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Abstract 

Cardiovascular disease is the leading cause of death in US and non-invasive cardiac imaging has 

vital importance for early detection and diagnosis of heart disease. Cardiac Magnetic Resonance 

(CMR) is arguably the most versatile imaging modality and capable of a comprehensive evaluation 

of heart disease without ionization radiation. Despite the advantages of CMR, it is seldom used 

(only 1% footprint) due to lack of availability and higher cost, which is mainly caused by the long 

scan times. Meanwhile, many accelerated CMR acquisition and quantification methods were 

feasible, but their clinical translation was limited due to long image reconstruction time and long 

manual processing time (e.g. segmentation). The purpose of this dissertation was to describe the 

development and validation of accelerated CMR methods using compressed sensing (CS) and deep 

learning (DL) to overcome current limitations. This dissertation includes the following topics: (i) 

CS image reconstruction of accelerated coronary quiescent-interval slice-selective (QISS) 

magnetic resonance angiography (MRA) that enabled single-shot, free-breathing acquisition, (ii) 

a newly developed high-resolution late gadolinium enhancement (LGE) CMR sequence with novel 

CS image reconstruction that provides multi-TI image contrast, (iii) rapid image reconstruction of 

highly undersampled real‐time cine using deep learning without significant loss in image quality, 

visual scores and functional parameters, (iv) automated image segmentation of biventricular tissue 

phase mapping (TPM) using deep learning.  
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Chapter 1: Introduction 

1.1) Overview 

Cardiovascular disease is the leading cause of death in US and non-invasive cardiac 

imaging has vital importance for early detection and diagnosis of heart disease. Cardiac Magnetic 

Resonance (CMR) is arguably the most versatile imaging modality and capable of a 

comprehensive evaluation of heart disease without ionization radiation. Despite the advantages of 

CMR, it is seldom used (only 1% footprint) due to lack of availability and higher cost, which is 

mainly caused by the long scan times. Meanwhile, many accelerated CMR acquisition and 

quantification methods were feasible, but their clinical translation was limited due to: (i) long 

image reconstruction time and (ii) long manual processing time (e.g. segmentation). This thesis 

will focus on accelerating CMR imaging by developing and validating (i) image reconstruction of 

highly undersampled data using compressed sensing (CS), rapid image dealiasing using deep 

learning (DL) and automated CMR image segmentation using deep learning.  

1.2) Non-invasive Cardiac Imaging 

 Cardiovascular disease is the leading cause of death in US, killing over 655,000 people 

annually (1). Effective diagnosis and treatment of at-risk patients requires regular clinical 

monitoring to assess cardiac anatomy and function using non-invasive imaging. Four major non-

invasive imaging modalities available for cardiovascular assessment include: nuclear imaging (i.e. 

SPECT and PET), echocardiography (Echo), Computed Tomography (CT) and Magnetic 

Resonance Imaging (MRI).  
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 1.2.1) Nuclear Imaging 

 In nuclear imaging, small amount of radioactive materials (i.e. radiotracers) are typically 

injected into the bloodstream, inhaled or swallowed.  The radiotracer then travels through the area 

being examined and involves in the biological processes, during which the radioactive elements 

decay and emit photons. By detecting the photons  that come out of patients’ body using radiation 

detector, the biological processes in the targeted regions can be visualized (2, 3). Single photon 

emission computed tomography (SPECT) and positron emission tomography (PET) are two 

common clinical variants of nuclear imaging (2), both are commonly used for detecting myocardial 

viability after ischemic events (4, 5). While SPECT and PET can provide diagnostic information 

with high sensitivity, the ionizing radiation and low spatial resolutions (i.e. 8-12 mm for SPECT 

and 6-8 mm for PET) are been concerned.  

1.2.2) Echocardiography 

Echocardiography (Echo) is the first line of imaging for assessment of heart disease as it is 

quick and low cost(6). In Echo, a probe called a transducer that generates and receives ultrasound 

is used. The sound waves move through the imaging medium and reflect back (i.e. echo) to the 

transducer, which is then converted into pictures(7). By leveraging the frequency changes in 

detected echoes resulting from Doppler Effect, it is able to quantify tissue and blood speed as well 

as observe myocardial wall and valve motions (8-10). However, echo suffers from several major 

drawbacks: limited field of view, user dependence, and difficulty in imaging complex geometries.  

1.2.3) Computed Tomography 

 In Computed Tomography (CT), x-rays are transmitted from a source through an imaging 

volume and experience attenuation, and received by the detectors. The received x-ray will have 
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integrated attenuation from all materials in its path. By rotating the x-ray tube, the signals from 

different angles can be reconstructed using filtered back projection and characterize the spatial 

variation of the attenuation coefficients. CT provides high resolution 2D or 3D anatomical images 

and requires less operator expertise, while exposure to ionizing radiation and iodinated contrast 

agent cause additional risk (11) to patients with heart disease.  

1.2.4) Cardiovascular Magnetic Resonance 

 In MRI, a strong magnetic field (1.5T or 3T in clinic) is used to produce net magnetic 

moments from protons (1H) that align with the main magnetic field (B0). The longitudinal (along 

with B0 field) magnetization is tipped to the transverse (orthogonal to B0 field) plane by RF-pulse. 

The main concept of MRI is to generate, manipulate, and detect the transverse magnetization in 

the tissues of interest by encoding spatial information and then reconstructing images through 

Fourier transformation of the detected signals.  

CMR is arguably the most versatile imaging modality and capable of a comprehensive 

evaluation of heart disease, both qualitatively (detect vascular obstructions, myocardial infarction) 

and quantitatively (measure ejection fraction, scar volume and flow etc.), while not requiring 

ionizing radiation. Despite the advantages of CMR, it is seldom used (only 1% footprint) due to 

lack of availability and higher cost(12), which is mainly caused by long processing time (i.e. scan 

time and image post-processing time). Previous studies(13-17) have addressed that rapid CMR 

sequences with compressed sensing (CS) (15-18) are able to highly accelerate data acquisition (i.e. 

shorten scan times) with comparable image quality with clinical standard sequences, while the 

trade-off is long image reconstruction time that limits its clinic translation. 
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1.3) Specific Aims 

 The purpose of this dissertation was to describe the development and validation of 

acceleration methods designed to increase CMR utilization in clinic and the clinical translation of 

advanced CMR acquisition/quantification methods by addressing current limitations (i.e. long scan 

time, long reconstruction time and long quantification time). In particular, this dissertation was 

focused on: (i) compressed sensing image reconstruction of highly undersampled data without 

compromising image quality; (ii) rapid de-aliasing of highly undersampled CMR images using 

deep learning; (iii) automated CMR image segmentation using deep learning. Upon development, 

these methods were validated in patients with cardiovascular disease and compared with clinical 

standard methods. 

1.4) Organization of the Dissertation 

This dissertation is organized into 8 chapters. Chapter 1 provides an overview of cardiac 

imaging and the clinical justification for the importance of accelerated CMR research presented in 

this dissertation. Chapter 2 provides the requisite background on MR spin physics and image 

formulation for understanding the rest of this dissertation, especially, understanding how MR 

signals are acquired and why MR acquisition is slow. Chapter 3 introduces MR signal sampling 

methods and acceleration techniques for data acquisition and image reconstruction, specifically, 

compressed sensing and deep learning, which are used throughout Chapter 4 to Chapter 7. Chapter 

4 describes the implementation of compressed sensing to single-shot coronary QISS MRA, which 

enables single-shot, free-breathing acquisition without losing image quality. Chapter 5 describes 

the development of multi-TI LGE CMR with compressed sensing. Unlike conventional 2D LGE, 
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multi-TI LGE provides time-resolved images by explores the sparsity in the time dimension. 

Chapter 6 describes the application of deep learning in image reconstruction of real-time cine 

images. A perceptual complex neural network is developed and compared quantitatively with three 

other networks. CS reconstruction was used as the ground truth for DL training. Chapter 7 

describes the implementation of image segmentation with deep learning for myocardial tissue 

phase mapping. Magnitude plus three dimensional tissue velocity images were used as input and 

multi-layer masks as reference. Chapter 8 summarizes this dissertation and provides suggestions 

on future directions.  
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Chapter 2: Background on MRI 

2.1) Overview 

 Magnetic resonance imaging (MRI) is a non-invasive imaging modality that is commonly 

used in clinical radiology. It is based on nuclear magnetic resonance (NMR) of nuclei (i.e. 1H 

proton) in a strong magnetic field. The rotation of nuclei generates magnetic moments that can 

interact with magnetic fields. We obtain images with various contrast by manipulating and 

detecting these magnetization in the transverse plane. This chapter provides a brief introduction 

on the physics and math background of magnetic resonance imaging for better understanding the 

rest of the dissertation.  

2.2) Nuclear Magnetic Resonance 

2.2.1) Nuclear Spin 

Nuclear induction was first described by Edward Purcell and Felix Bloch in 1946 (19, 20). 

Nuclei with non-zero spin quantum numbers (i.e. 1H, 13C, 19F, and 19P) have a magnetic dipole 

moment (�⃗⃗� ). We can imagine the nucleus as a charged particle with charge on its surface (Figure 

2.1). When it rotates with an angular momentum (𝑱 ), it generates a magnetic moment (�⃗⃗� ) along its 

rotation axis. The relation between angular momentum (𝑱 ) and the magnetic dipole moment (�⃗⃗� ) is 

expressed as equation 2.1, where γ is the gyromagnetic ratio that is specified by the nuclei (𝛾/2𝜋 =

 42.57 MHz/T  for 1H). For this dissertation, we will focus on proton (1H) imaging, because it is 

the most abundant element in human body and most of the clinical MRI scanners are designed 

based for it.  
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                                                     �⃗⃗� =  𝜸 ∙ 𝑱                                                                Eq 2.1 

 

Figure 2.1. The nuclei can be taken as a rotating particle with charges on its surface. When it 

rotates with angular momentum (𝑱 ), it generates a magnetic moment (�⃗⃗� ) along its rotation axis. 

 

2.2.2) Bulk Magnetization 

 As shown in figure 2.2, 1H spins are randomly oriented in earth’s normal magnetic field 

due to thermal energy. The net magnetization ( �⃗⃗⃗� ), which is a vector field representing 

comprehensive spins �⃗⃗⃗� =  ∑ �⃗⃗�  , is close to zero since the spins cancel out each other. Once the 

object is placed in a strong magnetic field (𝑩𝟎
⃗⃗⃗⃗  ⃗), the 1H spins either orient parallel (↑) or anti-

parallel (↓) to the main magnetic field. More spins will orient parallel to the main magnetic field 

because of the lower energy associated with parallel alignment as defined by equation 2.2, where 

ℏ is Plank’s constant h (6.6 × 10−34𝐽 ∙ 𝑠) divided by 2π. This in turn produces a net magnetic 

moment which can be manipulated to produce MR images. In the magnetic field, the spins precess 

at a resonance frequency ( 𝜔0) known as the Larmor frequency (21, 22), which is defined by 

equation 2.3. 
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𝑬↑ = −
𝟏

𝟐
𝜸ℏ𝑩𝟎  ,    𝑬↓ = +

𝟏

𝟐
𝜸ℏ𝑩𝟎                                       Eq 2.2 

     𝝎𝟎 =  𝜸𝑩𝟎                                                           Eq 2.3 

 

Figure 2.2. 1H spins in the earth magnetic field are randomly oriented due to thermal energy. When 

they are put in a strong magnetic field (𝑩𝟎
⃗⃗⃗⃗  ⃗), spins either orient parallel or anti-parallel to the field. 

More spins will orient parallel to the main magnetic field because of the lower energy associated 

with parallel alignment. This in turn produces a net magnetic moment which can be manipulated 

to produce MR images. 

 

2.2.3 Radio-Frequency Pulse 

 To measure the magnetization, it has to be tipped to the transverse plane using a radio-

frequency (RF) pulse that generates a rotating RF field (𝑩𝟏
⃗⃗⃗⃗  ⃗). Its frequency is tuned to the resonance 

frequency of the 1H spins (i.e. 𝜔𝑟𝑓 = 𝜔0), where 𝐵1
𝑒(𝑡) is a pulse envelope function.   

    𝑩𝟏
⃗⃗⃗⃗  ⃗ =  𝑩𝟏

𝒆(𝒕)𝒆−𝒊𝝎𝒓𝒇𝒕                                               Eq 2.4 

As shown in Figure 2.3, the magnetization rotates around the 𝑩𝒆𝒇𝒇
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  when 𝑩𝟏

⃗⃗⃗⃗  ⃗  field is 

rotating at the same time and at the end of this process, the magnetization is tipped to the transverse 

plane. After that, the magnetization begins to recover back to its thermal equilibrium state, while 
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precessing at the Larmor frequency around 𝑩𝟎
⃗⃗⃗⃗  ⃗ field, which is called free-induction decay (FID). 

An RF coil is an antenna used for both generate RF pulse to stimulate spins and receiving/detecting 

MR signals from the excited spins. Particularly, based on Faraday's law of induction (i.e., 

electromagnetic induction), the recordable MR signals are generated mostly from the transverse 

magnetization relaxation (𝑀𝑥𝑦) of a FID. 

In fact, an RF pulse can tip spins with a certain flip angle (α), which is between 0 to 180 

degrees. The flip angle is determined by the duration (τ) and the magnitude of 𝑩𝟏
⃗⃗⃗⃗  ⃗:  

𝜶 = ∫ 𝜸𝑩𝟏
𝒆(𝒕)𝒅𝒕

𝝉

𝟎
                                                         Eq 2.5 

Right after the RF excitation (t = 0), the longitudinal (𝑀𝑧) and transversal magnetization 

(𝑀𝑥𝑦) is defined by equation 2.6: 

𝑴𝒛 = 𝑴𝟎𝒄𝒐𝒔𝜶 ,        𝑴𝒙𝒚 = 𝑴𝟎𝒔𝒊𝒏𝜶                                     Eq 2.6 

 

Figure 2.3. RF excitation process. A 𝑩𝟏
⃗⃗⃗⃗  ⃗ field is applied perpendicular to the main magnetic field 

and the magnetization rotates around the 𝑩𝒆𝒇𝒇
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ . At the end of this process, the magnetization is 

tipped to the transverse plane. It will recover back to its thermal equilibrium state, which is called 

free-induction decay (FID). 
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2.2.4) Relaxation  

 After each change in magnetization caused by an RF pulse, the spins return to their 

equilibrium state. This dynamic process is called relaxation, which can be described by two 

independent time constants – longitudinal relaxation time (T1) and transverse relaxation time (T2 

and T2
*).  

Longitudinal relaxation time (T1) is a time constant describing the recovery rate of 

longitudinal magnetization (𝑀𝑧) back to thermal equilibrium state. This is caused by the energy 

exchange or dissipation between spins and their surroundings, so it is also called spin-lattice 

relaxation. Since T1 is highly associated with the surrounding environment, tissues with different 

compositions have different T1 values. The Bloch equation describes the longitudinal relaxation 

mechanism by equation 2.7. Where 𝑀0  is the equilibrium magnetization and 𝑀𝑧(0)  is the 

longitudinal magnetization at time t=0, which is described by equation 2.6. 

𝒅𝑴𝒛

𝒅𝒕
=

𝑴𝟎 − 𝑴𝒛

𝑻𝟏
 

𝑴𝒛(𝒕) = 𝑴𝟎 (𝟏 − 𝒆
−

𝒕

𝑻𝟏) + 𝑴𝒛(𝟎)𝒆
−

𝒕

𝑻𝟏                                 Eq 2.7 

 For example, if the flip angle α equals 90°, after one time constant T1, Mz recovers to 63% 

of the thermal equilibrium state M0. 

Transverse relaxation time (T2) is a time constant describing the decay rate of transverse 

magnetization (𝑀𝑥𝑦). This is caused by the spin-spin interactions, i.e. the nuclei or molecules have 

their own small magnetic fields that interact with each other. As spins are tipped to the transverse 

plane, they precess at different rate due to random spin-spin interactions, which causes the 
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dephasing of spins. The amplitude of transverse magnetization depends on the degree of coherence 

of the spins, which means it decreases as the spins dephase. Note that this T2 decay effect is 

irreversible since the spin-spin interaction is random, it can’t be reversed using a 180° pulse. The 

Bloch equation describes the transverse relaxation mechanism by equation 2.8.  

𝒅𝑴𝒙𝒚

𝒅𝒕
= −

𝑴𝒙𝒚

𝑻𝟐
 

              𝑴𝒙𝒚(𝒕) = 𝑴𝒙𝒚(𝟎)𝒆
−

𝒕

𝑻𝟐                                               Eq 2.8 

After one time constant T2, Mxy decays to 37% of initial state Mxy(0). Both T1 recovery and 

T2 decay are intrinsic property of the spins, they are largely independent of the field strength B0.  

Figure 2.4. (Left) Longitudinal relaxation or T1 recovery (90° RF case); (Right) transverse 

relaxation or T2 decay. Blue and red curves represent two different tissues. TR: repetition time; 

TE: echo time. 

 

In reality, due to magnetic field inhomogeneity and susceptibility effects, the transverse 

magnetization dephases faster than what described by T2. The “true” transverse relaxation T2
* is 
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affected by spin-spin interactions (T2) and field inhomogeneity (T2’), which is described by the 

following equation 2.9. Note T2’ can be reversed by a 180° pulse. 

𝟏

𝑻𝟐
∗ =

𝟏

𝑻𝟐
+

𝟏

𝑻𝟐
′                                       Eq 2.9 

2.3)  MR Imaging 

Utilizing the fundamental properties of NMR phenomena, MR signals can be non-

invasively detected from the inside of a living subject in a strong magnetic field. However, there 

is no localizing information in the main magnetic field, i.e. the detected MR signals have the same 

resonance frequency and we can’t distinguish where the signals came from. Here we introduce 

slice selection, frequency encoding and phase encoding methods to localize the MR signals.  

2.3.1) Slice Selection 

 To tip magnetization onto the transverse plane, the RF pulse must match the Larmor 

frequency of the spins. This can be utilized to only excite spins in the slice/volume of interest by 

slightly varying the magnetic field strength along z direction using a slice-selective gradient (𝐺𝑧). 

Desired slice profiles are selected by using a slice-selective gradient to regionally alter the Larmor 

frequency of spins while simultaneously applying an excitation RF pulse with matching 

bandwidth. The slice thickness ∆𝑧 is linearly proportional to the bandwidth (BW) of the RF-

excitation pulse. The relationship between Larmor frequency and slice-selective gradient is 

described by equation 2.10, where 𝜔𝐿𝑎𝑟𝑚𝑜𝑟(𝑧) is the Lamor frequency at positon z along the slice 

direction, and 𝐺𝑧 is the slice-selective gradient. 

     𝝎𝑳𝒂𝒓𝒎𝒐𝒓(𝒛) = 𝜸(𝑩𝟎 + 𝑮𝒛𝒛)                                              
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  𝑩𝑾 = 𝝎(𝒛𝟏) − 𝝎(𝒛𝟏) = ∆𝝎𝑳𝒂𝒓𝒎𝒐𝒓 = 𝜸𝑮𝒛∆𝒛                                Eq 2.10 

 

 

2.3.2) Frequency and Phase Encoding 

Frequency (𝐺𝑥) and phase (𝐺𝑦) encoding enable the localization of 2-dimensional (2D) 

information in the slice selected by the z-gradient. For 3D imaging, an additional partition 

encoding gradient (𝐺𝑠) is required to control the Larmor frequency in the partition direction (z).The 

Larmor frequency for a given spatial position (x, y) in 2D and (x, y, z) in 3D is described by 

equation 2.11. 

𝝎𝑳𝒂𝒓𝒎𝒐𝒓(𝒙, 𝒚) = 𝜸(𝑩𝟎 + 𝑮𝒙𝒙 + 𝑮𝒚𝒚)     

   𝝎𝑳𝒂𝒓𝒎𝒐𝒓(𝒙, 𝒚, 𝒛) = 𝜸(𝑩𝟎 + 𝑮𝒙𝒙 + 𝑮𝒚𝒚 + 𝑮𝒔𝒛)                          Eq 2.11 

 As shown in Figure 2.5, the main magnet generates main magnetic field (B0), the gradient 

coils generate spatial encoding gradients and the RF coils are used to generate and receive MR 

signals. 
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Figure 2.5. Simplified MRI system and location of coils. 

 

2.3.3) K-space Formulation 

 With the principles introduced above, the transverse magnetization and its dependence on 

the spatial varying Larmor frequency can be described with equation 2.12 in 2D case. 

𝑴𝒙𝒚(𝒕) = 𝑴𝒙𝒚(𝟎) ∙ 𝒆
−

𝒕

𝑻𝟐 ∙ 𝒆𝒊 ∫ 𝝎𝑳𝒂𝒓𝒎𝒐𝒓(𝒙,𝒚)𝒅𝝉
𝒕
𝟎                                      

𝑴𝒙𝒚(𝒕) = 𝑴𝒙𝒚(𝟎) ∙ 𝒆
−

𝒕

𝑻𝟐 ∙ 𝒆𝒊 ∫ 𝜸(𝑩𝟎+𝑮𝒙𝒙+𝑮𝒚𝒚)𝒅𝝉
𝒕
𝟎                               Eq 2.12 

Substituting in: 

 𝒌𝒙 = 
𝜸

𝟐𝝅
∫ 𝑮𝒙(𝒕) 𝒅𝝉,

𝒕

𝟎
  𝒌𝒚 = 

𝜸

𝟐𝝅
∫ 𝑮𝒚(𝒕)𝒅𝝉

𝒕

𝟎
, 𝝎𝟎 =  𝜸𝑩𝟎 

 Yields:  

       𝑴𝒙𝒚(𝒕) = 𝑴𝒙𝒚(𝟎) ∙ 𝒆
−

𝒕

𝑻𝟐 ∙ 𝒆𝒊𝝎𝟎𝒕 ∙ 𝒆𝒊𝟐𝝅(𝒌𝒙𝒙+ 𝒌𝒚𝒚)                                   Eq 2.13                   

 When the receiver coils acquire the data in frequency domain, the signal 𝑺(𝒕)  is 

proportional to the spatial summation of the transverse magnetization (Equation 2.14).   
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𝑺(𝒕) = 𝒄 · 𝒆𝒊𝝎𝟎𝒕 ∬ 𝑴𝟎(𝒙, 𝒚) ∙ 𝒆
−𝒕

𝑻𝟐 · 𝒆𝒊𝟐𝝅(𝒌𝒙𝒙+ 𝒌𝒚𝒚)∞

−∞
𝒅𝒙𝒅𝒚                         Eq 2.14 

 This indicates the MR signal we measured in k-space 𝑺(𝒌𝒙, 𝒌𝒚), and the underlying image 

𝑴𝟎(𝒙, 𝒚) ∙ 𝒆
−𝒕

𝑻𝟐 (denote as 𝑰(𝒙, 𝒚)) are Fourier Transform pair. In other words, the inverse Fourier 

transform of 𝑺(𝒌𝒙, 𝒌𝒚) yields the image 𝑰(𝒙, 𝒚) encoded by the MRI pulse sequence. 

2.3.4) Imaging Parameters 

 The connection between k-space and image space can be further explored for creating the 

optimal MR images. MR image characteristics such as field-of-view (FOV), image spatial 

resolution, the readout bandwidth, and image SNR are controlled by the gradient amplitudes, 

gradient durations, and the total number lines acquired. 

 The relationship between imaging FOV and sampling rate is described in equation 2.15, 

where 𝜟𝒌𝒙 is the distance between sampling points in k-space along x direction. 

𝑭𝑶𝑽𝒙 =
𝟏

𝜟𝒌𝒙
                                                  Eq 2.15 

Equation 2.16 describes the spatial resolution of an acquired MR image, where 𝑵𝒓𝒆𝒂𝒅 is 

the number of readout points along x direction and 𝛥𝜏𝑥  is the time duration for each readout 

sample.  

𝜟𝒙 =
𝑭𝑶𝑽𝒙

𝑵𝒓𝒆𝒂𝒅
=

𝟏

𝑵𝒓𝒆𝒂𝒅·𝜟𝒌𝒙
= 

𝟏

𝟐𝒌𝒙,𝒎𝒂𝒙
=

𝟏
 𝜸

𝟐𝝅
𝑮𝒙 𝝉𝒙

                             Eq 2.16 

The readout bandwidth (BW) is defined by the sampling rate for the ADC (equation 2.17). 

𝑩𝑾𝒓𝒆𝒂𝒅 =
𝟏

𝜟𝝉
=

𝟏
 𝜸

𝟐𝝅
𝑮𝒙 𝑭𝑶𝑽𝒙

                                         Eq 2.17 
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Finally, the image signal-to-noise ratio (SNR) represents the ability for the true signal of 

the MR image to be displayed in comparison with the underlying noise. SNR is proportional to 

voxel size and inversely proportional to the bandwidth.  

𝑺𝑵𝑹 ∝ 𝜟𝒙𝜟𝒚𝜟𝒛√
𝟏

𝑩𝑾𝒓𝒆𝒂𝒅
                                         Eq 2.18 

2.4) Pulse Sequence 

 Pulse sequences are used to acquire images with desired image contrast by controlling the 

RF pulse, spatial encoding gradients, ADC and etc. Three common pulse sequence types in MRI 

are spin echo (Figure 2.6), gradient echo (GRE) (Figure 2.7A and B), and balanced steady-state 

free precession (b-SSFP) (Figure 2.7C). 

2.4.1) Spin Echo 

During spin-echo, a 90° excitation RF pulse is combined with 180° RF pulse to produce a 

detectible echo (Figure 2.6). The use of 180° RF refocusing of transverse magnetization makes 

spin echo sequences resistant to artifact due to inhomogeneity in the magnetic fields. As such, spin 

echo sequences are used for T2 weighted imaging. 
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Figure 2.6. A) Pulse sequence diagram for spin echo acquisition. B) A 90° RF pulse excites spins 

onto transverse plane, while a subsequent 180° RF pulse produces a detectible echo by refocusing 

transverse magnetization dephasing due to inhomogeneity in magnetic field. Spin echo is 

inherently resistant to field inhomogeneity, making it an ideal tool for T2 weighted imaging.  

 

2.4.2) Gradient Echo 

As shown in figure 2.7B, GRE sequences rely on pre-phasing gradient lobe for frequency 

encoding and inducing a detectible echo at TE. In GRE, transverse magnetization is spoiled after 

every TR using RF and/or gradient spoiling to prevent any residual transverse magnetization from 

undergoing additional RF excitations. Spoiled GRE with short TE and short TR are used for T1 

weighted imaging. 

2.4.3) Balanced Steady-State Free Precession 

The standard GRE sequence can be altered to produce b-SSFP imaging by balancing all 

gradient within every TR. Unlike spoiled gradient echo, b-SSFP does not utilize spoiler gradients, 
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but rather allows for transverse magnetization from previous RF excitations to undergo addition 

RF pulses to produce T2/T1 contrast. T2/T1 contrast is especially desirable in creating high contrast 

to noise ratio (CNR) for blood and myocardium. In b-SSFP imaging, TE and TR are minimized to 

reduce off-resonance, susceptibility, and inhomogeneity artifacts. 

 

Figure 2.7. A) A pulse sequence diagram for GRE. Short TE and short TR spoiled GRE sequences 

are used for T1 weighted imaging. B) Pre-phasing gradients are used to produce detectible echo, 

resulting in signal sensitivity to T2
* transverse relaxation and inhomogeneity in the magnetic field.  

C) A pulse sequence diagram for a b-SSFP. B-SSFP imaging is a GRE acquisition for which all 

gradients are balanced within a TR resulting in T2/T1 contrast.  

 

2.4.4) CMR Clinic Usage 

GRE and b-SSFP are the most popular CMR clinical pulse sequences. The need for both 

an excitation and refocusing pulse in spin-echo makes these sequences undesirably slow for 

cardiac MR imaging, except for T2 mapping in which edema is visualized (23). In contrast, the 

short TE and TR characteristic of GRE and b-SSFP have made these sequences the staple of CMR. 
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GRE is regularly used for cardiac viability, scar quantification, and hemodynamic assessment. B-

SSFP is regularly used for cardiac function and angiographic assessment. 
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Chapter 3: Acceleration Techniques for CMR 

3.1) Overview 

 From chapter 2, MR data acquisition is done in k-space and line-by-line. Each k-space line 

requires specific spatial encoding, which makes this technique relatively slow compared to other 

imaging modalities. For a single MR image, we are assuming the object is “frozen” during data 

acquisition (i.e. like taking a snapshot), otherwise, it will be subjected to motion artifacts. This 

fundamental assumption has made cardiac MR even more challenging than imaging other organs 

due to cardiac motion and respiratory motion. Therefore, one of the main areas of research to 

improve CMR is to accelerate the scan, thus reduce its cost and increase CMR utility. Significant 

amount of research has been done to overcome this limitation. This section will introduce several 

acceleration techniques such as radial k-space sampling, parallel imaging, compressed sensing, 

and deep learning. 

3.2) K-space Sampling 

 Nyquist-Shannon sampling theorem states that to accurately measure a signal, the digital 

sampling rate must be greater than twice its maximum frequency contained within that signal (24). 

However, the data acquisition time will be too long to meet Nyquist with reasonable spatial 

resolution. If we want to accelerate data acquisition by undersampling the k-space, there will be 

aliasing artifacts related to sampling patterns, i.e. wrapping around artifacts with Cartesian 

sampling, streaking artifacts with radial sampling and rotating artifacts with spiral sampling 

(Figure 3.1). The main directions to overcome this is to: 1) design the sampling pattern wisely to 
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reduce the impact of undersampling aliasing artifacts; 2) use dealiasing methods to remove the 

aliasing and bring back the clean images. 

 

Figure 3.1. Undersampling aliasing artifacts. A), b) and c) are Cartesian, radial and spiral k-space 

sampling patterns that are below Nyquist sampling rate. D), e) and f) are the corresponding images 

with aliasing artifacts. 

 

Cartesian k-space acquisition is the most popular sampling pattern in the clinic (25). In 

Cartesian sampling, individual readouts are acquired at multiple phase encoding locations by 

sweeping along the phase encoding (PE) direction in a sequential manner on a rectangular grid. 

Fourier transform can be directly applied to the Cartesian k-space to produce reconstructed images. 

In Cartesian acquisition, the center of k-space is acquired only once by the center line, which 
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results in sensitivity to motion artifact (26). Regular undersampling strategies for Cartesian 

sampling results in coherent aliasing along the PE direction (Figure 3.1d).  

Radial k-space acquisition is another popular k-space sampling scheme. In radial sampling, 

projections are acquired in a star like pattern during which the center of k-space is sampled every 

line. Since the readout points don’t exactly fall on Cartesian grid, a non-uniform Fourier transform 

(NUFFT)  is used to grid the polar data onto a Cartesian gird (27). Radial sampling has multiple 

advantages over Cartesian k-space sampling such as lower sensitivity to undersampling aliasing 

artifact and motion artifacts. The aliasing artifact is more benign, i.e. the main structure/contrast 

of the object can still be recognized, because it always oversample the center k-space. This 

property combined with advanced image reconstruction techniques can achieve high acceleration 

factor and make undersampled radial imaging very fast. However, radial sampling suffers from 

multiple disadvantages compared to Cartesian sampling including: slow NUFFT gridding, lower 

SNR (28), sensitivity to  trajectory errors (29), and sensitivity to eddy currents (30). 

Spiral k-space acquisition is not used very often in clinic. In spiral sampling, it can cover 

the entire k-space in a single shot, but can also be used with a large number of interleaves for high 

resolution scans. While it has great potential for fast imaging, it’s more sensitive to trajectory 

errors caused by hardware imperfections. Therefore, it is typically desirable to perform a one-time 

calibration for gradient delays and eddy currents for spiral imaging (31-33).  

3.3) Parallel Imaging 

There are many approaches to overcome the Nyquist limit. Parallel imaging is the hardware 

approach that has been applied on all clinical MRI scanners. Instead of having one big receiver 
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coil, independent coil arrays are used to receive MR signals in parallel. Each coil is sensitive to 

local spatial regions near its location (34), and data acquired from each individual coil are 

combined with specially designed reconstruction algorithms to removing aliasing artifact. The two 

most popular parallel imaging algorithms are sensitivity encoding (SENSE) (35), and generalized 

auto-calibrating partially paralleled acquisitions (GRAPPA) (36). 

As shown in Figure 3.2, for an MR signal arising from point A in the patient, the 

sensitivities of Coils 1 and 2 for detecting that signal will be denoted S1A and S2A respectively. 

Similarly, the coil sensitivities for any other point B are also known and will be denoted S1B and 

S2B. When the data from each coil are reconstructed into images, significant wrap-around aliasing 

artifact is present. Each pixel (P) in the ½ FOV images has a signal that is the sum of contributions 

from two points (A and B) in the patient. The pixel values from Coils 1 and 2 (P1 and P2) are 

defined by equation 3.1. 

𝑷𝟏 =  𝑨 • 𝑺𝟏𝑨 + 𝑩 • 𝑺𝟏𝑩  

𝑷𝟐 =  𝑨 • 𝑺𝟐𝑨 +  𝑩 • 𝑺𝟐𝑩    Eq 3.1 

Since the Pi's and Si's are all known, the true signals (A and B) can be calculated by simple 

algebraic methods for solving 2 simultaneous equations with 2 unknowns. 
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Figure 3.2. In SENSE, coil sensitivity profiles combined with undersampled images from each 

coil are used to solve for the ground truth image.   

 

In GRAPPA, auto-calibration signal (ACS) obtained from additional k-space lines 

obtained during the MR scan are used to fill in the missing of k-space data. The GRAPPA 

algorithm utilizes GRAPPA kernel to find the GRAPPA weights which can provide the 

mathematical relationship between local multi-coil k-space data (source) to the Nyquist sampled 

k-space (target) (34). The kernel is slid across the k-space data to regions of undersampling, and 

the resulting weights obtained from ACS are used to fill in unknown k-space information. Like 

SENSE, GRAPPA reconstruction will exhibit greater degree of residual artifact at higher 

acceleration factors. One advantage of using GRAPPA over SENSE is that GRAPPA does not 

need sensitivity profiles. 
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3.4) Compressed Sensing 

Nyquist sampling theorem indicates that by undersampling the signal, the resolved signal 

from the samples is no longer unique. In other words, the unknowns we have are more than the 

equations, which makes the solution to our problem no longer unique and that is where the aliasing 

comes from, i.e. because we cannot tell whether it is artifact or true signal by only calculating from 

our sampled data. But in most cases, we can tell the difference between aliasing and true signal 

from our experience, i.e. human brain is not overlapped. We are using our previous knowledge 

about the data to do so.  

With the same principle, if we know the ground truth signals are sparse in certain transform 

domains, we can force the sparsity in the sampled signal to remove the aliasing, which is so called 

compressed sensing (CS). Shown in Figure 3.3, compressed sensing theory asserts that signals can 

be reconstructed using sampling rates much lower than the Nyquist if two conditions are met: 1) 

the signal is compressible allowing for sparse representation in a known transform domain, and 2) 

the signal frequency information was randomly sampled (37). Once these two conditions are met, 

aliasing artifact appears as noise-like artifact in the transform domain and can be removed using 

de-noising algorithms. 
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Figure 3.3. Diagram for compressed sensing. A sparse signal is undersampled by a factor of 4. 

Uniform Cartesian undersampling results in coherent aliasing artifact that cannot be recovered. 

Pseudorandom radial k-space sampling produces noise like incoherent aliasing artifact that can be 

removed using de-noising algorithm allowing for the recovery of the original signal.  

 

Compressed sensing is typically combined with SENSE, when a MR image (m) can be 

represented sparsely in a known transform domain W (sparsifying transform), it can be recovered 

from undetermined system of equation by solving the L1 norm minimization problem as shown by 

equation 3.2.  

𝐦𝐢𝐧
𝒎

‖𝑬𝒎 − 𝒚‖𝟐
𝟐 + 𝛌‖𝑾𝒎‖𝟏        Eq 3.2 

Where E represents the multi-coil sampling operator, y is the acquired multi-coil 

undersampled data, and λ is the Laplacian weight which controls the trade-off between signal 

sparsity and data fidelity (‖𝐸𝑚 − 𝑦‖2
2). Note, if λ is set to 0, then the optimization problem reverts 

to iterative SENSE parallel imaging framework as previously described.  

Finding the appropriate sparsifying transform for a given application is an important aspect 

of CS reconstruction, and currently an active area of research. For instance, Wavelet (37, 38) and 
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spatial temporal variation (39) transformation have been used to reconstruct undersampled 2D MR 

acquisition. Temporal finite difference (40, 41), temporal Fourier transform (42), and temporal 

principal component analysis (16) have been used for reconstruction of dynamic MR imaging. 

Both spatial and temporal sparsifying transform have been combined to improve CS images (41). 

The introduction of CS to MRI has revolutionized cardiovascular MRI with unprecedented 

imaging speed that enables real-time, free-breathing scans. However, its clinic translation has been 

limited due to the increased reconstruction time for iterative optimization, which can’t give the 

results immediately after each scan. To overcome the long reconstruction time, the most effective 

way is to use deep learning (DL). 

3.5) Deep Learning 

 Deep learning is a subfield of machine learning concerned with algorithms inspired by the 

structure and function of the brain called artificial neural networks (ANNs). The learning can be 

supervised, semi-supervised or unsupervised (43-45) and it has been applied to fields including 

computer vision, speech recognition, natural language processing, audio recognition, social 

network filtering, machine translation, medical image analysis, etc. It has also been successfully 

applied to a wide variety of MRI related problems such as segmentation (46), classification (47), 

and image reconstruction (48-50). This dissertation will only focus on supervised learning using 

convolutional neural networks (CNNs) for MR image reconstruction and segmentation.  

3.5.1) Multilayer Perceptron 

The concept of neural network comes from multilayer perceptron (MLP). As shown in 

Figure 3.4, multilayer perceptron usually consists of input layer, hidden layer and output layer that 
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are fully connected to each other. Each node is a neuron that uses a nonlinear activation function, 

such as rectified linear unit (ReLU), to model the frequency of action potentials of biological 

neurons. This can be taken as solving the weights of a bunch of linear equations with known 

input/output pairs. In theory, the equations can be solved with enough input/output pairs using 

backpropagation, while the fully-connectedness of the networks makes them prone to overfitting 

and requires large GPU RAM when the data becomes large (i.e. images with millions of pixels).  

 

Figure 3.4. Multilayer perceptron usually consists of input layer, hidden layer and output layer 

that are fully connected to each other. 

 

3.5.2) Convolutional Neural Network 

Convolutional neural networks are regularized version of multilayer perceptrons. Instead 

of fully connected, CNNs take advantage of the hierarchical pattern in data and assemble more 
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complex patterns using smaller and simpler patterns. Convolutional kernels (i.e. 3x3 matrix for 

2D, 3x3x3 for 3D) are used to convolve with input images to detect certain image features such as 

edges and corners. These features are learning during the training process that best represent the 

processing from input data to output data. Using convolutional kernels is advantageous because of 

its ability to learn local correlations in a shift invariant way, and because it reduces the number of 

weights in a network (51). CNNs also utilize non-linear activation (i.e. ReLU) to determine the 

information retained from outputted feature maps. 

 

Figure 3.5. An example for convolution operations. An image is convolved with multiple 3x3 

convolutional kernels to get feature maps.  

 

In addition to convolutional layer, there are other layers such as pooling layer and batch 

normalization layer. Pooling layers are used to down sample an image, which allows the network 

learn high level patterns of the image. It is extremely important for image segmentation, where the 

relative spatial location is very important. These different layers/operations consist of a CNN 

architecture, such as U-Net(52), Generative Adversarial Network (GAN)(53), Cascade CNN(54), 

etc. As shown in Figure 3.6, the input/output pairs are fed into a U-Net to train the weights in the 
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network. Gradient optimization algorithms such as stochastic gradient descent, or ADAM 

optimizer are used to update network kernel weights by back-propagation. While the iterative 

training process may take hours to days to finish, the testing process is very fast (on the order of 

seconds per case). With deep learning, clinic translation is possible for highly accelerated 

acquisition methods.  

 

Figure 3.6. 3D U-Net for 2D + time image reconstruction. The undersampled aliasing images are 

used as inputs and the CS reconstructed clean images as reference. The network will learn the 

dealiasing process during iterative training. For testing, the trained network is applied to testing 

inputs and making it significantly faster than CS.  

 

3.6) Discussion 

Cartesian k-space acquisition is the most widely used k-space sampling pattern in clinic 

but suffer from coherent aliasing when undersampled. Cartesian k-space sampling is also sensitive 

to arrhythmia and respiratory motion. Radial sampling pattern is more robust with respect to 

motion artifact and aliasing, but suffers from lower SNR, sensitivity to eddy currents, and 

sensitivity to gradient delay. Radial undersampling resistance to aliasing artifact makes it an ideal 

candidate for accelerated acquisition but requires additional processing (i.e. parallel imaging, CS, 

and DL) for best performance. 
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  As stated previously, three major reconstruction methods for accelerated MRI acquisitions 

are parallel imaging, CS, and DL. One limitation of parallel imaging is the relatively low 

achievable acceleration rates R=2-3 (55) compared to CS (R = 3 static imaging (56), R > 6  

dynamic imaging (49, 57-59)). One advantage of using parallel imaging is that both SENSE and 

GRAPPA reconstruction are fast, allowing for inline reconstruction. While CS can achieve higher 

acceleration factor, the major disadvantage of CS is the relatively long reconstruction times. For 

instance, CPU based CS can require hours (42) and GPU based CS can require minutes to 

reconstruct MR images (49, 60). DL can accelerate MR imaging at similar or greater acceleration 

factors compared to CS (54, 61, 62), but at a much faster rate (on the order of seconds). The main 

disadvantage of DL is the need for large training data sets for training. Acquiring training data, 

especially high quality reference data, can be challenging given the dearth of available MR raw 

data.  
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Chapter 4: Single-Shot Coronary QISS MRA using Compressed 

Sensing 

4.1) Introduction   

Congenital heart disease (CHD) is the most common type of birth defect, accounting for 

nearly 1% of live births in the US (63, 64). Non-invasive assessment of coronary origins is critical 

for planning surgical intervention and cardiac catheterization in patients with CHD. For example, 

coronary imaging is necessary for patients who undergo an arterial switch operation for 

transposition of the great arteries along with coronary arteries (65, 66). While echocardiography 

is the first line imaging test for evaluation of coronary origins, its accuracy worsens as the pediatric 

patients grow in size (67). Computed tomography (CT) and magnetic resonance imaging (MRI) 

are two available non-invasive imaging tests for coronary angiography. Compared with adults, 

children have smaller hearts and faster heart rates, both posing greater challenges for producing 

diagnostically acceptable image quality.  

Cardiac CT examination involves ionizing radiation and iodinated contrast agent 

administration, both of which are concerning for pediatric patients (68, 69). While pediatric 

cardiovascular magnetic resonance angiography (MRA) does not involve radiation, it typically 

involves gadolinium-based contrast agent (GBCA)(69). Gadolinium has been reported to be 

deposited in the brain even in the setting of normal renal function (70-74), including in children 

(75, 76). Despite the lack of evidence linking adverse side effects to the gadolinium deposition in 

the brain (77), is nevertheless concerning. In addition, MRA examinations may require general 

anesthesia in young children to obtain high-quality images. Mounting evidence from animal and 
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human studies suggest that general anesthetics may cause neurotoxic changes in the developing 

brain that lead to adverse neurodevelopmental outcomes later in life. Thus, there is a clinical need 

to develop pediatric cardiovascular MRA methods that do not require GBCA or anesthesia. 

Non-contrast MRA is an alternative test for coronary angiography without requiring 

administration of GBCA. Among a family of non-contrast MRA methods (78),  navigator-gated, 

T2-prepared balanced steady state free precession (b-SSFP) MRA (79) is the most commonly used 

method in adults. This 3D coronary MRA pulse sequence has been shown to produce clinically 

acceptable image quality in adults with a scan time on order of 10 min (80-82), whereas a breath-

hold version is less likely to produce clinically acceptable image quality because of high data 

acceleration (83). Because a 3D cardiovascular MRA pulse sequence with high spatial resolution 

generally requires long scan time, it is ill-suited to relax the need for anesthesia during pediatric 

cardiovascular MRI. This study seeks to test the feasibility of single-shot coronary MRA without 

requiring GBCA or anesthesia for future use in pediatric patients. 

  One potential solution for real-time MRA is the recently developed coronary Quiescent-

Interval Slice-Selective (QISS) MRA (84) based on radial k-space sampling. The original 

implementation was evaluated in adults as a breath-hold version, where 10 continguous 2D images 

were acquired in a single breath-hold of 20 heart beats (i.e., 2-shots spread over 2 heart beats per 

image). To date, coronary QISS MRA has not been evaluated in patients with CHD, and single-

shot coronary QISS MRA has not been evaluated in any cohort. Compared with previously 

described 2-shot coronary QISS MRA, advantages of real-time coronary QISS MRA include 

capability of relaxing the need for anesthesia during pediatric caridiovascular MRI and being less 

sensitive to irregular heart rhtyhm or motion. In this study, we sought to test whether it is feasible 
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to visualize the coronary origins in patients with CHD using single-shot coronary MRA with 

compressed sensing (CS)(85). Success of this study will serve as an important step towards clinical 

translation of real-time coronary QISS MRA in pediatric patients.  

4.2) Methods 

4.2.1) Patients Demographics  

This is a retrospective study involving 14 patients with CHD (mean age = 17.0 ± 8.6 years; 

8 males; 6 females; see Table 4.1 for relevant clinical profiles). This study leveraged a parent study 

which was aimed to comparing previously described breath-hold coronary QISS MRA and clinical 

standard contrast-enhanced (CE) MRA. From this point forward, previously described coronary 

QISS MRA will be referred to as 2-shot QISS MRA and accelerated coronary QISS MRA with 

CS will be referred to as single-shot QISS MRA. The study was approved by the local ethics board, 

and informed consent was obtained from all participants (or parents) for QISS MRA. We evaluated 

the feasibility of single-shot coronary QISS MRA by retrospectively undersampling the raw data 

of 2-shot coronary QISS MRA, performing CS reconstruction, and comparing the retrospectively 

derived single-shot QISS MRA to 2-shot coronary QISS MRA and clinical CE MRA. Both general 

anesthesia and GBCA (0.12 ml/kg of gadofosveset trisodium or ABLAVAR, Lantheus Medical 

Imaging, MA, USA) were administered using clinical standard protocols, and this research study 

had no bearing on these clinical protocols. 

As a secondary evaluation, we prospectively scanned three adult patients (3 male, mean 

age = 58.7 ± 6.5 years) who underwent clinical cardiovascular MRI and performed breath-hold, 2-
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shot QISS MRA (reference) and free-breathing, single-shot coronary QISS MRA with otherwise 

identical imaging parameters. 

 

Characteristic  

Age 17.0 ± 8.6 years 

Females 6/14 (42.9%) 

Heart Rate 80.8 ± 19.7 bpm 

RV dilatation 5/14 (36%) 

Aortic root dilatation 4/14 (29%) 

BAV 2/14 (14%) 

Pulmonary atresia 2/14 (14%) 

VSD 2/14 (14%) 

TOF 2/14 (14%) 

Ascending Aorta dilatation 2/14 (14%) 

RPA abnormality 2/14 (14%) 

LV hypoplasia 2/14 (14%) 

Pulmonary regurgitation 2/14 (14%) 

Aortic coartctation 2/14 (14%) 

Tricuspid valve hypoplasia 1/14 (7%) 

Right ventricular outflow 

tract obstruction 
1/14 (7%) 

Marfan 1/14 (7%) 

Thoracolumbar scoliosis 1/14 (7%) 

Pectus excavatum 1/14 (7%) 

DORV 1/14 (7%) 

Mitral valve atresia 1/14 (7%) 

Myocardial hypertrophy 1/14 (7%) 

Tricuspid valve prolapse 1/14 (7%) 

LPA dilatation 1/14 (7%) 
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Mitral valve prolapse 1/14 (7%) 

Double Outlet Left Ventricle 1/14 (7%) 

Table 4.1. Pertinent clinical profiles of 14 patients enrolled in this study. BAV: Bicuspid aortic 

valve; VSD: Ventricular septal defect; TOF: tetralogy of Fallot; DOVR: Double outlet right 

ventricle. 

 

4.2.2) Hardware  

A prototype two-shot coronary QISS MRA pulse sequence was implemented on a whole-

body 1.5T scanner (MAGNETOM Aera, Siemens Healthineers, Erlangen, Germany). This scanner 

was equipped with a gradient system capable of achieving a maximum gradient strength of 45 

mT/m and a slew rate of 200 T/m/s. The RF excitation was performed using the body coil. Standard 

multi-coil arrays (anterior and spine elements, typically 36 elements total) were employed for 

signal reception. 

4.2.3) Pulse Sequence 

Relevant imaging parameters of coronary QISS included: field of view (FOV) = 180 mm 

× 180mm, image acquisition matrix size = 128 × 128, spatial resolution = 1.4 mm x 1.4 mm, slice 

thickness = 2.1 mm, cardiac triggering, 96 rays per 2D image (or 48 rays per heart beat), 2 heart 

beats per 2D image, 13.123 angular increments between successive rays, flip angle 140°, TE = 

1.9 ms, TR =  3.7 ms, receiver bandwidth = 1,000 Hz/pixel, fat suppression, and α/2 flip-back 

pulse immediately before b-SSFP readout, number of slices = 10, inversion time (TI) = 650 ms 

following in-plane frequency offset corrected inversion (FOCI) pulse (86). Using scout images 

displaying the left ventricular outflow tract, QISS MRA was prescribed perpendicular to the 
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outflow tract and parallel to the aortic valve plane in order to sample the coronary origins. 

Coronary QISS MRA was always performed before GBCA was administered. 

Navigator-gated, CE 3D MRA based on inversion recovery with gradient echo readout was 

performed using the following imaging parameters: FOV = 340 mm x 319 mm, image acquisition 

matrix = 224 x 210, spatial resolution = 1.5 mm x 1.5 mm, slice thickness = 2.4 mm (interpolated 

to 1.5 mm as per clinical protocol), slices = 104 (23.1% oversampling), cardiac triggering, 

GRAPPA parallel imaging factor = 1.9, receiver bandwidth = 485 Hz/pixel, TI = 260 ms, flip angle 

= 18 °, TE = 1.35 ms, TR = 3.3 ms, scan time on the order of 5-15 min (depended on patient’s 

breathing pattern), and centric k-space ordering. CE-MRA was prescribed in a coronal plane. 

Standard dose (0.12 ml/kg) of gadofosveset trisodium was administered using a power injector at 

2-3 ml/s. Note that inversion-recovery 3D MRA was performed following time-resolved MRA. 

4.2.4) Image Reconstruction  

Figure 4.1 illustrates the overall flow chart of image reconstruction. Two-shot QISS data 

were retrospectively undersampled in k-space by a factor of two and then reconstructed using CS. 

We used nonuniform Fast Fourier transform (NUFFT)(87) because it produces less blurring than 

the conventional two-step process with gridding and fast Fourier transform. Coil sensitivities were 

self-calibrated from the low resolution, zero-padded reconstruction using the method described in 

reference (88, 89).     
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Figure 4.1.  A schematic flowchart illustrating the image reconstruction pipeline. Step 1: Two-

shot radial QISS data were undersampled in k-space by a factor of 2. Step 2: an iterative CS 

algorithm was used to reconstruct the results, where spatial TV was used as the sparsifying 

transform. Soft thresholding was used as a pre-step to improve artifact suppression. Radial k-space 

sampling patterns are displayed after down sampling by a factor of 4 for better visualization with 

less clumping. 

We performed two pre-processing steps prior to CS reconstruction. In the first step, we 

performed gradient trajectory correction during post-processing while assuming identical gradient 

shifts around 360 (see Figure 4.2). In the second step, we performed density compensation based 

on the sampling pattern and NUFFT to ensure a fair comparison of intensity between 2-shot and 

1-shot QISS results.   

To remove image artifacts associated with gradient trajectory errors in k-space, we 

performed trajectory correction during post-processing while assuming identical gradient shifts 

around 360. We identified a single shift factor using 6 pilot cases by shifting the rays in k-space 

from -1 to 1 k-space point (0.1 k-space point steps) and identifying the shift that produced the 

lowest artifact in signal-free background. This post-processing correction method was deemed 

reasonable since all data were acquired from a single 1.5T MRI scanner. As shown in Figure 4.2, 
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our analysis showed that -0.3 k-space shift produces the least amount of artifacts from the 

aforementioned range (see plot on right) and consistently showed incremental improvement in 

artifact suppression than without phase correction. 

 

Figure 4.2. Representative QISS images without (default, left column) and with (middle column) 

gradient trajectory correction. (Right column) Mean normalized signal from background (i.e., 

signal-free region) plotted as a function of isotropic shift in k-space. This plot represents result 

from 6 pilot data from the same MRI system. This post-processing approach was used because the 

prototype QISS MRA acquisition did not separately acquire calibration data for gradient trajectory 

correction. 

 

For the iterative CS image reconstruction, an L1-norm optimization was used with spatial 

total optimization (TV) as the sparsifying transform, where the normalized regularization weight 

was 0.000025 relative to the maximum signal. This value was determined empirically based on 

visual analysis of data agreement between 2-shot and 1-shot training data, using a similar approach 

described previously (15, 16). We varied the reconstruction pipeline to determine whether adding 

soft thresholding (@ 0.02% of maximum intensity) as a pre-step filters more residual aliasing 

artifacts than otherwise. All image reconstructions were done offline in MATLAB R2016a 
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software (Natick, MA, USA) on a standard computer with Windows 7. Image reconstruction time 

was recorded to determine clinical feasibility. 

4.2.5) Image Analysis 

We performed both qualitative and quantitative analyses to evaluate results. For 

quantitative analyses, comparison between 2-shot and 1-shot QISS MRA, we calculated the 

structural similarity index (SSIM)(90), normalized root mean square error (NRMSE), and edge 

sharpness to infer data fidelity. Because both 2-shot and 1-shot results share the same data, it was 

possible to compute SSIM and NRMSE over the entire image. For SSIM and NRMSE calculations, 

we generated a mask based on thresholding to exclude signal-free pixels. This step was necessary 

to ensure that these metrics do not include spurious data points from signal-free regions. For edge 

sharpness estimation, we measured intensity profiles through an aorta or atrium to background. To 

increase precision in calculating edge profiles, we interpolated each profile by a factor of 20 and 

measured the spatial distance between 25 percentiles and 75 percentiles of peak intensity value. 

For each of three metrics, the two groups (2-shot vs. 1-shot QISS) were compared using a paired 

(two-tail) t-test, where P < 0.05 was considered statistically significant. We calculated the apparent 

signal-to-noise ratio (SNR) as the mean signal of several regions of interest (ROIs) within 

cardiovascular structures (yellow ROIs in Fig. 4.3) divided by standard deviation of signal free 

background (cyan rectangle in Fig. 4.3), as previously described (91). 
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Figure 4.3.  (Top Row) Representative images of 2-shot QISS (first column), single-shot QISS 

with zero padding (second column), single-shot QISS with spatial TV denoising (third column), 

and single-shot QISS with spatial TV denoising plus soft thresholding (fourth column). 

Superimposed yellow ROIs represent areas used to calculate mean signal. Superimposed cyan 

rectangle represents a background region used to calculate noise. (Bottom Row) Corresponding 

images displayed with a narrow grayscale to bring out background signal. 

 

A total of 39 MRA data sets were randomized and de-identified for visual analysis. One 

pediatric cardiovascular radiologist (CKR) with 17 years of experience and one pediatric 

cardiologist (JDR) with 9 years of clinical experience, respectively, graded the conspicuity of 

coronary origins on a 5-point Likert scale (1 = nondiagnostic, 2 = poor, 3 = clinically acceptable, 

4 = good, 5 = excellent).  The two readers were given training data sets with varying image quality 

to calibrate their scores together prior to actual grading. Following training, each reader was 

blinded to image acquisition type (2-shot QISS, 1-shot QISS, contrast-enhanced MRA), each 

other, and clinical history. For fairness, CE MRA data were reformatted using a 3D viewing tool 
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(Leonardo Workstation, Siemens) to match the FOV, orientation, and spatial coverage as QISS 

MRA. Note that each case (1-shot QISS, 2-shot QISS, CE MRA) was displayed and evaluated 

separately. The mean image quality scores for each side (left and right origins) were compared 

between the three groups (2-shot QISS, 1-shot QISS, CE-MRA) using the Kruskal-Wallis test, 

where Fisher's least significant difference was used to compare each pair. The Bland-Altman 

analysis was used to compute reader agreement. 

4.3) Results 

All 14 cases included coronary origins, except for 1 case where the origins were missed 

due to scanning operator mistake. This one case with limited spatial coverage was excluded for 

qualitative evaluation of image quality of coronary origins but included for quantitative evaluation 

of image quality. 

Figure 4.3 shows representative images comparing 2-shot QISS, 1-shot QISS with zero 

padding (i.e., without CS), 1-shot CS with TV alone, and 1-shot QISS with TV plus soft 

thresholding. As shown in Fig. 4.3, the mean apparent SNR was 24.9, 16.8, 26.4, and 30.6 for 2-

shot QISS, 1-shot QISS with zero padding, 1-shot QISS with TV, and 1-shot QISS with TV plus 

soft thresholding, respectively. Note that an increase in apparent SNR with CS is due to noise 

filtering and is not to be confused with intrinsic SNR. Starting from this point, the remaining 1-

shot QISS results correspond to CS with spatial TV plus soft thresholding. 

Figure 4.4 shows representative edge profiles through blood and background from another 

subject. These profiles show that the results are comparable. Summarizing the results over 14 

patients with CHD, the mean edge sharpness values were not significantly different (P > 0.6) 
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between 2-shot QISS (1.2 ± 0.3 mm) and 1-shot QISS (1.3 ± 0.3 mm). Compared with 2-shot 

QISS, 1-shot QISS produced NRMSE of 5.8 ± 0.8 % and SSIM of 95.4 ± 1.6 %, suggesting high 

data fidelity produced by CS reconstruction. Compared with 2-shot QISS (offline reconstruction 

time = 16.0 ± 0.1 s per 2D image accounting for pre-processing steps and multi-coil NUFFT), 1-

shot QISS required significantly (P < 0.05) longer offline reconstruction time (77.4 ± 0.7 s per 2D 

image accounting for pre-processing steps, multi-coil NUFFT, and CS).  

 

Figure 4.4. Spatial intensity profiles (yellow lines) through blood and background to represent 

edge sharpness:  2-shot QISS (left column) and single-shot QISS with spatial TV plus soft 

thresholding (right column). Edge sharpness was defined as the distance between 25 and 75 

percentiles of peak intensity value.  
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Figure 4.5 shows representative QISS and CE MRA maximum-intensity-projections (MIP) 

in the same orientation and FOV, where both coronary origins are visible. Summarizing the results 

over 13 patients (Table 4.2), compared with visual scores for clinical CE-MRA (4.2 ± 0.5 and 4.1 

± 0.6 for right and left coronary origins, respectively), the mean reader scores were not 

significantly different (P > 0.3) for 2-shot QISS (4.4 ± 0.9 and 4.2 ± 1.1, respectively) and single-

shot QISS (4.3 ± 1.1 and 3.8 ± 1.3, respectively) and deemed clinically acceptable to good (scores 

≥ 3.0). The reader agreement was similar between CE-MRA and coronary QISS MRA (Table 4.3). 

Figure 4.6 shows representative breath-hold, 2-shot QISS (reference) and prospectively 

acquired free-breathing 1-shot QISS MRA obtained from three adult patients. In patient 3 who had 

intermittent arrhythmia during MRI, single-shot QISS produced better image quality than 2-shot 

QISS. Consistent with retrospective results from pediatric patients, these prospective examples in 

adults suggest that it is feasible to produce diagnostically acceptable image quality with real-time 

coronary QISS MRA.  

 

Figure 4.5. Representative maximum-intensity-projections (MIPs) displaying the coronary 

origins: 2-shot QISS (left column), single-shot QISS with spatial TV plus soft thresholding (middle 

column), and CE MRA reformatted to match the orientation of QISS MRA (right column). Yellow 

arrows point to the coronary origins. 
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Figure 4.6. Images comparing prospectively acquired free-breathing, 1-shot coronary QISS (right 

column) to breath-hold, 2-shot QISS (left column) obtained from three adult patients. Yellow 
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arrows point to the coronary origins. The hearts were in different positions between breath-hold 

and free-breathing acquisitions as shown.   

Region Category Reader 1 Reader 2 

Origin of RCA 

2-Shot QISS 4.5 ± 0.8 4.3 ± 1.2 

1-Shot QISS CS 4.4 ± 1.0 4.2 ± 1.2 

CE-MRA 4.2 ± 0.8 4.3 ± 0.5 

Origin of LMCA 

2-Shot QISS 4.2 ± 1.2 4.2 ± 1.1 

1-Shot QISS CS 3.8 ± 1.2 3.8 ± 1.4 

CE-MRA 4.0 ± 0.9 4.2 ± 0.6 

 

Table 4.2. A summary of reader scores from 13 patients with CHD. According to the Kruskal-

Wallis test, the three groups (2-shot QISS, 1-shot QISS, and CE-MRA) were not significantly 

different (P > 0.2) for each coronary origin per reader, as well as combined. The reported values 

represent mean ± standard deviation. RCA: right coronary artery; LMCA: left main coronary 

artery. A 5-point Likert scale (1 = nondiagnostic, 2 = poor, 3 = clinically acceptable, 4 = good, 5 

= excellent). 

 

 

Region Parameter Mean 
Mean 

Difference 

Lower 95% 

Limit 

Upper 95% 

Limit 

Origin of 

RCA 

2-Shot QISS 4.4 -0.2 -1.5 1.2 

1-Shot QISS 

CS 
4.3 -0.2 -0.9 0.6 

CE-MRA 4.3 0.2 -1.4 1.7 

Origin of 

LMCA 

2-Shot QISS 4.2 0.0 -0.8 0.8 

1-Shot QISS 

CS 
3.8 0.0 -1.1 1.1 

CE-MRA 4.1 0.2 -1.6 2.0 
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Table 4.3. A summary of reader agreement as per Bland-Altman analysis. The reader scores were 

in good agreement (i.e., low bias) with similar confidence intervals between 2-shot QISS, 1-shot 

QISS, and CE-MRA. 

 

4.4) Discussion 

This retrospective study shows that it is feasible to visualize the coronary origins in patients 

with CHD with clinically acceptable to good image quality using single-shot, coronary QISS MRA 

with CS. Compared with 2-shot QISS and clinical CE-MRA images, single-shot, QISS images 

obtained with CS reconstruction produced reader scores that were not significantly different. 

Clinically acceptable to good image quality scores are supported by quantitative image metrics 

such as SSIM, NRMSE, and edge sharpness.  

This study warrants several discussion points. First, SNR measurements need to be 

interpreted with caution because CS filters noise and changes the noise distribution. As such, SNR 

values reported in this study should not be confused with intrinsic SNR. Second, we did not explore 

an optimal radial angle for CS reconstruction, because this study was designed as a sub-study of a 

parent study, and we did not have access to the source codes to modify the pulse sequence. 

Additional analysis is needed to determine which radial angle optimally balances signal 

homogeneity and artifacts arising from eddy currents in b-SSFP readout. Third, for clinical 

translation, it is important to consider image reconstruction time with CS. Strategies to reduce the 

reconstruction time in future work may include leveraging graphics processing unit (GPU) 

computing, software coil compression (92), and Split Bregman methods to efficiently solve the L-

1 norm (93). Rapid CS reconstruction is an active area of research within the MRI community, 
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and MR vendors are beginning to advertise CS as a future product. Thus, it is likely that a rapid 

image reconstruction pipeline could become commercially available. Fourth, this study used 

spatial TV and soft thresholding to de-noise undersampled QISS data. It may be possible to 

increase the accelerate rate with other constraints such as non-local-means (94-96), at the expense 

of increased computational demand. Another study is warranted to explore the trade-offs between 

data fidelity and computational demand using different sparsifying transforms. Fifth, advantages 

of single-shot coronary QISS MRA over 2-shot coronary MRA include capability to relax the need 

for anesthesia during pediatric cardiovascular MRI and insensitivity to arrhythmia or motion.   

A rapid NC-MRA method that does not require general anesthesia or GBCA has important 

clinical implications for pediatric cardiovascular MRI. First, it reduces cost by eliminating MR-

compatible anesthesia equipment, specialized personnel, anesthetics, and GBCA. Second, it 

reduces risk. As animal and human studies show that general anesthetics may cause neurotoxic 

changes in the developing brain that lead to adverse neurodevelopmental outcomes later in life. 

Indeed, in 2012, the FDA, SmartTots, and the American Academy of Pediatrics released a 

consensus statement recommending no anesthetics in patients under 3 years for elective procedures 

(97). Gadolinium has been reported to be deposited in the brain even in the setting of normal renal 

function (70-74), including in children (75, 76). In July 2015, the FDA issued a Safety 

Communication, stating “...health care professionals should consider limiting GBCA use to 

clinical circumstances in which the additional information provided by the contrast is necessary 

and …Health care professionals are urged to reassess the necessity of repetitive GBCA in 

established treatment protocols” (98).  
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This study also includes several limitations. First, the primary analysis included only 14 

patients with CHD. Additional investigation in a larger cohort of patients is needed to evaluate the 

clinical utility of single-shot, coronary QISS MRA. Second, in this study, we performed gradient 

trajectory correction using a simple empirical approach, because we had no access to the source 

codes for implementing a pre- or post-scan calibration scan. This study did not explore recently 

published self-calibration methods (99, 100), since they are beyond the scope of this study. 

Another study is warranted to evaluate the advantages (possibly better artifact suppression) and 

disadvantages (additional scan time) of different phase correction strategies. Third, the primary 

data analysis was performed on retrospective reconstruction of breath-hold, 2-shot coronary QISS 

MRA in patients with CHD. While this restriction is a limitation, it is worth noting that a 

retrospective analysis also made it possible to compute quantitative metrics such as SSIM and 

NRMSE because the 2-shot and single-shot data sets are inherently registered. Our secondary 

evaluation in three adult patients suggests that it is feasible to visualize coronary origins using free-

breathing, single-shot coronary QISS MRA. A future study is warranted to confirm this finding in 

patients with CHD. Fourth, this study did not evaluate the sharpness of coronary vessels using 

advanced visualization tools such as “Soap-Bubble” (101), because coronary origins in patients 

with CHD are small. Developing another visualization tool is beyond the scope of this study.      

In conclusion, it is feasible to visualize the coronary origins in patients with CHD with 

clinically acceptable to good image quality using single-shot coronary QISS MRA with CS. 
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Chapter 5: Multi-TI Late Gadolinium Enhancement MRI with 

Compressed Sensing 

5.1) Introduction 

Late gadolinium enhanced (LGE) (102-104) MRI is considered the gold standard test for 

assessment of myocardial scarring. For 2D LGE, there are two different approaches in clinical 

routine: 1) segmented, breath-held (BH) acquisition with gradient echo readout and relatively high 

spatial resolution (~1.5 mm x 1.5 mm); 2) single-shot, free-breathing acquisition with balanced 

steady-state free precession (b-SSFP) readout and relatively low spatial resolution (~2 mm x 3 

mm). While breath-held LGE provides higher spatial resolution than single-shot LGE, it requires 

considerably longer scan time and is more sensitive to arrhythmia and inconsistent breath-holding. 

While single-shot LGE MRI is the preferred method for patients with arrhythmia and/or dyspnea, 

its relatively low spatial resolution (~2 mm x 3 mm) may reduce accuracy for visualizing small, 

subendocardial infarcts, quantifying myocardial scar volume, microvascular obstruction, or 

identifying peri-infarct zones. Thus, there is a need to develop high spatial resolution single-shot 

LGE MRI for patients with arrhythmia and/or dyspnea.  

One approach to achieve higher spatial resolution is to perform free-breathing single-shot 

LGE that averages repeated acquisitions with motion correction (MOCO)(105). This approach, 

however, necessitates longer repeated acquisitions and is sensitive to arrhythmia and/or bulk 

motion. Another approach is to accelerate single-shot LGE using compressed sensing (CS)(37). 

But, to our knowledge, there are no published papers describing CS-accelerated single-shot LGE. 

We speculate that it may be due to the difficulty in accelerating a single-shot LGE image beyond 
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acceleration factor (R) three, thereby limiting how far CS can increase the spatial resolution of a 

2D LGE image while producing clinically acceptable image quality. In this study, we sought to 

achieve a high acceleration factor (R=20) by rebinning a lengthy single-shot LGE k-space data 

into multiple timeframes and exploiting temporal sparsity. With the time-resolved reconstruction 

approach, we not only achieve high temporal resolution (34.1 ms per time frame), but also obtain 

extra information about signal change over time that could potentially improve diagnostic 

confidence, detect other abnormalities (e.g. thrombus, microvascular obstruction), and/or assist in 

segmenting scar boundaries.  

The purpose of this study was to develop a 20-fold accelerated multi-frame, single-shot 

LGE pulse sequence with high nominal spatial resolution (1.3 mm x 1.3 mm) using radial k-space 

sampling, k-space weighted image contrast (KWIC)(106), and CS reconstruction enforcing 

temporal sparsity (107) and evaluate its performance against clinical standard single-shot LGE 

(2.2 mm x 2.7 mm) in patients undergoing routine clinical cardiovascular MRI. 

5.2) Materials and Methods  

5.2.1) Patients Demographics & Clinical CMR Protocol 

This study was conducted in accordance with protocols approved by our institutional 

review board and was Health Insurance Portability and Accountability Act (HIPAA) compliant. 

All subjects provided informed consent in writing. We prospectively enrolled 20 patients (mean 

age = 63.6 ± 17.1 years; 14 males; 6 females) undergoing a clinical cardiovascular MRI. See Table 

5.1 for patient characteristics that are relevant for this study.  
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As recommended by the Society of Cardiovascular Magnetic Resonance consensus 

statement (108), each patient received either 0.15 or 0.20 mmol/kg of gadobutrol (Gadavist, Bayer 

HealthCare Whippany, USA), depending on whether the estimated glomerular filtrate rate (eGFR) 

was 45-59 mL/min per 1.73 m2 or ≥ 60 mL/min per 1.73 m2, respectively, and LGE was 

performed approximately 10-15 min after administration of contrast agent. In all patients, our 

research LGE scan was performed immediately after the clinical single-shot LGE scan. This order 

was unavoidable due to higher priority given to clinical LGE. 

Characteristics ALL (N = 20) 
Age 63.6 ± 17.1 yrs 

Male 14/20 (70%) 

Heart Rate 64.8 ± 13.6 BPM 

BMI 25.6 ± 3.9 kg/m2 

LVEF 53 ± 14 % 

LGE Positive 8/20 (40%) 
Diabetes 6/20 (30%) 

Hypertension 9/20 (45%) 

Smoking 8/20 (40%) 

Heart Failure 11/20 (55%) 

Prior History of CAD 9/20 (45%) 

Table 5.1. Summary of patient characteristics relevant for this study. BMI: body mass index; 

LVEF: left ventricle ejection fraction; CAD: coronary artery disease. 

 

5.2.2) MRI Hardware 

LGE MRI scans were conducted on a 1.5T whole-body MRI scanner (MAGNETOM 

Avanto, Siemens Healthineers, Erlangen, Germany), equipped with a gradient system capable of 
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achieving a maximum gradient strength of 45 mT/m and maximum slew rate of 200 T/m/s. Body 

coil was used for radio-frequency excitation. Both body matrix and spine coil arrays (15-18 

elements) were used for signal reception. 

5.2.3) Pulse Sequence 

As part of the routine clinical cardiovascular MRI, single-shot, b-SSFP LGE with Cartesian 

k-space sampling was performed using the following relevant imaging parameters, including: field 

of view (FOV) = 380 mm x 345 mm, image acquisition matrix size = 176 x 128, spatial resolution 

= 2.2 mm x 2.7 mm, slice thickness = 6 mm, TR = 2.4 ms, TE = 1.0 ms, flip angle = 40º, GRAPPA 

(36) R = 1.8, k-space lines per image = 76, readout duration (without inversion recovery time) = 

182 ms, and inversion time (TI) ranged from 275 to 330 ms.   

As shown in Figure 5.1, we modified an inversion-recovery, single-shot b-SSFP pulse 

sequence with radial k-space sampling to acquire data continuously during free breathing after the 

inversion pulse at mid diastole in the first heartbeat through early systole of the next (second) 

heartbeat. This unit with two heartbeats per slice is repeated for all slices thereafter. Thus, the 

proposed multi-frame, single-shot LGE has the same data acquisition efficiency as conventional 

single-shot LGE, since the latter employs electrocardiogram (ECG) triggering every other 

heartbeat. The relevant imaging parameters of our pulse sequence included: FOV = 300 x 300 mm, 

matrix size = 224 x 224, nominal spatial resolution = 1.3 mm x 1.3 mm, slice thickness = 8 mm, 

TR = 3.1 ms, TE = 1.6 ms, 11 k-space rays per frame, readout duration per frame = 34.1 ms, 

32.038º angular increments (= 5th Fibonacci sequence of golden angles (109)), 20 time frames with 

a total readout duration = 694 ms, flip angle = 45º, ramp-up radio-frequency (RF) pulses = 20, 

inversion recovery time before readout = 62 ms, effective TI range = 85 ms to 733 ms, and effective 
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ECG triggering every other heartbeat. The free inversion-recovery time of 62 ms is short enough 

to guarantee that the magnetization in the remote myocardium relative to equilibrium 

magnetization is below zero prior to readout.  

Our proposed cine LGE acquisition guarantees sampling the negative and positive points 

along longitudinal magnetization (Mz) recovery curve for the remote myocardium. This is 

important, since we do not want to miss the nulling point for the remote myocardium. The Bloch 

equation describing the relaxation of Mz following an inversion pulse with perfect efficiency can 

be described as: 

   𝑀𝑧(𝑡) = 𝑀0 − [𝑀0 − 𝑀𝑧(0)]𝑒
−𝑡

𝑇1
⁄ = 𝑀0(1 − 2𝑒

−𝑡
𝑇1

⁄ )   Eq. 5.1 

Where M0 is equilibrium magnetization. For convenience, we can normalize Mz by M0, 

such that Mz/M0 = (1 − 2𝑒
−𝑡

𝑇1
⁄ ). Post-contrast T1 of normal myocardium depends on several 

factors, including field strength, contrast agent type and dose, renal function, and delayed imaging 

time. If we assume post-contrast T1 of normal myocardium is 400 ms (110), then the inversion 

time (TI) needed to null remote myocardium would be 277 ms, which is 4.5 times longer than the 

free magnetization recovery period of 62 ms (i.e. between the inversion pulse and readout module). 

Alternatively, we can calculate Mz/M0 at t = 62 ms, which turns out to be -0.7. This confirms that 

the Mz/M0 of remote myocardium before the first excitation RF pulse is a negative value. We can 

repeat the exercise for Mz/M0 immediately after the readout (i.e. t = 62+682 ms). Let’s assume free 

inversion recovery through readout (i.e. ignoring excitation pulses on magnetization recovery), 

then Mz/M0 at t = 744 ms is equal to 0.7. 
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Figure 5.1. Pulse sequence diagram for the proposed multi-TI LGE. Each slice data acquisition 

takes two heartbeats, where 224 radial spokes of k-space data were acquired continuously (694ms) 

from end-diastole of the first heartbeat to early systole of the second heartbeat. The effective TI 

ranges from 85 to 733 ms. IR: inversion pulse; ramp-up: 20 RF pulses; b-SSFP: balanced steady 

state free precession. 

 

5.2.4) Image Reconstruction  

We used the GRASP-Pro (golden-angle radial sparse parallel imaging with improved 

performance) framework described by Feng, L et al.(111). Image reconstruction was performed 

off-line using a GPU workstation (Tesla V100 32GB memory, NVIDIA, Santa Carla, California, 

USA; 32 Xeon E5-2620 v4 128 GB memory, Intel, Santa Clara, California, USA) equipped with 

MATLAB (R2017b, The Mathworks Inc, Natick, MA, USA) running on a Linux operating system 

(Ubuntu16.04).  

As shown in Figure 5.2, we applied coil compression on raw k-space data using principal 

component analysis (PCA)(112) to produce 8 virtual coils and used GPU-based Non-Uniform Fast 

Fourier Transform (NUFFT)(113) to accelerate the computation throughout. During the pre-
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processing step, we used NUFFT to reconstruct time-averaged (i.e. using all 224 radial spokes) 

images for each coil to derive auto-calibrated coil sensitivity profiles using the method described 

by Walsh et al. (89). We applied self-calibrated gradient delay correction on radial k-space data 

using the RING method (114) and rebinned the “single-shot” data into 20 time frames (i.e. 11 

radial spokes per frame). KWIC filter (106, 115) was applied to the rebinned radial k-space data 

to filter out the center of k-space for all but the central radial spoke per frame, which in turn enables 

a unique TI per frame.  

For the GRASP-Pro reconstruction steps, the center 1/4 k-space (112 out of 448 readout 

points) was used to reconstruct the low resolution images to estimate K (=10) dominant basis 

components. The estimated basis, full-resolution k-space data and self-calibrated coil sensitivity 

profiles were combined to reconstruct the zero-filled images in the subspace. Iterative CS 

reconstruction was performed in the subspace by enforcing sparsity along the time dimension. The 

basis was applied to the CS reconstructed images in the subspace to get the final full-resolution 

images.   

In the iterative CS process, temporal total variation (TTV) and temporal PCA (TPCA) were 

used as two orthogonal sparsifying transforms and nonlinear conjugate gradient with back-tracking 

line search as the optimization algorithm with 30 iterations. The normalized regularization weight 

was determined empirically to achieve a good balance between artifact suppression and temporal 

blurring based on visual inspection on training data. We established 0.005 (or 0.5% of maximum 

value of the time-averaged image) as an optimal regularization weight for TTV and 0.0025 for 

TPCA by sweeping over a range from 0.001 to 0.005 (0.0005 steps) and identifying the highest 

regularization weight that minimizes temporal blurring of voxels in the heart. 
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Figure 5.2. The image reconstruction pipeline of multi-TI LGE for a single slice. All 224 k-space 

radial spokes were used to generate self-calibrated coil sensitivity profiles and rebinned into 20 

time frames (11 rays per frame). In the pre-processing step, SENSE is used to combine multi-coil 

zero-filled images derived after NUFFT. KWIC filter was applied to the sorted k-space to further 

reduce the contrast contamination. GRASP-Pro framework was used to de-aliasing zero-filled 

images. TV: total variation; PCA: principal component analysis; KWIC: k-space weighted image 

contrast; α: regularization weight for TV; β: regularization weight for PCA. 

 

5.2.5) Quantitative Metrics of Image Quality  

Only the optimal TI frame that nulls the remote myocardium was evaluated. For evaluation 

of image blurring of the CS reconstructed LGE images versus clinical standard LGE images, we 

calculated the reference-image-free blur metric, as previously described (116). For a fair 

comparison, we cropped the FOV of CS and clinical standard LGE images to be the same size, 

and interpolated the clinical images to have the same matrix size of CS by zero-filling the k-space 

(i.e. sinc interpolation).  

5.2.6) Myocardial Scar Quantification 
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In eight patients with visibly detectable scars, one rater (AP) quantified myocardial scar 

volume using thresholding by four standard deviations above the mean of remote myocardium 

with manual correction to remove spurious voxels (117). This rater was blinded to patient identity 

and pulse sequence type. 

5.2.7) Visual Metrics of Image Quality  

To evaluate the diagnostic confidence of the CS reconstructed LGE images, a total of 40 

multi-slice LGE data sets (20 each for clinical standard and CS) were randomized and de-identified 

for visual analysis by two cardiothoracic radiology attendings (BDA and LMG, both with 3 years 

of experience, respectively) and one non-invasive cardiology attending (DCL with 20 years of 

experience) who read cardiovascular MRI as part of their clinical practice graded the image quality 

of LGE images. The three raters were given training images to calibrate their scores in consensus 

prior to independent grading. The three raters were blinded to patient identity, pulse sequence type, 

and each other’s scores. Each multi-slice set was graded on a 5-point Likert scale for: conspicuity 

of myocardium or scar (if visible)(1 = nondiagnostic, 2 = poor, 3 = clinically acceptable, 4 = good, 

5 = excellent), any visible artifact on the heart (1 = nondiagnostic, 2 = poor, 3 = clinically 

acceptable, 4 = mild, 5 = minimal), and noise (1 = nondiagnostic, 2 = severe, 3 = clinically 

acceptable, 4 = mild,  5  = minimal). Summed visual score (SVS) was calculated as the sum of 

conspicuity, artifact, and noise scores (SVS ≥ 9 defined as diagnostically interpretable). 

5.2.8) Statistical Analysis 

The statistical analyses were conducted by one investigator (DS) using MATLAB. We 

tested for normality of variables using the Shapiro-Wilk test. Continuous data were reported as 

mean ± standard deviation; ordinal data were reported as median and interquartile range (IQR); 
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25th percentile, 75th percentile. Normally distributed variables were compared using a two-tailed, 

paired t-test for two groups and ANOVA for three groups, whereas the corresponding non-

parametric variables were compared using the Wilcoxon signed rank test and Kruskal-Wallis test, 

respectively. For comparison with three groups, Bonferroni correction was applied. Inter-rater 

reliability was calculated using the Fleiss kappa test. A p < 0.05 was considered significant for 

each statistical test. 

5.3) Results 

According to Shapiro-Wilk test, all variables were normally distributed, except for the 

visual scores (statistic =0.976, p=0.87 for clinic standard; statistic = 0.974, p = 0.83 for CS). The 

mean offline image reconstruction time for CS LGE was 134s per slice (pre-processing step = 36s, 

iterative CS reconstruction = 98s). The blur metric (0: sharpest, 1: blurriest) for clinical LGE 

(0.325 ± 0.031) and CS LGE (0.289 ± 0.032) was significantly different (p <0.001) between the 

two groups. 

Figure 5.3 shows representative multi-TI LGE images for a single slice with different time 

frames, where each time frame corresponding to a different TI showing different tissue contrasts, 

similar to a TI scout. The TIs were calculated as the acquisition time of the central radial spoke 

per frame. The best TI frame was visually selected (i.e. time frame 6 in Figure 5.3). Compared to 

conventional LGE images, multi-TI LGE provides extra information for identifying borders of 

scar. As shown in Figure 5.3, the regions pointed by the yellow arrows in frames 3 and 5 are helpful 

in determining the boundaries of remote myocardium and scar. Figure 5.4 shows representative 

clinical single-shot LGE images and CS LGE images for 4 patients, where the yellow arrows point 
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to scar regions. For average rater, the median scores for all three categories were significantly 

different (p<0.05) between the two groups, but all scores were greater than clinically acceptable 

(3.0) cut point for both clinical standard and CS LGE. 

Figure 5.3. An example of different TI frames for a single slice. This time series appearance is 

like that in a TI scout but with a better temporal resolution. For this case, time frame 6 had the best 

nulling of normal myocardium. 
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Figure 5.4. Four representative cases of with myocardial scarring: clinical single-shot LGE (top 

row) versus CS LGE at the optimal TI (bottom row). Arrows point to scars.  

According to weighted Fleiss’s kappa coefficient, inter-rater reliability in grading CS LGE 

was poor for conspicuity (=-0.108; 95% CI, -0.153 to -0.062), artifact (=-0.175; 95% CI, -0.218 

to -0.132) and noise (=-0.148; 95% CI, -0.198 to -0.097) scores. Inter-rater reliability in grading 

clinical standard LGE was poor for both conspicuity (=-0.048; 95% CI, -0.096 to 0.0003) and 

noise (=-0.126; 95% CI, -0.177 to -0.076) scores and slight for artifact (=0.099; 95% CI, 0.050 

to 0.149) scores.  

The remaining visual analysis results represent average rater scores. According to the 

Wilcoxon signed rank test (see Table 5.2), conspicuity was significantly higher for clinical 

standard LGE (median: 4.7, IQR: 0.7) than CS LGE (median: 4.0, IQR: 0.67); artifact was 

significantly lower (i.e. better score) for clinical standard (median: 4.7, IQR: 0.67) than CS LGE 

(median: 4.0, IQR: 0.67); noise was significantly lower for clinical standard (median: 4.3, IQR: 
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0.42) than CS LGE (median: 3.7, IQR: 0.67); SVS was significantly higher for clinical standard 

LGE (median: 13.3, IQR: 1.83) than CS LGE (median: 12.0, IQR: 0.75).  

Myocardial scar volume measured from clinical standard LGE (18.3 ± 7.3 %) and CS LGE 

(17.6 ± 6.6 %) was not significantly different (p > 0.4); scar volume was strongly correlated 

(coefficient of determination [R2] =0.91) and in good agreement (mean difference = -0.7 % [3.9% 

of mean], lower limit of agreement = -5.11% [28.4% of mean], and upper limits of agreement = 

3.71% [20.6% of mean]), shown in Figure 5.5. 

 

 

 

Category Clinical LGE CS LGE p-Value 

Conspicuity 
4.7 

(0.75) 

4.0 

(0.67) 
< 0.001 

Artifacts  
4.7 

(0.67) 

4.0 

(0.67) 
< 0.001 

Noise  
4.3 

(0.42) 

3.7 

(0.67) 
< 0.001 

SVS 
13.3 

(1.83) 

12.0 

(0.75) 
< 0.001 

Table 5.2: Summary of visual scores. Reported values represent median and interquartile range 

(parenthesis) of average rater scores. While all scores were significantly different (p < 0.05) 

between the two groups, all were above the clinically acceptable cut point (3 for individual 

category; 9 for SVS). SVS: summed visual scores. 
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Figure 5.5. Linear regression plot illustrating strong correlation (R2=0.91) in scar volume 

measurements between clinical standard and CS LGEs (left). Bland-Altman plot illustrating good 

agreement in scar volume measurements between the two methods.  

 

5.4) Discussion 

This study demonstrates a novel free-breathing, single-shot LGE sequence with high 

nominal spatial resolution and multi-TI reconstruction using GRASP-Pro. Our approach allows 

for direct free-breathing scans without a TI scout and provides clinically acceptable image quality. 

Myocardial scar volume measurement made from our CS LGE images was as accurate as 

measurement made from clinical standard LGE images.  

Our approach has several differences compared with free-breathing LGE with MOCO 

(105). The method developed by Kellman et al. (105) is based on averaging repeated single-shot 

LGE with MOCO to increase spatial resolution and/or signal-to-noise ratio. One advantage of this 
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approach is that it is compatible with phase-sensitive (PSIR) reconstruction, thereby providing 

some wiggle room with respect to TI selection by a technologist. Two disadvantages of this 

approach are that it is sensitive to irregular heart rhythm and/or bulk motion and that it requires 

longer scan (increases with averaging factor). While our multi-TI approach does not perform PSIR 

reconstruction, it is designed to generate multiple TI images without relying on a TI scout. Our 

approach does not rely on averaging; thus it is faster than PSIR LGE MOCO in terms of scanning 

efficiency. Our approach does not rely on MOCO; thus it is not subject to image deformation errors 

inherent with MOCO.  

This study has several interesting points that warrant further discussion. First, as the 

technique does not require a TI scout, it improves clinical workflow and has the potential to avoid 

poor image contrast due to incorrect TI selection, similar to PSIR. Second, we acquired near 

Nyquist number of radial spokes (i.e. 224 rays), which produced better self-calibrated coil 

sensitivity map than traditional 2D undersampled reconstruction method. Sorting the k-space data 

in the time dimension increased the temporal resolution, thus minimizing motion blurring, as well 

as improved CS reconstruction performance. Third, the multi-TI information can potentially 

increase the accuracy in identifying myocardial scar borders, which may increase accuracy in scar 

quantification. Fourth, the multi-TI contrast may be helpful for automated segmentation tools. 

Finally, the multi-TI information (longest TI = 733 ms) can provide a means to detect thrombus 

without performing another LGE scan with a longer TI (~600 ms).  

This study has several limitations that warrant further discussion. First, only eight patients 

in this study had visible scars, which may have influenced the definition of conspicuity. Second, 

several factors may have led to differences between clinical standard LGE and CS LGE: a) pulse 
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sequence order, where CS LGE (slightly less gadolinium) was acquired after the clinical LGE; b) 

slice thickness (6 mm for clinical vs. 8 mm for CS LGE) and c) the effect of different window 

leveling in the DICOM viewer. Third, the optimal TI frame was retrospectively selected manually. 

Future study includes automated TI selection using a deep learning approach, as previously 

described (118). Finally, we did not incorporate the value of multi-TI information for visual scores, 

since such analysis will reveal which pulse sequence is which and bias raters; we anticipate that 

multi-TI reconstruction will increase diagnostic confidence for identifying scar borders and small 

infarcts and peri-infarct zones (see Figure 5.3).  

In summary, this study describes development and evaluation of a high resolution, free-

breathing LGE pulse sequence using radial k-space sampling, CS, and KWIC filtering, without 

significant loss in image quality and myocardial scar quantification, thereby verifying clinical 

potential. 
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Chapter 6: Perceptual Complex Neural Network for reconstructing 

radial cine k-space data 

6.1) Introduction 

While electrocardiogram-gated, breath-hold cine MRI with balanced steady-state free 

precession readout is the reference test for evaluation of cardiac function (119, 120), its diagnostic 

yield may be limited in patients with arrhythmia and/or dyspnea due to severe image artifacts. One 

approach to overcome this limitation is to perform highly-accelerated real-time cine MRI using 

compressed sensing (CS)(37) with Cartesian (16, 121) or radial k-space sampling (40, 107). The 

three key components of CS are sparsity, incoherent aliasing artifacts, and nonlinear optimization 

with L1-norm. Despite promising results using CS-accelerated real-time cine MRI, its lengthy 

image reconstruction time may hinder its clinical translation, including interventional or stress 

testing MRI where real-time support is critical. Thus, there is an unmet need to develop highly-

accelerated image reconstruction methods that support accelerated, real-time cine MRI 

acquisitions. 

One solution to accelerating CS reconstruction is using graphics processing unit (GPU), 

however the acceleration is limited since CS remains iterative and nonlinear. To circumvent the 

problem of computation-intensive iterations, feed-forward deep learning (DL)(45) has emerged as 

a promising alternative for solving inverse problems compared to iterative approaches (122-124). 

DL-based image reconstruction is roughly categorized into agnostic, decoupled physics-based and 

post-processing learners. Agnostic solvers learn a direct mapping from input to output domain 

without any knowledge of the forward model at any point in training nor testing (125). Agnostic 
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solvers require huge amount of training data and are hard to optimize. Decoupled approaches first 

learn a comprehensive representation of the image space independent of the imaging problem at 

hand, e.g. from a large set of reconstructed MRI images. This knowledge is then used to guide the 

image reconstruction (126). Physics-based learners incorporate a differentiable version of the 

imaging operator (e.g. the Fourier transform in MRI imaging) into the training process and reduce 

the amount of required training data drastically (127, 128).  

Last there remain learners that focus on post-processing to remove possible artifacts that 

arise in non-iterative algorithms (129, 130). The key advantage of this approach is that it is simpler 

to implement. The basic strategy is to train a network to learn the weights (convolutional kernels) 

for de-aliasing undersampled MR images from a large dataset containing pairs of aliased and de-

aliased images. In the testing phase, the network applies the “learned” model to de-alias images 

from a separate testing dataset. While the training phase is computationally intensive due to 

backpropagation of gradients and often requires GPU computing, the testing phase is significantly 

faster than CS, could even be transferred with CPU computing, thereby making it a good vehicle 

to reduce the processing time of reconstructing accelerated real-time cine MRI. 

To date, two proof-of-concept studies have used DL to reconstruct real-time cine MR data, 

with each study having advantages and disadvantages (54, 61). In this study, we sought to develop 

a novel DL approach that goes beyond two prior studies (54, 61). Our main contributions are: 

(a) Implementing a complex neural network that is capable of learning correlated and 

uncorrelated (i.e. noise) information contained in real and imaginary components of complex MRI 

signal detected in quadrature (i.e. 90 phase offset between real and imaginary components, as 

shown in Figure 6.1);  
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(b) Incorporating a perceptual loss term to maintain high-level features better than per pixel 

loss, as previously described (131);  

(c) Training and testing the proposed network with multi-slice data from a larger group (40 

in total; 20 for training, 20 for testing) of patients with atrial fibrillation (AF), which has not been 

addressed by previous DL-based image reconstruction studies;  

(d) Handle highly-accelerated (15-fold) cine data. Our approach to handling complex data 

in the image domain is different than prior studies which handled complex data, either in the image 

domain as magnitude and phase (132) or in the k-space domain (125, 133). The key advantage of 

the proposed approach over previous approaches is that it does not require extensive GPU memory 

(i.e. fast processing), because it handles coil-combined complex data without requiring fully 

connected layers or fidelity layers.  

The purpose of this study was to implement a perceptual complex neural network (PCNN) 

for faster (< 1 min per slice with 80 frames) reconstruction of non-Cartesian real-time cine MRI 

k-space data than GPU-accelerated CS reconstruction, without significant loss in image quality or 

accuracy in left ventricular (LV) functional parameters. We compare the proposed PCNN to 

previously proposed CNN network architecture (61) for completeness. 
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Figure 6.1. Real (left), imaginary (middle), and magnitude (right) parts of a real-time cine complex 

MR image, illustrating correlated and uncorrelated (noise) information detected using a quadrature 

radio-frequency receiver system.   

 

6.2) Materials and Methods  

6.2.1) Patient Demographics 

 This study was conducted in accordance with protocols approved by our institutional 

review board and was Health Insurance Portability and Accountability Act (HIPAA) compliant. 

All subjects provided informed consent in writing. We prospectively enrolled forty patients with 

prior history of AF (mean age = 68.1 ± 9.6 years; 31 males; 9 females). In eight out of twenty 

patients (mean age = 68.6 ± 10.6 years; 16 males; 4 females) used for training, MRI was repeated 

within two weeks to evaluate test-retest reproducibility for a separate study, such that twenty-eight 

sets of multi-slice, multi-phase cine k-space datasets were used for training. Multi-slice, multi-

phase datasets from the remaining twenty patients (mean age = 67.6 ± 8.7 years; 15 males; 5 

females) were used for testing the trained neural networks. We elected to reserve data from twenty 

patients for testing, in order to achieve high power for our statistical analysis. For basic 
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demographics information of our patients including age, sex, AF type, and resting heart rate, see 

Table 6.1. Other clinical characteristics were considered irrelevant for this study and thus omitted 

due to space constraint. To estimate the arrhythmia burden during MRI, we calculated the 

coefficient of variation (CV) of heartbeat duration, which was extracted from the raw data header 

of real-time cine running continuously for multiple heartbeats per slice, for multiple slices (total 

scan time was ~60s). 

 

 Total Training Testing 

Age (years) 68.1 ± 9.6 68.6 ± 10.6 67.6 ± 8.7 

Sex 31M/9F 16M/4F 15M/5F 

Resting Heart 
Rate (bpm) 

66.7 ± 12.0 68.2 ± 12.9 65.3 ± 11.1 

AF type 
32 Paroxysmal / 

8 Persistent 
15 Paroxysmal / 5 

Persistent 
17 Paroxysmal / 3 

Persistent 

Arrhythmia 
burden (%) 

24.6 ± 9.3 26.5 ± 9.8 22.8 ± 8.6 

Table 6.1. Summary of baseline patient characteristics (N=40). M: males; F: females; AF: Atrial 

Fibrillation.   

 

6.2.2) MRI Hardware 

Real-time cine scans were conducted on one 1.5T whole-body MRI scanner 

(MAGNETOM Aera, Siemens Healthcare, Erlangen, Germany). The scanner was equipped with 

a gradient system capable of achieving a maximum gradient strength of 45 mT/m and maximum 
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slew rate of 200 T/m/s. Body coil was used for radio-frequency excitation. Both body matrix and 

spine coil arrays (30-34 elements in total) were used for signal reception. 

6.2.3) Pulse Sequence 

 Relevant imaging parameters of real-time cine MRI using radial k-space sampling 

included: field of view (FOV) = 288 × 288 mm, matrix size = 160 × 160, spatial resolution = 1.8 

mm x 1.8 mm, slice thickness = 8 mm, TE = 1.4 ms, TR = 2.7 ms, receiver bandwidth = 975 

Hz/pixel, 11 radial spokes per cardiac frame, tiny golden angle sequence = 23.62814 (30), 

effective acceleration factor = 15 (with respect to Cartesian equivalent), temporal resolution = 29.7 

ms, 12-17 short-axis planes, and flip angle 50°. Although each 2D plane was scanned for 5 seconds 

during free-breathing, only the first 80 out of 166 cardiac frames were used from each patient due 

to GPU memory limitation. 

6.2.4) Computer Hardware 

For training and testing on undersampled raw k-space data, we used a GPU workstation 

(Tesla V100 32GB memory, NVIDIA, Santa Carla, California, USA; 32 Xeon E5-2620 v4 128 

GB memory, Intel, Santa Clara, California, USA) equipped with Python (Version 3.7, Python 

Software Foundation), Pytorch (Version 1.4, Berkeley Software Distribution), and MATLAB 

(R2017b, The Mathworks Inc, Natick, MA, USA) running on a Linux operating system 

(Ubuntu16.04).  

6.2.5) GPU-Accelerated CS Reconstruction as Ground Truth 

In patients with AF, standard electrocardigram-gated breath-hold cine MRI produces poor 

image quality with considerable ghosting and blurring artifacts. Thus, it was not feasible to obtain 
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fully sampled reference for this study. Instead, we used CS reconstruction as obtainable ground 

truth. 

For reference, the same undersampled k-space data were reconstructed using the same GPU 

workstation. We adapted our previously described radial CS reconstruction code implemented in 

MATLAB (107) with two modifications: (a) GPU based Non-Uniform Fast Fourier Transform 

(NUFFT)(113) and (b) coil compression using principal component analysis (PCA)(112) to 

produce 8 virtual coils. In the preprocessing step (gradient delay correction + gridding + coil 

combination), we performed self-calibrated gradient delay correction using the Radial 

Intersections (RING) method (114), GPU based NUFFT to convert the radial k-space data to zero-

filled images in Cartesian space, and additional processing on time average image to derive auto-

calibrated coil sensitivity profiles using the method described by Walsh et al. (89), followed by 

weighted sum over the coil elements. Coil-combined, zero-filled cine images (initial solution), 

multi-coil raw k-space data, k-space sampling masks, and coil sensitivity maps were used as inputs 

to previously described iterative CS algorithm (107), which enforced sparsity along the time 

dimension using temporal finite difference (temporal total variation) as the sparsifying transform 

and nonlinear conjugate gradient with back-tracking line search as the optimization algorithm with 

30 iterations. The cost function used is described in Eq. 6.1:                                            

�̂� = 𝑎𝑟𝑔𝑚𝑖𝑛𝑥‖𝐹𝑆𝑥 − 𝑦‖2
2 + 𝜆|𝑇𝑥|1                                      Eq. 6.1 

where,  𝐹 is the undersampled FFT operator, 𝑆 is the estimated coil sensitivities in x-y 

space, 𝑥 is the image series to be reconstructed in x-y-t space, 𝑦 is the acquired multi-coil k-space 

data, 𝑇 is temporal finite difference operator, and 𝜆 is the normalized regularization weight that 

controls the tradeoff between data consistency and sparsity terms. We incorporated back-tracking 
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line search to ensure high data fidelity, at the expense of computational efficiency. Normalized 

regularization weight was set as 0.1 of the maximum signal of time average image. We established 

0.1 (relative to maximum value) as optimal regularization weight by sweeping over a range from 

0.001 to 0.1 (0.05 steps) and identifying an optimal regularization weight that achieves a good 

balance between suppression of aliasing artifacts and temporal blurring of myocardial wall motion. 

We determined this optimal regularization weight based on visual inspection of six training 

datasets.   

6.2.6) Network Architecture 

We implemented a reconstruction pipeline that performs pre-processing in Matlab and 

dealiases coil-combined images in Pytorch. We elected to work with coil-combined images due to 

GPU memory limitation. After the same pre-processing step described for CS, coil-combined, 

zero-filled, complex images used as input. Our network was trained on 398 2D+time sets of zero-

filled, real-time cine images obtained from twenty patients (eight in whom we obtained another 

set of cine data), corresponding to 31,840 2D images in total. The trained network was tested on 

275 2D+time sets of zero-filled, real-time cine images obtained from the remaining twenty 

patients, corresponding to 22,000 2D images in total.  

By modifying the network and loss function, we explored three different ways of 

processing the complex data to achieve optimal image quality, as shown in Figure 6.2. Three 

different residual 3D (2D + time) U-Nets (50, 52, 134, 135) with identical architecture but different 

loss function were tested: 1) magnitude network with mean squared error (MSE) loss alone, which 

uses traditional operations (convolution, rectified linear unit (ReLU), etc.) to process absolute 

value of the complex data; 2) complex network with MSE loss alone, which uses complex 
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operations to process the complex data (see below and Figure 6.3 for more details); 3) PCNN using 

both complex operations and MSE and perceptual loss terms. For complex networks (2 and 3), the 

batch normalization and ReLU layers had separate weights for the real and imaginary feature maps, 

while the pooling layers were the same. For PCNN, instead of using MSE loss alone (62, 136, 

137), we added a perceptual loss (50, 138) using the first 15 layers of a pre-trained Visual 

Geometry Group (VGG)-16 network (139) to maintain high-level features better than pixel-wise 

MSE loss. Only the first 15 layers of VGG-16 network were used to extract features, since the last 

layer is used for classifying features. The total loss function can be described by Eq. 6.2:  

                𝐿𝑜𝑠𝑠𝑡𝑜𝑡𝑎𝑙 =  
1

𝑁
‖𝜑(𝑥) − 𝑦‖2

2 +  
1

𝑁
‖𝑓𝑣𝑔𝑔(𝑥) − 𝑓𝑣𝑔𝑔(𝑦)‖

2

2
                             Eq. 6.2 

where φ is the U-Net, fvgg is the VGG network, N is the total number of voxels, x is the 

zero-filled images (either real or imaginary), and y is the reference images (either real or 

imaginary) reconstructed with CS. For visual display of the outcome of VGG network for CS and 

DL, see Figure 6.4. The following training parameters were used: batch size = 1, ADAM optimizer, 

50 epochs, learning rate = 0.0001 with a decay rate 0.95 for each epoch. Training for the magnitude 

network took approximately 8 hours, whereas training for the complex network and PCNN took 

approximately 20 hours and 24 hours, respectively. 
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Figure 6.2. a) The U-Net architecture used for all three networks; b) the pipeline for PCNN 

training. The complex U-Net and PCNN used the same complex convolution operations shown in 

Figure 6.3. While PCNN uses both perceptual loss and pixel-wise MSE loss functions, 

conventional magnitude and complex U-Net used only the pixel-wise MSE loss function. For 

visual display of the outcome of VGG network for CS and DL, see Figure 6.4. 

As shown in Figure 6.3, we performed complex convolution (140) on the complex data. 

To support this complex operation, we created one additional dimension for the feature maps to 
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carry both the real (MR) and imaginary (MI) parts and used two separate kernels (KR and KI) to 

perform the complex convolution as described by Eq. 6.3: 

(𝑀𝑅 + 𝑖𝑀𝐼) ∗ (𝐾𝑅 + 𝑖𝐾𝐼) = (𝑀𝑅 ∗ 𝐾𝑅 − 𝑀𝐼 ∗ 𝐾𝐼) + 𝑖(𝑀𝑅 ∗ 𝐾𝐼 + 𝑀𝐼 ∗ 𝐾𝑅)              Eq. 6.3 

 

Figure 6.3. Complex convolution operation used in complex U-Net and PCNN. The real (MR) and 

imaginary (MI) feature maps are separated by creating an extra dimension and convolved with real 

(KR) and imaginary (KI) kernels as shown. The results are sorted and separated in the next layer 

with (MRKR - MIKI) as the real part and (MRKI + MIKR) as the imaginary part. 
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Figure 6.4. Visual display of features extracted from VGG-16 network for CS and DL. 8 out of 

256 feature maps were randomly selected and shown on the right.  

 

6.2.7) Quantitative Metrics of Image Quality 

Given that images reconstructed with different methods are perfectly registered, we 

calculated the structural similarity index (SSIM)(141) and normalized root mean square error 

(NRMSE) to infer image quality with respect to reference images reconstructed with CS. For both 

SSIM and NRMSE calculations, we focused on a smaller region of interest (central FOV with 

80x80 voxels) that encapsulates the heart region. To evaluate image blurring, we calculated the 

blurring metric (116) on a 0 to 1 continuous scale, where 0 is defined as sharp and 1 is defined as 

blurred.  

6.2.8) Visual Metrics of Image Quality  



96 

 

To evaluate the diagnostic confidence produced by the proposed PCNN, two non-invasive 

cardiology attendings (DCL and BHF with 17 and 8 years of experience, respectively) graded the 

CS reconstructed images (reference) and best DL reconstructed images, where best among 

magnitude, complex, and PCNN was determined by quantitative metrics (SSIM, NRMSE, blur 

metric). For efficient analysis, evaluation was limited to 3 short-axis planes (base, mid, apex) only. 

In total, forty cine data sets (twenty sets for DL and CS each), grouped as a set of three short-axis 

planes, were randomized and de-identified for dynamic display. Prior to visual evaluation, the two 

readers were given training data sets to calibrating their scores together, where a score of three is 

defined as clinically acceptable. Following training, each reader was blinded to image acquisition 

type (CS and DL), each other, and clinical history. Each set of three short-axis planes was graded 

on a 5-point Likert scale: conspicuity of endocardial border at end diastole (1 = nondiagnostic, 2 

= poor, 3 = adequate, 4 = good, 5 = excellent), temporal fidelity (blurring or ghosting or lack 

thereof) of wall motion (1 = nondiagnostic, 2 = poor, 3 = adequate, 4 = good, 5 = excellent), any 

visible artifact on the heart (1 = nondiagnostic, 2 = severe, 3 = moderate, 4 = mild, 5 = minimal), 

and apparent noise throughout (1 = nondiagnostic, 2 = severe, 3 = moderate, 4 = mild, 5 = 

minimal). The summed visual score (SVS) was calculated as the sum of conspicuity, temporal 

fidelity, artifact, and noise scores, with 12 defined as clinically acceptable. 

6.2.9) LV Function Assessment  

In total, forty cine data sets (20 patients x 2 [CS and best DL] sets per patient) were 

analyzed by another reader (AP) with 2 years of experience as a medical research fellow, using 

standard methods on a workstation equipped with commercial software (CVi42, Cardiovascular 

Imaging, Calgary, Canada). Functional parameters included LV ejection fraction (LVEF), LV end-
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systolic volume (LVESV), LV end-diastolic volume (LVEDV), and LV stroke volume (LVSV). 

For consistency, the most basal slice was defined as the plane which has ≥ 50% of the blood pool 

surrounded by myocardium, and the most apical slice was defined as the plane showing blood pool 

at end diastole. The reader repeated the analysis with a 2-weeks gap between analyses to determine 

whether inter-reconstruction variability is similar to intra-observer variability. 

6.2.10) Statistical Analysis 

The statistical analyses were conducted by one investigator (DS) using Matlab. Using 

average reader scores, we used the Wilcoxon signed-rank test to detect differences between two 

groups. For continuous variables (SSIM, NRMSE, blur metric), we used analysis of variance to 

detect differences between multiple groups, with Bonferroni correction to compare each DL 

reconstruction to CS as reference. For cardiac functional parameters, we performed Pearson’s 

correlation and Bland-Altman analysis to examine association and agreement. Reported 

continuous variables represent mean ± standard deviation. A P-value < 0.05 was considered 

significant for all statistical tests. 

6.3) Results 

 The mean CV of R-R interval for the entire cohort was 24.6 ± 9.3%, while the 

corresponding R-R intervals for the training and testing cohorts were 26.5 ± 9.8% and 22.8 ± 8.6%, 

respectively, indicating moderate levels of arrhythmia. The mean processing time per slice with 

80 frames along the proposed pipeline for PCNN was 23.7 ± 1.9 s for pre-processing (step 1) and 

0.822 ± 0.004 s for dealiasing (step 2). The corresponding processing time along the GPU-

accelerated CS pipeline was 23.7 ± 1.9 s for pre-processing (step 1) and 136.4 ± 2.4 s for dealiasing 
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(step 2). The reconstruction time including the identical pre-processing step for DL was 6.5 times 

faster than CS, whereas the dealiasing processing time (excluding the pre-processing step) for DL 

was 166 times faster than CS.  

Figure 6.5 shows representative real-time cine reconstructed MR images obtained with the 

following methods: 1) CS as reference; 2) zero-filled image immediately after NUFFT; 3) 

magnitude network with MSE alone; 4) complex network with MSE loss alone; and 5) PCNN. 

The corresponding difference images with respect to CS are also shown, where the PCNN showed 

the least amount of residual artifacts.  

 

Figure 6.5. (Top row) Representative images of CS reference (first column), zero-filled image 

immediately after NUFFT (second column) and reconstruction results by three different networks:  

magnitude network (third column), complex network with MSE loss term only (fourth column), 

and PCNN (fifth column), displayed in 0-1.0 arbitrary units (A.U.). (Bottom row) The 

corresponding difference images with respect to CS reference, displayed in 0-0.25 arbitrary units 

to bring out differences. 
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Summarizing the result over twenty patients (see Table 6.2), compared with CS, the PCNN 

produced the best image quality metrics (SSIM = 0.88 ± 0.02, NRMSE = 0.014 ± 0.004), 

significantly (P<0.05) better than the magnitude and complex networks (SSIM < 0.75, NRMSE > 

0.020). Relative to CS, the blur metrics were not significantly (P>0.05) different for the magnitude 

network and PCNN, whereas they were significantly (P<0.05) lower for the zero-filled and 

complex network. Given that PCNN produce the best results in two out of three categories, we 

elected to use PCNN throughout.  

Table 6.2. Summary of quantitative metrics (N=20). NRMSE and SSIM for zero-filled input 

images and reconstruction results by three different networks compared to CS reference. For 

NRMSE and SSIM, *P > 0.05 corresponds to non-significant difference in pair. For blur metric, 
+#P >0.05 corresponds to non-significant difference in pair. Note, the blur metric scores for the 

zero-filled and complex network with MSE loss term only reconstructions are artificially better, 

because they contained substantial amount of streaking artifacts which have sharp edges. 

 

Figure 6.6 shows representative images of three patients reconstructed with PCNN and CS, 

highlighting similar image quality. Table 6.3 summarizes average reader scores for CS and PCNN. 

While all the scores were significantly different (P<0.05) between the two groups, all individual 

 CS 
Reference 

Zero-filled Magnitude Complex PCNN 

NRMSE  0.082 ± 0.011 0.025 ± 0.005* 
0.020 ± 
0.006* 

0.014 ± 
0.004 

SSIM  0.232 ± 0.025 0.663 ± 0.056 0.742 ± 0.069 
0.884 ± 
0.023 

Blur 
Metric 

0.338 ± 

0.015+ 
0.188 ± 0.008 

0.340 ± 
0.017+# 

0.314 ± 0.019 
0.337 ± 

0.013# 
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visual scores and SVS were well above the clinically acceptable cut points 3.0 and 12.0, 

respectively. 
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Figure 6.6. Representative images of three different patients reconstructed with CS (top row per 

patient), PCNN (middle row per patient), and difference image (bottom row per patient) displayed 
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with 4-times narrow grayscale to bring out differences: basal plane (left column), mid-ventricular 

plane (middle column), and apical plane (right column).  

 CS PCNN 

Myocardial Edge 
Definition 

5.0* 

(4.5-5.0) 
4.5* 

(4.0-4.5) 

Temporal Fidelity 
4.75* 

(4.5-5.0) 
4.0* 

(3.5-4.5) 

Artifacts Level 
4.5* 

(4.0-5.0) 
4.25* 

(4.0-4.5) 

Noise Level 
4.5* 

(4.5-5.0) 
4.5* 

(4.0-4.5) 

SVS 
18.75* 

(17.5-19.5) 
17.0* 

(16.0-18.0) 

Table 6.3. Summary of average reader visual scores. Reported values represent median and 25th 

to 75th percentiles (parenthesis). *P < 0.05 corresponds to significant difference.  

 

Figure 6.7 shows scatter plots resulting from linear regression analysis illustrating strong 

correlation between CS and DL analyses (R2 ≥ 0.92) and between repeated DL analyses (R2 ≥ 

0.93) for all four LV functional categories. Figure 6.8 shows Bland-Altman plots illustrating good 

agreement between CS and DL analyses for LVEDV (mean =98.0mL; mean difference = -0.54 

mL [0.5% relative to mean], the limits of agreement [LOA] = 14.5 mL [14.8% relative to mean]), 

LVESV (mean = 38.6 mL; mean difference =1.0 mL [2.6% relative to mean]; LOA = 11.3 mL 

[29.3% relative to mean]), LVSV (mean = 59.4 mL; mean difference = -1.6 mL [2.6% relative to 

mean]; LOA = 14.9 mL [25.0% relative to mean]), and LVEF (mean = 61.6%; mean difference = 
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-1.4 % [2.3% relative to mean]; LOA = 10.9% [17.6% relative to mean]). Figure 6.8 also shows 

good agreement between repeated DL analyses for LVEDV (mean difference = -0.9 mL [0.9% 

relative to mean]; LOA = 8.7 mL [8.9% relative to mean]), LVESV (mean difference = 0.9 mL 

[2.4% relative to mean]; LOA = 10.3 mL [26.0% relative to mean]), LVSV (mean difference = -

1.8 mL [3.2% relative to mean]; LOA = 9.3 mL [16.0% relative to mean]), and LVEF (mean 

difference = -1.4 % [2.3% relative to mean]; LOA =10.0% [16.7% relative to mean]. 

 

 

Figure 6.7. Linear regression plots illustrating strong correlation between reconstruction methods 

(top row, CS vs. DL, R2 ≥ 0.92) and between repeated DL analyses (bottom row, R2 ≥ 0.93) for all 

four LV functional parameters. 
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Figure 6.8. Bland-Altman plots illustrating good agreement between reconstruction methods (top 

row, CS vs. DL) and between repeated DL analyses (bottom row) for all four LV functional 

parameters.  

 

6.4) Discussion 

 This study describes the implementation of a rapid DL reconstruction pipeline for faster 

(25 s per slice with 80 frames) reconstruction of non-Cartesian real-time cine complex data than 

GPU-accelerated CS (2:40 min per slice with 80 frames), without significant loss in image quality 

metrics (SSIM = 0. 88 ± 0.02, NRMSE = 0.014 ± 0.004), SVS, or LV functional parameters. By 

optimally learning different information contained in the real and imaginary parts of complex data 

and adding a perceptual loss term to suppress incoherent image features, the proposed PCNN 

outperformed other two architectures (magnitude with MSE loss term alone, complex network 

with MSE loss term alone) and successfully produced clinically acceptable image quality. Our 

engineering approach is based on MR physics, where the real and imaginary components contain 
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correlated and uncorrelated (noise) information detected using a quadrature radio-frequency 

receiver system. Therefore, learning image features in both real and imaginary components enables 

more faithful image reconstruction than magnitude learning only. While the MSE loss is 

commonly used in DL image reconstruction, it may produce perceptually incoherent image details. 

By taking the perceptual loss into account, our PCNN produced better image quality compared to 

complex network with MSE loss term alone. 

 This study compares and contrasts with prior proof-of-concept DL studies for 

reconstructing real-time cine MR data (54, 61) as follows. The study by Schlemper et al. (54) used 

a cascade of convolutional neural networks (CNN)s to train on retrospectively undersampled 

Cartesian k-space cine data derived from fully sampled raw k-space acquired during breath-

holding. The strengths of this study are that it incorporated a k-space data fidelity term and 

maintained multi-coil information to ensure faithful reconstruction. This study, however, had the 

following limitations: (a) data from only 10 patients in total (5 for training and 5 for testing); (b) 

did not evaluate performance on non-Cartesian k-space data; (c) the network did not learn 

respiratory motion because training data were acquired during breath-holding; (d) achieved good 

results up to 9-fold acceleration. The study by Hauptmann et al. (61) used a residual U-Net to train 

on synthetically undersampled non-Cartesian k-space data derived from magnitude (i.e. Digital 

Imaging and Communications in Medicine [DICOM]) images acquired during breath-holding. The 

strength of this study is that testing was evaluated on zero-filled images derived from prospectively 

acquired 13-fold accelerated radial k-space data. This study, however, had the following 

limitations: (a) deriving synthetic radial undersampled k-space data from DICOM (magnitude) 

files is analytically incorrect, since the signal phase information is lost following the magnitude 
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operation; (b) the network did not learn respiratory motion because training data were obtained 

during breath-holding; (c) testing data from only 10 patients; (d) dealiasing performed on coil-

combined, zero-filled magnitude images.   

This study has several interesting points worth emphasizing. First, the proposed PCNN 

avoids complex value calculation that is not officially supported by Pytorch and minimizes loss of 

information when performing a magnitude operation to complex images. Our method provides an 

engineering solution to the current challenge of complex value optimization with CNNs. Second, 

both complex networks outperformed the magnitude network. This may be because of the fact that 

real and imaging components contain both correlated and uncorrelated (noise) image contents 

(Figure 1). Third, we used a GPU-based NUFFT in the pre-processing step to accelerate the 

gridding process. Despite best efforts, the pre-processing steps including gradient delay correction, 

gridding, and coil combination (23.7 s) was 29 times longer than the CNN filtering time (0.82 s). 

A future study is warranted to implement a more efficient NUFFT in Pytorch 

(https://github.com/mmuckley/torchkbnufft) to further reduce the pre-processing time. Fourth, 

the proposed PCNN pipeline produced clinically acceptable image quality, despite not having a k-

space data fidelity term, by optimally learning both imaginary and real components and 

incorporating both MSE and perceptual loss terms. This is an efficient strategy for faithfully 

reconstructing non-Cartesian data, because performing NUFFT would undoubtedly slow down the 

processing. Fifth, while the blur metric appears to be better for zero-filled and complex network 

with MSE loss term only reconstructions, those scores were artificially boosted by substantial 

amount of streaking artifacts. Thus, the blur metric values for those two reconstructions need to be 

interpreted with caution. Sixth, we used the industry standard L2-loss to train our network. Several 

https://github.com/mmuckley/torchkbnufft


107 

 

studies have shown that L-1 loss may produce better results than L2-loss (142-144). A future study 

is warranted to compare the performance between L-1 vs. L-2 loss functions for training our data 

with PCNN. Seventh, PCNN was trained on CS as reference. As such, it was not designed to 

outperform CS in terms image quality, but to outperform CS in terms of computational speed. 

 This study has several limitations that warrant further discussion. First, we used CS 

reconstructed real-time cine images as practical ground truth, because it was not possible to obtain 

fully sampled data in patients with AF. On one hand, we do not have access to ground truth, so the 

best we can do is treat CS reconstructions as ground truth. On the other hand we have demonstrated 

a NN implementation that we can confidently say has successfully learned the CS algorithm, as 

verified by the results and analysis presented in this paper. Second, we did not incorporate a k-

space data consistency term into our model because NUFFT and inverse-NUFFT are time 

consuming operations for non-Cartesian data. Another practical reason for not including a data 

consistency layer is GPU memory requirement, since such an operation would also necessitate 

multi-coil information. A future study is warranted to incorporate a data consistency layer for non-

Cartesian data using a GPU server with very high memory capacity. Third, our training (multi-

slice 2D+time) data were obtained from twenty patients. While the total number of patients may 

appear to be small, we used 31,840 2D images (or 1,173,749,760 voxels) and 2,547,072 parameters 

for PCNN for paired supervised learning with 3 x 3 x 3 kernels. Note, our training data size (twenty 

patients) is at least 4 times larger than the training data size (5 patients) used by Schlemper et al. 

(54). Fourth, while PCNN produced clinically acceptable visual scores for all four individual 

categories, its lowest score was temporal fidelity of myocardial wall motion. Subtle blurring of 

myocardial wall motion was visible in some slices, which may have contributed to small (1.4%) 
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underestimation in LVEF. Fifth, we designed PCNN based on a U-Net. It may be possible to 

achieve better results using more sophisticated unrolled network architectures (144, 145) with 

more powerful GPU and more training data, at the expense of greater computational demand and 

processing time. From a practical point of view, fast processing is essential for our clinical 

application, and access to a high-end GPU server with very high memory may be limited at most 

centers. Nonetheless, a future study is warranted to compare the performance between the 

proposed PCNN and more sophisticated networks.  

In summary, this study describes implementation, training, and testing of an image 

reconstruction pipeline including a PCNN architecture for faster reconstruction of non-Cartesian 

real-time cine complex MR data than GPU-accelerated CS reconstruction, without significant loss 

in quantitative metrics of image quality, SVS, or LV functional parameters, thereby verifying 

clinical translatability. 
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Chapter 7: Deep Learning Based Automated Segmentation for 

Biventricular Tissue Phase Mapping 

7.1) Introduction 

While endomyocardial biopsy (EMB) is the gold standard method for monitoring patients 

after heart transplantations (HTx)(146), it is limited by invasiveness, operator dependency, 

sampling errors, high cost and difficulty in sampling the right ventricle (RV) free wall(147-149). 

In addition, EMB may cause serious side effects such as tricuspid regurgitation, cardiac perforation, 

pericardial tamponade, arrhythmias, heart block, and pneumothorax(147). A potential alternative 

to monitor grafts post HTx is tissue phase mapping (TPM), a 2D cine phase contrast MRI technique 

with three-directional velocity encoding which can quantify regional biventricular myocardial 

velocities(150). Recently, several studies have demonstrated significant differences in 

biventricular global and regional velocities in HTx patients (adult and pediatric) with and without 

transplant rejection (151, 152). However, most of these studies are limited to research and clinical 

translation is limited due to the labor-intensive manual segmentation of the myocardial contours 

at all the time points. 

 The black-blood prepared magnitude (anatomical) images derived from TPM have a 

relatively low contrast between the myocardium and the blood pool, especially in patients with 

HTx, due to interference from surgery-related artifacts. In addition, the low signal-to-noise-ratios 

(SNR) in TPM images makes it challenging to apply automated segmentation methods, especially 

for the RV which is much thinner when compared to the left ventricle (LV). Previously, several 
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attempts to automatically/semi-automatically segment the myocardium in TPM images were done 

(153-156). 

In this study, we sought to develop a fully automated segmentation method for TPM images 

using deep learning (DL) and access its accuracy compared with manual analysis. 

7.2) Methods 

7.2.1) Patient Demographics 

This study was conducted in accordance with protocols approved by our institutional 

review board and was Health Insurance Portability and Accountability Act (HIPAA) compliant. 

All subjects provided informed consent in writing. We retrospectively enrolled 99 patients with 

heart transplant (mean age = 50 ± 15 years; 55 males; 44 females). Each patient underwent 1-4 

CMR scans for post HTx cardiac monitoring (median duration post HTx: 4.4 years; range: 6 days 

to 30 years), such that in total 150 scans were included. We used 114 scans (342 slices, 20-42 time 

frames per slice, 10,096 2D images) for training and 36 scans (108 slices, 23-36 time frames per 

slice, 3,288 2D images) for testing. A second independent observer (IO) manually analyzed 12 

scans randomly selected from the 36 testing scans to evaluate inter-observer variability. 

7.2.2) MRI Hardware 

TPM scans were conducted on a 1.5T whole-body MRI scanner (MAGNETOM Aera or 

Avanto, Siemens Healthcare, Erlangen, Germany). The scanners were equipped with a gradient 

system capable of achieving a maximum gradient strength of 45 mT/m and maximum slew rate of 

200 T/m/s. Body coil was used for radio-frequency excitation. Both body matrix and spine coil 

arrays (30-34 elements in total) were used for signal reception. 
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7.2.3) Pulse Sequence 

 TPM data were acquired for three short-axis slices at basal, mid-ventricular, and apical 

locations using a prospectively ECG-gated, black-blood prepared 2D phase-contrast sequence with 

three-directional velocity encoding (157-160) (VENC = 25 cm/s). Spatiotemporal imaging 

acceleration using Parallel MRI with Extended and Averaged GRAPPA Kernels (PEAK-

GRAPPA) (161) with an undersampling factor of R = 5 permitted data acquisitions during breath-

holding (breath-hold time = 24–28 heart beats per slice). Other relevant imaging parameters 

included: temporal resolution = 19-24 ms, in-plane spatial resolution = 2.0-2.3 mm2, slice 

thickness = 8 mm, TE = 3.2-3.8 ms, TR = 4.8-6.1 ms, receiver bandwidth = 460-840 Hz/pixel, flip 

angle 10° or 15°. 

7.2.4) Computer Hardware 

For training and testing of the DL network, we used a GPU workstation (Tesla V100 32GB 

memory, NVIDIA, Santa Carla, California, USA; 32 Xeon E5-2620 v4 128 GB memory, Intel, 

Santa Clara, California, USA) equipped with Python (Version 3.7, Python Software Foundation), 

Pytorch (Version 1.4, Berkeley Software Distribution), and MATLAB (R2020b, The Mathworks 

Inc, Natick, MA, USA) running on a Linux operating system (Ubuntu16.04). 

7.2.5) Image Processing 

 As shown in Figure 7.1, the manual contours from 3 clinic readers were transformed into 

multi-layer masks (i.e. labelled 0-3 for each pixel, 0: background, 1: blood pool, 2: RV 

myocardium, and 3: LV myocardium). We used the magnitude and three dimensional velocity (Vx, 

Vy, Vz) images as independent input channels (i.e. stacked in the channel dimension) and the multi-

class masks as the reference. A 3D (2D + time) residual U-Net (Figure 7.2) was used to learn the 
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segmentation process, while 2D max pooling (2x2x1) was used to allow arbitrary number of time 

frames. Cross-entropy loss, multi-class dice loss (162) and Hausdorff distance (163) were used as 

the loss terms for training. For the dice loss, each class was calculated separately by Equation 7.1.  

𝐿𝐷𝑆𝐶 = 1 −
2∑ 𝑠𝑖𝑟𝑖𝑖

∑ 𝑠𝑖𝑖 +∑ 𝑟𝑖𝑖
     Eq. 7.1 

Where 𝑠𝑖 is the DL segmentation result and 𝑟𝑖 is the ground truth at each voxel 𝑖. The dice 

losses of all three classes (i.e. blood pool, LV myocardium and RV myocardium) are weighted 

equally. The Hausdorff distance is calculated for the boundary of the entire segmentation (i.e. three 

classes combined). The total loss for the training is described by Equation 7.2, where K is the total 

number of classes (i.e. 3) and 𝐿𝐷𝑆𝐶𝑘
 is the dice loss for class k. 

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝐶𝐸 + 
1

𝐾
∑ 𝐿𝐷𝑆𝐶𝑘

𝐾
𝑘=1 + 𝐿𝐻𝐷     Eq. 7.2 

The network was trained on 342 2D+time sets of TPM images (114 scans, 342 slices, 20-

42 time frames per slice), corresponding to 10,096 2D images in total. The trained network was 

then tested on the remaining 108 2D+time sets of TPM images, corresponding to 3,288 2D images 

in total.   
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Figure 7.1. The manual contours were transformed into multi-layer masks (i.e. 0 for background, 

1 for blood pool, 2 for RV myocardium and 3 for LV myocardium). We used the magnitude image 

and three dimensional velocity (Vx, Vy, Vz) images as independent input channels and the multi-

class masks as the reference to train a 3D residual U-Net. 
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Figure 7.2. A 3D (2D + time) residual U-Net was used to learn the segmentation process, while  

max pooling (2x2x1) was used to allow arbitrary number (N) of time frames. Cross-entropy loss, 

multi-class dice-loss and Hausdorff distance were used as the loss terms for training. 

7.2.6) Quantitative Analysis 

 To access segmentation accuracy of DL, we calculated the dice scores of LV and RV 

myocardium with manual contoured masks as reference. The Hausdorff distance is calculated for 

the entire heart segmentation to access the offsets of the boundaries. To get better understanding 

of the dice scores, we randomly selected 12 scans from the testing sets to evaluate inter-observer 

(IO) variability.  

 Myocardial velocity estimations were done using a custom home-developed software 

package (programmed in MATLAB, The Mathworks Inc, Natick, Mass). Manual segmentation 

involved using the magnitude images to set nodes at the epicardial and endocardial LV and RV 

borders at all time frames for all three short-axis slices. In a semi-automatic procedure, the 

manually set nodes were interpolated by splines to obtain smooth segmentation contours, which 

encloses the LV and RV myocardial tissue. The anterior and inferior LV-RV intersections were 
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automatically detected for all time frames and used to remove the septum from the RV masks. The 

DL-generated contours were converted into node coordinates and loaded onto the software. Using 

the same semi-automatic procedure, splines were generated and LV-RV intersection points were 

identified.  

The velocity data was corrected for eddy currents(164) and bulk-motion(158, 159, 165) 

before velocity estimation. The Cartesian velocity (Vx and Vy) within the segmented LV and RV 

masks were converted into velocities along the three principal motion directions of the heart - 

radial shortening (Vr), tangential/circumferential shortening (Vϕ), and longitudinal shortening (Vz). 

For simplicity, only the Vr and Vz are considered for further statistical analyses. End-systole was 

detected automatically as the time frame with the smallest endocardial LV volume and end-diastole 

as the time frame with the largest LV volume (summed over all three slices). The expanded 16+10 

American Heart Association (AHA) model (Fig. Xc)(166) was used to report segmental end-

systolic and end-diastolic peak velocities. Global LV and RV peak velocities were obtained by 

averaging the segmental values for each ventricle. 

7.3) Results 

The mean segmentation time was ~2 hours for manual and 1.9 ± 0.3 seconds per case for 

DL segmentation. As summarized in Table 7.1, the mean dice score for the LV and RV DL 

segmentations were 0.83 ± 0.07 and 0.59 ± 0.16, respectively for the entire testing set. The mean 

Hausdorff distance of the testing set is 3.84 ± 1.56. As shown in Table 7.2, for the 12 scans with 

manual IO analysis, the dice score of DL was significantly better than manual IO for LV (DL: 0.84 

± 0.07; manual IO: 0.78 ± 0.07; p<0.001), but was not significant different for RV (DL: 0.57 ± 
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0.16; manual IO: 0.56 ± 0.19; p=0.70). The Hausdorff distance was not significantly different 

between manual IO and DL (DL: 4.14 ± 1.75; manual IO: 3.95 ± 1.75; p=0.53).  

 LV Dice 
Score 

RV Dice 
Score 

Hausdorff 
Distance 

Basal 0.84 ± 0.08 0.66 ± 0.10 3.75 ± 1.35 

Mid 0.84 ± 0.06 0.63 ± 0.14 3.61 ± 1.65 

Apex 0.82 ± 0.08 0.46 ± 0.18 4.14 ± 1.65 

Combined 0.83 ± 0.07 0.59 ± 0.17 3.84 ± 1.56 

Table 7.1. Summary of quantitative metrics of 36 testing cases comparing deep learning 

segmentation versus manual references.   

 

Table 7.2. Summary of quantitative metrics of 12 testing cases for manual independent observer 

(IO) comparison. Deep learning segmentation is compared with manual IO results, both using the 

same manual contour as reference.   

 

Figure 7.3 shows four representative cases of TPM segmentation using manual contouring 

and deep learning. 2nd and 4th column from the left show the manual and DL contours, including: 
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LV epicardium (red), LV endocardium (blue), RV epicardium (green) and RV endocardium 

(yellow). 3rd and 5th column from the left show the multi-layer masks that are the reference (manual 

masks) and output (DL masks) of DL network.  

Figure 7.4 shows scatter plots resulting from linear regression analysis illustrating strong 

correlation between manual and DL segmentation methods (R≥0.88) and between independent 

observers (R≥0.89) for peak radial (Vr) and longitudinal (Vz) myocardial velocities (LV and RV, 

systole and diastole). All 26 segments (AHA model) are plotted with the basal, mid-

ventricular, and apical segments color-coded as red, blue and green, respectively. Figure 7.5 

shows Bland-Altman plots illustrating good agreement between manual and DL segmentation for 

LV Vz (mean difference and limits of agreement [LOA] = -0.05 ± 0.98 cm/s); LV Vr (mean 

difference and LOA = -0.06 ± 1.18 cm/s); RV Vz (mean difference and LOA = -0.21 ± 2.33 cm/s); 

RV Vr (mean difference and LOA = 0.46 ± 4.00 cm/s). Figure 5 also shows good agreement 

between independent observers for LV Vz (mean difference and LOA = -0.07 ± 1.10 cm/s); LV Vr 

(mean difference and LOA = -0.13 ± 1.21 cm/s); RV Vz (mean difference and LOA = -0.32 ± 2.92 

cm/s); RV Vr (mean difference and LOA = 0.47 ± 4.06 cm/s).  

Figure 7.6 shows an example of time resolved radial (Vr) and longitudinal (Vz) velocity 

curves of LV and RV for manual and DL contours on the right and the corresponding velocity 

maps at systole and diastole time frame on the left. The red and blue vertical lines mark the time 

frames shown on the left, while the black and blue curves with dots represent manual and DL 

contours, respectively.  
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Figure 7.3. Four representative cases of TPM segmentation, manual versus deep learning. (Left 

column) Magnitude image as a part of the input to the network. (2nd and 4th column from the left) 

Manual and DL contours, including: LV epicardium (red), LV endocardium (blue), RV epicardium 

(green) and RV endocardium (yellow). (3rd and 5th column from the left) Multi-layer masks that 

are the reference (manual masks) and output (DL masks) of DL network.   
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Figure 7.4. Linear regression plots illustrating strong correlation between segmentation methods 

(top row, manual vs. DL, 36 testing cases, R ≥ 0.88) and between independent observers (bottom 

row, 12 manual IO cases, R ≥ 0.88) for peak radial (Vr) and longitudinal (Vz) myocardial 

velocities (LV and RV, systole and diastole). All 26 segments are plotted with the basal, mid-

ventricular, and apical segments color-coded as red, blue and green, respectively. 
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Figure 7.5. Bland-Altman plots illustrating good agreement between segmentation methods (top 

row, manual vs. DL, 36 testing cases) and between independent observers (bottom row, 12 manual 

IO cases) for peak radial (Vr) and longitudinal (Vz) myocardial velocities (LV and RV, systole and 

diastole). All 26 segments are plotted with the basal, mid-ventricular, and apical segments color-

coded as red, blue and green, respectively. 
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Figure 7.6. (Left) Biventricular velocity maps of manual and DL contours at systole and diastole 

time frame. Myocardial long-axis velocities are color-coded and in-plane velocities are depicted 

by regionally averaged velocity vectors. (Right) Time resolved radial (Vr) and longitudinal (Vz) 

velocity curves of LV and RV. The red and blue vertical lines represent the time frames shown on 

the left, while the black and blue curves with dots represent manual and DL contours, respectively.   

 

7.4) Discussion 

This study describes the implementation of an automated image segmentation method for 

TPM images using deep learning, which is significantly faster than manual segmentation, without 

significant loss in image segmentation accuracy (LV dice = 0.83 ± 0.07, RV dice = 0.59 ± 0.16, 

Hausdorff distance =  4.14 ± 1.75) or myocardial functional parameters (Vr and Vz). By utilizing 

magnitude and phase (Vx, Vy, Vz) images together, as well as incorporating cross-entropy loss, 

dice loss and Hausdorff distance into the loss function, the network was able to produce accurate 

segmentation comparable to manual contouring.  

This study uses a subset of testing data for inter-observer comparison, which gives a better 

way of understanding the quantitative results. Note that the dice scores of DL segmentation is 

significantly better than manual IO for LV (DL: 0.84 ± 0.07; manual IO: 0.78 ± 0.07; p<0.001), 
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but is not significant different for RV (DL: 0.57 ± 0.16; manual IO: 0.56 ± 0.19; p=0.70). Even 

though higher dice scores don’t necessarily indicate better segmentation (i.e. smooth edges, 

reasonable shapes), the DL segmentation results are still comparable to manual segmentation in 

general. For more accurate segmentation, DL results can be used as an initial guess, which can be 

further improved with minor manual adjustments. This semi-automated method can still largely 

reduce the amount of work for TPM segmentation.    

This study has several limitations that warrant further discussion. First, the manual 

contours were drawn on images with higher spatial resolution (i.e. based on 1920x1080 screen 

resolution), while DL segmentation was done based on the DICOM image resolution (i.e. 2.0-2.3 

mm2). Therefore, the manual contours were smooth curves and DL contours had zigzagging curves. 

The intermedium steps of transferring contours to masks and transferring DL masks back to 

contours are limited by current CNN segmentation technique that performs image segmentation 

by labeling each voxel with certain class instead of drawing contour lines directly on image. 

Second, the DL segmentation results can be largely affected by the image quality (i.e. poor 

performance on cases with strong breathing motion artifacts), while manual contours always have 

reasonable LV and RV shapes. This is due to the fact that our DL method is purely image driven, 

while clinic attendees have the knowledge of how the heart should look like. It could be improved 

by incorporating model based learning in the future. Third, the performance of DL and manual IO 

is significantly worse on RV than LV, which could be due to: 1) RV myocardium is thinner than 

LV, which leads to lower SNR for RV; 2) susceptibility artifact caused by the heart transplant that 

is closer to RV; 3) epicardial fat signal makes it harder to determine RV boundary. A future study 

is warranted to improve the DL performance on RV.   
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In summary, this study describes an automated image segmentation method for 

biventricular tissue phase mapping images with deep learning that is significantly faster than 

manual contouring, without significant loss in quantitative metrics of segmentation accuracy and 

functional parameters, thereby verifying clinical translatability. 
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Chapter 8: Conclusion and Future Direction 

8.1) Conclusion 

While CMR is a promising non-invasive, versatile imaging modality capable of assessing 

cardiovascular function and anatomy without ionizing radiation, its utility in clinic is limited (~1%) 

due to long scan times. This dissertation describes the development and validation of several 

acceleration techniques that can potentially overcome this problem, thereby increase the utilization 

of CMR and lower the cost.  

With current MRI scanner hardware, undersampling the k-space is a very effective way to 

accelerate CMR scans and enable real-time, free-breathing acquisitions. However, to undersample 

the data without losing image quality, advanced acceleration techniques such as compressed 

sensing and deep learning are needed. CS overcomes the Nyquist limit by exploring the sparsity 

in transform domains, which is essentially utilizing the knowledge about the data (i.e. we know it 

should be sparse). DL, on the other hand, is promising to overcome the long reconstruction time 

of CS, while CS images can be the practical ground truth reference for DL training. DL leverages 

the “common features” learned from large databases to predict the potential outcomes for new 

data, while the dependency on large amount of “ground truth” training data could limit its 

application. 

This dissertation illustrated several studies that developed and validated acceleration 

methods using CS and DL on clinic data, including: 1) accelerate coronary QISS MRA with CS 

(Chapter 4); 2) explore the time dimension of LGE CMR with CS (Chapter 5); 3) accelerate image 

reconstruction of real-time cine MRI with DL (Chapter 6); 4) enable rapid, automated image 
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segmentation of TPM MRI with DL (Chapter 7). These studies showed the potential of 

accelerating CMR workflow with these techniques, which can potentially increase the overall 

CMR utility in clinic.  

8.2) Future Directions  

While this dissertation introduced the application of the acceleration techniques for clinic 

data, all the processes were done off-line. Future work must be done to further improve these 

methods and use in clinic. For instance, the CS reconstruction time of single-shot QISS MRA and 

multi-TI LGE CMR was too long for inline reconstruction (1~2 min per slice). Deep learning 

approach could be used to reduce the reconstruction time without significantly losing image 

quality. While it’s challenging to acquire fully sampled reference images for DL training, transfer 

learning can be used to train the initial network and use the actual data to fine tuning the network. 

It can potentially reduce the amount of data needed for training to get reasonable outcomes.  

The works presented in this dissertation covered accelerated acquisition, reconstruction 

and post-processing, but these methods are separated into different projects. Future works will 

include combining these methods into an inline pipeline that includes rapid pre-processing, image 

reconstruction and post-processing. Integrating these algorithms on platforms, such as Yarra and 

FIRE, will largely accelerate the overall processing time and help their clinic translation.  
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