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ABSTRACT 

Relational Mechanisms in Team Self-Assembly: A Network and Computational Approach 

Marlon Twyman 

This dissertation combines perspectives from social networks and teams research to 

advance understanding of team self-assembly. Across three substantive chapters, I explore team 

member search behaviors and invitation patterns in contexts where individuals exercise agency 

to select team members. First, I consider the search for team members in a social network and 

the resultant team characteristics. During team assembly, how does the prevalence of homophily 

in a network affect the search for team members and impact team diversity? Next, I investigate 

invitation patterns that emerge when people invite one another to teams in a technology platform 

developed to facilitate team assembly. From the investigation, the main question I answer is, “To 

what extent does the information contained in online recommendations affect teammate 

invitations when the potential target of a teammate invitation is someone whom you already 

know?” In other words, how do online recommendations influence whether an individual will 

invite a prior collaborator? Lastly, I study how invitation patterns impact the evolution of team 

relationships throughout the span of collaboration. Specifically, how do teammate invitation 

patterns affect the subsequent evolution of communication and leadership networks in teams? 

The team self-assembly patterns under investigation exemplify the typically opaque 

invitation and search behaviors performed when people look for and select teammates. As such, I 

sharpen insights into the ways in which people engage with one another when deciding with 

whom to form teams—making social networks a helpful perspective to guide the research 

conducted in this thesis. The dissertation leverages social network analysis techniques such as 

exponential random graph modeling (ERGM) and stochastic actor-oriented models for network 
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dynamics (also known as SIENA models) to analyze empirical social networks related to 

invitations as well as agent-based modeling (ABM) and simulation of search behaviors in social 

networks.  

In the first substantive chapter, ABMs are employed to generate insights regarding the 

search for team members and the effects on team diversity. By varying levels of homophily in 

networks and manipulating problem complexity, I investigate the effectiveness of two different 

search strategies in identifying team members and also the effect of search on the expertise that 

exists within teams. The advantages of enacting a more information-intensive search strategy 

increase as problems become more complex and difficult, while homophily in networks helps in 

identifying team members that closely match problem requirements.  

In the next chapter, I observe two samples of students assembling interdisciplinary 

project teams by using a technology platform for team assembly. Using digital trace data from 

the platform, I conduct ERGM to explain the mechanisms responsible for generating the 

invitation networks that emerge as determine who to invite to their teams. Online 

recommendations are a notable feature of the platform’s interface and positively influence the 

likelihood of sending an invitation to a potential teammate, but prior collaborations are a 

boundary condition for the effect of online recommendations; specifically, online 

recommendations are less likely to be heeded when there is prior collaboration.  

Finally, the third substantive chapter extends the previous to investigate the implications 

of invitation patterns on dynamics of assembled teams. By investigating the longitudinal 

coevolution of communication and leadership within teams using SIENA modeling, there are 

new insights developed that explain how team self-assembly in a technology platform 

contributes to the emergence of team relationships. Leadership and communication influence the 
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evolution of each other as project teams collaborate over time, and the invitation network that 

emerges during team self-assembly has a positive influence on communication but a negative 

effect on leadership within teams. However, teammate recommendations generated by the online 

platform do not have an effect on the coevolution of the team networks. Other important effects 

in explaining coevolution of the team relationships are endogenous network structures, such as 

popularity, reciprocity, and transitive closure. The study identifies the limits of employing 

technology-enabled team assembly as a tool to explain the coevolution of emergent team 

relationships. In its totality, this dissertation deepens understanding of invitation and search 

behaviors that occur during team self-assembly as well as the implications of such behaviors on 

team characteristics and dynamics.  
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CHAPTER 1. INTRODUCTION 

Teams have been a foundational aspect of organizations for many years (Ilgen, 1999; 

Kozlowski & Bell, 2013; Mathieu, Hollenbeck, van Knippenberg, & Ilgen, 2017). As such, 

assembling teams that meet specific criteria and have high performance potential is a focus for 

many managers and organizations. While managers can choose to assemble teams using 

demographic characteristics or social networks, there is no clear advantage to selecting one type 

of information over the other when assembling teams (Reagans, Zuckerman, & McEvily, 2004). 

Over time, people have become more sophisticated in the criteria, tools, and technologies they 

use to support team assembly activities. It is now common to consider many types of factors 

when selecting teammates, including task requirements, individual abilities and traits, 

interpersonal relationships, and the broader ecosystem and work context (Hackman, 1987; 

Harrison & Humphrey, 2010; Mathieu, Maynard, Rapp, & Gilson, 2008; L. L. Thompson, 2018). 

All of these factors have increased the complexity of the information available to those who 

select team members and assemble teams.  

In response to this increased complexity, individuals look for collaborators and 

teammates by using countless types of technology. From professional networking platforms to 

enterprise social media platforms, many of these technologies use software algorithms and other 

affordances to connect people and facilitate social interaction in organizations (Colbert, Yee, & 

George, 2016; Leonardi & Vaast, 2017; Treem & Leonardi, 2012). In recent years, technology 

platforms and algorithms have demonstrated value in helping people find replacement team 

members and assemble teams within large organizations (Alkan, Daly, & Vejsbjerg, 2018; Li et 

al., 2017, 2015). In general, social media platforms in organizations offer promise in helping 
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people more effectively understand “who knows what” within an organization and coordinate as 

needed for an array of tasks (Leonardi, 2018).  

This dissertation builds knowledge of team self-assembly practices that occur through 

technological interfaces, such as online recommender systems and networking platforms. Team 

self-assembly is a process where people exercise agency and self-organize into teams by 

selecting or being selected by their own teammates (Contractor, 2013; Hackman, 1987; Pelesko, 

2007; Wax, DeChurch, & Contractor, 2017; Zhu, Huang, & Contractor, 2013). It is a subset of 

team assembly, which broadly refers to the relationships and activities responsible for organizing 

groups of people (Humphrey & Aime, 2014). While not common in many organizational 

settings, self-assembled teams are a dominate form of organizing collaboration in domains 

requiring innovative solutions, such as scientific research (Guimerà, Uzzi, Spiro, & Amaral, 

2005; Hagstrom, 1964; Wang & Hicks, 2015).  

Often, research on team self-assembly excludes the behaviors that were conducted in 

order to bring individual members into a team. There are two team self-assembly practices of 

interest in this dissertation, teammate search and teammate invitation. Because individuals 

conducting knowledge intensive work commonly need to rely on the contributions of multiple 

teammates and collaborators as they continue to encounter complex problems that require 

diverse expertise, these two team self-assembly practices inform the main research question 

guiding this dissertation, “What mechanisms describe team self-assembly—specifically 

teammate search and invitation practices—and how does team self-assembly affect the 

characteristics and relationships of the teams that assemble?” 

I define teammate search as the series of behaviors that an individual enacts when 

looking for teammates, i.e. the information processing and social interactions that a person 
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employs to find teammates. Teammate invitation is the action of signaling interest to collaborate, 

i.e. expressing a desire to work with another person by explicitly sending a message. Both of 

these practices are fundamentally a part of finding teammates and assembling teams, but both 

have often been overlooked. The lack of investigation is at least partly due to the difficulty that 

exist in observing both practices. Search, in particular, is difficult to study because it is unclear 

what information people attend to when making choices regarding which people to collaborate 

with in a team. For instance, people can focus on individual attributes that are or are not relevant 

for a task, social relationships that exist, or any combination of factors. Meanwhile, invitations 

have another issue in that it is difficult to capture the moment when people make contact to offer 

an opportunity to collaborate. This dissertation focuses on team self-assembly and benefits from 

the use of online platforms because such platforms alleviate challenges in observing invitations. 

Therefore, the main contribution of this dissertation is the development and presentation of three 

substantive chapters investigating different aspects of team self-assembly that occurs within a 

technologically saturated context.  

The focus of Chapter 2 is teammate search and uses agent-based modeling (ABM) to 

investigate search behavior to find problems solvers for problems of varying complexity. While 

search does not strictly require the use of a technology platform, two search strategies are 

developed that correspond to differential amounts of information available to a searcher. One 

strategy only relies on an agent’s personal perceptions of their direct contacts, but the other 

strategy provides access to contacts of direct contacts as well as information about those contacts 

in a fashion that is analogous to common functionality found in technology platforms to facilitate 

search and information retrieval (i.e., viewing profiles of others without being directly 

connected).  
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There are two types of outcomes of interest in the study: team diversity and teammate 

search performance. Team diversity is measured by determining the breadth of expertise 

coverage within a team and how well the team matches the problem being solved; both measures 

assess the expertise profiles of teams that assembled from search. Teammate search performance 

captures how often search successfully finds problem solvers while also capturing the social 

network distance covered during a search. Exploring search to assemble teams relies on ABM 

simulations because, while there are countless criteria that people can potentially use when 

searching for teammates, empirical challenges exist in measuring whether a given criterion was 

taken into consideration. The models simplify such considerations by defining search strategies 

that provide differing levels of information that are used during the course of search. The study 

of teammate search clarifies the influences that problem complexity and difficulty, network 

structure, and type of search strategy have on team diversity and search performance when 

assembling teams.  

In Chapter 3 of the dissertation, attention shifts to teammate invitation behaviors that are 

empirically observed as groups of people self-assemble into project teams. From teammate 

invitations, a network emerges that encapsulates social interactions among those who are 

assembling teams. Observations of invitations are made from digital trace data that are collected 

from an online platform facilitated team self-assembly. The platform also leveraged user 

preferences to provide algorithmic recommendations for potential teammates, which help explain 

the network structure of teammate invitations. The study uses exponential random graph 

modeling (ERGM) as the statistical modeling approach to generate insights about invitation 

patterns in the network and draw linkages between invitations and external factors, specifically 

recommendations and familiarity. The study identifies a boundary condition for the impact of 
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recommendations on whether individuals will invite others to teams; having familiarity with 

another person through prior collaboration reduces the informational value of recommendations. 

In summary, by interrogating a network of invitations, the utility of technology platforms in team 

self-assembly is notable, but also limited based on the social relationships that exist among those 

who are assembling the teams. 

Chapter 4 builds on the research conducted in Chapter 3 by investigating the coevolution 

of two relationships within the teams that assembled. The two relationships are leadership and 

communication within the team. Communication networks are the backbone of collaboration 

because people must coordinate and share information (Cataldo & Ehrlich, 2012; Contractor, 

2013; Mesmer-Magnus & DeChurch, 2009), and leadership influences the actions and priorities 

of members when working within a team (Lord, Day, Zaccaro, Avolio, & Eagly, 2017; Yukl, 

2010; Zaccaro, Rittman, & Marks, 2001). Assessing how these two relationships affect one 

another over the course of a collaboration helps describe the dynamics that exist among team 

members. There are additional benefits that accrue when considering both relationships in terms 

of the behaviors that contributed to team assembly. The study focuses on the impact that 

recommendations and invitations have on coevolution of leadership and communication. The 

approach for this study relies on stochastic actor-oriented modeling (SOAM or SIENA) to 

describe the longitudinal changes that occur in both team relationships over the collaborations.  

Newly developed insights explain how team self-assembly in a technology platform 

contributes to the emergence of team relationships. Leadership and communication influence the 

evolution of each other as project teams collaborate over time, and the invitation network that 

emerges during team self-assembly has a positive influence on communication but a negative 

effect on leadership within teams. However, teammate recommendations generated by the online 
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platform do not have an effect on the coevolution of the team networks. Other important effects 

in explaining coevolution of the team relationships are endogenous network structures, such as 

popularity, reciprocity, and transitive closure. The study identifies the limits of employing 

technology-enabled team assembly as tool to explain the coevolution of emergent team 

relationships. From the modeling, both team relationships influence one another and the 

invitation network that emerges during team self-assembly has a positive influence on 

communication but a negative effect on leadership within teams. Meanwhile, teammate 

recommendations generated by the online platform do not exert much influence on the studied 

relationships. Other important explanatory mechanisms include tie patterns endogenous to the 

observed network, such as popularity, reciprocity, and transitive closure.   

Taken all together, the contribution of this dissertation is to increase knowledge 

surrounding the relational mechanisms that describe team self-assembly behaviors. Towards this 

end, the three substantive chapters focus on the search for teammates, the network of invitations 

that emerges when people are self-assembling teams, and the coevolution of team relationships 

within the assembled teams. By studying different aspects of team self-assembly, this 

dissertation illustrates how social networks underpin the choices that people make when forming 

teams. 
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CHAPTER 2. TO SEARCH AND ASSEMBLE: FORMING TEAMS WITH DIVERSE 

EXPERTISE IN SOCIAL NETWORKS 

Abstract 

Searching for team members is a necessary activity when assembling teams to solve 

complex problems that require interdisciplinary solutions. Previous research has repeatedly 

demonstrated the role that social network structure plays in the effectiveness of network search. 

The current paper extends prior research on network search by considering cases where the goal 

is assembling a team by finding multiple targets. Towards this end, the study uses agent-based 

modeling to explore the effects of problem difficulty and complexity, the preference for 

homophily in a network, and search strategy on team expertise coverage—maximum differences 

among teammates, the match between a team and problem, search success, and the network 

distance of search. Three insights emerge from the analysis of search under various conditions: 

problem difficulty heightens the importance of the selected search strategy in terms of success, 

problem complexity has a curvilinear relationship with team expertise coverage while shortening 

the network distance of a search and diminishing the match between a team and problem, and the 

preference for homophily increases the network distance of a search while decreasing the team 

expertise coverage. These findings detail the significance of network search, problem 

requirements, and social network structure on team assembly and the expertise diversity of 

assembled teams. 
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Introduction 

The problems commonly encountered in scientific and knowledge intensive industries 

require interdisciplinary solutions, and teams capable of solving such problems need diverse 

expertise (Hagstrom, 1964; Page, 2017; Savage, 2018; Wuchty, Jones, & Uzzi, 2007). Searching 

for diverse sources of expertise and knowledge promotes innovation, but requires that a person 

navigates the broader social network to look for potential team members with desirable expertise 

(Siciliano, Welch, & Feeney, 2017). When an individual searches within an organization or 

community, a key challenge lies in navigating social networks in order to understand where 

specific knowledge is located and who possesses such knowledge and expertise (Contractor & 

Monge, 2002; Leonardi, 2015). Indeed, accessing new information and transferring knowledge 

through different units of an organization has long been recognized as a challenge to developing 

innovative solutions (Hansen, 1999, 2002; Kleinbaum & Tushman, 2007; Reagans & McEvily, 

2003; Singh, Hansen, & Podolny, 2010; Tsai, 2001). Likewise, accessing new information and 

knowledge has consequences for team assembly and the characteristics of the team being 

assembled.  

The expertise diversity within a team becomes more important as problems increase in 

complexity and become more complicated. As an example of increasing complexity, the 

contemporary scientific enterprise has advanced to the point where teams composed of multiple 

types of expertise are now needed to conduct interdisciplinary science. Resultantly, new areas of 

inquiry are created to define problem-solving that is situated in multiple intellectual spaces. For 

example, the medical research field of oncofertility emerged from a set of problems requiring 

expertise combining reproductive health and fertility with cancer diagnosis and treatment (Jeruss 

& Woodruff, 2009; Lungeanu & Contractor, 2015; Woodruff, 2007). The shift towards team 
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collaboration among disciplines has implications for the modern scientific enterprise and makes 

understanding teams—and their assembly—meaningful for understanding complex-problem 

solving in general (Falk-Krzesinski et al., 2010; Ledford, 2015; Wuchty et al., 2007). This shift 

is especially important as society moves towards a more open model of collaboration where 

technology enables the recruitment of a highly-skilled and on-demand labor force that contribute 

across an array of projects (Kittur et al., 2013; Retelny et al., 2014; Salehi, McCabe, Valentine, 

& Bernstein, 2017). Investigating the role of social networks and how people navigate them to 

find team members helps increase knowledge surrounding how people find team members in 

fluid collaborative environments. 

Social networks do not necessarily reflect formal structures—such as those assigned as 

part of traditional organizations. Instead, a network’s underlying structure is often explained by 

the presence of homophily that exists among actors in the network (Kleinbaum, Stuart, & 

Tushman, 2013). Homophily—the tendency to connect with similar others—explains social 

relations in terms of personal attributes and assumes that people are more likely to connect with 

others in the same social group (Kandel, 1978; Kossinets & Watts, 2009; McPherson & Smith-

Lovin, 1987; McPherson, Smith-Lovin, & Cook, 2001). By definition, homophily is at odds with 

diversity because people are more likely to connect to others comparable to themselves (at least 

along certain dimensions). In terms of expertise, homophily is present when people belong to 

intellectual domains where they interact with similar others (e.g., disciplinary silos resulting in 

echo chambers). Because of the resultant network structure, finding teammates with diverse 

expertise must be a focused and intentional activity where effort needs to be expended to find 

someone who contributes complementary expertise. Contrast this scenario with one where there 

is not as much homophily present in the network and a person has a diverse set of contacts. In 
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such a case, multiple options exist for finding potential teammates with different types of 

expertise, which suggests that needed expertise is more readily reachable when a diverse team 

must assemble to solve a problem.  

The goal of the current study is understanding team diversity as the outcome of search 

that occurs in a social network where homophily is a mechanism governing network tie creation. 

Considering the constraints that a social network imposes on search provides insights into how 

team assembly is affected by the surrounding social context. To broaden understanding of search 

in the pursuit of diversity, the current study develops and evaluates two search strategies that 

differentially support access to portions of a social network in which potential team members 

reside. The two strategies differ in the amount of information available to a searcher, Local 

Search is a strategy where actors search exclusively through their direct contacts and Broker 

Search extends search beyond direct contacts to include contacts two steps away in the network. 

Evaluating the two strategies helps distill whether any limits caused by homophily in the network 

can be displaced by using a more extensive search strategy accessing more information. By 

employing computational modeling and virtual experiments, team diversity and search are 

investigated with respect to various levels of homophily in a social network and by the 

complexity of the problems for which teams are assembled to solve. The current study pursues 

the following research question: When assembling teams, how does the prevalence of homophily 

in networks affect team diversity and the search to find team members?  

The rest of the study is organized as follows. First, the literature review integrates the 

team diversity and network search literatures to situate the contribution of the current study. 

Then, I describe the computational approach along with a summary of related computational 

models relevant for investigating team assembly. Next, the developed search strategies and 
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assumptions of the associated computational models are detailed, including information about 

search rules, network generation mechanisms, and variable parameters manipulated in virtual 

experiments. From the experiments, the models are evaluated and the observed patterns that 

emerge with respect to team diversity and search are analyzed. Finally, the paper closes with a 

discussion of the implications from the study findings. 

Team Diversity and Network Search 

The current study is conceptually grounded in two distinct literatures: team diversity and 

network search. Both areas have generated separate bodies of research that have rarely been 

integrated to explain how search promotes diversity within a team. Social networks are the 

patterns of people’s connections to others, and assembling a team requires using such 

connections to find people that satisfy the demands of a given task. Searching a network to 

assemble a diverse team relates to both how one navigates the structure of a network to find 

valuable resources and—equally important—what resources are available in the network. Due to 

the complexity of problems typically encountered in knowledge intensive enterprises, diversity is 

often desired to ensure that a team has access to a wide variety of knowledge and functional 

skills (Ancona & Caldwell, 1992; Bunderson & Sutcliffe, 2002; Harrison & Humphrey, 2010; 

Page, 2008). Therefore, diversity relies on being able to find and connect with different types of 

people who offer unique contributions.  

Assembling teams with the expertise necessary to solve interdisciplinary problems 

requires the current study to restrict its focus to expertise diversity. While there is a vast amount 

of research prioritizing different types of diversity that range from demographic attributes, 

resources, and network connections (Harrison & Klein, 2007; Williams & O’Reilly, 1998), 

focusing on expertise diversity makes it possible to consider the different knowledge that a team 
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must integrate in order to accomplish its goals (Barley, Treem, & Kuhn, 2017; Milliken, Bartel, 

& Kurtzberg, 2003). In general, integrating diverse expertise within teams is a common method 

for solving complex problems instead of relying on individual contributors situated in specialized 

knowledge domains (Leahey, 2016; Leahey, Beckman, & Stanko, 2016). Before integrating 

knowledge in a team, individuals need to identify and access multiple perspectives to pursue 

expertise diversity; typically, individuals engage with their social networks to accomplish this 

goal. 

 Fundamentally, the connections that comprise a social network provide resources to 

people situated within the network. Having a team with members who are able to access diverse 

resources through their social network connections at least partially contributes to team 

productivity. For example, teams that are more structurally diverse with respect to business unit, 

geography, functional assignment, and managerial role have better access to distinct knowledge 

(i.e., general overviews, requirements, analytical techniques, and project reports) from other 

parts of an organization, which in turn leads to more recognition and positive ratings from 

managers (J. N. Cummings, 2004). Also, connecting with people who have different skills and 

experiences results in research and development teams generating more products like prototypes 

and papers (Reagans & Zuckerman, 2001). For both examples, having diverse connections 

benefits a team’s collective ability to source nonredundant information and then combine it in 

order to achieve specific performance goals. In order to receive the benefits from connections to 

diverse expertise, individuals must be able to effectively search for others, which has been a 

long-standing topic of research interest.  

Previous research has consistently demonstrated that individuals are able to effectively 

reach others across a social network using only local search strategies—where a person uses 
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information about their direct contacts—while also describing the limits that a network imposes 

on those participating in search (Dodds, Muhamad, & Watts, 2003; Milgram, 1967; Travers & 

Milgram, 1969; White, 1970). The local search strategies from much of the prior research require 

that a person relies on the participation of direct contacts in a decentralized search process 

whereby a person at a farther network distance away can be reached. The effectiveness of local 

search strategies is partially attributed to the structure of a social network because some 

configurations of network connections are more efficient to search than others.  

Efficiency in a network results in a person being able to access diverse people without the 

need to include numerous intermediaries. One type of network that is efficient to search is known 

as a small world network. A small world network exhibits high clustering among nodes while 

also having relatively short average path lengths between nodes, meaning that the tie structure is 

configured such that groups of nodes emerge while also having connections to different groups 

in the network (Watts, Dodds, & Newman, 2002; Watts & Strogatz, 1998). While a small world 

network can be generated from general models that only consider the probability of connecting 

to others, the existence of groups in a social network is commonly explained (at least partially) 

by exogenous factors. One such factor is organizational structure.  

The structure of organizations affects the success and efficiency of search by imposing 

rules for interaction and influencing information flow and awareness among actors (Adamic & 

Adar, 2005; Friedkin, 1983; Huber, 1982). A structure supporting information flow helps 

members of an organization better utilize internal information and resources such that the 

organization as a whole benefits (Friedkin, 1978; Singh, 2005). An example of a formal structure 

that promotes expertise diversity is an interdisciplinary research center. The structure supports 

sustained collaboration among diverse participants by providing spaces for interaction between 
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different groups of people despite disciplinary boundaries (Dahlander & McFarland, 2013; 

Jacobs & Frickel, 2009). Organizational structure has implications on accessing diversity 

because it commonly imposes functional groupings or departments that tend to be specialized in 

nature (Lawrence & Lorsch, 1967; Lynton, 1969).  

Conducting searches in a network that are embedded within a formal organizational 

structure imposes constraints on finding diverse resources. Therefore, organizations regularly 

develop informal networks that support the flow of resources throughout an organization: 

knowledge, information, advice, and expertise (Brass, 1985; Brass, Galaskiewicz, Greve, & Tsai, 

2004; Ibarra, 1993; Rogers & Agarwala-Rogers, 1976; Tichy, Tushman, & Fombrun, 1979; Tsai 

& Ghoshal, 1998). Regulating the flow of resources makes it nontrivial for teams to find the 

expertise diversity that helps leads to desirable performance outcomes. Expertise diversity is 

greatly enhanced by the presence of brokers in networks who are able to connect distinct—and 

otherwise separate—groups within a network (Burt, 2000, 2004). One common function of 

network brokers is the ability to combine multiple areas of expertise to offer diverse skills or 

experiences, translate solutions across domains, and help develop innovative solutions 

(Hargadon & Sutton, 1997). Because of the intertwined nature of networks and social structure, 

expertise diversity, and network search, a computational methodology helps deepen 

understanding by clarifying the relationships amongst the concepts. 

Model Details 

Model Assumptions 

The first assumption of the model relates to people’s ability to search to assemble a 

problem-solving team. The model does not include considerations for availability or workload; 

therefore, a key assumption is that all agents in the network are available to join a team or 
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forward a problem any time they receive a problem. Additionally, an assumption is made that 

expertise can be accurately assessed and quantified for both problems and agents. The 

assumption results in agent expertise and problem expertise requirements being represented as a 

numerical vector of length m with each number corresponding to the amount of expertise in a 

given area. Each expertise area is represented as a non-negative real number between zero and 

one, and each number is generated from a random number generator using a truncated normal 

distribution N(μ=0.5, σ=1). Another assumption of the model is that all agents can contribute 

their expertise to multiple expertise areas of a problem, which means that the size of an 

assembled team may be less than m if an agent is capable of solving multiple expertise areas of a 

problem. 

The last set of assumptions relates to problem generation and the entry of problems into 

the network. Every generated problem has exactly m expertise areas, and the maximum possible 

required expertise for each area is equal to the maximum expertise existing in the network. 

Therefore, a team capable of solving every area of every problem is guaranteed to exist. The 

expertise areas of problems are also assumed to be interdependent and must be addressed 

simultaneously by a single problem solver or team. Also, the model assumes that problems enter 

the network sequentially and are initially given to a random agent. At any point in time, there is 

only one problem for which a search is being conducted. As such, the network only attempts to 

assemble one team at a time. This set of assumptions does not reflect the fact that many 

organizations have multiple problems being solved simultaneously, nor does not consider other 

constraints, such as task prioritization, workload optimization, or resource allocation. However, 

the stated assumptions focus on network search as an independent mechanism instead of 
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focusing on adding more realism, which allows for the current study to focus on the behaviors 

employed when searching a social network to assemble a problem-solving team. 

Search Strategies for Team Assembly 

The modeled search strategies are based on the paradigm of decentralized search and 

focus on actors attempting to assemble a team that is most qualified to solve a problem. Two 

components of the model are discussed in the current section: the rules of the two search 

strategies conceptualized for team assembly and the mechanisms responsible for generating the 

social networks in which the strategies are evaluated. The first section details the rules that 

agents follow during the execution of the ABM, and the second section describes the creation of 

the social environment that agents must navigate to succeed in assembling a team. 

The concept of decentralized search is a fundamental and scalable strategy for searching 

networks, and it serves as the foundation of the search strategies developed to assemble diverse 

teams in the current study. When a source agent s needs to deliver a message to a target agent t, a 

decentralized search strategy relies on the participation of intermediaries to help a message 

traverse through a network. Typically, agent s is not directly connected to agent t and does not 

necessarily know the contacts of agent t. Therefore, according to decentralized search, agent s 

overcomes its myopia by giving the message to one of its direct contacts to serve as an 

intermediary, who then sends the message to agent t (if connected) or one of its own direct 

contacts (if not connected to t), and the process repeats itself until the message is eventually 

delivered or fails to find a path to agent t (Kleinberg, 2006; Ma et al., 2016). The current study’s 

search strategies build on the foundational definition of decentralized search but differ in three 

notable ways. 
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The first way that the current study’s search strategies differ is in the number of targets 

that exist for a given problem. Problems have multiple areas of expertise that must be met, but 

not a specified target for the problem. Problems may be solved by a single target, but there are 

cases for which a combination of agents is capable of solving every generated problem. The 

combination of agents are the eventual members of an assembled team. Building on this 

difference is the fact that the targets of the problem are not known a priori because the goal of 

search is finding any combination of agents that will meet the problem requirements. Traditional 

search strategies commonly only focus on routing to or searching for a single target, but this 

assumption is relaxed to account for the prevalence of teams that solve complex problems, which 

is the main goal of the current study. The last difference is that multiple agents simultaneously 

participate as intermediaries in search at a given step. This assumption suggests that multiple 

agents coordinate and collectively decide on a team of agents with expertise to match problem 

requirements.  

Search requiring coordination is a distinct phenomenon form individual search. Agents 

that participate in search with other agents need to communicate with others and balance 

information sharing to in order for searches to be successful, but too much coordination results in 

suboptimal decisions that are made without much learning or exploration (Lazer & Friedman, 

2007). Specifically, the amount of knowledge transfer between searchers regulates the confusion 

and myopia of the searchers when searching complex problem domains (Knudsen & Srikanth, 

2014). These three differences are opportunities to explore how modifying decentralized search 

to be a search process requiring coordination illuminates an approach to assemble teams with 

diverse expertise.  
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Description 

 
Figure 1: The radius of contacts (blue circle) that a searcher (red node) accesses during the search strategies. (a) The 

radius only includes the immediate contacts of a searcher. (b) The radius includes the contacts of a searcher’s contacts, 
which offers potential for a searcher to use their contacts as brokers to other agents. 

The two search strategies both rely on an agent assessing the expertise of their direct 

contacts when making decisions about whom to route a problem to in order to find agents to join 

a team capable of solving the problem. The Local Search strategy only allows a given agent to 

search among its direct contacts, whereas Broker Search gives an agent access to the expertise of 

other agents within a radius of two steps—contacts of contacts. Being able to assess expertise of 

agents farther away allows an agent to use a direct contact as an intermediary to reach a known 

intermediary with more expertise. The Broker Search strategy is inspired by m-hop task routing 

algorithms that consider the performance tradeoffs that exist when giving a decision-making 

node a larger choice set (Zhang, Horvitz, Chen, & Parkes, 2012). The two strategies behave the 

same, in principle, except for in cases where Local Search would have failed due to not having 

additional information beyond their immediate contacts. Figure 1 illustrates the difference 
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between Local Search and Broker Search with respect to the information available other agents’ 

expertise. The rules of each strategy are detailed below.  

Rules 
Each search strategy requires that an agent performs six steps at every time step when 

possessing a problem. Each problem is generated and randomly given to an agent in the network, 

and the rules an agent follows when searching will result in two outcomes for search: succeeding 

(by finding a team or individual solver) or failing to assemble a team for a problem. The details 

of each step of the two search strategies are explained below (see Figure 2 for a flowchart of 

strategy rules). 

Step 1: Assess the expertise of current problem holders. During the search for a team, 

agents possessing are problem holders. Holders are agents that are actively searching for problem 

solvers but may become members of the team if they are qualified. The problem holder must first 

reflect on their own expertise and decide whether they are qualified to solve at least one expertise 

area of the problem. For each area of a problem, the maximum level of expertise among the 

holders to compared to the level of expertise required by the problem. If the maximum available 

expertise is greater than the problem requirement, then the expertise area may be satisfied by one 

of the current holders. If not, then the expertise area is designated as “unfulfilled.” 

Step 2: Collaborate with other holders. When there are multiple holders of the same 

problem, the group is able to coordinate during search and collaboration occurs within the group. 

Collaboration refers to holders aggregating their expertise during search. The holders share their 

expertise with the other holders for comparison with the problem requirements.    

Step 3: Are the current problem holders qualified to solve all areas of the problem? 

Then, after collaboration, the first decision point of the model determines whether the group can 
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successfully address the problem. The collection of holders is assessed to determine whether 

there are any unfulfilled expertise areas of the problem. If there are no unfulfilled areas in a 

problem, the current holders will agree to assemble into a team to solve the problem, and the 

strategy will terminate successfully. Otherwise, the strategy continues the search process.   

Step 4: Collect contacts* to potentially receive the problem. The “*” refers to the 

difference between Local Search and Broker Search in this step. Problem holders review their 

contacts. When there are multiple holders, all the contacts are combined into a single list and 

reviewed collectively. In the Local Search strategy, a list of contacts is created from all the 

holders’ contacts. In the Broker Search strategy, a contact list is created from the contacts of all 

the holders and the contacts of those contacts. The group of holders has a list of all agents that 

are within a radius of two steps. 

Step 5: Are the contacts an improvement over the current holders? In the previous 

step, problem holders create a shared list of contacts. Each expertise area that does not have a 

holder qualified to solve the area is designated as an “unfulfilled” area. For each “unfulfilled” 

area, the contact (from the list) with the highest amount of expertise is identified and compared 

to the most qualified problem holder in the “unfulfilled area”. If no contact has higher expertise 

than the current holders, then a team fails to assemble. If the expertise of a contact in an 

unfulfilled area is higher than a current holder with the highest expertise in the area, then the 

contact is selected to receive the problem.  

Step 6: Forward the problem to the selected contacts. If any current holders fulfill 

expertise requirements, then they remain holders for the next run of the search strategy. In the 

Local Search strategy, the problem is forwarded to any contact (within one step) that has higher 

expertise in an unfulfilled area. For the Broker Search strategy, the strategy forwards the 
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problem in the same manner as the Local Search strategy unless the selected contact is a contact 

of a contact (a target). In this case, a contact of the target is identified as a broker and added to 

the new set of holders with the expectation that the target will be added to the holders in the next 

run of the model. Any agent that is currently a holder is removed from the set of holders when 

they no longer uniquely fill an expertise area of a problem. 

 
Figure 2: The Local Search and Broker Search strategies. *In Step 4, “Broker Search” uses more information than “Local 

Search,” as indicated by the differences between the strategies 

Network Generation 

In the current study, directed communication networks are generated using a model 

where links are determined using the expertise similarity between agents in the network (Ma et 
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al., 2016). The expertise similarity is the operationalization of homophily in the model. The 

presence of a link between two agents controls whether an agent can forward or send a problem 

to another agent in the network. The key assumption underlying the model is that agents are 

connected to others based on the preference for (expertise) homophily in the social network. For 

each agent, expertise relevant for a problem is assumed to be a numerical vector of m length, and 

the similarity between agent is calculated using the “Manhattan Distance” measure, where the 

absolute difference between two vectors is summed (Black, 2006). The network model assumes 

that there are non-exclusive groups of agents where an agent who belongs to multiple groups has 

more opportunity to interact with a diverse set of agents than does an agent who belongs to fewer 

groups. If two agents are extremely similar, they are more likely to belong to the same “small” 

group and are more likely to be connected to one another (e.g., the same product team in a 

company). On the other hand, if two agents who do not have similar expertise, then they belong 

to a “large” group (e.g., the same department, but different product teams). As a result, there 

always exists a group containing any pair of agents within the network (Kleinberg, 2002).  

Modeling non-exclusive membership in groups based on expertise homophily has 

numerous advantages when generating a social network. Firstly, there is an intuitive mapping of 

expertise similarities onto group sizes. As previously stated, agents belong to either “small” or 

“large” groups, which may overlap among agents. Secondly, these groups are then used to 

probabilistically determine the creation of outgoing links. Agents are more likely to make links 

with others in a “small” group than to others in a “large” group. Lastly, using only the expertise 

similarities among agents, generated groups correspond to different levels of a social setting 

(e.g., same product team, same department, or same organization). 
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The calculated size of a group containing any two agents is the maximum number 

between two and the expertise difference between two agents scaled by the ratio of agents in the 

network (n) to the number of expertise areas (m): 

|"($, &)| = )$* +2,
-
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Equation 1: Size of a group containing two agents 

where |"($, &)| is the size of the group containing agent a and agent b, and 
9
5
∑ /01,2 − 04,2/5
267  is 

the expertise difference (∑ /01,2 − 04,2/5
267 ) between the agents scaled by ratio of agents (n) to the 

number of expertise areas (m). This equation bounds the group size to be a minimum of two 

because two agents must belong to a group of at least size of two when there is negligible 

expertise difference between two agents (highly similar with redundant expertise), and a 

maximum of the entire social network when there is the largest possible expertise difference 

between two agents.  

Each agent in the social network model has a maximum of k outgoing links to other 

agents, known as contacts hereafter. The probability of making a contact with any other agent is 

proportional to the calculated group size in Equation 1 with an inverse-power distribution 

controlling for the number of less similar contacts (Ma et al., 2016): 

;($ → &) ∝ |"($, &)|>?  

Equation 2: Relationship between the probability of connecting to a given agent and group size. 

where ;($ → &) is the probability of agent a creating a connection with agent b and |"($, &)|>? 

is the size of the group in the inverse-power distribution of h. The parameter, h, is the preference 

for homophily in the network and determines how connected the network is between groups. 

When h is small, long-range contacts are created, which results in networks exhibiting the 

characteristics of random and small-world networks. However, only contacts within groups are 
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made when ℎ → ∞ (see Figure 3). To determine the contacts for an expert, a distribution 

containing the probabilities of connecting to every other agent is constructed: 

;($	 → &) =
|"($, &)|>?

∑ |"($, *)|>?C∈E\{1}
 

Equation 3: Probability of connecting to a given agent 

where ;($	 → &) is the probability of agent a creating a link to agent b and 
|I(1,4)|JK

∑ |I(1,C)|JKL∈M\{N}
 is the 

ratio of agent a creating a link to agent b compared to agent a creating a link to all other agents 

in the network. Once this distribution is constructed, an agent independently and randomly 

selects one other agent to make a link to, k times. Following this rule, it is possible for an agent 

to have less than k outgoing links if the same contact is chosen more than once. The contact 

selection results in agents being more likely to connect with similar others than to agents with a 

greater similarity difference. Figure 3 provides an illustrative example of how h influences the 

structure of a social network. 

 
Figure 3: The network generation model and the effect changing values of the Preference for Homophily, h. 
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Methodological Approach 

One of the current study’s goals is understanding how network search influences the 

assembly of expertise-diverse teams. Team assembly is process that is the result of actions taken 

by multiple agents who coordinate their efforts. As a result, a social network cannot assemble 

problem-solving teams unless those within the network are performing the actions necessary for 

finding teammates. The setting in which teams must be assembled is a complex system of agents, 

social networks, and rules, and it is essential to employ a method suited for decomposing a 

complex system into more readily interpretable components to order to examine outcomes. For 

example, conceptualizing how a social network facilitates team assembly. A question 

considering team assembly at the network level may ask, “How does the structure of a social 

network influence team assembly?” However, such a question does not consider the actors who 

themselves are participating in the activity of team assembly. Being able to reason about team 

assembly by thinking about the behaviors of individuals and how those individuals, in turn, 

influence team assembly allows for conceptualization of rules that individuals follow when 

participating in network search during team assembly. Having a method that supports thinking 

about a complex system at a lower level helps sharpen intuition surrounding the phenomenon 

under investigation. 

In the current study, agent-based modeling (ABM) is the chosen method to establish 

understanding of team assembly as a network-level outcome from individual search behaviors. 

By representing a complex system as a population of agents following a defined set of rules, 

ABM is a computational method well-suited for simulating complex systems and investigating 

emergent phenomenon (Macy & Willer, 2002; Schelling, 2006; Wilensky, 1999; Wilensky & 

Rand, 2015). The NetLogo interactive programming environment is used to implement the 
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ABMs conceptualized in the current study and conduct virtual experiments exploring the 

performance of search under various conditions (Wilensky, 1999; Wilensky & Shargel, 2002). 

Analyses from virtual experiments are useful because they offer data derived from a 

computational implementation of a complex system based on simplified and interpretable 

assumptions for how search is performed in a social network during team assembly.  

Through the use of ABM, defining the social network structure and controlling the 

network generation process provides an opportunity to reason about search under different social 

networking conditions while having a clear understanding of how the network formed. If the 

current study was based in an empirical setting, the scope would be limited by the type of social 

network collected as well as the search activities of people in the study, which would reduce the 

generalizability of such research. Also, defining and evaluating search strategies that agents 

enact during team assembly provides a foundation for conceptualizing search strategies in 

empirical settings. Empirically, people’s ability to search in an organization is influenced by 

individual differences and their positions in the social network (Singh et al., 2010), which 

introduces challenges when assessing a given search strategy. Since agents in an ABM 

simulation follow defined rules to conduct searches, it is possible to develop sharper insights 

about search strategies and decisions made during search.  

Related Models 

Prior studies of team assembly have leveraged computational models to capture and 

explain how collaboration patterns may have been created for given empirical settings. In 

Guimerà et al. (2005), using empirical data over a period of 127 years and 91,094 different 

products from creative and scientific industries, the model explained long-term trends by 

considering only three parameters. Over the history of collaboration, the model used team size, 
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the proportion of newcomers in a team, and the tendency of incumbents to repeat previous 

collaborations to determine phase shifts in the structure of a collaboration networks. At one end 

of the spectrum, collaboration networks have a large component containing a considerable 

number of agents, and at the other end, there are many distinct and disconnected clusters 

(Guimerà et al., 2005).  

Other studies have developed algorithms to assemble teams and reduce communication 

costs (Anagnostopoulos, Becchetti, Castillo, Gionis, & Leonardi, 2012; Lappas, Liu, & Terzi, 

2009), but this work did not investigate the performance of their algorithms in networks with 

different levels of homophily. Instead, the algorithms were evaluated with empirical networks 

without an investigation of the generating mechanisms. This limitation subverts the importance 

of social network structure because interdependencies among agents assembling teams are one of 

the focal mechanisms to consider. The structure of social networks formed through worker 

interdependence are a factor in how teams assemble and the team or group in which a worker 

belongs influences the worker’s productivity (Millhiser, Coen, & Solow, 2011), which suggests 

it is possible for highly skilled workers and their teams to have negative impacts on each other’s 

performance. For example, when workers are not suited for a team, they may be considered a 

poor fit and interpersonal conflicts may arise (Jehn & Mannix, 2001; Jehn, Northcraft, & Neale, 

1999; Kristof-Brown, Zimmerman, & Johnson, 2005). For the current study, an ABM is 

developed that accounts for social networks and specifies strategies for searching a social 

network to assemble teams that meet problem-solving criteria. 

Computational Implementation and Experimental Design 

Virtual experiments from simulations assessed the performance of search strategies 

through the manipulation of parameters directly related to network generation and problem 
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complexity (see Table 1 for a description of parameters). For the virtual experiments, a total of 

79,380 simulation runs were conducted, accounting for 3,969,000 searches to be evaluated. The 

modeling assumptions made regarding the expertise available in a network and its representation, 

the initial network structure, and the generation of problems in the simulation setting are 

discussed below.   

Table 1: Description of study variables manipulated during virtual experiments 

Parameter Range Purpose 
Preference for Homophily h: 0-4 Contact selection based on similarity. The 

parameter ranges from connecting with 
people randomly with no preference for 
homophily (h = 0) to connecting with 
people based on increasingly strong 
preferences for homophily, based on 
expertise profiles (h = 4). 

Problem Complexity  m: 2-8 The number of expertise areas required by 
a problem.  

Number of Agents n: 100-500 The number of agents.  
Maximum Outgoing Contacts k: 2-8 Fixes the initial maximum network 

density.  
Number of Problems p: 50 Number of problems each network will 

assemble teams to solve.  
Number of Repetitions t: 10 For each condition, the number of times 

the condition is replicated.  
 
Experimental Conditions 

From Table 1, the “Preference for Homophily” and “Problem Complexity” parameters 

are key variables for evaluating the performance of the search strategies. The values of the 

preference for homophily are continuous numbers and range from no preference (h = 0) to a 

strong preference (h = 4) in 0.5 increments. Modifying the preference for homophily (with 

respect to expertise similarity) among contacts in the network gives insights into whether the 

network structure affects search. When there is no preference, agents are equally likely to 

connect to similar or dissimilar people; as the preference (h) increases, agents become more 
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likely to only connect with similar others. Diversity among contacts is less common when 

networks are generated by agents who have high preferences for homophily. 

The other key parameter is problem complexity, which is represented by the number of 

expertise areas. The values range from two to eight areas and directly affect the maximum 

possible team size for a problem. An assumption of the model is that a team needs to have 

expertise surpassing the required expertise of a problem (drawn randomly from a normal 

distribution), and it is possible for team size to grow as the problem complexity increases (i.e., a 

team has a maximum size of four members when a problem has four areas). Testing the number 

of expertise areas indicates the extent to which problem complexity affects search by 

determining whether more complex problems increase the difficulty in searching for team 

members. 

There are two other variables included in the experiment that represent the social 

environment encompassing agents during their searches: “Number of Agents” and “Maximum 

Outgoing Contacts.” These variables help control the network conditions under which search to 

assemble teams occurs; simulating strategies in different sized networks at different levels of 

density. Each experimental condition was replicated ten times to observe the range of outcomes 

for each simulation run. For all of the simulation runs, the number of problems generated is held 

constant at fifty problems. This constant was selected to investigate the search behaviors based 

on multiple problems while maintaining reasonable run times for a single simulation. 

Evaluation and Results 

The searches are evaluated using characteristics of assembled teams as well as search 

performance. Assembled teams meet the requisite expertise diversity for solving problems, but 

there are two ways to describe expertise in a team to measure relevant aspects of a team’s 
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expertise diversity. The first way to describe a team’s characteristics is through the expertise 

match between a team and a problem. Matching expertise to a problem is a positive indicator that 

a team member will allocate attention and engage with a given problem (Haas, Criscuolo, & 

George, 2015). The measure is the sum of the differences between the maximum expertise of a 

team and the expertise required by a problem in each expertise area scaled by the number of 

expertise areas. A smaller difference indicates a team that is more closely matched to a problem, 

and therefore is a desirable characteristic for a team because organizational resources are 

allocated such that high-skilled experts are not addressing problems far below their skill levels. 

As an example, a team does not need an organization’s best software developer to solve a 

problem that can be solved by a novice software developer. The measure is described by the 

following equation: 
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Equation 4: Expertise match Between a Team and a Problem 

The second way of measuring a team’s characteristics is through the expertise coverage 

among team members. Because team members have to address problems with varying levels of 

difficulty and complexity, there is the potential for teams to have different levels of expertise 

diversity while still meeting problem requirements. For example, team members may have 

relatively similar expertise profiles (but still are able to solve a problem) or may have extremely 

different expertise profiles. To capture these degrees of diversity, expertise coverage is measured 

as the mean range of team expertise, where the sum of the differences between the maximum and 

minimum expertise in each area is normalized by the number of expertise areas: 
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Equation 5: Expertise Coverage of a Team 

 When expertise coverage is low, then only a small amount of expertise in the network is 

represented—similar to a team only having one type of person. However, when expertise 

coverage is high, then the team reflects more of the expertise available in the network; i.e., the 

expertise present in the network is well-represented in the team. Examples to describe a diverse 

team at each of the two extremes would be a team composed of members with generalized 

expertise (relatively similar) and a team composed of members of highly specialized expertise in 

different areas (extremely different). In totality, both team characteristics illustrate how 

expertise-diverse teams differ in the coverage of their expertise and in how well they match the 

problem for which they assemble to solve.  

 In order for teams to assemble, the search process must identify team members. 

Therefore, search performance is assessed using two distinct measures: the percentage of 

searches that succeeded and the network distance covered during a search. The percentage of 

searches that succeeded gives insight into the frequency that searches found agents capable of 

solving a problem. Search succeeds based on one of two mechanisms, finding either a team 

solver or an individual solver. Distinguishing between an individual solver and team solver 

provides higher granularity into the ways that search supports identifying problem solvers at 

different levels of complexity. For example, there may be levels of problem complexity where 

only team solvers are capable of solving a problem.  

 The second measure of search performance is the network distance covered during a 

search. The distance is defined as the number of steps that a problem travels during a search and 
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is a proxy for the amount of time required for a search. Because more intermediaries are 

involved in search as distance increases, searches take longer to complete compared to shorter 

searches. Additional distance means that multiple agents have to employ a search strategy, 

follow the rules for searching, and help assemble teams. Specifically, a search that finishes one 

step away from the original searcher will result in a team of the original searcher’s contacts, 

whereas a search that concludes two steps away requires at least one of the original searcher’s 

contacts to participate in the search process (in the next model step) to find an agent not directly 

connected to the original searcher.  

 Assessing search performance is aided through the experimental design of the current 

study. The search strategies developed to find team members are investigated by manipulating 

problem complexity and the preference for homophily in the network, while also accounting for 

the problem difficulty based on expertise requirements. Problem difficulty is calculated as the 

average of all expertise requirements of a problem. From the average, problems are partitioned 

into four levels of difficulty “Easy,” “Moderately Easy,” “Moderately Hard,” and “Hard.” For all 

simulations, problem requirements were generated from a normal distribution and there are 

159,485 “Easy” problems with an average difficulty of less than 0.25, 1,849,642 “Moderately 

Easy” problems with difficulty between 0.25 and 0.49, 1,808,934 “Moderately Hard” problems 

with difficulty between 0.50 and 0.74, and 150,939 “Hard” problems are greater than or equal to 

0.75. Partitioning based on problem difficulty clarifies the results and helps provide insights into 

the how search is differentiated across experimental conditions and how expertise diversity in 

teams is impacted downstream.  
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Network Setting 

Social network structure changes based on the value of the preference for homophily. Two 

network measures are calculated in order to describe the network conditions in which search was 

conducted: network density and global clustering coefficient. Network density is the overall 

connectedness of a network and calculated as the number of ties present in a network divided by 

the total number of potential ties (Wasserman & Faust, 1994). The global clustering coefficient is 

the number of triangles in a network divided by the total number of possible triangles (Newman, 

2010). Network clustering indicates the prevalence of groups where members of a group have 

more ties within the group than they do outside of the group. The network density decreases, and 

the global clustering coefficient increases as the preference for homophily increases (see Figure 

4). When there are relatively higher levels of the preference for homophily, the network 

generation procedure used in the current study probabilistically creates ties by more strongly 

considering similarity between actors. The network setting thus influences search because higher 

levels of the preference of homophily result in networks that are sparser and more clustered. By 

using these network measures, the preference for homophily is more interpretable when 

considering the substantive results. 
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Figure 4: Network density and the global clustering coefficient are network metrics that illustrate differences among 

networks generated at various values of the Preference for Homophily. 

 
Team Diversity 

To meet problem requirements at varying levels of complexity, all assembled teams have 

at least some amount of expertise diversity. To better understand the nature of the assembled 

teams, two characteristics are employed: expertise match between the team and problem, and 

expertise coverage of the team. The average values of each measure are used to investigate team 

diversity across all teams under every specified condition. The expertise coverage of the team 

increases and the expertise match between the team and problem decreases as the problems 

increase in difficulty (see Figure 5). Problem difficulty has a relationship to both team 

characteristics because difficult problems are closer to the maximum available expertise in a 
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social network. Therefore, for “Hard” problems, a team on average will be a closer match to a 

problem and have more expertise coverage. When problems are not as difficult, then high 

expertise coverage for a team is not necessary because teams with less coverage satisfy problem 

requirements. Meanwhile teams are not as well-matched to problems at lower difficulty. Overall, 

the observed trends show that as problems become more difficult, teams are more diverse and 

better suited for solving such problems as measured by expertise match.   

 
Figure 5: Team characteristics that describe a team’s expertise diversity plotted against levels of problem difficulty. 

Analyzing team characteristics at different levels of problem complexity and difficulty 

shows that qualities of teams change based on the types of problems for which they assemble 

(Figure 6). While the expertise match between a team and problem decreases with problem 

difficulty, it increases with problem complexity. The increase indicates that more complex 

problems, as compared to problems of lower complexity, will have teams that do not fit the 

problem requirements as well. Irrespective of problem complexity, the hardest problems have 

teams that are better-matched.  
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For the expertise coverage of a team, there are notable patterns in how coverage changes 

with respect to both problem complexity and difficulty. At all difficulty levels, the relationship 

between expertise coverage and problem complexity is non-linear. For “Easy” problems, the 

expertise coverage has a U-shaped curve with the maximum at a complexity of two expertise 

areas. Teams have decreasing levels of expertise diversity as problem complexity increases up to 

a point where problems become highly complexity (at least six areas); then, expertise coverage 

begins to moderately increase. As the problem difficulty increases, the U-shaped curve contracts 

and eventually becomes more of a V-shape for “Hard” problems; the expertise coverage 

decreases to its minimum expertise at three areas of expertise before increasing at higher levels 

of complexity (see Figure 6). Overall, expertise coverage is relatively low at moderate levels of 

complexity compared to low (two expertise areas) and high complexity (more than four expertise 

areas). Aside from problem complexity, the preference for homophily differentially affects team 

characteristics based on the problem difficulty. For “Easy” problems, expertise match between a 

team and a problem and expertise coverage decrease as the preference for homophily increases. 

Social networks with more homophily result in teams that have less expertise coverage, but that 

are a better match for a given problem. However, as problem difficulty increases, the trend 

reduces for the match between a team and a problem at different values of the preference for 

homophily. For “Hard” problems, the match between a team and a problem does not differ 

greatly between low and high values of the preference for homophily. To summarize these 

observations, expertise coverage always decreases when the preference for homophily increases 

while the decline in the match between a team and a problem depends on the difficulty level of a 

problem (Figure 7). 
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Figure 6: Team characteristics that describe a team’s expertise diversity plotted against problem complexity for problems 

with different levels of problem difficulty. 
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Figure 7: Team characteristics that describe a team’s expertise diversity plotted against the preference for homophily for 

problems with different levels of problem difficulty. 

 The analysis of two team characteristics helps to describe the expertise diversity of teams 

that assemble as the result of search. Expertise coverage of a team represents the differences 

among team members and is influenced differently by problem difficulty, problem complexity, 

and the preference for homophily. On average, teams have higher expertise coverage when 

assembling for more difficult problems but increasing the preference for homophily in a network 

reduces the expertise coverage of teams. The relationship between expertise coverage and 

problem complexity is non-linear and changes based on problem difficulty. The match between a 

team and a problem decreases with problem difficulty and the preference for homophily but 

increases with problem complexity. It is worth noting that the effect of the preference for 

homophily is not as strong at the highest level of problem difficulty (i.e. “Hard” problems).  
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Search Success 

 Assessing search performance gives more insight into how team assemble. The first 

indicator of search performance is the percentage of searches that succeeded. Each search has 

two possible types of success, either by a team solver or a solo (individual) solver. The 

percentage is calculated by the number of searches for a given type (e.g., team solver) divided by 

the total number of searches. Figure 8 shows the percentage of searches that succeeded with 

respect to the problem complexity—operationalized by the number of expertise areas, problem 

difficulty, and search strategy. The percentage of team solvers increases as problem complexity 

increases, and the rate of increase declines at higher levels of complexity (above four expertise 

areas). There are two details worth noting about the effect of problem difficulty on the 

percentage of searches that succeeded with a team solver: there is a higher minimum and lower 

maximum as difficulty increases. Specifically, a higher percentage of searches result in a team 

solver while a lower percentage of searches are successful overall for more difficult problems 

(see Figure 8, top row). For solo solvers, the success percentage decreases as problem 

complexity increases, and problem difficulty reduces the number of solo solvers overall (see 

Figure 8, bottom row). The search strategies had different percentages of success dependent 

upon the problem difficulty. There is no appreciable difference between search strategies finding 

solo solvers or when finding team solvers for an “Easy” problem. At other levels of problem 

complexity, the Broker Search strategy succeeds more often than the Local Search strategy with 

the difference widening between the two strategies as problem complexity increases. Broker 

Search becomes more advantageous when problems are more difficult and complex.  
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Figure 8: The percentage of searches that succeeded in finding a team solver and solo solver for each search strategy 

plotted against problem complexity for problems with different levels of problem difficulty. 

 While problem difficulty and complexity have effects on the percentage of searches that 

succeeded, the preference for homophily affects success as well (Figure 9). The preference for 

homophily’s impact is apparent for team solvers of problems that were more difficult than 

“Easy” problems. At higher levels of problem difficulty, the percentage of searches that 

succeeded decreases with the preference for homophily. Both strategies decline in a similar 

fashion, but Broker Search is successful in a higher percentage of searches with the advantage 

increasing with problem difficulty (see Figure 9). However, for solo solvers and “Easy” 

problems, there is no clearly distinguishable relationship between the preference for homophily 

and success, nor is there an observable difference between search strategies. 
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Figure 9: The percentage of searches that succeeded in finding a team solver and solo solver for each search strategy 

plotted against the preference for homophily for problems with different levels of problem difficulty. 

 To summarize observations from the percentage of searches that succeeded, team solvers 

exclusively become the mechanism for successful searches when problem complexity increases 

(solo solvers decrease to near zero). Additionally, the preference for homophily decreases the 

overall success for team solvers but did not notably impact solo solvers. The employed search 

strategy greatly impacts the success of search when problem difficulty and complexity increase. 

Overall, Broker Search has a higher success percentage than Local Search and teams become the 

only type of success as problem complexity increases. 
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search since a search requires that a problem travels some distance in a network in order to find 

all team members. From Figure 10, network distance has a curvilinear relationship with problem 

complexity. Network distance is at its maximum for problems with the lowest complexity and is 

at its minimum for problems of moderate difficulty.  

 
Figure 10: The network distance (mean number of steps) for each search strategy to find team members plotted against 

problem complexity for problems with different levels of problem difficulty. 

When observing network distance with respect to the preference for homophily, the 

network distance increases as the preference for homophily increases (see Figure 11). Overall, 

for both problem complexity and the preference for homophily, the network distance increases 

with problem difficulty, where “Hard” problems require longer network distances to be covered 

in order to assemble a team. The difference between search strategies increases with problem 

difficulty as well with Broker Search having longer searches than Local Search on average. It is 

worth noting that Broker Search has a higher percentage of success as well, which suggests that 

the higher values of network distance correspond to assembling more teams.  
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Figure 11: The network distance (mean number of steps) for each search strategy to find team members plotted against 

the preference for homophily for problems with different levels of problem difficulty. 

Discussion 

Network search has long been investigated as a means to explore how information and 

resources may be accessed by individuals navigating the structure of social networks (Adamic & 

Adar, 2005; Dodds et al., 2003; Travers & Milgram, 1969; White, 1970). However, there has 

also been attention given to understanding of how networks influence teams (J. N. Cummings, 

2004; Reagans et al., 2004; Reagans & Zuckerman, 2001). Because network search is a vital 

activity of actors in social networks, investigating how search influences team assembly and 

team diversity contributes to building understanding of the emergence of teams. The results from 

evaluating a model of network search provide promising insights into team assembly and 

diversity as an outcome of decentralized network search.  

The current study investigates network search for team members by accounting for 
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to increase clarity around how these different considerations impact search and team diversity. 

From observed patterns of searches and team characteristics, problem difficulty relates to the 

viability of search for assembling expertise-diverse teams. When problem difficulty increases, 

teams have higher expertise coverage that better represents the social network, and teams will 

better match the problem for which they assemble. With regards to search, teams become more 

necessary to solve problems as difficulty increases, corresponding to empirical trends of the 

increased prevalence of teams in response to the complexity of contemporary knowledge work 

(Falk-Krzesinski et al., 2010; Leahey, 2016; Wuchty et al., 2007). Searching for team members 

also covers more network distance for more difficult problems, indicating that higher expertise 

requirements necessitate longer searches.  

When accounting for problem complexity, non-linearity in team expertise coverage 

shows that diversity happens when problems are not complex as well as highly complex. For 

problems of low complexity, there is a sizable proportion of problems that individuals are able 

solve, which suggests that teams only assemble for problems that require more expertise 

coverage than a single individual will typically provide. However, highly complex problems 

demand more expertise coverage by nature of the requirements. The preference for homophily 

reduced expertise coverage when it increased having a stifling effect on team diversity. Expertise 

diversity was contingent upon a network structure that controlled whether people could connect 

to similar or different contacts, which has implications for team performance if individuals do 

not exchange a variety of information and experiences (Reagans & Zuckerman, 2001).   

Evaluating two search strategies shows the importance of social network structure when 

assembling teams. Broker Search assesses actors that are within a two-step radius of contacts 

when deciding who participates in search or who will assemble into a team whereas Local 
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Search only assesses actors that are one-step away (direct contacts). Overall, Broker Search 

assembles more teams than Local Search while requiring more information processing and 

participants in search. However, Broker Search is susceptible to the same challenges as Local 

Search when employed in networks with higher preferences for homophily. Both strategies 

increase their network distances to assemble less diverse teams when the preference for 

homophily is strong. In such cases, Broker Search results in more effort than Local Search to 

assemble teams that are do not have as much expertise coverage compared to the effort that is 

expended in networks with weaker preferences for homophily. 

 Overall, the current study contributes to literature related to search in social networks by 

focusing on identifying multiple team members as the goal of search. Beginning with classical 

studies of the “small world problem” (Milgram, 1967; Travers & Milgram, 1969), prior research 

has typically been rooted in scenarios where people attempt to find a single target within the 

social network by relying on intermediaries who contribute to the search process. These studies 

have since led to subsequent research that expound upon the conditions that promote search in 

networks by largely focusing on network structure, which has been shown to impact search 

performance (Adamic & Adar, 2005; Kleinberg, 2006; Ma et al., 2016; Watts et al., 2002). The 

current study uncovers how traditional notions of network search apply to a scenario where a 

single target is not known at the start of search and when multiple people may fulfill a search. A 

notable contribution from the findings is that teams are the only way that problems of high 

complexity can be addressed; individuals no longer meet all of the expertise requirements of a 

problem. This finding suggests that extending network search to consider multiple targets is 

necessary to depict the solving of highly complex problems (with respect to the number of 
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expertise areas needed). Therefore, under specific problem requirements, addressing problems 

relies entirely upon team assembly.  

 The contributions of the study also link to research focusing on team diversity and 

assembly. From the results, teams were not necessary for problems with lower expertise 

requirements. On the other hand, increased problem requirements resulted in higher levels of 

team diversity even though agents were using the same search strategies to maximize the 

expertise of solvers for all problems. Teams were also better matched to more difficult problems. 

Accordingly, these trends suggest that task demands and characteristics justify team assembly by 

clarifying expectations (Hackman, 1987; Harrison & Humphrey, 2010). Instead of searching for 

team members based on a priori goals of diversity, a more nuanced approach that evaluates what 

types of expertise are needed before searching for team members could help foster teams that are 

diverse along dimensions needed for a given problem (Hargadon & Sutton, 1997; Reagans et al., 

2004). Viewing questions surrounding team diversity through the problems for which teams 

assemble will potentially focus attention to the problem characteristics that advantage teams over 

individuals. 

Practitioners can derive value from the current study by concretely appraising the 

problems for which teams assemble, defining the strategies that people use to identify team 

members when assembling, and being cognizant of the ways in which social networks inhibit or 

enable search activities. Problem complexity and difficulty showed that assembling teams is not 

always necessary. If a community or organization has problems that are not considered complex 

or difficult for the expertise that is available, and therefore do not necessarily require innovative 

solutions, then leveraging individual contributors is effective and reduces coordination costs of 

collaboration (Dahlin, Taylor, & Fichman, 2004; Singh & Fleming, 2010). From the current 
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study, searching for multiple team members has the most utility for problems that were in the 

two most difficult classes and of higher complexity. Understanding when a team’s capabilities 

will exceed the capabilities of an individual helps to better the management of resources and 

expertise. 

 The next practical implication comes from articulating clear search rules: agents look to 

maximize expertise and ask their contacts to help them find others who will maximize expertise. 

Oftentimes, people have different approaches when searching for team members and apply 

different criteria for which they attempt to optimize, which increases the complexity of search. 

Having higher complexity present in the search process increases the opaqueness of relevant 

factors for selecting team members. If organizations have defined outcomes and goals for teams, 

then also having a defined procedure for search would be beneficial because those who rely on 

teams would better understand how search relates to specific team characteristics. 

 Lastly, value in the current research stems from the clarifying how the preference for 

homophily in networks affects team assembly. If there is a network where people are clustered 

based on specialties or expertise, then it becomes difficult to address certain types of problems. 

Acknowledging and addressing homophily in a network benefits those who are embedded in the 

network because then the network can support assembling diverse teams capable of solving 

complex and difficult problems. People who have diverse connections in such a network could 

serve as brokers, but it is also possible that the ones who need to build the teams would be 

peripheral in the network and not have access to needed resources and contacts (Singh et al., 

2010). Taking measures to support informal networks and intellectual communities helps ensure 

that people have a broad, diverse set of connections (Brass et al., 2004; Jacobs & Frickel, 2009; 

Krackhardt & Hanson, 1993; Wenger & Snyder, 2000). In summary, the current research study 
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helps practitioners think about the problems for which teams assemble, the ways in which people 

search for team members, and how social networks affect the ability to search.   

Limitations and Future Directions 

The limitations of the current study largely concern modeling assumptions and the 

applicability of the model to empirical settings. There are four assumptions embedded in the 

models that may constrict some of the generalizability of the current research: external validity 

of expertise representation, network generation, sequential problem generation, and search 

strategy rules. The expertise of agents and problems is represented as a numerical vector (range 

between 0 and 1) of a defined length, and the generalizability of such a representation may be 

questionable. In the model, an agent’s expertise can easily be compared to and assessed against 

other agents and the problems in the simulations, but there is difficulty in describing how the 

expertise representation in the models corresponds to other representations of expertise (e.g. 

intelligence, credentials, or skills). A researcher would need to make careful considerations when 

applying the developed models to other contexts in order to adequately represent expertise in 

different contexts, or at least compare the current expertise representation to other 

representations.  

Questions may also be raised regarding the network generation process. The model 

adapted from prior research makes assumptions about the probability of connecting to others 

based on similarity (Kleinberg, 2002; Ma et al., 2016). Only expertise is responsible for 

generating network links in the current study. The generated networks are directed, and there are 

other mechanisms that can explain the likelihood of people connecting to one another. An 

example of a social network generated from such a model would be a network in an organization 

where links are based exclusively on the functional area in which people reside. However, there 
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are multiple other reasons for people to make connections and search is influenced by differences 

in the type of social network or by whether there is a formal hierarchy (Adamic & Adar, 2005). 

To alleviate this limitation, investigating search performance and team characteristics by using 

empirically-collected social networks would provide insights into the ways in which search 

identifies new team members in empirical settings. The limitations around the network 

generation process would greatly profit from employing an empirical social network because the 

developed search strategies could be compared to empirical patterns of a given setting. 

 The next modeling assumption relates to the sequential entry of problems into the social 

network. This serves as a limitation because, while reducing complexity of the model and 

simplifying analysis, the model loses the dynamics of the coexistence of multiple problems. 

Questions related to whether a problem will be ignored in favor of another problem or how 

agents decide which problem to search for team members cannot be investigated in the current 

model, but such considerations contribute to decisions that people make when allocating 

attention to knowledge intensive work tasks (Haas et al., 2015; Y. Kim, Jarvenpaa, & Gu, 2018; 

O’Leary, Mortensen, & Woolley, 2011). Lastly, the rules that govern agents’ search behavior 

assume that all agents are attempting to maximize expertise. A more realistic set of rules would 

allow agents to choose between maximizing expertise and other considerations; for example, 

attempting to maximize the match between an agent and problem instead of maximizing on 

expertise. Additionally, different agents may follow alternative considerations. The current study 

is able to assess the match between a team and a problem as an outcome, but a model where 

agents attempt to optimize upon the match would be a worthwhile investigation. 
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Conclusion 

In conclusion, the current study details the ways in which expertise diversity in teams is 

related to the search process responsible for identifying team members when assembling teams. 

Problem complexity benefited the expertise coverage of a team by demanding higher levels of 

diverse expertise but diminished the expertise match between a team and problem. On the other 

hand, the preference for homophily constrained the expertise coverage of a team but enhanced 

the match between a team and problem. Additionally, higher problem difficulty supports team 

diversity by the explicit need for high levels of diverse expertise. For search performance, results 

show that problem difficulty increases the importance of search strategy selection. Different 

search strategies have clear consequences on success in finding team members by having a 

broader view of a social network, which ultimately exposes a searcher to new people and more 

expertise in the network. The current findings contribute to extant scholarship by providing a set 

of considerations surrounding network search that affect the expertise diversity of teams, which 

brings greater clarity regarding how teams assemble for problems of varying complexity, 

reflecting collaboration activities in contemporary settings of knowledge intensive problem-

solving.   
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CHAPTER 3. CHOOSING TEAMMATES IN ONLINE RECOMMENDER SYSTEMS: THE 

ROLES OF ONLINE RECOMMENDATIONS AND PRIOR COLLABORATION 

 
Abstract 

Inviting teammates is a foundational process in team self-assembly. In this paper, I 

extend Hinds, Carley, Krackhardt, and Wholey’s (2000) seminal model of team member 

selection by incorporating a new technology platform known as a teammate recommender 

system (similar to an online dating website for team assembly). A total of 410 participants 

assembled into 63 interorganizational-interdisciplinary teams (sized 5-7 members) and left 

digital traces of 1,049 teammate invitations. These data were collected from two research 

settings, with one replicating the other. Results based on exponential random graph modeling 

(ERGM) of teammate invitation networks show that the tendency to send an invitation to a 

potential team member is a function of online recommendations, beyond the previously-

established effects of prior collaboration/familiarity, skills/competence, and homophily. 

Importantly, an interaction effect was observed in both samples, showing prior collaborations are 

a boundary condition for the effect of online recommendations, such that online 

recommendations are less likely to be heeded when there is prior collaboration. Results specify 

conditions under which online recommender systems can reduce uncertainty during team 

formation. Overall, this study provides insight into technology-enabled team assembly, by using 

digital trace data analyzed with a relational perspective. 

 
Keywords: Team formation, team assembly, social networks, exponential random graph models  
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Introduction 

The value of social technology platforms stems from their utility in facilitating 

collaboration, communication, and knowledge-sharing in organizations (Kane, Alavi, Labianca, 

& Borgatti, 2014; Leonardi & Vaast, 2017). Online recommender systems are one type of 

technology that plays a role in helping people build meaningful relationships in the workplace 

(Guy, 2015; Terveen & McDonald, 2005). According to Terveen and McDonald (2005), using 

online recommendations in social settings is “semi-automated matchmaking” (p. 402) and assists 

people in finding and making new connections. Team assembly refers to the relationships and 

activities of people as they self-select and organize into teams (Contractor, 2013; Humphrey & 

Aime, 2014). The assembly process undergirds team composition, which influences a team’s 

ability to accomplish organizational tasks and achieve desired performance (Mathieu et al., 2017; 

L. L. Thompson, 2018). In recent years, the increasing prominence of social technology in 

organizations has augmented people’s ability to select team members, and it is now 

commonplace for team members to initially engage with one another through such technology 

platforms (J. Cummings & Dennis, 2018). I contribute to research on team formation by focusing 

on the social interactions that occur during technology-enabled team assembly in an online 

recommender system. The system creates an environment where people look for teammates by 

reviewing a list of “matches” to their preferences, and then invite potential teammates to form 

project teams. 

Teammate invitations signal interest from one person to another and directly result in 

team formation. By investigating invitations during technology-enabled team assembly, I 

observe the initial interaction between prospective teammates. When choosing team members, 

individuals use multiple types of information to reduce uncertainty around a collaboration. 



 71 
According to the theory underlying Hinds et al.’s (2000) model of team member selection, 

several individual and relational attributes are proposed to serve as “uncertainty reduction 

mechanisms” (around a team’s future performance): familiarity, competence, and homophily (p. 

228). Whereas each of these antecedents of teammate invitations is theoretically and empirically 

supported, none of them considers the effects of online technology, which has noticeably shifted 

the nature of modern work (Colbert et al., 2016; Zammuto, Griffith, Majchrzak, Dougherty, & 

Faraj, 2007). In the current study, I extend understanding of teammate selection by considering 

new theoretical explanations for: (a) how online recommendations influence teammate 

invitations, and (b) how online recommendations augment or suppress previously-established 

theoretical mechanisms of teammate selection. 

Applying a social network perspective is key to my explanation of teammate invitations 

and the relevance of online recommendations. Previous research has established the importance 

of social networks when selecting team members (Gao, Hinds, & Zhao, 2013; Hinds, Carley, 

Krackhardt, & Wholey, 2000; Reagans et al., 2004). The current paper integrates considerations 

of individual attributes, relational attributes, social networks, and technology, to explain the 

process of teammate invitation. Therefore, I propose a multitheoretical, multilevel model for 

analyzing the emergent teammate invitation networks inherent to team self-assembly 

(Contractor, 2013; Contractor, Wasserman, & Faust, 2006; Monge & Contractor, 2003), and I 

test this model using exponential random graph modeling (ERGM). 

The current study of teammate invitations gives insight into how social technology 

impacts team assembly, contributing to theory on team assembly in two ways. First, the paper 

extends understanding of team member selection by incorporating a social technology platform 

as a new information source. The study shows that online recommendations influence teammate 
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invitations beyond information about potential teammate competence and homophily. The 

second contribution recognizes prior collaboration as a boundary condition for online 

recommendations, such that online recommendations no longer contribute to uncertainty 

reduction when there has been prior collaboration with an individual. Together, these two 

contributions illuminate the ways people in organizations can leverage recent technological 

advances to support collaboration, by better explaining how people use online recommendations 

during team assembly. 

Theory and Hypotheses 

Team assembly is the responsibility of either managers or team members themselves 

(Contractor, 2013; Hackman, 1987). During cases of team self-assembly, team members must 

assess and maintain awareness of task requirements in order to make choices about other 

members. Understanding the organizational environment and work design makes it possible to 

identify task dimensions that team members need to address (Grant, 2007; Harrison & 

Humphrey, 2010). Task dimensions may include task interdependence, interpersonal 

interactions, and the broader social context situating the work (Morgeson & Humphrey, 2008; 

Parker, Morgeson, & Johns, 2017). By focusing on different aspects of a task, a person selects 

team members using multiple information sources (Hinds et al., 2000). These information 

sources help reduce uncertainty during teammate invitation, according to each individual’s 

perception of the attributes needed to maximize a team’s chance of success. 

Identifying relevant attributes (e.g., skills and demography) is a key consideration when 

inviting team members. The individual attributes then aggregate to constitute a team’s 

composition (Klein & Kozlowski, 2000), which has traditionally been understood to influence 

whether a team will accomplish desired performance goals (Bell, 2007; Harrison, Price, & Bell, 
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1998). As an example, the skills and competence within a team determine the team’s aggregate 

ability, configuration of skills, and member roles. Furthermore, demographic attributes such as 

gender, race, and tenure have implications for team performance, because diversity affects 

communication to external groups and access to new ideas (Ancona & Caldwell, 1992; Harrison 

& Humphrey, 2010; Harrison & Klein, 2007; Reagans et al., 2004; Williams & O’Reilly, 1998). 

Homophily in teammate invitations entails people’s inviting others who share the same 

attributes. Homophily, in general, is the tendency for people to connect to and work with others 

who are similar to themselves and belong to the same social groups (Kossinets & Watts, 2009; 

McPherson et al., 2001; Ruef, Aldrich, & Carter, 2003; Wimmer & Lewis, 2010). Therefore, if 

people invite others based on homophily, then the assembled team will tend to be less diverse 

along certain dimensions. Demography and skills are just two examples of the many individual 

attributes that constitute information for people to consider when inviting teammates. 

Considering multiple attributes and combinations of attributes in potential teammates is a 

complex task. Relatedly, researchers have long understood that integrating technology into 

organizational work practices can help individuals manage complexity and meet task demands 

(Cherns, 1976; T. G. Cummings, 1978). In recent years, new technology has been designed to 

aid the teammate selection process by optimizing the fit between team members based on 

matching algorithms involving different combinations of attributes and relationships (Ding, Xia, 

Gopalakrishnan, Qian, & Zhou, 2017; Jahanbakhsh, Fu, Karahalios, Marinov, & Bailey, 2017). 

For example, a technology platform developed by Bergey and King (2014) uses a series of 

algorithms to generate teams that performed better than teams assembled by a subject matter 

expert. Additionally, the technology-generated teams were “balanced in terms of demographics, 

undergraduate degree, work experience, general intelligence, and personality” (Bergey & King, 
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2014, p. 124). Whereas this type of technology does not change whether people have attributes 

that are relevant or in-demand for teamwork, they do automate team member assignment by 

“optimally” fitting people into teams.  

Recommender systems, on the other hand, help people make their own choices about 

teammates by providing “matches” of potential teammates who meet specified requirements and 

criteria (Fazel-Zarandi, Devlin, Huang, & Contractor, 2011; Malinowski, Weitzel, & Keim, 

2008). In general, recommender systems calculate matches between a set of objects and a set of 

preferences, and then display the matches to a user who is searching for or wishes to be exposed 

to a specific kind of object (Resnick, Iacovou, Suchak, Bergstrom, & Riedl, 1994; Resnick & 

Varian, 1997). These systems have the capacity to transform, organize, and present complex 

information in ways that guide and suggest actions to people who need to make choices from a 

large set of options (i.e., potential teammates in this case) (Lazer, 2015; Xiao & Benbasat, 2007). 

Online recommender systems offer recommendations based on rules and algorithms embedded 

in the technology, and they can either introduce a user to new people or help a user reinforce 

already-established relationships (Guy, Ronen, & Wilcox, 2009; Guy, Ur, Ronen, Perer, & 

Jacovi, 2011). In the context of team assembly, one issue that remains is this: to what extent does 

the information contained in online recommendations still affect teammate invitations, when the 

potential target of a teammate invitation is someone whom you already know?  

Attending to Online Recommendations 

The act of recommending or referring another person is a common behavior in 

professional settings. Recommendations from others are based largely on social networks and the 

capital people hold within their networks (Fernandez, Castilla, & Moore, 2000; Fernandez & 

Weinberg, 1997; Montgomery, 1991). When considering the labor market, workers often try to 
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find jobs by engaging their social networks, even relatively weaker connections (Granovetter, 

1973). Meanwhile, employers consistently use referrals from employees to gather more 

information about applicants and their potential fit within the organization (Fernandez et al., 

2000; Montgomery, 1991). The potential importance of recommendations for personnel 

decision-making has resulted in the development of recommender systems to facilitate finding 

social matches.  

Recommender systems computationally-calculate social matches, have value for 

initiating social relationships, and are commonly embedded in applications that leverage rich 

user data (e.g., dating and social network websites) (Finkel, Eastwick, Karney, Reis, & Sprecher, 

2012, 2016; Kautz, Selman, & Shah, 1997; K.-H. Lin & Lundquist, 2013; Maldeniya, Varghese, 

Stuart, & Romero, 2017; Pizzato et al., 2013; Pizzato, Rej, Chung, Koprinska, & Kay, 2010). 

Social matches are produced when recommender systems perform two functions: finding current 

contacts and introducing a user to strangers (Chen, Geyer, Dugan, Muller, & Guy, 2009; Guy et 

al., 2009, 2011). The review by Terveen & McDonald (2005) presents a general framework for 

recommender systems in social settings, including the following steps: modeling people, 

matching them with computational algorithms, introducing them to one another, and then 

allowing a platform for interaction. If a system can accomplish these four steps, then people are 

able to not only be exposed to recommended social matches, but also have a means to connect 

with these matches. 

 In the organizational environment, there is often a need to find people who have specific 

expertise or experience, and recommender systems include techniques for finding available 

expertise (Guy, 2015; C. Y. Lin et al., 2009; Shami, Ehrlich, & Millen, 2008). Leveraging large 

quantities of information to recommend new team members helps people efficiently replace team 
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members or find new members within distributed settings (Brocco & Groh, 2009; Li et al., 

2015). Because recommender systems have demonstrated value in recommending relevant 

people to create various types of social relationships, online recommendations will likewise 

contribute to teammate invitation, which is the initiation of team assembly. 

H1. People are more likely to send a teammate invitation to potential teammates who have 

been highly recommended by the online recommender system, in comparison to potential 

teammates who are less highly recommended.  

Re-Engaging Prior Collaborators  

Having experience working with a given individual on a past project team can be 

beneficial for future collaboration with that individual, because there is a level of familiarity that 

reduces the uncertainty associated within the newly formed team (Hinds et al., 2000). Familiarity 

enhances teamwork because it gives team members, “information about others, such as their 

preferences, routines, values, and expertise” (Okhuysen 2001, p. 796). Once familiarity develops, 

it suggests that team members are attracted to one another, have an established set of norms, and 

can resolve task and social conflicts effectively (Gruenfeld, Mannix, Williams, & Neale, 1996; 

Okhuysen, 2001; Shah & Jehn, 1993; Van Zelst, 1952). A team that possesses a shared and 

accurate understanding of the expertise that exists within the team will benefit from a member’s 

ability to access relevant expertise and experience positive team performance (Faraj & Sproull, 

2000; Reagans, Argote, & Brooks, 2005; Ren & Argote, 2011; Wegner, 1987, 1995, p. 199). In 

addition, prior collaborations allow members of a team to devote time orienting themselves to a 

task and the current capabilities of others, while not spending as much time establishing new 

social norms, which are already partly developed via past collaboration. Familiarity among team 

members has been empirically shown to improve team performance, such that even modest 
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degrees of familiarity (i.e., working together on a team task once or twice before) can produce 

the same team performance benefits as high degrees of familiarity (i.e., living in the same house; 

Harrison et al. 2003). Thus inviting teammates by relying on prior collaborations helps a person 

establish more accurate expectations for future collaboration. 

H2. People are more likely to send a teammate invitation to potential teammates who have 

been prior collaborators than to potential teammates who were not prior collaborators. 

The Interplay Between Prior Collaborations and Recommendations 

Thus far, I have hypothesized main effects of both online recommender systems and 

interpersonal familiarity on the teammate invitation process, extending the work of Hinds et al. 

(2000). I note that recommendations in general serve as endorsements to help a person who is 

choosing among a pool of candidates (Fernandez et al. 2000, Fernandez and Weinberg 1997). 

When inviting teammates, online recommendations expose the invitation sender to potential 

teammates, if those teammates meet some specified criteria. What is unknown is how online 

recommendations influence the teammate invitation process in the presence of prior 

collaborations. Because both online recommendations and prior collaborations commonly serve 

to reduce uncertainty about a team’s future performance, the two might be conceptualized as 

functionally redundant sources of information.  

As such, I posit that the effect of online recommendations depends upon whether one has 

engaged in prior collaboration with a potential teammate. In particular, when the potential 

teammate is someone you do not know and have not worked with before (e.g., at zero contact or 

zero acquaintance; Albright et al. 1988, Amir 1969, Harrison et al. 1998), then online 

recommendations might be the only source of  information available about the target individual. 
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In such information impoverished circumstances, one is especially likely to follow advice 

provided by the recommender system. 

H3. People are less likely to invite a highly recommended prior collaborator than they are a 

highly recommended person who is not a prior collaborator. 

Hypotheses 1 through 3 are depicted in Figure 1, which summarizes the proposed effects of 

online recommendations and prior collaboration on teammate invitation. 

 
Figure 12: Model of teammate invitations 

Methodology 

Data and Sample 

Data were collected from student project teams using a teammate recommender system 

that provides online recommendations. The system also included functionality for exchanging 

teammate invitations. Students from one of two universities were enrolled in an interdisciplinary, 

dual-university course. Social psychology students at one university were linked to 

environmental ecology students at another university. The course was offered in two consecutive 

years (2014 and 2015) generating two independent samples of participants (labeled Samples 1 

and 2). Over a period of twelve weeks, participants were required to collaborate in dual-
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university (geographically distributed) teams to complete a term project simulating an 

advertising campaign to mitigate an environmental sustainability issue. Sample 1 includes 213 

participants (47% female; mean age = 20.8 years, SD = 2.79 years) in 32 interdisciplinary, dual-

university teams (mean team size = 6.65; SD = 0.48); Sample 2 includes 197 participants (54% 

female; mean age = 21.1 years, SD = 2.57 years) in 31 teams (mean team size = 6.35; SD = 

1.25). There were no significant differences between samples with respect to team size, gender 

representation, or age. 

Procedure 

Participants selected their own teammates using a teammate recommender system (My 

Dream Team; http://sonic.northwestern.edu/software/c-iknow-mydreamteam/). Over a five-day 

period, participants used the system to form teams of five to seven members. Individual-level 

data were collected through an online survey administered during registration in the system prior 

to team self-assembly. Participants answered survey questions about different attributes, 

including demographics, pre-existing relationships, competence, and other characteristics. Then, 

participants performed searches based on the survey responses by explicitly entering preferences 

into the teammate recommender system. For each attribute, the system included options for the 

attribute’s importance (from one to four stars) and the number of desired teammates with the 

attribute (one, some, or all). The searches serve as input data for a “Dream Team” ranking 

algorithm that returns an ordered list of potential teammates based on the degree to which they 

match the stated preferences. After receiving the online recommendations from the “Dream 

Team” algorithm, participants reviewed other participants’ profiles and exchanged invitation 

messages to self-assemble into teams.  
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Measures 

Teammate Invitation Network (Dependent Variable). Invitation messages to potential 

teammates were exchanged between participants over five days and collected using digital trace 

data generated by the teammate recommender system. The traces are a complete record of all 

invitations, including the sender and receiver. From these data, a binary directed social network 

was constructed, where nodes are the participants and links are the invitations sent from one 

participant to another. 

“Dream Team” Recommendations. The teammate recommender system rank-ordered a 

list of potential teammates matched to a searcher’s stated preferences. These matches are “Dream 

Team” Recommendations. The system recommended potential teammates by calculating a 

cumulative score for potential teammates based on their self-reported survey responses 

(attributes) collected during registration, and the searcher’s stated preferences. For each stated 

preference, the corresponding potential teammate’s attribute was scored by multiplying the 

attribute’s value by the searcher’s selected importance. Then, all attribute scores were summed 

together to create the cumulative score. Because not all attributes were required to be selected as 

preferences, the cumulative score was then divided by the number of selected attributes in the 

search. These scores were calculated for all participants except for the searcher, and rank-ordered 

from one to the sample size N-1 (excluding the searcher).  

When a searcher performed multiple searches, only the best “Dream Team” 

Recommendation ranking achieved by a potential teammate was used during analysis. Therefore, 

each searcher has one list of potential teammates with each potential teammate’s best ranking. 

The “Dream Team” Recommendations are then transformed into a weighted, directed social 

network. The nodes are the participants, a link is directed from a searcher to a potential teammate 
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(i.e., whether a searcher saw a potential teammate listed in the recommended teammates list), 

and each weight is a potential teammate’s “Dream Team” Recommendation ranking for the 

searcher (from 1 to N-1). The “Dream Team” Recommendations network was then dichotomized 

for analysis (a value of one was assigned to the top-ten ranked potential teammates, and a value 

of zero was assigned otherwise).   

Prior Collaborations. A network roster survey was administered online during 

participant registration in the system, with the roster including names of all other people in the 

course across both universities. Participants responded to the relationship question, “Who have 

you worked with on projects?” by checking the names of prior collaborators. Responses were 

used to construct a binary, directed network (a value of one if the respondent selected a prior 

collaborator, and zero otherwise). 

Controls. Because teammate invitations are a social network, it is essential to account for 

several endogenous network structures that may be responsible for its formation (Lusher, 

Koskinen, & Robins, 2013). Accounting for these structural interdependencies allows for a more 

accurate specification of the hypothesized effects (Snijders, Pattison, Robins, & Handcock, 

2006). When performing exponential random graph modeling (ERGM), the arc pattern refers to 

the likelihood that a link will be randomly created from one person to another (sending a 

teammate invitation). Another common endogenous network structure in most social interactions 

is reciprocity, which refers to the likelihood that a person will create a link to a person with 

whom there is already a link (inviting an inviter). Activity hubs and popularity hubs are people 

who have more outgoing or incoming links than are expected by chance (active inviters, popular 

invitees). The calculation of the hub structure statistics produces positive estimates when people 

have the same amount of activity or popularity in the distribution of invitations and produces 
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negative estimations when there is a skewed distribution of invitations. Clustering in social 

networks is also common when people belong to invitation chains and send invitations to the 

same others (common invitation). Triadic closure occurs when sending an invitation to a person 

who already shares a common partner with the sender (closure in invitations). Each of these 

endogenous network structures is potentially theoretically interesting in the context of team self-

assembly, but the current study uses them as controls to avoid biased estimates when testing the 

hypothesized effects (Lusher et al., 2013). 

Participant competence is included as a control in the analyses. The competence measure 

was created from self-ratings on a 3-item project skills inventory. Participants were asked to, 

“Please indicate your level of skill in the following areas” (ratings from “1 = Not at all skilled” to 

“5 = Extremely Skilled”), and the rated project skills were: “Using communication technology,” 

“Writing and preparing professional reports,” “Publishing, print media, and/or design” 

(Cronbach’s α = 0.64 in Sample 1, α = 0.63 in Sample 2). These project skills items were 

generated by consensus of the course instructors to capture the skills needed for success on the 

project. The competencies of the sender and receiver of each invitation were considered in 

analyses.  

I also assessed two types of homophily: gender homophily and having the same 

university affiliation. Participant gender was self-reported using the item, “What is your gender? 

(male, female, other)”, and responses were used to create dyadic gender homophily variables for 

women who invite other women (adjacency matrix coded as “1” when both individuals are 

female, and “0” otherwise) and men who invite other men (coded as “1” when both individuals 

are male, and “0” otherwise), respectively. The same university affiliation is a shared dyadic 

attribute for participants who attend the same university.  
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Analytic Approach 

Hypothesis testing in the teammate invitation network is conducted using the 

p*/exponential random graph modeling (ERGM) approach (Lusher et al., 2013; Robins, Pattison, 

Kalish, & Lusher, 2007; Robins, Snijders, Wang, Handcock, & Pattison, 2007; Snijders et al., 

2006). ERGMs are capable of simultaneously modeling the effects of endogenous network 

structure, individual attributes, shared attributes between individuals (e.g., homophily), and 

relationships between networks (i.e., H1, H2, and H3). The conceptual framework that 

accompanies ERGM has delivered useful insights in recent organizational and strategy 

scholarship by allowing researchers to broaden their explanation of relationships in organizations 

while accounting for mechanisms that influence network structure (Contractor et al., 2006; J. Y. 

Kim, Howard, Cox Pahnke, & Boeker, 2016; Monge & Contractor, 2003). With ERGM, multiple 

types of relationships have been explained in recent years, e.g., communication in online 

communities (Faraj & Johnson, 2011), information, support, friendship, and advice networks 

(Lomi, Lusher, Pattison, & Robins, 2013; Rank, Robins, & Pattison, 2009), and product team 

communication based on technical design interdependencies (Sosa, Gargiulo, & Rowles, 2015). 

In the current study, measures at the individual, dyadic, and network levels of analysis including 

endogenous network structure are used, explained, and described in Tables 1, 3, and 4. Table 1 is 

derived from tables found in Kim et al. (2016) and Lusher et al. (2013). 

ERGM is useful when the dependent variable is a social network; and the technique is 

analogous to a logistic regression where each parameter estimate is a log-odds. The model for the 

teammate invitation network predicts whether an invitation has been sent or not (1 or 0). For 

example, if the predictor variable is prior collaborations and its coefficient B from the ERGM 

model is B = 0.69, then it suggests a positive relationship between having a prior collaboration 
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with a person and sending a teammate invitation to that same person. The exponent of the 

coefficient [eB] is the odds ratio. In the current example, e0.69 = 2.0, which means that the odds of 

sending a teammate invitation are twice as high if there was a prior collaboration between the 

sender and recipient. The parameter estimates and associated odds ratios for this study were 

calculated from maximum likelihood estimation (MLE) of a Monte Carlo Markov Chain 

(MCMC) simulation process, using the statnet package in the open software R (Handcock, 

Hunter, Butts, Goodreau, & Morris, 2014; Hunter, Handcock, Butts, Goodreau, & Morris, 2008).  
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Table 2: Summary of effects used in ERGM analysis 

Parameter Social Process Variable  Diagram 
Purely structural 
effects 

   

Arc The likelihood of an individual randomly 
inviting another individual to a team 

Sending a teammate 
invitation  

Reciprocity The likelihood of two individuals inviting 
each other 

Inviting an Inviter 
 

Activity spread The likelihood of one or a few individuals 
sending many more invites than others 
causing variance in the distribution of sent 
invitations 

Active Inviters 

 
Popularity spread The likelihood of one or a few individuals 

receiving many more invites than others 
causing variance in the distribution of 
received invitations 

Popular Recipients 

 
Multiple Two-paths The likelihood that individuals invited by a 

person will, in turn, converge on who they 
invite (many people inviting the same 
person) 

Common Inviters 

 
Generalized transitive 
closure 

The likelihood that an individual sends an 
invite to a third party who is invited by other 
recipients of invitations 

Closure of 
Invitations 

 
Actor relation effects 
(black nodes indicate 
actors with attribute) 

   

Shared dyadic attribute An invitation being sent when two 
individuals have the same gender, or are 
from the same university  

Gender homophily 
Same university 
affiliation  

Nodal covariate 
(sender)  

An invitation being sent when the sender has 
high competence  

Competence 
(continuous)  

Nodal covariate 
(recipient) 

An invitation being received when the 
recipient has high competence 

Competence 
(continuous)  

Covariate network 
effects 

   

Exogenous 
relationships 
(entrainment) 

An invitation being sent when the sender 
views the recipient with a “Dream Team” 
Recommendation, or when the sender has 
had a Prior Collaboration with the recipient 

“Dream Team” 
Recommendation 
Prior Collaboration 
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Results 

Results are presented in three components: (a) descriptive statistics and correlations 

among individual-level variables, (b) descriptive statistics and correlations among network-level 

variables, and (c) ERGM model estimates predicting teammate invitations, which are used to test 

Hypotheses 1 through 3. As shown in Table 2, the individual-level measures (gender, university 

affiliation, and competence) are not statistically significantly correlated. Table 3 displays 

descriptive statistics and correlations among network-level variables (teammate invitations, 

online recommendations from the recommender system, and prior collaborations), revealing that 

correlations among all three network-level variables are positive and statistically significant. 

Importantly, teammate invitations are correlated with both online recommendations (r = 0.10, p 

< .05, Sample 1; r = 0.10, p < .05, Sample 2), and prior collaborations (r = 0.14, p < .05, Sample 

1; r = 0.21, p < 0.05, Sample 2).  
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Table 3: Individual-Level Variables: Descriptive Statistics and Correlations 

    Pearson Correlations 
  Mean SD 1 2 3 

 Sample 1 (N = 213; 32 teams)      
1. Competence 3.59 0.70 1   
2. Gender (m=0, f=1) 0.47 0.50 0.09 1  
3. University affiliation (0 or 1) 0.45 0.50 -0.12 -0.06 1 

       
 Sample 2 (N = 197; 31 teams)      

1. Competence 3.51 0.77 1   
2. Gender (m=0, f=1) 0.54 0.50 0.11 1  
3. University affiliation (0 or 1) 0.44 0.50 -0.11 0.09 1 

       
 

Table 4: Network-Level Variables: Descriptive Statistics and QAP Correlations 

     QAP 
Correlations 

 Networks 
Number of 

Ties 

Average 
Out-

Degree 
Density 1 2 

 
Sample 1 (N = 45,156 
potential ties) 

     

1. Teammate Invitations 577 2.71 0.013 1  

2. 
“Dream Team” 
Recommendation 
(1 = Top 10, 0 = not Top 10) 

2,174 10.2 0.050 0.10* 1 

3. Prior Collaboration 181 0.85 0.004 0.14* 0.01* 
       

 
Sample 2 (N = 38,612 
potential ties) 

     

1. Teammate Invitations 471 2.40 0.012 1  

2. 
“Dream Team” 
Recommendation  
(1 = Top 10, 0 = not Top 10) 

1,668 8.45 0.040 0.10* 1 

3. Prior Collaboration 181 0.92 0.010 0.21* 0.04* 

Note. * p < 0.05; Quadratic assignment procedure (QAP) correlations between two social 
networks measured on the same set of people reveals the associations between 
relationships (Krackhardt, 1987). 
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Next, ERGM analyses are used to test the three hypotheses regarding teammate 

invitations while controlling for the endogenous network effects, individual effects, and dyadic 

effects (see Table 4). Model 1 is a baseline model estimating the likelihood of an invitation using 

only endogenous network effects, sender and recipient competence, gender homophily (female 

and male), and university affiliation. Interpreting this baseline model provides inferences 

regarding the emergence of the teammate invitation network.  

Most effects are significant and replicate across both samples. Sending a teammate 

invitation is negative and significant (p < 0.001) meaning it is not likely for people to send a 

teammate invitation to a random person, which is reflected by the observed sparsity of the 

teammate invitation networks. Inviting an inviter was positive in both samples, but only 

significant in Sample 1 (p < 0.01). The positive effect appears to capture reciprocity in teammate 

invitations when members of a dyad both invite one another. The presence of popular recipients 

is indicated by a negative and significant popularity effect (p < 0.001). The interpretation of a 

negative estimate in this model signals an inequitable distribution of popularity, meaning that 

popular recipients are more likely to receive teammate invitations, consistent with the principle 

of preferential attachment (Barabasi & Albert, 1999; Hunter, 2007). On the other hand, the 

presence of active inviters was not significant, meaning no inviters were especially more active 

than other inviters (in terms of sending invitations). The higher-order endogenous network 

effects of common inviters (p < 0.001) and closure of invitations (p < 0.001) were significant in 

both samples. Common inviters (i.e., multiple connectivity/multiple two-paths) had a negative 

effect in both samples, while closure has a positive effect in both samples. As explained by 

Quintane (2013, p. 277), the combination of a substantial closure parameter with a small 
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negative multiple connectivity parameter suggests a key feature of the network structure is the 

closure process, or “tendency for individuals to interact in denser grouplike structures.”  

The other control variables in Model 1 were competence, gender homophily, and sharing 

the same university affiliation (see Table 4). Because Table 4 presents log odds, it is possible to 

convert these effect sizes into odds ratios (OR) by exponentiating (i.e., e(log odds) = OR) which 

helps with interpretation of the results. While it could be expected that competence of a recipient 

would positively predict teammate invitations, the effect is only significant in Sample 1 (ORS1 = 

e0.10 = 1.11; p < 0.05; ORS2 = e0.01 = 1.01; p > 0.05, n.s.). However, the competence of a sender is 

positive and significant (p < 0.001) in both samples. Competent people in Sample 1 are 1.55 

times (ORS1 = 1.55) more likely to send an invitation and 1.82 times (ORS2 = 1.82) more likely in 

Sample 2. Gender homophily was also a positive predictor of teammate invitations. Female 

homophily showed significant effects in both samples (p < 0.05 in Sample 1, p < 0.01 in Sample 

2). Women were 1.22 times (Sample 1) and 1.32 times (Sample 2) more likely to invite another 

woman to a team. Male homophily was not significant in either sample. For university 

affiliation, there was also no evidence that being from the same university influenced the 

likelihood of sending or receiving teammate invitations. 

Beyond the control variables, the models in Table 4 also test Hypotheses 1 - 3. Model 2 

tests Hypotheses 1 and 2. Hypothesis 1 stated that online recommendations positively predict 

teammate invitations. Using the “Dream Team” Recommendations, the results support this 

hypothesis in both samples. People who are recommended by the online system are 5.29 times 

(Sample 1) and 4.15 times (Sample 2) more likely to receive teammate invitations (p < 0.001 in 

both samples). Hypothesis 2 stated that prior collaborations positively predict teammate 

invitations. The results in both samples support this hypothesis. Prior collaborations are 
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statistically significant (p < 0.001) and exhibit the largest positive effect in both samples (ORS1 = 

17.21, ORS2
 = 47.48). People were much more likely to invite their prior collaborators to join a 

team. With the effects replicated across both samples, the ERGM models establish the 

relationship between prior collaborations and teammate invitations--as well as the relationship 

between online recommendations and teammate invitations.  

Next, I test Hypothesis 3, which states that prior collaborations dampen the positive 

effect of online recommendations on teammate invitation. Model 3 (Table 4) includes the 

interaction term between “Dream Team” Recommendations and prior collaborations. As 

expected, the effect is negative and significant in both samples (ORS1 = 0.36; p < 0.01 in Sample 

1; ORS2 = 0.33; p < 0.05 in Sample 2). This means that the relationship between online 

recommendation and teammate invitation is weaker when potential teammates already have a 

prior collaboration. The interaction effects are plotted in Figure 2. Figure 2 shows that when 

there is not a prior collaboration (dashed lines), the relationship between an online 

recommendation and sending a teammate invitation becomes more positive. However, when 

there is a prior collaboration (solid lines), the online recommendation has a weaker effect on 

teammate invitation. These results and plots show prior collaborations moderate the effect of 

online recommendations on teammate invitations, supporting Hypothesis 3 in both samples. 

The goodness of fit assessment clarifies the consistency between the observed network 

and simulated networks from an ERGM (Hunter et al., 2008; Robins, Pattison, & Wang, 2009). 

For Models 2 and 3 (which are the basis of the hypothesis tests), plots for the goodness of fit (see 

Figure 14 and Figure 15) demonstrate reasonable fits for all statistics. In each sample, there were 

between one to two values in this distribution that were either over or underestimated, but all 

other values followed the observed network. Using the Bayesian Information Criteria (BIC), both 
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Model 2 and Model 3 exhibited significantly better fits than Model 1, which only included 

endogenous network effects and other control variables.  
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Table 5: ERGM Estimates predicting Teammate Invitation Network (Hypotheses 1 – 3) 

 Log Odds Estimates (SE) 
 Model 1 Model 2  Model 3 
 Sample 1 Sample 2 Sample 1 Sample 2 Sample 1 Sample 2 
Control Variables       
Endogenous Network 
Effects 

      

Sending a Teammate 
Invitation 

-5.68*** 
(0.33) 

-6.02*** 
(0.34) 

-4.80*** 
(0.29) 

-5.53*** 
(0.37) 

-4.80*** 
(0.30) 

-5.50*** 
(0.36) 

Inviting an Inviter 0.90** 
(0.33) 

0.49 
(0.41) 

0.66* 
(0.31) 

-0.74 
(0.53)  

0.74* 
(0.32) 

-0.69 
(0.51) 

Active Inviters -0.28 
(0.24) 

0.15 
(0.26) 

-0.07 
(0.23) 

0.26 
(0.26) 

-0.05 
(0.23) 

 0.25 
(0.25) 

Popular Recipients -2.02*** 
(0.20) 

-3.09*** 
(0.21) 

-2.04*** 
(0.19) 

-3.08*** 
(0.21) 

-2.05*** 
(0.19) 

-3.09*** 
(0.21) 

Common Inviters -0.16*** 
(0.02) 

-0.13*** 
(0.02) 

-0.13*** 
(0.02) 

-0.11*** 
(0.02) 

-0.13*** 
(0.02) 

-0.11*** 
(0.02) 

Closure of Invitations 1.43*** 
(0.09) 

1.30*** 
(0.10) 

1.16*** 
(0.07) 

0.99*** 
(0.12) 

1.14*** 
(0.07) 

0.97*** 
(0.11) 

Attributes (Individual 
and Shared Dyadic) 

      

Competence 
(recipient) 

0.10* 
(0.04) 

0.01 
(0.04) 

0.09* 
(0.04) 

0.00 
(0.04) 

0.08 
(0.04) 

0.00 (0.04)  

Competence (sender) 0.44*** 
(0.07) 

0.60*** 
(0.07) 

0.14* 
(0.06)  

0.46*** 
(0.08) 

0.14* 
(0.06) 

0.45*** 
(0.08) 

Female Homophily  
(woman inviting 
woman) 

0.20* 
(0.09) 

0.28** 
(0.08) 

0.10 
(0.09)  

0.13 
(0.10) 

0.09 
(0.09) 

0.15 (0.10) 

Male Homophily  
(man inviting man) 

0.07 
(0.09) 

0.21 
(0.11) 

0.00 
(0.10) 

0.18 
(0.12) 

0.02 
(0.10) 

0.19 (0.12) 

Same University 
Affiliation 

-0.05 
(0.08) 

-0.06 
(0.09) 

-0.22** 
(0.08) 

 -0.35*** 
(0.10) 

-0.22** 
(0.08) 

-0.35*** 
(0.10) 

 
Hypothesized 
Variables 

      

Main Effects       
“Dream Team” 
Recommendation 
(recipient) 

  1.67*** 
(0.09) 

1.42*** 
(0.11) 

1.74*** 
(0.10) 

1.49*** 
(0.11) 

Prior Collaboration    2.85*** 
(0.18) 

3.86*** 
(0.20) 

3.18*** 
(0.20) 

3.98*** 
(0.21) 

Interaction Effect       
“Dream Team” 
Recommendation  
    (recipient)  
    X Prior 
       Collaboration 

    -1.03** 
(0.39) 

-1.11* 
(0.50) 
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Akaike Information 
Criteria 

5,672 4,548 5,228 4,125 5,223 4,124  

Bayesian Information 
Criteria 

5,768 4,643 5,341 4,236 5,345 4,244 

Note. *** p < 0.001, ** p < 0.01, * p < 0.05 
 

 
 
 
 

 
Figure 13: “Dream Team” Recommendations X Prior Collaboration predicting Likelihood of                               

Teammate Invitation (H3: Table 5, Model 3) 
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Figure 14: Goodness of Fit plots of model statistics for Model 2. 
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Figure 15: Goodness of Fit plots of model statistics for Model 3. 
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Discussion 

The current study extends Hinds et al.’s (2000) classic model of teammate selection by 

incorporating an online recommender system, while also leveraging contemporary ERGM 

analyses to explain the process of teammate invitation. Online recommendations from a social 

technology platform (similar to an online dating website for team assembly) have incremental 

effects on teammate invitations. Additionally, these technology effects are subject to the 

boundary condition that recommendations are only heeded in the absence of information from 

prior collaborations. That is, recommender systems can facilitate team assembly when the 

recommendations provide new information.  

Results also lend some insight into the effect of gender homophily on teammate 

invitations. Women were more likely to invite other women to join a team. Inviting other women 

onto one’s team is can be an act indicative of self-categorization, where individuals attribute 

positive qualities to members of their in-group (Tajfel, 1981; Tajfel & Turner, 1979). However, 

the observed effects of female homophily disappeared once online recommendations and prior 

collaborations were added to the model (Table 4). These results suggest that homophily effects in 

teammate selection do not operate above and beyond the effects of online recommendation and 

prior collaboration, which implies in part that homophily/similarity processes may take effect 

through the mechanism familiarity, because similarity breeds more frequent communication and 

cohesion (Harrison et al., 1998; van Knippenberg, De Dreu, & Homan, 2004; Williams & 

O’Reilly, 1998). 

Familiarity possesses information value in collaborative settings, because prior 

collaboration can be thought of as an uncertainty reduction mechanism (Crozier, 2009; Hinds et 

al., 2000; J. D. Thompson, 1967) during teammate invitation. One proposed origin of familiarity 
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is that people become attracted to others as they have more interaction (Bornstein, 1989, p. 1; 

Reis, Maniaci, Caprariello, Eastwick, & Finkel, 2011; Zajonc, 1968). When people choose to 

invite a prior collaborator to join a team, they are relying on their knowledge of the capabilities 

and attributes of that person based on direct past experience (Okhuysen 2001). Having awareness 

of the abilities and limitations of teammates is necessary as teams develop their transactive 

memory system, which is the shared understanding of a team’s expertise and knowledge as it 

contributes to team performance (Argote, Aven, & Kush, 2018; Reagans et al., 2005; Ren & 

Argote, 2011). Therefore, inviting prior collaborators serves the goal of establishing a team in 

which members possess shared information and knowledge about team structures and dynamics 

(Mohammed & Dumville, 2001). 

Nonetheless, in the absence of prior collaboration, online recommendations serve as a 

medium for exposing people to new information about potential teammates, and about how these 

potential teammates might match stated preferences. The recommender system thus served as a 

tool to aid uncertainty management (Brashers, 2001; Solomon & Vangelisti, 2010). On the other 

hand, in terms of team creativity, teams have sometimes been able to innovate by blending teams 

of prior collaborators with newcomers (Perretti & Negro, 2006; Taylor & Greve, 2006; Uzzi & 

Spiro, 2005). Nonetheless, newcomers--due to the lack of shared experiences--increase 

uncertainty when invited to join a team. For those instances in which newcomers or unfamiliar 

people must be invited to a team (e.g., when available previous collaborators do not possess the 

required expertise, or when fresh ideas are desired), online recommendations have utility for 

managing uncertainty in teammate selection.  
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Future Directions 

There are two streams of future research that follow directly from the current research: 

(a) investigation into the influence of teammate invitations on team processes, team performance 

outcomes, and team diversity composition, and (b) investigation into technology features that 

govern and support digital interactions that take place within a technology platform during team 

self-assembly. There is a long tradition of team composition research linking individual 

attributes to team processes and outcomes (Bell, 2007; Kozlowski & Ilgen, 2006; Mathieu et al., 

2017, 2008), but extending the current study, there is an opportunity to understand how 

teammate invitation behaviors influence team outcomes. For example, the stated preferences and 

interactions during teammate invitation can directly impact team composition, and potentially 

lead to settings where teams are segregated with respect to relevant project skills (i.e., highly 

skilled people only work in teams with other highly skilled people) (Gómez-Zará et al., 2019) or 

other individual attributes.  

The other stream of research involves the technology platform for team self-assembly. 

Online recommendations within an organization are prevalent for numerous applications (e.g., 

networking, expertise finding, and knowledge sharing), and there are multiple design 

considerations that determine both the use and effectiveness of recommendations (Chen et al. 

2009, Guy et al. 2009, 2011, Shami et al. 2008). Better understanding the types of social 

interactions that take place within technology platforms, and then tying their use to team 

assembly, is critical for understanding of how platforms influence team collaboration 

downstream. For example, technology platforms commonly serve as the first place that teams 

interact and where members begin to form impressions of one another (J. Cummings & Dennis, 

2018). Having studies focused on the understanding the information signals provided through 
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user profiles and teammate preferences helps clarify technology’s role as a mediator in team 

assembly and team norm formation. This also open a frontier for future research in which 

features of the recommendation system are manipulated with the goal of balancing team 

expertise, diversity, and team viability.  

Limitations 

There are several limitations of the current study. First, future work needs to be 

conducted to determine the relationship between social technology platform features (i.e., the 

nature of the interface, timing of messages, and a host of other platform design choices) and user 

behavior during team self-assembly. Second, the statistical network modeling approach (ERGM) 

used in the study does not account for the dynamic nature of teammate invitation behaviors over 

time. Temporal dynamics influence people’s invitations because each invitation potentially 

affects future choices to invite teammates. This limitation does not nullify the value of ERGM, 

because understanding the overall network structure of teammate invitations remains essential; 

but there is more research needed to investigate the temporal dynamics of invitations that may 

contribute to team self-assembly.  

There are also questions of generalizability and external validity, stemming from the use 

of student samples. The samples nonetheless have the advantage of being interdisciplinary and 

geographically dispersed, and of having complete team rosters accessible. Also the use of two 

samples provides the great advantage of allowing for a direct replication of effects. It is unclear 

how many organizations have implemented and utilized similar technology platforms capable of 

supporting team self-assembly in the ways studied in the current research. Whereas there are a 

number of enterprise technology platforms used for expert and expertise finding within 
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corporations (Lin et al. 2009), little data are available about the extent to which such platforms 

are used to support team self-assembly. 

Conclusion 

In conclusion, the current study contributes to organizational scholarship by extending a 

theoretical model of team self-assembly to incorporate an online recommender system (similar to 

a dating website for choosing teammates). Results signaled the value of online recommendations 

for managing uncertainty during teammate invitation, while clarifying that the utility of online 

recommendations might be limited to team assembly conditions where prior collaboration is 

absent. That is, online recommendations are useful when they provide novel information. By 

giving insight into the teammate invitation process within a technology-supported work 

environment, the current findings offer a bridge between research on team assembly and research 

on social technology platforms. 
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CHAPTER 4. UNDERSTANDING THE COEVOLUTION OF LEADERSHIP AND 

COMMUNICATION NETWORKS IN TEAMS ASSEMBLED WITH TECHNOLOGY 

Abstract 

Leadership and communication are essential relationships for teams to establish during 

collaboration. In this study, I investigate the coevolution of leadership and communication 

networks while incorporating digital trace data from an online technology platform to understand 

the role of team self-assembly behaviors on collaboration. Using stochastic actor-oriented 

modeling (SOAM or SIENA) to detail the coevolution of leadership and communication in 

teams, results show that each network influences the evolution of the other over the course of a 

collaboration, and that invitations sent in the online platform exert both a positive influence on 

the evolution of communication networks and a negative influence on leadership reliance on 

those invited. Therefore, results provide greater detail into how teams establish their own social 

structures and relationships by integrating interactions that contribute to team assembly. Also, 

teammate recommendations collected from the online platform do not have an effect on the 

coevolution of the team networks, which suggests that collaboration dynamics, such as the 

emergence or evolution of relationships, are best explained by the team environment and direct 

social interactions instead of information signals people consume before collaborating. Other 

findings show that endogenous network effects are more important factors for explaining 

network evolution relative to the hypothesized factors. Overall, this study provides insights into 

the boundaries of deploying technology-enabled team assembly as an explanatory mechanism for 

the coevolution of emergent team relationships.  
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Introduction 

Before collaboration begins, technology contributes to teams in ways that support 

teamwork. In general, technology helps alleviate many coordination challenges that arise in the 

modern work environment where people are located remotely, collaborate through software, and 

communicate through multiple channels (Birnholtz & Ibara, 2012; D’Angelo & Begel, 2017; 

Gutwin, Penner, & Schneider, 2004; Kraut, Attewell, & Kiesler, 1997). Technology likewise 

plays a role in contributing to social interaction when individuals form teams. As an example, 

team members now commonly form impressions of one another by reviewing digital profiles and 

activity traces (e.g., posts and comments) in online platforms (J. Cummings & Dennis, 2018). 

Additionally, online platforms are now becoming places where individuals aggregate 

information about others and make choices to assemble teams (Gómez-Zará et al., 2019; 

Jahanbakhsh et al., 2017). Given the central role technology plays in how teams are formed, the 

current study investigates how the usage of a technology platform for team formation influences 

the coevolution of within-team networks.  

Technology platforms facilitate information-seeking because users learn about others 

through the presentation of data in a given platform. Individuals seek information to help them 

select prospective teammates by focusing on information signals that help to reduce uncertainty 

around future interpersonal interactions (Berger & Calabrese, 1975; Bradac, 2001; Hinds et al., 

2000; Knobloch, 2015). Often, individuals review online profiles and content to acquire 

knowledge regarding the expertise and skills of others, as well as the social relationships that 

exist within an organization or community (Contractor & Monge, 2002). Such activities are 

enhanced by technology because people expand their perceptions of the surrounding social 

environment by engaging with user-generated content that often represents the knowledge and 
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interests of others (Leonardi, 2015, 2018). The social interactions between future teammates that 

occur within online platforms also have the potential to influence the evolution of relationships 

within a team that forms at a later time, which is the focus of the current study. Of particular 

interest are the ways in which team assembly interactions in technology affect team 

communication and leadership.  

For decades, the concept of leadership has been recognized as an essential behavior 

present within organizations and work groups (Lord et al., 2017; Yukl, 1989, 2010). However, 

leadership—and the development of leadership—is also understood to be a broad-reaching 

concept that encompasses countless behaviors, traits, and situations (Eagly & Karau, 1991; Foti 

& Hauenstein, 2007; Lord et al., 2017; Stogdill, 1948). Specifically, leadership research over 

previous decades has covered topics ranging from behavioral styles, demographic and 

personality traits, and relationships among team members (for a review, see Lord, Day, Zaccaro, 

Avolio, & Eagly, 2017). Leadership emerges through enacted behaviors and the establishment of 

relationships among group members and may even be distributed across multiple members in a 

group (Carnabuci, Emery, & Brinberg, 2018; Contractor, DeChurch, Carson, Carter, & Keegan, 

2012; Emery, 2012; Luther, Fiesler, & Bruckman, 2013). More recently, extant literature has 

started to emphasize the temporal dynamics of leadership, noting that leadership is rarely stable 

(McClean, Barnes, Courtright, & Johnson, 2019). In the current study, I investigate how the 

informal leadership structure within a team emerges and changes over time.  

The emergence of leadership is coupled to communication because communication is a 

behavior that is performed when leaders engage with those who follow them. In general, teams 

must effectively communicate in order to achieve adequate performance since information-

sharing helps ensure that the collaboration is meeting expectations and team members understand 
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the status of the task (Cataldo & Ehrlich, 2012). For virtual teams—where members interact 

through technology—the quality and speed of communication both contribute to the emergence 

of leadership nominations when interacting through technology (Charlier, Stewart, Greco, & 

Reeves, 2016). In the current study, capturing digital traces from user behaviors—teammate 

search and invitation—from a technology platform during team assembly helps to further 

understand the emergence of leadership with respect to communication in a team by observing 

the interactions that lead directly to team formation. Therefore, I investigate the following 

research question: How do leadership and communication within teams coevolve throughout a 

collaboration, and how do team assembly interactions affect the coevolution of team 

relationships? 

The current study uses social network analysis as the primary tool for investigation, 

which offers promise in helping disentangle the connections that exist between leadership and 

communication. While leaders need to communicate in order to be effective, there are questions 

about whether the structure of communication directly corresponds to the structure of leadership. 

The study will help clarify the connections between communication (a behavior) and leadership 

(a status nomination). The rest of the study is organized as follows. First, hypotheses are 

developed from relevant literature and prior research. Then, I describe the empirical setting of 

the current study. Next, the analytical approach employing social network analysis and stochastic 

actor-oriented modeling is detailed. Then, the results from analysis are shared and findings are 

elaborated. Finally, the paper closes with a discussion of the study contributions. 

Hypothesis Development 

Given that future teammates are first exposed to one another during team assembly, there 

is potential for the relationships and activities conducted when organizing the group to influence 
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the later collaboration that occurs. Leadership is one of the more notable aspects of organizing 

since the influence of team leaders on other members has substantial impacts on the effectiveness 

of a team with respect to tasks and the relationships that emerge while collaborating (Hiller, 

DeChurch, Murase, & Doty, 2011; Kozlowski & Ilgen, 2006; Mathieu et al., 2008). Importantly, 

leadership characteristics within a team determine team performance and govern the social 

norms and interactions among team members (Mehra, Dixon, Brass, & Robertson, 2006; 

Sparrowe & Liden, 2005; Varella, Javidan, & Waldman, 2012). The vast literature on leadership 

accounts for multiple aspects of the relationship, including the personality traits and enacted 

behaviors of leaders, the work context of the group, and the structure of the relationships (e.g., 

hierarchical or flat) that describe leadership in a specific situation (House, 1996; Lord, Day, 

Zaccaro, Avolio, & Eagly, 2017; Yukl, 2010).  

The Lord et al., 2017 review paper classifies the trajectory of leadership scholarship into 

different paradigms and “waves” that encapsulate considerations for leadership and detail the 

maturation of research on leadership, ranging from individual attributes to relationships as well 

as including shared leadership arrangements and multilevel perspectives of leadership. From the 

most recent wave of leadership research, Leader-Member Exchange (LMX) theory focuses on 

the relational aspect of leadership and accounts for leader and follower perceptions of leadership. 

LMX is based upon Vertical Dyad Linkage (VDL) (Dansereau, Graen, & Haga, 1975) and 

extended to contain the relationships that exist within larger collectives (e.g., teams and work 

groups), which progressed conceptualization of leadership from individual and dyads to more of 

a social network consideration (Graen & Uhl-Bien, 1995). In recent years, the network structure 

of leadership has been an active topic for investigation. Leadership is represented by social 

networks at multiple levels of organization: the individual (ego) network, the organizational 
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network, and the interorganizational network. Effective leaders must interact and engage in 

different behaviors across these three networks. For example, effective leaders in the 

intraorganizational network participate in boundary spanning to acquire new information for 

their own organization whereas effective leaders in the organizational network cultivate 

relationships to enhance their popularity in the organization (Balkundi & Kilduff, 2006). With 

respect to teams, leadership structure exists among a relatively small set of actors and is a 

relationship that emerges based on the needs of a team. 

Over the course of a collaboration, the leadership within a team may shift between 

individuals and the structure of leadership relations may change because individual perceptions 

of leadership determine how the structure of leadership evolves. Based on how team members 

recognize leadership, teams may form hierarchical or shared leadership structures in order to 

create a structure that is congruent with the leadership schema of its members (DeRue & 

Ashford, 2010; DeRue, Nahrgang, & Ashford, 2015). In other words, leadership in a given team 

reflects the expectations that members have regarding leadership. As an example, informal 

leadership structures in teams evolve by group members shifting their attributions of leadership 

to make their perception of the leadership network more consistent with a linear ordering schema 

to cognitively represent information about leadership (Carnabuci et al., 2018). For leadership to 

evolve and change, team members are constantly processing information through interacting 

with one another during a work task. By processing new information, teams with clear 

hierarchies can share leadership by delegating responsibilities based on dynamic contingencies, 

such as changes to the work environment and reflections on relationships and personal attitudes 

(Klein, Ziegert, Knight, & Xiao, 2006). To facilitate such shifting and change of leadership 

activities, a necessary process within a team is communication.  
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Communication is a social process that facilitates collaboration and how individuals work 

together. In most teams, the ability of members to effectively communicate and manage 

information flow is beneficial for teams addressing complex projects (Cataldo & Ehrlich, 2012; 

Cataldo & Herbsleb, 2008). Communication between leaders and other team members is 

especially important because leaders must be able to serve as information providers and sources 

in an effective manner while providing guidance to direct project work (Charlier et al., 2016; 

Ehrlich & Cataldo, 2014; Susskind, Odom-Reed, & Viccari, 2011). Additionally, communication 

and leadership are intertwined with one another based on the different behaviors that leaders 

enact and their positioning in a team’s social network (Balkundi & Harrison, 2006; Balkundi, 

Kilduff, & Harrison, 2011; Mehra et al., 2006).  

From the prior literature, leadership is often the perception—by either followers and 

leaders—of an authoritative relationship, and communication is one behavior—among many—

that leaders employ within teams to establish their relationships with followers. Given that 

effective leadership relies on sharing information and communicating goals and expectations 

(Yukl, 1989), there is likely a positive association between leadership and communication. As 

such, the first hypothesis investigates the relationship between leadership and communication in 

teams. 

H1a. Team members who frequently communication with a teammate are more likely to rely 

on the teammate for leadership over time. 

H1b. Team members who rely on a teammate for leadership are more likely to communicate 

frequently with the teammate over time. 

Establishing effective communication practices and leadership relationships in teams now 

commonly requires the implementation of technology. Many teams that rely on technology as a 
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communication medium tend to use technology in response to task demands prioritizing effective 

knowledge sharing regardless of physical location (Cataldo & Herbsleb, 2008; Jarvenpaa & 

Leidner, 1999; Nomura et al., 2008; Olson & Olson, 2000). However, when attempting to find 

teammates, individuals now commonly need to use technology to learn more about the expertise 

and social relationships present within an organization (Leonardi, 2015). Social recommender 

systems are a technology that is helpful for finding social matches when individuals are looking 

to build relationships with others (Guy, 2015; Terveen & McDonald, 2005). For teams, 

recommender systems help determine which individuals to add to teams as replacements and can 

even create new team member combinations while optimizing for performance outcomes (Alkan 

et al., 2018; Li et al., 2015). Recommended teammates have been given exposure through their 

visibility within a technology platform, and such exposure has a role in building relationships 

within a team because people are more likely to interact with those they have at least some 

familiarity with due to “the mere exposure effect” to people who have desirable expertise and 

social connections (Chen et al., 2009; Guy et al., 2009, 2011; Reis et al., 2011; Zajonc, 1968). 

Such exposure potentially accentuates the value that individuals place upon skillsets and 

knowledge by drawing attention to certain expertise areas.  

Aside from recommendations, the social interaction that takes place within technology 

platforms helps teams form. Within recommender systems, there is often functionality to 

facilitate interpersonal interaction and messaging (Terveen & McDonald, 2005). During team 

assembly, the messages exchanged when people are negotiating membership and inviting one 

another to collaborate provides a perspective into how collaborations are initiated. The 

invitations serve the purpose of helping organize teams and also give an indication of the 

features that will be present within the teams that form. Specifically, team invitations show 
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which attributes of people are desirable and the distribution of such attributes in teams (Gómez-

Zará et al., 2019). Because invitations are the entry phase to collaboration, they present an 

opportunity to begin to communicate with future teammates and establish leadership 

relationships. The act of inviting someone to a team is an act that requires that an individual 

exercises agency in selecting team members, which signifies active participation in the team 

assembly process; it is communication with potential future teammates through intentional 

messaging. Also, with respect to leadership, being an inviter of others does not necessarily result 

in a person relying on the invited to become leaders in the subsequent collaboration. Therefore, a 

positive relationship between sending invitations and then communicating within a team is 

expected, whereas a negative relationship is expected between sending invitations and then 

relying on the invited for leadership. Formally stated as the following hypotheses: 

H2a. A team member who sends an invitation to a teammate is less likely to rely on the 

teammate for leadership (team members do not invite their leaders). 

H2b. A team member who sends an invitation to a teammate is more likely to communicate 

frequently with the teammate. 

Methodology 

Data and Sample 

Participants were students from one of two universities that enrolled in the same dual-

university course. Teams worked together during a semester to complete an interdisciplinary 

project on environmental sustainability. Social psychology courses at one university were linked 

to the environmental ecology courses at another university. Over a period of eight weeks, 

participants were required to collaborate in geographically distributed (dual-university) teams to 
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complete a term project. The data sample includes 213 participants (mean age = 20.8 years; SD = 

2.79) in 32 interdisciplinary, dual-university teams (mean team size = 6.65; SD = 0.48).  

Procedure 

Teams collaborated for eight weeks creating the deliverables for the project. After the 

first four weeks of collaboration, participants were surveyed at three different time points 

(approximately two weeks apart) to report team and relational experiences as they progressed on 

the project. The longitudinal data affords the opportunity of observing the evolution of team 

relationships and processes across time. Within-team social networks were collected for all 

teams as were responses about team process. It must be noted that the purpose of this study is the 

investigate how team relationships like leadership and communication are influenced by 

behaviors that occur during technology-enabled team assembly. 

Before collaborating, participants assembled their own teams using a teammate 

recommender system (My Dream Team; http://sonic.northwestern.edu/software/c-iknow-

mydreamteam/). The software enabled participants to form teams of at least six and at most 

seven members over a five-day period. If there were any individuals who were not a member of a 

team or if any teams were below the minimum team size at the end of the five-day period, then 

participants were merged into teams so that all teams had the required number of members. 

Participants answered survey questions about demographics, pre-existing relationships, 

competence, and other characteristics through an online survey administered as part of 

registration in the platform.  

To facilitate data collection, all participants were added to the platform as a closed group 

of people by an administrator. In addition to completing the online survey, participants could 

optionally create a short biographical profile to share additional personal information with other 
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participants. The survey responses and profile information were used when participants 

performed searches for specific attributes (characteristics, skills, or relationships), received 

recommendations for stated preferences, and reviewed one another’s profiles. After exploring 

potential teammates, participants exchanged invitation messages to assemble teams.  

Measures 

Dependent Variables 

Describing the evolution of team communication and leadership networks is the 

analytical goal of the study. To capture both dependent variables, network roster surveys were 

administered at the team level and participants responded by selecting the names of teammates 

from a roster that only included members of a given team. The team communication network 

was recorded with the following question: “Who do you communicate with frequently? (choose 

all that apply)” The leadership network was recorded with the following question: “Who do you 

rely on for leadership? (choose all that apply)” Responses were used to construct binary matrices 

(a value of one if the respondent selected a teammate, and zero otherwise) for each team. The 

individual team matrices were then combined into a larger matrix including responses from all 

teams in the sample. Essentially, each team’s relationships lie along the diagonal of the matrix. 

From the complete matrix, a directed network is generated where all teams only have ties among 

their own members.  

Independent Variables 

The first independent variable is the recommendation ranking that participants received 

about other participants from the teammate recommender system. The recommender system 

rank-ordered a list of potential teammate matches to a searcher’s stated preferences. The 

recommendations were calculated as a cumulative score based on potential teammate’s self-



 112 
reported survey responses (attributes) collected during registration, and the searcher’s stated 

preferences. For each stated preference, the corresponding potential teammate’s attribute was 

scored by multiplying the attribute’s value by the searcher’s selected importance. Then, all 

attribute scores were summed together to create the cumulative score. Because not all attributes 

were required to be selected as preferences, the cumulative score was then divided by the number 

of selected attributes in the search. These scores were calculated for all participants except for 

the searcher, and rank-ordered from one to the sample size N-1 (excluding the searcher).  

When a searcher performed multiple searches, only the best recommendation ranking 

achieved by a potential teammate was used during analysis. Therefore, each searcher has one list 

of potential teammates with each potential teammate’s best ranking. The complete list of 

recommendations is then transformed into a weighted, directed social network. The nodes are the 

participants, a link is directed from a searcher to a potential teammate (i.e., whether a searcher 

saw a potential teammate listed in the recommended teammates list), and each weight is a 

potential teammate’s recommendation ranking for the searcher (from 1 to N-1). The 

recommendations network was then dichotomized for analysis (a value of one was assigned to 

the top-ten ranked potential teammates, and a value of zero was assigned otherwise). After 

dichotomizing the network, it was filtered to only include ties between team members to restrict 

focus exclusively to team member recommendations.   

The second independent variable is the network of invitation messages to potential 

teammates. Messages were exchanged between participants over five days and collected using 

digital trace data generated by the teammate recommender system. The trace data is a complete 

transcript of all invitations, including the sender and receiver. From these data, a binary directed 

social network was constructed, where nodes are the participants and links are the invitations 
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sent from one participant to another. As with recommendations, the invitation network was then 

filtered to only include the invitations exchanged amongst members of the same team. 

Controls 

There are different types of control variables included for analysis: endogenous network 

effects, exogenous networks, individual attributes, and shared dyadic attributes. Endogenous 

network effects are included to account for network structure that may account for and contribute 

to network evolution (Snijders, 2001; Snijders, van de Bunt, & Steglich, 2010). Six different 

effects included in models: report of a relationship (outdegree), reciprocity, transitive triplets, 

popularity (indegree), and activity (outdegree). The report of a relationship is analogous to the 

outdegree of an actor and must always be included since ties constitute networks because the 

reports result in a network forming. Reciprocity shows when two actors have a relationship with 

one another and is commonly included when modeling social networks. Transitive triplets 

represent network closure by the number of triangles that form in a network, representing 

hierarchy. A simple example of transitivity in a team is “a leader of my leader is also my leader,” 

indicating that networks are likely to result in groups of people who agree on relationships. 

Popularity is a measure of how many times an actor is reported by others in the team, and 

activity is a measure of how many times an actor reports other team members in the team. For 

reference, detailed descriptions and formulae for the endogenous network effects are found in the 

RSIENA manual (Ripley, Snijders, Boda, Vörös, & Preciado, 2018). 

From the use of the technology platform, three individual-level control variables are 

created to complement the independent variables at the network level: number of invitations sent, 

number of invitations received, and number of searches. From the complete invitation log data, 

the number of invitations that each participant sent and received is calculated to give measures of 
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activity and attention in the invitation network. The number of searches for each participant is 

calculated from the log of search queries used to generate recommendations. Taken together, the 

three control variables describe how individuals used technology in the current study. 

Another type of control is an exogenous network. Prior collaboration and enjoyable 

working relationship are networks that were collected during participant registration. As part of a 

network roster survey, participants responded to the relationship questions, “Who have you 

worked with on projects?” and “With whom on this list do you enjoy working?” by checking the 

names of participants from a roster including names of all other people in the course across both 

universities. Responses were used to construct a binary, directed network (a value of one if the 

respondent selected a person, and zero otherwise).  

There are multiple other controls as well. Leadership experience is an individual attribute 

and was measured from eight statements about prior leadership experiences on 5-point Likert 

scales. Participants were asked to, “Think back to the leadership roles you have held in your 

school. How accurate are the following statements about you?” (ratings from “1 = Inaccurate” to 

“5 = Very Accurate”). They reflected on the following eight experiences: “Directed others in 

group activities in high school or college,” “Participated in student and/or school politics,” 

“Influenced other people in high school or college,” “Held leadership positions in high school or 

college,” “Picked people for teams,” “Describe yourself as a leader in high school or college,” 

“Felt your classmates respected you,” “Active in political clubs and student council in high 

school or college” (Cronbach’s α = 0.83).  

The next control at the individual level is participant competence, created from self-

ratings on a 3-item project skills inventory. Participants were asked to, “Please indicate your 

level of skill in the following areas” (ratings from “1 = Not at all skilled” to “5 = Extremely 
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Skilled”), and the rated project skills were: “Using communication technology,” “Writing and 

preparing professional reports,” “Publishing, print media, and/or design” (Cronbach’s α = 0.64). 

These project skills items were generated by consensus of the course instructors to capture the 

skills needed for success on the project. Personality was assessed using self-ratings on the Five-

Factor model (Goldberg et al., 2006). A subset of four items was used for each factor from the 

International Personality Item Pool (https://ipip.ori.org/newBigFive5broadKey.htm): surgency or 

extraversion (Cronbach’s α = 0.77), agreeableness (Cronbach’s α = 0.71), conscientiousness 

(Cronbach’s α = 0.70), negative emotional stability (Cronbach’s α = 0.57), and intellect or 

imagination (Cronbach’s α = 0.72). 

The next set of control variables are gender and university affiliation, and both are 

individual attributes as well as used to construct shared dyadic attributes to indicate similarity; 

gender homophily and having the same university affiliation. Participant gender was self-

reported using the item, “What is your gender? (male, female, other)”, and gender homophily is a 

shared dyadic attribute for individuals who share the same gender. University affiliation is a 

binary indicator of the university at which a participant was enrolled during the study. Having 

the same university affiliation is a shared dyadic attribute for participants who attend the same 

university.  

Analytical Approach 

Stochastic actor-oriented models (SOAM) or simulation investigation for empirical 

network analysis (SIENA) models are agent-based simulations where actors are responsible for 

creating, maintaining, and dissolving network ties between time periods representing the 

evolution of a network; each tie choice of an actor is probabilistically determined between 

observations based on a series of assumptions describing longitudinal relationships (Ripley et al., 
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2018; Snijders et al., 2010). One assumption is that a relationship endures as a continuous 

process over time but is only observed at a minimum of two points in time. Specifically, the 

model assumes that ties in the network can change between observations. Another assumption 

that the evolution of a network is a Markov chain, approximating the stochastic nature of tie 

changes in a network. The third assumption is that actors have some amount of agency over their 

ties. The agency stems from an actor making choices based on the parameters of a model, which 

may include individual attributes and endogenous network structure. The last assumption is that 

ties only change one at a time; this is a simplifying assumption that prevents large proportions of 

a network changing at a single timestep. Instead, large changes are considered one tie at a time 

and built incrementally over the course of a simulation. In a SIENA model, a rate function 

parameter accounts for the number of opportunities each actor has to change ties between 

network observations.    

The current study is interested in the coevolution of multiple networks. Estimating 

coevolution is more complicated than the general description of SIENA models given above, but 

coevolution is a common use case for SOAM when the research question focuses on the changes 

between different networks or between a network and a behavior (attitude). By modeling the 

coevolution of multiple networks, questions may be raised regarding the influences that 

coexisting networks have on one another’s dynamics (Snijders, 2017; Snijders, Lomi, & Torló, 

2013). For example, the coevolution of perceived team cohesion and network ties within a 

team—including friendship, advice, and difficulty—offer insights into how people react and 

behave in response to interactions in teams (Schulte, Cohen, & Klein, 2012). Directly applicable 

to this study is the use of SIENA to explain the emergence of leadership networks (Carnabuci et 

al., 2018; Emery, 2012).  
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Because network ties among team members are being analyzed, the SIENA estimation 

procedure needs to account for the restriction in possible network ties. Structural zeros were 

employed to constrain the modeling by not allowing ties to exist between members of different 

teams. In SIENA, structural zeros are manually defined using a coded value that indicates a tie 

between two actors is impossible. The structural zeros are necessary because the administered 

survey questions on within-team relationships specifically asked about relationships among 

teammates and the options of the network roster only included other team members. Therefore, 

structural zeros help more accurately model the within-team networks since participants were not 

providing information about all other people in the data sample. 

An additional consideration of the SIENA models is the applicability of the approach 

given the observed tie changes between time periods as well as the convergence of the estimation 

procedure. The manual for the RSIENA package in the open software R recommends 

supplemental analysis to help ensure appropriate modeling (Ripley et al., 2018). One analysis 

involves the use of Jaccard similarity indices for each observed network to determine whether 

the changes between time periods would lead to SIENA inadequately modeling the network 

dynamics between periods. Jaccard similarity between networks is calculated by the proportion 

of ties present in both time periods and ties that changed (either created or dissolved). Low 

Jaccard values indicate networks that have changed substantially between observations and will 

potentially lead to unstable estimates, and the recommended value for Jaccard similarity index is 

0.3 (Snijders et al., 2010). All Jaccard values in the study were above this threshold (see Table 

8). The convergence of the estimation requires evaluating the t-ratios for convergence provided 

from the simulation algorithm. In RSIENA, a convergent model will have t-ratios less than or 

equal to 0.10 for each parameter, and the complete model will have an overall maximum 
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convergence of approximately 0.25 (Ripley et al., 2018). The convergence values of models in 

the current study are comparable to the suggested thresholds for performance.  

Another note must be made about interpreting parameter estimates from SOAM. The 

estimation procedure uses variables relating to endogenous network structure, individual 

attributes, dyadic attributes, and exogenous networks. These different types of variables have 

different scales and potential values, leading to unstandardized parameter estimates. When 

interpreting the estimates provided from a SIENA model, only significance and directionality are 

readily interpretable. To address this shortcoming of estimation, a procedure to generate the 

relative importance of each parameter is employed. Relative importance of parameter estimates 

normalizes the effect sizes of each parameter for every observed network, such that all values are 

between zero and one and sum to one (Indlekofer & Brandes, 2013). The relative importance 

used in conjunction with the parameter estimates clarifies meaningful effects included in a 

model. Additionally, the relative importance of parameters contributes to a measure of the degree 

of certainty for a SIENA model. The degree of certainty contributes an understanding of how 

much variance in each observed network is explained by the model (Snijders, 2004). 

Results 

Descriptive results (Table 6) show correlations among individual-level variables. 

Variables collected from the technology platform encapsulate interactions users conducted when 

assembling teams. The number of invites sent to teammates when self-assembling teams is 

positively correlated with competence, having leadership experience, being a female, openness, 

extraversion, and agreeableness. There is, however, a negative correlation with the number of 

invites received from teammates, suggesting that team members who send invites to teammates 

do not typically receive invites from their teammates. Receiving invites from teammates is 
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positively correlated with the number of searches performed. Meanwhile, searches are negatively 

correlated with leadership experience and extraversion. The pattern of correlations will be 

helpful for interpreting the estimates from the main SIENA models that test hypotheses.  

Descriptive statistics at the network level (Table 7) display the overall activity present in 

the relationships of interest for the current study. There are two types of networks included in the 

study: within-team networks and pre-team networks. The within-team networks are 

communication and leadership collected at three different time points. For both communication 

and leadership, the number of network ties increases from T1 to T3. Based on the average team 

size (between 6 and 7 members), members reported no more than half of the team for both 

networks as shown by the density measure; density was measured based on the total number of 

possible ties within a team. Communication density was at least 0.49 in all time periods, showing 

that individuals reported communicating with about half of their team members whereas 

leadership density ranged between 0.318 and 0.390, meaning that individuals only relied on 

about a third of their teammates for leadership.  

 



 
Table 6: Individual-Level Variables: Descriptive Statistics and Correlations 

    Pearson Correlations 

  Mean SD 1 2 3 4 5 6 7 8 9 10 11 

 

Individual-Level 
Variables              

1. Invites Sent 2.71 3.45            

2. Invites Received 2.71 3.01 -0.145*           

3. Number of Searches 4.38 4.53 -0.077 0.351*          

4. Competence 3.59 0.70 0.294* 0.028 -0.026         

5. 
Leadership 

Experience 
3.63 0.73 0.281* -0.119 -0.136* 0.313*        

6. 
Intellect or 

Imagination 
3.95 0.63 0.263* -0.001 -0.102 0.205* 0.299*       

7. Conscientiousness 3.82 0.69 0.118 0.075 0.057 0.073 0.098 0.030      

8. Extraversion 3.24 0.82 0.245* -0.073 -0.168* 0.265* 0.411* 0.243* 0.088     

9. Agreeableness 3.95 0.62 0.249* 0.084 0.02 0.132 0.202* 0.427* 0.323* 0.231*    

10. Negative Emotional 

Stability 
2.40 0.66 -0.040 0.047 0.012 -0.102 -0.085 -0.076 

-

0.242* 

-

0.142* 
-0.144*   

11. 
Gender  

(m=0, f=1) 
0.47 0.50 0.172* -0.070 0.037 0.091 0.140* -0.009 0.138* 0.015 0.312* 0.105  

12. 
University affiliation 

(0 or 1) 
0.45 0.50 0.046 0.015 -0.031 -0.119 -0.099 -0.120 0.070 -0.070 -0.171* 0.029 

-

0.06 

               

Note. * p < 0.05 
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Table 7: Network-Level Variables: Descriptive Statistics and QAP Correlations 

 
Number 
of Ties 

Average 
Out-Degree 

Densitya QAP Correlationsb 

    1 2 3 4 5 6 7 8 9 

1. Communication T1 596 2.81 0.492           

2. Communication T2 611 2.90 0.504 0.742          

3. Communication T3 632 2.99 0.521 0.737 0.786         

4. Leadership T1 385 1.82 0.318 0.639 0.533 0.553        

5. Leadership T2 427 2.03 0.352 0.595 0.670 0.620 0.632       

6. Leadership T3 473 2.24 0.390 0.599 0.642 0.685 0.609 0.726      

Pre-Team Networks              

7. Invitation Network 182 1.71 0.150 0.426 0.378 0.372 0.301 0.281 0.287  
 

  

8. Teammate 

Recommendation  

    (1 = Top 10, 0 = not 

Top 10)  

92 0.86 0.076 0.304 0.270 0.266 0.203 0.192 0.226 0.323     

9. Prior Collaboration 65 0.61 0.054 0.322 0.287 0.313 0.186 0.200 0.241 0.320 0.244   

10. Enjoyable Working 

Relationship 
144 1.35 0.119 0.465 0.416 0.448 0.276 0.295 0.327 0.406 0.267 0.629 

             

Note. 
a. Density is calculated based on the number of possible ties within a team, totaling 1212 possible within-team (sized 6 and 7) ties; 

b. All QAP correlations are significant at p < 0.05. 

 

 

 

1
2
1
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The pre-team networks give indications of how much interaction and exposure 

teammates had with one another before collaborating. All of the pre-team networks were sparser 

than the within-team networks. The recommendation and prior collaboration networks had the 

lowest densities of less than one teammate on average, meaning teammates were not commonly 

exposed to other teammates through recommendations or prior collaboration. On the other hand, 

invitations and having an enjoyable working relationship were both denser networks, indicating 

that both were the more common relationships created before assembling into teams.  

The correlations between networks were measured using quadratic assignment procedure 

(QAP) correlations (Krackhardt, 1987). All networks were positively correlated with each other. 

The within-team networks had the strongest correlations; communication and leadership had 

more positive correlations with each other compared to correlations with the pre-team networks. 

Invitation and “enjoyable working relationship” networks were the pre-team networks most 

highly correlated with the within-team networks. Correlations involving the teammate 

recommendation network were the smallest correlations in magnitude, with the exception of the 

correlation with the leadership network at T1. Overall, the correlations suggest the strongest 

relationships among networks exist between the within-team networks. 

Given the dynamic and temporal nature of the current study, tie changes between 

observations of within-team networks hold information relevant to understanding network 

dynamics. Table 8 specifies the ways that communication and leadership networks change over 

the course of collaboration. Focusing first on communication, between the first and second 

observations (Period 1), the network changed substantially with 160 new ties being reported 

while 145 previous ties were no longer reported. The change suggests that as teams collaborated, 

members maintained most of their communication partners, but changed a notable proportion of 
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them as well. Between the second and third observations (Period 2), fewer ties were created or 

dropped. Therefore, the communication network changed more in Period 1 than it did in Period 

2. Shifting attention to leadership, 42 more ties were created than dropped in Period 1 and 46 

more ties were created in Period 2. However, 70 more ties were maintained in Period 2 as 

compared to Period 1. Taken together, the changes show that team members are recognizing new 

leaders over time, but leadership also stabilizes around previously-reported leaders. The 

leadership network at T2 is more similar to leadership at T3 than it is to leadership at T1, as 

demonstrated by the Jaccard Index. 

Table 8: Within-Team Network Ties Created, Maintained, and Dropped During Time Periods 

Within-Team Networks Period 1 (T1-T2) Period 2 (T2-T3) 
Communication   
Initial Ties 596 611 
Maintained 451 491 
Created  160 141 
Dropped 145 120 
Jaccard Index 0.597 0.653 

   
Leadership    
Initial Ties 385 427 
Maintained 257 327 
Created  170 146 
Dropped 128 100 
Jaccard Index 0.460 0.570 
   

 
The SIENA models reported in Table 9 contain the main results for hypothesis testing. 

Within-team leadership and communication were simultaneously estimated as outcomes from a 

single model. Models were estimated using the default procedure in RSIENA, the method of 

moments. Interpreting SIENA models requires determining the significance of parameter 

estimates using t-statistics calculated by dividing an estimate by its standard error and then 
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comparing the calculated value to a normal distribution centered around zero; a t-statistic greater 

than an absolute value of two indicates statistical significance at 0.05 (Ripley et al., 2018, p. 72). 

Another aspect of interpreting a SIENA model is assessing the parameter estimate for the rate 

function. It is important to note that parameter estimates for the rate function do not require 

significance testing since the estimate corresponds to observed changes between network 

observations. Overall, and for both within-team networks, actors had more opportunities to 

change ties between the T1 and T2 observations (Period 1) than between T2 and T3 (Period 2). 

For both relationships, the rate functions decreased between periods; actors had at least three 

chances to change ties during Period 1 and between two and three chances during Period 2.  

Three separate SIENA models are presented. Model 1 tests all three hypotheses while 

only controlling for endogenous network effects and individual attributes corresponding to 

behavioral traces from usage of the technology platform. Meanwhile, Model 2 tests the three 

hypotheses by controlling for endogenous network effects, individual attributes distinct from 

those in Model 1, shared dyadic attributes, and exogenous network effects. Lastly, Model 3 tests 

the hypotheses in a full model including all controls in the study. Model 1 achieved the best 

convergence where the overall maximum convergence met the recommended 0.25 ratio and all t-

ratios for parameter convergence were less than 0.1 in absolute value. Models 2 and 3 only 

achieved a maximum convergence of 0.30, which is considered “reasonable” according to the 

RSIENA manual (Ripley et al., 2018, p. 62). However, Model 3 has two t-ratios for parameter 

convergence that exceed the recommended 0.1 in absolute value. The less than ideal 

convergence statistics do not necessarily dismiss the value of reported results, but they are 

limitations on the quality of model estimations. The goodness of fit for all models assessed the 

differences between the observed networks and simulated networks using the indegree and 
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outdegree distributions. All of the simulated indegree distributions were not significantly 

different from the observed leadership and communication networks, but all of the outdegree 

distributions were significantly different. The models all reflect the incoming reports of within-

team relationships, but do not adequately account for the outgoing reports of within-team 

relationships (see Figure 17 to Figure 20).  

Across all three models, there are positive effects of a communication tie on leadership (p 

< 0.001) and a leadership tie on communication (p < 0.001); there is support for H1a and H1b, 

which test both directions of the positive association between leadership and communication. 

There was support for the invitation network negatively affecting leadership reliance from an 

invitation sender (H2a). While the effect was negative in all three models, it was only significant 

in Model 3 (p < 0.05). The interpretation of the effect is that sending an invitation to a teammate 

makes a person less likely to rely on that same teammate for leadership, meaning that people do 

not invite teammates that they expect to lead them. Sending an invitation to a teammate had a 

positive effect on communicating frequently with said teammate (p < 0.01) in Model 1, 

supporting H2b. However, the effect decreased as more controls were added in Models 2 and 3. 

Invitations only had a significant and positive effect when accounting for endogenous network 

effects and individual attributes that were captured through digital trace data.  

The control parameters included in the models help describe and provide more 

understanding of the coevolution of leadership and communication. The endogenous network 

effects describe the structure of both networks. Negative effects for the outdegree term, “report 

of a relationship,” indicate that actors do not report many ties at random, which is reflected 

because the leadership and communication networks were sparse and did not have a majority of 

team members selected (average outdegree in Table 7). There were team members who 
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nominated more leaders than others (activity), and some team members were relied on for 

leadership more than others (popularity), but there was not much hierarchy in teams (transitive 

triplets). Taken together, these effects show that the leadership structure was centralized based 

on the popularity and activity parameters, but teams were not necessarily hierarchical. Reporting 

frequent communication had different patterns of endogenous network effects. Teammates 

agreed with one another about whom they communicated with frequently (reciprocity) and 

triangles formed within teams (transitive triplets), but there were not popular team members in 

the communication network.  

Having the same university affiliation had positive effects on both communication and 

leadership, showing that team members relied on those who were geographically collocated in 

the team over members at the other university. In the leadership networks, the individual-level 

effect for university affiliation of an alter was negative. Participants from one of the universities 

were not commonly reported as sources of leadership. On the other hand, university affiliation of 

an ego had a positive effect on communication. No effects were observed for teammate 

recommendation on either communication or leadership network. Also, having an enjoyable 

working relationship with a team member had a positive effect on communication, but not 

leadership. In total, all of the controls better clarify the mechanisms responsible for the 

coevolution of within-team communication and leadership networks.  

 



 

 

Table 9: SIENA Results of Leadership and Communication Coevolution Within Teams 

 Model 1 Model 2 Model 3 
 Estimate (SE) Estimate (SE) Estimate (SE) 

Parameter Leadership Comm. Leadership Comm. Leadership Comm. 
Intercept       

Report of a relationship (Outdegree) -3.41*** (0.38) -0.06 (0.28) -3.52*** (0.42) -1.05** (0.34) -3.47*** (0.45) -1.02** 
(0.35) 

       
Control Variables       

Endogenous Network Effects        

Reciprocity -0.07 (0.11) 0.76*** (0.10) -0.14 (0.12) 0.40*** (0.10) -0.11 (0.12) 0.43*** 
(0.12) 

Transitive Triplets -0.63** (0.23) 0.97*** (0.16) -0.63* (0.27) 0.80*** (0.17) -0.57* (0.27) 0.81*** 
(0.17) 

Popularity (Indegree) 0.56*** (0.09) -0.41*** (0.08) 0.58*** (0.10) -0.28** (0.09) 0.56*** (0.10) -0.29** 
(0.09) 

Activity (Outdegree) 0.29*** (0.05) -0.07 (0.04) 0.30*** (0.06) 0.02 (0.04) 0.30*** (0.06) 0.02 (0.04) 
       
Individual Attributes       
Invites sent (alter) -0.01 (0.01) 0.00 (0.01)   0.00 (0.02) -0.01 (0.02) 
Invites sent (ego) -0.02 (0.02) -0.01 (0.01)   -0.02 (0.02) -0.01 (0.02) 
Invites received (alter) 0.02 (0.02) -0.03 (0.02)   0.02 (0.02) 0.00 (0.02) 
Invites received (ego) 0.01 (0.02) 0.00 (0.02)   0.01 (0.02) 0.00 (0.01) 
Number of searches (alter) 0.01 (0.01) 0.01 (0.01)   0.01 (0.01) 0.02 (0.01) 
Number of searches (ego) -0.02 (0.01) -0.02* (0.01)   -0.02 (0.01) -0.02 (0.01) 
Leadership Experience (alter)   -0.04 (0.08) -0.06 (0.07) -0.04 (0.07) -0.04 (0.08) 
Leadership Experience (ego)   0.01 (0.08) -0.05 (0.07) 0.02 (0.08) -0.05 (0.07) 
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Competence (alter)   0.07 (0.08) -0.06 (0.07) 0.06 (0.08) -0.06 (0.08) 
Competence (ego)   -0.01 (0.08) 0.07 (0.07) 0.02 (0.08) 0.09 (0.07) 
Intellect or Imagination (alter)   -0.09 (0.09) 0.13 (0.10) -0.08 (0.09) 0.15 (0.09) 
Intellect or Imagination (ego)   0.12 (0.09) -0.05 (0.09) 0.12 (0.09) -0.06 (0.08) 
Conscientiousness (alter)   0.09 (0.08) -0.09 (0.08) 0.09 (0.08) -0.09 (0.08) 
Conscientiousness (ego)   0.10 (0.08) -0.01 (0.07) 0.1 (0.08) -0.01 (0.07) 
Surgency or Extraversion (alter)   -0.11 (0.07) 0.04 (0.07) -0.11 (0.07) 0.04 (0.07) 
Surgency or Extraversion (ego)   0.04 (0.07) -0.02 (0.06) 0.03 (0.07) -0.02 (0.06) 
Agreeableness (alter)   0.07 (0.10) 0.01 (0.10) 0.05 (0.10) -0.00 (0.10) 
Agreeableness (ego)   -0.18 (0.10) 0.21* (0.10) -0.15 (0.10) 0.23* (0.09) 
Negative Emotional Stability (alter)   0.11 (0.08) -0.09 (0.08) 0.11 (0.08) -0.09 (0.08) 
Negative Emotional Stability (ego)   0.05 (0.08) 0.04 (0.07) 0.04 (0.08) 0.05 (0.07) 
Gender (alter)   -0.22 (0.12) 0.30** (0.11) -0.20 (0.12) 0.32** (0.11) 
Gender (ego)   0.01 (0.11) -0.08 (0.09) 0.02 (0.11) -0.08 (0.10) 
University Affiliation (alter)   -0.25* (0.11) 0.09 (0.10) -0.25* (0.11) 0.10 (0.11) 
University Affiliation (ego)   0.13 (0.10) 0.22* (0.09) 0.14 (0.11) 0.23* (0.09) 
       
Shared Dyadic Attributes       
Gender Homophily   -0.13 (0.10) -0.05 (0.10) -0.12 (0.10) -0.05 (0.10) 
Same University Affiliation   0.33* (0.14) 0.98*** (0.12) 0.32* (0.13) 0.98*** (0.12) 
Exogenous Network Effect       
Teammate Recommendation 0.22 (0.20) 0.24 (0.20) 0.09 (0.20) 0.10 (0.19) 0.17 (0.20) 0.16 (0.22) 
Prior Collaboration   0.32 (0.27) 0.25 (0.41) 0.30 (0.28) 0.18 (0.46) 
Enjoyable Working Relationship   0.14 (0.21) 1.05*** (0.30) 0.20 (0.22) 1.12*** (0.30) 
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Hypothesized Variables       
Exogenous Network Effects       
Communication: H1a 1.14*** (0.18)  1.06*** (0.23)  1.03*** (0.22)  

Leadership: H1b  0.73*** (0.20)  0.85*** (0.21)  0.81*** 
(0.20) 

Invitation Sent: H2 -0.17 (0.14) 0.46** (0.15) -0.26 (0.15) 0.09 (0.15) -0.34* (0.16) 0.03 (0.16) 
       
Rate function       
Rate period 1 (T1-T2) 3.19 (0.30) 3.08 (0.27) 3.08 (0.29) 3.80 (0.50) 3.10 (0.29) 3.80 (0.41) 
Rate period 2 (T2-T3) 2.25 (0.20) 2.45 (0.24) 2.26 (0.22) 2.83 (0.27) 2.29 (0.20) 2.83 (0.29) 
       
Maximum Convergence Ratio 0.25 

0.09 
0.30 
0.09 

0.30 
0.13 All Convergence t-ratios <  

       
Note. All significance levels are two tailed; *** p < 0.001, ** p < 0.01, * p < 0.05.  
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  To supplement the significance testing of parameters, Table 10 shows the relative 

importance (RI) of parameter estimates at each time point for Model 1, which had the best 

convergence. To summarize the utility of RI, the degree of certainty is an additional measure 

reported that describes how well a model captures variation in tie changes that represent actor 

decisions. For the leadership network, the four most important parameters account for RI of 

approximately 0.88 in T1: reporting a relationship (0.31), popularity (0.28), activity (0.15), and 

communication (0.14). Simply reporting a relationship was a strong signal of relying on a 

teammate for leadership, which suggests that people did not randomly nominate teammates as 

leaders. Next, the high relative importance of popularity shows that a team member who is relied 

upon for leadership is relied upon by multiple teammates. Activity indicates that a single person 

relying on multiple teammates for leadership is also relatively more important than other model 

parameters. Lastly, communicating frequently with a teammate is important for determining 

whether a teammate will be relied upon for leadership. Other parameters of note relate to the 

technology platform. The RI of the invitation network, the number of searches by a reporter 

(ego), and number of invitations received (alter) all had relative importance values of 

approximately 0.01. The degree of certainty for tie changes decreased from T1 to T3, indicating 

that the model is better at T1 (0.149) and T2 (0.142) compared to T3 (0.117). 

The relative importance for the communication network is likewise informative. The four 

most important parameters account for approximately 0.84 of RI in T1 and are all endogenous 

network effects: popularity (0.31), transitive triplets (0.25), reciprocity (0.14), and activity 

(0.14). Taken together, the RI shows that communication network encompassed team members 

who were popular, communicated within sub-groups, agreed on their reports of communication 
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partners, and active in communicating with others. With respect to the hypothesized effects, 

explaining communication with the leadership network was three times more important than the 

invitation network (0.09 compared to 0.03). The number of invites that an alter received and the 

number of searches conducted (by ego and alter) were the only other parameters with effects 

greater than 0.01. The degree of certainty for the communication network model increased from 

0.117 at T1 and 0.123 at T3, which shows that the model best captured the network at T3 

compared to other time points. The RI of parameters for the less convergent Models 2 and 3 are 

reported in Tables Table 11 and Table 12, and may be interpreted in a similar fashion. It is worth 

noting that the degrees of certainty for Models 2 and 3 are higher than those for Model 1, but 

Model 1 was the most stable estimation. 

Table 10: Relative importance of SIENA Parameters in Model 1. 

 Relative Importance 
 Leadership Network Communication Network 

Parameter T1 T2 T3 T1 T2 T3 
Intercept       
Report of a relationship (Outdegree) 0.308 0.304 0.292 0.016 0.016 0.015 
       
Control Variables       

Endogenous Network Effects        

Reciprocity 0.006 0.006 0.007 0.142 0.139 0.142 
Transitive Triplets 0.061 0.068 0.075 0.249 0.252 0.252 
Popularity (Indegree) 0.282 0.281 0.285 0.305 0.303 0.301 
Activity (Outdegree) 0.146 0.148 0.152 0.142 0.139 0.142 
       
Individual Attributes       
Invites sent (alter) 0.005 0.005 0.005 0.004 0.003 0.003 
Invites sent (ego) 0.006 0.006 0.006 0.006 0.006 0.006 
Invites received (alter) 0.010 0.010 0.011 0.024 0.022 0.021 
Invites received (ego) 0.003 0.003 0.002 0.002 0.002 0.002 
Number of searches (alter) 0.006 0.006 0.006 0.014 0.014 0.013 
Number of searches (ego) 0.011 0.011 0.011 0.019 0.019 0.019 
       
Exogenous Network Effects       
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Teammate Recommendation 0.006 0.005 0.004 0.007 0.006 0.007 
       
Hypothesized Variables       
Exogenous Network Effects       
Communication: H1a 0.142 0.138 0.136    
Leadership: H1b    0.090 0.089 0.092 
Invitation Sent: H2 0.009 0.009 0.009 0.029 0.031 0.031 
       
Degree of Certainty 0.149 0.142 0.117 0.117 0.115 0.123 

       
 
 

Table 11: Relative importance of SIENA Parameters in Model 2. 

 Relative Importance 
 Leadership Network Communication Network 

Parameter T1 T2 T3 T1 T2 T3 
Intercept       
Report of a relationship (Outdegree) 0.258 0.255 0.244 0.188 0.186 0.189 
       
Control Variables       

Endogenous Network Effects        
Reciprocity 0.010 0.010 0.011 0.049 0.049 0.051 
Transitive Triplets 0.051 0.058 0.062 0.161 0.168 0.169 
Popularity (Indegree) 0.236 0.234 0.239 0.164 0.164 0.168 
Activity (Outdegree) 0.123 0.126 0.130 0.022 0.023 0.023 
       
Individual Attributes       
Leadership Experience (alter) 0.004 0.004 0.004 0.008 0.007 0.007 
Leadership Experience (ego) 0.001 0.001 0.001 0.005 0.005 0.005 
Competence (alter) 0.007 0.008 0.008 0.007 0.007 0.007 
Competence (ego) 0.001 0.001 0.001 0.008 0.008 0.008 
Intellect or Imagination (alter) 0.008 0.008 0.008 0.016 0.015 0.015 
Intellect or Imagination (ego) 0.009 0.009 0.009 0.005 0.005 0.005 
Conscientiousness (alter) 0.009 0.009 0.009 0.012 0.012 0.012 
Conscientiousness (ego) 0.009 0.009 0.009 0.001 0.001 0.001 
Surgency or Extraversion (alter) 0.013 0.013 0.013 0.006 0.006 0.006 
Surgency or Extraversion (ego) 0.004 0.004 0.004 0.003 0.003 0.003 
Agreeableness (alter) 0.005 0.006 0.006 0.001 0.001 0.001 
Agreeableness (ego) 0.013 0.013 0.013 0.020 0.020 0.019 
Negative Emotional Stability (alter) 0.011 0.011 0.011 0.011 0.011 0.011 
Negative Emotional Stability (ego) 0.004 0.004 0.004 0.005 0.005 0.005 
Gender (alter) 0.017 0.017 0.017 0.031 0.031 0.031 
Gender (ego) 0.001 0.001 0.001 0.008 0.008 0.008 
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University Affiliation (alter) 0.019 0.019 0.018 0.010 0.009 0.009 
University Affiliation (ego) 0.010 0.010 0.009 0.022 0.022 0.021 
       
Shared Dyadic Attributes       
Gender Homophily 0.013 0.013 0.013 0.006 0.006 0.006 
Same University Affiliation 0.032 0.032 0.032 0.122 0.118 0.113 
       
Exogenous Network Effects       
Teammate Recommendation 0.002 0.002 0.002 0.002 0.002 0.002 
Prior Collaboration 0.006 0.005 0.005 0.002 0.003 0.002 
Enjoyable Working Relationship 0.005 0.005 0.004 0.025 0.027 0.023 
       
Hypothesized Variables       
Exogenous Network Effects       
Communication: H1a 0.111 0.107 0.106    
Leadership: H1b    0.078 0.074 0.078 
Invitation Sent: H2 0.011 0.011 0.011 0.004 0.004 0.004 
       
Degree of Certainty 0.161 0.155 0.136 0.159 0.165 0.164 

       
 

Table 12: Relative importance of SIENA Parameters in Model 3. 

 Relative Importance 
 Leadership Network Communication Network 

Parameter T1 T2 T3 T1 T2 T3 
Intercept       
Report of a relationship (Outdegree) 0.253 0.250 0.241 0.176 0.174 0.177 
       
Control Variables       

Endogenous Network Effects        
Reciprocity 0.007 0.008 0.008 0.049 0.050 0.051 
Transitive Triplets 0.046 0.052 0.056 0.156 0.164 0.164 
Popularity (Indegree) 0.227 0.226 0.231 0.162 0.161 0.166 
Activity (Outdegree) 0.120 0.123 0.127 0.022 0.023 0.023 
       
Individual Attributes       
Invites sent (alter) 0.000 0.000 0.000 0.004 0.004 0.004 
Invites sent (ego) 0.006 0.006 0.006 0.003 0.003 0.003 
Invites received (alter) 0.009 0.009 0.009 0.001 0.001 0.001 
Invites received (ego) 0.004 0.004 0.004 0.001 0.001 0.001 
Number of searches (alter) 0.003 0.003 0.003 0.014 0.014 0.013 
Number of searches (ego) 0.009 0.009 0.009 0.012 0.012 0.011 
Leadership Experience (alter) 0.004 0.004 0.004 0.006 0.006 0.005 
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Leadership Experience (ego) 0.002 0.002 0.002 0.006 0.006 0.006 
Competence (alter) 0.005 0.006 0.006 0.008 0.008 0.007 
Competence (ego) 0.001 0.001 0.001 0.010 0.010 0.010 
Intellect or Imagination (alter) 0.007 0.007 0.007 0.006 0.006 0.005 
Intellect or Imagination (ego) 0.010 0.009 0.009 0.006 0.006 0.006 
Conscientiousness (alter) 0.008 0.008 0.009 0.017 0.017 0.017 
Conscientiousness (ego) 0.009 0.008 0.008 0.006 0.006 0.006 
Surgency or Extraversion (alter) 0.012 0.013 0.012 0.011 0.011 0.010 
Surgency or Extraversion (ego) 0.003 0.003 0.003 0.001 0.001 0.001 
Agreeableness (alter) 0.004 0.005 0.005 0.006 0.006 0.006 
Agreeableness (ego) 0.011 0.011 0.011 0.003 0.003 0.002 
Negative Emotional Stability (alter) 0.010 0.010 0.010 0.000 0.000 0.000 
Negative Emotional Stability (ego) 0.004 0.004 0.004 0.021 0.021 0.020 
Gender (alter) 0.015 0.015 0.016 0.011 0.011 0.011 
Gender (ego) 0.002 0.002 0.002 0.005 0.005 0.005 
University Affiliation (alter) 0.018 0.018 0.018 0.032 0.031 0.031 
University Affiliation (ego) 0.011 0.011 0.010 0.008 0.008 0.008 
       
Shared Dyadic Attributes       
Gender Homophily 0.012 0.012 0.012 0.006 0.006 0.006 
Same University Affiliation 0.031 0.031 0.031 0.116 0.112 0.107 
       
Exogenous Network Effects       
Teammate Recommendation 0.004 0.003 0.003 0.003 0.003 0.003 
Prior Collaboration 0.005 0.005 0.005 0.002 0.002 0.001 
Enjoyable Working Relationship 0.007 0.006 0.006 0.026 0.028 0.023 
       
Hypothesized Variables       
Exogenous Network Effects       
Communication: H1a 0.107 0.102 0.101    
Leadership: H1b    0.071 0.067 0.071 
Invitation Sent: H2 0.014 0.014 0.014 0.001 0.001 0.001 
       
Degree of Certainty 0.158 0.152 0.135 0.161 0.170 0.169 
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Figure 17: Model 1 Goodness of Fit for Leadership indegree and outdegree distributions. 
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Figure 16: Model 1 Goodness of Fit for Communication indegree and outdegree distributions. 
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Figure 19: Model 2 Goodness of Fit for Leadership indegree and outdegree distributions. 
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Figure 18: Model 2 Goodness of Fit for Communication indegree and outdegree 
distributions. 
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Figure 21: Model 3 Goodness of Fit for Leadership indegree and outdegree distributions. 
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Figure 20: Model 3 Goodness of Fit for Communication indegree and outdegree distributions. 
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Replication of Analysis 

This section details the replication of the main analysis using the data described as 

Sample 2 in Chapter 3. The sample includes 197 participants (54% female; mean age = 21.1 

years, SD = 2.57 years) in 31 teams (mean team size = 6.35; SD = 1.25). Participants followed 

the same procedure as previously described in the current chapter. There were no significant 

differences between samples with respect to team size, gender representation, or age. The 

individual-level attributes (e.g. personality and leadership) are also comparable to the main 

sample. Participants sent and received under two invitations on average while conducting one 

more search on average than the main sample. The descriptive statistics for the second 

observation of the Sample 2 networks show a distinct difference from the main sample of the 

study: the number of ties decreased for all networks in the second observation.  

From the SIENA modeling, results from the replication further illustrate the relationship 

that exists between leadership and communication. Leadership and communication both have 

positive effects on each other (see Table 16), replicating support for H1, and communication has 

a larger relative importance on leadership than leadership has on communication across all three 

models (see Table 17Table 18Table 19). However, the invitation networks did not show 

relationships to communication and leadership (H2 not supported). The lack of effects points to 

the limits of team self-assembly in explaining the emergence and evolution of relationships in 

teams. A team has the ability to develop the necessary social structures based on multiple 

aspects, as evidenced by prior collaboration and university affiliation having positive effects on 

communication. In totality, the replication shows that leadership and communication in peer 

collaborations have a strong relationship, while teammate invitations do not have a robust effect.   
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Table 13: Sample 2 Individual-Level Variables: Descriptive Statistics and Correlations 

    Pearson Correlations 

  Mean SD 1 2 3 4 5 6 7 8 9 10 11 

 

Individual-Level 
Variables              

1. Invites Sent 2.40 2.78            

2. Invites Received 2.40 3.07 -0.146*           

3. Number of Searches 5.48 6.94 0.016 0.339*          

4. Competence 3.51 0.77 0.401 -0.078 0.128         

5. 
Leadership 

Experience 
3.53 0.77 0.289* -0.017 -0.019 0.376*        

6. 
Intellect or 

Imagination 
3.88 0.60 0.285* -0.059 -0.041 0.160* 0.222*       

7. Conscientiousness 3.79 0.72 0.101 -0.002 0.062 0.137 0.168* 0.073      

8. Extraversion 3.13 0.92 0.223* -0.129 -0.097 0.156* 0.494* 0.182* 0.074     

9. Agreeableness 3.84 0.69 0.320* -0.035 -0.038 0.185* 0.333* 0.289* 0.196* 0.283    

10. Negative Emotional 

Stability 
2.39 0.65 -0.077 0.042 0.053 0.021 -0.011 -0.232* -0.111 -0.029 -0.113   

11. 
Gender  

(m=0, f=1) 
0.54 0.50 0.136 0.003 0.009 0.109 0.028 0.017 0.261* 0.054 0.312* 0.126  

12. 
University affiliation 

(0 or 1) 
0.44 0.50 0.066 0.093 0.089 -0.111 -0.103 -0.010 0.167* 0.012 0.085 -0.084 0.097 

               

Note. * p < 0.05 
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Table 14: Sample 2 Network-Level Variables: Descriptive Statistics and QAP Correlations 

 
   QAP Correlationsb 

Within-Team Networks 
Number of 

Ties 

Average 
Out-

Degree Densitya 1 2 3 4 5 6 7 8 9 

1. Communication T1 432 2.19 0.392         
 

2. Communication T2 425 2.16 0.386 0.777         

3. Communication T3 496 2.52 0.450 0.762 0.823        

4. Leadership T1 326 1.65 0.296 0.588 0.514 0.517       

5. Leadership T2 315 1.60 0.286 0.604 0.636 0.624 0.674      

6. Leadership T3 366 1.86 0.332 0.559 0.602 0.668 0.625 0.740     

Pre-Team Networks             

7. Invitation Network 173 0.88 0.157 0.387 0.361 0.357 0.341 0.322 0.306    

8. Teammate Recommendation  

    (1 = Top 10, 0 = not Top 10) 
68 0.35 0.062 0.225 0.197 0.187 0.192 0.209 0.155 0.330   

9. Prior Collaboration 120 0.61 0.109 0.481 0.480 0.469 0.264 0.290 0.292 0.372 0.131  

10. Enjoyable Working Relationship 119 0.60 0.108 0.469 0.469 0.450 0.281 0.322 0.322 0.381 0.176 0.719 

 
Note. a. Density is calculated based on the number of possible ties within a team, totaling 1102 possible within-team (sized 6 and 7) ties; 

         b. All QAP correlations are significant at p < 0.05. 
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Table 15: Within-Team Network Ties Created, Maintained, and Dropped During Sample 2 Time Periods 

Within-Team Networks Period 1 (T1-T2) Period 2 (T2-T3) 

Communication   

Initial Ties 432 425 

Maintained 334 379 

Created  91 117 

Dropped 98 46 

Jaccard Index 0.639 0.699 

   

Leadership    

Initial Ties 326 315 

Maintained 217 252 

Created  98 114 

Dropped 109 63 

Jaccard Index 0.512 0.587 
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Table 16: SIENA Results of Leadership and Communication Coevolution Within Teams in Sample 2 

 Model 1 Model 2 Model 3 
 Estimate (SE) Estimate (SE) Estimate (SE) 

Parameter Leadership Comm. Leadership Comm. Leadership Comm. 

Intercept       

Report of a relationship 

(Outdegree) 

-3.48*** 

(0.48) 
0.26 (0.27) 

-3.61*** 

(0.51) 

-2.74*** 

(0.55) 

-3.59*** 

(0.51) 

-2.74*** 

(0.53) 

       

Control Variables       

Endogenous Network Effects        

Reciprocity -0.20 (0.15) 1.42*** (0.15) -0.23 (0.17) 0.74*** (0.17) -0.22 (0.17) 0.74*** (0.18) 

Transitive Triplets -0.42 (0.32) 1.53*** (0.17) -0.34 (0.33) 0.75*** (0.20) -0.32 (0.32) 0.75*** (0.21) 

Popularity (Indegree) 0.54*** (0.11) 

-0.68*** 

(0.09) 0.55*** (0.12) -0.25* (0.10) 0.53*** (0.12) -0.25* (0.12) 

Activity (Outdegree) 0.23*** (0.07) 

-0.14*** 

(0.04) 0.21** (0.07) 0.18** (0.07) 0.21*** (0.06) 0.18** (0.06) 

       

Individual Attributes       

Invites sent (alter) -0.02 (0.02) -0.02 (0.03)     

Invites sent (ego) -0.04 (0.02) -0.02 (0.03)     

Invites received (alter) 0.02 (0.02) -0.02 (0.02)     

Invites received (ego) 0.00 (0.02) 0.02 (0.02)     

Number of searches (alter) 0 (0.01) 0 (0.01)     

Number of searches (ego) -0.01 (0.01) 0.00 (0.01)     

Leadership Experience (alter)   -0.04 (0.11) -0.05 (0.11) -0.05 (0.11)  -0.04 (0.12) 

Leadership Experience (ego)   0.14 (0.11) -0.03 (0.10) 0.14 (0.11)  -0.03 (0.11) 

Competence (alter)   -0.08 (0.10) -0.07 (0.10) -0.10 (0.11)  -0.07 (0.11) 

Competence (ego)   -0.04 (0.10) 0.08 (0.10) -0.03 (0.10) 0.1 (0.10) 

Intellect or Imagination (alter)   0.02 (0.11) 0.09 (0.12) 0.02 (0.12) 0.1 (0.12) 

Intellect or Imagination (ego)   -0.20 (0.13) -0.09 (0.11) -0.18 (0.12)  -0.09 (0.11) 
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Conscientiousness (alter)   0.19* (0.09) 0 (0.10) 0.19 (0.10)  -0.01 (0.10) 

Conscientiousness (ego)   -0.19 (0.10) -0.16 (0.09) -0.18 (0.11)  -0.16 (0.09) 

Surgency or Extraversion (alter)   -0.07 (0.08) 0.04 (0.08) -0.05 (0.08) 0.04 (0.08) 

Surgency or Extraversion (ego)   0.11 (0.08) 0.1 (0.07) 0.11 (0.09) 0.11 (0.07) 

Agreeableness (alter)   -0.19 (0.11) -0.19 (0.11) -0.19 (0.11)  -0.19 (0.11) 

Agreeableness (ego)   -0.25* (0.11) -0.06 (0.10) -0.25* (0.11)  -0.05 (0.10) 

Negative Emotional Stability (alter)   -0.12 (0.10) 0.08 (0.11) -0.14 (0.11) 0.07 (0.11) 

Negative Emotional Stability (ego)   0.04 (0.11) 0.05 (0.09) 0.04 (0.11) 0.05 (0.09) 

Gender (alter)   -0.06 (0.14) 0.24 (0.15) -0.05 (0.15) 0.25 (0.16) 

Gender (ego)   0.06 (0.15) -0.13 (0.13) 0.04 (0.15)  -0.14 (0.13) 

University Affiliation (alter)   -0.25 (0.14) 0.19 (0.15) -0.29* (0.15) 0.2 (0.15) 

University Affiliation (ego)   0.07 (0.14) 0.53*** (0.14) 0.07 (0.14) 0.53*** (0.13) 

       

Shared Dyadic Attributes       

Gender Homophily   0.05 (0.14) 0.07 (0.13) 0.07 (0.15) 0.07 (0.13) 

Same University Affiliation   0.36 (0.29) 2.14*** (0.30) 0.37 (0.29) 2.14*** (0.28) 

       

Exogenous Network Effects       

Teammate Recommendation -0.03 (0.26) 0.02 (0.29) -0.22 (0.27) -0.06 (0.31)  -0.19 (0.28)  -0.03 (0.30) 

Prior Collaboration   -0.40 (0.27) 1.09** (0.39)  -0.40 (0.27) 1.08** (0.41) 

Enjoyable Working Relationship   0.43 (0.27) -0.13 (0.35) 0.44 (0.28)  -0.13 (0.37) 

       

Hypothesized Variables       

Exogenous Network Effects       

Communication: H1a 1.87*** (0.23)  1.71*** (0.42)  1.71*** (0.44)  

Leadership: H1b  1.15*** (0.24)  1.22*** (0.25)  1.21*** (0.24) 

Invitation Sent: H2 -0.02 (0.18) 0.3 (0.19) 0.04 (0.20) -0.17 (0.21) -0.07 (0.20) -0.10 (0.23) 

       

Rate function       

Rate period 1 (T1-T2) 2.15 (0.21) 2.33 (0.26) 2.08 (0.19) 2.99 (0.37) 2.08 (0.19) 2.99 (0.40) 

Rate period 2 (T2-T3) 1.79 (0.19) 2.02 (0.22) 1.82 (0.19) 2.64 (0.38) 1.83 (0.19) 2.63 (0.34) 
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Maximum Convergence Ratio 0.20 

0.07 

0.30 

0.12 

0.34 

0.12 All Convergence t-ratios <  
       

Note. All significance levels are two tailed; *** p < 0.001, ** p < 0.01, * p < 0.05.  
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Table 17: Relative importance of SIENA Parameters in Model 1 for Sample 2. 

 Relative Importance 
 Leadership Network Communication Network 

Parameter T1 T2 T3 T1 T2 T3 
Intercept       
Report of a relationship (Outdegree) 0.353 0.362 0.362 0.055 0.052 0.049 
       
Control Variables       

Endogenous Network Effects        

Reciprocity 0.015 0.016 0.018 0.183 0.186 0.169 
Transitive Triplets 0.040 0.031 0.040 0.194 0.192 0.220 
Popularity (Indegree) 0.245 0.237 0.242 0.304 0.312 0.308 
Activity (Outdegree) 0.110 0.104 0.117 0.120 0.120 0.128 
       
Individual Attributes       
Invites sent (alter) 0.007 0.007 0.007 0.008 0.008 0.007 
Invites sent (ego) 0.012 0.012 0.012 0.007 0.007 0.007 
Invites received (alter) 0.010 0.011 0.010 0.013 0.012 0.011 
Invites received (ego) 0.001 0.001 0.001 0.009 0.008 0.008 
Number of searches (alter) 0.003 0.003 0.003 0.001 0.001 0.001 
Number of searches (ego) 0.005 0.004 0.005 0.004 0.004 0.004 
       
Exogenous Network Effects       
Teammate Recommendation 0.001 0.001 0.001 0.000 0.000 0.000 
       
Hypothesized Variables       
Exogenous Network Effects       
Communication: H1a 0.198 0.211 0.183    
Leadership: H1b    0.089 0.085 0.078 
Invitation Sent: H2 0.001 0.001 0.001 0.013 0.012 0.011 
       
Degree of Certainty 0.210 0.200 0.210 0.246 0.263 0.258 
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Table 18: Relative importance of SIENA Parameters in Model 2 for Sample 2. 

 Relative Importance 
 Leadership Network Communication Network 

Parameter T1 T2 T3 T1 T2 T3 
Intercept       
Report of a relationship (Outdegree) 0.290 0.291 0.295 0.250 0.260 0.256 
       
Control Variables       

Endogenous Network Effects        
Reciprocity 0.014 0.014 0.016 0.057 0.057 0.056 
Transitive Triplets 0.026 0.021 0.027 0.073 0.070 0.090 
Popularity (Indegree) 0.196 0.189 0.194 0.086 0.089 0.096 
Activity (Outdegree) 0.081 0.078 0.089 0.087 0.082 0.092 
       
Individual Attributes       
Leadership Experience (alter) 0.004 0.004 0.004 0.004 0.004 0.004 
Leadership Experience (ego) 0.013 0.013 0.013 0.002 0.002 0.002 
Competence (alter) 0.007 0.007 0.007 0.006 0.006 0.005 
Competence (ego) 0.004 0.004 0.004 0.007 0.006 0.006 
Intellect or Imagination (alter) 0.002 0.002 0.002 0.007 0.007 0.006 
Intellect or Imagination (ego) 0.014 0.014 0.014 0.006 0.006 0.006 
Conscientiousness (alter) 0.019 0.020 0.018 0.000 0.000 0.000 
Conscientiousness (ego) 0.016 0.016 0.016 0.012 0.012 0.012 
Surgency or Extraversion (alter) 0.009 0.009 0.009 0.005 0.005 0.005 
Surgency or Extraversion (ego) 0.012 0.012 0.012 0.010 0.010 0.010 
Agreeableness (alter) 0.017 0.017 0.017 0.015 0.015 0.015 
Agreeableness (ego) 0.020 0.019 0.020 0.004 0.004 0.004 
Negative Emotional Stability (alter) 0.011 0.011 0.010 0.006 0.006 0.005 
Negative Emotional Stability (ego) 0.003 0.003 0.003 0.003 0.003 0.003 
Gender (alter) 0.004 0.005 0.004 0.016 0.015 0.014 
Gender (ego) 0.004 0.004 0.004 0.009 0.009 0.008 
University Affiliation (alter) 0.017 0.018 0.017 0.012 0.012 0.011 
University Affiliation (ego) 0.005 0.005 0.005 0.034 0.033 0.032 
       
Shared Dyadic Attributes       
Gender Homophily 0.006 0.006 0.006 0.006 0.006 0.005 
Same University Affiliation 0.035 0.037 0.034 0.196 0.197 0.177 
       
Exogenous Network Effect       
Teammate Recommendation 0.003 0.004 0.003 0.001 0.001 0.001 
Prior Collaboration 0.011 0.012 0.011 0.020 0.019 0.015 
Enjoyable Working Relationship 0.012 0.013 0.012 0.002 0.002 0.002 
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Hypothesized Variables       
Exogenous Network Effects       
Communication: H1a 0.145 0.152 0.134    
Leadership: H1b    0.062 0.061 0.059 
Invitation Sent: H2 0.002 0.002 0.002 0.004 0.004 0.004 
       
Degree of Certainty 0.230 0.212 0.232 0.290 0.288 0.297 

       
 

Table 19: Relative importance of SIENA Parameters in Model 3 for Sample 2. 

 Relative Importance 
 Leadership Network Communication Network 

Parameter T1 T2 T3 T1 T2 T3 
Intercept       
Report of a relationship (Outdegree) 0.283 0.283 0.287 0.245 0.255 0.252 
       
Control Variables       

Endogenous Network Effects        
Reciprocity 0.013 0.013 0.014 0.055 0.056 0.054 
Transitive Triplets 0.024 0.019 0.025 0.072 0.069 0.089 
Popularity (Indegree) 0.187 0.181 0.185 0.084 0.086 0.094 
Activity (Outdegree) 0.079 0.076 0.087 0.084 0.080 0.089 
       
Individual Attributes       
Invites sent (alter) 0.002 0.002 0.002 0.003 0.003 0.003 
Invites sent (ego) 0.003 0.003 0.003 0.002 0.002 0.002 
Invites received (alter) 0.009 0.009 0.008 0.007 0.007 0.006 
Invites received (ego) 0.002 0.002 0.002 0.003 0.003 0.003 
Number of searches (alter) 0.008 0.009 0.008 0.003 0.003 0.003 
Number of searches (ego) 0.002 0.002 0.002 0.002 0.002 0.002 
Leadership Experience (alter) 0.005 0.005 0.005 0.003 0.003 0.003 
Leadership Experience (ego) 0.013 0.013 0.013 0.002 0.002 0.002 
Competence (alter) 0.009 0.010 0.009 0.006 0.005 0.005 
Competence (ego) 0.002 0.002 0.002 0.007 0.007 0.007 
Intellect or Imagination (alter) 0.001 0.001 0.001 0.007 0.007 0.006 
Intellect or Imagination (ego) 0.013 0.013 0.013 0.006 0.006 0.006 
Conscientiousness (alter) 0.019 0.019 0.018 0.001 0.001 0.001 
Conscientiousness (ego) 0.015 0.015 0.015 0.012 0.012 0.012 
Surgency or Extraversion (alter) 0.007 0.007 0.006 0.004 0.004 0.004 
Surgency or Extraversion (ego) 0.013 0.013 0.013 0.010 0.010 0.010 
Agreeableness (alter) 0.017 0.017 0.016 0.015 0.014 0.014 
Agreeableness (ego) 0.020 0.019 0.019 0.004 0.004 0.004 
Negative Emotional Stability (alter) 0.012 0.012 0.011 0.005 0.005 0.005 



 

 

149 
Negative Emotional Stability (ego) 0.003 0.003 0.003 0.004 0.003 0.003 
Gender (alter) 0.004 0.004 0.004 0.016 0.016 0.015 
Gender (ego) 0.003 0.003 0.003 0.009 0.009 0.009 
University Affiliation (alter) 0.020 0.021 0.020 0.012 0.012 0.012 
University Affiliation (ego) 0.005 0.005 0.005 0.033 0.032 0.032 
       
Shared Dyadic Attributes       
Gender Homophily 0.007 0.007 0.007 0.006 0.006 0.005 
Same University Affiliation 0.034 0.036 0.034 0.193 0.194 0.174 
       
Exogenous Network Effects       
Teammate Recommendation 0.003 0.003 0.003 0.000 0.000 0.000 
Prior Collaboration 0.011 0.012 0.011 0.020 0.019 0.015 
Enjoyable Working Relationship 0.012 0.013 0.012 0.002 0.002 0.002 
       
Hypothesized Variables       
Exogenous Network Effects       
Communication: H1a 0.143 0.148 0.131    
Leadership: H1b    0.061 0.059 0.057 
Invitation Sent: H2 0.003 0.003 0.003 0.003 0.003 0.002 
       
Degree of Certainty 0.232 0.213 0.233 0.290 0.289 0.298 
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Discussion 

The results from this study provide insights into the coevolution of leadership and 

communication networks by including considerations for networks in which team members 

interact before collaborating. Technology has now created spaces for individuals to integrate 

personal information, form impressions about potential teammates, and communicate when 

forming teams (J. Cummings & Dennis, 2018; Gómez-Zará et al., 2019; Jahanbakhsh et al., 

2017). These interactions offer opportunities for teammates to establish relationships before 

collaborating. In the current study, leadership and communication relationships in teams are 

investigated dynamically as coevolving networks.  

From the results, the invitations that were exchanged online when self-assembling teams 

showed effects on both relations. When only accounting for behaviors in technology, the 

invitation network positively contributed to communication within teams. However, the effect 

was diminished when controlling for social relationships before collaborating and individual 

attributes, such as university affiliation and gender. The results also showed that invitations 

negatively impacted leadership in a team. While inviters are not necessarily team leaders, they 

exercise agency during team self-assembly and do not rely on invited teammates for leadership. 

From the main results, it is important to note that endogenous network effects are more important 

than other types of effects in explaining the coevolution of leadership and communication. 

The main theoretical contribution of the study lies in establishing limits for the 

explanatory role of technology-based interactions during team self-assembly. The digital trace 

data provides nuance in understanding how teams self-assemble with respect to who were invited 

amongst teammates, recommendations individuals viewed, and the level of activity of 
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individuals in the technology. However, the most important factors for explaining coevolution of 

within-team relationships were the relationships themselves and the endogenous network effects 

that describe the emergent network tie patterns. Communication and leadership both influence 

one another, and the invitation network generated during team self-assembly also contributes, but 

it appears that relationships within a team are more important factors (according to the SIENA 

relative importance measure) in understanding collaboration. 

The practical implications from the current research are centered around categorizing and 

understanding the types of interactions in technology that contribute to relationships in teams. In 

most technology platforms, there are multiple kinds of interactions that individuals enact, such as 

viewing recommendations and exchanging messages. Some types of interactions may be more 

informative than others with respect to describing subsequent collaboration practices. From the 

current study, interpersonal interactions have more influence than simply acquiring information 

about potential teammates. Leveraging such differences will help better bridge team self-

assembly to team collaboration.  

Future Directions 

The current study lends itself to future research that will extend the key findings. Future 

research could incorporate analysis of digital trace data to capture within-team communication 

with higher granularity over the course of a collaboration. The data used in the current study is 

helpful for understanding who communicated with each other in a team but accessing the 

conversations that happen within a team will greatly complement the collected networks. 

Investigating the topics and information that individuals communicated with one another helps 

build insight into the work tasks being conducted and will provide a better measure of 
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communication frequency and activity. Essentially, continuously capture communication 

interactions and message content expands the types of research questions to be explored in the 

current line of inquiry. 

Another core area for extension is an investigation of formal team leadership and 

informal leadership networks. The teams investigated in this study did not have formally 

assigned leaders and investigating whether a formal role assignment corresponds with reported 

patterns of leadership is valuable for better understanding the leadership relationship that was 

captured in the current study. Leaders were reported at different points of a collaboration, 

requiring that team members reflect and make judgements about which teammates (if any) they 

relied on for leadership, but the current study does not clarify whether leaders were openly 

acknowledged as leaders by other teammates. The reports do not necessarily reflect the tasks that 

nominated leaders performed to be considered as leaders, which could also be meaningful to 

consider. Future research has the opportunity to clarify how leadership emerges in teams, the 

tasks that are associated with leadership, and how emergent leadership compares to formal 

leadership roles. Lastly, future directions could include a more comprehensive study of the 

coevolution of team networks. Currently, only reported leadership and communication partners 

are studied, but there is theoretical interest in investigating how such relationships are impacted 

by negative team interactions, such as team conflict or social loafing. Including negative 

interactions or relationships that occur in teams better illuminates how teams collaborate and 

how negativity coevolves with other team dynamics.  



 

 

153 
Conclusion 

In conclusion, the current study contributes to research on teams by explaining the 

coevolution of leadership and communication networks while accounting for the effects of 

digital interaction networks that emerge during the use of an online platform. Results 

demonstrated that team networks affect one another during coevolution. On the other hand, there 

are limits on how much digital interaction networks contribute to either relationship within a 

team. When studying the team network dynamics, data collected during collaboration was more 

informative than digital trace data. The current findings establish boundaries for the utility of 

digital trace data from online platforms when investigating team relationships during 

collaboration. By giving insight into how within-team networks coevolve over the course of 

collaboration, the current study deepens understanding of team collaboration in the contemporary 

work environment. 
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CHAPTER 5. DISCUSSION 

This dissertation investigated team self-assembly through two behaviors, teammate 

search and invitation, and uncovers insights into how team self-assembly emerges as well as its 

effects on relevant components of collaboration, such as team diversity and relationships among 

team members. Teams commonly use technology to support collaboration, and technology 

impacts the ways that individuals select teammates and assemble into teams. In general, 

technology platforms and software algorithms in professional settings have transformed the ways 

that individuals engage with their work and socially interact with others (Colbert et al., 2016; 

Ellison, Gibbs, & Weber, 2015; Kane et al., 2014). In response, individuals commonly engage 

with technology to acquire knowledge from their environment about collaborators and others 

who possess relevant expertise and knowledge (J. Cummings & Dennis, 2018; Leonardi, 2015, 

2018; Walther, 2015). The infrastructure provided by technology platforms helps facilitate self-

assembly because individuals have access to interfaces that provide information and aid 

communication when individuals look for teammates and initiate collaborations.  

Individuals who select their own teammates and assemble teams leverage functionality 

commonly found in technology platforms in at least two ways. Because exchanging messages 

and viewing content from others is typically part of engagement in online platforms, the first way 

that people leverage technology for team assembly stems from technology’s role as a space for 

interpersonal interaction and communication. The ability to maintain a large list of contacts and 

having a common platform in which to engage with them—through public postings and private 

messaging—supports socialization, communication, and relationship maintenance (boyd & 

Ellison, 2007; Burke & Kraut, 2016; Ellison & Boyd, 2013; Leonardi & Vaast, 2017; Walther, 
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1996). Team assembly benefits from technology that supports such social interactions because 

communication and people-finding are two mechanisms that contribute to the pursuit of 

collaborators. When searching for experts in a global organization, a technology platform with 

information about expertise and organizational hierarchy helps a user identify potential 

contributors to a project or team (C. Y. Lin et al., 2009; Shami, Ehrlich, Gay, & Hancock, 2009; 

Shami et al., 2008). Another useful feature of technology is its ability to route requests or 

questions to relevant people based on an understanding of the broader social network and 

individual knowledge (and interests) (Horowitz & Kamvar, 2010). However, providing the space 

for people to communicate during team self-assembly is not the only helpful feature of 

technology.  

The other way individuals use technology when assembling teams is by consuming 

recommendations of content and people by making use of technology’s ability to aggregate, 

transform, and present complex information (Chen et al., 2009; Guy et al., 2009, 2011; Pizzato et 

al., 2013, 2010; Resnick & Varian, 1997; Terveen & McDonald, 2005). For example, technology 

leveraged in this dissertation transformed attributes of potential teammates into recommendation 

rankings by matching preferences of searchers, which resulted in a population of teammate 

candidates being ordered based on desirable attributes. With the recommendation rankings, 

technology supported searchers in making choices regarding whom to invite by representing 

other individuals and reducing the complexity of information presented to a user.  

In addition to providing a space for social interaction and transforming complex 

information into recommendations, the technology platform also served as a repository of digital 

trace data describing users’ patterns of invitations. Digital trace data are an essential aspect of the 
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research conducted as part of this dissertation because invitations have typically been an 

unobserved behavior. Studying invitations as a social network is a relatively new endeavor that is 

afforded because of access to behavioral log data gained from technology, which is “digital 

exhaust” generated as users interact within a given platform (Contractor, 2013; Eagle, Pentland, 

& Lazer, 2009; Kane et al., 2014; Lazer et al., 2009). By accessing digital trace data, the 

investigations of Chapters 3 and 4 address questions of how individuals assemble into teams and 

the impacts from team self-assembly on team collaboration.  

The first study in Chapter 2 notably does not directly address technology as a medium for 

search when assembling teams nor does it rely on digital trace data. However, the two developed 

search strategies for assembling teams represent distinctions that are realized when a searcher 

has access to information that extends an actor’s perceptions of a social network and the other 

actors therein. The differences between the two strategies were pronounced when problems were 

difficult and complex, and intellectual diversity and interdisciplinarity is often a requirement for 

such problems, making teams an attractive option (Hargadon & Sutton, 1997; Jacobs & Frickel, 

2009; Leahey, 2016). Team diversity along certain dimensions suggests that group members 

access perspectives and information from different parts of a social network (J. N. Cummings, 

2004; Reagans et al., 2004). The predilection of teams assembling for more complex and 

difficult problems corresponds to observed empirical patterns of the increasing prevalence of 

scientific teams (Falk-Krzesinski et al., 2010; Guimerà et al., 2005; Wuchty et al., 2007). 

Assembling a diverse team benefits from employing a search strategy that has the capability of 

tapping into different parts of a social network and acquiring more information.  
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Like other research studies focusing on network search, actors had to actively navigate a 

social network in Chapter 2. When people navigate social networks, they are constrained by their 

understanding of where knowledge resides in the network as well as by their contacts in the 

network (Contractor & Monge, 2002). However, the structure of a network may be at least 

somewhat apparent given organizational hierarchies or commonalities in group memberships and 

expertise levels (Adamic & Adar, 2005; Kossinets & Watts, 2009). To help individuals navigate 

and engage in social networks, technology platforms are often used. The presence of technology 

platforms that increase visibility into interpersonal interactions enable the observation of 

connections that exist throughout a social network. Enhancing visibility of interaction allows 

individuals to develop more accurate perceptions of expertise as well as increase shared 

cognition about the expertise of others in an organization (Leonardi, 2015, 2018). Increasing 

accuracy and awareness about others is one of the main functions of expertise finding systems 

(Horowitz & Kamvar, 2010; C. Y. Lin et al., 2009), which help individuals search when they 

would otherwise be unable to find those who meet their needs. Effectively searching for 

individuals with whom to collaborate and making the decision regarding whom to invite requires 

numerous considerations and the studies in the dissertation help to clarify both activities that 

contribute to team self-assembly. 

Implications 

 The implications from this set of research studies have wide-ranging implications for 

different fields and practitioners. Because collaboration has been shifting towards a more open 

model where membership is fluid and boundaries between teams are less distinguished 

(Edmondson, 2012; O’Leary et al., 2011), questions of team self-assembly are more relevant 
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now than in previous decades. Technology has helped to shepherd a more open environment for 

collaboration by expanding the coordination capabilities of groups in online communities. For 

example, open source software development projects and Wikipedia rely heavily on dedicated 

users who coordinate and collaborate digitally to create complex products and artifacts (Dabbish, 

Stuart, Tsay, & Herbsleb, 2012; Hahn, Moon, & Zhang, 2008; Kittur, Lee, & Kraut, 2009). 

Additionally, technology is the infrastructure supporting virtual teams and geographically 

distributed work groups (Gibson & Gibbs, 2006; Gilson, Maynard, Jones Young, Vartiainen, & 

Hakonen, 2015; Jarvenpaa & Leidner, 1999). Therefore, the impacts from studying team self-

assembly in technology apply to pertinent questions for scholarship relating to online 

collaboration. 

 The research developed through this dissertation is also relevant for social networks 

literature because Chapter 2 is a direct extension of well-developed ideas surrounding network 

search. Many prior research studies of decentralized network search focus on finding a single 

target from search (Adamic & Adar, 2005; Dodds et al., 2003; Milgram, 1967; Travers & 

Milgram, 1969). Therefore, the current research in the dissertation is different from prior 

research because it focuses on designing decentralized search strategies to find multiple team 

members that complement one another.  

Another implication from Chapter 2 applies to teams and groups research. The 

relationship between expertise diversity of teams and problem complexity is U-shaped with 

minimum expertise diversity occurring at levels of moderate problem complexity. The pattern 

materializes for two reasons; (1) expertise diversity must increase as more expertise areas are 

required by a problem (complexity increases) and (2) because individuals are capable of solving 
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a sizable proportion of problems at low levels of complexity, teams only assemble for problems 

of low complexity when there are requirements for highly specialized expertise in different 

expertise areas of a problem. Stated simply, diverse teams only need to be as diverse as the 

problem requires, and problems with moderate complexity tend to require the lowest amount of 

expertise diversity in teams.  

Chapters 3 and 4 contribute to the larger body of literature on social networks because 

they involve the analysis of a rarely studied relationship (invitations) and investigate its impacts 

on other relationships. An invitation represents the entry phase of collaboration because an 

invitation is the act of initiating a relationship with a potential teammate. The structure of 

invitations emerges as individuals reduce uncertainty surrounding their desirable teammates. 

Exploring the invitation relationship is essential for understanding the creation of relationships 

among team members and the uncertainty reduction that occurs during team assembly. Such 

investigations connect to prior research focusing on uncertainty reduction theory and initial 

stages of relationships (Berger & Calabrese, 1975; Knobloch, 2015; Solomon, 2015), which have 

more general implications for understanding human relationships and communication. Also, this 

research has implications for understanding team member preferences during self-assembly and 

how such preferences for collaboration lead to inequality among teams with respect to skills 

relevant for projects (Gómez-Zará et al., 2019). 

There are also other implications for teams and groups research because the dissertation 

contributes to prior research on team formation, focusing on the emergent interactions of team 

assembly. Much literature has identified antecedents to collaboration and linked them to team 

processes, dynamics, and outcomes (Bell, 2007; Humphrey & Aime, 2014; Ilgen, Hollenbeck, 



 

 

160 
Johnson, & Jundt, 2005; Kozlowski & Klein, 2000; Mathieu et al., 2017), and the value in this 

dissertation lies in the investigations into emergent behaviors that are a part of the team self-

assembly through social network analysis and agent-based modeling.  

There are three main practical implications presented in this dissertation that are valuable 

for practitioners to consider. The first implication—from Chapter 2—is rooted in balancing the 

costs and benefits of selecting a search strategy with a broad view of a social network instead of 

a more localized search strategy. A search strategy with a broad view of the network will use 

more information and require more effort when searching because there are more options 

available to review. Therefore, uncovering the circumstances where a local search performs 

comparably to a broader search strategy helps increase the overall efficiency of search since 

individuals will not exert more effort than needed when looking for teammates. Findings show 

that there is no difference between strategies in terms of team expertise diversity, and there is no 

benefit in using a search strategy with a broad view of the network, except for difficult problems. 

For less difficult problems, performance between strategies was similar, and problems that 

required fewer expertise areas (less complexity) had a higher proportion of individual solvers, 

meaning that teams were not needed to solve such problems. Taken together, findings illustrate 

the importance of understanding the types of problems to be addressed, which determines 

whether a team is necessary and whether a more powerful search strategy will yield unique 

benefits. 

 From findings in Chapter 3, the next implication exemplifies the need to recognize and 

manage the tension between individuals and technology. Technology has saturated much of the 

modern world and offers much value for facilitating social interactions. However, the 
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information provided from technology through recommendations and rankings coexists with 

individual experiences and perspectives. To make use of external information from technology 

recommendations, individuals must reflect on personal perspectives to negotiate to what extent 

they will balance their own beliefs with those offered from technology—and often from an 

algorithm based on logic that may not be readily apparent. When reviewing information about 

potential teammates during team assembly, findings show that individuals rely on their prior 

collaborations with others more than recommendations, which offers insight into the boundaries 

that people place on the usefulness of recommendations from technology. Acknowledging that 

people attend to multiple information sources when making decisions about teammates helps to 

clarify expectations for how humans use technology when assembling teams. 

 The last implication comes from Chapter 4 and establishes bounds on the explanatory 

power of team self-assembly interactions on the coevolution of team relationships. The observed 

network of invitations exchanged in a technology platform positively contributed to the evolution 

of communication and had a negative effect on leadership. However, recommendations from 

technology and other user interactions in technology did not contribute to explanations of either 

team leadership or communication. The limits show that team members will form relationships 

that evolve over the course of a collaboration regardless of the interactions that lead to the team 

assembling. Prior relationships have repeatedly been shown to impact subsequent collaboration 

(including in this dissertation), but technology has a weaker impact overall. While technology is 

a useful tool for facilitating team self-assembly by providing information about prospective 

collaborators and space for social interaction, findings suggest that teams will develop social 
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structure and establish norms during the course of collaboration and interactions within 

technology do not necessarily influence how team dynamics and relationships evolve over time. 

Future Directions 

Different areas for future research arise directly from the research developed in this 

dissertation. One area is a line of experimental research to isolate and test mechanisms 

explaining decision-making during team self-assembly. In the dissertation, search during self-

assembly was investigated through agent-based modeling. The model leveraged strategies 

derived from decentralized network search to illustrate different types of information individuals 

use when searching for teammates. To extend this research, and increase the broader 

applicability of the model, I plan on conducting social network experiments to observe how 

individual decision-making heuristics and behaviors are impacted by social network structure.  

 Social network experiments afford the ability to observe how an individual’s behaviors 

are impacted by their social connections. An example experiment would place a participant into 

a social network and give them the task of finding teammates to help them solve a problem by 

using experimentally-controlled information about their contacts, similar to a vignette study. For 

each problem, there will be people in the network who are better qualified than others to solve 

the problem, but the structure of the social network will influence which people are ultimately 

selected. The design of the social network experiment is similar to research designs that focus on 

information diffusion and behavioral influences, but is a noteworthy extension on such research 

because it focuses on how a social network impacts a person’s ability to find others to solve a 

problem, which is a common task in many collaborative settings. Increasing understanding 

around how network structure influences individual search behaviors will have broader 
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implications for research related to collaboration. Insights potentially can help organizations 

counteract the issues that arise from fractured or disconnected networks to promote more 

knowledge sharing across disciplines. 

From Chapters 3 and 4, the composition of preferences during search was not directly 

analyzed; recommendations (an output of search) were investigated since they are a 

representation of the match between search preferences and attributes available in potential 

teammates. I currently participate in related research that uncovers insights into commonly-

selected search preferences. The findings suggest that individuals have unique preferences for 

their teammates, but also that such preferences lead to biases in teammate selection, which result 

in a segregated set of teams that are unbalanced along attributes relevant for collaboration 

(Gómez-Zará et al., 2019). Future investigations related to such topics include studies exploring 

whether preferences are flexible and shift as teams assemble, whether technology platforms 

serve as agents of segregation or help mitigate biased teammate selection, and whether 

preference statements are indicative of other personality traits.  

Relatedly, future research focusing on interaction design for team self-assembly has ripe 

opportunities for exploration. Recommendations and invitations are key interactions under 

investigation, but there are other technology interactions that are worth exploring. For example, 

discussion forums and wall postings are publicly visible areas of interactions where individuals 

engage with others. What is the value of these interactions for explaining team self-assembly? It 

is possible that the value of using technology for team assembly is promoting a greater 

awareness of the pool of potential teammates in addition to serving as a space where people 

interact to assemble teams. Another area for exploration is the use of technology to assess the 
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quality of a collection of teammates before finalizing a team. A platform that provides 

recommendations also has the ability to provide a team-level score for the overall match amongst 

team members. Investigating whether team performance has a relationship to such a score helps 

team self-assembly better explain questions related to team performance.  

Conclusion 

 The research in this dissertation spans across different behaviors and uncovers relational 

mechanisms that contribute to team self-assembly. By investigating network search as an 

approach for finding teammates, the findings illustrate new explanations of how team diversity 

arises during the course of team assembly and how different conditions contribute to expertise 

diversity. From the investigation of invitation networks, the tension that individuals negotiate 

when integrating information from technology is highlighted while exhibiting the boundaries that 

exist in the explanatory power of recommendations from technology. Technology as a tool for 

facilitating team self-assembly has the ability to provide information and space for interaction, 

but it does not necessarily overwhelm the agency of those who are making choices about 

teammates. The effects of actions taken during team self-assembly are also limited in explaining 

the coevolution of team relationships. Given that collaboration is more prevalent and open, 

understanding how individuals select team members and the impacts of such choices on teams 

has wide-ranging impacts for scholarship and practice.  
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APPENDICES 

APPENDIX A 

This appendix describes the agent-based models used in CHAPTER 2, the study 

investigating the teammate search practice. There are numerous assumptions and variables that 

were implemented in the models for teammate search, and more supplementary information is 

included here to increase the transparency of the models used to generate results. All models and 

simulations were conducted in the NetLogo software platform (Wilensky, 1999; Wilensky & 

Shargel, 2002). 

Details and Pseudocode for Agent-Based Models 

NetLogo Extensions 
• nw (https://ccl.northwestern.edu/netlogo/docs/nw.html): A set of NetLogo functions for 

managing network data and performing a series of network analysis calculations. 
• table (https://ccl.northwestern.edu/netlogo/docs/table.html) A set of NetLogo functions 

for managing data represented in a tabular manner. 
Variables 
The variables needed to conduct the simulations are included inTable 20. 
 
Table 20: Table of Agent-Based Modeling Parameters. 

Type Variable Name Descriptive Name Purpose 

Variable Parameters 
(also in Table 1) 

num-expertise 
Problem Complexity 
(m) 

The number of 
expertise areas 
required by a problem. 

num-people Number of Agents (n) The number of agents. 

connect-rate 
Preference for 
Homophily (h) 

Contact selection 
based on similarity. 
The parameter ranges 
from connecting with 
people randomly with 
no preference for 
homophily (h = 0) to 
connecting with people 
based on increasingly 
strong preferences for 
homophily, based on 
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expertise profiles (h = 
4). 

num-contact 
Maximum Outgoing 
Contacts 

Fixes the initial 
maximum network 
density. 

num-queries Number of Problems 

Number of problems 
each network will 
assemble teams to 
solve. 

Global 

ratio 
Ratio of Actors to 
Expertise Areas 

The ratio of actors to 
the amount of 
expertise. Represents 
the overall diversity in 
network 

max-diff Maximum difference 

Maximum for the 
expertise difference 
between actors 

current-query 
Current Problem 
Identification Number 

The ID for the active 
problem 

union-contacts Search Group Contacts 
The union of contacts 
in group of searchers 

unfilled-areas 
Unfulfilled Expertise 
Areas of Problem 

The gaps in the search 
group's expertise for 
the current problem 

first-step 
Contacts within a 
radius of 1 

A list of direct contacts 
for a search group 

second-step 
Contacts within a 
radius of 2 

A list of contacts of 
direct contacts for a 
search group 

init-holder First Searcher 
First holder of current 
query 

Actor 

expertise Actor Expertise 
The expertise vector of 
m length 

expertise-diff 
List of Expertise 
Differences 

The list of similarity 
groupings that exist 
between agents. 

link-probabilities 
Probability of Creating 
a Tie 

A list of probabilities 
of creating a tie to 
every other actor 

prob-distribution 

Probability 
Distribution of Linking 
to Each Actor 

A distribution where 
all agents occupy some 
percentage of 
connecting 
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Problem 

required-expertise Problem Requirements 

This is the expertise 
requirement of a 
problem to be solved 

holders Search Group 
The current search 
group 

complete? Success Flag 
Whether it succeeded 
or failed 

team 
The Problem-solving 
Team 

The final set of 
problem holders who 
are capable of solving 
the problem. 

num-hops Network Distance 

The number of steps 
needed to find solvers 
for the problem 
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Pseudocode 

The functions necessary for performing the simulations are provided below and organized as 

follows. There are two main procedures: setup and go. Within each of these main procedures are 

sub-procedures that contain the logic necessary for searching a network to assemble teams. The 

pseudocode is modified from the original NetLogo programming language to enhance 

readability. Functions that perform actions are bolded. Brief descriptions for each line of code 

are given in most cases. Pseudocode is typeset in Consolas, and explanations are in Times New 

Roman. 

1. Helper Functions: There are two functions that are implemented to help perform tasks that are needed 

to build the model. One function “under-required-positions” finds the positions of all minimum 

values in a list. It was retrieved from a NetLogo discussion forum (http://netlogo-

users.18673.x6.nabble.com/Positions-of-all-the-min-values-in-a-list-td4866767.html). The second 

function is “random-normal-in-bounds,” which generates a truncated normal distribution by 

resampling (http://stackoverflow.com/questions/20230685/netlogo-how-to-make-sure-a-variable-

stays-in-a-defined-range).  

 
to-report under-required-positions [my-list] 

    report THE POSITIONS OF NEGATIVE VALUES IN A LIST 
end 

 
to-report random-normal-in-bounds [mid dev mmin mmax]: mid is the 
middle value of distribution, dev is the standard deviation, mmin is the minimum allowed 
value, and mmax is the maximum allowed value.  

    let result random-normal mid dev 
    if (result < mmin) or (result > mmax): 

report random-normal-in-bounds mid dev mmin mmax: 
resample if outside of bounds 

    report result: return value 
end 
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2. Setup: The setup procedure is necessary at the start of any simulation run. This is where data 

is cleared from memory and a new set of actors and problems are generated. Also, a social 

network is created during this procedure. 

to setup 
clear-all: Clear data from simulation run 
random-seed behaviorspace-run-number: Make the run reproducible 
nw:set-context people links: Identify the nodes and links of network 
create-people num-people 

set expertise with num-expertise and fill with random expertise 
values 

assess-network: Determines the similarity between agents and link probabilities 
reset-ticks: Reset the simulation clock 

end 
 
A. assess-network: Determines the similarity between actors and sets the encompassing 

group sizes 

to assess-network 
calculate-similarity: The similarity between actors 
calculate-groups: The group sizes that encapsulate actors, based on similarity 

end 
 

B. calculate-similarity: Calculates the absolute value of the expertise difference that exists 

among each pair of actors, and each actor creates a list of other actors with their expertise 

difference as well. 

to calculate-similarity 
set max-diff 0: Maximum difference that exists between any two actors 
ask people 

set expertise-diff to EMPTY LIST 
foreach ID of other people: [expert] -> 

set expertise-diff by appending the ID of expert 
along with the total expertise difference between 
expert and the “person” following routine. Each 
person keeps their own similarity records  
set max-diff to maximum difference between myself and 
any other actor 
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end 
 

C. calculate-groups: Calculates the group memberships that actors will have based on 

similarity as well as the probabilities of actors connecting to other actors.  

to calculate-groups 
nw:set-context people links: Defines the network  
set ratio (num-people / max-diff): Normalizing factor for the  
probabilities of connecting 

  ask people 
   let link-memberships EMPTY LIST 
       let memberships EMPTY LIST 
       set link-probabilities MAKE EMPTY TABLE 
       foreach expertise-diff: [expert] -> 
         set link-memberships APPEND THE FOLLOWING TO  

LIST; The person ID and normalized group  
size (see Equation 1)  

         set memberships APPEND THE FOLLOWING TO LIST; The  
person ID, normalized group size, group 
size raised to the power of h (see Equation 2) 

       foreach memberships: [mem] ->  
    table:put link-probabilities MAKE A TABLE ENTRY  

WITH PERSON ID, AND THE PROBABILITY OF 
CONNECTING (see Equation 3) 

 
D. create-network: Contact selection where each person will draw another person at random 

until they have attempted to make the maximum number of contacts 

to create-network 
  ask people: 
     repeat num-contact: 
       choose-contacts 
end 

 
E. choose-contacts: A probability distribution for each agent is generated from which people 

are selected. Each actor has their own distribution that describes the probability of 

connecting with anyone else. 

to choose-contacts 
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let prob random-float 1.0: Random number that will correspond to a 
value in the probability distribution assigned to a person. 

   let section 0 
   set prob-distribution MAKE EMPTY TABLE 
   foreach table:to-list link-probabilities: [tabs] -> 

set section (section + last tabs) 
      table:put prob-distribution first tabs section 
   let index MATCH THE ID OF THE AGENT THAT HAS A PROBABILITY  

AT THE POSITION OF prob 
if not out-link-neighbor? THEN CREATE A LINK TO THE PERSON 
THAT WAS IDENTIFIED     

end 
 
3. go: The Go procedure controls the entire logic of the simulation run. 

to go 
if [complete?] of query current-query != 0 and count queries < num- 
queries  

generate-query: Create new problems until the maximum number of problems 
have been created 

if count queries with [complete? != 0] = num-queries  
stop: All problems have been completed 

find-best-team: This is the ability to search for and assess team expertise 
tick: advance to next time step 

end 
 
A. generate-query: Creates each problem by setting expertise requirements and randomly 

assigning it to an initial problem holder. 

to generate-query 
    create-queries 1: 
       set current-query ID: Sets the global variable to the ID of the new  

problem to make inspection more straightforward 
       set team turtle-set nobody: No one is on a team at initialization 
       set required-expertise EMPTY LIST 
       set required-expertise n-values num-expertise [i] ->  

SETTING EACH VALUE TO A RANDOM NUMBER DRAWN FROM A 
TRUNCATED NORMAL DISTRIBUTION WHERE THE MAX IS THE 
MAXIMUM EXPERTISE LEVEL THAT SOMEONE POSESSES IN THE 
NETWORK 

       set holders turtle-set one-of people: Randomly select a  
person to be the first holder 

       set complete? 0: Flag for search completing 
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       set init-holder holders: Set the global variable 

set total-holders init-holder: Everyone who ever  
receives the problem 

end 
 

B. find-best-team: A procedure to determine whether the current set of problem holders will 

make a team for the problem. 

to find-best-team 
   assess-group: calculate the qualifications and decide if new people are needed 
   collaborate: Interact with other group members to decide on next problem 
holders 
end 
 

C. assess-group: Determine the expertise of the current set of holders, then find any areas 

that have unfulfilled expertise. 

 
to assess-group 

    let top EMPTY LIST 
    let scores EMPTY LIST 
    foreach EXPERTISE AREA OF THE CURRENT PROBLEM: [i] -> 

set top APPEND THE PERSON WITH MAXIMUM VALUE IN THE 
AREA 
set scores APPEND THE MAXIMUM EXPERTISE VALUE IN THE 
AREA 

set unfilled-areas under-required-positions APPEND TO A 
LIST, THE AREAS THAT DO NOT MEET THE EXPERTISE REQUIREMENT  

end 
 

D. collaborate: When there are no unfilled parts of the problems, complete it, and stop 

searching. If the problem needs to continue, aggregate the group’s contacts and then find 

to the qualified ones if they exist. 

 
to collaborate 

if empty? unfilled-areas 
    complete-query 
    stop 

else:  
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collect-contacts 

      route-query 
end 

 
E. collect-contacts: Aggregate the contacts of the group members 

 
to collect-contacts 
 if “Local Search” 

set union-contacts (turtle-set DIRECT CONTACTS THAT 
ARE OUTSIDE OF THE GROUP) 

 if “Broker Search” 
set first-step (turtle-set DIRECT CONTACTS THAT ARE 
OUTSIDE OF THE GROUP) 
set second-step (turtle-set DIRECT CONTACTS OF FIRST 
STEP) 

    set union-contacts (turtle-set first-step second-step) 
end 

 
 

F. “Local Search” route-query: Determine whether there are contacts that are more qualified 

than the current set of holders and make decisions to pass or fail the problem. 

 
to route-query 

    let next-group turtle-set nobody 
    let new-team turtle-set nobody 
    let finalist turtle-set nobody 
    if any? union-contacts 
       foreach EXPERTISE AREA OF THE PROBLEM [i] -> 
         if member? i unfilled-areas 

set finalist IDENTIFY THE MOST QUALIFIED 
CONTACT IN THE AREA 
if (EXPERTISE OF finalist IS GREATER THAN 
THE MAXIMUM EXPERTISE OF GROUP IN THE AREA) 

set next-group (turtle-set next-group  
   finalist) 

else:  
set next-group (turtle-set next-group 
PERSON WITH MAXIMUM EXPERTISE IN THE 
AREA ALREADY IN GROUP) 
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set new-team (turtle-set new-team MEMBERS 
OF next-group and holders WITH MAXIMUM 
EXPERTISE IN THE AREA) 

else: 
set new-team (turtle-set new-team PERSON 
WITH MAXIMUM EXPERTISE IN THE AREA ALREADY 
IN GROUP) 
 

else:  
fail-query: Fail if there are no people 

if ([holders] of query current-query = new-team) and (not 
empty? unfilled-areas) 

fail-query: The problem is failed if there is no better qualified team 
and there are still unfilled requirements 

else:  
pass-query new-team: If there is a new team, and there are unfilled 
requirements, then pass the problem to the new team. 

end 
 

G. “Broker Search” route-query: Determine whether there are contacts that are more 

qualified than the current set of holders and make decisions to pass or fail the problem. 

There are two-steps of contacts considered. 

to route-query 
    let next-group turtle-set nobody 
    let new-team turtle-set nobody 
    let finalist turtle-set nobody 
    let first-final turtle-set nobody 
    let second-final turtle-set nobody 
    if any? union-contacts 
       foreach EXPERTISE AREA OF THE PROBLEM [i] -> 
    if member? i unfilled-areas 

set first-final IDENTIFY THE MOST QUALIFIED 
first-step CONTACT IN THE AREA 
if (EXPERTISE OF first-final IS GREATER 
THAN THE MAXIMUM EXPERTISE OF GROUP IN THE 
AREA) 

             set finalist first-final  
else: 

             if any? second-step  
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set second-final IDENTIFY THE 
MOST QUALIFIED second-step 
CONTACT IN THE AREA 

              set finalist second-final 
else: 

              fail-query 
              stop 

if member? finalist first-step 
if (EXPERTISE OF finalist IS GREATER 
THAN THE MAXIMUM EXPERTISE OF GROUP IN 
THE AREA)  

set next-group (turtle-set next-
group finalist) 

else: 
set next-group (turtle-set next-
group PERSON WITH MAXIMUM 
EXPERTISE IN THE AREA ALREADY IN 
GROUP) 

else: 
if (EXPERTISE OF finalist IS GREATER 
THAN THE MAXIMUM EXPERTISE OF GROUP IN 
THE AREA): Finalist is now in second-step 

set next-group (turtle-set next-
group A DIRECT CONTACT OF THE 
finalist in SECOND-STEP THAT HAS 
THE HIGHEST EXPERTISE): Next group 
has a first-step contact that will serve as a 
broker and connect to second-step finalist. 

     set new-team (turtle-set new-team next- 
group): Add the finalist to the new team, the finalist is 
either a first-step contact that has more expertise than 
anyone currently in the team, or is a first-step contact that is 
connected to the second-step finalist and will broker the 
connection in the next step of the search. 

    else: 
set new-team (turtle-set new-
team PERSON WITH MAXIMUM 
EXPERTISE IN THE AREA ALREADY IN 
GROUP) 

else:  
fail-query: Fail if there are no people 

if ([holders] of query current-query = new-team) and (not 
empty? unfilled-areas) 
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fail-query: The problem is failed if there is no better qualified team 
and there are still unfilled requirements 

else:  
pass-query new-team: If there is a new team, and there are unfilled 
requirements, then pass the problem to the new team. 

end 
 
 

H. pass-query: Determine the next group of problem holders and then assign them to the 

appropriate problem variable. 

to pass-query [group] 
   ask query current-query 

set total-holders (turtle-set total-holders holders) : 
Add the current group of problem holders to a set of all people who have 
held the problem. 

       set num-hops num-hops + 1: Count the number of steps 
       set holders group: Set the holders variable to the new group of  

holders 
end 

 
I. complete-query: When expertise requirements are met, a member of a team is assigned to 

address each expertise area. The problem is completed. 

to complete-query 
    ask query current-query  
       if count holders > 1:  
        foreach AREA OF EXPERTISE OF PROBLEM [i] -> 

set team (turtle-set min-one-of holders with 
EXPERTISE GREATER THAN OR EQUAL TO THE EXPERTISE 
REQUIRMENT) 

       else:  
set team holders 

set complete? true 
       set total-holders (turtle-set total-holders team)  

end 
 

J. fail-query: Sets the complete status to failure, and then does not return a team 

to fail-query 
  ask query current-query 
     set complete? false 
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     set team turtle-set nobody 
     set holders init-holder 
  stop  
end 
 

 


