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Abstract 

We have a remarkable ability to perform complex, coordinated movements without much 

conscious effort. In addition to the computations required to generate commands for muscles, a 

key aspect of coordinated motor control is incorporating sensory feedback about the movement. 

One of the most important feedback routes is through proprioception, the sense of body position, 

movement, and related forces. This sense is so critical that loss of proprioception typically leaves 

a person wheelchair-bound, despite the retained ability to activate muscles. 

 The sensory organs for proprioception lie in the muscles, sensing their length and the 

forces on them. However, classic studies of proprioceptive neurons in primary somatosensory 

cortex (S1) suggest that activity relates to hand movement, implying that on the way to S1, 

proprioceptive signals are transformed from representing kinematics in terms of muscle to one in 

terms of the hand. Surprisingly, another classic study in the dorsal spinocerebellar tract (DSCT) 

suggested that this transformation may take place as early as the spinal cord. However, these 

classic studies did not consider how musculoskeletal geometry might contribute to the 

proprioceptive activity in DSCT and S1.  

 This dissertation outlines my work in examining how proprioceptive information is 

processed as it travels from muscle receptors to S1. Chapter 2 details a simulation study of 

DSCT, in which I found that an apparent limb-endpoint-based representation can arise simply 

from a convergence of muscle inputs. Chapter 3 extends these results to an electrophysiological 

study in monkeys, where I found that neurons in S1 represent not just the kinematics of the hand, 

but the whole arm. Taken together, these studies suggest that if proprioceptive signals transform 

to a hand-based representation in the brain, this transformation likely occurs beyond S1.  
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Chapter 1 - Introduction 
 

Aristotle believed there were five senses: sight, hearing, smell, taste, and touch. However, absent 

from the list is the sense of proprioception, or the sense of body state. Despite our being largely 

unaware of this sense in our normal lives, proprioception is critical for making coordinated 

movements. This importance is easiest to see in cases where proprioception is lost. As depicted 

in the BBC documentary “The Man Who Lost His Body”, patients who have lost their sense of 

proprioception show dramatic loss of body control, and in the great majority of cases become 

wheelchair-bound, even when they retain the ability to activate their muscles. 

While the field has made great strides in identifying where proprioception comes from, 

we are still relatively ignorant of how proprioceptive signals are processed and represented by 

the central nervous system (CNS), especially when compared with other senses like vision and 

touch. In my doctoral work, I examined how neurons in the proprioceptive system represent limb 

movements, starting with a computational study of a proprioceptive spinal cord tract called the 

dorsal spinocerebellar tract (DSCT), described in Chapter 2. I then used insights gained from this 

computational study in Chapter 3, which details an electrophysiological study of primary 

somatosensory cortex (S1), one of the main brain regions involved with proprioception. This 

introduction will review background information relevant to my doctoral work, first with an 

overview of the anatomy and physiology of limb proprioception in the nervous system, followed 

by an overview of how neural representations of movement have been addressed in the past. 

Finally, I will summarize ideas suggesting how proprioceptive feedback could be used to 

generate movements and how these ideas may shed light on proprioceptive neural activity. 
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Anatomy and physiology of proprioception in the nervous system 

Physiology of sensors 

Unlike with vision or hearing, the origins of the neural signals that make up the sense of 

proprioception are not immediately obvious. In fact, there was some debate in the 19th century 

about whether the sense of proprioception arose mainly from motor commands, originating in the 

brain or from peripheral receptors. Since the time of this debate, however, many different sensors 

contributing to proprioception have been discovered in vertebrates, including receptors 

embedded in the skin, joints, tendons and muscle bellies. While motor commands certainly play 

a role in proprioception, we now know that, at least for limbs, the sense of proprioception 

originates mainly from these receptors, with those embedded in the muscles and tendons playing 

the most important role (see (Proske & Gandevia, 2012) for review of this historical debate). 

One group of muscle receptors, called muscle spindles, lie parallel to the fibers of the 

muscle belly, and are classically thought to sense the length of the muscle and how it changes 

(Houk, et al., 1981). Each muscle spindle consists of several types of fibers, each of which has a 

different response to muscle stretch (Proske, 1997). Afferent nerves innervating these fibers 

transduce movements into action potentials, which propagate to the spinal cord. This transduced 

neural activity responds strongly to vibratory stimuli applied to the muscle (Brown, et al., 1967), 

indicating that muscle spindles are highly sensitive to rapid changes in muscle fiber length. 

Incidentally, such vibration also creates a perceptual illusion of movement (Goodwin, et al., 

1972; Cordo, et al., 1995), adding to the evidence that muscle sensors are the primary drivers of 

proprioceptive sensation. 
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In the studies presented in Chapters 2 and 3, I used rather simple models of muscle 

spindle activity, in which muscle length and stretch velocity were represented linearly in 

discharge rate. However, muscle spindle activity has been shown to have a nonlinear relationship 

to muscle length and stretch velocity (Houk, et al., 1981), and it even appears to be dependent on 

the history of muscle stretching (Proske & Stuart, 1985; Haftel, et al., 2004). A further 

complication to the relationship between spindle activity and muscle state is the fact that, like the 

muscles in which they reside, muscle spindles are also innervated by motor neurons, called 

gamma motor neurons. Gamma motor drive causes spindle fibers to contract, thereby increasing 

their sensitivity to movement (Kuffler, et al., 1951; Prochazka, 1981; Hulliger, et al., 1989; 

Hulliger, 1993; Macefield & Knellwolf, 2018). One hypothesized function for gamma drive is to 

keep the spindle in its operating range as the muscle contracts or relaxes. This might be achieved 

through a linkage between gamma and alpha motor neuronal activity, the latter providing the 

primary drive for the spindle’s parent muscle (Hagbarth & Vallbo, 1968; Burke, et al., 1978). 

However, many experiments have shown that alpha and gamma drive can be dissociated during 

voluntary movement, revealing that the role of gamma drive is more complex than this 

hypothesis would suggest (Prochazka, et al., 1976; Prochazka, 1981; Hulliger, et al., 1989).  

A second class of muscle receptors, known as Golgi tendon organs (GTOs), also appears 

to play a large role in proprioception. Because they reside in the tendons, and are thus in series 

with the muscle fibers, GTOs are thought to signal the force exerted by the muscles, and likely 

contribute to a sense of effort (Houk & Simon, 1967; Crago, et al., 1982). These sensors also 

respond to vibration, particularly when the connected muscle is active (Brown, et al., 1967; 

Fallon & Macefield, 2007), making vibration a potentially poor stimulus to determine 
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experimentally whether an axon carries information from a muscle spindle or from a GTO. One 

stimulus that that does distinguish these two sensors, however, is a brief electrical stimulation of 

the muscle (Hunt & Kuffler, 1951; Edin & Vallbo, 1987). This stimulation causes the muscle to 

twitch, simultaneously shortening and silencing the muscle spindles, and applying tension to the 

tendon, thereby activating the GTOs. This twitch test has been called the “gold standard” for 

distinguishing muscle spindle axons from those of GTOs (Fallon & Macefield, 2007).  

Overview of pathways to cortex 

As noted above, proprioception, like tactile sensation, originates from sensors all over the body. 

Signals from muscle and cutaneous receptors arrive at the spinal cord via structures known as 

dorsal root ganglia (DRG). These ganglia include bundles of neurons that innervate muscle 

spindles and GTOs, as well as sensors in the skin and joints. From there, DRG signals enter the 

dorsal horn of the spinal cord and split into two paths, one intended for fast, spinal reflex loops 

and the other to carry signals to the brain.  Signals used for reflexes are relayed to spinal 

interneurons and motor neurons, while signals intended for the brain mostly travel up the dorsal 

column tract. For the arms or forelimbs, these DRG axons synapse onto neurons in the cuneate 

nucleus of the medulla (Rosén, 1969; Rosén, 1969). From there, the cuneate nucleus sends 

signals through the medial lemniscus to the thalamus, which routes the signals to primary 

somatosensory cortex (S1) (Rosén, 1969; Oscarsson & Rosén, 1963; Padberg, et al., 2009). 

Cutaneous signals from the legs or hindlimbs follow a similar pathway through the gracile 

nucleus rather than the cuneate (Gordon & Paine, 1960), but muscle signals from these lower 

limbs take a detour. Instead of traveling up the dorsal tract directly to a brainstem nucleus, the 

hindlimb muscle DRG neurons synapse onto neurons in Clarke’s column, which then sends 
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signals through the dorsal spinocerebellar tract (DSCT) (Lloyd & McIntyre, 1950) (see (Bosco & 

Poppele, 2001) for review of DSCT). As the name suggests, this tract sends proprioceptive 

signals to the cerebellum, but it also sends signals to another brainstem nucleus called Nucleus Z, 

which in turn sends signals through thalamus to S1 (Landgren & Silfvenius, 1971). 

Physiology of proprioception in cortex 

S1 itself resides on the postcentral gyrus, just posterior to primary motor cortex (M1). It can be 

anatomically divided into four areas, named for their initial classification by Brodmann 

(Brodmann, 1909). In order from anterior to posterior, they are designated areas 3a, 3b, 1, and 2. 

Of these, areas 3b and 1 contain mostly tactile information, while area 3a and area 2 are thought 

to be more proprioceptive areas (Jennings, et al., 1983; Kaas, et al., 1979; London & Miller, 

2013). Each of these four areas contains a rough somatotopic map of the body, often called the 

homunculus, arranged medial to lateral along the gyrus (Penfield & Boldrey, 1937; Kaas, et al., 

1979; Pons, et al., 1985).  

Area 3a is typically centered near the bottom of the central sulcus for old world primates, 

including humans. Early electrophysiology studies of area 3a showed that the area received input 

mostly from muscle receptors (Phillips, et al., 1971; Yumiya, et al., 1974; Tanji, 1975; Lucier, et 

al., 1975), though later studies showed that areas 3b and 1 do appear to project some cutaneous 

information into area 3a (Heath, et al., 1976; Yamada, et al., 2016). In contrast, area 2 receives 

strong input from areas 3a, 3b, and 1, and as a result, contains a combination of cutaneous and 

muscle information (Padberg, et al., 2018; Pons, et al., 1985; Pons & Kaas, 1986; Hyvärinen & 

Poranen, 1978). Similarly, while neurons in anterior S1 tend to have simple receptive fields, with 

response properties that match peripheral receptors, neurons in area 2 tend to have larger and 
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more complex receptive fields (Hyvärinen & Poranen, 1978) and together appear to have a more 

complex somatotopy than found in more anterior areas of S1 (Pons, et al., 1985). Altogether, this 

suggests that information in area 2 may be more processed than in anterior areas of S1.  

While several studies have examined how S1 relates to proprioception of the hand or 

wrist (e.g. (Iwamura & Tanaka, 1978; Costanzo & Gardner, 1981; Gardner & Costanzo, 1981; 

Jennings, et al., 1983; Nelson, 1987; Gardner, et al., 1999; Ro, et al., 2000; Debowy, et al., 2001; 

Goodman, et al., 2019), relatively few have examined how S1 relates to proprioception of the 

proximal arm. The majority of these studies show that neural activity in S1 modulates strongly 

with the position of the hand (Tillery, et al., 1996), the direction of hand movement (Prud'homme 

& Kalaska, 1994; Weber, et al., 2011; London & Miller, 2013), or the direction of a load applied 

to the hand (Prud'homme & Kalaska, 1994; London, et al., 2011). In short, these studies 

implicitly assume that neural activity in S1 represent the state of the hand, despite proprioception 

arising from muscle sensors. This observation matches with psychophysical results suggesting 

that people are better at estimating the location of their hands than estimating their joint angles 

(Fuentes & Bastian, 2010), and surprisingly, this limb endpoint-based representation also seems 

to explain neural activity in the DSCT, one of the earliest stages of processing for proprioception 

of the leg (Bosco, et al., 1996; Bosco, et al., 2000). 

Another cortical area involved in proprioception is area 5, lying just posterior to S1, and 

part of the posterior parietal cortex (PPC). Like area 2, area 5 responds to passive joint 

manipulation and appears to be tuned to the direction of hand movement during reaching 

(Mountcastle, et al., 1975; Kalaska, et al., 1983; Seelke, et al., 2011). However, area 5 appears to 

have much broader cortical connectivity than area 2, which mostly receives cortical input from 
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other areas of S1, primary motor cortex (M1), and the secondary somatosensory cortex. Area 5 

receives input from these areas as well, but it also receives strong input from other areas in PPC, 

along with premotor and supplementary motor cortex (Padberg, et al., 2018). As might be 

expected from this broad range of inputs, neurons in area 5 have complex response properties, 

with subpopulations dependent on task engagement (Omrani, et al., 2016) and whether the 

movement was actively generated or a passive perturbation (Mountcastle, et al., 1975; Chapman, 

et al., 1984). This broad connectivity, coupled with the fact that parts of area 5 also project to 

neurons in the spinal cord (Rathelot, et al., 2017), suggests that this area plays a direct role in 

using proprioceptive information to guide movement. 

History of neural representations of movement 

The hand-based representational framework of S1 and DSCT draws directly from that proposed 

by Georgopoulos et al. for explaining M1 activity (Georgopoulos, et al., 1982). In that study, 

Georgopoulos et al. used the now classic center-out reaching paradigm, in which the monkey 

reached from a target in the center of a planar workspace to a cued target at the edge of the 

workspace in one of eight directions. Using this experiment, they found that the activity of many 

neurons could be explained by a cosine-shaped tuning curve based on the target direction, with 

the direction of maximum activity defined as the neuron’s preferred direction (PD). The tuning 

curve could be parameterized by the neuron’s PD, as well as a baseline firing rate and a 

modulation depth. (Georgopoulos, et al., 1986) expanded this framework to three-dimensional 

reaches, showing that neural activity could often be explained by how much the reaching 

direction differed from the three-dimensional neural PD. 
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However, other experiments cast doubt on this idea of a hand-based representation of 

motor control. In old-world primates, M1 contains a large population of cells known as 

corticomotorneurons, which project directly to spinal motor neurons (Rathelot & Strick, 2009), 

suggesting that a muscle-based representation might better characterize M1. Because muscle 

activity also shows cosine-shaped tuning curves to movement direction, it was unclear whether 

primary motor cortex truly represented movements in terms of the hand or whether it just 

appeared to do so because signals in hand-based and muscle-based coordinate frames were 

highly correlated in the original experiments (Mussa-Ivaldi, 1988). In fact, the very first single-

neuron recordings in motor areas of behaving animals were those of Ed Evarts. His experiments 

suggested that identified corticospinal tract neurons in M1 were better related to force than 

movement (Evarts, 1968). Later reaching experiments showed that changing the location of the 

workspace in relation to the monkey’s body changed neural PDs (Caminiti, et al., 1990; Morrow, 

et al., 2007), an observation inconsistent with the idea that M1 controls the movement of the 

hand in a hand-centered, Cartesian coordinate frame. Other experiments showed that the neural 

PD appeared to change even during the course of the reach (Sergio, et al., 2005; Churchland, et 

al., 2012) or as the result of forces imposed on the monkey’s hand (Kalaska & Hyde, 1985; 

Kalaska, et al., 1989; Rokni, et al., 2007; Cherian, et al., 2011; Perich & Miller, 2017). These 

results suggest that while PD analysis might be a useful tool to characterize neural activity as it 

relates to arm kinematics in particular dynamic conditions, the neurons in motor cortex clearly 

do not just represent where the hand was going. 

Recent studies have begun to examine motor areas in terms of how they process 

information to generate movements, instead of using the neural PD models of movement 
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representation (Churchland, et al., 2012; Kaufman, et al., 2014; Sussillo, et al., 2015; Perich, et 

al., 2018; Dekleva, et al., 2018). However, the limb endpoint-based model remains the dominant 

model for describing proprioceptive neural activity related to the proximal limb. Studies that 

assume the endpoint-based model generally neglect the fact that these signals originate from the 

muscles of the limb, implicitly assuming the system has integrated the muscle afferents to 

compute the location of the limb’s endpoint. However, it is unclear whether such a computation 

actually occurs before the signals reach S1, let alone DSCT. Thus, the central question of this 

dissertation is whether there is evidence of such a computation in the proprioceptive system.  

The role of proprioception in generating movement 

The idea the early proprioceptive signals may be integrated to form representations of 

movements frames proprioceptive areas in terms of a hierarchy of processing, like that described 

for visual cortices (Hubel & Wiesel, 1959; Hubel & Wiesel, 1962; Felleman & Essen, 1991). 

However, another way to frame proprioceptive areas is in terms of how they contribute to 

movement generation. Proprioception is critical for generating coordinated movement, as 

evidenced by studies of patients who have lost it (Sainburg, et al., 1993; Sainburg, et al., 1995; 

Ghez & Sainburg, 1995; Gordon, et al., 1995). Thus, by considering how proprioceptive areas 

communicate with motor areas, we may gain insight into how these areas encode feedback about 

the limb.  

Spinal reflexes were among the first studied neural circuits for motor control. In 

particular, proprioceptive feedback from muscle spindles underlies a reflex so well-known that it 

has its own cliché: the “knee-jerk response”, otherwise known as the monosynaptic stretch reflex 

(Liddell & Sherrington, 1924). In this reflex, spindle activity directly recruits the spinal motor 
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neurons associated with the muscle in which the spindle resides, causing that muscle to contract 

when it is stretched. This can be thought of as a negative feedback loop, encouraging muscles to 

stay at a set length, in a spring-like fashion (Nichols & Houk, 1973). This stretch reflex, along 

with other spinal reflexes, can also be modified by motor commands, for example through 

gamma motor drive to spindles (Kuffler, et al., 1951) or through changing spinal motor neuron 

excitability (Hounsgaard, et al., 1988). Surprisingly, one recent study also demonstrated that in 

some cases, these spinal reflexes can respond to perturbations in a task-dependent manner, a 

function usually thought to require a feedback loop through cortical areas (Weiler, et al., 2019). 

The spring-like nature of the muscles, brought about by the stretch reflex, became one 

basis for a theory of motor control called the equilibrium point hypothesis (Asatryan & Feldman, 

1965; Feldman, 1966; Feldman, 1986; Flanagan, et al., 1993). The idea behind this hypothesis 

was that upstream motor commands could set an equilibrium point for each of the muscles in the 

arm, resulting in a restoring force to carry the hand to the planned set point. This idea was 

attractive, given that it offloaded the necessary computations for generating movements to the 

feedback system – the motor system only had to set an end goal to generate the movement. 

However, this idea became controversial, with some studies supporting the hypothesis (Bizzi, et 

al., 1984; Gribble, et al., 1998), and others exposing flaws in it (Lackner & Dizio, 1994; Gomi & 

Kawato, 1996; Hinder & Milner, 2003). As with the controversy concerning the coordinate 

frame of movement representation in motor cortex, this equilibrium point hypothesis controversy 

has not been completely resolved; instead, the field has turned towards other views of how 

feedback is integrated into motor control. 
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Arguably the most influential of these views is one that suggests the motor control system 

uses internal models of the limb to generate coordinated movements and integrate feedback 

(Shadmehr & Mussa-Ivaldi, 1994; Wolpert, et al., 1995; Ghez & Sainburg, 1995; Wolpert, et al., 

1998; Thoroughman & Shadmehr, 1999; Hinder & Milner, 2003; Hwang, et al., 2003; Kurtzer, et 

al., 2008; Therrien & Bastian, 2015; Maeda, et al., 2018). Central to this internal model 

framework is the idea that pure feedback control of the limb is difficult, due to delays in both the 

sensory and motor systems. To overcome these delays, the sensorimotor system may use a set of 

internal models of the limb. In the simplest realization, this internal model framework boils down 

to a few key features. First the sensorimotor system chooses a desired trajectory of movement 

(e.g. “move the right hand to that cup of tea”). An inverse dynamics model of the limb converts 

this desired trajectory into low-level motor commands, to be sent to the muscles (Shadmehr & 

Mussa-Ivaldi, 1994). Muscles contract to move the arm, generating proprioceptive and visual 

feedback. At the same time, a forward model uses the motor commands to predict the sensory 

consequences of the generated movement, potentially to be used as a surrogate for rapid 

feedback about the movement (Wolpert, et al., 1995; Wolpert, et al., 1998). Finally, the actual 

sensory feedback and predicted feedback are compared against each other to estimate the sensory 

error, which is used to update the internal models to reflect a change in the limb dynamics 

(Shadmehr & Mussa-Ivaldi, 1994; Ghez & Sainburg, 1995; Mathis, et al., 2017; Maeda, et al., 

2018). 

How and where might these internal models be implemented in the brain? One important 

brain area for this internal model framework is the cerebellum, which is potentially important for 

instantiating both the inverse and forward models and for updating them using sensory feedback 
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(Wolpert, et al., 1998; Izawa, et al., 2012). On the motor command side specifically, the dorsal 

premotor cortex (PMd) and M1 are important for planning and generating motor commands. As 

mentioned in the previous section, there has been some debate about how exactly these areas 

represent movements, but the most recent studies suggest that they are most accurately modeled 

as complex dynamical systems that generate commands for the muscles (Churchland, et al., 

2010; Churchland, et al., 2012; Sussillo, et al., 2015; Kao, et al., 2015; Kaufman, et al., 2016; 

Russo, et al., 2018; Pandarinath, et al., 2018). One recent study also shows that changing activity 

in PMd underlies adaptation to altered dynamics of movement, suggesting that PMd may employ 

an inverse model, updated by sensory prediction errors, to inform how it recruits M1 in different 

dynamic conditions (Perich, et al., 2018). 

On the sensory side, S1 plays a crucial role in both learning new motor skills (Pavlides, et 

al., 1993) and adapting to different movement dynamics (Mathis, et al., 2017), pointing to a role 

for S1 in comparing proprioceptive feedback with the predictions from the forward model. 

Furthermore, S1 activity often changes just before active movements (Nelson, 1987; London & 

Miller, 2013), suggesting that it receives information about intended movements from motor 

areas, as a forward model would. Given that M1 contains at least some information about 

muscles, we might also expect neurons in S1 to contain a muscle-like representation of feedback, 

to aid in its communication with M1. 

Furthermore, planning a reaching movement requires integration of proprioceptive 

feedback about where the hand is with information about targets for reaching, the latter typically 

acquired by vision (Flash & Hogan, 1985; Sainburg, et al., 2003). Supporting this is the fact that 

patients who have lost proprioception tend to make movement errors seemingly related to an 
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inability to accurately plan movements (Gordon, et al., 1995). The most likely area for this 

integration to occur is in PPC, where neurons with complex responses to both proprioception and 

vision are found (Mountcastle, et al., 1975). In addition to the broad range of inputs to PPC 

described earlier, this area appears to play an important role in selecting actions and in guiding 

reaches (Snyder, et al., 1997; Batista & Andersen, 2001; Buneo & Andersen, 2006; Cui & 

Andersen, 2007), suggesting that PPC may be at least partially responsible for sending high-level 

commands to an inverse model. As such, we might expect proprioceptive information in PPC to 

be related more to hand kinematics than forces or muscle lengths, an idea supported by 

electrophysiological studies (Kalaska & Hyde, 1985; Buneo & Andersen, 2006). 

Summary 

This chapter has given a brief introduction to how proprioceptive information reaches the brain, 

a brief summary of the study of neural representations of movement, and finally outlined a few 

ideas on how proprioceptive feedback plays into the generation of movement. The following 

chapters will detail my doctoral work examining neural representations in two different 

proprioceptive areas of the CNS: the DSCT and area 2 of S1. 

Chapter 2 details a computational study focused on the DSCT. Earlier studies of this area 

showed that the DSCT integrates information from the whole hindlimb and seemingly computes 

a representation of the limb’s endpoint, only one or two synapses away from the muscle 

receptors themselves. However, the simulations described in Chapter 2 show that this apparent 

endpoint representation might simply arise from the biomechanics of the limb and not due to any 

specific neural computation. 
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Chapter 3 details an electrophysiological study of area 2 in S1. In this study, I explored 

the question of whether S1 represents more than just the movement of the hand. I found that 

whole-arm-based models could predict features of neural activity that the classic hand-based 

models could not, suggesting that S1 does indeed represent the movement of the whole arm. 

Thus, if there truly is a transformation into hand-based coordinates, as conscious experience and 

psychophysics experiments suggest, it likely has not occurred before the signals get to S1. 

Finally, Chapter 4 examines two different perspectives from which to examine the results 

presented in Chapters 2 and 3. The first concerns how proprioceptive information is processed 

hierarchically by the proprioceptive system, while the second concerns how proprioception 

contributes to motor control. In light of these perspectives, this final chapter will discuss the 

implications of these results, along with future directions in which to extend this work. 
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Chapter 2 - Musculoskeletal geometry accounts for apparent extrinsic 

representation of paw position in dorsal spinocerebellar tract 

Raeed H. Chowdhury, Matthew C. Tresch, and Lee E. Miller 

Foreword 

The following chapter has been adapted from a manuscript published in the Journal of 

Neurophysiology in April 2017. The purpose of this project was to understand the results from a 

series of studies of cat dorsal spinocerebellar tract (DSCT) conducted by Bosco and Poppele. 

One of these experiments found that neural activity related to the position of the hindlimb paw, 

even when a constraint was added to change how the joint angles related to the paw position. 

This result was surprising -- do neurons in the spinal cord, only one synapse removed from the 

muscle receptors, truly compute the position of the hindlimb paw, or is this apparent 

representation a consequence of musculoskeletal geometry? In this project, I replicated this 

experiment in simulation to address this question. By simulating artificial DSCT neurons as 

weighted linear combinations of muscle lengths, I explored how musculoskeletal geometry alone 

might contribute to this surprising empirical result. These simulated neurons exhibited many 

tuning properties similar to those found in the actual DSCT, suggesting that a transformation to a 

limb endpoint representation is unlikely to have occurred at this stage in proprioceptive 

processing. 
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Abstract 

Proprioception, the sense of limb position and motion, arises from individual muscle receptors. 

An important question is how and where in the neuroaxis our high level “extrinsic” sense of limb 

movement originates. In the 1990s, a series of papers detailed the properties of neurons in the 

dorsal spinocerebellar tract (DSCT) of the cat. Despite their direct projections from sensory 

receptors, it appeared that half of these neurons had consistent, high-level tuning to paw position 

rather than to joint angles (or muscle lengths). These results suggested that many DSCT neurons 

compute paw position from lower level sensory information. We examined the contribution of 

musculoskeletal geometry to this apparent extrinsic representation by simulating a three-joint 

hindlimb with mono- and biarticular muscles, each providing a muscle spindle-like signal, 

modulated by the muscle length. We simulated neurons driven by randomly weighted 

combinations of these signals and moved the paw to different positions under two joint-

covariance conditions similar to the original experiments. Our results paralleled those 

experiments in a number of respects: 1) Many neurons were tuned to paw position relative to the 

hip under both conditions. 2) The distribution of tuning was strongly bimodal, with most neurons 

driven by whole-leg flexion or extension. 3) The change in tuning between conditions clustered 

around zero (median absolute change ~20°). These results indicate that, at least for these 

constraint conditions, extrinsic-like representation can be achieved simply through 

musculoskeletal geometry and convergent muscle length inputs. Consequently, they suggest a 

reinterpretation of the earlier results may be required. 
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Introduction 

There is an intimate interplay between somatosensation and the control of movement that is 

evident in the movement deficits that result when somatosensation is lost. Patients make large 

errors of extent while making reaching movements in different directions (Gordon et al. 1995) and 

are largely unable to control the dynamics of the limb (Sainburg et al. 1995). Part of the complexity 

of limb movement control arises from the redundancy that allows us to place our hand or foot in a 

particular location using an infinite variety of limb configurations. In order to complete a simple 

reaching movement, a high-level command, e.g. “reach for that book”, must be transformed into 

commands for dozens of individual muscles. The cerebellum monitors and processes the 

movement commands themselves, as well as somatosensory feedback from the limb in a process 

that makes the movement execution fluid and effortless. An important question in motor 

neurophysiology has been how these sensorimotor signals are represented by populations of 

neurons, and how these representations are transformed through the central nervous system. 

 This question has received far more attention in the motor system than it has in the 

somatosensory system. In a highly cited classic study, Georgopoulos and his colleagues found that 

neurons in primary motor cortex (M1) appear to represent arm kinematics in an extrinsic, hand-

based coordinate frame, where each neuron has broad tuning to a particular direction of hand 

movement (Georgopoulos et al. 1982). Such a system would require subsequent transformation of 

this high level control signal into signals appropriate to activate muscles. 

Subsequent experiments examined the question of representation more closely, taking 

advantage of the limb’s redundancy to alter limb posture and change the relation between hand 

movement and joint rotation (Caminiti et al. 1990; Kakei et al. 1999; Morrow et al. 2007; Scott 
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and Kalaska 1997). Most of these studies found many M1 neurons with tuning that was more 

closely related to the “intrinsic” coordinates of joint rotations or muscle lengths. Using similar 

methods, there is now evidence that much of the transformation from extrinsic to intrinsic 

coordinates occurs between the premotor and motor cortices (Kakei et al. 2001; Shen and 

Alexander 1997) and is completed between motor cortex and the spinal cord (Yanai et al. 2008).  

 Compared to the motor system, the representation of proprioception, the sense of body 

position, movement, and related forces, has received far less experimental attention. 

Proprioception arises from muscle spindles, situated parallel to muscle fibers and sensitive to 

muscle length and length change, and Golgi tendon organs (GTOs), lying in series with muscles 

and sensitive to active muscle force, and even cutaneous receptors that respond to skin deformation 

and stretch (Kandel et al. 2012). However, psychophysical experiments in humans (and common 

experience) suggest that perception of the arm is focused on hand position or overall limb 

orientation rather than individual joint angles or muscles lengths (Fuentes and Bastian 2010), thus 

matching vision and the other exteroceptive senses. Consistent with these studies, proprioceptive 

neurons in primary somatosensory cortex (S1) have been thought to exhibit extrinsic tuning 

(Prud'homme and Kalaska 1994) quite similar to that suggested for M1 neurons by the experiments 

of Georgopoulos and colleagues (Georgopoulos et al. 1982). Thus, the system mediating 

proprioception has the opposite requirement of the motor system: low level sensors in muscles 

must ultimately generate high level perception in extrinsic coordinates.  

 Remarkably, experiments involving recordings from neurons in the dorsal spinocerebellar 

tract (DSCT) of the cat, a pathway carrying proprioceptive information from the cat’s hindlimb to 

the cerebellum, suggested that such a transformation had already occurred at that level (Bosco and 
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Poppele 1997; Bosco et al. 2000; Bosco et al. 1996). As the hind paw of an anesthetized cat was 

moved throughout a range of positions in the sagittal plane, DSCT neurons tended to represent the 

limb position not in terms of individual joint angles or muscle lengths, but in terms of a vector 

drawn from the hip to the paw. For approximately half of DSCT neurons, this extrinsic 

representation persisted even in the presence of a constraint that fixed the knee angle and changed 

how the joints covaried during hindlimb movement. 

 This result was surprising for a number of reasons. For one, the significant amount of 

computation implied by this transformation must occur very early in sensory systems, at DSCT 

neurons, which receive inputs directly from sensory afferents. Furthermore, the posited cerebellar 

role in the coordination of intersegmental dynamics during movement (Cooper et al. 2000; 

Sainburg et al. 1995), might well profit from muscle-related feedback, rather than a simple 

representation of paw position. Finally, arguments for the need for this transformation based on 

characteristics of our conscious perception are much less convincing in the context of cerebellar 

processing than they are for signals in the cerebral cortex. 

 The idea that neurons in the DSCT encode the hindlimb state in terms of the paw position 

has been well accepted into proprioceptive literature (Daley and Biewener 2006; Fuentes and 

Bastian 2010; Kim et al. 2010; Morton and Bastian 2006; Ting and Macpherson 2005; Weber et 

al. 2007). However, the original experiment did not explore the contribution of musculoskeletal 

geometry to the tuning of neural activity. While the knee-fixed constraint changed the hindlimb 

joint covariance, hindlimb muscle length changes do not have a simple linear relationship with 

joint rotation. As such, the effect of this constraint on convergent muscle-length inputs remains 

unclear. Consequently, we replicated the experiment in simulation, with neurons that drew their 
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activity directly from randomly weighted combinations of spindle-like muscle-length inputs. 

Surprisingly, the results of this simple neural model closely paralleled the earlier experimental 

results. This outcome suggests a very different interpretation of the representation of limb state 

by DSCT neurons. These results suggest that there is little evidence that the DSCT neural signals 

have been transformed to represent limb state in anything other than simple muscle coordinates. 

This outcome also highlights the importance of considering the properties of the musculoskeletal 

system when interpreting signals recorded in the central nervous system. 

Methods 

Musculoskeletal Model 

To simulate the cat hindlimb, we used a four-segment, three-joint musculoskeletal model, with 

segment lengths and muscle insertion points adapted from the musculoskeletal model used by 

(Bunderson et al. 2010), based on an anatomical study performed by (Burkholder and Nichols 

2004). We used eight muscles (five monoarticular and three biarticular), and constrained the 

limb to the sagittal plane. Figure 2.1 shows a schematic representation of the model. 

 Our simulation experiment included two constraint conditions meant to simulate those of 

the original experiment: an elastic constraint that approximated normal limb mechanics and a 

knee-fixed constraint. We implemented the elastic constraint by placing identical springs at each 

joint to mimic the passive elastic effects of muscles and fascia, thus defining a minimum energy 

state for any given paw position. This constraint fully determined the hindlimb posture for any 

given paw position. As in the baseline condition with the anesthetized cat (Bosco and Poppele 

1997; Bosco et al. 2000), the joints covaried essentially linearly, with a plane accounting for 94% 

of the joint covariance. In our second constraint condition we fixed the knee angle, forcing a 

linear joint covariance different from that of the elastic condition. The consistency of neural 
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tuning to paw position between these two conditions can be considered a measure of how nearly 

a given neuron is tuned to extrinsic coordinates.  
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Figure 2.1 - Schematic of simulated leg, showing segments(black), joints(blue), and muscles(red). Muscles 
are: BFP-Biceps Femoris Posterior, BFA-Biceps Femoris Anterior, IP-Illiopsoas, RF-Rectus Femoris, VL-

Vastus Lateralis, MG-Medial Gastrocnemius, Sol-Soleus, TA-Tibialis Anterior. We conducted the simulation 

by moving the paw to different positions in the sagittal plane in two conditions: elastic joint and knee-fixed.   
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Generation of neural activity 

In our simulation experiments we moved the paw in the sagittal plane through 100 equally 

spaced locations in a 10x10 polar grid centered on the hip, and spanning angles from 245° to 

300° with radii from 18 cm to 22 cm. This matched the grid pattern used in the original 

experiments (Bosco and Poppele 1997; Bosco et al. 2000; Bosco et al. 1996), and resulted in 

joint angle excursions of 40°, 49°, and 50° for hip, knee, and ankle, respectively.  These 

excursions are similar to those reported in the original experiments (25-50°, 45-60°, 60-80° 

excursions for hip, knee, and ankle joints across several experiments).  Varying the stiffness of 

each joint in the model (±25%) altered the simulated joint excursions but did not affect the 

overall conclusions reported here (see Results). 

  For each paw position, we found the corresponding hindlimb configuration and 

calculated the length of each muscle from origin to insertion from the musculoskeletal model. 

The maximum change in muscle length for a given paw displacement corresponds to the 

muscle’s pulling direction. Muscle lengths were normalized to lie between 0 and 1, 

corresponding to the minimum and maximum lengths achieved throughout the full workspace. 

We transformed the resultant muscle lengths into simulated neural discharge by taking a 

weighted sum of the normalized lengths to simulate the convergence of length-sensitive afferents 

onto a given DSCT neuron (Figure 2.2). Each neuron was thus characterized fully by its eight 

muscle weights, which we drew randomly from a standard normal distribution (µ=0, ∑=). The 

zero mean allowed negative (inhibitory) weights. This raw neural activation was passed through 

a sigmoidal function to produce an average firing rate for each neuron that ranged between 0 and 

60 spikes/second. Lastly, we used this average firing rate as the intensity parameter of a Poisson 
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process to simulate spike trains for 10,000 neurons as the paw was held for two seconds in each 

of the 100 positions of the 10x10 workspace.  

 Given the muscle model used to generate the activity of these neurons, the comparison 

across conditions reveals how consistent paw-position tuning might be if DSCT neural responses 

were driven directly by muscle sensor outputs, where the only neural computation is the 

summation of randomly scaled inputs. While it is unlikely that real neurons in the DSCT have 

fully random connectivity from muscle lengths, the use of random weights allowed us to probe 

the limits of the potential role of musculoskeletal geometry, as opposed to more complex learned 

weights, on the neural representation of limb state in DSCT. 
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Figure 2.2 - Block diagram for generating neural activity. Muscle lengths are first normalized to values 

between 0 and 1, then linearly combined with random weights drawn from a standard normal distribution. 

Output is then passed through a sigmoid function and a Poisson process to simulate neural activity. 
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Analysis of neural representation 

Unless noted otherwise, we analyzed the simulated firing rates using the methods from the 

original experimental paper (Bosco et al. 2000). To find tuning in Cartesian coordinates, we fit 

the simulated firing rates to the x and y coordinates of paw position. These planar fits yielded a 

gradient direction (𝜃𝐺), which denotes the direction of maximal change in firing rate, and a 

gradient magnitude (𝜌𝐺), which denotes the overall sensitivity of the firing rate to displacement 

from the center, shown in Equation (2.1):  

𝑓 = 𝛼0 + 𝜌𝐺 ∙ 𝑑 ∙ cos⁡(𝜃 −⁡𝜃𝐺) (2.1) 

Where:  

𝑑 = ⁡√𝑥2 + 𝑦2⁡, 𝜃 = tan−1
𝑦
𝑥⁄  (2.2) 

In Eq. 2.1, d represents the Euclidean distance from the center of the grid, while 𝜃 represents the 

direction of displacement from the center, defined in Eq. 2.2. If a neuron changes its Cartesian 

representation between experimental conditions, one or both of these parameters would change 

in some way. A change in 𝜃𝐺  might be considered more interesting than a change in 𝜌𝐺 , as 

altered sensitivity could be caused simply by global effects on the neurons in the DSCT that 

result in an overall increase or decrease in activity. On the other hand, a change in 𝜃𝐺  represents 

a differential change in sensitivity to the two cardinal axes of movement. Such a change resulting 

from different biomechanical conditions (as in the two conditions in this study) would contradict 

the hypothesis that the neuron encodes paw position. For this reason, our analysis focuses on 

changes in 𝜃𝐺  between the two experimental conditions.  
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 We only considered neurons that were well tuned in both the elastic and knee-fixed 

conditions, as the 𝜃𝐺  is otherwise undefined. As in the original experiment, we considered a 

neuron to be tuned if it satisfied two conditions: first, using an F-test, the fit of Eq. 2.1 needed to 

be significant (p< 0.05) compared with a constant firing rate model; second, the R2 of the model 

fit by Eq. 2.1 needed to be greater than 0.4 (Bosco et al. 2000).  

Results 

Tuning of intrinsic neurons to paw position 

Within either joint covariance condition, the relationship between the intrinsic and extrinsic 

coordinate systems is locally linear (Bosco et al. 1996; Mussa-Ivaldi 1988). In motor systems, it 

has been common to impose a postural perturbation as a means of disambiguating these two 

possible representations (Caminiti et al. 1990; Morrow et al. 2007; Oby et al. 2013; Scott and 

Kalaska 1997). While less common in the somatosensory system, this approach has been used to 

suggest that at just one synapse removed from the afferent receptors at the level of the dorsal 

spinal cerebellar tract, neurons encode limb state in extrinsic coordinates (Bosco and Poppele 

1996; Bosco et al. 2000). We sought to better understand the origin of this remarkable result. To 

this end, we conducted a simulation to determine the conditions under which muscle-length 

sensitive neurons might exhibit apparent tuning to paw position in extrinsic coordinates.  

Figure 2.3A shows the activity of a well-tuned neuron as a function of paw position in the elastic 

condition. When fit with Eq. 2.1, R2 was 0.64 (p<0.001). 𝜃𝐺  for this neuron (indicated by the 

arrow) was 80°. Sixty-one percent of all simulated neurons were well tuned to paw position 

(R2>0.4, p<0.001) in the elastic condition.  
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 Among this group of well-tuned neurons, the distribution of 𝜃𝐺  was strongly bimodal. 

Figure 2.4A shows this distribution in the elastic constraint condition, with a significant mean 

axis running from 82° to 262° (circular mean test p<0.0001), which approximately matched the 

axis running between the hip and paw (which we call the “limb axis”), indicating that neurons 

were much more likely to be tuned to whole leg extension and withdrawal, than the orthogonal 

direction of movement (the “orientation axis”). This distribution was remarkably similar to that 

found in the studies of Bosco and colleagues (Figure 2.4B). Because the tuning of our simulated 

neurons resulted directly from that of the muscles, this nonuniformity in the distribution of 𝜃𝐺  

suggests that the hindlimb muscles also have their greatest length change for paw movement 

along this axis. Intuitively this is quite reasonable; while the workspace spans a greater range 

along the orientation axis, only the hip muscles are strongly affected by orientation changes. In 

contrast, paw movement along the limb axis affects all of the muscles, leading to greater overall 

muscle length change and a greater sensitivity of the neurons to these movements. 

 Tuned and untuned neurons received essentially the same magnitude weight of inputs 

from all muscles (medians 2.75 and 2.65, respectively). While we did not find any clear biases in 

tuned neurons for higher weights on certain muscles than others, we do note that some 

combinations of inputs (for example, equal inputs from antagonistic muscles with opposing 

pulling directions) contribute no net neural modulation, while others are much more effective. 

These combinations of inputs were quite different for tuned and untuned neurons. We computed 

a net input vector for each neuron, calculated as the vector sum of all muscle pulling directions 

weighted by each muscle’s input strength for that neuron. The length of this vector, normalized 

by the scalar sum of the input weights, provides a measure of the “effectiveness” of the inputs. 
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The input to well-tuned neurons was much more effective than that for untuned neurons (a 36% 

increase for the elastic condition and a 48% increase for knee-fixed).    
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Figure 2.3 - Heat map diagram showing activity of an example simulated neuron at different foot positions 
during elastic joint (A) and knee-fixed (B) conditions. Red indicates high activity, while blue indicates low 

activity. Red arrows show the “gradient direction” (𝜃𝐺) of this neuron in both conditions. For this neuron, 𝜃𝐺 

changed by 15°. 
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Figure 2.4 - Distribution of gradient directions for tuned neurons in simulation (A) and in empirical 
recordings of previous studies (B). In both cases, the distribution was mostly bimodal along the axis of the leg 

(the “limb axis”). Panel B, redrawn from (Bosco and Poppele 2001). Dashed lines represent the primary axes 

of the distribution’s lobes. 
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Stability of cross-condition gradient directions 

Among our simulated neurons, 61% had statistically significant tuning to paw position in the 

elastic condition, and 69% were tuned in the knee-fixed condition.  Fifty-two percent were tuned 

in both conditions. For these neurons to be considered endpoint-tuned, 𝜃𝐺  must be invariant 

across these two conditions, for which the mappings between paw position and joint angles 

differ. This is indeed what Bosco and colleagues found: 𝜃𝐺  for many DSCT neurons remained 

largely unchanged across the elastic and knee-fixed conditions (Bosco et al. 2000). We made a 

similar comparison here, examining 𝜃𝐺  among the 52% of simulated neurons that were well 

tuned to paw position under both conditions.   

 The 𝜃𝐺  of the example neuron of Figure 2.3 rotated from 80° in the elastic condition to 

95° in the knee-fixed condition. (Figure 2.3B). Unexpectedly, among neurons tuned to both 

conditions, the majority had similarly small changes in 𝜃𝐺  between conditions. Figure 2.5A 

shows a histogram of the cosines of these Δ𝜃𝐺 , a typical measure of the alignment of two 

vectors. Values close to 1 represent neurons that had very small absolute Δ𝜃𝐺 , while numbers 

close to 0 represent neurons with nearly orthogonal 𝜃𝐺 . In our data, the median of the cosine of 

Δ𝜃𝐺  was 0.94, corresponding to |Δ𝜃𝐺| = 20°. For comparison, Figure 2.5B shows the 

corresponding original experimental result: a median change in the cosine of Δ𝜃𝐺  of 0.91 (23°) 

for all tuned neurons (Bosco et al. 2000). 

Combined with the observation of a bimodal distribution of 𝜃𝐺  along the limb axis, the 

stability of 𝜃𝐺  between experimental conditions constitutes a surprisingly close match between 

actual and simulated DSCT neurons. These results beg the question of what mechanism 

generates the consistent endpoint tuning across the joint coupling conditions. Because the neural 
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activity in our simulation was generated from randomly weighted combinations of muscle 

lengths, it weakens the argument that the apparent endpoint tuning arises from a specific 

weighting of inputs. 

 One potentially simple explanation for this stability of extrinsic tuning is the effect of 

multiarticular muscles. Because they span multiple joints, their length changes might be more 

directly related to paw position than individual joint angles. However, when we removed the 

biarticular muscles from our musculoskeletal model, the stability of endpoint representation 

largely persisted: 46% of neurons were well tuned to paw position in both constraint conditions, 

and the median |Δ𝜃𝐺| was 15°. Thus, while there were fewer well-tuned neurons without the 

biarticular muscles, the tuning direction change was actually smaller. Evidently, there is a 

different explanation for the stable extrinsic tuning that is related to how muscle lengths are 

affected by paw position. 
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Figure 2.5 - Histogram of cosine of change in 𝜃𝐺 between experimental conditions in simulation (A) and in 

previous empirical recordings (B). Both distributions were heavily biased towards 1, indicating that most 

neurons did not change the gradient direction substantially. For simulated neurons (A), the median value was 
0.94, corresponding to a change of ±20°, and for empirically recorded neurons (B), the median value was 

0.91, corresponding to a change of ±23°. Panel B redrawn from (Bosco et al. 2000). 
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The effect of muscle tuning across constraint conditions 

To investigate the role of musculoskeletal geometry in the bimodal tuning distribution and 

stability of 𝜃𝐺  across constraint conditions, we examined muscle length tuning in both 

conditions. Figure 2.6A shows the tuning to paw position of all muscles in the elastic condition. 

The length of each vector denotes the sensitivity (𝜌𝐺) of the muscle length to paw movement, 

and its direction denotes the 𝜃𝐺 . As shown graphically by the ellipse, the principal axis of these 

vectors, calculated using PCA, was along an axis between 92° to 272°, only 10° away from the 

axis of Figure 2.4A. This principal axis, accounting for 80% of the total variance of these tuning 

vectors, forms the major axis of the ellipse. Likewise, the minor axis corresponds to the 

magnitude of the second principal component. Thus, in the elastic condition, the hindlimb 

muscles changed length mostly for paw movements along the limb axis. 

 Figure 2.6B shows the corresponding muscle tuning for the knee-fixed condition, which 

altered the tuning vectors of individual muscles.  Vastus lateralis (VL), a monoarticular knee 

extensor, could not change length, and thus lost all relation to paw movement. In compensation 

for the lack of knee movement, the ankle needed to move through a much greater range in order 

for the paw to reach all the positions in the workspace. Consequently, the tuning vectors of 

soleus (Sol) and tibialis anterior (TA), monoarticular ankle extensors and flexors, respectively, 

increased considerably in length, as did that of the medial gastrocnemius (MG), a knee-ankle 

biarticular muscle. Additionally, the monoarticular hip muscles, iliopsoas (IP) and biceps femoris 

anterior (BFA) changed in tuning direction to reflect the change in hip movement under the 

knee-fixed constraint. All three ankle-related muscles (MG, TA, Sol) took on essentially 

identical tuning direction (disregarding sign). Likewise, all hip-related muscles, including the 

hip-knee bi-articular muscle rectus femoris (RF), had the same tuning directions. This grouping 
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of muscle tuning directions in the knee-fixed condition reflects the fact that all muscles were 

essentially reduced to monoarticular flexors or extensors; the two groups of tuning vectors 

represent the influence of the hip and the ankle rotation on paw position. 

Despite these changes, the overall biased distribution of muscle tuning vectors remained 

largely unchanged across constraint conditions.  The orientation of the covariance ellipse with 

the knee constraint (Figure 2.6B) was very similar to the orientation under the elastic condition 

(Figure 2.6A); their principle axes differed by only 5 degrees. The similar distribution of 

preferred neural tuning vectors in the two constraint conditions (Figure 2.4) and the small change 

in tuning direction for individual neurons (Figure 2.5) are both likely a direct consequence of the 

preserved biased distribution of muscle tuning vectors. Neurons with significant tuning in both 

conditions were very likely to have had a tuning vector along the principle axes shown in Figure 

2.6; because the direction of this principle axis didn’t change substantially across the two 

conditions, the preferred directions of most neurons didn’t change either. 
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Figure 2.6 - Muscle tuning vectors in elastic joint (A) and knee-fixed (B) conditions. Ellipses in both panels 

illustrate the variance of the muscle tuning vectors along the principal axes. Tuning vectors were strongly 

bimodal along the limb axis, in essentially the manner of the neurons. In the knee-fixed condition, VL, a 
monoarticular knee muscle, became unmodulated, and the ankle muscles (TA, Sol, MG) changed modulation 

and hip muscles (IP, BFA) changed tuning direction to compensate. Despite this, the overall distribution of 

muscle tuning did not change, leading to only small changes in neural tuning direction.  
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Sensitivity to simulation parameters 

Muscle tuning vectors reflect the changes in muscle length resulting from displacements of the 

paw.  The relationship between endpoint displacement and joint rotation is given by the limb 

Jacobian:  𝑑𝑥 = 𝐽𝑑𝑞. Given a set of joint angle changes we can find the resulting endpoint 

displacement.  However, because the limb is redundant, the opposite relationship is ill-posed and 

only becomes well-defined by the addition of constraints, such as the joint stiffnesses included in 

the elastic condition, reflecting contributions from passive musculoskeletal properties.  The 

further effect of the knee constraint therefore depended on the particular joint stiffnesses used in 

our simulation.  As a trivial example, if the knee joint stiffness were much higher than the 

stiffness of the other joints, then fixing the knee would have minimal effect on neural tuning 

vectors. We examined the extent to which our results depended on the particular values of 

stiffness by repeating the analyses after varying the stiffness of each joint by ±25%.  The number 

of neurons tuned to both conditions varied only slightly, between 52% and 56%, and median 

|Δ𝜃𝐺| for the tuned neurons varied only between 20° and 25°.  

 In order to evaluate whether a neuron changed its tuning across constraint conditions it 

had to have statistically significant modulation of its tuning across paw positions.  These 

statistical tests are dependent on the noise inherent in the neural discharge and the confidence 

with which we could measure tuning. We therefore examined whether the main results depended 

on the amount of uncertainty in neural tuning. To change the measurement uncertainty, we 

varied the measurement time from two seconds, the length time used to compute firing rates in 

most of the original analyses, to a range between 0.1 and 5 seconds. Longer measurement times 

meant less noise. As we increased the measurement time, the number of tuned neurons increased 

tremendously from 7.7% at 0.1 seconds, to 69% at 5 seconds. However, despite this wide range 
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in number of tuned neurons, the median |Δ𝜃𝐺| remained largely unchanged, ranging from 16° to 

21°. For simulations in which more than 20% of neurons were tuned (measurement times >0.5 

seconds), the median |Δ𝜃𝐺| ranged between 19° and 21°. This indicates that Poisson noise, apart 

from determining how many neurons were well tuned to paw position, did not change the 

stability of their tuning or the major conclusions of the study. 

Discussion 

Summary 

Because of the nearly linear relation between joint angles and paw position in any restricted 

workspace, determining the coordinates in which proprioceptive neurons are tuned requires an 

experiment that alters this relation. Bosco et al. altered this relation by fixing the knee and 

thereby altering the joint covariance. They found relatively little change in neural tuning with 

respect to paw position across the naturally constrained limb and the knee-fixed limb and 

reasoned that neurons with this property should be considered extrinsically tuned.  

Unexpectedly, we found that their analyses applied to our neurons, which received only 

random combinations of muscle length inputs, closely matched many tuning characteristics of 

the actual DSCT neurons. We focused on two specific analyses used in the original experiments. 

The first determined the distribution of neural tuning direction, which was heavily biased to be 

along the limb axis direction. The second determined the overall change in this tuning direction 

between two different joint covariance conditions, which was generally small for most neurons. 

The results of both analyses closely matched the empirical results. 

In addition to these analyses, Bosco et al. performed a set of regression analyses, which 

they used to classify neurons into groups that responded consistently to paw position, joint 
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angles, or neither. We chose not to replicate these analyses, which would have been sensitive to a 

number of parameters (e.g., measurement errors using skin markers, noise characteristics of 

DSCT firing rates, etc.) that we had no means to estimate accurately. Since we did not want 

simply to tweak the simulation parameters to achieve a match with their results, we sought to 

assess the overall tuning characteristics of neurons without actually classifying them. 

Our results serve a dual purpose. First, they provide necessary context for the previous 

experiments in the cat DSCT. The substantial signal transformation implied by those results was 

quite surprising, given the close proximity of DSCT to the periphery. Apparently, despite its 

seeming severity, the knee-fixed constraint did not cause a sufficient change in musculoskeletal 

mechanics to determine whether DSCT neurons were extrinsically tuned. Consequently, a simple 

linear convergence of muscle spindle-like inputs, given the musculoskeletal geometry, provides 

an adequate explanation for the apparent tuning to paw position. 

Second, these results show the importance of simulation to inform the design of similar 

experiments, providing the basis for an appropriate null hypothesis. In this case, the gradient 

direction analysis shows very little change between conditions; thus, in order for DSCT neurons 

to be considered extrinsic, they must demonstrate even less change than this null hypothesis. An 

appropriate use of this simulation for future experiments could be to choose a more effective 

constraint that maximized the change in endpoint tuning given muscle-based neurons. 

Contributions of musculoskeletal properties to apparent neural coding 

A key question of our study was to determine why the neural tuning was stable across two 

seemingly very different joint constraints. We considered whether the stable endpoint tuning of 

length-sensitive DSCT neurons might have arisen because of the geometry of bi-articular 
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muscles, the length of which is not a simple function of individual joint angles. However, when 

we removed the bi-articular muscles from our model, the results remained qualitatively 

unchanged. 

 Instead, the invariance appears to be due to the strongly bimodal distribution of the 

muscle tuning vectors along the limb axis for both constraint conditions (Figure 2.6). In the 

normal, elastic condition, this bimodality is understandable biomechanically, as all three joints 

rotate during whole-leg flexion and extension, but for anterior-posterior paw movement, muscles 

other than those at the hip, changed very little. This strong bimodality was not substantially 

affected by the knee constraint. Several muscle tuning vectors changed, as hip and ankle rotation 

compensated for the lost knee rotation. However, the greatest effect on muscle tuning vectors 

was on their length, most obviously for the ankle muscles tibialis anterior, medial gastrocnemius, 

and soleus (gray, pink, and brown vectors, respectively), which all lengthened dramatically. The 

overall bimodality along the limb axis was preserved. 

As context for the empirical results, this simulation makes the discovery of constraint-

invariant neurons much less surprising. The musculoskeletal geometry of the hindlimb can 

explain both the non-uniform distribution of tuning to paw positions and the stability of tuning 

between the knee-fixed condition and a naturally-moving condition. As such, the most 

straightforward explanation for the behavior of DSCT neurons is that it is the result of a 

convergence of muscle inputs. 

It is important to note once again that our analysis, as that of the original study, 

considered only neurons that were significantly tuned to paw position. Only 61% of the 

simulated neurons were tuned in the elastic condition, a number that differed greatly from the 
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95% in the original study. This large difference is at least in part, a product of the random 

connectivity used in our simulations. In the simulation, a neuron could receive equal inputs from 

antagonistic muscles, essentially nulling the effect of paw movement on the neuron’s firing rate. 

Indeed, the input to tuned neurons was 35-50% more effective at modulating neural activity as 

input to untuned neurons, despite there being no difference in the magnitude of the weights 

themselves. A significant amount of weight cancellation is unlikely to occur in the actual DSCT; 

such ineffective combinations of inputs are likely to be pruned during development, leaving a 

bias towards tuned neurons. 

One caveat to this study, as well as in the original experimental study, is that the 

relationship between limb configuration and neural activity during normal behaviors can also be 

altered by fusimotor drive.  In the anesthetized conditions of the origin experiments, this drive 

would be significantly reduced (Prochazka et al. 1977), and our simulations matched these 

experimental conditions by deriving neural activity directly from muscle length.  Nonetheless, an 

important question is how variations in this drive might have changed the apparent 

representation in DSCT. Normally, both dynamic and static gamma drive appear to be modulated 

during the step cycle. Although the time course of this modulation remains uncertain, gamma 

static drive (most relevant for the postures represented in this study) increases abruptly at 

movement onset, with a sustained, dramatic increase during muscle shortening (Taylor et al. 

2000). A further complication is that the particular pattern of gamma activation appears to 

depend on muscle type, be it flexor, extensor, or bi-articular (Loeb 1981). More study is required 

to understand how this changing fusimotor drive would affect the neural representation in DSCT. 
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Simulation for experimental design 

In addition to shedding light on the previous empirical results, this simulation can help in 

designing experiments to test the coordinate frame of DSCT or other neurons. Simulation can be 

used for this in three separate ways: choosing the best analyses for assessing tuning stability, 

generating a null hypothesis to test results against, and optimizing the constraint to cause 

maximum tuning change. 

With respect to analytical approaches, the original experiment (and our simulation) 

examined changes only in the direction, 𝜃𝐺  of the neural response gradient, not its magnitude 

(𝜌𝐺). As we suggested above, it is not unreasonable to discount changes in 𝜌𝐺  as they represent 

simply an overall change in sensitivity to movement, rather than a differential change in how 

neurons respond to movement in different directions. However, because the changes imposed by 

the knee-fixed constraint were focused mostly along the limb axis, neurons with gradient vectors 

in that direction would be predicted to change more in length than direction. In our simulation, 

we found a median change in 𝜌𝐺  of 38% from the elastic to the knee-fixed condition. Hence, for 

this particular constraint, considering changes in 𝜌𝐺  as well as 𝜃𝐺  might have clarified the 

interpretation of whether or not DSCT neurons are extrinsically tuned.  

 Secondly, such a simulation would be useful in generating a null hypothesis based on 

intrinsic tuning to which empirical results could be compared. For example, in addition to an 

analysis of Cartesian tuning direction, the original experiments included an analysis in polar 

coordinates, in which each neuron’s firing rate was fit to the length and orientation of a vector 

that pointed from the hip to the paw. Polar tuning of approximately half of the DSCT neurons did 

not change significantly across conditions, which led the authors to conclude that they were 
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extrinsically tuned. However, the t-test used for that analysis should be used only to show that 

two distributions are significantly different; in this case, that a particular neuron is not 

extrinsically tuned. The fact that a neuron fails the t-test is not sufficient to conclude that it has 

the same tuning in both conditions. A more appropriate test would be an equivalence test, which, 

when passed, shows that two quantities are within some given bound of each other. This bound 

represents a difference that is scientifically (as opposed to statistically) significant. In the 𝜃𝐺  

analysis, the equivalence test bound on the median Δ𝜃𝐺  might be 20°, as that value results from 

randomly connected DSCT neurons. If an equivalence test shows a median change significantly 

less than this bound, it provides good evidence that the neurons are extrinsically tuned. 

Finally, such a simulation could be used for basic experimental design. Our simulation 

showed that the knee-fixed constraint did not significantly change how the muscles respond to 

paw movement compared to the natural elastic constraint condition. Invariance in neural tuning 

despite a constraint that caused significant changes in muscle tuning along the orientation axis 

would be much stronger evidence of extrinsic tuning in the DSCT. 

Broader implications of these modeling results 

An important question is the extent to which our conclusions apply more broadly than to the 

particular sagittal plane motions and knee-fixed constraints of this experiment in the 

somatosensory system. The classic studies of Georgopoulos revealed hand-centered tuning of 

M1 neurons during reaching (Georgopoulos et al. 1982) that was analogous to the apparent paw-

centered tuning of DSCT. However, numerous subsequent studies found clear evidence that the 

tuning of most M1 neurons is not consistent with a simple endpoint model across different 

workspaces (Caminiti et al. 1990; Morrow et al. 2007) or limb postures (Cherian et al. 2011; 
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Scott and Kalaska 1997). A recent simulation study demonstrated the importance of a variety of 

musculoskeletal properties on the distribution of M1 preferred directions (Lillicrap and Scott 

2013). Interestingly, they found that limb geometry was more important than the presence or 

absence of biarticular muscles, an observation that is consistent with ours.  

 The Brain-Machine Interface (BMI) field currently faces similar difficulties. Remarkably 

accurate predictions of hand trajectory can be made using simple linear combinations of M1 

firing rates (Carmena et al. 2003; Serruya et al. 2002; Taylor et al. 2002; Wessberg et al. 2000).  

It is likely that BMIs based on such extrinsic coding models will perform poorly when used to 

predict movements following postural perturbations that dissociate extrinsic from intrinsic 

variables, as suggested by previous studies (Cherian et al. 2011; Oby et al. 2013). Likewise, 

recordings from small ensembles of afferent neurons in the dorsal root ganglia in cats have been 

used to predict the kinematics of the paw in extrinsic coordinates during passive limb 

displacement under anesthesia  (Stein et al. 2004) and walking on a treadmill (Weber et al. 

2006), but the success of these methods may be due at least partially to the constrained 

biomechanics of the tested movements.  The results of the present study suggest that properties 

of the musculoskeletal system being studied should be carefully considered when evaluating the 

ability of BMI interfaces to predict limb movements. 

Conclusion 

We have shown that under the conditions of the original experiments (sagittal plane motion, 

unchanging gamma drive), limb biomechanics and a simple linear convergence of muscle-length 

inputs can replicate the apparent extrinsic representation of DSCT. Given that our muscle-based 

simulation replicated key features of neurons in the DSCT, there is no longer justification to 
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conclude that the signals carried by these neurons have undergone a transformation to produce a 

high-level representation of limb state. 
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Chapter 3 - Area 2 of primary somatosensory cortex encodes 

kinematics of the whole arm 

Raeed H. Chowdhury, Joshua I. Glaser, and Lee E. Miller 

Foreword 

This chapter is an adaptation of a manuscript submitted to bioRxiv as a preprint and to eLife for 

publication as a research article. The manuscript details two projects that were developed in 

parallel, but in the end told similar stories. One of these projects was a follow-up of the 

simulation study presented in Chapter 2, applied to neural activity in area 2 of primary 

somatosensory cortex (S1). Like the classic DSCT literature, previous literature studying this 

area related neural activity to the movement of and forces on the hand, rather than the muscles. I 

developed an experiment in which a monkey reached to targets in two separate workspaces, 

finding that models incorporating the kinematics of the whole arm could predict area 2 neural 

activity better than a model based on just hand kinematics. 

 In the second project, I studied the representation of active and passive movements in 

area 2 neural activity. Previous studies suggested that these two movements are represented 

similarly by individual neurons in area 2. However, Dr. Brian London, a previous student in Dr. 

Lee Miller’s lab, found that area 2 neurons represent these movements differently at the 

population level, suggesting a component of area 2 activity related to volition. While trying to 

characterize this volitional component, I found that my whole-arm kinematic models from the 

two-workspace project could explain this representational difference, suggesting that it stemmed 

not from volition, but from a difference in how the whole arm moved in active and passive 

movements. As the two projects told similar stories, we combined them into this one manuscript.  
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Abstract 

Proprioception, or the sense of body position, movement, and associated forces, remains poorly 

understood, despite its clear importance to making coordinated movements. In the classic model 

of neurons in area 2, a proprioceptive area of primary somatosensory cortex, neural activity is 

related simply to the movement of the hand and interaction forces it encounters during 

movement, similar to our conscious experience of proprioception. However, in two separate 

experiments, examining 1) active and passive movements and 2) reaches to targets in two 

different workspaces, we found that a model of area 2 activity built on kinematics of the whole 

arm successfully predicted how features of neural activity changed across movement conditions, 

while the classic hand-based model was unable to. This suggests that, unlike our conscious 

experience and the classic model of proprioception in cortex, neural activity in area 2 represents 

movement of the whole arm.  
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Introduction 

Moving around in an uncontrolled environment is a remarkably complex feat. In addition to the 

necessary computations on the efferent side to generate movement, an important aspect of motor 

control is the afferent information we receive from our limbs, essential both for movement 

planning and for the feedback it provides during movement. Of the sensory modalities we 

receive, proprioception, or the sense of body position, movement and forces, is arguably the most 

critical for making coordinated movements (Ghez and Sainburg 1995; Gordon et al. 1995; 

Sainburg et al. 1995; Sainburg et al. 1993; Sanes et al. 1984). However, despite its importance, 

few studies have explicitly addressed how proprioception is represented in the brain during 

natural movement.  In comparison, touch, vision, and the motor areas of the brain have received 

far more attention.  

Our conscious experience of proprioception typically focuses on where our hands are 

going, rather than the rotations of our joints. This also matches with psychophysical data 

showing that humans are better at estimating the location of the hand than estimating joint angles 

(Fuentes and Bastian 2010). Perhaps consequently, of the few studies that examine central 

nervous system (CNS) activity underlying limb proprioception, most assume that individual 

neurons represent the movement of the limb’s endpoint, rather than joint angles or muscle 

lengths (Bosco et al. 2000; Bosco et al. 1996; London and Miller 2013; London et al. 2011; 

Prud'homme and Kalaska 1994; Weber et al. 2011). However, to achieve such a hand-centric 

view, neurons would need to integrate the proprioceptive signals from sensors in the muscles, 

joints, and skin of the whole limb (Goodwin et al. 1972; Proske and Gandevia 2012). 
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Area 2 of primary somatosensory cortex (S1) receives a combination of muscle and cutaneous 

information (Hyvärinen & Poranen, 1978; Padberg, et al., 2018; Pons, et al., 1985) and is thought 

to be important for proprioception (Jennings et al. 1983; Kaas et al. 1979; London and Miller 

2013). Interestingly, recent computational studies have shown that while neural activity may 

appear to be tuned to the state of the limb’s endpoint, features of this tuning might be a direct 

consequence of the biomechanics of the limb (Chowdhury et al. 2017; Lillicrap and Scott 2013). 

Consistent with those results, we have recently observed, using artificial neural networks, that 

that muscle lengths were better predictors of S1 activity than were hand kinematics (Lucas et al. 

2019). Thus, in this study, we set out to understand what information is represented in area 2 of 

S1, with two experiments that altered the relationship between hand and whole limb kinematics. 

Using both classic single neuron analysis techniques like tuning curves and preferred movement 

directions (Georgopoulos et al. 1982; Prud'homme and Kalaska 1994; Sergio and Kalaska 2003), 

as well as more recently developed neural population analyses (Churchland et al. 2012; 

Cunningham and Byron 2014), we discovered several features of neural activity that could not be 

explained by the classic hand-based model. However, using biomechanical modeling, we show 

that models relating neural activity to kinematics of the whole arm can explain these features. 

Our results indicate that if there is a transformation towards representing reaching in terms of 

only the hand, it likely occurs beyond S1. 

Results 

For the experiments detailed in this paper, we recorded neural signals from three monkeys (H, C, 

and L) using Utah multi-electrode arrays (Blackrock Microsystems) implanted in the arm 

representation within Brodmann’s area 2 of S1 (Figure 3.1A). We trained each of these monkeys 

to grasp a two-link planar manipulandum and make reaching movements to targets presented on 
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a screen in front of them (Figure 3.1B). During these behavioral sessions, we also tracked the 

locations of markers on the monkey’s arm using a custom motion tracking system and registered 

these markers to a musculoskeletal model in OpenSim (SimTK) to estimate joint angles and 

muscle lengths. Our experiments included two components: one comparing active and passive 

movements and one comparing reaching movements in two different workspaces.  
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Figure 3.1 - General experimental setup. A –locations of Utah arrays implanted in primary somatosensory 
cortex (S1) of Monkeys C, H, and L. M1, primary motor cortex; IPS, intraparietal cortex; CS central sulcus. B 

– Behavioral task. Monkey controls a cursor on screen (yellow) with a two link manipulandum to reach to 

visually presented targets (red). We track the locations of markers on the monkey’s arm (green) during the 

task.  
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Whole arm, rather than hand-based models, explain S1 representation of active and 

passive movements 

We reported previously that the direction of maximal response (the “preferred direction”; PD) of 

single neurons in area 2 is typically similar during active reaching movements and passive 

perturbations of the hand (London and Miller 2013). However, this section shows that despite the 

apparent similarity in directional tuning of individual neurons, information from a population of 

neurons can be used to clearly distinguish active and passive movements, which is unexpected 

given our previous results. We set out to explore whether this separation could be explained by 

modeling the neural activity in area 2 purely in terms of behavioral variables.  

In this experiment, the monkey performed a center-out reaching task to four targets. On 

half of these reaching trials, the monkey’s hand was bumped by the manipulandum during the 

center-hold period in one of the four target directions (Figure 3.2). See Methods section or 

(London and Miller 2013) for task details. This experiment involved two sessions with each of 

Monkeys C and H.  
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Figure 3.2 - Active vs. passive behavior. A – Schematic of task. On active trials (black), monkey reaches from 

center target to a visually presented target in one of four directions. On passive trials, manipulandum bumps 

monkey’s hand in one of the four target directions. B – Speed of hand during active (black) and passive (red) 
trials, plotted against time, for one session. Starting around 120 ms after movement onset, a bimodal 

distribution in passive movement speed emerges. This bimodality reflects differences in the stiffness of the arm 
for different directions of movement. Perturbations towards and away from the body tended to result in a 

shorter overall movement than those to the left or right. However, average movement speed was similar 

between active and passive trials in the 120 ms after movement onset, the window used for neural analysis.  
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Of necessity, the similar active and passive tuning described by London and Miller 

included only neurons that had significant sinusoidal tuning to both active and passive 

movement. Consequently, it was based on fewer than 30% of the recorded cells. Similarly, in 

this study, only 29 of 57 recorded neurons were significantly tuned to both types of movements 

for Monkey C and only 12 of 83 for Monkey H (Figure 3.3). The low percentage of tuned 

neurons is at least partially due to measurement error (Stevenson, et al., 2011), exacerbated by 

the small amount of data available in the first 120 ms after movement onset when the kinematics 

of the two types of movements were similar. Thus, there are clear limitations inherent to single 

neuron tuning curve-based analyses. 
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Figure 3.3 - Neural Activity during active vs. passive task. A – Neural raster plots for example active and 
passive trials in each movement direction (indicated by arrows to the left of each raster plot). In each plot, 

rows indicate spikes recorded from different neurons, plotted against time. Vertical dashed lines indicate 
boundaries of analysis window. B – Tuning properties for neurons. Dot histograms indicate counts of neurons 

tuned only to active movements, those tuned only to passive movements, those tuned to both, and those tuned to 

neither. Note that tuning estimates from Monkey H have more error due to the fewer trials that were typically 

available in a given session, leading to a higher proportion of apparently untuned neurons.  
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Because we had simultaneous recordings from many neurons, we could circumvent this 

limitation by analyzing the population responses to active and passive movements. Moreover, by 

aggregating information across neurons instead of averaging across trials, the neural population 

analysis allows the analysis of single trials. Recent studies have uncovered a host of neural 

coding properties that are difficult to infer from single neuron analyses, yet are revealed with 

single-trial, population-level analyses (Cunningham & Yu, 2014; Dekleva, et al., 2018; Perich, et 

al., 2018). In this case, our population analysis treats each active or passive trial as a point in a 

high-dimensional neural state space, where the value of each dimension corresponds to the 

activity of a single neuron. Using Principal Components Analysis (PCA), which extracts the 

sequential, orthogonal dimensions of highest covariance from the neural population activity, we 

uncovered an unexpected linear boundary between active and passive movements within the first 

three PCs (Figure 3.4). To quantify this separation, we trained a linear discriminant analysis 

(LDA) model to classify the movement type in each of the four sessions. On average, for data 

not used to train the LDA model, 84% of movements were correctly classified as active or 

passive, indicating that despite the similarity of hand-movement coding by single neurons in area 

2, the neural population distinguishes the different movement types. 

To explore potential causes of this separation in S1 neural state space, we attempted to 

replicate it using synthetic state spaces constructed from simplified neuron activity models that 

assume different representations in S1 (see Methods for modeling details). As a baseline, we fit a 

purely hand kinematics model, in which neural activity was driven by the position and velocity 

of hand movement. Classification rate of this simple model was slightly above chance but well 

under the actual data, with only 65% correct movement classification (Figure 3.4). Thinking that 
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the difference between active and passive movements may have been related to the differing 

forces on the hand in the two conditions, we also fit a hand kinematics+force model, like the one 

described in (Prud'homme & Kalaska, 1994), where neural activity was driven by both the 

velocity of the hand and the forces applied to it. Reaching only 64% correct classification, the 

addition of force made no difference, indicating that S1 contains some additional information 

that allows it to distinguish between active and passive movements. 

Finally, we fit a model that represented the Cartesian positions and velocities of the 

elbow as well as the hand. Unlike the others, this model resulted in an average movement 

classification accuracy of 82% (Figure 3.4). This result provides a possible explanation of how 

S1 separates the two types of movement: while hand movement is similar, the movement of the 

whole arm differs between active and passive conditions. While there might be additional 

explanations for this separability, like an efference copy signal from motor areas specifically 

during active movements (Bell 1981; London and Miller 2013; Nelson 1987), this finding 

suggests that the parsimonious hand/elbow model is sufficient to explain it, unlike the hand-

based models. 
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Figure 3.4 - S1 population separability. A – Population activity plots for an example session with Monkey C. 
Each dot in the scatter plots represents population neural activity during one trial, projected onto the LDA 

axis of highest separation between movement types (within the first three PCs of neural population activity). 
Vertical axis is an arbitrary axis orthogonal to the LDA axis in the three-dimensional PC space. Black dots 

indicate active trials, and red dots indicate passive trials. Leftmost panel shows actual population activity, 

while other three panels show population activity predicted by extrinsic, extrinsic + force, and hand/elbow 
models, from left to right. Black arrow in hand/elbow plot indicates vertical axis location of one active trial 

projected far to the right of the main cluster; this point was excluded from the figure for visual clarity of the 

main cluster. Note that actual population activity and activity predicted by the hand/elbow model separate 
active and passive movements, while activity predicted by the extrinsic and extrinsic + force models do not. B 

– Percent separability of active and passive movements for actual neural population activity and activity 
predicted by the three models. Error bars indicate 95% confidence intervals (derived from cross-validation – 

see Methods), and colored dashed lines indicates actual population separability for a given session. Black 

dashed line indicates chance separability. Extrinsic and extrinsic + force models generally yielded lower 
separability than the hand/elbow model, which predicts similar separability to that found in actual population 

activity.  
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Whole arm, rather than hand-based models, explain S1 representation of movements in 

two separate workspaces 

Given the importance of whole-arm kinematics for explaining neural population activity revealed 

by the active vs. passive experiment, we conducted a second experiment to further examine how 

single neurons represent reaching movements that are constrained to two disjoint areas in front of 

the monkey, henceforth called workspaces (Figure 3.5A). We found that whole-arm models and 

hand-based models made different predictions of neural activity across these two conditions, 

allowing us to further characterize the extent to which S1 represented whole-arm movements 

rather than just the movements of the hand. 

In this experiment, we tested four different models of S1 encoding, which we titled 

“extrinsic”, “egocentric”, “muscle”, and “hand-elbow”, schematized in Figure 3.5D. The 

extrinsic and egocentric models stem from classic, endpoint models of limb movement-related 

neural activity (Bosco and Poppele 2001; Bosco et al. 1996; Caminiti et al. 1990; Georgopoulos 

et al. 1982; Prud'homme and Kalaska 1994). Both represent the kinematics of the hand, but in 

different coordinate frames: the extrinsic model assumes neurons relate to Cartesian coordinates 

of hand position and velocity, while the egocentric model assumes neurons relate to spherical 

coordinates with respect to the shoulder. On the other hand, the muscle and hand-elbow models 

account more fully for how the whole arm moves. In the muscle model, neural activity was 

assumed to be driven by the length and stretch velocity of the muscles (see Methods for details). 

In the hand-elbow model, the activity was related to the Cartesian kinematics (position and 

velocity) of both the hand and the elbow markers. As in the active vs. passive experiment, we 

aimed to test how well these models predicted features of neural activity during reaching. 
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However, a challenge in comparing these models of neural representation is that for the 

typical, center-out reaching task in a small workspace, kinematic signals in the various 

coordinate frames are highly correlated. Because a high correlation means that a linear transform 

can accurately convert one coordinate frame into another, all four models make very similar 

predictions of neural activity. To deal with this problem, we trained the monkeys to reach to 

randomly generated targets presented in two different workspaces: one close to the body and 

contralateral to the reaching hand, and one distant and ipsilateral. This had two important effects. 

First, the random locations of the targets lessened the stereotopy of the movements, allowing for 

the collection of more varied movement data than from the center-out paradigm. Second, the 

average posture in each workspace was significantly different, such that while signals in the 

different model coordinate frames were still correlated within each workspace, this correlation 

(and the mapping between coordinate frames) changed significantly between workspaces. This 

forced the models to make different predictions of neural activity across the two workspaces. 

Figure 3.5A schematizes the two-workspace random target behavior, and Figure 3.5B shows an 

example raster plot of neurons while a monkey performed the task. We recorded three sessions 

with each of Monkeys C and H and two sessions with Monkey L. 
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Figure 3.5 - Behavior and example neural activity for two-workspace task. A – Two-workspace behavior. On 
each trial, monkey makes reaches to random targets in one of two workspaces: one close to the body and 

contralateral to the reaching hand (pink) and the other distant and ipsilateral (green). B – Example neural 

raster plot from one session for two randomly drawn trials in each workspace. Dots in each row represent 
activity for one of the simultaneously recorded neurons. Black dashed lines indicate starts and ends of trials, 

and colored dashed lines and boxes indicate times of target presentation, with color indicating the workspace 

for the trial. C – Firing rate plot for an example neuron during five randomly drawn trials from the distal 
(green) workspace. Black trace represents neural firing rate, smoothed with a 50 ms gaussian kernel. Colored 

traces represent firing rates predicted by egocentric (purple), extrinsic (orange), muscle (blue), and 
hand/elbow (red) models (not smoothed). D – Actual and predicted tuning curves and preferred directions 

(PDs) for an example neuron in the two workspaces. Leftmost plot shows tuning curves and PDs for actual 

neural firing rate, while other plots show curves and PDs for activity predicted by each of the models. Each 
panel plots firing rate against direction of hand movement for each workspace. Vertical bars indicate 

preferred directions calculated in each workspace. Individual traces and vertical bars are tuning curves and 
preferred directions calculated during one cross-validation run. Note that both the actual tuning curve and PD 

change between workspaces. Neither the egocentric nor extrinsic models predict these changes, but the muscle 

and hand/elbow models can.  
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The simplest evaluation of these models is to compare how well they predicted actual 

neural firing rates (Figure 3.5C). To assess this, we used repeated k-fold cross-validation of a 

goodness-of-fit metric (see Methods for more details). Here, normal goodness-of-fit metrics like 

R2 or variance-accounted-for (VAF) are ill-suited to the Poisson-like statistics of neural activity; 

instead, we used the likelihood-based pseudo-R2 (Cameron and Windmeijer 1997; 1996; 

McFadden 1977). Like VAF, psuedo-R2 has a maximum value of 1, but can also be negative for 

models that do worse than predicting the mean firing rate during cross-validation. In general, the 

values corresponding to what constitutes a good fit are lower for pR2 than for either R2 or VAF. 

Of our four models, the whole-arm models out-performed the hand models (Figure 3.6). 

Generally, the hand-elbow model was the most predictive of actual neural firing rate across the 

two workspaces, winning the great majority of the pairwise comparisons with the other models 

(Figure 3.6B, Figure 3.7). Of the 288 neurons recorded across the 8 sessions, in only 47 did 

either of the hand-based models win a pairwise comparison against either of the whole-arm 

models (using 𝛼 = 0.05 and a Bonferroni correction to account for six total pairwise 

comparisons for each neuron). For the other 241 cells, neither hand-based model could out-

predict either whole-arm model.  

  



72 

 

Figure 3.6 - Goodness-of-fit comparison analysis, with one column for each monkey. A – Scatter plots 
comparing the pseudo-R2 of the hand/elbow model to that of the extrinsic model for each monkey. Each point 

in the scatter plot represents the pseudo-R2 values of one neuron, with hand/elbow pseudo-R2 on the vertical 

axis and extrinsic pseudo-R2 on the horizontal. Different colors represent neurons recorded during different 
sessions. Filled circles represent neurons for which one model’s pseudo-R2 was significantly higher than that 

of the other model. Conversely, open circles represent neurons for which the model pseudo-R2 values were not 

significantly different. In this comparison, most filled circles lie above the dashed unity line, indicating that the 
hand/elbow model performed better than the extrinsic model. All six pairwise comparisons for pseudo-R2 are 

shown in Figure 3.7. B – Dot plot of pairwise comparison winners. Each filled circle in this plot represents a 
neuron for which a model won all pairwise comparisons with the other three models. Each half-filled circle 

represents a neuron for which a model won all but one comparison. Empty circles, in the bottom group, 

correspond to neurons for which there was no model that won at least two of the comparisons. Color indicates 

the session in which a neuron was recorded. This figure shows that the hand/elbow model won at least two out 

of three pairwise comparisons for most neurons.  
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Figure 3.7 - All pairwise comparisons of model pseudo-R2 values. Each column corresponds to one of the 
monkeys, and each row corresponds to the comparison between two models, indicated by the comparison label 

on the right. Dots in the scatter plots correspond to neurons, with pseudo-R2 values for one model plotted 

against those for the other model. Different colors correspond to different sessions, and filled circles 
correspond to neurons for which one of the two models is significantly better than the other one (i.e. 

significantly different from the dashed line of unity). Open circles correspond to neurons for which neither 

model is significantly better than the other one. 
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We further tested our models on how well features (e.g., tuning curves and PDs) 

computed from the model-predicted firing rates matched those of the actual data. Figure 3.5D 

shows the directional tuning curves for an example neuron, along with the tuning curves 

predicted by each model. We calculated the correlation between the predicted and the actual 

tuning curves in different workspaces as a measure of their similarity. With this measure, the 

hand-elbow model resulted in the best reconstruction of tuning curves, once again winning most 

of the pairwise comparisons with the other models (Figure 3.8, Figure 3.9). In this case, for only 

37 neurons did either of the hand-based models win any pairwise comparison against a whole-

arm model (using 𝛼 = 0.05 and a Bonferroni correction to account for six total pairwise 

comparisons for each neuron) For the other 251 cells, neither hand-based model could out-

predict either whole-arm model. Therefore, this experiment further suggests that area 2 of S1 

encodes whole-arm rather than just hand kinematics. 
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Figure 3.8 - Tuning curve shape correlation analysis, with one column for each monkey, in the same layout as 

Figure 3.6. A – Scatter plot for one of the six pairwise comparisons of tuning curve shape correlation. Once 

again, most filled circles lie above the dashed line of unity, indicating that the hand/elbow model was better at 
predicting tuning curve shape than the extrinsic model. All six pairwise comparisons for tuning curve 

correlation are shown in Figure 3.9. B – Dot plot of pairwise comparison winners. Compared to the pseudo-R2 
winner plot (Figure 3.6B), many more neurons fell into the ‘no winner’ category for this analysis, where there 

was no model that won two or more pairwise comparisons. Still, for most of the remaining neurons, the 

hand/elbow model appeared to predict tuning curve shape better than the other models.  
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Figure 3.9 - All pairwise comparisons between models of tuning curve shape correlation. Same format as in 

Figure 3.7.  
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Of the 288 recorded neurons, 260 were significantly tuned to movement direction in both 

workspaces. This fraction of tuned neurons is much higher than the fraction we found in the 

active vs. passive task, likely for two reasons. First, unlike with the active vs. passive task, we 

used the entirety of each trial in the two-workspace experiment to calculate PDs. Second, 

monkeys tended to move faster during this random target task than during the center-out task, 

which likely led to a higher modulation depths and less measurement error, as predicted by 

(Stevenson, et al., 2011). Thus, in addition to the goodness-of-fit and tuning curve correlation 

analyses, we were also able to examine the properties of the neural PDs in the two workspaces. 

An interesting feature of this task is that for many neurons, the PD of movement changed 

significantly between workspaces, exemplified by the difference between the vertical bars in the 

leftmost panel of Figure 3.5D. Figure 3.10A shows the actual PD shifts for these neurons plotted 

against the PD shifts predicted by each model. The large changes in PD, shown on the vertical 

axes of the scatter plots are a clue that the extrinsic model does not explain neural activity 

correctly; if it did, the preferred direction changes should have been insignificant (in principle, 

zero), as shown by the generally small extrinsic model-predicted changes (second column of 

Figure 3.10A). Additionally, and perhaps counterintuitively, the actual changes included both 

clockwise and counter-clockwise rotations, so it is also unlikely that they arose from a rotation of 

the extrinsic coordinate frame about the shoulder or the egocentric model. However, we found 

that the whole-arm models did predict both clockwise and counter-clockwise PD changes. Based 

on the circular VAF (cVAF) of the PD change prediction, Figure 3.10B shows that the hand-

elbow model once again out-predicted the other models, with hand/elbow having the highest 

average cVAF (0.73), followed in order by muscle (0.63), extrinsic (0.55), and egocentric (0.38). 
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We made pairwise comparisons between model cVAF for each session. In every session but one, 

the hand-based models lost pairwise comparisons to at least one of the whole-arm models, and in 

the outlier session, no pairwise comparisons showed significance (again using 𝛼 = 0.05 and a 

Bonferroni correction to account for six comparisons for each session). 
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Figure 3.10 - Model predictions of PD shift. A – Scatter plots of actual PD shifts plotted against model-

predicted shifts. Each dot represents the actual and modeled PD shifts of a single neuron, where different 

colors correspond to neurons recorded during different sessions. Dashed diagonal line shows ideal prediction. 
Vertical histograms indicate distributions of actual PD shifts for each monkey. Horizontal histograms indicate 

distributions of modeled shifts. Note that both horizontal and vertical axes are circular, meaning that opposing 

edges of the plot (top/bottom, left/right) are the same. Vertical histograms show that the distribution of actual 
PD shifts spanned both clockwise and counter-clockwise shifts. Clustering of scatter plot points on the 

diagonal line for the hand/elbow model indicates that it was most predictive of PD shift. B – plot showing 
circular VAF (cVAF) of scatter plots in A, an indicator of how clustered points are around the diagonal line 

(see Methods for details). Each point corresponds to the average cVAF for a model in a given session 

(indicated by color), and the horizontal dashed lines indicate the cVAF for perfect prediction. Error bars show 
95% confidence intervals (derived from cross-validation – see Methods). Pairwise comparisons between 

model cVAFs showed that in no sessions did either of the hand-based models significantly out-predict either of 

the whole-arm models.  
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As a control for errors introduced into the muscle model by processing marker data with 

OpenSim, we also performed this cVAF analysis on a hand/elbow model where hand and elbow 

kinematics were derived from joint angles of the musculoskeletal model, rather than directly 

from the marker locations captured by the motion tracking system. We re-ran the model 

prediction analysis for only the muscle model, marker-derived hand/elbow model, and OpenSim-

based hand/elbow model. Unsurprisingly, we found average cVAFs similar to those from the 

main analysis for the marker-derived hand/elbow model (0.75) and the muscle model (0.67). 

However, the average cVAF for the OpenSim-based hand/elbow model (0.67) dropped to that 

for the muscle model. This suggests that the difference in predictive capability between the 

muscle and hand/elbow models stems at least in part from errors introduced in OpenSim 

modeling, rather than from the hand/elbow model being the better model for S1 neural activity. 

Even so, as shown through the main goodness-of-fit (Figure 3.6, Figure 3.7), tuning curve 

correlation (Figure 3.8, Figure 3.9), and cVAF (Figure 3.10) analyses, both of these whole-arm 

models are better than the hand-based models, supporting the fact that S1 encodes whole arm 

kinematics. 

Discussion 

Summary 

In this study, we explored how S1 represents reaching movements using two separate 

experiments. In the first experiment, we found that although single neuron directional tuning is 

largely preserved between active and passive movements, the two types of movements can be 

differentiated in the S1 neural state space. While the classic hand-centric models cannot explain 

this separation, we found that a model of S1 activity built from the kinematics of both the hand 

and elbow did. We further explored S1 encoding of whole-arm kinematics in a second 
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experiment, in which the monkey reached to targets in a pair of workspaces that changed the 

relationship between hand-based and whole-arm models. Across these two conditions, features 

of neural activity, including the dynamics of neural discharge, tuning curve shape and preferred 

direction, were better explained by a model incorporating the kinematics of the whole arm than 

by the classic hand-based models. Altogether, these results suggest that S1 represents movements 

in terms of not just the hand, but the whole arm. 

Model complexity 

A significant difference between the hand and whole-arm models is their number of parameters, 

which make the whole-arm models more complex and expressible. There are two concerns with 

testing models of differing complexity, the first dealing with model training and evaluation, and 

the second with interpretation of the results. 

In training and evaluating our models, we had to make sure that the complex models did 

not overfit the data, resulting in artificially high performance on the training dataset but low 

generalizability to new data. However, because we found through cross-validation that the more 

complex models generalized to test data better than the simpler models, they were not 

overfitting. Consequently, the hand-based models are clearly impoverished compared to the 

whole-arm models. 

The second concern is in interpreting what it means when the more complex models 

performed better. One interpretation is that this is an obvious result; if the added degrees of 

freedom have anything at all to do with S1 neural activity, then the more complex models should 

perform better. However, the choice of the two less complex hand-based models was not 

arbitrary. Both are classic models within the canon of the cortical representation of limb state 
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(Bosco et al. 2000; Prud'homme and Kalaska 1994). Additionally, as shown in the active/passive 

study, if the classic extrinsic model is to be believed, then the separation between neural 

representations of active and passive movement must have an explanation not rooted in the 

behavioral kinematics. Thus, the point of this study was to determine whether either of these now 

classic models adequately encapsulates what S1 represents. Because the whole-arm models 

outperformed the classic models, we conclude that the classic models are incomplete, and in the 

worst cases, potentially incorrect or misleading. 

Influence of modeling errors 

One surprising result from the two-workspace experiment was that the hand/elbow model, based 

on the addition of one arbitrary point on the proximal limb to the classic hand model, performed 

as well or better than the muscle-based model. As proprioceptive signals originate in the 

muscles, arising from muscle spindles and Golgi tendon organs, we expected to find that the 

muscle model would outperform the other models. However, there are several potential reasons 

why this was not so. The most important ones can be divided into two categories loosely tied to 

1) errors in estimating the musclulotendon lengths, through motion tracking and musculoskeletal 

modeling, and 2) the fidelity of the muscle model to the actual signals sent by the proprioceptors. 

In the first category, the main issue is that of error propagation. The extra stages of 

analysis required to compute musculotendon lengths (registering markers to a musculoskeletal 

model, performing inverse kinematics to find joint angles, and using modeled moment arms to 

estimate musculotendon lengths) introduce errors not present when simply using the positions of 

markers on the arm. As a control, we ran the hand/elbow model through two of these extra steps 

by computing the hand and elbow positions from the joint angles of the scaled model, estimated 

from inverse kinematics. The results of this analysis showed that the performance of the 



83 

hand/elbow model with added noise dropped to that of the muscle model, indicating that there 

are, in fact, errors introduced in even this portion of the processing chain.  

The other potential source of error in this processing chain stems from the modeled 

moment arms, which might not accurately reflect those of the actual muscles. In developing their 

musculoskeletal model, Chan and Moran collected muscle origin and insertion point 

measurements from both cadaveric studies and existing literature (Chan & Moran, 2006). 

However, due to the complexity of some joints, along with ambiguity of how the muscle wraps 

around bones and other surfaces, determining moment arms purely by bone and muscle geometry 

is a difficult problem (An, et al., 1984). Because moment arms are irrelevant for determining 

hand and elbow kinematics, we could not subject the hand/elbow model to the error introduced 

by this step. 

In addition to the questions of error propagation and musculoskeletal model accuracy is 

the question of whether our muscle model was truly representative of the signals sensed by the 

proprioceptors. The central complication is that spindles sense the state of the intrafusal fibers in 

which they reside, and have a complex, nonlinear relation to the musculotendon length that we 

used in our muscle model. Factors like load-dependent fiber pennation angle (Azizi et al. 2008), 

or tendon elasticity (Rack and Westbury 1984) can decouple muscle fiber length from 

musculotendon length. Additionally, intrafusal fibers receive motor drive from gamma motor 

neurons, which continuously alters muscle spindle sensitivity (Loeb et al. 1985; Prochazka and 

Wand 1981; Prochazka et al. 1976), and spindle activity also depends on the history of strain on 

the fibers (Haftel et al. 2004; Proske and Stuart 1985). Altogether, this means that while the 

musculotendon lengths we computed provide a reasonably good approximation of what the arm 



84 

is doing, they may not be a good representation of the spindle responses themselves. Spindle 

activity might be more accurately modeled when given enough information about the 

musculotendon physiology. However, to model the effects of gamma drive, we would either 

have to record directly from gamma motor neurons or make assumptions of how gamma drive 

changes over the course of reaching. In developing models of neural activity, one must carefully 

consider the tradeoff between increased model complexity and the extra error introduced by 

propagating through the additional requisite measurement and analysis steps. Given our data 

obtained by measuring the kinematics of the arm with motion tracking, it seems that the 

coordinate frame with which to best explain S1 neural activity is simply the one with the most 

information about the arm kinematics and the fewest steps in processing. However, this does not 

rule out the idea that S1 more nearly represents a different whole-arm model that may be less 

abstracted from physiology, like musculotendon length or muscle spindle activity. 

Coordinate frame vs. informational content 

Because of their differing dimensionality, the signals from hand-based models and those from 

whole-arm models do not have a one-to-one relationship: there are many different arm 

configurations that result in a given hand position. Thus, a comparison between the hand-based 

and whole-arm models is mainly a question of information content (do S1 neurons have 

information about more than just the hand?). In contrast, signals of the two whole-arm models do 

have a one-to-one (albeit nonlinear) relationship to each other. Knowledge of the hand and elbow 

position should completely determine the estimated musculotendon lengths, indicating that the 

two models have the same informational content.  As such, a comparison between the muscle 

model and the hand/elbow is purely one of coordinate frame. While the interpretation for a 

comparison of information content is straightforward, interpreting the results of a comparison 
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between coordinate frames is not. One major issue is that these comparisons only make sense 

when using linear models to relate neural activity to behavior. Once nonlinear models are 

considered, as in our study with artificial neural networks (Lucas et al. 2019), coordinate frames 

with one-to-one correspondence become nearly equivalent, and much more difficult to compare 

meaningfully. 

Clear parallels exist between this and earlier studies seeking to find a unique 

representation of movement in motor areas. Over the last few decades, a controversy involving 

the exact nature of the neural representation of movement has played itself out in the literature 

surrounding motor cortex, with some advocating a hand-based representation of motor control 

(Georgopoulos et al. 1982; Georgopoulos et al. 1986; Moran and Schwartz 1999) and others a 

muscle-based representation (Evarts 1968; Fetz et al. 1989; Morrow et al. 2007; Oby et al. 2012). 

Recently, the motor control field started turning away from questions of coordinate frame and 

towards questions of neural population dynamics and information processing (Churchland et al. 

2010; Elsayed et al. 2016; Gallego et al. 2017; Kaufman et al. 2014; Perich et al. 2018; Russo et 

al. 2018; Sussillo et al. 2015). Part of the motivation for this pivot in viewpoint is that it became 

increasingly clear that a “pure” coordinate frame of movement representation is unlikely to exist 

(Fetz 1992; Kakei et al. 1999). Further, studies tended to use correlation between neural activity 

and behavioral variables as evidence that the neurons represent movements in a particular 

coordinate frame. However, as noted above, these correlations could often be explained by 

multiple coordinate frames, casting doubt on the conclusiveness of the exact coordinate frame of 

representation (Mussa-Ivaldi, 1988).  Consequently, in our study, we put aside the question of 

the coordinate frame of S1, focusing instead on the fact that S1 contains information not included 
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in the classic model for proprioceptive neural activity during reaching; it relates to movements of 

the whole arm, rather than just the hand. 

A major question this study leaves open is that of how information about reaching is 

processed by different areas of the proprioceptive neuraxis. While we might expect a muscle 

spindle-like representation at the level of the dorsal root ganglia (DRG) or the cuneate nucleus, 

removed from the receptors by one and two synapses, respectively, this representation likely 

changes as the signals propagate through thalamus and into S1. Even different areas of S1 may 

have different representations. Area 3a, which receives input mostly from muscle afferents 

(Heath et al. 1976; Kaas et al. 1979; Phillips et al. 1971; Yamada et al. 2016), seems more likely 

to retain a muscle-like representation than is area 2, which integrates muscle afferent input with 

that from cutaneous receptors (Hyvärinen & Poranen, 1978; Padberg, et al., 2018; Pons, et al., 

1985). Likewise, area 5 may have an even higher-level representation, as it receives input from 

both somatosensory (Mountcastle et al. 1975) and motor cortices (Padberg et al. 2018), and 

appears to depend on attention (Chapman et al. 1984; Omrani et al. 2016). As it becomes 

increasingly feasible to record from several of these areas simultaneously (Richardson et al. 

2016; Suresh et al. 2017; Weber et al. 2006), future experiments could examine how these areas 

project information to each other, as has been explored in motor and premotor cortices 

(Churchland et al. 2010; Elsayed et al. 2016; Kaufman et al. 2014; Perich et al. 2018), without 

modeling the more complex cortical areas explicitly in terms of particular behavioral variables 

“encoded” by single neurons.  

Relevance for BCI 

One motivation for this work is its potential to augment brain-computer interfaces (BCI) for 

restoring movement to persons with spinal cord injury or limb amputation. As BCI for motor 
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control gets more advanced (Collinger et al. 2013; Ethier et al. 2012; Kao et al. 2015; Young et 

al. 2018), it will become more necessary to develop a method to provide feedback about 

movements to the brain, potentially using intracortical microstimulation (ICMS) to activate 

somatosensory areas. While ICMS in S1 has seen some success in providing feedback about 

touch (Flesher et al. 2016; Romo et al. 1998; Salas et al. 2018; Tabot et al. 2013), the path 

towards providing proprioceptive feedback remains relatively unexplored. At least one study did 

use electrical stimulation in S1 for feedback during movement, using the stimulation to specify 

target direction with respect to the evolving hand position (Dadarlat et al. 2015). In that study, 

monkeys used the ICMS to reach to targets, even in the absence of visual feedback. However, 

target-location information is very different from the information normally encoded by S1, and 

the monkeys required several months to learn to use it. To our knowledge, no study has yet 

shown a way to use ICMS to provide more biomimetic proprioceptive feedback during reaching. 

Previously, our lab attempted to address this gap by stimulating a small number of electrodes in 

S1 based on neural activity recorded from them during normal reaching movements. In that 

experiment, the monkey reported the direction of a mechanical bump to his arm that occurred 

simultaneously with the ICMS. The ICMS biased one monkey’s reports of the mechanical bump 

direction toward the PDs of the stimulated electrodes. Key to this finding was the fact that any 

bias in reporting actually decreased the reward rate, suggesting that the ICMS was 

indistinguishable from the perception of the bump itself (Tomlinson and Miller 2016). 

Unfortunately, the result could not be replicated in other monkeys; while the ICMS often biased 

their reports, the direction of the bias could not be explained by the PDs of the stimulated 

electrodes. One potential reason may be that the stimulation paradigm in those experiments was 

derived from the classic, hand-based model and the assumption that S1 represents active and 
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passive movements similarly. As this paper has shown, both of these assumptions have important 

caveats. It is possible that a stimulation paradigm based on a whole-arm model may be more 

successful, due to its greater accuracy at predicting neural PDs (Figure 3.10). It is also possible 

that the stimulus model would need to include information about forces in addition to 

kinematics. Regardless of the exact model, prospects for stimulating S1 to create natural 

proprioceptive sensations would likely improve given a more accurate generative model of S1 

activity. 

In addition to developing better models for S1 activity, it will be important to consider 

the implications of the difference between sensation for perception versus action. These two 

broad purposes for sensation are thought to involve distinct pathways in both vision and touch 

(Dijkerman and De Haan 2007; Mishkin and Ungerleider 1982; Sedda and Scarpina 2012). It is 

quite plausible that this distinction exists for proprioception as well (Dijkerman and De Haan 

2007). However, studies of the effects of ICMS in S1 tend to use perceptual reporting to test the 

effect of stimulation (Salas et al. 2018; Tomlinson and Miller 2016; Zaaimi et al. 2013), thereby 

not directly addressing how effectively ICMS can be used as feedback for action. Even in the 

study conducted by Dadarlat et al., movements guided by ICMS were slower and contained more 

submovements that those guided by even a noisy visual signal, suggesting that monkeys used the 

ICMS as a learned sensory substitute, rather than as a biomimetic replacement for 

proprioception. As such, that study was also likely a cognitive one, engaging the perceptual 

stream rather than the action stream of proprioception (see (Deroy and Auvray 2012; Elli et al. 

2014) for discussion of the limits of sensory substitution). As we better characterize how S1 

represents movements, we hope to develop a stimulation paradigm in which we can engage both 
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streams, to enable users of a BCI both to perceive their limb, and to respond rapidly to 

movement perturbations. 

Conclusion 

This study began with an observation: the classic, hand-based cortical model of proprioception 

could not explain the separability of active and passive movements we observed in S1 neural 

state space. We found, however, that this feature could be explained by extending the classic 

model to include the kinematics of the whole arm. In a second experiment, we found that 

predictions of S1 neural activity from such whole-arm models generalized to different behavioral 

conditions better than those of the classic model. This suggests that even though our perception 

of our arm is typically centered on the hand, this area of S1 still appears to represent movement 

of the whole arm.  

Methods and Materials 

Behavior 

We recorded data from a monkey while it used a manipulandum to reach for targets presented on 

a screen within a 20 cm x 20 cm workspace. After each successful reaching trial, the monkey 

received a pulse of juice or water as a reward. We recorded the position of the handle using 

encoders on the manipulandum joints. We also recorded the interaction forces between the 

monkey’s hand and the handle using a six-axis load cell mounted underneath the handle. 

For the active vs. passive experiment, we had the monkey perform a classic center-out 

(CO) reaching task, as described in (London and Miller 2013). Briefly, the monkey held in a 

target at the center of the full workspace for a random amount of time, after which one of four 

outer targets was presented. The trial ended in success once the monkey reached to the outer 

target. On 50% of the trials (deemed “passive” trials), during the center hold period, we used 
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motors on the manipulandum to deliver a 2 N perturbation to the monkey’s hand in one of the 

four target directions. After the bump, the monkey returned to the center target, after which the 

trial proceeded like an active trial. From only the successful passive and active trials, we 

analyzed the first 120 ms after movement onset. Movement onset was determined by looking for 

the peak in handle acceleration either after the motor pulse (in the passive condition) or after 200 

ms post-go cue (in the active condition) and sweeping backwards in time until the acceleration 

was less than 10% of the peak. 

For the two-workspace experiment, we partitioned the full workspace into four 10cm x 

10cm quadrants. Of these four quadrants, we chose the far ipsilateral one and the near 

contralateral one in which to compare neural representations of movement. Before each trial, we 

chose one of the two workspaces randomly, within which the monkey reached to a short 

sequence of targets randomly positioned in the workspace. For this experiment, we only 

analyzed the portion of data from the end of the center-hold period to the end of the trial. 

Motion tracking 

Before each reaching experiment, we painted 10 markers on the outside of the monkey’s arm, 

marking bony landmarks and a few points in between, a la Chan and Moran 2008. Using a 

custom motion tracking system built from a Microsoft Kinect, we recorded the 3D locations of 

these markers with respect to the camera, synced in time to the other behavioral recordings. We 

then aligned the Kinect-measured marker locations to the lab frame by aligning location of the 

Kinect hand marker to the location of the handle in the manipulandum coordinate frame. Code 

for motion tracking can be found at https://github.com/limblab/KinectTracking.git. 

https://github.com/limblab/KinectTracking.git


91 

Musculoskeletal modeling 

We registered the Kinect marker locations to a monkey arm musculoskeletal model in OpenSim 

(SimTK), based on a model published by (Chan & Moran, 2006). After scaling the limb 

segments of the model to match those of each monkey, we used the inverse kinematics analysis 

tool provided by OpenSim to estimate the joint angles (and corresponding muscle lengths) 

required to match the model’s virtual marker positions to the positions of the actual recorded 

markers. The OpenSim model we used can be found at 

https://github.com/limblab/monkeyArmModel.git. 

Neural recordings 

We implanted 100-electrode arrays (Blackrock Microsystems) into the arm representation of area 

2 of S1 in these monkeys. For more details on surgical techniques, see (Weber et al. 2011). In 

surgery, we roughly mapped S1 by recording from the cortical surface while manipulating the 

arm and hand to localize their representations. To record neural data for our experiments, we 

used a Cerebus recording system (Blackrock). This recording system sampled signals from each 

of the 96 electrodes at 30 kHz. To conserve data storage space, the system detected spikes online 

using a threshold set at -5 x signal RMS, and only wrote to disk a time stamp and the 1.6 ms 

snippet of signal surrounding the threshold crossing. After data collection, we used Plexon 

Offline Sorter to manually sort these snippets into putative single units, using features like 

waveform shape and inter-spike interval. In addition to these recording sessions, we also 

occasionally performed sensory mapping sessions to identify the neural receptive fields by 

manipulating the monkey’s arm while listening to neural activity. In all monkeys, we found a 

roughly equal mix of cutaneous and deep (muscle) receptive fields, suggesting that we were 

recording primarily from area 2 (Hyvärinen & Poranen, 1978; Padberg, et al., 2018; Pons, et al., 

https://github.com/limblab/monkeyArmModel.git


92 

1985; Seelke, et al., 2011). It is possible that the more posterior regions of the array were at least 

in transition regions of area 5. 

Neural analysis 

Code for the following neural analyses can be found at https://github.com/raeedcho/s1-

kinematics.git. 

Preferred directions 

We used a simple bootstrapping procedure to calculate PDs for each neuron. On each bootstrap 

iteration, we randomly drew timepoints from the reaching data, making sure that the distribution 

of movement directions was uniform to mitigate the effects of any potential bias. Then, as in 

(Georgopoulos et al. 1982), we fit a cosine tuning function to the neural activity with respect to 

the movement direction, using equations 3.1a-b.  

𝑓𝑖(𝜏) = 𝑏0 + 𝑏1 ∗ sin(𝜃𝑚(𝜏)) + 𝑏2 ∗ cos(𝜃𝑚(𝜏))  (3.1𝑎) 

= 𝑏0 + 𝑟𝑖 ∗ cos(𝜃𝑚(𝜏) − 𝑃𝐷𝑖) ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(3.1𝑏) 

where 

 𝑃𝐷𝑖 = 𝑎𝑡𝑎𝑛2(𝑏1, 𝑏2) and 𝑟𝑖 = 𝑠𝑞𝑟𝑡(𝑏1
2 + 𝑏2

2) 

Here, 𝑓𝑖(𝜏) is the average firing rate of neuron 𝑖 for a given time point 𝜏, and 𝜃𝑚(𝜏) is the 

corresponding movement direction, which for the active/passive task was the target or bump 

direction, and for the two-workspace experiment was the average movement direction over a 

time bin. We took the circular mean of 𝑃𝐷𝑖 and mean of 𝑟𝑖 over all bootstrap iterations to 

determine the preferred direction and the modulation depth respectively, for each neuron. 

https://github.com/raeedcho/s1-kinematics.git
https://github.com/raeedcho/s1-kinematics.git
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As the PD analysis is meaningless for neurons that don’t have a preferred direction of 

movement, we only analyzed the PDs of neurons that were significantly tuned. We assessed 

tuning through a separate bootstrapping procedure, described in (Dekleva et al. 2018). Briefly, 

we randomly sampled the timepoints from reaching data, again ensuring a uniform distribution 

of movement directions, but this time also randomly shuffled the corresponding neural activity. 

We calculated the 𝑟𝑖 for this shuffled data on each bootstrap iteration, thereby creating a null 

distribution of modulation depths. We considered a neuron to be tuned if the true 𝑟𝑖 was greater 

than the 95th percentile of the null distribution. 

Models of neural activity 

For the active/passive analyses, we averaged behavioral variables and neural firing rates over the 

120 ms period following movement onset in each trial. For the two-workspace analyses, both 

behavioral variables and neural firing rate were averaged over 50 ms bins. We modeled neural 

activity with respect to the behavior using Poisson generalized linear models (outline in 

(Truccolo et al. 2005)) shown in equation 3.2a, below. 

𝑓 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆), 𝜆 = exp⁡(𝑋𝛽)  (3.2𝑎) 

In this equation,⁡𝑓 is a 𝑇 (number of time points) x 𝑁 (number of neurons) matrix of average 

firing rates, 𝑋 is a 𝑇 x 𝑃 (number of behavioral covariates, explained below) matrix of behavioral 

correlates, and 𝛽 is a 𝑃 x 𝑁 matrix of model parameters. We fit these GLMs by finding 

maximum likelihood estimation of the parameters, 𝛽̂. With these fitted models, we predicted 

firing rates (𝑓) on data not used for training, shown in equation 3.2b, below. 

𝑓 = exp⁡(𝑋𝛽̂)  (3.2𝑏) 
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We tested five firing rate encoding models, detailed below. Note that each model also includes 

an offset term, increasing the number of parameters, 𝑃, by one. 

• Extrinsic kinematics: behavioral covariates were position and velocity of the hand, 

estimated by using the location of one of the hand markers, in three-dimensional Cartesian 

space, with origin at the shoulder (𝑃 = 7). 

• Extrinsic kinematics+force: behavioral covariates were position and velocity of the hand, as 

well as forces on the hand, in three-dimensional Cartesian space (𝑃 =10). 

• Egocentric kinematics: behavior covariates were position and velocity of the hand marker in 

spherical coordinates (𝜃, 𝜙, and 𝜌), with origin at the shoulder (𝑃 = 7). 

• Hand/elbow kinematics: behavior covariates were position and velocity of both the hand 

and elbow markers in three-dimensional Cartesian space, with origin at the shoulder. This is 

the simplest extension of the extrinsic model that incorporates information about the 

configuration of the whole arm (𝑃 = 13) 

• Muscle kinematics: behavioral covariates were derived from the length of the 39 modeled 

muscles (Chan and Moran 2008) and their time derivatives. However, because this would 

result in almost 78 (highly correlated) covariates, we used PCA to extract 5-dimensional 

orthogonal basis sets for both the lengths and their derivatives. On average, five 

components explained 99 and 96 percent of the total variance of lengths and length 

derivatives, respectively. Behavioral covariates of this model were the projections of the 

muscle variables into these spaces during behavior (𝑃 = 11). 

We used repeated 5-fold cross-validation to evaluate our models of neural activity, given that the 

models had different numbers of parameters, 𝑃. On each repeat, we randomly split trials into five 
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groups (folds) and trained the models on four of them. We used these trained models to predict 

neural firing rates (𝑓𝑖̂) in the fifth fold. We then compared the predicted firing rates from each 

model to the actual firing rates in that test fold, using analyses described in the following 

sections. This process (including random splitting) was repeated 20 times, resulting in n=100 

sample size for each analysis result. Thus, if a more expressive model with more parameters 

performs better than a simpler model, it would suggest that the extra parameters do provide 

relevant information about the neural activity not accounted for by the simpler models. 

Statistical tests and confidence intervals 

To perform statistical tests on the output of repeated 5-fold cross-validation, we used a corrected 

resampled t-test, outlined in (Ernst 2017) and (Nadeau and Bengio 2003). Here, sample mean 

and variance are calculated as in a normal t-test, but a correction factor needs to be applied to the 

standard error, depending on the nature of the cross-validation. Equation 3.3a-c shows a general 

case of this correction for R repeats of K-fold cross-validation of some analysis result 𝑑𝑘𝑟. 

𝜇̂𝑑 =
1

𝐾 × 𝑅
∑∑𝑑𝑘𝑟

𝑅

𝑟=1

𝐾

𝑘=1

  (3.3𝑎) 

𝜎̂𝑑
2 =

1

(𝐾 × 𝑅) − 1
∑∑(

𝑅

𝑟=1

𝐾

𝑘=1

𝑑𝑘𝑟 − 𝜇𝑑̂)
2  (3.3𝑏) 

𝑡𝑠𝑡𝑎𝑡 =
𝜇̂𝑑

√(
1

𝐾 × 𝑅 +
1/𝐾

1 − 1/𝐾
)𝜎̂𝑑

2

  (3.3𝑐) 
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We then compare the t-statistic here (𝑡𝑠𝑡𝑎𝑡) to a t-distribution with 𝐾 × 𝑅 − 1 degrees of 

freedom. Note that the correction applied is an extra term (i.e., 
1/𝐾

1−1/𝐾
) under the square root, 

compared to the typical standard error calculation. 

Active/passive analyses 

Estimating neural state-space separability 

The neural response to movement, whether active or passive, can be represented as a single 

datapoint in a neural population space defined by the activity of all neurons in the relevant 120 

ms period following movement onset. As described above, we estimated the separability of the 

active and passive movements in neural space using 20x repeated, 5-fold cross-validation. We 

did this in three steps. First, for each training set, we characterized the population response to 

each trial by finding the first three modes of neural activity using principal component analysis 

(PCA). We then projected the neural activity onto these three principal components and trained a 

linear discriminant analysis (LDA) model to find the axis of maximal separation between active 

and passive trials. Finally, we sequentially projected each test fold’s neural data into the PC 

space and then onto the LDA axis. This resulted in a scalar value for each trial, with the sign 

indicating whether LDA classified the trial as active or passive. We took the average 

classification accuracy of the test fold’s data as the percent separability for the fold, giving us 

100 total samples from the 20x5-fold cross-validation. By averaging these samples, we estimated 

the overall neural separability of active and passive movements in a given session. 

Estimating model-predicted separability 

We also trained encoding models to predict neural firing from behavior (see equation 2a for 

procedure) using three different models of neural activity: the extrinsic kinematics, extrinsic 

kinematics+force, and hand/elbow kinematics models. See “Models of neural activity” section 
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for more details on the specific models. After training each model over the four training folds, 

we estimated firing rates in both the training and the test folds. Subsequent analysis mirrored that 

of the actual neural data: we found the three leading PCs and LDA axis of highest separability in 

the training folds and then sequentially projected the test-fold data through the PC space and 

onto the LDA axis. This resulted in 100 samples with which to estimate the model-predicted 

separability of active and passive movements. 

Neural space dimensionality reduction 

To visualize the population neural activity for figures, we used a combination of LDA and PCA. 

For the horizontal axis, we used LDA to find an axis in the three PCs of neural population space 

along which active and passive trials were most separated. For the vertical axis, we projected all 

activity onto the hyperplane orthogonal to the LDA axis and used PCA again to find the 

remaining axis of highest variance. 

Two-workspace analyses 

These analyses examined how well models of neural activity could predict neural activity as the 

monkey reached to targets in different workspaces. As such, we analyzed firing rate goodness-

of-fit, along with how well the models could replicate the tuning curves and preferred directions 

(PDs) of neurons.  

Goodness-of-fit 

We evaluated goodness-of-fit of these models for each neuron by using a pseudo-R2 (𝑝𝑅2) 

metric. We used a formulation of pseudo-R2 based on a comparison between the deviance of the 

full model and the deviance of a “null” model, i.e., a model that only predicts the overall mean 

firing rate (Heinzl and Mittlböck 2003; Perich et al. 2018) (Cameron and Windmeijer 1997; 

1996). 
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𝑝𝑅2 = 1 −
𝐷(𝑓𝑖; 𝑓𝑖̂)

𝐷(𝑓𝑖; 𝑓𝑖)
  (3.4𝑎) 

= 1 −
𝑙𝑜𝑔𝐿(𝑓𝑖) − 𝑙𝑜𝑔𝐿(𝑓𝑖̂)

𝑙𝑜𝑔𝐿(𝑓𝑖) − 𝑙𝑜𝑔𝐿(𝑓𝑖)
  (3.4𝑏) 

When computing the likelihood of a Poisson statistic, this is: 

= 1 −

∑ 𝑓𝑖
𝑇
𝜏=1 (𝜏) log (

𝑓𝑖(𝜏)

𝑓𝑖̂(𝜏)
) − (𝑓𝑖(𝜏) − 𝑓𝑖̂(𝜏))

∑ 𝑓𝑖
𝑇
𝜏=1 (𝜏) log (

𝑓𝑖(𝜏)

𝑓𝑖
) − (𝑓𝑖(𝜏) − 𝑓𝑖)

  (3.4𝑐) 

This pR2 metric ranges from −∞ to 1, with a value of 1 corresponding to a perfectly fit model 

and a value of 0 corresponding to a model that only fits as well as the “null” model. In contrast 

with the general intuition for regular R2, a pR2 of ~0.2 is considered a “good” fit (McFadden 

1977). 

Tuning curves 

We binned the trajectory into 16 bins, each 22.5 degrees wide, based on the mean direction 

across 50 ms of hand motion. For each directional bin, we calculated the sample mean and 95% 

confidence interval of the mean. In figures, we plotted this mean firing rate against the center-

point of the bin. 

Preferred direction shift 

We calculated PDs for each neuron in each workspace and found the predicted change in PD 

from the contralateral workspace to the ipsilateral workspace, given each model. We compared 

these changes to those observed for each neuron. The values of these PD shifts are shown in 



99 

Figure 3.10 for all neurons tuned to movements in both workspaces, averaged over all 100 test 

folds. 

We computed a variance-accounted-for (VAF) metric, here called the “circular VAF” 

(cVAF) for each neuron (𝑖) in each fold as: 

𝑐𝑉𝐴𝐹𝑖 = 𝑐𝑜𝑠(𝛥𝜃𝑃𝐷,𝑖 − 𝛥𝜃𝑃𝐷,𝑖)  (3.5) 

As the cVAF metric is essentially the inner product of unit vectors with direction 𝛥𝜃𝑃𝐷,𝑖 and 

𝛥𝜃𝑃𝐷,𝑖, it accounts for the circular domain of the PD shifts. Like regular VAF, the cVAF has a 

maximum value of 1 when 𝛥𝜃𝑃𝐷,𝑖 and 𝛥𝜃𝑃𝐷,𝑖 are the same, and decreases in proportion to the 

squared difference between 𝛥𝜃𝑃𝐷,𝑖 and 𝛥𝜃𝑃𝐷,𝑖. We took the average cVAF over all neurons as 

the cVAF for the fold. In total, given the 20 repeats of 5-fold cross-validation, this gave us 100-

samples of the cVAF for each model in a given session.  
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Chapter 4 - Discussion 

 

Chapters 2 and 3 described my work towards examining the representations of movement in the 

dorsal spinocerebellar tract (DSCT) and in primary somatosensory cortex (S1), respectively. 

Classic models suggested that neurons in both of these areas represent the state of the limb’s 

endpoint, implying a neural computation that integrates muscle information to form this endpoint 

representation. However, in Chapter 2, I showed in a simulation study that what looks like an 

endpoint representation can arise simply from biomechanics and convergence of information 

from muscles, suggesting that the evidence for neural computation towards a true endpoint 

representation at the level of DSCT is inconclusive. Chapter 3 built on this observation to 

examine the validity of the hand-based model of representation in S1. In that chapter, I explored 

the limits of the hand-based model with two separate experiments. In the first, I found that the 

hand-based model could not explain a distinct difference in population neural activity between 

active and passive movements. In the second experiment, I also found that the hand-based model 

could not explain differences in neural activity between reaches in two different workspaces. In 

both of these cases, however, a model of neural representation that incorporates kinematics of the 

whole arm did explain these differences, suggesting that S1 represents more than just the state of 

the hand. Taken together, these two chapters reveal that if a transformation to a pure endpoint 

representation occurs somewhere in the proprioceptive information processing chain, then it 

must take place after S1.  

The questions addressed in this dissertation bear a resemblance to a controversy in the 

motor cortex literature over the last few decades. As discussed in Chapter 1, a debate emerged, 
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starting in the 1980s, about which coordinate frame primary motor cortex (M1) represented 

movement in, with some studies on the side of a hand-based representation (Georgopoulos, et al., 

1982; Georgopoulos, et al., 1986; Moran & Schwartz, 1999) and others on the side of a muscle-

based representation (Evarts, 1968; Fetz, et al., 1989; Morrow, et al., 2007; Oby, et al., 2012). 

This decades-long controversy has still not been satisfactorily resolved, though it now seems 

unlikely that motor cortex represents movement in any one “pure” coordinate frame (Fetz, 1992; 

Kakei, et al., 1999). Consequently, recent studies have turned away from trying to find that 

coordinate frame, examining instead how neurons communicate with each other and with 

muscles to generate movements. One recent example of this shift in approach is in studies of 

how activity in motor cortex changes during motor adaptation to a novel force field. One study, 

examining M1 using a hand-based model of movement representation, suggested that force field 

adaptation involved changes in single-neural tuning (Rokni, et al., 2007). However, more recent 

studies have examined, not neural movement tuning, but communication between dorsal 

premotor cortex (PMd) and M1. In doing so, they showed that the observed tuning changes were 

likely the indirect result of changes in how PMd neurons recruited M1 neurons (Perich & Miller, 

2017; Perich, et al., 2018). 

This change in approach within the motor literature provides an important lesson for 

studying proprioception. Specifically, trying to determine the exact coordinate frame of 

movement representation for single somatosensory neurons is unlikely to be fruitful. Instead, this 

chapter will examine what the results presented in this dissertation imply about how 

proprioceptive areas of the nervous system process information and contribute to the control of 

movement. In doing so, this chapter will also lay out ideas on future work to expand on these 
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results, considering especially the rapidly advancing technology allowing researchers to record 

from hundreds to thousands of neurons in multiple brain areas simultaneously (Stevenson, et al., 

2011; Jun, et al., 2017). 

In the context of proprioceptive processing, there are two principle perspectives from 

which to examine and build on the results presented in this dissertation. Most applicable is the 

hierarchical sensory processing perspective, which is concerned with how proprioceptive 

information is processed as it moves from the periphery to S1. The second perspective is that of 

motor control, which is concerned with how S1 communicates with visual and motor areas to 

plan and generate movements. 

Perspective 1: How are signals transformed on the way to S1? 

Chapter 1 described broadly the path taken by proprioceptive information as it travels from 

peripheral receptors to S1. In short, muscle spindles and Golgi tendon organs transduce muscle 

length and force respectively, into action potentials. Neurons in the dorsal root ganglia (DRG) 

transmit this muscle receptor activity to brainstem nuclei (Rosén, 1969; Rosén, 1969). These 

then project information to the thalamus, which projects to S1 (Rosén, 1969; Oscarsson & 

Rosén, 1963; Padberg, et al., 2009). S1 itself has two major proprioceptive areas, named areas 3a 

and 2 (Jennings, et al., 1983; Kaas, et al., 1979; London & Miller, 2013). The main goals of my 

doctoral work were to explore how proprioceptive information may be processed by the time it 

gets to S1, and to understand what form the neural representation of movement takes. 

An important aspect of exploring the proprioceptive representation of movement is to 

understand the contributions of peripheral mechanics, including both biomechanics and muscle 

receptor physiology, to proprioceptive neural activity. This is made particularly clear by the 
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results of the studies presented in Chapters 2 and 3, which specifically examined the 

biomechanics of the limb. Both the empirical finding that DSCT neurons appear tuned to 

endpoint and the finding that active and passive movements have distinct representations in S1 

neural activity at first suggested explicit neural computations. In the first case, neurons in the 

DSCT appeared to compute the location of the hindlimb paw, despite the addition of a constraint 

that changed how joint angles related to paw position (Bosco, et al., 2000). In the second case, 

because the classic hand-based model could not predict the separation between active and 

passive movement representations, we initially hypothesized that S1 integrated efference copy 

information from motor areas to distinguish the movements. However, in both cases, we found 

that models of neural activity built on kinematics from the whole limb, rather than just the hand, 

were sufficient to explain these features, suggesting that they were direct consequences of 

biomechanics and simple receptor properties, rather than explicit neural computation. 

Moreover, the preceding chapters show that even after proprioceptive signals reach area 

2, neural activity can still be predicted well by a linear convergence of muscle-like signals. Why 

is this the case, if the signals have been processed by several sensory areas along the way to area 

2? One potential answer is that at each level of processing, neurons in the current stage simply 

integrate information from many neurons of the previous stage, effectively creating more 

complex response properties as the signals move up a simple hierarchical system. This idea of 

hierarchical processing was first described for the visual system, to explain how features like 

edge detection and orientation tuning might develop from a spatial integration of photoreceptor 

responses (Hubel & Wiesel, 1959; Hubel & Wiesel, 1962; Felleman & Essen, 1991). This 

became the inspiration for the design of deep convolutional artificial neural networks, which 
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have since become the state of the art in machine learning for image classification (Krizhevsky, 

et al., 2012). Unlike previous machine learning methods for image recognition, these 

feedforward neural networks are not designed to extract specific, human-defined features of 

images. Instead, they rely on intermediate layers to integrate information from earlier layers in 

particular spatial combinations, building up a library of neurons that respond to different features 

in the input. From a different perspective, the library of feature detectors in one intermediate 

layer can be read out by the next layer in various ways to build up more complex feature 

detectors. Eventually, in the final layers, neurons become object detectors. In the proprioceptive 

system, such integration, without explicit transformation to some intermediate movement 

representation, might allow neurons in S1 to serve as a general-purpose library of proprioceptive 

feedback features, whose activity is read out in different ways for either perception or use in 

motor control. 

Surprisingly, the studies presented in the preceding chapters also revealed that even 

though muscle-based models could explain neural activity well, joint-based models could not. 

The study in Chapter 2 showed that despite an experimental manipulation that altered how joint 

angles relate to endpoint position, a single model of neural activity based on musculotendon 

lengths still produced neurons with an apparent endpoint representation. To further compare 

muscle and joint models, I trained a joint-based model of area 2 neural activity during the two-

workspace task, in an analysis not included in Chapter 3. Aligned with the result from Chapter 2, 

I found that this joint-based model performed worse than the muscle and hand/elbow models at 

predicting the shifts in neural preferred direction between the two workspaces. Together, these 

analyses suggest that even though musculotendon lengths and joint angles are closely related, 
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joint angles are a poorer model for proprioceptive neural activity. This may be unsurprising, 

given that proprioception arises mostly from muscle sensors, and that the relationship between 

musculotendon lengths and joint angles, while one-to-one, is fairly nonlinear.  

More surprising is the fact that in both of these studies, models involving the locations of 

points on the limb (e.g., the hand/elbow model) also outperform models involving joints. This 

suggests that the relationship between musculotendon length and the kinematics of points on the 

limb is more nearly linear over the range of normal reaching movements than the one between 

musculotendon lengths and joint angles. This may be because calculating musculotendon lengths 

from joint angles is in many cases equivalent to calculating the distance between two points on 

the limb. Interestingly, this suggests a potential reason behind the psychophysical results 

showing that people are worse at estimating joint angles than hand location (Fuentes & Bastian, 

2010) or the angles of limb segments with respect to the direction of gravity (Soechting & Ross, 

1984). Given the conclusions of the studies in this dissertation, these psychophysical results may 

arise simply from the fact that joint angle is not well represented at any level of the 

proprioceptive system. 

Future experiments 

These findings specifically highlight the importance of considering the biomechanics of 

movement when studying proprioception. However, in examining the question of how muscle 

geometry contributes to the neural representation of movement, I abstracted away many 

intermediate structures, simply modeling neural activity in the DSCT and S1 in terms of 

musculotendon lengths and their time derivatives. This presents three future directions in which 

to explore the hierarchical processing of proprioceptive information. The first and second 

directions involve considering how muscle forces and muscle receptor physiology, respectively, 
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might augment the findings presented in this dissertation. The third future direction involves 

using new experimental and analytical techniques to explore how different areas of the 

proprioceptive system communicate and process information on the way to cortex. 

Modeling muscle force contributions to proprioceptive neural activity 

One aspect of proprioception left unexplored by the studies presented in Chapters 2 and 3 is the 

representation of forces on the limb, which have been shown to play an important role in S1 

neural activity (Prud'homme & Kalaska, 1994; London, et al., 2011). As with kinematics, the 

studies investigating the effects of limb forces on S1 activity assume a hand-based model. In this 

model, neural activity is cosine-tuned to the direction of the load on the hand (Prud'homme & 

Kalaska, 1994). Given that I found muscle kinematics to be an important component of the limb-

state representation in proprioceptive areas, an obvious follow-up study would be to examine 

how muscle forces contribute to neural activity in these areas. 

Unfortunately, measuring muscle force during behavior is non-trivial. Unlike 

musculotendon lengths, which are unique for a given posture or movement of the arm, there are 

many different sets of muscle forces that result in the same joint torques and forces on the hand. 

This issue stems from the fact that the musculature of the limb is highly redundant, with many 

muscles having similar pulling directions. As such, muscle forces are impossible to model 

without making assumptions to resolve the redundancy.  

One of the few computationally tractable approaches to this problem is called Computed 

Muscle Control (CMC), which attempts to activate the muscles of a musculoskeletal model in a 

forward dynamics simulation to match a given kinematic trajectory (Thelen, et al., 2003). While 

modeling these muscle forces, CMC constrains the redundancy problem by optimizing for 
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minimum total muscle activation or minimum fatigue. As it is unclear whether these minimum 

energy assumptions are completely valid (Kistemaker, et al., 2010), the CMC algorithm can use 

electromyograms (EMG) to further constrain the solution space of possible muscle forces. 

Another option to constrain the problem of muscle force redundancy is to measure the 

forces from some of the muscles. Over the last few decades, implantable transducers have been 

developed to measure the strain on tendons and ligaments in vivo (see (Ravary, et al., 2004) for 

review). Our lab has successfully used implanted strain transducers to measure leg muscle force 

in rabbits, but we have yet to use them successfully in monkeys. Once we develop the 

technology further, we can use direct force measurement of a few large muscles, in combination 

with EMG recordings and CMC, to more accurately estimate arm muscle forces during reaching. 

Once muscle forces can be estimated, we could explore their contributions to 

proprioceptive neural activity. An example experiment could take the same form of those 

presented in Chapter 3, examining the generalizability of different models of proprioceptive 

neural activity. However, instead of using different kinematic conditions, as in Chapter 3, this 

hypothetical experiment could use multiple dynamic conditions, like reaches through force fields 

of various strengths, or comparing fast and slow movements of varying curvature. 

Exploring how muscle receptor physiology contributes to proprioceptive neural activity 

The studies presented in this dissertation modeled muscle receptor activity simply as the length 

of the musculotendon unit, along with its time derivative. However, as described in Chapter 1, 

the relationship between spindle activity and musculotendon length is highly nonlinear, 

depending on several factors, like muscle pennation (Azizi, et al., 2008), tendon elasticity (Rack 

& Westbury, 1984), gamma drive (Loeb, et al., 1985; Prochazka, 1981; Prochazka, et al., 1976), 
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and even the history of muscle stretch (Proske & Stuart, 1985; Haftel, et al., 2004). As such, one 

potential extension to the work presented in this dissertation is to estimate muscle spindle 

activity, using one of the many published muscle spindle models (Hasan, 1983; Lin & Crago, 

2002; Mileusnic, et al., 2006). While these models would add several factors that may be 

difficult to infer, experiments could examine how important each of these spindle model 

nonlinearities are to the neural activity in various proprioceptive areas. Given that a muscle 

length model performed well at predicting S1 activity, it may even be that higher proprioceptive 

areas compensate for these nonlinearities in order to provide more veridical feedback of where 

the limb is.  

Recording from different stages of the proprioceptive system 

One limitation of the muscle force and receptor activity estimation approaches is their reliance 

on modeling peripheral signals. A different approach to the question of how proprioceptive 

signals are processed is to circumvent the peripheral modeling and record directly from early 

areas of the proprioceptive system, like DRG or cuneate nucleus. With simultaneously implanted 

arrays in combinations of DRG, cuneate, and S1, it would be possible to build models of neural 

activity at one stage of processing from the neural activity in a different stage. The specific 

structure of these resulting models would likely shed light on how information is communicated 

between the two areas. 

A good example of this approach comes from a study of how neural activity associated 

with preparing a movement causes no muscle activation (Kaufman, et al., 2014). By modeling 

recorded muscle activity as a linear combination of M1 and PMd neural activity, this study found 

that the predictions of muscle activity during the preparatory period canceled out, even though 

neural activity in M1 and PMd was non-zero. This effectively showed that the neural activity of 
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the population could be decomposed into “output-potent” dimensions, in which neural activity 

would result in muscle activity, and “output-null” dimensions, along which neural activity did 

not affect muscle activity (Kaufman, et al., 2014). Similar approaches have been used to examine 

how PMd communicates with M1 during motor adaptation (Perich, et al., 2018) and to 

investigate how primary visual cortex projects information to secondary visual cortex (Semedo, 

et al., 2019). 

One complication for this approach is the difficulty in obtaining chronic recordings from 

early proprioceptive areas, compared to recording from area 2 of S1. However, this is beginning 

to change; in a collaboration with Dr. Sliman Bensmaia’s lab at the University of Chicago, our 

lab has recently developed a method to record chronically from the cuneate nucleus of monkeys 

(Semedo, et al., 2019). With this technique, we have successfully implanted four monkeys with 

chronic cuneate arrays, allowing us to record from as many as 80 neurons simultaneously during 

reaching behavior. We have also started a collaboration with Dr. Doug Weber at the University 

of Pittsburgh to develop methods for implanting chronic electrode arrays in monkey cervical 

DRG. Recording from combinations of these proprioceptive areas simultaneously will allow us 

to directly examine the hierarchy of proprioceptive processing, from muscle receptors to cortex. 

Perspective 2: Role of proprioception in motor control 

Generating movements requires a coordination between sensory and motor areas. One way of 

examining this coordination is through the internal model framework described in Chapter 1. In 

this framework, during movement, internal models integrate sensory feedback with a copy of the 

motor command (called an efference copy signal) both to estimate the state of the limb, and to 

update the control policy in the case of a new dynamic environment (Wolpert, et al., 1995; 
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Wolpert, et al., 1998). Thus, one potential reason for keeping a more muscle-like representation 

of proprioceptive feedback in S1 is for easy communication of sensory information with motor 

areas, like M1. As described in the introduction, despite the “motor encoding” controversy in the 

literature, it is clear that a large population of M1 neurons project directly to spinal motor 

neurons (Rathelot & Strick, 2009), and therefore relate directly to muscle activity. Furthermore, 

several other studies including more than just these corticomotor neurons suggest that 

information about muscle activity is present in M1 (Fetz, et al., 1989; Kakei, et al., 1999; 

Morrow, et al., 2007; Cherian, et al., 2011; Oby, et al., 2012). As such, if S1 is to communicate 

feedback about movements to and receive efference copy information from M1, retaining a 

representation that contains muscle-like information would be beneficial. 

In addition to this sensorimotor integration for controlling movement, another important 

aspect of motor control is movement planning, in which proprioceptive feedback appears to play 

an important role (Gordon, et al., 1995). In the case of visually-guided reaching, this planning 

requires an integration between the current state of the limb and a target location. Psychophysical 

studies suggest that this planning optimizes for dynamically smooth, straight hand trajectories 

(Flash & Hogan, 1985; Wolpert, et al., 1995). Furthermore, reaches appear to be planned with 

respect to the displacement between the hand and the intended target (Sainburg, et al., 2003). 

Together, these studies imply that reach planning takes place with respect to the motion of the 

hand. Given this, along with the psychophysical observation that we have better perceptual 

access to the position of our hands than to joint angles of the arm, might there be an area in the 

brain that represents proprioceptive information explicitly in terms of the hand? If so, one 

candidate location is the posterior parietal cortex (PPC), which integrates both proprioceptive 
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and visual information (Mountcastle, et al., 1975). Studies of arm-movement-related neurons in 

PPC suggest that PPC represents the location of both the reach target and the hand in an 

apparently visual coordinate frame (Buneo & Andersen, 2006) and is at least partially 

responsible for planning movements (Snyder, et al., 1997; Batista & Andersen, 2001; Cui & 

Andersen, 2007).  

This suggests a dual purpose for the neural activity in S1: it may contain a feature library 

of proprioceptive feedback, read out in different ways, for different purposes. While M1 may 

read out S1 activity in terms of feedback about the limb for movement, PPC appears to integrate 

a readout of S1 activity with vision for movement planning. This potential flexibility in the 

interpretation of S1 activity is at least partially evidenced by the results presented in Chapter 3. 

There, we found that linear models of neural activity with inputs of either musculotendon length 

or the Cartesian kinematics of the hand and elbow predict S1 neural activity well. Thus, with a 

simple linear filter, M1 could use S1 activity for muscle-related feedback, while PPC uses S1 

activity to infer the position of the hand in Cartesian coordinates. 

Future experiments 

Recording simultaneously from sensory and motor areas 

Just as in the hierarchical processing perspective, one of the potential future directions for the 

motor control perspective is to record simultaneously from multiple areas to examine how 

proprioceptive feedback is processed. For example, one experiment could test the hypothesis that 

M1 and PPC have different read-outs from S1 activity, using simultaneous recordings from S1, 

M1, and PPC, and by using potent/null space analyses like those described above. 

We can further interrogate the interplay between S1 and M1 activity by using tasks that 

require responses to perturbation. An early study of M1 showed that output-layer neurons 
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responded rapidly to a perturbation in two phases: the first dependent on the perturbation only, 

and the second slightly delayed and dependent on the task instructions (Evarts & Tanji, 1976). 

Since this seminal experiment, many psychophysics experiments have extended this finding to 

show relatively fast perturbation responses dependent on task parameters like target shape, the 

presence of obstacles, and how a cursor was controlled (Nashed, et al., 2012; Omrani, et al., 

2013; Nashed, et al., 2014; Weiler, et al., 2018). These studies suggest a transcortical feedback 

loop, likely through S1 and M1, as hinted at by a single unit recording study of the two areas’ 

responses to perturbation (Wolpaw, 1980). An experiment simultaneously examining M1 and S1 

activity in response to perturbations during different tasks would shed light on the nature of M1-

S1 communication during online feedback control. 

Exploring changes in sensory areas during motor adaptation 

Another question in this vein is how motor learning might change the activity of sensory areas, 

as well as the communication between sensory and motor areas. As described in Chapter 1 and 

alluded to above, internal models for movement generation are thought to be updated when there 

is a mismatch between predicted sensory feedback and actual feedback. This is evident in 

experiments where the dynamics of movement are suddenly altered by, for example, turning on a 

velocity-dependent force field. While this initially causes errors in reaching, eventually, the 

subjects adapt to the new dynamics, presumably by updating their internal models (Shadmehr & 

Mussa-Ivaldi, 1994). 

Most studies examining the neurophysiology of this adaptation tend to focus on how 

motor cortical activity changes (Rokni, et al., 2007; Perich & Miller, 2017; Perich, et al., 2018), 

leaving proprioceptive feedback during motor adaptation relatively unexplored. However, 

several studies indicate that somatosensory cortex plays an important role in motor adaptation. 
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One recent study found that mice, like humans and monkeys, could adapt reaches to novel 

dynamics, but not when S1 was optogenetically inactivated. This deficit in adaptation was 

remarkably consistent with an inability to update an inverse model of the limb dynamics (Mathis, 

et al., 2017). Furthermore, a set of psychophysical experiments conducted by Dr. David Ostry’s 

lab suggest that not only is sensory feedback important for motor adaptation, but the processing 

of the feedback appears to change as well. One of these studies found that adaptation to a force 

field caused subjects’ perceptions of their hand position to shift in a direction dependent on the 

direction of the learned force field (Ostry, et al., 2010). A follow-up study showed that 

somatosensory evoked potentials changed in proportion to the degree of adaptation to the field 

(Nasir, et al., 2013). 

One clear follow-up to these studies would be to replicate the psychophysical results in 

monkeys by having them report the direction of a perturbation to the hand before, during, and 

after adaptation to a force field. Subsequently, the study could look for changes in how S1 

represents movement or in how S1 projects information other areas, like M1 and PPC. 

Using normative models to characterize proprioceptive processing 

There are many ways to study how a sensory system processes information, but one of the most 

common is to model neural activity as simple linear functions of sensory inputs. This approach, 

pioneered by Hubel and Wiesel in their study of early visual cortex (Hubel & Wiesel, 1959), was 

the basis of the analyses presented in Chapters 2 and 3 to examine how DSCT and S1 represent 

limb state. However, a downside of such a bottom-up approach is that in simply trying to get the 

best model fits, a study may become merely descriptive of neural activity and fail to provide an 

understanding of how it contributes to a high-level computational task, like image recognition or 

movement coordination (Marr & Poggio, 1976; Krakauer, et al., 2017). One recently popularized 
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alternative approach is the use of goal-based models to explain neural activity (Yamins & 

DiCarlo, 2016). In this top-down approach, researchers use modern machine learning techniques, 

like artificial neural networks, to build a system to complete a given computational task, like 

image recognition. In contrast to the bottom-up methods, this goal-based method essentially 

provides a computational model of how a high-level task might be completed. This gives 

experimenters the ability to examine the inner workings of the computational model, comparing 

the model’s implementation to that of the actual neural system. 

A recent example of this goal-driven modeling approach is a study examining deep 

neural networks trained to recognize images. Early, middle, and late layers of these networks 

were highly reminiscent of actual neural activity in different layers of the ventral visual stream 

(Yamins, et al., 2014). On the motor control side, other goal-driven modeling studies found that 

artificial neurons in recurrent neural networks trained to control arm muscles had properties 

similar to neurons in motor cortex (Lillicrap & Scott, 2013; Sussillo, et al., 2015). 

Thus, one future direction of the work in this dissertation might be to use a goal-driven 

neural network to model the proprioceptive system. There may be many “goals” for the 

proprioceptive system, but in the context of motor control, three potential uses of proprioceptive 

feedback are for planning movements, for online motor control, and for motor adaptation. These 

reflect the interactions of S1 with PPC and M1 and thus, a goal-driven model approach might 

shed light on how these regions communicate. Specifically, one experiment might model the 

proprioceptive system, from DRG to PPC, as a feed-forward hierarchical neural network, 

computing the displacement between the hand and a reaching target. Likewise, a different 

experiment might use a similar hierarchical model of proprioceptive processing as a feedback 
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input for a recurrent neural network controlling muscle activity, like those described by Lillicrap 

et al. and Sussillo et al. To address motor adaptation, another experiment might examine how the 

activity of such an artificial sensorimotor control network would adapt to changes in 

environmental dynamics. These goal-driven models frame proprioceptive activity in terms of 

how it contributes to the computational goal of controlling movement, and thus may uncover 

features of proprioceptive activity that might not be found by classic modeling techniques. 

Stimulating S1 to restore sensation for a bi-directional brain-machine interface 

One direct clinical application of this research is in the development of brain-machine interfaces 

(BMI) to restore movement after spinal cord injury. The BMI field began with simple studies 

showing that a monkey could be trained to modulate the activity of individually recorded motor 

cortical neurons (Fetz, 1969), and that the activity of a population of motor cortical neurons 

could be used to predict movements and forces at the wrist (Humphrey, et al., 1970). Since these 

early experiments, the field of BMIs has advanced considerably, having developed techniques to 

decode motor cortical signals into commands for an on-screen cursor (Serruya, et al., 2002), a 

robotic arm (Collinger, et al., 2013), and even the paralyzed muscles of the subject’s own arm 

(Ethier, et al., 2012). Despite these advances in motor BMIs, however, the ability to provide 

artificial proprioceptive feedback to the brain for motor control remains elusive. 

One promising method to provide this feedback to the brain is with intracortical 

microstimulation (ICMS) in S1. Subjects can both detect and discriminate between different 

patterns of ICMS in S1, making this a potential method for providing artificial tactile feedback 

(Romo, et al., 1998; O'Doherty, et al., 2011; Zaaimi, et al., 2013; Flesher, et al., 2016; Salas, et 

al., 2018). One study even showed that monkeys could learn how to use ICMS in S1 to reach to a 

target without visual feedback (Dadarlat, et al., 2014). However, in that study, while monkeys 
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could eventually reach targets guided by ICMS, they required a prolonged training period during 

which the learned how to use the stimulation. Furthermore, the movements were far slower and 

more segmented than normal reaching movements, suggesting that the stimulation required 

cognitive interpretation, rather than taking advantage of the close ties between proprioceptive 

feedback and motor control. 

In contrast with this cognitive learning approach, a biomimetic approach to S1 

stimulation may be more likely to elicit sensations of movement, rather than simply a 

discriminable stimulus. In this approach, electrodes are stimulated with the goal of eliciting 

neural activity that mimics the normal activity of S1 during movement. One study has attempted 

this biomimetic approach to alter a monkey’s perception of a mechanical perturbation to the 

hand, with limited success (Tomlinson & Miller, 2016), but no published studies so far have 

examined whether the biomimetic approach can be used for online feedback during movements. 

However, as we better characterize how S1 responds to movement, as well as how S1 

communicates with motor areas, we may be able to design ICMS paradigms that more closely 

mimic the area’s natural activity, allowing us to provide proprioceptive feedback that is more 

readily useful for online motor control. 

Final conclusions 

Classic models of proprioceptive neural activity in S1 assume that neurons represent simply the 

direction of hand movement, rather than intrinsic variables, like joint angles or muscle lengths. 

Surprisingly, this limb endpoint model outperformed a joint-based model for explaining neural 

activity in the DSCT, one of the earliest stages of proprioceptive processing. In this work, I used 

musculoskeletal modeling to examine how much biomechanics and muscle geometry contribute 
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to the neural activity at both the DSCT (Chapter 2) and S1 (Chapter 3). In both studies, I found 

that features of neural activity, like changes in preferred direction, could be explained better by a 

model based on the whole limb than by one based only on the limb endpoint. In this final 

chapter, I discussed the potential implications of these results, drawing on wisdom from the 

history of similar experiments in the motor cortical literature. Given this history, it seems 

unlikely that more precisely determining neural representations of movement will yield useful 

insights. Instead, it is likely to be more fruitful to frame proprioception in terms of how feedback 

is processed as it travels from muscles to cortex and how this progressive transformation 

contributes to the control of movement. 
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