

NORTHWESTERN UNIVERSITY

Exploring Program Locality for Efficient Online Fault Detection

A DISSERTATION

SUBMITTED TO THE GRADUATE SCHOOL

 IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

for the degree

DOCTOR OF PHILOSOPHY

Field of Computer Engineering

By

Feng Lu

Evanston, Illinois

June 2020

2

© Copyright by Feng Lu 2020

All Rights Reserved

3

Abstract

As technology scales down, challenges in fabrication, thermal stress, and in-field degradation

have put the reliability of processors at risk. Among different fault types, transient faults

manifest themselves frequently due to high chip density, aggressive voltage scaling, and high

clock frequency. Some dependable processor architectures have been proposed to counter these

faults, by integrating various online solutions for error detection and recovery. Recently

proposed techniques, including perturbation-based fault screening and ternary content-

addressable memory anomaly detection, exploit locality in memory addresses and values for

transient fault detection. Their fault coverage comes at a high energy cost and numerous false

positives.

This dissertation addresses the fault detector’s efficiency problem. We exploit the locality in

memory strides, instead of references, to reduce the amount of data needed for fault detection.

We propose using Bloom filters to store the hashed form of memory patterns, instead of their

original form in TCAM to reduce the hardware and energy cost. We also explore program phase-

level locality and propose a framework to customize the fault detectors for the current phase.

Additionally, we present the detector design for both the processor backend and the frontend to

achieve high fault coverage (80%) at a low false positive rate (<1%). This greatly improves the

resilience of the processor to soft-errors while limiting the energy and performance overheads.

4

Acknowledgements

First and foremost, I would like to thank my advisor, Professor Russ Joseph, for his continuous

support and guidance throughout my PhD study. He taught me how to conduct research and

present the results effectively, and always provided insightful technical feedback and advice.

Without his motivation, patience, and immense knowledge, this work would not be near where it

is today.

I also want to thank Professor Nikos Hardavellas and Professor Gokhan Memik for reviewing

this dissertation. Their comments regarding the limitations of the fault detector were critical for

making this dissertation complete.

Part of my PhD study was on efficient parameter variation sampling, which also appears in this

dissertation. I want to thank Dr. Goce Trajcevski for his input on low-discrepancy sequences,

which was fundamental to some of the key results in this project.

Toward the end of my PhD years, I had to request for an extension to finish the writing of this

dissertation while accommodating my family needs. I want to thank Professor Joseph and

Professor Hardavellas for their tremendous support, and Kristine Emrich for her sage advice.

This granted me time to shape and polish this dissertation and present the results of my research.

Finally, I want to thank the Electrical and Computer Engineering Department for the

infrastructure and computing resources they made available to researchers. Financial-wise, I am

lucky to have been supported by a Murphy Fellowship. Also, this work is supported in part by

5

the National Science Foundation (NSF), with grants CCF-1116610, CAREER CCF-0644332,

CNS-0720820, and CNS-0910952.

6

Table of Contents

1. Introduction ... 14

2. Related Work .. 18

2.1. Fault-Tolerant Architectures .. 18

2.2. Value Locality-Based SDC Detection .. 20

2.3. Program Locality Characterization .. 23

3. Evaluation Methodology ... 24

3.1. Processor Configuration ... 24

3.2. Simulation Methodology .. 25

3.3. Workloads .. 26

3.4. Metrics .. 26

4. A High-Level Description of the Detector ... 28

4.1. Design and Workflow Overview .. 29

4.1.1. Key Components of the Detector Design ... 29

4.1.2. The Workflow ... 32

4.2. Preparing the Detector with Program Locality .. 33

4.2.1. Intra-Phase Preparation ... 34

4.2.2. Inter-Phase Preparation ... 35

4.3. When a Fault is Predicted: Analyzing a Fault .. 44

4.4. When a Fault is Confirmed: Handling a Fault ... 46

5. The Input: Partial-Global Stride Sequence and Memory Value .. 48

7

5.1. Reference versus Stride: Why is Stride Better? ... 48

5.2. Partial-Global Stride Sequence and Instruction Partitioning ... 50

5.2.1. Limitations of Global Strides .. 50

5.2.2. Partial-Global Stride ... 52

5.2.3. Instruction Partitioning ... 54

5.2.4. Hardware for Instruction Partitioning ... 57

5.3. Selecting the Effective Bits as Input .. 60

5.4. Stride Sequence Length .. 61

5.5. Using Memory Value in Addition to Stride ... 62

6. The Detector: Bloom Filters ... 63

6.1. Overview .. 63

6.2. Hash Function .. 64

6.3. Heterogeneous Bloom Filter System .. 67

6.4. True versus Parallel Bloom Filters ... 70

6.5. Effect of Learning Period Length ... 72

6.6. Evaluation ... 74

6.6.1. Fault Injection ... 74

6.6.2. Detector Configuration ... 76

6.6.3. Detection using Memory Stride and Memory Value .. 77

6.6.4. Performance, Area, and Energy Impact .. 81

7. Front-End Fault Filtering .. 86

7.1. Front-End Fault vs. False Positive ... 87

8

7.2. Front-End Fault Filter Design .. 90

7.3. Experimental Results.. 94

7.3.1. Fault injection ... 94

7.3.2. Fault Filter Outcome ... 96

7.3.3. Performance and Energy Impact ... 99

8. Efficient Parameter Variation Sampling for Architecture Simulations 104

8.1. Introduction .. 104

8.2. Background .. 107

8.3. Variation Modeling and Sampling ... 110

8.4. Evaluation ... 115

8.5. Conclusions and Future Work .. 121

9. Conclusions ... 123

References ... 127

9

List of Tables

Table 3-1: Hardware parameters of the simulated processor .. 25

Table 3-2: Benchmarks ... 26

Table 6-1: Hardware configurations for the fault detection structures ... 76

Table 7-1: Hardware configuration for the front-end fault filter ... 99

10

List of Figures

Figure 4-1: Overview of the fault detection workflow ... 31

Figure 4-2: Detector content preparation .. 33

Figure 4-3: Learning period and detection period within a phase .. 34

Figure 4-4: Working set signature generation .. 37

Figure 4-5: Working set signatures are stored in memory locations for phase resolution 38

Figure 4-6: Unique phases and their repetitions ... 41

Figure 4-7: Number of phase transitions of in one SimPoint, divided into unique and repeating

phases .. 43

Figure 4-8: Pseudo code on how to detect phase transition and phase repetition and how the

detector functions to utilize the phase information ... 44

Figure 4-9: Workflow on analyzing fault categories and triggering corresponding recovery

mechanisms ... 45

Figure 5-1: History table sizes for stride sequences, stride sequence length varying from 1 to 5 51

Figure 5-2: Code snippet from SPEC CPU2006 [29] ... 54

Figure 5-3: History table size change after instruction partitioning ... 56

Figure 5-4: Hardware design for instruction partitioning and partition information storage 58

Figure 5-5: Impact of stride sequence length .. 60

Figure 6-1: Design of the value-based fault detector .. 64

11

Figure 6-2: Python code for a shift-and-add hash ... 65

Figure 6-3: Uniform XOR-folding of an m-bit input into an n-bit value 66

Figure 6-4: Bloom Filter without Partitioning .. 68

Figure 6-5: Bloom Filters after Partitioning ... 69

Figure 6-6: Parallel Bloom filter implementation for one partition .. 70

Figure 6-7: Fault coverage and false positive comparison between different Bloom filter

implementations: True Bloom filter and parallel Bloom filter ... 71

Figure 6-8: Impact of learning period length on fault coverage and false positive rate 73

Figure 6-9: Fault Injection Outcome ... 75

Figure 6-10: Fault coverage of the value-based detector .. 78

Figure 6-11: False positive rate of the value-based detector .. 79

Figure 6-12: Performance impact on the system .. 80

Figure 6-13: Area cost breakdown by purpose ... 83

Figure 6-14: Energy overhead .. 84

Figure 7-1: A rename fault’s impact on the outcome of our detector ... 88

Figure 7-2: Using biased squash state machines for rename fault detection 89

Figure 7-3: The state machine that filters detector signals and triggers rollback for front-end

faults .. 90

Figure 7-4: Biased squash state machine for one parallel Bloom filter .. 91

12

Figure 7-5: False positive rate of a squash state machine as a function of the number of SSMs

and the trigger threshold. .. 92

Figure 7-6: False positive rate of a parallel Bloom filter as a function of the number of SSMs and

the trigger threshold. ... 93

Figure 7-7: Rename fault injection outcome .. 95

Figure 7-8: Fault coverage and false positive of the front-end fault filter 97

Figure 7-9: Performance overhead relative to baseline system .. 100

Figure 7-10: Energy overhead relative to baseline system ... 102

Figure 8-1: Comparing 2D sequences generated with standard Monte Carlo and Low-

Discrepancy techniques. The two examples have an equal number of points 107

Figure 8-2: Process flow for generating n LD variation maps .. 109

Figure 8-3: The illustration of SR and MR grids distributed over a 4-block floorplan. Both

figures are with the same number of grids .. 112

Figure 8-4: The estimate error of Pe relative to 10,000 MC samples: for 15 cpu blocks, 100 MC

samples, 20 LD samples, 50 LD samples and 100 LD samples ... 114

Figure 8-5: The estimate of Pe’s standard deviation and its convergence for Icache: Comparing 1

LD to 10 MC runs with (a) Fixed run size of 100 samples. (b) Fixed clock frequency at 1.0. .. 116

Figure 8-6: The number of samples needed for targeting accuracy when estimating chip leakage

power: MC, SR-LD and MR-LD. ... 118

13

Figure 8-7: The estimate and the sample error of the standard deviation of the leakage factor

distribution with increasing sample set size: comparing MR-LD, SR-LD and standard MC. ... 119

14

Chapter 1 Introduction

Modern processors have become more susceptible to transient faults as technology scales down.

Transient faults arise mostly from cosmic rays and alpha particles from the packaging [37],

where enough charges are collected to invert the state of a logical device. It is widely known for

its significant impact on DRAM reliability [38]. While RAM structures are generally covered by

parity and error-correcting code (ECC), the processor core is at risk and needs extra measures for

fault protection.

Like discussed in existing works [16, 17, 69], transient faults materialize as single bit flips.

Within the processor core, a bit flip in stale data or code is masked, and no error is introduced to

program execution. Others can manifest themselves prominently by causing program crashes.

The remaining faults flip a bit in active data or code and render incorrect program execution path

and possibly corrupted computational results without ever being detected. These faults are called

silent data corruptions (SDC) and are the focus of this dissertation.

SDCs can be detected and corrected by extreme redundancy like TMR [69]. Recent works on

SDC detection, including Perturbation-Based Fault Screening (PBFS) [16] and FaultHound [17],

aim to reduce the fault detection and recovery cost by studying program locality. PBFS checks

memory data value ranges, data bit invariants, and matching of recent data values, and considers

a violation to these locality measures a fault. While PBFS can achieve high fault coverage, the

15

performance cost can be extremely high (e.g. 100%). FaultHound maintains a ternary content

addressable memory (TCAM) to store dynamic data bit invariance and checks for anomalies by

searching the TCAM. It also reduced recovery time through a modified replay mechanism.

While FaultHound reduced performance cost compared with PBFS, the TCAM implementation

is still expensive, and poses a tough trade-off between fault coverage and energy overhead.

This dissertation is an effort to explore program locality at new dimensions and design a fault

detection mechanism that increases fault coverage and efficiency. The main contributions of this

work include:

 We use memory stride instead of address when checking for locality. PBFS and

FaultHound both checks bit-level invariance of references. While references change

frequently and the number of unique references can be too large to handle, we observe

that strides can maintain a more stable pattern. Furthermore, we identify the main reason

why a stride stream loses its pattern, which is that some static instructions, when put in

the same stream, disrupts each other’s patterns. We present an instruction partitioning

mechanism to divide the static instructions into separate partitions. The partial-global

stride stream from each partition will have better patterns than the global stream, and the

partitioned design requires much smaller storage. The strides, when combined with

memory values, are used to represent the program locality.

 We propose using Bloom filters to store and search for data patterns, instead of TCAM.

Given its constant search time, TCAM has been widely used in switches and routers for

route lookup and packet classification [39, 40], and in search engines for clustering [41].

FaultHound uses TCAM for data clustering. However, TCAM incurs high energy

16

overhead due to its complex implementation. We achieve data clustering using the

instruction partitioning. When storing the stride and value patterns, we use Bloom filters

with a parallel Bloom filter implementation [25] which achieves both low energy

overhead and fast membership testing and insertion.

 We explore the locality at program phase level to customize the detector for the current

phase. Program phases have been studied for multi-configurational hardware [7], and it

has been proved that a program execution goes through a series of phases, while some

phases repeat a previously-seen phase. For our fault detector, we monitor phase transition.

Once an unseen phase starts, we dedicate a learning period to generate the instruction

partitions and train the stride and value Bloom filters. We store the partition information

and Bloom filter contents for up to 20 unique phases in L3. When a phase repeats a

known phase, the content from the known phase is reused.

 We present the detector design for both backend and the frontend faults. The detector’s

stride and value Bloom filters raise signals when a membership test fails. If the signal is

due to a back-end fault, we use a delay buffer to do a light-weight replay at the backend

of the out-of-order processor to recover, same as FaultHound. A separate filter is needed

to distinguish a front-end fault and a detector false positive. The filter consists of a set of

squash state machines that are assigned to segments of the parallel Bloom filters. We

present the detailed design of the detector and front-end fault filter.

 We conduct comprehensive fault injection and perform detailed evaluation on fault

coverage, false positive rate, and cost on performance, area, and energy.

17

The rest of the dissertation is organized as follows. Chapter 2 discusses related works on fault

detection and further explain the motivation for this dissertation. Chapter 3 describes the

evaluation methodology with detailed hardware configuration, simulation methods, workload,

and metrics. Chapter 4 gives a high-level view of the fault detection design and explains the

program phase-aware framework. Chapter 5 describes the rationale behind using memory strides

and values and presents the design and implementation of an instruction partitioning mechanism.

Chapter 6 discusses the detector design, especially the Bloom filter design and implementation in

detail, and presents the experimental results for back-end fault detection. Chapter 7 describes the

front-end fault filter design and presents its experimental results. Chapter 8 includes another part

of my PhD studies on efficient parameter variation sampling by using low-discrepancy

sequences. Chapter 9 draws conclusion for this dissertation.

18

Chapter 2 Related Work

Since the rise of processor dependability challenges due to physical faults, architects have

explored an abundance of fault tolerance solutions to protect the processor core. In this chapter,

we discuss the existing works on fault detection and explains the motivation behind this

dissertation. In Section 2.1, we introduce key concepts in fault tolerance and discuss taxonomy

of representative fault tolerant architectures. In Section 2.2, we explain the recent works on

detecting silent data corruptions (SDC) that are the most related to this dissertation.

2.1. Fault‐Tolerant	Architectures	

Before we discuss detailed fault detection mechanisms, it is important to introduce the key

concepts in fault tolerant architecture. First, we divide the fault types into transient faults and

permanent faults. A fault-tolerant architecture can cover one of the two types, or both. Second,

different types of redundancy can be added for fault detection and correction, including physical,

temporal, and information redundancy [42]. The type and level of redundancy determines not

only the fault coverage, but also performance and energy cost. Lastly, fault recovery mechanisms

can be divided into two major categories, forward recovery that does not require reverting to a

previous state, and backward recovery that restores the state of the system to a pre-fault

checkpoint. The recovery choice helps make trade-offs between performance cost and energy

cost.

19

A taxonomy of fault-tolerant architectures has been proposed in [43]. Here, we use a similar

taxonomy to discuss a few categories of existing works that can protects the processor against

transient faults.

N‐Modular	Redundancy	

Dual-Modular Redundancy (DMR) or N-Modular Redundancy (NMR) [1] uses one or more

redundant module to detect 100% architectural errors. DMR needs backward recovery to correct

a fault, while triple modular redundancy (TMR) [69] and above can make forward progress even

when a fault is detected. Challenges with NMR include the significant operating overhead of the

redundant hardware, the communication cost between the mirrored modules, and the detection

latency which may be compromised to keep a low communication frequency. Fingerprinting [6]

proposes to hash the architectural state updates from a checkpoint interval into a fingerprint and

detect errors by comparing the fingerprints from the mirrored modules, which reduces some

communication cost and detection latency. Sampling + DMR [14] reduces the excessive cost by

running in DMR mode in a small percentage of time but is limited since it detects permanent

faults only.

Anomaly	Detection	

These approaches watch for anomalous behaviors or symptoms at hardware and software level to

detect faults. SWAT [3] and mSWAT [4] monitors software-level symptoms, such as fatal

hardware traps, hangs, high OS activity, and kernel panics, and use them as indications of

hardware faults. Trace-based replay on these systems are proposed to diagnose permanent faults

[13]. SWAT covers 95% faults within 100K cycles. While SWAT has almost no hardware and

20

performance cost, its high detection latency makes the recovery expensive. ReStore [11] detects

transient errors by monitoring microarchitectural anomalous events including exceptions, branch

mispredictions, and cache misses, and rolling back to a previous checkpoint upon these events.

Pattern change in the outcome of speculative structures can also be used to detect faults [15].

These approaches cannot cover a high percentage of fault or will incur high recovery cost.

Dynamic	Verification	

With careful hardware design, this category of fault detectors performs checks on the fidelity of

control flow and data flow and detect faults upon a violation. Data flow violation can also be

detected by monitoring invariants and verifying the value of critical variables. Range-based

likely program invariants [9] can be identified during a separate pass of offline run, and faults

can be detected by verifying their validity during production run. Another work uses compiler-

based static analysis to identify, for each function, variables that have large fan-out, and checks

at run time the correctness of their values using backward derivation [12]. Control flow can be

checked by adding assertions into a program and detect faults through basic block parity check

during program execution [8]. The above checkers all incur high performance and energy costs.

Argus [2] reduced the performance penalty and increased fault coverage by implementing

hardware checkers for control flow, computation and data flow and monitors all their activities.

However, the 17% hardware overhead is still significant.

2.2. Value	Locality‐Based	SDC	Detection	

Recent works have shown good coverage on SDCs by looking for value locality anomalies.

Popular approaches, such as Perturbation-Based Fault Screening [16] (PBFS) and FaultHound

21

[17], check microarchitectural states related to load and store instructions, in order to detect any

faulty behavior of the processor.

Perturbation‐Based	Fault	Screening	

This work proposes to establish a profile of program behavior and detect faults by looking for

departures from the established behavior. Such departure is called a perturbation. PBFS

presented five fault screeners and implemented one that is the most realistic: the invariance-

based screener. This screener maintains bitmasks associated with each static load or store

instruction. Each bitmask represents the set of all bits that are invariant since the first data value

of this static instruction. For each dynamic load/store data value, a lookup is performed in the

PC-indexed bitmask table. If the new value does not match the filter on all unchanging bit

positions, a perturbation is reported, and the bitmask is updated to mark this bit position as

variant to avoid future false positives.

On every perturbation trigger, PBFS proposes to flush the pipeline to recover from a fault. With

this approach, PBFS reports low false positive rate (e.g., 0.5%) with a fault coverage of about 30%

on SDC. If a full rollback (e.g., 100 instructions) is allowed, the coverage rate of SDC becomes

over 70% [16]. However, a 0.5% false positive rate implies 50% energy cost in such scenarios

(assuming a baseline cycles per instruction of 2).

This design has a few limitations. First, each time a perturbation occurs, the bitmask is updated

to mark a new variant bit. Thus, each bit can only detect one perturbation after the periodic clear

which indicates loss in fault coverage. Second, PBFS does not distinguish a false positive and a

fault. This exposes the intrinsic tension between fault coverage and performance/energy penalty.

22

Lower-penalty recovery approaches (e.g., pipeline flush) result in loss of coverage, while higher-

coverage approaches incurring full rollbacks can be too expensive to trigger at every perturbation.

FaultHound	

FaultHound checks load and store address and value, same as PBFS. Address and value are

handled by separate filters. Since the PC-indexed value checker in PBFS may unnecessarily

separate nearby similar values across multiple table entries, FaultHound proposes to use ternary

content-addressable memory to cluster similar values into one filter. Unlike the sticky bit

counters in PBFS, the state and bit value in a FaultHound filter are both updated upon a trigger,

to adapt the filters to the most recent value. To further reduce false positives triggered by

delinquent bits, a second-level filter is implemented to associate a biased state machine to each

bit position. The biased state machine ensures that the bit position only triggers a fault or false

positive after 7 consecutive no-triggers. To reduce the recovery penalty from a fault, FaultHound

adds a delay buffer (e.g., 7 instructions) to an out-of-order issue processor’s replay logic and

triggers a backend replay instead of full rollback to correct faults on the backend. To distinguish

front-end faults that cannot be corrected by replay, a biased state machine per filter is

implemented to differentiate rename faults from false positives. A full rollback (~100

instructions) is only triggered when a front-end fault is detected.

FaultHound’s TCAM implementation improves clustering efficiency while maintaining constant

search time for each value, which leads to 75% fault coverage at 3% false positive rate. However,

this approach still has its limitations. First, the TCAM hardware is expensive in area and energy,

which limits the number of filters that can be used and indicates possible coverage loss. Second,

23

the memory addresses of a program can have many permutations, which increases noise level in

the filters. An alternative using memory stride may provide better patterns and improve filter

efficiency. Lastly, the filters are updated on a per-value basis. This can introduce unnecessary

false positives during an execution phase transition.

2.3. Program	Locality	Characterization	

One important concept underpinning our work is notion of inherent time redundancy (ITR) [5],

which means that the same instructions are executed repeatedly by a program within a short

interval, and can be interpreted as the program re-executes itself in a time redundant way. The

original ITR [5] work detects faults by recording static instruction trace signatures and checking

against existing signatures. A related concept, working set signature, has been applied to detect

program phase change and tune to the optimal hardware configuration in a multi-configuration

system [7].

Program locality can be used to detect software bugs like performance problems. Toddler [10]

identifies repetitive and similar memory-access patterns over time of execution and exposes

performance bugs induced by redundant loops or inefficient loops.

24

Chapter 3 Evaluation Methodology

In this chapter, we present the methodology for evaluating the detector. In the following chapters,

all experimental results are based on the experiment configurations described here.

This chapter is organized as follows. In Section 3.1, we explain the detailed configuration of the

simulated processor. In Section 3.2, we discuss the simulators we used and simulation methods.

Section 3.3 presents the workloads that we used for evaluating the system. In Section 3.4, we

explain the metrics that we use in the following chapters to assess the detector.

3.1. Processor	Configuration	

We simulate the X86 instruction set on an out-of-order-issue, high performance processor with a

cache hierarchy like Intel’s Sandy Bridge [33] processor. The fault detection mechanism is

implemented within each core. Since the detector does not rely on or impact any cross-core

functionalities, we opt to simulate the processor with only one core. The detailed hardware

parameters of the processor are presented in Error! Reference source not found.. The access

latencies of the on-chip cache are calculated based on published performance evaluation of the

Sandy Bridge processor [32].

Additional hardware is added to the processor core for fault detection purposes, which includes

Bloom filters and other caches implemented in SRAM at L1 level. For clarity, these structures

25

will be explained in detail in the following chapters, and their parameters will be provided when

presenting the fault detector evaluations.

Base frequency (GHz) 2.6
Technology 32 nm
Fetch, Decode, Issue, Dispatch,
Commit width

4

IntALU, IntMulDiv, FPALU,
FPMulDiv per core

6, 2, 4, 2

Issue Queue size 32
Re-order Buffer 168
Load Buffers 64
Store Buffers 36
L1 cache 32 KB (I)+32 KB(D), 8-way set associative, 3-cycle

hit latency
L2 cache 256KB, 8-way set associative, 9-cycle hit latency
L3 cache 2.5MB, 16-way set associative, 17-cycle hit latency

Table 3-1: Hardware parameters of the simulated processor

3.2. Simulation	Methodology	

We use the gem5 simulator [34] to conduct fault injection experiments and evaluate fault

detection structures. Gem5’s system emulation mode is used to perform timing-accurate

simulation. We use McPAT [35] to estimate the processor core area and power, and CACTI [36]

for the fault detection structure’s timing, area, and power.

The performance overhead is generated with timing information from gem5 baseline simulations,

CACTI timing results of the fault detection structures, and the false positive rates of the fault

detectors. The energy overhead is generated with the power numbers of the processor core, all

on-chip caches, the fault detection structures, and the performance overhead.

26

3.3. Workloads	

We chose a set of benchmarks from SPEC CPU® 2006 [29] suites, as shown in Table 3-2. Out

of the 12 benchmarks used, 6 are from SPECint® 2006, and the other 6 SPECfp® 2006. Our

fault detection mechanism mainly exploits locality in memory access patterns and program

phases. The 12 selected benchmarks exhibit a wide range of cache miss rate [70], and have

distinct characteristics in program phase length, phase transition, and repetition. These properties

make the 12 benchmarks a good mix for evaluating our fault tolerant architecture.

CINT CFP
401.bzip2 410.bwaves
403.gcc 436.cactusADM
429.mcf 444.namd
456.hmmer 454.calculix
458.sjeng 465.tonto
462.libquantum 470.lbm

Table 3-2: Benchmarks

For each benchmark, we select one representative SimPoint [18] of 100 million instructions.

With gem5’s checkpointing functionality, we fast-forward simulations to this SimPoint’s

checkpoint and simulate only the 100 million instructions within the SimPoint.

3.4. Metrics	

When presenting the evaluation results, we focus mainly on the detector’s fault coverage, false

positive rate, and impact on hardware area, system performance, and energy consumption.

27

Since we use Bloom filters in our fault detectors, it is important to not confuse the false positive

rate of a Bloom filter and that of the detector. A false positive from a Bloom filter means it

falsely reports true when testing a non-existent element’s membership. A false positive from the

fault detector means the detector falsely raises a signal for an error that does not exist.

28

Chapter 4 A High-Level Description of the

Detector

This chapter describes the high-level design of our fault detector. Since most transient faults are

either masked or result in program crash and are thus detected [16, 17, 69], we focus on detecting

the remaining faults - silent data corruptions (SDC) that render incorrect program execution path

and possibly corrupted computational results without ever being detected. The goal for our

detector is to have a high detection rate on SDCs while keeping the cost low. To reach this goal,

we utilize program localities. The locality is stored by the detector and used for detecting faults.

The detailed design choices for the detector will be discussed in Chapter 6. In this chapter, we

focus on how the different components of the fault detector are orchestrated and present the

workflow of detecting a fault.

In order to explain our high-level design of the detector, we structure this chapter as follows:

 In Section 4.1, we give an overview of the fault detection’s key components and a fault

detection workflow.

 In Section 4.2, we explain the use of program execution phases, which is vital to the

efficiency of the detector. Identifying a program execution phase transition can help limit

the scope of the detector, while identifying a phase repetition enables reuse of known

29

locality information to save training time. The concepts of a learning period, unique

phases, phase transitions, as well as phase repetitions, are introduced in this section.

 In Section 4.3, we discuss how a detector signal is analyzed to distinguish a back-end

fault, a front-end fault, and a false positive. This is essential in choosing the correct

mechanism for recovering from a fault.

 Finally, in Section 4.4, we explain how an analyzed signal is handled.

4.1. Design	and	Workflow	Overview	

4.1.1. Key	Components	of	the	Detector	Design	

Before we dive into the workflow of the detector, there are three key aspects of the detector that

need to be introduced: What information from the program do we use to represent program

locality, what structure is used to store the locality and detect fault, and how the fault detection

algorithm is designed to make the detector efficient.

Capturing	Program	Locality	

As described in Chapter 3, the faults we are trying to detect are transient faults that result in

silent data corruption (SDC). These faults do not affect the program execution in a catastrophic

way, but only change some data values that produce incorrect results. Thus, neither micro-

architectural state [11] nor software-level events [3] can distinguish a program’s faulty execution

from its correct behavior. Instead, established program locality can help detect data anomalies

and predict data corruption. Works including PBFS [16] and FaultHound [17] have used the

effective address and load/store value of memory instructions to represent program locality. In

30

our work, we also utilize memory instruction information to represent program locality. Beside

the load/store value, the stride of the effective addresses is captured instead of the addresses

themselves. The benefit of using the stride will be explained in Chapter 6. In this chapter, we will

use the abstract term program locality information as an abbreviation for the memory strides and

values that are used in the detector.

Using	Bloom	Filters	for	Fault	Detection	

A Bloom filter is a data structure that efficiently stores a set of elements and quickly tests

whether a given element is a member of the set. In our detector, we use the membership of a

Bloom filter to detect faults. During a training period, memory strides and values are stored in

the Bloom filter. After training, the Bloom filter tests incoming memory strides and values for

set membership. If an item is decided to not be a part of the known set, the detector believes it

has detected a fault. The design of the Bloom filter will be explained in detail in Chapter 6.

Phase‐Aware	Fault	Detection	Algorithm	

Known as time-varying behavior [19], a program execution goes through a number of phases.

Program locality can change as phases shift. Thus, it is important that our fault detection

algorithm monitors phase transitions and adjusts the detector accordingly.

There are three major advantages for our fault detector to be aware of program phases:

1. The detector can be better built to suit the program locality of the current phase. This way,

the scope of the detector is limited, which makes the fault detection more effective and

the detector more cost-efficient.

31

2. The detector can monitor phase transitions. If a phase transition occurs, i.e. the program

enters a phase that is different from the current phase, the detector can determine that it

needs to be cleared and re-trained for the next phase. Otherwise, the detector can continue

to work.

3. The detector can monitor phase repetitions. As will be discussed in Section 4.2.2, it is

quite common for a phase to repeat at different points of a program execution. The

detector content of a phase can be saved and possibly reused if the detector determines

there is a repetition of this phase. This can reduce the cost of training since the time for

re-loading the Bloom filters are much smaller than the time required to train the filters.

The way that our detector monitors phase transitions, phase repetitions, as well as how the

detector is trained or reloaded, will be discussed in detail in Section 4.2.

Figure 4-1: Overview of the fault detection workflow

32

4.1.2. The	Workflow	

When a fault is present in a system, an end-to-end workflow is needed to detect the fault and

help the system recover from the fault. An overview of our fault detection workflow is presented

in Figure 4-1.

First, the detector needs to be prepared before predicting faults as shown in Figure 4-2. To

capture program locality and use it for fault detection, our detector needs to be trained when a

fresh phase starts, which we refer to as Intra-Phase Preparation. In addition, when a phase

transition occurs and if the new phase is a repetition of a past phase, the detector reloads the

content of the original phase, and we refer to this as Inter-Phase Preparation. The details will be

discussed in Section 4.2.

Then, the detector is ready to predict a fault. At this stage, the outcome of our detector is binary.

If an incoming data pattern violates the existing program locality information, the detector raises

a signal; otherwise, the detector does not raise a signal and continues to test the next incoming

data pattern. The design details of the fault detector will be discussed in Chapter 6. For this

current chapter, this part of the detector can remain a black box that outputs a “fault” or “no

fault”.

Once the detector predicts a fault, the fault is analyzed, to the detector’s best knowledge, to see

whether it is a real fault and if so, which type of fault it is. Thus, this fault analyzing stage signals

“false positive”, “back-end fault”, or “front-end fault”. Section 4.3 describes how a fault is

analyzed by our detector.

33

Finally, the outcome of the fault analyzing stage gets handled accordingly. If a false positive is

detected, our fault detector updates its program locality information to include the pattern in the

false positive. If a real fault is detected, depending on whether it is back-end or front-end, the

detector initiates corresponding recovery mechanism to get the system back to a correct state.

Section 4.4 describes how different faults are handled in recovery.

Figure 4-2: Detector content preparation

4.2. Preparing	the	Detector	with	Program	Locality	

For the detector to identify anomalies in program locality, it needs to be prepared before

performing its fault detection functionality. The preparation is analogous to warming up any

cache – the program locality information needs to be loaded into the detector.

34

4.2.1. Intra‐Phase	Preparation	

For a detector to be effective, it needs to be trained with some program locality information, and

that information is used for detecting anomalies afterwards. On an extreme end, the program

execution can be viewed as one big phase, and the warming up is done only once. However, for

the detector to be more effective, phases at a finer time granularity should be identified, and the

detector should be trained at the beginning of each phase.

We call the training period within a phase a Learning Period. As shown in Figure 4-3, the

program execution can be composed of multiple phases, and each phase has its own learning

period. For simplicity, each learning period is of a fixed length. The length of the learning period

has a significant impact on fault detection rate and performance cost. We will discuss more of

the trade-offs on the learning period in Chapter 6.

Figure 4-3: Learning period and detection period within a phase

The program locality information gained through the learning period will remain in the detector

until a phase transition occurs. As will be discussed in Chapter 6, our detector consists of

multiple Bloom filters. Each Bloom filter is a bit vector. During the learning period, a selection

of memory values and effective address strides are added to the Bloom filters. When the learning

period reaches its end, for the rest of the phase, incoming memory values and strides are tested

by the Bloom filters to predict a fault. Once a phase transition is detected, the Bloom filters’

35

content cannot be used any more, and the detector needs to determine whether to train or reload

existing content for the next phase.

4.2.2. Inter‐Phase	Preparation	

The detector content can be customized for each individual phase. The customization follows

two rules:

1. The detector content cannot be shared by two phases that are dissimilar.

2. The detector content can be reused by two phases that are similar.

The detector identifies when the program execution enters a phase that is dissimilar to the current

phase, which is called a phase transition. Detecting a phase transition is essential for keeping the

detector content sensitive to the current phase. However, clearing the detector content and restart

a learning period can be costly. If redundancy between phases can be detected, the detector

content can be reused when a phase repeats itself. Thus, the detector also determines whether the

new phase should be considered a repetition of a previously seen phase. In this section, we will

explain how phase transitions and repetitions are detected, and how the detector functions to take

advantage of them.

Program	Execution	Phases	in	Other	Works	

The concept of program execution phases has been studied to help optimize hardware

reconfiguration [7]. The need for tuning hardware proves that different program phases have

distinct characteristics, e.g. instructions per cycle, miss rate, etc. This implies that the program

36

phases are drastically different in memory accesses and data values. Thus, to achieve high

efficiency, the fault detector should adapt to the current program execution phase.

On a side note, instruction locality has been explored to detect transient faults by Inherent

Timing Redundancy [5]. This work is orthogonal to our fault detection work.

Working set analysis [7] shows that program execution phase transition is highly predictable by

the transition of the program’s instruction working set. A compressed representation of

instruction working set is monitored to detect working set changes, and thus detect program

phase changes. We will explain how we adopt the working set signature approach for detecting a

program execution phase.

Forming	an	Instruction	Working	Set	Signature	

A working set is bound to an interval of execution, or a window. The instruction working set is

comprised of all the static instruction PCs within a window. The phases can be resolved at a

granularity no finer than the window size. In this work, the window size is set to 100K

instructions. Also, a series of non-overlapping windows are used instead of a sliding window.

Compression is crucial when storing working set information. An instruction working set

containing 𝑛 static instructions, if not compressed, can take 𝑛 64 bits in a 64-bit system. To

achieve an efficient representation, we adopt the working set signature approach proposed in [7]

to represent an instruction working set.

The working set signature is a vector of n bits. It is generated by mapping each instruction PC

onto one bucket of a vector, as shown in Figure 4-4. First, instead of using raw instruction PCs,

37

the working set elements are set to be of cache line granularity. For a cache line size of 2 , the

lowest 𝑏 bits of the instruction PC are dropped and only the remaining 𝑚 bits are used. Second,

the highest 𝑚 bits of a PC are compressed by a hash transformation. These 𝑚 bits are hashed

into a value 𝑘, which is a number between 0 and 𝑛 1. The 𝑘 bit of the signature gets set to 1.

Figure 4-4: Working set signature generation

We made a few modifications to the working set signatures in our adoption. First, to reduce

performance and power cost, only branch and memory instructions are used. This is different

from the working set analysis work [7] where every committed instructions PC is used. Second,

since the working set being monitored is smaller, the signature vector size can be much smaller

as well. We use a signature size of 64-bit, in comparison to the 128-byte signature size in the

working set analysis work. This size reduction significantly saves the amount of memory we

need for detecting phase repetition, as will be discussed in the later section.

Putting it all together, for each non-overlapping window of 100k instructions, we form a 64-bit

working set signature with a subset of PCs that are executed in this window. We use a cache line

size of 64 bytes. This means b is set to 6 bits and we only use the highest 58 bits of the

38

instruction PC. For each PC, the highest 58 bits are randomly hashed into a number between 0

and 63 to update the signature.

Phase	Detection	Architecture	

We need to store a few different signatures for phase resolution, which is shown in Figure 4-5: A

current signature, a previous signature, and a set of past unique signatures. These stored

signatures are used for detecting phase transitions and repetitions.

The current signature is the signature that is being built within a window. It is updated by each

instruction PC in the working set. This signature is stored in a dedicated memory location.

Figure 4-5: Working set signatures are stored in memory locations for phase resolution

The previous signature is used for detecting phase transition. Once a window ends, the current

signature is finalized and is then compared to the previous signature for phase transition. If the

compare logic determines there is not phase transition, the current windows is considered a

continuation of the previous window. The previous signature is stored in a dedicated memory

location like the current signature.

39

A set of unique signatures is used for detecting phase repetition. These signatures are stored in

the physical memory. When the current signature finalizes and if a phase transition is detected,

the unique signatures will be cached, and each is compared with the current signature to detect

phase repetition. If the compare logic determines there exists a past unique signature that the

current signature is repeating on, the current phase is considered a repetition of that past unique

phase, and the detector can be warmed up using that unique phase’s detector content.

The process of detecting phase transitions incurs some performance cost. The program execution

needs to be stalled in order to perform these phase detection operations:

 Operation #1: Comparing the current signature against the previous signature at every

window boundary.

 Operation #2: Loading the unique signatures to a near cache if a phase transition has been

signaled by Operation #1.

 Operation #3: Once Operation #2 finishes, searching the unique signatures for one that

qualifies the current signature as a repetition.

The cost of these operations depends on the signature size, the comparison logic, and the number

of unique signatures that are stored. The signature size is 64 bits, as explained in the previous

subsection. The comparison logic, which will be explained next, consists of an XOR operation,

and OR operation, a one’s count, and a division. The number of unique signatures, as will be

explained in Figure 4-7, is 13 within one 1000 window SimPoint if we take the average of the

twelve benchmarks we evaluated. The average phase length is 11.5 windows. Thus, for every

window, one comparison will take place. For every 11.5 windows, 13 unique signatures need to

40

be loaded to a near cache, and 14 comparison operations will take place to search for phase

repetition. The 13 unique signatures take 2 cache lines, assuming a 64-byte cache line size, and

thus incurs a stall of two memory loads. Each of the 14 comparison operations incur a stall of 4

ALU operations. Assuming a wide-issue pipeline, the memory load stall and the ALU stall

together take ~200 CPU cycles per 11.5 window. This is still much more efficient than the

~200,000-instruction training time (as will be discussed in Chapter 5 and Chapter 6) if a phase

repetition is not detected.

Detecting	a	Phase	Transition	

Detecting program phase transition can help the detector determine if it needs to be cleared and

start re-learning.

Program phase change can be detected by comparing the working set signature of the current

window to that of the previous window. The working set analysis work [7] defined the relative

working set distance, to represent the similarity between two working sets. Once the distance

exceeds some threshold, the program is considered entering a different phase.

Since each signature is essentially a set of bits, the relative working set distance is measured

using the complement of Jaccard similarity. Jaccard similarity is the relative size of the

intersection of the two sets, which is a commonly used metric in classification and clustering

problems [71, 72]. The Jaccard similarity of sets 𝑆 and 𝑇 is |𝑆 ∩ T|/|S ∪ T|. The complement of

Jaccard similarity measures the relative size of the difference of the two sets. Let the new

signature be 𝑆 and its previous signature be 𝑆 , the relative working set distance is defined as

41

the ones count of exclusive OR relative to that of inclusive OR of the two signatures, which can

be represented by the following formula, as introduced by [7]:

𝛥 | ⊕ |

| |
 .

A relative distance of 50% or higher is required to qualify for phase transition, i.e. 𝛥 needs to be

no less than 0.5.

Detecting	a	Repetition	on	a	Unique	Phase	

Not only can a signature predict a program phase change, it can also predict phase repetition. The

detector content of a phase can be reused when a repetition is detected.

We use a concept called unique phase to explain the phase repetition phenomenon. If the relative

working set distance between the current signature and a signature that’s previously seen is

below some threshold, the current working set windows is considered a repetition of the

previously seen window, and the two windows are considered two occurrences of the same

program execution phase. The original phase that has been repeated is called a unique program

execution phase, or a unique phase.

Figure 4-6: Unique phases and their repetitions

A unique phase can be repeated anywhere in the program execution and for length of any

number of windows. As illustrated in Figure 4-6, three unique phases 𝐴, 𝐵, and 𝐶 are repeated at

42

different points of the program. Phase 𝐴 is seen repeated for three windows lengths - windows 3,

4, and 5, while Phase 𝐵 and Phase 𝐶 are repeated one window each.

All unique phase signatures are saved for detecting phase repetitions. When a phase transition

occurs, a repeated phase can be detected by comparing the current working set signature against

every saved unique phase signature. If no match is found, the current signature is saved as a

unique phase signature.

In our work, we set the threshold of relative working set distance to be 10% for detecting a

phase repetition. Based on the working set analysis work [7], there can be noise in measuring the

similarity of two windows due to the misalignment of phase boundaries and window boundaries.

Thus, a 90% similarity gives high confidence that the two windows belong in the same phase.

We studied the unique phases and their repetitions in a representative SimPoint [18] of twelve

SPEC CPU2006 benchmarks, each SimPoint of length 100 million instructions. The results are

shown in Figure 4-7. On average, there are 87 phase transitions within the SimPoint, within

which 13 are unique phases and 74 are repetitive phases. This implies two things:

1. The average phase length is approximately 1.15 million instructions. Given the 100K-

instruction working set window size, a phase transition occurs approximately every 11.5

working set windows. This means the phase is resolved at a granularity that’s one order

of magnitude longer than the working set window length. This is biased by two outliers:

𝑙𝑏𝑚 and 𝑠𝑗𝑒𝑛𝑔. These benchmarks executed only one unique program phase within the

SimPoint. Without these two benchmarks, the average phase length becomes 500K

43

instructions, or 5 working set windows. This impacts the performance cost which will be

discussed in Chapter 6.

2. On average, there are 13 unique working set signatures that need to be stored for

detecting phase repetition, and these signatures only take 104 bytes of storage. Even for

the benchmark with the highest number of unique phases, 𝑔𝑐𝑐, its 44 unique working set

signatures only takes 352 bytes of storage, which is still feasible to be stored in the L1

cache.

Figure 4-7: Number of phase transitions of in one SimPoint, divided into unique and repeating

phases

Optimizing	Detector	Efficiency	using	Phase	Information		

Phase transition and repetition information can be used to improve our detector’s efficiency.

Essentially, a unique phase’s detector content, or the program locality information of that phase,

can be reused when a repetition phase is detected.

19
5 4

13
5

17
7

44
20 19 13

10 80 54
78

69

0/1

281

0/1

39

22 78 173
74

1

10

100

1000

Number of Phase Transitions in One SimPoint

number of repeating phases in the 100M instructions SimPoint

number of unique phases in the 100M instructions SimPoint

44

Each unique phase has its own learning period. Once a unique phase ends, its Bloom filter

contents are stored in farther cache. When a phase repetition occurs, the learning period is

replaced by loading the Bloom filter content of the unique phase that it repeats on.

The detector functionality in the case of a phase transition and phase repetition is described by

the pseudo code in Figure 4-8.

The store and load of the Bloom filter contents depend on the sizes of the Bloom filters. This will

be discussed in Chapter 6.

 if (is_learning == true) AND (phase_instruction_count ==
learn_period_length):
 is_learning = false
 storeBloomFilterContents(current_signature, PC)

 if (instruction_count % working_set_window_size == 0): // should check for
phase transition
 change_rate = calculateChangeRate(current_signature, previous_signature)
// check for phase transition
 if change_rate >= phase_transition_threshold:
 (is_repeating_phase, original_phase) = isRepeatingPhase(current_sig,

existing_sigs) // check for phase repetition
 if is_repeating_phase:
 loadBloomFilterContents(original_phase)
 else:
 is_learning = true // start learning for a new unique phase

Figure 4-8: Pseudo code on how to detect phase transition and phase repetition and how the

detector functions to utilize the phase information

4.3. When	a	Fault	is	Predicted:	Analyzing	a	Fault	

Before recovering from a fault, we need to categorize the fault in order to trigger the correct

recovery mechanism. In this work, we differentiate the outcome of the fault detector into three

categories: back-end fault, front-end fault, and false positive. Figure 4-9 Shows how these faults

45

are analyzed into the three categories, as well as which mechanism each category uses to correct

a fault.

Figure 4-9: Workflow on analyzing fault categories and triggering corresponding recovery

mechanisms

Our detector first raises signals in the back-end. Back-end includes all processor pipeline stages

after the issue queue. Since the locality information we use includes memory access patterns and

46

memory values, our detector can only raise signals when this information is available, which is

after an instruction enters the pipeline’s back end.

Our detector then determines whether the signaled fault is a back-end fault, or of a different type.

As will be explained in Section 4.4, we use a back-end replay mechanism same as in FaultHound

[17]. This replay is deemed final for back-end faults since most of them can be corrected.

However, if the replay triggers a fault signal at the exact same instruction PC with the same

memory data, we consider this fault not corrected by the replay, and thus not a back-end fault.

Our detector then distinguishes whether there is a front-end fault, or it just hit a false positive.

We use a separate front-end fault detector, as will be described in Chapter 7, to determine this.

4.4. When	a	Fault	is	Confirmed:	Handling	a	Fault	

When a transient fault is predicted by the detector, we need to determine how the fault can be

corrected.

Correcting a fault requires redundancy in hardware components, saved execution state, or

repeated executions. To correct a transient fault, a common approach is to create periodical

checkpoints and roll back to the previous saved checkpoint.

A full rollback incurs high cost on performance and power. FaultHound [17] avoided most of

this overhead by utilizing the light-weight replay mechanism of the out-of-order-issue pipeline

and adding a delay buffer to it. It argues that since most load and store instructions have

dependencies only among nearby instructions, most of the faults can be corrected by squashing a

short chain of instructions. This reduces the cost from a ~100 instruction rollback to a ~7

47

instruction replay. We use the same replay mechanism to recover back-end faults. If a fault is

determined to be from the front-end, a full rollback will be triggered.

If a detector signal is analyzed to be neither a back-end fault nor a front-end fault, it is

considered a false positive. In such a case, the signal will be suppressed, while the offending

memory data is considered valid program locality information, which will be updated into the

detector.

48

Chapter 5 The Input: Partial-Global Stride

Sequence and Memory Value

This chapter describes the choice of partial-global memory stride sequences and values as the

memory access pattern. We first discuss why the stride sequence can be more efficient than

memory reference in capturing locality. Then, we introduce the concept of a partial-global stride,

which has much fewer noises than a global stride. Next, we present a design and implementation

of an instruction-partitioning mechanism that is critical in generating efficient partial-global

strides. Finally, we explain the usage of both memory strides and values for fault detection which

completes the picture of the detector input.

5.1. Reference	versus	Stride:	Why	is	Stride	Better?	

There are many values from a memory access that can represent locality. Perturbation-Based

Fault Screening [16] and FaultHound [17] both chose to use the memory address and memory

data. PBFS first finds the range of each instruction’s memory addresses or its accessed data.

Then, it sees any out-of-range address or data as a perturbation. FaultHound, on the other hand,

monitors only a selected number of bits of the memory address or data. It uses content-

addressable memory to group them by value and uses a state machine on each group to detect

anomalous values.

49

There is some temporal-spatial locality that has not been captured by these approaches, though.

Memory stride, compared to a memory reference, can capture the memory access patterns in a

sequential way. For example, in a loop, the memory references of all the instructions can be

constantly changing, which can result in out-of-range addresses in PBFS, or unfitting values in

FaultHound. In such cases, PBFS and FaultHound will either have high false positives overheads,

or by marking these values as false positives, miss real faults since their databases have become

more forgiving and insensitive.

In contrary, the memory access strides can stay the same from one iteration to the next, thus

there are fewer permutations from the memory strides than from memory references. A stride-

based detector will be more efficient than a reference-based detector.

A memory stride is defined as the difference of references or physical addresses between the

current memory instruction and the previous memory instruction. Stride has been used by

prefetchers [26-28] for predicting future references and prefetching them into caches before they

are requested by the processor. Prefetcher designs have exploited locality in both local strides,

meaning the strides generated by the same instruction, and global strides, meaning the strides

generated by all load and store instructions.

Let a reference stream of 𝑛 memory instructions be

Equation 5-1: RS R , R , …, R , R ,

 where 𝑅 is the predecessor of 𝑅 in time. A global memory stride 𝑆 is defined as:

Equation 5-2: S R R , 0 k n.

50

A sequence of global strides generated from the reference sequence can then be described as

Equation 5-3: SS S , …, S , S .

To enhance the sensitivity of the detector, we also consider using a sequence of strides instead of

one single stride as the memory patterns. A stride sequence can be more sensitive than a single

stride.

5.2. Partial‐Global	Stride	Sequence	and	Instruction	

Partitioning	

In this section, we discuss the limitations of global strides, and introduce partial-global strides as

well as instruction partitioning in order to generate efficient partial-global stride streams.

5.2.1. Limitations	of	Global	Strides	

(a) Maximum history table sizes

1
10
100
1000
10000
100000
1000000
10000000

Maximum History Table Size, before Partitioning, All Phases

1 2 3 4 5

51

(b) Average history table sizes

Figure 5-1: History table sizes for stride sequences, stride sequence length varying from 1 to 5

The raw global strides can form a large amount of stride sequence permutations. If the memory

access stream is not partitioned, the global stride stream can lose conformity easily, and the

number of unique global stride sequences, given a fixed sequence length, will significantly

increase.

We first use a history table to study all unique global stride sequences, lengths varying from 1 to

5 strides. We wanted to find out how large the table need to be if cleared at each phase beginning

in the length of one SimPoint[18] execution (100 million instructions). Our experiment shows

that the number of unique global stride sequences is too large for a history table to be

implemented. Shown in Figure 5-1, when the sequence length varies from 1 to 5 global strides,

the maximum history table size across all phases and the average size per phase are provided for

each benchmark. The maximum table sizes are on the order of 106, and the average table sizes

are on the order of 105. Given that each entry, which is a sequence of global strides, contains at

1

10

100

1000

10000

100000

1000000

Average History Table Size, before Partitioning, All Phases

Series1 Series2 Series3 Series4 Series5

52

least 8 bytes, the area overhead and performance overhead from searching in the table are

unacceptable. The sizes of the tables need to decrease drastically.

We observed the main issues that cause the global stride sequences to lose conformity:

 When a memory instruction outside a loop follows a memory instruction inside a loop, or

vice versa, the stride between the memory access locations may vary from different

iterations of the loop.

 When the interleaving memory instructions access data structures that have different

element sizes, the memory instruction stream is mixed with different local strides, and the

global stride will lose its pattern.

 Some instructions access random memory locations as opposed to an array, e.g. Pointer-

chasing data structures. They have random effective addresses and strides, which corrupts

the global stride patterns.

These issues indicate that the conformity depends on the static instructions that comes into the

stream. A subset of the static instructions, when selected correctly, can provide a clear stride

sequence pattern, while the pattern can be destroyed if one or more other static instructions are

allowed into the subset.

5.2.2. Partial‐Global	Stride	

To better describe the partitioning of the memory instructions and reference streams, we

introduce the concept of partial-global stride. A partial-global stride falls in between local and

global strides, meaning the strides generated by a subset of all loads and stores.

53

Let the reference stream in Equation 5-1 be divided into two sub-streams:

Equation 5-4: RS R , R , …, R , R , RS R , R , …, R , R ,

We rename the sub-streams in Equation 4 as:

Equation 5-5: RS R , R , …, R , R , and

 𝑅𝑆 𝑅 , 𝑅 …, 𝑅 , 𝑅 ,

Then a partial-global stride can be generated from either 𝑅𝑆 or 𝑅𝑆 . For example, from 𝑅𝑆 :

Equation 5-6: S R R , 0 k m.

The sequence of partial-global strides from 𝑅𝑆 is:

Equation 5-7: SS S , …, S , S .

To capture the patterns within memory strides, we want to divide the static instructions into

partitions, and isolate the instructions that when put into one stream, disturb the patterns.

As an example, let us assume the static instructions that generated 𝑅𝑆 in Equation 5-1 is

divided into two partitions, 𝑃 and 𝑃 , which each contains a subset of all static instructions.

Then, the reference stream 𝑅𝑆 is divided in Equation 5-4 and Equation 5-5. A reference

goes into 𝑅𝑆 if its static instruction belongs to 𝑃 , and 𝑅𝑆 if its static

instruction belongs to 𝑃 . Each reference stream generates its own partial-global stride stream,

𝑆𝑆 and 𝑆𝑆 . Each partial-global stride stream has its own history table,

and is free from the disturbance of references in the other instruction partition.

54

5.2.3. Instruction	Partitioning	

The goal for partitioned tables is to have fewer stride sequence permutations, which contributes

to smaller area, less power consumption, and a lower false positive rate.

Among the 3 issues listed in 5.2.1, #1 and #2 are the most prevalent. We use an example in

Figure 5-2 to explain how we can partition the static instructions to resolve these issues. Figure

5-2 shows a 𝑓𝑜𝑟 loop that accesses two separate arrays of data structures, 𝑎𝑟𝑐 and 𝑝𝑒𝑟𝑚. While

𝑎𝑟𝑐 is accessed in lines 3 and 6, line 6 is executed only when the condition in line 3 is met.

Similarly, 𝑝𝑒𝑟𝑚 is accessed in line 10-12 only when the condition in line 7 is met. If we isolate

the memory instructions into three groups by their line numbers, 𝑙𝑖𝑛𝑒 3, 𝑙𝑖𝑛𝑒 6, and 𝑙𝑖𝑛𝑒𝑠 10

12, the instruction stream within each group will have a consistent memory address shift, and

thus a clear stride pattern.

1 for(; arc < stop_arcs; arc += nr_group)
2 {
3 if(arc->ident > BASIC)
4 {
5 /* red_cost = bea_compute_red_cost(arc); */
6 red_cost = arc->cost - arc->tail->potential + arc->head-
>potential;
7 if(bea_is_dual_infeasible(arc, red_cost))
8 {
9 basket_size++;
10 perm[basket_size]->a = arc;
11 perm[basket_size]->cost = red_cost;
12 perm[basket_size]->abs_cost = ABS(red_cost);
13 }
14 }
15 }

Figure 5-2: Code snippet from SPEC CPU2006 [29]

55

The key observation is that, the number of times that each of these lines are executed can help

distinguish whether it should be put in the same group with another line. This characteristic can

be represented by the number of unique memory references the corresponding instructions will

make. For example, assuming that line 3 is tested 𝑚 times and taken 𝑘 times, while line 7 is

taken 𝑙 times, then line 3 will have 𝑚 unique memory references, line 6 will have 𝑘 unique

memory references, and line 10-12 will have 𝑙 unique memory references.

Thus, we use the number of unique memory references as the metric for partitioning static

instructions. In each individual instruction working set phase, if some instructions appear to have

the same number of static memory references, it’s likely that they are accessing memory

locations with similar size and similar stride, and therefore among them there is a better pattern.

The multi-table approach is compared against the single-table approach to show the benefit of

partitioning. We collected data on the number of unique sequences and false positive rates before

and after the static instructions are partitioned into groups. The program execution is divided into

phases based on different instruction working sets, and at the beginning of each phase the

instructions are re-partitioned, and the history tables are cleared for the new partitioning.

From Figure 5-3, the partitioned tables show much fewer entries of unique global stride

sequences, i.e. the total size of history tables to contain all possible global stride sequences is

much smaller than a single table. The following two figures show the decrement of maximum

and average history table sizes after partitioning, in a period of a SimPoint, which consists of 100

million instructions. The All Phases data is from all instruction working set phases, while the

Essential Phases data is from all the unique phases excluding their repetitions.

56

Figure 5-3: History table size change after instruction partitioning

Among the benchmarks, lbm, cactusADM, and hmmer benefit the most from the partitioning,

while mcf, tonto, and bwaves have little improvement. The benchmarks receiving little benefits

all have a low false positive rate to start with, i.e. the global stride patterns before partitioning are

already well organized. One exception, however, is mcf which has more pointer-chasing than

other benchmarks.

0

0.2

0.4

0.6

0.8

1

Relative Decrement in Maximum History Table Size after
Partitioning

All Phases Essential Phases

0

0.2

0.4

0.6

0.8

1

Relative Decrement in Average History Table Size after
Partitioning

All Phases Essential Phases

57

5.2.4. Hardware	for	Instruction	Partitioning	

The instruction partitioning depends on counting the number of unique memory references of

each static instruction. We dedicate a certain length of learning period for this purpose. However,

such functionality can be expensive to implement, since it is search-intensive and the number of

unique references of a static instruction can be quite large. Implementation using SRAM is

relatively inexpensive in hardware design but incurs high search latency and results in high

performance penalty. Other approaches, mainly using ternary content addressable memory,

achieves constant search time [30] but requires complex hardware and incurs high area and

energy overhead [31]. In this section, we present an area and energy-efficient hardware design to

achieve the instruction partitioning.

We make two important observations in order to create this design. First, the partitioning

information can be used on a repeated phase. Thus, there does not have to be learning at every

phase transition, but only at a new unique phase. Second, to test whether a reference is an unseen

reference of a static instructions, we do not need a cache to store the original PC and reference

but can instead use a Bloom filter.

Beside the search Bloom filter, a cache is needed to store static PCs and a counter associated

with each PC. The design is illustrated in Figure 5-4.

To perform instruction partitioning, we dedicate a learning period specifically for learning the

instruction partitions. This learning period needs to happen before the learning period needed by

the stride and value Bloom filters described in Chapter 6, since the stride and value Bloom filters

rely on the instruction partitions to get their content.

58

Figure 5-4: Hardware design for instruction partitioning and partition information storage

Search	Bloom	Filter	

During the learning period, we concatenate the lowest 24 bits of the PC and the lowest 20 bits of

the reference and checks whether this data is in a Bloom filter. If it incurs a miss, the counter for

this PC is increased, and this data is added into the Bloom filter. At the end of the learning period,

each counter within the cache is checked to a predefined group of ranges, and the associated PC

is added to the cache storage for that corresponds to this counter’s range. We use Bloom filters to

store the partition information as well. To reduce the pollution of the search Bloom filter, we

skip the insertion of a PC and reference pair if this PC’s unique references have reached the

upper limit of the highest range.

The search Bloom filter is 4KB in size. With a learning period length of 100K instructions for

each unique phase, we observe 8% discrepancy in the partitioning outcome compared with

perfect storage and perfect search. This discrepancy is due to the false positives when testing

Bloom filter membership, thus is always an underestimation of the counters for the misplaced

59

instructions. This is acceptable because even if some static instruction PC’s unique reference

count is slightly underestimated, the partitions on the higher ranges still have their patterns intact.

Counter	Cache	

The counter cache is implemented to have 1024 entries, which is far higher than the average

number of unique static instructions per phase, which is 402 in our experiments. The cache is 8-

way set associative and uses the static instruction PC’s lowest 24 bits as the address for a

constant time search and update for this PC’s counter.

Partition	Information	Bloom	Filters	

Once the learning finishes, the static instruction partitions are stored into the partition

information Bloom filters. We use four partition information Bloom filters. They have

heterogeneous sizes to accommodate different sizes of the partitions, that respectively occupies

50%, 25%, 12.5%, and 12.5% of overall capacity. With a total size of 2KB and inserted with all

learned static instruction PCs, the Bloom filters shows a false positive rate of 3% on average.

The above structures are placed near the L1 cache for quick access. At phase transition time, the

content of the partition information Bloom filters is saved to a L3 cache. We save the content for

up to 20 unique phases to limit the impact on L3. If a repeated phase occurs, the content of the

unique phase that is being repeated gets loaded from L3 to the near cache Bloom filters.

The Bloom filters are implemented using a parallel Bloom filter approach [25] in SRAM, where

each parallel Bloom filter has only one hash function and need only one read/write port. With 32

nm technology, the near cache structures, including the search Bloom filter, the counter cache,

60

and the partition information Bloom filters, add 0.55% area overhead to a Sandy Bridge-like core.

As will be discussed in Section 5.5, we have two separate detectors for stride and value.

Therefore, the area overhead for instruction partitioning is doubled to be 1.1%.

5.3. Selecting	the	Effective	Bits	as	Input	

The efficiency of the detector can be further improved by using only a subset of bits from the

strides. Our preliminary study shows that in more than 99% of the strides in a 64-bit program,

bits 20 to 63 have no variation. Thus, we only consider the lowest 20 bits of a stride as the input

to our detector.

Figure 5-5: Impact of stride sequence length

To find out how many lowest bits we need for the fault detection, we did an exploratory study

using the lowest 20 bits of each stride and compared the results to that of using the lowest 18 bits.

In both cases, the sequence includes 3 strides. We experimented using a simple Bloom Filter.

Given the same training length and Bloom Filter size, using the lower 20 bits could achieve an

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.05 0.1 0.15 0.2

Tr
u
e
 P
o
si
ti
ve

False Positive

True/False Positive at Different Sequence Length

61

83% detection rate and 6.4% false positive rate, while using the lower 18 bits could achieve a 45%

detection rate and 2.3% false positive rate. These numbers indicate a trade-off between detection

rate and false positive rate that can be adjusted through the number of bits chosen for the dataset.

For the experiments in the rest of this chapter, we chose to use the lowest 18 bits.

5.4. Stride	Sequence	Length	

Using a sequence of strides, instead of individual strides, as the input to the Bloom Filter,

provides a view of pattern across strides. Since the number of unique stride sequences is

exponential to the sequence length, the length must be carefully evaluated.

We studied the trend of the true vs. false positive rates as the sequence size changes from 1 to 6,

shown as a ROC curve in Figure 5-5. The false positive rate increases as the sequence length

increases, while the rue positive saturates itself and decreases when the sequence length is larger

than 3. A sequence length of 3 can be used to achieve the highest detection rate. However, for an

efficient fault detection design, the false positive rate should also be considered. When the

sequence length increased from 2 to 3, the ROC curve has flattened compared to when the length

increased from 1 to 2. Therefore, a sequence length of 2 is more cost efficient, and we will use

this length for the subsequent studies.

When used as the input to a Bloom filter, the sequence of strides is concatenated into a single bit

array. For example, when a sequence of two strides are used as an input, each containing the

lowest 18 bits of a stride, the two 18-bit vector are concatenated into a single 36-bit vector. This

36-bit vector is the input to the Bloom filter.

62

5.5. Using	Memory	Value	in	Addition	to	Stride	

The data value from a memory access should also be used to increase the fault coverage. Strides

can be efficient to use when detecting faults, but not all faults result in a stride variance. In some

cases, a data altered by a single-bit transient fault will not influence the effective addresses of

any memory instructions. This type of fault can only be detected by examining the memory data

value.

Thus, we use data values in addition to strides as our input source for fault detection. To capture

the patterns within each stream, these two types of inputs are isolated into two detectors, the

Stride Detector and the Value Detector.

The effective bits and sequence length were studied on values as well. Like strides, values have

little variance in the higher bits, thus we only use the lowest 18 bits of a value. Also, like strides,

value errors can be better detected when static instructions are partitioned into separate sections

of the detector. Our study on sequence length shows that values are best used individually, thus a

sequence length of 1 is used for values through the rest of this work.

63

Chapter 6 The Detector: Bloom Filters

This chapter describes a fault detection mechanism that uses Bloom Filters to exploit the

temporal and spatial locality within the partial-global strides and memory data. We will discuss

the design and implementation of the Bloom Filters, their effect on fault detection, and the cost

on performance, area, and power consumption.

6.1. Overview	

Bloom Filters are used to store the history of memory access patterns in their hashed form and

check for incoming patterns’ membership for fault detection. In the learning period, a Bloom

filter is warmed up by inserting memory stride sequences or data values. In the detection phase,

the incoming stride sequences or data values are tested against the filters to predict faults.

In Chapter 4, we explained how the different components of the detector are orchestrated on a

high level, including identifying phase transition and phase repetition, storing and loading Bloom

filter contents, and using the replay and rollback mechanisms to handle back-end and front-end

faults. A more detailed architecture overview including the Bloom filter setup is shown in Figure

6-1. Note that the instruction partitioning information Bloom filter is not shown in detail but

abstracted into the Partition Selector; only one set of Bloom filters, representing the stride

detector or value detector, is shown in the figure.

64

Within each Bloom filter, a random XOR-folding hash function is used, which will be discussed

in Section 6.2. The individual Bloom filters, 0 through 3, each handles a separate static

instruction partition. The heterogeneous Bloom filter sizes for each partition will be discussed in

Section 6.3. To reduce hardware overhead, a parallel Bloom filter implementation is used for all

Bloom filters and is discussed in Section 6.4. The effect of the learning period length is

explained in Section 6.5. Section 6.6 presents the experimental results, including fault coverage,

false positive rate, and costs on performance and energy.

Figure 6-1: Design of the value-based fault detector

6.2. Hash	Function	

A Bloom filter is a bit array that can represent a set of values and test whether a value is a

member of the set. Each Bloom filter has a set of independent hash functions associated with it.

65

Each hash function can transform an input value into a hashed value. For a Bloom filter with an

m-bit array and k hash functions, when an input value is given, each hash function can generate a

value in the range of [0, m-1] to represent a bit location, and the locations within the bit array

indicated by the k hashed values are set to insert the input value, or tested to see whether the

input value is a member of the set.

For our usage, we want our Bloom filter to detect anomalies among all bits of the input value.

For this purpose, we explored a few options of hash functions.

Shift‐and‐Add	Hash	Function	

A simple, widely-used hash function is Shift-and-Add as shown in Figure 6-2.

def simple_hash(values, seed, cap):
 result = 0
 for i in range(len(values)):
 result = result*seed + values[i]
 result = result & (cap - 1)
return result

Figure 6-2: Python code for a shift-and-add hash

The input bit array is broken into segments, creating a value array 𝑣𝑎𝑙𝑢𝑒𝑠. With each seed, this

hash function produces a bit location for the Bloom Filter to set. A set of different seeds are used

to set multiple locations for the same input value.

This hash function has uneven detection efficiency among the bits of a global stride, since its

approach is limited by its uneven usage of each bit in the stride.

66

Uniform	XOR‐Folding	Hash	Function	

XOR-Folding hash functions create more equal detection opportunities for each bit within the

strides. If a stride sequence has m bits, and the Bloom Filter has a capacity of 2n, a Uniform

XOR-Folding hash divides the stride sequence into segments of k bits, where 𝑘 . Then, the

segments are XORed, creating a result of n bits, and this n-bit number indicates the bit location

in the Bloom Filter to be set. Figure 6-3 shows how the Uniform XOR-folding hash function

works.

Figure 6-3: Uniform XOR-folding of an m-bit input into an n-bit value

To create multiple hash functions on the same input, each hash function can circularly shift the

input bit array by a different offset, and then uniformly XOR it.

The uniform XOR-folding hash may work well with inputs where the bits values are uniformly-

distributed. However, the different bit locations of memory stride sequences and values are not

equal, since some bits may have more variance than others. Thus, we explored the random XOR-

folding hash as explained next.

67

Random	XOR‐Folding	Hash	Function	

Known as the H3 hash function [23], Random XOR-Folding Hash uses the result of a random

offset selector, selects bits semi-randomly from the global stride sequence without repetition, and

form segments of k bits. Random XOR-Folding Hash mitigates the uneven utilization of the

Bloom Filter bits [24] that compromises the Uniform XOR-Folding Hash fault coverage.

To create multiple hash functions on the same input, different random offset selectors are used.

The	Number	of	Hash	Functions	

The number of hash functions, together with the size of the bit array, determines the probability

of a false positive to a Bloom filter. A Bloom filter false positive means when an input value is

tested to be a member of the set, while in fact it is not. When we use a Bloom filter for fault

detection, this test false positive translates into an escaped anomaly, which then translates into

loss of detection rate. In general, when the data set is small relative to the Bloom filter size, the

number of Bloom filter false positives is reduced as the number of hash functions increases.

However, as the data set gets larger, this trend can get reversed [25]. We compared using 4 hash

functions against 8 hash functions. The result is shown in Figure 6-7, which indicates better

outcome with 4 hash functions.

6.3. Heterogeneous	Bloom	Filter	System	

In Chapter 5, we explained the importance of instruction partitioning. The outcome of the

instruction partitioning is a number of sets that each contains some static instruction PCs. These

68

sets do not necessarily have the same size, and the memory access pattern they hold do not,

either. Thus, it is important to assign a proper size for the Bloom filter of each partition.

Figure 6-4: Bloom Filter without Partitioning

A Bloom filter implementation before partitioning is shown in Figure 6-4, which uses k hash

functions. In the following sections, we will discuss how to partition the static instructions and

assign sizes to the Bloom filters.

Identify	the	Instruction	Partitions	

In Chapter 5, we explained how the static instructions can be partitioned using number of unique

memory references as a measurement. In our implementation, we perform a profiling of the static

memory instructions and their number of unique references, 𝑢. The static instructions are then

selected and divided into four partitions: 𝑢 1, 2 𝑢 10, 11 𝑢 40, and 41 𝑢 100.

All static instruction PCs within a partition are stored in dedicated cache. The Partition Selector

in Figure 6-1 searches this cache for a PC and selects the corresponding Bloom filter partition.

The stride sequence and memory value associated with this PC then goes into that Bloom filter

partition.

69

Estimate	Bloom	Filter	Size	for	Each	Instruction	Partition	

Not all instruction partitions require the same Bloom Filter size. To achieve a high fault detection

rate while keeping the false positive rate low, we need to consider factors including the number

of unique PCs in the partition, the number of unique references per PC, the size of the stride

sequence, etc. For the stride Bloom filter, when determining the Bloom Filter size, the instruction

partitions are sorted by the number of unique PCs they hold. The largest Bloom filter partition is

assigned to the static instruction partition with the greatest number of PCs. For the value Bloom

filter, however, the number of unique values should also be considered. The product of the

unique PC count and the counter lower limit is used to sort the instruction partitions. Considering

the feasibility of implementation, we use four partitions, with their size proportional to 1:1:2:4.,

and so on.

Figure 6-5: Bloom Filters after Partitioning

70

The Bloom filter after partitioning is shown in Figure 6-5. Each partition will still have k hash

functions. In the example in Figure 6-5, Partition 2 is selected for the input stride sequence or

data, since the Partition Selector designated Partition 2 for the current PC.

6.4. True	versus	Parallel	Bloom	Filters	

To implement a Bloom filter with k hash functions in the SRAM, we’ll need k read and write

ports. Since the size of the SRAM increases quadratically with the number of ports, we will need

an area-efficient implementation of the Bloom filter.

Figure 6-6: Parallel Bloom filter implementation for one partition

The concept of a true Bloom signature versus a parallel Bloom signature has been introduced by

existing works [24]. By using the parallel Bloom filter implementation, the area overhead is

quadratically reduced, while the detection rate is barely affected.

In our study, we use a similar definition. A true Bloom filter is when all k hash functions are

used by a single Bloom filter. Its parallel Bloom filters counterpart is defined by dividing the bit

71

field of the true Bloom filter into k Bloom filters, and each assigned one hash function. This

implementation is illustrated in Figure 6-6.

Our experiment shows that the parallel Bloom filters achieves a fault detection rate for over 94%

of the detection rate of a true Bloom filter, while the false positive rate is reduced by 36%

compared to a true Bloom filter. The result is shown in Figure 6-7. In this experiment, we use a

sequence of 2 strides for the stride Bloom filter, and a sequence of 1 data value for the value

Bloom filter, while both filters are of 1KB size, with 10000 micro-ops training length. The

results are extracted from the 12 SPEC CPU2006 benchmarks, and each data point represent the

average value of all 12 benchmarks’ results.

Figure 6-7: Fault coverage and false positive comparison between different Bloom filter

implementations: True Bloom filter and parallel Bloom filter

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.02 0.025 0.03 0.035

Tr
u
e
P
o
si
ti
ve
 R
at
e

False Positive Rate

Comparison on True vs. Parallel Bloom Filters

True Bloom filter

Parallel Bloom filter

8 hash functions

4 hash functions

72

6.5. Effect	of	Learning	Period	Length	

A learning period is dedicated to the stride and value Bloom filters, after the instruction

partitions are learned or re-loaded. The learning period length is a vital parameter that affects the

effectiveness of the stride and value detector and the performance of the system.

Effect	on	Fault	Detection	Rate	and	False	Positive	rate	

The length of the learning period has a direct impact on the fault detection rate and false positive

rate. Since new stride sequence or data value can keep showing up, the learning period length is

positively related to the size, n, of the data set inserted into the Bloom filters. In the meantime,

the probability of a single bit still being 0 after n insertions is negatively related to n [25].

Therefore, the longer the learning period, the more bits get set in the Bloom filters, and the

higher false positive rate when testing a new value against a Bloom filter. As a fault detector, the

Bloom filters will report lower fault detection rate and lower false positive rate.

Effect	on	Energy	Cost	

During the learning period, the program thread needs to be protected using additional measures

since the detector is not detecting any fault. The thread can be protected by protector threads that

form a dual modular redundancy (DMR) or triple modular redundancy (TMR) [1] [69]. This

result in energy overhead that is proportional to the learning period length.

Learning	Period	Study	

To quantify the fraction of the learning period length relative to the program execution length,

we first examine when the learning period is needed. To keep the fault detector’s sensitivity, we

73

divide the program execution in to working set phases [7], and each phase transition will trigger

a refresh on the Bloom filters. We use a working set phase length at a granularity of 100,000

instructions, for a total execution length of 100 million instructions. We enable checking on

repetitive phases. Within the 100 million instruction program execution, we see on average 13

unique phases across the benchmarks. For each working set phase, we either have an explicit

learning period, or reuse the warmed Bloom filter from the previous occurrence of an identical

phase.

Figure 6-8: Impact of learning period length on fault coverage and false positive rate

To optimize the effect of the learning period, we experimented with 3 different learning period

lengths: 4000, 16000, and 40000 instructions per phase. Let the learning period length be

denoted as m, the execution length as n, and the number of unique phases as k. The fraction of

the learning period relative to the program execution length can be calculated by:

m * k / n

0.84

0.85

0.86

0.87

0.88

0.89

0.9

0.91

0.002 0.007 0.012 0.017 0.022

Fa
u
lt
 d
et
ec
ti
o
n
 r
at
e

False positive rate

Effect of Learning Period Length

0.5% Learning Time

0.2% Learning Time

0.1% Learning Time

74

Since k=13 (See Figure 4-7), the three learning period lengths project to 0.1%, 0.2%, and 0.5%

of the program execution time.

Figure 6-8 shows the fault detection rate and false positive rate of each of the learning period

lengths. Both rates are negatively related to the length of the learning period. The low learning

times, 0.1% and 0.2%, guarantee high fault coverage at 90%, but report over 1.6% and 1.9%

false positive rates respectively, which can create a drastic performance overhead. The 0.5%

learning time, however, shows a fault coverage of 84% while incurring only 0.6% false positive

rate. Thus, in our subsequent study, the 0.5% learning time is used.

6.6. Evaluation	

We evaluated the fault detector design on an out-of-order X64 architecture as described in

Chapter 5. We will show both the fault detection rate and the false positive rate and discuss the

impact on performance, area, and energy consumption.

6.6.1. Fault	Injection	

The fault injection methodology we chose is flipping a register bit before its write-back. This

method can account for an abundance of soft error behaviors [16, 17].

For each of the 12 SPEC CPU 2006 benchmarks we evaluated, we injected 50,000 faults. Out of

all injected faults, 3.7% resulted in program crash. For the remaining faults, we distinguish SDC

from a masked fault by monitoring the dynamic memory instructions, as well as memory

reference and memory value traces, for at least 5000 instructions after the point of fault injection.

Similar to past studies [16, 17], we assume that a fault is masked if no divergence is found after

75

the monitored length. The fraction of masked faults, faults that resulted in program crash, and

SDCs are shown in Figure 6-9 (a). On average, 1173 faults manifested themselves in the form of

silent data corruption, and we will report our coverage on these faults only.

(a) Fault injection broken down by impact on program execution

(b) Silent data corruptions broken down by impact on stride and value

Figure 6-9: Fault Injection Outcome

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

Fault Injection Impact

Masked Program Crash SDC

0%

20%

40%

60%

80%

100%

SDC Breakdown

both stride_only value_only

76

A further breakdown of the SDCs are shown in Figure 6-9 (b) by whether they affected the

memory value stream, or the memory stride stream, or both. On average, 82% of faults altered

the memory value stream, while only 63% altered the memory stride stream. For 8 out of 12

benchmarks, >50% faults affected both stride and value streams. For hmmer and libquantum, the

majority of the faults affected the value stream only. For lbm and namd, there is a significant

portion of faults that affected stride only. The diversified characteristics are expected, since our

fault injection is through the write-back register. If a memory instruction’s reference does not go

through any computation logic and never gets writen back to a register, the reference will not be

modified, even though the value associated with the same instruction can be changed by a fault,

which results in the value trace diverging from the fault-free trace while the stride trace stays

unchanged. The same applies to when a fault results in stride trace divergence but not value trace

changes.

6.6.2. Detector	Configuration	

Delay buffer 7 instructions
Instruction partition learning Bloom
filter

4KB (reference-based partition), 4KB (value-based
partition)

Instruction partition learning counter
cache

1024 entries, 4 bytes per entry, 4-way set associative

Instruction partition storage Bloom
filter

2KB (reference-based partition), 2KB (value-based
partition)

Detector Bloom filters 1KB (stride), 1KB (value)
Number of saved unique phases per
100M instructions

20 (unique phase signatures, instruction partition
Bloom filters, and detector Bloom filters in L3)

Table 6-1: Hardware configurations for the fault detection structures

Memory stride and memory data are both used for fault detection, but in two isolated detectors.

Both detectors have the same total size of 1KB and are partitioned into 4 partitions using the

77

same methodology mentioned in Chapter 5. The stride detector takes in stride sequences that

consists two strides, while the data detector takes in a single memory value at one time. Both

uses only the lowest 18 bits of the stride or data.

A detailed hardware configuration is shown in Table 6-1. We use the replay mechanism with a

delay buffer same as FaultHound [17] to correct faults on the backend. Within the length of a

100M instruction SimPoint [18], a maximum of 20 unique phases’ detector information can be

saved and reloaded when repeated. This includes the unique phase signatures, the Bloom filters

that stores the instruction partition information, and the Bloom filters for the stride and value

patterns.

6.6.3. Detection	using	Memory	Stride	and	Memory	Value	

In this section, we discuss the fault coverage and the false positive rate of the detector. The two

detectors can have an overlap in their fault coverage, while they are also complimentary enough

to boost the overall fault detection rate. The reasons are twofold. On one hand, the injected faults

can have an impact on stride only or data only. On the other hand, the two detector’s input data

sets are fundamentally different even when no fault is injected. These conditions create a

discrepancy in the two detector’s behavior.

Fault	Coverage	

The fault coverage is shown in Figure 6-10. On average, we achieve 84% fault coverage on all

faults that can be corrected on the backend. We use a processor core pipeline similar to the one

used by FaultHound [17], and the backend, which is 80% of the pipeline area, is responsible for a

78

proportion of 80% of all faults injected in the core, while the frontend is responsible for the other

20%. Thus, the backend fault detector covers 67.2% of all faults. As a comparison, PBFS [16]

covers 30% backend faults, while FaultHound has a coverage of 60%.

Figure 6-10: Fault coverage of the value-based detector

There are some dramatic differences among the benchmarks in fault coverage. For hmmer, the

value detector is the main contributor in fault detection. This is because hmmer’s reference/stride

trace is insensitive to the injected faults, leaving little room for the stride detector to perform. For

the same reason, lbm benefits largely from its stride detector. Lbm shows higher coverage than

hmmer, which is most likely because lbm focuses on matrix computation and has a small

memory instruction working set, and the stride patterns are quite strong as shown in Figure 5-3.

Libquantum shows the lowest detection rate. One possible reason is the low memory instruction

percentage: libquantum has only 12% dynamic memory instructions, compared with 24%

average of all benchmarks. Other possible reasons include noises in the value patterns; its value

0

0.2

0.4

0.6

0.8

1

Fa
u
lt
 D
et
ec
ti
o
n
 R
at
e

Fault Coverage by Stride and Value Detectors

stride & value stride only value only

79

detector detected fewer faults than the stride detector even though there are far more diverged

value traces than stride traces.

Figure 6-11: False positive rate of the value-based detector

False	Positives	

The false positive rates are shown in Figure 6-11 with an average of 0.6% of all instructions.

This is comparable with PBFS [16]’s ~0.5% and much smaller than FaultHound [17]’s ~3%.

This implies low energy overhead of our fault detection mechanism. Most of the benchmarks

exhibit a false positive rate that is positively related to its fault coverage. Libquantum, which has

the lowest fault detection rate due to value noises, also has the lowest false positive rate. This

trend implies that the fault coverage and false positive rate could have been affected by the

Bloom filter sizes, which might improve if Bloom filter sizes are customized for different

benchmarks. In most benchmarks, the stride detector has a higher number of fault coverage per

false positive, than that of the value detector. This is especially prominent in the results of gcc,

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

Fa
ls
e
P
o
si
ti
ve
 R
at
e

False Positive Rate by Stride and Value Detectors

stride & data stride only value only

80

which has relatively low fault coverage but high false positive rate. This phenomenon is most

likely due to the instruction partitioning algorithm, which is optimized for the stride detector but

not the value detector.

(a) Performance overhead in fault-free execution

(b) Performance overhead breakdown

Figure 6-12: Performance impact on the system

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Performance Degradation

51%

2%

47%

Performance Overhead for Backend
Fault Detection

learning phase transition backend replay

81

6.6.4. Performance,	Area,	and	Energy	Impact	

With the evaluation setup described in Chapter 3, we simulated the performance in a fault-free

program execution to evaluate the performance impact. We also use McPAT to calculate core

power and area, and CACTI to calculate the power and area of the fault detector. The energy

overhead is calculated based on the power of different components and the performance

overhead.

Performance	Impact	

On average, the detector incurs 6.4% performance overhead, with the numbers of all benchmarks

shown in Figure 6-12 (a). As a comparison, FaultHound [17]’s backend fault detection incurs

higher performance degradation (e.g., 9%). The performance improvement mainly attributes to

our low false rate.

To better explain the results, we break down the performance overhead in Figure 6-12 (b) into

three categories.

 The first category shows the impact of the learning period, which is responsible for half

of all performance overhead. As mentioned in Chapter 5, we dedicate 200K instructions

for each unique phase to learn the instruction partitions. We dedicate another 40K

instructions per unique phase for learning the stride and value patterns. The performance

impact of this category is proportional to the number of unique phases, and as a result,

gcc experiences the highest performance degradation since it has the greatest number of

unique phases within the SimPoint.

82

 The second category is the overhead incurred during phase transition, which is merely 2%

of the total overhead. At a phase transition, the partition information Bloom filters, as

well as the stride and value Bloom filters, need to be refreshed. If the ending phase is a

newly discovered unique phase, these Bloom filters’ content needs to be stored into L3

cache. If the next phase is a repeating phase, the Bloom filter content of the unique phase

that is being repeated on needs to be reloaded from L3 into the respective Bloom filters.

These Bloom filters has a total size of 6KB per phase. Given an average of 13 unique

phases and 74 phase repetition transitions throughout the SimPoint, the overhead of

storing and loading these structures are quite small compared to the overall execution

time.

 The last category is the performance penalty due to the replay upon a detector signal,

which is responsible for nearly half of the overhead. Same as FaultHound [17], we use

the lightweight backend replay to recover from faults by adding a delay buffer to the

issue queue. Upon a detector signal, the instructions in the delay buffer get replayed in

the backend pipeline stages. Thus, the performance overhead of this category is mostly

proportional to the false positive rate.

Area	Cost	

The structures introduced by our fault detection mechanism include near-L1 dedicated cache for

unique phase signatures, the search Bloom filter and the counter cache for instruction partition

learning, the partition information Bloom filters for storing and searching the partitions, and the

stride and value Bloom filters for fault detection. These structures together incur an area cost of

1.28% of processor core area.

83

Figure 6-13: Area cost breakdown by purpose

Figure 6-13 shows a breakdown of all structures. The search Bloom filter and counter cache

takes up 86% of all newly added area cost. These structures are intentionally designed to be large

so that they have as few conflicts as possible, in order to accurately learn the static instruction

partitions. This area cost can be justified since accurate instruction partitioning is the foundation

of the fault detector’s effectiveness.

Energy	Overhead	

Overall, in a fault-free execution, the system experiences 9.8% energy overhead. In comparison,

FaultHound [17] incurs ~11% energy overhead for its backend fault detection.

As shown in Figure 6-14 (a), the energy overhead of each benchmark is mostly proportional to

the performance overhead shown in Figure 6-12 (a). This is explained by a breakdown by

component in Figure 6-14 (b). The energy overhead consists of three major components.

86%

13%

1%

Area Cost Breakdown

Partitioning Backend Detection Phase Signatures

84

(a) Energy overhead in fault-free execution

(b) Energy overhead breakdown into three major components

Figure 6-14: Energy overhead

 Static power of the newly added structures, which is responsible for 21% of all energy

overhead.

0

0.05

0.1

0.15

0.2

0.25

Energy Overhead

21%

66%

13%

Energy Overhead Breakdown

Fault Detector Static Performance Penalty Fault Detector Dynamic

85

 System energy overhead due to performance penalty, which is 66% of the total overhead.

This explains why the energy overhead is almost proportional to the performance

overhead.

 Dynamic power consumption by the backend fault detection mechanism, including power

usage during the learning periods, phase transitions, and Bloom filter lookups for fault

detection. This category incurs 13% of all energy overhead since our structures are small

and the dynamic accesses

86

Chapter 7 Front-End Fault Filtering

In this chapter we discuss how front-end faults can be filtered. Front-end faults are differentiated

from back-end faults in that they occur in the front-end stages of the processor pipeline, which

include fetch, decode, rename, and dispatch. These faults can only be corrected by a full pipeline

rollback, but not the back-end replay as described in Section 4.3. Since a rollback incurs

significant performance and energy overhead, we want to have a dedicated filtering mechanism

for signaling front-end faults, and more specifically, distinguishing a front-end fault from a false

positive to avoid unnecessary penalties.

This chapter is organized as follows:

1. We first discuss in Section 7.1 how a front-end fault uniquely impacts program locality.

Its unique characteristics are the basis of distinguishing a front-end fault from a false

positive.

2. In 7.2, we incorporate the findings into how program locality is represented in our fault

detector and presents a detailed filter design.

3. We present the experimental results of our front-end fault filter in Section 7.3. We also

discuss the trade-offs between fault coverage and performance/power penalty under

different parameter settings.

87

7.1. Front‐End	Fault	vs.	False	Positive	

Modern processors are vulnerable to transient faults at all pipeline stages. Our value-based fault

detector, described in Chapter 6, signals faults when the known program locality is disrupted.

For back-end faults, they can be corrected by a back-end replay. For a signal caused by a front-

end fault, the replay is not able to correct it given the limited size of the replay buffer (see

Section 4.4). For a signal caused by a false positive of the detector, it cannot be “corrected” by

the replay, either, since the microarchitectural states will remain the same after replay. Thus, a

filtering mechanism should be in place for distinguishing front-end faults from false positives.

Within the front-end pipeline stages, register renaming unit is usually the most area and energy

consuming [20-22], and thus is the most susceptive to faults. We focus on detecting rename

faults which represents most front-end faults.

Register renaming is a technique that maps architectural registers to physical registers, in order

to eliminate false dependencies among instructions and increase instruction-level parallelism.

The result of a fault that hits the renaming unit is usually that a physical register lookup gets

disrupted and it returns an incorrect physical register index. The incorrect physical register index,

if invalid or out of boundary, will cause a program to crash. Otherwise, in a silent data corruption

scenario, it results in a read or write to an unintended physical register, and consequently causes

a later instruction to use an unintended value.

To detect a transient fault on the renaming unit, we need to observe the anomalies that the

rename fault may cause in the behavior of program locality and the outcome of our fault detector.

A similar approach to think about front-end fault filtering was used in previous work [17]. As

88

described in Chapter 6, we use parallel Bloom filters to identify known memory stride and value

patterns. A rename fault results in an unintended value to be used, and thus has an unintended

memory value and stride pattern to be sent to the Bloom filters for fault detection. Same as a

false positive from the detector, a detector signal is raised in the case of a rename fault. However,

different from a false positive, an unintended value from a rename fault hits the detector at cold

locations, i.e. locations that are not recently hit by other detector signals. In contrast, a false

positive usually indicates a shift in program execution phases, and the detector location which

raises a signal by a false positive can raise a signal repeatedly during the phase shift.

Figure 7-1: A rename fault’s impact on the outcome of our detector

The detector behavior in the case of a rename fault is shown in Figure 7-1. The parallel Bloom

filter’s bit vector is divided into 4 segments to indicate the locations where a signal is raised. In

Step 1 through 4, detector signals were raised in segment #1 and #2 repeatedly, which indicates a

phase transition. In Step 5, an unintended data pattern resulted from a rename fault causes a

detector signal in segment #4.

89

With this observation, we use a biased squash state machine to monitor segments of the Bloom

filter. If a segment has not seen a detector signal in the past 𝑡ℎ times of any detector signals, and

sees a signal in the next time, this signal will be filtered as front-end fault. Repeated signals on a

segment will be filtered as false positives and suppressed.

Figure 7-2: Using biased squash state machines for rename fault detection

An example of how a rename fault is filtered, and thus a rollback is triggered, using the

previously described approach is shown in Figure 7-2. Each step corresponds to its counterpart in

Figure 7-1. The parallel Bloom filter is divided into 4 segments. For each segment, a squash state

machine (SSM) is installed. The SSM monitors whether a signal has been raised by the detector

against this segment. Assuming the trigger threshold 𝑡ℎ 4, segment #4 triggers a rollback

when the 5th global signal is raised against it, since there has been 4 consecutive no-signals

before a signal. Segment #1 and segment #2 does not trigger a rollback at the detector signals

raised against them since their consecutive no-signals do not meet the threshold. Instead, they

suppress the signals as false positives.

90

The state transition and rollback-triggering can be represented by the state machine design in

Figure 7-3. This is a biased state machine which triggers a rollback or pipeline squash when a

detector signal is filtered to be a front-end fault. Each Bloom filter segment is assigned one such

squash state machine (SSM), as shown in Figure 7-3.

Figure 7-3: The state machine that filters detector signals and triggers rollback for front-end

faults

7.2. Front‐End	Fault	Filter	Design	

Due to the high performance and energy penalty of a rollback, the key design constraint for the

front-end fault filter is to generate as few false positive as possible.

The false positive rate of the front-end fault filter is determined by the probability of each single

SSM, and thus each parallel Bloom filter, issuing a trigger. We use the following parameters and

equations for calculating a projected form of the false positive rate.

91

The parallel Bloom filter, the SSMs, and some parameters are illustrated in Figure 7-4. Let the

parallel Bloom filter length, in bits, be 𝐿, the number of squash state machines per parallel

Bloom filter be 𝑆, and the threshold of consecutive detector signals before a trigger be 𝑡ℎ. The

number of bits covered by one squash state machine will thus be .

Figure 7-4: Biased squash state machine for one parallel Bloom filter

Assuming the probability of signal is uniformly distributed among all bits of a parallel Bloom

filter, the probability of one bit within the parallel Bloom filter to be signaled by the detector is:

𝑃
1
𝐿

The probability for one SSM segment within the parallel Bloom filter to be signaled is:

𝑃 1 1 𝑃

92

Based on our design, the probability for one squash state machine to trigger a rollback is

Equation 7-1: P 1 P ∙ P

Or:

𝑃 1
1
𝐿

∙

∙ 1 1
1
𝐿

The probability for one parallel Bloom filter to get a rollback trigger from any of its associated

SSMs is:

Equation 7-2: P _ 1 1 P

Figure 7-5: False positive rate of a squash state machine as a function of the number of SSMs

and the trigger threshold.

4

8

16
32

0

0.02

0.04

0.06

0.08

0.1

0.12

3
7

11
15

N
u
m
b
er
 o
f
SS
M
s
(S
)

P
ro
je
ct
ed

 F
al
se
 P
o
si
ti
ve
 R
at
e

Trigger threshold (th)

Projected False Positive Rate of a Squash State Machine

4 8 16 32

93

Figure 7-6: False positive rate of a parallel Bloom filter as a function of the number of SSMs and

the trigger threshold.

Equation 7-2 gives us a guideline on choosing our parameters for the front-end fault filter. The

expanded form of this formula is rather complex, so we do not provide it here. However, within

the range of possible values for our implementation, Figure 7-5 and Figure 6 show how the

projected false positive rate changes over the two main parameters, the number of SSMs per

parallel Bloom filter and the trigger threshold, i.e. the number of no-signals before a signal to be

filtered as a trigger. The parallel Bloom filter size 𝐿 is set to be 1024 bits in the figures, although

we did the same calculation with 𝐿 being 2048 and 4096 respectively and found that the trends

are almost identical.

From Figure 7-5, the projected false positive rate of one squash state machine decreases as the

trigger threshold increases, no matter what value 𝑆, i.e. the number of SSMs used for one parallel

Bloom filter (PBF), is. This is expected since in Equation 7-1, 1 𝑃 decreases as 𝑡ℎ

4

8

16
32

0

0.1

0.2

0.3

0.4

0.5

0.6

3
7

11
15

N
u
m
b
er
 o
f
SS
M
s
(S
)

P
ro
je
ct
ed

 F
al
se
 P
o
si
ti
ve
 R
at
e

Trigger threshold (th)

Projected False Positive Rate of a Parallel Bloom Filter

4 8 16 32

94

increases. With 4 SSMs per PBF, the false positive rate decreases faster, from 10.5% when 𝑡ℎ

3 to 0.5% when 𝑡ℎ 15. With 32 SSMs per PBF, the false positive rate decreases slower, from

2.8% when 𝑡ℎ 3 to 1.9% when 𝑡ℎ 15. It may seem that for the different 𝑆 values, we can

find a combination of parameters to achieve a low false positive rate. However, we cannot solely

depend on the FP rate of one single SSM for choosing the parameter values of the filter, since

one parallel Bloom filter is consisted of multiple SSMs and the probability needs to be calculated

using Equation 7-2.

From Figure 7-6, the projected false positive rate of one parallel Bloom filter still decreases as

the trigger threshold increases. However, as the number of SSMs per PBF increases, the false

positive rate increases significantly. Thus, to achieve a low false positive rate for one parallel

Bloom filter, we need to have a small 𝑆 value and a high 𝑡ℎ value.

7.3. Experimental	Results	

In this section we present the experimental results fault coverage, false positive rate, and the

incurred performance and energy overhead.

7.3.1. Fault	injection	

In our experimental setup, we injected 2000 single-bit faults into the rename stage of an out-of-

order CPU. 12 of the SPEC CPU2006 benchmarks were run to evaluate the fault injection impact.

Out of all the injected faults, we categorize the outcome of an injection into three categories:

Silent data corruption (SDC), program crash, and unchanged behavior. Figure 7-7 shows the

95

breakdown of the outcome, as well as its specific impact on memory address stride and memory

access value.

(a) Rename fault injection broken down by impact on program execution

(b) Rename fault injection broken down by impact on stride and value

Figure 7-7: Rename fault injection outcome

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

P
er
ce
n
ta
ge
 a
m
o
n
g
al
l i
n
je
ct
ed

 f
au
lt
s

Rename Fault Injection Impact

Masked SDC Program Crash

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

P
er
ce
n
ta
ge
 a
m
o
n
g
al
l S
D
C
s

SDC Breakdown

Both Stride_only Value_only

96

As shown in Figure 7-7 (a), about 50% of the rename faults resulted in a program crash. For the

remaining faults, we need to distinguish SDCs from masked ones. Same as the backend fault

injection, we monitor at least 5000 instructions following the fault injection. The dynamic

memory instructions, memory strides, and memory values are compared to those of a fault-free

execution. If a divergence is not found after the monitored length, the fault is considered masked.

Out of all injected faults, 27% are masked. The remaining 23% faults are silent data corruptions

(SDC), for which we will report fault coverage and false positives.

The stride trace and the value trace show slightly different sensitivity to the rename faults. From

Figure 7-7 (b) which gives a breakdown of all the SDCs by their impact on strides and values.

About 10% has changed only the stride trace, 36% has changed the value trace, and the

remaining 54% has changed both the stride and the value traces. Since either of stride detector’s

or the value detector’s filters can trigger a rollback, this breakdown gives us a fertile ground to

capture front-end faults.

7.3.2. Fault	Filter	Outcome	

Our front-end fault filter is evaluated using 4 SSMs per parallel Bloom filter, and a trigger

threshold of 15. For all SDCs resulted from the rename faults injection, the fault coverage, as

well as the false positive rate from the stride-based detector’s filter, the value-based detector’s

filter, and both combined, are studied.

97

Fault	Coverage	

(a) Fault coverage of the front-end fault filter, 𝑆 4, 𝑡ℎ 15

(b) False positive rate of the front-end fault filter, 𝑆 4, 𝑡ℎ 15

Figure 7-8: Fault coverage and false positive of the front-end fault filter

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Front‐End Fault Filter Coverage

stride & value stride only value only

0.00%
0.02%
0.04%
0.06%
0.08%
0.10%
0.12%
0.14%
0.16%

Front‐End Fault Filter False Positive Rate: % of All
Instructions

Stride Value

98

The front-end fault filter’s coverage rate for all benchmarks are shown in Figure 7-8 (a). On

average, the fault coverage is 67% of all rename SDCs.

The front-end fault filter yielded relatively high coverage on most of the benchmarks. Especially,

gcc and libquantum shows >90% fault coverage. We observed one main reason for this

phenomenon. A significant portion of the coverage comes from the filter associated with the

stride-based detector. These benchmarks have a larger number of faults that altered the stride

trace, and as discussed in Chapter 6, the stride detector is more optimized than the value detector

for fault detection. The same applies to calculix.

On the other hand, cactusADM and lbm exhibits relatively low fault coverage. This could

attribute to one or a combination of two reasons:

 Within the parallel Bloom filter, all segments are frequently hit, thus an error can be left

unfiltered.

 The fault detector uses only 1 value (compared to 2 strides) as the data input for the

Bloom filters. This may result in additional difficulty for an unintended value to be

filtered.

Since the frontend is responsible for 20% of processor core pipeline area, this translates into 13.6%

coverage of all faults. Combined with the backend fault detector, our fault detection mechanism

shows a total fault coverage of 80.8%. In comparison, FaultHound [17] has a total fault coverage

of 75% on SDCs.

99

False	Positives	

The false positive rates of all benchmarks are shown in Figure 7-8 (b). On average, the front-end

fault filter incurs a false positive of 0.09% among all instructions. The stride and value filter each

are responsible for about half of the false positives. Benchmarks like calculix and bzip2 show

relatively high false positive rate. Others, like libquantum, incurs extremely few false positives.

The false positive rate is affected by a combination of factors, mainly the working set size of

memory strides and values, as well as the occupancy rate of the Bloom filters, i.e. the percentage

of bits set to 1 within the Bloom filters. One additional observation with libquantum is that, with

the results shown in Chapter 6, libquantum was among the ones with lower backend coverage,

which could be due to the Bloom filter size being smaller than ideal for its backend detector to

signal a fault. This becomes an advantage for front-end fault detection. Since there are fewer

backend detector signals, the state machines restore to the initial state less often, creating less

chance for front-end fault filter false positives.

7.3.3. Performance	and	Energy	Impact	

Recovery penalty Full pipeline rollback (~100 instructions)
Front-end squash state machines 128 (stride), 128 (value), 4 bits each

Table 7-1: Hardware configuration for the front-end fault filter

With the evaluation setup described in Chapter 3, we simulated the performance in a fault-free

program execution. The hardware parameters are shown in Table 7-1. Since the 4-bit state

machines are much smaller than the caches and Bloom filters, we did not model the area or

100

power for these state machines but focus the discussion on the performance and energy overhead

incurred during rollbacks.

(a) Performance overhead in fault-free execution

(b) Performance overhead breakdown

Figure 7-9: Performance overhead relative to baseline system

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Performance Degradation

15%

1%

14%

70%

Performance Overhead Breakdown

learning phase transition backend replay full rollback

101

Performance	Impact	

Overall, the detector incurs 21% performance overhead when detecting both backend and

frontend faults, as shown in Figure 7-9 (a). This more than doubled the backend detector-only

performance overhead discussed in Chapter 6. The increase is mainly due to the high rollback

penalty of false positives, as shown in the breakdown in Figure 7-9 (b). When the front-end filter

detects a front-end fault or a false positive, a full pipeline rollback is triggered to recover from

the rename fault. The rollback squashes all previous instructions in the pipeline, which usually

results in the re-execution of ~100 instructions in an out-of-order issue processor [16, 17].

The performance overhead far less than what PBFS [16] has (e.g., 100%) since PBFS triggers a

full pipeline rollback for every perturbation. However, our overhead is higher than what

FaultHound [17] reported (e.g., 10%). By comparison, we do have the learning periods that

FaultHound does not have, which is responsible for 3% of overall performance degradation. The

rest of the difference is mainly due to discrepancies in simulation techniques and workloads.

Beside the SPEC2006 benchmarks, FaultHound used additional workloads that are memory-

intensive, whose high cache miss rate helps hide part of performance penalty incurred by the full

pipeline rollbacks and results in lower performance overhead.

Energy	Overhead	

Overall, in a fault-free execution, the system experiences 25% energy overhead as shown in

Figure 7-10 (a). Compared to the backend-only fault detector’s 9.8% energy overhead, the front-

end fault filter added another 15% overhead in energy consumption. The energy overhead is

proportional to the performance overhead, since the majority of the overhead comes from full

102

pipeline rollbacks incurred during false positives of the front-end fault filter as detailed in Figure

7-10 (b).

(a) Energy overhead in fault-free execution

(b) Energy overhead breakdown

Figure 7-10: Energy overhead relative to baseline system

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Energy overhead

8%

87%

5%

Energy Overhead Breakdown

Fault Detector Static Performance Penalty Fault Detector Dynamic

103

Our energy overhead is far less than that of PBFS (e.g., 100%) and is the same as what

FaultHound reported (e.g., 25%). FaultHound’s energy overhead could not be hidden even

though the performance cost was reduced by workload characteristics.

104

Chapter 8 Efficient Parameter Variation

Sampling for Architecture Simulations

8.1. Introduction	

In both architecture and design automation communities, large scale Monte Carlo simulations are

widely used to investigate the probabilistic impacts of manufacturing variation [44]. These

variations follow complex, random behavior and influence the behavior of circuits and

architectures in profound manner, limiting the applicability of analytical models and steering

researchers toward Monte Carlo simulation. Typically, a single Monte Carlo experiment consists

of generating hundreds or thousands of random parameter variation scenarios and simulating

either a circuit or processor design under each of those scenarios. However, the total simulation

cost for many parameter variation studies can be enormous. In the realm of architecture, each

Monte Carlo simulation would require running a detailed architecture simulator for anywhere

from one hundred million to one billion instructions – a task which may take hours. Given that

most recent studies in the architecture community may incorporate ten or more individual

benchmark programs [45]– [47], the full set of Monte Carlo simulations may require thousands

of compute-hours.

105

If left unaddressed, the burdensome architectural simulation time associated with parameter

variation studies may have adverse impacts. At the risk of reducing simulation accuracy,

researchers may choose to use fewer Monte Carlo samples, simulate a smaller window of

program execution (e.g. 10 million instead of 100 million instructions), select a faster but cruder

and less detailed simulator model, or subset the benchmark suite. As previous work has shown

(e.g., [48], [49]), corner-cutting in the name of reducing simulation time can have disastrous

effects on accuracy of architecture studies and in some extreme cases may draw researchers to

incorrect conclusions.

While there have been successful attempts to reduce Monte Carlo simulation time in the circuit

domain, these approaches cannot directly be applied to architecture [50]. The circuit approaches

attempt to reduce the simulated samples while retaining the same statistical properties. In

particular, circuit-level studies assume knowledge of circuit structure and model variation at the

gate level while architecture studies are at a much higher semantic level and investigate designs

with billions of gates. We address this problem by bridging this semantic gap and making the

approach scalable to architecture.

At the heart of the motivation for this work is the observation that significant gains in the

efficiency of variation-aware architecture simulation can be achieved if better sampling

methodology for parameter variation is accommodated. Specifically, we postulate that we can

reduce the number of samples needed to achieve statistically sound results if we use sequences

that are guaranteed to give faster convergence than Monte Carlo. To do this we must bridge a gap

in understanding between circuit and architecture. We adapt several existing circuit-level

techniques to make them suitable for this domain and introduce several novel approaches that

106

further improve simulation efficacy. The main contributions of this paper can be summarized as

follows:

A. Adapting Low-Discrepancy Sampling Methods to Architectural Simulation: Low-Discrepancy

(LD) sampling techniques generate quasi-random samples defined to have lower integration

errors than true Monte Carlo sequences [51]. By implementing low-discrepancy techniques into

variation map generation, the sample space of parameter variation can be covered by fewer

samples relative to Monte Carlo sampling approaches. This efficient sampling methodology

leads to large reduction in architectural simulation time.

B. Introducing Multi-Resolution Grid Maps: To better represent sensitive geographic regions of

the chip, we divide it into a non- uniform grid. For processor components that are more sensitive

to the parameter variation, we assign a finer grid resolution, and apply coarser granularity to

those components which are less sensitive. In total, we improve the effectiveness and efficiency

of the parameter variation representation, while maintaining the same overall complexity of

representation.

C. Comprehensive Experimental Evaluation: We implement and evaluate the proposed

methodologies. Our results demonstrate that for the selected microarchitecture level timing error

and leakage power estimation, the low-discrepancy sampling and multi-resolution grid model

give at least 3.3× faster convergence than Monte Carlo sampling.

The rest of this paper is structured as follows. In Section II we recollect some necessary

background for understanding the proposed techniques, which we elaborate upon in Section

107

III. Section IV details the quantitative benefits of our work by presenting the results of our

experimental evaluations. Section V concludes the article and outlines directions for future work.

8.2. Background	

Predicting the impact of manufacturing variation on circuit and architecture designs has become

a challenging and increasingly important task for several reasons [44], [52]. The fabrication

process introduces prominent variations to the threshold voltage, Vth, and the effective gate

length, Leff of transistors [44], [53], [54]. These parameter variations include both true

random components which are independent and systematic components that are a function of the

chip geometry and exhibit complex correlation patterns [55]. Modeling and simulation

approaches must correctly account for the way that the parameter variation impacts circuit delay

while capturing the spatial correlations.

(a) Standard Monte Carlo (b) Quasi-Monte Carlo

Figure 8-1: Comparing 2D sequences generated with standard Monte Carlo and Low-

Discrepancy techniques. The two examples have an equal number of points

Due to the probabilistic nature of manufacturing variations, and the complex interactions

between transistor parameters, stochastic methods including Monte Carlo(MC) experiments

108

based on repeated trials have become powerful tools for studying the consequences of parameter

variation and developing architectural and circuit innovations to counter them [46], [56]. At a

high-level, the approach consists of generating two-dimensional fields which represent random

parameter variation which obey the before mentioned statistical properties and then running

detailed simulation for each one of these scenarios. For gate- level Statistical Static Timing

Analysis (SSTA), a natural way to model spatially correlated parameter variation is with a

correlation matrix which captures the statistical relationship between every pair of transistors in

the circuit [50]. Many random parameter fields can then be generated using this correlation matrix

as a starting point. In the case of SSTA, SPICE simulations are run with each field sample. Since

the total number of samples needed to guarantee convergence can be quite large, the number of

MC trials becomes the biggest factor in simulation run time. At the circuit-level, some

innovative sampling techniques have been able to drastically reduce this factor and improve

simulation runtime. Singhee et al. [50], [57] recognized that with conventional random field

generation, Monte Carlo techniques require many samples to guarantee convergence because its

accuracy obeys a O(n−0.5) proportionality with sample set size n [58]. They further noticed that

comparing to true random sequences, some classes of Quasi-Monte Carlo sequences with the

same number of samples have better coverage for the sample space, hence give faster

convergence. In particular, Low-Discrepancy (LD) methods are known to generate high quality

deterministic patterns that are guaranteed to give approximately O(n−1) [51] convergence, a

significant improvement over random sequence. Figure 8-1 illustrates the difference between

the coverage natures of conventional Monte Carlo points and low- discrepancy points in a two-

dimensional space. The conventional Monte Carlo samples show both clusters and sparse regions

109

while the low-discrepancy samples give much better coverage of the space. One can imagine

extending this concept to higher dimensional spaces where each dimension might represent a

physical factor (e.g. Vth for each transistor in a circuit).

Figure 8-2: Process flow for generating n LD variation maps

However, low-discrepancy sequences alone cannot replace Monte Carlo sequences in generating

parameter variation samples for even small circuits. For a design with n gates, one would need to

generate a low-discrepancy sequence with dimensionality of n. Current best low-discrepancy

sequence generators offer practical advantage over standard Monte Carlo sequences only in the

early r dimensions (r ≤ 12 [59]). Consequently, for efficient parameter variation modeling of

circuits, we apply the Karhunen-Loeve Expansion (KLE) [60], a model simplification technique

similar to Principle Component Analysis (PCA) [50]. Recall that a correlation matrix can be used

to represent gate- level variations across the chip. This serves as a very precise description for

high-dimension model of the chip. The first r (r ∼ 25) components of KLE, composed of the

r-dimensional random (or quasi-random) sequence and the r most significant eigenpairs of the

correlation matrix, is an accurate estimate of KLE [50]. This effectively reduces a large number

of correlated variables – in this case transistor parameters which are geometrically correlated –

110

into a much smaller number of values and hence lower dimensionality. With a drastically

reduced representation of the parameter variation, low-discrepancy techniques can be safely

applied to reduce the number of required samples.

8.3. Variation	Modeling	and	Sampling	

As described in the previous section, Quasi-Monte Carlo sampling methods have been applied to

accelerate gate-level SSTA simulations under parameter variation [50], [57] in the circuit domain.

Designs with (104) gates are evaluated for these studies, where spatial correlations of these

gates can be captured in a correlation matrix of tractable size. However, these techniques do not

directly scale to architectural simulations for a few reasons. First, gate-level descriptions of most

modern processors are unavailable for academic researches where they are obviously available

for circuit-level designs. Second, even if a complete processor could be modeled at the gate-

level, the netlist of the design, which may contain hundreds of millions to billions of gates,

exceeds the capacity of existing gate- level algorithms which have O(n2) spatial complexity

for n gates. Finally, most computer architects work on a higher and more abstract level, and

architectural simulations aim for more complex and comprehensive evaluations for the system.

For example, recent work at the architecture level has examined whole-chip leakage power and

timing error rates as functions of parameter variations [44]. These studies must include program

state and microarchitecture-level models that are fundamentally different from transistor-level

simulations in SSTA.

To address these challenges, our proposed techniques have special considerations for

architectural variation simulations. First, instead of gate-level, we model parameter variations at

111

block/grid level. Grid size here poses a tradeoff between the computational complexity and the

modeling accuracy. Second, within the processor each structural block will have its own

susceptibility to and distinct behavior under parameter variation. We leverage the fact that some

components may have a greater overall impact on the system than others and introduce multi-

resolution modeling of parameter variation. Figure 8-2 gives a process flow for generating n LD

samples. In the following section, we first demonstrate how to model a block/grid variation map

with Quasi-Monte Carlo methods. Then, we discuss algorithms that generate grid structures with

the best accuracy- complexity tradeoffs.

A. Compact Systematic Variation Representations

Our parameter variation modeling approach assumes a high- level physical model for

microarchitectural components nominally described via a floorplan. Depending on the

application, one may choose to model structures within a single processor pipeline, or cores and

caches in a many-core chip. Given this floorplan, we represent the physical variation of

parameters such as Leff and Vth for diverse usages and abstractions. Either block-based variation

model is applied, where we assume the parameter within each component is a constant and use

its centroid for correlation calculation, or we further decompose the blocks into regular grid

regions and generate variation samples with finer granularity. Note that, although block level

models may lose some accuracy comparing to grid level models, they are still acceptable models

for certain architectural study [44].

B. Implementing Quasi-Random Samples

Figure 8-2 shows how to generate our Quasi-Monte Carlo samples. First, given the block

floorplan and grid resolution, the correlation matrix is calculated for KLE decomposition. To

112

maintain consistency with [44], here the matrix concerns purely the covariance factor between

grid regions. This differs from the circuit-level approach in [50] where the correlation factors are

normalized by grid area. Second, there are many possible methods for constructing LD sequences.

We select Niederreiter’s sequence, which has been proved to have less integration error [61]

than Sobol’s sequence which was used by [50], [57]. This LD sequence is then combined with

KLE to generate an original set of systematic parameter variation samples. Finally, before

“publishing” the sample set, we adjust the set to improve the sample space coverage. Systematic

variation is supposed to have a statistical mean µ of zero and a specified standard deviation

𝜎 (according to this parameter’s given µ and σ/µ [44]). For each block/grid region i, we apply

linear normalization to its variation values across all samples, so that µ , 0 and 𝜎 ,

𝜎 . After doing this, the KLE-based LD variation sample set are well positioned within the

targeted statistical range.

(a) Single-Resolution grids (b) Multi-Resolution grids

Figure 8-3: The illustration of SR and MR grids distributed over a 4-block floorplan. Both

figures are with the same number of grids

C. Enhancing Localization with Multi-Resolution Analysis

We make another observation relevant to microarchitectural parameter variation studies, namely

that some components of the processor are known to be more sensitive to variation than others.

113

In this paper, we apply this to evaluate two important architecturally relevant component

properties that are strong functions of parameter variation: timing error rate Pe and leakage power

Pleak. In an era where architects are considering timing speculation as a way to improve

performance and efficiency, timing error rates are important properties of a design [45], [46],

[56]. In deep submicron technology, leakage power comprises a significant portion of total chip

power and therefore serves as an essential design characteristic.

We first consider Pe, modeling an n-stage pipeline as a series failure system. The total Pe can be

represented as a weighted summation of the error rate of each pipeline stage i:

Equation 8-1: Pe ∑ α Pei

�i is the activity factor of block i. Intuitively, pipeline stages which have either high activity

factors or error rates Pei are more likely to produce timing errors and will have a greater impact

on total error rate. Activity factors are a strong function of program characteristics (e.g. floating-

point applications with have high activity factors for their FP execution units while integer

programs will not) and in many cases activity magnitudes can be predicted before simulation. We

now consider Pleak. Chip- wide leakage power can be seen as the integration of the leakage power

of each component i:

Equation 8-2: P ∑ P

Leakage for a component depends on both the temperature of that block and its area. Since area

is known a priori and temperature is dependent on activity, we can reasonably ascertain which

component blocks are likely to be dominant. As two of the more important characteristics of a

114

processor under parameter variation, both of timing error rate and leakage power are in the form

of 𝑓 ∑ 𝑓 . Let f0 and fi0 denote the true values of 𝑓 and 𝑓 to optimize the estimation of f ,

we need to minimize the estimate error 𝜀:

Equation 8-3: 𝜀
| |

|∑ 𝑓 𝑓 /𝑓 | |∑ 𝜀 𝑓 /𝑓 |

Equation 8-3 implies that for blocks with larger 𝑓 , the estimate error 𝜀 needs to be smaller to

minimize the total error. Hence in this work, we introduce Multi-Resolution (MR) variation

sampling, in which the on-chip parameter map is composed of blocks with varying grid density.

The total number of grids points G are distributed to each block i following the rule

Equation 8-4: G G ,

Figure 8-4: The estimate error of Pe relative to 10,000 MC samples: for 15 cpu blocks, 100 MC

samples, 20 LD samples, 50 LD samples and 100 LD samples

which intuitively means that the grid density within one block is proportional to the “function”

density within it, which we can obtain from nominal empirical results. Figure 8-3 illustrates this

115

idea with both Single-Resolution (SR) and MR grids, where block C has the greatest density of

the targeting function and block B has the least. As experimental results show, for identically

sized parameter maps, MR samples converge faster than SR samples. We conclude this section

with a note that, combining the LD and MR techniques, generating 1,000 samples typically takes

several seconds to a few minutes on a standard Linux desktop system. The sample generation

time is therefore negligible when compared to the detailed simulation time which follows.

8.4. Evaluation	

Our Quasi-Monte Carlo and Multi-Resolution variation models are suitable for examining the

impact of parameter variation on many aspects of a microarchitecture. In this section, we

evaluate our variation model and sampling methodology by applying it to two aspects of high-

performance processor design which are extremely sensitive to parameter variation: (1) timing

errors associated with timing speculative architectures [45] and (2) chip leakage power. Our first

application examines trade-offs in observed timing errors versus clock frequency and compares

convergence rates of timing error rates under low-discrepancy sequences versus standard Monte

Carlo samples. In the second application, we examine the on-die leakage power variations with

both SR-LD sampling and MR-LD sampling comparing to MC. Both applications are compared

against VARIUS [44] Monte Carlo samples as a baseline case, which has been widely adaped for

architectural parameter variation sampling [45], [47].

For the timing error estimation, we use the VARIUS timing model. It adopts the Alpha-Power

Law [62] to relate threshold voltage Vth and effective gate length Leff to gate delay:

116

Equation 8-5: 𝑇 ∝
µ

(a) The estimate of sd

(b) The estimate of sd converges with increasing run size

Figure 8-5: The estimate of Pe’s standard deviation and its convergence for Icache: Comparing 1

LD to 10 MC runs with (a) Fixed run size of 100 samples. (b) Fixed clock frequency at 1.0.

where V is the supply variation, the � is carrier mobility and � is an empirically derived

constant. The gate delay is then used to estimate the timing error rate for logic and memory

structures under process, voltage, and temperature variations. For leakage, we apply the

HotLeakage [63] model which suggests that

117

Equation 8-6: 𝐼 ∝ 𝑒 ,

and the leakage power is proportional to Ileak. A factor of the total leakage power across the

chip can be obtained by an integration of Equation 8-6, where k is the Boltzmann Constant, q is

the electron charge, and Voff and � are empirically determined parameters. We adopt these

parameters from [44], [64] and [65] and scale them to 32nm technology.

We model a single core design featuring an Alpha 21264 processor scaled to a 32nm technology

and use a floorplan detailing the microarchitectural structures of this design. In our experiments,

we model random and systematic variation. A spherical correlation model [44] is used for all

the variation samples. We assume Vth and Leff are highly correlated [44] and use identical

systematic variation samples for the two parameters. Our models apply �/� of parameter

variation, nominal supply and threshold voltage, and the decomposition of systematic and

random components which follow that of [44]. These parameters are suitable for modeling

high-performance designs in a 32nm technology.

A. Low-Discrepancy Variation Samples

To evaluate the effect of low-discrepancy sampling, we apply block-based LD variation samples

to the VARIUS [44] timing error model, and estimate the distribution of the resulting timing

error rates Pe for all the pipeline stages of a processor floorplan under a sequence of clock

frequencies.

For comparison, the process is repeated with several sets of VARIUS Monte Carlo samples. The

results of a large Monte Carlo set with 10,000 samples are used as a gold standard. This is a

118

sample set size sufficiently large that sample mean and variance are very close to true

distribution mean and variance. Note, that these sample sizes are prohibitively large for most

simulation studies – they represent a best-case result.

Figure 8-6: The number of samples needed for targeting accuracy when estimating chip leakage

power: MC, SR-LD and MR-LD.

Although [47] suggests that 100 Monte Carlo samples show enough convergence when applying

to VARIUS timing error model, our experiments show that on average any group of 100 MC

samples still have considerable error when compared to the gold standard. On the contrary, Low-

discrepancy samples produce high fidelity results. Figure 8-4 presents the error of 100 MC, 20

LD, 50 LD and 100 LD samples relative to 10,000 MC samples when estimating the mean of

Pe of each processor pipeline component. For 10 out of 15 components, 20 LD samples have

better accuracy than 100 MC samples, and 50 LD samples outperforms 100 MC on all

components. One can view this in an alternative way. With the same number of samples, 100 LD

gives an accuracy at least 75% better than 100 MC. This experiment proves that LD samples

converge much faster than MC, which translates to either significant reduction of samples needed

or better accuracy with the same number of samples. Since generating LD samples is a

119

deterministic process, the shown results are repeatable and consistent. MC trials in contrast

produce dramatic fluctuations for different runs and hence do not guarantee fast convergence.

(a) The estimate of sd

(b) The sample error to the true sd

Figure 8-7: The estimate and the sample error of the standard deviation of the leakage factor

distribution with increasing sample set size: comparing MR-LD, SR-LD and standard MC.

The LD estimate of the standard deviation (sd) also shows faster convergence. Due to space limit,

we only show in Figure 8-5 the estimate and convergence of standard deviation for the Icache

block. The two sets of curves intuitively show the difference between the natures of LD and MC

120

sampling and are consistent with our expectations. In summary, low-discrepancy techniques

allow much faster convergence, resulting in large reductions in sample set size.

B. Low Discrepancy, Multi-Resolution Variation Samples

Now we evaluate the sampling of low discrepancy and multi- resolution grids, and we do this by

estimating the deviations in chip leakage power. Multi-resolution analysis allows us to

configure grid granularity within a component block according to its importance. For this study,

we focus on leakage power and make grid densities proportional to power densities for all blocks,

as explained in Section III. Power density of a block is determined by its temperature when with

nominal Vth0, and we use the temperature distribution from [66] for the processor floorplan.

After distributing the grid resolution, we generate the MR-LD variation samples with KLE-based

LD methods.

We generate a set of MC, SR-LD and MR-LD samples for comparison. For the three different

modeling methodologies, all samples are with the same sized parameter map (25 × 25), and the

resulting leakage estimates are compared to that of a gold standard, 10,000 MC samples of

resolution 50 × 50.

Figure 8-6 shows the number of samples needed to achieve the targeting accuracies. For the

mean, the LD samples show at least 4× faster convergence than MC. However, SR-LD and MR-

LD do not have significant difference themselves, which could be possible because the estimate

errors of the mean are already low. We note that, although not shown in the figure, the average

error of MR-LD is 0.4% smaller than SR-LD. For the standard deviation, LDs still converge

faster than MC, and at the same time, MR-LD outperforms SR-LD, with speedup of at least 3.3×

121

and 2.2× respectively. Figure 8-7 presents more intuition for the estimate of sd as the number of

samples grows (for clarity only until 1000 samples are shown), which leads to the observation

that MR-LD converges to a better accuracy than SR-LD. Considering the fact that the difference

between the computational efforts of implementing single-resolution and multi-resolution

models is only distributing the grids with different density, the potential of the multi-resolution

model is attractive, especially when accuracy is critical.

8.5. Conclusions	and	Future	Work	

In this work, we introduced a collection of techniques to help computer architects rethink the

parameter variation model and improve sampling methodology when applying Monte Carlo

simulations. Our key contributions were: (1) to develop spatial variation representations that

could be applied to study architectural components while leveraging properties of the low-

discrepancy and (2) to introduce multi-resolution models that adapt grid resolution to suit the

relative importance of a component. We evaluated our techniques using a series of Monte Carlo

experiments and found that in most cases our improved modeling and sampling methodology can

dramatically reduce the number of samples needed to achieve convergence.

As one of the most straightforward ways to decompose parameter variation, Karhunen-Loeve

Expansion (KLE) is adapted for the spatially correlated parameter variation model. However,

KLE is still Fourier-like, meaning that each orthogonal term in the decomposition captures the

information across the whole spatial domain. Considering the target of the entire processor where

the pipeline stages’ characteristics differ from each other, there might be other ways to

decompose the parameter variation while taking the differences between different stages into

122

consideration. One possible way is wavelet decomposition, in which each term localizes one

specific part of the domain, and hopefully this could lead to a better approach to represent the

different variation scenarios in different pipeline stages.

We evaluated our Multi-Resolution approach by distributing the grid densities proportional to the

target function densities. While sharing a similar motivation as the multi-level grid files from

database research [67] used for selectivity estimation, in this work we have a slightly different

context. Namely, the coarseness of the resolution is varied based on the sensitivity to variations.

For future work, we would like to further investigate the problem of dynamic fine-tuning of the

grid-map and sample generation, in reaction to some (observed) changes in the parameters

variation and component activity factors that may affect the validity of the experiments. Towards

that, we will try to apply some of the techniques for streaming data management [68] in our

context.

123

Chapter 9 Conclusions

Fault-tolerant architectures utilizing program localities have shown promising results in detecting

silent data corruptions (SDC), while keeping a lower cost in area, performance, and energy

consumption compared with other approaches (e.g., TMR [69]). Multiple techniques have been

proposed to capture program locality in load/store references and values, and check for locality

violation for fault detection. However, these approaches either achieves low fault coverage or

incurs complex hardware design and energy overhead.

In this work, we have explored new dimensions in program locality and proposed techniques for

using these types of locality for fault detection.

First, we have studied the longer-term program locality in program phases. We showed that

program phase information can be reused when a phase repeats itself. We also found that within

a 100 million instruction SimPoint [18], there are only 13 unique phases on average, which

provides a fertile ground for learning the program phases during these phases and reuse the

information for repetitive phases.

Second, we have studied shorter-term locality in memory strides. We showed that a partial-

global memory stride is more efficient than a reference in representing program locality. We also

designed an algorithm for static instruction partitioning to create effective partial-global memory

strides.

124

Additionally, we have proposed to use Bloom filters to store and lookup program locality

patterns. We presented a design of heterogeneous Bloom filter system for the instruction

partitions, as well as for strides and memory values, for efficient storage and fast lookup.

Lastly, we designed, implemented, and evaluated a learn-and-detect fault detection framework.

We described how the framework weaves the program phases and memory information together

to detect transient faults. At the beginning of each unique phase, the instruction partitions are

learned during a dedicated learning period, followed by a learning period to warm up the stride

and value Bloom filters. The instruction partitions and memory information Bloom filter content

is stored into L3 cache and if a unique phase is repeated upon, the content can be reloaded into

the designated hardware for the repeating phase to use. This framework allowed detector

customization based on program phases with low learning overhead. We have shown that with

the proposed framework, a total of 80.8% of SDCs are covered with less than 1% false positive

rate.

Limitations	

The presented fault detection mechanism has its limitations in the following two aspects.

First, our fault detection mechanism does not distinguish application faults from hardware faults.

Like a hardware fault, an application bug can trigger a detector signal, but unlike hardware faults

which can be corrected by the replay or rollback, the signal raised by an application bug will

eventually be suppressed as a false positive. Therefore, running programs that are more likely to

have software bugs on such a platform can trigger more false positives and result in higher

performance and energy overheads than expected. Also, since the stride or value pattern from a

125

false positive will be inserted into the Bloom filters, the pollution can cause loss in fault

coverage. As a result of this limitation, we would recommend that only well-tested applications

be run on these platforms. However, in a context where fault tolerance is important, it is unlikely

for a user to run beta software on such a platform. Therefore, this restriction should not have any

significant impact in practice.

Second, during the learning periods, since the fault detector is not able to detect faults, the

system needs extra fault-tolerant measures temporarily to protect the program execution. This

can be achieved by running a protector thread through either dual-modular redundancy (DMR)

or simultaneous multi-threading (SMT) [73, 74]. Our learning periods take 3% of all dynamic

instructions and protecting this portion of the program execution will incur performance and

energy overheads. A DMR approach executes the protector thread on a neighboring core, which

has little performance impact for the same program, but using the other core as a mirroring

hardware module during 3% of all instructions can incur ~3% overall energy overhead. An SMT

approach executes the protector thread on the same core during the learning periods. By utilizing

vacant functional units within the same core, SMT-based fault tolerant mechanisms incur a

moderate performance overhead (e.g., 20% [73, 74]) and slightly significant energy cost (e.g., 50%

[17]). For our 3% learning periods, this translates into 0.6% total performance impact and 1.5%

overall energy overhead. In our evaluations in Chapter 6 and 7, we protect the learning periods

with temporal redundancy by re-executing all instructions (without SMT), thus the performance

and energy costs during learning periods are both ~3%. This can be improved with a DMR or

SMT approach.

126

Future	Work	

While this work tries to comprehensively cover silent data corruptions and keep the cost low,

there are still aspects that can be the object of future work. First, even though the benchmarks

used are diversified in behavior, they may not be representative of the workloads that are most

susceptible to silent data corruptions. A set of richer benchmarks can be used for future

evaluation. Second, the system emulation mode is insightful for a timing-accurate simulation, but

it skips the detailed simulation of kernel instructions. Future evaluations can use full system

mode to get more comprehensive results on the kernel code execution. Third, the front-end fault

filter itself still has room for improvement in fault coverage and false positives. Future work can

explore other ways of detecting front-end faults.

127

References

[1] Von Neumann, John. "Probabilistic logics and the synthesis of reliable organisms

from unreliable components." Automata studies 34 (1956): 43-98.

[2] Meixner, Albert, Michael E. Bauer, and Daniel Sorin. "Argus: Low-cost,

comprehensive error detection in simple cores." 40th Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO 2007). IEEE, 2007.

[3] Li, Man-Lap, et al. "Understanding the propagation of hard errors to software and

implications for resilient system design." ACM Sigplan Notices 43.3 (2008): 265-

276.

[4] Hari, Siva Kumar Sastry. Low-Cost Hardware Fault Detection and Diagnosis for

Multicore Systems running Multithreaded Workloads. Diss. University of Illinois

at Urbana-Champaign, 2009.

[5] Reddy, Vimal, and Eric Rotenberg. "Inherent time redundancy (itr): Using

program repetition for low-overhead fault tolerance." 37th Annual IEEE/IFIP

International Conference on Dependable Systems and Networks (DSN'07). IEEE,

2007.

[6] Smolens, Jared C., et al. "Fingerprinting: bounding soft-error detection latency

and bandwidth." ACM SIGOPS Operating Systems Review 38.5 (2004): 224-234.

[7] Dhodapkar, Ashutosh S., and James E. Smith. "Managing multi-configuration

hardware via dynamic working set analysis." Proceedings 29th Annual

International Symposium on Computer Architecture. IEEE, 2002.

128

[8] Venkatasubramanian, Rajesh, John P. Hayes, and Brian T. Murray. "Low-cost on-

line fault detection using control flow assertions." 9th IEEE On-Line Testing

Symposium, 2003. IOLTS 2003.. IEEE, 2003.

[9] Sahoo, Swarup Kumar, et al. "Using likely program invariants to detect hardware

errors." 2008 IEEE International Conference on Dependable Systems and

Networks With FTCS and DCC (DSN). IEEE, 2008.

[10] Nistor, Adrian, et al. "Toddler: Detecting performance problems via similar

memory-access patterns." 2013 35th International Conference on Software

Engineering (ICSE). IEEE, 2013.

[11] Wang, Nicholas J., and Sanjay J. Patel. "ReStore: Symptom-based soft error

detection in microprocessors." IEEE Transactions on Dependable and Secure

Computing 3.3 (2006): 188-201.

[12] Pattabiraman, Karthik, et al. "Automated derivation of application-specific error

detectors using dynamic analysis." IEEE Transactions on Dependable and Secure

Computing 8.5 (2010): 640-655.

[13] Li, Man-Lap, et al. "Trace-based microarchitecture-level diagnosis of permanent

hardware faults." 2008 IEEE International Conference on Dependable Systems

and Networks With FTCS and DCC (DSN). IEEE, 2008.

[14] Nomura, Shuou, et al. "Sampling+ dmr: practical and low-overhead permanent

fault detection." ACM SIGARCH Computer Architecture News 39.3 (2011): 201-

212..

[15] Narayanasamy, Satish, Ayse K. Coskun, and Brad Calder. "Transient fault

129

prediction based on anomalies in processor events." 2007 Design, Automation &

Test in Europe Conference & Exhibition. IEEE, 2007.

[16] Racunas, Paul, et al. "Perturbation-based fault screening." 2007 IEEE 13th

International Symposium on High Performance Computer Architecture. IEEE,

2007.

[17] Pomeranz, Irith, and T. N. Vijaykumar. "FaultHound: value-locality-based soft-

fault tolerance." Proceedings of the 42nd Annual International Symposium on

Computer Architecture. 2015.

[18] Hamerly, Greg, et al. "Simpoint 3.0: Faster and more flexible program phase

analysis." Journal of Instruction Level Parallelism 7.4 (2005): 1-28.

[19] Sherwood, Timothy, and Brad Calder. "Time varying behavior of programs." In

UC San Diego (1999).

[20] Moshovos, Andreas. "Power-aware register renaming." Computer Engineering

group technical report (2002): 01-08.

[21] Ayala, José L., Marisa López-Vallejo, and Alex Veidenbaum. "Energy-efficient

register renaming in high-performance processors." Proceedings of WASP. 2003.

[22] Anjam, Fakhar, Stephan Wong, and Faisal Nadeem. "A multiported register file

with register renaming for configurable softcore VLIW processors." 2010

International Conference on Field-Programmable Technology. IEEE, 2010.

[23] Ramakrishna, M. V., E. Fu, and E. Bahcekapili. "Efficient hardware hashing

functions for high performance computers." IEEE Transactions on

Computers 46.12 (1997): 1378-1381.

130

[24] Sanchez, Daniel, et al. "Implementing signatures for transactional memory." 40th

Annual IEEE/ACM International Symposium on Microarchitecture (MICRO

2007). IEEE, 2007.

[25] Sanchez, Daniel. Design and implementation of signatures for transactional

memory systems. University of Wisconsin-Madison Department of Computer

Sciences, 2007.

[26] Jouppi, Norman P. "Improving direct-mapped cache performance by the addition

of a small fully-associative cache and prefetch buffers." ACM SIGARCH

Computer Architecture News 18.2SI (1990): 364-373.

[27] Fu, John WC, Janak H. Patel, and Bob L. Janssens. "Stride directed prefetching in

scalar processors." ACM SIGMICRO Newsletter 23.1-2 (1992): 102-110.

[28] Sherwood, Timothy, Suleyman Sair, and Brad Calder. "Predictor-directed stream

buffers." Proceedings of the 33rd annual ACM/IEEE international symposium on

Microarchitecture. 2000.

[29] Henning, John L. "SPEC CPU2006 benchmark descriptions." ACM SIGARCH

Computer Architecture News 34.4 (2006): 1-17.

[30] Mohan, Nitin, et al. "Design techniques and test methodology for low-power

TCAMs." IEEE Transactions on Very Large Scale Integration (VLSI)

Systems 14.6 (2006): 573-586.

[31] Taylor, David E. "Survey and taxonomy of packet classification

techniques." ACM Computing Surveys (CSUR) 37.3 (2005): 238-275.

[32] Saini, Subhash, Johnny Chang, and Haoqiang Jin. "Performance evaluation of the

131

intel sandy bridge based nasa pleiades using scientific and engineering

applications." International Workshop on Performance Modeling, Benchmarking

and Simulation of High Performance Computer Systems. Springer, Cham, 2013.

[33] Intel® 64 and IA-32 Architectures Optimization Reference Manual,

https://www.intel.com, 2016

[34] Binkert, Nathan, et al. "The gem5 simulator." ACM SIGARCH computer

architecture news 39.2 (2011): 1-7.

[35] Li, Sheng, et al. "McPAT: an integrated power, area, and timing modeling

framework for multicore and manycore architectures." Proceedings of the 42nd

Annual IEEE/ACM International Symposium on Microarchitecture. 2009.

[36] Balasubramonian, Rajeev, et al. "CACTI 7: New tools for interconnect

exploration in innovative off-chip memories." ACM Transactions on Architecture

and Code Optimization (TACO) 14.2 (2017): 1-25.

[37] Mukherjee, Shubhendu S., Joel Emer, and Steven K. Reinhardt. "The soft error

problem: An architectural perspective." 11th International Symposium on High-

Performance Computer Architecture. IEEE, 2005.

[38] Schroeder, Bianca, Eduardo Pinheiro, and Wolf-Dietrich Weber. "DRAM errors

in the wild: a large-scale field study." ACM SIGMETRICS Performance

Evaluation Review 37.1 (2009): 193-204.

[39] Lakshminarayanan, Karthik, Anand Rangarajan, and Srinivasan Venkatachary.

"Algorithms for advanced packet classification with ternary CAMs." ACM

SIGCOMM Computer Communication Review 35.4 (2005): 193-204.

132

[40] Shah, Devavrat, and Pankaj Gupta. "Fast incremental updates on Ternary-CAMs

for routing lookups and packet classification." Proceedings of Hot Interconnects.

2000.

[41] Shinde, Rajendra, et al. "Similarity search and locality sensitive hashing using

ternary content addressable memories." Proceedings of the 2010 ACM SIGMOD

International Conference on Management of data. 2010.

[42] Sorin, Daniel J. "Fault tolerant computer architecture." Synthesis Lectures on

Computer Architecture 4.1 (2009): 1-104.

[43] Gizopoulos, Dimitris, et al. "Architectures for online error detection and recovery

in multicore processors." 2011 Design, Automation & Test in Europe. IEEE, 2011.

[44] R. Teodorescu, B. Greskamp, J. Nakano, S. Sarangi, A. Tiwari, and J. Torrellas,

“Varius: A model of parameter variation and resulting timing errors for

microarchitects,” IEEE Trans on Semiconductor Manufacturing, 2008.

[45] S. Sarangi, B. Greskamp, A. Tiwari, and J. Torrellas, “EVAL: Utilizing processors

with variation-induced timing errors,” in IEEE/ACM Int. Symp. on

Microarchitecture. IEEE Computer Society, 2008.

[46] B. Greskamp, L. Wan, U. R. Karpuzcu, J. J. Cook, J. Torrellas, D. Chen, and C.

Zilles, “Blueshift: Designing processors for timing speculation from the ground up,”

in Int. Symp. on High-Performance Computer Architecture, 2009.

[47] R. Teodorescu, J. Nakano, A. Tiwari, and J. Torrellas, “Mitigating pa- rameter

variation with dynamic fine-grain body biasing,” in Int. Symp. on

Microarchitecture, 2007.

133

[48] D. Citron, “MisSPECulation: partial and misleading use of SPEC CPU2000 in

computer architecture conferences,” in Int. Symp. on Com- puter Architecture.

ACM, 2003.

[49] J. J. Yi, R. Sendag, D. J. Lilja, and D. M. Hawkins, “Speed and accuracy trade-

offs in microarchitectural simulations,” IEEE Trans. on Computers, 2007.

[50] A. Singhee, S. Singhal, and R. Rutenbar, “Practical, fast monte carlo statistical

static timing analysis: Why and how,” in Int. Conf. on Computer- Aided Design,

2008.

[51] H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods,

1992.

[52] C. S. Amin, N. Menezes, K. Killpack, F. Dartu, U. Choudhury, and N. H.

andYehea I. Ismail, “Statistical static timing analysis: How simple can we get?” in

Design Automation Conference, 2005.

[53] T. Karnik, S. Borkar, and V. De, “Probabilistic and variation-tolerant design: Key

to continued moore’s law,” 2004.

[54] E. Humenay, D. Tarjan, and K. Skadron, “Impact of parameter variations on

multi-core chips,” in Workshop on Architectural Support for Gigascale Integration,

2006.

[55] P. Friedberg, Y. Cao, J. Cain, R. Wang, J. Rabaey, and C. Spanos, “Modeling

within-die spatial correlation effects for process-design co- optimization,” in Int.

Symp. on Quality Electronic Design, 2005.

[56] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler, D. Blaauw, T.

Austin, K. Flautner1, and T. Mudge, “Razor: A low- power pipeline based on

134

circuit-level timing speculation,” in Int. Symp. on Microarchitecture, 2003.

[57] A. Singhee and R. Rutenbar, “From finance to flip flops: A study of fast quasi-

monte carlo methods from computational finance applied to statistical circuit

analysis,” in Int. Symp. on Quality Electronic Design, 2007.

[58] J. Kiefer, “On large deviations of the empirical d. f. of vector chance vari- ables

and a law of the iterated logarithm,” Pacific Journal of Mathematics, 1961.

[59] P. Bratley, B. Fox, and H. Niederreiter, “Implementation and tests of low-

discrepancy sequences,” ACM Trans. on Modeling and Compurter Simulation,

1992.

[60] M. Loeve, “Probability theory,” 1977.

[61] T. Davies and R. Martin, “Low-discrepancy sequences for volume prop- erties in

solid modelling,” in CSG ’98 Conference, 1998.

[62] T. Sakurai and A. Newton, “Alpha-power law MOSFET model and its

applications to CMOS inverterdelay and other formulas,” IEEE Journal of Solid-

State Circuits, 1990.

[63] Y. Zhang, D. Parikh, K. Sankaranarayanan, K. Skadron, and M. Stan, “Hotleakage:

A temperature-aware model of subthreshold and gate leakage for architects,”

University of Virginia, 2003.

[64] L. Zhang, L. S. Bai, R. P. Dick, L. Shang, and R. Joseph, “Process variation

characterization of chip-level multiprocessors,” in Design Automation Conference,

2009.

[65] W. Zhao and Y. Cao, “New generation of predictive technology model for sub-

45nm design exploration,” in Int. Symp. on Quality Electronic Design, 2006.

135

[66] Y. Han, I. Koren, and C. A. Moritz, “Temperature aware floorplanning,” in

Workshop on Temperature-Aware Computer Systems, 2005.

[67] K.-Y. Whang, S. Kim, and G. Wietherhold, “Dynamic maintenance of data

distribution for selectivity estimation,” VLDB Journal, 1994.

[68] Sharfman, A. Schuster, and D. Keren, “A geometric approach to monitoring

threshold functions over distributed data streams,” in SIGMOD Conference, 2006.

[69] Fiala, David, et al. "Detection and correction of silent data corruption for large-

scale high-performance computing." SC'12: Proceedings of the International

Conference on High Performance Computing, Networking, Storage and Analysis.

IEEE, 2012.

[70] Ganesan, Karthik, Deepak Panwar, and Lizy K. John. "Generation, validation and

analysis of SPEC CPU2006 simulation points based on branch, memory and TLB

characteristics." SPEC Benchmark Workshop. Springer, Berlin, Heidelberg, 2009.

[71] Chung, Jae Yoon, et al. "An effective similarity metric for application traffic

classification." 2010 IEEE Network Operations and Management Symposium-

NOMS 2010. IEEE, 2010.

[72] Strehl, Alexander, Joydeep Ghosh, and Raymond Mooney. "Impact of similarity

measures on web-page clustering." Workshop on artificial intelligence for web

search (AAAI 2000). Vol. 58. 2000.

[73] Vijaykumar, T. N., Irith Pomeranz, and Karl Cheng. "Transient-Fault Recovery

Using Simultaneous Multithreading." Computer Architecture, International

Symposium on. 2002.

[74] Rotenberg, Eric. "AR-SMT: A microarchitectural approach to fault tolerance in

136

microprocessors." Digest of Papers. Twenty-Ninth Annual International

Symposium on Fault-Tolerant Computing (Cat. No. 99CB36352). IEEE, 1999.

