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Abstract 

As technology scales down, challenges in fabrication, thermal stress, and in-field degradation 

have put the reliability of processors at risk. Among different fault types, transient faults 

manifest themselves frequently due to high chip density, aggressive voltage scaling, and high 

clock frequency. Some dependable processor architectures have been proposed to counter these 

faults, by integrating various online solutions for error detection and recovery. Recently 

proposed techniques, including perturbation-based fault screening and ternary content-

addressable memory anomaly detection, exploit locality in memory addresses and values for 

transient fault detection. Their fault coverage comes at a high energy cost and numerous false 

positives. 

This dissertation addresses the fault detector’s efficiency problem. We exploit the locality in 

memory strides, instead of references, to reduce the amount of data needed for fault detection. 

We propose using Bloom filters to store the hashed form of memory patterns, instead of their 

original form in TCAM to reduce the hardware and energy cost. We also explore program phase-

level locality and propose a framework to customize the fault detectors for the current phase. 

Additionally, we present the detector design for both the processor backend and the frontend to 

achieve high fault coverage (80%) at a low false positive rate (<1%). This greatly improves the 

resilience of the processor to soft-errors while limiting the energy and performance overheads. 
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Chapter 1  Introduction 

 

Modern processors have become more susceptible to transient faults as technology scales down. 

Transient faults arise mostly from cosmic rays and alpha particles from the packaging [37], 

where enough charges are collected to invert the state of a logical device. It is widely known for 

its significant impact on DRAM reliability [38]. While RAM structures are generally covered by 

parity and error-correcting code (ECC), the processor core is at risk and needs extra measures for 

fault protection.  

Like discussed in existing works [16, 17, 69], transient faults materialize as single bit flips. 

Within the processor core, a bit flip in stale data or code is masked, and no error is introduced to 

program execution. Others can manifest themselves prominently by causing program crashes. 

The remaining faults flip a bit in active data or code and render incorrect program execution path 

and possibly corrupted computational results without ever being detected. These faults are called 

silent data corruptions (SDC) and are the focus of this dissertation. 

SDCs can be detected and corrected by extreme redundancy like TMR [69]. Recent works on 

SDC detection, including Perturbation-Based Fault Screening (PBFS) [16] and FaultHound [17], 

aim to reduce the fault detection and recovery cost by studying program locality. PBFS checks 

memory data value ranges, data bit invariants, and matching of recent data values, and considers 

a violation to these locality measures a fault. While PBFS can achieve high fault coverage, the 
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performance cost can be extremely high (e.g. 100%). FaultHound maintains a ternary content 

addressable memory (TCAM) to store dynamic data bit invariance and checks for anomalies by 

searching the TCAM. It also reduced recovery time through a modified replay mechanism. 

While FaultHound reduced performance cost compared with PBFS, the TCAM implementation 

is still expensive, and poses a tough trade-off between fault coverage and energy overhead. 

This dissertation is an effort to explore program locality at new dimensions and design a fault 

detection mechanism that increases fault coverage and efficiency. The main contributions of this 

work include: 

 We use memory stride instead of address when checking for locality. PBFS and 

FaultHound both checks bit-level invariance of references. While references change 

frequently and the number of unique references can be too large to handle, we observe 

that strides can maintain a more stable pattern. Furthermore, we identify the main reason 

why a stride stream loses its pattern, which is that some static instructions, when put in 

the same stream, disrupts each other’s patterns. We present an instruction partitioning 

mechanism to divide the static instructions into separate partitions. The partial-global 

stride stream from each partition will have better patterns than the global stream, and the 

partitioned design requires much smaller storage. The strides, when combined with 

memory values, are used to represent the program locality. 

 We propose using Bloom filters to store and search for data patterns, instead of TCAM. 

Given its constant search time, TCAM has been widely used in switches and routers for 

route lookup and packet classification [39, 40], and in search engines for clustering [41]. 

FaultHound uses TCAM for data clustering. However, TCAM incurs high energy 
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overhead due to its complex implementation. We achieve data clustering using the 

instruction partitioning. When storing the stride and value patterns, we use Bloom filters 

with a parallel Bloom filter implementation [25] which achieves both low energy 

overhead and fast membership testing and insertion. 

 We explore the locality at program phase level to customize the detector for the current 

phase. Program phases have been studied for multi-configurational hardware [7], and it 

has been proved that a program execution goes through a series of phases, while some 

phases repeat a previously-seen phase. For our fault detector, we monitor phase transition. 

Once an unseen phase starts, we dedicate a learning period to generate the instruction 

partitions and train the stride and value Bloom filters. We store the partition information 

and Bloom filter contents for up to 20 unique phases in L3. When a phase repeats a 

known phase, the content from the known phase is reused. 

 We present the detector design for both backend and the frontend faults. The detector’s 

stride and value Bloom filters raise signals when a membership test fails. If the signal is 

due to a back-end fault, we use a delay buffer to do a light-weight replay at the backend 

of the out-of-order processor to recover, same as FaultHound. A separate filter is needed 

to distinguish a front-end fault and a detector false positive. The filter consists of a set of 

squash state machines that are assigned to segments of the parallel Bloom filters. We 

present the detailed design of the detector and front-end fault filter. 

 We conduct comprehensive fault injection and perform detailed evaluation on fault 

coverage, false positive rate, and cost on performance, area, and energy. 
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The rest of the dissertation is organized as follows. Chapter 2 discusses related works on fault 

detection and further explain the motivation for this dissertation. Chapter 3 describes the 

evaluation methodology with detailed hardware configuration, simulation methods, workload, 

and metrics. Chapter 4 gives a high-level view of the fault detection design and explains the 

program phase-aware framework. Chapter 5 describes the rationale behind using memory strides 

and values and presents the design and implementation of an instruction partitioning mechanism. 

Chapter 6 discusses the detector design, especially the Bloom filter design and implementation in 

detail, and presents the experimental results for back-end fault detection. Chapter 7 describes the 

front-end fault filter design and presents its experimental results. Chapter 8 includes another part 

of my PhD studies on efficient parameter variation sampling by using low-discrepancy 

sequences. Chapter 9 draws conclusion for this dissertation. 
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Chapter 2  Related Work 

 

Since the rise of processor dependability challenges due to physical faults, architects have 

explored an abundance of fault tolerance solutions to protect the processor core. In this chapter, 

we discuss the existing works on fault detection and explains the motivation behind this 

dissertation. In Section 2.1, we introduce key concepts in fault tolerance and discuss taxonomy 

of representative fault tolerant architectures. In Section 2.2, we explain the recent works on 

detecting silent data corruptions (SDC) that are the most related to this dissertation. 

2.1. Fault‐Tolerant	Architectures	

Before we discuss detailed fault detection mechanisms, it is important to introduce the key 

concepts in fault tolerant architecture. First, we divide the fault types into transient faults and 

permanent faults. A fault-tolerant architecture can cover one of the two types, or both. Second, 

different types of redundancy can be added for fault detection and correction, including physical, 

temporal, and information redundancy [42]. The type and level of redundancy determines not 

only the fault coverage, but also performance and energy cost. Lastly, fault recovery mechanisms 

can be divided into two major categories, forward recovery that does not require reverting to a 

previous state, and backward recovery that restores the state of the system to a pre-fault 

checkpoint. The recovery choice helps make trade-offs between performance cost and energy 

cost. 
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A taxonomy of fault-tolerant architectures has been proposed in [43]. Here, we use a similar 

taxonomy to discuss a few categories of existing works that can protects the processor against 

transient faults. 

N‐Modular	Redundancy	

Dual-Modular Redundancy (DMR) or N-Modular Redundancy (NMR) [1] uses one or more 

redundant module to detect 100% architectural errors. DMR needs backward recovery to correct 

a fault, while triple modular redundancy (TMR) [69] and above can make forward progress even 

when a fault is detected. Challenges with NMR include the significant operating overhead of the 

redundant hardware, the communication cost between the mirrored modules, and the detection 

latency which may be compromised to keep a low communication frequency. Fingerprinting [6] 

proposes to hash the architectural state updates from a checkpoint interval into a fingerprint and 

detect errors by comparing the fingerprints from the mirrored modules, which reduces some 

communication cost and detection latency. Sampling + DMR [14] reduces the excessive cost by 

running in DMR mode in a small percentage of time but is limited since it detects permanent 

faults only. 

Anomaly	Detection	

These approaches watch for anomalous behaviors or symptoms at hardware and software level to 

detect faults. SWAT [3] and mSWAT [4] monitors software-level symptoms, such as fatal 

hardware traps, hangs, high OS activity, and kernel panics, and use them as indications of 

hardware faults. Trace-based replay on these systems are proposed to diagnose permanent faults 

[13]. SWAT covers 95% faults within 100K cycles. While SWAT has almost no hardware and 
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performance cost, its high detection latency makes the recovery expensive. ReStore [11] detects 

transient errors by monitoring microarchitectural anomalous events including exceptions, branch 

mispredictions, and cache misses, and rolling back to a previous checkpoint upon these events. 

Pattern change in the outcome of speculative structures can also be used to detect faults [15]. 

These approaches cannot cover a high percentage of fault or will incur high recovery cost. 

Dynamic	Verification	

With careful hardware design, this category of fault detectors performs checks on the fidelity of 

control flow and data flow and detect faults upon a violation. Data flow violation can also be 

detected by monitoring invariants and verifying the value of critical variables. Range-based 

likely program invariants [9] can be identified during a separate pass of offline run, and faults 

can be detected by verifying their validity during production run. Another work uses compiler-

based static analysis to identify, for each function, variables that have large fan-out, and checks 

at run time the correctness of their values using backward derivation [12]. Control flow can be 

checked by adding assertions into a program and detect faults through basic block parity check 

during program execution [8]. The above checkers all incur high performance and energy costs. 

Argus [2] reduced the performance penalty and increased fault coverage by implementing 

hardware checkers for control flow, computation and data flow and monitors all their activities. 

However, the 17% hardware overhead is still significant. 

2.2. Value	Locality‐Based	SDC	Detection	

Recent works have shown good coverage on SDCs by looking for value locality anomalies. 

Popular approaches, such as Perturbation-Based Fault Screening [16] (PBFS) and FaultHound 
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[17], check microarchitectural states related to load and store instructions, in order to detect any 

faulty behavior of the processor. 

Perturbation‐Based	Fault	Screening	

This work proposes to establish a profile of program behavior and detect faults by looking for 

departures from the established behavior. Such departure is called a perturbation. PBFS 

presented five fault screeners and implemented one that is the most realistic: the invariance-

based screener. This screener maintains bitmasks associated with each static load or store 

instruction. Each bitmask represents the set of all bits that are invariant since the first data value 

of this static instruction.  For each dynamic load/store data value, a lookup is performed in the 

PC-indexed bitmask table. If the new value does not match the filter on all unchanging bit 

positions, a perturbation is reported, and the bitmask is updated to mark this bit position as 

variant to avoid future false positives. 

On every perturbation trigger, PBFS proposes to flush the pipeline to recover from a fault. With 

this approach, PBFS reports low false positive rate (e.g., 0.5%) with a fault coverage of about 30% 

on SDC. If a full rollback (e.g., 100 instructions) is allowed, the coverage rate of SDC becomes 

over 70% [16]. However, a 0.5% false positive rate implies 50% energy cost in such scenarios 

(assuming a baseline cycles per instruction of 2). 

This design has a few limitations. First, each time a perturbation occurs, the bitmask is updated 

to mark a new variant bit. Thus, each bit can only detect one perturbation after the periodic clear 

which indicates loss in fault coverage. Second, PBFS does not distinguish a false positive and a 

fault. This exposes the intrinsic tension between fault coverage and performance/energy penalty. 
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Lower-penalty recovery approaches (e.g., pipeline flush) result in loss of coverage, while higher-

coverage approaches incurring full rollbacks can be too expensive to trigger at every perturbation.  

FaultHound	

FaultHound checks load and store address and value, same as PBFS. Address and value are 

handled by separate filters. Since the PC-indexed value checker in PBFS may unnecessarily 

separate nearby similar values across multiple table entries, FaultHound proposes to use ternary 

content-addressable memory to cluster similar values into one filter. Unlike the sticky bit 

counters in PBFS, the state and bit value in a FaultHound filter are both updated upon a trigger, 

to adapt the filters to the most recent value. To further reduce false positives triggered by 

delinquent bits, a second-level filter is implemented to associate a biased state machine to each 

bit position. The biased state machine ensures that the bit position only triggers a fault or false 

positive after 7 consecutive no-triggers. To reduce the recovery penalty from a fault, FaultHound 

adds a delay buffer (e.g., 7 instructions) to an out-of-order issue processor’s replay logic and 

triggers a backend replay instead of full rollback to correct faults on the backend. To distinguish 

front-end faults that cannot be corrected by replay, a biased state machine per filter is 

implemented to differentiate rename faults from false positives. A full rollback (~100 

instructions) is only triggered when a front-end fault is detected. 

FaultHound’s TCAM implementation improves clustering efficiency while maintaining constant 

search time for each value, which leads to 75% fault coverage at 3% false positive rate. However, 

this approach still has its limitations. First, the TCAM hardware is expensive in area and energy, 

which limits the number of filters that can be used and indicates possible coverage loss. Second, 



23 
 

the memory addresses of a program can have many permutations, which increases noise level in 

the filters. An alternative using memory stride may provide better patterns and improve filter 

efficiency. Lastly, the filters are updated on a per-value basis. This can introduce unnecessary 

false positives during an execution phase transition. 

2.3. Program	Locality	Characterization	

One important concept underpinning our work is notion of inherent time redundancy (ITR) [5], 

which means that the same instructions are executed repeatedly by a program within a short 

interval, and can be interpreted as the program re-executes itself in a time redundant way. The 

original ITR [5] work detects faults by recording static instruction trace signatures and checking 

against existing signatures. A related concept, working set signature, has been applied to detect 

program phase change and tune to the optimal hardware configuration in a multi-configuration 

system [7]. 

Program locality can be used to detect software bugs like performance problems. Toddler [10] 

identifies repetitive and similar memory-access patterns over time of execution and exposes 

performance bugs induced by redundant loops or inefficient loops. 
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Chapter 3  Evaluation Methodology 

 

In this chapter, we present the methodology for evaluating the detector. In the following chapters, 

all experimental results are based on the experiment configurations described here. 

This chapter is organized as follows. In Section 3.1, we explain the detailed configuration of the 

simulated processor. In Section 3.2, we discuss the simulators we used and simulation methods. 

Section 3.3 presents the workloads that we used for evaluating the system. In Section 3.4, we 

explain the metrics that we use in the following chapters to assess the detector. 

3.1. Processor	Configuration	

We simulate the X86 instruction set on an out-of-order-issue, high performance processor with a 

cache hierarchy like Intel’s Sandy Bridge [33] processor. The fault detection mechanism is 

implemented within each core. Since the detector does not rely on or impact any cross-core 

functionalities, we opt to simulate the processor with only one core. The detailed hardware 

parameters of the processor are presented in Error! Reference source not found.. The access 

latencies of the on-chip cache are calculated based on published performance evaluation of the 

Sandy Bridge processor [32]. 

Additional hardware is added to the processor core for fault detection purposes, which includes 

Bloom filters and other caches implemented in SRAM at L1 level. For clarity, these structures 
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will be explained in detail in the following chapters, and their parameters will be provided when 

presenting the fault detector evaluations. 

Base frequency (GHz) 2.6 
Technology 32 nm 
Fetch, Decode, Issue, Dispatch, 
Commit width 

4 

IntALU, IntMulDiv, FPALU, 
FPMulDiv per core 

6, 2, 4, 2 

Issue Queue size 32 
Re-order Buffer 168 
Load Buffers 64 
Store Buffers 36 
L1 cache 32 KB (I)+32 KB(D), 8-way set associative, 3-cycle 

hit latency 
L2 cache 256KB, 8-way set associative, 9-cycle hit latency 
L3 cache 2.5MB, 16-way set associative, 17-cycle hit latency 

Table 3-1: Hardware parameters of the simulated processor 

3.2. Simulation	Methodology	

We use the gem5 simulator [34] to conduct fault injection experiments and evaluate fault 

detection structures. Gem5’s system emulation mode is used to perform timing-accurate 

simulation. We use McPAT [35] to estimate the processor core area and power, and CACTI [36] 

for the fault detection structure’s timing, area, and power. 

The performance overhead is generated with timing information from gem5 baseline simulations, 

CACTI timing results of the fault detection structures, and the false positive rates of the fault 

detectors. The energy overhead is generated with the power numbers of the processor core, all 

on-chip caches, the fault detection structures, and the performance overhead. 
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3.3. Workloads	

We chose a set of benchmarks from SPEC CPU® 2006 [29] suites, as shown in Table 3-2. Out 

of the 12 benchmarks used, 6 are from SPECint® 2006, and the other 6 SPECfp® 2006. Our 

fault detection mechanism mainly exploits locality in memory access patterns and program 

phases. The 12 selected benchmarks exhibit a wide range of cache miss rate [70], and have 

distinct characteristics in program phase length, phase transition, and repetition. These properties 

make the 12 benchmarks a good mix for evaluating our fault tolerant architecture. 

CINT CFP 
401.bzip2 410.bwaves 
403.gcc 436.cactusADM 
429.mcf 444.namd 
456.hmmer 454.calculix 
458.sjeng 465.tonto 
462.libquantum 470.lbm 

Table 3-2: Benchmarks 

For each benchmark, we select one representative SimPoint [18] of 100 million instructions. 

With gem5’s checkpointing functionality, we fast-forward simulations to this SimPoint’s 

checkpoint and simulate only the 100 million instructions within the SimPoint. 

3.4. Metrics	

When presenting the evaluation results, we focus mainly on the detector’s fault coverage, false 

positive rate, and impact on hardware area, system performance, and energy consumption. 
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Since we use Bloom filters in our fault detectors, it is important to not confuse the false positive 

rate of a Bloom filter and that of the detector. A false positive from a Bloom filter means it 

falsely reports true when testing a non-existent element’s membership. A false positive from the 

fault detector means the detector falsely raises a signal for an error that does not exist. 
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Chapter 4  A High-Level Description of the 

Detector 

 

This chapter describes the high-level design of our fault detector. Since most transient faults are 

either masked or result in program crash and are thus detected [16, 17, 69], we focus on detecting 

the remaining faults - silent data corruptions (SDC) that render incorrect program execution path 

and possibly corrupted computational results without ever being detected. The goal for our 

detector is to have a high detection rate on SDCs while keeping the cost low. To reach this goal, 

we utilize program localities. The locality is stored by the detector and used for detecting faults. 

The detailed design choices for the detector will be discussed in Chapter 6. In this chapter, we 

focus on how the different components of the fault detector are orchestrated and present the 

workflow of detecting a fault. 

In order to explain our high-level design of the detector, we structure this chapter as follows: 

 In Section 4.1, we give an overview of the fault detection’s key components and a fault 

detection workflow. 

 In Section 4.2, we explain the use of program execution phases, which is vital to the 

efficiency of the detector. Identifying a program execution phase transition can help limit 

the scope of the detector, while identifying a phase repetition enables reuse of known 



29 
 

locality information to save training time. The concepts of a learning period, unique 

phases, phase transitions, as well as phase repetitions, are introduced in this section. 

 In Section 4.3, we discuss how a detector signal is analyzed to distinguish a back-end 

fault, a front-end fault, and a false positive. This is essential in choosing the correct 

mechanism for recovering from a fault. 

 Finally, in Section 4.4, we explain how an analyzed signal is handled.  

4.1. Design	and	Workflow	Overview	

4.1.1. Key	Components	of	the	Detector	Design	

Before we dive into the workflow of the detector, there are three key aspects of the detector that 

need to be introduced: What information from the program do we use to represent program 

locality, what structure is used to store the locality and detect fault, and how the fault detection 

algorithm is designed to make the detector efficient. 

Capturing	Program	Locality	

As described in Chapter 3, the faults we are trying to detect are transient faults that result in 

silent data corruption (SDC). These faults do not affect the program execution in a catastrophic 

way, but only change some data values that produce incorrect results. Thus, neither micro-

architectural state [11] nor software-level events [3] can distinguish a program’s faulty execution 

from its correct behavior. Instead, established program locality can help detect data anomalies 

and predict data corruption. Works including PBFS [16] and FaultHound [17] have used the 

effective address and load/store value of memory instructions to represent program locality. In 
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our work, we also utilize memory instruction information to represent program locality. Beside 

the load/store value, the stride of the effective addresses is captured instead of the addresses 

themselves. The benefit of using the stride will be explained in Chapter 6. In this chapter, we will 

use the abstract term program locality information as an abbreviation for the memory strides and 

values that are used in the detector. 

Using	Bloom	Filters	for	Fault	Detection	

A Bloom filter is a data structure that efficiently stores a set of elements and quickly tests 

whether a given element is a member of the set. In our detector, we use the membership of a 

Bloom filter to detect faults. During a training period, memory strides and values are stored in 

the Bloom filter. After training, the Bloom filter tests incoming memory strides and values for 

set membership. If an item is decided to not be a part of the known set, the detector believes it 

has detected a fault. The design of the Bloom filter will be explained in detail in Chapter 6. 

Phase‐Aware	Fault	Detection	Algorithm	

Known as time-varying behavior [19], a program execution goes through a number of phases. 

Program locality can change as phases shift. Thus, it is important that our fault detection 

algorithm monitors phase transitions and adjusts the detector accordingly. 

There are three major advantages for our fault detector to be aware of program phases: 

1. The detector can be better built to suit the program locality of the current phase. This way, 

the scope of the detector is limited, which makes the fault detection more effective and 

the detector more cost-efficient. 
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2. The detector can monitor phase transitions. If a phase transition occurs, i.e. the program 

enters a phase that is different from the current phase, the detector can determine that it 

needs to be cleared and re-trained for the next phase. Otherwise, the detector can continue 

to work. 

3. The detector can monitor phase repetitions. As will be discussed in Section 4.2.2, it is 

quite common for a phase to repeat at different points of a program execution. The 

detector content of a phase can be saved and possibly reused if the detector determines 

there is a repetition of this phase. This can reduce the cost of training since the time for 

re-loading the Bloom filters are much smaller than the time required to train the filters.  

The way that our detector monitors phase transitions, phase repetitions, as well as how the 

detector is trained or reloaded, will be discussed in detail in Section 4.2. 

 

Figure 4-1: Overview of the fault detection workflow 
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4.1.2. The	Workflow	

When a fault is present in a system, an end-to-end workflow is needed to detect the fault and 

help the system recover from the fault. An overview of our fault detection workflow is presented 

in Figure 4-1.  

First, the detector needs to be prepared before predicting faults as shown in Figure 4-2. To 

capture program locality and use it for fault detection, our detector needs to be trained when a 

fresh phase starts, which we refer to as Intra-Phase Preparation. In addition, when a phase 

transition occurs and if the new phase is a repetition of a past phase, the detector reloads the 

content of the original phase, and we refer to this as Inter-Phase Preparation. The details will be 

discussed in Section 4.2. 

Then, the detector is ready to predict a fault. At this stage, the outcome of our detector is binary. 

If an incoming data pattern violates the existing program locality information, the detector raises 

a signal; otherwise, the detector does not raise a signal and continues to test the next incoming 

data pattern. The design details of the fault detector will be discussed in Chapter 6. For this 

current chapter, this part of the detector can remain a black box that outputs a “fault” or “no 

fault”. 

Once the detector predicts a fault, the fault is analyzed, to the detector’s best knowledge, to see 

whether it is a real fault and if so, which type of fault it is. Thus, this fault analyzing stage signals 

“false positive”, “back-end fault”, or “front-end fault”. Section 4.3 describes how a fault is 

analyzed by our detector. 
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Finally, the outcome of the fault analyzing stage gets handled accordingly. If a false positive is 

detected, our fault detector updates its program locality information to include the pattern in the 

false positive. If a real fault is detected, depending on whether it is back-end or front-end, the 

detector initiates corresponding recovery mechanism to get the system back to a correct state. 

Section 4.4 describes how different faults are handled in recovery. 

 

Figure 4-2: Detector content preparation 

4.2. Preparing	the	Detector	with	Program	Locality	

For the detector to identify anomalies in program locality, it needs to be prepared before 

performing its fault detection functionality. The preparation is analogous to warming up any 

cache – the program locality information needs to be loaded into the detector. 
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4.2.1. Intra‐Phase	Preparation	

For a detector to be effective, it needs to be trained with some program locality information, and 

that information is used for detecting anomalies afterwards. On an extreme end, the program 

execution can be viewed as one big phase, and the warming up is done only once. However, for 

the detector to be more effective, phases at a finer time granularity should be identified, and the 

detector should be trained at the beginning of each phase. 

We call the training period within a phase a Learning Period. As shown in Figure 4-3, the 

program execution can be composed of multiple phases, and each phase has its own learning 

period. For simplicity, each learning period is of a fixed length. The length of the learning period 

has a significant impact on fault detection rate and performance cost. We will discuss more of 

the trade-offs on the learning period in Chapter 6. 

 

Figure 4-3: Learning period and detection period within a phase 

The program locality information gained through the learning period will remain in the detector 

until a phase transition occurs. As will be discussed in Chapter 6, our detector consists of 

multiple Bloom filters. Each Bloom filter is a bit vector. During the learning period, a selection 

of memory values and effective address strides are added to the Bloom filters. When the learning 

period reaches its end, for the rest of the phase, incoming memory values and strides are tested 

by the Bloom filters to predict a fault. Once a phase transition is detected, the Bloom filters’ 
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content cannot be used any more, and the detector needs to determine whether to train or reload 

existing content for the next phase. 

4.2.2. Inter‐Phase	Preparation	

The detector content can be customized for each individual phase. The customization follows 

two rules: 

1. The detector content cannot be shared by two phases that are dissimilar. 

2. The detector content can be reused by two phases that are similar. 

The detector identifies when the program execution enters a phase that is dissimilar to the current 

phase, which is called a phase transition. Detecting a phase transition is essential for keeping the 

detector content sensitive to the current phase. However, clearing the detector content and restart 

a learning period can be costly. If redundancy between phases can be detected, the detector 

content can be reused when a phase repeats itself. Thus, the detector also determines whether the 

new phase should be considered a repetition of a previously seen phase. In this section, we will 

explain how phase transitions and repetitions are detected, and how the detector functions to take 

advantage of them. 

Program	Execution	Phases	in	Other	Works	

The concept of program execution phases has been studied to help optimize hardware 

reconfiguration [7]. The need for tuning hardware proves that different program phases have 

distinct characteristics, e.g. instructions per cycle, miss rate, etc. This implies that the program 
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phases are drastically different in memory accesses and data values. Thus, to achieve high 

efficiency, the fault detector should adapt to the current program execution phase. 

On a side note, instruction locality has been explored to detect transient faults by Inherent 

Timing Redundancy [5]. This work is orthogonal to our fault detection work. 

Working set analysis [7] shows that program execution phase transition is highly predictable by 

the transition of the program’s instruction working set. A compressed representation of 

instruction working set is monitored to detect working set changes, and thus detect program 

phase changes. We will explain how we adopt the working set signature approach for detecting a 

program execution phase. 

Forming	an	Instruction	Working	Set	Signature	

A working set is bound to an interval of execution, or a window. The instruction working set is 

comprised of all the static instruction PCs within a window. The phases can be resolved at a 

granularity no finer than the window size. In this work, the window size is set to 100K 

instructions. Also, a series of non-overlapping windows are used instead of a sliding window.  

Compression is crucial when storing working set information. An instruction working set 

containing 𝑛 static instructions, if not compressed, can take 𝑛 64 bits in a 64-bit system. To 

achieve an efficient representation, we adopt the working set signature approach proposed in [7] 

to represent an instruction working set. 

The working set signature is a vector of n bits. It is generated by mapping each instruction PC 

onto one bucket of a vector, as shown in Figure 4-4. First, instead of using raw instruction PCs, 
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the working set elements are set to be of cache line granularity. For a cache line size of 2 , the 

lowest 𝑏 bits of the instruction PC are dropped and only the remaining 𝑚 bits are used. Second, 

the highest 𝑚 bits of a PC are compressed by a hash transformation. These 𝑚 bits are hashed 

into a value 𝑘, which is a number between 0 and 𝑛 1. The 𝑘  bit of the signature gets set to 1. 

 

Figure 4-4: Working set signature generation 

We made a few modifications to the working set signatures in our adoption. First, to reduce 

performance and power cost, only branch and memory instructions are used. This is different 

from the working set analysis work [7] where every committed instructions PC is used. Second, 

since the working set being monitored is smaller, the signature vector size can be much smaller 

as well. We use a signature size of 64-bit, in comparison to the 128-byte signature size in the 

working set analysis work. This size reduction significantly saves the amount of memory we 

need for detecting phase repetition, as will be discussed in the later section. 

Putting it all together, for each non-overlapping window of 100k instructions, we form a 64-bit 

working set signature with a subset of PCs that are executed in this window. We use a cache line 

size of 64 bytes. This means b is set to 6 bits and we only use the highest 58 bits of the 
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instruction PC. For each PC, the highest 58 bits are randomly hashed into a number between 0 

and 63 to update the signature. 

Phase	Detection	Architecture	

We need to store a few different signatures for phase resolution, which is shown in Figure 4-5: A 

current signature, a previous signature, and a set of past unique signatures. These stored 

signatures are used for detecting phase transitions and repetitions. 

The current signature is the signature that is being built within a window. It is updated by each 

instruction PC in the working set. This signature is stored in a dedicated memory location. 

 

Figure 4-5: Working set signatures are stored in memory locations for phase resolution 

The previous signature is used for detecting phase transition. Once a window ends, the current 

signature is finalized and is then compared to the previous signature for phase transition. If the 

compare logic determines there is not phase transition, the current windows is considered a 

continuation of the previous window. The previous signature is stored in a dedicated memory 

location like the current signature. 
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A set of unique signatures is used for detecting phase repetition. These signatures are stored in 

the physical memory. When the current signature finalizes and if a phase transition is detected, 

the unique signatures will be cached, and each is compared with the current signature to detect 

phase repetition. If the compare logic determines there exists a past unique signature that the 

current signature is repeating on, the current phase is considered a repetition of that past unique 

phase, and the detector can be warmed up using that unique phase’s detector content. 

The process of detecting phase transitions incurs some performance cost. The program execution 

needs to be stalled in order to perform these phase detection operations: 

 Operation #1: Comparing the current signature against the previous signature at every 

window boundary. 

 Operation #2: Loading the unique signatures to a near cache if a phase transition has been 

signaled by Operation #1. 

 Operation #3: Once Operation #2 finishes, searching the unique signatures for one that 

qualifies the current signature as a repetition. 

The cost of these operations depends on the signature size, the comparison logic, and the number 

of unique signatures that are stored. The signature size is 64 bits, as explained in the previous 

subsection. The comparison logic, which will be explained next, consists of an XOR operation, 

and OR operation, a one’s count, and a division. The number of unique signatures, as will be 

explained in Figure 4-7, is 13 within one 1000 window SimPoint if we take the average of the 

twelve benchmarks we evaluated. The average phase length is 11.5 windows. Thus, for every 

window, one comparison will take place. For every 11.5 windows, 13 unique signatures need to 
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be loaded to a near cache, and 14 comparison operations will take place to search for phase 

repetition. The 13 unique signatures take 2 cache lines, assuming a 64-byte cache line size, and 

thus incurs a stall of two memory loads. Each of the 14 comparison operations incur a stall of 4 

ALU operations. Assuming a wide-issue pipeline, the memory load stall and the ALU stall 

together take ~200 CPU cycles per 11.5 window. This is still much more efficient than the 

~200,000-instruction training time (as will be discussed in Chapter  5 and Chapter 6) if a phase 

repetition is not detected. 

Detecting	a	Phase	Transition	

Detecting program phase transition can help the detector determine if it needs to be cleared and 

start re-learning. 

Program phase change can be detected by comparing the working set signature of the current 

window to that of the previous window. The working set analysis work [7] defined the relative 

working set distance, to represent the similarity between two working sets. Once the distance 

exceeds some threshold, the program is considered entering a different phase. 

Since each signature is essentially a set of bits, the relative working set distance is measured 

using the complement of Jaccard similarity. Jaccard similarity is the relative size of the 

intersection of the two sets, which is a commonly used metric in classification and clustering 

problems [71, 72]. The Jaccard similarity of sets 𝑆 and 𝑇 is |𝑆 ∩ T|/|S ∪ T|. The complement of 

Jaccard similarity measures the relative size of the difference of the two sets. Let the new 

signature be 𝑆  and its previous signature be 𝑆 , the relative working set distance is defined as 
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the ones count of exclusive OR relative to that of inclusive OR of the two signatures, which can 

be represented by the following formula, as introduced by [7]: 

𝛥 | ⊕ |

| |
 . 

A relative distance of 50% or higher is required to qualify for phase transition, i.e. 𝛥 needs to be 

no less than 0.5. 

Detecting	a	Repetition	on	a	Unique	Phase	

Not only can a signature predict a program phase change, it can also predict phase repetition. The 

detector content of a phase can be reused when a repetition is detected. 

We use a concept called unique phase to explain the phase repetition phenomenon. If the relative 

working set distance between the current signature and a signature that’s previously seen is 

below some threshold, the current working set windows is considered a repetition of the 

previously seen window, and the two windows are considered two occurrences of the same 

program execution phase. The original phase that has been repeated is called a unique program 

execution phase, or a unique phase. 

 

Figure 4-6: Unique phases and their repetitions 

A unique phase can be repeated anywhere in the program execution and for length of any 

number of windows. As illustrated in Figure 4-6, three unique phases 𝐴, 𝐵, and 𝐶 are repeated at 
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different points of the program. Phase 𝐴 is seen repeated for three windows lengths - windows 3, 

4, and 5, while Phase 𝐵 and Phase 𝐶 are repeated one window each. 

All unique phase signatures are saved for detecting phase repetitions. When a phase transition 

occurs, a repeated phase can be detected by comparing the current working set signature against 

every saved unique phase signature. If no match is found, the current signature is saved as a 

unique phase signature. 

In our work, we set the threshold of relative working set distance to be 10% for detecting a 

phase repetition. Based on the working set analysis work [7], there can be noise in measuring the 

similarity of two windows due to the misalignment of phase boundaries and window boundaries. 

Thus, a 90% similarity gives high confidence that the two windows belong in the same phase. 

We studied the unique phases and their repetitions in a representative SimPoint [18] of twelve 

SPEC CPU2006 benchmarks, each SimPoint of length 100 million instructions. The results are 

shown in Figure 4-7. On average, there are 87 phase transitions within the SimPoint, within 

which 13 are unique phases and 74 are repetitive phases. This implies two things: 

1. The average phase length is approximately 1.15 million instructions. Given the 100K-

instruction working set window size, a phase transition occurs approximately every 11.5 

working set windows. This means the phase is resolved at a granularity that’s one order 

of magnitude longer than the working set window length. This is biased by two outliers: 

𝑙𝑏𝑚 and 𝑠𝑗𝑒𝑛𝑔. These benchmarks executed only one unique program phase within the 

SimPoint. Without these two benchmarks, the average phase length becomes 500K 
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instructions, or 5 working set windows. This impacts the performance cost which will be 

discussed in Chapter 6. 

2. On average, there are 13 unique working set signatures that need to be stored for 

detecting phase repetition, and these signatures only take 104 bytes of storage. Even for 

the benchmark with the highest number of unique phases, 𝑔𝑐𝑐, its 44 unique working set 

signatures only takes 352 bytes of storage, which is still feasible to be stored in the L1 

cache. 

 

Figure 4-7: Number of phase transitions of in one SimPoint, divided into unique and repeating 

phases  

Optimizing	Detector	Efficiency	using	Phase	Information		

Phase transition and repetition information can be used to improve our detector’s efficiency. 

Essentially, a unique phase’s detector content, or the program locality information of that phase, 

can be reused when a repetition phase is detected. 
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Each unique phase has its own learning period. Once a unique phase ends, its Bloom filter 

contents are stored in farther cache. When a phase repetition occurs, the learning period is 

replaced by loading the Bloom filter content of the unique phase that it repeats on. 

The detector functionality in the case of a phase transition and phase repetition is described by 

the pseudo code in Figure 4-8. 

The store and load of the Bloom filter contents depend on the sizes of the Bloom filters. This will 

be discussed in Chapter 6. 

  if (is_learning == true) AND (phase_instruction_count == 
learn_period_length): 
  is_learning = false 
  storeBloomFilterContents(current_signature, PC) 

  if (instruction_count % working_set_window_size == 0):  // should check for 
phase transition 
    change_rate = calculateChangeRate(current_signature, previous_signature)  
// check for phase transition 
    if change_rate >= phase_transition_threshold: 
  (is_repeating_phase, original_phase) = isRepeatingPhase(current_sig, 

existing_sigs)  // check for phase repetition  
  if is_repeating_phase: 
    loadBloomFilterContents(original_phase) 
  else: 
    is_learning = true  // start learning for a new unique phase 

Figure 4-8: Pseudo code on how to detect phase transition and phase repetition and how the 

detector functions to utilize the phase information 

4.3. When	a	Fault	is	Predicted:	Analyzing	a	Fault	

Before recovering from a fault, we need to categorize the fault in order to trigger the correct 

recovery mechanism. In this work, we differentiate the outcome of the fault detector into three 

categories: back-end fault, front-end fault, and false positive. Figure 4-9 Shows how these faults 
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are analyzed into the three categories, as well as which mechanism each category uses to correct 

a fault. 

 

Figure 4-9: Workflow on analyzing fault categories and triggering corresponding recovery 

mechanisms 

Our detector first raises signals in the back-end. Back-end includes all processor pipeline stages 

after the issue queue. Since the locality information we use includes memory access patterns and 
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memory values, our detector can only raise signals when this information is available, which is 

after an instruction enters the pipeline’s back end. 

Our detector then determines whether the signaled fault is a back-end fault, or of a different type. 

As will be explained in Section 4.4, we use a back-end replay mechanism same as in FaultHound 

[17]. This replay is deemed final for back-end faults since most of them can be corrected. 

However, if the replay triggers a fault signal at the exact same instruction PC with the same 

memory data, we consider this fault not corrected by the replay, and thus not a back-end fault. 

Our detector then distinguishes whether there is a front-end fault, or it just hit a false positive. 

We use a separate front-end fault detector, as will be described in Chapter 7, to determine this. 

4.4. When	a	Fault	is	Confirmed:	Handling	a	Fault	

When a transient fault is predicted by the detector, we need to determine how the fault can be 

corrected.  

Correcting a fault requires redundancy in hardware components, saved execution state, or 

repeated executions. To correct a transient fault, a common approach is to create periodical 

checkpoints and roll back to the previous saved checkpoint. 

A full rollback incurs high cost on performance and power. FaultHound [17] avoided most of 

this overhead by utilizing the light-weight replay mechanism of the out-of-order-issue pipeline 

and adding a delay buffer to it. It argues that since most load and store instructions have 

dependencies only among nearby instructions, most of the faults can be corrected by squashing a 

short chain of instructions. This reduces the cost from a ~100 instruction rollback to a ~7 
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instruction replay. We use the same replay mechanism to recover back-end faults. If a fault is 

determined to be from the front-end, a full rollback will be triggered. 

If a detector signal is analyzed to be neither a back-end fault nor a front-end fault, it is 

considered a false positive. In such a case, the signal will be suppressed, while the offending 

memory data is considered valid program locality information, which will be updated into the 

detector.  
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Chapter 5  The Input: Partial-Global Stride 

Sequence and Memory Value 

 

This chapter describes the choice of partial-global memory stride sequences and values as the 

memory access pattern. We first discuss why the stride sequence can be more efficient than 

memory reference in capturing locality. Then, we introduce the concept of a partial-global stride, 

which has much fewer noises than a global stride. Next, we present a design and implementation 

of an instruction-partitioning mechanism that is critical in generating efficient partial-global 

strides. Finally, we explain the usage of both memory strides and values for fault detection which 

completes the picture of the detector input.  

5.1. Reference	versus	Stride:	Why	is	Stride	Better?	

There are many values from a memory access that can represent locality. Perturbation-Based 

Fault Screening [16] and FaultHound [17] both chose to use the memory address and memory 

data. PBFS first finds the range of each instruction’s memory addresses or its accessed data. 

Then, it sees any out-of-range address or data as a perturbation. FaultHound, on the other hand, 

monitors only a selected number of bits of the memory address or data. It uses content-

addressable memory to group them by value and uses a state machine on each group to detect 

anomalous values. 



49 
 

There is some temporal-spatial locality that has not been captured by these approaches, though. 

Memory stride, compared to a memory reference, can capture the memory access patterns in a 

sequential way. For example, in a loop, the memory references of all the instructions can be 

constantly changing, which can result in out-of-range addresses in PBFS, or unfitting values in 

FaultHound. In such cases, PBFS and FaultHound will either have high false positives overheads, 

or by marking these values as false positives, miss real faults since their databases have become 

more forgiving and insensitive.  

In contrary, the memory access strides can stay the same from one iteration to the next, thus 

there are fewer permutations from the memory strides than from memory references. A stride-

based detector will be more efficient than a reference-based detector. 

A memory stride is defined as the difference of references or physical addresses between the 

current memory instruction and the previous memory instruction. Stride has been used by 

prefetchers [26-28] for predicting future references and prefetching them into caches before they 

are requested by the processor. Prefetcher designs have exploited locality in both local strides, 

meaning the strides generated by the same instruction, and global strides, meaning the strides 

generated by all load and store instructions.  

Let a reference stream of 𝑛 memory instructions be  

Equation 5-1: RS R , R , …, R , R ,  

 where 𝑅  is the predecessor of 𝑅  in time. A global memory stride 𝑆   is defined as: 

Equation 5-2: S R R , 0 k n. 
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A sequence of global strides generated from the reference sequence can then be described as  

Equation 5-3: SS S , …, S , S . 

To enhance the sensitivity of the detector, we also consider using a sequence of strides instead of 

one single stride as the memory patterns. A stride sequence can be more sensitive than a single 

stride. 

5.2. Partial‐Global	Stride	Sequence	and	Instruction	

Partitioning	

In this section, we discuss the limitations of global strides, and introduce partial-global strides as 

well as instruction partitioning in order to generate efficient partial-global stride streams. 

5.2.1. Limitations	of	Global	Strides	

 

(a) Maximum history table sizes 
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(b) Average history table sizes 

Figure 5-1: History table sizes for stride sequences, stride sequence length varying from 1 to 5 

The raw global strides can form a large amount of stride sequence permutations. If the memory 

access stream is not partitioned, the global stride stream can lose conformity easily, and the 

number of unique global stride sequences, given a fixed sequence length, will significantly 

increase.  

We first use a history table to study all unique global stride sequences, lengths varying from 1 to 

5 strides. We wanted to find out how large the table need to be if cleared at each phase beginning 

in the length of one SimPoint[18] execution (100 million instructions). Our experiment shows 

that the number of unique global stride sequences is too large for a history table to be 

implemented. Shown in Figure 5-1, when the sequence length varies from 1 to 5 global strides, 

the maximum history table size across all phases and the average size per phase are provided for 

each benchmark. The maximum table sizes are on the order of 106, and the average table sizes 

are on the order of 105. Given that each entry, which is a sequence of global strides, contains at 
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least 8 bytes, the area overhead and performance overhead from searching in the table are 

unacceptable. The sizes of the tables need to decrease drastically. 

We observed the main issues that cause the global stride sequences to lose conformity: 

 When a memory instruction outside a loop follows a memory instruction inside a loop, or 

vice versa, the stride between the memory access locations may vary from different 

iterations of the loop. 

 When the interleaving memory instructions access data structures that have different 

element sizes, the memory instruction stream is mixed with different local strides, and the 

global stride will lose its pattern. 

 Some instructions access random memory locations as opposed to an array, e.g. Pointer-

chasing data structures. They have random effective addresses and strides, which corrupts 

the global stride patterns.  

These issues indicate that the conformity depends on the static instructions that comes into the 

stream. A subset of the static instructions, when selected correctly, can provide a clear stride 

sequence pattern, while the pattern can be destroyed if one or more other static instructions are 

allowed into the subset. 

5.2.2. Partial‐Global	Stride	

To better describe the partitioning of the memory instructions and reference streams, we 

introduce the concept of partial-global stride. A partial-global stride falls in between local and 

global strides, meaning the strides generated by a subset of all loads and stores. 
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Let the reference stream in Equation 5-1 be divided into two sub-streams: 

Equation 5-4: RS R , R , …, R , R ,   RS R , R , …, R , R , 

We rename the sub-streams in Equation 4 as: 

Equation 5-5: RS R , R , …, R , R , and 

  𝑅𝑆 𝑅 , 𝑅 …, 𝑅 , 𝑅  , 

Then a partial-global stride can be generated from either 𝑅𝑆  or 𝑅𝑆 . For example, from 𝑅𝑆 : 

Equation 5-6: S R R , 0 k m. 

The sequence of partial-global strides from 𝑅𝑆  is: 

Equation 5-7: SS S , …, S , S . 

To capture the patterns within memory strides, we want to divide the static instructions into 

partitions, and isolate the instructions that when put into one stream, disturb the patterns.  

As an example, let us assume the static instructions that generated 𝑅𝑆  in Equation 5-1 is 

divided into two partitions, 𝑃  and 𝑃 , which each contains a subset of all static instructions. 

Then, the reference stream 𝑅𝑆  is divided in Equation 5-4 and Equation 5-5. A reference 

goes into 𝑅𝑆  if its static instruction belongs to 𝑃 , and 𝑅𝑆  if its static 

instruction belongs to 𝑃 . Each reference stream generates its own partial-global stride stream, 

𝑆𝑆  and 𝑆𝑆 . Each partial-global stride stream has its own history table, 

and is free from the disturbance of references in the other instruction partition. 
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5.2.3. Instruction	Partitioning	

The goal for partitioned tables is to have fewer stride sequence permutations, which contributes 

to smaller area, less power consumption, and a lower false positive rate. 

Among the 3 issues listed in 5.2.1, #1 and #2 are the most prevalent. We use an example in 

Figure 5-2 to explain how we can partition the static instructions to resolve these issues. Figure 

5-2 shows a 𝑓𝑜𝑟 loop that accesses two separate arrays of data structures, 𝑎𝑟𝑐 and 𝑝𝑒𝑟𝑚. While 

𝑎𝑟𝑐 is accessed in lines 3 and 6, line 6 is executed only when the condition in line 3 is met. 

Similarly, 𝑝𝑒𝑟𝑚 is accessed in line 10-12 only when the condition in line 7 is met. If we isolate 

the memory instructions into three groups by their line numbers, 𝑙𝑖𝑛𝑒 3, 𝑙𝑖𝑛𝑒 6, and 𝑙𝑖𝑛𝑒𝑠 10

12, the instruction stream within each group will have a consistent memory address shift, and 

thus a clear stride pattern. 

1     for( ; arc < stop_arcs; arc += nr_group ) 
2     { 
3         if( arc->ident > BASIC ) 
4         { 
5             /* red_cost = bea_compute_red_cost( arc ); */ 
6             red_cost = arc->cost - arc->tail->potential + arc->head-
>potential; 
7             if( bea_is_dual_infeasible( arc, red_cost ) ) 
8             { 
9                 basket_size++; 
10                perm[basket_size]->a = arc; 
11                perm[basket_size]->cost = red_cost; 
12                perm[basket_size]->abs_cost = ABS(red_cost); 
13            } 
14        } 
15    } 

Figure 5-2: Code snippet from SPEC CPU2006 [29] 
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The key observation is that, the number of times that each of these lines are executed can help 

distinguish whether it should be put in the same group with another line. This characteristic can 

be represented by the number of unique memory references the corresponding instructions will 

make. For example, assuming that line 3 is tested 𝑚 times and taken 𝑘 times, while line 7 is 

taken 𝑙  times, then line 3 will have 𝑚  unique memory references, line 6 will have 𝑘  unique 

memory references, and line 10-12 will have 𝑙 unique memory references. 

Thus, we use the number of unique memory references as the metric for partitioning static 

instructions. In each individual instruction working set phase, if some instructions appear to have 

the same number of static memory references, it’s likely that they are accessing memory 

locations with similar size and similar stride, and therefore among them there is a better pattern. 

The multi-table approach is compared against the single-table approach to show the benefit of 

partitioning. We collected data on the number of unique sequences and false positive rates before 

and after the static instructions are partitioned into groups. The program execution is divided into 

phases based on different instruction working sets, and at the beginning of each phase the 

instructions are re-partitioned, and the history tables are cleared for the new partitioning. 

From Figure 5-3, the partitioned tables show much fewer entries of unique global stride 

sequences, i.e. the total size of history tables to contain all possible global stride sequences is 

much smaller than a single table. The following two figures show the decrement of maximum 

and average history table sizes after partitioning, in a period of a SimPoint, which consists of 100 

million instructions. The All Phases data is from all instruction working set phases, while the 

Essential Phases data is from all the unique phases excluding their repetitions. 
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Figure 5-3: History table size change after instruction partitioning 

Among the benchmarks, lbm, cactusADM, and hmmer benefit the most from the partitioning, 

while mcf, tonto, and bwaves have little improvement. The benchmarks receiving little benefits 

all have a low false positive rate to start with, i.e. the global stride patterns before partitioning are 

already well organized. One exception, however, is mcf which has more pointer-chasing than 

other benchmarks. 
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5.2.4. Hardware	for	Instruction	Partitioning	

The instruction partitioning depends on counting the number of unique memory references of 

each static instruction. We dedicate a certain length of learning period for this purpose. However, 

such functionality can be expensive to implement, since it is search-intensive and the number of 

unique references of a static instruction can be quite large. Implementation using SRAM is 

relatively inexpensive in hardware design but incurs high search latency and results in high 

performance penalty. Other approaches, mainly using ternary content addressable memory, 

achieves constant search time [30] but requires complex hardware and incurs high area and 

energy overhead [31]. In this section, we present an area and energy-efficient hardware design to 

achieve the instruction partitioning. 

We make two important observations in order to create this design. First, the partitioning 

information can be used on a repeated phase. Thus, there does not have to be learning at every 

phase transition, but only at a new unique phase. Second, to test whether a reference is an unseen 

reference of a static instructions, we do not need a cache to store the original PC and reference 

but can instead use a Bloom filter.  

Beside the search Bloom filter, a cache is needed to store static PCs and a counter associated 

with each PC. The design is illustrated in Figure 5-4. 

To perform instruction partitioning, we dedicate a learning period specifically for learning the 

instruction partitions. This learning period needs to happen before the learning period needed by 

the stride and value Bloom filters described in Chapter 6, since the stride and value Bloom filters 

rely on the instruction partitions to get their content.  
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Figure 5-4: Hardware design for instruction partitioning and partition information storage 

Search	Bloom	Filter	

During the learning period, we concatenate the lowest 24 bits of the PC and the lowest 20 bits of 

the reference and checks whether this data is in a Bloom filter. If it incurs a miss, the counter for 

this PC is increased, and this data is added into the Bloom filter. At the end of the learning period, 

each counter within the cache is checked to a predefined group of ranges, and the associated PC 

is added to the cache storage for that corresponds to this counter’s range. We use Bloom filters to 

store the partition information as well. To reduce the pollution of the search Bloom filter, we 

skip the insertion of a PC and reference pair if this PC’s unique references have reached the 

upper limit of the highest range.  

The search Bloom filter is 4KB in size. With a learning period length of 100K instructions for 

each unique phase, we observe 8% discrepancy in the partitioning outcome compared with 

perfect storage and perfect search. This discrepancy is due to the false positives when testing 

Bloom filter membership, thus is always an underestimation of the counters for the misplaced 
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instructions. This is acceptable because even if some static instruction PC’s unique reference 

count is slightly underestimated, the partitions on the higher ranges still have their patterns intact. 

Counter	Cache	

The counter cache is implemented to have 1024 entries, which is far higher than the average 

number of unique static instructions per phase, which is 402 in our experiments. The cache is 8-

way set associative and uses the static instruction PC’s lowest 24 bits as the address for a 

constant time search and update for this PC’s counter. 

Partition	Information	Bloom	Filters	

Once the learning finishes, the static instruction partitions are stored into the partition 

information Bloom filters. We use four partition information Bloom filters. They have 

heterogeneous sizes to accommodate different sizes of the partitions, that respectively occupies 

50%, 25%, 12.5%, and 12.5% of overall capacity. With a total size of 2KB and inserted with all 

learned static instruction PCs, the Bloom filters shows a false positive rate of 3% on average. 

The above structures are placed near the L1 cache for quick access. At phase transition time, the 

content of the partition information Bloom filters is saved to a L3 cache. We save the content for 

up to 20 unique phases to limit the impact on L3. If a repeated phase occurs, the content of the 

unique phase that is being repeated gets loaded from L3 to the near cache Bloom filters. 

The Bloom filters are implemented using a parallel Bloom filter approach [25] in SRAM, where 

each parallel Bloom filter has only one hash function and need only one read/write port. With 32 

nm technology, the near cache structures, including the search Bloom filter, the counter cache, 
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and the partition information Bloom filters, add 0.55% area overhead to a Sandy Bridge-like core. 

As will be discussed in Section 5.5, we have two separate detectors for stride and value. 

Therefore, the area overhead for instruction partitioning is doubled to be 1.1%. 

5.3. Selecting	the	Effective	Bits	as	Input	

The efficiency of the detector can be further improved by using only a subset of bits from the 

strides. Our preliminary study shows that in more than 99% of the strides in a 64-bit program, 

bits 20 to 63 have no variation. Thus, we only consider the lowest 20 bits of a stride as the input 

to our detector. 

 

Figure 5-5: Impact of stride sequence length 

To find out how many lowest bits we need for the fault detection, we did an exploratory study 

using the lowest 20 bits of each stride and compared the results to that of using the lowest 18 bits. 

In both cases, the sequence includes 3 strides. We experimented using a simple Bloom Filter. 

Given the same training length and Bloom Filter size, using the lower 20 bits could achieve an 
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83% detection rate and 6.4% false positive rate, while using the lower 18 bits could achieve a 45% 

detection rate and 2.3% false positive rate. These numbers indicate a trade-off between detection 

rate and false positive rate that can be adjusted through the number of bits chosen for the dataset. 

For the experiments in the rest of this chapter, we chose to use the lowest 18 bits. 

5.4. Stride	Sequence	Length	

Using a sequence of strides, instead of individual strides, as the input to the Bloom Filter, 

provides a view of pattern across strides. Since the number of unique stride sequences is 

exponential to the sequence length, the length must be carefully evaluated. 

We studied the trend of the true vs. false positive rates as the sequence size changes from 1 to 6, 

shown as a ROC curve in Figure 5-5. The false positive rate increases as the sequence length 

increases, while the rue positive saturates itself and decreases when the sequence length is larger 

than 3. A sequence length of 3 can be used to achieve the highest detection rate. However, for an 

efficient fault detection design, the false positive rate should also be considered. When the 

sequence length increased from 2 to 3, the ROC curve has flattened compared to when the length 

increased from 1 to 2. Therefore, a sequence length of 2 is more cost efficient, and we will use 

this length for the subsequent studies. 

When used as the input to a Bloom filter, the sequence of strides is concatenated into a single bit 

array. For example, when a sequence of two strides are used as an input, each containing the 

lowest 18 bits of a stride, the two 18-bit vector are concatenated into a single 36-bit vector. This 

36-bit vector is the input to the Bloom filter. 
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5.5. Using	Memory	Value	in	Addition	to	Stride	

The data value from a memory access should also be used to increase the fault coverage. Strides 

can be efficient to use when detecting faults, but not all faults result in a stride variance. In some 

cases, a data altered by a single-bit transient fault will not influence the effective addresses of 

any memory instructions. This type of fault can only be detected by examining the memory data 

value. 

Thus, we use data values in addition to strides as our input source for fault detection. To capture 

the patterns within each stream, these two types of inputs are isolated into two detectors, the 

Stride Detector and the Value Detector.  

The effective bits and sequence length were studied on values as well. Like strides, values have 

little variance in the higher bits, thus we only use the lowest 18 bits of a value. Also, like strides, 

value errors can be better detected when static instructions are partitioned into separate sections 

of the detector. Our study on sequence length shows that values are best used individually, thus a 

sequence length of 1 is used for values through the rest of this work.  
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Chapter 6  The Detector: Bloom Filters 

 

This chapter describes a fault detection mechanism that uses Bloom Filters to exploit the 

temporal and spatial locality within the partial-global strides and memory data. We will discuss 

the design and implementation of the Bloom Filters, their effect on fault detection, and the cost 

on performance, area, and power consumption.  

6.1. Overview	

Bloom Filters are used to store the history of memory access patterns in their hashed form and 

check for incoming patterns’ membership for fault detection. In the learning period, a Bloom 

filter is warmed up by inserting memory stride sequences or data values. In the detection phase, 

the incoming stride sequences or data values are tested against the filters to predict faults.  

In Chapter 4, we explained how the different components of the detector are orchestrated on a 

high level, including identifying phase transition and phase repetition, storing and loading Bloom 

filter contents, and using the replay and rollback mechanisms to handle back-end and front-end 

faults. A more detailed architecture overview including the Bloom filter setup is shown in Figure 

6-1. Note that the instruction partitioning information Bloom filter is not shown in detail but 

abstracted into the Partition Selector; only one set of Bloom filters, representing the stride 

detector or value detector, is shown in the figure. 
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Within each Bloom filter, a random XOR-folding hash function is used, which will be discussed 

in Section 6.2. The individual Bloom filters, 0 through 3, each handles a separate static 

instruction partition. The heterogeneous Bloom filter sizes for each partition will be discussed in 

Section 6.3. To reduce hardware overhead, a parallel Bloom filter implementation is used for all 

Bloom filters and is discussed in Section 6.4. The effect of the learning period length is 

explained in Section 6.5. Section 6.6 presents the experimental results, including fault coverage, 

false positive rate, and costs on performance and energy. 

 

Figure 6-1: Design of the value-based fault detector 

6.2. Hash	Function	

A Bloom filter is a bit array that can represent a set of values and test whether a value is a 

member of the set. Each Bloom filter has a set of independent hash functions associated with it. 
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Each hash function can transform an input value into a hashed value. For a Bloom filter with an 

m-bit array and k hash functions, when an input value is given, each hash function can generate a 

value in the range of [0, m-1] to represent a bit location, and the locations within the bit array 

indicated by the k hashed values are set to insert the input value, or tested to see whether the 

input value is a member of the set. 

For our usage, we want our Bloom filter to detect anomalies among all bits of the input value. 

For this purpose, we explored a few options of hash functions.  

Shift‐and‐Add	Hash	Function	

A simple, widely-used hash function is Shift-and-Add as shown in Figure 6-2. 

def simple_hash(values, seed, cap): 
    result = 0 
    for i in range(len(values)): 
        result = result*seed + values[i] 
        result = result & (cap - 1) 
return result 

Figure 6-2: Python code for a shift-and-add hash 

The input bit array is broken into segments, creating a value array 𝑣𝑎𝑙𝑢𝑒𝑠. With each seed, this 

hash function produces a bit location for the Bloom Filter to set. A set of different seeds are used 

to set multiple locations for the same input value. 

This hash function has uneven detection efficiency among the bits of a global stride, since its 

approach is limited by its uneven usage of each bit in the stride.  
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Uniform	XOR‐Folding	Hash	Function	

XOR-Folding hash functions create more equal detection opportunities for each bit within the 

strides. If a stride sequence has m bits, and the Bloom Filter has a capacity of 2n, a Uniform 

XOR-Folding hash divides the stride sequence into segments of k bits, where 𝑘 . Then, the 

segments are XORed, creating a result of n bits, and this n-bit number indicates the bit location 

in the Bloom Filter to be set. Figure 6-3 shows how the Uniform XOR-folding hash function 

works. 

 

Figure 6-3: Uniform XOR-folding of an m-bit input into an n-bit value 

To create multiple hash functions on the same input, each hash function can circularly shift the 

input bit array by a different offset, and then uniformly XOR it. 

The uniform XOR-folding hash may work well with inputs where the bits values are uniformly-

distributed. However, the different bit locations of memory stride sequences and values are not 

equal, since some bits may have more variance than others. Thus, we explored the random XOR-

folding hash as explained next.  
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Random	XOR‐Folding	Hash	Function	

Known as the H3 hash function [23], Random XOR-Folding Hash uses the result of a random 

offset selector, selects bits semi-randomly from the global stride sequence without repetition, and 

form segments of k bits. Random XOR-Folding Hash mitigates the uneven utilization of the 

Bloom Filter bits [24] that compromises the Uniform XOR-Folding Hash fault coverage. 

To create multiple hash functions on the same input, different random offset selectors are used. 

The	Number	of	Hash	Functions	

The number of hash functions, together with the size of the bit array, determines the probability 

of a false positive to a Bloom filter. A Bloom filter false positive means when an input value is 

tested to be a member of the set, while in fact it is not. When we use a Bloom filter for fault 

detection, this test false positive translates into an escaped anomaly, which then translates into 

loss of detection rate. In general, when the data set is small relative to the Bloom filter size, the 

number of Bloom filter false positives is reduced as the number of hash functions increases. 

However, as the data set gets larger, this trend can get reversed [25]. We compared using 4 hash 

functions against 8 hash functions. The result is shown in Figure 6-7, which indicates better 

outcome with 4 hash functions.  

6.3. Heterogeneous	Bloom	Filter	System	

In Chapter 5, we explained the importance of instruction partitioning. The outcome of the 

instruction partitioning is a number of sets that each contains some static instruction PCs. These 
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sets do not necessarily have the same size, and the memory access pattern they hold do not, 

either. Thus, it is important to assign a proper size for the Bloom filter of each partition. 

 

Figure 6-4: Bloom Filter without Partitioning 

A Bloom filter implementation before partitioning is shown in Figure 6-4, which uses k hash 

functions. In the following sections, we will discuss how to partition the static instructions and 

assign sizes to the Bloom filters. 

Identify	the	Instruction	Partitions	

In Chapter 5, we explained how the static instructions can be partitioned using number of unique 

memory references as a measurement. In our implementation, we perform a profiling of the static 

memory instructions and their number of unique references, 𝑢. The static instructions are then 

selected and divided into four partitions: 𝑢 1, 2 𝑢 10, 11 𝑢 40, and 41 𝑢 100. 

All static instruction PCs within a partition are stored in dedicated cache. The Partition Selector 

in Figure 6-1 searches this cache for a PC and selects the corresponding Bloom filter partition. 

The stride sequence and memory value associated with this PC then goes into that Bloom filter 

partition. 
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Estimate	Bloom	Filter	Size	for	Each	Instruction	Partition	

Not all instruction partitions require the same Bloom Filter size. To achieve a high fault detection 

rate while keeping the false positive rate low, we need to consider factors including the number 

of unique PCs in the partition, the number of unique references per PC, the size of the stride 

sequence, etc. For the stride Bloom filter, when determining the Bloom Filter size, the instruction 

partitions are sorted by the number of unique PCs they hold. The largest Bloom filter partition is 

assigned to the static instruction partition with the greatest number of PCs. For the value Bloom 

filter, however, the number of unique values should also be considered. The product of the 

unique PC count and the counter lower limit is used to sort the instruction partitions. Considering 

the feasibility of implementation, we use four partitions, with their size proportional to 1:1:2:4., 

and so on. 

 

Figure 6-5: Bloom Filters after Partitioning 
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The Bloom filter after partitioning is shown in Figure 6-5. Each partition will still have k hash 

functions. In the example in Figure 6-5, Partition 2 is selected for the input stride sequence or 

data, since the Partition Selector designated Partition 2 for the current PC. 

6.4. True	versus	Parallel	Bloom	Filters	

To implement a Bloom filter with k hash functions in the SRAM, we’ll need k read and write 

ports. Since the size of the SRAM increases quadratically with the number of ports, we will need 

an area-efficient implementation of the Bloom filter. 

 

Figure 6-6: Parallel Bloom filter implementation for one partition 

The concept of a true Bloom signature versus a parallel Bloom signature has been introduced by 

existing works [24]. By using the parallel Bloom filter implementation, the area overhead is 

quadratically reduced, while the detection rate is barely affected. 

In our study, we use a similar definition. A true Bloom filter is when all k hash functions are 

used by a single Bloom filter. Its parallel Bloom filters counterpart is defined by dividing the bit 
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field of the true Bloom filter into k Bloom filters, and each assigned one hash function. This 

implementation is illustrated in Figure 6-6. 

Our experiment shows that the parallel Bloom filters achieves a fault detection rate for over 94% 

of the detection rate of a true Bloom filter, while the false positive rate is reduced by 36% 

compared to a true Bloom filter. The result is shown in Figure 6-7. In this experiment, we use a 

sequence of 2 strides for the stride Bloom filter, and a sequence of 1 data value for the value 

Bloom filter, while both filters are of 1KB size, with 10000 micro-ops training length. The 

results are extracted from the 12 SPEC CPU2006 benchmarks, and each data point represent the 

average value of all 12 benchmarks’ results. 

 

Figure 6-7: Fault coverage and false positive comparison between different Bloom filter 

implementations: True Bloom filter and parallel Bloom filter 
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6.5. Effect	of	Learning	Period	Length	

A learning period is dedicated to the stride and value Bloom filters, after the instruction 

partitions are learned or re-loaded. The learning period length is a vital parameter that affects the 

effectiveness of the stride and value detector and the performance of the system. 

Effect	on	Fault	Detection	Rate	and	False	Positive	rate	

The length of the learning period has a direct impact on the fault detection rate and false positive 

rate. Since new stride sequence or data value can keep showing up, the learning period length is 

positively related to the size, n, of the data set inserted into the Bloom filters. In the meantime, 

the probability of a single bit still being 0 after n insertions is negatively related to n [25]. 

Therefore, the longer the learning period, the more bits get set in the Bloom filters, and the 

higher false positive rate when testing a new value against a Bloom filter. As a fault detector, the 

Bloom filters will report lower fault detection rate and lower false positive rate. 

Effect	on	Energy	Cost	

During the learning period, the program thread needs to be protected using additional measures 

since the detector is not detecting any fault. The thread can be protected by protector threads that 

form a dual modular redundancy (DMR) or triple modular redundancy (TMR) [1] [69]. This 

result in energy overhead that is proportional to the learning period length. 

Learning	Period	Study	

To quantify the fraction of the learning period length relative to the program execution length, 

we first examine when the learning period is needed. To keep the fault detector’s sensitivity, we 
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divide the program execution in to working set phases [7], and each phase transition will trigger 

a refresh on the Bloom filters. We use a working set phase length at a granularity of 100,000 

instructions, for a total execution length of 100 million instructions. We enable checking on 

repetitive phases. Within the 100 million instruction program execution, we see on average 13 

unique phases across the benchmarks. For each working set phase, we either have an explicit 

learning period, or reuse the warmed Bloom filter from the previous occurrence of an identical 

phase. 

 

Figure 6-8: Impact of learning period length on fault coverage and false positive rate 

To optimize the effect of the learning period, we experimented with 3 different learning period 

lengths: 4000, 16000, and 40000 instructions per phase. Let the learning period length be 

denoted as m, the execution length as n, and the number of unique phases as k. The fraction of 

the learning period relative to the program execution length can be calculated by: 

m * k / n 
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Since k=13 (See Figure 4-7), the three learning period lengths project to 0.1%, 0.2%, and 0.5% 

of the program execution time. 

Figure 6-8 shows the fault detection rate and false positive rate of each of the learning period 

lengths. Both rates are negatively related to the length of the learning period. The low learning 

times, 0.1% and 0.2%, guarantee high fault coverage at 90%, but report over 1.6% and 1.9% 

false positive rates respectively, which can create a drastic performance overhead. The 0.5% 

learning time, however, shows a fault coverage of 84% while incurring only 0.6% false positive 

rate. Thus, in our subsequent study, the 0.5% learning time is used. 

6.6. Evaluation	

We evaluated the fault detector design on an out-of-order X64 architecture as described in 

Chapter 5. We will show both the fault detection rate and the false positive rate and discuss the 

impact on performance, area, and energy consumption. 

6.6.1. Fault	Injection	

The fault injection methodology we chose is flipping a register bit before its write-back. This 

method can account for an abundance of soft error behaviors [16, 17].  

For each of the 12 SPEC CPU 2006 benchmarks we evaluated, we injected 50,000 faults. Out of 

all injected faults, 3.7% resulted in program crash. For the remaining faults, we distinguish SDC 

from a masked fault by monitoring the dynamic memory instructions, as well as memory 

reference and memory value traces, for at least 5000 instructions after the point of fault injection. 

Similar to past studies [16, 17], we assume that a fault is masked if no divergence is found after 
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the monitored length. The fraction of masked faults, faults that resulted in program crash, and 

SDCs are shown in Figure 6-9 (a). On average, 1173 faults manifested themselves in the form of 

silent data corruption, and we will report our coverage on these faults only. 

 

(a) Fault injection broken down by impact on program execution 

 

(b) Silent data corruptions broken down by impact on stride and value 

Figure 6-9: Fault Injection Outcome 
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A further breakdown of the SDCs are shown in Figure 6-9 (b) by whether they affected the 

memory value stream, or the memory stride stream, or both. On average, 82% of faults altered 

the memory value stream, while only 63% altered the memory stride stream. For 8 out of 12 

benchmarks, >50% faults affected both stride and value streams. For hmmer and libquantum, the 

majority of the faults affected the value stream only. For lbm and namd, there is a significant 

portion of faults that affected stride only. The diversified characteristics are expected, since our 

fault injection is through the write-back register. If a memory instruction’s reference does not go 

through any computation logic and never gets writen back to a register, the reference will not be 

modified, even though the value associated with the same instruction can be changed by a fault, 

which results in the value trace diverging from the fault-free trace while the stride trace stays 

unchanged. The same applies to when a fault results in stride trace divergence but not value trace 

changes. 

6.6.2. Detector	Configuration	

Delay buffer 7 instructions 
Instruction partition learning Bloom 
filter 

4KB (reference-based partition), 4KB (value-based 
partition) 

Instruction partition learning counter 
cache 

1024 entries, 4 bytes per entry, 4-way set associative 

Instruction partition storage Bloom 
filter 

2KB (reference-based partition), 2KB (value-based 
partition) 

Detector Bloom filters 1KB (stride), 1KB (value) 
Number of saved unique phases per 
100M instructions 

20 (unique phase signatures, instruction partition 
Bloom filters, and detector Bloom filters in L3) 

Table 6-1: Hardware configurations for the fault detection structures 

Memory stride and memory data are both used for fault detection, but in two isolated detectors. 

Both detectors have the same total size of 1KB and are partitioned into 4 partitions using the 
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same methodology mentioned in Chapter 5. The stride detector takes in stride sequences that 

consists two strides, while the data detector takes in a single memory value at one time. Both 

uses only the lowest 18 bits of the stride or data. 

A detailed hardware configuration is shown in Table 6-1. We use the replay mechanism with a 

delay buffer same as FaultHound [17] to correct faults on the backend. Within the length of a 

100M instruction SimPoint [18], a maximum of 20 unique phases’ detector information can be 

saved and reloaded when repeated. This includes the unique phase signatures, the Bloom filters 

that stores the instruction partition information, and the Bloom filters for the stride and value 

patterns. 

6.6.3. Detection	using	Memory	Stride	and	Memory	Value	

In this section, we discuss the fault coverage and the false positive rate of the detector. The two 

detectors can have an overlap in their fault coverage, while they are also complimentary enough 

to boost the overall fault detection rate. The reasons are twofold. On one hand, the injected faults 

can have an impact on stride only or data only. On the other hand, the two detector’s input data 

sets are fundamentally different even when no fault is injected. These conditions create a 

discrepancy in the two detector’s behavior. 

Fault	Coverage	

The fault coverage is shown in Figure 6-10. On average, we achieve 84% fault coverage on all 

faults that can be corrected on the backend. We use a processor core pipeline similar to the one 

used by FaultHound [17], and the backend, which is 80% of the pipeline area, is responsible for a 
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proportion of 80% of all faults injected in the core, while the frontend is responsible for the other 

20%. Thus, the backend fault detector covers 67.2% of all faults. As a comparison, PBFS [16] 

covers 30% backend faults, while FaultHound has a coverage of 60%. 

 

Figure 6-10: Fault coverage of the value-based detector 

There are some dramatic differences among the benchmarks in fault coverage. For hmmer, the 

value detector is the main contributor in fault detection. This is because hmmer’s reference/stride 

trace is insensitive to the injected faults, leaving little room for the stride detector to perform. For 

the same reason, lbm benefits largely from its stride detector. Lbm shows higher coverage than 

hmmer, which is most likely because lbm focuses on matrix computation and has a small 

memory instruction working set, and the stride patterns are quite strong as shown in Figure 5-3. 

Libquantum shows the lowest detection rate. One possible reason is the low memory instruction 

percentage: libquantum has only 12% dynamic memory instructions, compared with 24% 

average of all benchmarks. Other possible reasons include noises in the value patterns; its value 
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detector detected fewer faults than the stride detector even though there are far more diverged 

value traces than stride traces. 

 

Figure 6-11: False positive rate of the value-based detector 

False	Positives	

The false positive rates are shown in Figure 6-11 with an average of 0.6% of all instructions. 

This is comparable with PBFS [16]’s ~0.5% and much smaller than FaultHound [17]’s ~3%. 

This implies low energy overhead of our fault detection mechanism. Most of the benchmarks 

exhibit a false positive rate that is positively related to its fault coverage. Libquantum, which has 

the lowest fault detection rate due to value noises, also has the lowest false positive rate. This 

trend implies that the fault coverage and false positive rate could have been affected by the 

Bloom filter sizes, which might improve if Bloom filter sizes are customized for different 
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which has relatively low fault coverage but high false positive rate. This phenomenon is most 

likely due to the instruction partitioning algorithm, which is optimized for the stride detector but 

not the value detector. 

 

(a) Performance overhead in fault-free execution 

 

(b) Performance overhead breakdown 

Figure 6-12: Performance impact on the system 
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6.6.4. Performance,	Area,	and	Energy	Impact	

With the evaluation setup described in Chapter 3, we simulated the performance in a fault-free 

program execution to evaluate the performance impact. We also use McPAT to calculate core 

power and area, and CACTI to calculate the power and area of the fault detector. The energy 

overhead is calculated based on the power of different components and the performance 

overhead. 

Performance	Impact	

On average, the detector incurs 6.4% performance overhead, with the numbers of all benchmarks 

shown in Figure 6-12 (a). As a comparison, FaultHound [17]’s backend fault detection incurs 

higher performance degradation (e.g., 9%). The performance improvement mainly attributes to 

our low false rate. 

To better explain the results, we break down the performance overhead in Figure 6-12 (b) into 

three categories. 

 The first category shows the impact of the learning period, which is responsible for half 

of all performance overhead. As mentioned in Chapter 5, we dedicate 200K instructions 

for each unique phase to learn the instruction partitions. We dedicate another 40K 

instructions per unique phase for learning the stride and value patterns. The performance 

impact of this category is proportional to the number of unique phases, and as a result, 

gcc experiences the highest performance degradation since it has the greatest number of 

unique phases within the SimPoint. 
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 The second category is the overhead incurred during phase transition, which is merely 2% 

of the total overhead. At a phase transition, the partition information Bloom filters, as 

well as the stride and value Bloom filters, need to be refreshed. If the ending phase is a 

newly discovered unique phase, these Bloom filters’ content needs to be stored into L3 

cache. If the next phase is a repeating phase, the Bloom filter content of the unique phase 

that is being repeated on needs to be reloaded from L3 into the respective Bloom filters. 

These Bloom filters has a total size of 6KB per phase. Given an average of 13 unique 

phases and 74 phase repetition transitions throughout the SimPoint, the overhead of 

storing and loading these structures are quite small compared to the overall execution 

time. 

 The last category is the performance penalty due to the replay upon a detector signal, 

which is responsible for nearly half of the overhead. Same as FaultHound [17], we use 

the lightweight backend replay to recover from faults by adding a delay buffer to the 

issue queue. Upon a detector signal, the instructions in the delay buffer get replayed in 

the backend pipeline stages. Thus, the performance overhead of this category is mostly 

proportional to the false positive rate. 

Area	Cost	

The structures introduced by our fault detection mechanism include near-L1 dedicated cache for 

unique phase signatures, the search Bloom filter and the counter cache for instruction partition 

learning, the partition information Bloom filters for storing and searching the partitions, and the 

stride and value Bloom filters for fault detection. These structures together incur an area cost of 

1.28% of processor core area.  
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Figure 6-13: Area cost breakdown by purpose 

Figure 6-13 shows a breakdown of all structures. The search Bloom filter and counter cache 

takes up 86% of all newly added area cost. These structures are intentionally designed to be large 

so that they have as few conflicts as possible, in order to accurately learn the static instruction 

partitions. This area cost can be justified since accurate instruction partitioning is the foundation 

of the fault detector’s effectiveness. 

Energy	Overhead	

Overall, in a fault-free execution, the system experiences 9.8% energy overhead. In comparison, 

FaultHound [17] incurs ~11% energy overhead for its backend fault detection. 

As shown in Figure 6-14 (a), the energy overhead of each benchmark is mostly proportional to 

the performance overhead shown in Figure 6-12 (a). This is explained by a breakdown by 

component in Figure 6-14 (b). The energy overhead consists of three major components. 
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(a) Energy overhead in fault-free execution 

 

(b) Energy overhead breakdown into three major components 

Figure 6-14: Energy overhead 

 Static power of the newly added structures, which is responsible for 21% of all energy 

overhead.  

0

0.05

0.1

0.15

0.2

0.25

Energy Overhead

21%

66%

13%

Energy Overhead Breakdown

Fault Detector Static Performance Penalty Fault Detector Dynamic



85 
 

 System energy overhead due to performance penalty, which is 66% of the total overhead. 

This explains why the energy overhead is almost proportional to the performance 

overhead.  

 Dynamic power consumption by the backend fault detection mechanism, including power 

usage during the learning periods, phase transitions, and Bloom filter lookups for fault 

detection. This category incurs 13% of all energy overhead since our structures are small 

and the dynamic accesses  
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Chapter 7  Front-End Fault Filtering 

 

In this chapter we discuss how front-end faults can be filtered. Front-end faults are differentiated 

from back-end faults in that they occur in the front-end stages of the processor pipeline, which 

include fetch, decode, rename, and dispatch. These faults can only be corrected by a full pipeline 

rollback, but not the back-end replay as described in Section 4.3. Since a rollback incurs 

significant performance and energy overhead, we want to have a dedicated filtering mechanism 

for signaling front-end faults, and more specifically, distinguishing a front-end fault from a false 

positive to avoid unnecessary penalties. 

This chapter is organized as follows: 

1. We first discuss in Section 7.1 how a front-end fault uniquely impacts program locality. 

Its unique characteristics are the basis of distinguishing a front-end fault from a false 

positive.  

2. In 7.2, we incorporate the findings into how program locality is represented in our fault 

detector and presents a detailed filter design. 

3. We present the experimental results of our front-end fault filter in Section 7.3. We also 

discuss the trade-offs between fault coverage and performance/power penalty under 

different parameter settings. 
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7.1. Front‐End	Fault	vs.	False	Positive	

Modern processors are vulnerable to transient faults at all pipeline stages. Our value-based fault 

detector, described in Chapter 6, signals faults when the known program locality is disrupted. 

For back-end faults, they can be corrected by a back-end replay. For a signal caused by a front-

end fault, the replay is not able to correct it given the limited size of the replay buffer (see 

Section 4.4). For a signal caused by a false positive of the detector, it cannot be “corrected” by 

the replay, either, since the microarchitectural states will remain the same after replay. Thus, a 

filtering mechanism should be in place for distinguishing front-end faults from false positives. 

Within the front-end pipeline stages, register renaming unit is usually the most area and energy 

consuming [20-22], and thus is the most susceptive to faults. We focus on detecting rename 

faults which represents most front-end faults. 

Register renaming is a technique that maps architectural registers to physical registers, in order 

to eliminate false dependencies among instructions and increase instruction-level parallelism. 

The result of a fault that hits the renaming unit is usually that a physical register lookup gets 

disrupted and it returns an incorrect physical register index. The incorrect physical register index, 

if invalid or out of boundary, will cause a program to crash. Otherwise, in a silent data corruption 

scenario, it results in a read or write to an unintended physical register, and consequently causes 

a later instruction to use an unintended value. 

To detect a transient fault on the renaming unit, we need to observe the anomalies that the 

rename fault may cause in the behavior of program locality and the outcome of our fault detector. 

A similar approach to think about front-end fault filtering was used in previous work [17]. As 
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described in Chapter 6, we use parallel Bloom filters to identify known memory stride and value 

patterns. A rename fault results in an unintended value to be used, and thus has an unintended 

memory value and stride pattern to be sent to the Bloom filters for fault detection. Same as a 

false positive from the detector, a detector signal is raised in the case of a rename fault. However, 

different from a false positive, an unintended value from a rename fault hits the detector at cold 

locations, i.e. locations that are not recently hit by other detector signals. In contrast, a false 

positive usually indicates a shift in program execution phases, and the detector location which 

raises a signal by a false positive can raise a signal repeatedly during the phase shift. 

 

Figure 7-1: A rename fault’s impact on the outcome of our detector 

The detector behavior in the case of a rename fault is shown in Figure 7-1. The parallel Bloom 

filter’s bit vector is divided into 4 segments to indicate the locations where a signal is raised. In 

Step 1 through 4, detector signals were raised in segment #1 and #2 repeatedly, which indicates a 

phase transition. In Step 5, an unintended data pattern resulted from a rename fault causes a 

detector signal in segment #4. 
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With this observation, we use a biased squash state machine to monitor segments of the Bloom 

filter. If a segment has not seen a detector signal in the past 𝑡ℎ times of any detector signals, and 

sees a signal in the next time, this signal will be filtered as front-end fault. Repeated signals on a 

segment will be filtered as false positives and suppressed. 

 

Figure 7-2: Using biased squash state machines for rename fault detection 

An example of how a rename fault is filtered, and thus a rollback is triggered, using the 

previously described approach is shown in Figure 7-2. Each step corresponds to its counterpart in 

Figure 7-1. The parallel Bloom filter is divided into 4 segments. For each segment, a squash state 

machine (SSM) is installed. The SSM monitors whether a signal has been raised by the detector 

against this segment. Assuming the trigger threshold 𝑡ℎ 4, segment #4 triggers a rollback 

when the 5th global signal is raised against it, since there has been 4 consecutive no-signals 

before a signal. Segment #1 and segment #2 does not trigger a rollback at the detector signals 

raised against them since their consecutive no-signals do not meet the threshold. Instead, they 

suppress the signals as false positives. 
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The state transition and rollback-triggering can be represented by the state machine design in 

Figure 7-3. This is a biased state machine which triggers a rollback or pipeline squash when a 

detector signal is filtered to be a front-end fault. Each Bloom filter segment is assigned one such 

squash state machine (SSM), as shown in Figure 7-3. 

 

Figure 7-3: The state machine that filters detector signals and triggers rollback for front-end 

faults 

7.2. Front‐End	Fault	Filter	Design	

Due to the high performance and energy penalty of a rollback, the key design constraint for the 

front-end fault filter is to generate as few false positive as possible. 

The false positive rate of the front-end fault filter is determined by the probability of each single 

SSM, and thus each parallel Bloom filter, issuing a trigger. We use the following parameters and 

equations for calculating a projected form of the false positive rate. 
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The parallel Bloom filter, the SSMs, and some parameters are illustrated in Figure 7-4. Let the 

parallel Bloom filter length, in bits, be 𝐿, the number of squash state machines per parallel 

Bloom filter be 𝑆, and the threshold of consecutive detector signals before a trigger be 𝑡ℎ. The 

number of bits covered by one squash state machine will thus be .  

 

 

Figure 7-4: Biased squash state machine for one parallel Bloom filter 

Assuming the probability of signal is uniformly distributed among all bits of a parallel Bloom 

filter, the probability of one bit within the parallel Bloom filter to be signaled by the detector is: 

𝑃  
1
𝐿

 

The probability for one SSM segment within the parallel Bloom filter to be signaled is: 

𝑃 1 1 𝑃  
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Based on our design, the probability for one squash state machine to trigger a rollback is 

Equation 7-1: P 1 P ∙ P   

Or: 

𝑃 1
1
𝐿

∙

∙ 1 1
1
𝐿

 

The probability for one parallel Bloom filter to get a rollback trigger from any of its associated 

SSMs is: 

Equation 7-2: P _ 1 1 P   

 

Figure 7-5: False positive rate of a squash state machine as a function of the number of SSMs 

and the trigger threshold. 
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Figure 7-6: False positive rate of a parallel Bloom filter as a function of the number of SSMs and 

the trigger threshold. 

Equation 7-2 gives us a guideline on choosing our parameters for the front-end fault filter. The 

expanded form of this formula is rather complex, so we do not provide it here. However, within 

the range of possible values for our implementation, Figure 7-5 and Figure 6 show how the 

projected false positive rate changes over the two main parameters, the number of SSMs per 

parallel Bloom filter and the trigger threshold, i.e. the number of no-signals before a signal to be 

filtered as a trigger. The parallel Bloom filter size 𝐿 is set to be 1024 bits in the figures, although 

we did the same calculation with 𝐿 being 2048 and 4096 respectively and found that the trends 

are almost identical. 

From Figure 7-5, the projected false positive rate of one squash state machine decreases as the 

trigger threshold increases, no matter what value 𝑆, i.e. the number of SSMs used for one parallel 

Bloom filter (PBF), is. This is expected since in Equation 7-1, 1 𝑃  decreases as 𝑡ℎ 
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increases. With 4 SSMs per PBF, the false positive rate decreases faster, from 10.5% when 𝑡ℎ

3 to 0.5% when 𝑡ℎ 15. With 32 SSMs per PBF, the false positive rate decreases slower, from 

2.8% when 𝑡ℎ 3 to 1.9% when 𝑡ℎ 15. It may seem that for the different 𝑆 values, we can 

find a combination of parameters to achieve a low false positive rate. However, we cannot solely 

depend on the FP rate of one single SSM for choosing the parameter values of the filter, since 

one parallel Bloom filter is consisted of multiple SSMs and the probability needs to be calculated 

using Equation 7-2. 

From Figure 7-6, the projected false positive rate of one parallel Bloom filter still decreases as 

the trigger threshold increases. However, as the number of SSMs per PBF increases, the false 

positive rate increases significantly. Thus, to achieve a low false positive rate for one parallel 

Bloom filter, we need to have a small 𝑆 value and a high 𝑡ℎ value. 

7.3. Experimental	Results	

In this section we present the experimental results fault coverage, false positive rate, and the 

incurred performance and energy overhead. 

7.3.1. Fault	injection	

In our experimental setup, we injected 2000 single-bit faults into the rename stage of an out-of-

order CPU. 12 of the SPEC CPU2006 benchmarks were run to evaluate the fault injection impact. 

Out of all the injected faults, we categorize the outcome of an injection into three categories: 

Silent data corruption (SDC), program crash, and unchanged behavior. Figure 7-7 shows the 
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breakdown of the outcome, as well as its specific impact on memory address stride and memory 

access value. 

 

(a) Rename fault injection broken down by impact on program execution 

 

(b) Rename fault injection broken down by impact on stride and value 

Figure 7-7: Rename fault injection outcome 
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As shown in Figure 7-7 (a), about 50% of the rename faults resulted in a program crash. For the 

remaining faults, we need to distinguish SDCs from masked ones. Same as the backend fault 

injection, we monitor at least 5000 instructions following the fault injection. The dynamic 

memory instructions, memory strides, and memory values are compared to those of a fault-free 

execution. If a divergence is not found after the monitored length, the fault is considered masked. 

Out of all injected faults, 27% are masked. The remaining 23% faults are silent data corruptions 

(SDC), for which we will report fault coverage and false positives. 

The stride trace and the value trace show slightly different sensitivity to the rename faults. From 

Figure 7-7 (b) which gives a breakdown of all the SDCs by their impact on strides and values. 

About 10% has changed only the stride trace, 36% has changed the value trace, and the 

remaining 54% has changed both the stride and the value traces. Since either of stride detector’s 

or the value detector’s filters can trigger a rollback, this breakdown gives us a fertile ground to 

capture front-end faults. 

7.3.2. Fault	Filter	Outcome	

Our front-end fault filter is evaluated using 4 SSMs per parallel Bloom filter, and a trigger 

threshold of 15. For all SDCs resulted from the rename faults injection, the fault coverage, as 

well as the false positive rate from the stride-based detector’s filter, the value-based detector’s 

filter, and both combined, are studied.  
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Fault	Coverage	

 

(a) Fault coverage of the front-end fault filter, 𝑆 4, 𝑡ℎ 15 

 

(b) False positive rate of the front-end fault filter, 𝑆 4, 𝑡ℎ 15 

Figure 7-8: Fault coverage and false positive of the front-end fault filter 
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The front-end fault filter’s coverage rate for all benchmarks are shown in Figure 7-8 (a). On 

average, the fault coverage is 67% of all rename SDCs.  

The front-end fault filter yielded relatively high coverage on most of the benchmarks. Especially, 

gcc and libquantum shows >90% fault coverage. We observed one main reason for this 

phenomenon. A significant portion of the coverage comes from the filter associated with the 

stride-based detector. These benchmarks have a larger number of faults that altered the stride 

trace, and as discussed in Chapter 6, the stride detector is more optimized than the value detector 

for fault detection. The same applies to calculix. 

On the other hand, cactusADM and lbm exhibits relatively low fault coverage. This could 

attribute to one or a combination of two reasons: 

 Within the parallel Bloom filter, all segments are frequently hit, thus an error can be left 

unfiltered. 

 The fault detector uses only 1 value (compared to 2 strides) as the data input for the 

Bloom filters. This may result in additional difficulty for an unintended value to be 

filtered. 

Since the frontend is responsible for 20% of processor core pipeline area, this translates into 13.6% 

coverage of all faults. Combined with the backend fault detector, our fault detection mechanism 

shows a total fault coverage of 80.8%. In comparison, FaultHound [17] has a total fault coverage 

of 75% on SDCs. 
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False	Positives	

The false positive rates of all benchmarks are shown in Figure 7-8 (b). On average, the front-end 

fault filter incurs a false positive of 0.09% among all instructions. The stride and value filter each 

are responsible for about half of the false positives. Benchmarks like calculix and bzip2 show 

relatively high false positive rate. Others, like libquantum, incurs extremely few false positives. 

The false positive rate is affected by a combination of factors, mainly the working set size of 

memory strides and values, as well as the occupancy rate of the Bloom filters, i.e. the percentage 

of bits set to 1 within the Bloom filters. One additional observation with libquantum is that, with 

the results shown in Chapter 6, libquantum was among the ones with lower backend coverage, 

which could be due to the Bloom filter size being smaller than ideal for its backend detector to 

signal a fault. This becomes an advantage for front-end fault detection. Since there are fewer 

backend detector signals, the state machines restore to the initial state less often, creating less 

chance for front-end fault filter false positives. 

7.3.3. Performance	and	Energy	Impact	

Recovery penalty Full pipeline rollback (~100 instructions) 
Front-end squash state machines 128 (stride), 128 (value), 4 bits each 

Table 7-1:  Hardware configuration for the front-end fault filter 

With the evaluation setup described in Chapter 3, we simulated the performance in a fault-free 

program execution. The hardware parameters are shown in Table 7-1. Since the 4-bit state 

machines are much smaller than the caches and Bloom filters, we did not model the area or 
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power for these state machines but focus the discussion on the performance and energy overhead 

incurred during rollbacks. 

 

(a) Performance overhead in fault-free execution 

 

(b) Performance overhead breakdown 

Figure 7-9: Performance overhead relative to baseline system 
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Performance	Impact	

Overall, the detector incurs 21% performance overhead when detecting both backend and 

frontend faults, as shown in Figure 7-9 (a). This more than doubled the backend detector-only 

performance overhead discussed in Chapter 6. The increase is mainly due to the high rollback 

penalty of false positives, as shown in the breakdown in Figure 7-9 (b). When the front-end filter 

detects a front-end fault or a false positive, a full pipeline rollback is triggered to recover from 

the rename fault. The rollback squashes all previous instructions in the pipeline, which usually 

results in the re-execution of ~100 instructions in an out-of-order issue processor [16, 17]. 

The performance overhead far less than what PBFS [16] has (e.g., 100%) since PBFS triggers a 

full pipeline rollback for every perturbation. However, our overhead is higher than what 

FaultHound [17] reported (e.g., 10%). By comparison, we do have the learning periods that 

FaultHound does not have, which is responsible for 3% of overall performance degradation.  The 

rest of the difference is mainly due to discrepancies in simulation techniques and workloads. 

Beside the SPEC2006 benchmarks, FaultHound used additional workloads that are memory-

intensive, whose high cache miss rate helps hide part of performance penalty incurred by the full 

pipeline rollbacks and results in lower performance overhead.  

Energy	Overhead	

Overall, in a fault-free execution, the system experiences 25% energy overhead as shown in 

Figure 7-10 (a). Compared to the backend-only fault detector’s 9.8% energy overhead, the front-

end fault filter added another 15% overhead in energy consumption. The energy overhead is 

proportional to the performance overhead, since the majority of the overhead comes from full 
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pipeline rollbacks incurred during false positives of the front-end fault filter as detailed in Figure 

7-10 (b). 

 

(a) Energy overhead in fault-free execution 

 

(b) Energy overhead breakdown 

Figure 7-10: Energy overhead relative to baseline system 
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Our energy overhead is far less than that of PBFS (e.g., 100%) and is the same as what 

FaultHound reported (e.g., 25%). FaultHound’s energy overhead could not be hidden even 

though the performance cost was reduced by workload characteristics. 
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Chapter 8  Efficient Parameter Variation 

Sampling for Architecture Simulations 

 

8.1. Introduction	

In both architecture and design automation communities, large scale Monte Carlo simulations are 

widely used to investigate the probabilistic impacts of manufacturing variation [44]. These 

variations follow complex, random behavior and influence the behavior of circuits and 

architectures in profound manner, limiting the applicability of analytical models and steering 

researchers toward Monte Carlo simulation. Typically, a single Monte Carlo experiment consists 

of generating hundreds or thousands of random parameter variation scenarios and simulating 

either a circuit or processor design under each of those scenarios. However, the total simulation 

cost for many parameter variation studies can be enormous. In the realm of architecture, each 

Monte Carlo simulation would require running a detailed architecture simulator for anywhere 

from one hundred million to one billion instructions – a task which may take hours. Given that 

most recent studies in the architecture community may incorporate ten or more individual 

benchmark programs [45]– [47], the full set of Monte Carlo simulations may require thousands 

of compute-hours. 
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If left unaddressed, the burdensome architectural simulation time associated with parameter 

variation studies may have adverse impacts. At the risk of reducing simulation accuracy, 

researchers may choose to use fewer Monte Carlo samples, simulate a smaller window of 

program execution (e.g. 10 million instead of 100 million instructions), select a faster but cruder 

and less detailed simulator model, or subset the benchmark suite. As previous work has shown 

(e.g., [48], [49]), corner-cutting in the name of reducing simulation time can have disastrous 

effects on accuracy of architecture studies and in some extreme cases may draw researchers to 

incorrect conclusions. 

While there have been successful attempts to reduce Monte Carlo simulation time in the circuit 

domain, these approaches cannot directly be applied to architecture [50]. The circuit approaches 

attempt to reduce the simulated samples while retaining the same statistical properties. In 

particular, circuit-level studies assume knowledge of circuit structure and model variation at the 

gate level while architecture studies are at a much higher semantic level and investigate designs 

with billions of gates. We address this problem by bridging this semantic gap and making the 

approach scalable to architecture. 

At the heart of the motivation for this work is the observation that significant gains in the 

efficiency of variation-aware architecture simulation can be achieved if better sampling 

methodology for parameter variation is accommodated. Specifically, we postulate that we can 

reduce the number of samples needed to achieve statistically sound results if we use sequences 

that are guaranteed to give faster convergence than Monte Carlo. To do this we must bridge a gap 

in understanding between circuit and architecture. We adapt several existing circuit-level 

techniques to make them suitable for this domain and introduce several novel approaches that 
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further improve simulation efficacy. The main contributions of this paper can be summarized as 

follows: 

A. Adapting Low-Discrepancy Sampling Methods to Architectural Simulation: Low-Discrepancy 

(LD) sampling techniques generate quasi-random samples defined to have lower integration 

errors than true Monte Carlo sequences [51]. By implementing low-discrepancy techniques into 

variation map generation, the sample space of parameter variation can be covered by fewer 

samples relative to Monte Carlo sampling approaches. This efficient sampling methodology 

leads to large reduction in architectural simulation time. 

B. Introducing Multi-Resolution Grid Maps: To better represent sensitive geographic regions of 

the chip, we divide it into a non- uniform grid. For processor components that are more sensitive 

to the parameter variation, we assign a finer grid resolution, and apply coarser granularity to 

those components which are less sensitive. In total, we improve the effectiveness and efficiency 

of the parameter variation representation, while maintaining the same overall complexity of 

representation. 

C. Comprehensive Experimental Evaluation: We implement and evaluate the proposed 

methodologies. Our results demonstrate that for the selected microarchitecture level timing error 

and leakage power estimation, the low-discrepancy sampling and multi-resolution grid model 

give at least 3.3× faster convergence than Monte Carlo sampling. 

The rest of this paper is structured as follows. In Section II we recollect some necessary 

background for understanding the proposed techniques, which we elaborate upon in Section 
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III. Section IV details the quantitative benefits of our work by presenting the results of our 

experimental evaluations. Section V concludes the article and outlines directions for future work. 

8.2. Background	

Predicting the impact of manufacturing variation on circuit and architecture designs has become 

a challenging and increasingly important task for several reasons [44], [52]. The fabrication 

process introduces prominent variations to the threshold voltage, Vth, and the effective gate 

length, Leff of transistors [44], [53], [54].  These parameter variations include both true 

random components which are independent and systematic components that are a function of the 

chip geometry and exhibit complex correlation patterns [55]. Modeling and simulation 

approaches must correctly account for the way that the parameter variation impacts circuit delay 

while capturing the spatial correlations. 

                                          

(a) Standard Monte Carlo                              (b) Quasi-Monte Carlo 

Figure 8-1: Comparing 2D sequences generated with standard Monte Carlo and Low-

Discrepancy techniques. The two examples have an equal number of points 

Due to the probabilistic nature of manufacturing variations, and the complex interactions 

between transistor parameters, stochastic methods including Monte Carlo(MC) experiments 
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based on repeated trials have become powerful tools for studying the consequences of parameter 

variation and developing architectural and circuit innovations to counter them [46], [56]. At a 

high-level, the approach consists of generating two-dimensional fields which represent random 

parameter variation which obey the before mentioned statistical properties and then running 

detailed simulation for each one of these scenarios. For gate- level Statistical Static Timing 

Analysis (SSTA), a natural way to model spatially correlated parameter variation is with a 

correlation matrix which captures the statistical relationship between every pair of transistors in 

the circuit [50]. Many random parameter fields can then be generated using this correlation matrix 

as a starting point. In the case of SSTA, SPICE simulations are run with each field sample. Since 

the total number of samples needed to guarantee convergence can be quite large, the number of 

MC trials becomes the biggest factor in simulation run time. At the circuit-level, some 

innovative sampling techniques have been able to drastically reduce this factor and improve 

simulation runtime. Singhee et al. [50], [57] recognized that with conventional random field 

generation, Monte Carlo techniques require many samples to guarantee convergence because its 

accuracy obeys a O(n−0.5) proportionality with sample set size n [58]. They further noticed that 

comparing to true random sequences, some classes of Quasi-Monte Carlo sequences with the 

same number of samples have better coverage for the sample space, hence give faster 

convergence. In particular, Low-Discrepancy (LD) methods are known to generate high quality 

deterministic patterns that are guaranteed to give approximately O(n−1) [51] convergence, a 

significant improvement over random sequence. Figure 8-1 illustrates the difference between 

the coverage natures of conventional Monte Carlo points and low- discrepancy points in a two-

dimensional space. The conventional Monte Carlo samples show both clusters and sparse regions 
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while the low-discrepancy samples give much better coverage of the space. One can imagine 

extending this concept to higher dimensional spaces where each dimension might represent a 

physical factor (e.g. Vth for each transistor in a circuit). 

 

Figure 8-2: Process flow for generating n LD variation maps 

However, low-discrepancy sequences alone cannot replace Monte Carlo sequences in generating 

parameter variation samples for even small circuits. For a design with n gates, one would need to 

generate a low-discrepancy sequence with dimensionality of n. Current best low-discrepancy 

sequence generators offer practical advantage over  standard Monte Carlo  sequences only in the 

early r dimensions (r ≤ 12 [59]). Consequently, for efficient parameter variation modeling of 

circuits, we apply the Karhunen-Loeve Expansion (KLE) [60], a model simplification technique 

similar to Principle Component Analysis (PCA) [50]. Recall that a correlation matrix can be used 

to represent gate- level variations across the chip. This serves as a very precise description for 

high-dimension model of the chip. The first r (r ∼ 25) components of KLE, composed of the 

r-dimensional random (or quasi-random) sequence and the r most significant eigenpairs of the 

correlation matrix, is an accurate estimate of KLE [50]. This effectively reduces a large number 

of correlated variables – in this case transistor parameters which are geometrically correlated – 
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into a much smaller number of values and hence lower dimensionality. With a drastically 

reduced representation of the parameter variation, low-discrepancy techniques can be safely 

applied to reduce the number of required samples. 

8.3. Variation	Modeling	and	Sampling	

As described in the previous section, Quasi-Monte Carlo sampling methods have been applied to 

accelerate gate-level SSTA simulations under parameter variation [50], [57] in the circuit domain. 

Designs with (104) gates are evaluated for these studies, where spatial correlations of these 

gates can be captured in a correlation matrix of tractable size. However, these techniques do not 

directly scale to architectural simulations for a few reasons. First, gate-level descriptions of most 

modern processors are unavailable for academic researches where they are obviously available 

for circuit-level designs. Second, even  if a complete processor could be modeled at the gate-

level, the netlist of the design, which may contain hundreds of millions   to billions of gates, 

exceeds the capacity  of  existing  gate-  level algorithms which have O(n2) spatial complexity 

for n gates. Finally, most computer architects work on a higher and more abstract level, and 

architectural simulations aim for more complex and comprehensive evaluations for the system. 

For example, recent work at the architecture level has examined whole-chip leakage power and 

timing error rates as functions   of parameter variations [44]. These studies must include program 

state and microarchitecture-level models that are fundamentally different from transistor-level 

simulations in SSTA. 

To address these challenges, our proposed techniques have special considerations for 

architectural variation simulations. First, instead of gate-level, we model parameter variations at 
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block/grid level. Grid size here poses a tradeoff between the computational complexity and the 

modeling accuracy. Second, within the processor each structural block will have its own 

susceptibility to and distinct behavior under parameter variation. We leverage the fact that some 

components may have a greater overall impact on the system than others and introduce multi- 

resolution modeling of parameter variation. Figure 8-2 gives a process flow for generating n LD 

samples. In the following section, we first demonstrate how to model a block/grid variation map 

with Quasi-Monte Carlo methods. Then, we discuss algorithms that generate grid structures with 

the best accuracy- complexity tradeoffs. 

A. Compact Systematic Variation Representations 

Our parameter variation modeling approach assumes a high- level physical model for 

microarchitectural components nominally described via a floorplan. Depending on the 

application, one may choose to model structures within a single processor pipeline, or cores and 

caches in a many-core chip. Given this floorplan, we represent the physical variation of 

parameters such as Leff and Vth for diverse usages and abstractions. Either block-based variation 

model is applied, where we assume the parameter within each component is a constant and use 

its centroid for correlation calculation, or we further decompose the blocks into regular grid 

regions and generate variation samples with finer granularity. Note that, although block level 

models may lose some accuracy comparing to grid level models, they are still acceptable models 

for certain architectural study [44]. 

B. Implementing Quasi-Random Samples 

Figure 8-2 shows how to generate our Quasi-Monte Carlo samples. First, given the block 

floorplan and grid resolution, the correlation matrix is calculated for KLE decomposition. To 
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maintain consistency with [44], here the matrix concerns purely the covariance factor between 

grid regions. This differs from the circuit-level approach in [50] where the correlation factors are 

normalized by grid area. Second, there are many possible methods for constructing LD sequences. 

We select Niederreiter’s sequence, which has been proved to have less integration error [61] 

than Sobol’s sequence which was used by [50], [57]. This LD sequence is then combined with 

KLE to generate an original set of systematic parameter variation samples. Finally, before 

“publishing” the sample set, we adjust the set to improve the sample space coverage. Systematic 

variation is supposed to have a statistical mean µ  of zero and a specified standard deviation 

𝜎  (according to this parameter’s given µ and σ/µ [44]). For each block/grid region i, we apply 

linear normalization to its variation values across all samples, so that µ , 0 and 𝜎 ,

𝜎 . After doing this, the KLE-based LD variation sample set are well positioned within the 

targeted statistical range. 

                                          

(a) Single-Resolution grids                              (b) Multi-Resolution grids  

Figure 8-3: The illustration of SR and MR grids distributed over a 4-block floorplan. Both 

figures are with the same number of grids 

C. Enhancing Localization with Multi-Resolution Analysis 

We make another observation relevant to microarchitectural parameter variation studies, namely 

that some components of the processor are known to be more sensitive to variation than others. 
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In this paper, we apply this to evaluate two important architecturally relevant component 

properties that are strong functions of parameter variation: timing error rate Pe and leakage power 

Pleak. In an era where architects are considering timing speculation as a way to improve 

performance and efficiency, timing error rates are important properties of a design [45], [46], 

[56]. In deep submicron technology, leakage power comprises a significant portion of total chip 

power and therefore serves as an essential design characteristic. 

We first consider Pe, modeling an n-stage pipeline as a series failure system. The total Pe can be 

represented as a weighted summation of the error rate of each pipeline stage i:  

Equation 8-1: Pe  ∑ α  Pei   

�i is the activity factor of block i. Intuitively, pipeline stages which have either high activity 

factors or error rates Pei   are more likely to produce timing errors and will have a greater impact 

on total error rate. Activity factors are a strong function of program characteristics (e.g. floating-

point applications with have high activity factors for their FP execution units while integer 

programs will not) and in many cases activity magnitudes can be predicted before simulation. We 

now consider Pleak. Chip- wide leakage power can be seen as the integration of the leakage power 

of each component i: 

Equation 8-2: P ∑ P  

Leakage for a component depends on both the temperature of that block and its area. Since area 

is known a priori and temperature is dependent on activity, we can reasonably ascertain which 

component blocks are likely to be dominant. As two of the more important characteristics of a 
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processor under parameter variation, both of timing error rate and leakage power are in the form 

of 𝑓 ∑ 𝑓 . Let f0 and fi0 denote the true values of 𝑓 and 𝑓  to optimize the estimation of f , 

we need to minimize the estimate error 𝜀: 

Equation 8-3: 𝜀
| |

|∑ 𝑓 𝑓 /𝑓 | |∑ 𝜀 𝑓 /𝑓 | 

Equation 8-3 implies that for blocks with larger 𝑓 , the estimate error 𝜀  needs to be smaller to 

minimize the total error. Hence in this work, we introduce Multi-Resolution (MR) variation 

sampling, in which the on-chip parameter map is composed of blocks with varying grid density. 

The total number of grids points G are distributed to each block i following the rule 

Equation 8-4: G G , 

 

Figure 8-4: The estimate error of Pe relative to 10,000 MC samples: for 15 cpu blocks, 100 MC 

samples, 20 LD samples, 50 LD samples and 100 LD samples 

which intuitively means that the grid density within one block is proportional to the “function” 

density within it, which we can obtain from nominal empirical results. Figure 8-3 illustrates this 
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idea with both Single-Resolution (SR) and MR grids, where block C has the greatest density of 

the targeting function and block B has the least. As experimental results show, for identically 

sized parameter maps, MR samples converge faster than SR samples. We conclude this section 

with a note that, combining the LD and MR techniques, generating 1,000 samples typically takes 

several seconds to a few minutes on a standard Linux desktop system. The sample generation 

time is therefore negligible when compared to the detailed simulation time which follows. 

8.4. Evaluation	

Our Quasi-Monte Carlo and Multi-Resolution variation models are suitable for examining the 

impact of parameter variation on many aspects of a microarchitecture. In this section, we 

evaluate our variation model and sampling methodology by applying it to two aspects of high-

performance processor design which are extremely sensitive to parameter variation: (1) timing 

errors associated with timing speculative architectures [45] and (2) chip leakage power. Our first 

application examines trade-offs in observed timing errors versus clock frequency and compares 

convergence rates of timing error rates under low-discrepancy sequences versus standard Monte 

Carlo samples. In the second application, we examine the on-die leakage power variations with 

both SR-LD sampling and MR-LD sampling comparing to MC. Both applications are compared 

against VARIUS [44] Monte Carlo samples as a baseline case, which has been widely adaped for 

architectural parameter variation sampling [45], [47]. 

For the timing error estimation, we use the VARIUS timing model. It adopts the Alpha-Power 

Law [62] to relate threshold voltage Vth and effective gate length Leff to gate delay: 
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Equation 8-5: 𝑇 ∝
µ   

 

(a) The estimate of sd 

 

(b) The estimate of sd converges with increasing run size 

Figure 8-5: The estimate of Pe’s standard deviation and its convergence for Icache: Comparing 1 

LD to 10 MC runs with (a) Fixed run size of 100 samples. (b) Fixed clock frequency at 1.0. 

where V is the supply variation, the � is carrier mobility and � is an empirically derived 

constant. The gate delay is then used to estimate the timing error rate for logic and memory 

structures under process, voltage, and temperature variations. For leakage, we apply the 

HotLeakage [63] model which suggests that 
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Equation 8-6: 𝐼 ∝ 𝑒 , 

and the leakage power is proportional to Ileak.  A factor of the total leakage power across the 

chip can be obtained by an integration of Equation 8-6, where k is the Boltzmann Constant, q is 

the electron charge, and Voff and � are empirically determined parameters. We adopt these 

parameters from [44], [64] and [65] and scale them to 32nm technology. 

We model a single core design featuring an Alpha 21264 processor scaled to a 32nm technology 

and use a floorplan detailing the microarchitectural structures of this design.  In our experiments, 

we model random and systematic variation.   A spherical correlation model [44] is used for all 

the variation samples.  We   assume Vth and Leff are highly correlated [44] and use identical 

systematic variation samples for the two parameters. Our models apply �/� of parameter 

variation, nominal supply and threshold voltage, and the decomposition of systematic and 

random components which follow that of [44]. These parameters are suitable for modeling 

high-performance designs in a 32nm technology. 

A. Low-Discrepancy Variation Samples 

To evaluate the effect of low-discrepancy sampling, we apply block-based LD variation samples 

to the VARIUS [44] timing error model, and estimate the distribution of the resulting timing 

error rates Pe for all the pipeline stages of a processor floorplan under a sequence of clock 

frequencies. 

For comparison, the process is repeated with several sets of VARIUS Monte Carlo samples. The 

results of a large Monte Carlo set with 10,000 samples are used as a gold standard. This is a 
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sample set size sufficiently large that sample mean and variance are very close to true 

distribution mean and variance. Note, that these sample sizes are prohibitively large for most 

simulation studies – they represent a best-case result. 

 

Figure 8-6: The number of samples needed for targeting accuracy when estimating chip leakage 

power: MC, SR-LD and MR-LD. 

Although [47] suggests that 100 Monte Carlo samples show enough convergence when applying 

to VARIUS timing error model, our experiments show that on average any group of 100 MC 

samples still have considerable error when compared to the gold standard. On the contrary, Low-

discrepancy samples produce high fidelity results. Figure 8-4 presents the error of 100 MC, 20 

LD, 50 LD and 100 LD samples relative to 10,000    MC samples when estimating the mean of 

Pe of each processor pipeline component. For 10 out of 15 components, 20 LD samples have 

better accuracy than 100 MC samples, and 50 LD samples outperforms 100 MC on all 

components. One can view this in an alternative way. With the same number of samples, 100 LD 

gives an accuracy at least 75% better than 100 MC. This experiment proves that LD samples 

converge much faster than MC, which translates to either significant reduction of samples needed 

or better accuracy with the same number of samples. Since generating LD samples is a 
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deterministic process, the shown results are repeatable and consistent. MC trials in contrast 

produce dramatic fluctuations for different runs and hence do not guarantee fast convergence. 

 

(a) The estimate of sd 

 

(b) The sample error to the true sd 

Figure 8-7: The estimate and the sample error of the standard deviation of the leakage factor 

distribution with increasing sample set size: comparing MR-LD, SR-LD and standard MC. 

The LD estimate of the standard deviation (sd) also shows faster convergence. Due to space limit, 

we only show in Figure 8-5 the estimate and convergence of standard deviation for the Icache 

block. The two sets of curves intuitively show the difference between the natures of LD and MC 
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sampling and are consistent with our expectations. In summary, low-discrepancy techniques 

allow much faster convergence, resulting in large reductions in sample set size. 

B. Low Discrepancy, Multi-Resolution Variation Samples 

Now we evaluate the sampling of low discrepancy and multi- resolution grids, and we do this by 

estimating the deviations in chip leakage power. Multi-resolution analysis allows us to 

configure grid granularity within a component block according to its importance. For this study, 

we focus on leakage power and make grid densities proportional to power densities for all blocks, 

as explained in Section III. Power density of a block is determined by its temperature when with 

nominal Vth0, and we use the temperature distribution from [66] for the processor floorplan. 

After distributing the grid resolution, we generate the MR-LD variation samples with KLE-based 

LD methods. 

We generate a set of MC, SR-LD and MR-LD samples for comparison. For the three different 

modeling methodologies, all samples are with the same sized parameter map (25 × 25), and the 

resulting leakage estimates are compared to that of a gold standard, 10,000 MC samples of 

resolution 50 × 50. 

Figure 8-6 shows the number of samples needed to achieve the targeting accuracies. For the 

mean, the LD samples show at least 4× faster convergence than MC. However, SR-LD and MR-

LD do not have significant difference themselves, which could be possible because the estimate 

errors of the mean are already low. We note that, although not shown in the figure, the average 

error of MR-LD is 0.4% smaller than SR-LD. For the standard deviation, LDs still converge 

faster than MC, and at the same time, MR-LD outperforms SR-LD, with speedup of at least 3.3× 
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and 2.2× respectively. Figure 8-7 presents more intuition for the estimate of sd as the number of 

samples grows (for clarity only until 1000 samples are shown), which leads to the observation 

that MR-LD converges to a better accuracy than SR-LD. Considering the fact that the difference 

between the computational efforts of implementing single-resolution and multi-resolution 

models is only distributing the grids with different density, the potential of the multi-resolution 

model is attractive, especially when accuracy is critical. 

8.5. Conclusions	and	Future	Work	

In this work, we introduced a collection of techniques to help computer architects rethink the 

parameter variation model and improve sampling methodology when applying Monte Carlo 

simulations. Our key contributions were: (1) to develop spatial variation representations that 

could be applied to study architectural components while leveraging properties of the low-

discrepancy and (2) to introduce multi-resolution models that adapt grid resolution to suit the 

relative importance of a component. We evaluated our techniques using a series of Monte Carlo 

experiments and found that in most cases our improved modeling and sampling methodology can 

dramatically reduce the number of samples needed to achieve convergence. 

As one of the most straightforward ways to decompose parameter variation, Karhunen-Loeve 

Expansion (KLE) is adapted for the spatially correlated parameter variation model. However, 

KLE is still Fourier-like, meaning that each orthogonal term in the decomposition captures the 

information across the whole spatial domain. Considering the target of the entire processor where 

the pipeline stages’ characteristics differ from each other, there might be other ways to 

decompose the parameter variation while taking the differences between different stages into 
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consideration. One possible way is wavelet decomposition, in which each term localizes one 

specific part of the domain, and hopefully this could lead to a better approach to represent the 

different variation scenarios in different pipeline stages. 

We evaluated our Multi-Resolution approach by distributing the grid densities proportional to the 

target function densities. While sharing a similar motivation as the multi-level grid files from 

database research [67] used for selectivity estimation, in this work we have a slightly different 

context. Namely, the coarseness of the resolution is varied based on the sensitivity to variations. 

For future work, we would like to further investigate the problem of dynamic fine-tuning of the 

grid-map and sample generation, in reaction to some (observed) changes in the parameters 

variation and component activity factors that may affect the validity of the experiments. Towards 

that, we will try to apply some of the techniques for streaming data management [68] in our 

context. 
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Chapter 9  Conclusions 

 

Fault-tolerant architectures utilizing program localities have shown promising results in detecting 

silent data corruptions (SDC), while keeping a lower cost in area, performance, and energy 

consumption compared with other approaches (e.g., TMR [69]). Multiple techniques have been 

proposed to capture program locality in load/store references and values, and check for locality 

violation for fault detection. However, these approaches either achieves low fault coverage or 

incurs complex hardware design and energy overhead. 

In this work, we have explored new dimensions in program locality and proposed techniques for 

using these types of locality for fault detection.  

First, we have studied the longer-term program locality in program phases. We showed that 

program phase information can be reused when a phase repeats itself. We also found that within 

a 100 million instruction SimPoint [18], there are only 13 unique phases on average, which 

provides a fertile ground for learning the program phases during these phases and reuse the 

information for repetitive phases. 

Second, we have studied shorter-term locality in memory strides. We showed that a partial-

global memory stride is more efficient than a reference in representing program locality. We also 

designed an algorithm for static instruction partitioning to create effective partial-global memory 

strides. 
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Additionally, we have proposed to use Bloom filters to store and lookup program locality 

patterns. We presented a design of heterogeneous Bloom filter system for the instruction 

partitions, as well as for strides and memory values, for efficient storage and fast lookup. 

Lastly, we designed, implemented, and evaluated a learn-and-detect fault detection framework. 

We described how the framework weaves the program phases and memory information together 

to detect transient faults. At the beginning of each unique phase, the instruction partitions are 

learned during a dedicated learning period, followed by a learning period to warm up the stride 

and value Bloom filters. The instruction partitions and memory information Bloom filter content 

is stored into L3 cache and if a unique phase is repeated upon, the content can be reloaded into 

the designated hardware for the repeating phase to use. This framework allowed detector 

customization based on program phases with low learning overhead. We have shown that with 

the proposed framework, a total of 80.8% of SDCs are covered with less than 1% false positive 

rate. 

Limitations	

The presented fault detection mechanism has its limitations in the following two aspects. 

First, our fault detection mechanism does not distinguish application faults from hardware faults. 

Like a hardware fault, an application bug can trigger a detector signal, but unlike hardware faults 

which can be corrected by the replay or rollback, the signal raised by an application bug will 

eventually be suppressed as a false positive. Therefore, running programs that are more likely to 

have software bugs on such a platform can trigger more false positives and result in higher 

performance and energy overheads than expected. Also, since the stride or value pattern from a 
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false positive will be inserted into the Bloom filters, the pollution can cause loss in fault 

coverage. As a result of this limitation, we would recommend that only well-tested applications 

be run on these platforms. However, in a context where fault tolerance is important, it is unlikely 

for a user to run beta software on such a platform. Therefore, this restriction should not have any 

significant impact in practice. 

Second, during the learning periods, since the fault detector is not able to detect faults, the 

system needs extra fault-tolerant measures temporarily to protect the program execution. This 

can be achieved by running a protector thread through either dual-modular redundancy (DMR) 

or simultaneous multi-threading (SMT) [73, 74]. Our learning periods take 3% of all dynamic 

instructions and protecting this portion of the program execution will incur performance and 

energy overheads. A DMR approach executes the protector thread on a neighboring core, which 

has little performance impact for the same program, but using the other core as a mirroring 

hardware module during 3% of all instructions can incur ~3% overall energy overhead. An SMT 

approach executes the protector thread on the same core during the learning periods. By utilizing 

vacant functional units within the same core, SMT-based fault tolerant mechanisms incur a 

moderate performance overhead (e.g., 20% [73, 74]) and slightly significant energy cost (e.g., 50% 

[17]). For our 3% learning periods, this translates into 0.6% total performance impact and 1.5% 

overall energy overhead. In our evaluations in Chapter 6 and 7, we protect the learning periods 

with temporal redundancy by re-executing all instructions (without SMT), thus the performance 

and energy costs during learning periods are both ~3%. This can be improved with a DMR or 

SMT approach. 
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Future	Work	

While this work tries to comprehensively cover silent data corruptions and keep the cost low, 

there are still aspects that can be the object of future work. First, even though the benchmarks 

used are diversified in behavior, they may not be representative of the workloads that are most 

susceptible to silent data corruptions. A set of richer benchmarks can be used for future 

evaluation. Second, the system emulation mode is insightful for a timing-accurate simulation, but 

it skips the detailed simulation of kernel instructions. Future evaluations can use full system 

mode to get more comprehensive results on the kernel code execution. Third, the front-end fault 

filter itself still has room for improvement in fault coverage and false positives. Future work can 

explore other ways of detecting front-end faults. 
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