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Abstract

This dissertation consists of three essays in Microeconomic Theory that study the interplay

between mechanism and information design, provide insights into the design of efficient dis-

pute resolution mechanisms for partnerships, and analyze the stability of fractional matchings

in two-sided markets.

In the first chapter, we study the optimal disclosure policy in a setting in which both a

monopolistic seller and a single potential buyer of an indivisible good face product-related

uncertainty. The buyer’s valuation depends on his privately known type and the unknown

attributes of the object. The seller designs a disclosure policy with a publicly observable

outcome and interacts with the buyer only after the information is revealed. We identify the

condition on the underlying preferences that guarantees the optimality of full disclosure: if

buyer types are ranked uniformly across states by their willingness to pay, the seller prefers

to disclose all information about her product. Whenever this condition is violated, there

always exist type distributions for which full disclosure is suboptimal. We also study the

optimal information disclosure policy in cases in which the released information might affect

the ranking of the types. In environments with two types, the seller prefers partial disclosure

that never reverses the ranking and fully reveals states in which the net gain from restricting

output by selling only to the higher type is above a certain threshold. In settings with

many types, the optimal disclosure policy depends on the distribution of types in a more

complicated way. We establish structural properties that the groups of types that purchase

the object at different posteriors must fulfill under the optimal policy.

The second chapter, which is a joint work with Daniel Fershtman, studies the efficient

resolution of partnership disputes where efficiency need not imply dissolution. The modeled
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endogeneity of dissolution is a departure from the partnership dissolution literature ema-

nating from Cramton et al. (1987), which has effectively focused on circumstances in which

dissolution is unavoidable; the analysis yields predictions that contrast sharply with their

analogs in such environments. First, we show that unless a dispute is sufficiently severe, its

efficient resolution is infeasible without external subsidy. Furthermore, we prove that the

severity of a dispute has a non-monotonic effect on the cost of its efficient resolution. We also

consider an alternative class of mechanisms and characterize the disputes for which a profit-

oriented arbitrator benefits from a more conservative approach in opting for dissolution. The

latter characterization has implications for the design of arbitration in environments in which

the partners’ decision to trigger a dispute is itself endogenous.

The third chapter describes a new stability concept for fractional matchings in two-sided

markets in which agents can be matched with multiple partners over time. The new defi-

nition, called C-stability, is equivalent to the non-existence of unstable implementing time

schedules and is less restrictive than strong stability proposed by Roth et al. (1993). We

characterize this condition both geometrically and in terms of the underlying preferences.

The geometric characterization reveals the relationship between the set of fractional match-

ings satisfying C-stability, the polytope of matchings, and the polytope of weakly stable

fractional matchings. The preference-based characterization uses these results to provide

necessary and sufficient conditions on the underlying preferences that a fractional match-

ing must fulfill to satisfy C-stability. These findings also highlight the difference between

strong stability and C-stability and identify the exact cases in which strong stability excludes

matchings that can be implemented only by stable time schedules.
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Chapter 1

Optimal Disclosure with Subsequent Screening

1.1 Introduction

There are many economic situations in which one party has the option to reveal information

that, in a later strategic interaction, might be relevant to all participating parties, includ-

ing herself. An online seller can design a customer-review system that not only provides

information to potential buyers about the product, but also helps her assess the product’s

reception by the consumers. A university’s teaching evaluation system informs the institu-

tion, its instructors, and its students about the quality of the education in a way that might

have complex effects on the relationship between these groups; for example, later promotion

and hiring decisions can rely on the data, which might also shape or misshape the priorities

of the instructors in teaching. In an acquisition process, before negotiating the terms, the

executives of a target tech company may have to decide how detailed an investigation they

will allow into the company’s intellectual property and financial situation. In all of these

cases, the information disclosure policy has to be designed with careful consideration of its

later effects on the strategic interaction.
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This chapter studies such an optimal disclosure problem in a setting in which both a

monopolistic seller and a potential buyer face uncertainty about a product. The buyer’s

valuation is influenced by both his privately known type and the unknown product charac-

teristics. The seller designs an experiment that reveals a publicly observed signal about these

unknown characteristics before interacting with the buyer. The provided information might

have heterogeneous effects on different types that are strong enough to change their ranking

according to their willingness to pay. Our goal is to describe the seller’s optimal disclosure

policy and its dependence on the underlying model parameters in this environment.

We show that the key feature of the seller’s design problem is the relationship between the

released information and its effect on the ranking of the types according to their willingness

to pay. If the released information cannot change the ranking, then it is optimal for the

seller to use a fully revealing disclosure policy to be able to condition the group of types to

which she sells and the price she charges on the different states. Whenever this condition

is violated, there always exist type distributions for which full disclosure is suboptimal. In

such cases, the seller can capitalize on the heterogeneous effects of the revealed information

by leaving uncertainty between some states that induce different rankings to equalize the

expected valuations of some types and capture more expected surplus.

This work also takes a step further by analyzing the optimal disclosure policy in cases in

which the released information can potentially change the ranking of the types. We provide a

complete characterization for environments with two buyer types. In such settings, no matter

what the underlying type distribution is, fully disclosing the actual state is never optimal for

the seller if types are not ranked in the same way across states. The optimal policy discloses

information that either (i) fully reveals states in which the order of the types is consistent

with the prior order, or (ii) induces a belief that assigns positive probability to two states

that correspond to different rankings in a way that equalizes the expected valuations. In
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particular, the seller prefers to reveal states in which her net gain from restricting the output

by selling only to the higher type instead of selling to both types is above a certain threshold.

In the two-type environment, we also decompose the original state space into a two-

dimensional structure that separates the horizontal and vertical effects of the released infor-

mation. The horizontal dimension captures the part of the information that can affect the

ranking while the vertical information never changes the order conditional on the horizontal

state. Under the optimal information disclosure policy, information about the vertical di-

mension is fully revealed, while information along the horizontal dimension is only partially

disclosed.

Still in the two-type environment, we also relate the welfare consequences of the optimal

disclosure policy to those in the benchmark cases of no disclosure and full disclosure. When

it is compared to no disclosure, the effects of the optimal information disclosure on the prob-

ability of sale, and consequently on the social welfare and consumer surplus, are ambiguous.

Compared to full disclosure, however, the optimal policy induces a more efficient outcome,

but more than this efficiency gain is captured by the seller, leading to a lower consumer

surplus.

In settings with many buyer types, the optimal disclosure policy depends on the underly-

ing type distribution in a more complicated way. We provide a partial characterization of the

optimal policy that generalizes multiple results from the two-type environment. First, the

released information either fully reveals the true state or induces a belief that equalizes the

expected valuations of at least two types. Second, optimality dictates that certain properties

must be satisfied by the groups of types that may purchase the product depending on the

revealed information. Every pair of beliefs that arise with positive probability under the

optimal policy has the following three properties. First, the groups of types that purchase

the good given each of these beliefs cannot be disjoint. Second, if the first group has a mass
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weakly larger than that of the second one, then the marginal types in the first group cannot

all receive the product under the second belief and be non marginal types. And third, if the

first group has a strictly larger mass, then the marginal types who purchase given the first

belief cannot all receive the good under the second belief. These properties generalize the

results derived in the two-type environment, namely, that the released information cannot

reverse the ranking of types, and that full disclosure must be suboptimal whenever types are

not uniformly ordered across states.

1.1.1 Related literature

Many papers analyze a seller’s optimal information disclosure problem in selling or auction

environments (see, for example, Milgrom and Weber (1982), Lewis and Sappington (1994),

Ottaviani and Prat (2001), Eső and Szentes (2007), Board (2009), Fu et al. (2012)). Al-

though these papers use different modeling assumptions, their general conclusion is that one

of the two extreme information disclosure policies—full disclosure or no disclosure—is opti-

mal for the seller. Heterogeneity between different bidders does not significantly alter this

conclusion: although releasing all information before a second price auction can be detri-

mental to the seller’s revenue if the information can affect the ranking of the bidders (the

allocation effect in Board (2009)), the optimality of full disclosure is restored if the auction

format can be chosen conditional on the revealed information (Fu et al. (2012)). We con-

tribute to this literature by presenting a model in which a different kind of heterogeneity is

allowed, and the revealed information might have strong heterogeneous effects on the dif-

ferent types of a given buyer. In a model in which disclosure precedes interaction with the

buyer, we show that this heterogeneity can give an incentive for the seller to only partially

reveal the underlying uncertainty.
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Such taste heterogeneity between different buyer types is also present in the papers

of Koessler and Renault (2012) and Koessler and Skreta (2016). These works, however,

consider environments in which the seller has private information about her own type.

Koessler and Renault (2012) focus on a strategic communication setting in which the seller

can credibly disclose her private information. In their model, the unraveling of seller types

(and hence full disclosure) is always an equilibrium, and in many cases it is the unique one. In

contrast, the present work assumes that the underlying state is unknown even to the seller at

the information design stage, and she can disclose the information with commitment. Conse-

quently, full revelation will happen less frequently than in their model. Koessler and Skreta

(2016) consider an informed principal problem and analyze the selling procedures that can

arise in equilibrium.

Li and Shi (2017a) and Li and Shi (2017b) present a different type of single-buyer model

in which partial disclosure can be optimal for the seller. In their setting, the seller can

interact with the buyer before disclosure, and the released information and its effect on the

buyer’s valuation depend on both the reported and the underlying true type of the buyer.

In a recent work, for environments in which types and states might be correlated,

Yamashita (2018) shows that independence guarantees the optimality of full disclosure (sim-

ilarly to the uniform ranking condition in the first statements of Propositions 1.1 and 1.5 in

the present work). The paper offers counterexamples for the converse that illustrate the po-

tential suboptimality of full disclosure, while the present work provides more general results

by showing that suboptimality is guaranteed for a non-trivial set of type distributions.

Condorelli and Szentes (2017) and Roesler and Szentes (2017) consider the information

design problem in a buyer-seller setting from the buyer’s point of view. In these works, the

buyer chooses either the distribution of his valuations (Condorelli and Szentes (2017)) or

the distribution of a signal of his underlying true valuation (Roesler and Szentes (2017)). In
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both models, the seller observes only the distribution chosen but not its realization before

making a take-it-or-leave-it price offer to the buyer. Contrary to this, in the present model,

a signal about the underlying state is designed by the seller and observed by both parties

before the interaction.

Methodologically, the model in this chapter is related to the literature on Bayesian Per-

suasion, especially to the possible generalizations mentioned in Kamenica and Gentzkow

(2011). The first of these generalizations is that the buyer has private information, and the

second is that the model can be interpreted as one with multiple receivers. The monopo-

list sender also learns from and bases later decisions on the information structure she has

designed. However, this second-stage strategic interaction between the seller and the buyer

can be reduced to a decision problem of the seller in which she chooses whether to charge

the lower or the higher expected valuation based on the revealed information. Therefore,

in the reduced form of our model, the concavification argument of Kamenica and Gentzkow

(2011) is still valid.

Alonso and Câmara (2016) study a persuasion problem in which a politician aims to

convince a fraction of voters to support a proposal. In the special case when a single voter

has to be persuaded, the proposal is approved with certainty in states in which the voter’s net

gain from it is above a certain cutoff, and is rejected otherwise. We derive a similar feature of

the optimal information structure in the two-type case: the seller optimally restricts output

and sells only to the higher type exactly in the states in which the net gain from doing so is

above a certain threshold. However, the underlying setting, the linear programming problem

establishing this result, and the geometric intuition behind it are different in our model. In

particular, the receiver (who is also the seller in the reduced form of the problem) does not

necessarily have to be indifferent between the two alternatives (i.e., charging type 1’s or type

2’s valuation) when any of these alternatives is chosen.
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Finally, the present work is also related to management science papers on consumer

reviews and information disclosure, such as Jiang and Guo (2015), Zhang et al. (2017),

Kwark et al. (2014), and Li et al. (2011). These papers typically distinguish between un-

certainty about vertical and horizontal product attributes. Vertical attributes (e.g., build

quality) are perceived by all consumer types in the same way; they typically induce parallel

shifts in the demand function. In contrast, horizontal characteristics (e.g., misfit costs) have

heterogeneous effects on the different consumer groups. These papers are concerned with the

effects of review systems and information disclosure in given market structures, depending

on the relative importance of horizontal and vertical characteristics in the buyers’ utility

functions. In particular, Jiang and Guo (2015) analyze the design of review systems in a

restricted information-design environment in which consumers, after consuming a good, pick

a category rating based on their utility levels. The number of available rating levels is deter-

mined by the seller. They show that if vertical attributes are more important (i.e., if misfit

costs tend to be small), the seller prefers to provide the finest rating system possible, and

the coarsest one otherwise. We expand the theoretical insights of these papers in two ways.

First, we use less restrictive definitions for vertical and horizontal attributes; the vertical

dimension of information can also have heterogeneous effects on types and can even move

their valuations in the opposite direction as long as it does not change their ranking. Second,

given this structure, we show that in an unrestricted information-design environment, the

seller prefers to disclose the vertical dimension of information completely and typically favors

partial disclosure for the horizontal dimension.

The chapter is organized as follows. In Section 1.2, we formally present the information

disclosure and selling environment. Section 1.3 describes the results for two possible types.

Section 1.3.1 identifies the condition that guarantees the optimality of full disclosure, and

Section 1.3.2 describes the optimal disclosure policy for cases when this condition is violated.
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Section 1.3.3 presents the horizontal-vertical decomposition of the state space and Section

1.3.4 discusses the welfare consequences of the optimal disclosure policy. Section 1.4 presents

the generalized results about the optimal disclosure policy in the many-type environment.

Section 1.5 concludes the chapter. Appendix A contains the proofs omitted from the main

text.

1.2 Model

Consider an environment in which a monopolistic seller (she) wants to sell a single good

to a buyer (him) with unit demand such that both the buyer and the seller face some

product-related uncertainty at the beginning of the game. This uncertainty about the seller’s

product is described by a finite state space Ψ = {ψ1, . . . , ψK}. We assume that the seller

and the buyer have the same prior belief about the product, which we denote by the vector

ρ = {ρ1, . . . , ρK} ∈ int ∆K−1.1

The buyer’s willingness to pay depends on the unknown characteristics of the product

ψ ∈ Ψ and his privately known taste parameter θ ∈ Θ
.
= {θ1, . . . , θI}. The seller knows only

the distribution of the buyer’s taste type, denoted by α = (α1, . . . , αI) ∈ int ∆I−1.2 Type θi’s

willingness to pay in state ψk is denoted by vik. For each i, the vector vi· ∈ RK
++ represents

valuations of type θi across states. Besides assuming that vik > 0 for each i and k, we do

not place any restriction on the valuations. Most importantly, the released information may

have the potential to change the ranking of the types in an arbitrary way, which reflects the

fact that information might have strong heterogeneous effects on different buyer types.

1Vectors in the dissertation are written in boldface. The inner product of two vectors x and y of the
same dimension is denoted by 〈x, y〉.

2Although the buyer’s type is also part of the uncertainty the seller faces, we still use the term state to
refer only to the product-related uncertainty.



19

Marginal cost is assumed to be zero in every state.3 At the beginning of the game,

the seller chooses the information disclosure device and commits to it. We assume that

screening and contracting must follow the disclosure of information, and we analyze the

design of the optimal information disclosure policy with its effects on the later mechanism

design environment in mind.4

The information disclosure system is modelled in a standard way: it consists of a set of

signal realizations Z = {z1, . . . , zL}, and for each state ψk ∈ Ψ, a distribution over the signal

realizations ζ(k) ∈ ∆L−1 conditional on the the state being ψk. By changing the rules of the

information disclosure system, the seller can influence the quantity and the quality of the

information that might be revealed about the product.

The timing of the game can be summarized as follows:

1. The seller designs the disclosure policy
(

Z, (ζ(k))K
k=1

)

.

2. A signal is generated.

3. The seller and the buyer learn the signal realization and update their beliefs using

Bayes’ rule.

4. The seller offers a selling mechanism to the buyer.

5. The buyer decides whether or not to participate.

3The model can be easily generalized to include a state-independent, positive marginal cost c in settings
where it is profitable to sell the good for every posterior belief. Most of the results presented here would
generalize to this case with the redefined valuations v′

ik = max{vik − c, 0}. On the other hand, the presence
of a state-dependent marginal cost in the model would most likely create more incentive for the seller to
disclose information since she could avoid selling the product to types whose valuation is lower than her own
marginal cost. We believe that in real-life information design problems, the latter should be a less important
factor in the seller’s decision than the effect on the valuations of the consumer groups. For this reason and
also to ease the exposition, we do not include this additional trade-off in the model.

4This also means that the buyer’s individual rationality constraint must be satisfied only after the infor-
mation is revealed, and hence it does not matter whether or not the seller commits to the selling mechanism
at the beginning of the game.
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In the two-type environment, the model allows us to draw very clear conclusions about

the optimal information structure and its welfare implications. Therefore, we study this

special case first before presenting the general results.

1.3 Results for two types

In this section, we describe the optimal disclosure policy in the two-type environment (I = 2).

Let α = (α, 1 − α), where α > 0, be the distribution of the two types. First, we formally

define the seller’s optimal information design problem.

We know that in environments like the one presented here, the problem of designing

signals is equivalent to choosing a distribution of posterior beliefs satisfying the law of total

probability.5 Denote such a distribution by (ρ(1), . . . ,ρ(P ); λ) ∈ ∆K−1 × . . .× ∆K−1 × ∆P −1,

where λp is the probability that posterior ρ(p) is reached. The law of total probability requires

that the expected posterior belief be equal to the prior ρ:

P∑

p=1

λpρ(p) = ρ.

A particularly important posterior distribution corresponds to the fully revealing signal,

denoted by (e(1), . . . ,e(K); ρ), where e(k) is the k-th unit vector in RK .

Given the setting of a single buyer with unit demand, offering a take-it-or-leave-it price

conditional on the disclosed information is optimal for the seller, and so our attention will

be restricted to this class of selling mechanisms from now on. To maximize profits, the seller

optimally chooses between selling to both types at the lower type’s expected valuation or

only to the higher type at the higher type’s expected valuation. Thus, the maximal (indirect)

5See, for example, Kamenica and Gentzkow (2011).
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profit she can attain at any posterior belief ρ̃ is given by the following formula,

Π(ρ̃;α)
.
= max

{

min {〈ρ̃,v1·〉, 〈ρ̃,v2·〉} , α〈ρ̃,v1·〉, (1 − α)〈ρ̃,v2·〉
}

,

where one of the last two terms inside the maximum function represents the profit from the

latter “discriminatory” selling policy (the one for which the expected valuation is higher),

while the other term is dominated by the minimum of the two expected valuations.

The seller’s goal is to find posteriors (ρ(1), . . . ,ρ(P ); λ) that satisfy the law of total prob-

ability and maximize the expected profit given the indirect profit function defined above.

Formally,

max
P ∈N,

ρ(p)∈∆K−1 ∀p,
λ∈∆P −1

P∑

p=1

λpΠ(ρ(p);α) (1.1)

s.t.
P∑

p=1

λpρ(p) = ρ

1.3.1 Optimality of full disclosure

For any given belief ρ̃, let DV(ρ̃) denote the difference between the expected valuations of

types 1 and 2 under ρ̃, i.e., DV(ρ̃)
.
= 〈ρ̃,v1·〉 − 〈ρ̃,v2·〉. Our first result shows that full

disclosure is optimal if and only if the underlying uncertainty cannot affect the ranking of

the types.

Proposition 1.1 (Optimality of full disclosure)

Full disclosure is optimal for the seller if and only if the types are ranked uniformly across

states: either v1k ≧ v2k holds for all k or v2k ≧ v1k holds for all k.
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Proof.

Sufficiency: Assume that v1k ≧ v2k holds for every k. Under this assumption, type 1’s

expected valuation is at least as high as type 2’s, no matter what the underlying belief is.

Consider now an arbitrary distribution of posteriors (ρ(1), . . . ,ρ(P ); λ) that is consistent

with the law of total probability. At every posterior belief ρ(p), it is optimal for the seller

either to charge type 1 what he is willing to pay and sell only to him, or to sell to both

types at type 2’s expected valuation. Now replace the belief ρ(p) by its decomposition into

a distribution of fully revealing posteriors. The seller can always set the price such that the

type that was marginal at ρ(p) remains marginal at every fully revealing posterior. This

strategy keeps the expected price the same. Since the ranking of the types is the same across

states, the types that purchased the good at ρ(p) are still buying, which weakly increases

the expected profit:

Π(ρ(p);α) ≦
K∑

k=1

ρ
(p)
k Π(e(k);α).

The same argument applies to every posterior in (ρ(1), . . . ,ρ(P ); λ). Therefore, the seller

can always achieve a weakly higher profit using fully revealing posteriors (e(1), . . . ,e(K); ρ):

P∑

p=1

λpΠ(ρ(p);α) ≦
P∑

p=1

λp

K∑

k=1

ρ
(p)
k Π(e(k);α) =

K∑

k=1





P∑

p=1

λpρ
(p)
k



Π(e(k);α) =
K∑

k=1

ρkΠ(e(k);α).

Since this is true for any distribution of posterior beliefs consistent with the law of total

probability, it follows that fully disclosing the state must be at least weakly optimal for the

seller.

Necessity: If types are not ranked uniformly for every state, there exist states ψk1
and ψk2

such that DV(e(k1)) > 0 and DV(e(k2)) < 0. Since the function DV is linear, there exists a

unique γ∗ ∈ (0, 1) such that the posterior belief ρ∗ .
= γ∗e(k1) + (1 − γ∗)e(k2) equalizes the

expected valuations of the two types, i.e., DV(ρ∗) = 0.
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We show that disclosing no further information at ρ∗ is strictly better than decomposing

ρ∗ into a distribution of fully revealing beliefs. Notice that at ρ∗, expected valuations are

equalized. Therefore, the seller can charge this expected valuation and sell to both types

without leaving them any surplus. If the actual state is fully disclosed, however, the seller

loses profit on at least one of the types. First, if the state is known, types are not willing

to pay more than their valuation in that state. Therefore, the maximal expected profit

obtainable from a type under full disclosure is bounded from above by the original expected

valuation. Second, we know that in state ψk1
, the inequality v1k1

> v2k1
is true. Therefore,

if this state is revealed, either type 1 does not pay his entire valuation or type 2 does not

buy the good under full disclosure. In either case, the seller loses expected profit.

Now, return to the prior ρ, and consider the distribution of fully revealing posteriors

that leads to belief e(k) with probability ρk for each k. Since ρ ∈ int ∆K−1 by assumption,

it follows that ρk > 0 for every k. Therefore, there exists an ε > 0 small enough such that

εγ∗ ≦ ρk1
and ε(1 − γ∗) ≦ ρk2

are both true. Using this ε, we can reduce the probabilities

assigned to posteriors e(k1) and e(k1) by εγ∗ and ε(1−γ∗), respectively, and assign probability

ε to posterior ρ∗. By the definition of ρ∗, the new distribution still satisfies the law of total

probability. Since no disclosure at ρ∗ gives a strictly higher profit than its decomposition into

a distribution of fully revealing beliefs, the modified distribution leads to a strictly higher

expected profit for the seller than does full disclosure. �

1.3.2 Structure of the optimal signal

Note that the result of the proposition is quite strong since it does not depend on either the

prior beliefs ρ or the distribution of the buyer’s type α. The proof shows that if the two

types are not ranked uniformly, then full disclosure is never optimal since the seller always

prefers to reallocate some positive probability to a posterior at which both types have the
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same expected valuation. In fact, this observation can be used to describe the structure of

the optimal posteriors more closely.

In what follows, we assume without loss of generality that type 1 has a weakly higher

valuation under the prior distribution, i.e., DV(ρ) ≧ 0. To simplify the exposition, we assume

from now on that types are strictly ranked in every state, i.e., v1k 6= v2k for every k. We

partition the set of states into two subsets according to the ranking of the types in terms

of their valuations: Ψ = Ψ(1) ∪ Ψ(2), where Ψ(i) .
= {ψk ∈ Ψ: vik > v−ik} for each i = 1, 2.

Moreover, we assume without loss of generality that states are labeled in such a way that

Ψ(1) contains the first J states (0 ≦ J ≦ K) and Ψ(2) the remaining K − J states. For each

ψk1
∈ Ψ(1) and each ψk2

∈ Ψ(2), let b(k1,k2) denote the unique convex combination of e(k1)

and e(k2) that equalizes the expected valuations of the two types. Formally,

b(k1,k2) .
=

v2k2
− v1k2

v1k1
− v2k1

+ v2k2
− v1k2

e(k1) +
v1k1

− v2k1

v1k1
− v2k1

+ v2k2
− v1k2

e(k2).

Proposition 1.2 (support of the optimal distribution) Assume DV(ρ) ≧ 0. There

exists an optimal distribution of posterior beliefs such that its support is contained in

{

e(k) : ψk ∈ Ψ(1)
}⋃{

b(k1,k2) : ψk1
∈ Ψ(1), ψk2

∈ Ψ(2)
}

.

Proof. First, note that the seller never wants to assign positive probability to two posterior

beliefs that induce the opposite ranking of the two types. If this is not the case, using the logic

described in the proof of the necessity part of Proposition 1.1, there is a convex combination of

two such posteriors that equalizes the expected valuations of the two types and captures more

expected surplus. Such a convex combination is strictly preferred to revealing both posteriors

with positive probability. Since the optimal distribution of posteriors has to satisfy the law
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of total probability, we can restrict attention to the set H+
.
=
{

ρ̃ ∈ ∆K−1 : DV(ρ̃) ≧ 0
}

. The

set H+ is a convex polytope contained in the K − 1-dimensional simplex.

In a way similar to the proof of the sufficiency part of Proposition 1.1, we can show that

every posterior belief ρ̃ ∈ H+ can be replaced by its decomposition into a distribution of the

extreme points of the polytope H+ without losing any expected profit. This is true since

every such posterior belief can be expressed as a convex combination of the finitely many

extreme beliefs, and such beliefs never reverse the ranking of the types compared to ρ̃.

Hence, we only need to show that the extreme points ofH+ are exactly the beliefs listed in

the statement of the proposition. First, note that the extreme points of the simplex ∆K−1 are

exactly the fully revealing beliefs
{

e(k) : k = 1, . . . , K
}

. Since H+ is the intersection of the

simplex and the half-space defined by the linear inequality DV(ρ̃) ≧ 0, all fully revealing be-

liefs that rank type 1 above type 2 are still contained in this set. Therefore, these beliefs must

be extreme points of the setH+ as well. The intersection with the half-space {ρ̃ : DV(ρ̃) ≧ 0}

might also introduce new extreme points at which the additional linear inequality constraint

DV(ρ̃) ≧ 0 is binding. This means that, to complete the set of extreme points of H+, we

only need to find the extreme points of the face H0
.
= ∆K−1 ⋂ {ρ̃ : DV(ρ̃) = 0} ⊆ H+.

First, for each ψk1
∈ Ψ(1) and each ψk2

∈ Ψ(2), the vector b(k1,k2) is an extreme point of

the set H0. To see this, take two vectors y(1),y(2) ∈ H0 and a scalar γ ∈ (0, 1) such that

b(k1,k2) = γy(1) + (1 − γ)y(2). Since b(k1,k2) assigns probability 0 to every state other than

ψk1
and ψk2

, the vectors y(1) and y(2) must do the same. This observation together with

DV(y(1)) = DV(y(2)) = 0 imply that both vectors must assign positive probability to both

states ψk1
and ψk2

. We know that there is a unique vector with these properties, namely,

b(k1,k2) = y(1) = y(2).

Second, we show that every extreme point of H0 is of the form b(k1,k2) for some ψk1
∈ Ψ(1)

and ψk2
∈ Ψ(2). It follows immediately that the support of an extreme point of H0 cannot
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contain a single state (since, by assumption, valuations are not equal in any state), and

all extreme points that assign positive probability to exactly two states are of the form

b(k1,k2). Therefore, consider a vector b =
∑K

k=1 βke(k) ∈ H0, such that βk ≧ 0 for every

k, and
∑K

k=1 βk = 1, and b assigns positive probability to at least 3 states. Assume that

βk1
, βk2

, βk3
> 0, where ψk1

∈ Ψ(1) and ψk2
, ψk3

∈ Ψ(2). Define d
.
= b(k1,k2) − b(k1,k3), and

take the vectors b + εd and b − εd. For ε > 0 small enough, b + εd, b − εd ∈ ∆K−1, and

by the linearity of DV, b + εd, b − εd ∈ H0. Since b = 1
2
(b + εd) + 1

2
(b − εd), and d 6= 0,

the vector b cannot be an extreme point of H0. Analogous steps show the same for the case

when ψk1
, ψk2

∈ Ψ(1) and ψk3
∈ Ψ(2), which completes the proof. �

Again, note that the result does not depend on the distribution of the buyer’s types α,

and is true whether or not the valuations of the two types are ranked uniformly across states.

The optimal information policy always induces the same weak ranking as the prior belief

and helps the seller increase expected profit by (i) conditioning the group of types to which

she sells the product on the released information, and (ii) introducing posterior beliefs that

equalize the expected valuations to capture more surplus. It is important not to interpret the

result as the optimality of “full revelation” over a subpolytope defined by the function DV.

Although it is optimal to use only the extreme points of this subpolytope, such a decompo-

sition is not unique if the ranking is not uniform over states (and hence the subpolytope is

a strict subset of the probability simplex). The following proposition describes the optimal

distribution of the extreme points and shows that the seller has an incentive to fully reveal

states in which the net gain from selling only to the higher valuation type (over selling to

both types) is above a certain threshold.

Proposition 1.3 If λ∗ ∈ RJ and η∗ ∈ RJ×(K−J) constitute an optimal distribution over the

set of posteriors described in Proposition 1.2, then there exists a threshold T > 0 such that
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for every k ≦ J ,

λ∗
k =







ρk if αv1k − v2k > T ;

0 if 0 < αv1k − v2k < T.

(1.2)

Moreover, if λ∗
k < ρk for some k such that αv1k −v2k > 0, then λl = 0 must hold for every

l ≦ J such that αv1l − v2l ≦ 0.

Proof. See Appendix A.1. �

Alonso and Câmara (2016) derive a similar cutoff structure in the context of persuading

voters to approve a proposal with an uncertain outcome. In the special case of a single voter,

they show that optimally, the proposal is accepted in states in which the receiver’s (i.e., the

voter’s) net gain is above a certain cutoff and rejected otherwise. The intuition behind

their result is that the sender (i.e., the politician) can decrease the “average” probability of

rejection by pooling states in which the voter would approve the proposal with some states

in which he would reject it, such that the final decision is unchanged. They prove that

the optimal way of doing this is by adding states of the second kind for which the voter’s

incentive to reject the proposal is the smallest until the voter is indifferent between accepting

and rejecting.

Our result provides a slightly different intuition in a more complicated setting. The

sender’s (i.e., the seller’s) objective is more complex since she has to consider both the

probability of sale and the price that can be charged for the product. Therefore, her payoff

is a continuous, piecewise linear function of the posterior belief which typically possesses both

concave and convex features instead of a discontinuous, piecewise constant function reflecting

the payoff from accepting or rejecting a proposal. This difference between the settings of

the two papers leads to a different linear programming problem and different features of the
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cutoff property. If we think about the two alternatives in our model as “charging the higher

type’s valuation” and “charging the lower type’s valuation,” then it is true that the seller will

optimally choose the first one in states in which her net gain is above the threshold and the

second one otherwise. This is driven purely by the seller’s incentive to maximize the expected

net gain from restricting output only for states in which this net gain is positive. However,

contrary to the model in Alonso and Câmara (2016), in our model she will not necessarily

be indifferent between the two alternatives if she chooses the lower type’s valuation since

some fully revealing posteriors for which the net gain is negative but the ranking is the same

as under the prior might also receive positive probability in the optimal solution. Moreover,

the role of the two alternatives and the order of the different states in the cutoff structure

are completely reversed for prior beliefs that induce the opposite ranking.

The following example illustrates the threshold structure of the optimal solution in a

simple setting.

Example 1.1 Consider the four-state environment with valuations as defined in Table 1.1.

Assume that the prior belief is given by ρ = (0.3, 0.3, 0.2, 0.2), and that both types are

equally likely, i.e., α = 1/2.

v ψ1 ψ2 ψ3 ψ4

θ1 6 5 4 2
θ2 2 2 3 4

Table 1.1: Valuations in Example 1.1

Type 1 has a strictly higher valuation in the first three states, while this ranking is

reversed in the last state. The expected valuations of the types under the prior belief are

〈v1·,ρ〉 = 4.5 and 〈v2·,ρ〉 = 2.6. Therefore, by Proposition 1.2, the optimal disclosure

policy can be constructed using (i) some fully revealing posteriors that rank type 1 above
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type 2, and (ii) beliefs that equalize the expected valuations of the two types by concealing

information between two states that lead to opposite rankings. These posteriors are listed

in the first row of Table 1.2.

(1, 0, 0, 0) (0, 1, 0, 0) (0, 0, 1, 0) (1
3
, 0, 0, 2

3
) (0, 2

5
, 0, 3

5
) (0, 0, 2

3
, 1

3
)

0.3 0.233 0 0 0.167 0.3

Table 1.2: Optimal disclosure policy in Example 1.1

The second row of the table contains the optimal probabilities obtained by solving the

corresponding optimization problem. The optimal solution satisfies the threshold structure

described in Proposition 1.3. The net gain from restricting the output and selling only to type

1 is positive for the first two states, and is the highest in the first state. The optimal solution

reveals state ψ1 with probability 1 and state ψ2 with probability 0.233/0.3 = 0.778. Since

not all states with a positive net gain are revealed with probability 1, the cutoff structure

generalizes to state 3 as well. �

We can summarize the findings of Propositions 1.1-1.3 about the optimal disclosure pol-

icy as follows. If types are ranked in the same way in every state, then a fully revealing

distribution of posteriors is optimal. The seller strictly benefits from disclosing information

if and only if the optimal groups of types purchasing the good are not the same in every

state. If types are not ranked uniformly, then full disclosure is never optimal. An optimal,

partially disclosing distribution of posteriors can be found by solving a linear programming

problem described in the proof of Proposition 1.3. The optimal signal never reverses the

ranking of the types according to their valuation. Moreover, the seller prefers to restrict

output and sell only to the higher type in states in which the net profit from this is strictly

above a certain threshold, and prefers to sell to both types in states in which the net utility

is strictly below this threshold. The seller strictly benefits from information disclosure if and
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only if DV(ρ) > 0 and there is at least one state in which it is optimal to sell only to the

higher type.

1.3.3 Horizontal-vertical decomposition of the state space

Management science papers on optimal consumer feedback typically model product-related

uncertainty by assuming a two-dimensional structure. A vertical product characteristic (e.g.,

build quality) is perceived by all buyer types in the same way and typically changes the

buyers’ willingness to pay by the same amount. A horizontal characteristic (e.g., fitness

of a product for a particular task a consumer has in mind) has heterogeneous effects on

the valuations of different types. These papers typically analyze the effects of information

disclosure on different market settings in the presence of horizontal and vertical product

attributes. Jiang and Guo (2015) consider the restricted information-design problem of a

monopolistic seller in an environment in which buyers report their post-consumption utility

on a scale whose coarseness is set by the seller. They show that if vertical attributes are

relatively more important than horizontal attributes, then it is optimal for the seller to

provide as much information as possible and she does this by picking the finest scale. On the

other hand, if horizontal characteristics are important enough, the seller’s optimal strategy

is to reveal as little as possible which can be implemented by choosing the coarsest scale. In

this section, we show that the two-type model can be easily transformed into a setting with

a two-dimensional state space in which the horizontal and vertical dimensions of information

are measured by the different state variables. Our two-dimensional decomposition highlights

the connection to this literature, and provides additional theoretical insights to its results.

The horizontal and vertical dimensions in our model are based on the following obser-

vations. First, by the definition of the sets Ψ(1) and Ψ(2), knowing which one of these sets

the true state ψ belongs to completely determines the order of the types according to their
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willingness to pay. Therefore, we can define a binary state variable ξ ∈ Ξ
.
= {ξ1, ξ2} that

captures this horizontal dimension of information: ξ = ξi if and only if ψ ∈ Ψ(i) for each

i = 1, 2.

Second, conditional on the realization of the horizontal state variable ξ, the remaining

uncertainty cannot change the ranking of the types anymore. Therefore, we can define two

separate state variables that describe this vertical dimension of information as follows. If type

1 has a strictly higher valuation than type 2 (i.e., ψ ∈ Ψ(1) and ξ = ξ1), then the realization

of the first vertical state variable ω(1) ∈ Ω(1) .
=
{

ω
(1)
1 , . . . , ω

(1)
J

}

pins down the actual state:

if ψ = ψk, where k ≦ J , then ω(1) = ω
(1)
k must be true. Similarly, if type 2 has a higher

valuation in state ψ, then the second vertical state variable ω(2) ∈ Ω(2) .
=
{

ω
(2)
J+1, . . . , ω

(2)
K

}

determines the true state: if ψ = ψk, where J ≦ k ≦ K, then ω(2) = ω
(2)
k must hold.

Notice that every state ψ ∈ Ψ restricts the value of the single vertical state variable that

corresponds to the ranking of the types under ψ. The value of the other vertical variable can

be arbitrary. Therefore, for every state in the original state space Ψ, there might be multiple

states in the decomposed state space Ξ×Ω(1)×Ω(2) that represent the same preferences. This

also implies that there might be multiple ways of defining the underlying prior distribution

on Ξ × Ω(1) × Ω(2) that are consistent with the prior ρ on Ψ.6 Notice also that we can merge

the two vertical dimensions into one by using Ω
.
= Ω(1) ×Ω(2) such that the new vertical state

variable ω ∈ Ω still cannot alter the ranking of the types if the horizontal state ξ is known.

This distinction between the horizontal and vertical dimensions is less restrictive than the

definition mentioned at the beginning of the section. Importantly, it is still possible for the

vertical dimension of information to have some heterogeneous effects on the types. Moreover,

the valuations of the different types do not even have to move in the same direction if the

vertical state changes; the only requirement is that their ranking has to remain the same.

6Essentially, we split up every state in Ψ by the realization of the irrelevant vertical state variable and
organize the resulting set of states in a multidimensional array.
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The next example illustrates the horizontal-vertical decomposition in a simple four-state

environment.

Example 1.2 Consider the valuations given in Table 1.3.

v ψ1 ψ2 ψ3 ψ4

θ1 5 4 2 1
θ2 2 3 4 4

Table 1.3: Valuations in Example 1.2

Type 1 has a strictly higher valuation than type 2 in the first two states, and this ranking

is reversed in the last two states. Therefore, the horizontal state variable ξ selects whether

the actual state ψ belongs to the first two states (ξ = ξ1) or the last two states (ξ = ξ2).

Given the realization of the horizontal state variable, ξ = ξi, the vertical state variable ω(i)

determines the actual state. For example, if the state is ψ = ψ2, then ξ = ξ1 and ω(1) = ω
(1)
2

while ω(2) can be arbitrary. The valuation profiles of the types in the decomposed state space

are illustrated in Table 1.4, where the rows and columns represent the different possible

realizations of the horizontal state and the vertical state, respectively.

(ω
(1)
1 , ω

(2)
3 ) (ω

(1)
1 , ω

(2)
4 ) (ω

(1)
2 , ω

(2)
3 ) (ω

(1)
2 , ω

(2)
4 )

ξ1 (5, 2) (5, 2) (4, 3) (4, 3)
ξ2 (2, 4) (1, 4) (2, 4) (1, 4)

Table 1.4: Two-dimensional decomposition: valuations

A belief ν on the decomposed state space is simply a three-dimensional array of numbers

such that νijk denotes the probability that (i) the horizontal state is ξi and (ii) the vertical

states are (ω
(1)
j , ω

(2)
k ), for each i = 1, 2, j = 1, 2, k = 3, 4, where νi,j,k ≧ 0 for each i, j, k, and

∑

i,j,k νijk = 1. This distribution is illustrated in Table 1.5.
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(ω
(1)
1 , ω

(2)
3 ) (ω

(1)
1 , ω

(2)
4 ) (ω

(1)
2 , ω

(2)
3 ) (ω

(1)
2 , ω

(2)
4 )

ξ1 ν113 ν114 ν123 ν124

ξ2 ν213 ν214 ν223 ν224

Table 1.5: Two-dimensional decomposition: beliefs

For a given belief ρ̃ on the original state space Ψ, there are multiple ways of defining

an equivalent belief ν̃ on the decomposed state space Ξ × Ω. Using the previously defined

notation, the belief ν̃ has to satisfy the following system of equations:

ρ̃1 = ν̃113 + ν̃114; ρ̃2 = ν̃123 + ν̃124;

ρ̃3 = ν̃213 + ν̃223; ρ̃4 = ν̃214 + ν̃224.

�

As we saw above, the horizontal dimension can change the ranking of the types, while

the vertical dimension has no effect on the order once the horizontal state is known. Given

this horizontal-vertical decomposition, Proposition 1.2 can be restated as follows.

Corollary 1.1 The state space Ψ can be decomposed into a horizontal-vertical state space

Ξ × Ω such that there is an optimal distribution of posteriors in which every posterior either

• fully reveals both the horizontal and the vertical state such that the induced ranking

is the same as under the prior, or

• combines the two horizontal states but fully reveals the vertical state such that expected

valuations are equalized.

Proof. See Appendix A.2. �
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Corollary 1.1 shows that in a less restrictive information-design environment than the one

analyzed in Jiang and Guo (2015) and with more general definitions of the horizontal and

vertical attributes, it is optimal for the seller to disclose all information about the vertical

dimension Ω; in addition, if both rankings can occur with positive probability, information

about the horizontal component should be partially disclosed. For the seller to achieve the

highest level of expected profit, disclosure typically does not happen independently along

the two dimensions.

Example 1.3 Continue Example 1.2 and assume that the prior belief is given by the vector

ρ = (0.4, 0.2, 0.3, 0.1), and that both types are equally likely, i.e., α = 0.5. Since type 1 has

a higher expected valuation at the prior, 〈ρ,v1·〉 = 3.5 and 〈ρ,v2·〉 = 3, by Proposition 1.2

the optimal posterior distribution can be constructed using the posteriors contained in the

first column of Table 1.6.

posteriors on Ψ posteriors on Ξ × Ω(1) × Ω(2) optimal weights

(1, 0, 0, 0)

[

1 0 0 0
0 0 0 0

]

1/6

(0, 1, 0, 0)

[

0 1 0 0
0 0 0 0

]

0

(2/5, 0, 3/5, 0)

[

2/5 0 0 0
3/5 0 0 0

]

1/2

(1/2, 0, 0, 1/2)

[

0 1/2 0 0
0 1/2 0 0

]

1/15

(0, 2/3, 1/3, 0)

[

0 0 2/3 0
0 0 1/3 0

]

0

(0, 3/4, 0, 1/4)

[

0 0 0 3/4
0 0 0 1/4

]

4/15

Table 1.6: Optimal distribution of posteriors
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The second column of the table presents the horizontal-vertical equivalents of these pos-

teriors. In the table, we can see that all of these decomposed posterior beliefs satisfy the

properties described in Corollary 1.1. They disclose all information along the vertical di-

mension while they only partially disclose information along the horizontal dimension. The

optimal weights are listed in the third column of the table. �

1.3.4 Welfare effects of the optimal disclosure policy

The last result of this section describes the effects of optimal disclosure on welfare. Since the

optimal information structure helps the seller to condition the group of types that buy the

product on the released information without reversing the ranking of the types, the effects

on welfare will be related to the change in the probability of a transaction.

Proposition 1.4 (Welfare effects) Let FD, ND, and ∗ denote full disclosure, no disclo-

sure, and the optimal disclosure policy, respectively. Then the relationship between the total

surplus, the producer surplus, and the consumer surplus under the three disclosure policies

can be described by the following figure, where the symbol S means that the relationship

can go either way depending on the model parameters.

TSND TSFD

TS∗

S

S ≧

PSND PSFD

PS∗

S

≦ ≧

CSND CSFD

CS∗

S

S ≦

Proof. We will use the following two examples throughout the proof to establish that some

comparisons can go either way. In the examples, there are two equally likely states and two

equally likely types. The valuations are given in Tables 1.7 (a) and 1.7 (b), respectively.

The expected valuations of the two types and the indirect profit as a function of ρ1 are
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illustrated in Figures 1.1 (a) and 1.1 (b). In these figures, the solid gray lines represent the

expected valuations of the two types, the dotted lines are the expected valuations multiplied

by the mass of the type, and the thick black lines illustrate the indirect profit. For the

first example, some expected valuations, optimal prices, and indirect profit levels are also

computed in Table 1.8.

v ψ1 ψ2

θ1 4 2
θ2 1 3

(a) first example

v ψ1 ψ2

θ1 10 4
θ2 4 3

(b) second example

Table 1.7: Valuations in the examples

ρ1

v, Π

0 14
5

2
3

1
2

1
4

1
5

〈ρ,v1·〉

〈ρ,v2·〉

Π(ρ; 0.5)

3

2

1

(a) first example

ρ1

v, Π

0 11
2

3
4

〈ρ,v1·〉

〈ρ,v2·〉
Π(ρ; 0.5)

4

2

(b) second example

Figure 1.1: Expected valuations and indirect profit as a function of ρ1

Total surplus Since the seller faces no production costs, it is always efficient to sell the

good to both types. Therefore, the total surplus under a disclosure policy is related to the

probability of sale.
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ρ1 valuation of type 1 valuation of type 2 optimal price indirect profit

0 2 3 2 2
1/5 2.4 2.6 2.4 2.4
1/4 2.5 2.5 2.5 2.5
1/2 3 2 2 2
2/3 3.33 1.67 1.67 1.67
4/5 3.6 1.4 3.6 1.8
1 4 1 4 2

Table 1.8: Sample values for the first example

1. TS∗ ≧ TSF D: The difference between the optimal policy and full disclosure is that

in the former, probability from some pairs of fully revealing posteriors that lead to

different rankings are shifted to posteriors that equalize the expected valuations of the

two types. Since both types trivially purchase the product at the latter posteriors, the

product is sold with a higher probability than under full disclosure, increasing total

surplus.

2. TSND S TSF D: Consider the first example. If the prior is ρ1 = 4/5 and no further

information is disclosed, only the first type purchases the product and the probability

of sale is 0.5. On the other hand, the probability of sale is strictly higher if the state

is fully revealed since both types buy the product in state 2 (i.e., at posterior 0).

For the other direction, consider the prior ρ1 = 1/2. Moving from no disclosure to full

disclosure decreases the probability of sale from 1 to some strictly lower number since

only type 1 buys the product if state 1 is revealed (i.e., at posterior 1).

3. TSND S TS∗: Once again, take the first example and consider priors 4/5 and 1/2.

In both cases, the optimal policy assigns positive probabilities to two posteriors: 1/4

and 1. At posterior 1/4, both types purchase the product, and only type 1 buys it a
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posterior 1. Therefore, moving from no disclosure to the optimal policy increases the

probability of sale for the first prior, and decreases this probability for the second one.

Producer surplus

1. PS∗ ≧ PSF D and PS∗ ≧ PSND are true since both full disclosure and no disclosure are

feasible policies in the seller’s optimal information disclosure problem.

2. PSND S PSF D: Consider the first example. Since the indirect profit is 2 for posteriors

0 and 1, the profit from full disclosure is also equal to 2 regardless of the prior beliefs.

The optimal profit from no disclosure is larger than this level for the prior ρ1 = 1/4

(2.5), and smaller than this for ρ1 = 4/5 (1.8).

Consumer surplus

1. CS∗ ≦ CSF D: Once again, we can move from full disclosure to the optimal policy

by concealing some information between some pairs of states that lead to different

rankings. At these newly introduced posteriors, the two types have the same valuation,

and all the surplus is extracted by the seller. Therefore, moving from full disclosure to

the optimal policy weakly reduces consumer surplus.

2. CSND S CSF D: Take the first example, and consider prior ρ1 = 4/5. Under no

disclosure, only type 1 buys the product, and consumer surplus is 0. Full disclosure

reveals state 2 with positive probability, in which case both types purchase the good

at price 2, leaving some positive consumer surplus for the second type.

For the other direction, take prior ρ1 = 1/2. If no information is disclosed, both types

buy the product at price 2, and the consumer surplus is 1/2 ·1 = 1/2. Full disclosure is

equivalent to a 50-50 mixture between fully revealing state 1 and fully revealing state

2, leading to an expected surplus of 1/2 · 0 + 1/2 · 1/2 · 1 = 1/4.
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3. CSND S CS∗: In the first example, if no information is disclosed at the prior belief

ρ1 = 1/2, both types buy the product and there is positive consumer surplus. The

optimal policy is a lottery over posteriors 1/4 and 1, where both of these beliefs lead

to 0 consumer surplus. Therefore, no disclosure is strictly better for the consumers.

For the other direction, consider the second example. Here, full disclosure is always

optimal. If the prior belief is ρ1 = 3/4 and no information is disclosed, only type 1

buys the product, and consumer surplus is zero. On the other hand, the optimal policy

places positive probability on fully revealing state 2 (i.e., on posterior 0), in which case

consumer surplus is positive. �

The most interesting observation here is that the optimal disclosure policy is more efficient

than full disclosure (i.e., TS∗ ≧ TSF D), but more than this efficiency gain is extracted by

the seller (since CS∗ ≦ CSF D).

We have to be careful when interpreting this result. Depending on the particular context,

reaching the above information structure might have other associated welfare effects. For

example, in the case of online stores with consumer review systems, the information about

the product is most likely revealed gradually over time by its previous consumers. If the

amount of information revealed is correlated with the number of items sold, the seller might

want to adjust the speed of information disclosure by lowering the prices in earlier periods.

This can lead to additional welfare effects that should also be taken into account.

1.4 Generalization to many types

In this section, we present the generalizations of some of the above results to the many-type

environment. We derive results analogous to Propositions 1.1 and 1.2 and present necessary

properties that the optimal distribution of posteriors must satisfy. With more than two
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types, it is still true that the horizontal dimension of information gives the seller incentives

to disclose less information, but these may not necessarily be strong enough to render full

disclosure suboptimal. In general, the optimality of full disclosure depends on the underlying

type distribution α.

To set up the seller’s many-type disclosure problem, consider the environment with I

types, i.e., Θ = {θ1, . . . , θI}. For any subset of types B ⊆ Θ, let α(B)
.
=
∑

θi∈B αi denote

the mass of subset B. For any B ⊆ Θ and ρ̃ ∈ ∆K−1, define the marginal types of set B at

posterior ρ̃ as B(ρ̃)
.
= arg minθi∈B〈ρ̃,vi·〉, and the marginal valuation of set B at posterior

ρ̃ as vB(ρ̃)
.
= minθi∈B〈ρ̃,vi·〉.

The indirect profit function and the groups of types that buy the good at some optimal

price can be defined as follows:

Π(ρ̃; α)
.
= max

B⊆Θ
α(B)vB(ρ̃); Θ∗(ρ̃; α)

.
= arg max

B⊆Θ
α(B)vB(ρ̃).

1.4.1 Optimality of full disclosure

The following proposition generalizes the findings of Proposition 1.1. With many types, full

disclosure is still optimal if the types are uniformly ordered. In other cases, the suboptimality

of full disclosure can be guaranteed for at least some type distributions.

Proposition 1.5 (Optimality of full disclosure)

1. If types are ranked uniformly across the states, full disclosure is optimal for the seller

for every type distribution.

2. If types are not ranked uniformly, there is a nonempty, open set of type distributions

for which full disclosure is not optimal.

Proof. See Appendix A.3. �
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If the underlying uncertainty cannot change the ranking of the types, then the seller

prefers to fully disclose the state so that she can condition the price and the group of types

to which she sells on the revealed information. However, if the revealed information can

have heterogeneous effects on the different types, withholding some information might bring

the expected valuations of certain types closer together such that less surplus might have

to be left at these types. The proof of the proposition shows that if the types that are not

ranked uniformly across states receive sufficiently high probabilities in the underlying type

distribution α, then the latter effect is strong enough to guarantee the suboptimality of full

disclosure.

The following examples provide further insights concerning the relationship between the

type distribution and the optimality of full disclosure. Example 1.4 completely describes

the dependence in a simple, three-type, two-state environment. Example 1.5 shows that full

disclosure can still be optimal for some type distribution even if no pair of types is ranked

uniformly across states.

Example 1.4 Consider an environment with two states and three types with their valua-

tions as given in Table 1.9.

ψ1 ψ2

θ1 5 3
θ2 3 5
θ3 2.5 .5

Table 1.9: Valuations in Example 1.4

Type 3 always has the lowest valuation, and types 1 and 2 are ranked differently in the two

states. For ρ̃1 ∈ [0, 1/2], type 2 has the highest expected valuation, followed by types 1 and

3; and for ρ̃1 ∈ [1/2, 1], the order is types 1, 2, and 3. Since the order of the types is constant

on these two subintervals, every posterior can be replaced by a convex combination of the
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endpoints of the subinterval to which it belongs without the seller losing profit. This means

that the optimal signal can be constructed using posteriors only from the set {0, 1/2, 1}.

Therefore, for any interior prior probability ρ1 ∈ (0, 1), full disclosure is the unique

optimal strategy if and only if Π((1/2, 1/2); α) < 1
2
Π((1, 0); α) + 1

2
Π((0, 1); α). Partial

disclosure (or no disclosure for ρ1 = 1/2) is the unique optimal strategy if the reverse

inequality is true.

Figure 1.2 illustrates the optimal disclosure policy as a function of the underlying type

distribution. The probabilities of the first two types, α1 and α2, are measured on the two

axes. If type 3 has a sufficiently low probability, full disclosure is not optimal. In this

case, the first two types dominate the environment, and the seller has an incentive to hide

some information to take advantage of the heterogeneity between these types. In cases in

which type 3 has higher probability, the incentives for full disclosure dominate since type 3’s

valuations are separated from those of type 1 and 2. Finally, if facing a buyer of any of the

first two types has a very low probability, then excluding type 3 is not an optimal strategy

any more. Consequently, the price is equal to type 3’s expected valuation, which is linear

in the probability; therefore, all disclosure strategies give the same expected payoff for every

interior prior. �

Example 1.5 Consider the four-type three-state environment with valuations as given in

Table 1.10.

ψ1 ψ2 ψ3

θ1 5 0.5 0.5
θ2 6 6 0.2
θ3 0.5 7 7
θ4 5.5 0.2 8

Table 1.10: Valuations in Example 1.5
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α
2 FD optimal

FD=PD

PD optimal

Figure 1.2: Optimal disclosure policy as a function of type distribution

It is easy to verify that preferences are sufficiently mixed and no two types are ranked in

the same way for every state. However, for the type distribution α = (.4, .3, .2, .1), as Figure

1.3 shows, full disclosure is an optimal strategy regardless of the prior beliefs. �

1.4.2 Structure of the optimal signal

Let σ = (σ(1), σ(2), . . . , σ(I)) denote a permutation of the buyer’s types. We can think of

such a permutation as a weak ordering of the types according to their expected valuations,

where the first element corresponds to the type with the highest willingness to pay. Denote

the set of all such permutations by Σ.

Let H(σ)
.
=
{

ρ̃ ∈ ∆K−1 : 〈ρ̃,vσ(i)·〉 ≧ 〈ρ̃,vσ(i+1)·〉, for every i = 1, . . . , I − 1
}

. This is

the set of posteriors at which the weak ranking of the expected valuations of the types

coincides with σ. For every σ ∈ Σ, the set H(σ) ⊆ ∆K−1 defines a polytope. These

polytopes cover the entire simplex, and their interiors (corresponding to strict rankings) are
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Π(ρ;α)

(a) Indirect Profit

Π(ρ;α)

FD profit

(b) Optimality of full disclosure

Figure 1.3: Indirect profit Π(ρ̃; α) and expected profit from full disclosure as a function of
the beliefs

mutually disjoint. The following proposition describes the optimal distribution of posteriors

based on these polytopes and provides necessary conditions that the groups of types that

purchase the product at different posteriors must fulfill in the optimal distribution.

Proposition 1.6

1. The optimal posterior distribution can be constructed using only the extreme points of

the polyhedra (H(σ))σ∈Σ. These extreme points either are fully revealing or equalize

the expected valuations of at least two types.

2. Let (ρ(1), . . . ,ρ(P ); λ) ∈ ∆K−1 × . . . × ∆K−1 × ∆P −1 be an optimal distribution of

posterior beliefs. Then for any ρ(p) and ρ(p′), where p, p′ ∈ {1, . . . , P}, and for any

B ∈ Θ∗(ρ(p); α) and B′ ∈ Θ∗(ρ(p′); α), the following hold:

(i) B ∩B′ 6= ∅;

(ii) If α(B) ≧ α(B′), then B(ρ(p)) * B′ \B′(ρ(p′));

(iii) If α(B) > α(B′), then B(ρ(p)) * B′.
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Proof.

Part 1. Consider a posterior ρ̃ ∈ H(σ) for some σ ∈ Σ. Since types are ordered uniformly

on the convex polytope H(σ), the posterior ρ̃ can be decomposed into a convex combination

of the extreme points of H(σ) without the seller losing profit. Therefore, there must be an

optimal distribution of posteriors that assigns positive probability only to the extreme points

of the polytopes (H(σ))σ∈Σ.

Part 2. Define the functions g, h : [0, 1] → R as follows: for each γ ∈ [0, 1],

g(γ)
.
= vB

(

γρ(p) + (1 − γ)γρ(p′)
)

;

h(γ)
.
= vB′

(

γρ(p) + (1 − γ)γρ(p′)
)

.

The functions g and h are the lower envelopes of finitely many strictly positive linear func-

tions. Therefore, they are continuous, strictly positive, and weakly concave. To prove the

three statements of the second part of the proposition, we will start with indirect assump-

tions. Then we will construct a posterior belief ρ∗ that is a convex combination of ρ(p) and

ρ(p′) such that charging the optimal price at ρ∗ leads to a profit strictly higher than the

expected profit when ρ(p) and ρ(p′) are revealed and the optimal prices are charged at each

of these posteriors.

Proof of statement 2(i); illustrated in Figure 1.4. Assume to the contrary of the claim that

B ∩B′ = ∅. Then the following inequalities must be true:

0 < g(0) = vB(ρ(p′)) < h(0) = vB′(ρ(p′));

g(1) = vB(ρ(p)) > h(1) = vB′(ρ(p)) > 0.
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Since g and h are both continuous, there exists a γ∗ ∈ (0, 1) such that g(γ∗) = h(γ∗).

Therefore, at the posterior ρ∗ .
= γ∗ρ(p) + (1 − γ∗)ρ(p′), at least all types in B and B′ are

willing to buy the good if price g(γ∗) is charged. It follows that:

Π(ρ∗; α) ≧ (α(B) + α(B′))g(γ∗) = α(B)g(γ∗) + α(B′)h(γ∗)

≧ α(B) (γ∗g(1) + (1 − γ∗)g(0)) + α(B′) (γ∗h(1) + (1 − γ∗)h(0))

> γ∗α(B)g(1) + (1 − γ∗)α(B′)h(0)

= γ∗α(B)vB(ρ(p)) + (1 − γ∗)α(B′)vB′(ρ(p′))

= γ∗Π(ρ(p); α) + (1 − γ∗)Π(ρ(p′); α).

The second inequality follows from the weak concavity of the functions g and h. The third

inequality is strict since we are dropping strictly positive terms.

Proof of statements 2(ii) and 2(iii); illustrated in Figure 1.5. Assume that α(B) ≧ α(B′)

and that B(ρ(p)) ⊆ B′. Since expected valuations are linear in the probabilities and there

are gaps between the valuations of the marginal types and those of adjacent higher/lower

types, there exists γ∗ ∈ (0, 1) close enough to 1 such that for ρ∗ .
= γ∗ρ(p) + (1 − γ∗)ρ(p′), it

is true that B(ρ∗) ⊆ B(ρ(p)). For this ρ∗, the following holds:

Π(ρ∗; α) ≧ α(B)vB(ρ(p))(ρ
∗) = α(B)

(

γ∗vB(ρ(p))(ρ
(p)) + (1 − γ∗)vB(ρ(p))(ρ

(p′))
)

≧ γ∗α(B)vB(ρ(p)) + (1 − γ∗)α(B′)vB′(ρ(p′))

= γ∗Π(ρ(p); α) + (1 − γ∗)Π(ρ(p′); α).

The second inequality follows from the two assumptions made at the beginning of the pre-

vious paragraph. Moreover, this inequality holds as a strict inequality if α(B) > α(B′) or

B(ρ(p)) ⊆ B′ \B′(ρ(p′)). �
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B′

B′

B

B

g(·)

h(·)

γ

v

0 1γ∗

Figure 1.4: B ∩ B′ = ∅. By not disclosing any information at γ∗, the seller can sell to both
groups with probability 1 such that the expected revenue from each group is strictly higher
than the expected revenue when γ = 0 or γ = 1 is fully revealed.

B′

BB

γ

v

0 1γ∗

Figure 1.5: α(B) ≧ α(B′), marginal type at γ = 1 (dashed line) buys good also at γ = 0 but
has a higher than marginal valuation. Compared to fully disclosing whether γ = 0 or γ = 1,
at γ∗, by not revealing any information, the seller can increase the probability of purchase
(group B buys the good with probability 1) and also the average price charged (expected
valuation of the marginal type at γ∗ is above the expectation of the valuation of the marginal
type in B′ at γ = 0 and the marginal type in B at γ = 1).
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Proposition 1.6 generalizes two results from the two-type environment to many types.

First, as the first part of the proposition shows, mixed beliefs can be used to equalize the

expected valuations of some types to capture more surplus. Second, the preferences of

the types that purchase the product cannot change too much between different posteriors

((2)(i)). Moreover, the marginal types in a group cannot all be non marginal purchasers

at posteriors for which the probability of purchase is weakly lower ((2)(ii)) or cannot all

purchase at posteriors for which the probability of purchase is strictly lower ((2)(iii)). Part

2 of Proposition 1.6 implies that in the two-type case the seller always prefers not to reverse

the ranking between any pair of posteriors. Otherwise, for such a pair, she must either sell

only to the top type at each posterior, which violates (2)(i), or sell to nested sets of buyer

types, which violates (2)(ii) or (2)(iii).

1.5 Conclusions

This chapter has studied the optimal design of information disclosure policy in an environ-

ment with a single seller, a single indivisible good, and a buyer with private information. In

this model, the seller designs a public disclosure policy while keeping in mind its impact on

the later screening environment. Moreover, we assume that information might have a hori-

zontal dimension that might affect the ranking of the types by their willingness to pay. These

features make the seller’s information design problem a nontrivial one: the seller’s optimal

disclosure policy is not necessarily a binary decision between full and no disclosure, because

partially revealing the state can be preferable in many cases to either of those options.

We have shown that the key driving force behind the results is the effect of information

on the ranking of the types. More specifically, the seller always prefers to disclose the vertical

dimension of information that cannot affect the ranking of the types so she can condition
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the group of types to which she sells and the price she charges on the revealed information.

On the other hand, she might have an incentive to disclose the horizontal dimension only

partially to take advantage of its heterogeneous effect on the valuations of different types.

We described the seller’s optimal disclosure policy in detail for environments with two

types and then offered generalizations of these results to many-type environments. These

findings can prove useful for information design problems in real-life environments that ex-

hibit similar characteristics, e.g., setting up review systems in online stores.

There are many possible directions for future research. In the buyer-seller framework, we

could relax the unit-demand assumption and let types have different demand functions for

the object or we could consider environments with multiple goods and study the joint optimal

disclosure problem of the seller. We could also include state-dependent marginal costs to

analyze the additional tradeoffs this might create in the information design problem. More

importantly, other disclosure problems occur in which initial disclosure is followed by different

types of strategic interactions (e.g., the university teaching evaluation and the acquisition

examples mentioned in the introduction). It would be interesting to know what the optimal

disclosure policy looks like in these environments and whether there are particular features

that generalize from the buyer-seller framework. These questions point to some valuable

subjects for future research that will certainly enhance our understanding of this relevant

and intriguing topic.
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Chapter 2

Efficient Resolution of Partnership Disputes

2.1 Introduction

Disputes between partners are often resolved without resorting to dissolution. Depending

on the nature of the dispute, a deadlock between partners may lead to the partnership’s

inevitable dissolution, or it may be overcome through the services of a third party if the latter

acknowledges the potential inefficiency associated with dissolution. Indeed, over the past few

decades, Alternative Dispute Resolution (ADR) – a variety of dispute resolution methods

independent of traditional litigation – has become an integral part of the legal system in

many countries. Such methods are perceived as having an advantage over litigation in

preserving business relationships, and have become increasingly popular due to concerns over

the extensive costs and long delays disputing parties often face taking the litigation route.1

The American Arbitration Association (AAA), for example – a not-for-profit organization

providing ADR services – assures disputing parties that its services “enhance the likelihood

of continuing the business relationship”.2

1See, for example, Allison (1990), Lipsky and Seeber (1998), and Shontz et al. (2011).
2Similarly, according to the International Centre for Dispute Resolution (ICDR), which adminis-

ters international arbitration proceedings, “...arbitration assists in minimizing the impact of disputes
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Importantly, even if once initiated, arbitration does not explicitly allow for the possibility

of avoiding dissolution, its design and associated fees may nevertheless account for the po-

tential inefficiency of dissolution by influencing which disputes are discouraged from entering

arbitration, and which are encouraged to do so.

The key novelty in the current work relative to this extensive literature is that dissolution

need not be efficient. The resulting endogeneity of dissolution may be a consequence of (i)

the arbitrator’s capacity to resolve a dispute without dissolution (as in the case of ADR),

or (ii) it may be a result of partners’ decision whether to enter arbitration in the first place,

taking dissolution as given conditional on entry. Regardless of the reason for the endogeneity

of dissolution, the goal of this chapter is to shed light on the new trade-offs that arise when

it is accounted for, and the implications for the design of arbitration in such environments.

The endogeneity of dissolution opens the door to new questions. Which types of disputes

can be resolved efficiently? Is a dispute in a better functioning partnership more or less

costly to resolve? What mechanisms can be used to resolve such disputes? Interestingly, the

answers to these questions are substantially different when the potential inefficiency of dis-

solution is taken into account. To study these questions, we consider two-party partnerships

with two-sided private information and interdependent valuations.3 Ownership is dispersed,

and the value of the partnership is a function of both agents’ independent private informa-

tion, as well as the severity of the dispute between them (which reduces the partnership’s

effectiveness). When a partnership is jointly owned, it is natural to assume that one partner’s

private information also determines the other’s valuation from joint ownership. For example,

consider a partnership in which each of the two partners is responsible for a separate part of

by resolving them earlier and/or with less disruption to business.” See https://www.adr.org/ and
https://www.icdr.org/icdr/icdrservices/icdrdisputeresolution.

3In the context of joint ventures, approximately 80% of all US joint ventures announced between January
1985 and 2000 in the Joint Ventures and Strategic Alliances database of Thomson Financial Securities Data
are two-parent joint ventures (see Hauswald and Hege (2009)).

https://www.adr.org/Mediation
https://www.icdr.org/icdr/icdrservices/icdrdisputeresolution
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the business.4 As Fieseler et al. (2003) point out, in such a scenario, an estimate of the value

of the entire business can only be made using information from both parties. Importantly,

the value of the partnership also depends on existing frictions, difficulties or costs associated

with cooperation or coordination. For instance, consider the following example from Harvard

Business Review (November 1986):

“Two partners owned a company that assembled and marketed an electronic

product. One managed the design, marketing, and sales activities. The other

handled the procurement, assembly, and finances. At first they disagreed about

their customers’ needs and their product’s features. ‘You have overdesigned the

product! We can’t compete in that market!’ one said. ‘The market demands an

upgraded product! The trouble lies with your failure to assemble to specs!’ the

other replied... The partners’ pressure on each other mounted when the company

began to lose money. Antagonism and mutual recrimination sapped energy that

might have helped to resolve their market-position and quality concerns.”

The key ingredient is that, depending on the partners’ private information, the value of the

partnership may or may not exceed the partners’ valuation for sole ownership of the asset.

Therefore, efficient resolution of a dispute requires eliciting the partners’ private informa-

tion in order to determine whether the relationship should be continued or if dissolution is

warranted, and if so, who should buy out his associate and at what price.

The analysis first provides a complete characterization of the disputes that can be resolved

efficiently. Using this characterization, we show that unless a dispute is sufficiently severe,

it cannot be resolved efficiently without incurring a deficit. This impossibility also provides

a possible rationale for creating barriers to entry into arbitration.5 More generally, we show

4See Levin and Tadelis (2005), which studies partnerships as revenue-sharing agreements.
5In practice, such barriers typically take the form of initial filing fees.
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that the severity of the dispute between the partners has a non-monotonic effect on the cost

of its efficient resolution. For any initial share allocation, if a dispute is not sufficiently severe,

the cost of efficient resolution is necessarily increasing in the severity of the dispute, while for

sufficiently large disputes the cost is decreasing. We then show that a first-order stochastic

improvement in agents’ distribution of valuations – another measure of the partnership’s

ability to function – may generate lower costs of efficient resolution, unless the probability

with which the partnership is dissolved is exactly identical under the two distributions.

Therefore, these results imply that given the endogeneity of dissolution, a dispute in a

better functioning partnership may surprisingly be less costly to resolve efficiently. To un-

derstand the role of endogenous dissolution in this result, observe that if dissolution were

taken as given, an improved partnership would simply tighten the partners’ participation

constraints, making better functioning partnerships more costly to dissolve efficiently. En-

dogenous dissolution, however, means that an improved partnership, besides this direct effect

on the participation constraints, also alters the region of values in which dissolution is effi-

cient in the first place, and consequently the agents’ incentive constraints as well. The cost

of efficiently resolving a dispute hinges on the interaction between (i) the expected subsidy

that must be provided by the arbitrator and (ii) the net expected utility of the partners’

“worst-off types” from participation, under an appropriately specified incentive compatible

mechanism. The relationship between these different components is at the center of the

analysis and crucially depends on the properties of the dispute: its severity, the distribution

of the partners’ valuations, and the ownership structure.

The analysis then turns to explicitly study endogenous entry into arbitration and indirect

mechanisms for efficient resolution of disputes. Assume that having entered arbitration,

dissolution is taken as given (i.e., the arbitrator’s goal is the standard one considered in

the literature: to allocate the asset to the partner who values its sole ownership more).
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We augment such arbitration by a preceding stage in which the partners choose whether

to enter arbitration or not. Hence, the endogeneity of dissolution stems from the partners’

decisions rather than the arbitrator’s. We consider a simple class of two-stage games in

which the partners first simultaneously choose whether or not to enter arbitration. If neither

partner chooses to do so, the partnership remains intact (naturally, in such a case, there are

no transfers). If one of the partners chooses to enter arbitration, entry fees are collected

(potentially contingent on the entry decisions), and a version of a second-price auction is

used to dissolve the partnership. The analysis shows that if, and only if, a dispute can be

resolved efficiently, this can be done using such two-stage auctions.6

Having studied which disputes can be resolved efficiently, the analysis then considers dis-

putes for which efficient resolution is impossible (i.e., implies a budget deficit). In particular,

we focus on the following questions. With the profit from arbitration in mind, should its

design create barriers discouraging partners from entering arbitration, or should partners be

encouraged to do so? Furthermore, how does the answer to this question depend on the

properties of a dispute? To address these questions, we consider a class of direct mechanisms

in which the partners’ thresholds of dissolution – below which dissolution is triggered – need

not be the efficient ones, and derive a condition on disputes necessary and sufficient for the

arbitrator’s budget to benefit from a locally more/less conservative dissolution threshold for

each given partner. Similar to the intuition discussed above for the case of efficient resolution,

such direct mechanisms can be shown to be equivalent to two-stage games in which partners

first choose whether to initiate arbitration, and if this is the case, efficient dissolution takes

place. Importantly, in contrast to the case of efficient resolution, the fees in this case need

not be the ones inducing efficient entry.

6More precisely, if and only if a dispute can be resolved efficiently, an auction within this class can
be constructed which admits a Bayes Nash equilibrium in which the asset is allocated efficiently without
incurring a deficit.
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For small disputes, which are also the ones for which efficient resolution involves a deficit,

more conservative arbitration – discouraging types close to the efficient threshold from ini-

tiating arbitration – benefits the arbitrator’s budget. In addition, the greater a partner’s

share, the more the arbitrator’s budget benefits from discouraging the partner from entry.

In fact, if ownership is sufficiently dispersed, the arbitrator’s budget necessarily benefits from

discouraging the partner with the greater share from initiating arbitration. Finally, we il-

lustrate these results for uniformly distributed valuations and show that in cases in which

efficient resolution yields a deficit, the arbitrator’s deficit may be turned into a surplus via a

small appropriate change in the dissolution thresholds.

The chapter is organized as follows. Below, we wrap up the introduction with a brief

review of the most pertinent literature. Section 2.2 describes the model. Section 2.3 charac-

terizes properties of disputes that can be resolved efficiently. Section 2.4 studies endogenous

entry into arbitration and a simple indirect mechanism for efficient resolution. Finally, Sec-

tion 2.5 extends the results to general partnership functions, and Section 2.6 concludes.

Appendix B contains all proofs omitted from the main text.

2.1.1 Related literature

In a seminal paper, Cramton et al. (1987) (henceforth CGK) establish that when ownership

is sufficiently close to being symmetric, ex-post efficient dissolution of a partnership (i.e.,

allocating an asset to the agent with the highest valuation) is possible, but sufficiently asym-

metric ownership precludes the possibility of efficient dissolution. In particular, this result

contrasts with the impossibility result in Myerson and Satterthwaite (1983), and shows that,

with private values, asymmetric ownership rather than asymmetric information is the key
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factor hindering efficiency.7 In the context of a public-goods problem with private values,

Neeman (1999) shows that efficiency can be obtained only for intermediate property-rights

allocations.

Several papers, such as Fieseler et al. (2003), Kittsteiner (2003), Jehiel and Pauzner

(2006), Ornelas and Turner (2007), Turner (2013) and Loertscher and Wasser (2016), have

studied partnership dissolution in environments with interdependent values. Among other

results, these papers identify situations where efficient dissolution may be impossible for any

share allocation (see Moldovanu (2002) for an excellent survey). Segal and Whinston (2011)

study a general model of Bayesian incentive compatible mechanisms (with either private

values or interdependent values) satisfying a certain “congruence” property and describe an

ex-ante share allocation for which the interim participation constraints are satisfied. As dis-

cussed above, the key departure from the literature in our environment is that the decision to

dissolve the partnership is itself endogenous: For some realization of the agents’ valuations,

efficiency does not call for dissolution.8

Salant and Siegel (2016) study efficient allocation of a divisible asset between two agents

when reallocation is costly. When the asset is initially allocated, the agents’ valuations are

uncertain. Uncertainty is then resolved and the good may be reallocated at a cost. The

surplus from efficient reallocation depends crucially on the curvature of reallocation costs,

which determines the optimal initial division of the asset as well as the size of the budget

required for the implementation of efficient reallocation. Since reallocation is costly, ex-post

efficiency is a function of the initial division of the asset. In contrast, our environment does

not assume direct costs of reallocation of shares; rather, such costs are only a result of the need

7Schweizer (2006) shows that even if agents’ types are not identically distributed, there always exists an
initial distribution of shares that permits ex-post efficient dissolution of the partnership.

8One exception is Ensthaler et al. (2014) who consider the implications of endogeneity on the imple-
mentability of the efficient allocation rule through k + 1-price auctions. However, among other differences,
in their setting the value of continuing the relationship does not depend on the private information of the
partners.
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to incentivize the agents while guaranteeing participation. Although the initial allocation

of shares plays an important role in determining the possibility of efficient resolution, the

ex-post efficient allocation is independent of the initial share allocation.

A related literature has studied specific, widely used mechanisms for partnership disso-

lution in different environments. McAfee (1992) compares several simple mechanisms for

dissolving equal-share partnerships in an independent private values environment. Ver-

sions of CGK’s k + 1-auctions are studied in de Frutos (2000), Kittsteiner (2003) and

Wasser (2013) (see also references therein) in different settings. De Frutos and Kittsteiner

(2008), Brooks et al. (2010) and Landeo and Spier (2013) study versions of the popular Texas

Shootout mechanism.9 Kittsteiner et al. (2012) and Brown and Velez (2016) experimentally

compare different partnership dissolution mechanisms under incomplete and complete infor-

mation, respectively. In a recent work, Van Essen and Wooders (2016) introduce and study

a dynamic auction for efficiently dissolving a partnership. While the majority of our analysis

takes a mechanism design approach rather than focusing on a particular mechanism, Section

2.4 introduces a simple two-stage mechanism (a second-price auction with endogenous entry)

which is shown to resolve a dispute efficiently whenever it is possible to do so.

2.2 Model

A partnership consists of two risk neutral agents i = 1, 2 who jointly own an asset. Agent

i owns share ri ∈ (0, 1) of the asset, with r1 + r2 = 1. Each agent has private information

θi ∈ [0, 1], which represents the value she attaches to sole ownership of the asset in the absence

of the other agent. For example, if the asset corresponds to a firm in which the partners

are responsible for different parts of its operation, an agent’s type may reflect her resources,

9Consistent with the motivation for the current work, Brooks et al. (2010) argue in their conclusion that
“certain deadlock situations might be resolved without an actual dissolution of the partnership.”
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talent, or managerial capability. Each θi is drawn independently from a commonly known

continuous distribution F on [0, 1], with bounded density f , which is assumed bounded away

from zero.

Each agent’s type θi determines her contribution to the partnership. Therefore, the value

of the asset when owned jointly depends on both agents’ types, and is denoted by V (θ1, θ2).

A dispute between the partners reduces the partnership’s value; for example, a dispute

may hinder partners’ ability to cooperate or give rise to mis-coordination. To facilitate the

exposition and illustrate the key tradeoffs that arise due to the endogeneity of dissolution in

the simplest way possible, we assume V (θ1, θ2) = θ1 + θ2 − k, where k ∈ [0, 1] denotes the

severity of the dispute between the partners and is publicly observed. (Hence, partner i’s

payoff from joint ownership of the asset is equal to ri

(

θ1 +θ2 −k
)

).10 Restricting attention to

such a partnership function (as well as more general additive functions) is not necessary for

our results. However, it is both a natural representation of profit-sharing arrangements where

partners operate independently while sharing profits, and lends more intuition by allowing

to obtain closed form expressions of the “worst-off types” (see the discussion in the next

section). Section 2.5 extends the results to general increasing, concave partnership functions

V satisfying an appropriate single-crossing condition.

A partnership dispute is a tuple (r1, F, k). Depending on each of the agents’ valuations

for the asset and the severity of their dispute, (ex-post) efficient allocation of the asset may

involve either (a) retaining joint ownership of the asset if θ1, θ2 ≧ k, or (b) dissolving the

partnership and allocating the asset to agent i if θi > θ−i, and θ−i < k. Let D
.
= {d1, d2, 0},

where di denotes the decision to dissolve the partnership and allocate it to i, and 0 the

decision to keep the partnership intact.

10The analysis focuses on the implementability of efficient allocation of the asset (be it dissolution or
retention of the partnership). Other forms of interventions that directly mitigate disputes between the
partners (i.e., reduce k through various means) are outside the scope of the analysis.
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We study the design of mechanisms with the goal of implementing the efficient allocation

rule without the use of external subsidies. By the revelation principle, it is without loss

of generality to restrict attention to direct truthful mechanisms. We therefore consider

mechanisms of the form (q, t), where q : [0, 1]2 → D and t : [0, 1]2 → R2 denote an allocation

and payment rule, respectively.11 Given a mechanism (q, t) and reported types (θ1, θ2),

partner i’s ex-post net utility is given by ui(θ1, θ2; q, ri, k) + ti(θ1, θ2) − ri(θ1 + θ2 − k), where

ui(θ1, θ2; q, ri, k)
.
=







θi if q(θ1, θ2) = di,

0 if q(θ1, θ2) = d−i,

ri(θ1 + θ2 − k) if q(θ1, θ2) = 0.

If agent i has a true type θi, reports θ
′
i, and believes the other agent reports truthfully, her

interim net expected utility is given by

Ui(θ
′
i, θi; ri, k)

.
=

ˆ 1

0

ui (θ1, θ2; q(θ′
i, θ−i), ri, k) + ti(θ

′
i, θ−i) − ri(θi + θ−i − k) dF (θ−i).

Denote Ui(θi; ri, k)
.
= Ui(θi, θi; ri, k).

A mechanism is (interim) incentive compatible (IC) if Ui(θi; ri, k) ≧ Ui(θ
′
i, θi; ri, k) for all

θi, θ
′
i ∈ [0, 1], (interim) individually rational (IR) if Ui(θi; ri, k) ≧ 0 for all θi ∈ [0, 1], and

(ex-ante) budget balanced (BB) if the arbitrator does not expect to incur positive subsidy

payments to the partners: Eθ1,θ2

(

t1(θ1, θ2)+t2(θ1, θ2)
)

≦ 0. A mechanism is (ex-post) efficient

11Implicit in this specification is the assumption that the arbitrator must charge the agents before they
observe their payoffs. Such an assumption rules out the possibility of full surplus extraction using payments
similar to those in Cremer and McLean (1988); see also Mezzetti (2004).
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if the allocation rule is the efficient one,

q∗(θ1, θ2)
.
=







0 if θ1 > k, θ2 > k,

d1 if θ1 > θ2, θ2 < k,

d2 if θ1 < k, θ2 > θ1,

(2.1)

illustrated in Figure 2.1.

Definition 2.1 A partnership dispute (r1, F, k) can be resolved efficiently if there exists a

mechanism that is efficient, IC, IR and BB.

q∗(θ1, θ2) = d1

q∗(θ1, θ2) = d2

q∗(θ1, θ2) = 0

θ1

θ2

0 k 1

1

k

Figure 2.1: Efficient dispute resolution

Some remarks regarding the formulation are in order. First, the setting above implicitly

assumes partners cannot simply infer the other’s type through observed profits. Indeed, we

are concerned with circumstances in which arbitration is necessary in order to resolve such
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uncertainty. Arbitration may be required when profits are noisy or, as is typically the case

in joint ventures, when they will be revealed only at some (unknown) later date. To simplify

the exposition, we do not explicitly model these features. Second, in some circumstances the

arbitrator might wish to impose finer share-reallocation as a means of providing incentives.

The combination of both transfers and arbitrary reallocation of shares does not qualitatively

change the results, but greatly complicates the analysis. Furthermore, if the reason for the

endogeneity of dissolution is the partners’ decision whether to enter arbitration or not, where

arbitration consists of efficient dissolution, more general share-reallocation is irrelevant.

2.3 Efficient resolution of disputes

The goal of the analysis in this section is to characterize precisely the class of disputes

that can be resolved efficiently, and to illustrate the key new tradeoffs that arise due to the

endogeneity of the decision whether to dissolve or retain the partnership. In particular, we

study how efficient resolution depends on the effectiveness of a partnership, as measured by

the severity of the dispute k and the distribution of agents’ private information F . In both

cases, the results contrast sharply with the intuition that underlies environments in which

dissolution is taken as given.

As a first step, consider the following transfer scheme:

t∗i (θ1, θ2)
.
=







0 if θi > k, θ−i > k

riθ−i if θi < k, θ−i > θi

−(1 − ri)θ−i if θi > θ−i, θ−i < k

, i = 1, 2. (2.2)

Under the mechanism Γ∗ .
= (q∗, t∗), if the partnership remains intact, the partners do not

make transfers. If the asset is allocated to partner −i, partner i receives a transfer that equals
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his share in the (higher) value generated by −i’s sole ownership. Furthermore, partner −i

in this case pays an amount equal to i’s share in the (lower) value generated by i’s sole

ownership.

Lemma 2.1 The mechanism Γ∗ .
= (q∗, t∗) is efficient, IC and IR.

Proof. See Appendix B.2. �

The payments t∗ guarantee that participation and truthful reporting constitute an ex-

post equilibrium. Note that an implication of this result is that unless both partners are

either certain the partnership will be dissolved or certain it will not be dissolved, an efficient

mechanism that requires no payments be made whenever the partnership remains intact

cannot be budget balanced, as dissolution necessarily involves a deficit. In other words, the

agents must pay in order to resolve uncertainty about their partnership.12

In order to examine the possibility of budget balance, we introduce the following defini-

tions. Given Γ∗ and the partnership dispute (r1, F, k), let

S(k)
.
=
∑

i=1,2

ˆ 1

0

ˆ θi∧k

0

r−i(θi − θ−i) dF (θ−i) dF (θi)

= Eθ1,θ2
((θ1 − θ2)1(θ2 < (θ1 ∧ k)))

= F (k)

ˆ 1

k

1 − F (θ) dθ +

ˆ k

0

F (θ)
(

1 − F (θ)
)

dθ (2.3)

12Note that since the values are interdependent, the mechanism Γ∗ corresponds to a generalized VCG
mechanism (Krishna and Perry (1998)), which in our environment allows for the possibility that neither of
the agents are allocated the asset.
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denote the expected subsidy the arbitrator must incur under Γ∗.13 Similarly, define the worst-

off type of each agent i as θ∗
i (ri, k) ∈ argminθi∈[0,1]Ui(θi; ri, k), and let

L(r1, r2, k)
.
= U1(θ

∗
1(r1, k); r1, k) + U2(θ∗

2(r2, k); r2, k)

= k −
ˆ θ∗

1
(r1,k)

0

r1 − F (θ2) dθ2 −
ˆ θ∗

2
(r2,k)

0

r2 − F (θ1) dθ1 (2.4)

denote the largest lump-sum fee that can be charged from the agents without violating their

participation constraints, i.e., the sum of the maximal participation fees Ui(θ
∗
i (ri, k); ri, k)

that the agents are willing to pay. We refer to L − S as the budget surplus (and to S − L as

the budget deficit).

In order to examine the possibility of BB, it is sufficient to compare the lump-sum fee

with the expected subsidy under Γ∗.

Lemma 2.2 Under any efficient, IC and IR mechanism, the worst-off types are equal to

θ∗
i (ri, k) = F−1(ri)∧k. Moreover, the partnership dispute (r1, F, k) can be resolved efficiently

if and only if L(r1, r2, k) ≧ S(k).

Proof. See Appendix B.3. �

The proof of Lemma 2.2 follows arguments similar to those in Williams (1999) and

Fieseler et al. (2003). Whenever the partnership is dissolved under Γ∗ there is necessar-

ily a deficit. However, the participation constraints of the agents typically do not bind,

which permits the use of “participation fees” to extract additional surplus from the partners.

The highest participation fees that can be charged are those that make the participation con-

straints of the agents’ worst-off types bind. Therefore, a comparison of these highest total

13The indicator function 1 takes the value 1 if a statement is true and 0 otherwise. See Appendix B.1 for
the derivation of the second equality in (2.3) and the equality in (2.4).
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participation fees with the expected subsidy determines whether the efficient allocation rule

q∗ can be implemented without a budget deficit. Finally, a revenue equivalence argument

establishes the result. Note that, as in CGK, agents’ worst-off types are interior. Intuitively,

if a partner’s type is high, she not only values the asset more, but it is also more likely that

she will receive it. Similarly, the lower a partner’s value for the asset the more likely it is that

the other partner will be awarded the asset, and the higher the compensation she expects to

receive. Hence, the participation constraints of extreme types are more relaxed, resulting in

lower information rents for these types.14

The following example illustrates the condition above for the simple case of a symmetric

partnership and uniformly distributed types.

Example 2.1 Suppose r1 = r2 = 1
2
and θi ∼ U [0, 1]. It can easily be verified that the worst-

off types are equal to θ∗
i (1/2, k) = k∧ 1

2
, the expected subsidy is equal to S(k) = k

2
− k2

2
+ k3

6
,

and the net expected utility of the worst-off types is

L
(

1

2
,
1

2
, k
)

=







k2 if k < 1/2,

k − 1/4 if k > 1/2.

These functions are plotted in Figure 2.2. Using Lemma 2.2, it can be shown that the

partnership dispute can be resolved efficiently if and only if k ≧ k∗ ≈ 0.347 (represented by

the third vertical grid line) or k = 0. �

Given the necessary and sufficient condition above, we can now study how the possibility

or the cost of efficient resolution depends on the effectiveness of a partnership, as measured

by the severity of the dispute k and the distribution of the agents’ private information F .

14A similar intuition underlies the literature on countervailing incentives (see, for example,
Lewis and Sappington (1989)).
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Figure 2.2: Lump-sum fee, expected subsidy, and budget surplus in Example 2.1

2.3.1 Efficient resolution and a partnership’s effectiveness

The severity of a dispute k directly impacts a partnership’s effectiveness. If the decision to

dissolve the partnership were exogenous, an increase in k would simply relax the partners’

participation constraints, making it less costly to resolve the dispute. With endogenous

dissolution, this observation clearly need not hold, as a change in k additionally alters the

region in which dissolution is efficient, and in turn also the worst-off types and their net

expected utility.

Before presenting the main results of this section, we illustrate in the corollary below

how Lemma 2.2 can be used to derive simple sufficient conditions for (a) the impossibility of

efficiently resolving a dispute (independently of the share allocation), and (b) the possibility

of efficiently resolving a dispute for equal share partnerships.15 Note that, trivially, if k = 0

then efficient resolution is always possible.

15Equal share partnerships constitute the majority of the cases in the samples of two-parent joint ventures
in both Veugelers and Kesteloot (1996) and Hauswald and Hege (2009).
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Corollary 2.1

1. Any dispute that satisfies 0 < k < Eθ+E(θ|θ<k)
2

cannot be resolved efficiently.

2. In a symmetric partnership, i.e., r1 = r2 = 1
2
, the dispute can be resolved efficiently if

k ≧ max
{

Med(θ), F (k)Eθ + E
(

θ|θ < Med(θ)
)}

. (2.5)

Proof. See Appendix B.4. �

The condition in part 1 implies that there is an interval (0, k∗) for which the partnership

dispute cannot be resolved efficiently. Similarly, if there exists a k ∈ [0, 1] that satisfies

condition (2.5), part 2 identifies a threshold value of k above which disputes in symmetric

partnerships can be resolved efficiently.

Example 2.1 (continued) Returning to the setting of Example 2.1, the corollary above

establishes that:

1. If k ∈ (0, 1
3
), the dispute cannot be resolved efficiently, regardless of r (region to the

left of the second vertical grid line in Figure 2.2);

2. If r1 = r2 = 1
2
and k ∈ [1

2
, 1], the dispute can be resolved efficiently (region to the right

of the fourth vertical grid line in Figure 2.2).

In the case of the symmetric uniform example, the sufficient conditions perform well (the

threshold separating the regions where efficient resolution is and is not possible is at the

value k = 0.376, represented by the third vertical grid line). �

The following proposition shows that, as Corollary 2.1 might suggest, for sufficiently small

disputes the deficit is necessarily increasing in k, while for greater disputes the deficit even-

tually decreases, and the dispute becomes less costly to resolve. An immediate consequence
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of this result is that since the budget is balanced when there is no dispute, there must exist

k̂ ∈ (0, 1) such that any dispute with k ∈ (0, k̂) cannot be resolved efficiently.

Proposition 2.1 For every share allocation (r1, r2) and distribution F , the budget surplus

L(r1, r2, k) − S(k) is non-monotonic in k. In particular, there exist 0 < k < k < 1 such that

the budget surplus is decreasing on (0, k) and increasing on (k, 1).

Proof. See Appendix B.5. �

The intuition for the effect of a small increase in k is the following. Consider first the

case in which the value of k is large. An increase in k raises the expected subsidy as type

profiles just above the original threshold start trading and create additional deficit. However,

as k becomes large, these additional pairs of types become increasingly similar and therefore

have a lower impact on the deficit. Hence, the effect of a small increase in k on the expected

subsidy vanishes as k converges to 1. On the other hand, for large enough k values, an

increase in k does not change the worst-off types, but increases their net expected utility by

worsening the status quo. Since this effect does not vanish as k becomes large, the increase

in the lump-sum fee eventually dominates the increase in the expected subsidy.

Consider now the case of low k values. An increase in k results in an increase in the

expected subsidy, which does not vanish as k approaches 0. This follows from the fact that

the mass of additional trading type pairs is bounded away from 0 (since f is bounded away

from 0), and the expected deficit created by these pairs increases as k approaches 0. On

the other hand, as opposed to the case of high k, the change in the lump-sum fee for low

values of k consists of a change in both the worst-off types and the status quo utilities. If k

is small enough, partner i’s worst-off type is equal to k. It can easily be checked that, in this

case, the net expected utility of i’s worst-off type is equal to the (unconditional) expected

difference in valuations, θi − θ−i, over the region of θ−i values in which i is awarded the
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asset. An increase in k increases this difference uniformly for every type of the other partner

(below k), therefore the increase in partner i’s net expected utility will be proportional to

the probability of i being awarded the asset, F (k). Therefore, as k approaches 0, this effect

vanishes for both partners, and the change in the lump-sum fee is dominated by the change

in the expected subsidy.

Example 2.1 (continued) Consider again the setting of Example 2.1. The derivative of

the budget surplus is given by

∂

∂k

(

L
(

1

2
,
1

2
, k
)

− S(k)
)

= −1

2
(k − 1)2 +







2k if k < 1/2,

1 if k > 1/2.

Therefore, the budget deficit increases for k < 3 − 2
√

2 ≈ 0.172 and decreases otherwise.

This is the region to the left of the first vertical grid line in Figure 2.2. �

We now turn to study the role of another measure of a partnership’s effectiveness: the

distribution of values F . Observe that the effect of a first-order stochastic improvement

creates a shift downwards in the net expected utility curves, resulting in lower participation

fees. To see this, first note that a first-order stochastic improvement strengthens the status

quo and therefore tightens the participation constraints. Second, whenever a partner is

awarded the asset, she pays a higher price more frequently, which also has a negative effect

on her net expected utility. Third, in cases in which a partner loses the asset, she gets a higher

compensation more frequently, but this positive effect is equivalent to the improvement in

the status quo.

On the other hand, an improved type distribution has an ambiguous effect on the expected

subsidy. The relationship between the change in the expected subsidy and the change in the
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lump-sum payment can easily be illustrated for the case in which one of the partners’ worst-

off types is equal to k and the probability of dissolution does not change. Define first

h(θi)
.
= Eθ−i

((θi − θ−i)1(θ−i < (θi ∧ k))),

which measures the (unconditional) expected difference in valuations over the region in which

i is awarded the asset. One can verify that h is nonnegative, and h′(θi) = F (θi) ∧ F (k).

Hence, h is strictly increasing, strictly convex on [0, k], and linear on [k, 1]. Moreover,

S(k) = Eθi
h(θi) and U(θ∗

i (ri, k); ri, k) = h(k) if θ∗
i (ri, k) = k. The function h is illustrated

in Figure 2.3.

h=h1

h2

θ1

h

h2(k)

h(k)=h1(k)

0 1k

Figure 2.3: Change in h following a first-order stochastic improvement on [k, 1] (h to h1)
and on [0, k] (h to h2)

Assume that partner i’s worst-off type is equal to k. Consider first a first-order stochastic

improvement on the interval [k, 1]. In this case, h remains unchanged, as the distribution of

the θ−i values below k is unaltered. Furthermore, the worst-off type remains the same since

the k’th percentile of the distribution is unchanged. Hence, the participation fee (equal to

h(k)) is unaffected. On the other hand, S(k) = Eθi
h(θi) increases, as the expectation of an

increasing function of θi is taken with respect to a FOS-improved distribution.
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Next, consider a first-order stochastic improvement on the interval [0, k]. In this case, h

shifts downward, as smaller differences θi − θ−i are assigned higher mass. Furthermore, the

slope of h takes lower values under the FOS-improved distribution for values below k, and

remains the same for values above k. This change is represented by the shift from h to h2

in Figure 2.3. Given the properties of h established above, we can now bound the change

in the expected subsidy from above by taking expectations with respect to the improved

distribution. In turn, this bound must be smaller than the largest decrease in h over the

entire region [0, 1], which occurs at θi = k. Since the k’th percentile of the distribution is the

same, the worst-off type of partner i remains k, and hence this value is equal to the change

in the participation fee of partner i. Since −i’s participation fee also decreases following

a first-order stochastic improvement, the decrease in the lump-sum fee must dominate the

change in the expected subsidy, which makes efficient resolution of the dispute more costly.

The first part of the following proposition shows that this intuition can also be extended to

the case in which both worst-off types are below k. In this case, the analysis is complicated by

the fact that neither of the participation fees are equal to h(θ∗
i (ri, k)). The proof is relegated

to the Appendix. Interestingly, this intuition need not hold if there is also a decrease in the

probability of dissolution, as the second part of the proposition illustrates.

Proposition 2.2 For any two partnership disputes (r1, F, k) and (r1, G, k) such that G first-

order stochastically dominates F :

1. If the probability of dissolution is the same under F and G, then the dispute in the

better functioning partnership (r1, G, k) is more costly to resolve.

2. Otherwise, the dispute (r1, G, k) may be less costly to resolve.

Proof.

Part 1 is relegated to Appendix B.6.
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Part 2. To show that the budget surplus can be larger under a first-order stochastically

dominating distribution G, consider a sequence of disputes involving symmetric shares and

the following sequences of distributions, defined by their pdf’s (n > 5):

fn(θ)
.
=







0.5 if θ ∈ [0, 0.2 − 1
n
)

0.5 + 0.1n if θ ∈ [0.2 − 1
n
, 0.2)

1 if θ ∈ [0.2, 1]

,

gn(θ)
.
=







0.5 if θ ∈ [0, 0.2 − 1
n
)

1 if θ ∈ [0.2 − 1
n
, 0.2) ∪ [0.2 + 1

n
, 1]

0.5 + 0.1n if θ ∈ [0.2, 0.2 + 1
n
)

.

The pdf’s and cdf’s of the two distributions are illustrated in Figures 2.4 (a)-(d).

Assume k = 0.2. The median of both distributions is 0.5; therefore, k is the worst-off type

of both partners under Fn and Gn. It is easy to see that for every n, the respective cdf’s, Fn

and Gn, are integrable and Gn first-order stochastically dominates Fn. Using formulas (2.3)

and (2.4) for the expected subsidy and the lump-sum payment, it is straightforward to show

that the difference in the budget surplus under Gn and Fn is equal to

∆(L − S) = (Fn(0.2) −Gn(0.2))(1 − 0.2) +

ˆ 0.2

0

Fn(θ) −Gn(θ) dθ

−
(

Fn(0.2)

ˆ 1

0.2

Fn(θ) dθ −Gn(0.2)

ˆ 1

0.2

Gn(θ) dθ

)

−
ˆ 0.2

0

F 2
n(θ) −G2

n(θ) dθ

− 2

ˆ 0.2

0

Fn(θ) −Gn(θ) dθ. (2.6)

Since Fn and Gn are identical on [0, 0.2 − 1
n
] and [0.2 + 1

n
, 1], they pointwise converge on

the set [0, 0.2)
⋃

(0.2, 1] to the same (integrable) function H as n → ∞. Therefore, by the
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dominated convergence theorem, the change in the budget surplus (2.6) converges to

lim
n→∞

(Fn(0.2) −Gn(0.2))

(

1 − 0.2 −
ˆ 1

0.2

H(θ) dθ

)

= 0.1 · 0.32 = 0.032 > 0,

where H is equal to the cdf of the uniform distribution on (0.2, 1].

The intuition is the following. The only difference between Fn and Gn is the reallocation

of a mass of types from slightly below the threshold to slightly above it. As argued above,

the participation fee of a partner whose worst-off type is k is equal to the (unconditional)

expected difference in valuations, θi − θ−i, over the region in which i is awarded the asset, at

θi = k, and the total expected subsidy is the expected value of this unconditional expected

difference with respect to θi. Since the change is near the threshold, the effect of such a

reallocation of mass on the unconditional expected difference in valuations is zero or very

small for θi types below the threshold, and is continuously increasing for θi types above

the threshold. Therefore, its effect on the lump-sum fee can be much smaller than the

corresponding effect on the expected subsidy. �

2.4 Endogenous entry into arbitration

So far, we have considered direct mechanisms for efficient dispute resolution, favoring the

interpretation that the endogeneity of dissolution stems from the arbitrator taking into ac-

count the dissolution’s potential inefficiency. This is indeed consistent, for example, with the

goals of ADR. In this section, we explicitly consider an alternative reason for the endogeneity

of dissolution – the partners’ decision whether or not to enter arbitration in the first place –

and study indirect mechanisms for efficient resolution of disputes.
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Figure 2.4: The pdf’s and the cdf’s of the distributions for n = 10 and n = 20

Suppose that having entered arbitration, dissolution is taken as given. That is, the

arbitrator’s goal is to allocate the asset to the partner who values its sole ownership more.

We augment such arbitration by a preceding stage in which the partners simultaneously

choose whether or not to enter arbitration. Hence, the endogeneity of dissolution stems from

the partners’ decisions, rather than the arbitrator’s.

Consider the following class of games.
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Definition 2.2 A second-price auction with endogenous entry (SAEE) is a two-stage game

in which:

1. In stage 1, partners simultaneously choose an action ai ∈ {D,C}, where the action D

corresponds to initiating a dispute, and C corresponds to continuing the relationship.

If a1 = a2 = C, no fees are collected, and the game terminates. Otherwise, fees are

collected from each agent i ∈ {1, 2}, possibly contingent on the agents’ announcements,

and the game proceeds to stage 2.

2. In stage 2, the partnership is dissolved via a second-price auction. That is, each partner

submits a bid bi, and the partner with the higher bid, j ∈ {1, 2}, wins the asset and

pays r−jb−j. The partner −j who loses the asset receives a compensation of r−jbj.

(Note that the difference in the payments between the two cases in which a partner j

wins and loses the asset is precisely b−j.)

A restricted second-price auction with endogenous entry (R-SAEE) is one in which part-

ners may only submit bids that are consistent with their first-stage action: If a partner

chooses ai = D (ai = C), then she may only submit bids below (above) k.16

In the simple game above, partners first decide whether to trigger arbitration. If neither

partner chooses to do so, the partnership remains intact (naturally, in such a case, there are

no transfers). If one of the partners chooses to enter arbitration, entry fees are collected,

and a second-price auction is used to dissolve the partnership.

We now show that the direct mechanism considered in the previous sections and the

above defined class of two-stage games – in which dissolution is endogenized through the

partners’ decision to trigger arbitration – are in fact closely related. Let E(T ) and ER(T )

16For example, inconsistent bids may be replaced with the closest bid consistent with the first-period
action, k. Alternatively, a large additional fee may be imposed as a result of such a bid.
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denote the set Bayes Nash equilibria (BNE) of the SAEE and R-SAEE, respectively, given

the interim expected transfers T
.
= (T1(C), T1(D), T2(C), T2(D)). For off-the-equilibrium

path beliefs, we impose the property that each partner believes the other has been following

their equilibrium strategies. We say that a SAEE (R-SAEE) resolves a dispute efficiently if

there exist fees T such that there is an equilibrium in E(T ) (ER(T )) that induces the efficient

allocation without running a deficit.

Proposition 2.3

1. There exist fees T such that there is an equilibrium in ER(T ) that induces the efficient

allocation. Furthermore, if

ˆ 1

k

min{r1, r2}(1 − k) − (1 − θ2) dF (θ2) ≧ 0, (2.7)

there exist fees T such that there is an equilibrium in E(T ) that induces the efficient

allocation.

2. Consequently, a dispute can be resolved efficiently if and only if there exists a R-SAEE

that resolves it, and if (2.7) holds then a dispute can be resolved efficiently if and only

if there exists a SAEE that resolves it.

Proof.

Part 1. Consider partner 1’s decision problem assuming that partner 2’s first period action

is always consistent with her type, and her second-period bid is always equal to her true

valuation whenever the second-price auction is played.

If arbitration has been triggered, and F̂2 denotes partner 1’s belief about partner 2’s type

(with pdf f̂2), then partner 1’s second-period net expected utility from bidding θ′
1 when her
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true type is θ1 is given by

Û1(θ
′
1, θ1; r1, k, F̂2)

.
=

ˆ θ′
1

0

θ1 − r2θ2 dF̂2(θ2) +

ˆ 1

θ′
1

r1θ2 dF̂2(θ2) −
ˆ 1

0

r1(θ1 + θ2 − k) dF̂2(θ2).

Computing the first derivative with respect to θ′
1, we get

∂Û1(θ
′
1, θ1; r1, k, F̂2)

∂θ′
1

= (θ1 − r2θ
′
1)f̂2(θ

′
1) − r1θ

′
1f̂2(θ

′
1) = (θ1 − θ′

1)f̂2(θ
′
1). (2.8)

This expression is nonnegative if θ′
1 ≦ θ1 and nonpositive if θ′

1 ≧ θ1. Therefore, in a SAEE,

it is a best response for partner 1 to bid her true valuation. Similarly, in a R-SAEE, it is

optimal for partner 1 to bid her true valuation if it is consistent with her first-period action,

and k (the allowed bid that is closest to her true valuation) otherwise.

Now consider partner 1’s decision problem in period 1. If θ1 ≦ k, partner 1’s (re-arranged)

first-period incentive compatibility constraint is given by

T1(D) − T1(C) ≧ F (k)Û1(b
c
1, θ1; r1, k, Fθ≦k) − Û1(θ1, θ1; r1, k, F ), (2.9)

where Fθ≦k is the distribution of θ2 conditional on θ2 ≦ k, and bc
1 is the second-period best

response of partner 1 following a first-period misreport (bc
1 = θ1 in a SAEE, and bc

1 = k in a

R-SAEE). Some algebra on the right-hand side of (2.9) yields

T1(D) − T1(C) ≧ F (k)Û1(b
c
1, θ1; r1, k, Fθ≦k) − Û1(θ1, θ1; r1, k, F )

=

ˆ bc
1

θ1

θ1 − r2θ2 dF (θ2) +

ˆ k

bc
1

r1θ2 dF (θ2) −
ˆ 1

θ1

r1θ2 dF (θ2)

+

ˆ 1

k

r1(θ1 + θ2 − k) dF (θ2).
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The derivative of the right hand side with respect to θ1 is equal to F (bc
1)−F (θ1)+r1(1−F (k)).

This expression is positive for every θ1 ≦ k, which shows that constraint (2.9) is the tightest

at θ1 = k:

T1(D) − T1(C) ≧ F (k)Û1(k, k; r1, k, Fθ≦k) − Û1(k, k; r1, k, F ) = 0. (2.10)

Similarly, if θ1 ≧ k, the first-period incentive compatibility constraint of partner 1 is

T1(D) − T1(C) ≦ F (k)Û1(θ1, θ1; r1, k, Fθ≦k) − Û1(b
d
1, θ1; r1, k, F ), (2.11)

where bd
1 denotes the second-period best response of partner 1 following a first-period mis-

report (bd
1 = θ1 in a SAEE, and bd

1 = k in a R-SAEE). The right-hand side of (2.11) can be

rewritten as follows:

T1(D) − T1(C) ≦ F (k)Û1(θ1, θ1; r1, k, Fθ≦k) − Û1(b
d
1, θ1; r1, k, F )

= −
ˆ bd

1

k

θ1 − r2θ2 dF (θ2) −
ˆ bd

1

k

θ1 − r2θ2 dF (θ2) −
ˆ 1

bd
1

r1θ2 dF (θ2)

+

ˆ 1

k

r1(θ1 + θ2 − k) dF (θ2).

The derivative of the right-hand side with respect to the first partner’s type, θ1, is equal to

−(F (bd
1) − F (k)) + r1(1 − F (k)). In the R-SAEE case (bd

1 = k), this expression is positive,

and hence the first-period incentive compatibility constraint is the tightest at θ1 = k:

T1(D) − T1(C) ≦ F (k)Û1(k, k; r1, k, Fθ≦k) − Û1(k, k; r1, k, F ) = 0. (2.12)

In the SAEE case (bd
1 = θ1), the derivative is positive for θ1 values close to k, and negative

for θ1 values close to 1. Therefore, the first-period incentive compatibility constraint is the
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tightest either at θ1 = k or θ1 = 1. However, in the latter case, the resulting upper bound

for T1(D) − T1(C) is negative, which contradicts condition (2.10). To exclude this case, we

have to assume that

0 = F (k)Û1(k, k; r1, k, Fθ≦k) − Û1(k, k; r1, k, F )

≦ F (k)Û1(1, 1; r1, k, Fθ≦k) − Û1(1, 1; r1, k, F ) =

ˆ 1

k

r1(1 − k) − (1 − θ2) dF (θ2). (2.13)

Thus, if T1(C) = T1(D) is satisfied, partner 1 has an incentive to trigger a dispute if and

only if her type is below k and bid her true valuation in the R-SAEE, as well as in the SAEE

whenever (2.13) is satisfied.

Symmetric arguments hold for partner 2, establishing the existence of an equilibrium

inducing the efficient allocation for T1(C) = T1(D) and T2(C) = T2(D) in the R-SAEE, and

also in the SAEE if condition (2.7) is satisfied.

Part 2. If T1(C) = T1(D) = T2(C) = T2(D) = 0, then the ex-post payments in the above

described equilibrium of the R-SAEE (and of the SAEE if (2.7) is satisfied) are identical

to t∗ as defined in equation (2.2). Therefore, we can set the first-period interim expected

payments to be equal to the maximal participation fees that can be charged in the original

one-shot mechanism. The above described equilibirum would then lead to the same budget

surplus (or deficit), and to the same interim net expected utilities as in the one-shot case.

This, together with revenue equivalence proves the claim. �

Note that the left hand side of (2.7) is smaller the more mass F has slightly above k. To

understand the intuition for condition (2.7) and the distinction between SAEE and R-SAEE,

it is useful to consider the incentives of a partner, say partner 1, with type θ1 = 1. Partner

1 may have an incentive to choose D in the first stage and bid 1 in the second. Such a

deviation, which is ruled out under R-SAEE, can be profitable in a SAEE only if partner 2
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chooses C in the first stage. Furthermore, conditional on partner 2’s bid indeed being above

k, this deviation is more profitable the lower 2’s bid is, as this implies a lower price to be

paid by partner 1, who wins the asset with probability one.

2.4.1 Deficit vs. efficiency

The previous sections have focused on identifying conditions under which disputes can be re-

solved efficiently, and mechanisms that permit to do so. We now turn to study circumstances

in which a dispute cannot be resolved efficiently. In such circumstances, the arbitrator faces

a tradeoff between sacrificing efficiency and improving the deficit from arbitration. With the

budget from arbitration in mind, we consider the question of whether its design should be

conservative, creating barriers discouraging partners from entering (e.g., through high fees

or delays), or permissive, encouraging partners to take this step?

In order to study these questions, we consider direct revelation mechanisms with thresh-

olds of dissolution that may potentially differ from k. As in the previous subsection, such

mechanisms can be viewed as replicating two-stage games in which dissolution is preceded

by a stage in which partners decide whether to enter arbitration. Importantly, the difference

here is that the thresholds for dissolution need not be the efficient ones, and are instead

chosen by the arbitrator.

Figures 2.5 (a)-(c) illustrate the new allocation and payment rules given an increase in

the threshold of partner 1 from k to l1, the formulas for which can be found in Appendix

B.7.17 It is straightforward to verify that these transfer rules implement this new allocation

rule in ex-post equilibrium.

17These are slightly different for the l1 ≧ k and l1 ≦ k cases. See the Appendix for a discussion regarding
the latter case.
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Figure 2.5: Allocation rule and payment rules when partner 1’s threshold is raised to l1 > k



81

The following result shows how the arbitrator can decrease her deficit (or increase her

surplus) by varying the threshold of dissolution locally.

Proposition 2.4 A local increase (decrease) in partner i’s threshold starting from k de-

creases the budget deficit if and only if

ri

(

F (k)(1 − F (k)) + f(k)E((θ − k) ∨ 0)
)

≦ (≧)







ri(1 − F (k)) if ri ≦ F (k),

F (k)(1 − ri) if ri > F (k).

(2.14)

If k 6= F−1(r1), F
−1(r2), the effects of simultaneous small changes in the two thresholds can

be evaluated independently using (2.14) for both partners.

Proof. See Appendix B.7. �

Condition (2.14) compares the first-order effects of a slight increase in the threshold (at k)

on the expected subsidy (left-hand side) and the participation fee (right-hand side). First,

a slight increase in partner i’s threshold raises the compensation paid to partner i when

she forgoes the asset conditional on partner −i’s type being above the new threshold. This

higher compensation occurs with probability close to F (k)(1−F (k)), therefore it is captured

by the first term inside the parenthesis on the left-hand side. Second, raising the threshold

increases the probability of dissolution, and therefore it induces a greater trade deficit in

the neighborhood of the original threshold of partner i. The increase in the trade deficit

is proportional to the mass of partner i types around the original threshold, i.e., f(k), and

is represented by the second term inside the parenthesis on the left-hand side. Third, an

increase in partner i’s threshold also increases her participation fee (the change in partner

−i’s participation fee is of second order). This change is given by the expression on the

right-hand side. In the first case, the original worst-off type of partner i is lower than k.
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In the region below k, the only first order consequence of an increased threshold is the

higher compensation for selling the asset when −i’s type is larger than the new threshold.

This affects every type of partner i below k equally, and therefore her worst-off type does not

change. The higher compensation (which occurs with probability close to 1−F (k)), however,

increases the maximal fee i is willing to pay. In the second case, the original net expected

utility curve of partner i is strictly decreasing up to k (with a negative left derivative at k).

Therefore, if the threshold slightly increases, the worst-off type also increases slightly from

k. This, together with the downward-sloping net expected utility curve, leads to a weaker

positive effect on the partner i’s maximal fee than in the first case.

Proposition 2.4 has two immediate implications. First, for small disputes, which as

established above are also the ones for which there is a deficit, being more conservative

(i.e., discouraging types close to the efficient threshold to initiate a dispute) improves the

budget. Second, the higher a partner’s share, the more the arbitrator’s budget benefits from

discouraging her from initiating a dispute. These statements are formalized in the following

proposition.

Proposition 2.5

1. There exists a k̃ > 0 such that discouraging both partners from initiating arbitration

improves the budget surplus for all k ∈ (0, k̃).

2. If lowering the threshold used for partner i with share ri improves the budget, then the

same holds for any share r′
i ≧ ri. Consequently, the arbitrator’s budget benefits more

from discouraging the partner with the larger share from initiating arbitration.

3. There exists a r̃ > 0 such that if ri ∈ (r̃, 1), then discouraging partner i from initiating

arbitration necessarily improves the budget.
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Proof.

1. Taking the limit k → 0, the right-hand side of (2.14) converges to 0 in a continuous

manner. Moreover, the left-hand side is bounded away from 0 for small k since f is

bounded away from 0 and E((θ−k)∨0) increases as k → 0. Together, these observations

guarantee the existence of such a k̃ > 0.

2. Dividing both sides of condition (2.14) by ri > 0 we have that decreasing i’s threshold

improves the budget if and only if

F (k)(1 − F (k)) + f(k)E((θ − k) ∨ 0) ≧







1 − F (k) if ri ≦ F (k),

F (k)( 1
ri

− 1) if ri > F (k).

(2.15)

The left-hand side of (2.15) does not depend on ri while the function (of k) on the right-

hand side is weakly lower for larger shares ri: Assuming r′
i ≧ ri, if k ≧ F−1(r′

i), the

right-hand side for both shares is the same, 1−F (k); similarly, if k ∈ [F−1(ri), F
−1(r′

i))

then 1 − F (k) ≧ F (k)( 1
r′

i

− 1) is true since r′
i > F (k); finally, if k < F−1(ri), then

F (k)( 1
ri

− 1) ≧ F (k)( 1
r′

i

− 1) holds since r′
i ≧ ri. Thus, condition (2.15) is always

satisfied for share r′
i whenever it is satisfied for ri.

3. If ri is sufficiently large, the right-hand side of (2.15) approaches 0 as ri → 1, while the

left-hand side remains positive and is independent of ri. This guarantees the existence

of such r̃ > 0. �

Example 2.1 (continued) Returning to the setting of Example 2.1 with equal shares, i.e.,

r1 = r2 = 1/2, condition (2.14) implies that reducing efficiency by slightly lowering the

threshold of dissolution increases the budget surplus if and only if k ≦
√

2 − 1.
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For this symmetric uniform setting, it is straightforward to compute the change in budget

surplus for arbitrary (not necessarily local) changes in the thresholds. Assume that the

thresholds are changed equally from k to some l ∈ [0, 1] for both partners. Figure 2.6

illustrates the change in budget surplus for every possible value of l for k = 0.32. The

figure shows that the positive effect of discouraging types close to the original threshold

from initiating dissolution may be strong enough to turn the original budget deficit into a

budget surplus. Specifically, decreasing both thresholds to approximately l = 0.22 completely

balances the budget. This involves making the inefficient decision of retaining the partnership

with a probability of (1−l)2−(1−k)2 ≈ 14.6%. The forgone social surplus is smaller, however,

as inefficient decisions occur when they have the lowest impact (close to the threshold). �

0.2 0.4 0.6 0.8 1.0

-0.10

-0.08

-0.06

-0.04

-0.02

0.02

change in surplus original deficit

Figure 2.6: Change in surplus and the original deficit in Example 2.1 for k = 0.32.

2.5 General partnership functions

The key tradeoffs underlying the analysis above extend to more general environments. Let

the value of the partnership V : [0, 1]2 → R+ be any twice differentiable, strictly concave
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function with ∂V (θ1,θ2)
∂θi

∈ (0, 1), i = 1, 2.18 The assumptions guarantee that the value of the

partnership is strictly increasing in both partners’ types, but the marginal value is strictly

decreasing. Furthermore, the difference between a partner’s private value θi and the value

of the partnership V (θ1, θ2) is strictly increasing in θi for all θ−i, which ensures that if it is

efficient to assign the asset to partner i then this is also the case for higher types θi, holding

θ−i fixed. The types are drawn from independent, continuous distributions F1 and F2, with

positive densities f1 and f2.

In Appendix B.8, we show that results similar to those in Sections 2.2-2.3 hold for general

partnerships disputes (r1, F1, F2, V ). While the generality of the environment no longer

permits closed form expressions for the worst-off types of the agents, it is nevertheless possible

to derive general properties of these worst-off types and their net expected utility, which

permit a characterization of how the different properties of a dispute shape its efficient

resolution.

Given the properties of V , there exist threshold types θi(θ−i) and θi(θ−i) such that: (a)

when θi < θi(θ−i), or equivalently θ−i > θ−i(θi), social surplus is maximized when the part-

nership is dissolved and the asset is allocated to partner −i; (b) when θi ∈
(

θi(θ−i), θi(θ−i)
)

,

it is efficient to keep the partnership intact. Formally, for any θ−i ∈ [0, 1], the thresholds are

defined by the following equations:

θi(θ−i)
.
= min ({θi ∈ [0, θ−i] : V (θ1, θ2) ≧ θ−i} ∪ {θ−i}) ,

θi(θ−i)
.
= min ({θi ∈ [θ−i, 1] : V (θ1, θ2) ≦ θi} ∪ {1}) .

18The assumptions on V are stronger than those required to obtain the results, but greatly simplify the

exposition. The results can be generalized to weakly concave functions V with ∂V (θ1,θ2)
∂θi

∈ [0, 1]. The
differentiability of V can also be relaxed.
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Given the thresholds θi(θ−i) and θi(θ−i), the efficient allocation rule, illustrated in Figure

2.7, is given by

q∗(θ1, θ2)
.
=







d−i if θi < θi(θ−i)

0 if θi ∈
(

θi(θ−i), θi(θ−i)
)

di if θi > θi(θ−i)

. (2.16)

q∗(θ1, θ2) = d1

q∗(θ1, θ2) = d2

q∗(θ1, θ2) = 0

θ2(θ1)

θ
2
(θ1)

θ1

θ2

0 1

1

Figure 2.7: Efficient dispute resolution: general V

Denote Γ∗ .
= (q∗, t∗), where the transfer rule t∗ is defined as

t∗i (θ1, θ2)
.
=







riθ−i if θ−i > θ−i(θi)

0 if θ−i ∈ (θ−i(θi), θ−i(θi))

−r−iθi(θ−i) if θ−i < θ−i(θi)

. (2.17)
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Under Γ∗, if the partnership remains intact then the partners do not make transfers. If the

asset is allocated to partner −i, then partner i receives a transfer that equals his share in

the (higher) value generated by −i’s sole ownership. Partner −i makes a payment equal to

the utility that agent i could have derived from the transferred asset in the best possible

effective partnership with −i, or in the solely owned asset, whichever is higher.

As in Section 2.3, the feasibility of efficient resolution hinges on the relationship between

the net expected utility of the worst-off types and the expected subsidy under Γ∗. We

say that the dispute in partnership W is less severe than the dispute in partnership V

if W (θ1, θ2) ≧ V (θ1, θ2) for all θ1, θ2 ∈ [0, 1]. In the Appendix (Lemma B.1), we derive

properties of the worst-off types of the agents and the net expected utility functions under

Γ∗, which can be used to study how a dispute’s severity affects its efficient resolution.

A more severe dispute increases both the expected subsidy and the lump-sum fee (Lemma

B.3). The relationship between the rate of these two changes determines the overall change

in the cost of efficient resolution. Note that the payments, and hence the expected subsidy,

depend only on the thresholds of dissolution. The net expected utility, and hence the lump-

sum fee, however, depends on other features of the partnership’s value (V andW ). Therefore,

in the particular case in which the region (and consequently the probability) of efficient

dissolution is the same for both partnerships, a more severe partnership dispute is less costly

to dissolve. If the region of dissolution differs, the relaxation of participation constraints,

measured by the change in the lump-sum fee, may be outweighed by the change in the

allocation rule, which determines the change in the expected subsidy. Hence, similarly to

the intuition discussed in the previous sections, a more severe dispute may be more costly to

resolve (Proposition B.1). Finally, we extend the result in Proposition 2.1 by showing that

sufficiently small disputes, for which the relative gain from making the efficient allocation

decision is small, cannot be resolved without a budget deficit (Proposition B.2).
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2.6 Concluding remarks

In this chapter, we have introduced and studied the problem of efficient resolution of partner-

ship disputes in which dissolution need not be efficient. The resulting endogeneity introduces

new tradeoffs and yields different predictions relative to environments in which dissolution

is taken as given. An implication of this endogeneity is that a dispute in a less effective

partnership may be more costly to resolve efficiently. In fact, if a dispute is not sufficiently

severe, it cannot be resolved efficiently, and the deficit from efficient resolution is necessar-

ily increasing for small disputes. Endogenizing the decision to enter arbitration in the first

place, simple two-stage second-price auctions where partners first choose whether to initiate

arbitration achieve efficient resolution if and only if it is feasible. For disputes that cannot

be resolved efficiently, whether the arbitrator’s budget benefits from locally encouraging or

discouraging entry into arbitration hinges on the properties of the dispute.

As a first step in studying the implications of endogenizing the decision to dissolve a

partnership, we have focused – in line with much of the partnership dissolution literature

– on environments in which the value of a partnership is not a function of the ownership

structure. Relaxing this assumption would open the door to different interesting questions.

For instance, how might the partners be incentivized to trade shares of an asset with the goal

of reaching an optimal ownership structure, given their different valuations for the asset? A

related problem is studied in Salant and Siegel (2016) in the context of a divisible asset. Fur-

thermore, a related literature pioneered by Grossman and Hart (1986) and Hart and Moore

(1990) studies how the allocation of property rights shapes incentives to invest in the as-

set’s improvement. Studying such incentives in this context seems a particularly interesting

direction for future research.
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Chapter 3

Stability of Time-Sharing Arrangements in

Two-Sided Markets

3.1 Introduction

Fractional matchings are a useful concept for modeling matchings that are probabilistic or

have a time dimension. For example, in a marriage market in which agents can be matched

to multiple partners over time and have time-invariant preferences, a fractional matching

is essentially a table of numbers that specifies the length of time that each pair of agents

should spend together. These matchings can be conveniently modeled using linear inequality

systems and linear programming.

There are many real-life settings that can be modeled by such fractional matchings. For

example, some university programs devote an entire year to internships and practica during

which students can take multiple consecutive positions. These programs typically also offer

assistance in matching students with potential employers. As another example, we can

think of the economics job market interviews at the ASSA meetings, where both job market

candidates and potential employers participate in many consecutive interviews.
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Despite their usefulness, fractional matchings provide only a reduced-form description of

the matching process. Focusing on the time-dimension interpretation from now on, these

matchings only describe the length of time that each pair spends together, but not the timing

of these matches. The multiplicity of the possible implementing time schedules makes it a

nontrivial task to extend concepts such as stability to this environment.

Stability requires the non-existence of a blocking pair, i.e., a pair of agents that are both

matched to partners that they desire less than each other. However, for a given fractional

matching, the existence of a blocking pair can depend on the implementing time schedule.

Because of the above mentioned multiplicity, even if there exists a schedule without a blocking

pair (i.e., the underlying fractional matching satisfies weak stability), there might be other

schedules in which a blocking pair can arise for a positive amount of time. Choosing such a

weakly stable fractional matching might be unattractive in practical applications for several

reasons. First, the mechanism designer might have to exercise more control and be involved

more closely in the scheduling process if there is a chance that a blocking pair can arise,

instead of letting the market decide about the timing (e.g., using a first-come first-served sign-

up method). Second, in many typical real-life settings, previously unexpected events might

occur during the matching process. These impose new constraints on the timing of matchings,

and the remaining matches might have to be rescheduled in a way that is consistent with both

the original underlying fractional matching and the additional constraints.1 This rescheduling

might also lead to a blocking pair if there are unstable continuation schedules.

Roth et al. (1993) define a stronger stability condition that solves this problem. Strong

stability requires that for every pair, either the man or the woman spend no time at all with

someone less desired than the other. Since strong stability makes it impossible for such a

1For example, during the 2018 ASSA Meetings in Philadelphia, a significant fraction of the incoming
flights was canceled, and many interviews had to be rescheduled.
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potentially blocking pair to exist by definition, blocking pairs cannot arise in any of the time

schedules that are consistent with a strongly stable matching.

In this chapter, we argue that strong stability can be too demanding since it typically

excludes fractional matchings that otherwise can be implemented only in a stable way. More

precisely, a potentially blocking pair can be harmless in the sense that no matter what

the implementing time schedule is, its members can never be matched to inferior partners

simultaneously. Another limitation of strong stability is that, as Roth et al. (1993) show

in their paper, in a strongly stable matching no agent can spend time with more than two

partners. This seems to be a limiting feature especially in larger markets, and excludes many

fractional matchings that cannot be implemented in an unstable way.

Based on these observations, we define a new stability concept for fractional matchings,

called C-stability, that is more general than weak stability but less general than strong

stability. The new concept is equivalent to the non-existence of unstable implementing time

schedules. We characterize this condition both geometrically and in terms of the underlying

preferences.

The geometric characterization reveals the relationship between the set of fractional

matchings satisfying our stability concept, the polytope of matchings and the polytope of

weakly stable fractional matchings (also called the stable matching polytope). We show that

a fractional matching satisfies C-stability if and only if the smallest face of the matching

polytope that contains it has only stable vertices. Therefore, the set of C-stable matchings

is the union of the faces of the matching polytope that are also faces of the stable matching

polytope.

Building on these results, we obtain necessary and sufficient conditions on the underlying

preferences that must be fulfilled for a candidate fractional matching to satisfy our notion

of stability. Using graph theory, we can represent potential pairs in the marriage market by
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a rectangular array of nodes, in which rows and columns correspond to men and women,

respectively. Directed edges connect nodes in every row and every column, representing the

preferences of men and women over the other side of the market.

For a fractional matching that lies on an edge or a diagonal of the matching polytope

(hence, it can be expressed as a convex combination of two vertices), the pairs that are

matched for positive time define a set of disjoint preference cycles and isolated nodes in the

graph representing the marriage market. These cycles and nodes partition the sets of men

and women, which can be used to derive the following necessary and sufficient conditions for

C-stability for all possible pairs of agents in the marriage graph:

(i) Every preference cycle should be directed. (directed cycle condition)

(ii) For every pair of a man and a woman whose members belong to different cycles or

isolated nodes, the man should rank the woman below his least preferred partner, or

the other way around. (external stability)

(iii) For every pair of a man and a woman whose members belong to the same cycle, if

the man and the woman like each other more than their least preferred partners, they

should also like each other less than their most preferred partners. (internal stability)

This characterization result can be immediately extended to fractional matchings in which

no agent spends time with more than two partners, which also highlights the relationship

between strong stability and C-stability. The directed cycle and external stability condi-

tions are equivalent to the requirement defined by strong stability for these groups of pairs.

However, the internal stability condition is weaker since it also incorporates the underlying

combinatorial restrictions of the problem of finding implementing time schedules.

The characterization obtained for general fractional matchings uses the necessary and

sufficient conditions derived for edges and diagonals. It applies them to the sets of preference
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cycles and isolated nodes that are defined by a subset of the positive coordinates of the

matching matrix in a way that partitions the sets of men and women. Contrary to strong

stability, agents can have more than two partners over time in C-stable matchings.

3.1.1 Related literature

Although the properties of stable matchings in the marriage market (Gale and Shapley

(1962)) show a remarkable similarity to those in the assignment game (Shapley and Shubik

(1971)), the two models were originally analyzed using different mathematical tools. While

the assignment game was traditionally modeled by linear programming, discrete mathemat-

ical tools were applied to analyze marriage markets.

The first paper that modeled the stable marriage problem as a linear programming prob-

lem was Vande Vate (1989). The paper defined a system of inequalities whose extreme points

contain all the stable matchings. Rothblum (1992) modified Vande Vate’s LP formulation to

obtain an inequality system such that the stable matchings are exactly the extreme points of

the polytope defined by the feasible solutions. Roth et al. (1993) used this linear program-

ming formulation to explain the remarkable similarity between the properties of the optimal

assignment problem and the stable marriage problem.

A by-product of the linear programming formulation is the existence of fractional solu-

tions that can be interpreted as time-sharing arrangements or lotteries over non-fractional

matchings. Given the strong technical tools available to model fractional matchings, it is not

surprising that they have been frequently used to analyze a wide range of practical matching

problems such as school choice lotteries or two-sided search. For some recent examples, see

Kesten and Ünver (2015), Lauermann and Nöldeke (2014), and Echenique et al. (2013).

Roth et al. (1993) emphasized that weak stability of fractional matchings does not guar-

antee that only stable implementing schedules exist. Their strong stability concept offers a
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solution to this issue by completely excluding pairs who might have an incentive to increase

the time spent together and decrease the time spent with their less preferred partners.

Some works investigated the geometric and combinatorial properties of the stable match-

ing polytope. Balinski and Ratier (1997) used graph theory to describe stable matchings

and to obtain a characterization of the faces of the stable matching polytope. The graph

representation of markets that we also use in this chapter appeared in their work first. The

special case of our directed cycle condition in the case of fractional matchings generated by

neighboring vertices is what they call comparability of neighboring stable vertices.

Cycles defined by preferences were also used in the book Gusfield and Irving (1989).

They constructed an algorithm involving preference cycles that can be used to find all stable

matchings in a marriage market.

Given a stable fractional matching, Abeledo et al. (1996) and Teo and Sethuraman (1998)

suggested very simple procedures that can be used to obtain stable implementing time sched-

ules in which matchings are ordered in a linear way.

Our work is related to these papers but goes further. Instead of describing geometric prop-

erties of the stable matching polytope, it investigates the relationship between the matching

polytope and the stable matching polytope and gives necessary and sufficient conditions for

the stability of whole faces of the former.

The chapter is organized as follows. Section 3.2 provides the basic definitions and some

existing results about weak stability and strong stability of fractional matchings. Section 3.3

formally defines our proposed stability concept, C-stability. Sections 3.4 and 3.5 describe

the geometric and preference-based characterizations of C-stability. Section 3.6 concludes

the chapter. Appendix C contains the proofs that are omitted from the main text.
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3.2 Preliminaries

Geometry

A polyhedron is defined as the set of solutions to a linear inequality system. A polytope is

a bounded polyhedron. Polytopes are convex sets that can be characterized equivalently by

their defining inequalities and as the convex hull of their extreme points.

If we replace some inequalities with equality constraints, the result will be a subpolytope,

a face of the original polytope. A 0-dimensional face is called a vertex, a 1-dimensional is

called an edge of the original polytope. The vertices are exactly the extreme points of the

polytope. It is straightforward to verify that the set of all faces of a polytope, ordered by

set inclusion, forms a lattice.

Two vertices are called neighboring if their convex hull is an edge of the polytope. The

line segment connecting two vertices is a diagonal of the polytope if the two vertices are not

neighboring.

The relative interior of a set is its interior within its affine hull. The relative boundary is

its boundary within its affine hull.

Matching

Our environment is a regular marriage market, consisting of men and women. The finite dis-

joint sets of men and women are denoted by M = {m1, . . . ,m|M |} and W = {w1, . . . , w|W |},

respectively. Each man m ∈ M and each woman w ∈ W has a strict preference ordering

defined on the other side of the market, denoted by ≻m and ≻w, respectively. We assume

for simplicity that every pair (m,w) is acceptable to both m and w, for each m ∈ M and

w ∈ W .
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Definition 3.1 (Matching polytope P ) Given a set of menM and womenW , the match-

ing polytope P is defined as the set of matrices x ∈ R|M |×|W | satisfying

∑

j∈W

xmj ≦ 1 for all m ∈ M,

∑

i∈M

xiw ≦ 1 for all w ∈ W,

xmw ≧ 0 for all (m,w) ∈ M ×W.

We call the solutions to this problem fractional matchings and the integer solutions match-

ings.2

A fractional matching x can be interpreted either as a time assignment or as a collection

of matching probabilities. In the time assignment interpretation, the value xmw specifies

the length of time m and w must spend together. The total available time for matchings is

normalized to 1, and we assume constant preferences over time without discounting. In the

matching probability interpretation, a fractional matching is simply a reduced form where

xmw specifies the probability with which m and w are matched. For the sake of simplicity,

from now on, we will use the time assignment interpretation; most of what follows remains

true if fractional matchings represent probabilities.

In the definition, the first two groups of inequalities state that no one can be matched for

longer than the total available time. The third group of constraints means that assignment

times are always non-negative.

A fractional matching is not a complete description of the matching process since it does

not define the timing of the matchings. A time schedule implementing a fractional matching

2Similarly to many papers in the literature, we index the elements in x by men and women, which is a
slight abuse of notation. However, it greatly simplifies the expressions in the chapter. Since we can assume
that row i represents mi and column j wj , this should create no confusion.
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x is defined as a convex combination of matchings.3 Such a convex combination does not

fully specify the timing either, it tells us only which pairs are matched at the same time.

Since the order of the matchings does not directly influence the agents’ preferences, and

our focus is on stability (whether a blocking pair can exist for some time), this definition is

sufficient for our analysis.

It has been shown in the literature that the extreme points (vertices) of the polytope P

are exactly the possible matchings between men and women.4 Since every point in P can

be expressed as a convex combination of vertices, this result guarantees the existence of an

implementing time schedule for every fractional matching.

Definition 3.2 (Stable matching polytope S) Given a set of men M and women W ,

the stable matching polytope S is defined as the set of matrices x ∈ R|M |×|W | satisfying

∑

j∈W

xmj ≦ 1 for all m ∈ M ,

∑

i∈M

xiw ≦ 1 for all w ∈ W ,

xmw ≧ 0 for all (m,w) ∈ M ×W ,

∑

j≻mw

xmj +
∑

i≻wm

xiw + xmw ≧ 1 for all (m,w) ∈ M ×W .

We call the solutions to this inequality system weakly stable fractional matchings5 and the

integer solutions stable matchings.

3When describing time schedules, we restrict attention to convex combinations in which all the weights
are positive.

4See e.g., Roth et al. (1993).
5The literature typically refers to such matchings as “stable.” In this chapter, we use “weak stability”

to make it easier to distinguish this definition from the other two notions of stability we consider, strong
stability and C-stability.
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The last condition is the generalization of the stability condition of matchings. Reorga-

nizing it gives

∑

j≻mw

xmj +
∑

i≻wm

xiw ≧ 1 − xmw for all (m,w) ∈ M ×W .

This condition simply means that m and w must spend at least as much time with better

partners as the time they do not spend together. For matchings (where the elements of the

matrix x are binary), this is equivalent to the original definition of stability. For fractional

matchings, this condition is necessary for the non-existence of a blocking pair (m,w). Since

a stable matching always exists in a marriage market, S is never empty.6

A time schedule implementing a fractional matching is stable if it is a convex combina-

tion that involves only stable matchings. The following proposition shows that the weak

stability of a fractional matching and the existence of a stable implementing time schedule

are equivalent.

Proposition 3.1 (Rothblum (1992)) The extreme points of the stable matching poly-

tope S are exactly the stable matchings.

3.2.1 Strong stability

If we interpret fractional matchings as time allocations, then the original stability definition

might not be strong enough. Although there is a stable implementing schedule for every

weakly stable fractional matching, other time schedules with a blocking pair might still exist

(the last constraint is only necessary for the non-existence of a blocking pair). The following

example (taken from Roth et al. (1993)) illustrates this observation.

6See e.g., Roth and Sotomayor (1992).
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Example 3.1 (Roth et al. (1993)) Consider the following preferences (every preference

list goes from the most preferred potential partner to the least preferred one):

Men: Women:

m1 : w1 w3 w2 w1 : m3 m2 m1

m2 : w2 w1 w3 w2 : m1 m3 m2

m3 : w3 w2 w1 w3 : m2 m1 m3

Given these preferences, there are three stable matchings:

u1 =










1 0 0

0 1 0

0 0 1










, u2 =










0 1 0

0 0 1

1 0 0










, u3 =










0 0 1

1 0 0

0 1 0










.

Consider the following two convex combinations:

y =










1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3










=
1

3










1 0 0

0 1 0

0 0 1










+
1

3










0 1 0

0 0 1

1 0 0










+
1

3










0 0 1

1 0 0

0 1 0










,

y =










1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3










=
1

3










1 0 0

0 0 1

0 1 0










+
1

3










0 1 0

1 0 0

0 0 1










+
1

3










0 0 1

0 1 0

1 0 0










.

The fractional matching y is weakly stable since it can be implemented by a stable time

schedule (first convex combination). However, there also exists another time schedule (second

convex combination) that implements y for which a blocking pair exists at every point in

time. �
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The issue created by this multiplicity is solved by strong stability, defined in Roth et al.

(1993).

Definition 3.3 (strong stability) A weakly stable fractional matching x is strongly stable

if for all m ∈ M and w ∈ W it is true that



1 −
∑

i�wm

xiw







1 −
∑

j�mw

xmj



 = 0.

Strong stability requires that for every pair, either the man or the woman spend no

time at all with someone less desired than the other one. Therefore, it completely excludes

potentially blocking pairs. It is easy to see that strong stability is not satisfied in Example

3.1 (e.g., both m1 and w3 spend time with less preferred partners).

A strongly stable matching always exists since a stable matching always exists in the

marriage problem and stability trivially implies strong stability for matchings.

Next, we summarize the necessary and sufficient conditions for strong stability.

3.2.2 Necessary and sufficient conditions for strong stability

Roth et al. (1993) derived the following necessary and sufficient conditions for strong stabil-

ity.

Proposition 3.2 (Necessary conditions for strong stability) If x is a strongly stable

fractional matching, then

(i) for all w ≺m w′′, such that xmw, xmw′′ > 0, it is true that if w ≺m w′ ≺m w′′ for some

w′ ∈ W , then ymw′ = 0 in every weakly stable fractional matching y,

(ii) for all m ≺w m′′, such that xmw, xm′′w > 0, it is true that if m ≺w m′ ≺w m′′ for some

m′ ∈ M , then ym′w = 0 in every weakly stable fractional matching y.



101

Proposition 3.2 immediately implies that in every strongly stable matching, every man

and woman can have at most two different partners. This might be an unappealing property

in larger markets with many agents on both sides.

Proposition 3.3 (Sufficient conditions for strong stability) Let µM(w) and µW (m)

denote the worst partners that w and m can get in any stable matching. A weakly sta-

ble fractional matching x is strongly stable if either of the following holds:

(i) for all m ∈ M and w,w′, w′′ ∈ W such that w ≺m w′ ≺m w′′ and xmw′′ > 0, it is true

that µM(w′) ≻w m,

(ii) for all w ∈ W and m,m′,m′′ ∈ M such that m ≺w m′ ≺w m′′ and xm′′w > 0, it is true

that µW (m′) ≻m w.

3.3 C-stability

Strong stability excludes all potentially blocking pairs by definition. However, in many cases

this might be too demanding: there might be pairs of agents who both spend time with

someone less desired than the other one, but can never do that at the same time, no matter

what the implementing time schedule is. Such agents would have to compare their losses from

blocking (giving up a better partner for the other blocking agent) and their gains (replacing

worse partner with the other blocking agent). Even if such an agreement is mutually desired

by the blocking agents, enforcing it might still be an issue since the last agent to make

a sacrifice would have an incentive not to return the favor and keep his existing partner.

In many real settings, a commitment device for such an agreement might not be available

(e.g., writing a contract on blocking might be illegal, highly unethical, or simply too costly),
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and such agents can never form a blocking pair.7 These observations motivate the following

definition.

Definition 3.4 (C-stability) A fractional matching is C-stable if it cannot be expressed

as a convex combination of matchings that involves at least one unstable matching.

As we discussed, convex combinations contain all the information on timing that is im-

portant for stability. Therefore, C-stability is equivalent with the non-existence of unstable

implementing time schedules. The next proposition shows the relationship between weak

stability, C-stability and strong stability.

Proposition 3.4

1. If x is strongly stable, then it is C-stable.

2. If x is C-stable, then it is weakly stable.

Proof.

1. Assume that x is not C-stable. Then x can be expressed as a convex combination of

matchings that involves at least one unstable matching. Therefore, there is a positive

amount of time for which a blocking pair exists. Strong stability is violated.

2. This direction is trivial since every fractional matching can be expressed as a con-

vex combination of matchings. If this cannot involve unstable matchings, then the

fractional matching must be weakly stable, as well. �

The next example shows that the converse of the two statements in Proposition 3.4 is

not true.

7The same holds if we interpret fractional matchings as arrays decribing matching probabilities.
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Example 3.2 (Counterexamples) Consider again the setting of Example 3.1:

Men: Women:

m1 : w1 w3 w2 w1 : m3 m2 m1

m2 : w2 w1 w3 w2 : m1 m3 m2

m3 : w3 w2 w1 w3 : m2 m1 m3

Given these preferences, it is straightforward to show that exactly the following matchings

are stable:

u1 =










1 0 0

0 1 0

0 0 1










, u2 =










0 1 0

0 0 1

1 0 0










, u3 =










0 0 1

1 0 0

0 1 0










.

1. (C-stability does not imply strong stability.) Consider the following stable fractional

matching:

x =
1

2
u1 +

1

2
u2 =










1
2

1
2

0

0 1
2

1
2

1
2

0 1
2










.

This fractional matching is C-stable: since x13 = x21 = x32 = 0, and everyone is

matched for the whole time, the same must hold for every matching in a convex combi-

nation. However, only the matchings u1 and u2 fulfill this requirement. On the other

hand, x is not strongly stable since both members of the pair (m1, w3) spend positive

time with less desired partners:
∑

j≺m1
w3

xm1j = 1/2 and
∑

i≺w3
m1

xiw3
= 1/2.
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2. (Weak stability does not imply C-stability.) Consider again the following two convex

combinations from Example 3.1:

y =










1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3










=
1

3










1 0 0

0 1 0

0 0 1










+
1

3










0 1 0

0 0 1

1 0 0










+
1

3










0 0 1

1 0 0

0 1 0










,

y =










1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3










=
1

3










1 0 0

0 0 1

0 1 0










+
1

3










0 1 0

1 0 0

0 0 1










+
1

3










0 0 1

0 1 0

1 0 0










.

The first convex combination contains only stable matchings, the second only unstable

ones. Hence, the fractional matching y is weakly stable but not C-stable. �

3.4 Geometric properties of C-stability

The goal of this section is to describe C-stability geometrically. From now on, assume for

simplicity that |M | = |W | = n. This assumption implies that in every stable matching

(consequently, in every weakly or strongly stable fractional matching), everyone must be

matched for the whole time.8 Moreover, if we want to express a weakly stable fractional

matching as a convex combination of matchings, we need to use matchings that satisfy the

same property. Therefore, we can restrict attention to the following polytopes.

8See e.g., Roth and Sotomayor (1992).
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Definition 3.5 (Matching polytope P ′) The matching polytope P ′ is defined as the set

of matrices x ∈ Rn×n satisfying

∑

j∈W

xmj = 1 for all m ∈ M ,

∑

i∈M

xiw = 1 for all w ∈ W ,

xmw ≧ 0 for all (m,w) ∈ M ×W .

Definition 3.6 (Stable matching polytope S′) The stable matching polytope S ′ is de-

fined as the set of matrices x ∈ Rn×n satisfying

∑

j∈W

xmj = 1 for all m ∈ M ,

∑

i∈M

xiw = 1 for all w ∈ W ,

xmw ≧ 0 for all (m,w) ∈ M ×W ,

∑

j≻mw

xmj +
∑

i≻wm

xiw + xmw ≧ 1 for all (m,w) ∈ M ×W .

It is still true that the extreme points of these two polytopes are exactly the matchings

and the stable matchings, since P ′ and S ′ are just the faces of P and S for which the first

two groups of inequalities are binding.

Since the set of faces of a polytope, ordered by set inclusion, forms a lattice, for every

fractional matching x, we can define the smallest face of P containing x. Denote it by

F (x). The following lemma shows how we can construct the face F (x) for a given fractional

matching x.
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Lemma 3.1 (Smallest containing face) Let x be a fractional matching. Then

F (x) = conv {u ∈ P ′ : u is a vertex of P ′, and xmw = 0 ⇒ umw = 0, for every m,w} ,

where conv denotes the convex hull of a set.

Proof. The set on the right-hand side defines the face of the polytope P ′ for which those

inequality constraints are binding that are also binding for x. Therefore,

F (x) ⊆ conv {u ∈ P ′ : u is a vertex of P ′, and xmw = 0 ⇒ umw = 0, for every m,w}

must be true. However, the set on the right-hand side cannot be a strict superset of F (x).

Otherwise, we could find an inequality constraint that is not binding for the face on the

right-hand side but must be binding for all elements in F (x). In this case, there would exist

a pair (m,w) such that xmw > 0 and ymw = 0 for all y ∈ F (x), contradicting x ∈ F (x). �

Lemma 3.1 suggests a simple way to compute the vertices of the smallest containing face

for a given fractional matching: fix the coordinates at which the fractional matching takes

the value of zero and assign 1 or 0 to the remaining coordinates in a consistent way (such

that the row and column sums of the resulting matrix are 1 everywhere).

The next lemma will be useful for establishing our characterization result.

Lemma 3.2 Let x be a fractional matching and F (x) be the smallest face containing x.

Then x can be expressed as a convex combination of the vertices of F (x) such that all

coefficients are positive.

Proof. See Appendix C.1 �
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Using Lemmas 3.1 and 3.2, we can prove the following characterization result:

Theorem 3.1 (Geometric characterization) A fractional matching x is C-stable if and

only if every vertex of F (x) is a stable matching.

Proof. Assume first that x is a C-stable fractional matching. From Lemma 3.2 we know

that x can be expressed as a convex combination of all vertices in F (x) such that every

weight is positive. The definition of C-stability immediately implies that every vertex of

F (x) must be stable.

For the other direction, observe that every convex combination that yields x can involve

vertices only from F (x). To see this, assume that x can be expressed as a convex combination

that involves a vertex outside F (x), say v, with a positive weight. This means that one of

the non-negativity constraints that are binding for all elements of F (x) is not binding for v.

Therefore, there must be a pair m,w such that xmw = 0 but vmw > 0. However, v appears

with positive weight in the convex combination that is equal to x. Therefore, xmw > 0 should

be true, a contradiction. �

Theorem 3.1 also implies that if x is C-stable, then each vector in the face F (x) is C-

stable. (For each y ∈ F (x), the smallest containing face is either F (x) itself or a subface of

it. In both cases, all the vertices of the face F (y) are stable.) Moreover, since S ′ is generated

by some vertices of P ′, if a face of P ′ has only stable vertices, it must be a face of S ′ as well.

These two observations lead to the following corollary.

Corollary 3.1 The set of all C-stable fractional matchings is the union of those faces of the

matching polytope P ′ that are also faces of the stable matching polytope S ′.



108

The set of C-stable matchings is not necessarily convex. All stable matchings are C-stable

and their convex hull is exactly S ′. However, as we have seen, not all weakly stable fractional

matchings are C-stable in general.9

3.5 Preference-based characterization of C-stability

In this section, we derive conditions on the underlying preferences that are both necessary

and sufficient for C-stability. We use a geometric approach. First, we discuss the simple case

of a fractional matching lying on an edge of the matching polytope. Then we generalize the

result to fractional matchings lying on diagonals and finally to general fractional matchings.

Before we do this, the first thing to check is whether the necessary conditions for strong

stability (Proposition 3.2) are still necessary for C-stable matchings. As the following exam-

ple shows, this is not the case since an agent can spend time with more than two partners

in a C-stable matching, which contradicts the implication of Proposition 3.2.

Example 3.3 Consider the preference profile

Men: Women:

m1 : w1 w2 w3 w4 w1 : m2 m1 m3 m4

m2 : w2 w1 w3 w4 w2 : m3 m1 m2 m4

m3 : w3 w2 w1 w4 w3 : m1 m2 m3 m4

m4 : w1 w2 w3 w4 w4 : m1 m2 m3 m4

and the fractional matching

9The same logic shows that the set of strongly stable fractional matchings is not necessarily convex either.
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x =














1/3 1/3 1/3 0

2/3 1/3 0 0

0 1/3 2/3 0

0 0 0 1














.

By fixing the 0 coordinates (x14 = x23 = x24 = x31 = x34 = x41 = x42 = x43 = 0),

and assigning the remaining 0 and 1 values in a consistent way, we can obtain the vertices

generating F (x):

u1 =














1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1














,u2 =














0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1














,u3 =














0 0 1 0

1 0 0 0

0 1 0 0

0 0 0 1














.

It is easy to verify that all three vertices are stable. Therefore, the fractional matching

x is C-stable. However, at x, the first man and the second woman spend positive time with

three potential partners. Therefore, this fractional matching violates the necessary condition

for strong stability. �

We need to make another preliminary observation regarding the relationship between

vertices. Given two arbitrary vertices (say u1 and u2), the special structure of the matrices

(there is exactly one ”1”element in every row and column) allows us to transform the matrix of

one vertex into that of the other by performing a row permutation. Denote this permutation

by Σu1,u2 .10 It is a basic result in algebra that each permutation can be written as the product

10To simplify notation, we will not distinguish between row permutations and functions applying the row
permutations to matching matrices. This should create no confusion since the object in the argument of a
permutation will uniquely determine the sense in which we are using it.
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of mutually disjoint cyclic permutations that are uniquely determined.11 This means that

there is a unique set {σ1, . . . , σL} of disjoint cycles such that

u2 = Σu1,u2(u1) = (σ1 · . . . · σL)(u1).

We use this result extensively in this secion.

3.5.1 Fractional matchings lying on edges

Let u1 and u2 denote the two neighboring vertices defining the edge. In this case, the row

permutation Σu1,u2 is a cycle itself. To see this, assume to the contrary that there are at

least two disjoint cycles (σ1 and σ2) in the product. By taking the transformation σ1(u
1)

or σ2(u
1), we do not change the binding non-negativity conditions (the coordinates that are

zero in both u1 and u2 remain zero if we apply any of the cycles in the product). This means

that u1, σ1(u
1), and σ2(u

1) must all belong to the smallest face containing both u1 and u2.

Since the two cycles are disjoint, we have three different vertices lying on the same edge,

which is a contradiction.12

Let µ1 and µ2 be two functions that return the partners of the agents at the matchings u1

and u2, respectively.13 If σ denotes the unique row cycle transforming u1 into u2, the previ-

ous observation immediately implies the following connection between the two neighboring

matchings:

11A cyclic permutation is a permutation of a subset of rows that has a single nontrivial cycle. An example
for a cyclic permutation is the following transformation: row 1 is replaced by row 2, row 2 is replaced by
row 3, and row 3 is replaced by row 1.

12Note that in the 2x2 and 3x3 cases, all pairs of vertices are neighboring since we need at least four rows
for the simplest product of disjoint cycles.

13For k = 1, 2, the function µk : M ∪ W → M ∪ W is such that µk(m)
.
= {w ∈ W : uk

mw = 1} for all
m ∈ M and µk(w)

.
= {m ∈ M : uk

mw = 1} for all w ∈ W .
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µ2(mk) =







µ1(mk) , if k /∈ σ;

µ1(mσ(k)) , if k ∈ σ.

Using Theorem 3.1, we can derive the following necessary condition for the C-stability of

a fractional matching lying on an edge of the matching polytope.14

Proposition 3.5 (comparability) Assume that a fractional matching x lies on an edge of

the matching polytope P ′ that is generated by u1 and u2. If x is C-stable, then the following

must be true:

The men and women who have different partners at u1 and u2 must have the opposite

preferences over the two matchings. If σ is the cycle transforming u1 into u2, then either

• µ1(mk) ≻mk
µ2(mk) and mk ≺µ1(mk) mσ−1(k) for all k ∈ σ (every man prefers his

partner at u1 to the one at u2 and every woman does it the other way), or

• µ1(mk) ≺mk
µ2(mk) and mk ≻µ1(mk) mσ−1(k) for all k ∈ σ (the other way).

Proof. Denote the cycle transforming u1 into u2 by σ = (a1 a2 . . . aK). From Theorem

3.1, we know that both u1 and u2 must be stable for x to be C-stable.

Take man ma1
and assume without loss of generality that ma1

strictly prefers his partner

under u1 to that under u2, i.e., µ1(ma1
) ≺ma1

µ2(ma1
) = µ1(ma2

). Then

µ2(µ1(ma2
)) = ma1

≻µ1(ma2
) ma2

= µ1(µ1(ma2
))

must be true, otherwise ma1
and µ1(ma2

) would form a blocking pair at u1. By the same

reasoning, it is also true that µ1(ma2
) ≺ma2

µ2(ma2
) = µ1(ma3

), otherwise ma2
and µ1(ma2

)

14Balinski and Ratier (1997) calls this condition comparability of neighboring matchings. An alternative
proof can be given using Theorem 10 of their paper.
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could block the matching u2. We can continue applying the same reasoning for every man

and woman involved in the cycle σ, which proves the claim. �

The condition can be illustrated using graph theory. Consider an n × n array of nodes

representing the possible pairs that can form in the marriage market, where rows correspond

to men and columns to women. In the row of every man mi, directed edges connect the

nodes, pointing from the less preferred pair to the more preferred pair according to mi’s

preferences. Edges in columns are defined analogously.

The original row cycle σ = (a1, . . . , aK) defines the following cycle in the graph:

ρ
.
=((ma1

, µ1(ma1
)), (ma1

, µ2(ma1
)), (ma2

, µ1(ma2
)),

(ma2
, µ2(ma2

)), . . . , (maK
, µ1(maK

)), (maK
, µ2(maK

))).

The cycle ρ connects pairs who spend positive time together in an alternating way: it has

two nodes in each row and each column involved in the cycle. Call such a cycle preference

cycle. Then, the condition of Proposition 3.5 can be rephrased as follows.

Corollary 3.2 (directed cycle condition) Assume x is a fractional matching lying on an

edge generated by the vertices u1 and u2. Let σ denote the unique row cycle transforming

u1 into u2 and let ρ be the preference cycle induced by σ. If x is C-stable, then the following

condition must hold:

(DC) The cycle ρ must be a directed cycle of preferences.

The following example illustrates the directed cycle condition.

Example 3.4 Consider again the setting of Example 3.3. We have seen that the following

fractional matching is weakly stable by construction:
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x
.
=

1

2














1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1














+
1

2














0 0 1 0

1 0 0 0

0 1 0 0

0 0 0 1














=














1/2 0 1/2 0

1/2 1/2 0 0

0 1/2 1/2 0

0 0 0 1














.

The row cycle transforming the first vertex into the second one is given by (132). Since

both vertices are stable and adjacent, x is C-stable.

Figure 3.1 (a) shows the graph representation of the preferences. Arrows point from

the less preferred to the more preferred partners, crossed and gray nodes represent the two

vertices).15 Figure 3.1 (b) shows the preference cycle defined by the row permutation (132).

It is indeed a directed cycle, which is consistent with the statement of Corollary 3.2. �
w1 w2 w3 w4

m1

m2

m3

m4

(a) the two matchings

w1 w2 w3 w4

m1

m2

m3

m4

(b) the preference cycle

Figure 3.1: Preferences and the directed cycle condition in Example 3.4

The following example shows that the directed cycle condition is only necessary, but not

sufficient for C-stability. The additional conditions that are needed for the characterization

will be presented in Section 3.5.3.

Example 3.5 (DC is only necessary) Consider again the setting of Example 3.4, but

assume that m3 ≻w1
m2 and w1 ≻m3

w2 hold. The condition (DC) is still satisfied. However,

15Arrows implied by transitivity are omitted.
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given the new preferences, the gray matching cannot be stable since man m3 and woman w1

would block it. �

3.5.2 Fractional matchings lying on diagonals

Let x be a fractional matching lying on a line segment connecting two non-neighboring

vertices u1 and u2. Since these vertices are not neighboring, other vertices must also belong

to the smallest face containing x. We generalize (DC) by constructing the smallest containing

face F (x) using the cycle factorization Σu1,u2 = σ1 · . . . · σL. In the next lemma, we show

that every subset of these cycles applied to u1 defines a vertex in the face F (x), and every

vertex of this face can be constructed by this method.

Lemma 3.3 (smallest face generated by a diagonal) The following must be true for

the smallest face containing x:

F (x) = conv










∏

λ∈Λ

σλ



 (u1) : Λ ⊆ {1, . . . , L}






Proof. Remember that the smallest containing face is defined by the binding non-negativity

constraints. Since x is a convex combination of u1 and u2, if a non-negativity constraint is

binding for x (a coordinate is zero), the same must hold for both u1 and u2.

The vertices u1 and u2 are not neighboring by assumption. Therefore, the factorization

of Σu1,u2 must involve at least two disjoint cycles. Any cycle σl involved in the factorization

transforms a set of rows of u1 into the same set rows of u2, thereby leaving the binding non-

negativity conditions of x binding. Since σl performs row permutations and there is exactly

one ”1” value in each row and column, the result will satisfy the consistency conditions and

it will lead to a matching. Therefore, applying an arbitrary subset of these disjoint cycles to

u1 must yield a matching in F (x).
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For the other direction, let u be an arbitrary vertex of F (x). The non-negativity condi-

tions that are binding for x must do the same for u. Therefore, each row of u belongs to

one of the following two categories:

1. If there is only one non-zero element in a row of x, then it must be 1, and u must be

identical to both u1 and u2 in this row.

2. If there are exactly two non-zero elements in a row of x, then u1 and u2 must have

their 1 values at different positions in this row. This implies that u must coincide with

either u1 or u2 in this row. Since the cycles in the factorization of Σu1,u2 are mutually

disjoint, there is a unique cycle σl that transforms this row of u1 into the corresponding

row of u2. The preference cycle induced by σl has two nodes in each row and each

column (where it is defined), which determines the two possible configurations of 1

values in these rows for any matching in F (x). Therefore, u must coincide with the

same vertex (either u1 or u2) in all of the rows involved in σl.

Thus, the rows {1, . . . , n} can be partitioned in the following way. There are cycles

{σl1 , . . . , σlK } ⊆ {σ1, . . . , σL} such that

1. ur· = u1
r· = u2

r· for all r /∈
⋃

l σl,

2. ur· = u2
r· 6= u1

r· for all r ∈ ⋃

k σlk ,

3. ur· = u1
r· 6= u2

r· for all r ∈ ⋃

l σl\
⋃

k σlk .

This partitioning immediately implies the relationship u = (σl1 · . . . · σlK )(u1). �

We know that a single cycle represents an edge connecting neighboring vertices. There-

fore, Lemma 3.3 implies that the set of vertices of the smallest face containing a diagonal,

ordered by their relationship to one of the endpoints of the diagonal, is a lattice. Figure
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3.2 illustrates this in the case in which the factorization of the permutation contains three

cycles.

σ1(u1) (σ1σ2)(u
1)

u1 σ2(u1) (σ1σ3)(u
1) u2

σ3(u1) (σ2σ3)(u
1)

Figure 3.2: Smallest face containing a diagonal

For C-stability to be satisfied, all these vertices must be stable. Using the special structure

of F (x) and the condition obtained for neighboring vertices, we can generalize the necessary

condition in the following way.

Proposition 3.6 (DC is still necessary) Assume that the fractional matching x lies on

a line segment connecting two vertices of P ′, say u1 and u2. If x is C-stable, then every

preference cycle in the graph representation that is induced by any of the row cycles in the

factorization of Σu1,u2 must satisfy (DC).

The following example shows that this condition is necessary, but it is still not sufficient.

Example 3.6 (DC is not sufficient) Consider the setting illustrated in Figure 3.3 (a). It

is easy to verify that the matchings defined by the crossed and gray nodes are both stable.

Therefore, the following fractional matching is weakly stable:

y =


















1/2 0 1/2 0 0

0 1/2 0 1/2 0

1/2 0 1/2 0 0

0 1/2 0 1/2 0

0 0 0 0 1


















.
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w1 w2 w3 w4 w5

m1

m2

m3

m4

m5

(a) the two stable matchings

w1 w2 w3 w4 w5

m1

m2

m3

m4

m5

(b) the preference cycles

Figure 3.3: Preferences and the directed cycle condition in Example 3.6

The cycle factorization here is given by (13)(24). It can be seen in Figure 3.3 (b) that

both cycles define a directed preference cycle in the graph. However, the fractional matching

y is not C-stable since it can also be expressed as a convex combination of two unstable

matchings:


















1/2 0 1/2 0 0

0 1/2 0 1/2 0

1/2 0 1/2 0 0

0 1/2 0 1/2 0

0 0 0 0 1


















=
1

2


















0 0 1 0 0

0 1 0 0 0

1 0 0 0 0

0 0 0 1 0

0 0 0 0 1


















+
1

2


















1 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 1 0 0 0

0 0 0 0 1


















.

�
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3.5.3 Fractional matchings lying on edges and diagonals - charac-

terization

What causes C-stability to fail in Examples 3.5 and 3.6? Although the condition (DC)

guarantees stability for pairs involved in the preference cycles, off-cycle pairs might still

be able to block some of the matchings in the smallest containing face. Therefore, for a

preference-based characterization, we also need conditions that rule out blocking for these

off-cycle pairs.

For a given fractional matching x that lies on an edge or a diagonal of the matching

polytope P ′, let {ρ1, . . . , ρL} denote the set of preference cycles and isolated nodes defined by

the pairs matched at x. For each ρi, letMρi
and Wρi

be the sets of men and women involved

in ρi, respectively. In Example 3.5, we see a failure of stability within a group Mρi
× Nρi

and Example 3.6 illustrates a case in which stability between two groups Mρi
× Nρi

and

Mρj
× Nρj

is violated. We consider these cases separately since they will lead to different

stability conditions.

External stability First, consider the case in which m ∈ Mρi
and w ∈ Wρj

for some

i 6= j. For an illustration, see Figure 3.4. Denote the set of partners of m and w at fractional

matching x by W (m) and M(w):

• W (m)
.
= {w′ ∈ W : xmw′ > 0},

• M(w)
.
= {m′ ∈ M : xm′w > 0}.

Since x lies on an edge or a diagonal, there can be at most two non-zero elements in

every row and column. This also means that W (m) and M(w) cannot have more than two



119

elements. Let w−(m) and w+(m) denote m’s worst and best partner at matching x.16 The

partners m−(w) and m+(w) of a woman w are similarly defined.

It is easy to see that the pair (m,w) violates C-stability if and only if m is better than

w’s worst partner and w is better than m’s worst partner: m ≻w m−(w) and w ≻m w−(m).

In this case, there must be a matching in F (x) where both m and w get their worst partners

at x, which creates an incentive for them to block. This argument leads us to the following

condition:

(ES) A pair (m,w) ∈ Mρi
×Wρj

where i 6= j satisfies external stability if either m ≺w m−(w)

or w ≺m w−(m).

w+ w− · · · w

m · · ·

· · ·

· · ·

...
...

...
...

. . .
...

...

m− · · ·

m+ · · ·
Figure 3.4: External stability

Internal stability Now take a pair (m,w) from the same group Mρi
× Wρi

. We have to

distinguish between two cases here:

1. Man m and woman w spend positive time together at x: xmw > 0, i.e., (m,w) is

contained in ρi. (Illustrated in Figure 3.5 (a).) In this case (DC) is also sufficient. If ρi

16If m has only one partner at x, w−(m) = w+(m).
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w− w

m

m+

(a) on-cycle pairs

w− w+ w

m

m−

m+

(b) off-cycle pairs

Figure 3.5: Internal stability

is an isolated node, manm and woman w already spend the entire time together; hence,

they cannot block. If ρi is not an isolated node and preferences form a directed cycle,

then either m or w already has his or her best partner, m = m+(w) or w = w+(m)

holds.

2. Man m and woman w do not spend positive time together at x: xmw = 0, i.e., (m,w)

is not contained in ρi. (Illustrated in Figure 3.5 (b).) In this case, ρi cannot be an

isolated node, and both M(w) and W (m) must contain two elements. We know from

(DC) that the men involved in ρi compare the two sets of possible partners the same

way and women have opposite preferences. This means that either m gets w+(m) and

w gets m−(w), or m gets w−(m) and w gets m+(w). They might block if m ≻w m−(w)

and w ≻m w−(m), but blocking happens if and only if m ≻w m+(w) or w ≻m w+(m).

This leads to our next condition:

(IS) A pair (m,w) ∈ Mρi
×Wρi

such that xmw = 0 satisfies internal stability if

[m ≻w m−(w) and w ≻m w−(m)] implies [m ≺w m+(w) and w ≺m w+(m)].
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Since we have derived stability conditions for each possible pair (m,w), we have proven

the following characterization result for fractional matchings lying on diagonals.

Theorem 3.2 (characterization using preferences) Let x be a fractional matching that

lies either on an edge or a diagonal of P ′. Let {ρ1, . . . , ρL} be the set of preference cycles and

isolated nodes defined by the pairs matched at x, and Mρi
and Wρi

be the sets of men and

women involved in ρi, for each i. Then x is C-stable if and only if the following conditions

are satisfied:

1. For each i, if ρi is a cycle, then it satisfies condition (DC);17

2. For each i, the pairs in (Mρi
×Wρi

) \ρi satisfy condition (IS);

3. For each i 6= j, the pairs in Mρi
×Wρj

satisfy condition (ES).

3.5.4 Relationship to strong stability

We can immediately extend Theorem 3.2 to fractional matchings at which each agent spends

positive time with at most two partners. Although these fractional matchings do not neces-

sarily lie on an edge or a diagonal of P ′,18 it is easy to see that the special structure lets us

identify unique preference cycles and isolated nodes defined by the positive coordinates with

the same properties as before. We know that a fractional matching is C-stable if and only if

every vertex of the smallest containing face is stable. Since the vertices can be reconstructed

17We can treat isolated nodes as cycles with zero edges. In this case, they trivially satisfy condition (DC).
18For example, the following fractional matching has at most two positive numbers in every row and

column but cannot be expressed as a convex combination of two matchings:

x =







1/2 1/2 0 0
1/2 1/2 0 0
0 0 1/3 2/3
0 0 2/3 1/3







.
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using these cycles, Theorem 3.2 holds for all such fractional matchings as well. This obser-

vation can be used to discuss the difference between C-stability and strong stability since in

a strongly stable matching everyone can have at most two partners.

Remember that in a strongly stable matching, at least one member of each pair (m,w)

cannot spend time with someone less preferred than the other. If we compare this to Theorem

3.2, we can see that this is exactly what conditions (ES) and (DC) require. However, the

condition (IS) is weaker. Pairs who belong to the same group Mρi
× Wρi

can both spend

positive time with someone less desired than the other if the cycle ρi does not let this happen

simultaneously. This shows that weakening strong stability extends the set of stable matching

even among matchings in which no one spends time with more than two partners.

The difference between the two stability concepts is more significant for matchings in

which someone is paired with more than two partners over time. As we have seen, no such

fractional matching can be strongly stable, but C-stability can still be satisfied. In the next

subsection, we will take the results of Theorem 3.2 one step further to characterize C-stability

in the general case.

3.5.5 Generalization

We can use the results we have derived so far to characterize general C-stable matchings.

First, notice that based on a given fractional matching, the whole market (M,W ) can be

decomposed into a collection of submarkets such that people from different submarkets do not

spend any time together, and this decomposition is the finest possible.19 Moreover, every

submarket must contain the same number of men and women since the total time spent

19The following algorithm can find this decomposition (Mk, Wk)k. Take the first available man, m1. Find
all his partners, W (m1), then all the partners of the women in W (m1), M(W (m1)), and so on. Continue
this until the sets stop changing between iterations. The result will be the first submarket (M1 × W1). Then
keep repeating the process with the remaining agents until there is someone left. It is straightforward to
verify that this algorithm will lead to the collection of submarkets with the desired properties.
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with the other side of the submarket must add up to the same length for the two groups.

Given such a decomposition, a fractional matching x defined for the whole market defines

a fractional matching for each submarket. Therefore, we can use Theorem 3.2 to exlude

blocking pairs whose members belong to the same submarket and the external stability

condition to exclude blocking pairs whose members are from different submarkets.

Theorem 3.3 (General characterization) Given a fractional matching x, let (Mk,Wk)K
k=1

be the decomposition of the original market into submarkets as described above. Then x is

C-stable if and only if the following holds.

1. Condition (ES) holds for every pair (m,w) ∈ Mk ×Wk′ , for every k 6= k′.

2. For any submarketMk ×Wk and for any set of preference cycles and nodes {ρ1, . . . , ρL}

defined on Mk ×Wk such that:

(a) x assigns positive time to every node in the ρi’s,

(b) the ρi’s induce a partition of men and women in Mk ×Wk,

the conditions of Theorem 3.2 must be true.

Proof. Note that the decomposition of the market also implies that every matching in F (x)

can be decomposed in a similar way. For every matching y ∈ F (x),

• the submatrix of y that corresponds to Mk ×Wk defines a matching in Mk ×Wk;

• the submatrix of y that corresponds to Mk ×Wk′ contains only 0 elements.

Therefore, a matching in F (x) is stable if and only if its restriction to any submarket

Mk × Wk is a stable matching, and no pair in Mk × Wk′ , where k 6= k′ has an incentive to

block it.
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1. Take a pair (m,w) ∈ Mk × Wk′ . Since the two agents belong to different submarkets,

there must be a matching in F (x) at which both of them are matched to their least

preferred partners at x. If the pair (m,w) blocks some matching in F (x), then they

will definitely block the ones at which they are both matched to their least preferred

partners at x. Therefore, this pair cannot block any matching in F (x) if and only if

condition (ES) is satisfied.

2. Consider the submarket Mk ×Wk. Let ρ1, . . . , ρL have the above described properties.

We will construct all of the matchings that are defined in this submarket by these

preference cycles and isolated nodes. Remember that we can assign the 1-elements in

two ways for each preference cycle, and we have only one (trivial) option to do that

for the degenerate cycles. No matter how we assign the 1 elements in each preference

cycle, property (b) implies that there will be exactly one 1-element in each row and

column of the block in the the matrix. Therefore, this process will lead to a matching

in the submarket Mk × Wk. On the other hand, property (a) guarantees that all the

inequalities that are binding for x forMk×Wk remain binding, and the preference cycles

will correspond to some edges connecting vertices in the matching polytope defined

by market Mk × Wk. We can apply the former necessary and sufficient conditions.

Moreover, repeating the same steps for every such set of preference cycles will produce

all the matchings in Mk ×Wk that are consistent with matchings in F (x). �

If x is a matching, only isolated points have positive weights. Therefore, only the exter-

nal stability condition is required which coincides with the usual stability condition in this

case. This demonstrates how C-stability generalizes the original stability concept from single

matchings to entire faces of the polytope P ′.
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3.6 Conclusions

This chapter has presented an alternative stability concept for fractional matchings in mar-

riage markets with time dimension. The new definition, C-stability, is less restrictive than

strong stability proposed by Roth et al. (1993). C-stability is by definition equivalent to the

non-existence of unstable implementing time schedules. We have characterized C-stability

both geometrically and in terms of the underlying preferences.

We have shown that a fractional matching x is C-stable if and only if the smallest face of

the matching polytope that contains it, F (x), has only stable vertices. Moreover, the set of

C-stable matchings is the union of the faces shared by the stable matching and the matching

polytopes.

Using these geometric results, we have obtained conditions on the underlying preferences

that are necessary and sufficient for C-stability. The general theorem characterizes C-stability

of a fractional matching x using faces generated by line segments in F (x). Pairs that are

matched at some of the vertices of this generated face define cycles and isolated nodes in

the preference graph such that they partition the sets of men and women. We have derived

conditions that must hold for such a construction. First, all such cycles in the preference

graph must be directed. Second, the stability of an off-cycle pair depends on whether or

not the man and woman belong to groups defined by the same cycle. If they do not, only

one of them can have a less preferred partner on the cycle. If they do, stability is less

restrictive. They can both have less preferred partners on the cycle as long as they both

have more preferred partners as well since they cannot be matched with their worst options

simultaneously. This last condition highlights the difference between strong stability and our

concept.



126

We used two assumptions in our model. First, we had an equal number of men and

women, and second, each pair was mutually acceptable. It would be interesting to know how

crucial these assumptions are for our results.

Generalizing the first should be straightforward. It is known that, given the preferences,

the set of matched agents is always the same in every stable matching.20 The agents who

are always single in stable matchings would act as redundant zero rows or columns in our

matrices and would not change our results.

The second assumption should not be crucial either. The polytopes are still integral even

if we allow for unacceptable pairs to exists.21 Therefore, slightly modified versions of the

theorems that take unacceptable pairs into account would most likely still work.

There are many directions for further research. Since the general condition still has com-

binatorial features, checking it could be tiresome when agents have more than two partners

in a fractional matching. It would be useful to know whether the general condition can be

simplified in this case.

Conducting a similar analysis for different types of matching problems (e.g., the roommate

problem) would also be of considerable interest. In such settings, however, other complica-

tions may arise since even the basic results such as the existence of stable matchings or the

integrability of the matching polytope are not guaranteed to hold.

20See e.g., Roth and Sotomayor (1992).
21See Roth et al. (1993).
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Appendix A

Appendix for Chapter 1

A.1 Proof of Proposition 1.3

Proposition 1.2 identifies a finite set of posterior beliefs that can be used to construct the

optimal disclosure policy. Therefore, we can replace the maximization problem (1.1) by the

following linear programming problem:

max
J∑

k=1

λkΠ(e(k);α) +
J∑

k1=1

K∑

k2=J+1

ηk1,k2
Π(b(k1,k2);α) (A.1)

s.t.
J∑

k=1

λke(k) +
J∑

k1=1

K∑

k2=J+1

ηk1,k2
b(k1,k2) = ρ (A.2)

J∑

k=1

λk +
J∑

k1=1

K∑

k2=J+1

ηk1,k2
= 1 (A.3)

λk, ηk1,k2
≧ 0 ∀k, k1, k2

This linear programming problem can be further simplified as follows. First, constraint

(A.3) is redundant since it is the sum of all the linear equations contained in constraint (A.2).
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Second, note that the following equalities hold for every ψk, ψk1
∈ Ψ(1) and ψk2

∈ Ψ(2) :

Π(b(k1,k2);α) = 〈b(k1,k2),v2·〉;

Π(e(k);α) = max{α〈e(k),v1·〉, 〈e(k),v2·〉} = max{αv1k, v2k}.

Therefore, we can simplify the objective function by subtracting from it the constant

〈ρ,v2·〉 =
J∑

k=1

λk〈e(k),v2·〉 +
J∑

k1=1

K∑

k2=J+1

ηk1,k2
〈b(k1,k2),v2·〉.

To ease notation, assume without loss of generality that the states are labeled such that

the seller’s net profit from restricting the output and selling only to type 1, αv1k − v2k, is

positive exactly in the first H ≦ J states.

Using the observations made above, we can rewrite linear programming problem (A.1)

as follows:

max
H∑

k=1

λk(αv1k − v2k) (A.4)

s.t.
H∑

k=1

λke(k) +
J∑

k=H+1

λke(k) +
J∑

k1=1

K∑

k2=J+1

ηk1,k2
b(k1,k2) = ρ (A.5)

λk, ηk1,k2
≧ 0 for every k, k1, k2

Linear programming problem (A.4) shows the importance of the first H states in the

seller’s optimal information design problem in two ways. First, if we fix the conditional

distribution of the first H fully revealing posteriors, the seller has an incentive to assign as

much probability as possible to reaching this set. Second, if we keep the overall probability

assigned to the first H posteriors fixed, the seller is interested in shifting probabilities toward

states with higher net gains.
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If types are ranked in the same way for every state then J = K, and no b(k1,k2) vector is

contained in problem (A.4). The only feasible solution (and hence the only optimal solution)

must be λ∗ = ρ, which trivially satisfies the properties in the statement.

If types are not ranked uniformly, then J < K. In this case, there are J(K − J) vectors

of the form b(k1,k2) in problem (A.4). Assume to the contrary that there exist k, k′ ≦ H such

that the following inequalities hold:

αv1k − v2k > αv1k′ − v2k′ ;

λ∗
k < ρk;

λ∗
k′ > 0.

Consider the k-th linear equation in (A.5). Since λ∗
k < ρk, there must exist l > J such

that η∗
k,l > 0. Now let ε

.
= min{η∗

k,l, ρk − λ∗
k, ρk′ − η∗

k′,l, λ
∗
k′} > 0 and consider the solution

that is identical to (λ∗,η∗) except that the values λ∗
k, λ

∗
k′ , η∗

k,l, and η∗
k′,l are replaced by

λ∗
k + ε, λ∗

k′ − ε, η∗
k,l − ε, and η∗

k′,l + ε, respectively. The k-th and k′-th linear equations

and the non-negativity conditions are still satisfied, and no other equations in (A.5) are

affected. This change, however, increases the value of the objective function by the amount

ε((αv1k − v2k) − (αv1k′ − v2k′)) > 0, contradicting the optimality of (λ∗,η∗).

Therefore, there must exist a threshold T > 0 such that for each k ≦ H,

λ∗
k =







ρk if αv1k − v2k > T ;

0 if αv1k − v2k < T.

The same reasoning applies if there exists a k ≦ H such that λ∗
k < ρk and an l such that

H < l ≦ J and λ∗
l > 0. �
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A.2 Proof of Corollary 1.1

Start out with the prior ρ defined on state space Ψ, and an optimal distribution as described

in Proposition 1.2. Let λ ∈ RJ denote the probabilities assigned to posteriors e(k), where

k = 1, . . . , J, and η ∈ RJ×(K−J) denote the probabilities assigned to posteriors b(k1,k2),

where k1 = 1, . . . , J and k2 = J + 1, . . . , K. We will show that the optimal posteriors and

the prior belief can be equivalently represented in the decomposed state space such that

the assumptions of the corollary hold and the new distribution satisfies the law of total

probability.

First, note that a belief on Ξ × Ω(1) × Ω(2) can be defined by a three-dimensional array

µ ∈ R2×J×(K−J) such that µjkl represents the probability of state (ξj, ω
(1)
k , ω

(2)
J+l) for every

j = 1, 2, k = 1 . . . , J, and l = 1, . . . , K − J . Then the posterior beliefs on Ψ in the optimal

distribution above can be represented in the decomposed state space as follows:

• For every k′ = 1, . . . , J, the fully revealing posterior e(k′) ∈ RK is represented by µ(k′)

such that µ
(k′)
1k′1 = 1 and µ

(k′)
jkl = 0 for each (j, k, l) 6= (1, k′, 1),

• For every k1 = 1, . . . , J and k2 = J + 1, . . . , K, the posterior b(k1,k2) is equivalent

to ν(k1,k2) such that ν
(k1,k2)
1k1k2

= b
(k1,k2)
k1

, ν
(k1,k2)
2k1k2

= b
(k1,k2)
k2

, and ν
(k1,k2)
jkl = 0 for every

(j, k, l) /∈ {(1, k1, k2), (2, k1, k2)} .

Notice that the vertical state variable is fully revealed for both groups of beliefs, while the

horizontal state variable is fully revealed only for the first group. This distribution trivially

satisfies the law of total probability if we define the prior ν as

ν
.
=

J∑

k′=1

λk′µ(k′) +
J∑

k1=1

K∑

k2=J+1

ηk1,k2
ν(k1,k2).
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Since the problems defined in the original and in the decomposed state space are essentially

the same,1 the distribution of posteriors defined over the decomposed state space must be

optimal as well. �

A.3 Proof of Proposition 1.5

Part 1. The proof is essentially identical to that of the first part of Proposition 1.1. Consider

an arbitrary posterior ρ̃. Assume that it is optimal to sell to types θ1, . . . , θj at this posterior.

Since types are ranked uniformly, it follows that by disclosing all the information and setting

the price equal to θj’s valuation, the seller can always sell to at least the same set of types;

and hence, she can obtain at least the same profit in expectation as she did at posterior ρ̃.

Therefore, the optimal profit under full disclosure must be at least the same as the profit

obtained at posterior ρ̃.

Given any distribution of posteriors consistent with the law of total probability, we can

replace each posterior with its decomposition into a distribution of fully disclosing posteriors

without the seller losing expected profit. Therefore, full disclosure must be optimal.

Part 2. Assume without loss of generality that types 1 and 2 are not ranked uniformly

for every state: there are states ψk1
and ψk2

such that v1k1
> v2k1

and v1k2
< v2k2

. Since

expected valuations are linear in the probabilities, there exists a unique γ∗ such that expected

valuations are equalized at the posterior ρ∗ .
= γ∗e(k1)+(1−γ∗)e(k2), i.e., 〈ρ∗,v1·〉 = 〈ρ∗,v2·〉.

We will now show that there is a nonempty, open set of type distributions such that the seller

prefers disclosing no information to disclosing all information at posterior ρ∗. Therefore, if

a fully revealing signal structure is used for any prior ρ ∈ int ∆K−1, then the seller can

1We split up the states in Ψ by the realization of one of the vertical state variables; hence we do not
change the distribution of the valuation profiles.
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always increase her revenue by reallocating some probability from e(k1) and e(k2) to ρ∗ in

the distribution of posteriors.

We can guarantee that the optimal price at ρ∗ is equal to the valuation of types 1 and 2

by assigning sufficiently high probability to these two types. First, the seller does not want

to charge a higher price than 〈ρ∗,v1·〉 = 〈ρ∗,v2·〉 if the following condition holds:

〈ρ∗,v1·〉α
({

θi : 〈ρ∗,vi·〉 ≧ 〈ρ∗,v1·〉
})

> 〈ρ∗,vj·〉α
({

θi : 〈ρ∗,vi·〉 ≧ 〈ρ∗,vj·〉
})

(A.6)

for each θj such that 〈ρ∗,vj·〉 > 〈ρ∗,v1·〉. This condition is definitely satisfied if

〈ρ∗,v1·〉 > 〈ρ∗,vj·〉 (1 − α1 − α2)

is true for every θj such that 〈ρ∗,vj·〉 > 〈ρ∗,v1·〉. This leads to the sufficient condition

α1 + α2 > 1 − 〈ρ,v1·〉
maxθj

〈ρ,vj·〉
∈ [0, 1). (A.7)

Similarly, the seller does not prefer to charge a price lower than 〈ρ∗,v1·〉 = 〈ρ∗,v2·〉

if (A.6) holds for each θj such that 〈ρ∗,vj·〉 < 〈ρ∗,v1·〉. This condition is satisfied if the

inequality

〈ρ∗,v1·〉(α1 + α2) > 〈ρ∗,vj·〉

is true for every θj such that 〈ρ∗,vj·〉 < 〈ρ∗,v1·〉. This leads to the sufficient condition

α1 + α2 >
supθj

{〈ρ,vj·〉 : 〈ρ,vj·〉 < 〈ρ,v1·〉}
〈ρ,v1·〉

∈ [−∞, 1). (A.8)
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Hence, if α1 + α2 is higher than both of the thresholds in conditions (A.7) and (A.8),

the optimal price at ρ∗ coincides with the expected valuation of types 1 and 2. Therefore,

all the surplus of types 1 and 2 is captured by the seller at ρ∗. If the seller replaced this

posterior with its decomposition into a convex combination of posteriors e(k1) and e(k2), she

would definitely lose some expected profit on these two types since they are strictly ranked

in states ψk1
and ψk2

. This loss is bounded from below by the following expression:

L(α1, α2)
.
= γ∗ min{α1(v1k1

− v2k1
), α2v2k1

} + (1 − γ∗) min{α2(v2k2
− v1k2

), α1v1k2
}

= (α1 + α2)



γ∗ min
{

α1

α1 + α2

(v1k1
− v2k1

),
α2

α1 + α2

v2k1

}

+ (1 − γ∗) min
{

α2

α1 + α2

(v2k2
− v1k2

),
α1

α1 + α2

v1k2

}


 > 0.

By revealing all information at ρ∗, the seller might also gain revenue on some other

types that are buying the good at the fully revealing posteriors. However, this gain must be

bounded from above by

G(α1, α2)
.
= (1 − α1 − α2)



γ∗ max
θi

vik1
+ (1 − γ∗) max

θi

vik2



 > 0.

Starting with a pair α1, α2 > 0, which satisfies α1 + α2 < 1 and conditions (A.7) and (A.8),

we can change the probabilities such that the inequality

L(α1, α2) > G(α1, α2) (A.9)

is also satisfied, which guarantees the suboptimality of full disclosure at ρ∗. In order to

achieve this, increase the sum α1 + α2 such that it stays below 1 and the ratio of α1 to α2
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is fixed. As α1 + α2 approaches 1, the lower bound on loss L(α1, α2) strictly increases while

the upper bound on gain G(α1, α2) approaches zero.

The probabilities α1, α2 > 0, obtained in this way satisfy conditions α1 + α2 < 1, (A.7),

(A.8), and (A.9) regardless of the probabilities assigned to the rest of the types. Since these

conditions are strict inequalities, we can find a non-empty open set of type distributions that

guarantee the suboptimality of full disclosure at ρ∗. �
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Appendix B

Appendix for Chapter 2

B.1 Derivation of (2.3) and (2.4)

The derivation of (2.3) follows from the fact that

ˆ 1

0

ˆ θi∧k

0

θi − θ−i dF (θ−i) dF (θi)

=

ˆ 1

k

ˆ k

0

θi − θ−i dF (θ−i) dF (θi) +

ˆ k

0

ˆ θi

0

θi − θ−i dF (θ−i) dF (θi)

=

ˆ 1

k

F (k)(θi − k) +

ˆ k

0

F (θ−i) dθ−i dF (θi) +

ˆ k

0

ˆ θi

0

F (θ−i) dθ−i dF (θi)

= F (k)

ˆ 1

k

1 − F (θ)dθ + (1 − F (k))

ˆ k

0

F (θ) dθ + F (k)

ˆ k

0

F (θ) dθ −
ˆ k

0

F (θ)2 dθ

= F (k)

ˆ 1

k

1 − F (θ)dθ +

ˆ k

0

F (θ) (1 − F (θ)) dθ,

where the second and third equalities follows from integration by parts.
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Next, it can easily be verified that under the mechanism Γ∗,

Ui(θ
∗
i (ri; k); ri, k) =

ˆ θ∗
i

(ri;k)

0

θ∗
i (ri; k) − θ−i dF (θ−i) − ri(θ

∗
i (ri; k) − k)

= θ∗
i (ri; k)F (θ∗

i (ri; k)) −
ˆ θ∗

i
(ri;k)

0

θ−i dF (θ−i) − ri(θ
∗
i (ri; k) − k)

= θ∗
i (ri; k)F (θ∗

i (ri; k)) − θ∗
i (ri; k)F (θ∗

i (ri; k))

+

ˆ θ∗
i

(ri;k)

0

F (θ−i) dθ−i − ri(θ
∗
i (ri; k) − k)

=

ˆ θ∗
i

(ri;k)

0

F (θ−i) dθ−i − ri(θ
∗
i (ri; k) − k),

where the third equality follows from integration by parts.

Since L(r1, r2, k) = U1(θ
∗
1(r1, k); r1, k) + U2(θ

∗
2(r2, k); r2, k), (2.4) follows immediately. �

B.2 Proof of Lemma 2.1

We will show that truth telling is an ex-post equilibrium in the direct revelation game defined

by the efficient allocation rule (2.1) and the payment rules (2.2), and that the equilibrium

payoffs in this game are always non-negative. Consequently, the interim conditions (IC) and

(IR) are also satisfied and truth-telling constitutes a Bayes Nash Equilibrium in the direct

revelation game defined at the interim stage by the same allocation and payment rules.

To show that truth-telling is an ex-post equilibrium, we need to prove that it is always

optimal for player i to report her type truthfully, knowing −i’s report and the fact that −i

follows the same strategy. Let θi and θ−i denote the true types and θ′
i and θ′

−i the types

reported by the players. The ex-post net utility values of player i conditional on the reports

θ′
i and θ

′
−i = θ−i, defined by ui(θ; q

∗(θ′
1, θ

′
2))+t∗i (θ

′
1, θ

′
2)−ri(θ1 +θ2 −k), are displayed in Table

B.1. Comparing the net payoff terms given −i’s reported true type, it is straightforward to
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verify that truth-telling is always optimal for player i, and her ex-post net utility from this

strategy is always non-negative. �

θ′
−i θ′

i net utility of θi

θ′
−i = θ−i ≧ k

θ′
i ≧ k 0
θ′

i < k ri(k − θi)

θ′
−i = θ−i < k

θ′
i ≧ θ−i r−i(θi − θ−i) + ri(k − θ−i)
θ′

i < θ−i ri(k − θi)

Table B.1: Net utility of type θi conditional on reports θ′
i and θ

′
−i = θ−i

B.3 Proof of Lemma 2.2

The result in Lemma 2.2 follows from arguments similar to those in Williams (1999) and

Fieseler et al. (2003). In particular, revenue equivalence implies that any two efficient and

IC mechanisms induce the same interim expected transfer, up to a constant. For any dispute

(r1, F, k), therefore, an efficient, IR, IC and BB mechanism exists if and only if for any

efficient IC mechanism Γ it holds that

UΓ
1 (θ∗Γ

1 (r1, k); r1, k) + UΓ
2 (θ∗Γ

2 (r2, k); r2, k) ≧ Eθ(t
Γ
1 (θ1, θ2) + tΓ2 (θ1, θ2)),

where θ∗Γ
i , UΓ

i , t
Γ
i denote i’s worst-off type, net expected utility and payments under Γ.

From Lemma 2.1, Γ∗ is efficient and IC, which yields the necessary and sufficient condi-

tion L(r1, r2, k) ≧ S(k).
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Finally, to see that θ∗
i (ri, k) = F−1(ri) ∧ k, first note that

UΓ
i (θi; ri, k) =







ˆ θi

0

θi − θ−i dF (θ−i) − ri(θi − k) if θi < k,
ˆ k

0

θi − θ−i dF (θ−i) − F (k)ri(θi − k) if θi > k.

Therefore,

∂UΓ
i (θi; ri, k)

∂θi

=







F (θi) − ri if θi < k,

(1 − ri)F (k) if θi > k,

and
∂2UΓ

i (θi; ri, k)

∂θ2
i

=







f(θi) if θi < k,

0 if θi > k.

Note that UΓ
i is strictly convex on [0, k], strictly decreasing at θi = 0, and linear and strictly

increasing on [k, 1]. Therefore, using the first-order condition, it has a unique minimum at

either F−1(ri) or k. �

B.4 Proof of Corollary 2.1

Part 1. First, using expression (2.3), the expected subsidy can be bounded from below as

follows:

S(k) = F (k)

(

1 − k −
ˆ 1

k

F (θ) dθ

)

+

ˆ k

0

F (θ) dθ −
ˆ k

0

F 2(θ) dθ

≧ F (k)

(

1 − k −
ˆ 1

k

F (θ) dθ

)

+

ˆ k

0

F (θ) dθ − F (k)

ˆ k

0

F (θ) dθ

= F (k)

(

1 −
ˆ 1

0

F (θ) dθ − k +

ˆ k

0

F (θ)

F (k)
dθ

)

= F (k)

(
ˆ 1

0

1 − F (θ) dθ −
ˆ k

0

1 − F (θ)

F (k)
dθ

)

= F (k) (Eθ − E(θ|θ < k)) . (B.1)
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Second, we can show that the lump-sum fee is maximized by the equal-share partnership.

Using expression (2.4) and denoting the worst-off types in the equal-share partnership by

θ∗(1/2, k)
.
= θ∗

1(1/2, k) = θ∗
2(1/2, k),

L
(

1

2
,
1

2
, k
)

− L(r1, r2, k) = k −
ˆ θ∗(1/2,k)

0

1/2 − F (θ2) dθ2 −
ˆ θ∗(1/2,k)

0

1/2 − F (θ1) dθ1

− k +

ˆ θ∗
1

(r1,k)

0

r1 − F (θ2) dθ2 +

ˆ θ∗
2

(r2,k)

0

r2 − F (θ1) dθ1

= −
ˆ θ∗(1/2,k)

0

r1 − F (θ2) dθ2 −
ˆ θ∗(1/2,k)

0

r2 − F (θ1) dθ1

+

ˆ θ∗
1

(r1,k)

0

r1 − F (θ2) dθ2 +

ˆ θ∗
2

(r2,k)

0

r2 − F (θ1) dθ1

=

ˆ θ∗
1

(r1,k)

θ∗(1/2,k)

r1 − F (θ2) dθ2 −
ˆ θ∗(1/2,k)

θ∗
2

(r2,k)

r2 − F (θ1) dθ1 ≧ 0,

In the second equality, we added r1 − 1/2 to the first integrand and subtracted r1 − 1/2

from the second integrand. To show the last inequality, assume withouth loss of generality

that r1 ≧ 1/2 ≧ r2. If θ∗
2(r2, k) = k holds, then θ∗

1(r1, k) = θ∗(1/2, k) = k, and both

integrals are 0. If θ∗
2(r2, k) = F−1(r2) < k, the last inequality follows from r1 ≧ F (θ) for

θ ≦ θ∗
1(r1, k) ≦ F−1(r1), and r2 ≦ F (θ) for θ ≧ θ∗

2(r2, k) = F−1(r2).

Using this observation, the lump-sum fee for an arbitrary share allocation can be bounded

from above:
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L(r1, r2, k) ≦ L(1/2, 1/2, k) = k − 2

ˆ k∧Med(θ)

0

1/2 − F (θ) dθ

=







k − 2F (k)

ˆ k

0

1/2

F (k)
− 1 + 1 − F (θ)

F (k)
dθ if k ≦ Med(θ),

k − 2F (Med(θ))

ˆ Med(θ)

0

1 − F (θ)

F (Med(θ))
dθ if k > Med(θ),

=







2F (k)
(

k − E
(

θ|θ < k
))

if k ≦ Med(θ),

k − E(θ|θ < Med(θ)) if k > Med(θ),

≦ 2F (k)
(

k − E
(

θ|θ < k
))

. (B.2)

The last inequality is trivially satisfied (as an equality) in the k ≦ Med(θ) case. For

k > Med(θ), we can use the law of iterated expectations for E
(

θ|θ < k
)

and the partition

[0, k) = [0,Med(θ)) ∪ [Med(θ), k):

2F (k)
(

k − E
(

θ|θ < k
))

−
(

k − E
(

θ|θ < Med(θ)
))

= (2F (k) − 1)k − 2F (k)

(

E
(

θ|θ < k
)

− 1

2F (k)
E
(

θ|θ < Med(θ)
)
)

= (2F (k) − 1)k − 2F (k)

(

1/2

F (k)
E
(

θ|θ < Med(θ)
)

+
F (k) − 1/2

F (k)
E
(

θ|θ ∈ [Med(θ), k)
)

− 1

2F (k)
E
(

θ|θ < Med(θ)
)
)

= (2F (k) − 1)

(

k − E
(

θ|θ ∈ [Med(θ), k)
)
)

> 0.

Using the bounds (B.1) and (B.2) derived for S and L along with Lemma 2.2 establishes

the sufficient condition stated in the corollary.
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Part 2. The expected subsidy is bounded from above by

S(k) = F (k)

ˆ 1

k

1 − F (θ) dθ +

ˆ k

0

F (θ)(1 − F (θ)) dθ ≦ F (k)

ˆ 1

0

1 − F (θ) dθ = F (k)Eθ,

where the last equality follows from integration by parts.

Similarly, for r1 = 1
2
and k ≧ Med(θ),

L
(

1

2
,
1

2
, k
)

= k − Med(θ) + 2

ˆ Med(θ)

0

F (θ) dθ = k − 2

ˆ Med(θ)

0

θf(θ) dθ

= k − E(θ|θ < Med(θ)),

where the second equality again follows from integration by parts.

Therefore, by Lemma 2.2, the condition k ≧ F (k)Eθ + E(θ|θ < Med(θ)) is sufficient for

the possibility of efficiently resolving the dispute. �

B.5 Proof of Proposition 2.1

The derivative of the expected subsidy can be written as

dS(k)

dk
= f(k)

ˆ 1

k

1 − F (θ) dθ = f(k) (1 − F (k))E(θ − k|θ > k), (B.3)

where the second equality follows from integration by parts. For sufficiently small k, it holds

that θ∗
1(r1, k) = θ∗

2(r2, k) = k; hence, from (2.4), ∂L(r1,r2,k)
∂k

= 2F (k). Since f is bounded away

from 0 and F (k) vanishes as k → 0, the budget surplus L(r1, r2, k) − S(k) is decreasing on

(0, k), for some k ∈ (0, 1). Similarly, for k large enough, θ∗
i (ri, k) = F−1(ri), and from (2.4),

∂L(r1,r2,k)
∂k

= 1. Since f is bounded, dS
dk

converges to 0 as k → 1. Since dS
dk

vanishes but ∂L
∂k

does not as k → 1, there exists k ∈ (k, 1) such that the surplus is increasing on (k, 1). �
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B.6 Proof of Part 1 of Proposition 2.2

Assume without loss of generality that r1 ≧ 1/2 ≧ r2. Using formulas (2.3) and (2.4) for the

expected subsidy and the lump-sum payment, it is easy to show that the difference in the

budget surplus under G and F is equal to1

∆(L − S) = (F (k) −G(k))(1 − k) +

ˆ k

0

F (θ) −G(θ) dθ

−
(

F (k)

ˆ 1

k

F (θ) dθ −G(k)

ˆ 1

k

G(θ) dθ

)

−
ˆ k

0

F 2(θ) −G2(θ) dθ

−
ˆ θ∗G

1

θ∗F
1

r1 −G(θ) dθ −
ˆ θ∗G

2

θ∗F
2

r2 −G(θ) dθ

−
ˆ θ∗F

1

0

F (θ) −G(θ) dθ −
ˆ θ∗F

2

0

F (θ) −G(θ) dθ, (B.4)

where θ∗F
i and θ∗G

i denote the worst-off types of partner i under F and G.

Assume G first-order stochastically dominates F . Then θ∗F
i ≦ θ∗G

i , and G(θ) ≦ ri for

all θ ≦ θ∗G
i = k ∧ G−1(ri). Therefore, the first two terms are non-negative while all other

terms are non-positive in this expression. Using F (k) = G(k) and dropping some of the

non-positive terms we get

∆(L − S) ≦
ˆ k

0

F (θ) −G(θ) dθ −
ˆ k

0

F 2(θ) −G2(θ) dθ −
ˆ θ∗G

1

θ∗F
1

r1 −G(θ) dθ

−
ˆ θ∗F

1

0

F (θ) −G(θ) dθ

=

ˆ k

θ∗F
1

F (θ) −G(θ) dθ −
ˆ k

0

F 2(θ) −G2(θ) dθ −
ˆ θ∗G

1

θ∗F
1

r1 −G(θ) dθ. (B.5)

1In this proof, we drop the arguments r1, r2 and k of the functions L, S, θ∗F
i , and θ∗G

i to ease the notation.
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In the last line, the first term is again non-negative while all other two terms are non-positive.

If θ∗F
1 = k, the first term disappears and we get the desired result. In the θ∗F

1 < k case, the

following algebra shows the nonnegativity of the difference in budget surplus:

∆(L − S) ≦
ˆ k

θ∗F
1

F (θ) −G(θ) dθ −
ˆ k

0

F 2(θ) −G2(θ) dθ −
ˆ θ∗G

1

θ∗F
1

r1 −G(θ) dθ

=

ˆ k

θ∗G
1

(F (θ) −G(θ))(1 − (F (θ) +G(θ)))dθ

+

ˆ θ∗G
1

θ∗F
1

F (θ) −G(θ) dθ −
ˆ θ∗G

1

0

F 2(θ) −G2(θ) dθ −
ˆ θ∗G

1

θ∗F
1

r1 −G(θ) dθ

≦
ˆ θ∗G

1

θ∗F
1

F (θ) −G(θ) dθ −
ˆ θ∗G

1

0

F 2(θ) −G2(θ) dθ −
ˆ θ∗G

1

θ∗F
1

r1 −G(θ) dθ

=

ˆ θ∗G
1

θ∗F
1

F (θ)(1 − F (θ)) +G2(θ) − r1 dθ −
ˆ θ∗F

1

0

F 2(θ) −G2(θ) dθ

≦
ˆ θ∗G

1

θ∗F
1

F (θ)(1 − F (θ)) +G2(θ) − r1 dθ

≦
ˆ θ∗G

1

θ∗F
1

F (θ)(1 − F (θ)) − r1(1 − r1) dθ ≦ 0. (B.6)

The first inequality is simply a repetition of the previous formula.

The validity of the second inequality can be seen as follows. If θ∗G
1 = k, the first integral is

zero. If θ∗G
1 < k, then θ∗G

1 = G−1(r1) must hold. Therefore, F (θ) ≧ G(θ) ≧ r1 ≧ 1/2 is true

for every θ1 ≧ θ∗G
1 , guaranteeing the non-positivity of the integrand in the first integral. The

third inequality drops a non-positive term, and the forth inequality follows from the fact that

G(θ) ≦ r1 for θ ≦ θ∗G
1 ≦ G−1(r1). Finally, the last inequality holds since F (θ) ≧ r1 ≧ 1/2

for θ ≧ θ∗F
1 = F−1(r1) and the function x 7→ x(1 − x) being decreasing for x ≧ 1/2 together

guarantee the non-positivity of the integrand.

To show that the decrease in the budget surplus is strict, first notice that the continuity

of the cdf’s and stochastic dominance implies that the set {θ ∈ [0, 1] : F (θ) > G(θ)} must
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be of positive measure. If F and G are different for some θ ∈ [k, 1], then the third term

in (B.4) is negative, and dropping it makes the inequality in (B.5) strict. If F and G are

different for some θ ∈ [0, k], then either θ∗F
1 = k, or θ∗F

1 < θ∗G
1 ≦ k, or θ∗F

1 = θ∗G
1 < k. In

the first case, the right-hand side of the first inequality in (B.6) is already negative since

the first and third terms are 0, and the second term is negative. In the second case, the

last inequality in (B.6) must be strict since the integrand is negative for θ ∈ (θ∗F
1 , θ∗G

1 ], and

this set is of positive measure. Finally, consider the third case. If F and G are different on

[θ∗G
1 , k], then the second inequality in (B.6) is strict since the first integrand on the left-hand

side is negative on a set of positive measure. Otherwise, the reasoning is the same as in the

θ∗F
1 = k case. �

B.7 Proof of Proposition 2.4

To analyze the effect of a small change in the threshold used for partner 1 on the budget

balance, we compute the derivative of the new expected subsidy and the derivative of the

new total lump-sum payment with respect to partner 1’s threshold.

Formally, let S(l1, l2; k) and L(l1, l2; r1, r2, k) denote the expected subsidy and total lump-

sum payment for partnership (r1, F, k) when the thresholds l1 and l2 and the corresponding

modified allocation rule and payment rules are used in the dissolution decision. To derive

(2.14), we need to compute the partial derivatives ∂
∂l1

S(l1, l2; k) and ∂
∂l1

L(l1, l2; r1, r2, k) at

l1 = l2 = k. A slight increase in the threshold used for player 1 weakly improves the budget

balance if and only if the derivative of the lump-sum payment is larger than that of the

expected subsidy.

The new allocation rule and the implementing payment rules, and consequently the new

expected subsidy and the total lump-sum fee functions (and their derivatives) are slightly
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different for the l1 ≧ k and l1 ≦ k cases. Here, we derive these functions only for the l1 ≧ k

case to compute the right derivatives and later argue that the same expression can be derived

for l1 ≦ k.

New allocation and payment rule Assume partner 1’s threshold is raised from k to

some l1 > k. The new allocation rule (illustrated in Figure 2.5 (a)) is defined as follows:

ql1(θ1, θ2) =







0 if θ1 ≧ l1, θ2 ≧ k,

d2 if θ1 < l1, θ2 > θ1,

d1 otherwise.

It is straightforward to check that the following transfer rules (illustrated in Figures 2.5

(b) and 2.5 (c)) implement this allocation rule in ex-post equilibrium:

tl11 (θ1, θ2) =







0 if θ1 ≧ l1, θ2 ≧ k,

r1θ2 + r1(l1 − k) if θ1 < l1, θ2 > l1,

r1θ2 + r1(θ2 − k) + r2(θ2 − l1) if θ1 < θ2, θ2 ∈ (k, l1),

r1θ2 if θ1 < θ2, θ2 < k,

−r2l1 + r1(θ2 − k) if θ1 ∈ (θ2, l1), θ2 ∈ (k, l1),

−r2θ2 if θ1 > θ2, θ2 < k,
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tl12 (θ1, θ2) =







0 if θ1 ≧ l1, θ2 ≧ k,

−r1θ1 if θ1 < l1, θ2 > l1,

−r1θ1 if θ1 < θ2, θ2 ∈ (k, l1),

−r1θ1 if θ1 < θ2, θ2 < k,

r2θ1 if θ1 ∈ (θ2, l1), θ2 ∈ (k, l1),

r2θ1 if θ1 > θ2, θ2 < k.

Expected subsidy The partial derivative of the difference between the expected subsidy

for the l1 > k and the l1 = k cases with respect to l1 is the same as that of the expected

subsidy for l1 > k. It is useful to consider the former expression to simplify the derivation.

The difference in the expected subsidy is

∆S(l1, k; k)
.
= S(l1, k; k) − S(k)

=

ˆ k

0

ˆ 1

l1

r1(l1 − k) dF (θ2) dF (θ1)

+

ˆ k

0

ˆ l1

k

r1(θ2 − k) + r2(θ2 − l1) dF (θ2) dF (θ1)

+

ˆ l1

k

ˆ 1

l1

r1(θ2 − θ1) + r1(l1 − k) dF (θ2) dF (θ1)

+

ˆ l1

k

ˆ l1

θ1

r1(θ2 − θ1) + r1(θ2 − k) + r2(θ2 − l1) dF (θ2) dF (θ1)

+

ˆ l1

k

ˆ θ1

k

r2(θ1 − l1) + r1(θ2 − k) dF (θ2) dF (θ1).
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Using the Leibniz integral rule, we can compute the (right) derivative of this function

with respect to l1 at l1 = k:

∂

∂l1
∆S(l1, k; k)

∣
∣
∣
∣
∣
l1=k

= r1

(

F (k)(1 − F (k)) + f(k)E((θ − k) ∨ 0)
)

. (B.7)

Net expected utility of partner 2 To analyze the change in the total lump-sum pay-

ment, we need to the derive the net expected utility function of both partners when an l1 > k

threshold is used for partner 1 in the dissolution decision. The net expected utility curve of

partner 2 is:2

U2(θ2;r2, l1, k, k) =






ˆ θ2

0

θ2 − r1θ1 dF (θ1) +

ˆ 1

θ2

r2θ1 dF (θ1) −
ˆ 1

0

r2(θ1 + θ2 − k) dF (θ1) if θ2 ≦ k,

ˆ θ2

0

θ2 − r1θ1 dF (θ1) +

ˆ l1

θ2

r2θ1 dF (θ1) −
ˆ l1

0

r2(θ1 + θ2 − k) dF (θ1) if θ2 ∈ [k, l1],

ˆ l1

0

θ2 − r1θ1 dF (θ1) −
ˆ l1

0

r2(θ1 + θ2 − k) dF (θ1) if θ2 ≧ l1.

The partial derivative of this function with respect to θ2:

∂U2

∂θ2

(θ2; r1, r2,l1, k, k) =







F (θ2) − r2 if θ2 < k,

F (θ2) − r2F (l1) if θ2 ∈ (k, l1),

r1F (l1) if θ2 > l1.

The partial derivative is always positive for θ2 > l1, and also for θ2 ∈ (k, l1) as long as l1 is

sufficiently close to k. Moreover, increasing the threshold used for partner 1 does not change

partner 2’s net expected utility curve for θ2 ≦ k. These observations imply that, when l1 is

2The superscript of Ui indicating the efficient allocation is omitted throughout the proof to simplify the
notation.
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sufficiently close to k, partner 2’s worst-off type and the worst-off type’s net expected utility

are the same as in the l1 = k case. In other words, partner 2 is willing to pay the same

amount to participate. As l1 → k, this implies that

dU2

dl1
(θ∗

2(r1, r2; l1, k, k); r1, r2, l1, k, k)
∣
∣
∣
∣
l1=k

= 0. (B.8)

Net expected utility of partner 1 Partner 1’s net expected utility when threshold l1 > k

is used in the dissolution decision:

U1(θ2; r1, r2, l1, k, k) =






ˆ θ1

0

θ1 − r2θ2 dF (θ2) +

ˆ k

θ1

r1θ2 dF (θ2)

+

ˆ l1

k

r1θ2 + r1(θ2 − k) + r2(θ2 − l1) dF (θ2)

+

ˆ 1

l1

r1θ2 + r1(l1 − k) dF (θ2) −
ˆ 1

0

r1(θ1 + θ2 − k) dF (θ2) if θ1 ≦ k,

ˆ k

0

θ1 − r2θ2 dF (θ2) +

ˆ θ1

k

θ1 − r2l1 + r1(θ2 − k) dF (θ2)

+

ˆ l1

θ1

r1θ2 + r1(θ2 − k) + r2(θ2 − l1) dF (θ2)

+

ˆ 1

l1

r1θ2 + r1(l1 − k) dF (θ2) −
ˆ 1

0

r1(θ1 + θ2 − k) dF (θ2) if θ1 ∈ [k, l1],

ˆ k

0

θ1 − r2θ2 dF (θ2) −
ˆ k

0

r1(θ1 + θ2 − k) dF (θ2) if θ1 ≧ l1.

The derivative of the net expected utility with respect to θ1:

∂U1

∂θ1

(θ1; r1, r2,l1, k, k) =







F (θ1) − r1 if θ2 < k,

F (θ1) − r1 if θ2 ∈ (k, l1),

r2F (k) if θ2 > l1.
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Since r2F (k) > 0, the net expected utility will be minimized at some θ2 ≦ l1. If F (k) ≧ r1,

the worst-off type is equal to F−1(r1) and belongs to [0, k]. Since the net expected utility

function is differentiable and the first-order condition is satisfied at this point, we can use the

envelope theorem to compute the derivative of the worst-off type’s net expected utility with

respect to l1. If F (k) < r1 and l1 is close enough to k, the net expected utility function is

decreasing on [0, l1], and therefore the worst-off type is equal to l1. However, the net expected

utility function is not differentiable at this point. Instead of directly applying the envelope

theorem, we can plug in the worst-off type as a function of l1 into the net expected utility

and take the total derivative with respect to the parameter l1. The resulting expression is:

dU1

dl1
(θ∗

1(r1, r2; l1, k, k); r1, r2, l1, k, k) =







r1(1 − F (l1)) − r2(F (l1) − F (k)) if r1 ≦ F (k),

r2F (k) if r1 > F (k).

As l1 → k, this expression becomes

dU1

dl1
(θ∗

1(r1, r2; l1, k, k); r1, r2, l1, k, k)
∣
∣
∣
∣
l1=k

=







r1(1 − F (k)) if r1 ≦ F (k),

r2F (k) if r1 > F (k).

(B.9)

Lump-sum payment Adding up expressions (B.8) and (B.9), we get the derivative of the

total lump-sum fee with respect to l1 at l1 = k:

∂

∂l1
L(l1, k; r1, r2, k)

∣
∣
∣
∣
l1=k

=







r1(1 − F (k)) if r1 ≦ F (k),

r2F (k) if r1 > F (k).

(B.10)

Comparison of the right derivatives A slight increase in l1 from l1 = k increases the

budget surplus if and only if the lump-sum fee increases more than the expected subsidy.
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Comparing (B.7) and (B.10), this translates to the following condition:

r1

(

F (k)(1 − F (k)) + f(k)E((θ − k) ∨ 0)
)

≧







r1(1 − F (k)) if r1 ≦ F (k),

r2F (k) if r1 > F (k).

(B.11)

The same steps can be used to derive the analogous condition for partner 2.

Left derivatives and the second part of the statement Although the allocation rule

and the payment rules are different in the l1 ≦ k case, it is easy to check that this difference

is of second order and consequently disappears from the derivatives as l1 converges to k.

Therefore, condition (B.11) also holds for the left derivatives. The same observation is true

if partner 2’s threshold changes.

The validity of condition (2.14) does not imply immediately that the same condition can

be used to evaluate the effects of simultaneous changes in the two thresholds. This condition

is based on the partial derivatives ∂
∂li

S(l1, l2; k) and ∂
∂li

L(l1, l2; r1, r2, k) at l1 = l2 = k. To

use the same condition for simultaneous changes, we need to show the differentiability of

S(l1, l2; k) and L(l1, l2; r1, r2, k) as multivariate functions of (l1, l2) at (k, k). The continuity

of these partial derivatives in l1 and l2 in a neighborhood of (k, k) guarantees multivariate

differentiability. It is easy to verify that if k 6= F−1(r1), F
−1(r2), continuity is satisfied for

subsets of a small neighborhood in which the order of l1, l2, and k is fixed. Therefore, it

remains only to check the boundaries between these sets. Indeed, we can make the same

observation as above: the difference in the expected subsidy or the lump-sum fee function

between any pair of neighboring regions is of second order, and will disappear as we approach

the boundary separating the two regions. This guarantees the multivariate differentiability

of the two functions and proves the second part of the proposition. �
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B.8 General partnership functions

This section contains the analysis for Section 2.5, which studies general partnership functions.

First note that given the properties of V , the threshold functions are increasing, and

twice differentiable almost everywhere. Furthermore, θi is convex and θi concave whenever

they are not equal to 0, 1 and do not intersect with the 45-degree line.

For each i = 1, 2, denote partner i’s net expected utility by Ui(θi; ri, V ), where

Ui(θi; ri, V ) =

ˆ θ−i(θi)

0

θi − θi(θ−i) − ri

(

V (θ1, θ2) − θi(θ−i)
)

dF−i(θ−i) +

+

ˆ 1

θ−i(θi)

ri (θ−i − V (θ1, θ2)) dF−i(θ−i). (B.12)

Given the mechanism Γ∗ defined by the allocation rule (2.16) and the payment rule (2.17),

denote the expected subsidy the arbitrator must incur by

S(r1, r2, V ) = r1

ˆ 1

0

ˆ 1

θ2(θ1)

θ2 − θ2(θ1) dF2(θ2) dF1(θ1)

+ r2

ˆ 1

0

ˆ θ
2
(θ1)

0

θ1 − θ1(θ2) dF2(θ2) dF1(θ1). (B.13)

Define the worst-off type of each agent i as θ∗
i (ri, V ) ∈ argminθi∈[0,1]Ui(θi; ri, V ), and let

L(r1, r2, V )
.
= U1(θ

∗
1(r1, V ); r1, V ) +U2(θ

∗
2(r2, V ); r2, V ) denote the largest lump-sum fee that

can be charged from the agents without violating their participation constraints (i.e., the

sum of the maximal participation fees the agents are willing to pay).

The following lemma summarizes several useful properties of the net expected utility and

the worst-off type.
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Lemma B.1 Given the mechanism Γ∗, the following properties hold:

1. ∂Ui(θi;ri,V )
∂θi

is non-increasing in ri;

2. For all ri ∈ [0, 1], the function Ui(θi; ri, V ) is convex in θi;

3. For all ri ∈ [0, 1], the function θ∗
i (ri, V ) is non-decreasing in ri;

4. Ui(θ
∗
i (ri, V ); ri, V ) is a concave function of ri.

Proof. Using the Leibniz rule to compute the first derivative of Ui(θi; ri, V ) with respect

to θi, we obtain

∂Ui(θi; ri, V )

∂θi

=

ˆ θ−i(θi)

0

1 − ri
∂V (θ1, θ2)

∂θi

dF−i(θ−i) −
ˆ 1

θ−i(θi)

ri
∂V (θ1, θ2)

∂θi

dF−i(θ−i).

Differentiating with respect to ri, part 1 is immediate. For part 2, computing the second

derivative gives

∂2Ui(θi; ri, V )

∂θ2
i

=

−
ˆ θ−i(θi)

0

ri
∂2V (θ1, θ2)

∂θ2
i

dF−i(θ−i) +

(

1 − ri
∂V (θi, θ−i(θi))

∂θi

)

f−i(θ−i(θi))
dθ−i(θi)

dθi

−
ˆ 1

θ−i(θi)

ri
∂2V (θ1, θ2)

∂θ2
i

dF−i(θ−i) + ri
∂V (θi, θ−i(θi))

∂θi

f−i(θ−i(θi))
dθ−i(θi)

dθi

.

The concavity of V , the assumption that ∂V (θ1,θ2)
∂θi

∈ (0, 1) for all θi and θ−i, and the ob-

servation that dθ−i(θi)
dθi

,
dθ−i(θi)

dθi
≧ 0 for almost every θi guarantee that this expression is non-

negative, proving part 2. Part 3 is now straightforward from parts 1 and 2.
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For part 4, let r1, r
′
1 ∈ [0, 1] and λ ∈ [0, 1]. Using the linearity of the net expected utility

in r and the definition of θ∗,

Ui

(

θ∗
i (λri + (1 − λ)r′

i, V );λri + (1 − λ)r′
i, V

)

= λUi

(

θ∗
i (λri + (1 − λ)r′

i, V ); ri, V
)

+ (1 − λ)Ui

(

θ∗
i (λri + (1 − λ)r′

i, V ); r′
i, V )

)

≧ λUi(θ
∗
i (ri, V ); ri, V ) + (1 − λ)Ui(θ

∗
i (r′

i, V ); r′
i, V ).

�

As in the analysis in Section 2.2, whether or not a dispute can be resolved efficiently

hinges on the relationship between the net expected utility of the worst-off types and the

expected subsidy under Γ∗.

Lemma B.2 The partnership dispute (r1, F1, F2, V ) can be resolved efficiently if and only

if L(r1, r2, V ) ≧ S(r1, r2, V ).

The proof follows the same arguments as the one for Lemma 2.2. It is useful to rearrange

the net expected utility as follows

Ui(θi; ri, V ) = ri

ˆ 1

0

(

max {θi, θ−i, V (θ1, θ2)} − V (θ1, θ2)
)

dF−i(θ−i)

+ r−i

ˆ 1

0

max
{

0, θi − θi(θ−i)
}

dF−i(θ−i)

= riEθ−i
Surp(θ1, θ2;V ) + r−iEθi

Impri(θ1, θ2, V ), (B.14)

where Surp(θ1, θ2;V )
.
= max {θ1, θ2, V (θ1, θ2)} − V (θ1, θ2) is the ex-post surplus from re-

solving the partnership dispute, and Impri(θ1, θ2, V )
.
= max

{

0, θi − θi(θ−i)
}

is equal to the

ex-post improvement generated by partner i’s sole ownership of the asset relative to the
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value of the best alternative (the best effective partnership or −i’s sole ownership), when

this improvement is positive, and 0 otherwise.

We can now study how the severity of a dispute, as defined formally below, affects the

possibility of its efficient resolution.

Definition B.1 We say that the dispute in partnership W is less severe than the dispute in

partnership V if W (θ1, θ2) ≧ V (θ1, θ2) for all θ1, θ2 ∈ [0, 1].

Lemma B.3 Assume that the dispute in partnership W is less severe than the dispute in

partnership V .

1. The region of efficient dissolution for partnership W is a subset of the efficient region

for partnership V . Denoting the analogous thresholds for W by ωi and ωi, it holds

that ωi ≦ θi and θi ≦ ωi, for each i = 1, 2.

2. For all θi and i, the net expected utility is greater under V : Ui(θi; ri, V ) ≧ Ui(θi; ri,W ).

Consequently, the largest lump-sum fee that can be charged is smaller for a less severe

dispute.

3. The expected subsidy is greater under V : S(r1, r2, V ) ≧ S(r1, r2,W ).

Proof. Part 1 is true by the definition of the threshold functions. Part 2 immediately follows

from the first point and equation (B.14), since both integrands are lower for partnership W .

Part 3 is a consequence of equation (B.13); smaller functions are integrated over smaller sets

in the case of partnership W . �

The severity of a dispute affects both the value of the partnership when kept in tact and

the region of dissolution. As the following proposition shows, efficient resolution crucially

depends on the interactions between these two effects.
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Proposition B.1 Assume that the dispute in partnership W is less severe than in partner-

ship V .

1. If the region of efficient dissolution is the same for partnerships V and W (i.e., θ = ω

and θ = ω), then a partnership dispute is less costly to resolve for partnership V .

2. Otherwise, a less severe dispute might be less costly to resolve.

Proof.

Part 1. Note first that the expected subsidy requires information only on the threshold

functions. Since the dissolution thresholds are identical for the two partnerships, the expected

subsidy paid is the same for V and W . The lump-sum fee, however, is weakly larger for the

more severe dispute according to part 2 of Lemma B.3. Therefore, the partnership dispute

under V is less costly to resolve than the partnership dispute under W .

Part 2. Consider the extreme case in which partner 2 owns the partnership completely (i.e.,

r2 = 1). Rewriting equation (B.12) for this case gives:

U1(θ1; 0, V ) =

ˆ θ
2
(θ1)

0

θ1 − θ1(θ2) dF2(θ2),

U2(θ2; 1, V ) =

ˆ θ
1
(θ2)

0

θ2 − V (θ1, θ2) dF1(θ1) +

ˆ 1

θ1(θ2)

θ1 − V (θ1, θ2) dF1(θ1).

Note that θ1 = 0 is definitely a worst-off type of player 1. First, the net expected utility

of player 1 is non-negative by the individual rationality of the implementing mechanism.

Second, by assumption, 0 ≦ θ2(θ1) ≦ θ1; therefore, θ2(0) = 0 must be true. Consequently,

U1(0; 0, V ) = 0; a partner without a share is never willing to pay any positive lump-sum fee

ex ante.
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Fix two value functions (1 > ε > 0):

W (θ1, θ2)
.
= min

{

(1 − ε)θ1 +
ε

2
(1 + θ2),

1 + θ2

2

}

,

V (θ1, θ2)
.
= min

{

(1 − ε)θ1 +
ε

2
(1 + θ2),

1 + θ2

2

}

− ε

4
(1 − θ2).

First, note that both V and W fit our framework: they are both piecewise linear, concave

functions, increasing in both types. By definition, the dispute in W less severe than in V for

any ε > 0. For a given type θ2, the threshold values are

ω1(θ2) = max

{

1 − ε/2

1 − ε
θ2 − ε/2

1 − ε
, 0

}

,

θ1(θ2) = max

{

1 − 3ε/4

1 − ε
θ2 − ε/4

1 − ε
, 0

}

,

ω1(θ2) =
1 + θ2

2
,

θ1(θ2) =
1 + 3θ2

4
.

The threshold functions are illustrated in Figure B.1. The two shaded regions represent

the two different linear segments in the definitions of the functions V and W .
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θ1(θ2)

ω1(θ2)
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1
(θ2)

ω
1
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ε
4−3ε

ε
2−ε

Figure B.1: Threshold functions used in the proof of Proposition B.1

Compute the difference in net expected utility for partner 2 under V and W :

U2(θ2;1, V ) − U2(θ2; 1,W )

=

ˆ ω
1
(θ2)

0

W (θ1, θ2) − V (θ1, θ2) dF1(θ1) +

θ
1
(θ2)
ˆ

ω
1
(θ2)

θ2 − V (θ1, θ2) dF1(θ1)

+

ˆ ω1(θ2)

θ1(θ2)

θ1 − V (θ1, θ2) dF1(θ1) +

ˆ 1

ω1(θ2)

W (θ1, θ2) − V (θ1, θ2) dF1(θ1)

=

ˆ ω
1
(θ2)

0

ε

4
(1 − θ2)

︸ ︷︷ ︸

≦ ε
4

dF1(θ1) +

ˆ θ
1
(θ2)

ω
1
(θ2)

−ε

4
− (1 − ε)θ1 +

(

1 − 3ε

4

)

θ2

︸ ︷︷ ︸

≦ ε
4

(1−θ2)≦ ε
4
, using θ1 ≧ ω

1
(θ2)

dF1(θ1)

+

ˆ ω1(θ2)

θ1(θ2)

−ε

4
+ εθ1 − 3ε

4
θ2

︸ ︷︷ ︸

≦ ε
4

(1−θ2)≦ ε
4
, using θ1 ≦ ω1(θ2)

dF1(θ1) +

ˆ 1

ω1(θ2)

ε

4
(1 − θ2)

︸ ︷︷ ︸

≦ ε
4

dF1(θ1)

≦ ε

4

(
ˆ θ

1
(θ2)

0

1 dF1(θ1) +

ˆ 1

θ1(θ2)

1 dF1(θ1)

)

≦ ε

4
.
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Hence, the difference in the net expected utility for all types of partner 2 can be made

arbitrarily small by picking a small enough ε. Therefore, the change in the lump-sum fee

partner 2 is willing to make can never be more than ε/4 either.

The difference in the expected subsidy can be computed using equation (B.13):

S(r1, r2, V ) − S(r1, r2,W ) =

ˆ 1

0

ˆ θ
2
(θ1)

0

θ1 − θ1(θ2) dF2(θ2) dF1(θ1)

−
ˆ 1

0

ˆ ω
2
(θ1)

0

θ1 − ω1(θ2) dF2(θ2) dF1(θ1).

First, note that this formula involves only threshold functions that are below the diagonal

in Figure 2.2. Therefore, this value does not depend on ε. Moreover, this difference is positive

since ω1(θ2) > θ1(θ2) for all θ2 > 0 and θ2(θ1) ≧ ω2(θ1), and we also assume that both density

functions are positive. Thus, there is a small enough ε such that the difference in the lump-

sum fee collected is smaller than the difference in the expected subsidy paid. For such ε, a

more severe partnership dispute is more costly to resolve. �

Finally, the next result generalizes the findings of Proposition 2.1 by showing that part-

nership disputes that are not sufficiently severe cannot be resolved efficiently.

Proposition B.2 Fix a pair of threshold functions θ1 and θ2 that are not always equal to

0,

and a pair of type distributions F1 and F2. There exists a number K > 0 such that for every

ownership structure (r1, r2), and for every partnership function V satisfying

(i) the dissolution thresholds under V coincide with θ1 and θ2, and

(ii) the net ex-post surplus from efficiently resolving the partnership dispute is no greater

than K,

the partnership dispute (r1, F1, F2, V ) cannot be resolved efficiently.
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Proof. Using equation (B.14) derived for the net expected utility, the largest ex-ante fee

that partner 1 is willing to pay for participation can be bounded from above as follows:

min
θ1

U1(θ1; r1, V ) = min
θ1

(

r1Eθ2
Surp(θ1, θ2;V ) + r2Eθ2

Impr1(θ1, θ2, V )
)

≦ r1 max
θ1,θ2

Surp(θ1, θ2;V ) + r2 min
θ1

Eθ2
Impr1(θ1, θ2, V ).

Similarly,

min
θ2

U2(θ2; r2, V ) ≦ r2 max
θ1,θ2

Surp(θ1, θ2;V ) + r1 min
θ2

Eθ1
Impr2(θ1, θ2, V ).

Therefore, the upper bound for the lump-sum fee is

L(r1, r2, V )
.
= min

θ1

U1(θ1; r1, V ) + min
θ2

U2(θ2; r2, V )

≦ max
θ1,θ2

Surp(θ1, θ2;V ) + r2 min
θ1

Eθ2
Impr1(θ1, θ2, V ) + r1 min

θ2

Eθ1
Impr2(θ1, θ2, V ).

The expected subsidy can also be rewritten using the above defined Impr1 and Impr2

functions:

S(r1, r2, V ) = r2

ˆ 1

0

ˆ θ
2
(θ1)

0

θ1 − θ1(θ2) dF2(θ2) dF1(θ1)

+ r1

ˆ 1

0

ˆ θ
1
(θ2)

0

θ2 − θ2(θ1) dF1(θ1) dF2(θ2)

= r2Eθ1
Eθ2

Impr1(θ1, θ2, V ) + r1Eθ2
Eθ1

Impr2(θ1, θ2, V ).
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Define the values

δ1
.
= Eθ1

Eθ2
Impr1(θ1, θ2, V ) − min

θ1

Eθ2
Impr1(θ1, θ2, V );

δ2
.
= Eθ2

Eθ1
Impr2(θ1, θ2, V ) − min

θ2

Eθ1
Impr2(θ1, θ2, V );

δ
.
= δ1 ∧ δ2.

Since f1, f2 > 0, and θ1 and θ2 are not equal to the constant 0 function, the functions

θ1 7→ Eθ2
Impr1(θ1, θ2) and θ2 7→ Eθ1

Impr2(θ1, θ2) are strictly increasing. Hence, δ1, δ2, δ > 0,

and the budget surplus can be bounded from above as follows:

L(r1, r2, V ) − S(r1, r2, V ) ≦ max
θ1,θ2

Surp(θ1, θ2;V )

+ r2 min
θ1

Eθ2
Impr1(θ1, θ2, V ) + r1 min

θ2

Eθ1
Impr2(θ1, θ2, V )

− r2Eθ1
Eθ2

Impr1(θ1, θ2, V ) − r1Eθ2
Eθ1

Impr2(θ1, θ2, V )

= max
θ1,θ2

Surp(θ1, θ2;V ) − r2δ1 − r1δ2 ≦ max
θ1,θ2

Surp(θ1, θ2;V ) − δ.

Note that the functions Impr1 and Impr2 depend only on the threshold functions θ1 and θ2,

but not on other properties of V . Therefore, the same holds for the number δ > 0. Hence

by choosing K
.
= δ/2, for every ownership structure (r1, r2), and for every partnership value

function V such that (i) the dissolution thresholds under V coincide with θ1 and θ2, and

(ii) maxθ1,θ2
Surp(θ1, θ2;V ) ≦ K, the partnership dispute (r1, F1, F2, V ) cannot be resolved

efficiently. �
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Appendix C

Appendix for Chapter 3

C.1 Proof of Lemma 3.2

Denote the vertices of F (x) by u1, . . . ,uK. The result is trivial if K = 1 (i.e., x is a vertex).

Assume that K > 1. First, we show that for all h = 1, . . . , K, there exists a convex

combination x =
∑K

k=1 α
h
kuk where αh

h > 0. First, x cannot lie on the relative boundary of

F (x) (in that case x would belong to a lower dimensional face). Since x is in the relative

interior, there must be a vector z ∈ F (x) such that x is in the relative interior of the line

segment connecting uh and z:1

x = β1u
h + β2z, such that β1, β2 > 0, and β1 + β2 = 1.

Moreover, since z ∈ F (x), the vector z can be expressed as a convex combination of the

vertices of F (x):

z =
K∑

k=1

γkuk, such that γk ≧ 0 for every k, and
K∑

k=1

γk = 1.

1I.e., there exists λ > 0 small enough such that z
.
= uh + (1 + λ)(x − uh) ∈ F (x).
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The last two expressions imply that

x = (β1 + β2γh)
︸ ︷︷ ︸

αh
h

>0

uh +
∑

k 6=h

β2γk
︸ ︷︷ ︸

αh
k

uk

is a convex combination with the desired property.

Now, take the following convex combination of such convex combinations for every

h = 1, . . . , K:

x =
K∑

h=1

1

K

K∑

k=1

αh
kuh =

K∑

k=1

K∑

h=1

1

K
αh

kuh =
K∑

k=1

∑K
h=1 α

h
k

K
uh.

This is a convex combination of all of the vertices of F (x) such that all of the coefficients

are positive since αh
h > 0 for each h. �
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