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ABSTRACT

Free-surface flows in dense colloidal suspensions

Phalguni S. Shah

In this dissertation, I summarize my findings of the dynamics of colloidal suspensions

over a large range of volume fractions in two systems: drop impact and film rupture. The

existence of a deformable surface in both these systems allows me to capture the conse-

quences of non-Newtonian flow using high-speed imaging. The silica spheres and rods

used in the experiments were synthesized in our lab, and characterized via SEM. Exper-

iments were performed using known volumes of colloidal suspensions under controlled

humidity.

For impacting drops, I show that the spreading behavior for a large range of volume

fractions agrees surprisingly well with Newtonian models. In the dense limit, I char-

acterize the transition between Newtonian-like spreading to complete solidification via

localized and partial solidification states. I show that this behavior is a direct result of

shear jamming, and the drop solidifies faster for higher applied shear rates. I characterize

the resulting solid properties and its unjamming dynamics in details, and show that both

depend on shear history. Additionally, for suspensions with rod-shaped particles, I ob-

serve dramatically different bouncing dynamics from sphere suspensions. I hypothesize

that contact-line dynamics are heavily altered by the presence of rods-shaped particles.

Rupturing films behave as Newtonian viscous fluids for a wide range of volume frac-

tions. However, for high volume fractions and thinner films, I report novel instabilities
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during spontaneous rupture, that are reproducible under controlled humidity. I hypothe-

size that instabilities develop when the film thickness competes with particle lengthscale,

as discrete effects start taking effect at individual particle level.

My systematic experiments span the transition from Newtonian-like to highly non-

Newtonian behavior, bridging the gap between the existing understanding of Newtonian

fluid dynamics and colloidal suspension dynamics. In the high volume fraction limit, my

work uncovers interesting behaviors that will improve our understanding of particulate

suspensions dynamics. This work connects to many pertinent questions in colloidal sci-

ence, the most notable being the nature of the shear jamming transition and the dynamics

of suspensions in a quasi two-dimensional geometry.
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CHAPTER 1

INTRODUCTION

When particles are suspended in a liquid phase, the resulting fluid is referred to as a

‘particulate suspension’. The size of these particulate additives can range from a few nm

to the order of magnitude of the system size. Particulate suspensions are broadly divided

into two classes based on particle size. Brownian suspensions consist of particles that un-

dergo thermal motion in a water-like fluid at room temperature. In other words, thermal

effects dominate over particle inertia. The terms ’Brownian suspensions’ and ‘colloidal

suspensions’ are often used interchangeably. Non-Brownian suspensions (sometimes re-

ferred to as ‘granular suspensions’) consist of particles too large to undergo significant

thermal motion. The particle size that divides these categories is ∼ 10 µm. However, this

transition is not well-defined, and suspension behavior depends on many factors, such as

properties of the suspending fluid and flow velocities in the system. In all of the experi-

ments discussed in this dissertation, we have used silica particles of size ∼ 1 µm, therefore

the focus of the work described here is on colloidal suspensions.

Many fluids familiar in everyday life are colloidal suspensions: the notable examples

are milk (fat globules suspended in water), ink (dye particles suspended in water or oil),

and blood (red blood cells suspended in water). The dynamics of colloidal suspensions

are thus relevant to many processes, both natural and industrial. The concentration of a

suspension is denoted by its volume fraction φ, the volume of particulate additives rel-

ative to the total suspension volume. In the low-φ limit (φ < 0.1), colloidal suspensions

act like simple Newtonian fluids (fluids whose viscosity is constant, irrespective of the
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applied stress). However, as φ is increased, the unusual non-Newtonian properties of

colloidal suspensions become more and more apparent. Understanding the flow of these

suspensions is not only relevant to control industrial processes such as coating and spray-

ing, but it is necessary for the design of novel materials such as body armors that harden

upon impact.

In addition to altering the bulk properties of the fluid, colloidal additives add a length-

scale to the system. A suspending medium such as water or oil is often modeled as a

continuum in fluid dynamics. However, in the presence of colloidal particles, discrete

effects are apparent on the scale of individual particles (∼ 1 µm), which may manifest as

local fluctuations in fluid behavior and novel instabilities. In my experiments, I observe

both such behaviors.

Here, I discuss experimental results of the dynamics of silica colloidal suspensions in

water via two systems: drop impact and film rupture. I scan a broad range of colloidal

volume fractions: 0.00 ≤ φ ≤ 0.50 for drop impact, and 0.00 ≤ φ ≤ 0.47 for film rupture.

Free and deformable surfaces present in both these systems enable us to directly observe

the effects of non-Newtonian flow that are otherwise obscured in bulk rheology. I show

that in the low- and moderate-φ limit, the suspensions dynamics can be modeled using

the fluid bulk rheology. However for dense suspensions, localized heterogeneities are ap-

parent in both systems in addition to changes in the bulk behavior. Our characterization

of the data reveals connections with work in other adjacent areas such as dynamics of

Newtonian fluids in similar system geometries, shear fronts in granular suspensions, and

the nature of the shear jamming transition. This work provides insights complementary

to bulk rheological data, and takes us a step closer to understanding colloidal suspension

behavior under dynamic conditions.
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For both systems considered here, I used silica colloidal particles suspended in wa-

ter. In case of the film rupture system, a small amount of surfactant was present to aid

film formation. I studied both colloidal drops and films using high-speed imaging, il-

luminated using white light. The silica colloidal particles used were synthesized and

characterized in our lab. The experimental setups were built in the lab, tailored to our

experimental requirements. I discuss the setup design in detail in the respective chapters.

Silica particles were characterized via Scanning Electron Microscopy. Experimental data

was analyzed using ImageJ and Python. All the plots were made using Python. I direct

the reader to the respective chapters for more details on the experimental and analytical

methods.

The rest of this dissertation is organized as follows: Chapter 2 outlines relevant con-

cepts from colloidal rheology, and dimensionless parameters used for both Newtonian

and colloidal fluids. In chapter 3, I outline findings from Newtonian and complex fluid

drop impact that directly relate to my experiments. Chapter 4 discusses our findings on

drop impact of colloidal suspensions made of spherical particles. Chapter 5 contains dis-

cussions of further considerations for colloidal drop impact: elastic modulus estimation

in the absence of rebound, the dynamics of unjamming of the shear jammed drops, and

experiments on the effect of particle anisotropy on impact dynamics. Chapter 6 outlines

results on the rupture of colloidal soap films, with a comparison to viscous glycerol-water

films. In addition to quantifying the rupture velocity, I discuss novel instabilities due to

colloidal additives near the end of this chapter. Chapter 7 summarizes the insights de-

veloped here, and discusses pertinent open questions. Appendix A outlines the synthesis

and characterization of silica spheres and rods, and Appendix B compares our spreading

data for impacting colloidal drops with a number of existing Newtonian models.
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CHAPTER 2

KEY CONCEPTS AND PARAMETERS

A suspension is ‘colloidal’ when thermal effects dominate over individual particle inertia

at room temperature. As a result, one can observe colloidal particles suspended in a fluid

exhibiting Brownian motion under a microscope. Typically, particles in the size range of

100 nm - 10 µm are considered colloidal, although this range may vary depending on sys-

tem context and hence should only be taken as a rule of thumb. The suspensions used in

our experiments are about 1 µm in size. In this regime, the surface energy of the suspend-

ing fluid also dominates over individual particle inertia. Therefore, the fluid behavior is

largely governed by bulk suspensions properties instead of individual particle dynam-

ics. The exception is when the particle size competes with a relevant system lengthscale,

potentially giving rise to instabilities.

In this chapter, I describe relevant properties of colloidal suspensions, dimensionless

parameters used in both Newtonian and non-Newtonian fluid systems, and important

results for soap film dynamics. For a more thorough description, I refer the reader to the

following sources: [1–4].

2.1 Non-Newtonian rheology of colloidal suspensions

In contrast to Newtonian fluids, the viscosity of colloidal suspensions can change as a

function of the applied shear [1, 2]. ‘Shear thinning’ is defined as a decrease in fluid

viscosity as applied shear is increased [φ = 0.28 and φ = 0.34 curves in Figure 2.1]. At

higher shear rates, ‘shear thickening’ may be observed, where the fluid viscosity increases
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Figure 2.1: Rheology of colloidal suspensions. As the colloidal volume fraction, φ, is
increased, the suspension transitions from Newtonian-like to shear-thinning, and then to
shear-thickening behavior.

with shear [φ = 0.43 and above in Figure 2.1]. The same fluid can exhibit both shear

thinning and thickening behaviors depending on the applied stress; dense suspensions

often exhibit shear thinning at low shear stresses and then begin to shear thicken as the

stress is increased. The relationship between shear stress and shear rate can be described

by a power law:

τshear = kγ̇n, (2.1)

so that n = 1 corresponds to Newtonian behavior, n < 1 to shear thinning, and n > 1 to

shear thickening.

Particulate suspension flow behavior can be conveniently tuned by changing the vol-



21

ume fraction φ of particulate additives suspended in a fluid. At low φ they act as New-

tonian fluids, but shear thinning and thickening are more apparent as φ is increased.

Shear thickening is considered a precursor to ‘shear jamming’ [5], where flow is com-

pletely arrested due to external shear. Close to shear jamming, the power-law description

[Equation 2.1] is no longer adequate, as the shear stress diverges.

2.2 Effective viscosity of colloidal suspensions

In addition to resulting in non-Newtonian flow behavior, the existence of particulate ad-

ditives increases the overall viscosity of the bulk suspension. This ‘effective viscosity’ is

a useful first approximation to model a suspension as a viscous Newtonian fluid. At the

low-φ limit, the effective viscosity of the suspension can be computed using the Einstein

relation:

ηeff = η0(1 + 2.5φ) (2.2)

where η0 is the viscosity of the surrounding fluid [1]. This approximation holds well

only in the dilute limit, and does not account for the suspension viscosity diverging at

finite φ due to jamming (φm = 0.64 for hard spheres). The Krieger-Dougherty equation [6]

accounts for the jamming volume fraction, and is commonly used to predict effective

viscosity over a range of φ:

ηeff = η0(1−
φ

φm
)[η]φm (2.3)

where [η] is the ‘intrinsic viscosity’; [η] =2.5 for spherical particles. This relation

reduces to Equation 2.2 in the low-φ limit, and the viscosity diverges as φ→ φm, where

the suspension jams. By computing the effective viscosity in this manner, one can define
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modified counterparts to Newtonian dimensionless parameters.

2.3 Key dimensionless parameters

Below, some key dimensional parameters relevant to the work discussed here are defined,

in forms they take for drop impact systems. Some of these parameters are defined for

Newtonian fluids, and can be adapted for non-Newtonian fluids. Some others pertain

specifically to non-Newtonian systems. For the dimensionless numbers defined here:

ρ is the density of the fluid,

η is the dynamic viscosity of the fluid,

d0 is the drop diameter,

u0 is the impact velocity,

and σ is the fluid surface tension.

• Weber number (We) is the ratio of inertial and surface stresses, We = ρu2
0d0
σ . Large

We signifies that surface stresses are negligible compared to inertia, whereas surface

stresses dominate at small We.

For particulate suspensions, if the particles are large enough so that particle inertia

dominates over bulk fluid behavior, the particle-based Weber number Wep =
ρpu

2
0dp
σ

( where dp is the particle diameter) is useful.

• Reynolds number (Re) is the ratio of inertial and viscous stresses. For drop im-

pact systems, Re = ρu0d0
η . Viscosity dominates at small values of Re, while large Re

implies that viscous stresses are negligible compared to inertia.

In the case of non-Newtonian fluids, the effective Reynolds number is defined as

Reeff = ρu0d0
ηeff

, ηeff being the effective fluid viscosity.
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• Stokes number compares the viscous and inertial forces on a spherical particle sus-

pended in a fluid, St =
ρpu0d0

η . The Stokes number provides the Reynolds number

experienced by a single spherical particle in a fluid.

• The Ohnesorge number (Oh) compares the effect of viscous stresses with the com-

bined effect of surface stresses and inertia, Oh =
√
We
Re . The Ohnesorge number is

suitable for systems where inertial, viscous, and surface stresses may all be relevant

— a common scenario for drop impact at a few meters per second.

• The Capillary number (Ca) is the ratio of viscous stresses to surface tension, Ca =
ηu0
σ . Ca is large for viscosity-dominated conditions, and small when surface tension

dominates.

• Péclet number, P e = 3πηγ̇d3
0

4kBT
, compares the rate of advection by the flow to the rate

of diffusion by Brownian motion in a suspension. For high values of P e, the flow

dominates over thermal motion; this defines the high shear regime.

• Froude number: compares fluid inertia to gravitational effects, Fr = u0√
gd0

. For typi-

cal drop impact experiments, the Froude number is large, and the effects of gravity

can be ignored in drop impact systems.

2.4 Film rupture: important results

2.4.1 Culick’s law

When a soap film of constant thickness h ruptures, a hole forms in the film and grows at

a speed v. For a constant-thickness soap film, Culick [7] derived this rupture speed by

momentum conservation, and showed that it is constant:
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v =

√
2σ
ρh

, (2.4)

where σ is the fluid surface tension, ρ is the fluid density and h is the film thickness.

This ‘Culick velocity’ has been experimentally verified several times. As this velocity is

equal to the speed of an elastic wave in two dimensions, we expect the outside of the film

not to receive the information of the rupture event until the rupture reaches it. Therefore,

we expect the outward-moving rim to collect more and more fluid as it rolls outward,

while the rest of the film outside the rim stays intact.

Note that simple energy conservation — where the surface energy from both sides

of the film, Esurf ace = 2πr2σ is equated with the fluid inertia, m(r)v2

2 — gives v =
√

4σ
ρh ,

and overestimates the rupture velocity by a factor of
√

2. The momentum conservation

derivation by Culick assumes an inviscid fluid, and we would not expect it to hold for

high-viscosity fluids. However, more recent work [8] has shown that this relation holds

asymptotically for viscous fluids, and viscosity only introduces a larger and larger tran-

sient in the initial stage of rupture. In practice, this transient is quite brief: for example,

for a fluid with 100 cP viscosity (100 times that of water) and 70 mN/m surface tension

(comparable to water), the transient is roughly 10 µs.

2.4.2 Application of LLD theory: Frankel’s law

When a fiber is slowly (so that inertial effects are negligible) pulled out of a bath of fluid,

a thin film clings to it due to viscous drag. The steady-state thickness of the film clinging

to the fiber is estimated by equating the pressure due to viscous effects with the capillary

pressure across the meniscus that forms between the pool and the film clinging to the

fiber [4]:
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ηu0

h2 ∼
σ
lb
, (2.5)

where η is the dynamic viscosity, u0 is the velocity of pulling, h is the film thickness,

σ is the fluid surface tension, b is the diameter of the fiber, and l is the characteristic

length over which pulling affects the film shape. This length can be estimated by using

the smooth boundary condition between the static and dynamic menisci, l ∼
√
bh. This

allows us to derive the relation between the film thickness h and the capillary number,

Ca = ηu0
σ :

h ∼ bCa2/3. (2.6)

As mentioned before, this law holds when viscosity dominates over inertia. More

quantitatively, this law is expected to hold for Ca1/3≪ 1, or Ca≪ 10−3. However, exper-

imental data has reported deviations for values as low as Ca ∼ 10−4 [9].

Here, I have summarized key concepts and dimensionless numbers used in the rest of

the dissertation. I have also outlined key results from the literature that are directly con-

nected to my work. In the following chapters, I will discuss when colloidal suspensions

follow and deviate from these behaviors.
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CHAPTER 3

DROP IMPACT: RELEVANT RESULTS FROM THE LITERATURE

In this chapter, I outline results from the literature relevant to the drop impact experi-

ments outlined in this dissertation. In section 3.1, I discuss results from Newtonian fluid

impact that directly relate to our system, and in section 3.2 I summarize studies on im-

pacting drops of particulate suspensions. I note that this is not a comprehensive overview,

and I only highlight results that directly relate to my work.

3.1 Relevant advances in Newtonian drop impact

Despite the complexities of the drop impact process, a comprehensive understanding of

impacting Newtonian drops has been developed. Though there are key differences be-

tween the flow properties of Newtonian and complex fluids, they share system details

and experimental methods. Moreover, in certain regimes, the physics of impacting com-

plex fluids can be understood using Newtonian models. Therefore, Newtonian studies

provide the foundation for their complex fluid counterparts. In this section, we summa-

rize relevant results of Newtonian drop impact. We emphasize that this section is not

intended to be a comprehensive review of Newtonian drop impact. Instead, we aim to

highlight aspects of Newtonian impact that are most relevant to the impact dynamics of

complex fluids. For a more complete discussion of Newtonian drop impact, we refer the

interested reader to the following reviews on the subject: [10, 11].

When a fluid drop impacts a surface, the drop radially expands on the timescale of a

few milliseconds. Fluid inertia is converted into surface energy, while being opposed by
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Figure 3.1: Various outcomes after a Newtonian drop impacts a solid substrate. a A
drop of water spreading after impact on a smooth hydrophilic substrate. b A drop of
mercury developing instabilities in its rim during spreading, c A drop of mercury under-
going prompt splash, and d A drop of silicone oil undergoing corona splash. Panels b-d
adapted from Josserand and Thorodssen [12]. e A drop of water rebounding after impact
on a hydrophobic substrate. Adapted from Quere [13].

viscous stresses, fluid-solid surface interactions, and ambient gas effects. As a result, the

fluid spreads radially onto the substrate [Figure 3.1a]. In some impact regimes, the rim

of the spreading drop may become unstable [Figure 3.1b], which may lead to ejection of



28

secondary droplets, termed as ‘splashing’[Figure 3.1c and d]. After the spreading phase,

the fluid may recede. On hydrophobic surfaces, drops impacting at large impact veloc-

ities may also bounce back [Figure 3.1e]. A significant body of work has been done to

understand spreading [14, 15], receding [16], bouncing [13, 17], and the transition from

spreading to splashing [10, 11, 18]. Below, we summarize key findings from those Newto-

nian drop impact studies that directly connect to the existing body of work for impacting

complex fluid drops.

Immediately after impact, the fluid drop undergoes inertial spreading. The maximum

spreading diameter after impact is governed by the balance between drop inertia, surface

tension, and viscous dissipation. Energy conservation arguments in the low-viscosity,

high-inertia regime (large Re, We) predict the maximum drop spread to scale as We
1
2 .

Scheller et al. [19] reported a ReWe1/2 empirical scaling for spreading viscous fluids:

β = 0.61(ReWe1/2)0.166. (3.1)

However, in the high-viscosity, low-inertia regime (small Re), the maximum spread

has been observed to follow the scaling of Re
1
5 [12]. It has thus been proposed that a

broad crossover regime must exist between these two extremes. More recently, scaling

laws based on models that consider the balance between inertial, viscous, and capillary

effects have been reported. Laan et al.[14] considered the relation

β = Re1/5f (WeRe−2/5) (3.2)
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and used the first-order Padé approximation to fit experimental data:

β

Re1/5
=

(WeRe−2/5)1/2

A+ (WeRe−2/5)1/2
(3.3)

This equation interpolates between the viscous regime (linear in WeRe−2/5) and the iner-

tial regime (constant with respect to in WeRe−2/5), and consists of a fitting parameter. As

discussed in the review by Josserand and Thorodssen [12], the Scheller et al. scaling can

be rewritten, so that it has the same functional form as Equation C.3:

β = (ReWe1/2)1/6 = Re1/5(WeRe−2/5)1/12. (3.4)

Here f (WeRe−2/5) takes the form of a single power law with an exponent of 1/12, instead

of interpolating between two regimes via a Padé approximant. Thus, despite being an

empirical fit, the Scheller et al. model is consistent with the functional dependence of

Equation C.3 reported more recently. Josserand and Thoroddsen [12] have compared

a number of scaling models for drop spreading in detail, and showed that all of these

models describe experimental data well, thus it is hard to differentiate between them.

Lee et al. [20] have recently reported a data scaling with a substrate wettability correc-

tion, where they calculate the spreading at zero impact velocity, βv→0 using another Padé

approximant with four fitting parameters. Corrected this way, they plot (
√
β2 − β2

v→0)/Re1/5

against We, instead of the parameter WeRe−2/5, and show a good collapse for several flu-

ids. Correcting for surface wettability in this way is crucial when comparing the impact

of fluids with widely varying surface tensions, as it might affect the wetting properties

significantly. We do not correct for substrate wettability in our analysis, as all of our data

involves water as a suspending fluid, and the surface tension of the suspensions does not
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vary with φ.

After the spreading phase, the impacted drop may retract. Bartolo et al. [16] observed

that when impacted on hydrophobic surfaces at high We, the drop receding velocity was

independent of impact velocity. This suggests that while inertia governs the spreading

phase, it has a negligible effect on the dynamics of the receding phase. The authors ad-

ditionally observed that, consistent with simple hydrodynamic arguments, the receding

rate depends on viscosity via the Ohnesorge number Oh. Subsequent numerical and ex-

perimental work has accounted for substrate wettability via the retracting dynamic con-

tact angle [21, 22]. Experiments on small targets are effective for decoupling substrate in-

teraction from fluid properties. Small target experiments have studied the spreading [23],

thickness evolution [24], and disintegration [25] of expanding fluid sheets.

In addition to spreading and receding, liquid drops impacting on hydrophobic sur-

faces may bounce off the impact surface. For high Re and We impacts, drops bounce al-

most elastically, and have been successfully modeled as a simple spring-mass systems [26].

Recently, this model was extended to account for drop viscosity using a damped spring-

mass equation [27]; this model also predicted an increase in the contact time with the

substrate. Controlling bouncing and contact time is important in the development of

water-repellent surfaces, and the use of microstructures has been proposed for such ap-

plications [17]. For a more detailed discussion of drop impact on hydrophobic surfaces,

we refer the reader to this recent review: [28].

At the end of the spreading phase, a drop may splash. The transition to splashing

was originally proposed to be governed by the parameter K = We(Re)
1
2 [29, 30]. This

characterization of splashing was limited, as it incorporated only the fluid and impact

properties. More recent studies have demonstrated that the quantitative value of the
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splashing threshold additionally depends both on the details of the substrate [31] and

surprisingly, the surrounding gas [32]. The dynamic contact angle during impact is set

by fluid-substrate interactions, and differs during the spreading and receding phases [33].

The role of the contact angle in splashing is an active area of investigation [34, 35]. Ad-

ditionally, it remains a challenge to measure this microscopic quantity angle experimen-

tally. Quetzeri-Santiago et al. [35] proposed that the advancing dynamic contact angle

(as opposed to the static contact angle) is relevant for predicting the splashing thresh-

old, potentially extending our understanding of splashing to hydrophobic surfaces. The

observation by Xu et al. [32] that lowering the ambient pressure could completely sup-

press splashing has inspired numerous works [18, 35–39]. At early stages of contact, an

air layer has been observed under the spreading fluid [40–44], and this has been linked

to the pressure-dependence of the splashing threshold. Recent work has focused on in-

corporating the effects of gas viscosity, density, and mean free path on splashing [18, 36,

39]. The work so far has neglected gas compressibility; incorporating this effect in future

studies would be valuable, albeit challenging.

Although most drop impact studies have focused on normal impact and hard sub-

strates, real-life impacts often happen at an angle, or on compliant surfaces. The best ex-

ample of this is the spraying of pesticides onto leaves, a process where both of these mod-

ifications come into play. Studies on splashing onto oblique and translating surfaces [14,

45–47] have observed asymmetric splash. However, models for maximum spreading di-

ameter are applicable to inclined systems, when the normal component of impact velocity

and short axis of spreading [14] are used. Drop impact work on compliant substrates [48,

49] has reported suppressed splashing, and linked it to the increased energy dissipation

on a softer impact substrate [49]. Further studies on these lines would be relevant to a
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variety of applications, as tuning the substrate compliance is a potentially facile way to

control splashing in many processes.

Despite the properties of complex fluids being significantly different from Newto-

nian fluids, many parallels can be drawn due to identical system details such as the free-

surface geometry and experimental techniques used. Broadly defined behaviors such as

spreading, receding, splashing, and bouncing have counterparts for impacting complex

fluid drops, although the quantitative trends and governing parameters vary. Through-

out the following sections, we connect disparate observations of impacting complex fluid

drops to the existing foundation of Newtonian studies. We highlight phenomena that

need further exploration in order to build a more unified picture of the physics of non-

Newtonian drop impact.

3.2 Past work on the impact of particulate suspensions

Particulate suspension drops show a rich variety of behaviors when impacted onto a sub-

strate [Figure 3.2]. Here, I discuss relevant results from the impact of particulate sus-

pensions. Traditionally, particulate suspensions are divided into two broad classes based

on particle size: Brownian and non-Brownian suspensions. The particle size that divides

these categories is ∼ 10 µm. However, the transition between these two regimes is not

well-defined, and suspension behavior can depend on many other factors such as the

properties of the suspending fluid, relative density of particles in the fluid, and flow ve-

locities in the system. Moreover, drop impact processes happen at high Péclet numbers,

and the contribution of thermal diffusion to impact dynamics is negligible. However,

particle inertia still plays an important role in the dynamics of impact, when compared

to bulk fluid properties. For large particle additives, particle inertia can dominate over
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Figure 3.2: Various outcomes after a complex fluid drop impacts a solid substrate. a
A non-Brownian suspension drop splashed by ejecting individual particles upon impact.
Adapted from Peters et al. [50]. b Both Polystyrene and cornstarch suspension drops
do not spread after impact. Adapted from Boyer et al. [51]. c A dense colloidal drop
solidifies when impacted on a substrate. Adapted from Bertola et al. [52]

the bulk fluid rheology, and the impact dynamics are best evaluated using particle-based

parameters. Thus, for the purposes of this dissertation, I classify drop impact studies into

two regimes: where impact dynamics are governed by the bulk fluid rheology, and where

particle inertia governs certain impact outcomes. We emphasize that our discussion here

is not classified strictly on the lines on particle size, but observed fluid behavior in the

context of all the system parameters. Section 3.2.1 discusses studies where impact behav-

ior is connected to the fluid rheology, whereas Section 3.2.2 discusses studies where the

inertia of individual particles may govern impact outcomes.
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3.2.1 Bulk rheology-dominated regime

A drop impacting on a solid substrate experiences large shear rates that vary spatially

throughout the drop as well as over time. This spatiotemporal variation is especially rel-

evant to the problem of impacting particulate suspensions, as their rheological properties

change dramatically as a function of shear rate, γ̇ , in addition to the particle volume frac-

tion, φ. Below, we highlight impact outcomes of particulate suspensions in the regime

that is governed by bulk rheology, and draw connections to insights from rheology data.

Particulate suspensions exhibit both shear thinning and shear thickening behaviors in

certain ranges of φ and applied shear [1, 2]. In the dilute limit (φ ≲ 0.1), the suspension

behaves practically like a Newtonian fluid, and particulate additives only increase the

effective suspension viscosity. As φ is further increased, the suspension exhibits shear

thinning, and then shear thickens at even higher φ. The same fluid can exhibit both shear

thinning and thickening behaviors depending on the applied stress; dense suspensions

often exhibit shear thinning at low shear stresses and then begin to shear thicken as the

shear stress is increased.

Particulate suspensions are shear thinning over a wide range of φ. Although we expect

shear thinning to have a significant effect on post-impact spreading, the drop diameter d

during spreading has been shown to grow in a manner identical to the spreading of New-

tonian drops [53]. Multiple studies over a range of particle sizes [53–63] have reported

that the spreading of suspension drops can be effectively quantified using spreading mod-

els for Newtonian fluids [14, 64]. To model the data in this way, the effective viscosity of

the suspension was used. Theoretically, the bulk effective viscosity is an extension of

the Einstein viscosity beyond the linear term [6]. In practice, however, the experimental

value inferred from the rheological data is often used. As effective viscosity grows with
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φ, the maximum spreading after impact, dmax, decreases. Even for particles as large as

145 µm, the spreading of particulate suspension drops has been directly compared to the

spreading of Newtonian drops with a similar viscosity [57]. Thus, the bulk effective vis-

cosity is a useful approximation to quantify drop spread for particulate suspensions well

beyond the Brownian limit.

Although substrate wettability has a relatively small effect on post-impact spreading

(especially in the high-We limit), the receding phase depends strongly on substrate prop-

erties as well as the viscosity of the suspending liquid. Several works have shown that the

dynamics of the receding phase determine the final distribution of particles deposited on

the substrate. Nicolas et al. [59] found that long after impact, the particle distribution

on the substrate varied drastically with the fluid Re. While particles were concentrated

in an annular region for impacts at high Re, they were uniformly distributed for low-Re

impacts. Grishaev et al. [63] have additionally reported that while the particles formed

monolayers on hydrophilic surfaces, three-dimensional crown-like structures formed af-

ter impact on hydrophobic substrates. Thus, substrate wettability has a direct effect on

the post-impact particle distribution, highly relevant in coating and printing applica-

tions.

As with Newtonian [23–25] impacts discussed before, small target-based experiments

minimize substrate effects in the post-impact behavior of particulate drops. Experiments

on small targets by Raux et al. [61] showed that dmax and tmax after impact were inde-

pendent of particle size (varied from 40 µm to 140 µm). However, the receding phase was

slowed down by the presence of larger particles. Larger particles have also been observed

to make the film unstable during retraction, leading to rupture and decrease of film life-

time. Thus, particulate additives have a destabilizing effect on the fluid film formed after
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impact on small targets, in stark contrast with the stabilizing effect of polymeric additives

on the film [65].

In addition to spreading, controlling the splashing of particulate fluids is key in many

processes. The impact dynamics of blood, a well-known shear thinning fluid, are of spe-

cial interest due to its relevance in forensic analyses. De Goede et al. [37] observed that

substrate wettability had little effect on the splashing threshold of blood. Once again, this

is consistent with observations of Newtonian splashing on substrates of varying wettabil-

ity [18]. For suspensions comprised of larger particles where inertia plays a significant

role, the splashing onset is fundamentally different and is studied via particle-based pa-

rameters, as discussed in section 3.2.2.

Particulate suspensions exhibit shear thickening at high φ and large applied shear.

Shear thickening fluids typically show an increasing viscosity with increasing shear, of-

ten transitioning to shear jamming (solid-like behavior) at the highest stresses. Drop

impact studies in the shear thickening regime result in exotic behaviors due to the large

and instantaneous shear rates (O(103)s−1 and greater). Despite having great potential to

expand our knowledge of the high stress response of these materials, drop impact studies

of shear thickening fluids have been few and far between, likely due to the experimental

challenges inherent to working with dense suspensions.

On impact, dense suspension drops have been observed to undergo solidification [52]

[Figure 3.2 c]. Boyer et al. [60] observed that shear thickening drops (cornstarch and

polystyrene suspensions, d ∼ 5 to 20µm, volume fraction φ > 0.33) showed a maximum

deformation that was independent of the impact velocity, and the drops stayed immobile

long after impact [Fig. 3.2b]. In my recent work [56], I observed partial solidification

states in impacting dense suspension drops, where drops solidify from the bottom but
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the top part remains liquid. I discuss my findings in detail in chapter 4. While shear jam-

ming observed on hydrophilic substrates was transient and the drops ‘unjammed’ into

the fluid state over a few seconds [56], concentrated colloidal drops (φ ∼ 0.6) impacted

over hydrophobic PTFE surfaces are reported to stay jammed for days [66]. The interac-

tion between the drop and the surface thus seems to play a key role in the timescale of

unjamming.

Shear fronts traveling upward along the drop surface at speeds faster than u0 were ob-

served in my experiments [56]. Observations of large frequency changes due to polystyrene

drops impacting on microresonators [67] have also been attributed to shear-induced struc-

tures inside the drop. In a different but related system, shear fronts occur when larger

reservoirs of complex fluids are impacted with an impeller [68–72]. Microscopic observa-

tions of propagating shear have unveiled insights of front propagation in these systems.

Similar microscopic characterisation of shear fronts in impacting drops, although chal-

lenging, would play a great role in developing the broader physics of the shear jamming

transition.

In future works on suspension drop impact, extensive use of techniques to measure lo-

cal stresses in an impacting drop is key. Studies of Newtonian fluids have established the

velocity and pressure fields within an impacting drop for a large range of viscosities [73,

74]. Although these works are not directly applicable to highly non-Newtonian fluids,

they should serve as a foundation to extend our understanding of flows inside an impact-

ing suspensions drop. Numerical work on the spatial variation of shear stresses during

all phases of suspension drop impact could provide a necessary phenomenological basis

for understanding the flow of these liquids at high stresses.

Current studies of shear thickening fluids have clearly identified novel behaviors, such
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as partial/complete solidification upon impact. To use drop impact as platform to study

stress-induced jamming, this work should be expanded, with special attention paid to

suspensions in both the CST and DST limits. Overall shear stresses in impacting drops

can be estimated and measured, but localized information is quite challenging to obtain

experimentally. To understand the physics of localized shear jamming, systematic mea-

surements of shear stresses in the impacted drop are crucial. Promising avenues for ob-

taining these measurements include localized measurements of boundary stresses (akin

to traction force microscopy measurements [75–77]). Shear fronts in particulate systems

under confinement have been characterised [68–72], numerical studies exploring how

similar fronts propagate in free-surface systems would be informative in the future.

Another avenue ripe for exploration is the role of particle shape. It is well-known

from bulk rheological measurements that the critical volume fraction for jamming varies

with particle shape. In particular, elongated (large aspect ratio) particles can exhibit

jamming behavior at dramatically lower volume fractions than their spherical counter-

parts [78, 79]. However, the role of particle shape on shear jamming in drop impact

systems has thus far been unexplored. I discuss my preliminary results on the effect of

particle anisotropy on impact dynamics in section 5.3. These studies have the poten-

tial to probe the role of shape asymmetry in the high-stress behavior of suspensions, as

well as relevance to industrial processes, where the component particles in slurries and

suspensions are often far from spherical.

In summary, the impact of low- and moderate-φ drops can be understood using the

bulk effective viscosity of the suspension for a wide range of particle sizes. However,

for high-φ drops containing larger particles, individual particle inertia plays a signifi-

cant role in the impact dynamics and the liquid merely acts as an agent that binds the
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particles into a drop. Particle-based parameters have shown success in characterizing

the spreading dynamics in this regime. Furthermore, these particle-based parameters

are also effective for predicting the splashing threshold for granular suspensions, as de-

scribed in the next section.

3.2.2 Particle inertia-dominated regime

Close to the critical volume fraction φm for jamming, impacting dense suspension drops

have been observed to deviate from their bulk behavior, and a clear deviation from the

effective viscosity framework is reported [57]. Lubbers et al. [80] studied the high-inertia

impact of dense suspensions (d = 250 µm, φ > 0.60); upon impact these drops created

a particle monolayer, which was found to grow at a different rate than the spread of a

Newtonian liquid drop on a surface. This high-φ, inertia-dominated phenomenon was

explained in terms of a particle-based Weber number Wep and liquid Stokes number St

(Wep ≫ 1, St ≫ 1 in this study). The authors proposed a particle-based chain model

of spreading; this emphasizes the quite different physics of impacting drops with larger

particulate additives. In this parameter regime, the post impact behavior is best charac-

terized in terms of particle inertia as opposed to the bulk fluid flow.

Similar to Newtonian drops, particulate suspensions can splash under certain impact

conditions. However, the nature of this splashing is fundamentally different than that

of Newtonian fluids, especially for large particle additives. Peters et al. [81] studied the

splashing threshold of dense non-Brownian suspensions of particle sizes greater than 80

µm, in the range 0.59 < φ < 0.65. ‘Splashing’ in this case comprised of individual particles

being ejected from the edge of the drop. They found that this splashing threshold was best

characterized in terms of the particle-based Weber number Wep =
ρprpu

2
0

σ , rather than the
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typical fluid We. This suggests that splashing occurs when an individual particle over-

comes the surface energy of the surrounding liquid, and that larger and denser particles

are more likely to escape at lower drop velocities. As opposed to Newtonian splashing,

they observed that the onset of splashing for these suspensions (at Wep ≥ 14) was in-

dependent of the substrate wettability and roughness. This Wep dependence has been

verified in subsequent studies [62, 82]. Consequently, Schaarsberg et al. [82] experimen-

tally investigated the effect of suspending liquid viscosity on dense (φ = 0.59) suspension

splashing, showing that the phase space defined by Wep and St, the Stokes number, is

cleanly divided into splashing and non-splashing regimes. Thus, the understanding has

emerged that particle inertia, along with viscous interactions between particles and the

suspending liquid, control the splashing threshold of dense non-Brownian suspensions,

as opposed to the bulk rheological properties that govern the spreading dynamics.

Marston et al. [53] tracked individual particles ejected after splashing (grain size

∼ 350 µm) and found that the maximum particle velocity was typically twice that of the

drop velocity, a much smaller ratio as compared to droplets ejected during Newtonian

splashing. Their image analysis suggests that the drop compressed after impact, and par-

ticles were ejected when this compression pushed φ closer to the jamming threshold. For

a more comprehensive understanding of this correlation between splashing and the jam-

ming volume fraction φm, the elastic energy of the jammed network needs to be taken

into account, as long-range correlations among the particle structure are likely to be sig-

nificant near φm.

Understanding the splashing of particulate suspensions is relevant to numerous in-

dustrial and natural processes, where suspensions involved are rarely monodisperse.

For bimodal suspensions (suspensions comprised of two particle sizes), Peters et al. [81]
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found that smaller particles were more likely to be ejected than larger particles. This is

seemingly contradictory to the Wep-based predictions discussed above. However, due

to momentum conservation, particle-particle collisions during impact cause smaller par-

ticles to gain higher velocities, and thus they get ejected earlier. This argument can be

potentially extended to polydisperse suspensions, where we would expect smaller parti-

cles to eject with more ease during splashing.

Thus, the splashing of dense non-Brownian suspensions is governed by individual

particle inertia, while the splashing of Brownian fluids is governed by bulk flow, similar

to Newtonian fluids. Recently, Grishaev et al. [83] studied the splashing of suspensions

made up of 10 µm spheres, and found that the splashing threshold did not agree with

either the bulk fluid models for Newtonian fluids [59] or particle-based models [62,

81]. The droplets ejected after splashing were an order of magnitude larger than the

suspended particles, as opposed to individual particles ejecting for suspensions whose

splashing was governed by particle-based parameters [62, 81]. This indicates that there

is a broad crossover regime between the two extremes of splashing — that governed by

bulk flow and that by individual particle inertia. Detecting individual particles with a

high-speed camera is more challenging for smaller particles. More experimental studies

that integrate microscopy with high-speed imaging might be fruitful in this respect. A

large amount of systematic data ranging over particle Weber numbers is necessary to

develop scaling laws over the whole range of particle sizes.

Particle shape not only affects the critical volume fraction φm [78, 79], but the re-

alignment of particles due to shear can also affect bulk flow properties of the suspension.

Additionally, in the dense suspension limit where the bulk viscosity framework is inade-

quate, experiments with index-matched fluids with tracer particles would be worthwhile
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to visualize the flow within the drop during impact. This would allow one to obtain

highly spatially resolved data for φ, and enable an exploration of how drops behave upon

impact.
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CHAPTER 4

IMPACT DYNAMICS OF SPHERICAL SILICA COLLOIDS

Note: The contents of this chapter are largely identical to my publication in Communica-

tions Physics: https://doi.org/10.1038/s42005-022-00998-w

4.1 Introduction

Complex fluids, such as particulate suspensions[3, 84] and polymer solutions[85], ex-

hibit a variety of exotic flow behaviors, for instance shear thickening and solidification

via jamming. These behaviors are particularly relevant to development of smart mate-

rials, such as body armours[86] and soft robots[87]. Rheometry is traditionally used to

characterise complex fluids. However, this technique typically provides measurements

averaged over the bulk of the fluid and obscures the information on local variations in

flow. The free-surface geometry in drop impact systems offers a unique lens to probe

these flow properties, as it provides data on manifestations of non-Newtonian flow with

high spatial and temporal resolution. Here, we use high-speed imaging to study the drop

impact of colloidal suspensions over a large range of volume fractions and impact veloc-

ities, thus sampling impact behavior from liquid-like spreading to solid-like jamming.

Combined with input from rheological data, our measurements offer a more holistic pic-

ture of complex fluid flow, especially under dynamic conditions.

An extensive understanding has been developed for the dynamics of a Newtonian

fluid drop impacting a dry solid substrate[12, 14, 20, 73, 74, 88]. However, the vastly

different flow properties of complex fluids substantially modify impact dynamics. Past

https://doi.org/10.1038/s42005-022-00998-w
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studies have explored the spreading and splashing of a variety of polymeric fluids[89,

90] and particulate suspensions[50–52, 57, 91, 92]; however each has largely focused on

a relatively narrow slice of the vast parameter space. The role of particulate additives in

controlling the splashing transition has been explored[50, 91], as well as the spreading

and jamming of dense suspension drops[51, 52, 57, 92]. In particular, experiments on

impacting shear thickening fluids have reported solid-like states after impact[51, 52, 57].

Colloidal suspensions offer a convenient control parameter — volume fraction — to scan

suspension behaviors ranging from Newtonian-like to shear thickening. Here, we report

a systematic study of colloidal suspension impact spanning a range of volume fractions

(0.09 ≤ φ ≤ 0.50) and impact velocities (0.7 m/s ≤ u0 ≤ 4.0 m/s). Our exploration of this

wide parameter space allows us to capture not only spreading and bulk solidification, but

also the transition between these drastically different flow regimes.

For our experiments, we synthesize charge-stabilized silica spheres (diameter 2a =

830 ± 20 nm, Fig. 4.1a) using the Stöber process[93, 94] and suspend them in water. The

sedimentation time is the time a sphere takes to sediment freely over its radius a[95],

calculated as:

ts =
9η

2∆ρga
, (4.1)

where η is the dynamic viscosity of the suspending fluid (water in this case), ∆ρ is the

density difference (ρsilica − ρwater = 1 g/cm3), g = 9.8 m/s2, and a = 415 nm, the radius

of the particle. Calculated in this manner, ts = 1.1 s. Therefore, the characteristic time

for a particle to sediment over the lengthscale of the drop (d0 = 3 mm) is t
drop
s = 4000

seconds, or over an hour. Thus, the time for our silica sphere to sediment over the size

of the droplet is much longer than the time of the experiment. This calculation for dilute

suspensions has been shown to be modified by a factor smaller than 1, up to φ = 0.30[96].
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Figure 4.1: Rheology of the colloidal suspensions. a SEM image of the colloidal silica
spheres used in our drop impact experiments; the sphere diameter is 830 ± 20 nm. b Bulk
rheological flow curves: the colloidal suspension exhibits viscous flow, shear thinning,
and shear thickening as φ is increased. The grey triangle in the bottom right indicates
the rate limit of the rheometer.

Therefore, for our system, this calculation serves as an upper-bound estimate. To further

decrease sedimentation effects, all samples are re-suspended immediately before every

trial using a vortex mixer. Spherical drops of diameter d0 = 3.0 ± 0.1 mm are formed by

drawing a known volume of fluid (15 µL) into a micropipette. We set the impact velocity

by changing the height from which the drops are released, and record the drops impact-

ing on a dry, hydrophilic glass substrate using a high-speed camera. We note that the

contact angle of gently deposited suspensions on the glass substrate is practically con-

stant with increasing φ, around 4o (for more details, see Supplementary Information).

All experiments are performed in a humidity chamber, which additionally mitigates air
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currents (see Methods for details). Data is analysed via ImageJ, and plotted using python.

Error bars reported are one standard deviation over at least 5 trials (one standard devia-

tion corresponds to a 68% confidence interval).

Shear thickening — an increase in viscosity with increasing shear — is one of the most

counterintuitive phenomena exhibited by dense suspensions[3, 84]. The Péclet number,

P e = shear rate
rate of diffusion , is a dimensionless number used to quantify high shear rates, and we

expect the onset of shear thickening at P e≫ 1. The transition to shear thickening occurs

when a suspension with relatively high φ is subjected to a shear higher than a critical

value[2, 84, 98, 99]. We note that for our experimental parameters, P e > 102, and thus

we expect shear thickening after impact in the high-φ limit. Many rheological studies

have focused on elucidating the mechanism of shear thickening, and both lubrication hy-

drodynamics and particle interactions have been shown to play a role. Shear thickening

has been proposed as precursor to shear jamming, and the nature of this transition is an

active field of study. For a more detailed discussion, we refer the reader to the following

reviews[2, 3, 98, 99].

To connect impact behaviors with rheological properties, a mapping between impact

velocity and rheological parameters is necessary. Precisely quantifying shear rates in

drop impact systems is challenging due to the nonuniformity of shear in both space and

time. However, a simple dimensional argument can be used to estimate the shear rate at

impact. At the instant of impact, the bottom point of the drop comes to rest, while the

apex continues to fall at the impact velocity u0, as the shear caused by impact has not

had time to propagate across the drop. Dividing this difference in speeds, u0, by the drop

size d0 thus provides an estimate of the maximum shear rate at the moment of impact:

γ̇impact = u0/d0. With the drop size of 3 mm, we could access shear rates in the range 233
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Figure 4.2: Exotic impact behaviors of colloidal suspension drops. a Timeseries of a
φ = 0.47 colloidal drop expanding after impacting at u0 = 3.0 m/s [SI video 1 [97]]. The
spreading drop shows transient pockets of localized solidification, indicating the onset of
shear thickening. b Timeseries of a φ = 0.49 colloidal drop impacting at u0 = 2.0 m/s [see
also SI video 2]. The bottom half of the drop solidifies, while the still-fluid top portion
flows over it. c Timeseries of a φ = 0.49 drop impacting at u0 = 3.0 m/s [SI video 3 [97]].
While most of the drop is solidified, the top portion of the drop is in the liquid phase. All
scale bars are 1 mm.
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s−1 ≤ γ̇impact ≤ 1333 s−1. Thus, we are able to span a large spectrum of flow behaviors

in these suspensions, and observe how non-Newtonian flow gives rise to a rich variety of

impact phenomena. The results we present here take us closer to an understanding of the

shear jamming transition and the properties of shear jammed solids.

4.2 Results

Bulk rheometry measurements [Fig. 4.1b] demonstrate the variety of flow behaviors ex-

hibited by our suspensions. At low φ (black and pink lines), the fluid viscosity is constant,

akin to a Newtonian fluid. Shear thinning (decreasing viscosity) becomes pronounced as

φ is increased (green and purple curves), and shear thickening (indicated by increasing

viscosity) appears for φ ≥ 0.47 at high shear stresses (shear stress above 100 Pa, orange,

blue, and red curves). We observe fascinating consequences of this non-Newtonian rheol-

ogy in our impact experiments. At φ = 0.47, where weak shear thickening appears at high

stresses in bulk rheology, we observe patches of localised solidification during spreading

— panel 3 of Fig. 4.2a shows small solid-like bumps that protrude from the spreading

drop, but vanish in panels 4 and 5 [SI video 1[97]]. At higher φ, we observe partial solid-

ification of the drop — Panel 2 in Fig. 4.2b shows that the bottom part of the drop acts as

a solid, while the top part remains fluid and flows over the solidified region throughout

panels 3-5 [SI video 2[97]]. Finally, at φ = 0.49 and high impact velocities, most of drop

solidifies as shown in Fig. 4.2c [SI video 3[97]]. Here, we show that this variety of so-

lidification behaviors is a direct consequence of shear jamming[100], evidenced by their

occurrence much below the static jamming threshold[101].

We encapsulate this broad range of impact outcomes in a φ − u0 state diagram [Fig.

4.3]. Green circles, indicating simple spreading [SI video 4[97]], dominate the low φ
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Figure 4.3: State diagram of colloidal drop impact. φ − u0 state diagram summarizing
impact regimes; representative snapshots corresponding to these regimes are shown on
the right. Green circles denote simple spreading behavior, which dominates the low φ,
low u0 region. Orange diamonds indicate that transient pockets of localised solidification
were observed during spreading. Blue triangles correspond to the partial/full solidifica-
tion regime, where the bottom portion of the drop jams after impact, but a shrinking
region at the top remains fluid.

and low u0 region. With increasing φ or u0, the localised solidification regime appears

(orange diamonds), followed by the bulk solidification regime (blue triangles), where a

larger and larger portion of the drop solidifies upon impact. The transition between these

regimes is a function of both φ and u0, as all regimes can be accessed by varying either

of the parameters while keeping the other constant. Additionally, we find that the drop

behavior is very sensitive to small changes in φ, consistent with the transition to shear

thickening in rheological measurements [Fig. 4.1b].
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Figure 4.4: Quantifying maximum drop spreading. a Normalised maximum diame-
ter, β = dmax/d0, as a function of u0 for various volume fractions φ. For φ ≥ 0.49 and
high impact velocities, β drops to 1, indicating the drop does not spread. Insets show
representative snapshots of simple spreading (upper), localised solidification (middle),
and bulk solidification (lower). Dotted lines are guides to the eye, and the dashed black
line indicates β = 1. b β/Re1/5

eff for φ ≤ 0.47, plotted against the dimensionless parameter

WeRe−2/5
eff . The dashed black line is the first-order Padé approximant as reported by Laan

et al.[14] [Equation 4.3] for Newtonian fluids, fit to our data. Considering the strongly
shear thinning nature of our suspensions, the data shows good agreement with the New-
tonian model.

To quantify this range of impact outcomes, we compute the normalized maximum di-

ameter of the impacted drops, β = dmax/d0, and plot this metric against u0 [Fig. 4.4a]. For

φ ≤ 0.47, β increases with increasing impact velocity. However, β drops to 1 at φ ≥ 0.49

and high impact velocities. This is because the drop no longer spreads after impact (lower

inset). This result is consistent with recent studies that observed similar solidification in

suspension impact at high φ[51, 52]. Our drops remain solid for a few milliseconds; how-

ever, they spread like a liquid over the timescale of a second [SI video 5[97]]. Thus, the

solid-like state we observe is transient in nature, further evidence that this solidification
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is a direct result of shear jamming. A recent result suggests that the substrate wettability

affects this timescale of unjamming[52], but this problem remains largely unexplored.

At φ ≤ 0.47, the drops spread in a manner qualitatively similar to Newtonian fluids [SI

video 4[97]]. Previous experiments[14] with Newtonian fluids have shown that β/Re1/5
eff

scales as the dimensionless parameter WeRe−2/5
eff , where We is the impact Weber number,

ρu2
0d0/σ , and Re is the Reynolds number, Re = ρu0d0/η. Here, σ is the surface tension of

the suspending fluid (for this case water, σ = 72 mN/m), ρ is the fluid density, calculated

as:

ρ = ρsilicaφ+ ρwater(1−φ) (4.2)

with ρsilica = 2000 kg/m3 and ρwater = 1000 kg/m3, and η is the suspension viscosity.

For impacting colloidal drops, the calculation for the Weber number remains identical to

Newtonian fluids. Estimating the Reynolds number, however, is less straightforward due

to the non-constant fluid viscosity of complex fluids. During the spreading phase, the

maximum shear rate can be estimated as γ̇spr ∼ u0/l, where l is the minimal thickness of

the expanding fluid layer. Past work has established that l ∼ 100 µm for the range of fluid

parameters relevant to this work[12]. Estimated this way, the γ̇spr values we obtain are of

the order 104 s−1. Measurements of fluid viscosity at such high shear rates cannot be made

via conventional rheometry. Therefore, we use the fluid viscosity at the highest accessible

shear rate from our rheology data (see Supplementary Information for more details). For

our experimental conditions, the range of dimensionless numbers was 20 < We < 1000

and 50 < Reeff < 1600. In Fig. 4.4b, we plot β/Re1/5
eff against WeRe−2/5

eff in the spreading

regime. The dashed black line is the first-order Padé approximant fit to our data:
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β

Re1/5
eff

=
(WeRe−2/5

eff )1/2

A+ (WeRe−2/5
eff )1/2

. (4.3)

This equation was reported by Laan et al. [14] to interpolate between the inertial and

viscous regimes. The parameters Re1/5 and WeRe−2/5 are based on scaling arguments that

consider the balance of inertial, viscous, and capillary effects[12, 14]. For our data, the

fit returns A = 0.09 ± 0.01, much smaller than A = 1.24 ± 0.01 reported for Newtonian

fluids[14]. Nevertheless, given that the fluids considered in this study are highly shear

thinning at higher φ, the agreement we report here with Newtonian models is surprising.

Our data also shows good agreement with an empirical fit reported by Scheller et al.[19].

Recent work has additionally reported a scaling correcting for surface wettabilty[20]; see

Supplementary Information for a further discussion of these models.

In the localised solidification regime [orange diamonds in Fig. 4.3, SI video 1[97]] the

bulk of the drop still spreads like a Newtonian fluid [Fig. 4.4b], but shear thickening is

apparent via solidified patches that appear and then disappear. These patches appear

during the spreading phase, around 1 millisecond after impact. However, indicators of

jamming are present earlier, in the form of nonuniformity in the spreading rim of the

drop [see for example, panel 2 in Fig. 4.2a]. In most cases, these patches outlive the

spreading phase and disappear during the receding phase, over tens of milliseconds. Our

observation of this regime coincides with the onset of weak shear thickening in the bulk

rheology data [orange curve in Fig. 4.1b]. Moreover, the transient nature of these patches

is strong evidence that regions of high viscosity are embedded in a lower-viscosity fluid

phase.We note that we can only observe these patches on the drop surface in high-speed

imaging data, and there is a large variance in the spatial and temporal distribution of

these patches. This limits our ability to extract quantitative information about localised
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Figure 4.5: Characterisation of the partial solidification regime. a Height of the drop
apex from the impact substrate, plotted against time, for φ = 0.50, u0 = 3 m/s. h decreases
at the speed u∗ until time t∗, then plateaus at the value hmin. Inset: post-impact snapshot
of a drop at the minimum height hmin. b h decreases at a speed identical to the impact
velocity, indicating that over the timescale t∗, the top portion of the drop is unaffected by
the impact event. Dashed line corresponds to u∗ = u0. c hmin/d0 vs. impact velocity u0.
hmin/d0 increases with increasing impact velocity, and then plateaus at a value less than
1, indicating finite compression of the drop along impact axis. Dashed line indicates
hmin/d0 = 1.

jamming. For higher φ, where shear thickening is pronounced, the drop exhibits drasti-

cally different behavior, and does not spread at all.

For φ ≥ 0.49, a large fraction of the drop solidifies upon impact. To quantify the

dynamics of this partially solidified state, we measure the height of the drop apex as a

function of time [Fig. 4.5a]. Consistent with another study of impacting shear thickening

drops[51], we observe two regimes in the h vs. t curve — a free-fall regime and a plateau

regime. Immediately after impact, h decreases at a rate identical to the impact velocity

(free-fall regime) [Fig. 4.5b], and then plateaus at a constant value, hmin (plateau regime).

This is strong evidence that any shear from the impact event has not yet propagated to

the top portion of the drop, and hence the top portion must still remain a liquid. Studies
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of impacting Newtonian drops have also observed a similar ‘free-fall’ regime where the

drop apex moves at the impact velocity[74, 102, 103]. It is worth noting that in contrast

to Newtonian fluids, where a broad transition regime was observed between the free-fall

and the plateau regimes, we observe a sudden transition from the free-fall to plateau

regime [Fig. 4.5a], a direct indication of a shear jammed drop.

We quantify the spatial extent of solidification by plotting the normalized minimum

height, hmin/d0 against u0 [Fig. 4.5c]. The increase in hmin/d0 with u0 indicates that a

larger and larger volume of the drop is solidified as the impact velocity is increased.

Interestingly, at high impact velocities, hmin/d0 plateaus to a value smaller than 1, indi-

cating that the solidified drop also undergoes deformation along the impact direction,

along with slight bulging in the plane transverse to impact [Fig. 4.2c]. Furthermore, the

high temporal resolution (100,000 fps) of our imaging enables us to capture the details

of this solidification as it occurs.

Immediately after impact, we observe a disturbance travelling upward along the drop

surface over hundreds of microseconds [orange and green arrows in Fig. 4.6a]. To better

visualise this front, we subtract successive frames of the image sequence, so that only

the parts that change between frames are highlighted [right panel of Fig. 4.6a, SI video

6[97]]. The location of the front is given by the lower end of the bright edge [Fig. 4.6b]. As

this front travels upward, the portion of the drop above the front still maintains its pre-

impact curvature [red circles in Fig. 4.6a], indicating that it is unaffected by the impact

event until the front reaches it (consistent with u∗ = u0, Fig. 4.5b). The angular location

of this front plotted against time reveals that the front travels at a constant speed, ufront

[slope of the line in Fig. 4.6c]. ufront increases with increasing u0, and its value is several

times larger than u0 [Fig. 4.6d]. As evident from the rheology, the suspension thickens



55

Figure 4.6: Dynamics of the solidification front. a Timeseries of a φ = 0.50 drop im-
pacting at u0 = 2.0 m/s [SI video 6 [97]]. Right panels are images obtained by subtracting
consecutive frames, so that the edge of the solidification front is highlighted (shown by
arrows).The red circle indicates the drop profile before impact. Even at 0.19 ms, the por-
tion of the drop above the front maintains its pre-impact curvature. Scale bar is 1 mm. b
Schematic of a subtracted image of the moving solidification front, outlining relevant
parameters. The height, hf ront, of the edge of the white outline gives the location of the
front, which is then converted to rθf ront using the spherical geometry. c Example datasets
of rθf ront vs. t for φ = 0.49 and u0 = 3 m/s. rθ vs. t is a straight line, the slope being the
front speed along the surface, uf ront. d ufront plotted against γ̇impact. e High- φ bulk rheo-
logical data from Fig.4.1b re-plotted as shear stress vs. shear rate. Dotted lines indicate
the onset shear rates γ̇c for shear thickening. f The ufront data for φ = 0.49 and φ = 0.50,
when plotted against γ̇impact − γ̇c, collapses on a single curve.
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when the applied shear surpasses a critical value. Indicated by the dotted lines in Fig.

4.6e, the critical shear rate where thickening is observed, γ̇c, is much lower for φ = 0.50

than for φ = 0.49. We plot ufront against the excess shear rate over this critical value,

γ̇impact − γ̇c, and the data indeed collapses on a single curve for both φ [Fig. 4.6f] . This

suggests that the speed of this disturbance is set by this excess shear rate; the physical

relevance of this excess shear rate is discussed in the following section.

As the impact velocity is increased, a larger and larger volume of the drop solidifies

upon impact. At φ = 0.50 and u0 = 4 m/s, we observe that the drop bounces off the

substrate, with the coefficient of restitution ϵ = 0.1 [SI video 7[97]]. This rebound be-

havior is especially striking given the hydrophilic nature of the substrate. By coupling

this coefficient of restitution with the drop’s deformation along the impact axis, we can

semi-empirically estimate the elastic modulus of the solidified drop. The drop impacts

the substrate with an initial velocity u0, remains in contact with the substrate for time

∆t = 200 µs , and then rebounds with the final velocity ϵu0. While in contact with the

substrate, we measure that the drop is deformed in the direction of impact by the amount

∆x = 0.24 mm. We calculate the force experienced by the drop upon impact using mo-

mentum conservation:

F =
m∆u
∆t

=
m(1 + ϵ)u0

∆t
, (4.4)

To convert the force to a stress, we divide by the contact area for a Hertzian contact[104],

πa2 = πd0∆x/2:

σ =
F

πd0∆x/2
=

2m(1 + ϵ)u0

πd0∆x∆t
. (4.5)

The strain experienced by the drop is γ = ∆x/d0. Thus, the elastic modulus of the re-
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bounding drop can be computed as

E =
σ
γ

=
2m(1 + ϵ)u0

π(∆x)2
∆t

. (4.6)

using m = 2.25 × 10−5 kg, we find E = 5 MPa. A more thorough estimate using Hertz’s

equations[104] for two colliding elastic bodies leads to a similar estimate of E. Calculat-

ing the elastic modulus in this way for other impact conditions is challenging, as measur-

ing the contact time in the absence of rebound is nontrivial.

4.3 Discussion

In sum, our analysis presents the following picture of the drop dynamics. Upon impact,

the drop experiences a large instantaneous shear at the impact point. At high enough

volume fractions and impact velocities, this stress manifests itself as pockets of localised

solidification embedded in the spreading liquid phase. At even higher volume fractions

or shear, a larger and larger fraction of the drop solidifies after impact, but some volume

at the top remains liquid. Therefore, the shear front must be dissipating as it moves up-

ward, and the stress falls below the critical stress for shear thickening before the entirety

of the drop is solidified. Moreover, at the highest impact velocity, the drop rebounds,

and the coefficient of restitution allows us to estimate the elastic modulus of the shear

jammed solid, E = 5 MPa. Thus, our drop impact experiments provide a unique window

to observe shear jamming as it occurs, and give rise to a number of questions about the

nature of both the shear jamming transition and the resulting jammed solid.

The occurrence of localised solidification coincides with the appearance of weak shear

thickening in our bulk rheology data. The fact that these solidified patches vanish over
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tens of milliseconds is strong evidence that they are regions of high viscosity embedded in

a lower-viscosity fluid phase. Recent rheological studies using boundary stress measure-

ments (BSM) have reported finite regions of enhanced stress in silica suspensions[76, 77,

105]. In these works, Rathee et al.[76, 77, 105] argued that the transition from shear thick-

ening to shear jamming is governed by the growing size of such localised shear jammed

regions. Our observations of transient localized solidification are thus striking visual ev-

idence of such a mechanism. Further spatially resolved stress measurements performed

on impacting drops[88] could provide more information on the nature of localised solid-

ification in free-surface systems.

In the bulk solidification regime, the coexistence of liquid and solid regions is a result

of shear traveling upward from the impact point, and simultaneously dissipating due to

the high suspension viscosity. Although recent studies of Newtonian fluids for a large

range of viscosities[73, 74] have established the velocity and pressure fields within an

impacting drop, they are not directly applicable in case of colloidal systems due to their

highly non-Newtonian nature. Numerical work investigating transient shear might be

a useful next step to uncover the mechanism of dissipating shear fronts. Though chal-

lenging, measurements of the flow inside the drop via methods such as particle tracing,

would provide key information about the flow field in an impacting colloidal drop.

The nature of the upward-travelling front raises a number of interesting questions.

Before the front reaches the top, the speed of the drop apex u∗ is identical to u0 [Fig.

4.5b], and the curvature of the top portion is the same as it was before impact. This

confirms that the information of the impact event reaches the top portion only with the

front, thus establishing that it is a solidification front. Why the speed of this front is

constant along the drop surface is an intriguing question. One would expect a shear
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front to travel through the bulk of the drop, upward from the region in contact with

the substrate. Given the visual nature of our measurements on an opaque drop, we can

naturally observe this front only on the surface. The most likely explanation, therefore, is

that the front we measure is this bulk shear front after it interacts with the drop boundary.

Our experiments are especially well-positioned to capture such a front due to the free-

surface conditions here that are absent in other studies of shear fronts. Past work has

established that shear fronts in dense suspensions are not a result of densification[69],

and their velocity is set by the external driving speed[68–72]. We are able to characterise

the dependence of the front speed on applied shear rate due to the unique capability of

the drop impact system to apply large and instantaneous shear. At a first glance, Figure

4.6e suggests that reaching a shear rate beyond the critical value is impossible, making

an excess rate beyond the critical value unphysical. However, we argue here that this is

meaningful for drop impact systems. In a rheometer, resistance to shear in a thickened

fluid causes the shear rate to not increase even though applied shear stress increases

[Fig. 4.6e]. However, at the instant of impact, the shear rate estimated by γ̇ = u0/d0 is a

physically relevant quantity. The rationale is as follows: at the moment of impact (before

the front has travelled across the drop over ∼100 microseconds, Fig. 4.6a,b), the impact

point comes to an abrupt halt while the drop apex still moves at the impact velocity

[Fig. 4.5b]. Therefore, the velocity difference of u0 exists across the drop size d0, leading

to γ̇ = u0/d0. The front propagation gives us a timescale over which effects of shear

jamming are apparent over the whole drop, and we believe that the inability to access

high shear rates in a rheometer is a direct consequence of the longer timescale (typically a

few seconds) over which shear is applied in rheometry measurements. We emphasize this

ability to apply instantaneous high shear is the greatest strength of studying suspension
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behavior via drop impact.

The dependence of the front speed on γ̇impact − γ̇c in our experiments [Fig. 4.6f] sug-

gests that the suspension properties near the shear jamming transition are governed by

the distance from the onset of shear thickening. This is consistent with measurements

in static jamming, where material properties depend on the distance from the critical

point[106]. The functional form of this dependence potentially contains insights into the

nature of the shear jamming transition. Numerical work exploring the impact of sus-

pension drops, although incredibly challenging due to the strong role of hydrodynamics

in colloidal systems, might provide crucial information in this respect. Unfolding the

physics of these fronts will not only extend constitutive models for complex fluid rhe-

ology to much higher stress regimes, but will also help us understand more about the

nature of the shear jamming transition.

Due to the transient nature of the shear jammed state, characterising the jammed

solid created after impact is challenging. Using the coefficient of restitution of the re-

bounding drop, we were able to estimate the elastic modulus of the solid phase, E = 5

MPa. As rebound only occurred at one impact velocity, how the elastic properties of

shear jammed drops are controlled by the impact conditions remains obscure. The use

of superhydrophobic substrates promotes rebound, even in Newtonian liquid drops[13].

Further colloidal drop impact experiments on superhydrophobic surfaces could extend

the parameter space where drops rebound, and thus provide the information essential to

understand what controls the properties of this elastic state. Numerous other properties

of the shear jammed solid are of interest: When and how would such a solid fracture?

How broad is its linear elastic regime? How do these properties compare to those of static

jammed solids?
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In conclusion, we conduct highly time-resolved drop impact experiments and system-

atically probe suspension flow ranging from Newtonian-like to shear jamming. We show

that the impact behavior in the spreading regime can be quantitatively understood via an

effective viscosity framework, and that the solidification behaviors at high φ and u0 are

direct consequences of shear jamming. The free-surface geometry in our system provides

direct visual information on how the shear jamming transition occurs, both in parameter

space and in time. Shear jamming occurs via a solidification front, the speed of which is

set by how far into the shear thickening regime the applied shear rate is. Furthermore,

we see this transition occur via a localised solidification regime that cannot be observed

via bulk measurements. We believe that drop impact is a powerful experimental tool

to investigate macroscopic properties of complex fluids, and provides information that

compliments the data from bulk rheometry.

4.4 Methods

Colloidal sample preparation

We fabricated silica spheres in our lab using the Stöber[93, 94] synthesis method. The

particle size was determined by the number of feeds: we performed 14 feeds after the

initiation of the reaction, resulting in particles with a diameter of 830 ± 20 nm. The

reaction mixture was centrifuged and re-suspended in ethanol 3 times; the suspension

was then gravity separated to improve monodispersity. The particles were then imaged

on the Hitachi S4800 Scanning Electron Microscope [Fig. 4.1a]. The particle size was

characterized by measuring the diameter of a representative sample of 100 particles in

ImageJ, and the polydispersity reported is the standard deviation in particle size.

A concentrated stock suspension of the silica spheres was prepared in water (with no
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surfactant), and the weight fraction was measured by drying 100 µL of the stock sus-

pension. The density of silica (2 g/cm3) was used to convert weight fractions into volume

fractions. Dilutions were then performed to prepare samples of desired volume fractions.

The uncertainty in volume fractions reported is 0.5% (0.005) or less, determined by re-

peated measurements. When not in use, all the sample tubes were sealed using Parafilm

and stored in a refrigerator to minimize evaporation and contamination.

Experimental setup

We used Fisherbrand plain glass slides as the hydrophilic impact substrate. The slides

were cleaned using a 2.5M solution of NaOH in ethanol and water to remove organic

impurities. A micropipette was used to form colloidal drops. The micropipette was

mounted on a vertically moving pipette holder to vary impact velocities. We used 15 µL

of fluid to obtain drops of 3.0 ± 0.1 mm diameter. The setup was enclosed in a humidity

chamber with the relative humidity maintained between 70–80% using a saturated solu-

tion of NaCl in water, and the humidity was monitored in real time during experiments.

Before every trial of the impact experiments, a vortex mixer was used to re-disperse the

sample, ensuring that it was consistently well-mixed.

The impacting drops were backlit using a white LED light, and filmed using two high-

speed cameras. The first camera, a Phantom V2512, captured the side-view of the impact-

ing drop at 100,000 frames per second. The second camera, a Phantom V640L, filmed at

20,000 fps. It was tilted at an angle of 15◦ to gather information on how the impact af-

fected the top surface of the drop. The experiment was repeated at least 5 times for each

impact condition to ensure reproducibility.

Rheological studies

Stress-controlled rheological measurements were performed on the colloidal samples
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over 0.09 ≤ φ ≤ 0.50. The measurements were done on a TA Instruments Discovery HR-2

rheometer at room temperature (∼ 21◦C) using the cone-plate geometry with 40 mm di-

ameter and a 1◦ cone angle. The truncation gap was 25 µm. We covered the edges of the

samples with a microscope immersion oil to minimize evaporation. The samples were

pre-sheared to remove effects of shear history.

Data analysis

All high-speed videos were background-divided and analysed using ImageJ. The plots

were made using python, and all errors reported are one standard deviation calculated

over at least 5 trials (corresponding to a 68% confidence interval). The maximum drop

spread dmax was determined by locating the frame in the impact timeseries where the

extent of the spreading drop was the greatest. The height of the tallest point on the drop

relative to the substrate, h, was measured for each frame in the image sequence. The

minimum height hmin was defined as the drop height at the crossover point between the

decreasing and the plateau regimes in the h vs. t plot. The time of first observation

of hmin, measured since the impact event, was defined as t∗. The slope of the linearly

decreasing regime in the h vs. t plot was defined as u∗. To calculate the coefficient of

restitution, the speed of the drop before impact u0, and the speed after rebound, uf were

computed using several frames of the image sequence. The coefficient of restitution was

then computed as ϵ = uf /u0.

To calculate the speed of the upward-moving front, the side-view impact videos recorded

at 100,000 fps were used. For every frame of the image sequence, the pixel-wise differ-

ence between consecutive frames was taken in ImageJ, so that only the elements that

changed between consecutive frames (corresponding to the location of the moving front)

were highlighted [SI video 7 [97]]. This enabled us to locate the jamming front with a
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time uncertainty of 10 µs. The images were then adjusted for brightness and contrast

to enhance the moving front. The vertical height hfront of the disturbance from the im-

pact substrate was measured for each frame of the image sequence, until the front was

no longer visible. For every high-speed video, the left and right half of the drop were

separately analyzed to obtain two datasets for hfront(t). In order to convert hfront to the

position along the drop surface, rθfront(t), we approximated the drop profile as a circle of

radius r = 1.5 mm (disregarding the slight deviation from spherical shape during front

propagation), and used the relation hfront(t) = r(1 − cosθfront(t)), such that θfront(0) = 0 at

the impact point, to obtain the angle θfront(t). A line was then fit to the rθfront vs. time

plots, and the slope, averaged over the two halves of the drop and several movies for each

impact condition [Fig. 4.6c], was reported as ufront with error bars indicating the standard

deviation.
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CHAPTER 5

DROP IMPACT: FURTHER CHARACTERIZATION OF THE SHEAR JAMMED STATE

AND EFFECT OF PARTICLE ANISOTROPY

In the last chapter, our results on the shear jamming dynamics of an impacting drop

made of spherical silica suspensions were discussed. Here, I discuss further considera-

tions on the drop impact dynamics of suspensions, that includes a preliminary character-

ization of the shear jammed solid, the re-fluidization dynamics after the shear jamming

event, and the effect of particle shape on both quantitative and qualitative aspects of im-

pact. In section 5.1, I describe and compare two ways of estimating the elastic modulus

of an impacted drop in the absence of rebound, which gives us information about how

properties of the solidified drop depend on the impact conditions. In section 5.2, the

longer-timescale dynamics of the impacted drops are described, where I observed that

the re-fluidization dynamics of drops depends on the impact history. Finally, in section

5.3, I outline the effect of particle anisotropy on impact dynamics, where I show that

drops of rod-shaped particle suspensions not only shear jam at much lower φ and impact

velocities, the post-impact drop behavior is qualitatively different from that observed for

sphere suspensions. These preliminary observations outline experimental avenues for

the near future, which will help us understand the nature of shear jamming upon impact

in more detail.
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5.1 Elastic modulus estimation in the absence of rebound

Estimating the elastic modulus of the shear jammed solid after impact provides us with

a window into the properties of the shear jammed solid. However, as discussed in the

previous chapter, we are able to observe rebound, and hence directly measure the contact

time and the coefficient of restitution of the drop, at only one impact condition. Equation

4.6 was used to estimate the elastic modulus for the rebounding drop.

In the absence of rebound, however, despite the observation of bulk shear jamming,

such an estimation of E is nontrivial. As the drop never leaves the substrate, we do

not have a reliable measure of the contact time relevant to estimate the elastic modulus.

However, even approximate information we can extract from our data would take us

closer to understanding the properties of shear jammed solids. Here, we attempt to obtain

a crude estimate of the contact time in the absence of drop rebound, so as to estimate E over

multiple impact conditions.

For impact conditions where the drop does not rebound, we can estimate contact time

by assuming a simple harmonic behavior. With this assumption, the drop is maximally

compressed in the vertical direction at time t∗ after impact and it would take the same

amount of time to (hypothetically) de-compress and bounce back from the substrate.

Thus the ‘simplified contact time’ is tcontact = 2t∗ [Figure 5.1]. The equation to thus com-

pute Elinear reads:

Elinear =
2mu0

πd0(∆x)2 × 2t∗
(5.1)

This equation is similar to Equation 4.6, with ϵ = 0 and substituting ∆t = 2t∗. Identical

to Equation 4.6, ∆x is the minimum height of the drop apex from the substrate. The errors
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Figure 5.1: Sketch of the symmetry assumption for calculating Elinear , overlaid on ex-
perimental data of Fig. 4.5a. The blue dashed line indicates the motion of an ideal
spring-mass system bouncing off of a substrate. Assuming the drop to follow this mo-
tion leads to the simplified contact time,tcontact = 2t∗.

in Elinear are computed as

∆(Elinear)
Elinear

=
δ(u0)
u0

+ 2
δ(∆x)
∆x

+
δ(t∗)
t∗

(5.2)

where δ(u0) is the standard deviation in u0, from repeated experimental measure-

ments, and likewise for other variables. As shown in Figure 5.2, Elinear thus computed for

two φ values, plotted against (γ̇impact − γ̇c) collapses well onto a power law (dashed black

line) with the exponent of 2.1.

A number of assumptions go into this estimate of Elinear . In order to calculate a proxy
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Figure 5.2: Elastic modulus estimated using simplified contact time t⋆contact, plotted
against γ̇impact − γ̇c. The dashed black line indicates the power-law fit. The data collapses
well, and the power-law exponent of 2.1 suggests that Elinear scales quadratically as the
rescaled shear rate.

for ∆t, we model the drop as an ideal spring-mass system, so that the time it spends

being compressed and de-compressed are identical [Figure 5.1]. This is clearly far from

our experimental observation of the plateau in drop height after initial compression [Fig-

ure 4.5a]. Thus, in addition to the linearity assumption, we are effectively neglecting any

interactions with the substrate. We note that dissipation within the drop is accounted

for, as ϵ = 0 for a non-rebounding drop. We assume that the drop behaves as an elastic

solid bouncing from a substrate in the absence of gravity. This is clearly not true; the

drop is a fluid before experiencing any shear caused by impact. The actual post-impact

state of the drop is far more complex, since for most impact conditions the top portion of
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the drop still remains a fluid even after impact. However, we believe that this model is

an informative first step to glean any information about material properties, given how

little is known about the effect of applied shear on the properties of shear jammed solids.

Despite all the simplifying assumptions, we are surprised to see such a good collapse

with respect to (γ̇impact − γ̇c). Below, we argue that a quadratic dependence of the elastic

modulus on (γ̇impact − γ̇c) (exponent 2.1 from the fit) is physically sensible.

Figure 5.3: Elastic modulus estimated by assuming uf ront to be the bulk sound speed,
plotted against γ̇impact − γ̇c. The dashed black line indicates the power-law fit. The data
collapses well, and the power-law exponent of 1.7 is close to the quadratic behavior of
Elinear .

We can estimate the elastic modulus of this solid in another way. By assuming uf ront as

the speed of sound in the shear jammed material, we can use the equation uf ront =
√

Ef ront
ρ ,

where Ef ront is the elastic modulus estimate, and ρ is the density of the suspension. Thus
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the elastic modulus is calculated as

Ef ront = u2
f rontρ, (5.3)

With errors given by

δ(Ef ront)

Ef ront
=

2δ(uf ront)

uf ront
+
δ(ρ)
ρ

. (5.4)

Although uf ront as the sound speed in the bulk of the drop is a naive assumption,

what we know about bulk and surface sound speeds from the literature [104] indicates

that this is a good order of magnitude estimate. Figure 5.3 shows Ef ront thus computed

as a function of (γ̇impact − γ̇c). Except for one data point at φ = 0.49, the data again shows

a good collapse, the power-law exponent being 1.7. We expect a quadratic power-law

exponent in this case, as Ef ront scales quadratically as uf ront and uf ront scales linearly with

γ̇impact − γ̇c [Figure 4.6f]. The deviation from the expected value of 2 can be attributed to

the outlier at φ = 0.49 and u0 = 2 m/s.

Figure 5.4 shows the comparison of the two elastic modulus estimates, Elinear and

Ef ront. The two values show good agreement. The scaling of the elastic moduli with

(γ̇impact − γ̇c) is further evidence that the properties of a shear jammed material depend

on the magnitude of applied shear beyond the critical value.

Nevertheless, the calculation of E for a rebounding drop is much more reliable than

that of Elinear in the absence of rebound. Impact experiments on hydrophobic surfaces, as

they might promote rebound at lower shear conditions, are a logical next step to improve

the elastic modulus estimate. To obtain more precise information about these elastic

properties, further numerical and experimental measurements of the sound speed inside
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Figure 5.4: Comparison of the two estimates of elastic modulus, Elinear and Ef ront.
Dashed black line denotes y = x. Despite the very crude nature of both estimates, they
agree reasonably well.

shear jammed systems would be informative.

In addition to affecting the properties of the transient shear jammed state of the drop,

the memory of high shear might also manifest into how this material ‘unjams’ over longer

timescales. We discuss the unjamming dynamics of impacted drops in the next section.

5.2 Unjamming of solidified suspension drops

For the impact conditions where a concentrated suspension drop shear jams, the resulting

solidification lasts for tens of milliseconds. Over longer timescales, the shear jammed
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Figure 5.5: A φ = 0.49 drop, impacted at 4 m/s, unjams over hundreds of milliseconds.
The spreading process continues over several seconds (not shown in the timeseries above).
Scale bars are 1 mm.

drops re-fluidize. This ‘unjamming’ corroborates that the solidification was indeed due

to shear jamming, and that the drops were not dried out due to evaporation. As discussed

in section 5.1, the properties of the shear jammed drop depend on the instantaneous

shear experienced by the drop. In order to explore the effect of shear memory on the

unjamming dynamics, I recorded the unjamming drops at a frame rate of 200 fps. Other

experimental details were identical to those reported in chapter 4.

Figure 5.5 shows a timeseries of a φ =0.49 drop impacted at u0 = 4 m/s. On the

timescale of hundreds of milliseconds, the drop starts spreading from its bottom part

where it is in contact with the substrate. The spreading proceeds slowly, and continues

for seconds[Figure 5.6]. I record the spreading dynamics until t=50 seconds after impact,

as spreading slows down significantly beyond that time. Figure 5.6 shows the spreading

diameter of φ = 0.49 drops. The u0 = 0.7 m/s data point serves as a control experiment

for viscous spreading, as shear jamming does not occur at this low velocity. I compare the

spreading dynamics during unjamming at higher impact velocities to this control data,

in order to explore the effects of shear memory on unjamming. As seen in Figure 5.6, the

final spreading diameter of drops is smaller for larger impact velocities. Thus, unjam-

ming follows the opposite trend of inertial spreading, where larger impact velocities lead

to more spreading. Thus, this reversed trend might be a consequence of shear memory in

the drop.
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Figure 5.6: Spreading of shear jammed drops at φ =0.49 due to unjamming. The drops
impacting at u0 = 0.7 m/s do not undergo shear jamming, and this data serves as a control
experiment. During unjamming, drops impacted at higher velocities spread to a smaller
extent. Therefore, shear jammed drops show a trend opposite to that of fluid drops, where
drops spread more at higher impact velocities.

Figure 5.7 shows the normalized spreading size of the unjammed drops, for both φ =

0.49 and φ = 0.50. I note that I recorded the spreading dynamics for 50 seconds, therefore

it is possible that the spreading diameter grew beyond the values reported in Figure 5.7.

However, the spreading slowed down significantly within 50 seconds, and I do not expect

large changes in spreading diameter beyond this time. For both volume fractions, the

normalized spread decreased with increasing impact velocity. All of these values were

smaller than the controlled experiment at u0 = 0.7 m/s, where the drop is expected to

undergo viscous spreading. Therefore, the unjamming behavior cannot be attributed to

Newtonian effective viscosity effects alone. As higher impact velocities lead to higher
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Figure 5.7: Maximum spread of shear jammed drops at φ =0.49 and φ =0.50 due to
unjamming. The drops impacting at 0.7 m/s are control experiments, as shear jamming
does not occur at this impact velocity. For both φ =0.49 and φ =0.50, the normalized
maximum spreading diameter decreases with increasing impact velocity. This trend is
exactly opposite of inertial spreading of fluid drops in the absence of shear jamming.

instantaneous shear rates experienced by the drop, it is possible that drops impacted

at higher velocities retain the information of this shear, and behave as more and more

viscous fluids due to shear thickening. Thus, my observations point to the possibility that

shear memory affects the unjamming dynamics due to the highly shear thickening nature

of our colloidal suspensions at φ =0.49 and φ =0.50.

There are many other considerations to how unjamming proceeds. As the timescale

for unjamming is long relative to the solidification timescale, the effects of particle sed-

imentation might be significant. Whether large gradients of particle density are present

within an unjamming drop needs to be explored further. Particle tracking in an index-
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matched drop might be useful in this regard. Impact experiments of dense suspension

drops on hydrophobic substrates have reported the drops to have stayed jammed for sev-

eral days [52]. It would be interesting to explore whether this was an effect of drying or

whether the substrate alters unjamming dynamics in a non-trivial way. Measurements of

the final contact angle of the unjammed drop would be informative to understand how

capillary effects connect to the re-fluidization process after shear jamming.

5.3 Effect of particle anisotropy: impact of suspensions of rod-shaped colloids

Figure 5.8: Timeseries of an AR 11, φ =0.35 rod suspension drop impacting on a glass
substrate at u0 =1.5 m/s (see also SI video 1 [107]). Scale bars are 1 mm. At 1 ms, the drop
shows an irregular mushroom-like shape, suggesting shear jamming. At 2 ms, patches of
localized jamming are visible on the drop surface, which look qualitatively different from
ones observed in sphere suspensions. The localized jamming patches disappear quickly,
and are not visible at 20 ms.

In addition to the suspension volume fraction and impact conditions, particle shape

is a pertinent parameter to the post-impact behavior of colloidal suspension drops. Rhe-

ological data for suspensions with rod-shaped particles shows that shear thickening oc-

curs at a lower value of φ, and over a broader range of φ [101]. The lower φ value for

thickening can be expected, as the larger surface area of rod-shaped particles facilitates

forming contacts with neighbouring particles, causing resistance to motion at lower con-

centrations. To study how these rheological properties alter impact behavior, I performed

impact experiments on rod-shaped suspensions made of silica rods with the aspect ratio
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Figure 5.9: Timeseries of an AR 11, φ =0.45 rod suspension drop impacting on a glass
substrate at u0 =1.5 m/s (see also SI video 2 [107]). The drop height reduces, then it
increases as the drop tries to rebound but cannot detach from the substrate, and decreases
again as the drop falls down under gravity.

(AR: the ratio of the length and diameter of the rods) of 11. I synthesized the rod-shaped

particles in the lab [See Appendix A] using the procedure by Kuijk et al. [108]. Unlike

sphere synthesis, the yield of the rod synthesis is very low (∼ 400 µL for a 1L synthesis

batch), and 12 synthesis runs had to be performed to obtain enough high-quality rods for

the impact experiments.

Figure 5.8 shows a timeseries of a φ =0.35 drop of AR 11 rod suspensions impacted at

u0 = 1.5 m/s (see also SI video 1 [107]). At 1 ms, I observe a thick rim near the drop bot-

tom, while the top part remains in a spherical cap shape. At 2 ms, I observe protrusions

on the drop surface that vanish in the next panel at 20 ms. This behavior is similar to

the behavior observed for φ = 0.47 drops of sphere suspensions [panel 2 in Figure 4.2a],

indicating that this is localized solidification. The patches of localized jamming observed

here have qualitative differences when compared to those in sphere suspensions [panel 3

in Figure 4.2a], which is to be expected because of particle anisotropy. It is surprising that

localized solidification is present at a much lower φ of 0.35 (as opposed to φ =0.47 for

sphere suspensions) in anisotropic suspension impact. Additionally, the impact velocity

at which localized jamming is apparent in rod suspensions, 1.5 m/s, is also smaller than
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that of 3 m/s for sphere suspensions.

Figure 5.10: Height of the drop apex vs. time for an impacted rod suspension drop, with
AR 11 rods, φ =0.45, u0 = 1.5 m/s. Scale bars are 1 mm. The height variation is drastically
different from that observed for sphere suspension drops, Figure 4.5a. Throughout this
time, the drop bottom remains attached to the substrate, in contrast to a rebounding
drop observed for sphere suspensions at φ =0.50 and u0 = 4 m/s. This behavior suggests
that the interaction of the drop with a substrate is altered in the presence of elongated
particles.

Figure 5.9 shows a timeseries of a φ =0.45 drop of AR 11 rod suspensions impacted

at u0 = 1.5 m/s (see also SI video 2 [107]). The drop does not spread, instead it first de-

creases in height and then tries to lift off of the substrate. However, the bottom of the

drop remains adhered to the substrate, leading to an imperfect rebound. Additionally,

unlike sphere suspensions, the rod suspension drop does not show a depression on the

top. In Figure 5.10, the normalized height of the drop apex is plotted against time. The

normalized height briefly drops below 1, then rises to 1.2, before falling again. This be-

havior is very different from that shown by sphere suspensions in the absence of rebound,
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where the drop height linearly decreases and plateaus [Figure 4.5a]. It is more practical

to compare this behavior to complete drop rebound observed for sphere suspensions, ex-

cept that for rod suspensions, the drop bottom is unable to detach from the substrate. I

additionally note that performing experiments on φ > 0.45 was not possible, as the sus-

pension thickened beyond the point of forming spherical drops. This occurred at φ > 0.50

for sphere suspensions. Therefore, the φ value at which strong shear thickening occurs is

lower for anisotropic suspensions, consistent with rheology data [101].

Figure 5.11: a The velocity of the drop apex immediately after impact, u⋆, plotted against
the impact velocity, u0, for two volume fractions of AR 11 rod suspension drops. Similar
to figure 4.5b, u⋆ = u0 within error, indicating that the information of impact has not
propagated to the drop apex. b hmin/d0 vs. impact velocity for both φ. Unlike figure 4.5c,
hmin/d0 decreases with impact velocity, capturing the qualitative different behaviour of
the shear jammed drop of rod suspensions.

In order to compare the impact dynamics of rod suspension drops to their counter-

parts with spherical particles, I plot the speed of the drop apex just after impact (u⋆)
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against the impact speed (u0) [Figure 5.11a]. Similar to spheres, u⋆ is equal to u0 within

error, for both φ = 0.41 and φ = 0.45. On the other hand, as shown in figure 5.11b, the

normalized drop deformation increases with increasing u0. This trend is not consistent

with that for sphere suspensions [Figure 4.5]. This result combined with the qualitatively

different drop behavior, indicates that rod suspensions form a completely different kind

of solidified material as a response to shear.

ba

Figure 5.12: a Timeseries of an AR 11 rod suspension drop after impact, along with the
differenced images. Similar to figure 4.6a, we observe a front travelling upward on the
drop surface. b The front speed along the surface, uf ront, plotted against u0. uf ront in-
creases with u0 for both φ values.

As demonstrated by figure 5.11a, the information of impact takes finite time to reach

the drop apex. Corroborating this, we observe as shown in figure 5.12a, a solidification

front travelling along the drop for impacting rod suspension drops too. By measuring

the time taken by these fronts to reach the drop apex, I calculated the approximate front
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speed along the surface, uf ront. Similar to sphere suspensions, uf ront is several times

larger than u0 and increases with increasing u0. These similarities suggest that the solidi-

fication dynamics after impact of rod suspension drops are very similar to those observed

for spheres. However, the drop behavior after solidification being drastically different

(figure 5.10 as opposed to figure 4.5a ) suggests that the resulting material after solidifi-

cation varies dramatically in its properties, when particle aspect ratio is different.

Moreover, as shown in figure 5.12b, uf ront values lie practically on the same curve for

both φ values. This result, and a similar collapse in figure 5.11b, indicates that for AR 11

rod suspensions, the solidification dynamics do not change drastically over this relatively

large range of φ (0.05, as opposed to 0.01 for similar data in sphere suspensions). This

could be a potential indicator that the critical shear rate for these suspensions changes

very little between φ = 0.41 and φ = 0.45.

My experimental results on impacting rod suspension drops suggest that the dynam-

ics of solidification during the short timescale after impact (¡ 1 ms) are largely unaffected

by particle aspect ratio. However, the response of the suspension to this solidification,

and in turn the resulting solid, seem to dramatically differ in not only quantitative, but

qualitative ways. While for spheres, we observed a progressively larger fraction of the

drop solidifying from the bottom and exhibiting a liquid-like region near the apex, we

observe no such depression for impacted rod suspension drops. Instead, we observe the

drops undergo an imperfect rebound, where the top of the drop moves upward but the

bottom of the drop remains tethered to the substrate. Two broad mechanisms can be

hypothesized from my observations: either the bulk of the drop forms a qualitatively

different, much squishier solid that can deform easily while staying tethered to the sub-

strate, or the presence of elongated particles alters the contact-line dynamics between the
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drop and the substrate, causing a strong attachment to the substrate that causes imperfect

rebound. Measurements about the dynamics inside the drop would be key to understand

these dynamics. In addition, the effect of an altered contact line could be studied using

substrates of varying wetting properties.

In summary, the preliminary analysis of the rod suspension impact suggests that im-

pacting drops exhibit interesting behaviors, ranging from localized solidification to bulk

shear jamming with partial rebound, over a larger range of φ and u0. This is not only con-

sistent with the bulk rheometry where shear thickening is reported for a wider φ range

for high-AR particle suspensions, the imperfect rebound where the drop bottom stays at-

tached to the substrate points to non-trivial interaction of the fluid with the substrate in

the presence of particle anisotropy. The presence of small amounts of polymeric additives

have been reported to suppress rebound in impacting Newtonian drops [89, 109–113],

and contact-line dynamics are suggested to be the primary mechanism of bounce sup-

pression [114]. Whether the mechanism of bounce suppression for anisotropic colloidal

suspensions has similarities to that of polymeric drops is an interesting future question

to explore, allowing us to control fluid adhesion to the substrate in a range of industrially

relevant systems.

Revealing the microscopic mechanism of shear jamming in impacting drops is highly

non-trivial, even in the case of sphere suspensions. Particle anisotropy adds further com-

plexity in the form of particle orientation. Rod-shaped colloidal particles are often used

for modelling liquid crystals [108], and it is likely that they align in response to shear.

It would be very interesting to consider the correlation of this orientation with the di-

rection of the impact axis. Additionally, the rebound suppression indicates that particles

alter contact line dynamics. Rods might also respond to shear differently along the drop



82

surfaces, in addition to affecting contact and bulk properties. Thus, impact experiments

with rod suspensions can provide useful information on how anisotropic particles re-

spond to directional stresses. Observing the impacted drop under polarized light might

be helpful in future experiments on these lines.
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CHAPTER 6

RUPTURE OF COLLOIDAL SOAP FILMS

6.1 Introduction

Foams, bubbles and films are ubiquitous in processes that involve liquid-gas interfaces,

ranging from volcanic eruptions, ink-jet printing, and water-borne disease transmission [115].

In addition to their applicability in a wide range of fields, films are a convenient system

to study the dynamics of fluids in a two-dimensional geometry. Newtonian bubbles have

been studied in detail for several decades [7, 116–118]. For low-viscosity Newtonian

soap films of constant thickness, Culick [7] derived the rupture speed of an inviscid film

as uc =
√

2σ
ρh , also commonly known as the Culick velocity [see section 2.4.1 for more de-

tails]. The Culick velocity is useful to predict the rupture of a wide variety of Newtonian

films.

A majority of processes involve bursting films containing surfactants, and/or made of

non-Newtonian fluids. Surfactant-laden and non-Newtonian films are reported to behave

in manners strikingly different from Newtonian films [115, 119–124]. Bacterial secre-

tions act as biosurfactants and increase the lifetime of bacteria-laden films [115]. Films

with surfactant concentrations beyond the crtitical micellar concentration(CMC) rupture

slower than the Culick velocity, and develop ridges and mesas [119, 120], or crack-like

instabilities [121] due to rigidity imparted to films by surfactants. Films and bubbles of

smectic materials behave differently during rupture [122], and develop reversible insta-

bilities under stress [125]. Viscoelastic films develop flowering instabilities at the rupture
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rim [123]. In the ultrathin (Newton Black) limit, even Newtonian soap films exhibit vis-

coelastic properties that have been attributed to competing lengthscales of film thickness

and surfactant molecules [126]. Films laden with hydrophobic particles larger than the

film thickness have been reported to rupture intermittently due to the presence of parti-

cles [124]. Thus, both micelles and particulate additives alter film dynamics significantly,

the effect being more dramatic in the presence of competing lengthscales. Here, we study

the rupture of colloidal soap films where the film thickness (∼ 5 µm) is a few times larger

than the colloidal size (∼ 700 nm). Although manually ruptured films seem to behave

as Newtonian viscous films and rupture at a constant speed, thinner and spontaneously

rupturing films develop exotic instabilities and rupture in a qualitatively different fash-

ion.

Figure 6.1: a Snapshot of a φ = 0 film during rupture. After being ruptured with a needle,
a circular hole forms and its radius, R, grows until the boundary interferes. b SEM image
of the colloidal silica spheres. The spheres were suspended in the mixture of SDS and
water to make volume fractions 0 ≤ φ ≤ 0.47, and the fluids were used to form horizontal
films and record their rupture.

Experiments on film rupture commonly involve spherical bubbles formed from a
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reservoir [115] or vertical films [116, 117]. However, the reservoir setup is not conve-

nient for colloidal films, as evaporation effects are more pronounced for dense colloidal

suspensions. A horizontal film geometry is useful to explore rupture dynamics of col-

loidal films systematically. Therefore, in our experiments, we form flat horizontal films

by introducing a constant volume of fluid onto a custom film stretcher inspired by past

experiments with bacterial films [127].

Here, we study the rupture of silica colloidal soap films of a range of volume fractions:

0 ≤ φ ≤ 0.47. Despite the highly non-Newtonian nature of the fluid at high φ [Figure

2.1], we observe colloidal films to rupture at a constant velocity. Plotted in terms of the

effective viscosity of the colloidal fluid, the colloidal rupture data agrees well with the

rupture of Newtonian films of similar viscosity. We show that the fluid viscosity directly

affects the film thickness profile. Our results demonstrate that the effective Newtonian

viscosity is a useful parameter to study colloidal film rupture, and that viscosity has a

significant role in the thickness profile of constant-volume films. Additionally, we report

our observation of exotic instabilities in spontaneously rupturing dense colloidal films.

Instabilities occur both in the presence and absence of evaporation, but they are con-

sistently reproducible in a humidity-controlled environment. We hypothesize that these

structures are formed when the film thickness is comparable to the colloidal size. Thus,

film rupture has great potential as a model system to study colloidal dynamics in two

dimensions.

6.2 Experimental Methods

Colloidal synthesis

The silica colloidal spheres were synthesized following the Stöber process [93, 94].
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For our spheres, we mixed tetraethyl orthosilicate with ethanol and water at room tem-

perature and in presence of ammonia as a catalyst. We used the number of daily ‘feeds’

as the means to control particle diameter, such that larger the number of feeds, larger the

average diameter of the silica spheres synthesized. The colloids were then washed with

ethanol, separated to decrease polydispersity, and re-suspended in water. The average

silica sphere diameter used for experiments reported in this chapter was 660 ± 20 nm

[Fig. 6.3a]. Suspensions of volume fractions 0.00 ≤ φ ≤ 0.47 were prepared in water con-

taining 4 mM (a concentration well below the critical micellar concentration of 8 mM)

Sodium Dodecyl Sulfate (SDS), a surfactant. Thus, we do not expect SDS to affect the sys-

tem in any way other than decreasing the overall surface tension. To compare colloidal

rupture data to Newtonian fluid films, we perform rupture experiments on water-glycerol

mixtures in the presence of 4 mM SDS, with glycerol concentrations ranging from 0% to

90% by weight. We scan over two magnitudes of fluid viscosity, while other parameters

such as density and surface tension do not vary significantly with glycerol concentration

(ρglycerol/ρwater = 1.25, γglycerol/γwater = 0.92).

Film stretcher + humidity chamber

To form horizontal films of reproducible thickness, we built a custom film stretcher

inspired from Sokolov et al [128]. The stretcher is made of acrylic pieces cut using a

laser cutter. On the stretcher base sit two U-shaped components, so that Component 2

fits inside Component 1 [Fig. 6.2a]. Each component has taut metal wires forming an ‘X’

shape. The wires criss-cross to form a small square hole. Component 1 is stationary, while

Component 2 is attached to a motor and can be moved horizontally at a constant speed.

A known volume of fluid can be introduced on the small square hole formed by the wires.

When component 2 is pulled by a motor, the square hole expands, allowing us to form a
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Figure 6.2: a Top view of the film stretcher designed to make films of desired size and
reproducible thickness. A known volume of fluid is introduced between the crosswires,
and then the stretcher is drawn using a motor to expand the crosswires and form a film
of desired size (marked by blue). We used the fluid volumes of 10µl and 15µl in our
experiments. b Side view of the experimental setup. The film stretcher is enclosed in
a chamber that maintains relative humidity > 75% during experiments. The horizontal
film is lit from below and its rupture is filmed using a high-speed camera.

horizontal square film of desired size. For all experiments reported here, Component 2

was pulled at the speed of of 0.8 mm/s. To minimize the effects of air currents, impurities,

and evaporation, the film stretcher was mounted inside a custom humidity chamber and

the relative humidity was maintained between 75% and 85% using a reservoir of NaCl

+ water solution inside the chamber [Fig. 6.2b]. The film size was 25 mm × 25 mm,

and films were formed using two fluid volumes: 10 µL and 15 µL. The horizontal film

was illuminated from below using a white panel light and the transmitted light data

was recorded at 83,000 fps using a Phantom v2512 high-speed camera. The rupture was

initiated near the center of the film using a needle. For the viscous film rupture data,

we made solutions with known concentrations of glycerol and water by mass, and used

a constant SDS concentration of 4 mM in all the mixtures. These Newtonian films were

also formed using fluid volumes of 10 µL and 15 µL.
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Interference imaging and dye absorbance measurements

In order to compare film thickness profiles for films of different fluid viscosities, I

collected interference data. A green filter of wavelength 530 ± 10 nm was introduced in

the path of the light from the film to the camera, and films of two different viscosities

were imaged before rupture was initiated.

We also collected dye absorbance data in order to estimate the relative thickness of

fluid films as a function of viscosity. I dissolved 10 g/L of Erioglaucine Disodium Salt

(also known as Brilliant Blue) in the mixtures that contained varying amounts of glycerol

and water, in the presence of 4 mM SDS. We imaged these dyed films under transmitted

white light, using the same high-speed camera as the one used to collect the rupture

velocity data.

Data analysis

Image processing and analysis were performed using ImageJ, and data was plotted

using python. To measure the rupture velocity, the frame of rupture initiation was iden-

tified, and the distance from the initiation point to the rupture rim was measured for

every 10th frame.

The dye absorbance images were background-normalized with the last frame of the

image sequence, where the film was absent due to completion of rupture. A rectangular

region, 10 pixels in height and the length of the film in width, was selected near the film

center, and the line profile, averaged over the 10 pixels, was plotted. This procedure was

repeated for different viscosity films.

6.3 Rupture velocity: colloidal vs. viscous Newtonian films

Rupture velocity
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Figure 6.1a shows a snapshot of a soap-water film mid-rupture. When the rupture is

induced in the center of the film, a circular hole forms in the film and grows radially in

size. We measure the radius of this hole, R, with respect to time, t, for suspension films of

increasing φ. In Figure 6.3a, we report this data, truncated at the point in time when the

effect of film boundary destroys the circular symmetry of the rupture (when the rupture

is about 80% the size of the film). Surprisingly, even at very high φ where the bulk col-

loidal suspension is known to be highly non-Newtonian, the R vs. t data follows a linear

trend indicating a constant rupture velocity over time. The lines in Figure 6.3a indicate

linear fits to the R vs. t data, and their slopes are the rupture velocity values. Though it

remains constant throughout rupture, the rupture velocity systematically decreases with

increasing φ for both fluid volumes [Fig. 6.3b].

Figure 6.3: a Rupture radius vs. time for 15µl films made of fluids with increasing col-
loidal volume fraction φ. The rupture velocity (slope of the linear fit lines) is surprisingly
constant even at φ where the fluid is highly non-Newtonian. b The film rupture velocity,
plotted against φ for two fluid volumes, decreases with increasing φ.

Role of effective fluid viscosity

The observation of a constant rupture velocity, even at high φ, suggests that the film



90

rupture dynamics of the suspension may still be modeled as that of a Newtonian fluid.

The well-known picture of Newtonian film rupture is that the rim at the rupture bound-

ary collects more and more fluid as it rolls outward. In other words, the information of

rupture travels at the same speed as the expanding circular rim, and does not affect the

film outside the rupture. Thus, no shear is experienced by the undisturbed film. There-

fore, the minimal effect of suspension shear rheology on the rupture, even at high values

of φ, is consistent with this mechanism.

Figure 6.4: Effective viscosity of colloidal suspensions of increasing volume fractions,
calculated using the Krieger-Dougherty (KD) effective viscosity model. The dashed black
line indicates the value φm = 0.557 for silica.

In addition to the non-Newtonian properties, the introduction of colloidal particles

increases the effective viscosity of the fluid [1, 6]. Therefore, we computed the Krieger-

Dougherty low-shear effective viscosity [Equation 2.3]. As the rupture proceeds by the
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expanding rim collecting fluid, and as there is no shear flow involved, we believe the K-D

low-shear viscosity [Equation 2.3] is an appropriate choice for our system. We used the

literature value of value φm = 0.55 for silica particles [101].

Figure 6.5: Rupture velocity of colloidal films plotted against the KD effective viscosity,
along with Rupture velocity of Newtonian (glycerol-water) films plotted against fluid
viscosity, for two fluid volumes. Both colloidal and Newtonian rupture seem to follow
a similar decreasing trend on a log-log plot, indicating that effective viscosity is a useful
framework to interpret rupture of colloidal films.

Figure 6.4a shows the viscosity as a function of φ computed in this manner. We plot-

ted the film rupture velocity, normalized with respect to φ = 0 (soap-water film), against

this effective viscosity, and compared the colloidal rupture measurements with the rup-

ture of viscous glycerol-water films using the same experimental setup [Figure 6.5]. Both

datasets show a similar decreasing trend in normalized rupture velocity. This suggests
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that effective viscosity computed in this manner is a useful framework to interpret rup-

ture dynamics of colloidal films, over a large range of volume fractions.

Film thickness estimation

Savva et al. [8] theoretically studied the effect of fluid viscosity on rupture dynamics,

and concluded that even viscous films rupture at the Culick velocity, after a brief transient

of a timescale that depends on viscosity. For the experimental conditions in this study,

this transient is smaller than the temporal resolution of our high-speed camera (∼ 10 µs).

Therefore, according to Savva et al., we should still observe rupture dynamics to follow

Culick’s law, and the rupture velocity of constant-thickness films should be independent

of fluid viscosity. Our observations of decreasing rupture velocity [Figure 6.3b] with in-

creasing viscosity are clearly in contradiction with this. Therefore, we attempt to estimate

the film thickness as a function of fluid viscosity for Newtonian films.

The size of the square films formed in our experiments was Lf ilm = 25 mm. Using

the two fluid volumes from our experiments and assuming a perfectly flat film, simple

volume conservation allows us to estimate the film thicknesses as:

h10 =
10µL

Lf ilm
2 =

10× 10−9m3

(25)2 × 10−6m2
= 16µm, (6.1)

and

h15 =
15µL

Lf ilm
2 =

10× 10−9m3

(25)2 × 10−6m2
= 24µm. (6.2)

We note that these values are upper bounds on the true film thicknesses, as it is im-

possible to form films of a higher average thickness due to volume conservation. A more

accurate estimate of the true thickness away from film boundary can be made, at least for
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low-viscosity Newtonian films, using our rupture velocity data and Culick’s law:

h10,c =
2σ
ρvc2 = 3.2µm, (6.3)

and

h15,c =
2σ
ρvc2 = 6.2µm (6.4)

where σ is the surface tension of 4 mM SDS in water (45 mN/m), ρ is the density of

water (1000 kg/m3), and vc is the rupture velocity from our experimental data. The thick-

ness thus estimated is much smaller than the volume conservation estimate, supporting

our hypothesis of a non-trivial film thickness profile.

Figure 6.6: a Interference fringes observed under green filter for a low-viscosity film (2
cP), and b a higher-viscosity film (35 cP). The change in the interference pattern indicates
that the thickness profile changes with fluid viscosity.

Figure 6.6 shows images of films made from the same fluid volume (15 µL), but with
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fluids of different viscosities under a narrow-width bandpass filter (λ = 530±10 nm). The

fluid viscosity of the film imaged in Figure 6.6a is η = 2 cP, and that showed in Figure 6.6b

is η = 35 cP. While the 2 cP film shows distinctive interference fringes, fringes are largely

absent for the 35 cP film, except near the film boundary. This suggests that the two

films, despite being made of the same volume of fluid, have different thickness profiles.

The absence of fringes in Figure 6.6b indicates that the film thickness away from the

boundary is larger than the coherence length for the bandpass filter used. The coherence

length can be calculated as:

lcoh = C
λ2

n∆λ
, (6.5)

where n is the refractive index of the medium, and C = 0.44 [129]; For λ = 530 nm and

∆λ = 10 nm, we obtain lcoh = 9.3 µm. Thus, we infer that the higher-viscosity (35 cP) film

is thicker than the low-viscosity (2 cP) film, near the film center. As thicker films rupture

at lower speeds according to Culick’s law, this is also consistent with the lower rupture

speed we observed for viscous films.

In Figure 6.6b, we observe an interference pattern near the film edge, although fringes

are absent near the middle. This additionally indicates that the film is thinner near the

boundary. To characterize this film thickness profile in more detail, we collect dye ab-

sorbance data for films of varying viscosity.

Figure 6.7a and b show images of fluid films of viscosities 1 cP and 100 cP respectively,

containing 10 g/L Brilliant Blue dye and imaged under white light. For dyed fluids, the

absorbance gives the fraction of light absorbed by the sample, and is calculated as:

Absorbance = 1− normalized intensity of transmitted light.
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Figure 6.7c shows a plot of absorbance for both films, across a line drawn through the

center of the film. In order to minimize noise, the profile averaged over a 10-pixel wide

box around the line is plotted. As a thicker sample absorbs more light, the absorbance

is proportional to the film thickness. Thus, the absorbance profile qualitatively captures

the features of the film thickness profile. The more viscous film (orange line) shows a

higher absorbance near the film center, further evidence that more viscous films lead to

thicker films despite being made from a constant fluid volume.

Two other features of the absorbance profile are particularly informative. First, the

absorbance increases rapidly near the film boundary, indicating a drastic increase in film

thickness. This can also be observed in the Figure 6.7a and b, in the form of a darker

region near the wire frame. The thickness of the wire frame (500 µm) causes this thicker

meniscus at the film boundary. The second informative feature is that the absorbance

reaches its minimum towards the center of the film from the meniscus, before the film

assumes a relatively flat shape. The thinnest part of the film is therefore located next to

the meniscus near the boundary, and not near the center of the film. Thus, the absorbance

of dyed films verifies that fluid viscosity directly affects the film thickness profile. Quan-

tifying film thickness with dye absorbance data is difficult, as making calibration samples

as thin as a few microns is experimentally challenging. Nevertheless, the qualitative fea-

tures of the absorbance profile allow us construct a qualitative film thickness profile.

Figure 6.8 shows a sketch of the thickness profile inferred from our interferometry

and dye absorbance measurements, as seen from the side. This is a schematic, and fea-

tures are exaggerated for clarity. Films have a large thickness (of the order of the wire

frame thickness) near the boundary, which dramatically decreases as we move away from

the boundary. The thickness reaches a minimum before rising again, and achieving a
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relatively flat profile near the center. The more viscous film (blue region) is thicker in

the middle, leading to a slower film rupture [Figure 6.5]. This schematic also demon-

strates how the same fluid volume can cause films of different thicknesses away from

the boundary. This is because the meniscus near the film edge can be made of different

fluid volumes, as evidenced from the crossover point between the blue and red profiles.

Thus, the area contained by the two schematic profiles is the same, corresponding to films

containing the same fluid volume.

Thus, our characterization of the film thickness profile indicates that when a constant

volume of fluid is used to make horizontal flat films, the film thickness profile — and in

turn the film thickness away from the boundary — is directly affected by the fluid viscos-

ity. As shown by Savva and Bush [8], Culick’s law is still applicable for the rupture of vis-

cous films. Therefore, we convert rupture velocity into film thickness: h = 2σ
ρv2 . Figure 6.9

shows the thickness thus calculated plotted against the fluid viscosity (for colloidal data,

effective fluid viscosity) in mPa, showing an increasing trend in film thickness with vis-

cosity. For higher viscosity glycerol data, the film thickness decreases more slowly. This

is likely due to finite-volume effects, as the film thickness approaches the upper bounds

calculated using volume conservation [Equations 6.1 and 6.2].

Our system shares similarities with a film clinging to a fiber pulled slowly out of a

reservoir of fluid. As discussed in chapter 2.4.2, LLD theory predicts this film thickness

to grow as Ca2/3 for Ca ≪ 10−3. For the glycerol-water films considered here, 10−3 ≤

η ≤ 2 × 10−1 Pa, σ = 45 mN/m, and v = 0.8 mm/s leads to 2 × 10−5 ≤ Ca ≤ 4 × 10−3,

within the applicable range of the LLD approximation. Thus, the increasing thickness

trend is qualitatively consistent with the Frankel’s law prediction. However, it does not

quantitatively agree with the h ∼ Ca2/3 relation [Equation 2.6]. This deviation may be
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attributed to the finite volume of fluid we use to form films.

6.4 Instabilities in spontaneously rupturing colloidal films

In contrast to films manually ruptured away from the boundary, when constant-volume

colloidal films were allowed to rupture spontaneously, we observed instabilities develop-

ing near the rupture boundary and propagating through the intact film during rupture

[Figures 6.10, 6.11, see also SI videos 3,4 and 5 [107]]. Spontaneous rupture always

happened near the film edge; the instabilities were almost nonexistent when similarly

prepared films were manually ruptured away from the boundary. Our qualitative char-

acterization of the film thickness profile [Figures 6.7c] suggests that film is the thinnest

near the edge, between the thicker meniscus near the wire frame and the approximately

flat film near the center [Figure 6.8]. Thus, spontaneous rupture always happening near

the edge is consistent with the film thickness profile.

For the experiments where we observed instabilities, we formed colloidal fluid films

of about 12 mm in size with 2 µL of fluid, and recorded the film until it spontaneously

ruptured. We observed instabilities in experiments where humidity was not controlled

for [Figure 6.10, SI videos 3 and 4 [107]], and also in controlled humidity experiments

inside the humidity chamber [Figure 6.11, SI video 5 [107])].

Figure 6.10 shows films with φ = 0.35 colloidal particles, where the suspending fluid

is 2mM SDS in 30% glycerol and 70% water, rupturing at ambient and low humidity:

RH ∼ 30% (see also SI videos 3 and 4 [107]). We note that these experiments were done

using an earlier version of the setup where films were made using an expandable cam-

era iris, leading to a quasi-circular film geometry. Scale bars in all panels are 5 mm. In

Figure 6.10a, we observe that the rupture edge has protruding jagged structures. Addi-
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tionally, the intact film develops wrinkles that crowd together as the rupture proceeds.

These wrinkles are parallel to the moving rupture rim. Figure 6.10b, on the other hand,

shows instabilities in the transverse direction to the rupture rim. These instabilities ap-

pear near the rim and propagate outward ahead of the rupture. We note that both these

films were made of the same fluid, and yet they show drastically different patterns dur-

ing rupture. Additionally, the rupture time of the two films differs by a factor of 3. This

lack of reproducibility may potentially be attributed to large fluctuations in the ambient

humidity, and evaporation seems to have a significant effect on film dynamics and the

progression of instabilities.

In Figure 6.11 (see also SI video 5 [107]), we observe 12 mm films with φ = 0.40

in 4mM SDS and water, a square geometry, rupturing under controlled humidity (RH=

80%). Once again, the rupture begins near the edge, where the film is thinnest. Instabil-

ities are observed even after minimizing evaporation by means of a humidity chamber.

We observe instabilities originating from the rupture rim and propagating. A thicker

(darker) structure forms in the intact film, and the rest of the film appears to wrinkle like

a fabric around this thicker filament. After rupture, we observe the filament to flow like a

fluid, indicating that evaporation has not dried out the film. For humidity-controlled ex-

periments, both the qualitative rupture behavior and the rupture time were reproducible

over multiple trials.

For both humidity-controlled and uncontrolled experiments, instabilities were pre-

dominantly observed for spontaneously rupturing films. This behavior has many inter-

esting features. In the beginning of rupture, the rupture boundary is jagged as opposed

to the smooth rupture boundaries in manually ruptured films. While the rupture rim

increases in size as it collects more fluid for manually ruptured films, we do not detect
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such widening of the rim in the case of films where instabilities are observed. The rup-

ture in this case looks qualitatively different: the manually induced rupture rim rolls

outward smoothly, while the spontaneous rupture with instabilities is similar to an elas-

tic sheet de-pinning from the wire frame. The instabilities are reminiscent of folds or

wrinkles on a fabric. Even for controlled humidity, the significant variation in the shape

of the rupture front and the location of instabilities makes quantifying their dynamics

a challenge. The structures observed in experiments conducted in the ambient environ-

ment were practically impossible to reproduce, this might be a result of the significant

amount of stochasticity contributed to film rupture by fluctuating humidity and ambient

impurities.

We observed these instabilities only for a specific set of conditions: they occurred at

high values of colloidal φ, and for relatively thinner films, i.e. films made of a smaller

volume of fluid. Additionally, spontaneously rupturing films developed instabilities that

spanned the whole size of the film, while manually ruptured films showed only a hint

of these structures forming near the end stage of the rupture. We hypothesize that these

structures are a result of colloidal particles self-organizing during rupture, and they de-

velop when the colloidal size competes with the film thickness. The colloidal spheres

we use are 660 nm in diameter, and the film thickness is a few microns. We believe this

competition between lengthscales is why instabilities were observed for thinner films.

Fluid films spontaneously rupture at this thinnest point, and our films are thinnest

near their edges [Figure 6.7c]. This is possibly why instabilities develop predominantly

in spontaneously rupturing films. Additionally, for these experiments, we waited for the

film to rupture spontaneously after forming it. Over this waiting time, the film could

have thinned even more, making the occurrence of these structures even more likely.
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For spontaneous rupture under controlled humidity, the rupture time was more or

less constant over trials. Although the nontrivial geometry of the rupturing film makes it

impossible to measure the rupture speed, we can make an estimate of the rupture speed

using the film size (12 mm) and time of rupture (7 ms), vrupture = 1.71 m/s. According

to Culick’s law, this rupture speed corresponds to a 22 µm film. This is above the upper

bound of thickness we can obtain using volume conservation, h = 2µL
144mm2 = 13µL. There-

fore, instabilities significantly slow down rupture below the Culick velocity. In the past,

such a slowing down has been attributed to film elasticity. A deeper investigation into the

cause of these modified film dynamics would help learn more about colloidal dynamics

in a film geometry.

In the future, more systematic work to explore these instabilities would be useful.

There are two possible ways to more reliably access the regimes where the colloidal

lengthscale competes with the film thickness. The experiments we report here are for

colloidal sphere size of 660 nm; the occurrence of instabilities in colloidal suspensions

made of larger particles should be explored. Forming these films in a vertical geometry

might also be helpful, as drainage due to gravity will encourage the film to thin near the

top, and encourage reproducible rupture and instabilities. A circular geometry seems

to cause a more regular rupture geometry as opposed to a square film [Figure 6.10 as

compared to Figure 6.11]; this might help in collecting more systematic data on these

structures. Both these lines of investigation have potential to verify or refute our hypoth-

esis that these instabilities result from the competition between particle size and film

thickness lengthscale.
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6.5 Discussion

Here, we report the rupture velocity data of flat colloidal films in the range of volume

fractions 0 ≤ φ ≤ 0.47, and of glycerol-water films with viscosities 1-200 cP (2 × 10−5 ≤

Ca ≤ 4×10−3). We use a custom film stretcher to make films of two constant fluid volumes,

10 µL and 15 µL. We observe constant rupture velocity even at high colloidal φ which,

when plotted against the effective viscosity of suspensions, agrees well with that of New-

tonian glycerol-water films in the same viscosity range. Therefore, even at high φ where

highly non-Newtonian behavior is apparent from bulk rheology, effective suspension vis-

cosity captures film rupture dynamics of colloidal suspensions. As the well-accepted

picture of Newtonian film rupture is that the rupture rolls outward collecting fluid, high

shear must not be present in the film during rupture, despite the short timescale of rup-

ture. Our results demonstrate that rupturing particulate films can be effectively modeled

as viscous fluids useful for a variety of industrial processes.

For both colloidal and Newtonian fluids, we observed the rupture velocity of constant-

volume films decrease with increasing fluid (effective) viscosity. Our characterization of

the film thickness profile via interference imaging and dye absorption shows that higher

viscosity films lead to higher thickness near the film center, as viscosity modifies the

overall thickness profile. This increase is consistent with the predictions of LLD theory in

the visco-capillary regime [4, 116]. Although the LLD approximation theoretically holds

for Ca ≤ 10−3, experiments have reported deviation for this law for Capillary numbers

as low as 10−4 [9]. Additionally, a quantitative comparison of our results with the LLD

prediction cannot be made due to differences in experimental geometry and boundary

conditions in our system.
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Although Culick’s derivation neglected viscous effects, Culick’s law has been shown

to asymptotically hold for high-viscosity fluids. Viscosity is only expected to introduce

a transient at the initial stage of rupture, on a timescale tvis = ηH
2σ . For our experiments,

0.1µs ≤ τvis ≤ 20µs, which cannot be observed at the temporal resolution of our exper-

iments (∼ 12µs). Thus, the change in the thickness profile is solely responsible for the

slower rupture of more viscous films. A surprising feature of the horizontal film thick-

ness profile is that the film reaches a minimum thickness near the thicker meniscus by

the wire frame, away from the film center. The reason for this highly non-trivial film

shape needs to be studied carefully in the future.

When we allowed flat colloidal films at φ ≥ 0.40 to rupture spontaneously, we ob-

served exotic instabilities originating at the rupture rim and propagating through the

film surface. Films always rupture spontaneously near the edge, as films have a thick-

ness minimum near the edge that increase the probability of rupture. Both the pattern

of instabilities and the rupture time were highly reproducible under controlled and high

humidity, while they were much more stochastic when humidity was not controlled for.

We hypothesize that these structures are a result of colloidal particles assembling when

the colloidal size competes with the film thickness. Other studies have reported instabil-

ities in surfactant films of varying thicknesses above the critical micellar concentration,

which have been attributed to the rigidity imparted to the film [121] and to micelles

forming mesa-like structures [119, 120]. Some work has also focused on particulate rafts

with > 100 µm particles, so that the raft is made of small capillary bridges between these

particles [124]. However, there are no other works that have considered colloidal-size

particles in films that are less than an order of magnitude thicker than the particle, to

the best of our knowledge. Film rupture in this parameter regime is a very convenient
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way to study the physics of suspensions in two dimensions, and has the potential to un-

cover the mechanism of colloidal self-assembly in quasi-2D systems. Instabilities seem to

slow down film rupture significantly as compared to the Culick prediction, and rupturing

films are reminiscent of wrinkling fabrics. The characterization of this state of the film

before it re-fluidizes after rupture would be a fascinating avenue of future exploration.

Our experiments on colloidal film rupture extend understanding of film rupture dy-

namics to non-Newtonian films. Although colloidal film dynamics are surprisingly New-

tonian when films are significantly thicker than particle size, exotic structures are ob-

served in spontaneous rupturing films when the thickness and particle size compete.

Further theoretical work aimed towards understanding these discrete effects on the par-

ticle scale would greatly enhance our understanding of colloidal self-assembly in two

dimensions. We anticipate that our work will guide future applications that necessitate a

controlled use of fluid films in a variety of applications.
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Figure 6.7: 15 µL Newtonian films of viscosities a 1 cP and b 100 cP, containing Brilliant
Blue dye. The films transmit different amounts of light, indicating a different film thick-
ness. c Absorbance of both the films plotted along a line going through the center of the
film. Higher absorbance indicates higher film thickness, thus the film thickness profile is
proportional to the absorbance profile.
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Figure 6.8: Schematic showing the variation in thickness profile with increasing viscosity.
The red shaded area indicates a lower-viscosity film, and the blue indicates a higher vis-
cosity film made of the same fluid volume. The length of the meniscus near the film edge
is smaller for a more viscous film, and so is the location where film thickness is minimum.
Away from the boundary, both films assume a flat, practically constant-thickness shape,
with the viscous fluid forming a thicker film.
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Figure 6.9: Film thickness, calculated using Culick’s law, plotted for both Newtonian
and colloidal films. For both viscous and colloidal fluids, the film thickness increases
with increasing fluid viscosity, consistent with the interferometry and dye absorbance
observations.
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Figure 6.10: Instabilities develop in spontaneously rupturing colloidal films at low hu-
midity (see also SI videos 3 and 4 [107]). The film composition is φ = 0.35 colloidal
particles, where the suspending fluid is 2mM SDS in 30% glycerol and 70% water. In
uncontrolled humidity, instabilities are not reproducible. Scale bars are 2 mm.

Figure 6.11: Instabilities also develop in spontaneously rupturing colloidal films at high
humidity (see also SI video 5 [107]). The film was made of fluid with φ = 0.40 colloids in
4mM SDS and water. In a humidity-controlled environment, instabilities are much more
reproducible. Scale bars are 2 mm for all panels.



108

CHAPTER 7

CONCLUSION

In this dissertation, I summarized my work on the dynamics of colloidal suspensions in

two systems: drop impact and film rupture. For both systems, I used micron-sized col-

loidal particles suspended in water, over a large range of φ. While the drop impact system

has a low surface area due to the spherical drop geometry, the film rupture system has

a very high surface area to volume ratio. A unifying feature of both these systems is the

presence of a freely deformable surface, which allows us to observe fluid behavior un-

der dynamic conditions. Both systems exhibited surprisingly Newtonian behavior for φ

values well into the shear thinning regime. This information is key to applying models

developed for Newtonian fluid systems to a range of colloidal suspensions used in indus-

trial processes. At very high values of φ, however, both systems showed exotic behaviors:

impacting drops partially or fully solidified due to the high shear, while spontaneously

rupturing films showed novel instabilities reminiscent of a wrinkling fabric.

After providing background and outlining key concepts in chapters 1 and 2, I summa-

rized relevant results in the drop impact literature in chapter 3. In chapter 4, I outlined

my findings about impacting colloidal drops on a hydrophilic substrate. I observe a strik-

ing transition from Newtonian-like to complete shear jamming via partially solidified

states. I characterize this solidification in detail, and show that shear travels up from the

impact point at a speed faster than the impact velocity. This speed depends on how deep

into the shear thickening regime the applied shear is. Shear thickening is considered a

precursor to shear jamming, but little is understood of the transition between one and the
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other. The fact that we can characterize drop solidification via the shear thickening tran-

sition suggests that shear thickening and shear jamming are intimately connected. Our

drop impact system has the unique ability to apply a high instantaneous shear, enabling

us to access such solidification behaviors that cannot be observed in typical rheometry

techniques.

The shear jammed drop completely rebounded at one impact condition, enabling us

to measure the contact time and estimate the elastic modulus of the material. Even in

absence of rebound, an estimate of the elastic modulus can be made by assuming a linear

spring-mass system. I discuss this calculation in section 5.1. Modeling the system as

a linear spring is a useful first approximation to infer the effect of shear jamming on

the droplet. The elastic modulus seems to increase with increasing instantaneous shear

rate; this gives important insights into the nature of shear jammed materials. This is

very relevant to applications involving shear thickening materials, such as body armours

and soft robots. In order to access drop rebound at multiple impact conditions, impact

experiments performed on hydrophobic surfaces would be useful in the future.

In section 5.2, I reported the long-term unjamming dynamics of impacting sphere

suspension drops. Although shear jamming is reversible, unjamming dynamics seem to

depend on the shear history of the suspension drop. While I observed unjamming over

a few seconds on hydrophilic substrates, on hydrophobic substrates dense suspensions

have been reported to stay jammed for hours [52]. Therefore, substrate wettability likely

has an effect on unjamming. Studying the effects of shear history on the bulk of the drop

and those of substrate wetting on unjamming in a decoupled way is important. In the

future, local measurements inside the drop and experiments on hydrophobic substrates

will provide key insights into the role of the substrate on the shear jamming transition.



110

I also conducted experiments on the impact dynamics of suspensions with rod-shaped

particles, reported in section 5.3. I observed droplets made of rod-shaped particle sus-

pensions to shear jam at much lower φ and over a wider range of φ than suspensions

with spherical colloids. This is consistent with rheological measurements on anisotropic

particle suspensions [101]. More surprisingly, I observe completely shear jammed sus-

pension droplets trying to rebound after impact, but unlike sphere suspension drops,

these droplets are unable to detach from the substrate. Why the droplet adheres to the

substrate so strongly as compared to sphere suspensions is an interesting question, es-

pecially given that the surface tension of the suspension is practically the same for both

sphere and rod suspensions. For impacting polymer droplets, dissipation at the con-

tact line has been reported to prevent bounce. One can qualitatively consider polymeric

chains as extremely high aspect-ratio particulate additives. Whether these observations

indicate that droplet adhesion to the substrate is a systematic function of additive aspect

ratio is a pertinent question. More detailed work building upon this hypothesis could

aid in uniting drop impact observations of particulate and polymeric fluids, and form a

strong foundation for complex fluid drop impact. Another possibility is the shear align-

ment of rod-shaped particles over either the surface or the entire bulk of the drop. This

needs to be investigated experimentally by observations under polarized light, as it will

clue us into any liquid crystal formation as a response to instantaneous shear.

In chapter 6, I showed that the rupture velocity of colloidal films can be modeled as

that of viscous fluid films, even well into the non-Newtonian regime. Additionally, for

high φ and thinner films, I observed novel instabilities. Studying such structures in rup-

turing films would help us study the self-assembly of particulate additives in a quasi-2D

geometry. Microscopic imaging of these instabilities would be highly informative. Ad-
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ditionally, exploring particle shape in film rupture could generate insights on particle

alignment in two dimensions, and might connect with how anisotropic suspensions be-

have along interfaces. My preliminary results indicate that the presence of instabilities

slows down the rupture significantly. Altered rupture speed has been reported in the

presence of both surfactants [121] and particulate additives [124], and this modification

has been attributed to either film rigidity or elasticity. The causal connection between the

overall film properties and the localized structure formation observed in my experiments

needs to be investigated closely.

Due to the wide parameter range explored here, my work bridges the gap between

Newtonian and particulate systems, and also captures exotic behaviors in the dense limit.

While a dense suspension drop shows novel solidification behaviors as a direct result of

shear jamming, instabilities in rupturing films are likely a result of colloidal particles

being affected by film hydrodynamics and confinement on the lengthscale of particle

size. Film rupture is a potentially very interesting system to study dense suspension flow

in a quasi-2D geometry.

For the systems discussed in this dissertation, the presence of a deformable surface

gives rise to interesting phenomena that connect fluid behavior under highly dynamic

conditions with the bulk fluid properties. Uncovering the mechanisms on the particulate

scale that cause these macroscopic behaviors is a worthwhile pursuit for future experi-

ments. Temporally resolved, macroscopic measurements such as the ones I report here

should be coupled with spatially resolved, localized observations using techniques such

as boundary stress measurements and particle image velocimetry. Although experimen-

tally challenging, such measurements have a great potential to generate physical insights

on the microscopic level, that will inform constitutive models for the bulk behavior of
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dense colloidal suspensions. I hope this dissertation provides a useful starting point for

investigations on these lines, leading to insights into fundamental questions such as the

nature of the jamming transition, as well as developing ways to control complex fluid

behavior in a variety of applications.
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APPENDIX A

SYNTHESIS AND CHARACTERIZATION OF COLLOIDAL PARTICLES

For all the experiments described above, silica colloidal particles were synthesized and

cleaned in the lab, in order to control the particle size and polydispersity. Additionally,

preparing and cleaning the particles in the lab ensures that the particles are suspended in

a surfactant-free medium, in contrast with commercially available particles. To maximize

the quality and yield of the colloidal particles, all the glassware used for the synthesis

procedure was cleaned with a base bath.

A.1 Base bath cleaning

To make a base bath solution, the following reagents are mixed in a 100 mL media bottle:

• 10 g anhydrous NaOH pellets,

• 40 mL ultrapure (miliQ) water (18.2 MΩ.cm),

• 60 mL cleaning-grade ethanol.

As NaOH pellets are hygroscopic, they were weighed quickly to minimize exposure to

air. Additionally, since the dissolution of NaOH in water is exothermic, the reaction flask

was run under cold water until all of the base was dissolved in water.

For every synthesis reaction, all the graduated cylinders and media bottles were cleaned

with the base bath. Coating thoroughly with the base removes a majority of organic impu-

rities. After coating, removing all the base is crucial. The glassware is therefore cleaned

and coated in multiple steps:
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1. Rinse glassware with Deionised water (tap water has too many impurities, and it

should not be used for cleaning).

2. Coat and scrub glassware with a solution of dish soap.

3. Rinse again with DI until all the soap is removed.

4. Pour a few mL of base bath in the container, and coat thoroughly, for at least 2

minutes.

5. Pour out the base bath, and rinse with DI repeatedly, at least 2 minutes.

6. Coat with ultrapure water and rinse repeatedly, at least 2 minutes.

7. Dry the glassware in the oven, at about 70◦C - 95◦C.

At each step, gloves are washed with ultrapure water to remove traces of soap and the

base bath.

A.2 Silica sphere synthesis

Silica spheres were made using the Stöber [93] synthesis method. The process involves

the hydrolysis of a tetraalkyl silicates with ammonia acting as a catalyst. The chemical

reaction proceeds via an intermediate step where a mixture of alkoxysilanols is produced.

However, it can be conveniently summarized as:

Si(OR)4 + 2 H2O
NH3 SiO2 + 4 ROH

The choice of ester and alcohol changes the quantitative details of chemical amounts,

reaction kinetics, and the size of particles obtained. For the syntheses performed in our
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lab, the procedure by Zhang et al. [94] was followed; the reagents used were tetraethyl

orthosilicate (TEOS) and ethanol. This reaction leads to a formation of a crosslinked net-

work of silicon and oxygen atoms, leading to spherical particle growth. After the reac-

tion initiation, silica particles grow as spherical shells around the seed particles formed.

Therefore, the size of final particles can be increased by performing more and more re-

action ‘feeds’. As a result of separate synthesis batches prepared in our lab, 1 feed led

to particles of diameter around 450 nm, 10 feeds led to 700 nm, and 14 feeds led to 830

nm [Figure A.1]. All the reactions were allowed to proceed in the fume hood at room

temperature.

Age of the reagents or errors in the amounts of reactants added can cause the size and

polydispersity of spheres to deviate from the values reported above. The yield of this

reaction was 5-20 mL, depending on the number of feeds. One successful reaction run

produced a sufficient amount of spheres for our experiments.

A.2.1 Synthesis procedure

• Reaction initiation

Day 1:

1. In a media bottle, add 67 mL reaction-grade Ethanol.

2. Add 5 mL ammonia (25% ammonium hydroxide solution).

3. Dropwise add 3 mL of TEOS.

4. Add a clean magnetic stir bar to the reaction mixture, seal the bottle with

Parafilm.

5. Leave the media bottle on a stirring plate overnight at approx. 200 RPM. Visu-
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ally verify that all the reaction mixture is getting mixed.

Day 2:

1. Measure 20 mL ultrapure water.

2. Measure 25 mL TEOS.

3. Simultaneously add both reagents to the reaction mixture.

4. Re-position the sealed media bottle on the stirring plate, increase the RPM so

that all the fluid is being mixed.

• Reaction feeds (Days 3 – n) Note: For this protocol, the reaction for each feed takes

about 14 to 18 hours to complete. Therefore, we perform one feed each day.

1. Add 25 mL TEOS and 20 mL miliQ water, together.

2. Add 1.55 mL ammonia.

3. Re-position the sealed media bottle on the stirring plate, increase the stirring

RPM accordingly, leave overnight.

A.2.2 Cleaning and separation

After completion, the fluid in the reaction flask is primarily ethanol with small amounts

of other reagents. The purpose of cleaning is to remove these chemicals and replace them

with the suspending fluid desired for experiments, in our case, water. Furthermore, in

addition to spheres of the desirable size, silica structures much larger than the desire

spheres (millimeters in size), as well as spheres smaller than the desired size are present

in the reaction mixture. The purpose of separation is to remove these structures to obtain

a monodisperse sample.
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Cleaning of silica spheres

1. Transfer contents of the reaction flask to 50 mL centrifuge tubes. Rinse the reaction

flask with ethanol to remove residue from the flask, transfer it to centrifuge tubes

as well.

2. Seal the centrifuge tubes with Parafilm, mass-balance them, and centrifuge at 1000×

g for 35 minutes (This speed may need to be increased or decreased by ∼ 200×g,

according to the size of spheres).

3. Gently remove the tubes from the centrifuge, remove and discard the supernatant

fluid (clear).

4. Fill the tubes with water (if samples will be stored long-term, Ethanol), seal with

Parafilm, sonicate in the ultrasonic bath for 20 minutes.

5. Mix the samples well with a vortex mixer.

6. Repeat steps 2-5 two more times.

Separation of silica spheres

This reaction generates a significant amount of large millimetric structures of silica,

as the reaction builds a network of Silicon and Oxygen atoms. As silica is much denser

than the reaction fluid, these large particles can be separated using gravity.

For gravity separation of large structures, we:

1. Mix the sonicated sample in 50mL centrifuge tubes with a vortex mixture.

2. Leave the sample undisturbed for 15 minutes, to separate under gravity.
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3. Gently transfer the supernatant to another tube with a pipette, leaving behind the

sediment.

4. Check both the supernantant and sediment under the microscope to check that the

supernatant mostly consists of microscopic spheres, and sediment mostly contains

millimetric junk.

5. Mix the sample with a vortex mixer again, and leave it undisturbed overnight for

separation.

6. After overnight separation, repeat steps 3-4.

7. Depending on the quality of samples obtained, repeat the above steps as needed.

Discard the millimetric junk.

For separation of smaller spheres, we:

1. Mix the sonicated sample in 50mL centrifuge tubes with a vortex mixture.

2. Parafilm and mass-balance the centrifuge tubes, centrifuge at 300g for 15 minutes.

3. Gently remove the tubes from the centrifuge, remove the supernatant fluid (milky).

4. Check both the supernatant and sediment under the microscope to verify that the

sediment has spheres of the desirable size, while the supernatant has smaller parti-

cles.

5. Parafilm and sonicate the sample for 10 minutes.

6. repeat steps 1-5 two more times.
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A.3 Silica rod synthesis

Silica rods of varying aspect ratios were prepared by following the synthesis method out-

lined by Kuijk et al. [108]. Rodlike structures form due to differential attachment of silica

onto an emulsion water drop suspended in a medium of pentanol and Polyvinylpyrroli-

done (PVP). The width of the rods is determined by the emulsion droplet size (around

200nm), and the aspect ratio (the ratio of length and diameter of the rods) is varied by

tuning the length of rods. Unlike the Stöber process, the desired particle size is indepen-

dent of the reaction time. Instead, the length (and in turn aspect ratio) is most conve-

niently controlled by varying the reaction temperature. Temperature ranging from 4◦C

to 31◦C result in rods of aspect ratios 1 to 20. Unlike the sphere synthesis, the yield for

this reaction is very low (∼ 400 µL for the reaction in a 1 L flask), requiring us to perform

multiple rounds of synthesis to produce enough high-quality rods.

A.3.1 Synthesis procedure

As with the sphere synthesis, the quality and age of ammonia used was crucial in the

rod synthesis. Additionally, the age of Tetraethyl orthosilicate (TEOS) was also key to

producing rods of consistently high quality and aspect ratios. We exclusively used small

bottles of TEOS (25mL) for rod syntheses in order to minimize the age of TEOS used. To

make silica rods in a 1 L media bottle, we:

1. Mix 0.529 g Sodium citrate dihydrate in 10 mL ultrapure water.

2. Add 600 mL Pentanol and 60g PVP in a 1L media bottle.

3. Seal the bottle with parafilm and use the shaker to mix pentanol and PVP: approx.

4 hours at 300 RPM.
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4. Add 60 mL of reaction-grade ethanol.

5. Add 16.8 mL MiliQ water.

6. Add 4 ml sodium citrate dihydrate solution (from step 1) in one shot.

7. Add 13.5 mL ammonia.

8. Add 6ml TEOS.

9. Seal the bottle with Parafilm, leave overnight in the Incufridge set at a suitable

temperature for rods of a desired aspect ratio.

AR 4.7 rods were made at 21◦ C, AR 6 rods at 27◦ C, and AR 12 rods were made

at 31◦ C [Figure A.2]. Reaction was allowed to proceed overnight in 1L media bottles,

and during each session 4-6 flasks were prepared simultaneously to increase yield. As

mentioned before, the rod aspect ratio and polydispersity are very sensitive to the quality

of reactants and any errors in measuring reactants. Therefore, particles from each flask

were imaged separately via SEM after cleaning, and only after analyzing each sample for

aspect ratio any consolidation was done.

A.3.2 Cleaning and separation

For both cleaning and separation, we followed Kuijk et al. [108]. Cleaning of silica rods

is similar to that of spheres, as the density of particles is the same, and the two reactions

share many reactants:

1. Transfer contents of the reaction flask to 50 mL centrifuge tubes. Rinse the reaction

flask with water to remove residue from the flask, transfer it to centrifuge tubes.
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2. Seal the centrifuge tubes with Parafilm, balance them, and centrifuge at 1500 × g

for 1 hour.

3. Gently remove the tubes from the centrifuge, remove and discard the supernatant

fluid (milky), after checking that it does not contain a significant amount of rods.

4. Fill the tubes with water (if samples will be stored long-term, ethanol), seal with

Parafilm, sonicate in the ultrasonic bath for 20 minutes.

5. Mix the samples well with a vortex mixer.

6. Seal the centrifuge tubes with Parafilm, mass-balance them, and centrifuge at 1500

× g for 15 minutes.

7. Repeat steps 3-6 two more times.

The reaction mixture for the rods is milky in color. This fact added with the very low

yield calls for repeated checking under the microscope before discarding any fluid, so as

to not lose good rods.

Unlike the spheres, this reaction does not lead to a significant amount of millimetric

junk. However, the sample is checked under the microscope and gravity separation is

performed as needed. Separation of smaller rods is more challenging than the spheres,

due to the added parameter of aspect ratio. Separation under gravity or centrifuging

relies on the mass distribution of particles. The mass of spherical particles scales as the

cube of particle diameter. However, for rod-shaped particles, as the diameter of the rods

is more or less the same, the mass of the rods scales linearly with their AR. Moreover,

there is a distribution in both the diameter and length, and two rods of similar mass can

have very different aspect ratios. This effect is amplified at higher temperature reactions
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for high-AR rods, where many small rods are present. For separating the short rods and

improving the monodispersity, the below procedure is followed:

1. Mix the sonicated sample in 50 mL centrifuge tubes with a vortex mixture.

2. Parafilm and balance the centrifuge tubes, centrifuge at 700 g for 15 minutes.

3. Gently remove the tubes from the centrifuge, remove the supernatant fluid (milky).

4. Check both the supernantant and sediment under the tabletop microscope to esti-

mate the rod size, and verify that the sediment has rods of the desirable AR, while

the supernatant has shorter rods.

5. Parafilm and sonicate the sample for 20 minutes.

6. Repeat steps 1-5 two more times.

A.4 Particle characterization via SEM and analysis

The particles were imaged using the Hitachi S4800 Scanning Electron Microscope located

in the NUANCE facility [Figures A.1, A.2]. As silica is non-conductive, the samples re-

quired a conductive coating to be imaged. A coating of Au-Pd, around 7 nm in thickness,

worked well for imaging a large number of particles for size characterization. However,

in cases where high-resolution details samples were coated with Osmium vapor.

SEM images were analyzed using ImageJ. For all the particle size statistics reported

here, a representative sample of 50 or more particles was measured, and the standard

deviation was reported as the size uncertainty [Figures A.1d, A.2d]. For characterizing

the rods, the AR of each individual rod was calculated and statistics were performed on

the ensemble of AR values.
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Figure A.1: Silica spheres of increasing size, as a result of more reaction feeds. (a) One
reaction feed leads to spheres of about 450 ± 40 nm, (b) 10 reaction feeds give 680 ±
20nm spheres, and (c) 14 reaction feeds lead to spheres of 830 ± 20 nm diameter. Scale
bars are 1 µm for (a) – (c). SEM images are courtesy of Dr. Srishti Arora. (d) Statistical
distribution of 50 sphere diameters show that the spheres are highly monodisperse.
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Figure A.2: Silica rods of increasing aspect ratio, as a result of increasing reaction
temperature. Reaction at (a) 21o C leads to rods of aspect ratio 4.7 ± 0.6, (b) 27o C leads
to rods of aspect ratio 6.1 ± 1.1, and (c) 31o C leads to rods of aspect ratio 12.2 ± 2.1.
Scale bars are 2 µm for (a) – (c). (d) Statistical distribution of 50 rod aspect ratios. Higher
aspect ratio rods tend to be more polydisperse, and more challenging to separate in order
to increase monodispersity.
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APPENDIX B

MAXIMUM SPREAD OF IMPACTING COLLOIDAL DROPS: ROBUSTNESS

AGAINST EFFECTIVE VISCOSITY MODELS

In section 4.2, we reported the scaling of the maximum drop spread for φ ≤ 0.47 col-

loidal drops with respect to ReWe1/2[Figure 4.4b]. This scaling was reported by Scheller

et al. [19] for experimental data of impacting glycerol-water drops of varying viscosity.

Both the collapse of our data and the power-law exponent are in surprising agreement

with the Newtonian scaling, given the highly shear-thinning behavior at high volume

fractions apparent from the bulk rheology data [Figure 4.1]. More recently, further mod-

ifications to this scaling models have been reported for Newtonian fluids [11, 14, 15].

The dependence on the Reynolds number in both the viscous and the inertial regimes

has been explored, and a universal scaling in terms of We and Re, that interpolates be-

tween these two regimes, has been proposed [14]. The effects of substrate wettability have

additionally been incorporated in a modified scaling [15].

A detailed comparison of the various models for maximum spreading of impacting

Newtonian fluids has been made by Josserand and Thoroddsen [11]. Here, we plot of our

colloidal data separately with We and Re, and additionally compare how our data scales

with respect to the various scaling models for Newtonian drops.

Figure B.1 shows our data for β plotted against We1/2,Rerheo, and ReKD . The fact that

β does not collapse when plotted against We1/2 alone is expected [Figure B.1a], as the

effective viscosity of the suspension changes significantly with φ. When plotted against

the Reynolds numbers alone, on the other hand, the data collapse is impressive for both
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Figure B.1: Maximum drop spread after impact vs. dimensionless numbers a β vs.
Weber number, We. The data does not collapse indicating a dependence on viscosity via
the Reynolds number. b β vs. Rerheo, the Reynolds number calculated from the effective
viscosity taken from rheological data. The dotted line is a power-law fit with an exponent
of 0.30, as compared to the exponent 0.20 reported for impacting Newtonian drops. c β
vs. ReKD , the Reynolds number calculated from the Krieger-Dougherty effective viscosity.
The dotted line is a power-law fit with an exponent of 0.26, as compared to the exponent
0.20 reported for impacting Newtonian drops.

Rerheo [Figure B.1b] and ReKD [[Figure B.1c]]. This indicates that although the role of

inertia is important, the contribution of fluid viscosity is very significant in determining

the maximum spread of colloidal drops. The exponents of the power-law fit is 0.30 in

terms of Rerheo and 0.26 in terms of ReKD . These exponents deviate the exponent of 0.20

expected from theoretical models (cite things). Experiments with Newtonian drop impact

have also reported deviation from this value (cite things).

Figure B.2 shows β plotted against ReWe1/2 for both Rerheo and ReKD . Once again,
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Figure B.2: Scaling of maximum drop spread after impact: plotted againstReWe1/2. a
β plotted against RerheoWe1/2. The data collapses well, and the dotted line is a power-law
fit with the exponent 0.164, which agrees well with the scaling reported by Scheller et
al. [19]. b β plotted against ReKDWe1/2 also collapses well, and the dotted line is a power-
law fit with the exponent 0.163, nearly identical to that of (a) and in great agreement with
Scheller et al. [19].

both scalings show a good collapse, and the power-law exponents are nearly identical.

The K-D effective viscosity model is designed for predicting the suspension viscosity at

low shear rate. As the fluid spreading after impact experiences high and variable shear

rate, we believe that Rerheo is a more physical choice. We elaborate on this at the end of

this appendix.

Equations for Scheller scaling and the other more contrived scaling.

As mentioned before, theoretical models suggest a Re0.20 scaling for β. In Figure B.3,
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Figure B.3: Re1/5 Scaling of maximum drop spread after impact. a β/(Rerheo)0.2 plotted
against We, on similar lines as Lee et al. [15]. b β/(ReKD)0.25 plotted against We, on
similar lines as Lee et al. [15]. The data shows an imperfect collapse, where datasets for
different values of φ are distinctly visible.

we plot β normalized with Re0.20
rheo and Re0.20

KD respectively, against We1/2. The data shows

an imperfect collapse, especially in Figure B.3a. As we observed the data to scale with

different exponents of the Reynolds numbers in Figure B.1b and c, we plot β normal-

ized with those Re0.30
rheo and Re0.26

rheo against We1/2 in Figure B.4. The collapse with these

experimentally determined exponents is much improved.

In Figure B.5, β/Re1/5 is plotted against WeRe−2/5, similarly as Laan et al. [14]. The

data shows a better collapse for ReKD than for Rerheo. We also note that the collapsed
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Figure B.4: Modified scaling of maximum drop spread after impact. a β/(Rerheo)0.3 plot-
ted against We, on similar lines as Lee et al. [15], and with the exponent from Fig. B.1b.
The data collapses well onto a practically constant value, despite the relatively low We
values. b β/(ReKD)0.25 plotted against We, on similar lines as Lee et al. [15], and with
the exponent from Fig. B.1c. The data collapses well onto a practically constant value,
despite the relatively low We values.

data stays practically constant as a function of WeRe−2/5, not consistent with the Padé

approximant found by fitting Newtonian data in past studies [14, 15].

Recently, the effects of substrate wettability have been incorporated in the maximum

drop spread scaling [15]. Lee et al. obtained βv→0, the maximum spread in the limit of

zero impact velocity, by considering a Padé approximation,

β = βv→0 +
avc

b+ vc
, (B.1)
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Figure B.5: Modified scaling of maximum drop spread after impact, plotted against
WeRe−2/5. a β/(Rerheo)1/5 plotted against WeRe−2/5, on similar lines as Laan et al. [14],
The data shows an imperfect collpase. b β/(ReKD)1/5 plotted against WeRe−2/5, on similar
lines as Laan et al. [14]. The data shows a better collapse relative to panel (a).

where βv→0, a,b, and c are fitting parameters. So that β increases linearly with v for

small v, and is independent of v at large v. This assumption is reasonable since we expect

substrate wettability to have a negligible effect in the high-inertia regime. In Figure B.6,

we show the estimate of βv→0 for a first-order Padé approximation over φ, where we set

c = 1:

β = βv→0 +
av
b+ v

. (B.2)

The inset shows an example fit for φ =. The value of βv→0 seems to remain more or

less constant over φ. The average of these values is 1.62, indicated by the dashed black

line. We use this average value as βv→0 for all φ values. We use this value to compute a
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Figure B.6: Prediction of the maximum spread at zero impact velocity using the first
order Padé approximation. βv→0 obtained by fitting β = βv→0 + av

b+v , as used in Lee et
al. [15], for the whole range of volume fractions. As seen from the plot, the average value
is fairly constant over volume fractions. For the wettability-corrected scaling, we use the
average value of βv→0 = 1.62, denoted by the dashed black line.

modified spreading factor,
√
β2 − βv→0

2 [15]. Instead of linear subtraction, the difference

of squares is used, as the effect of surface wettability is expected to scale as the surface

area, that goes quadratically as the linear drop spread.

In Figure B.7, we plot this modified spreading factor against ReWe1/2. The data col-

lapses imperfectly for both Rerheo and ReKD , especially where the drops spread less. This

is to be expected, as the effect of any uncertainty in βv→0 is expected to be higher for
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Figure B.7: Modified scaling of maximum drop spread after impact, plotted against

ReWe1/2. a
√
β2 − βv→0

2 plotted against RerheoWe1/2. b
√
β2 − βv→0

2 plotted against

ReKDWe1/2, as in Scheller et al. [19]. The data shows an imperfect collapse.

lower β values. In Figure B.8 where we plot
√
β2 − β2

v→0 against Rerheo and ReKD , although

we observe a much better collapse of data, the collapse is again imperfect especially for

φ = 0.47 where the drop spread is smaller. The relatively better quality of collapse once

again indicates that the Reynolds number has a very significant role in governing the max-

imum drop spread. The exponents of the power-law fits, 0.42 for Rerheo and 0.37 for ReKD ,

deviate even more from the expected value of 0.20. We now use normalize the spread-

ing factor by these powers of Re, and plot it against the Weber number in Figure B.10.

The data points do not perfectly collapse on to pf each other. However, considering the

very small range on the y-Axis, the data seems to be a practically constant function of We

(similar to Figure B.4).
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Figure B.8: Modified scaling of maximum drop spread after impact.
√
β2 − βv→0

2 plot-
ted against a Rerheo and b ReKD
. Dotted lines show the power-law fit exponents that are much larger than the usual Re1/5

scaling reported for Newtonian drop impact.

Although correcting for surface wettability probably takes us closer to a realistic model

of drop spreading after impact, in case of our colloidal suspension data we did not see

much improvement in the quality of the collapse when β was corrected for surface wet-

tability. We used first-order version [Equation B.2] of the correction reported by Lee et

al. [15], where βv→0 is obtained as a fitting parameter to the β vs. impact velocity data

by assuming a Padé approximant [Equation B.1]. This function is a reasonable choice as

it interpolates smoothly between the two expected spreading regimes, however, the large

number of fitting parameters indicate there is much unknown about the intermediate
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Figure B.9: Scaling of maximum drop spread after impact: corrected for surface
wettability and normalized with Re1/5, plotted against We, as reported by Lee et

al. [15]. a
√
β2 − βv→0

2/(Rerheo)1/5 plotted against We, on similar lines as Lee et al. [15], b√
β2 − βv→0

2/(ReKD)1/5 plotted against We, on similar lines as Lee et al. [15] In both cases,
the data collapses imperfectly, especially for high φ.

regime.

The high quality of the collapse in terms of both Rerheo and ReKD leaves the question

of a more appropriate viscosity model unanswered. We still believe that Rerheo is the more

suitable choice for the following reasons: The K-D effective viscosity model is not an ideal

choice, as it relies on a jamming volume fraction for the specific colloidal suspension, and

it is designed for systems experiencing low shear. Moreover, given that the shear rates

within the drop change dynamically during spreading, any choice of an effective viscosity
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Figure B.10: Modified scaling of maximum drop spread after impact, plotted against

We. a
√
β2 − βv→0

2/(Rerheo)0.42 plotted against We, on similar lines as Lee et al. [15],

and with the exponent from Fig. B.8a. b
√
β2 − βv→0

2/(ReKD)0.37 plotted against We, on
similar lines as Lee et al. [15], and with the exponent from Fig. B.8b. In both cases, the
data collapses onto a practically constant value, despite the relatively low We values.
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model from the literature is expected to prove inadequate without some estimate of an

‘effective’ shear rate. The simple estimate of an effective shear rate we provide in chapter

4 accounts for the variation of shear, both over impact velocities, and over the spreading

time. As we have also collected rheology data specific to our colloidal suspension, pairing

the estimated shear rate with a viscosity value is straightforward. We believe that this

method captures the flow properties specific to our suspension in the most realistic way.

Our data shows an impressive collapse when plotted in terms of the Reynolds num-

bers alone, for both Rerheo and ReKD . The exponents, however, deviate significantly from

the expected 1/5. Other studies of Newtonian and shear thinning drop impact have also

reported scaling exponents that deviate from 1/5 (cite things). Forensic sciences, for ex-

ample, traditionally use a Re1/4 to study the spreading of blood droplets. Given the small

dynamic range in β (less than an order of magnitude), it is unclear if this deviation is

significant. In case of the colloidal droplet data we report here, the deviation might also

result from the choices we make to compute the effective fluid viscosity. Finally, we have

disregarded any effects of shear thinning on the maximum drop spread. Shear thinning

must play a role in the spreading dynamics, as the shear rates inside the drop are dynam-

ically changing as the drop spreads.

To summarize, we report how the maximum spreading of colloidal suspension drops,

for 0 ≤ φ ≤ 0.47, behaves when the suspensions are treated as Newtonian fluids with an

effective viscosity. We compare how the data scales in terms of a number of spreading

models present in the literature, and in terms of two choices of calculating the effective

viscosity: one using the Krieger-Dougherty effective viscosity model, and the other in-

formed directly from the bulk rheology data we collected. Our data shows a surprisingly

good collapse in terms of these models. As we have compared Newtonian fluid models
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here, effects of shear thinning are not directly incorporated. We believe that this is the

biggest factor contributing to the imperfect data scaling, as opposed to the choice of a

specific scaling. Incorporating the effects of surface wettability does not seem to improve

the data collapse either. There are many unknowns in the surface wettability correction

for Newtonian fluids. In addition, the presence of colloidal particles can be expected to

alter substrate interactions. Finally, for both Newtonian fluids, the dynamic range of the

experimental data for β is smaller than an order of magnitude, therefore comparing the

exact values of the scaling exponents with theoretical predictions may not be meaningful.

Nevertheless, the surprisingly good data collapse for our colloidal drop spreading data

makes us confident that effective viscosity is one of the key parameters governing drop

spreading in the range of Re and We investigated here.
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APPENDIX C

SUPPLEMENTARY INFORMATION: COEXISTENCE OF SOLID AND LIQUID

PHASES IN SHEAR JAMMED COLLOIDAL DROPS

Note: The contents of this appendix are identical to the Supplementary Information of my

publication in Communications Physics: https://doi.org/10.1038/s42005-022-00998-w

C.1 Contact angle of the colloidal suspensions

As the contact angle of our suspensions is very small, it is challenging to measure it via

imaging data taken from the side. Therefore, we gently place a 5 µL drop on a hydrophilic

glass plate (prepared in a manner identical to the slides used for our experiments), and

measure its spreading size. We use the spherical cap approximation to estimate the con-

tact angle from the spreading size. [Inset in Figure C.1] 5 µL drops at φ = 0.01, φ = 0.15,

and φ = 0.35 (left to right) are placed on a hydrophilic glass slide. All the drops spread

to the same extent (average 9.0 mm), shown quantitatively in the plot [Figure C.1]. Using

the spherical cap approximation, we can solve for the drop height h:

Vcap =
1
6
π(3a2 + h2), (C.1)

where Vcap = 5 µL is the volume of the spherical cap, and a = 4.5 mm is the radius of the

spherical cap.. The contact angle can then be estimated as:

θ = sin−1(
2ah

a2 + h2 ). (C.2)

https://doi.org/10.1038/s42005-022-00998-w
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Figure C.1: Contact angle estimation for colloidal suspensions. Inset: Gently placed
drops of volume 5 µL of silica colloidal suspensions of φ = 0.01, φ = 0.15, and φ = 0.35
respectively, on a hydrophilic glass slide. All three drops spread to the same extent. Main
plot: The spreading diameter of the colloidal suspensions remains constant with increas-
ing φ, and using the spherical cap approximation the contact angle can be estimated as
θ = 3.8◦.

The above equations give the contact angle of θ = 3.8◦. Therefore, the contact angle is

constant over φ, and it is very low, as expected on hydrophilic substrates.

C.2 Viscosity vs. shear rate for colloidal suspensions

Figure C.2 shows viscosity of our colloidal suspensions plotted against shear rate (the

same data is plotted against shear stress in Fig. 1b). We use the viscosity at the highest

shear rate as the effective suspension viscosity in the spreading phase.
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Figure C.2: Rheology data for colloidal suspensions, φ ≤ 0.47 (from the same dataset as
Fig. 1b), plotted against shear rate.

C.3 Scaling laws for maximum spreading after impact

Scheller et al.[19] reported a ReWe1/2 empirical scaling for spreading viscous fluids. Fig-

ure C.3a shows this scaling fit to our data (dashed black line). The exponent of our fit

(0.165 ± 0.002) shows an impressive agreement with that by Scheller et al. (0.166) More

recently, scalings based on models that consider the balance between inertial, viscous,

and capillary effects have been reported. Laan et al.[14] considered the relation

β = Re1/5f (WeRe−2/5) (C.3)
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and used the first-order Padé approximation to fit experimental data of β/Re1/5 vs. WeRe−2/5:

β

Re1/5
=

(WeRe−2/5)1/2

A+ (WeRe−2/5)1/2
. (C.4)

This equation interpolates between the viscous regime (linear in WeRe−2/5) and the iner-

tial regime (constant with WeRe−2/5), and consists of a fitting parameter. As discussed by

Josserand and Thorodssen [12], the Scheller et al. scaling has the same functional form

as Equation C.3, where

β = (ReWe1/2)1/6 = Re1/5(WeRe−2/5)1/12. (C.5)

where f (WeRe−2/5) takes the form of a single power law, instead of interpolating between

two regimes via a Padé approximant. Thus, although the Scheller et al. model was an

empirical fit, it is consistent with the functional dependence of Equation C.3 reported

more recently. Figure C.3b shows both the Padé approximation (black dashed line) and

a power law fit (red dashed line) to our spreading data of β/Re1/5
eff vs. WeRe−2/5

eff . The

Padé approximation fit gives A = 0.09± 0.01, and the power-law fit gives the exponent of

n = 0.050 ± 0.02. This exponent deviates from the value 0.083 (1/12) in order for Equa-

tion C.5 to be satisfied. However, we note that the dynamic range of our data is limited,

and both curves describe our data well. As discussed by Josserand and Thoroddsen [12]

in detail, the number of different scaling models reported in the literature are hard to dif-

ferentiate. This also holds true for our experimental data of colloidal suspension drops

in the spreading regime, as evident from Figure C.3b.

Lee et al.[20] have recently reported a data scaling with a wettability correction, where

they calculate the spreading at zero impact velocity, βv→0 using a Padé approximant with



155

Figure C.3: Comparison of maximum spread scalings for impacting colloidal drops. a
β vs. ReeffWe1/2 for spreading colloidal drops. The dashed black line is the power law
fit, β = (0.79 ± 0.02)(ReeffWe1/2)0.165±0.002. The power law exponent shows a very good
agreement with the exponent reported by Scheller et al. for Newtonian fluids. b β/Re1/5

eff

vs. WeRe−2/5
eff for colloidal suspensions of φ ≤ 0.47. The data shows a good collapse. The

black dashed line indicates the first-order Padé approximation reported by Laan et al. fit
to our data, Equation C.4. The red line indicates a single power law fit. In both panels,
error bars indicate one standard deviation over multiple trials.
For the parameter range concerned, both equations describe our data well.

four fitting parameters. Corrected this way, they plot
√
β2 − β2

v→0/Re
1/5 against We, and

show good collapse for several fluids. Although correcting for wettability is important

while comparing fluids with different surface tensions, in this case the contact angle stays

constant over φ [Figure C.1]. Therefore, we did not apply these wetting corrections.
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