of pure compaction bands at high pressure (i.e., state

IV ) is readily apparent. Locating these results in the stress space provides information about

the strain localization modes predicted by the model for varying stress conditions (see upper-

left chart in Fig. 4.4). The transition between these two end-members takes place smoothly,

thus providing opportunities to calibrate the relevant model parameters by adjusting their

values to cover the entire range of expected strain localization. As shown by Marinelli and

Buscarnera [2015], the extent and characteristics of strain localization domain are strongly

dependent on the softening parameters and the degree of non-associativity. Thus, the cal-

ibration of these parameters is tuned based on information from tomographic imaging. In

particular, full-field measurements enabled the distinction between stress states resulting

into pure compaction bands from those associated with shear-enhanced compaction bands.

As a result, the optimization of the model parameters in light of these findings resulted into

model computations able to reflect the evidence (see data points in Fig. 4.4a). Finally, the

zone of instability determined on the basis of viscoplastic instability indices (Chapter 3) is

presented in Fig. 4.5, where it can be noticed that the results are quite comparable with

those obtained through the localization analyses (for the cases of θ = 0), as the model here

is again used within the quasi-rate-independent restrictions.
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Figure 4.4. Strain localization characteristics of Maastricht Tuffeau predicted
with the selected constitutive model. The localization domain in stress space
is superposed to the yield surface (thick line) and the associated inclination
of the deformation band predicted by a bifurcation analysis. The theory de-
fines different modes of strain localization. Zone 1 (green line), implies two
distinct cones of localization, each with a non-zero preferable angle of local-
ization. Zone 2 (blue line), involves a single cone of localization potential with
two non-zero preferential angles of strain localization. Both zones represent
shear-enhanced compaction bands. By contrast, Zone 3 (red line) involves a
single cone of expected strain localization with a unique angle of preferential
band formation which is perpendicular to the maximum principal stress (pure
compaction band). The localization profiles at the points I, II, III, and IV are
presented with the same color convention. This points represent the intersec-
tion point of triaxial paths under 2.0, 3.0, 4.0, and 5.0 MPa confinement, thus
providing information about the predicted localization model.
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calibration set (analyses conducted through the viscoplastic instability indices
discussed in Chapter 3.)
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Figure 4.6. Comparison of material point analyses conducted on the basis of
two different sets of model parameters (upper bound and lower bound calibra-
tion). The upper bound calibration matches the post-yielding stress plateau
and the re-hardening process, while the lower bound computations exploit the
large drop in the post-yielding resistance to ensure that the deformation regime
of active localized compaction matches the measurements (i.e., the strain level
at which the stress goes back to pre-yielding values corresponds to the ex-
tent of the strain plateau). The measured zone of compaction propagation is
depicted on the measured response.
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4.2.3. Upper and lower bounds calibration

Material point analyses based on the proposed model parameters are reported in Fig. 4.6,

along with experimental measurements displaying the transition from localized to delocalized

compaction. The analysis replicated triaxial compression under 4.0 MPa, and was based (as

can be seen in the figure) on two different sets of model parameters, here called upper

and lower bounds. As can be seen, with the upper bound model focus was placed on the

representation of the strength throughout the post-yielding plateau, which was possible only

for a localization domain limited to the proximity of 4.0 MPa. At variance, with the lower

bound calibration focus was given to the deformation behavior, the localization potential,

and the rate of compaction band propagation over a wider range of confinements (i.e., from

2.0- to 5.0-MPa). Achieving this goal, however, has required the use of marked strain

softening to prevent early delocalization (see at this reference the finite element simulations

discussed in the next sections). This trade off between different macroscopic signatures of the

limestone behavior implied a remarkable drop in resistance along the post-yielding response

for the case of the lower bound calibration. A possible source of such mismatch is the use

of linear elasticity for high-porosity rocks, which was suggested to lead to inaccuracies in

the simulation of the post-yielding response [Dewers et al., 2014, 2017]. Another source of

mismatch is the development of plasticity within the yield surface, which may or may not be

accompanied by simultaneous changes in stiffness properties. These shortcomings could in

principle can be addressed through a variety of strategies, such as bounding surface plasticity

[Dafalias , 1986] coupled with damage or elasto-plastic coupling [Maier and Hueckel , 1979].

Other strategies may include adjusting the competition between Ps and Pm embedded in

the hardening rule by adopting more flexible formalisms. These factors may be considered
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Table 4.1. Constitutive parameters and internal variables for Maastricht
Tuffeau, including the upper and the lower bound calibrations.

Definition Lower Upper
Bound Bound

K [MPa] Bulk modulus 350 350
G [MPa] Shear modulus 78 80
ρm Parameter governing volumetric destructuration 0.45 0.7
ξm Parameter governing deviatoric destructuration 12.5 2
Bp Isotropic plastic compressibility 0.03 0.034
µf Shape parameter of the yield surface 1.01 1.01
αf Shape parameter of the yield surface 2.0 2.0
Mf Shape parameter of the yield surface 0.95 0.88
µg Shape parameter of the plastic potential 0.6 0.65
αg Shape parameter of the plastic potential 0.15 0.15
Mg Shape parameter of the plastic potential 2.1 2.1
κ Expansion of the yield surface in the tensile stress domain 0.15 0.20

Pso [MPa] Initial size of the elastic domain (cohesionless medium) 0.06 0.09
Pmo [MPa] Lithification-induced expansion of the initial elastic domain 5.94 5.91

in the context of future developments of the model. The work presented in the rest of this

chapter, however, is based only on the set of parameters associated with the lower bound

calibration.

4.3. Simulation based on Non-heterogeneous Specimens

4.3.1. Regularization of Strain Localization

The use of conventional continuum models in full-field simulations affected by strain lo-

calization are typically hampered by the lack of objective results and pathological mesh

dependence. To address this problem, continuum models can be enriched with an internal

length scale reflecting the material microstructure. Usual choices made for this purpose

include second gradient continua [De Borst and Mühlhaus , 1992], nonlocal models [Bažant

and Jirásek , 2002; Liu et al., 2016], and rate-dependent models [Perzyna, 1966]. Here, the

viscoplastic version of the strain hardening model discussed in Section. 2.4 is employed under

the constraints of quasi-rate-independent conditions, i.e. allowing minimal changes in the

viscoplastic responses with respect to the equivalent plastic material.
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In the laboratory, Maastricht Tuffeau was tested under quasi-static conditions by im-

posing a nominal axial strain rate dεa/dt ≤ 1.0E-5 MPa.s, in which dt is the time incre-

ment during which a loading step is imposed. The use of viscoplasticity for regularization

purposes has been achieved by pursuing a quasi-rate-independent behavior, i.e. by intro-

ducing minimal deviations between the regularized material behavior and the underlying

rate-independent calibration discussed in the previous section. The range of viscosity that

guarantees quasi-rate-independent response has been identified through a sensitivity analy-

sis of the model performance during triaxial compression tests at two confinements (2.0MPa

and 4.0MPa), through which the viscosity was varied from 1.0E-2 to 1.0E+5 MPa.s. The

results are reported in Fig. 4.7 a and b, respectively. The inset shows the variation of the

computed deviatoric stress at εa = 0.03 as a function of viscosity. It can be readily seen that

in both cases a viscosity threshold of 1000 MPa.s can be identified (shaded area within the

inset) below which the model displays a stable stress response and therefore a limited role

of the rate-dependent effects introduced by the viscoplastic extension.

4.3.2. Simulations of Triaxial Compression

The proposed calibration has been validated through finite element simulations of specimens

treated as boundary value problems. The assessment of the performance of the simulations

was focused on various features of the macroscopic response, such as post-yielding deforma-

tion behavior (i.e., elongation of the plateau), as well as the geometrical characteristics of

the persistent bands, the portion of specimen across which compaction propagates, and the

dependence of these features on the confinement pressure. The same finite element model

and boundary conditions depicted in (Fig. 3.5) for the simulation of triaxial compression

have been adopted.
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Figure 4.7. Sensitivity analysis of viscosity effects on the material-point re-
sponse at different confinements: (a) 2.0 MPa and (b) 4.0 MPa. The in-
set shows the value of deviatoric stress computed for each value of viscosity
at a fixed strain level (3.0%). Simulations conducted with a strain rate of
ε̇a = dεa/dt ≤ 1.0E-5 /s, and viscosity varying from 1.0 to 10.0E+5 MPa.s.

An essential step before proceeding with finite element analyses is to tune the parameters

that control the thickness of the band and identify an optimal finite element mesh. Although

the precise determination of the band thickness heavily depends on the frequency with which

CT scans are conducted, thus representing a major challenge, an indirect estimate of the

thickness of successively formed compaction zones can be gained from the inspection of DIC

measurements associated with relatively small strain increments. From a modeling stand-

point, the thickness of the band is controlled through viscosity, which is here constrained by

the quasi-rate-independent threshold (i.e., ω = 1000 MPa.s). The value of ω has therefore

been defined with the goal to match the size of the compacted zone detected by the kinematic

field upon the application of 2% global deformation (Fig. 4.8a). In this context, Fig. 4.8b

shows the thickness of the compacted zone for the same value of viscosity for three different

meshes. It can be seen that the thickness of the band becomes almost unaffected between

the second and the third (finer) mesh. Fig. 4.8c reports the computed responses up to 5%
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Figure 4.8. Assessment of mesh-sensitivity and thickness of the simulated com-
paction zone. (a) A vertical slice of 3D volumetric strain field obtained through
DIC for incremental loading of 2% axial strain in a triaxial compression test
performed at 4 MPa confinement. (b) the volumetric strain field resulting from
finite element analyses with different mesh size, corresponding to more than
12000, 75,000, and 170000 elements, respectively. The comparison shows that
the FE simulations capture satisfactorily the thickness of the compaction zone
with ω = 650 MPa.s. Furthermore, they confirm the successful regularization
of the computations by suppressing mesh dependence, as is readily apparent
from the nearly identical global responses computed for the three simulations
(c).

nominal axial strain (at which the strain field in (b) is illustrated). It can be readily noticed

that solutions are mesh-independent for the last two simulations which provide nearly iden-

tical responses. The good agreement between the simulations confirms the effectiveness of a

viscosity factor of ω = 650 MPa.s in replicating the measurements of spatially propagating

compaction, as well as in suppressing mesh-dependence of the solutions.

Based on this optimal value of viscosity, four triaxial compression simulations were con-

ducted under 2.0-, 3.0-, 4.0-, and 5.0-MPa confining pressure. Results are reported in Fig.

4.9, where the deviator stress is plotted as a function of the normalized vertical displace-

ment. It can be seen that, in all cases, yielding was triggered at stress levels comparable

to the physical specimens. The simulations, however, tend to display more softening, with

a sharp drop of resistance shortly after yielding, after which a stress plateau is achieved
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for a sustained amount of axial deformation. This tendency is more pronounced at higher

confinements. As mentioned previously, the lower bound calibration adopted in this simu-

lations has focused on deformation characteristics, thus this tendency can be attributed to

the exponential expression of the hardening laws, which requires a steeper loss of strength

to guarantee a quantitatively accurate length of the deformation plateau. Despite their lim-

itations, the choice of the hardening parameters can be considered satisfactory to capture

the volume change taking place during plastic compaction (i.e., something which is directly

associated with the extension of the deformation plateau).

The advantages of this choice become more readily apparent by comparing the responses

obtain with the upper bound and the lower bound calibrations. This comparison is illus-

trated in Fig. 4.10, with reference to the experiment conducted at 4.0 MPa. It is readily

apparent that, although the upper bound calibration satisfactorily replicated the reaction

force provided by the specimen, it severely underestimates the nominal axial deformation

during which localized compaction is active (i.e., the simulated response transitions to ho-

mogeneous compaction approximately half-way along the deviatoric stress plateau measured

in the experiment). This shortcoming is not present in the lower bound calibration, which

accurately predicts the transition from localized compaction to homogeneous re-hardening.

It can therefore be concluded that the former set of parameters (upper bound calibration)

is preferable if the focus is on force calculation, while the latter (lower bound calibration) is

the optimal choice if the goal of the analyses is to replicate the propagation of compaction

zones at similar deformation levels.

This point is further highlighted in Fig. 4.11, which displays the volumetric deformation

as a function of the axial deformation obtained with the upper and lower bounds along with

the experimental measurements. It can be readily seen that the FE analyses have been
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Figure 4.9. Comparison between finite element simulations and measurements
of deformation tests on samples of Maastricht Tuffeau at varying confinement
pressures.

capable of reproducing with a marked accuracy the overall deformation characteristics. The

range of compaction propagation as a function of the axial strain is displayed through solid

symbols, emphasising again the satisfactory match with the measurements obtained with

the lower bound calibration.

A closer inspection on the strain field predicted by the lower bound calibration is shown

in Fig. 4.12, along with the experimental counterparts obtained through DIC. This compar-

ison indicates remarkable agreement in terms of the inclination of the the compaction band.

Specifically, simulations under 2.0-, 3.0-, 4.0-, and 5.0-MPa displayed compaction bands at,

respectively, an angle of 35◦, 20◦, 12◦, and 0◦, which match satisfactorily with the laboratory
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Figure 4.10. Comparison between the full-field responses computed with an
upper-bound and lower-bound calibration. The propagation of compaction
zone is illustrated at various intervals throughout the deformation process.
This comparison illustrates the advantages and disadvantages of each set of
model parameters, in that, the upper-bound calibration reproduces satisfac-
torily the stress levels, while the lower-bound calibration results in a better
performance in replicating the compaction propagation pattern.
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Figure 4.11. Volumetric deformation associated with the upper bound and
lower bound calibration compared with experimental measurements. The solid
symbols indicate the range of compaction propagation.

specimens (measured angles of 35◦, 15◦, 10◦, and 0◦, respectively). It is worth mentioning

that these results are also consistent with the predicted angles obtained from the bifurcation

analysis reported in Section 4.2.2, which predicted higher localization potential (i.e., mini-

mum acoustic tensor determinant for each localization profile) at 32◦, 28◦, 11◦, and 0◦. This
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Figure 4.12. Comparison between finite element simulations and DIC compu-
tations for laboratory tests on samples of Maastricht Tuffeau deformed under
triaxial compression conditions at various confinement pressures. The compar-
ison was conducted with reference to the incremental volumetric strain field
at the inception of localization.

comparison confirms the adequacy of the calibration in replicating the pressure-dependent

mechanisms of compaction localization.

The model is then examined for its ability to replicate the rate at which compaction

propagates across the specimen as a function of the global deformation. For this purpose, a

compression has been conducted between the simulations and the experiments on the basis

of the volumetric strain field and the evolving porosity maps (Fig. 4.13). The comparison

was conducted at various deformation intervals indicated on the stress-strain curves. For

instance, Fig. 4.13a, shows the comparison for the case of 2.0 MPa, where the strain fields

were presented at 6.8%, 9.5%, and 12.4% axial strain. Based on visual inspection, it can be

readily seen that, for this case, the numerical model has adequately reproduced the portion

of the specimen across which compaction has propagated (here nearly 20%, 40%, and 60%

at the three intervals).

Similar conclusions can be drawn from the simulations of 3.0 and 4.0 MPa, while a less

satisfactory agreement is obtained at 5.0 MPa (Fig. 4.13d). In the latter case, the simula-

tions overestimated the extent of plastically compacted sample volume (i.e., while at 7.0%

axial strain the laboratory tests displayed major compaction only over 40% of the sample
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volume, the numerical analyses reached almost full compaction at the same global strain

level). This can be considered as an outcome of the high amount of softening incorporated

into the analyses and, as previously mentioned, can be mitigated by employing augmented

hardening rules with more flexible analytical expressions. Despite these limitations, the

overall performance of the model can be considered satisfactory, in that it succeeds in repro-

ducing most of the evidence measured in the laboratory, most notably the pace and spatial

extent of localized compaction. Nevertheless, it is worth remarking that the analysis was

unable to reproduce the exact spatial patterns of strain localization. In fact, since a weak

element was used to trigger localization, the onset and propagation was always controlled

by this element.

Given the important role of spatial variations in material properties on the triggering

of strain localization [Borja et al., 2013; Shahin et al., 2016], greater benefits from micro-

tomography measurements of initial and emerging heterogeneity should be considered in the

numerical analyses.

4.4. Simulations Based on Replicas of Heterogeneous Specimens

The mapping scheme described in Section 4.1 is here applied to incorporate in-situ mea-

surements of porosity field in the FE model. The local porosity is mapped into the FE mesh

following the procedure discussed in Section 4.1, and the conversion rule discussed in App.

B is employed throughout. A binarized image of the specimen is considered with an REV

size of 54×54×54 voxel, which is consistent with the evidence collected by Papazoglou et al.

[2017, 2019]. Such an REV size corresponds to a cubic cell with 700 µm sides, i.e., about

5 times the median grain size (D50) of Maastricht Tuffeau. Fig. 4.14a shows a numerical

replica of the heterogeneous specimen based on the initial porosity map, while Fig. 4.14b
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Figure 4.13. Triaxial test simulations with confinement pressures ranging from
2.0 MPa to 5.0 MPa. The propagation of compaction along the deformation
process is illustrated in terms of cumulative volumetric strain field. The com-
parison of these results with their counterparts obtained through X-ray tomog-
raphy demonstrates the capabilities of the numerical model in capturing the
portion of the specimen across which compaction has propagated as a function
of the imposed global deformation.
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Figure 4.14. Incorporation of porosity measurements into finite element com-
putations. (a) Porosity field characterizing the initial condition of a heteroge-
neous specimen. (b) Identification of areas characterized by values of poros-
ity within the upper tail of the distribution reported by digital images (i.e.,
porosity spots ≥ 2STD, where STD is the measured standard deviation of
the porosity field). The analysis indicates that hotspots of high porosity are
mainly located in correspondence of the vertical axis and along the middle
portion of the specimen.

highlights the locations characterized by values of porosity corresponding to the upper tail

of the distribution. This numerical replica is used in triaxial compression simulation, where

the same loading procedure used above in Section 3.4 for triaxial shearing has been adopted.

Fig. 4.15a shows the mechanical response of the heterogeneous specimen reported in

terms of the nominal stress deviator versus the nominal axial strain. The mechanical response

of the specimen based on a homogeneous simulation (with weak element) is reported in the

same figure. It can be seen that the mechanical response of both simulations is characterized

by a peak strength that is achieved at the same deformation interval (1.8% axial strain),

followed by stages of strain softening. Both specimens display by the end of the plateau

a sharp transition of deformation behavior characterized by a remarkable gain of stiffness

(at around 12.0% axial strain). On the other hand, the strain fields associated with the

two simulations are presented in Fig. 4.15b-c, where the onset and evolution of compaction
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Figure 4.15. Comparison of FE triaxial test simulations under 4.0 MPa con-
fining pressure between homogeneous specimen with weak-element and a spec-
imen with spatial heterogeneities (porosity). (a) Global deformation response
showing no significant effect of the heterogeneity on the macroscopic behavior.
(b) Cumulative volumetric strain field of the homogeneous specimen showing
the onset of localization at the weak element (stage 1), as well as the propa-
gation of a compaction front towards the sample boundaries. (c) Cumulative
volumetric strain field of the heterogeneous specimen showing the onset of
compaction localization at several points located in the middle of the speci-
men (stage 1), as well as the propagation of the bands towards the specimen
boundaries (stages 2-6).

bands are illustrated in terms of plastic volumetric strain reported at various deformation

intervals. These intervals are marked in Fig. 4.15a with numbers from 1-6, also shown on the

corresponding field illustration. In this figure, it can be seen that the simulation based on a

homogeneous specimen undergoes compaction localization through the following steps: (b1)

Strain localization is triggered by the weak element located around the mid-height of the

specimen. (b2) The newly generated compaction band extends laterally. (b3) Once the band

has reached the lateral boundary of the sample, the compaction zone further propagates in

the axial direction through band thickening, while new bands nucleate. (b4 − 6) All active
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bands continue to thicken until the entire specimen is compacted. By contrast, simulations

based on a heterogeneous porosity field has displayed inception of compaction localization

at many locations (c1). Such results can be explained as a consequence of weaknesses

corresponding with areas of higher porosity (Fig. 4.14b). The persistent bands in (c2)

continue to propagate in a form of band thickening until the entire specimen is compacted

(c3-c6). This comparison, however, shows that taking into account the porosity field has

altered the rate of compaction propagation. Specifically, while the homogeneous simulation

has undergone nearly a full compaction by (b6), the heterogeneous specimen displays a

compaction of around 90% for the same deformation interval (c6).

Observations made on the global response and the evolution of the kinematic field high-

light two features. First, material heterogeneity has a significant role in triggering strain

localization, where it was found that material spots associated with higher porosity have

played a key role in identifying the location of compaction localization onset. Although in

the heterogeneous virtual specimen compaction is initiated concurrently at multiple loca-

tions, each of these active zones propagate through a mode of band thickening similar to

that recovered in the homogeneous simulation. As a result, while material heterogeneity

constrains the initiation of localization, the material properties encoded into the model pa-

rameters underpin a well defined mode of compaction propagation. Furthermore, the global

responses in all cases were quite comparable, suggesting that global measurements cannot

offer any insight on the spatial patterns of compaction localization underlying a particular

force-deformation response. The strain fields computed by the two simulations should be

compared with the in-situ tomography measurements illustrated in Fig. 4.13c, which reveals

clear mismatches in the location of zones of active compaction localization. In fact, while in

the FE analyses strain localization is triggered at the middle of the specimen, the porosity
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measurements show that compaction propagated from the specimen ends. This suggests that

the compaction banding mode observed in the experiments cannot be explained in light of

material heterogeneity alone, thus requiring other factors to be taken into consideration.

4.5. Conclusions

This chapter investigated the role of heterogeneity in material properties on the onset

and propagation of compaction localization. The work relied heavily on rich measurements

obtained through laboratory testing of Maastricht Tuffeau that was tested through triax-

ial compression at varying confinements using concurrent X-ray computed tomography and

digital image correlation to track the onset and propagation of compaction localization. A

mapping scheme relying on the concept of representative elementary volume was proposed

and used to bridge local material measurements acquired via x-ray tomography and the

numerical discretization inherent with the selected finite element formulation. In particu-

lar, each Gauss point was associated with a unique elementary volume, thus allowing the

identification of material state variables directly form the physical specimen.

The mechanical behavior of the rock was reproduced through a constitutive model based

on a standard strain-hardening plasticity but including viscoplasticity to mitigate pathologi-

cal mesh dependence. A rich dataset including macroscopic mechanical measurements aided

by tomography-based tracking of compaction propagation was used for model calibration.

Triaxial compression tests were then simulated as boundary value problems, illustrating the

ability of the calibrated model to capture satisfactorily a wide range of macroscopic at-

tributes of the compaction process, such as the elongation of the post-yielding plateau, the

inclination of the deformation bands and the spatial propagation of compaction across the
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specimen. Despite the inevitable approximations related with the use of a relatively sim-

ple constitutive law, the satisfactory agreement between numerical results and laboratory

measurements point out the benefits of parameter optimization strategies accounting syner-

gistically for global measurements and spatially-distributed deformations, especially in the

presence of compaction localization processes.

The spatially distributed heterogeneity was incorporated in the finite element model

based on the proposed mapping scheme. The resulting numerical replica was eventually used

to conduct high-fidelity numerical analyses exploring the effects of material heterogeneity on

the initiation and propagation of localized compaction.The main findings of the analyses can

be summarized as follows:

(1) Compaction localization was triggered in correspondence of regions of highest poros-

ity, which effectively served as areas of concentrated weakness.

(2) Regardless of the location of the weak spots, in all cases compaction propagated

through band thickening, thus indicating that while the heterogeneity constrains

the initiation of localization, the material properties encoded into the constitutive

parameters underpin a well-defined mode of compaction propagation.

(3) Material heterogeneity alone was insufficient to explain the observed spatial patterns

of sample compaction.

The unique combination of full-field experimental measurements and high-fidelity com-

paction band simulations presented in this work allowed not only to construct for the first

time a virtual replica of a porous rock sample exhibiting compaction banding, but also

provided insight on the processes that govern the emergence of such complex deformation

structures.
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CHAPTER 5

Effects of Boundary Friction on Compaction Propagation∗

The previous chapter pointed out non-negligible effects of material heterogeneity on the

triggering of strain localization, which explains similar observations reported in the literature

[Heap et al., 2015; Hol et al., 2018; Huang et al., 2019]. The literature, however, provides

abundant evidence of compaction banding initiating from the specimen ends, which are

often attributed to boundary effects [Papazoglou et al., 2019]. It can, therefore be expected

that the feedback between boundary effects and material heterogeneity is much richer than

what can be displayed by using specimen-specific values of material variability. This chapter

investigates the interplay between the boundary friction and material heterogeneity on the

emergence of compaction localization.

5.1. Effects of Boundary Friction

The FE simulations presented in the previous chapter are here improved to incorporate

the effects of frictional interaction between the specimen’s ends and loading platens. For

this purpose, each platen is modeled as a rigid body while the platen-specimen interaction

was simulated by a Coulomb-type frictional interface. As a result, the ratio between the

tangential and the normal traction at the boundaries is quantified by the friction coefficient,

∗The content of this chapter is published in:

• Shahin, G., Viggiani, G., and Buscarnera, G. (submitted) Simulating spatial heterogeneity through a
CT-FE mapping scheme discloses boundary effects on emerging compaction bands.

• Shahin, G., and Buscarnera, G. (submitted) Simulation of emergent compaction banding fronts caused by
frictional boundaries.
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Figure 5.1. Triaxial test simulations of heterogeneous specimens with vary-
ing values of platen-specimen friction (0.0 to 0.12). Porosity field evolution
illustrated at various deformation intervals, i.e. at (upper) 4.0% and (lower)
10.0% nominal axial strain, showing that in simulations based on low friction,
the spatial fluctuation of the material properties dominates the triggering of
compaction localization (in the middle of the specimen, the porosity is slightly
larger). By contrast, in simulations based on higher values of boundary fric-
tion, the platen-specimen interface controls the onset of compaction localiza-
tion. The simulations also reveal the existence of a transitional zone between
these end members (between 0.03 − 0.08), where both factors influence the
initiation of compaction localization (i.e., compaction bands emerge both in
the middle and at the boundaries of the specimen.)

µ. This coefficient forms the focal point in the following analysis, where the effects of

its intensity on strain localization onset and propagation are explored. Specimens with

boundary frictions that vary from 0 to∞ (i.e., perfectly rough surface hindering lateral slip)

have been tested with reference to triaxial compression under 4.0 MPa confining pressure.

The outcomes of this analysis are reported in Fig. 5.1 which shows the evolution of

the porosity field at two different deformation intervals (i.e. 4.0% and 10.0% nominal axial
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strain). It can be readily seen that in the presence of low friction (0.001→ 0.02), compaction

localization tends to be triggered by material heterogeneities, similar to the case of frictionless

boundaries discussed in the previous section. By contrast, simulations based on higher

values of boundary friction (i.e., 0.10 → 0.12) show compaction bands emerging at the

specimen ends, and then propagating towards the center. These observations shed light

on the role of boundary friction in triggering this mode of strain localization. Intriguingly,

this analysis reveals the existence of a transition zone between these two end members (i.e.,

0.03 → 0.08), where field heterogeneity and boundary friction appear to exert comparable

degrees of influence by triggering compaction bands at both the spots of lower strength and

near the boundaries. A close look at the specimen ends, however, reveals that as soon as

compaction starts to concentrate at the boundaries because of the effect of rough interfaces,

inelastic effects start being hindered in the central portion of the specimen, thus revealing a

gradually declining impact of spatial heterogeneity.

The response of the simulation based on 0.10 boundary friction is compared with the

response of the simulation based on frictionless boundaries in Fig. 5.2, showing that the

difference in strain localization patterns does not have a noticeable impact on the global

response. It is worth mentioning that these results hold also for simulations based on higher

friction coefficients, up to values compatible with an ideal rough boundary (i.e., conditions

preventing the relative tangential movement between the specimen and the platen).

A comparison between the numerical analysis and the laboratory measurements is pre-

sented in Fig. 5.3 reported in terms of the global deformation response and the evolution

of the porosity field. The figure emphasizes a noticeable improvement in the model perfor-

mance, especially in the location of compaction bands onset and their from of propagation.

It can be seen that the deformation intervals of 9.0% and 14.0%, the portion of the specimen
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Figure 5.2. Global deformation response of triaxial test simulations conducted
on finite element models with frictionless boundaries (light-gray line) and
rough boundaries with µ=0.10 (dark-gray line). Compaction localization in
the first was triggered by field heterogeneity, while in the second it was trig-
gered under the influence of boundary friction. As a result, the comparison
suggests that changes in the spatial pattern of localized compaction are hardly
detectable from the global response.

across which compaction has propagated is consistent with the laboratory measurements

(i.e., around 50% and 95%, respectively). In this figure, it can also be seen that the reduc-

tion in porosity upon compaction localization was effectively reproduced with a deterioration

in the pore space from 50% to 35%. It is in fact arguable that the model with rough bound-

aries provides a more accurate representation of the Maastricht Tuffeau behavior, especially

considering that a significant improvement of the predicted compaction localization patterns

is obtained even with the use of low values of specimen-platen friction compatible with the

use of lubricants [Labuz and Bridell , 1993].

5.2. Interplay between Boundary Friction and Material Heterogeneity

The previous section pointed out non-negligible effects of the platen-specimen interaction

on the triggering of strain localization, up to the point of making the role of initial porosity
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Figure 5.3. Triaxial test simulation at a confining pressure of 4.0 MPa con-
ducted based on a numerical replica of a laboratory specimen with hetero-
geneous porosity field. The simulation includes a platen-specimen interface
characterized by friction coefficient µ = 0.10. The propagation of compaction
localization along the loading path is illustrated in terms of the porosity field.
Comparing these results with their experimental counterparts demonstrates
the capabilities of the model in reproducing the spatial propagation of com-
paction as a function of the imposed deformation.

heterogeneities practically ineffective. This section aims to investigate the impact of varying

degrees of sample heterogeneity in presence of rough boundaries, with the main objective to

quantify their interaction. This analysis is based on quasi-synthetic porosity maps generated

by benefiting from the measured one, by adjusting the standard deviation of their statistical

distribution, but at the same time by preserving the spatial distribution of porosity assigned

on the basis of the available digital images. As a consequence, porosity values across the

specimen were first shifted to locate the mean value of the Gaussian distribution at zero.

Afterwards, these values are divided by their standard deviation (here STD = 0.02), eventu-

ally obtaining a porosity map with zero mean value and STD= 1.0. This configuration forms

a ”primary map” that is then multiplied by the desired standard deviation and relocated

at the targeted mean porosity value (always the same of the original one, i.e., 0.455). This
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procedure has been applied twice, first to generate porosity maps with reduced heterogeneity

(STD= 0.005), and then with exacerbated heterogeneity (STD= 0.04).

Fig. 5.4 presents three sets of numerical experiments based on three heterogeneous

specimens. For each scenario, the boundary friction coefficient increases from left to right.

The specimens were tested under triaxial compression by following the same procedures

discussed in the previous sections. The results are presented in terms of porosity fields

taken at 4.0% nominal axial strain. In this illustration, it can be seen that the three sets

of simulations display similar patterns of compaction banding at lower levels of boundary

friction, in all cases characterized by a primary control of the material heterogeneity on

the location of compaction band initiation. All cases have displayed a gradually increasing

influence of boundary friction, such that at a given friction threshold, the role of material

heterogeneity disappears. The threshold at which the effects of boundary friction becomes

noticeable and the threshold at which the effects of spatial heterogeneity become negligible is

found to markedly depend on the degree of spatial heterogeneity. For example, in specimens

with modest heterogeneity, high-porosity hotspots constrain compaction localization only

for low values of boundary frictions (i.e., µ ≤ 0.02), while virtual specimens with wider

porosity variability exhibit a dominant effect of the heterogeneity up to values of boundary

friction three times larger (i.e., up to µ=0.06). Furthermore, for specimens with modest

heterogeneity, the threshold of boundary friction beyond which the role of the porosity field

becomes negligible is µ=0.04, while it grows up to values five times larger (i.e., µ=0.20) in

the specimen with widely distributed porosity values. These systematic numerical results

confirm once again the existence of three regimes of interaction between spatial heterogeneity

and boundary conditions, which are schematically depicted in Fig. 5.5.
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Figure 5.4. Triaxial test simulations at a confining pressure of 4.0 MPa con-
ducted based on specimens with different degrees of spatial heterogeneity ob-
tained by scaling the original field based on a target value of standard de-
viation, STD. The middle row has STD=0.02, coinciding with the degree of
spatial variability detected from x-ray measurements. The upper and lower
rows refer to synthetic porosity fields based on STD= 0.005 (first row) and
STD= 0.04 (third row), respectively. The results show that the influence of
boundary effects is mediated by the intensity of material heterogeneity.

5.3. Effects of Boundary Friction Outside the Strain Localization Domain

The findings above motivated further inspections of the boundary effects to assess if

frictional interaction can influence the interpretation of global measurements even for loading

paths conducted outside the domain of compaction localization. The analyses provided in
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Figure 5.5. Illustration of the interplay between boundary friction intensity
and heterogeneity intensity on the triggering of compaction localization, show-
ing that the space is subdivided into three zones, namely a zone of dominant
heterogeneity (upper left), a zone of dominant boundary effects (lower right),
and an intermediate zone characterized by the concurrent influence of material
weaknesses and boundary effects.

this chapter rely on previous calibration of two porous rocks for which available evidence

in the laboratory shows very different modes of compaction localization, one characterized

by tabular, discrete bands, and the other by a propagating compaction front. Appendix

E emphasizes the role of material properties and specifically hardening characteristics in

promoting these various modes of heterogeneous compaction and illustrates the associated

stress fields.

5.3.1. Material-Point Analyses

Simulations based on homogeneous idealizations (material-point analyses) are conducted first

to illustrate the response predicted by the model for loading paths imposed outside the strain

localization regime. Simulations of oedometric compression and triaxial compression were

conducted, following isotropic compression. The initial mean stress is chosen to enable both



117

Zone of Potential 
Compaction Localization 

OEDO

TX

2 3 4 5 6 7
Mean Stress, P [MPa]

0

1

2

3

4

5

D
ev

ia
to

ric
 S

tre
ss

, q
 [M

Pa
]

Maastricht Tuffeau

K0

K 0

0 20 40 60 80 100 120 140
Mean Stress, P [MPa]

0

25

50

75

100

125

D
ev

ia
to

ric
 S

tre
ss

, q
 [M

Pa
]

Bluerswiller Sandstone

TX

OEDO Zone of Potential 
Compaction Localization 

Figure 5.6. Material point simulations of triaxial (TX) and oedometric
(OEDO) compression on numerical specimens of Maastricht Tuffeau (left)
and Bleurswiller sandstone (right) conducted outside the strain localization
regime. For illustration purposes the figure includes the K0 line that results
upon continued compression for the two materials.
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Deformation response resulting from both simulations. (c-d) Compaction field
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paths to intersect with the yield surface outside the localization domain. Fig. 5.6 illustrates

the computed response in both simulations, where it can be seen that the elastic response of

both materials under oedometric conditions is characterized by a stress ratio (q/p) markedly

lower than the stress ratio of the triaxial path. With softening in Maastricht Tuffeau and

hardening in Bleurswiller sandstone, the oedometric path evolves in the post-yielding regime

with increasing deviatoric stress, eventually converging asymptotically to the K0 line. By

contrast, the response under triaxial compression evolves with a stress path typical of a

constant radial-stress path.
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Figure 5.10. Assessment of material instability along the stress paths presented
in Fig. 5.9

5.3.2. Full-field Numerical Analyses

Material-point analyses describe idealized homogeneous processes providing only an approxi-

mation of real experiments. For this purpose, virtual experiments based on the finite element

method are used hereafter to conduct triaxial compression tests outside the strain localiza-

tion domain.
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Figure 5.11. Triaxial test simulations conducted on Maastricht Tuffeau (up-
per) and Bleurswiller sandstone (lower) specimens including Coulomb-type
frictional boundaries with friction coefficient ranging from 0.05 to 0.50, com-
pared with simulations based on frictionless boundaries and perfectly rough
boundaries. (left) Strain fields at the inception of heterogeneous compaction
induced by boundary friction. (right) Computations extracted from Gauss
points located at the bottom of the specimens where compaction bands
emerged, showing shifting from triaxial-like to oedometic-like compression be-
havior as the boundary friction shifts from 0 to ∞.

Computations of the response of Maastricht Tuffeau specimens based on frictionless and

perfectly rough boundaries are presented in Fig. 5.7, which shows (a) the overall stress

response of the specimen intersecting with the yield surface outside the potential zone of

compaction localization, and (b) the stress-strain responses associated with both boundary

conditions, here reported in terms of the deviatoric stress evolution as a function of the ap-

plied axial strain. It is readily apparent that both conditions lead to a comparable deviatoric
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stress peak followed by stages of strain softening and eventually a marked gain of resistance.

Despite these similarities, some differences can be observed. Specifically, the specimen with

rough boundaries displayed a tendency to deform with an extended post-yielding plateau

and relatively less softening.

The evolution of the strain field is illustrated in Fig. 5.7c-d, at various deformation

intervals, also marked in (b). As expected, frictionless boundaries promoted a homogeneous

strain field. By contrast, a heterogeneous deformation field emerged in simulations with

rough boundaries, as compaction fronts propagated from the specimen’s ends towards the

center. Similar results can be obtained from corresponding simulations conducted on virtual

specimens of Bleurswiller sandstone (Fig. 5.8).

To further inspect these results, the stress path associated with material points located

at the center and near the boundaries are presented in Fig. 5.9. Although the specimen was

globally subjected to triaxial compression, the boundary zones exhibit stress paths closely

resembling oedometric compression (see Fig. 5.6 for comparison), while the central portion

consistently maintains a triaxial compression path. The deviation in stresses in the vicinity

of the specimen ends promotes an early engagement of the yield surface resulting in the

activation of plasticity. It is, therefore apparent that the kinematic constraints imposed

by the frictional boundaries impacts the ability of the material to deform laterally close to

the loading platens, resulting in a response that shares similarities with one-dimensional

compaction.

The heterogeneous compaction fronts emerging from the simulations are the product

of concurrent factors, which include the early activation of cap plasticity due to frictional

confinement, as well as the shift of the stress path towards the compaction banding domain.

The nature of these factors is widely different, in that the former involves stable compaction,



122

while the latter implies unstable pore collapse. Hence, to elucidate the origin of such fronts

the simulations were further inspected with the compaction instability index proposed in

Chapter 3. This index is assessed along the stress paths that are presented in Fig. 5.9

and its evolution is reported as a function of the nominal axial strain (Fig. 5.10). For

both rocks, it can be seen that near the boundaries the activation of plasticity involves

a stable compaction. However, the kinematic constraint causes the path to intersect the

zone of compaction localization at a subsequent stage, thus facilitating a possible transition

from the spreading of heterogeneous (stable) compaction to the propagation of an active

instability front. Such mechanism is clearly seen in the simulations conducted with reference

to Bleurswiller sandstone, for which non-normality tends to maintain a large size of the

localization domain (i.e., the altered stress path and the zone of compaction localization tend

to intersect upon growing deformation). By contrast, the state remains stable along the entire

period of active compaction in Maastricht Tuffeau, for which softening is prevalent and the

extent of the localization domain tends to shrink rapidly upon deformation [Buscarnera and

Laverack , 2014]. Such analysis reveals that material instability is not required to promote

a heterogeneous compaction front, which may emerge solely as a result of the spatially

heterogeneous engagement of the plastic resources of the material.

5.3.3. Influence of the Value of Boundary Friction

The finite value of platen-specimen friction reflective of actual laboratory tests is expected to

generate intermediate trends between the end-members discussed above [Labuz and Bridell ,

1993]. The role of the platen roughness on generating heterogeneous fields is therefore

assessed hereafter through parametric analyses varying the boundary friction coefficient,

µ. Fig. 5.11 and Fig. 5.11 illustrate the computed responses for Maastricht Tuffeau and
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Bleurswiller sandstone, respectively. Snapshots of the strain field upon yielding are reported

on the left for all cases (µ = 0.0, 0.05, 0.10, 0.20, 0.50, and ∞), while the stress path of

material points located near the specimen boundaries is showed on the right-hand side of

the figures. It is readily apparent that boundary friction caused an heterogeneous strain

field in this quasi-homogeneous (with weak element) specimens regardless of the intensity of

friction, and in both hardening and softening regimes (i.e., for both Bleurswiller and Tuffeau,

respectively). The local stress paths associated with these simulations are characterized by a

tendency to shift from a triaxial-like behavior to an oedometric-like path as the friction shifts

from 0.0 → ∞, while the central portion of these simulations maintains a triaxial behavior

regardless of the friction value. The analyses suggest that this dependence is nonlinear, in

that, equal increments of friction do not lead to the same deviation in the stress path. For

example, in Maastricht Tuffeau, the increase of boundary friction from 0.05 → 0.10 and

from 0.10→ 0.20 was associated with the same angular shift of the stress path towards the

perfectly oedometric path.

5.4. Conclusions

The unique combination of full-field experimental measurements and high-fidelity com-

paction band simulations presented in this work allowed not only to construct for the first

time a virtual replica of a porous rock sample exhibiting compaction banding, but also pro-

vided insight on the processes that govern the emergence of such complex deformation struc-

tures. In particular, the proposed analysis of the relative influence of boundary effects and

material heterogeneity exemplifies a ubiquitous problem in geotechnology and geophysics,
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i.e. the interplay between natural heterogeneity and pre-existing boundaries (e.g., interac-

tions between penetrating probes and layered ground, feedbacks between reservoir faults and

caprock, concurrent initiation of multiple deformation zones around a wellbore).

(1) Material heterogeneity alone was insufficient to explain the observed spatial pat-

terns of sample compaction, thus requiring an augmented model considering the

roughness of the platen-specimen interface. Such incorporation of boundary friction

in conjunction with an heterogeneous porosity field allowed the predictive capability

of the model to be enhanced, as well as the spatial patterns of compaction to be

accurately replicated.

(2) The analyses revealed the existence of non-negligible interplay between boundary

effects (here represented by platen-specimen friction) and local properties (here rep-

resented by variations of porosity). Specifically, it was found that while for low

boundary friction compaction localization is triggered systematically in the regions

of highest porosity, increases in boundary friction may override the influence of spa-

tial variations, up to a degree at which its role becomes negligible and compaction

banding is forced to occur at the platen-friction interface. Interestingly, the simu-

lations also revealed an intermediate regime between the two aforementioned end

members, where compaction localization is influenced by both the porosity field and

boundary effects (i.e., multiple bands nucleate concurrently within the specimen and

at the platen-specimen interface).

(3) Further simulations disclosed that the transition between these regimes is chiefly

controlled by the degree of material variability. In other words, large fluctuations

of porosity prevent the interference of boundary effects, thus favoring the onset of

localization at weak, highly porous regions. By contrast, narrow distributions of
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porosity facilitate compaction localization at the boundaries by rendering the role

of porosity hotspots virtually negligible.

The role of boundary friction on the generation of heterogeneous compaction in specimens

loaded outside the domain of strain localization was inspected. The analysis was based on

two porous rocks, i.e., Maastricht Tuffeau and Bleurswiller sandstone, because they display

softening and hardening behavior in the plastic cap zone, respectively, thus providing dis-

tinct end members of behavior. Virtual triaxial compression experiments showed that the

specimens with boundary friction displayed heterogeneous deformation associated with spa-

tially varying evolution of the stress paths. While the center of the specimen continued to

display triaxial-like responses, the portions of the specimen near the boundaries exhibited

a deformation behavior that resembles oedometric compression. This behavior can be ex-

plained in light of the ability of the boundary constraints to hinder the lateral deformation

of the specimen’s ends, thus justifying the deviation of the local stress paths. Heterogeneous

compaction subsequently emerged as a result of heterogeneous activation of plasticity, with

compaction fronts able to propagate even with locally stable conditions (i.e., material insta-

bility was not necessary to generate the fronts). A transition from heterogeneous compaction

to compaction band front characterized by active unstable collapse was found possible only

when the unstable domain was sustained upon deformation until it intersected the local

stress path. Parametric analyses examining the effect of the boundary friction disclosed that

the higher the platen roughness, the closer the local behavior is to one-dimensional (oedo-

metric) response. Such transition, however, was found to be nonlinear with stronger shifts

occurring at the lower end of the examined interval of boundary friction (i.e., for values close

to those that can be expected in typical laboratory settings). These findings suggest that in
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laboratory experiments on porous rocks, where the specimen-platen friction is an unavoid-

able factor, boundary effects could bias the interpretation of the observations by producing

modes of localized compaction.

Understanding the factors leading to the onset of strain localization is therefore necessary

to enhance our ability to predict the initiation and fate of subsurface deformation structures

for cases in which the competition of the local factors (e.e., field heterogeneity) and system

effects (e.g., boundary conditions) is crucial to identify the most likely outcome. The use

of the proposed CT-FE mapping scheme to assess the causes of emerging inelasticity in

pressure-dependent, porous geomaterials, therefore represents a particular example of the

benefits that may derive from a deeper integration of physical measurements and numerical

modeling, and epitomize an approach which should in principle be extended to all length

scales of interest for geophysical and geotechnical applications.
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CHAPTER 6

Field-scale Simulation of Compaction Bands

Laboratory testing of compaction banding in porous rocks provides an idealized char-

acterization of the conditions promoting their emergence under controlled settings. Such

settings should be considered as approximations of the more intricate field conditions which

involve the coexistence of spatially varying boundary conditions, morphological character-

istics and variations in material properties. Pronounced examples of such richness can be

found in the literature. For instance, compaction bands can be found in sandstone layers

that are interbedded between non-localized layers with different mechanical properties (Fig.

6.1). The interplay between rock layers in stratified systems and its possible influence on

compaction banding is not yet fully understood. This is apparent from recent studies by

Chemenda et al. [2014], who, on the basis of numerical analyses, suggested that spacing be-

tween propagating discrete bands increases as the stiffness of the neighbouring elastic layers

increases. These studies, however, involved numerical weaknesses (such as lack of regular-

ization) and were based on over-simplified constitutive models, which may have limited the

ability to reproduce different forms of band propagation patterns, as well as the complete

pressure dependence of these strain localization phenomena.

Other instances of field intricacies include reported evidence [Schultz , 2011; Schultz et al.,

2010] of complex systems of compaction bands that involve coexisting structures with differ-

ent modes of compaction localization (Fig. 6.2 and 6.3). Such complex systems were even

found [Schultz et al., 2010] in sandstone layers inter-bedding non-localized sandstone layers
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(Fig. 6.3). Field observations indicated that the vertical structures are pure compaction

bands, while the inclined ones are shear-enhanced compaction bands. In fact, the propa-

gation of pure compaction bands was found to terminate at the borders of the sandstone

layer, while shear-enhanced bands continue to invade the neighbouring layers. Schultz et al.

[2010] suggested that both sets of compaction bands formed contemporaneously. However,

evidence that corroborates this hypothesis have never provided. The mechanical conditions

promoting their emergence and the sequence according to which they developed remain open

questions, among many, surrounding such complex systems of compaction bands.

Figure 6.1. Examples of asymmetric SECBs formed under thrust-fault regime
in multilayer series of sandstones. (a) Band clusters of different families in the
sandstone at the Tresques quarry (Bassin du Sud-Est, Provence, France). (b)
A sandstone layer inter-bedded between finer sandstones at Buckskin Gulch
in Utah, USA (adapted from Chemenda et al. [2014]).

This chapter uses geomechanical modeling to address such questions by providing a con-

ceptual framework of interpretation and discussing idealized numerical examples. Essential

to these analyses is the selection of loading histories inspired by the locations briefly dis-

cussed above. In fact, the determination of the stress field in earth’s crust has been one of the

most elusive questions for structural geologist and geo-engineers. The crust typical under-

goes combined effects of geological and tectonic processes (e.g., burial, tectonic deformation,

and erosion) as well as local thermo-mechanical responses (e.g., creep, solids dissolution,
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Figure 6.2. Complex systems of compaction bands involving pure compaction
(red arrows) and shear-assisted compaction bands (blue arrows) in Navajo
sandstone, Utah (adapted from Chemenda and Mas [2016])

Figure 6.3. Compaction bands in the field locality in south central Utah. (a)
Outcropping of the five sandstone layers. (b) Example of the coexistence of
nearvertical, pure compaction bands and inclined shear enhanced compaction
bands. (c) Termination of a pure compaction band along the contact between
layers 3 and 4 (after Schultz et al. [2010]).

and thermal changes), that involve considerable uncertainties in the assessment of the stress

fields [Haimson, 1978; McGarr and Gay , 1978]. Despite such uncertainties, most studies

have agreed that anisotropic stress states driven by combined effects of gravitational and

tectonic loads could be most representative of the stress fields [Brace and Kohlstedt , 1980;

Vernik and Zoback , 1992]. Such arguments further encourage a mechanical analysis of the
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Figure 6.4. Burial graph of the Navajo Sandstone (top and base) based on
stratigraphic information from the East Kaibab area (after Fossen et al.
[2011]).

3D field-scale processes leading to compaction banding. The loading conditions used in the

following numerical simulations were inspired from recent reconstruction of the geological

history formulated with reference to Navajo Sandstone formation (East Kaibab area) as pre-

sented in Fig. 6.4 and illustrated by Fossen et al. [2011]. Specifically, combinations of burial

depth increase, burial depth decrease (erosion), and tectonic contraction have been adopted.

6.1. Analysis of Compaction Banding Initiation under 3D Stress Fields

As the literature lacks experimental data about the mechanical properties of the Navajo

sandstone, the following study has been based on the predictions of an elasto-plastic model

of Berea Sandstone, that was calibrated on the grounds of a rich dataset provided through

laboratory experimentation [Marinelli and Buscarnera, 2015]. This material was selected in

virtue of its characteristics of strain localization as it tends to display compaction banding

with various modes along a wide range of confining pressure, in connection with strain

hardening in the post-yielding regime. The model parameters are summarized in Table 6.1.

The performance of the model is illustrated with reference to a set of simulated triaxial
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Table 6.1. Constitutive parameters and internal variables for Berea Sandstone
proposed by Marinelli and Buscarnera [2015].

Definition

K [MPa] Bulk modulus 9550
G [MPa] Shear modulus 7000
ρm Parameter governing volumetric destructuration 3.7
ξm Parameter governing deviatoric destructuration 0.5
Bp Isotropic plastic compressibility 0.03
µf Shape parameter of the yield surface 1.3
αf Shape parameter of the yield surface 0.2
Mf Shape parameter of the yield surface 1.02
µg Shape parameter of the plastic potential 2.00
αg Shape parameter of the plastic potential 0.2
Mg Shape parameter of the plastic potential 1.88
κ Expansion of the yield surface in the tensile stress domain 0.025

Pso [MPa] Initial size of the elastic domain (cohesionless medium) 80
Pmo [MPa] Lithification-induced expansion of the initial elastic domain 295

compression tests. Fig. 6.5 shows the predicted response under 75-, 150-, 200-, and 300-

MPa confinement pressure where the comparison illustrates a good agreement between model

computations and the experimental data. For the sake of simplicity, the yield surface has

been kept independent of the Lode angle. Strain localization analyses in three-invariant stress

space (the mean stress, the deviatoric stress, and the Lode angle) have been conducted and

the results are presented in p−q space of triaxial compression plane and p−l (l stands for Lode

angle) space in Figure (6.6). The stress space regions associated with different compaction

banding modes are depicted by using the same color convention adopted in previous chapters

(green= compactive-shear bands, blue= shear-enhanced compaction bands, and red= pure

compaction bands). This analysis illustrates interesting features of the domain of instability,

in that it displays that the zones of potential pure-compaction localization is limited to

compressive stress states (i.e., −30 < l < 0), while strain localization in the extension

regime (i.e., 0 < l < +30) is predicted only in the form of shear banding. Such computations

are consistent with the findings of Ma et al. [2017].
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Figure 6.5. Mechanical behavior of Berea Sandstone under triaxial compres-
sion at several confining pressures. Continuous lines indicate model computa-
tions. Lines with circles indicate the experimental data (after Marinelli and
Buscarnera [2015]).
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Figure 6.6. .
Strain localization characteristics of Berea Sandstone predicted with the selected
constitutive model: (left) in the triaxial compression plane, and (right) the mean

stress-Lode angle domain. The localization domain in stress space is superposed to the
yield surface (thick line) and the associated inclination of the deformation band predicted
by a bifurcation analysis. The theory defines different modes of strain localization. Zone I
(green) indicates a domain of compactive shear banding. Zone II (blue) indicates a domain

of shear-enhanced compaction. By contrast, Zone III (red) indicates a domain of pure
compaction banding. TXC=triaxial compression, SS=simple shear, and TXE=triaxial

extension.
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6.2. Compaction Banding in Sandstone Bounded by Elastic Layers

This section investigates the mechanics of compaction localization in multi-layer systems

by conducting finite element simulations of a sandstone layer inter-bedded between two

elastic strata. The focus of this analysis is to examine the effects of the stiffness of the elastic

layers on the strain localization characteristics in an elastoplastic sandstone formation. The

analysis has been conducted under plane strain geometry with reference to a rectangular plate

with aspect ratio height/width = 150/400. The plate has been equally divided into three

horizontal layers, and discretized by a finite element mesh consisting of more than 120, 000

4-node tetrahedral linear elements. In order to promote triggering of strain localization, a

single element is assigned 98% of the hydrostatic yielding pressure prescribed throughout

the rest of the domain.

An initial confining pressure (arbitrarily selected as 30 MPa) is applied by subjecting

each boundary surface to a normal pressure in equilibrium with an equivalent internal stress

state. The lateral deformation has been applied by translating the nodes of the right-hand

face of the model in the normal direction at a rate equivalent to a strain of 1.0E − 5 /s,

while the normal velocity of the other faces is set to zero. The intermediate layer has been

assigned sandstone properties, while the upper and lower layers have been assigned elastic

properties with 0.2 Poisson’s ratio and varying Young’s modulus (0.6, 1.0, 1.2, 2.0 of the

Young’s modulus of the sandstone, Eb= 16, 875 MPa). A schematic illustration of the FE

model and its boundary conditions are illustrated in Fig. 6.7.

The results of the analyses are reported in Fig. 6.8a-d, where the evolving deformation

field in the sandstone formation (trimmed for visualization purpose) has been presented at

different steps along the simulation. It can be seen that, in all cases, compaction localization
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Figure 6.7. Illustration of the finite element model and boundary conditions.
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Figure 6.8. Finite element simulations of three-layers system with intermediate
Berea Sandstone layer topped and bottomed by elastic layers. The elastic lay-
ers are characterized by varying Young’s modulus: (a) 10, 000−, (b) 16, 875−,
(c) 20, 000−, (d) 32, 000−MPa. The system is initially subjected to 30 MPa
confining pressure followed by lateral contraction.
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emerges first in a form of V-shape structure emanating from the location of the weak element

at the bottom of the layer (e.g., b1). This primary structure reaches a termination at the

upper end, indicating that the elastic layer has inhibited farther propagation. The simu-

lation reveals that additional lateral contraction has been accommodated through inelastic

deformation that has spread across the entire layer. As a result, a network of intersecting

compaction bands grows away from the primary structure (e.g., b2). This network thickens

as contraction continues (e.g., b2→ b3→ b4).

Despite these similarities, marked differences depending on the stiffness of the elastic

layers can be readily detected. Comparison is made with reference to the case presented in

(Fig. 6.8b) where the elastic layers have the same elastic properties of the sandstone. Starting

from the primary structure (the V-shaped band), the geometrical attributes of the emerging

bands appear to vary with the relative stiffness of the three simulated layers. Specifically,

an increase in the stiffness of the elastic layers results in a decrease in the inclination of the

compaction bands (reference is made to the plane orthogonal to loading direction). With

E = 0.6EB, the band’s inclination is around 45o. This inclination drops to around 30o, 25o,

and 10o for the other cases of E = 1.0EB, = 1.2EB, and = 2.0EB. Such variation reflects a

transition in the mode of strain localization.

To elucidate the causes of such variations, Fig. 6.9 shows the local responses associated

with Gauss points located (a) inside the primary structure and (b) inside subsequent bands

(shown by stars in (a4)). It can be readily seen that the sandstone layer has experienced

loading conditions that differ depending on the elastic properties of the elastic layers. The

lateral deformation of the elastic layer has induced variations in the vertical stresses as a

result of Poisson’s effect. Subsequently, the stress ratio, q/p, according to which the stress

path evolves in the elastic stage is characterized by a tendency to decrease as the stiffness of
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Figure 6.9. Local responses of the sandstone layer in the three-layer simula-
tions presented in Fig. 6.8. The local responses are reported for material
points located inside the emerging compaction bands: (left) first band and
(right) subsequent bands.

the elastic layer increases. Lode angle varies depending on the stiffness value as well. Such

deviations promote engaging the yield surface at states with varying angles of potential strain

localization. For example, with a lower stiffness (E = 0.6EB) the stress path intersects with

the yield surface in the zone of compactive-shear banding (Fig. 6.8a), while with higher

stiffness (E = 1.2EB) the intersection occurs in the zone of shear-enhanced compaction (Fig.

6.8c).

This set of simulations reveals further intriguing observations. In fact, by making refer-

ence to the case presented in Fig. 6.8d, it can be noticed that the V-shape structure and the

subsequent network of compaction bands are characterized by different inclination. While
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Figure 6.10. Local responses of the sandstone layer in the three-layer simula-
tions presented in Fig. 6.8d, inside the pure-compaction bands emerging away
from the first V-shaped bands.

the primary structure involves an inclination of about 10o, the compaction bands of the net-

work have emerged with almost a vertical alignment (0o). This change in geometry points

out transitions in the model of compaction localization from shear-enhanced compaction

bands to pure compaction localization. Fig. 6.10 elucidates such transitions by showing the

local responses associated with one of the pure compaction bands. It can be seen that the

emergence of such mixed modes of compaction banding can be explained on the basis of the

significant alteration in the stress path associated with unloading in this area during the

growth of the primary bands. Specifically, the deviations in the stress paths taking place in

the domain away from the zone of the primary structure promote conditions for engaging the

yield surface at locations different from those associated with the primary structure. As a

result, the compaction bands grow with different inclination. Here, the state associated with

the activation of the second set of bands (marked by a hollow circle in Fig. 6.10) is located

in the domain of pure-compaction, while the activation of the primary structure (Fig. 6.9c)

occurs in the domain of shear-enhanced compaction.
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6.3. Field Conditions Leading to Mixed Modes of Compaction Bands

This section examines the field conditions that could promote the emergence of complex

structures of compaction bands in sandstone deposits. For this purpose, various scenarios

of geological processes have been considered. The first scenario includes a sequence of an

increase in the burial depth followed by an activation of tectonic contraction, while the second

scenario consists of a sequence of an increase in the burial depth, followed by a decrease in

the burial depth and finally an activation of tectonic contraction.

Material point analyses have first been carried out with reference to such scenarios.

These sequences were implemented following a range of arbitrarily selected confining pressure

(i.e., 0-, 30-, and 70-MPa). The stage of axisymmetric compression is terminated once

loading brings the material into a stress state that engages the yield surface. The stage

of axisymmetric extension is terminated at varying values, which reflect differences in the

duration of erosion.

6.3.1. Burial-increase→Lateral-contraction

Fig. 6.11 illustrates the stress responses associated with the analyses conducted on the ba-

sis of the first scenario, along with a schematic depiction of the loading stages. As can be

readily seen, the vertical compression (1→ 2) under the selected range of confining pressure

leads to material responses that engage the yield surface inside the domain of strain localiza-

tion, specifically in the domain of shear-assisted compaction. Along this segment, material

responses remain inside the triaxial compression plane. The stage of lateral compression

(2→ 3) results in a marked deviation in the stress response characterized by a decay in the

deviatoric stress along with an increase in the mean stress. The material during this stage



139

displays a transition from the compression to the extension regime, with a Lode angle that

evolves from −30 to +30. The intersection of the stress path with the yield surface takes

place at points located outside the domain of compaction localization (3), indicating that

such paths do not promote vertical compaction bands.
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Figure 6.11. Material point analyses of the stress path emerging upon sequen-
tial application of vertical compression followed by lateral compression, all
under uniaxial compression.

To demonstrate this hypothesis, a finite element simulation of the Berea Sandstone layer

subjected to loading conditions similar to those applied in material point analyses has been

carried out. For this purpose, a FE model similar to the one discussed in Section 6.2 has been

adopted. In this model, however, the entire domain has been modeled as an elastoplastic

porous rock. Fig. 6.12 illustrates the geometry of the FE model and its boundary conditions

of the various loading stages. All simulations have led to similar conclusions, and here the

one corresponding to a confining pressure of 70 MPa has been presented as a representative

demonstration (Fig. 6.13). The evolving deformation field as a result of vertical compaction

(Fig. 6.13a) indicates the growth of conjugate shear-enhanced compaction bands that nu-

cleate from the location of the weak element (a1) and propagate towards the boundaries

of the layer (a2 → a4). The evolution of the deformation field under the effects of lateral
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Figure 6.12. Illustration of a plane-strain finite element model of a sandstone
layer with boundary conditions: (a) increase burial load, (b) decrease burial
load, and (c) contractional tectonics.

contraction is presented in (Fig. 6.13b), showing that diffused deformation takes place dur-

ing this stage of loading. To elucidate these observations, the local responses associated

with two Gauss points located inside and outside the compaction bands (marked by stars

in b4) are presented in Fig. 6.13c-d. The stress path evolves from 1 → 2 during the first
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stage of loading and involves an intersection with the yield surface at 2∗, a point associated

with a potential of shear-enhanced compaction banding, which explains the emergence of

the conjugate inclined bands (2→ 2∗, Fig. 6.13c). Away from the active zone, the material

undergoes elastic unloading (2 → 2∗, Fig. 6.13d). The evolution of the stress path takes

place in the plane of triaxial compression during the first stage. During the second stage,

however, the stress path evolves from 2→ 3, displaying transitions from the compression to

the extension regime with a Lode angle that evolves from −30 to +15. The second inter-

section with the yield surface takes place outside the domain of compaction localization (3,

Fig. 6.13d), which explains the accommodation of deformation during this stage in a form

of diffused compaction.

6.3.2. Burial-increase→Burial-decrease→Lateral-contraction

Fig. 6.14 illustrates the stress responses associated with material point analyses conducted

on the basis of the second loading scenario, along with a schematic illustration of loading

stages. As can be seen, the vertical compression (1→ 2) under the selected range of confining

pressure leads to material responses that evolve elastically and eventually engage the yield

surface at points located inside the domain of shear-assisted compaction localization. The

second stage (axisymmetric extension) causes a reversed evolution of the stress path with

elastic unloading (2→ 3). During these two segments, the material responses remain inside

the plane of triaxial compression with a Lode angle equal to −30o. The third stage of lateral

compression (3 → 4) results in a marked deviation in the stress response characterized

by an increase in the mean stress associated with a decay and then an increase in the

deviatoric stress. The stress path involves transitions from the compression to the extension

regime, followed by a return to the compression regime. As can be readily seen, the point
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Figure 6.14. Material point analyses of the stress path emerging upon sequen-
tial application of vertical loading, vertical unloading, followed by a lateral
compression, all under axisymmetric conditions.

at which the stress path engages the yield surface (4) is located, in all cases, inside the

domain of compaction localization. In the simulations based on initial confining pressures

of 30- and 70-MPa, these points specifically locate inside the domain of pure compaction

banding, suggesting that perturbation histories similar to those applied in this set of material

simulations promote the emergence of vertical compaction bands during stages of tectonic

contraction.

To verify that, full field analyses based on finite element simulations with similar loading

history have been conducted (Fig. 6.15). Again, the evolving deformation field under the

effects of vertical compaction (Fig. 6.15a) indicates the growth of conjugate shear-enhanced

compaction bands that nucleate from the location of the weak element (a1) and propagates

towards the boundaries of the layer (a2 → a4). The layer during the stage of unloading

displays no variations in the deformation field (b1 → b4). Intriguingly, the stage of lateral

contraction has resulted into the emergence of pure compaction bands in the vertical direction
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(c1→ c2). Compaction banding in the vertical direction propagates in form of discrete bands

as loading continues (b2→ b4).

The mechanical origin of these rich results can be found in the non-trivial stress path

alterations, as well as how they engage plasticity and localization in multiple forms. To

elaborate, the local response associated with two Gauss points located inside the inclined

compaction band and inside one of the vertical compaction bands (marked by stars in c4)

are presented in Fig. 6.15d-e. Inside the inclined band, the stress path during the burial

increase evolves in the plane of triaxial compression from 1 → 2, intersecting with the

yield surface at (2∗) within the regime of shear-enhanced compaction. The loading taking

place in the zone of active compaction leads to yield-surface expansion, and accompanies

unloading in the inactive zones 2∗ → 2. Unloading takes place in the entire domain during

the stage of burial depth decrease 2 → 3, with evolving stresses almost entirely inside the

plane of triaxial compression. Transitions from triaxial compression towards the plane of

triaxial extension emerge starting with the initiation of the stage of tectonic contraction (at

3). During this stage, the stress path evolves in the elastic domain and displays a return

towards the compression domain where the first engagement of the yield surface takes place

within the range of pure compaction localization. By making reference to Fig. 6.14, it can

be noticed that material point analyses have provided robust predictions of the conditions

leading to such complex compaction bands system.

6.4. Conclusions

This chapter presented numerical analyses based on finite element method of field-scale

problems involving compaction banding. While the work is inspired by actual field studies,

it was conducted in a general, abstract nature, in that it aims to achieve a theoretical
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Figure 6.15. Finite element simulation of Berea Sandstone layer subjected to
three stages of loading: (a) vertical loading representing an increase in the
burial depth, (b) vertical unloading representing erosion effects, and (c) lat-
eral loading replicating compressive tectonics. Local responses inside the (d)
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explanation of the effects of stratigraphic settings and geological processes on compaction

banding. The analysis was based on the predictions of a calibrated material model of Berea

Sandstone, without making reference to any locations or specific field conditions. It is,

however, inspired by reconstructions of geological processes and tectonic strain background

based on field surveys from the location of Navajo Sandstone formation in Utah.

The work investigated possible effects of the stiffness properties of surrounding layers

on the characteristics of emergent compaction bands in sandstone layers. As a result, it

was based on a three-layer system with a sandstone layer inter-bedding elastic layers. The

analyses revealed inception of compaction bands in two stages: a primary structure of con-

jugate compaction bands followed by a secondary stage of growth of a network of conjugate

compaction bands across the rest of the domain. The geometrical characteristics of both the

primary and the secondary structures were found to be influenced by the stiffness properties

of the elastic layers. Specifically, compaction localization occured with an increasing incli-

nation as the stiffness of the elastic layers increases. Systems with elastic layers assigned a

lower stiffness displayed compaction localization in form of compactive shear bands, while

systems with a higher stiffness displayed compaction localization in form of shear-enhanced

compaction bands. The elastic layers were found to exert specific effects of increasing the

vertical stresses when subjected to lateral contraction as a result of Poisson’s effect, resulting

in an increase in the mean stress and a decrease in the deviatoric stress in the sandstone

layer. These changes in stress responses alter the locations at which material engages the

yield surface and subsequently the angle of compaction localization.

The second part of the chapter examines the loading conditions leading to rich formations

of compaction bands that involves coexisting structures of inclined and vertical alignments.

For this purpose, two loading scenarios were tested. The first scenario involved a sequence
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of two stages of increasing burial followed by tectonic contraction. The second scenario

involved a three-stage sequence of increasing burial, decreasing burial, and finally tectonic

contraction. While inclined compaction bands (shear-assisted compaction bands) were seen

with both scenarios, the simulations suggested that a stage of burial decrease has to take

place in order for the sandstone layer to develop a second stage of strain localization in

form of pure compaction bands with vertical alignments. The results showed that the rich

loading history inspired by the geological reconstruction of real field locations is at the origin

of the coexistence of different band types. It also shows that, contrary to some hypotheses

for these fields, the sequencing of band formation may not be contemporaneous. Finally, a

single weak element leads to such remarkable spatial richness and emerging heterogeneity,

which is simply a function of the material properties (and the band spacing characteristics

encoded in it) and the relation between geological loading path and material path/history

dependence.
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CHAPTER 7

Conclusions and Research Perspectives

This thesis presented a theoretical and computational research of compaction bands in

porous rocks. The work was based on a strain-hardening multi-variable plasticity model

augmented in viscoplastic form to replicate the rate-dependent properties of porous rocks.

The study combined simulations at the scale of material points and boundary value problems

(based on the finite element method) to analyse standard geomechanical tests and field scale

problems. Compaction banding was simulated as a material instability. In this context, the

work included theoretical developments of instability indices (derived based on the contro-

lability theory and the mathematics of non-linear systems) for viscoplastic porous solids.

Methodological developments were proposed in this work including a mapping scheme to

connect numerical models and x-ray tomography measurements based on the concept of rep-

resentative elementary volume. With this tool, the thesis investigated the spatio-temporal

dynamics of delayed compaction bands, the role of spatial heterogeneity in various aspects

of their emergence and propagation, and addressed open questions regarding geological set-

tings and field-scale processes affecting their formation and morphological characteristics.

The main conclusions deriving from this research can be listed as follows:

• The same strain-hardening plasticity/viscoplasticity model with competing harden-

ing and softening is capable of simulating two very different modes of compaction

band propagation (discrete and thickening bands), their nucleation under the effects

of heterogeneity, and spontaneous growth under creep and relaxation.
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• The viscoplastic idealization has allowed to establish a unified theoretical interpre-

tation of the time-dependent and time-independent emergence of compaction bands.

• Although the spatial heterogeneity plays a role in the nucleation and propagation of

compaction bands, other factors including boundary effects (here frictional bound-

aries) and compliant constraints (elastic bounding layers) have competing effects.

• The hypothesis of contemporaneous modes of compaction banding is not confirmed.

Non-local effects and rich geological history may be necessary for the formation of

rich compaction bands.

• The models and mathematical tools provided by this work can therefore contribute

to predictive analyses of the short- and long-term deformation of underground for-

mations susceptible to inelastic compaction and near-failure conditions.

Research Perspectives

The research presented in this thesis opens several opportunities to further the interpre-

tation of compaction bands and widen the range of applications of geomechanical modeling

to other geotechnical and geophysical problems:

• The framework of interpretation discussed in this work and its use in numerical anal-

yses of delayed compaction banding can provide guidance to explain the mechanics

of time-dependent compaction at laboratory and field scales. In particular, the pos-

sibility to define indices reflecting impending instability in the form of accelerating

deformation can be fruitfully used to predict the occurrence of catastrophic failure

after extended stages of slow deformation. While here only delayed compaction

banding was discussed, this logic can in principle be extended to a variety of failure

mechanisms, such as distributed damage, frictional slip, dilation and shear bands,
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thus potentially impacting a range of geophysical problems, simply by adapting the

constitutive law for the geomechanical problem at stake. It is therefore arguable

that the techniques discussed in this work can be used in the future to cope with a

wide range of geophysical problems, such as the mechanics of seismogenic faults, the

onset of landslides and the collapse of volcanic edifices and underground cavities.

• The analysis of the relative influence of boundary effects and material heterogene-

ity presented in this work exemplifies a ubiquitous problem in geotechnology and

geophysics, i.e. the interplay between natural heterogeneity and pre-existing bound-

aries (e.g., interactions between penetrating probes and layered ground, feedbacks

between reservoir faults and caprock, concurrent initiation of multiple deformation

zones around a borehole). Understanding the factors leading to the onset of strain

localization is therefore necessary to enhance our ability to predict initiation and

fate of subsurface deformation structures for cases in which the competition of the

local factors (e.e., field heterogeneity) and system effects (e.g., boundary conditions)

is crucial to identify the most likely outcome. The use of the proposed CT-FE map-

ping scheme to assess the causes of emerging inelasticity in pressure-dependent,

porous geomaterials, therefore represents a particular example of the benefits that

may derive from a deeper integration of physical measurements and numerical mod-

eling, and epitomize an approach which should in principle be extended to every

length scales of interest for geophysical and geotechnical applications.

• In laboratory experiments on porous rocks, where the specimen-platen friction is an

unavoidable factor, boundary effects could bias the interpretation of the observa-

tions by producing modes of heterogeneous deformation which resemble compaction
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band front or that may convert into them because of stress path deviations. Exper-

imental countermeasures and informed model calibration procedures are therefore

necessary to minimize such bias and conduct more accurate predictions of soft rock

compaction.

• The simulation of field-scale problems presented in this work represents an illus-

tration of the unique opportunity that modern geomechanical theories and models

offer to elucidate the origin and causes of geological structures, and reducing the un-

certainty involved in the reconstructions of structural geology, and constraining the

geological processes such as the burial history and stress configuration at the time

of formation. Following the same line of thoughts may be useful in elucidating other

field scale problems such as the emergence of compaction bands under extensional

tectonics. It could also be useful in examining the hypothesis about the emergence

of compaction bands near faults and verify whether they proceed or accompany the

activation of faulting.

• The material models extensively used in this thesis offer an opportunity to exam-

ine engineering problems with material of a predominant softening and materials

of a predominant hardening, such as borehole breakout and compaction banding in

underground reservoirs. For example, available laboratory studies which reported

deformation bands emanating from model boreholes may offer useful platforms to

examine whether these bands are originated by unstable deformation or are simply

the outcomes of heterogeneous plasticity. The models can also help illustrating the

effects of the growth of compaction bands in subsurface strata on the local and re-

gional stress field and understand their implications on the surrounding environment

and land subsidence.
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• Recent experimental studies have quantified the relaxation behavior of Maastricht

Tuffeau [Sari , 2019]. This study presented limited analyses of relaxation test for

Bleurswiller sandstone, which may provide preliminary indications of that the strain-

hardening model calibrated in this thesis for the limestone and used to replicate its

displacement control behavior may be also effective in replicating its relaxation be-

havior. Such studies may open new avenues to simulate geophysical-scale problems

known to undergo cycles of loading and relaxation such as investigating faults be-

havior during sequences of active and inactive tectonics.

• In this work, viscoplasticity was used as a regularization technique to suppress the

ill-posedness of strain localization problems. In the future, such approach may be

used in conjunction with other regularization techniques, such as non-local modeling

or second-gradient plasticity, which may simplify the calibration efforts by provid-

ing new avenues to integrate micro-scale measurements linked to the characteristic

length of the material behavior.

• Most of the numerical predictions discussed in this study are a direct emanation of

the interplay between hardening upon pore compaction and softening upon loss of

cementation embedded in the selected constitutive model. Despite the considerable

insight provided by this hypothesis, the fundamental structure of the model remains

phenomenological in nature. As a result, the link of its hardening variables (i.e.,

initial value and evolution) to measurable microscopic geometry (e.g., grain size,

pore size, cement volume fraction) and mechanical properties (cement strength,

grain strength) has not yet been unlocked. Expanding the model in this direction

would offer further opportunities for integrating multi-scale testing and modeling.

The incorporation of microscopic features into evolution laws also has potential to
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enrich the resulting predictive capabilities, possibly offering further flexibility to

improve the model performance also at the macroscale.

• The numerical analyses presented in this thesis were conducted by assuming me-

chanical isotropy of Maastricht Tuffeau. Available evidence indicates non-negligible

mechanical anisotropy characterized by variation in terms of the initial yielding

and deformation, while the inclination of the compaction bands are independent of

loading-bedding direction. Appendix C provide a theoretical development of con-

stitutive modeling of cross-anisotropy calibrated against the data of the limestone.

Phenomenological tensorial operators were used to adjust the yield surface and the

flaw rule. It is suggested that microstructural directional quantities such as grains,

contacts, and pores orientation could form the bases for constructing physics based

tensorial operators and help explaining the origin of observed anisotropy.
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46 (3), 529–546.

Dewers, T., P. Newell, S. Broome, J. Heath, and S. Bauer (2014), Geomechanical behavior
of cambrian mount simon sandstone reservoir lithofacies, iowa shelf, usa, International
Journal of Greenhouse Gas Control, 21, 33–48.

Dewers, T. A., K. A. Issen, D. J. Holcomb, W. A. Olsson, and M. D. Ingraham (2017),
Strain localization and elastic-plastic coupling during deformation of porous sandstone,
International Journal of Rock Mechanics and Mining Sciences, 98, 167–180.

di Prisco, C., S. Imposimato, and I. Vardoulakis (2000), Mechanical modelling of drained
creep triaxial tests on loose sand, Geotechnique, 50 (1), 73–82.

DiGiovanni, A., J. Fredrich, D. Holcomb, and W. Olsson (2007), Microscale damage evolution
in compacting sandstone, Geological Society, London, Special Publications, 289 (1), 89–103.

DiMaggio, F. L., and I. S. Sandler (1971), Material model for granular soils, Journal of
Engineering Mechanics.

Drugan, W. J., and J. R. Willis (1996), A micromechanics-based nonlocal constitutive equa-
tion and estimates of representative volume element size for elastic composites, Journal of
the Mechanics and Physics of Solids, 44 (4), 497–524.

FEI (2016), Avizo 3D image analysis software, Version 9.2, edited., FEI Visualization Sci-
ences Group.
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APPENDIX A

Mathematical Derivations of Instability Indices

To derive the ODE expressed in Equation 3, the rate-dependent response is recasted

through the additive decomposition of elastic and viscoplastic strain (i.e., ε̇ = ε̇el + ε̇vp):ε̇aε̇r
 =

 1

E

−ν
E

−ν
E

1− ν
2E


 σ̇a

2σ̇r

+ Φ


∂g

∂σa
∂g

∂σr

 (A.1)

where the subscript a and r are referred to the axial and radial component of the correspond-

ing variable. Equation A.1 can be rewritten as function of response and controlled variables,

thus obtaining:

 ε̇a

2σ̇r

 =
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 (A.2)

in which the controlled variables are indicated through capital letters (i.e., Σ̇a ≡ σ̇a and

Ėr ≡ ε̇r). The differential form of the viscoplastic response is obtained by further developing

the acceleration of the axial strain and radial stress:

ε̈a =
(
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where the components F a
ε and F a

σ represent a first contribution to the forcing vector F. The

time derivatives of the viscous nucleus Φ̇ and the gradient of the plastic potential can be

developed as follows:

Φ̇ =
∂Φ

∂f

[
∂f

∂Σa

Σ̇a +
∂f

∂σr
(2σ̇r)−HΦ

]
, (A.5)

by using Equation A.2, it is possible to expand the radial stress σ̇r and rearrange Equation

A.5 as a function of the controllability index:
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∂f

[
H −Hχ −
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The time derivative of the plastic potential can be developed as follows:
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By collecting response and controlled variables, this equation is equivalent to:
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By combining Equation A.6, Equation A.9 and A.10 with the system of equations A.3 and

A.4, it is possible to rearrange the acceleration of the response variables as follows:

 ε̈a

2σ̈r

 = HCB
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The term D(Φ∂g/∂σ) is equivalent to Dεvp therefore Equation A.11 can be modified accord-

ing to the following developments:ε̇
vp
a

ε̇vpr

 =

 ε̇a − ε̇ela

Ėr − ε̇elr

 =
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Ėr − 1

E

(
σ̇r(1− ν)− νΣ̇a

)
 (A.12)

By combining all the equations it is possible to obtain the differential system reported in

section 3: 
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APPENDIX B

Conversion rules of porosity to constitutive-consistent-parameter

The constitutive model used in this work captures the mechanical effects of changes in

porosity through the state variable Pso, which incorporates porosity hardening through a

formalism typical of critical state models for geomaterials [Wood , 1990]. When porosity

is the matter of concern, a conversion rule into an initial value of Ps may be employed.

Such rule can be derived by integrating the evolution law of Ps (see Equation C.12 in the

Appendix), from which it follows:

Ps = Pso exp

[
1

Bp

(εpv − εpvo)
]

(B.1)

This equation can be further elaborated by assuming that the elastic strain increment is

negligible during the plastic compaction stage, thus resulting into:

∆εv = εv − εvo = −∆φ = − (φ− φo) (B.2)

in which φo is the averaged (i.e. mean) porosity over the whole specimen. Substituting Eq.

(B.2) in Eq.(B.1) it follows:

Ps = Pso exp

[
− 1

Bp

(φ− φo)
]

(B.3)

This expression will be used hereafter to characterize the influence of the porosity field on

the spatial fluctuations of the yielding strength of the simulated material. An illustration of
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Figure B.1. Porosity conversion to model-specific internal variables (Pso). The
figure on the left shows a Gaussian distribution of initial porosity, while the
figure on the right illustrates the corresponding log-normal distribution of the
hardening variable Ps resulting from the conversion scheme. The figure at the
top is an illustration of the selected porosity-Ps relation.

this conversion is presented in Figure B.1, where a statistical distribution of porosity values

across the sample characterized by normal distribution is converted into a corresponding

distribution of Pso values here characterized by a log-normal distribution of the yield surface

size.
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APPENDIX C

Constitutive Modeling of Anisotropic Porous Rocks ∗

The experimental work conducted on Maastricht Tuffeau and discussed in Chapter 4

was expanded to examine the mechanical anisotropy [Papazoglou et al., 2019]. The high-

porosity rock displayed a marked dependence of the initial yielding on bedding-loading an-

gle. Anisotropy signatures were also seen in the deformation behavior with post-yielding

stress plateaus characterized by marked variation in elongation depending on the direction

of loading (Fig. C.1). While classical studies of anisotropy focused on stiffness and strength

(e.g., [Pietruszczak and Mroz , 2000; Semnani et al., 2016]), the intriguing observations on

anisotropic flow behavior in Maastricht Tuffeau compels the need for an integrated consti-

tutive theory that allows for quantifying the characteristics of anisotropy not only in terms

of elasticity and first yielding, but even in terms of the post-yielding deformation behavior.

1. Constitutive Theory of Cross-Anisotropic Materials

The origin of mechanical anisotropy in geomaterials is not yet fully understood. The

literature, however, distinguishes between elastic anisotropy and inelastic anisotropy with

elastic modulus and strength peaks that are dependent on bedding directions. The anisotropy

in these two phases of behavior appear sometimes interconnected. Experimental studies

disclosed concurrent trends of dependence on bedding direction [Jin et al., 2018; Louis et al.,

∗The content of this chapter is published in:

• Shahin, G., Papazoglou, A., Marinelli, F., Dano, C., Viggiani, G., and Buscarnera, G. Compaction Local-
ization in Anisotropic Maastricht Tuffeau (in preparation)
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Figure C.1. Mechanical response of triaxial compression on Maastricht Tuffeau
specimens cored in various directions with respect to bedding. The test was
conducted under varying confining pressures.

2009; Nova and Zaninetti , 1990], which could be attributed to common microstructural

unites, such as alignments in the granular structure and the microstructural cracks which

form the bases for structural foliations and bedding planes in sedimentary rocks [Bennett

et al., 2015; McLamore and Gray , 1967]. The existence of structural fabrics has been reflected

on the formation of plasticity models, where microstructural notions that utilize second order

tensors to identify cross-anisotropy were used to formulate plasticity models [Boehler and

Sawczuk , 1977; Chen et al., 2010; Oka et al., 2002; Pietruszczak and Mroz , 2000; Pietruszczak

et al., 2002]. Fourth order tensors that incorporates microstructural notions have also been

used in the literature to project the stress space into alternative configurations, leading to
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the bedding dependent material strength [Boehler , 1970; Cazacu et al., 1998; Crook et al.,

2002; Nova, 1980; Semnani et al., 2016].

1.1. Constitutive Theory

A constitutive theory for modeling anisotropic materials is presented. The theory is based

on the notion of fictitious isotropy where a tensorial operator is used to project the real

Cauchy stress tensor, σ, onto an alternative stress configuration, σf . For this purpose, a

fourth order tensor, Pf , is defined as:

σf = Pf σ (C.1)

The anisotropic yield surface in the real configuration is assumed equivalent to an isotropic

yield surface in the alternative configuration. Based on this assumption, it is possible to

utilize standard constitutive models to address cases of anisotropy by determining suitable

projection operators. Yielding surface in the alternative configuration is defined by:

f = f(σf ,Ψ) (C.2)

with, Ψ, are a vector of state variable. Equivalently, for the purpose of defining an anisotropic

plastic potential, a tensorial operator, Pg, is used to project again the real Cauchy stress

tensor, σ, onto an alternative stress configuration, σg, as following:

σg = Pg σ (C.3)
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Figure C.2. Schematic of orthogonal basis for transversely isotropic material.

The plastic potentials in the alternative configuration is defined by:

g = g(σg) (C.4)

To determine these projectors, let’s start by defining the three mutually orthogonal unit

vectors n1, n2, and n3 which identify a cross-anisotropic material whose response is invariant

with respect to an arbitrary rotation around n1, the normal to the bedding planes, (Fig.

C.2). Based on this system, a second-order tensor, F, that describes material’s intrinsic

characteristics of bedding orientation is defined by the dyadic product of the bedding plane

identifier, n1:

F = n1 ⊗ n1 (C.5)

In case of transverse isotropy, linear elastic materials can be characterized through the

strain tensor, ε, and the fabric tensor, F:

σij = Del
ijklεkl

= λtr(ε)δij + µ⊥εij + α (tr(ε)Fij + Fklεklδij) + 2
(
µ‖ − µ⊥

)
(Fikεkj + εikFkj) + β (Fklεkl)Fij

(C.6)



176

where µ⊥ and µ‖ are The elasticity tensor can be written as a function of the tensorial

basis Ti:

Del = +2µ‖ (I)︸︷︷︸
T1

+ λ(I⊗ I)︸ ︷︷ ︸
T2

+ α(F⊗ I + I⊗ F)︸ ︷︷ ︸
T3

+ 2
(
µ‖ − µ⊥

)
(F� I + I� F)︸ ︷︷ ︸

T4

+ β(F⊗ F)︸ ︷︷ ︸
T5

= Ce
1T1 + Ce

2T2 + Ce
3T3 + Ce

4T4 + Ce
5T5

=
5∑
i=1

Ce
i Ti

(C.7)

where Ce
0 = 2µ‖, C

e
1 = λ, Ce

2 = α, Ce
3 = 2

(
µ‖ − µ⊥

)
and Ce

4 = β, are elastic material

coefficients. The symbol � satisfies the following properties: A�BC := ACᵀB = AikClkBlj.

The bases of anisotropic elasticity, Ti, are used in this work to construct the fourth order

tensor Phijkl as following:

Ph = Ch
1T1 + Ch

2T2 + Ch
3T3 + Ch

4T4 + Ch
5T5 =

5∑
i=1

Ch
i Ti (C.8)

where the eigenvalues Ch
i , with i = 1 → 5, are characteristics of the plastic anisotropy

and can vary from the elastic parameters. The superscript h makes reference to either yield

surface (h = f) or plastic potential (h = g). In the following section, this projector is applied

on a particular case for modeling the anisotropy of Maastricht Tuffeau.



177

1.2. Continuum formulation

This theory is here applied on the constitutive law introduced in Section 2.4 [Nova et al.,

2003] by adjusting the expressions of the yield surface and the plastic potential as follow:

f

g

 = A
K1h/Ch
h ×B−K2h/Ch

h × ph − P ∗c = 0 (C.9a)

K1h/2h =
µh (1− αh)
2 (1− µh)

(
1±

√
1− 4αh (1− µh)

µh (1− αh)2

)
(C.9b)

Ah = 1 +
ηh

K1hMh

(C.9c)

Bh = 1 +
ηh

K2hMh

(C.9d)

Ch = (1− µh)(K1h −K2h) (C.9e)

(C.9f)

Where ηh, ph, and qh are defined as follows:

ph =
1

3
σhijδij qh =

√
3

2
shijs

h
ij ηh =

qh

ph + pt
(C.10)

in which shij = σhij − pδij, δij is Kronecker delta. Under axisymmetric stress conditions, ph

and qh can be specified as:

ph =
σh1 + 2σh3

3
qh = σh1 − σh3 (C.11)
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where σh1 and σh3 are the maximum and minimum principal stress, respectively. The sub-

script/superscript h in the symbols above makes reference to either yield surface (h = f) or

plastic potential (h = g).

These mechanisms are still introduced through hardening rules defined for both Ps and

Pm, as follows:

Ṗs =
Ps
Bp

ε̇pv (C.12)

Ṗm = −ρmPm(|ε̇pv|+ ξmε̇
p
s) (C.13)

While the plastic strains are obtained by substituting the constitutive functions in the plastic

flow rule, as follows:

ε̇pij = ΛPg
∂g(σgij)

∂σgij
(C.14)

1.3. Parametric Analysis

1.3.1. Yield Surface. To illustrate the distortion of the yield surface resulting from the

application of the new operator, Pf , a sensitivity analysis has been conducted on its tensorial

components. Fig. C.3a-b illustrate the effects of applying a transformation of the stress space

through T1 solely. Here, Cf
2→5 were set to zero while Cf

1 was altered around the isotropic

value (1.0) by ±0.1. Loading perpendicular to bedding is marked by a continuous-blue line,

while loading parallel to bedding is marked by a dashed-red line. The isotropic yield surface

(Cf
1 = 1.0) is displayed in gray. This convention of color/line-type holds for the entire stud,

unless otherwise is not specified. This analysis indicate the first basis has an isotropic effects

over the yield surface, as changing Cf
1 results in yield surfaces that are independent from

loading direction. It can be seen that this basis has alter the yield surface in an isotropic
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fashion, as the resulting yield surfaces are coincident. The effects of altering the eigenvalue,

however, is remarkably different. Increasing Cf
1 from 1.0 to 1.1 (Fig. C.3a) leads to a

non-homothetic variation in the yield surface characterized by a marked reduction in the

hydrostatic yielding, an increase in the deviatoric strength at lower confinement pressures,

and a decrease in the shear strength at relatively higher confinement pressures. By contrast,

reducing Cf
1 (Fig. C.3b) leads to an increase in the hydrostatic yielding along with an entire

increase in the deviatoric strength.

Fig. C.3c-d display a sensitivity analysis of the effects of the second tensor, T2, on the

yield surface. The eigenvalue, Cf
2 , has been altered by ±0.1 around its isotropic value (0.0).

Cf
1 was set to 1.0, while the other eigenvalues, Cf

3→5, were set to zero. It can be seen that

the yield surface variations are qualitatively similar to those observed with the first basis.

Specifically, the resulting distortions are isotropic, while increasing Cf
2 leads to a reduction

in the isotropic yield stress with an increase in the deviatoric yielding stresses in the range

of a relatively low confinement pressure. An increase in the hydrostatic yielding pressure

occurs by reducing Cf
2 . Despite these similarities, differences can be seen, especially in the

degree of changes in the yielding threshold under the same magnitude of alteration in the

eigenvalue. With the second basis, stronger variations are seen particularly in the range of

high confining pressure. For example, increasing Cf
2 leads to a decrease in the hydrostatic

yielding three times as much as the decrease observed with the first basis.

The analysis conducted on the third basis, T3, is presented in Fig. C.3e-f. While Cf
1 has

been set to 1.0, Cf
2 and Cf

4,5have been set to 0.0, Cf
3 has been altered by ±0.1 around the

isotropy value (0.0). It can be readily seen that assigning positive values of Cf
3 results in yield

surfaces that are larger in the bedding direction. Negative values, by contrast, result in yield

surfaces that are larger in the bedding-perpendecular direction. A similar effect with almost
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Figure C.3. Parametric analyses illustrating the transformations produced by
each basis on the isotropic yield surface. (a-b) illustrate the effects of the first
basis, (c-d) the second basis, (e-f) the third basis, (g-h) the fourth basis, and
(i-j) the fifth basis.
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the same intensity is observed with the fourth basis, T4, suggesting that one may use either

bases to obtain the same effect on the yield surface, (Fig. C.3g-h). Finally, the sensitivity

analysis conducted over the fifth basis is presented in Fig. C.3i-j, showing that the effect

of this basis resembles the effects of the third and the fourth bases, i.e., positive alterations

in Cf
5 lead to higher strengths in bedding direction. Despite the qualitative similarities, the

intensity of variations is remarkably different, in that, this basis leads to about three times

stronger distortions.

This analysis suggests that a projection operator that consists of T1 (with Cf
1 = 1.0 )

combined with another basis from the group of T3, T4 and T5 is adequate to reproduce the

transformations required to capture the anisotropy effects on the yield surface. Here, T1 is

combined with T3 to generate the operator used for the rest of this study:

Pf = T1 + Cf
3 T3 (C.15)
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Figure C.4. Parametric analyses illustrating the transformations produced by
the third basis on the isotropic yield surface, with the third eigenvalue ranging
(a) from +1→ +3, and (b) from −3→ −1.
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Figure C.5. Parametric analyses illustrating the dilatancy function transfor-
mations produced by the projection operator (displayed in the transformed

configuration σf ) with different values of Cf
3 : (a) +1→ +3, and (b) −3→ −1.

It is worth mentioning that simulating the anisotropy in terms of the yielding surface

has boiled down to a problem of a single free parameter (Cf
3 ). A more refined illustration of

the performance of this projector is presented in Fig. C.4 showing the intensity of variation

caused with different values of Cf
3 (i.e., −3→ +3). It can be noticed that switching the sign

of the eigenvalue while maintaining magnitude results in remarkable differences in terms of

the resulting distortions in the yield surface. For example, increasing Cf
3 by +0.1 (Fig. C.4a)

leads to small distortions if compared to those seen with Cf
3 = −0.1 (Fig. C.4b).

1.3.2. Plastic Potential. The parameters of the plastic potential, Mg, µg, and αg, can be

defined on the basis of the underlying stress-dilatancy relationship, which in this model is

given as follows:

d =
ε̇pv
ε̇pd

=
∂g/∂pg

∂g/∂qg
= µg(Mg − ηg)(

αgMg

ηg
+ 1) (C.16)
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This function defines the ratio of volumetric and deviatoric plastic strains computed for

a given imposed stress level (e.g., in correspondence of the plastic flow plateau). These

ratios can be reported in the ηg − d space. Starting from a projector based on a homotopic

mapping (Pg = Pf ), the variations in the dilatancy function resulting from different values of

Cg
3 are depicted in Fig. C.5. It can be seen that marked distortions in the dilatancy function

occur, especially in the range of high ηg. Such variations result in different dilatancy angles

depending on the loading direction. Similar to the yielding surface, the sign of the eigenvalue

has a marked role in determining the direction of the larger/smaller dilatancy angle. For

example, with a positive Cg
3 , the dilatancy in bedding-perpendicular direction is larger than

the dilatancy in bedding-parallel direction (Fig. C.5a), while with a negative Cg
3 , the larger

dilatancy angle corresponds to the bedding-parallel direction (Fig. C.5b).

2. Model Calibration and Mechanical Performance

The basic features of the constitutive framework discussed in previous sections are illus-

trated through a set of numerical examples. The model will be calibrated on the grounds

of the macroscopic material rheology emerging from different stress probes on Maastricht

Tuffeau. The capability of the model in capturing the anisotropic behavior of the material

is then demonstrated through a set of numerical simulations.

The measurements presented in Section 2 provide considerable insight for a model cali-

bration. The current procedure will benefit from the parameter calibration proposed for the

same material by in Chapter 4.2.1 on the basis of an isotropy assumption. The wide range

of confinement pressures covered by the triaxial tests, in both cases of bedding-parallel and

bedding-perpendicular loading direction, in fact, readily allows for the determination of the

yield surface in both directions. The yield threshold is depicted in the p− q stress space. By
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adjusting the shape parameters, Mf , µf , and αf , as well as the anisotropy eigenvalue Cf
3 ,

the mathematical expression of the yield surfaces is defined, as shown in Fig. C.6a.

The parameters of the plastic potential, Mg, µg, and αg, can instead be defined on the

basis of the underlying stress-dilatancy relationship. These relationship can be reported in

the ηg − d space, as shown in Fig. C.6b, and are used to calibrate the shape parameters.

Although this procedure relies on global measurements taken in the post-yielding regime

(i.e., where the specimen exhibits a structural response with heterogeneous deformation

patterns), since they are expressed in the form of a normalized strain ratio they can be

regarded as representative of the material behavior inside the active zone, thus providing

a first-order insight on the expected plastic flow characteristics, which will be later further

assessed through full-field simulations. In fact, the displayed dilatancy functions in Fig.

C.6b are based on Pg = Pf , where it can be seen that the dilatancy function in the bedding

direction is in a good agreement with the experimental data. A clear mismatch, however, can

be seen in the perpendicular direction (all dataset where above the plot of the yield surface,

and the aim here is to bring it to the middle). As will be seen later, such mismatches will

affect the robustness of the model predictions.

The hydrostatic compression behavior is used to calibrate the hardening behavior, i.e.,

ρm, Bp, and the initial values of the internal variables, Pso and Pmo. The yielding stress upon

hydrostatic loading, Pco = Pso + Pmo, can be assumed to coincide with the stress at which

the hydrostatic compressibility sharply increases. In fact, because of the rotations in the

stress space caused by the projection operator, the point of intersection between the yield

surface and the mean stress axis does not coincide with Pco, which had to be readjusted to

capture the yielding point on the hydrostatic axis. The ratio Pso/Pmo governs the rate of

destructuration occurs upon volumetric loading. This rate appears in the form of a magnified
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Figure C.6. Yield surface and dilatancy function calibrated for Maastricht
Tuffeau with a projector based on a homotopic mapping.

plastic volumetric deformation taking place upon yielding. On the other hand, ρm controls

the amount of softening during this stage of enhanced plastic deformation. Bp, in turn,

defines the rate of plastic hardening in the post-plateau region, where inter-particle bonds

have been fully destructured. As a result, this constant regulates the porosity hardening

emerging upon volumetric deformation in a completely reconstituted material. The overall

behavior under hydrostatic compression reproduced by the model is depicted in Fig. C.7,

where it can be readily seen that the model satisfactorily reproduces the material behavior.

Fig. C.8 presents the responses reproduced by the model for triaxial compression under

1.0, 3.0, 4.0, and 5.0 MPa confining pressure reported along with the experimental counter-

part. It can be seen that the model reproduces satisfactorily the yielding threshold and the

post-yielding strength. Yet, it is clear that the model is unable to retain satisfactorily per-

formance in terms of the plateau-elongation. In fact, while the limestone displays a shorter

plateau in bedding-direction, the model predicts a longer plateau. For comparison, reference

can be made to the case of 4.0MPa confining pressure where the test was extended to a

deformation interval that allows for a clear characterization of the plateau.
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3. Heterotopic Mapping of Stress Space

The stress mapping approach used in the previous section for the yield surface and plastic

potential was characterized by the same projector (i.e., Pg = Pf ). As a result, for both sur-

faces the mapping procedure brought the real stress state at the same location of a projected

stress space (hence, ”homotopic mapping”). By contrast, in this section the possible use of

different projectors is explored (i.e., Pg 6= Pf ). As a result, the mapping procedure would rely

on two different projected stress spaces, thus possibly leading to different relative locations

of the mapped stress state into the projected stress spaces (hence, hereafter referred to as

”heterotopic mapping”). The same bases of Pf , however, are used along with independent

eigenvalues, Cg
i , to combine Pg. Therefore, a projection operator based on the two bases, T1

and T3, has been adopted:

Pg = Cg
1 T1 + Cg

3 T3 (C.17)

It is worth noting that one can use any combinations of tensorial bases without making

reference to the bases used for Pf . Similar to Pf , Cg
1 has been fixed to 1.0, thus the anisotropy

in the flaw rule boils down to a problem of a single parameter (Cg
3 ).

A parametric analysis has been conducted to explain the sensitivity of the dilatancy

function to the variations of Cg
3 . The outcomes are reported in Fig. C.9, where the dila-

tancy function is plotted versus ηg. It can be readily seen that by using a coefficient Cg
3

having opposite sign compared to Cf
3 , it is possible to adjust the dilatancy function for both

directions (bedding-parallel and bedding-perpendicular direction) to be almost the same.

Such readjustments are necessary to qualitatively match the experimental measurements of

Maastricht Tuffeau. Subsequently, the following projector is proposed on the basis of a full

re-calibration of the third eigenvalue Cg
3 :
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Figure C.10. Yield surface and dilatancy function calibrated for Maastricht
Tuffeau with a projector based on a heterotopic mapping.

Pg = T1 + (-1.5) Cf
3 T3 (C.18)

Fig. C.10 depicts the obtained dilatancy function plotted versus the projected stress ratio

ηg computed based on the alternative stress configuration σg = Pgσ. The third eigenvalue
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Figure C.11. Material responses predicted by the model with a projector based
on a heterotopic mapping, showing adequate performance of the model in
terms of the elongation of the plateau.

has been adjusted to match the dilatancy curve associated with the case of compression

perpendicular to bedding. Despite the identical location of the two emerging plastic flow

rules, the differences in mapping and yielding imply that the simulations at the same con-

finement will operate at very different points of the stress-dilatancy curve, thus resulting in

different plastic behavior (and different plateau lengths). The stress-strain responses pre-

dicted based on the adjusted dilatancy function is illustrated in Fig. C.11. In this figure, it

can be seen that the model has a better performance in the post-yielding regime, especially

in terms of plateau elongation. In agreement with the experiments, the plateau elongation

in bedding-perpendicular direction is longer than the plateau in bedding direction. In can

also be seen that the model reproduces rates of post-plateau rehardening comparable with
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predicted with a projector based on homotopic mapping (left) and a projector
based on a heterotopic mapping (right) showing marked differences in terms
of the rate of hardening growth.

those measured in the experiments for each bedding orientation strength in both directions

in consistency with the experimental observations. The model parameters and its anisotropy

constants are summarized in Table C.1 and Table C.2.

Fig. C.12 illustrates the evolution of the state variables, Ps and Pm, under triaxial

compression in both directions computed based on a homotopic and a heterotopic mapping.

The responses are reported as a function of the imposed deformation. It can be noticed

that the simulations based on heterotopic mapping involves higher rates of hardening in the

bedding-parallel direction, versus a lower rate of hardening in the bedding-perpendicular



191

Table C.1. Constitutive parameters and internal variables for Maastricht Tuffeau.

Definition

K [MPa] Bulk modulus 350
G [MPa] Shear modulus 78
ρm Parameter governing softening under volumetric deformation 0.2
ξm Parameter governing softening under deviatoric deformation 5.0
Bp Isotropic plastic compressibility 0.03
µf Shape parameter of the yield surface 0.9
αf Shape parameter of the yield surface 2.0
Mf Shape parameter of the yield surface 0.65
µg Shape parameter of the plastic potential 0.6
αg Shape parameter of the plastic potential 0.14
Mg Shape parameter of the plastic potential 1.60
κ Expansion of the yield surface in the tensile stress domain 0.15

Pso [MPa] Initial size of the elastic domain (cohesionless medium) .25
Pmo [MPa] Lithification-induced expansion of the initial elastic domain 5.5

Table C.2. Anisotropy parameters for Maastricht Tuffeau.

Cf1 Cf2 Cf3 Cf4 Cf5
Yield Surface 1.0 0.0 -0.2 0.0 0.0

Cg1 Cg2 Cg3 Cg4 Cg5
Plastic Potential 1.0 0.0 -1.5 × -0.2 0.0 0.0

direction. No differences in the softening behavior is observed in both cases. This differences

in the rate of hardening explains the differences in the elongation of the plateau observed in

the simulation based on various mapping methods.

4. Conclusions

A theory for the constitutive modeling of transversely anisotropic elastoplastic materials

was presented in this chapter. The framework addressed the signatures of the anisotropy on

both the yielding stresses and the deformation behavior. For this purpose, elastic anisotropy

was incorporated in the model and its bases were used to construct a tensorial projectors

to replicate the anisotropic plasticity. The proposed model appeared to fairly capture the

overall anisotropic strength peaks. In this work, however, it was shown that it is neces-

sary to use distinct tensorial projectors, which despite sharing the same elastic bases, in-

volve markedly distinct eigenvalues. This is in order to enhance the model performance on
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replicating the post-yielding behavior, specifically the dependence of plateau-elongation on

bedding direction. The tensorial projector used in this work involved five tensorial bases

and eigenvalues. The Sensitivity analyses showed that it was possible to replicate most of

the mechanical aspects of Maastricht Tuffeau and under various confining pressures by in-

corporating a projector constructed with only two tensorial bases. Material-point analyses

based on triaxial test simulation were conducted under confining pressures of 1.0-, 2.0-, 4.0-,

5.0-MPa, and subjected to bedding-parallel and bedding-perpendicular compression. The

analyses illustrated the satisfactory performance of the proposed model in replicating the

yielding conditions, the post-yielding deformation and the post-plateau hardening behavior.

Further work, however, is required to examine the model in light of the localization theory

and calibrate its performance to reproduce the pressure dependence of the band inclination,

as well as the full-field response of specimens of anisotropic Maastricht Tuffeau.
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APPENDIX D

Assessment of Statistical Homogeneity in Granular Media∗

One of the challenges of examining the spatial fluctuation of material properties in gran-

ular media is the inference of macroscopic quantities from microscopic observables. For

this purpose, the concept of REV is typically employed, leading to the determination of a

sample-volume that guarantees regularity and reproducibility (i.e., over which the considered

material property can be homogenized). This procedure is conducted by means of statistical

approaches, according to which the specimen is assumed to derive from an underlying ran-

dom process (Howard and Reed [2004]; Matheron [1989]). A crucial element of defining an

REV is that the random process fulfills the conditions of stationarity and ergodicity (Cruz-

Orive [1997]). Stationarity implies that the statistics of the considered property (i.e. mean

and standard deviation) is invariant over the specimen domain, while ergodicity is defined

by the following expression (Matheron [1989]):

A = lim
|v|→∞

|v|var{z(v)} (D.1)

in which |v| is the size of the sample, z(v) is the property of interest computed over the

sample volume, var{z(v)} is the variance of all samples at each specific size |v|, and A

is a material constant associated with the length scale of fluctuation. Since homogeneous

specimens exhibit a finite scale of fluctuation, Eq. D.1 requires that an increase of sample

∗The content of this chapter was published in:

• Shahin, G., Cil, M., and Buscarnera, G. (2018). Assessment of statistical homogeneity in chemically
treated granular materials. Gotechnique Letters, 8(1), 32-39.
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volume induces a reduction of the variance as fast as the rate of the increase of sample size.

In this regard, Lantuéjoul [1991] argued that the trends of variance evolution can be used

to inspect homogeneity. In particular, the decay of the variance in samples of different size

can be expressed as a function of the volume through the following relation:

var{z(v)} =
A

|v|b
=
ab.P (1− P )

|v|b
(D.2)

in which P indicates the property of interest averaged over the whole specimen, while a

and b characterize the underlying random process, and are often referred to as stereological

parameters (SPs). Parameter a primarily quantifies the scale of microscopic fluctuation,

while b controls the rapidity of variance reduction as a function of the sample volume.

According to Lantuéjoul [1991], homogeneous media exhibit an asymptotic decay of the

variance characterized by b ≥ 1. Instead, heterogeneous media display a lower rate of

variance decay with 0 < b < 1. For these reasons, hereafter parameter b will be used as a

metric of homogeneity (Bruchon et al. [2013b]; Kanit et al. [2003]), with the goal to examine

the microstructural properties of a granular soil subjected to mineral precipitation.

1. Materials and Experiments

To quantify the spatio-temporal progression of precipitation, the microstructure of a

granular material subjected to a flow-through precipitation experiment was imaged in situ

via synchrotron X-ray microtomography (SMT). F-50 Ottawa sand (Company [1997]) was

used in the experiments. Particles of size smaller than 290 µm were removed via sieving to

facilitate visualization. The remaining particles were rinsed with deionized water and dried in

an oven for 24 h at 110◦. The tested sand has a specific gravity Gs = 2.65 and a permeability

of 51 µm2 (Cil et al. [2017]). It is a fairly uniform sand with a median size D50 = 375 µm,
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Figure D.1. Illustration of the approach used to define the stereological param-
eters, a and b. (a) Definition of the grid. (b) Sampling and gradually growth
of the measurement cell, over which the property of interest is computed. (c)
Matheron’s granulometries: the computed property is plotted against the cell
volume. (d) Variogram: the variance of the granulometries are plotted against
the cell volume in logarithmic scale, (e) Fitting of Equation D.2 to define the
stereological parameters that match the asymptotic trends of the variogram.

and a coefficient of uniformity Cu = 1.3, and a coefficient of curvature Cc = 1.0. The sand

was packed within a cylindrical aluminum container through a wet pluviation method, which

involved pouring the sand into the tubing filled with 1 mM CaCl2 solution and densifying

the assembly through tamping. The cylindrical specimen had a diameter of 4.2 mm and a

height of 10.94 mm. 40 mM CaCl2 and 80 mM NaHCO3 solutions were injected into the

specimen at a constant flow rate of 8.6×10−3 l.h−1 via a Gilson Minipuls 2 peristaltic pump.
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The two reactants were mixed in a chamber located upstream of the column (Figure 2.17a).

The mixing of CaCl2 and NaHCO3 resulted in a supersaturated solution with respect to

CaCO3, which produced CaCO3 precipitation within the pore space of the packed assembly

(Cil et al. [2017]).

SMT scans were carried out in the Beamline 13−BMD of the GeoSoilEnvironCARS at

the Advanced Photon Source, Argonne National Laboratory in Lemont, IL, USA. The X-ray

energy was set to 33 keV and 900 radiographs were acquired at 0.2◦ angular increments

during each SMT scan. The pixel size of the SMT images is 3.18 µm. The specimen was

scanned multiple times during the precipitation experiment (Figure 2.17c) and was flushed

with 1mM CaCl2 solution for 10 min before each scan to remove suspended precipitates.

The specimen was subjected to 9048 pore volumes of influent solution until clogging of the

inlet.

The SMT images were analyzed using Avizo (FEI [2016]). The sequential SMT images

were initially registered and an anisotropic diffusion filter was applied to each image to

reduce noise. Sand particles, CaCO3 precipitates and pores were identified and labelled

(i.e., trinarized) on the basis of the changes in registered images and the X-ray attenuation

difference of the three phases. The evolution of the specimen during mineral precipitation is

displayed in Figure 2.17, which illustrates the microscopic changes due to the accumulation

of mineral deposits within the pores.

2. Analysis based on the Theory of Geostatistics

To examine the homogeneity of the specimen from a statistical standpoint, some as-

sumptions have to be made. Specifically, each scan has been considered separately from the

others as a realization of a distinct random process. With this assumption, the analysis is
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converted into the inspection of six individual random processes. The hypothetical temporal

dimension of each of these processes carries a purely statistical meaning (i.e., it does not bear

a physical relation with the underlying reaction-transport process), and it is therefore as-

sumed stationary (Chiles and Delfiner [2009]). The inspection of homogeneity is, therefore,

performed only over space.

The spatial homogeneity of each specimen can be assessed by quantifying the SPs (i.e.,

a and b). This procedure entails the computation of granulometries and their correspond-

ing variogram. In soil mechanics, the primary interest is the solid matrix (in this case the

combination of particles and precipitates). However, it is possible to show that the geo-

metric duality of solids and pores implies the equivalence of their statistical attributes, thus

generating identical variograms for solid and pore phases (see Appendix A). For this reason,

hereafter the computations are primarily referred to the pore space, in that they are sufficient

to assess the statistical homogeneity of the solid matrix.

2.1. Granulometries and variograms

To compute the Matheron’s granulometry, a cubical cell is used as structuring element. A

regular 3D grid is placed on the image (Figure D.1a), and samples are collected at each node

through a cell centered on the selected location and gradually increasing in size.

The property of interest (e.g., the volume fraction of pores) is calculated for each sample

size. This procedure is repeated for all the nodes of the grid (Figure D.1b-c), enabling

the generation of variograms (i.e., plots of the variance associated with each sample size,

(Figure D.1d). The stereological parameters are finally defined by fitting Equation D.2 to

the asymptote of the variogram (Figure D.1e). Figure D.2 illustrates the outcome of this

procedure at different stages of the precipitation process (i.e., until pore clogging).
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Figure D.2. Variograms of the pore phase computed for different sample-
population sizes at each precipitation stage T0−T5. Computations performed
through grids having a number of nodes varying from 28 to 11250. For each
precipitation stage, the generated variograms are reported, along with the SPs
(calibrated variogram plotted in red).

2.2. Evolution of the stereological parameters

Obtaining an unbiased estimate of the SPs requires an adequate sample population. Hence,

a sensitivity analysis on the population size has been performed. Different grids with a

number of nodes ranging from 28 to 11250 have been used to generate the granulometries.

The corresponding variograms of the pore phase have been processed and the associated SPs

have been determined through the asymptote fitting procedure described in the previous

section. While such fitting procedure has been carried out manually, a qualitative assessment

of its accuracy has been provided by computing the average error involved with it. The results
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Figure D.3. Sensitivity of the SPs (a and b) to the sample-population size (i.e.
the number of grid nodes). The SPs display stable trend for larger population
size. The averaged value of the last 5 trials is adopted to derive an unbiased
estimate of the SPs.

Figure D.4. Evolution of the SPs (a and b) of the pore phase during precip-
itation. The analysis shows that the unprecipitated matrix is homogeneous
as (b = 1.02), while precipitation causes a sharp deterioration of homogeneity
since the early stages of the process (b < 1).

are discussed in Appendix B, where, for a sufficient number of sample points, the error was

always below 5%.

The variation of the SPs as a function of the population size is depicted in Figure D.3,

which shows a remarkable fluctuation of both parameters at smaller population sizes. As

the size of the population increases, the trends of variation of a and b become more stable,

thus indicating a decrease of the underlying bias. Thus, the average of the last five trials has
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Figure D.5. Varigrams of the three phases, grains (continuous), pores
(dashed), and mineral deposits (dash-dotted) for the various stages of the
precipitation process. The value of b of the grains has is not affected by pre-
cipitation, while the other phases display deterioration of their homogeneity
reflected by a slower rate of variance decay.

been used to quantify the SPs. These values are plotted against the mass of precipitation in

Figure D.4 to illustrate the statistical implications of the reactive process.

This analysis shows that b is equal to 1.02 only at the initial state T0, thus indicating

homogeneity of the unprecipitated skeleton. Precipitation, however, is found to induce a

rapid deterioration of homogeneity, manifested by the sharp decline of b. The intensity

of deterioration decreases after stage T3, when nearly constant values of b are attained.

Similar trends can be observed also for parameter a, which controls the length scale of

microstructural fluctuations (i.e., it also decays with increasing the mass of mineral deposits).

Although these results refer to the pore phase, similar arguments can be derived from the
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other microstructural units. An example is illustrated in Figure D.5, where the variograms

of granular skeleton, pore phase and mineral deposits are shown. It is readily apparent that,

while the statistical features of the skeleton are unaltered by the precipitation process (i.e.,

b ≈ 1 also after treatment), all the other units display heterogeneous properties.

Such results indicate that mineral deposits bridging the grains increase the heterogeneity

up to a point that an REV cannot be rigorously defined. An examination of the relative error

associated with the sampling procedure is illustrated in Figure D.6a, where the coefficient of

variation (CV ) defined as the normalized standard deviation (CV = σ/m) of the pore volume

fraction is plotted for each stage of precipitation. The figure shows that much larger sample

volumes would be necessary to reach a sufficiently low degree of statistical variability. In

other words, if σ/m is limited to 10%, the presence of mineral deposits causes a rapid growth

in sample size necessary to guarantee such requirement on the relative error (Figure D.6b).

2.3. Spatial analysis

The degradation of sample homogeneity reflects an uneven distribution of precipitation prod-

ucts. To ascertain this feature, the spatial variability of the precipitated mass has been in-

spected by plotting over the specimen the degree of clogging (i.e., the volume ratio between

mineral deposits and inter-granular pores). For this purpose, the skeleton of sand particles is

taken as reference frame. This choice was made because the skeleton is not altered by precip-

itation and is homogeneous throughout the process. Indeed, from the analysis of specimen

T0, an REV of (300 × 300 × 300 voxels) can be defined (which involves a mean m = 0.36

and a standard deviation σ =
√

(A/|v|b) = 0.013). This reference volume is used to inspect

the spatial variability of the degree of pore clogging. Specifically, an observation cell with
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(a) (b)

Figure D.6. Volume-dependence of the normalized standard deviation of spec-
imens with different amounts of mineral deposits. Trends predicted from Eq.
D.2 calibrated on the basis of the variograms in Figure D.4. (a) Evolution of
the relative error for various precipiation stages. (b) Sample volume associated
with a 10% relative error (CV ). |V min| indicates the minimum sample volume
guaranteeing σ/m ≤ 10%, while |Vmin0| is the same volume computed for the
initial (unprecipitated) skeleton.

the size of the selected REV is used to scan the sample along a vertical and a horizontal axis

located at the center of the specimen (Figure D.7).

The analysis conducted along the vertical axis shows that the precipitant mass grows with

similar patterns in the upper two-thirds of the specimen, while it shows significant deviations

in the lower-third immediately after scan T1. This result reflects an increase of the local

degree of clogging in proximity of the inlet (Figure D.7a). Similarly, the same analysis

conducted along the transversal direction reveals asymmetric mass deposition at the center

of the specimen (Figure D.7b-c), which can be interpreted as a result of uneven clogging at

the inlet and a consequent non-uniform mineral growth downstream. These results suggest

that boundary effects at the inlet and asymmetries developing along the specimen height are

the main causes of the deterioration of the homogeneity.
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(a) (b) (c)

Figure D.7. Evolution of the degree of pore clogging along (a) a vertical axis
located at the center, and (b-c) two horizontal axes located at the mid-height.
The analysis reveals a steady evolution of precipitation over the upper two-
thirds of the specimen, whereas faster mineral accumulation occurs at the
lower third. Similarly, the inspection of the variation of pore clogging across
a horizontal section located at the mid-height displays non-uniform precipita-
tion.

3. Conclusions

A quantitative assessment of the homogeneity of a chemically altered granular soil has

been conducted by means of a statistical analysis. The precipitation process is shown to

cause a rapid deterioration of the homogeneity in an otherwise uniform sand. The quanti-

tative metrics defining the length scale of fluctuation and the deviation from homogeneity

have revealed that the accumulation of mineral deposits and the consequent clogging of the

pores are responsible for this effect. By making reference to the REV size defined for the un-

precipitated granular skeleton, it was shown that such loss of homogeneity was controlled by

higher precipitation at the inlet and by a non-symmetric mineral growth along the transverse

direction. This finding illustrates the benefits of a statistical assessment of the spatial het-

erogeneity of a sample. While it was shown that an REV cannot be rigorously defined even
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at the early stages of the precipitation process, the analysis pointed out that the length scale

of fluctuation depends on the amount of precipitation and tends to decrease as the precipi-

tation clog the pores. Similarly, it was shown that the accumulation of precipitation reduces

the rate at which the standard deviation decreases upon an increase of sample size. Such

observations suggest that, compared to unstructured granular materials, cemented and/or

chemically-treated soils need stricter requirements to define the minimum size of the samples

for laboratory testing.
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APPENDIX E

Patterns of Compaction Band Propagation

The simulations presented in previous chapters displayed different forms of heterogeneous

compaction, namely compaction front propagation in Maastricht Tuffeau and tabular com-

paction in Bleurswiller sandstone. The mechanical properties of these rocks are characterized

by strain-softening in the former versus strain-hardening in the latter. This Appendix il-

lustrates some aspects concerning the connection between the propagation patterns and

the material constitutive properties, thus illustrating the resulting differences in the local

responses and the overall mechanical field.

1. Stress Evolution in Hardening and Softening Materials

To illustrate the connection between the phenomenology of compaction banding and the

pattern of bands propagation, the possible scenarios of stress path evolution upon activating

inelastic compaction in predominantly hardening and predominantly softening materials is

here discussed at the material-point level. First, the kinematic and static constraints asso-

ciated with pure compaction banding are recalled. Equilibrium is enforced over the stress

perpendicular to the band interface. incremental stress components contained within the

plane of the band are not subjected to such constraints and a jump in their value may take

place. Kinematically, the perpendicular strain includes a jump, while strain compatibility is

enforced along the band (Fig. 2.18).
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Figure E.1. Schematic illustration of the possible scenarios of stress evolution
in a hardening material
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Figure E.2. Schematic illustration of the possible scenarios of stress evolution
in a softening material

A triaxial compression path intersecting with the yield surface in a hardening regime

with bifurcation involves an expansion of the yield surface. This expansion could occur

following a constant-radial stress path (Fig. E.1a). In such scenario, however, equilibrium

conditions at the band boundaries dictate that the stress path outside the band follows that

same path and subsequently elastic unloading (as a result of bifurcation) is not possible (Fig.

E.1b). However, other possible scenarios in which the axial stress equilibrium is maintained
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can be identified. Specifically, inside the band, the stress path could deviate from constant

radial-stress and evolve with the same increments of axial stress (Fig. E.1c). In such case, the

inelastic loading inside the band dictates a growth in the yield surface, while outside the band

(Fig. E.1d) the stress path evolves in the opposite direction inside the elastic domain with

the same incremental changes of the axial stress (unloading). It is worth mentioning that

such scenario implies that the radial stress inside and outside the band evolves in opposite

directions.

On the other hand, a triaxial compression path intersecting with the yield surface in a

softening regime with bifurcation implies the contraction of the yield surface. The stress path

could evolve inwards the yield surface with axial stress increments that maintain equilibrium

(Fig. E.2). In such case, the radial stresses inside and outside the band evolve in any

directions that maintain global equilibrium with the external lateral traction.

2. Stress Field of Different Propagation Patterns

Numerical analyses based on finite element simulations of triaxial compression are con-

ducted. The model used in the thesis is retained for this purpose. Fig. E.4 displays the

results of simulations performed for both rocks. By making reference to the sandstone sim-

ulation (upper part), it can be seen that the specimen exhibits compaction localization in a

form of discrete bands which spread sequentially across the domain. At variance, the simu-

lation of Maastricht Tuffeau (lower) displays compaction localization emerging in the middle

of the specimen (at L2) and eventually spreading towards the ends of the specimen in a form

of thickening band. In connection with different forms of bands propagation, marked differ-

ences in mechanical responses are observed, especially in terms of the deformation behavior

that follows yielding. While softening is a marked feature of the post-yielding response in
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the Maastricht Tuffeau model, Bleurswiller sandstone displays stages of strain hardening in

association with the nucleation of discrete bands, especially in the domain of compaction

localization (Fig. E.3).
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Figure E.3. Illustration of the hardening (H > 0) and softening domains (H <
0) on the yield surface of Bleurswiller sandstone (left) and Maastricht Tuffeau
(right)

The local responses that accompany the different propagation patterns have been ex-

plored. The case of thickening band in Maastricht Tuffeau has been considered first. The

computations at Gauss points located inside and outside the compacted zones are reported

in Fig. E.5. It can be seen that the growth of compaction localization is accompanied by

material softening, thus leading to a contraction of the yield surface along with a contraction

in the extent of the domain of instability. The stress path includes a decay in the axial stress

with minor alterations in the radial stresses. Away from the active localization zone, the

material undergoes elastic unloading with a stress path characterized by a decrease in the

axial stress along with unaltered radial stresses. It can be noticed that despite the disconti-

nuities in the radial stresses, the equilibrium in the axial stresses has shaped the direction

according to which the stress paths inside and outside the zone of active compaction evolve.
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Figure E.4. Triaxial compression test conducted on specimens of Bleurswiller
sandstone (upper) and Maastricht Tuffeau (lower), illustrating the overall me-
chanical responses and the evolution of the strain field at specific deformation
intervals marked on the stress-strain response curve.

To examine the local responses associated with the sequential spread of discrete bands,

Fig. E.6 displays the evolving responses at sequential deformation intervals, first, after the

growth of the first band (a1 → d1) and, second, after the growth of the second set of com-

paction bands (a2 → d2). Material points inside the first band (d1&2), the second band

(b1&2), in between (c1&2) and away from the two bands (a1&2) were selected. This illus-

tration reveals specific features of local material responses. First, as the specimen undergoes

yielding, the entire domain displays inelastic homogeneous deformation associated with an

expansion of the yield surface, up to a point where heterogeneous deformation takes place.

The emergence of the first band carries specific distribution of local responses charac-

terized by stress paths inside the active zone that are typical of axisymmetric deformation
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Figure E.5. Stress path evolution at Gauss points located inside (left) and
outside (right) the compaction band in a simulation of triaxial compression on
a Maastricht Tuffeau specimen.

under constant-traction (d1, 1 → 2). At the immediate proximity of the active zone, the

material undergoes unloading in a direction that is opposite to loading inside the active band

(c1, 1 → 2). The location at which the next compaction band emerges undergoes nearly

negligible loading (b1, 1→ 2), while the far zones remain unaltered (a1, 1→ 2).

The second stage, i.e., the emergence of the second set of bands, is associated with the

following evolution in stresses profile (in Fig. E.6a2-d2, marked by bold lines). The material

inside the first compaction band undergoes oedometer-like unloading (a2, 2→ 3), while the

material inside the emerging bands undergoes oedometer-like loading (b2, 2→ 3) in a fashion

that resembles the emergence of the first band (d1, 1→ 2). The elastic zone inbetween the

two bands continues to display elastic unloading (c2, 2→ 3). The zones away from the two

bands undergo unloading (d2, 2 → 3) again in a direction that is opposite to the direction

of loading inside the active zone.
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Figure E.6. Stress path evolution at Gauss points located throughout the do-
main after the emergence of the first band (left column, stage 1 → 2) and
after the emergence of the following bands (right column, stage 2 → 3) in
a simulation of triaxial compression on a simulated specimen of Bleurswiller
sandstone.
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3. Yielding Barrier Profile in Hardening and Softening Rocks

The following analyses provide a close look at the evolving yielding barrier profile at the

initiation of localized compaction and its evolution as compaction banding propagates. A

yielding barrier is the strain-energy input that is required to bring a material point from its

current state to a first activation of plasticity, i.e., on the yield surface. In a viscoplastic

modeling context, a proxy that can be useful to characterize this barrier is the value of the

function, f . As this value is equal to zero when the stress state is exactly on the yield surface,

negative values indicate states inside the elastic domain. To simplify the analysis, the value of

the yield surface function, f , is normalized by the maximum absolute value, |f |max. Negative

values of f/|f |max indicate zones of yielding barriers (i.e., additional external loading is

necessary to activate permanent deformation), while positive values indicate active plastic

deformation (i.e., the external work input is being dissipated through viscoplastic strains)

The evolution of the profile of f/|f |max across the specimen of Maastricht Tuffeau is

reported in Fig. E.7, elucidating the connection between compaction band propagation in

form of a thickening band and the profile of the yielding barrier. (b) Shows the profile of

f/|f |max at three sequential deformation intervals, i.e., I and II, also marked on the stress-

strain curve in (a). The profile of f/|f |max upon the emergence of the first compaction band

(at I) is characterized by a spike of active plastic deformation inside the portion of active

compaction where material displays a mobilization of overstress as a result of viscosity (I,

1→ 2). A monotonic transition from active plastic deformation to zones of yielding barriers

(I, 1 → 3 & 2 → 4) is observed, with transition points that appear to be located at the

edges of the zone of active compaction (I, 1&2). Such transition dictates zones of higher

potentials for the propagation of inelastic deformation, as the work-barrier that material in
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these locations needs to pass is minimal. This can be apparent from the profile of f/|f |max

displayed in II, where it can be readily seen that the propagation of the compacted zones

has taken place at the points of transition observed in I, new points of transition emerge

(II, 1∗ and 2∗) generating favorable locations for compaction propagation.

The evolution of the profile of f/|f |max across the specimen of Bleurswiller sandstone

is reported in Fig. E.8, illustrating the patterns of yielding barrier profiles associated with

compaction band propagation in the form of discrete bands. (b) Shows the profile of f/|f |max

at three sequential deformation intervals, i.e., I and II, also marked on the stress-strain curve

in (a). The profile of f/|f |max upon the emergence of the first compaction band (at I) is

characterized by a spike of active plastic deformation inside the portion of active compaction

where material displays a mobilization of overstress as a result of viscosity (I, 1 → 2). A

transition from active plastic deformation to a yielding barrier takes place with the point of

transition marked by (2). At variance with Maastricht Tuffeau, the yielding barrier profile

in the simulation of Bleurswiller sandstone has a sharp dip in the specimen volume adjacent

to the first activated band (I, 2→ 4 and 1→ 3), which non-monotonically decays at a finite

distance generating zones of equal yielding barriers (I, 4 → 6 → 8 and 3 → 5 → 7). Such

finite distance is linked with the formation of the next band.

It is, therefore apparent that different patterns of spatial compaction lead to different

alterations of the stress field. Specifically, the response of Maastricht Tuffeau is controlled

by softening-rich debonding processes, which lead to elastic stress relaxation outside the

process zone. As a result, the portions of the domain most likely to generate further plastic

compaction are confined to the layers adjacent to the active band, from which compaction

propagates as a front. By contrast, the response of the sandstone is found controlled by pore

collapse and plastic non-normality, which leads to a stress field characterized by an elastic
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Figure E.7. Illustration of the evolution of overstress profile along a speci-
men of Maastricht Tuffeau subjected to triaxial compression, and showing a
propagation of localized compaction in form of a thickening band.
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Figure E.8. Illustration of the evolution of overstress profile along a specimen
of Bleurswiller sandstone subjected to triaxial compression, and showing a
propagation of localized compaction in form of discrete bands.

buffer immediately adjacent to the active band. As a result, new band nucleation is more

likely to occur at a finite distance from the active deformation site, eventually resulting

in compaction bands with regular spacing. These findings give a possible insight on the

role of the material properties in causing the competing modes and further studies taking
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into account the system dimensions and the global equilibrium/compatibility conditions are

necessary for providing a mechanistic interpretation of the band-to-spacing ratio.
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