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ABSTRACT

Self Assembly and Many-Body Effects at Surfaces of Biomedical Relevance

Bernard M. Beckerman

I present research in systems of biomedical relevance consisting of agents near or com-

prising surfaces using computational approaches. The research topics include formation

of bacterial biofilms, behavior of charged species near stacked, like-charged lamellae, and

the the conformational behavior of lamellae with strong self-attraction.

In chapter 2, I present agent-based simulations and experimental analysis of bacte-

rial surface colonization behavior. Results show that the bacterial population exhibits

polyphenic motility despite being genetically homogeneous, and that the deposition of a

polysaccharide causes the emergence of distinct bacterial subpopulations that specialize

separately in microcolony nucleation and surface exploration.

Chapter 3 considers aggregation behavior on a much smaller length scale, wherein

an attraction between like-charged cellular lamellae is mediated by the antiviral mole-

cule squalamine. Free-energy calculations along with structural analysis of the resulting

compounds reveals that the squalamine molecules form bridging configurations that are
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highly effective at condensing membranes, and that the strength of this condensation is

sufficient to eject the viral protein Rac1 from the lamellae.

In chapter 4, I explore the ability of such condensed, charged lamellae to selectively

exclude ions as a means to control ionic current. Simulations and theory of ion-selective

graphene-oxide paper in series with a bulk salt solution under an applied field show how

this exclusion leads to a nonlinear current–voltage relationship. Additionally, geometrical

asymmetries are introduced into the system to achieve ionic current rectification.

Chapter 5 studies the behavior of dilute graphene oxide sheets in poor solvent. In such

a case, the conformations taken by the sheet are determined by a competition between

its intrinsic bending rigidity and effective self-attraction. I show how self-attraction of a

finite range and sufficient strength can overcome bending energy barriers of ∼100kBT to

allow sheets to spontaneously condense in solution.



5

Acknowledgements

First and foremost I would like to thank my advisor, Prof. Erik Luijten, for the many

opportunities he has provided me, for his continued mentorship, and for his enduring

support. I am also thankful to my dissertation committee, Prof. John Marko, Prof. Monica

Olvera de la Cruz, and Prof. Kenneth Shull, for being generous with their help and

guidance throughout the course of my PhD.

This research would not have been possible without my hard-working, passionate,

and inventive collaborators, Prof. Gerard Wong, Prof. Kun Zhao, Prof. Jiaxing Huang,

Prof. Kalyan Raidongia, Andrew Koltonow, Dr. Jun Gao, and Dr. Niels Boon, who always

brought valuable insight and invariably elevated the quality of my work.

Heartfelt thanks to those I spent by far the most time with throughout my tenure as a

graduate student, my wonderful, supportive and hardworking labmates Daniel Sinkovits,

Wei Qu, Jonathan Whitmer, Moses Bloom, Kipton Barros, Ming Han, Huanxin Wu,

Zonghui Wei, Amir Maghsoodi, Ziwei Wang, and Amelia Plunk. It often felt that you

were the only ones in the world I could approach with certain research problems (and

often that was true!), and you were always helpful when I needed it. I have learned and

changed so much in your presence and with your support. To those who came before me,

thank you for paving a trail of success for me to follow and for being there to guide me,

and to those who have yet to graduate, I know you have the intellectual, emotional, and

spiritual capacity to be successful in anything you do.



6

Also, I would like to thank the immense graduate-student support system that has

been built over the years here at Northwestern. Particular thanks goes out to Penelope

Warren, Dr. Wei-Zen Huang and Dean Dwight McBride.

Lastly, it cannot be overstated how instrumental my family and friends were during

this process. My parents provided a lifetime of motivation, pride and practical support,

my siblings provided immense emotional support, and my friends were always available

to listen to my troubles and to help me plan logistically. Special thanks goes to my

girlfriend Hadallia who literally kept me alive through the last few months of my PhD,

cooking meals for me and encouraging me to sleep when it felt like I had time for neither.

I can’t thank you all enough for your strength through this process and for giving me a

reason to keep pushing no matter what. Your love and support is the reason I am here.



7

Dedication

To my family



8

Table of Contents

ABSTRACT 3

Acknowledgements 5

Dedication 7

List of Figures 11

Chapter 1. Introduction 14

Chapter 2. Positive feedback via haptotaxis in biofilm nucleation of Pseudomonas

aeruginosa 19

2.1. Introduction 20

2.2. Materials and Methods 21

2.2.1. Experimental methods 21

2.2.2. Simulation methods 23

2.3. Results and Discussion 30

2.3.1. Persistent step sizes 30

2.3.2. Effect of step-size persistence on the visit histogram 33

2.3.3. Emergence of distinct subpopulations 35

2.3.4. Surface coverage of nucleators and explorers 39

2.4. Conclusion 45



9

Chapter 3. Antiviral activity of squalamine: Role of electrostatic membrane binding 48

3.1. Introduction 48

3.2. Methods 51

3.2.1. Coarse-graining 52

3.2.2. Bead interactions 54

3.2.3. Simulation setup 55

3.2.4. Pressure calculation and barostatting 56

3.2.5. Chemical potential calculation 56

3.2.6. Thermodynamic integration 58

3.2.7. Finite-size effects 62

3.3. Results and Discussion 63

3.3.1. Membrane condensation behavior of squalamine 63

3.3.2. Membrane condensation in the presence of bulk salt 66

3.3.3. Competition between Rac1 and squalamine 71

3.4. Conclusion 73

Chapter 4. Ionic current rectification in asymmetric graphene oxide nanochannel

networks 74

4.1. Introduction 75

4.2. Results and Discussion 77

4.2.1. Theory 79

4.2.2. Simulation 86

4.2.3. Conclusion 93

4.3. Simulation methodology 95



10

Appendix 97

Chapter 5. Conformational behavior of self-attractive sheets with large bending

rigidity 100

5.1. Introduction 101

5.2. Methods 103

5.2.1. Simulation Model 103

5.2.2. Metadynamics 105

5.3. Results and Discussion 108

5.3.1. Effect of self-attraction on the kinetic barrier to collapse 108

5.3.2. Energy barriers to folding 110

5.3.3. Dynamics of sheet collapse 113

5.4. Conclusion 118

Appendix A: Choice of angle potential 119

Appendix B: Calculation of folding energy barrier for a sheet 123

Chapter 6. Conclusion 129

References 133



11

List of Figures

2.1 Experimental data and fits used in calibration of bacterial simulations. 22

2.2 Persistent bacterial motilities and the resulting impact on the visit

distribution. 32

2.3 Mean-squared displacements of bacteria as a function of Psl deposition

rate. 36

2.4 Average step sizes of clustered bacteria and their spatial distribution

according to step size. 38

2.5 Bacterial cluster size as a function of Psl deposition in simulation and

experiment. 41

2.6 Surface exploration of bacteria as a function of Psl deposition rate. 42

2.7 Cluster diversity as a function of Psl deposition rate. 44

2.8 Radial and angular distribution functions of simulated bacterial

populations. 46

3.1 Experimental and simulation results showing the ability of squalamine

to displace Rac1 molecules. 50

3.2 Simulation setup and thermodynamic integration pathway. 52

3.3 Estimated Widom weight and relative error vs. number of insertions. 59



12

3.4 Finite-size effects in simulated systems containing Rac1, squalamine,

salt, and lipid bilayers. 63

3.5 Condensation of lipid bilayer membrane stacks around charged species

in the absence of salt. 65

3.6 Condensation simulations employing a modified squalamine bead size. 66

3.7 Condensation of lipid bilayer membrane stacks around charged species

in equilibrium with a bulk salt solution. 69

3.8 Bistability of constant-pressure simulations. 70

4.1 Illustration of the dependency of the ion concentration profile on the ion

current. 78

4.2 Simulation setup and results for a rectangular Graphene Oxide

Nanochannel Network. 87

4.3 Ratio of anion leakage current as a function of applied bias in a

symmetric graphene oxide nanochannel network. 89

4.4 Simulation setup and results for a trapezoidal graphene oxide

nanochannel network. 91

4.5 Simulation setup and results for a trapezoidal Nanochannel Network

designed for optimal rectification ratios. 93

5.1 Setup of coarse-grained Graphene Oxide simulations. 103

5.2 Radial dependence of the coordination number C. 107



13

5.3 Simplified model of spontaneous collapse of a self-attractive sheet with

bending rigidity. 109

5.4 Free-energy map from metadynamics simulations and representative

configurations. 112

5.5 Free-energy maps of highly attractive sheets from metadynamics

simulations. 114

5.6 Waiting time before sheet collapse as a function of self-attraction. 115

5.7 Conformations of spontaneously collapsed self-attractive sheets. 117

5.8 Comparison of Normal–Normal bending energy to that of a continuum

sheet. 120

5.9 Comparison of Cosine–Delta bending energy with that of a continuum

sheet. 122

5.10 Schematics for the sheet–hinge bending calculation in Appendix 5.4. 124

5.11 Comparison between a simulated sheet–hinge system and analytical

calculations. 127



14

CHAPTER 1

Introduction

Soft condensed matter concerns systems of many interacting particles whose configu-

rations are easily deformed, e.g., by thermal forces. This class of materials encompasses

a wide array of essential goods including plastics, rubbers, gels, and creams, and is fun-

damentally important in explaining many biological phenomena. In these soft-matter

systems, particles move in response to their environment, and their motion then influ-

ences the environments of all other particles leading to complicated many-body behavior.

The complexity that results can yield a system whose behavior is unintuitively different

from that of its parts, and is difficult to describe theoretically.

This is especially true for nanoscale systems in aqueous environments, in which in-

teractions are often on the order of the thermal energy kBT , and Brownian effects keep

the system in constant motion. This motion is crucial for biological systems, as it allows

proteins to fold and unfold, molecules to diffusively search for binding sites, and lipids

to spontaneously assemble into cell membranes. However, it poses significant barriers

to observation and understanding. Visualizing these systems can be difficult due to the

constant motion of the species involved and the fact that they are often smaller than the

wavelength of light. Additionally, theoretical calculations are difficult for such systems

that are simultaneously small enough that continuum approximations are inadequate and

complex enough that a detailed theory becomes highly nonlinear and is often intractable.
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This is especially true in systems that exhibit significant coupling between individual par-

ticles. For instance, electrostatic correlations can lead to non-trivial phenomena such as

like-charge attraction and many-body effects.

The desire to predict the behavior of such systems has driven theoretical work for

many decades. If the component parts of a system interact with many neighbors either

due to the system having high dimensionality or due to weak, long-range interactions,

the system can be described by a mean-field theory, in which each particle interacts with

a background that corresponds to the ensemble-averaged behavior [1]. On the other

hand, if the system is dominated by very strong interactions among very few neighbors,

a strong-coupling theory that disregards the many-body nature of the system can be

successful [2]. For intermediate interaction strengths, correlations of fluctuations around

the mean behavior preclude the use of mean-field theory, and many-body effects preclude

the use of strong-coupling theory, so that particle-based simulations are a useful tool to

understand system behavior.

In particle-based simulations, knowledge of particle interactions is exploited to evolve

a system through a series of configurations, and information is extracted from these con-

figurations via statistical sampling. Systems are commonly evolved either using molecular

dynamics (MD), which moves a system forward in time using Newton’s equations of mo-

tion, or Monte Carlo (MC), which continually proposes random changes in a system that

are accepted or rejected based on their energetic cost. Both techniques have advantages.

MD faithfully captures dynamical behavior and so can be useful for out-of-equilibrium

systems, whereas MC can generate physically realistic configurations from unphysical

particle rearrangements, leading to an increase in computational efficiency.
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Intuitively, one might think that modeling a system in full atomistic detail would

provide the most accurate description of its behavior. In reality, such a model incurs

significant computational cost and imposes severe restrictions on the length and time

scales accessible to study. Furthermore, it is often a challenge to distill salient observables

from the large amount of detailed information provided by such simulations to yield useful

conclusions. As an alternative to a fully detailed model, the system of interest can be

coarse-grained such that individual atoms are grouped into sites that interact with one

another through effective potentials. This allows a significant increase in both the length

and time scales accessible at a given computational cost, and offers an efficient method

to model experimentally relevant systems. Furthermore, in forming such a coarse-grained

model one automatically incorporates various physical assumptions so that the simulation

results provide a powerful method to test and interpret those assumptions, and to thereby

understand what truly drives the system of interest.

This thesis addresses the behavior of several systems of biomedical relevance contain-

ing many interacting particles that comprise or are near 2-dimensional surfaces. Each

system is coarse-grained at the length scale of interest, and particle- or agent-based sim-

ulations are used to gain insight into the system behavior, thereby informing theory and

experiments. In the second chapter, we consider the formation of surface-bound bacterial

colonies that simultaneously explore a surface and deposit a polysaccharide that affects

future bacterial motion. Agent-based bacterial modeling and extensive analysis of exper-

imental data illustrate how this polysaccharide mediates an effective attraction between

bacteria, thereby correlating bacterial positions and leading to microcolony formation.



17

This is an essential step in biofilm growth and one that had not been understood pre-

viously. Particle correlations are also important for condensation in biological systems

at much smaller length scales. In the third chapter, we consider the condensation of the

antiviral drug squalamine onto charged surfaces, and the ability of squalamine to mediate

like-charged attraction between cellular membranes due to correlations that arise from

the valency and internal structure of the squalamine molecule. Specifically, this chapter

elucidates how squalamine can condense membranes favorably enough to eject proteins

of viral origin from the condensed bilayer stacks despite the protein having higher va-

lency. Since these proteins assist the viral replication cycle, this activity is thought to

confer a degree of antiviral immunity on the cell. Such competitive exclusion of ions

from charged multi-lamellar structures, either due to size exclusion or due to the large

Donnan potential inside the charged layers, can lead to interesting conductance effects in

the presence of an electric field applied parallel to the surfaces. Chapter four elucidates

how this ion-selectivity can be exploited to manipulate ionic current through condensed,

charged layers of graphene oxide (GO). We show that devices made from such materials

can serve as effective, low-cost ionic rectifiers that can function on widely varying length

scales. While stacking of GO sheets is common in a poor solvent when the concentra-

tion is high enough, it is unclear whether sheets in the dilute limit can similarly reduce

their solvent-accessible surface area by assuming condensed or crumpled conformations.

In chapter five we explore how the intrinsic bending rigidity and effective self-attraction

of thin, tethered materials such as GO compete to determine the sheet conformation. We

show how, even when the bending energy of folding is ∼100kBT , as it is for GO, this
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can be overcome by the finite-range self-attraction of the sheet, and that given sufficient

self-attraction, a sheet of any bending modulus can collapse.
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CHAPTER 2

Positive feedback via haptotaxis in biofilm nucleation of

Pseudomonas aeruginosa

ABSTRACT

Recent work has indicated that upon adhesion to a surface Pseudomonas

aeruginosa tend to self-organize into microcolonies, using a positive-feedback

mechanism mediated by haptotactic attraction to the exopolysaccharide Psl

that they secrete. We elucidate this colony-nucleation process and explore

how it is influenced by bacterial motility. A detailed analysis of the data pre-

sented in our earlier study, in combination with additional simulations, pro-

vides further insight into the exploratory strategy of Psuedomonas aeruginosa.

Specifically, we find that the isogenic bacterial population exhibits polyphenic

motility and, when depositing Psl, splits into two distinct populations—those

that become trapped in their self-deposited Psl and those that move suffi-

ciently quickly to escape their Psl beds and explore the surface. We per-

form computer simulations in which we adjust the relative prevalence of these

subpopulations by varying the Psl deposition rate and find that there is a

trade-off between surface exploration, microcolony diversity, and microcolony

fortification.
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2.1. Introduction

The survival of many organisms is dependent on their ability to navigate in response

to their environment, e.g., toward areas of high nutrient density or low toxicity. Or-

ganisms commonly execute such motion by sensing and responding to chemical gradients,

chemotaxis, or by moving along gradients of surface adhesion, haptotaxis. These behaviors

play a crucial role in the survival, development, and organization of cellular populations

ranging from bacteria to tissues in multicellular organisms [3, 4, 5, 6].

Among these, P. aeruginosa serves as a model organism for the study of bacterial

biofilms that have significant medical and industrial impacts [7]. Moreover, P. aeruginosa

is a cause of lethal nosocomial and opportunistic infections, including those in cystic

fibrosis patients, and thus is important to understand on its own [8].

P. aeruginosa adheres to surfaces using type-IV pili (TFP) [9]. TFP adhesion to a

bare surface is often weak, and the wild-type (WT) strain PAO1 deposits the exopolysac-

charide Psl to strengthen TFP surface binding [10, 11]. Additionally, bacteria use TFP

to crawl across the surface [9]. Since TFP bind more strongly to surfaces coated with

Psl, bacteria are attracted to sites that have received Psl from previous bacterial visits.

This type of motion, in which the attractant is produced by the organism itself, “auto-

attraction,” has been shown to result in spatial pattern formation [4, 12, 13, 14, 15]. For

P. aeruginosa, the interplay between positive feedback and surface motility results in a

hierarchical distribution of site visits, ultimately inducing the nucleation of microcolonies

that grow into bacterial biofilms [16].
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Whereas experiments and simulations have shown that microcolony size and diversity

depend on the rate at which bacteria deposit Psl [16], this dependence is neither well quan-

tified nor mechanistically understood. Here we extend the experiments and simulations

from Ref. [16] and show that the Psl deposition rate controls the relative prevalence of

bacterial subpopulations distinguished by their surface motilities. This relative prevalence

in turn determines a trade-off during biofilm development between surface exploration,

microcolony diversity, and microcolony fortification.

2.2. Materials and Methods

2.2.1. Experimental methods

A comprehensive discussion of the experimental methods is available in Ref. [16] and its

supplementary information. Here we recount them in brief for context. P. aeruginosa are

seeded into a flow cell filled with nutrified solution and precipitate onto a glass substrate.

Images of the surface are taken every ∆t = 3 seconds through a 67× 67µm2, 1-megapixel

viewing window, and the positions and orientations of all bacteria are recorded using a

particle-tracking algorithm in the style of Ref. [17]. The spatial distribution of bacteria is

monitored by registering, for each experimental frame, a “visit” in each pixel that contains

a bacterium’s center. Visits are counted starting with the onset of exponential growth

(see Fig. 2.1A, the visit history before this represents <10% of the total visit history) and

ending once 500,000 visits are recorded (roughly 7 hours). Pixels are then histogrammed

by the number of visits they have received (the “visit histogram”).
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Figure 2.1. A) Experimental surface population size as a function of time,
along with fitted growth rate for 0% and 1% (w/v) arabinose concentration.
B) Experimentally observed deviation-angle distribution for ∆PPsl/PBAD-
Psl in the absence of Psl along with the fitted distribution Pangle(θ) em-
ployed in the simulations. Inset shows schematic of a bacterium moving
from its old position (dark spherocylinder) to a new position (light sphero-
cylinder) over one time step. Figure is only schematic; notably, the typical
step size s is only a fraction of the bacterial length lb, see Fig. 2.1C, and the
bacteria in simulation are represented by line segments instead of sphero-
cylinders. C) Experimental step-size distribution for ∆PPsl/PBAD-Psl in the
absence of Psl, along with the fitted distribution Pstep(s) employed in the
simulations. Units are mesh size a = lb/29. The inset shows the piecewise
continuous nature of the assumed distribution for small step sizes. D) Bac-
terial mean square displacement and corresponding simulation results in
the absence of Psl.

To determine the importance of Psl in mediating the distribution of surface-site visits,

we use the arabinose-inducible mutant ∆PPsl/PBAD-Psl [10], whose Psl production in-

creases with the ambient concentration of arabinose in solution. This allows tuning of the
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Psl deposition rate and thus of the strength of the positive-feedback mechanism, which

in turn affects the aggregation behavior of the bacteria.

2.2.2. Simulation methods

To test the hypothesis that variations in Psl production affect the aggregation behavior

observed in experiment, we employ a model in which surface-mobile agents deposit and

respond to non-diffusing trails of Psl. An analytical treatment of this system is complex

since the agents do not merely have instantaneous pairwise interactions but also are influ-

enced by the motion history of all entities. To tackle this complexity, we devise a model

in which bacteria move according to the unbiased bacterial motion observed experimen-

tally in the absence of Psl. We then extend this model via Psl deposition, recording the

deposited Psl at each surface location as the simulation progresses. The bacterial motion

is then biased by the local Psl concentration. As bacteria traverse the surface, visits

are collected and histogrammed as in experiment to allow a direct comparison. For each

choice of parameters, results are obtained as averages over 100 independent runs, unless

noted otherwise. Simulations take between 1.5 and 40 minutes per run, depending on the

Psl deposition rate.

2.2.2.1. Model and bacterial motion.

System geometry and initial conditions. We model the bacterial system using non-

overlapping line segments of unit length that move across a square periodic domain of

side length L = 35, which, given the mean experimental bacterium length lb = 1.9µm [16],

is similar to the experimental viewing window. The no-overlap condition is imposed to

avoid unrealistic dynamics, whereas ignoring excluded volume is reasonable given that the
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bacteria cover less than 10% of the surface throughout all experiments. The simulations

start with 10 bacteria on the surface in a random, non-overlapping configuration and

advance in a series of time steps during which each bacterium can move, multiply, and

deposit Psl. The run length is determined by the total visit number, which is set to

500,000 in accordance with the experiments. Due to the stochastic population growth, this

corresponds to 8300±800 time steps per run. Each time step represents one experimental

frame, so that a simulation represents approximately 7 hours, equal to the duration of

the exponential growth phase in the experiments.

To avoid artifacts resulting from moving the bacteria in a set order, their selection is

randomized. In Ref. [16] any of the n bacteria were selected at random and the time was

incremented by ∆t after n such selections. This, however, results in a significant fraction

of bacteria (1/e for large n) being skipped on a given time step. For those bacteria, a

spurious additional visit is recorded in the pixel that they currently occupy, which reduces

the number of single-visit pixels. To eliminate this artifact, all bacteria are selected once

in each time step then their order is shuffled.

Bacterial motion. We start by modeling bacterial motion in the absence of Psl. Ex-

perimental bacterial displacements lie within a wedge emanating from the bacterium’s

current position [18]. In our model, bacteria move with step size s at an angle θ from the

cell’s body axis (see Fig. 2.1B, inset), while maintaining director orientation. These pa-

rameters are reselected for each bacterial move from the distributions Pangle(θ) (Fig. 2.1B)

and Pstep(s) (Fig. 2.1C). Since bacteria are observed to exhibit heterogeneous motility, we

also consider a model in which s is selected once per bacterium and persists for the dura-

tion of the simulation (see Sec. 2.3.1). Pstep(s) and Pangle(θ) are obtained by monitoring
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arabinose-inducible bacteria in the absence of arabinose and fitting functional forms to

the measured histograms of s and θ. Because the leading and trailing poles of the bacteria

cannot be reliably distinguished in experiment, the pole closest to the direction of motion

is taken as the leading pole. Thus, no backward moves are observed and Pangle(θ) = 0

for |θ| > π/2 both in the experimental histogram and in the fit used in simulation. For

|θ| < π/2 Pangle(θ) = 0.202 + 0.352 exp [−θ2/2σ2], where σ = 0.411 radians (Fig. 2.1B).

For Pstep(s ≥ 0.05), s in units of the pixel width a = lb/29, the fit is a truncated Gaussian,

Pstep(s) = 3525× exp [−(s+ 10.0)2/(2× (2.56)2)] (in Ref. [16], Supplementary Figure 13,

this expression contains an error and should read as the preceding). Since continuation

of this function to s = 0 overestimates the number of bacteria with very small step sizes,

we model the distribution for 0 ≤ s < 0.05 in a piecewise fashion, Pstep(s) = 0.1 for

0 ≤ s < 0.027 and Pstep(s) = 65.2s−1.66 for 0.027 ≤ s < 0.05. In this manner, Pstep(s) is

continuous and yields the same probability of a displacement in [0, 0.05) as the left-most

bin in the experimental distribution (Fig. 2.1C).

The particle-tracking algorithm used in experiment is subject to errors on the order

of ±a, resulting in artificially large skips between time steps. To suppress the resulting

error, bacterial trajectories are smoothed using a Savitzky–Golay filter [19] of degree 3,

5 left frames and 5 right frames, prior to accumulation of the histograms shown in Figs.

2.1B and 2.1C.

When crawling across the surface, bacteria reorient both gradually and via tumbles

that are characterized by random body-axis rotations with zero displacement [20, 21].

Tumble-type reorientations alone are sufficient to recreate the observed random-walk be-

havior in the absence of Psl. For this reason and for the sake of simplicity, gradual
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reorientations are omitted from the model. Since we set the tumbling rate by requir-

ing the simulated mean square displacement (MSD) match that in experiment (see next

paragraph), this rate is overestimated. As a result, simulated bacterial trajectories appear

more angular than in experiment, although the long-time surface exploration behavior is

thought to be adequately reproduced.

We determine the probability preorient of a reorientation by adjusting its value such

that the MSD in simulation matches the experimental MSD, yielding preorient = 0.037

(Fig. 2.1D). Here, the simulation MSD is obtained from 100 independent simulations of

10 bacteria monitored for 105 time steps each, and the experimental MSD is obtained

by monitoring a population of arabinose-inducible bacteria at 0% w/v arabinose for more

than 18 hours for a total of 520,433 bacterium-time steps. The joint probability of making

a move with displacement ∆r and change of director φ in the absence of Psl is referred

to as P0(∆r, φ).

Psl deposition and sensing. To model the adjustable Psl deposition rate rPsl of the

∆PPsl/PBAD-Psl mutant, we start each bacterial move with the deposition of an amount

of Psl rPsl. Ref. [16] shows an approximately linear proportionality between visit frequency

and Psl density maps, supporting the assumption that the deposition rate is constant over

time. Accordingly, rPsl is specified at the beginning of each simulation (and identical for

all bacteria) and does not change. The deposited Psl is recorded in a grid cell (mesh size a,

corresponding to the pixel size) containing the center of the bacterium. Experiments at

variable arabinose concentrations are modeled in simulation by varying rPsl from 0 up to

10−3, for which the histograms nearly reach their saturated form (see Fig. 2h of Ref. [16]).



27

Since neither rPsl nor the bacterium–Psl coupling strength are known experimentally, we

set the latter to 1 so that rPsl is quoted in units of inverse coupling strength.

To model bacterial haptotaxis we multiply the unbiased motion P0(∆r, φ) by a Psl-

dependent factor

(2.1) PPsl(cPsl(r)) ∝ 1− exp [− (cPsl(r) + c0)] ,

which depends on the amount of Psl cPsl at the position r of the leading pole of the

bacterium after a translation ∆r or rotation φ. The offset c0 > 0 is included to allow

moves to regions free of Psl. Equation 2.1 was proposed in Ref. [16] and is conceptually

similar to the response functional in Sec. 5 of Ref. [22], which also exhibits a saturating

influence of local attractant density on bacterial motion. To reflect the ability of bacteria

to sense Psl over a finite domain, cPsl is the cumulatively deposited Psl in a domain

centered around r. For computational efficiency, we choose this as a square oriented with

its sides parallel to the Cartesian axes,

(2.2) cPsl =
i+w∑

k=i−w

j+w∑
l=j−w

ρPsl(k, l) ,

where (i, j) denotes the grid point containing r, ρPsl(k, l) is the amount of Psl previously

deposited in cell (k, l), and the width of the domain is 2w+1. Assuming that the bacterium

width (0.6 µm) is representative of the size of the domain, we choose w = 4, or a domain

of 9 × 9 pixels. The shape of the sensor is somewhat arbitrary, however tests with a

circular sensor region show no effect on the visit distribution (data not shown).
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The amount of Psl deposited is ρPsl(k, l) = rPslnvis(k, l), where nvis(k, l) is the total

number of prior visits to pixel (k, l). Since the parameter c0 controls moves to Psl-devoid

regions, it can be interpreted as a measure for the TFP binding-strength to bare surface.

We find empirically that c0 . 0.001 ensures that the simulated systems cover the range

of visit histograms observed in experiment (see Ref. [16] and Sec. 2.3 below). Since the

computational cost increases with decreasing c0, we choose c0 = 0.001, i.e., the largest

value that adequately reproduces experimental behavior.

Rather than generating bacterial moves directly according to the joint distribution

P0(∆r, φ) × PPsl(cPsl(r)), we generate trial moves according to P0 and then accept these

moves according to Eq. 2.1. If a move is rejected, a new move is proposed for the same

bacterium. This continues until a move is accepted or until a limiting number of at-

tempts Nmax is reached, to avoid deadlock situations. The error introduced by this is

limited by choosing Nmax large enough that fewer than 1% of all moves are aborted for all

deposition rates. Accordingly, [1− PPsl(cPsl = 0)]Nmax = 0.01 or Nmax ≈ 4.6/c0 for small

c0. The excluded volume of the bacteria is modeled by rejecting proposed moves that re-

sult in bacterial overlap, resulting in a higher rate of rejection. Empirically Nmax ≈ 5.7/c0

is large enough that less than 1% of all moves are aborted for all rPsl.

Bacterial growth. During each time step we let each bacterium divide with proba-

bility pgrowth, chosen to match the exponential population growth rate observed in the

experiment. Figure 2.1A shows the bacterial population as a function of time for the

lowest and highest arabinose concentrations (0% and 1% (w/v), respectively) along with

fits to the exponential part of the data (times greater than 15,000 steps for 0% arabinose

and greater than 6,000 steps for 1% arabinose). The growth rates obtained from the fits
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are 4.91(9) × 10−4 per bacterium per time step (0% arabinose) and 3.69(4) × 10−4 per

bacterium per time step (1% arabinose). In the simulations we find that variations in

the growth rate of ∼20% do not significantly affect the form of the visit histogram, so

the average of these two rates (4.30 × 10−4 per bacterium per time step) is used for all

rPsl. Upon division, we place a new bacterium with its long axis collinear with that of its

parent, either parallel or antiparallel with equal probability, and displaced ±lb from the

parent, with equal probability.

In Ref. [16], a growth event was rejected if it led to overlapping bacteria, effectively

resulting in locally suppressed growth rates for tightly clustered bacteria. To rectify this,

here we implement a scheme that successfully places a bacterium for every growth event.

If a daughter cell overlaps with an existing bacterium we first attempt to place it on the

opposite pole of the parent (i.e., touching the head instead of the tail, or vice versa). If

this again results in an overlap, the new bacterium is oriented either parallel or antiparallel

to the bacterium with which it first overlapped (in case there are multiple overlaps on the

first placement attempt, the bacterium with the smallest center-to-center distance from

the parent is chosen), and placed at the midpoint of the center-to-center line connecting

this bacterium and the parent. The distance between the daughter cell and the bacterium

with which it is parallel is repeatedly halved until there is no overlap. Note that this

always leads to successful placement, since the model assumes the bacteria to have zero

width.

Attachment and detachment. In the initial phases of biofilm formation, bacteria are

reversibly bound to the surface and thus can attach and detach [16]. The detachment

rate is anti-correlated with the Psl concentration at the surface to which it adheres [16],
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and most detachment events come from bacteria that have short residence times (data not

shown) and therefore little overall effect on the visit distribution and Psl content of the

system. For this reason, and to maintain the simplicity of the model, we forego modeling

attachment and detachment.

Comparison to previous models. In theoretical models of auto-attractors [22, 23],

agents were found to self-localize given fast enough deposition of the auto-attractant,

as in ours. An essential difference is that these models used a diffusive attractant to

obtain stable aggregation over long time scales. Without diffusion, the surface eventu-

ally becomes evenly covered with a saturating concentration of auto-attractant so that

no sites are favored, leading to microcolony collapse. Another important difference is

that the present simulation model is precisely calibrated to our experimental system per

Fig. 2.1 to allow direct comparisons.

In addition, auto-attractive systems have been studied using a set of nonlinear Fokker–

Planck equations known as the Patlak–Keller–Segel model (see Refs. [24] and [25] for a

detailed review). Although such a treatment matching our system parameters may be

useful, it is not undertaken in the present study.

2.3. Results and Discussion

2.3.1. Persistent step sizes

The supplementary movie of Ref. [16] shows that some bacteria move faster than others,

even in the absence of Psl. This is in accord with recent research that suggests that

an asymmetric distribution of cellular organelles during cell division can lead to motility

polyphenism in isogenic populations of P. aeruginosa [26]. One would expect to observe
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temporal correlations in the step sizes of individual bacteria with intrinsic motilities,

however these are difficult to observe because the bacterial motion is twitchy and the

bacterial positions are subject to observational noise on the order of a few pixel widths.

However, we can identify statistically significant differences in the average step sizes 〈s〉

of different bacteria that correlate with residence time on the surface (Fig. 2.2A).

Before inferring meaning from this correlation, we consider potential experimental

artifacts that may cause it. First, measurement of true surface residence time can be

disrupted by division events. However, this does not have a significant effect on the

data, as the average time for a division (more than 6000 seconds) is much longer than

most residence times. Next, we can expect trends resulting from the fact that faster

bacteria may traverse the image window in fewer frames. However, this would result

in s = 1/tx, where t is the traversal time, with x ≥ 1 (x > 1 can result from random

attachment/detachment), whereas Fig. 2.2A shows x . 1/3. Lastly, motility behavior

characteristic of attachment or detachment would proportionally have a larger effect on

bacteria with short surface residence times thereby potentially generating the observed

trend. To exclude the possibility that this correlation is due to behavior characteristic of

bacteria immediately after attachment or immediately before detachment, we perform the

same analysis as in Fig. 2.2A but with the first and last ten time steps of a bacterium’s

surface residence omitted. The results are similar to Fig. 2.2A (data not shown), sup-

porting the conclusion that the correlation between 〈s〉 and residence time is not merely

due to artifacts. Because TFP are responsible for surface adhesion as well as motility,

this correlation could imply that an asymmetric distribution of pili between daughter cells

causes this difference in motility, similar to the results of Ref. [26].
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Figure 2.2. A) Average unsmoothed step size and standard deviation of the
mean (in units of the mesh size a) for the arabinose-inducible ∆PPsl/PBAD-
Psl mutant with different residence times, in the absence of arabinose (so no
Psl is deposited). Each bar represents an average over at least 1000 bacte-
ria, except the rightmost which represents 299 bacteria. B) Visit histogram
and traversal histogram from experiment, calculated traversal histogram,
and power law −3. The similarity of the first two curves indicates that
the visit histogram is dominated by the distribution of pixel traversal times
rather than the distribution of revisited pixels. See Sec. 2.3.2 for the def-
inition and calculation of the traversal histograms as well as a detailed
comparison of the present curves. The calculated histogram agrees well
with experiment, especially at low visit number. C) Visit histograms ob-
tained in experiment and in two different simulations, all in the absence of
Psl. “Variable step sizes” indicates that the step size s of each bacterium
was reselected at each time step, whereas “persistent step sizes” indicates
that each bacterium was assigned a fixed s at birth and retained that value
for the course of the simulation. Experimental results lie between those
of simulations with variable and persistent step sizes, however the latter
agrees much better with experiment and captures the observed power-law
behavior. This supports the conclusion that the power-law form of the visit
distribution is a consequence of the persistent nature of bacterial motility
(see discussion in main text).
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Simply selecting the step size s from Pstep(s) for each bacterium at each time step

would result in average motility for all bacteria, disallowing the distinctive behaviors

observed experimentally. To model heterogeneous motility, individual characteristics are

assigned at “birth.” Because bacterial step sizes show no temporal correlation (data not

shown), bacterial motion would be best represented by a distinct step-size distribution

assigned to each bacterium, from which then a step size is chosen stochastically on a per

time-step basis. However, since it is difficult to obtain statistical information on these

individual distributions from the experiments, we approximate the individual behavior

by randomly choosing s from Pstep(s) once per bacterium and keeping it fixed for the

duration of the simulation. This approximation leads to deviations at long times that

manifest themselves, e.g., in the visit histogram at large visit number.

2.3.2. Effect of step-size persistence on the visit histogram

Bacterial surface exploration is quantified via the “visit histogram,” the probability that

a pixel is visited n times (see Figs. 2.2B and 2.2C above, as well as Figs. 2d and 2e of

Ref. [16]). In the absence of Psl, bacteria exhibit “exploratory” behavior, i.e., pixels are

highly likely to be visited few times and highly unlikely to be visited many times. This

manifests itself as a distribution of surface-site visits that can be approximated by a power

law of roughly −3 over roughly two decades (Fig. 2.2B).

The form of the visit histogram in simulation strongly depends on the algorithm

employed for selecting the bacterial step sizes (Fig. 2.2C). Drawing the step size from the

distribution Pstep at each bacterial move results in amplified intermediate visit numbers at

the expense of low and high visit numbers compared with experiment. Conversely, using
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persistent step sizes as discussed above straightens the shoulder-type curve to a Pareto- or

power-law-like curve (Fig. 2.2C). This indicates that the power-law signature may not be

due to many-body behavior as claimed in Ref. [16], but instead is due to the distribution

of pixel traversal times of individual bacteria.

Because the median step size s̃ equals 0.46a, with a the pixel size (see Fig. 2.1C), a

pixel traversal typically requires multiple time steps and thus registers multiple visits to

the same pixel. To quantify the resulting effect on the visit histogram, we construct a

“traversal histogram” Q(n) from the experimental data, counting the number of visits

per traversal, i.e., the number of visits to a pixel before that pixel is visited by a new

bacterium or by a bacterium that has traveled at least 5a from the pixel since its prior

visit, measured radially. The latter condition is imposed to suppress spurious “revisits”

that arise from inaccuracies in locating a bacterium’s center. Since the number of visits

per pixel represents a sum over traversals, the difference between the traversal and the

visit histogram provides a measure of collective behavior in the absence of Psl. The

similarity between the two curves (Fig. 2.2B) suggests that the power-law-like behavior

does not necessarily result from collective behavior as hypothesized in Ref. [16].

It is instructive to examine the effect of persistence of bacterial step sizes by computing

a single-particle approximation to Q(n). If we assume that bacteria have a persistent step

size s given by the probability distribution Pstep(s), and traverse a path of length l through

a pixel such that the number of steps n = l/s, then the traversal distribution satisfies

(2.3) Q(n)|dn| ∝ Pstep(s)s|ds| ⇒ Q(n) ∝ Pstep (l/n)
l2

n3
.



35

The factor s on the right-hand side of the first relation reflects that faster bacteria traverse

more pixels. If we assume the variation in Pstep(s) to be small over the range considered, we

find Q(t) ∝ t−3, matching experiment. Fig. 2.2B shows the traversal histogram computed

from the step-size distribution and probability distribution of the path lengths l, matching

the experiment quite well. The main deviations occur at high visit number, where the

calculated traversal histogram depends on Pstep(s) for small s, for which there is little

data (see Fig. 2.1C).

2.3.3. Emergence of distinct subpopulations

Gibiansky et al. observed the division of crawling wild-type P. aeruginosa into super-

and subdiffusive subpopulations [18]. A similar analysis of bacterial motilities with an

added dependence on Psl deposition (Fig. 2.3A) shows that wild-type bacteria (moder-

ate Psl deposition) divide into subpopulations of super- and subdiffusive bacteria [18],

whereas Psl overproducers are indiscriminately slowed so that even the fastest bacterial

subpopulations exhibit subdiffusive motility.

This can be understood by considering the interaction of bacteria with distinct motili-

ties (Fig. 2.2A) with the Psl they deposit. Such bacteria can be divided into two subpopu-

lations: those that move fast enough to escape the Psl that they deposit and those that do

not. We show this in simulation by dividing the bacterial population into deciles of intrin-

sic step size and plotting their MSDs as a function of time (Fig. 2.3B–E). As expected,

for rPsl = 0, the MSDs of all bacteria are superlinear (ballistic) transitioning to linear

(diffusive) on the time scale of 1/preorient time steps, where preorient = 0.037. Note that

this behavior differs from that of the short-time experimental MSDs because the model
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Figure 2.3. Mean-squared displacement of various subpopulations, as a
function of Psl deposition rate. A) Experimental MSDs of the highest (solid)
and lowest (dashed) step-size quartiles of bacteria are plotted for wild-type
(blue) and Psl-overdepositing bacteria (orange). The results are normalized
by their values at t = 3 sec to facilitate comparison of slopes, and all bac-
teria with surface residence times less than 300 sec are omitted. All error
bars are smaller than the line widths. B–E) Simulated bacterial MSDs are
separated into deciles by intrinsic step size s for B) rPsl = 0, C) rPsl = 10−5,
D) rPsl = 10−4, and E) rPsl = 10−3. From bottom to top in each graph
the dotted line represents diffusive behavior (i.e. MSD(t) ∝ t) followed
by the MSDs of the step size deciles in order of increasing s. Red and
blue curves correspond to diffusive and subdiffusive MSDs, respectively, for
t > 1/preorient. In both experiment and simulation, moderate Psl deposition
allows super- and subdiffusive groups to coexist, whereas Psl-overdeposition
confers subdiffusivity on all bacterial subpopulations.

lacks gradual reorientations. As rPsl increases, increasingly fast bacteria become corralled

in their own Psl, indicated by sublinear MSDs, until all become corralled for rPsl = 10−3.
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The Psl deposition rate therefore controls the relative prevalence of super- and subdiffu-

sive bacteria and is therefore an essential parameter in determining the collective motility

of the bacterial population.

We can see how distinct populations emerge over time by looking at the average

of the intrinsic step sizes of all clustered bacteria 〈s〉clust, where clusters are identified

using the DBSCAN algorithm with MinPts = 5 and Eps = 50 pixels [27] (Fig. 2.4A).

Since the intrinsic step size is unknown in experiments with Psl-depositing bacteria, we

present simulation results exclusively. Clustering behavior is strongly dependent on the

population density, so to suppress noise due to run-to-run variations in this density, we plot

〈s〉clust as a function of total bacterial population instead of time. For rPsl = 10−5, 〈s〉clust

is initially small compared to the average step size of the entire population and increases

with time as the overall bacterial density grows and a larger fraction of bacteria join

clusters, indicating that fast bacteria initially explore the surface and then join colonies.

For large rPsl both fast and slow bacteria join clusters indiscriminately from the beginning

so that the average step size of bacteria in clusters is nearly equal to the overall average.

This effect can also be visualized by maps of bacterial speed, which is taken here as

the average step size over the surface lifetime of a bacterium. To create these maps,

we color-code each pixel by the speed of its slowest visitor (Figs. 2.4B and C). Recre-

ating Fig. 2.4B using intrinsic step sizes instead of observed average step sizes produces

qualitatively similar results (data not shown). Over distances smaller than a bacterium

length, the shape of the bacterial trail differs between simulation and experiment due to

the approximate nature of the reorientation in simulation (see Sec. 2.2.2.1) and because

the simulated bacteria have zero width, allowing them to pack more closely. Despite this
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Psl content). B, C) Representative step-size maps obtained after 500,000
bacterium-time steps, in which pixels are color-coded according to the step
size of their slowest visiting bacterium, from B) simulation with deposition
rate rPsl = 10−5 and C) experiment at 0.1% (w/v) arabinose. Scale bars
are 2 bacterium lengths and 4µm, respectively. Both images demonstrate
the tendency of clusters to form around those bacteria with smallest step
size. The differences between the images are discussed in Sec. 2.3.3.
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we can see in both maps that densely visited patches have slow bacteria at their core,

surrounded by a “corona” of faster bacteria. Supplementary Movie 1 shows that slow

bacteria quickly become localized and start to nucleate small but rich Psl “beds” that be-

come increasingly attractive to other bacteria. Faster bacteria don’t stay in one place long

enough to initiate a Psl bed, but instead explore the entire surface, encountering the Psl

beds created by other bacteria and possibly joining smaller patches together by traversing

between them. For this reason we refer to the subdiffusive group as “nucleators” and the

diffusive group as “explorers.”

2.3.4. Surface coverage of nucleators and explorers

Since the relative proportion of nucleators and explorers can be tuned via the rate of

Psl deposition in both experiment and simulation, we can evaluate how amplifying one

subpopulation at the expense of the other affects salient observables in microcolony for-

mation.

2.3.4.1. Colony size. An important function of a healthy biofilm is to fortify its con-

stituent bacteria against their environment, e.g., antibiotic factors [7]. Experiments indi-

cate that microcolony fortification is a time-consuming process during which P. aeruginosa

colonies are vulnerable to eradication, and after which they are relatively impervious to

such treatment [28]. Since Psl is a main component of the extracellular matrix [29], larger

rPsl can be considered to confer an advantage. Additionally, biofilms fortify themselves

via changes in behavior such as reduced nutrient intake, decreased motility, and increased

production of extracellular matrix, which are induced via quorum sensing when clusters
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reach a certain size and density [7, 30, 31, 32]. Thus, even though we do not model

quorum-induced changes, we can employ cluster size as a measure for biofilm fitness.

The average size of the largest cluster in simulation as a function of time elapsed

shows a transition point around 6.5 hours and colony sizes ∼100, below which high rPsl

yields larger colonies and above which the opposite is true (Fig. 2.5A). Depending on

the microcolony size required to induce a change in phenotype, different deposition rates

could confer an advantage here. In experiment, larger arabinose concentrations afford

larger clusters over the entire range examined, although statistics limit this to below the

transition point observed in simulation (Fig. 2.5B). Note that population is used as a

proxy for time, because population-dependent clustering causes large variations between

runs at a given elapsed time, which for the limited experimental data would lead to large

error bars. For large Psl deposition rates, bacteria are less mobile and cluster growth

happens mostly due to reproduction. At early times this decreased mobility aids cluster

growth, but when the surface population grows large Psl deposition rates can hinder

growth by preventing bacteria from joining larger clusters.

2.3.4.2. Surface exploration. It is useful for bacteria to explore a surface on which

they land, either to forage or to find other bacteria already established on the surface [33].

The impact of Psl deposition on surface exploration can be quantified by the percentage

of surface covered by at least one bacterium during a simulation or experiment (Fig. 2.6).

A pixel is considered covered if it lies within 4 pixels of a visited pixel, corresponding

to a bacterium half-width. Bacteria explore the majority of the surface for experimental

arabinose concentrations < 0.1%, and for simulated rPsl . 10−5. Additionally, the sur-

face coverage of WT bacteria suggests that their deposition rate is less than that of the
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Figure 2.5. Evolution of largest cluster size in simulation and experiment,
for various Psl deposition rates. A) Largest cluster size per simulation as
a function of time, averaged over 1000 simulations. B) Largest cluster size
per experiment as a function of total bacterial population, averaged over at
least 3 experiments. At shorter times, higher Psl deposition rates promote
clustering in both simulation and experiment. In addition, the simulations
show that after ∼6.5 hours, higher rPsl hinders clustering due to bacterial
immobility. This transition is not observed in experiment, possibly due to
lack of statistics.

arabinose-inducible mutant in the presence of 0.1% w/v arabinose. Large Psl deposition

rates are observed to significantly impede surface exploration, indicating that the ability

of a WT bacterial population to explore the majority of the surface is partly due to its

limited Psl deposition.
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Figure 2.6. Surface exploration vs. Psl deposition. Percent of surface pix-
els covered in A) simulation as a function of the Psl deposition rate rPsl
and B) experiment as a function of the arabinose concentration, both af-
ter 500,000 bacterium-time steps. Red squares have error smaller than
the symbol size. The blue circle (WT bacteria) represents a single exper-
iment and has no error bounds, and its placement between 0% and 0.1%
arabinose concentrations merely emphasizes that its behavior is consistent
with an arabinose concentration between these values. Both panels show a
monotonic decrease of surface exploration as a function of Psl deposition,
although the coverage at 0% arabinose concentration is significantly higher
than in the simulations for rPsl = 0. This may be attributed to frequent
attachment and detachment events not modeled in the simulations. The
majority of the surface is unexplored for rPsl & 10−4 and for arabinose con-
centrations & 0.1%. Additionally, the WT deposition rate is low enough
for the population to explore the majority of the surface.

2.3.4.3. Diversity. One characteristic of a healthy biofilm is microheterogeneity, the

presence of genetic diversity within a cluster [34, 35]. To characterize this we track
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bacterial lineage with a lineage number i (i = 1, . . . , 10) that is passed from a parent

to its offspring. For each cluster we compute the Gini–Simpson diversity index, i.e., the

probability that two bacteria from the same cluster belong to different lineages,

(2.4) G =
M2 −

∑10
i=1 n

2
i

M(M − 1)
,

where M is the total number of bacteria in a cluster and ni the number of bacteria

from each lineage in that cluster [36]. G decreases monotonically as a function of rPsl

(Fig. 2.7A), in accordance with the experimental results for the same system, where

microcolonies of WT bacteria were found to exhibit much greater bacterial diversity than

microcolonies of Psl overproducers [16]. Even though the present study involves isogenic

bacteria and hence no cluster is genetically diverse, these results demonstrate that low

Psl production enables bacteria to form polygenic clusters in polygenic environments,

thus providing genetic diversity that can protect a cellular population in an unstable

environment [35]. The similarity to Fig. 2.6A is not surprising, as bacteria that cover

more ground will also mix better.

Since it is possible that the dependence of cluster size distribution on rPsl affects

the trend observed in Fig. 2.7A, we also consider diversity as a function of cluster size

(Fig. 2.7B), separated per Psl deposition rate. Whereas there is an overall increase in

diversity with cluster size, at fixed cluster size diversity decreases with increasing Psl

deposition rate, consistent with Fig. 2.7A.

2.3.4.4. Radial distribution function. The effect of Psl can be viewed as mediating a

time-delayed attraction between bacteria, resulting in positional correlations that can be

observed in the center-to-center radial distribution function g(r) (RDF). Since clustering
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Figure 2.7. Cluster diversity and Psl deposition rate. Gini–Simpson diver-
sity index of bacterial clusters, as a function of A) deposition rate rPsl and
B) cluster size for different rPsl. Both graphs are taken from 100 indepen-
dent simulations of 500,000 bacterium-time steps each. Large values for rPsl
suppress bacterial mobility, thus reducing clusters to a near-monoculture at
the highest rPsl examined. Diversity is also strongly dependent on cluster
size (see panel B), but decreases monotonically with increasing rPsl regard-
less of cluster size. See main text for further discussion.

can result from bacterial reproduction alone [37, 38], we isolate Psl-dependent clustering

by simulating 50 non-multiplying bacteria (corresponding roughly to the time-averaged

population size in experiment).

After 500,000 bacterium-time steps, the RDF (Fig. 2.8A) shows a peak for r < lb,

followed by a depletion zone near r ≈ lb that develops as the Psl deposition rate increases.

To exclude the possibility that this depletion simply results from excluded-volume effects
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we examine the joint radial and angular distribution function, i.e., the relative probability

that two bacteria have center-to-center distance r and difference α in director orientation,

for rPsl = 10−3 after 500,000 bacterium-time steps (Fig. 2.8B). Since the depletion extends

beyond the excluded-volume region and is present for all α, we conclude that it is driven

by Psl. Whereas large rPsl helps localize bacteria in tightly packed groups, the associated

reduction in mobility (Fig. 2.3) prevents the formation of larger clusters, leading to the

depletion minimum in Fig. 2.8A, and the crossover in Fig. 2.5A.

2.4. Conclusion

We have combined experiments with carefully calibrated simulations to show that Psl

deposition significantly affects microcolony formation via bacterial surface motility. Ex-

periments show that an isogenic population of P. aeruginosa exhibits polyphenic motility

that correlates with surface residence time even in the absence of Psl, and associated sim-

ulations indicate that this polyphenism is responsible for the power-law form of the visit

histograms observed in Ref. [16]. When bacteria deposit Psl, this step-size heterogene-

ity causes the bacterial population to split into “nucleators,” which travel slowly enough

to become trapped in their own Psl beds, and “explorers,” which can escape their Psl

beds and explore the surface. These distinct populations have been observed in experi-

ment [18]. We have adjusted the relative prevalence of these subpopulations by tuning

the simulated Psl deposition rate and observed that a higher prevalence of nucleators may

decrease the microcolony fortification time, and a higher prevalence of explorers allows

bacteria to cover more of the surface and to form clusters that are more heterogeneous
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Figure 2.8. Spatial distribution of bacteria. A) Radial distribution function
g(r) as a function of center-to-center distance r. B) Joint radial and angu-
lar distribution function g(r, α) for rPsl = 10−3. The green line represents
the distance of closest approach as a function of the difference α in director
orientation. Both graphs are obtained from 10,000 independent simula-
tions (for each value of rPsl) of 50 non-multiplying bacteria after 500,000
bacterium-time steps.

in bacterial lineage. We find that a single deposition rate yields surface coverage, micro-

colony fortification, and microcolony diversity that are simultaneously all close to optimal.

Interestingly, by comparing the experiments and simulations in Ref. [16] we see that the

visit histogram of wild-type P. aeruginosa exhibits a power law close to the optimal sim-

ulations, which exhibit a large degree of heterogeneous motility. This may indicate that
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the Psl deposition rate of wild-type P. aeruginosa is tuned to utilize their phenotypic

diversity to their advantage.
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CHAPTER 3

Antiviral activity of squalamine: Role of electrostatic

membrane binding

ABSTRACT

Previous work has demonstrated that squalamine, a molecule found in the

liver of sharks, exhibits broad-spectrum antiviral properties. It has been pro-

posed that this activity results from the charge-density matching of squalamine

and phospholipid membranes, causing squalamine to bind to membranes and

displace proteins such as Rac1 that are crucial for the viral replication cy-

cle. Here we investigate this hypothesis by numerical simulation of a coarse-

grained model for the competition between Rac1 and squalamine in binding

affinity to a flat lipid bilayer. We perform free-energy calculations to test the

ability of squalamine to condense stacked bilayer membranes and thereby dis-

place bulkier Rac1 molecules. We directly compare our findings to small-angle

X-ray scattering results for the same setup and show that this coarse-grained

model is sufficient to replicate the binding of membranes and exclusion of

Rac1 by squalamine molecules.

3.1. Introduction

Squalamine, a bile salt originally derived from dogfish shark tissues, was established

as an effective broad-spectrum antibiotic upon its discovery in 1993 [39, 40]. Recently,

squalamine was discovered to be an effective antiviral medication as well [41]. It was
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proposed this activity relates to the charge-density matching of squalamine and phos-

pholipid membranes [41], which causes squalamine to bind to membranes and displace

proteins such as Rac1 [42, 43, 44] that can be crucial for viral entry [45, 46], protein

synthesis [47], virion assembly [48, 49], virion budding [50], and other steps in the viral

replication cycle [51].

To test this hypothesis, small-angle X-ray scattering experiments were performed in

which membrane-forming lipids of composition similar to that of membranes in mam-

malian cells (20:20:60 DOPS:DOPC:DOPE [52]) were incubated alone, with Rac1 only,

with squalamine only, and with Rac1 and squalamine together (Fig. 3.1b) [41]. Re-

sults indicate that Rac1–membrane complexes are weakly associated lamellar stacks with

a spatial periodicity broadly distributed around 29 nm, whereas squalamine–membrane

complexes are tightly associated with spacing sharply distributed around 5.3 nm, which

after subtracting the bilayer thickness dbil ≈ 4.5 nm leaves 0.8 nm of separation be-

tween membranes indicating tightly formed stacks. Lipids incubated with both Rac1 and

squalamine exhibit a diffraction pattern nearly identical to that of squalamine only (spac-

ing ∼5.4 nm), indicating first that squalamine continues to bind lipid membranes into

tight stacks regardless of the presence of the more highly charged Rac1 molecules, and

second, since the shoulder corresponding to Rac1–lipid complexes is not present and the

bilayer separation (∼0.9 nm) is less than the minimum width of a Rac1 protein (∼4 nm),

that squalamine–lipid complexes are highly favored over Rac1–lipid complexes and that

Rac1 has been ejected from the condensed bilayers.

Further testing involved coarse-grained (CG) molecular dynamics (MD) simulations

in which squalamine and/or Rac1 molecules interacted with a single outer leaflet of a
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Figure 3.1. Squalamine strongly displaces Rac1 from model membranes in
simulation and experiment (taken from Ref. [41]). (a) Squalamine chemical
structure. (b) Diffraction patterns from lipid membrane vesicles, Rac1–
membrane complexes, squalamine–membrane complexes, and membranes
incubated with both Rac1 and squalamine (bottom to top). The diffraction
pattern of the final case is nearly identical to the diffraction signature of
squalamine–membrane complexes, indicating strong suppression of Rac1–
membrane binding. (c) From left to right are the coarse-grained models of
Rac1 with body beads in light blue and polycationic tail beads in purple,
squalamine with the polycationic tail bead in red and the rest in pink, and
lipids with uncharged beads in yellow and charged beads in blue. (d–f)
Representative configurations from MD simulations of solutions of Rac1
(d), squalamine (e), and both Rac1 and squalamine (f), respectively, in
the presence of a coarse-grained membrane in which 20% of the lipids are
charged. Rac1 and squalamine are present at concentrations that yield the
same net charge on all molecules, each higher than needed to neutralize
the membrane. Squalamine was found to exhibit nearly two times stronger
electrostatic binding than Rac1, and it displaced 56% of Rac1 from the
membrane.

lipid bilayer membrane [41]. Squalamine was found to bind favorably to lipid membranes,

displacing roughly 56% of the Rac1 proteins that adhered to the membrane in the absence
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of squalamine (Fig. 3.1d–f). However, since the probability of membrane binding for

a given molecule is related to the concentration of that molecule which is set by the

simulation box height and so is somewhat arbitrary, these simulations fall short of fully

explaining experimental observation, motivating the study of a system more closely related

to experiment. Additionally, membrane–membrane like-charge attraction observed in the

experimental system represents a breakdown in Poisson–Boltzmann (PB) theory due to

factors that possibly violate its assumptions such as steric effects [53, 54], counterion

correlations [55, 56], and internal molecular structure [57]. By using MD simulations

to correlate system structure with thermodynamic variables we can identify which of

these factors affects system behavior here, and by comparing the free energies of systems

with different compositions we show that squalamine is a more effective counterion upon

membrane condensation, and that squalamine can effectively eject Rac1 from lipid bilayer

stacks.

3.2. Methods

All simulations were performed using a version of the LAMMPS package [58] that was

modified as discussed below. To study the condensation of lipid bilayer membranes around

squalamine molecules and Rac1 proteins, varying amounts of these species were placed in

the interstitial region between stacked lipid membranes and the system was periodically

replicated in all directions (Figs. 3.2a and c). Because the observed membrane-binding

and protein-ejecting activity of squalamine is thought to be electrostatic in nature [41],

it is relevant to determine if a model employing steric and electrostatic interactions alone

will capture the observed behavior. Accordingly, species were represented by CG beads
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Figure 3.2. Simulated systems contain Rac1 (a and d) or squalamine (c
and e) between charged bilayer membranes. The equilibrium configura-
tions of these systems are determined by their free-energy minima, which
are computed via thermodynamic integration (Sec. 3.2.6) during membrane
condensation (blue arrows). The free energy required to exchange particles
between systems is calculated using the Kirkwood integration scheme (red
arrows, see Sec. 3.2.6). Which species most favorably condenses the mem-
branes is determined via the total free-energy difference between the equilib-
rium separation of Rac1–membrane complexes (d) and that of squalamine–
membrane complexes (e), minus the free energy required to replace Rac1
with squalamine in bulk (Sec. 3.3.3).

or assemblies of beads that interact with each other through generic short-range poten-

tials. Additionally, long-range electrostatic interactions were calculated using the Ewald

summation method. Polarization effects resulting from inhomogeneities in the dielectric

constant were not taken into account.

3.2.1. Coarse-graining

The system was constructed to model the excluded-volume and electrostatic interactions

of species placed between stacked membranes and the outer leaflets of the membranes.
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Each membrane surface was represented by beads of uniform size 7.57 Å at a fixed areal

density (8.5 Å)−2 per membrane, chosen to correspond to SAXS experiments [41]. Mem-

brane ripples induced by polybasic species such as Rac1 tend to be on the order of mi-

crons [59, 60], much larger than the scale of these simulations, so the membrane was

modeled as flat and the beads representing the lipid head groups were confined to move

in the x–y plane. To accurately model the lipid composition of mammalian membranes,

20% of the beads representing the lipid head groups carried a charge of −e and the rest

were neutral [52]. To represent the excluded volume of the bilayer membrane, two mem-

brane surfaces were separated by a void space of dbil = 4.5 nm in the z-direction that all

species were forbidden from entering, represented as the solid blue regions at the top and

bottom of the configurations in Fig. 3.2.

The Rac1 and squalamine molecules were coarse-grained using VMD’s Shape-Based

Coarse-Graining (SBCG) tool [61, 62], which takes as input the protein data bank (PDB)

file of a molecule and the number of beads desired to represent it. To accurately and

efficiently represent the shape of a molecule, the SBCG tool uses a distribution of bead

sizes, however since the bead size determines the minimum separation between two beads

and therefore the strength of electrostatic binding, we used beads of uniform diameter

equal to that of the 7.57 Å lipid beads. For the squalamine molecule this required three

beads with a separation of 9.6 Å between the head and body bead, and a separation of

12.4 Å between the body and tail beads (Fig. 3.1c). Bead charges were assigned manually

based on the structure of the squalamine molecule, i.e., −e for the head bead, 0 for the

body bead, and +3e for the tail bead.



54

To coarse-grain the Rac1 protein, the protein was isolated from the PDB file 2RMK [63]

and separated into a body region and a tail region. Since the polybasic tail region dom-

inates Rac1–membrane binding [64], it was coarse-grained with 7.57 Å beads, consistent

with that of squalamine and the lipid head groups. A total charge of +5e on the tail was

divided into seven partial charges of −0.91e, −0.04e, +0.86e, +1.09e, +2.09e, +1.53e, and

+0.38e, starting with the bead representing the C-terminus and moving toward the body.

For the weakly charged body region of the Rac1, steric interactions dominate, so beads

with diameter 11.6 Å were used to increase efficiency while modeling the Rac1 excluded

volume. For the body and the tail, the VMD SBCG tool was used to obtain the number of

beads (37 total) as well as their equilibrium relative positions, bond lengths, and partial

charges (see Fig. 3.1c).

3.2.2. Bead interactions

The interaction between bonded beads was described by a harmonic potential

(3.1) Ubond = 200ε (r − r0)2 ,

with r the bead–bead separation, r0 the equilibrium separation, and ε = kBT/1.2 the

Lennard-Jones (LJ) unit of energy. Additionally, the intrinsic stiffness of the squalamine

molecule was modeled by a harmonic bond-angle potential

(3.2) Uangle = 4ε(θ − π)2 ,
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where θ is the angle between bonds and π the equilibrium bond angle. All nonbonded

beads interacted through a purely repulsive shifted-truncated LJ (STLJ) potential, trun-

cated at rcut = 21/6σ, where σ is the bead size given by the coarse-graining procedure, and

shifted by ε so that the force and energy vanish at rcut. Electrostatic energies, forces, and

virial pressures were calculated using particle–particle particle–mesh Ewald summation

with a relative accuracy of 10−4 [65]. As is customary in coarse-grained simulations of

electrostatic complexation phenomena [66], the Bjerrum length was set to 3σ. The solvent

was modeled as a homogeneous medium with Brownian effects represented by a Langevin

thermostat with temperature T = 1.2ε/kB and damping time 10τ , with τ = σ
√
m/ε the

LJ unit of time and m the LJ unit of mass.

3.2.3. Simulation setup

Simulations were performed at the membrane–Rac1 and membrane–squalamine isoelectric

points, i.e., the numbers of Rac1 and squalamine molecules were chosen to exactly coun-

tercharge the membrane surfaces. For systems at small spacings corresponding to equi-

librium conditions this is a valid approximation since entropic concerns favor counterion

release and energetics favors the binding of higher-valency species. This approximation

is also used for larger separations for which it does not necessarily hold, but which serve

as a convenient integration pathway to obtain the free-energy difference between different

states (see Sec. 3.2.6). Since the free energy is independent of the pathway used to obtain

it, the results are unaffected by this assumption. Squalamine, Rac1, and salt molecules

were excluded from entering the interior of the bilayer membranes by STLJ walls that

were co-planar with the membrane beads, and interacted with all non-membrane beads
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via an STLJ potential with ε = kBT/1.2 and σ = 3.79Å. The MD time step was set to

t = 0.002τ to ensure energy conservation, and a typical simulation run took at least 50

million time steps, corresponding to 105τ , yielding at least ∼100 independent samples.

3.2.4. Pressure calculation and barostatting

Mechanical equilibrium requires the pressure in the bilayers equals that in the bulk. Since

the lateral compressibility of the lipid membrane was assumed to be much higher than

the longitudinal compressibility of the system, the system was taken to be incompressible

in the x–y plane. Accordingly, the cross-sectional area of the box was fixed and only the

z-dimension of the box was allowed to vary. Mechanical equilibrium is then equivalent

to setting Pzz,bilayer = Pbulk, where Pzz is the zz-component of the stress tensor and Pbulk

is the pressure in bulk. This is imposed in Sec. 3.3.1 by performing a series of isochoric

(NV T ) simulations of varying Lz and interpolating to Pzz,bilayer = Pbulk, and in Sec. 3.3.2

by simulating at a constant pressure, for which we use a Berendsen barostat with damping

time 0.2τ [67]. The imposed incompressibility of the membrane requires adding to Pzz a

rigid-body correction P ′zz = Fij,z × dbil/6V when a particle i exerts a force Fij on either

a wall or bead j that composes the bilayer membrane, which required modification of

LAMMPS.

3.2.5. Chemical potential calculation

When this system is in equilibrium with a bulk solution that contains salt, there will likely

be a nonzero salt concentration in the bilayer stacks that screens the interactions between

the Rac1, squalamine, and bilayers. We impose chemical equilibrium between the stacked



57

bilayers and an external bulk solution. Chemical potentials µ were calculated using the

Widom insertion technique [68], whereby “test” molecules k of the salt are inserted into

equilibrium configurations S causing energy changes ∆Uins. To avoid systems with a net

charge, k is taken to be a charge-neutral set of n ions (n = 2 for a 1:1 salt). The chemical

potential µk of a 1:1 salt molecule of type k is given by,

(3.3) µk = −kBT log

〈
V 2 exp [−β∆Uins]

(Nk + 1)2

〉
,

where V is the system volume, β = 1/kBT , Nk is the number of molecules of type k

in configuration S, and 〈· · · 〉 denotes an ensemble average. Here we arbitrarily set the

thermal de Broglie wavelength Λ = 1 in our simulation units [69, 70], since its value does

not affect free-energy differences. For single-particle insertions, a representative sample

of S is obtained by performing a number of insertions Mins that scales as the box volume

divided by a typical correlation volume of the system λ3B (see Fig. 3.3). The largest systems

in this study had a side length ∼10λB, requiring 103 insertions per configuration for one

particle to fully sample the configuration. For a salt molecule consisting of n particles, the

phase-space volume to be sampled increases exponentially with n. Accordingly, a 1:1 salt

requires up to 106 insertions to fully sample a configuration (Fig. 3.3). This can be quite

costly given the expense of the Ewald algorithm, so is performed efficiently by, for each

particle i in n, choosing Mins random particle positions and computing their individual
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Ewald interaction energy with the NS particles in equilibrium configuration S

∆Uins,i =
4πqi
V

∑
k 6=0

exp [−k2/4α2 + ik · ri]
k2

NS∑
j=1

qj exp [−ik · rj]

−
√
α2

π
q2i + qi

NS∑
j=1

qjerfc(αrij)

rij
,

(3.4)

with q the charges, V the system volume, α the Ewald parameter, particle positions r,

and interparticle distances rij, then separately computing the Mn
ins cross-terms between

inserted particles i and j

(3.5)

∆Uins,ij =
2πqiqj
V

∑
k 6=0

exp [−k2/4α2]

k2

NS∑
j=1

exp [ik · (ri − rj)]

+
qiqjerfc(αrij)

2rij
.

Chemical equilibrium is obtained by performing simulations with varying Nsalt and inter-

polating µsalt,bilayer to the chemical potential of the bulk salt solution.

3.2.6. Thermodynamic integration

To evaluate whether squalamine or Rac1 will dominate the condensation of the lipid

bilayers, we obtain the equilibrium separations of membranes countercharged with either

Rac1 or squalamine and compare their free energies by constructing a reversible path

between them and integrating the appropriate derivative of the free energy along that

path (Fig. 3.2). For changes in system length Lz along a path of constant N , T , and
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Figure 3.3. The average Widom weight 〈wS〉 ≡ 〈exp [−β∆Uins]〉 converges
slowly with respect to the number of insertions Nins into a configuration S
consisting of a 100 mM salt in a box of side length 34σ. The relative error

decreases as N
1/2
ins and is ∼10−2 after 105 insertions, indicating the need for

large Nins. This can be done efficiently using Eqs. 3.4 and 3.5.

Axy = LxLy, we use the derivative of the Helmholtz free energy

(3.6)

(
∂F

∂Lz

)
N,T

= −∆PzzAxy

where ∆Pzz = Pzz,bilayer − Pbulk. For changes in the number of molecules Nk of type k

along a path of constant P , T , and Ni 6=k, the derivative of the Gibbs free energy is

(3.7)

(
∂G

∂Nk

)
P,T,Ni6=k

= ∆µk ,
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where the chemical potential difference ∆µk ≡ µk,bilayer − µk,bulk is used because these

molecules are being exchanged with a bulk solvent.

Changes in the free energy due to the exchange of large species with the bulk can-

not be quantified using the Widom insertion technique presented here because nearly

all insertions result in particle overlap and therefore infinite ∆Uins. Instead we use the

Kirkwood coupling parameter method [71], which tracks changes in free energy due to

changes in the form of the interparticle potential U . To add or delete particles by this

method, U is varied between UI and UII, corresponding to systems SI and SII, such that

the particles we wish to delete are fully interacting in system SI and do not interact with

the other particles in SII. Likewise, particles we wish to add are absent in SI and present

in SII. Integrating between these two systems is usually accomplished by expressing U as

a function of a coupling parameter λ, i.e.,

(3.8) U(λ) = f1(λ)UI + f2(λ)UII ,

where λ varies from 0 to 1, f1(1) = f2(0) = 1, and f1(0) = f2(1) = 0. For the present

study, all f1(λ) have the form f1(λ) = λk1 and all f2(λ) have the form f2(λ) = (1− λ)k2 .

For simulations performed at constant NPT , changes in the free energy with respect to

λ are given by

∆G ≡
∫ 1

0

(
∂G(λ)

∂λ

)
N,V,T

dλ =

∫ 1

0

〈
∂W (λ)

∂λ

〉
λ

dλ(3.9)

=

∫ 1

0

〈
∂f1
∂λ

WI +
∂f2
∂λ

WII

〉
λ

dλ ,(3.10)
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where W is the total potential energy of a system with interparticle potential U and 〈· · · 〉λ

denotes an ensemble average of a system with a potential-energy function U(λ). Values

of ∂G/∂λ were obtained directly from simulation and integrated via 5-point Gaussian

quadrature, which was verified against ten-point Gaussian quadrature for small systems.

For the interparticle interactions in the present system, we use a multi-step Kirkwood

integration scheme to connect each system to an ideal gas. We first use the Kirkwood

method to discharge both systems with U(λ) = USTLJ + Uwall + Ubond + (1 − λ)UES,

where UES is the electrostatic potential. This is done for computational efficiency since

the ensuing steps will not involve electrostatics, which incur most of the computational

cost. After this, we decrease the STLJ interactions of both systems to zero using U(λ) =

Ubond+Uwall+(1−λ)k2USTLJ. It has been noted that removal of a particle with a potential

of the form r−n in d dimensions can lead to a divergence in the integrand of Eq. 3.10 of

the form λ(k2d/n)−1 [72]. This can lead to serious inaccuracies of the quadrature, so given

d = 3 in our system and n = 12 for the STLJ potential, we eliminate this singularity

using k2 = 5.

To decouple the particles from the system walls representing the bilayers we use a

truncated potential [72]

(3.11) Uwall =


USTLJ(r0)− r0

2

(
∂USTLJ

∂r

)
r=r0

[
1−

(
r
r0

)2]
for r < r0

USTLJ(r) for r ≥ r0 ,

chosen to be piecewise-continuous and differentiable, where r0 is chosen such that USTLJ(r0) =

10kBT . To reduce the wall energy we choose f2(λ) = (1− λ)2 and use 10-point Gaussian

quadrature.
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This step yields an ideal-gas mixture with absolute free energy

(3.12) Gideal = NkBT

[
log βP −

∑
i

φi log φi

]
,

where N is the total number of particles and φi is the mole fraction of species i. The

internal free energy ∆Gint of bonded polyatomic molecules does not affect the final result,

and so can be left as an unknown constant.

The excess free energy of each species in bulk solvent is computed by starting with an

ideal gas of each molecule at its bulk concentration and performing Kirkwood integration

with U(λ) = Ubond + λ5USTLJ for the STLJ potential, and then with U(λ) = Ubond +

USTLJ + λUES for the electrostatic potentials.

3.2.7. Finite-size effects

Differences between a finite, periodic system and an infinite, non-periodic system arise

here due to a difference in boundary conditions in the electrostatics calculations. In an

infinite, non-periodic system, the electric potential is constrained such that it vanishes at

infinity. In a periodic system, the potential is instead constrained to average to zero over

the box volume, which is a direct result of setting the zero-mode of the reciprocal-space

Ewald sum to zero. This results in differences between the infinite and finite systems that

go as the inverse system size [73]. These were accounted for by performing simulations of

at least three separate system sizes and extrapolating to infinite system size as a function

of 1/N (Fig. 3.4).
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Figure 3.4. Finite-size effects are accounted for by a linear fit to the inverse
system size [73]. Systems contain squalamine at a salt content φsqual =
0.3125 (a and c) and Rac1 at a salt content φrac = 3. Each system is
held at constant cross-sectional area A and pressures P = P1 (a and b)
and P = P2 (c and d), corresponding to systems in equilibrium with bulk
salt concentrations of roughly 20 mM and 50 mM, respectively. Such fits
are used to extrapolate all simulation results to infinite system size. The
observed deviation from 1/N dependence in the Rac1 data is slight and
therefore neglected.

3.3. Results and Discussion

3.3.1. Membrane condensation behavior of squalamine

It has been shown that dumbbell-like ions of the same net charge as squalamine can con-

dense like-charged membranes even in the Poisson–Boltzmann limit due to their elongated

internal structure [57]. While structurally similar to squalamine, these dumbbells have a

different charge structure so that these results are not readily adaptable to squalamine.

Accordingly, we first establish whether the coarse-grained model of squalamine used in this

study can bind like-charged membranes at all, before the addition of salts that may hinder
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condensation. Accordingly, isochoric simulations were performed for the case Nsqual = 80,

NRac = 0, andNsalt = 0 at varying bilayer separations h. Pzz exhibits significantly negative

values down to an equilibrium membrane separation of 3 nm. Additionally, an orienta-

tional order parameter O, defined as the fraction of condensed squalamine molecules that

are upright with respect to the membrane (defined as cos θ > 0.8, where θ is the angle

between the squalamine molecule and the membrane normal for squalamine molecules

with tail bead less than 3σ from the membrane) shows strong correlation to Pzz as the

membrane condenses (Fig. 3.5a). Notably, Pzz drops significantly when the membranes

come close enough for oppositely bound squalamine molecules to interleaf, which was

observed in the study of membrane–membrane like-charge attraction by dumbbell-like

counterions mentioned above [57]. Integrating Pzz from the largest separation h = 10 nm

to the equilibrium separation h = 3 nm yields ∆F = −0.35kBT per squalamine, indicat-

ing moderate attraction upon condensation. Notably, the observed equilibrium separation

presented overestimates that in experiment by a factor of four. To test how this depends

on the coarse-grained bead size, simulations were performed with bead of size σ = 2.5 Å,

one third that of the larger beads. The squalamine model consisted of 9 beads connected

in a linear chain by bond potentials Eq. 3.1 with r0 = 2.7 Å and angle potentials Eq. 3.2

with θ0 = π. The tail (net charge +3e) was modeled by three monovalent charges at one

end, and the head (net charge −e) was modeled with a monovalent bead at the opposite

end, and all other beads were neutral. The electrostatic coupling was decreased so that

the Bjerrum length was three times the reduced bead size [66]. The resulting equilibrium

separation agrees well with experiment SAXS results (Fig. 3.6).
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Figure 3.5. Condensation of lipid membranes mediated by squalamine or
Rac1 in the absence of salt. (a) For the lipid membranes condensing around
squalamine molecules, the zz-component of the stress tensor Pzz and the
orientational order parameter O of the squalamine molecules exhibit strong
correlation. With decreasing bilayer separation, squalamine molecules be-
gin to orient perpendicularly to the membrane, thereby inducing a strong
membrane–membrane attraction, indicated by a negative Pzz. (b) Pzz is
plotted as a function of membrane separation in a system where Rac1
counter-charges the membranes. The associated negative pressures are
smaller and the equilibrium spacing is larger than in the squalamine case,
however there is still a sharply defined equilibrium separation. The error
bars are smaller than the point size unless otherwise indicated.

We perform a similar set of simulations for Nsqual = 0 and NRac = 40. Results show

that Rac1 induces membrane–membrane attraction down to an equilibrium separation of
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Figure 3.6. To test the dependence of the equilibrium membrane separation
on bead size, squalamine molecules were modeled using a bead size one-third
that of Fig. 3.5. The equilibrium separation is four times smaller than in
previous simulations employing beads of size 7.6 Å, and is comparable to
the SAXS results of Fig. 3.1b (black vertical line).

h = 12 nm (Fig. 3.5b). This is roughly two times smaller than that in experiment and

corresponds to a system roughly three Rac1 molecules thick.

3.3.2. Membrane condensation in the presence of bulk salt

Because there is significant accessible solvent volume (i.e., volume not occupied by the

Rac1 or membrane) in the condensed Rac1–membrane complexes observed above, it is

likely that salts in an external bulk solution will penetrate the bilayer stacks, altering the

interactions between charged species. When the bilayer stacks are in equilibrium with

a bulk solution of salt concentration cbulk, mechanical and chemical equilibrium must be

maintained between the two phases. Accordingly, a constant pressure is maintained using

a Berendsen barostat (Sec. 3.2.4) and chemical equilibrium is obtained by simulating

a bilayer system at many salt concentrations and interpolating the chemical potential
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∆µ = µbilayer−µbulk to zero. Additionally, ∆µ is integrated to obtain free-energy changes

during condensation per Sec. 3.2.6.

The bulk phase contained salt and Rac1 at a molar ratio of 420:1 [41] and squalamine

at a 2:1 molar ratio to Rac1 according to their charge ratio. Bulk solutions of two different

concentrations were modeled by imposing pressures P1 = 9.03 × 10−3kBT/σ
3 and P2 =

2.26×10−2kBT/σ
3, corresponding to salt-only solutions of 20 mM and 50 mM, respectively.

The addition of Rac1, squalamine, and counterions at constant pressure increases the

system volume so that the resulting salt concentrations are cbulk,1 = 19.860(3) mM and and

cbulk,2 = 49.58(5) mM. Widom insertion yields chemical potentials µbulk,1 = −11.680(7)

and µbulk,2 = −10.084(2)kBT . Finite size effects were accounted for by simulating three

system sizes (Nsalt = 420, 840, and 1260) and extrapolating to infinite system size as a

function of 1/N (Sec. 3.2.7).

These pressures were then imposed on bilayer stacks containing a number of squalamine

molecules Nsqual required to countercharge the membrane and a number of salt molecules

Nsalt that was systematically varied from run to run. The chemical potential in the stacks

was obtained as a function of Nsalt using Widom insertion (Sec. 3.2.5). For each set

of parameters, finite-size effects were accounted for by simulating four different system

cross-sectional areas (202σ2, 302σ2, 402σ2, and 504σ2) while keeping the areal density

of all species constant, and extrapolating to infinite system size as a function of 1/N .

To compare systems of different size, the chemical potential of the salt is measured as a

function of the salt-to-squalamine ratio φsqual = Nsalt/Nsqual.

At small concentrations, the system forms a tightly condensed stack corresponding to

the equilibrium separation in the salt-free case (Sec. 3.3.1). In this regime, the rate of
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increase of the system volume A∂Lz/∂Nsalt is much smaller than 1/cbulk (Fig. 3.7a), so

that the chemical potential increases monotonically with φsqual due to increasing crowding

of the salt (Fig. 3.7b). The chemical potential crosses the bulk chemical potential at an

equilibrium value φsqual,eq = 0.16 for P1 and φsqual,eq = 0.34 for P2. Squalamine molecules

therefore condense membranes to the point where they outnumber salt molecules by a

factor ≥ 3.

At a critical φsqual = φsqual,crit, the equilibrium separation begins increasing with a

slope that corresponds to the bulk salt concentration and µbilayer transitions from being

above to being slightly below µbulk. The sharpness of this transition is underscored by the

observation of bistability in certain systems near the transition (Fig. 3.8). The value of

φsqual,crit is between φsqual = 0.3125 and 0.4375 for P = P1 and between 0.5 and 0.625 for

P = P2. To calculate the total free energy of condensation, we fit the chemical potential

using a log(bφsqual), where a and b are fit parameters, for φsqual < φsqual,crit and assume

the contribution above φsqual,crit is negligible. Given the bounds of φsqual,crit above, the

free energy of condensation is ∆Gcond = 0.21(7)kBT per squalamine for P = P1 and

∆Gcond = 0.12(4)kBT per squalamine for P = P2, which are on the same order as the

results for the salt-free case (Sec. 3.3.1), and show a moderate decrease with increasing

bulk salt concentration.

Similar simulations were performed on systems containing a number of Rac1 molecules

NRac required to countercharge the membrane, and Nsalt was varied systematically as

above. Finite-size effects were accounted for as above, using three different system cross-

sectional areas (227σ2, 302σ2, and 504σ2) instead of four due to computational cost. The

bilayer separation (Fig. 3.7c) and salt chemical potential (Fig. 3.7d) were measured as a
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Figure 3.7. Condensation of lipid bilayers by squalamine and Rac1 at im-
posed pressures P1 (red) and P2 (blue) corresponding to bulk solutions with
salt concentrations of roughly 20 mM and 50 mM, respectively. (a) At large
bilayer separations, the rate of increase of the system height ∂Lz/∂φsqual

is roughly 1/(Asqualcbulk), where Asqual = 6.3σ2 is the system area per
squalamine molecule (solid lines). Below a critical salt-to-squalamine ra-
tio φsqual,crit, the bilayers collapse to a condensed state similar to that in the
salt-free case (Fig. 3.5a). (b) The chemical potential in squalamine–lipid
stacks (points), bulk chemical potential (solid lines) and a fit to a log bφsqual

for φsqual < φsqual,crit (dotted lines) show strong condensation to a sharp
minimum, in agreement with the experimental results in Fig. 3.1b. (c)
When Rac1 counter-charges the membranes, the system height increases
with a slope 1/(Araccbulk) for large φrac, where Arac = 12.6σ2 (solid lines).
At small φrac, the bilayer separation approaches the equilibrium separation
of salt-free Rac1–membrane complexes (Fig. 3.5b). (d) The equilibrium
Rac1 separations are represented by weak, shallow crossings of the bulk
chemical potentials at φrac,eq = 0.2 and 0.6 for P = P1 and P = P2, re-
spectively, corresponding to equilibrium separations of 24 nm and 30 nm,
respectively. This indicates that the addition of salt significantly weak-
ens the condensation of Rac1–membrane complexes, and that the resulting
lamellar stacks are very loosely bound, corresponding to the experimental
results in Fig. 3.1b. All error bars are smaller than the point size.

function of the salt-to-Rac1 ratio φrac, which at a given Nsalt is twice the value of φsqual

due to the Rac1:squalamine charge ratio of 2.
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Figure 3.8. A simulated system consisting of squalamine and salts between
bilayer membrane stacks held at constant pressure P = P1 is observed to
undergo infrequent and sharp transitions between distinct separations indi-
cating bistability. The pictured system has an area 202σ2 and contains 32
squalamine molecules and salt-to-squalamine ratio φsqual = 0.375. Because
the switching time is slow on the time scale of the simulations, ensemble av-
erages taken from such systems are unreliable. Accordingly, the data point
corresponding to P = P1 and φsqual = 0.375 is not included in the final
results (Fig. 3.7).

As in the squalamine case, small salt concentrations have little effect on the bilayer

separation, and in this regime the chemical potential rises monotonically. However, this

regime ends before µbilayer(φrac) crosses µbulk so that there is no tight binding as observed

for squalamine and for Rac1 in the absence of salt. Instead, binding is represented by

a weak, shallow crossing of µbulk indicating loosely associated, weakly bound lamellae of

spacing 24 nm for P = P1 and 30 nm for P = P2, in agreement with the broad peak

at large spacing observed in the experimental SAXS spectra (Fig. 3.1b). This indicates

that the presence of a bulk salt plays a crucial role in determining the membrane binding

behavior of Rac1.
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3.3.3. Competition between Rac1 and squalamine

When both Rac1 and squalamine are present in solution, the two species compete to pop-

ulate bilayer stacks. To determine which species will ultimately dominate membrane con-

densation, we calculated the free energy required to exchange two squalamine molecules

in the bilayer with one Rac1 protein in the bulk

(3.13) ∆Gsqual→rac = ∆Gbil
squal→rac −∆Gbulk

squal→rac ,

with ∆Gbil
squal→rac the free energy required to switch the squalamine molecules with Rac1

in the bilayer stacks and ∆Gbulk
squal→rac the free energy required to switch the squalamine

with Rac1 in the bulk. These terms were calculated using thermodynamic integration and

the Kirkwood coupling parameter method described in Sec. 3.2, and outlined as follows.

The free-energy change in the bilayer stacks is

∆Gbil
squal→rac =∆Grac,cond + ∆Grac,kirk +Grac,ideal

−∆Gsqual,cond −∆Gsqual,kirk −Gsqual,ideal + ∆Gint

(3.14)

with ∆Grac,cond and ∆Gsqual,cond the free energies of condensation obtained from ther-

modynamic integration of ∆µ from salt contents φrac,eq and φsqual,eq, to salt contents

φrac,kirk = 3.0 and φsqual,kirk = 0.75, chosen arbitrarily (Eq. 3.7); ∆Grac,kirk and ∆Gsqual,kirk

the free-energy differences between fully interacting systems of compositions φrac,kirk and

φsqual,kirk, and ideal gas mixtures of the same compositions (Eq. 3.10); Grac,ideal and

Gsqual,ideal the absolute free energies of ideal gas mixtures of compositions φrac,kirk and

φsqual,kirk (Eq. 3.12); and ∆Gint accounting for the internal free energies of the Rac1 and

squalamine molecules that arise due to their bond potentials. ∆Gint will cancel when
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computing ∆Gsqual→rac (see below) and so can be taken as an unknown constant. Since

∆µ is small for the Rac1 systems above φrac = φrac,eq (see Fig. 3.7b), the free-energy

change ∆Grac,cond is negligible. Squalamine exhibits significant ∆µ during condensa-

tion, and ∆Gsqual,cond is given in Sec. 3.3.2. The resulting free-energy differences were

∆Gbil
squal→rac = −6.13(13)kBT + ∆Gint for cbulk,1 and ∆Gbil

squal→rac = −2.83(6)kBT + ∆Gint

for cbulk,2.

The free-energy change in the bulk

(3.15) ∆Gbulk
squal→rac = ∆Grac,kirk +Grac,ideal −Gsqual,ideal −∆Gsqual,kirk + ∆Gint

was calculated similarly to ∆Gbil
squal→rac. The condensation free energy is omitted because

the Kirkwood integration is performed at the equilibrium salt content. The resulting

changes in free energy are ∆Gbulk
squal→rac = −9.07(22)+∆Gint for P = P1 and ∆Gbulk

squal→rac =

−4.42(13) + ∆Gint for P = P2. This calculation neglects interactions between the Rac1

and squalamine in the bulk according to the assumption that they are sufficiently dilute.

This was tested using simulations in which varying dilute concentrations of squalamine

were inserted into the bulk, which yielded a free-energy difference per squalamine of

0.06(17)kBT .

The total change in free energy ∆Gsqual→rac = ∆Gbil
squal→rac −∆Gbulk

squal→rac = 2.9(3)kBT

for P = P1 and 1.58(18)kBT for P = P2, indicating that squalamine favorably condenses

membranes over Rac1 in both systems, and that the squalamine molecule ejects Rac1

from these stacks in spite of its smaller valency.
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3.4. Conclusion

Using coarse-grained simulations, I have demonstrated the effectiveness of the squalamine

molecule in competitively binding membrane complexes and ejecting proteins of viral ori-

gin such as Rac1. Using free-energy perturbation and integration techniques, I have ob-

tained free-energy differences between Rac1–membrane and squalamine–membrane com-

plexes in equilibrium with external bulk solutions of two different salt concentrations,

and shown that in both cases squalamine–membrane complexes are favored over Rac1–

membrane complexes despite the higher valency of the latter. Additionally, I have elu-

cidated how the elongated internal structure of the squalamine molecule aligns perpen-

dicularly to phospholipid membranes to enhance membrane binding. The ability of the

present model, which employed only electrostatics and steric interactions, to replicate this

competitive binding indicates that electrostatics plays an important role in the ejection of

Rac1 from membrane stacks. This expulsion of proteins of viral origin may be important

to the antiviral properties of squalamine per Ref. [41].



74

CHAPTER 4

Ionic current rectification in asymmetric graphene oxide

nanochannel networks

This chapter represents a close comparison of theoretical research and computer sim-

ulations. To present a complete story, I have included theoretical calculations that were

performed by Niels Boon.

ABSTRACT

Recent studies have demonstrated that graphene oxide is an effective,

cost-efficient material for ionic current manipulation. To provide mechanistic

insight into ionic current rectification (ICR) in graphene oxide nanochannel

networks (NNs), we perform theoretical calculations and computer simula-

tions. We demonstrate that, in contrast to many other ICR devices where

accretion/depletion occurs inside the nanochannels, ICR here is due to ion ac-

cretion/depletion outside the cation-permselective NN. Asymmetries between

interfaces in a microchannel–nanochannel–microchannel system are shown

here to be the origin of ICR. Under high voltages and low concentrations a

large region of space charge develops near the NN edge, leading to overlimit-

ing currents. An analytical expression for the full current–voltage relationship

is derived and we provide potential methods to maximize ICR in current de-

vices. We suggest new system geometries and devices that may exhibit strong

ICR according to the mechanisms described herein.
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4.1. Introduction

Manipulation of ion transport is crucial for applications in biomedical engineering

[74, 75] as well as for living cells, where it plays an essential role in homeostasis and sig-

nal transmission [76]. Methods that facilitate the construction of cost-efficient, scalable

devices to manipulate ionic current are of biomedical interest because they can promote

development of integrated fluidic chips, and are of biological interest because they en-

able imitation of cellular processes that may bolster understanding of ion channels in cell

membranes. ICR is particularly important as an effective means to selectively control the

transport of charged species through a channel [77]. To this end, several microchannel–

nanochannel–microchannel devices have been constructed [78, 79, 80, 81, 82] that enable

current rectification due to asymmetries in the nanochannel shape, internal charge distri-

bution, and/or electrolyte densities at either microchannel–nanochannel interface. These

channels are, however, expensive to manufacture and can only act on small amounts

of fluid due to their size, which is a shortcoming for certain applications involving bulk

amounts of fluid [83]. This has prompted continued research into the fabrication of cheap,

efficient ionic rectifiers.

One candidate material for devices that can rectify ionic current is graphene oxide

(GO), a charged amphiphilic sheet of atomic thickness that can form water-stable multi-

layer NNs [84]. These channels can exhibit strong ion-permselectivity, providing a means

for ionic current manipulation [85, 86, 87]. Furthermore, macroscopic quantities of these

“restacked” GO layers are easily fabricated at low cost and can be adapted to a range

of applications as they are easily cut into a variety of shapes and sizes and their surface

charge is easily modified using additives [83].
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ICR is often well described by considering only the species that countercharges the

channel, here forward taken as the cationic species, and its depletion or accretion within

charged nanochannels as a function of the applied bias [88, 82, 89, 87]. The application

of this mechanism to GO-based rectifiers [87] is, however, inaccurate, as changes in ion

concentration inside the NN are shown here to be insufficient to generate a rectifying effect.

Instead, we will demonstrate that it is the ability of GO to exclude the minority species,

here forward taken to be the anionic species, and block its associated current that allows

manipulation of the cationic current [83]. Additionally, we will show how high voltages

and low ion concentrations lead to a violation of local electroneutrality over distances that

are orders of magnitude larger than the Debye length, which is the characteristic decay

length of electroneutrality violations in equilibrium systems. This can have a significant

effect on the system’s total ionic resistance as well as its rectification behavior, as it allows

cation transport even under complete anion depletion. The results presented compare

well with molecular dynamics simulations of a straight nanochannel, and simulations and

theory of asymmetric GO NNs demonstrate and explain the emergence of rectification.

These results provide insight into optimizing the performance of ICR in these devices and

the creation of new devices that may exhibit ICR.

ICR devices consisting of microchannels in series with a charged nanochannel have

been studied using the Poisson–Nernst–Planck equations solved under various geometries

and charge distributions [88, 90, 89, 82, 77, 91, 92, 93, 93, 94]. In particular, nu-

merical and analytical studies by Green et al. [91] of a different but related system have

shown that an asymmetric microchannel–nanochannel–microchannel geometry can yield

rectification. The geometric asymmetry of the system studied by Green et al. results
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from sharp discontinuities in the channel cross-sectional area. These discontinuities re-

duce the rectification ratios below those that we will report in the present work, in which

the cross-sectional area changes gradually inside the nanochannel network. Furthermore,

the system studied by Green et al. is assumed to be electroneutral everywhere, whereas

the large electric fields in the nanoscale system studied here necessitate the treatment

of space charge (SC), i.e., non-neutral, regions that heavily influence the current–voltage

(I–V ) relationship at high voltage. Lastly, the sharp jumps in cross-sectional area in

the system studied by Green et al. necessitate a full three-dimensional solution to the

Poisson–Nernst–Planck equations, whereas here a one-dimensional treatment describes

the system fully and is favorable given that it yields simple analytic expressions. Both

results reduce to the same expression in the simple (non-rectifying) case of a straight

nanochannel below the limiting current. Additionally, Miansari et al.[86, 95] explained

the rectification behavior of GO NNs via concentration polarization (CP), however these

results were confounded by a so-called “ion trapping” effect that led to anomalous rectifi-

cation even in symmetric GO NNs, which was not reproduced in independent experiments

[83, 85].

4.2. Results and Discussion

Charged nanochannels such as GO can manipulate ionic current as long as the surface

charge σ satisfies c0 . σ/eh [96], with c0 the bulk salt concentration, σ ∼ −10 mC/m2

for GO, e the elementary charge, and h the channel width, which is 1 nm for GO.

Strong anion exclusion occurs only if h . λD, with the Debye length of a monovalent

salt λD =
√
εε0kBT/2e2c0, with the free space permittivity ε0, the relative permittivity ε,
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Figure 4.1. An illustration showing the dependency of the ion concentration
profile on the ion current towards the cation-selective GO (gray). At small
applied voltages, the solution can be approximated as locally electroneutral
and the concentration decreases linearly from the bulk concentration c0
at x = 0 to the GO–solution interface at x = λ (red curve). For large
applied bias where CP gradients are steep, local electroneutrality holds until
the ion concentration approaches small c at x = xT, above which cations
penetrate the depleted layer adjacent to the GO (blue). This allows currents
larger than in the locally electroneutral case. The induced changes in ion
concentration lead to variation in the conductivity and therefore produce
a nonlinear relation between the current and the resistance of the system.
Note that very close to the GO–solution interface, the concentrations may
increase again due to the presence of a double layer.

the Boltzmann constant kB, and the temperature T . Such selective ionic exclusion affects

the transport properties of both species and can provide a dominant contribution to the

resistance of the system [97, 98, 99]. In the following section we derive the nonlinear

I–V relationship for a symmetric system with a permselective component and then show

how asymmetries can be introduced to induce ICR.
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4.2.1. Theory

Because the present system consists of straight channels connected to a GO NN, we

describe the ionic current using the one-dimensional Poisson–Nernst–Planck equations

−j± =
D±c±
kBT

∂xµ± ;(4.1)

−j′± = ∂xc± ± c±∂xφ ;(4.2)

−∂2xφ = 4πλB (c+ − c−) ,(4.3)

with the (monovalent) cationic/anionic species specified + and −, respectively, j the flux

density, D the diffusion coefficient, j′ = j/D the scaled flux density, c the local concentra-

tion, µ the chemical potential, e the elementary charge, φ = eΨ/kBT the dimensionless

electric potential, and ∂x denoting partial derivation with respect to the position x. Note

that the PNP equations assume the ions can be described by ideal point charges, such

that the chemical potential is given by µ± = µ±,0 + log(c±/c±,0) ± eφ, where µ±,0 is the

chemical potential given c± = c±,0 and φ = 0. As presented, Eq. 4.2 disregards solvent

flow, which is accurate if the solution is locally electroneutral such that the momentum

imparted on the fluid by cationic and anionic drift cancels. Solvent flow can also be ne-

glected in a stagnant layer close to the interfaces, as we will discuss below. Additionally,

Eqs. 4.1 to 4.3 represent a mean-field theory that disregards correlations between ions.

Molecular dynamics simulations (see below) show that this assumption is accurate for the

present system.

To unify Eqs. 4.1 to 4.3 into a single expression that captures the CP and SC regimes,

they are first re-expressed in terms of the electric field E ≡ −∂xφ. The expressions for
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the cation and anion currents (Eq. 4.2) are summed to obtain

(4.4) j′+ + j′− = −∂x (c+ + c−) + E (c+ − c−) .

The anion concentration is replaced using Eq. 4.3

(4.5) j′+ + j′− = −∂x
(

2c+ −
∂xE

4πλB

)
+
E∂xE

4πλB
,

which is integrated to obtain an expression for the cation concentration

(4.6) c+ = −
j′+ + j′−

2
x+

∂xE

8πλB
+

E2

16πλB
+ const .

Substituting this into the expression for cation current Eq. 4.2 and redefining the integra-

tion constant yields

(j′+ − j′−) + (j′+ + j′−)Ex+
∂2xE

4πλB
− E3

8πλB
+ const · E = 0 ,(4.7)

which is the unified Poisson–Nernst–Planck equation, expressed in terms of the electric

field [100]. This expression is in general not analytically solvable. We will therefore

proceed by considering various physical assumptions corresponding to the different regimes

of electric field and concentration in our system. The resulting field profiles and local

osmotic pressure in the different regimes are connected to yield an accurate description

of the current–voltage behavior of the system.

4.2.1.1. Classical concentration polarization. We consider a system with bulk con-

centration c0 at position x = 0 and a permselective GO NN at position x = λ (Fig. 4.1).
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To obtain a first approximation of the system behavior, we assume local electroneutrality

so that Eq. 4.3 reduces to c+ = c− = c and Eq. 4.2 becomes

∂xc = −(j′+ + j′−)/2 ;(4.8)

cE = (j′+ − j′−)/2 .(4.9)

The concentration gradient given by Eq. 4.8 is nonzero as long as there is a difference in

the magnitudes of scaled ionic fluxes, which is the case in a system with a permselective

component. Solving Eq. 4.9 for c and substituting into Eq. 4.2 gives ∂xE
−1 = −(j′+ +

j′−)/(j′+ − j′−) which is integrated and then multiplied by (j′+ − j′−)E to obtain

(4.10) (j′+ − j′−) + (j′+ + j′−)Ex+ const · E = 0 ,

which is Eq. 4.7, neglecting the third and fourth terms.

The concentration profile in this regime is obtained by integrating Eq. 4.8, showing

linear decay,

c = c0 −
(
j′+ + j′−

2

)
x .(4.11)

Therefore, assuming some degree of cation-permselectivity, a cation current directed from

the bulk into the GO induces a concentration profile that decreases linearly from the

system bulk to the interface, and an opposite current induces an opposite profile. At this

point we assume perfect cation-permselectivity (j− = 0) and integrate Eq. 4.1 to obtain
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the chemical-potential drop over the CP layer, i.e., 0 < x < λ for the CP curve in Fig. 4.1

∆µCP = IRCP = 2kBT log

(
1−

λj′+
2c0

)
.(4.12)

While λ is imposed in theory, it emerges spontaneously in experiment and corresponds to

the the thickness of the stagnant layer [98]. This length could be controlled in experiment

by damping hydrodynamics using a gel over the intended length λ [98]. ∆µCP becomes

infinite when the concentration at x = λ goes to 0, corresponding to the limiting current

Imax ≡ eAj+,max = 2D+eAc0/λ ,(4.13)

with A the channel cross-sectional area. An asymmetry in any factor on the right-hand

side of Eq. 4.13 will therefore induce different Imax in the stagnant layers on either side of

the GO NN. The total voltage drop in an asymmetric system is given by

V = IRex −
2kBT

e
log

(
1− I/Imax,L

1 + I/Imax,R

)
,(4.14)

where Imax,L/R is the limiting current density on the right/left side of the GO and Rex

is the total resistance of the bulk solution on the right and left sides combined with the

internal resistance of the GO, i.e., Rex = Rbulk,R + RGO + Rbulk,L, here forward assumed

to be negligible.

An asymmetry in any of the factors in Eq. 4.13 between the right and left side of the

NN, e.g., a difference in channel width, will lead to ICR that approaches a maximum ratio

(4.15) rmax =
Imax,R

Imax,L

=
D+,RAR c0,R λL
D+,LAL c0,L λR
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at high voltages, where we assume Imax,R > Imax,L, and has a rectification ratio r < rmax

at lower voltages. Under the local electroneutrality assumption, the current cannot be

higher than Imax. In reality, a number of factors including solvent flow and space charge

can cause overlimiting currents, i.e., I > Imax [97, 98, 99, 101].

4.2.1.2. Space charge. The local electroneutrality assumption is useful on large scales

though strictly violated for steady-state currents in systems with spatially varying resis-

tance due to varying ion concentrations. Inducing a constant current in such a system

requires a spatially varying electric field and thus a nonvanishing charge density. This

charge density is usually negligible in comparison to the local ion concentration itself and

can therefore be safely ignored in the CP regime. However, this space charge can have

a significant effect, e.g., when currents I ∼ Imax cause strong depletion. In this case,

Eq. 4.11 describes the concentration profile up to a transition point x = xT, at which it

gives way to a SC region in which c+(x)� c−(x) (see Fig. 4.2d). The presence of cations

in an anion-depleted region can decrease the overall resistance of the system leading to

overlimiting currents I > Imax.

We can derive the approximate cation concentration c(x) for x > xT by assuming that

the anion concentration is negligible compared to the cation concentration and that the

current in the SC region is dominated by the drift term i.e., j′ = cE. Here cations are

the sole species present so we have dropped all subscripts. Using the Poisson equation to

substitute for the cation concentration yields

(4.16) j′ =
E∂xE

4πλB
=
∂xE

2

8πλB
,
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which is integrated to obtain

(4.17) Ej′x− E3

8πλB
+ const · E = 0 ,

i.e., Eq. 4.7 assuming that the first and third terms are negligible. The electric field is

given by

E(x) =
√

8πλBj′x+ const ,(4.18)

where the integration constant is set by the boundary condition c(xT) = c0,SC. The

concentration is then

c(x) =

(
8πλB
j′

(x− xT) +
1

c20,SC

)−1/2
.(4.19)

4.2.1.3. Combining the CP and SC regions. We obtain a complete description of

this system by connecting the CP and SC regimes to yield a single expression. We first

re-express Eq. 4.7 assuming perfect permselectivity, i.e., j− = 0

(4.20) ξ−3 + Eξ−3x+ ∂2xE − E3/2 + const · E = 0 ,

where ξ ≡ (4πλBj
′
+)−1/3. We choose x = 0 at the point where the CP concentration

Eq. 4.11 is zero so that the CP electric field is

(4.21) ECP(x) = −1/x .

The SC and CP regions are combined by imposing continuity of the electric field and its

derivative. Accordingly, we substitute Eq. 4.21 into the SC result Eq. 4.16 to obtain the
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x-coordinate of the transition from SC to CP xT = −ξ. Comparing Eqs. 4.18 and 4.21

yields the SC electric field

(4.22) ESC(x) = ξ−1
√

3 + 2xξ−1 ,

and the concentrations are then

c+,CP = − x

8πλBξ3
;(4.23)

c+,SC =
1

4πλBξ2
1√

3 + 2xξ−1
.(4.24)

Note that although these are not continuous at the transition point x = −ξ, our choice

of matching the electric field and its derivative ensures that the osmotic pressure is a

continuous function, as the total ion concentration (cations and anions) is continuous.

Our choice also enables extensions toward theories that involve both cations and anions

in the space-charge regime (see Appendix).

The change in electric potential over the layers is

∆φCP =

∫ −ξ
−LCP−ξ

−ECP dx = − log

(
1 +

LCP

ξ

)
(4.25)

∆φSC =

∫ −ξ+LSC

−ξ
−ESC dx(4.26)

=
1

3

[
1−

(
1 +

2LSC

ξ

)3/2
]

(4.27)
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and the change in chemical potential over the SC and CP layers together is

∆µ+

kBT
= log c+(LSC − ξ)− log c+(−LCP − ξ) + ∆φSC + ∆φCP(4.28)

=− 2 log

(
1 +

LCP

ξ

)
− 1

2
log

(
1 +

2LSC

ξ

)
+

1

3

[
1−

(
1 +

2LSC

ξ

)3/2
]
,(4.29)

which is directly related to the resistance RCP+SC of the CP + SC layer via ∆µ+ =

I+RCP+SC. The CP and SC layer lengths are related via the total channel length λ =

LCP + LSC, and LCP is fixed by the bulk concentration c0 at the channel–bulk interface

−LCP − ξ, i.e., LCP = 8πλBξ
3c0 − ξ. For systems constrained by a constant number of

salt pairs N as opposed to those constrained to constant concentration at the bulk, the

CP layer length is obtained by assuming the ion content outside the CP zone is negligible,

yielding LCP =
√

16πλBξ3N/A− ξ.

As we will show, these expressions agree quantitatively with particle-based simulations

without any fit parameters, supporting the validity of the assumptions taken in unifying

the CP and SC regimes, and indicating that the present analysis can be directly applied

to experiments.

4.2.2. Simulation

To test our theoretical model, we first simulate a rectangular GO NN with identical

inlet and outlet widths equal to the y-dimension of the simulation box and compare the

observed ion distribution and I–V relationship with theory (Fig. 4.2).
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Figure 4.2. (a) System geometry: a symmetric rectangular GO NN with
counterions is surrounded by 7.6 mM salt solution. (b), (c) Simulated an-
ion (red) and cation (blue) concentrations for applied voltages of 8.3kBT/e
(b) and 250kBT/e (c). Charge neutrality is obeyed over the linear CP region
predicted by Eq. 4.11. A sharp downward jump is observed in the cation
concentrations of (b) and (c) on entry into the nanochannel network due to
the fact that the finite excluded volume of the GO sheets reduces the vol-
ume accessible to the ions. (c) exhibits a SC region whose form is dictated
by Eq. 4.19. (d) The SC region of (c) is shown along with theoretical cation
concentration given by Eq. 4.19, with c0 given by the measured cation con-
centration at −50 nm (the same position as 450 nm in (c)). (e) The CP
gradient versus the cation–anion current difference (blue) shows good agree-
ment with Eq. 4.11 (red). Observed concentration gradients are obtained
via a linear fit over the length of the CP region, which is at least 100 nm
for all voltages. (f) I–V relationship from simulation (blue) compared with
Eq. 4.14 (red), Eq. 4.29 (purple), and Eqs. 4.40 and 4.39 (green), shown on
a semilog plot for clarity. Equation 4.14 captures the behavior well up to
V ∼ 10kBT/e, where the CP region approaches the length of the channel.
Above this, Eq. 4.29 predicts the I–V behavior qualitatively, however un-
derestimates the current due to the assumption of perfect permselectivity.
Equations 4.40 and 4.39 capture the behavior well in this case.
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Capturing the nonlinear I–V behavior observed in Eq. 4.14 requires currents I ∼ Imax.

The resistance of the CP layer is given by

RCP =

∫ λ

0

[eνA(x)c(x)]−1 dx ,(4.30)

where λ is the CP layer length, A(x) the cross-sectional area, c(x) the mobile ion con-

centration and ν the mobility. This expression is by definition in agreement with the

derivative with respect to the current I of Eq. 4.14. If A(x) is constant, RCP is minimized

when c(x) is constant, thus the voltage required to obtain I ∼ Imax has a lower bound at

Vmin =
λImax

eνAc
=

2kBT

e
,(4.31)

assuming that RCP provides the dominant contribution to the total resistance. In actu-

ality, the charge profile is far from constant for high voltages, so Vmin is chosen as our

minimum simulated voltage. Since Vmin is independent of length, the small systems sim-

ulated require large electric fields, ranging from 0.3 kV/cm up to 200 kV/cm, far higher

than in experiment [83] but below the breakdown field strength of water [102]. Addi-

tionally, since the total voltage drop over the electrodes is relatively small, we disregard

water splitting at the electrodes.

Despite significant anion exclusion from the GO, an anion current roughly 20 times

smaller than the cation current is observed (Fig. 4.3), which results in a small decrease in

the CP slope per Eq. 4.11. The observed linear concentration profiles match Eq. 4.11, and

the I–V relationship is well modeled by Eq. 4.14 up to V ∼ 10kBT/e, which is the applied

bias at which the concentration on the depleted side of the NN approaches zero (Fig. 4.2b).

Strict electroneutrality is not required, so cations can penetrate the anion-depleted side of
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Figure 4.3. The ratio of the anion leakage current to the total current ver-
sus the applied bias. An anion leakage current roughly 20 times smaller
than the total current is observed in a system with a rectangular GO NN
(Fig. 4.2). This alters the CP slope per Eq. 4.11 (Fig. 4.2e) and has a
small but noticeable effect on the I–V relationship (Fig. 4.2f). For macro-
scopic filters at small ion concentrations, the GO NN provides much larger
resistance to anion transport and this phenomenon can be neglected.

the NN creating a SC region that decreases the system’s overall resistance (see Fig. 4.2d).

Equation 4.29, which describes CP and SC regions in series, shows qualitative agreement

with the simulation data but underestimates the observed currents. This is due to the

nonzero anion current observed in simulation, which violates the approximations made in

deriving Eq. 4.29. Going back to Eqs. 4.1 to 4.3 and repeating the steps outlined in the

theory without the assumption of perfect cation permselectivity (see Appendix) yields

expressions for the cation chemical potential drop and thus the resistance that ameliorate

this discrepancy (Fig. 4.2f). These expressions have the disadvantage that they require

both the cation and anion fluxes as inputs, and therefore do not yield a 1:1 I–V relation.

In the limit of perfect cation permselectivity as in a macroscopic NN, these equations

reduce to Eqs. 4.12 and 4.29, respectively, and a 1:1 relation is obtained.
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Previous work suggests overlimiting currents can arise from either hydrodynamic tur-

bulence or the development of SC [97, 98, 99, 101], however the implicit solvent used

here disallows hydrodynamic effects. Accordingly, for a small system with damped hy-

drodynamics, i.e., that in a gel, overlimiting currents arise from the formation of SC

regions [98].

To generate rectification, we simulate a NN with one narrow side and one wide side

(Fig. 4.4a), with wide:narrow ratios γ = 1.8, 3, 5, and 8 according to experiment [83].

We impose the layer length λ via left and right channel lengths of 100 nm each and hold

the concentration c0 = 7.6 mM at x = 0 nm = 350 nm by inserting or deleting molecules

during equilibration such that the concentration is correct at the beginning of production

(see Sec. 5.2). This process is not deterministic, and the final number of ions in the

system and thus the system conductance is subject to some randomness. Accordingly, for

Figs. 4.4c and d, we obtain an error estimate by averaging over at least eight identical

and independent simulations.

CP theory suggests the resulting rectification ratios r = γ, however systems with sig-

nificant SC exhibit r < γ (Fig. 4.4d). We can calculate this reduction in rectification by

repeating the analysis in Sec. 4.2.1.3 for the present system. We approximate the GO NNs

as perfectly permselective and resistance-free, and account for the spatially varying width

of the channels (bulk, left channel, and right channel) using a quasi-one-dimensional ap-

proach. Starting with c(0 nm) = c(350 nm) = c0, we obtain the concentration throughout

the bulk using equation Eq. 4.11. This assumes local electroneutrality in the bulk thereby

constraining the validity of our calculations to 8πλBc0ξ
3−ξ > 25 nm. The concentrations

in the left and right channels are obtained by imposing continuity of c(x) at the bulk
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Figure 4.4. (a) System geometry: a trapezoidal GO NN is connected to
7.6 mM bulk salt solution by two channels. (b) Anion concentration around
an asymmetric GO NN for γ = 8 and applied voltages of 4.2kBT/e (top)
and −4.2kBT/e (bottom), from the dotted region in (a). (c) I–V curves for
the four asymmetries used. (d) The ratio of the currents at applied voltages
±23.3kBT/e as a function of the GO NN asymmetry γ, along with curves
given by CP theory (see Sec. 4.2.1.1) and SC + CP theory (see Sec. 4.2.1.3).
γ = 1 corresponds to a symmetric system for which the rectification ratio
is exactly 1. While the rectification ratio increases with increasing γ, it is
below its ideal CP value due to SC effects. (e) and (f) show the cation and
anion concentrations averaged per vertical slice of the systems depicted in
(b), excluding the PDMS regions. The CP concentration gradient is greater
in the right channel than the left, so that (f) exhibits significant depletion
whereas (e) does not. This causes SC to develop at smaller reverse bi-
ases than forward biases, thereby decreasing the rectification ratio below
its “ideal” CP value. Additionally, increased channel concentrations under
forward bias (compare figures (e) and (f) at 225 nm and 125 nm, respec-
tively) allow increased anion leakage current, which leads to an increased
rectification ratio over the SC + CP value as discussed in the main text.
In addition to the apparent jumps in concentration upon entry into the
nanochannel network as discussed in Fig. 4.2, there are small downward
peaks visible in (e) and (f) at 25 nm where the left channel begins and
325 nm where the right channel ends due to the finite extent of the soft LJ
walls, which reduce the accessible volume of the ions.
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boundaries (x = 25 nm and 325 nm, respectively) and describing each channel separately

using the one-dimensional solutions to the PNP equation given in Sec. 4.2.1.3. Allowing

space charge accounts for the observed reduction of the simulated results below CP the-

ory (Fig. 4.4d). How SC leads to a reduction in r is illustrated by c(x) for γ = 8 and

V = ±23.3kBT/e (Fig. 4.4e and f). The CP gradient is directly related to channel width

and is therefore larger in the right channel than the left, so SC develops in the former at

lower bias. SC tends to decrease resistance and as a result, the rectification ratio will be

lower than its “ideal” CP value.

Because the simulated GO is not perfectly permselective as assumed above, there will

be a leakage flow of anions depending on the concentration at the filter inlet (x = 225 nm

in Fig. 4.4e and x = 125 nm in Fig. 4.4f). Since this inlet concentration is higher under

forward bias than reverse bias, there will be a more significant anion leakage current for

forward biases, leading to a larger forward current and a larger rectification ratio than

that expected from the SC + CP curve (Fig. 4.4d).

The discussion of CP above suggests that multiple factors in Eq. 4.13 can be manipu-

lated simultaneously to affect the rectification ratio. For example, a system with γ = 10

and λR/λL = 8 would exhibit rmax = 80. As such we simulate a system with a left channel

of width 200 nm and length 25 nm, a right channel of width 20 nm and length 200 nm

and a bulk region of width 200 nm and length 75 nm (Fig. 4.5). The CP channels and

bulk were initially filled with uniform 7.6 mM salt solution, and the bulk concentration is

kept constant as described in Sec. 5.2. Eleven independent simulations were performed at

each electric field, yielding spatially averaged concentrations that range from 6.12(5) mM

under a reverse bias of 33kBT/e to 32.6(4) mM under a forward bias of equal magnitude
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Figure 4.5. A long, narrow channel is introduced on one side of the perms-
elective membrane to induce very high rectification ratios (a). (b) Average
ion concentration over 11 independent simulations per voltage. The con-
centration is the total number of molecules of mobile salt in the system
(not including those required to countercharge the GO) normalized by the
non-GO, non-PDMS system volume. (c) Average current computed over 11
independent simulations per voltage. We observe a maximum rectification
ratio of 60.

(Fig. 4.5b). The resulting systems yield rectification ratios up to 60, which is less than

rmax for reasons discussed above, yet it demonstrates that very high rectification ratios

can be engineered by introducing multiple asymmetries into the system (Fig. 4.5c).

4.2.3. Conclusion

We have shown that ionic current rectification in a graphene oxide nanochannel network is

due to the cation-permselectivity of the NNs and the resulting development of CP regions

outside the network. In particular, we have shown that the degree of ICR is affected
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by asymmetries in the length of the stagnant zone, the channel cross-sectional area, the

diffusion coefficient of the solvent, and/or the bulk salt concentration at either end of

the NN, all of which can be readily adjusted in experiment. In addition, the stagnant

layer length can be disrupted by hydrodynamics when the system is not embedded in a

gel [98], so selectively embedding one of the two NN inlets in a gel can increase ICR,

and selective stirring of solvent near an NN inlet can disrupt CP allowing in situ-tunable

ICR. Furthermore, having established that the ICR behavior of asymmetric GO NNs

stems from their cation-permselectivity, it is plausible that other materials can induce

ICR, including ion-selective electrodes such as Ag/AgCl, given the system is constructed

asymmetrically at the anode and cathode.

The simulated and theoretical models herein agree well without any fit parameters and

can be easily tested in experiments. These results are limited in that they do not account

for hydrodynamic effects, which fix the length of the stagnant zone and thus the layer

length λ [98]. In our model, λ does not emerge from hydrodynamics, but follows from the

system geometry. Additionally, the system in this study is ∼100 nm in length, whereas the

experimental systems are macroscopic. The fact that significant rectification is observed

in systems of such different sizes shows this method of rectification is highly adaptable

to applications across length scales. Advantages of the smaller systems studied here

involve faster switching times and less use of reagent, and advantages of the macroscopic

systems as in experiment include ease of manufacture and application to bulk solutes. One

important note when comparing these systems is that SC has a proportionally larger effect

in smaller systems, due to the large electric fields required for comparable CP depletion

as in macroscopic systems. Because SC tends to decrease rectification ratios, it could be



95

advantageous to limit its occurrence by choosing longer channels, though this would also

lead to smaller limiting currents.

4.3. Simulation methodology

All MD simulations were performed using a modified version of the LAMMPS pack-

age [58]. The GO NN and surrounding fluid were modeled by placing varying con-

centrations of mobile ions in periodically replicated simulation boxes of cross sections

200 nm× 4.98 nm and varying lengths, consisting of four lateral sections: a region repre-

senting the bulk salt solution of length lbulk, a 100 nm GO NN region, and two 100 nm

“channels” that are the widths of the GO NN openings and connect either end of the GO

NN to the bulk (see, e.g., Fig. 4.4a). Without these channels, the bulk ionic concentration

readily diffuses into the CP region from the sides of the NN inlet, greatly reducing the

CP effect and effectively eliminating ICR (observed rectification ratios are ∼1.1, data

not shown). This diffusion does not have a significant effect across macroscopic length

scales, and so in experiments [87, 83] rectification can be obtained without channels. For

the system with a rectangular GO filter depicted in Fig. 4.2, lbulk = 200 nm, and the

inlet and outlet widths of the GO were both 200 nm. For the systems with a trapezoidal

GO filter depicted in Fig. 4.4, lbulk = 50 nm and the inlet and outlet widths summed to

110 nm so that the area of the GO was constant for different geometric asymmetries. For

all systems with asymmetric GO NNs, the CP channels and bulk are initially filled with

uniform 7.6 mM salt solution. As the system evolves, CP behavior can locally induce

significant ion accretion/depletion, thereby changing the bulk concentration. Since the

particle number is kept constant, the concentration in the bulk can vary significantly from
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its initial value, resulting in an inaccurate comparison with experimental systems in which

the bulk concentration stays constant regardless of bias. As such, a series of simulations

were performed in which each system was allowed to reach steady state, then the bulk

concentration was adjusted to its correct concentration by randomly inserting or deleting

pairs of ions in the bulk region as necessary. This process continued in a loop until the

bulk concentration maintained its appropriate value, at which point the particle number

was kept at its current value and production began. It should be noted that the voltage

required to produce CP that appreciably reduces ionic concentration near a NN inlet is

independent of system size, therefore smaller systems require much stronger electric fields,

which in turn produce proportionally more SC than in a macroscopic system. As a result,

a microscopic system will cause overlimiting currents at lower voltages. A series of re-

pulsive walls restricted the ionic motion, resembling the PDMS barricades in experiment.

The interior of the GO NN consisted of 3 flat repulsive planes normal to the z-axis with

a center-to-center distance of 1.66 nm. To model the surface charge of GO, immobile

monovalent ions were embedded in the sheets at a surface density of 0.046 e−/nm2, near

the upper range for GO [85]. Ions were restricted from crossing the box boundaries in the

y- and z-directions, but interactions across these boundaries were computed fully, thereby

modeling a stack of GO sheets. Coulomb interactions were computed via Particle-Particle

Particle-Mesh Ewald summation [65] with a dielectric constant of 80 and relative accu-

racy of 10−4, and the excluded volumes of the beads and walls were modeled via a purely

repulsive shifted-truncated Lennard-Jones potential of diameter σ = 0.66 nm, correspond-

ing to the hydrated diameters of K+ and Cl− ions, and strength ε = 0.83kBT , where the



97

temperature T = 300 K and Boltzmann constant kB = 1.2ε/300 K. The solvent was mod-

eled implicitly using a Langevin thermostat with damping time 0.5τ where τ = nm
√
m/ε

is the simulation unit of time, with m the average mass of K+ and Cl−. The Langevin

damping parameter is chosen for efficiency reasons and overestimates the diffusion coeffi-

cient D by a factor f = 125. The related increase in the mobility ν leads to a decrease

in the system resistance per Eq. 4.30 and an overestimation of the current j. However,

modifying j and D by the same factor has no effect when solving Eqs. 4.1 and 4.2 for c so

the concentration profiles and therefore the behavior of the system are unaffected by this

choice other than scaling the current by the factor f . Simulations progressed with a time

step of 0.005τ and involved roughly 107 time steps of equilibration and 107 time steps of

production.

Appendix

Here we derive the resistance across a CP layer only and across a CP and SC layer in

series for a system with a nonzero anion leakage current. To do so we repeat the steps in

Sec. 4.2.1 without assuming perfect permselectivity of the membrane. Equation 4.7 is

j′D + j′SEx+ ∂2xE/k − E3/2k + const · E = 0 ,(4.32)

where j′D ≡ j′+ − j′−, j′S ≡ j′+ + j′−, and k ≡ 4πλB. The third and fourth terms drop out

in the CP regime, and we set the x-coordinate equal to zero at the point that the CP

concentration vanishes such that

(4.33) E = −j′D/j′Sx .
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The SC electric field is given to within a constant by

(4.34) ∂xE = kj′S/E

and at the transition point x = xT we assume continuity of the electric field and its

derivative so that we can substitute Eq. 4.33 into Eq. 4.34 to yield

(4.35) xT = −(j′2D/kj
′3
S )1/3 .

Integrating Eq. 4.34 and setting it equal to Eq. 4.33 at x = xT yields the SC electric field

(4.36) E = (kj′D)1/3
√

3− 2x/xT .

The CP concentration is given by Eq. 4.11

(4.37) c±,CP = −j′Sx/2

and the SC concentration is obtained from Eq. 4.2 assuming the current depends solely

on the drift term so that

(4.38) c±,SC =
±j′±

(kj′D)1/3(3− 2x/xT)1/2
.

The chemical potential drop for the cationic species is then given by Eq. 4.28 as

β∆µ+ =− log

[
(kj′D)1/3

j′+

√
1− 2

L− LCP

xT

]
− log

[
LCP − xT

2
j′S

]

− j′D
j′S

log

[
1− LCP

xT

]
+
j′D
3j′S

[
1−

(
1− 2

L− LCP

xT

)3/2
]
.

(4.39)
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where LCP =
√
j′SA/4N + xT for a system with constant N , as in Fig. 4.2. This is valid

while the channel length L < LCP. For systems with a CP layer only, we substitute

Eq. 4.11 into Eq. 4.1 and integrate obtain

β∆µ+ =
2j+

j′S
log

[
1− j′Sλ/2c0
1 + j′Sλ/2c0

]
.(4.40)

Note that these equations reduce to the results in the Theory section for j′− = 0.
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CHAPTER 5

Conformational behavior of self-attractive sheets with large

bending rigidity

ABSTRACT

Self-attractive graphene oxide sheets have been observed to wrinkle or

partially collapse in spite of their large bending modulus. Contrary to this

observation, previous computational and theoretical work has indicated that

there is a prohibitive barrier to sheet collapse when the bending modulus of

the sheet is greater than the thermal energy, as is the case for graphene ox-

ide. However, these studies neglect the effect of the self-attraction on this

barrier. Here we demonstrate how self-attraction of a finite range decreases

and even eliminates the barrier to sheet collapse. This is first demonstrated

conceptually using a simple mechanical model, then full, self-attractive sheets

via free-energy calculations using metadynamics simulations, a free-energy

sampling technique. Further, the dynamical and conformational behavior of

sheets with large self-attraction is studied using molecular dynamics simu-

lations, which show that the time to collapse can be greatly decreased for

modest increases in self-attraction, and that the resulting collapsed confor-

mations exhibit large stochastic fluctuations. For self-attraction sufficient to

induce spontaneous collapse, the compactness of the final sheet conformations

as measured by the radius of gyration does not show significant dependence

on self-attraction.
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5.1. Introduction

Solution processing of graphite via Hummers’ method [103], i.e., inducing significant

sheet–sheet repulsion via oxidation, can yield atomically thin graphene oxide (GO) sheets.

While cheap to produce, these sheets lack many favorable properties of graphene due

to the high density of defects, such as epoxy bridges, hydroxyl groups, and carboxyl

groups induced by the oxidation process [104]. These defects can be partially repaired

via reduction, resulting in reduced GO and a partial recovery of the properties of pure

graphene [105]. However, these defect-sparse, reduced GO sheets are self-attractive and

aggregate into clusters [106, 107] that do not exhibit the properties of single sheets [108].

Luo et al. showed that GO sheets that are crumpled into fractal balls via capillary

compression in evaporating droplets exhibit a reduction in exposed sheet area and thus

a decreased propensity to aggregate, while maintaining a significant fraction of electri-

cally active surface area due to their fractal structure [108] resulting in a higher specific

capacitance than flat sheets [109]. These crumpled balls were found to have a wide

range of applications, e.g., in water treatment [110], industrial lubrication [111], as a

battery anode [112], and as a substrate and electron-exchange medium for microbial fuel

cells [113].

Preceding this work by two decades were the observations of Wen et al. [114], who

concluded from small-angle X-ray scattering measurements that graphite oxide, com-

posed of several layers of GO, has the ability to passively crumple in solution without

the need for compressive external forces. The accuracy of this statement has been the

source of some controversy, as electron micrographs [115] show wrinkled conformations

rather than crumpled conformations of the type described in Ref. [114]. Additionally,



102

theoretical work [116] suggests that a sheet with the bending rigidity of GO provides an

insurmountable barrier to wrinkling or crumpling. Motivated by this, we perform simula-

tions of tethered monolayer sheets with a bending modulus κB � kBT and an attractive

interaction of variable strength between surface sites.

Previous theoretical and computational work concentrating on the phase behavior of

such sheets [117, 116] has not predicted sheet collapse when the bending modulus is

much greater than kBT . In particular, Tallinen et al. [116] estimated the barrier for

collapse of a self-attractive, continuum sheet as the bending energy required to fold a

corner of the sheet, which is roughly ten times the bending modulus. Approximating GO

as a continuum sheet with bending modulus κb = 0.5 eV = 19kBT at room temperature

(see Appendix A) yields an energy barrier of ∼100kBT at room temperature, essentially

disallowing spontaneous crumpling or wrinkling in room-temperature solvents, contrary

to experimental observations. However, these results do not describe highly self-attractive

sheets, as they do not account for the fact that self-attraction of a finite range can reduce

the barrier height. Here we illustrate the interplay of bending rigidity and sheet self-

attraction first via a simple mechanical model, then present metadynamics simulation

results that quantify the barrier to collapse for various degrees of self-attraction. Finally,

using molecular dynamics (MD) simulations, we show the kinetic process of collapse for

highly attractive sheets and how the self-attraction influences both the time for a sheet

to spontaneously collapse and the conformations taken by the collapsed sheets. kBT .
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Figure 5.1. Simulation setup. The GO is represented by a triangulated
sheet with beads of size σ connected to each nearest neighbor by a harmonic
bond (Eq. 5.1). The bending rigidity of the sheet is imposed via angle
potentials (Eq. 5.2) between all bonded triplets that form a straight line
when the sheet is flat, e.g., between (i, j, k) but not (i, j, g) or (i, j, h) (see
Appendix A).

5.2. Methods

5.2.1. Simulation Model

MD simulations were performed using the LAMMPS package [58]. The GO was modeled

by a triangularly connected square sheet (Fig. 5.1) with a side length L = 19σ, with σ the

bead size, consisting of N = 388 particles for the metadynamics simulations (Sec. 5.3.2)

and L = 70σ with N = 5710 for the MD simulations (Sec. 5.3.3). Notably, the present

length-to-thickness ratios (equal to L for each sheet) are much smaller than in experimen-

tal GO sheets, which are microns in length and nanometers thick. The sheet was placed

in a periodically replicated simulation box with side lengths at least twice the sheet side

length to prevent interaction between the sheet and its periodic images, thereby modeling

a sheet in the dilute limit. The self-attraction and excluded volume of the sheet were

modeled via Lennard-Jones interactions ULJ of strength εLJ between all non-bonded pairs

of beads. For computational efficiency, this potential is truncated at rcut = 2.5σ and then
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shifted by ULJ(rcut) to avoid discontinuities in the potential. The areal compressibility

of the sheet was modeled with a harmonic bond potential between all nearest neighbors

(i, j) of the form

(5.1) Ubond(rij) = εbond (rij − σ)2 ,

where rij is the distance between two bonded particles (Fig. 5.1). The bond energy εbond =

2000kBT is chosen to be at least 100 times larger than both the bending modulus κb =

0.5 eV (see Appendix A) and εLJ, to ensure the sheet’s dynamics are mostly determined

by bending and self-attraction. The bending rigidity was modeled by a “cosine–delta”

angle potential of the form

(5.2) UCD(θijk) = εCD [1− cos(π − θijk)]

for all sets of three beads (i, j, k) such that i and k are nearest neighbors of j, and the

vectors rij and rjk are collinear when the sheet is flat (see Fig. 5.1). This form is chosen

to approximate the bending properties of a continuum sheet, and the prefactor εCD is set

to 14.8kBT to approximate the bending rigidity of GO (see Appendix A for a discussion of

the choice of angle potential). The solvent is modeled implicitly by a Langevin thermostat

with damping time 6.67τ where τ = σ
√
m/kBT is the simulation unit of time, with the

simulation mass m set to unity. This thermostat also controls the temperature T = ε/kB

of the runs. Using an implicit solvent neglects hydrodynamics, which has no effect on the

equilibrium metadynamics simulations of Sec. 5.3.2, but may affect the folding process of

dynamically collapsing sheets and therefore the final conformations taken by such sheets.

The onset of sheet collapse, however, should not be affected by hydrodynamic interactions
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between sheet sites, because the sheet conformation is static prior to collapse, as shown

in Sec. 5.3.3. This static period is followed by a rapid collapse to a compact state (see

Sec. 5.3.3). To accurately integrate the equations of motion during the collapse, The MD

simulations evolved with a maximum time step of 0.00667τ that was adjusted dynamically

every 100 time steps so that no particle moved more than 0.01σ on that time step. Time

dependence of the dynamics was monitored by recording the simulation time t at each

time step. The simulations evolved for a total of 5× 107 time steps.

5.2.2. Metadynamics

Whereas the potential-energy landscape is useful in determining the conformational be-

havior of a sheet, it does not take into account configurational entropy and so yields an

incomplete description of the sheet’s thermodynamic behavior. For this reason we map

the free energy using metadynamics simulations [118], performed with the LAMMPS

package using the Collective Variables module [119]. Metadynamics biases the motion

along a set of NCV degrees of freedom ξ = (ξ1, ξ2, . . . , ξNCV
), known as collective variables

(CVs), using a history-dependent potential that consists of NCV-dimensional, repulsive

Gaussians that are periodically deposited at the system’s CV coordinates, i.e.,

(5.3) Vmeta(ξ) =
t∑

t′=δt,2δt,...

W

NCV∏
i=1

exp

[
−(ξi(t)− ξi(t′))2

2δ2ξi

]
,

where δt = 10 time steps is the time between depositions, W is the height of the deposited

Gaussian, which varies between simulations and is given in Sec. 5.3, and δξi is the width

of the Gaussian in the direction of ξi. This bias is imposed by adding a force −∇iVmeta to

each particle i during each time step, where ∇i is the gradient with respect to the position
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ξ of particle i. The simulation sequentially evolves toward configurations that minimize

the effective, biased free energy F̃ (ξ) = F (ξ) + Vmeta(ξ), where F (ξ) is the unbiased free

energy, then adds a repulsive Gaussian potential at the resulting value of ξ to bias the

system away from ξ. This process allows the system to sample configurations with large

free energies compared to the free-energy minimum of the system and additionally yields

F (ξ) to within an unknown constant

(5.4) F (ξ) = −Vmeta(ξ) + const.

The CVs were chosen to sample the free energy as both a function of sheet compactness

and the number of sheet–sheet contacts. Accordingly, we used the radius of gyration RG,

defined as the second moment of the inertia tensor,

(5.5) R2
G =

1

N

N∑
i

r2i −

(
1

N

N∑
i

ri

)2

,

where ri is the position of the ith particle, and the coordination number

(5.6) C =
N∑
j>i

1− (|ri − rj|/d0)n

1− (|ri − rj|/d0)m
,

characterized by a cutoff value d0 and exponents m and n with m > n. Each particle

pair contributes a value of 1 to the coordination number when the interparticle distance

|ri− rj| � d0 and a value of 0 when |ri− rj| � d0, with the smoothness of the transition

between these values determined by the exponents m and n (Fig. 5.2). Together, the

values of d0, m, and n determine a balance between the resolution of the resulting free-

energy landscape and the smoothness of the CV, the latter of which is required so that
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Figure 5.2. The coordination number C (Eq. 5.6) per particle pair transi-
tions from 1 at interparticle separation rij � d0 to 0 at rij � d0, and is 0.5
at the cutoff rij = d0 = 2.67. The choice of exponents m = 12 and n = 6
ensures a smooth decay to zero, which is required so that metadynamics
can compute gradients of C with respect to particle positions to impose
biasing forces φ on the particles.

metadynamics imposes a finite force φi on particle i for all particle positions. For this

system, d0 = 2.67, m = 12, and n = 6 were empirically found to yield good definition

of the resulting free-energy landscape. Data was collected in bins of 0.0067σ along RG

and 10 along C, and the widths of the Gaussian metadynamics potentials were δRG
=

0.025σ and δC = 37.6. The error in relative values of the free energy was estimated by

observing the reported free-energy difference between two spatially uncorrelated points as

the metadynamics simulations progressed and measuring the size of the fluctuations over

time.
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5.3. Results and Discussion

5.3.1. Effect of self-attraction on the kinetic barrier to collapse

The energy barrier to sheet collapse ≈10κb obtained in Ref. [116], equal to the bending

energy required to curl a sheet corner over until sheet–sheet contact is made, is inde-

pendent of the size of the curl and thus provides an energetic barrier that depends only

on the intrinsic bending stiffness of the sheet. The estimated bending modulus of GO

κb = 0.5 eV (see last paragraph of Appendix A) yields a barrier ∼100kBT , forbidding

passive transitions between flat and collapsed states. This calculation disregards the

energetic gain due to sheet self-attraction during the folding process by assuming this

attraction is infinitely short ranged. Incorporating finite-ranged self-attraction leads to a

significant reduction in the energetic barrier to collapse. This can be understood using a

simple model consisting of three stiffly bonded beads in an initially linear configuration,

with nonzero bending stiffness and an attractive interaction between the two end beads

(Fig. 5.3a, inset). The bending stiffness UCD(θabc) (Eq. 5.2) is associated with the angle

θabc between the three beads and favors a straight configuration. It is in competition with

a bead–bead attraction, which here we approximate as only the attractive part of the

Lennard-Jones interaction, i.e.,

(5.7) ULJ(rij) = −4εLJ

(
σ

rij

)6

.
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Figure 5.3. A simplified description of a folding sheet consists of ball-and-
stick model with fixed bond lengths a and a variable angle θabc (a, inset).
The competition between self-attraction and bending is characterized by the
parameter α = kεLJ/εCD per Eq. 5.8. The straight configuration (θ = π)
is metastable for α = 1/4 and unstable for α ≥ 1/3 (a). Accordingly, the
barrier energy to escape the metastable flat phase decreases sharply from
U0 = 2εCD for α = 0 to half that value for α ≈ 0.007, and vanishes for
α = 1/3 (b). The decay to zero can be seen more clearly on a semilog plot
(b, inset).

This approximation simplifies the resulting expressions and is valid near the flat configu-

ration when the end beads are far apart. The total energy of this system is

(5.8) Utot =
1

2
U0

[
1− cos(π − θabc)−

2α

sin6(θabc/2)

]
,



110

where U0 = 2εCD is the barrier energy when there is no self-attraction (corresponding

to the assumption of Ref. [116]), and α ≡ k εLJ

εCD
quantifies the competition between self-

attraction and bending rigidity, with the parameter k = 2
(
σ
2a

)6
for the present system,

where a is the lattice parameter. This expression for k shows a significant dependence

on the range of the self attraction σ. Increasing α illustrates the effect that large self-

attractions have on the barrier energy (Fig. 5.3a). For α = 1/4, the barrier has been

reduced to 1% of the total folding energy, whereas for α = 1/3 and α = 1/2 there is no

barrier to folding. The barrier energy can be calculated by extremizing Eq. 5.8, yielding

the critical angle to folding θC = 2 sin−1 8
√

3α and

(5.9) Ubarrier = U(θC)− U(π) = U0

[
1− 4

3
4
√

3α + α

]
.

This is U0 at α = 0 and decreases with increasing α until vanishing at α = 1
3

(Fig. 5.3b),

demonstrating how a finite-range attraction can reduce and even eliminate kinetic barriers

to sheet collapse. Applying this model to a related system in which a sheet folds along

fault lines as observed in Ref. [120] (Appendix B) shows how the parameter k increases

from the present model to that of a folding sheet, and demonstrates that Eq. 5.9 can be

used to describe larger, more complex systems despite the simplicity of the system for

which it was derived.

5.3.2. Energy barriers to folding

To understand the folding process of a self-attractive sheet, metadynamics simulations

were performed with εLJ = kBT and the collective variables described in Sec. 3.2. The

system evolved for 30 million time steps with a weight W = 10kBT and 20 million more
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time steps with W = kBT , yielding a final observed uncertainty of 20kBT in energy

differences between uncorrelated points on the free-energy map. The simulations show a

rich free-energy landscape (Fig. 5.4a) with points b–i corresponding to the conformations

pictured in Figs. 5.4b–i. The two points with lowest free-energy, points b and f in Fig. 5.4a,

correspond to a flat sheet and a sheet folded once lengthwise, respectively (Figs. 5.4b

and f). At this εLJ, the free-energy difference between states b = (4980, 7.4σ) and f =

(8700, 5.9σ), located to within an accuracy of (10, 0.1σ), is ∆Vbf = Vf − Vb = 260kBT , so

the flat phase is heavily thermodynamically favored. Further, the lowest-energy transition

between these states is set by the saddle-point energy at point d = (6080, 6.1σ) giving

∆Vdb = 390kBT and ∆Vdf = 140kBT . Since the barrier in both directions is much larger

than kBT , the final conformations taken by the sheet are determined by the initial state

of the system so that a crumpled sheet will not spontaneously uncrumple and vice versa.

Weak self-attraction requires sheet–sheet contact before the self-attraction becomes

significant, as shown by the saddle-point configuration Fig. 5.4d. In the simple mechanical

model above, strong self-attraction can have an effect well before sheet–sheet contact is

made. Accordingly, metadynamics simulations were performed for εLJ = 5kBT , 10kBT ,

15kBT , and 20kBT . Because such strong self-attractions can condense the system to very

low free-energy minima, and because the cost of a metadynamics simulation is related to

the volume of the phase space that must be filled with repulsive Gaussians (Sec. 5.3.2),

which is much larger here than for εLJ = kBT , exploring the landscape fully as in Fig. 5.4a

can be computationally costly. To study how εLJ affects the energetic barrier to collapse

without incurring the cost of these deep energetic wells, we bias the simulation toward its
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Figure 5.4. Free-energy map and associated configurations for εLJ = kBT .
Metadynamics simulations yield the free energy as a function of the radius
of gyration (Eq. 5.5) and coordination number (Eq. 5.6) (a). Points on
the map indicated in black lettering correspond to the configurations (b)–
(i). Flat sheets exhibit a large radius of gyration and small coordination
number (b). At this value of εLJ, the sheet can condense either by curling
over one edge (c) or more favorably by bending evenly across the middle
of the sheet (d). As a result, the sheet can fold along its diagonal (e) or
more favorably along its center line (f). The sheet can further compact
itself by folding in thirds (g), folding configuration f at its corner (h), or
folding configuration f along its short axis (i). For εLJ = kBT , the energy
minimum (b) is the ground state, and the barrier between (b) and the local
minimum (f) is 260 ± 20kBT . Configurations to the left or right of point
d (a) will move toward points b or f, respectively. The value of εLJ does
not affect the correspondence between points (b)–(i) in (a) and the pictured
configurations (b)–(i), but it may affect the relative free energies of those
points.
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flat configuration with a harmonic potential

(5.10) Vharm(RG, C) =
1

2

[
k1 (RG −RG,0)

2 + k2 (C − C0)
2] ,

where k1 = 4444kBT/σ
−2 and k2 = 10−2kBT are spring constants and the potential

minimum is at RG,0 = 7.3σ and C0 = 5000. The free-energy landscape of the system is

then obtained from the metadynamics results by subtracting Vharm from the bias potential

Vmeta, Eq. 5.3 (Fig. 5.5). These simulations progressed for 5 million time steps with

weight W = kBT and then one million more time steps with W = 0.1kBT , giving a

final uncertainty of 10kBT . The preferred folding mode indicated by the saddle points

of Figs. 5.5a and b is seen to shift from an even fold across the middle (Fig. 5.4d) to

a sharp fold of an edge or corner (Fig. 5.4c) as the self-attraction is now strong enough

that small amounts of sheet–sheet contact can offset large bending energies. As in the

simplistic mechanical ball-and-stick model above, there is a clear decrease in the energetic

barrier as εLJ increases, until the barrier is comparable to or smaller than the statistical

uncertainty for εLJ ≥ 15kBT . This decreasing barrier to collapse has a direct effect on the

dynamics and conformations of the collapsed sheets that result.

5.3.3. Dynamics of sheet collapse

For sheets with self-attraction sufficient to induce spontaneous collapse, the final confor-

mations taken will not necessarily resemble any of the the local free-energy minima in

Fig. 5.4a. Instead, local potential -energy minima can trap the system so that the final

morphology depends on the dynamical time-evolution of the sheet rather than the loca-

tion of free-energy minima. As such, we perform MD simulations of a system similar to
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Figure 5.5. Free-energy maps illustrate how increasing self-attraction af-
fects the free-energy landscape. For εLJ = 5kBT (a) and εLJ = 10kBT
(b), an energetic barrier on the order of 100kBT is observed. For higher
self-attractions εLJ = 15kBT (c) and εLJ = 20kBT (d) the barriers are com-
parable to or below the uncertainty 10kBT of the metadynamics simulations
and cannot be observed. The simulations are constrained using a harmonic
potential (Eq. 5.10) so that they do not explore the areas in white. Note
that the values of the color bar have been shifted between plots for visual
clarity.

but larger than that in the previous section (L = 70σ) and monitor the sheet morphology

as a function of time and the degree of self-attraction. In experiment, the latter of these

can be altered by changing the solvent in which the GO is dispersed [115].

The flat phase persists for a finite duration tcoll before collapse, which depends on

the self-attraction. This is followed by a sharp transition to a compact conformation

(Fig. 5.6a). The process of collapse is stochastic in nature, so average behavior and
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Figure 5.6. The metastability of the flat phase at the self-attractions εLJ
examined manifests itself as a finite time tcoll during which the system re-
mains at its initial RG followed by a relatively quick collapse to a more
compact conformation (a). Averages over 30 simulations show that the
time to collapse decreases slower than exponentially with respect to εLJ,
indicating the associated energy barrier decreases more slowly than a linear
function. This is in agreement with Eq. 5.9 obtained for a simplified ball-
and-stick model (b). Fitting the average of tcoll to an Arrhenius function of
the form Eq. 5.11 yields inferences about the preferred folding mode, the
competition between bending stiffness and self-attraction during a fold, and
the attempted frequency of a fold (see text).

associated statistical uncertainties are obtained from 30 identical simulations per εLJ, each

with different random-number seeds. The time to collapse is observed to be a smoothly

decreasing function of εLJ (Fig. 5.6b). This corroborates the findings in Sec. 5.3.1 in

which increasing sheet self-attraction decreases the barrier to collapse. Additionally, this
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decrease is slower than exponential in εLJ, indicating that the associated energy barrier

decreases more slowly than a linear function of εLJ, in agreement with Eq. 5.9 for the

ball-and-stick model (Fig. 5.3b). Because the simplistic ball-and-stick model can describe

hinge-like folding of a large sheet with reasonable success (see Appendix B), we attempt to

use it here as an approximate model of the sheet barrier energy. Accordingly, we describe

the barrier energy to collapse, Ubarrier, by Eq. 5.9 and relate this energy to tcoll via an

Arrhenius function

(5.11) tcoll = A−1 exp(Ubarrier/kBT ) ,

where A represents the attempt frequency and Ubarrier is characterized by a bending energy

U0 and the parameter k, both of which are used here as fitting parameters. A nonlinear

least-squares fit yields A = 1.35(5) × 10−2τ−1, U0 = 180(8)kBT , and k = 0.237(3), with

reduced χ2 = 0.35 indicating a good fit. The value obtained for U0, which represents the

folding energy in the absence of attractive interactions, is roughly twice smaller than the

energy barrier obtained from metadynamics simulations of Fig. 5.3.2 (Sec. 5.3.2). This

is consistent with the fact that, in contrast with the case where εLJ = kBT in which the

sheet folds along its center line (Fig. 5.4d), the preferred folding mode for εLJ � kBT

is along sheet edges or corners (Fig. 5.4c), in agreement with the results of Fig. 5.5 and

configurations observed in simulations at the onset of folding (data not shown). This

value of U0 ≈ 10κb is consistent with the energy calculated for folding of sheet corners

in Ref. [116]. The value of k suggests a critical self-attraction εLJ,crit = 1.58εCD. This is

smaller than that of both the simplified ball-and-stick (Sec. 5.3.1) and sheet–hinge models

(Appendix B), indicating that the preferred folding mode has a smaller bending energy
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Figure 5.7. Collapsed conformations for various degrees of self-attraction.
Two main modes of collapse are depicted at εLJ = 12kBT (a and b), and
εLJ = 20kBT (c and d), corresponding to the lowest εLJ for which sponta-
neous sheet collapse is observed and the highest εLJ simulated, respectively.
Sheet collapse along multiple directions stabilizes a flat phase that resists
further collapse (a and c), and a sheet collapse along one main direction
leads to rod-like conformations (b and d). These are both common across
the various εLJ observed here, so that the radius of gyration averaged across
30 independent simulation per εLJ varies weakly with εLJ (e).

than the sharp folds considered in the simplified models. Lastly, the value of the attempt

frequency A suggests there is a fluctuation of order kBT in this preferred mode roughly

once every 70τ .

The conformations assumed after “collapse” (Fig. 5.7a–d) do not correspond to the
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single folds represented by the free-energy minima in Fig. 5.4a (e.g., Figs. 5.4b and f),

but instead correspond to “trapped” states that the sheets remain in. Additionally, the

average RG of the sheets depends only very weakly on their self-attraction (Fig. 5.7e).

Instead, there is large stochastic variation for each εLJ that depends on whether folding

occurs along one direction as in Figs. 5.7a and c, leading to straight, rod-like collapsed

states, or multiple directions as in Figs. 5.7b and d, leading to states that exhibit some

degree of flatness like the conformations observed in experiment [115, 121, 122, 123].

The probability of folding along multiple axes is likely influenced by the sheet size, and

given that experimental GO sheets can exhibit length:thickness ratios roughly two orders

of magnitude larger than that simulated here, further study may require a systematic

investigation of finite-size effects in this system. Additionally, this model does not in-

corporate sites of reduced bending rigidity observed in Ref. [120] that may increase the

probability of folding along multiple lines.

5.4. Conclusion

Analysis of a coarse-grained model of graphene-oxide sheets has shown that sheet self-

attraction competes with bending stiffness to reduce the energy barrier to collapse. This

was quantified first using a simplified mechanical model, which showed that the barrier

energy is reduced to zero for sufficient self-attraction of the sheet, and was elucidated

further using metadynamics simulations that showed that an energetic barrier to collapse

of ∼100kBT is reduced or eliminated when the self-attraction is ∼10kBT . Further, the

average waiting time to observe spontaneous sheet collapse in molecular dynamics sim-

ulations was related to the expression for the energy barrier obtained from the simple
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ball-and-stick model via an Arrhenius equation. The final sheet conformations showed

large run-to-run variation due to the stochastic nature of the collapse. Sheets collapsed

either along one axis, forming rod-like conformations, or along multiple axes, stabilizing

a wrinkled sheet-like structure. Because multiple folding modes may become more likely

for larger sheets, and because GO sheets in experiment are roughly 2 orders of magni-

tude larger than in simulation, a possible extension to this work includes quantifying

how collapsed conformations depend on sheet size. Further, experimental evidence [120]

indicates that defect lines may play an important role in the folding behavior of GO,

and further work that incorporates such defects may more faithfully capture the wrinkled

conformations observed in experiment.

Appendix A: Choice of angle potential

Continuum elasticity theory gives the bending energy of a sheet via the Helfrich Hamil-

tonian [124]

(5.12) Ebend =

∫
A

dA

(
1

2
κbK

2 + κGKG

)
,

where the integral is taken over an area A, with κb the bending modulus, K the curvature,

κG the Gaussian bending rigidity, and KG the Gaussian curvature.

Since the curvature of a surface is given by the rate of change of the surface normal

vector, the first term in Eq. 5.12 is often described in discrete models by

(5.13) UNN = εNN

∑
pairs

[1− na · nb] ,
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Figure 5.8. To compare the “Normal–Normal” bending rigidity εNN of a
coarse-grained, triangulated sheet (Eq. 5.13) with the bending modulus
κb of a continuum sheet (Eq. 5.12), we compute the bending energy of a
triangulated sheet curled into a cylinder of radius R, given that the vertices
of the triangles (corresponding to coarse-grained beads) are constrained to
the surface of the cylinder (a). This energy varies with the angle ψ that the
center-to-center vector of the triangles makes with the cylinder axis (b, red
curve). Each triangle is bonded to three nearest neighbors (b, red, green
and blue curves) so that the total energy per triangle is given by their sum
(b, purple curve), which varies as a function of ψ. This variation increases as
the radius of curvature decreases, and is ∼10% of the total bending energy
for R = σ, which can be sufficient to impose directional bias upon folding
(c).

where na and nb are the unit normals of surfaces a and b that share an edge (see Fig. 5.8a)

and εNN is related to the bending modulus κb. The relation of εNN to κb is obtained by

calculating the bending energy of a triangulated surface curled into a cylinder. Since

a cylinder has constant K = 1/R where R is the radius of the cylinder, and constant
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KG = 0, the bending energy of the cylinder per unit area is simply 1
2
κb/R

2. For two

adjacent triangles whose vertices lie on the surface of a cylinder of radius R, the bending

energy per triangle is a function of R as well as the angle of rotation on the cylinder

surface ψ (see Fig. 5.8a)

(5.14)

UNN(R,ψ) =
1

2
−
√

(16R2/σ2 − 4c2)(3c2 − s2)s2 − c2 + (8R2/σ2 − 1)2 − 128R2/σ2 + 25

3c4
,

where c ≡ cosψ and s ≡ sinψ, and we have assumed the lattice vector is σ. The bending

energy changes with ψ (red curve in Fig. 5.8b) from a maximum value at ψ = ±π/2

to zero at ψ = ±π/6. Since each triangle has three nearest neighbors, with angles ψ

offset by 2π/3 from one another (green and blue curves, Fig. 5.8b), the total energy of a

single triangle will be the sum of the associated energies (purple curve, Fig. 5.8b). While

variations in this energy as a function of ψ are small compared to the total bending energy,

they can be sufficient to impose a directional preference for folding. Additionally, these

variations grow with decreasing R, such that for R ∼ σ, which is roughly the radius of

curvature of a sharp fold in a sheet of unit thickness, the fluctuations are ∼10% of the

total energy (Fig. 5.8c).

An alternative is to use the bond-angle potential UCD (Eq. 5.2). Placing the vertices

of a triangulated sheet on the surface of a cylinder and calculating the bending energy as

above yields

(5.15) UCD(R,ψ) = εCD
cos4 ψ

2R2/σ2
,
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Figure 5.9. Similarly to Fig. 5.8, we compare the “cosine–delta” bending
rigidity εCD of a coarse-grained, triangulated sheet (Eq. 5.2) with the bend-
ing modulus κb of a continuum sheet. The total bending energy of the
triangulated sheet is obtained by constraining each vertex (corresponding
to a coarse-grained bead) to the surface of a cylinder of radius R, then cal-
culating the bending energy between three vertices i, j, and k (see Fig. 5.1)
using Eq. 5.2 (a). This energy varies with the angle ψ that the vertex-
to-vertex vector makes with the cylinder cross-section (b, red curve). Each
vertex is the center of three such bonds i, j, k (b, red, green and blue curves)
so that the total energy per vertex is given by the sum of the associated
bending energies (b, purple curve). There is no variation in the total bend-
ing energy with respect to ψ, such that Eq. 5.2 adequately reproduces the
bending energy of a continuum sheet in this regard.

with R and ψ as above (Fig. 5.9a). Again, the total bending energy per vertex is composed

of the bending energy of three bonds with ψ offset by 2π/3 from one another (red, blue

and green curves, Fig. 5.9b)

(5.16) UCD,tot(R,ψ) =
9

16

εCD

R2/σ2
,

which is constant with respect to ψ (purple curve, Fig. 5.9b), and only depends on 1/R2,

in direct analogy to a continuum sheet. We are unaware of evidence of a directional

preference for the folding of graphene or GO, so we opt for UCD as opposed to UNN.
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To calibrate εCD we compare the energy per vertex Eq. 5.16 with the Helfrich bending

energy (Eq. 5.12) integrated over the area occupied by a vertex,
√

3σ2/2, yielding

(5.17) εCD =
4√
27
κb .

There is no reliable measure of the bending rigidity of monolayer GO that we are aware

of, so to estimate κb we start with that for pure graphene κb,graph = 1.2 eV [125] and

multiply this by the ratio of the 2D Young’s Modulus of GO, E2D
GO = 140 N/m [126], to

that of graphene, E2D
graph = 340 N/m [125], i.e., κb = κb,graphE

2D
GO/E

2D
graph = 0.5 eV. This

yields εCD = 14.8kBT . The approximate nature of this value is deemed acceptable as it

is much larger than kBT , and so only in competition with the sheet self-attraction εLJ,

which is taken as an unknown variable here. This model neglects the existence of kinks

observed by Ref. [120]. Such sites of reduced bending energy, which can form lines of

defects in GO, could very well induce preferential folding along these lines and contribute

to an increased propensity for sheets to wrinkle instead of crumple.

Appendix B: Calculation of folding energy barrier for a sheet

Here we calculate the energy required to fold a coarse-grained sheet similar to the one

described in Sec. 3.2 along a sharp crease. The sheet has bead size σ and basis vectors

e1 = (a, 0) (rows) and e2 = (0,
√

3a/2) (columns), where a = σ is the lattice vector of the

sheet (Fig. 5.10a). If we fold along a row of particles, the bending energy per unit length

along the crease is given by the cosine–delta potential

(5.18) Ubend =
3

2a
εCD [1− cos(φ)] =

3

a
εCD sin2(φ/2) ,
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a

Figure 5.10. Schematics for the sheet–hinge bending calculation in Appen-
dix B. (a) Sheet orientation with respect to lattice vectors e1 and e2. Note
that for simplicity, the calculation of the attractive LJ interactions are per-
formed on a rectangular lattice with e1 and e2 as pictured. The sheet is
folded along e1, and e2 is perpendicular to the fold (b). Two particles (i, n)
and (j,m) (blue dots) lie on lines Li and Lj (red) that are a distance i|e2|
and j|e2| away from the crease, respectively. The distance of closest ap-
proach of these two lines is rij, given by Eq. 5.20, and the distance between
the two particles is rijnm, given by Eq. 5.19.

where φ is the angle between surface normals on either side of the crease (see Fig. 5.10b),

and a factor 3/2 has been included to account for the ratio between the bending energy

of a single bond and that of the multiple bonds that straddle the crease along e1 (see

Fig. 5.10a). For mathematical simplicity, we calculate the LJ energy using a rectangular

array of particles rather than a triangular array, and use basis vectors e1 and e2 as above

to approximate the basis vectors of a triangulated sheet. We index each particle by the

number of rows i it is from the crease and its column index n in the lateral direction

(Fig. 5.10b). The distance between two atoms of index (i, n) and (j,m) that are on

opposite sides of the crease is given by the folding angle φ as

(5.19) r2ijnm = rij(φ)2 + a2(n−m)2 ,
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where the angle-dependent distance of closest approach between two rows is given by

(5.20)
(rij
a

)2
=

3

4

[
(i+ j)2 − 4ij sin2(φ/2)

]
≡
(xij
π

)2
,

where xij ≡ πrij/a is introduced for convenience. For simplicity, we include only the

attractive part of the LJ energy as in Eq. 5.7. The total LJ energy per unit length for

two interacting rows i and j on opposite sides of the crease is

Uij
a

=
1

a

∞∑
n−m=−∞

−4εLJσ
6

r6ijnm
= −1

a

∞∑
n=−∞

4εLJσ
6/a6

[(xij/π)2 + n2]3
(5.21)

=
2x3ij coth(xij)csch2(xij) + 3x2ijcsch(xij) + 3x coth(xij)

8x6ij

4εLJπ
6σ6

a7
.(5.22)

Since the minimum value taken by xij, given by i = j = 1, is xmin = π
√

3, we can use to

a high degree of precision the approximations coth(x) ≈ 1 and csch(x) ≈ 0 such that

Uij
a
≈ κ

[
(i+ j)2 − 4ij sin2(φ/2)

]−5/2
(5.23)

=
κ

(i+ j)5

[
1 + 10ij

(
sin(φ/2)

i+ j

)2

+ 70i2j2
(

sin(φ/2)

i+ j

)4

+ O(φ6)

]
,(5.24)
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where κ ≡ −16εLJπσ
6

33/2a7
, and we have expanded Eq. 5.23 around small φ in to obtain Eq. 5.24.

The total attractive energy is obtained by summing over all pairs of rows (i, j)

ULJ =
∞∑

i,j=1

Uij(5.25)

≈ κ

{
∞∑

i,j=1

(i+ j)−5 + 10 sin2(φ/2)
∞∑

i,j=1

ij(i+ j)−7

+70 sin4(φ/2)
∞∑

i,j=1

i2j2(i+ j)−9 + O(φ6)

}(5.26)

≡ κ
[
S1 + 10S2 sin2(φ/2) + 70S3 sin4(φ/2) + O(φ6)

]
,(5.27)

where S1 = −ζ(5) + π4/90 ≈ 0.045, S2 = (21π4 − 2π6)/11340 ≈ 0.011, and S3 =

(105π4 − π8)/283500 ≈ 0.0026.

To fourth order in φ, the total sheet–hinge energy USH = ULJ + Ubend can be divided

into three terms. The first order term, κS1, is independent of φ and so has no effect

on folding and can be disregarded. The second order term, (10κS2 + 3εCD/a) sin2(φ/2),

determines via its sign whether the flat phase is metastable or unstable, so that the

critical self-attraction at which there is no kinetic barrier to sheet collapse is determined

by setting this term to zero, yielding

(5.28) εLJ,crit = 2.8εCD .

The third order term, 70κS3 sin4(φ/2), competes with the second order term to determine

the energetic barrier to folding when εLJ is just below its critical value. Determining the

energetic barrier to folding for small εLJ requires taking Eq. 5.27 to higher order.
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Figure 5.11. A simulated sheet is compared directly to the infinite sheet–
hinge system. The energy landscape of a stiff sheet as a function of the
bending angle and the self attraction shows how the critical bending angle
θC depends on the self-attraction εLJ (a). The energy difference from a flat
configuration at θC is shown as a function of εLJ, along with a fit to Eq. 5.9
via the parameters U0 and k (b). The simulation and fit show reasonable
overlap, and the parameters obtained from the fit agree moderately well
with those expected for the infinite sheet–hinge system (see text).

Because Eq. 5.27 is complicated, we seek to approximate it with a simplified expression.

The similarity of the sheet–hinge and ball-and-stick models both in construction and

behavior suggests the use of Eqs. 5.8 and 5.9. To test the fidelity of this approximation,

we use LAMMPS to calculate USH for a finite sheet of L = 70σ and N = 5710, folded along

e1 at the middle of the sheet, with a Lennard-Jones potential potential of variable strength

εLJ and rcut =∞, and bending potential given by Eq. 5.2 (Fig. 5.11). A nonlinear least-
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squares fit to the energetic barrier Eq. 5.9 as a function of the self-attraction yields U0 =

3777kBT and k = 0.112. Comparison with the bending energy of a fully folded sheet U0 =

3108kBT and the parameter k as calculated from Eq. 5.28, k = 0.118, shows reasonable

agreement, with some difference resulting from the finite nature of the simulated sheet

and the repulsive part of the LJ potential.
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CHAPTER 6

Conclusion

In this dissertation, I use particle-based simulations to understand system behavior,

and in some cases to optimize system performance, primarily at surfaces of biomedical

relevance. In these studies, systems are coarse-grained at the length-scale of interest, and

the known rules governing individual particle motion are integrated numerically to obtain

unexpected properties that can emerge on the population level due to nonlinear many-

body effects. In all cases, the results are compared directly to theory and/or experiment

to learn how subtle changes in particle properties can lead to larger changes in population

behavior. Examples of this include the aggregation of bacteria on surfaces (Ch. 2) and

aggregation of like-charged interfaces due to complex, multivalent counterions (Ch. 3).

The latter study led to an exploration of ion current through such condensed, charged

lamellae (Ch. 4), and inspired the study of the condensation of single self-attractive sheets

in poor solvent (Ch. 5). Here I present a summary of the major findings and future outlook

of each chapter of the dissertation.

In Chapter 2, I investigated the aggregation behavior of nascent bacterial colonies of

surface-adhered Pseudomonas aeruginosa. By analyzing experimental data and compar-

ing to an agent-based model, I found that individual bacteria can exhibit motilities that

are distinct from one another even when these bacteria are genetically identical. These

differences in motility correlated with the amount of time the bacteria remained fixed to

the surface, suggesting that they may arise from heterogeneities in the number of type-IV
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pili attached to a bacterium. This heterogeneity was then used to explain the power-law

form of the surface-site visit distribution, which was previously suggested to be a hallmark

of many-body behavior [16]. Bacterial aggregation was explored by allowing bacteria to

deposit and interact with the polysaccharide Psl, which is a main component of the biofilm

extracellular matrix and to which the bacteria are haptotactically attracted. Because of

this attraction, Psl mediates a so-called self-attractive interaction, which I showed al-

lows the population to divide into two distinct groups: “nucleators” that remain mostly

stationary and nucleate Psl-rich surface regions, and “explorers” that are highly mobile,

traveling between and linking the Psl beds created by the nucleators before settling into

a sessile state. This division was observed in previous experiments [18]. Changing the

relative prevalence of each subpopulation via the Psl deposition rate led to a trade-off

between surface coverage, microcolony fortification, and microcolony heterogeneity, and

suggested an all-around optimal Psl deposition rate in simulation, for which the surface

coverage behavior, e.g., the visit histogram, mimicked experimental wild-type bacteria.

Future work includes testing the hypothesis that the observed motility heterogeneity is

related to the number of pili per bacterium, and developing methods to manipulate this

bacterial economy as it develops to treat or control biofilms.

Another crucial interface for the transmission of infectious disease is the cell membrane.

Certain proteins such as Rac1 are known to mediate the transport of viral agents into the

cell to the detriment of the host, and their ejection from the cell membrane by the antiviral

agent squalamine correlates with increased resistance to a range of important viral infec-

tions [41]. In chapter three, I used coarse-grained molecular dynamics simulations and

free-energy perturbation and integration techniques to study how squalamine can displace
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more highly charged proteins such as Rac1, thereby protecting the host cell. The ejec-

tion process was shown to arise from a combination of charge-density matching between

squalamine and mammalian phospholipid membranes, the ability of multivalent, elongated

counterions like squalamine to mediate an effective attraction between like-charged cellular

membranes, and large differences in steric size between squalamine and Rac1. Specifically,

the condensation of the membrane stacks by squalamine was sufficiently strong and tight

to effectively squeeze the bulky Rac1 protein out of the condensed membrane stacks.

This competitive interaction was recreated using a coarse-grained model employing only

electrostatics and steric interactions, indicating that electrostatics are crucial to the ejec-

tion of Rac1 from membrane stacks. Future work may include hierarchical simulations

that capture the squalamine–membrane and Rac1–membrane interactions in atomic or

near-atomic detail.

Such condensed, charged layers exhibit many interesting properties. I use Poisson–

Nernst–Planck theory (in collaboration with Dr. Niels Boon) and molecular dynamics

simulations in chapter four to explore the ability of stacked graphene-oxide sheets to ma-

nipulate ionic current parallel to the sheet surfaces, in particular to enable ionic current

rectification. I show that these negatively charged graphene-oxide stacks preferentially

allow the passage of cations under an applied voltage. This leads to the development

of concentration-polarization zones directly outside the stacked layers that can have ex-

tremely low local ion concentrations and so can dominate the total resistance of the sys-

tem. Since the characteristics of these concentration-polarization zones are determined by

system geometry, simple alterations of the geometry of the graphene-oxide stacks and the

surrounding ion channels can generate a number of interesting transport effects including
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current rectification. I used this understanding of system dynamics to suggest device

optimization and a new device that may yield rectification without the use of graphene

oxide, both of which require experimental testing as a next step.

The interactions that mediate attraction between sheets also mediate a self-attraction

between different sites on the same sheet. In chapter five I use molecular dynamics

and metadynamics simulations to elucidate the competition between sheet self-attraction

and bending rigidity, and to determine how the final conformation of a graphene-oxide

sheet depends on these parameters. In particular, the finite-range self-attraction of a

coarse-grained sheet is shown to be able to overcome very large folding energy barriers.

Additionally, the time-to-collapse of the sheets was shown to be well described by an

Arrhenius relation to the barrier energy. Finally, large run-to-run variations of the fi-

nal sheet conformations underscore the stochastic nature of the collapse. Sheets of all

self-attractions formed either rod-like conformations after folding along a single axis, or

wrinkled sheet-like structures after collapsing along multiple lines. Since larger sheets

like that in experiment may be more likely to form multiple folds simultaneously, future

work may include an analysis of the finite-size dependence of the final conformations

of the sheets. Further, a model that incorporates defect lines that have been observed

in real graphene-oxide sheets [120] may more provide a more faithful representation of

experimental sheets.
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