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Abstract 

Integrated Material and Process Development for Metal-Organic Frameworks in Post-

Combustion Carbon Capture Applications 

Karson Leperi 

 Pressure swing adsorption (PSA) is a promising technology for carbon capture and sequestration (CCS). 

However, while there has been much interest in PSA process development, the choice of adsorbent for the 

separation is just as important as the process configuration. Therefore, it is important to develop PSA 

processes in conjunction with development of the adsorbent. One class of adsorbents that received 

significant interest in the past few decades are metal-organic frameworks (MOFs). MOFs are crystalline, 

porous materials synthesized through self-assembly of metal nodes and organic linkers. Due to the great 

variety of organic linker and metal node combinations, thousands of potential MOFs can be synthesized 

and specifically tailored for any applications including CCS. This work focuses on the simultaneous 

development of MOFs and PSA processes to better understand and improve the process to reduce the cost 

of CO2 capture. 

 First, we investigated the impact of water on the performance of different materials in a two-stage 

Skarstrom cycle. In this investigation, we found that the dehydration method that resulted in the lowest CO2 

cost was to feed the wet flue gas directly into the column. This resulted in the first section of the column 

acting as a desiccant, capturing the water, while the remainder of the bed separated the CO2 from the N2. 

From this work we also found that the inclusion of water can shift the ranking of the ideal material, as we 

saw that zeolite 13X was the best performing material under dry conditions, but zeolite 5A performed 

equally well under wet conditions. Next, we developed a new general evaluation metric from CO2 capture 

cost data for 190 MOFs using the four step Fractionated-Vacuum Pressure Swing Adsorption (FVPSA) 

cycle. This metric has a higher Spearman correlation coefficient with the cost data than several other metrics 
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previously proposed, making it useful for future work in quickly evaluating a MOF’s potential for CCS 

applications. In developing the metric, we discovered that the most important feature of this metric is the 

working capacity of N2, followed by the working capacity of CO2. We also evaluated 16 MOFs that are 

reported in the literature to be promising for CCS using a modified Skarstrom cycle to rank them based on 

economic performance metrics, finding UTSA-16 as the best performer. Finally, we showed that to reduce 

the computational time for simulating PSA cycles, artificial neural networks (ANNs) are a promising 

surrogate model that are able to simulate PSA steps that may be used in a given cycle.  
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Chapter 1: Introduction  

 Over recent decades, temperatures around the world have been increasing rapidly. It is widely accepted 

that this global warming is mainly due to anthropogenic greenhouse gases, especially CO2. Although there 

has been substantial effort to develop renewable technologies with minimal net carbon emissions, fossil 

fuels will continue to play a significant part in the world energy mix. Due to continue significance of fossil 

fuels in the near term time frame, there is significant interest in methods to reduce the CO2 emissions from 

existing power plants. One proposed method is carbon capture and sequestration (CCS). While several 

technologies exist and have been tested for CCS applications, pressure swing adsorption is one of the most 

promising due to higher performance and lower energy requirements compared to other technologies.1–4  

1.1.  Pressure Swing Adsorption 

 Separation of gases accounts for a large fraction of the production costs in the chemical and petroleum 

industries, along with representing a large fraction of the cost of CCS. With advances in adsorbents, 

adsorption based separation has seen a considerable increase in applications.5–7 While originally intended 

for gas drying, adsorption based separation has seen additional uses in hydrogen separation,8–10 separation 

of hydrocarbons,11–13 methane upgrading,14,15 alcohol dehydration16–18 and isotope enrichment.19,20 

 Adsorption processes are generally based around porous solid adsorbents that selectively interact with 

one component of a gaseous mixture over the remaining components. The interactions between the solid 

and the gas are the basis of the separation process and generally fall into one of three categories: molecular 

sieving, kinetic separation and equilibrium separation.21,22 In molecular sieving, only certain components 

of a gaseous mixture are able to enter the pores of the adsorbent while the remaining components are 

excluded. Kinetic separation relies on differences in the diffusion rates between the gas components to 

separate them. Finally, equilibrium separation is based on differences in the thermodynamic attraction 

between the adsorbent and the gases.  
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 One of the other important factors for adsorption processes is the method for regenerating the adsorbent. 

In industrial applications, there are typically multiple columns, where some fraction of the columns are in 

adsorption mode while the other columns are being regenerated. For the separation of components from a 

gaseous mixture, two regeneration techniques are typically employed.21  

1. Temperature Swing Adsorption (TSA): In this process, the separation of the gaseous mixture involves 

the cycling of the temperature of the column. The gas is fed into the column at a low temperature where 

the heavy product adsorbs while the light product flows through the column. Afterwards, the 

temperature of the column is raised either through heat applied to the wall of the column or by using a 

superheated purge gas. One major drawback of TSA is the long cycle time due to the long times required 

for the heat to transfer throughout the bed. These long cycle times lead to a large bed, which is why 

TSA is typically used for purification applications.22 

2. Pressure Swing Adsorption (PSA): In this process, the separation involves the cycling of the pressure 

of the column from high adsorption pressures to lower desorption pressures. Due to shorter times 

required for depressurization, the cycle times of PSA processes are relatively short, which is why it is 

generally recommended for bulk separation applications such as CCS.22 

1.2.  Metal-Organic Frameworks 

 As described above, one of the most important components of a PSA process is the adsorbent used in 

the columns. Over the years, many different kinds of adsorbents have been used in PSA and TSA 

applications, including activated carbon, alumina, hydrotalcites, silica gel, zeolites and carbon molecular 

sieves.23–27 However, one class of materials that has been gaining interest in recent years are metal-organic 

frameworks (MOFs). MOFs are crystalline, porous materials that are synthesized in a building-block 

manner using metal “nodes” and organic “linkers.”28–30 The building-block synthesis of MOFs allows for 

them to be specifically tailored to particular application such as CCS.31 
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 The wide variety of possible adsorbents has led several researchers to investigate and try to find the 

ideal adsorbents for various separation applications. In general, researchers have used evaluation metrics 

based on the pure component and predicted mixture isotherms of a material to assess its performance. These 

metrics have included the working capacity, selectivity, regenerability and parasitic energy of the 

material.3,32 With such evaluation metrics, recently a large-scale study was performed where over 130,000 

hypothetical MOF structures were computationally evaluated.33 In addition to the previous metrics, other 

studies have looked into simulating breakthrough of gas mixtures in a fixed bed adsorber.34–37 In these 

studies, the breakthrough time and the concentration profile at the end of the column are used to compare 

the separation performance of different adsorbent materials, including MOFs.  

1.3. Research Goals and Outline 

The main goal of this thesis work was the simultaneous investigation into the development of the PSA 

process along with finding the best performing MOFs for the application. Throughout the dissertation, 

several different PSA cycles including Skarstrom, FVPSA, and several five step cycles with Heavy Reflux 

steps are examined and optimized with different adsorbents. This is done in order to find the best cycle for 

CCS. Along with the process development, we investigated hundreds of different MOFs in order to 

determine the best properties for predicting high performing adsorbents to provide recommendations for 

future synthesis research. 

In Chapter 2, we introduce the technique for modeling and optimizing PSA systems computationally. 

First, we provide the sets of partial differential algebraic equations (PDAEs) that describe PSA processes 

including mass, energy, and momentum balance equations, along with adsorption isotherms and mass 

transfer equations. We follow this up by discussing methodology for solving the sets of PDAEs, along with 

the genetic algorithm used to optimize the operating parameters of the PSA system.  
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 In Chapter 3, we explore the effect of water on the performance of different adsorbents in separating 

CO2 from N2. We test two MOFs, HKUST-1 and Ni-MOF-74, and two zeolites, zeolite 5A and 13X, and 

examine their performance in dry and wet flue gas in a two-stage Skarstrom cycle.  

 Chapter 4 examines the creation of a general evaluation metric (GEM) for the rapid evaluation of MOFs 

for CCS applications. Using the calculated cost of CO2 capture for 190 MOFs found in the Computation-

Ready Experimental (CoRE) MOF database,38 the metric is created by finding the most important isotherm 

features for cost prediction. Once these features are found, we then optimize the exponents on these features 

to maximize the correlation between the GEM and the CO2 capture cost for each MOF.  

 In Chapter 5, 16 MOFs that are reported as promising for CCS applications in the literature are 

investigated using a modified Skarstrom cycle. We examine the MOF’s ability to achieve the CCS goals of 

a 90% pure CO2 product while recovering 90% of the CO2, along with their economic performance through 

their productivity and energy requirements. 

 In Chapter 6, we investigate the use of artificial neural networks (ANNs) for rapid simulation of PSA 

cycles. ANNs are trained as surrogate models for each step of typical PSA cycles. These surrogate models 

are then used to determine the optimal operating parameters for three different PSA cycles using a 

derivative-based optimization solver. 

 Finally, in Chapter 7, conclusions from the previous chapters are summarized and recommendations 

for future research directions are provided.   
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Chapter 2: Methodology 

2.1.  PSA Modeling 

2.1.1 Adsorbent Equations 

Adsorption Isotherms: Adsorption isotherms define the equilibrium relationship between the concentration 

of a species in the gas phase and the concentration of the species in the adsorbed phase. It is important that 

these isotherms are able not only to model the change in the adsorption loading with changing pressure of 

the species, but also changing temperatures and the presence of other species that will compete for the 

adsorption sites. In previous work, it has been shown that Langmuir isotherms (single and dual site) work 

well in representing adsorption isotherms of zeolites and MOFs.32,39 *  
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where an Arrhenius equation is used to model the adsorption at different temperatures.  

Mass Transfer: Along with the molar loading of each gas species, the mass transfer rate of each species 

from the bulk phase to the adsorbed phase also plays an important part in the separation process. In general, 

the three main mass transfer resistances to the adsorption uptake are: external fluid film resistance, 

macropore diffusion and micropore diffusion. It has been previously shown that the external fluid film 

resistances are often negligible21 and micropore diffusion resistance is non-existent or negligible for the 

adsorbents being investigated.40,41 In order to calculate the macropore diffusion, it is necessary to calculate 

                                                      
* A list of important nomenclature is provided in Appendix A 



21 

 

the bulk diffusion coefficient (Dm), which can be estimated with the Chapman-Enskog equation,21 and the 

Knudsen diffusion coefficient, which is calculated with the equation 
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With the Knudsen and the bulk diffusion coefficients, the macropore diffusivity is calculated as follows.  
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 For modeling of the mass transfer, the Linear Driving Force (LDF) model is used, which approximates 

the intra-particle diffusion with a lumped expression.41  
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 The LDF equation has been widely used in other works.39,42,43 It is noted that the LDF model is only 

applicable when the cycle times of the process are considerably larger than the intra-particle diffusion 

times.44,45 

2.1.2 Mass, Energy and Momentum Equations 

Mass Balance: PSA processes generally take place in randomly packed bed adsorption columns with 

several phenomena interacting with each other such as advection, diffusion and the adsorption and 

desorption of the gas components. Assuming axially dispersed plug flow in the column and the ideal gas 

law, the total and individual component mass balances are21  
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Energy Balance: Because adsorption is an exothermic process and the resulting desorption is endothermic, 

spatial and temporal variations in the temperature occur. While assuming isothermal conditions is an 

acceptable assumption for purification processes (tasks where the primary adsorbed component is less than 

1% of the feed gas), for bulk gas separation it is important to model the temperature and account for 

temperature variations throughout the column. It is generally assumed that the only temperature gradient 

present is in the axial direction, and there is negligible difference in temperature between the adsorbent and 

the gas phase. The column and wall energy balances are 
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 However, due to the size of the columns used in industrial applications, it is commonly assumed that 

the bed behaves adiabatically. This reduces the column energy balance equation to 
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Momentum Balance: As the flue gas flows through the porous bed, it experiences a drop in pressure due to 

viscous energy losses and drops in kinetic energy. While it is apparent that during pressure changing steps, 

such as pressurization and depressurization, that pressure drop is important, it has also been shown that 

pressure drop plays an important role in constant pressure steps such as the Feed step.46,47 In packed 

columns, the Ergun equation is commonly used to describe the pressure drop throughout the bed. 
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In the equation above, the first term on the right hand side represents the losses due to viscous flow in the 

bed, and the second term represents the losses in the kinetic energy due to turbulence. 

2.2.  Simulation Methodologies 

 As discussed in section 2.1, PSA processes are modeled with coupled partial differential and algebraic 

equations (PDAEs) in space and time. While analytical solutions have been obtained,21,48,49 these solutions 

involve significant assumptions such as isothermal conditions, uncoupled isotherms and negligible pressure 

drops. In order to solve the PDAEs without these assumptions, it is necessary to discretize the spatial or 

temporal domains or both. In this work, the Method of Lines (MOL) approach is used to solve the PDAEs.50 

With this approach, the PDAEs are discretized in the spatial domain, converting them to a set of differential 

algebraic equations (DAEs), which are then integrated using time integration routines. The main advantage 

of this approach is that it allows for high accuracy in both the spatial and temporal domains of the problem. 

This is important, as one of the most common features of PSA systems is a steep adsorption in the spatial 

domain, leading to a stiff problem for the time integration routine to solve. The spatial discretization and 

temporal integration schemes are discussed in the subsequent sections.  
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2.2.1 Spatial Discretization 

 

Figure 2.1.  Finite volume discretization scheme 

 As mentioned above, in the MOL approach it is necessary to discretize the spatial domain to convert 

the PDAEs into a system of DAEs. We use the finite volume method (FVM) as the discretization method. 

In this approach, the spatial domain is divided into discrete volume elements, as shown in Figure 2.1. In 

these volumes, the value of each state variable is assigned to be equal to the average value over the entire 

volume. Using these values, the spatial derivatives are then replaced with the surface fluxes at the 

boundaries of the volumes. For instance, the first right hand term from equation (2.9) would become the 

following after finite volume discretization.  
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In the equation above, 
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 are the diffusion mass flux terms across the 

boundaries of volume j. However, while the FVM can be used by itself when diffusion is the dominant term 

in the equations, additional care needs to be taken when advection becomes the dominant term. In general, 

higher-order methods are able to model the smooth regions, but they introduce oscillations near steep fronts 

in the solution. Lower order methods, while ensuring no oscillations, often lack accuracy and flatten the 

steep front. In order to solve the PDAEs without introducing oscillations or flattening, it is necessary to use 

flux limiters with the FVM. With flux limiters, higher order methods are used around the smooth areas of 
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the solution, while lower order methods are used around the discontinuities. One flux limiter that has been 

shown in previous works51,52 to require less computational time to solve PSA problems while maintaining 

a high accuracy is the weighted essentially non-oscillatory (WENO) scheme. The WENO scheme is   
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2.2.2 Temporal Integration 

 After spatial discretization has been performed, a set of DAEs is left. However, due to the stiff nature 

of the problem, the method chosen for solving the DAEs is important in the accuracy and the computational 

efficiency of the solution. For solving the DAEs in the temporal dimension, the ode15s solver provided in 

MATLAB is used.53,54 In this solver, numerical differentiation formulas (NDFs) are used along with 

variable time steps to decrease the computational time required to solve the problem compared to other 

methods while maintaining a low truncation error.  
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2.3.  PSA Operation  

 As described in section 1.1, pressure swing adsorption operates cyclically, undergoing adsorption and 

desorption steps in a packed bed. The desorption step is used to remove the gas that had adsorbed during 

the adsorption step and is achieved by reducing the pressure of the bed. In Pressure/Vacuum Swing 

adsorption processes, the adsorption step occurs at pressures higher than atmospheric conditions, while the 

desorption steps occur under vacuum.  

2.3.1 Cycle Configuration 

 Over the past decades, hundreds of PSA cycle configurations have been developed for a variety of 

different gas separations. One of the first PSA cycles developed was the Skarstrom cycle, shown in Figure 

2.2.55 This cycle consists of four steps: pressurization, adsorption, depressurization (counter-current) and 

light reflux. In the first step, the pressurized flue gas is used to pressurize the column from the feed/heavy 

product end. In the second step, the flue gas is continuously fed into the column. During this step, the CO2 

(heavy product) is adsorbed while the N2 (light product) exits out of the top of the column (light product 

end). After the column has become saturated with CO2, the column is depressurized from the heavy end, 

resulting in the CO2 deadsorbing and being removed from the column. Finally, a portion of the N2 gas 

produced during the adsorption step is used to purge the remaining CO2 from the column, increasing the 

recovery. After the light reflux step, the pressurization step is then repeated to continue the process in a 

cyclic manner. It should be noted that while the figure shows a single column proceeding through all four 

steps with a tank being used to store some of the N2, the original patent called for two columns running 

concurrently but two steps out of sync. This would allow for the N2 gas from the adsorption step of one  



27 

 

Flue Gas

N2

CO2 

Product

P
re

ss
u

ri
za

ti
o

n

A
d

so
rp

ti
o

n

Li
g

h
t 

R
e

fl
u

x

C
o

u
n

te
r-

C
u

rr
e

n
t 

D
e

p
re

ss
u

ri
za

ti
o

n

Tank

     

Figure 2.2. A four step Skarstrom Cycle55 and the pressure profile through one cycle. 

column to be used directly for the light reflux step, without having to store it. In Figure 2.3, the internal 

column profiles of the CO2 mole fraction in the gas phase, CO2 molar loading, N2 molar loading and column 

temperature for a Skarstrom cycle with zeolite 13X as the adsorbent are shown. 

 The Skarstrom cycle represents one of the simplest PSA process operations. Unfortunately, it has been 

shown in several works to be unable to obtain the high purities of CO2 necessary for CCS.56,57 This is 

because the cycle was originally designed for operations where the purity of the light product is the highest 

concern (e.g. hydrogen purification, air dehydration, air separation). In order to improve the purity of the 

heavy product, several modifications to the cycle have been proposed, including heavy reflux steps, light 

product pressurization steps, co-current depressurization steps, pressure equilibration steps and adding a 

second stage where the product from the first stage is the feed of the second stage.24–26,39,43,58 All PSA 

processes differ with respect to which operating steps they employ and their sequence.  
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Figure 2.3. Internal column profiles for Skarstrom cycle with zeolite 13X as the adsorbent. The profiles 

correspond to the bed at the end of each step with the colors corresponding to Pressurization (Blue), 

Adsorption (Green), Depressurization (Red) and Light Reflux (Black). 

2.3.2 Boundary Condition Matching with Interacting steps in Multi-bed operation 

 In order for PSA cycles to operate continuously, multiple beds are needed to be in operation at all times. 

This allows one bed to always be performing the separation (pressurization and feed step), while the other 

bed is being regenerated (depressurization and light reflux steps). However, this presents a challenge, as in 

order to accurately model the PSA cycle, it is necessary not only to simulate the PSA bed, but also the 

boundary conditions between interacting steps. As seen in Figure 2.4, in order to accurately simulate the 

light reflux step, we need to know composition and temperature of the emissions from the feed step. Two 
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strategies for dealing with boundary condition matching are unibed and multibed simulations. In the unibed 

approach, only one column is simulated through the entire PSA process and the boundary conditions are 

stored for the interacting steps. The multibed approach on the other hand simulates all the beds, but only  

 

Figure 2.4. A schematic of the Skarstrom cycle showing the bed operation with four separate steps. 

for a portion of the cycle so that all steps are covered between the two beds. This allows the boundary 

conditions to be matched simultaneously, while the final column profile of one bed must be matched to the 

initial column profile of the other bed. Since our work has PSA cycles that contain up to 6 steps with 

complex timing setups, we will use the unibed approach for matching boundary conditions among 

interacting steps. 

2.3.3 Cyclic Steady State 

 One feature of PSA processes that makes them more complex to solve compared to other separation 

processes is that they are always operating under transient conditions. As the PSA process switches from 

Bed 1

N2 
Product

CO2 

Product

P
re

ss
u

ri
za

ti
o

n

Fe
e

d

Li
gh

t 
R

e
fl

u
x

C
o

u
n

te
r-

C
u

rr
e

n
t 

D
e

p
re

ss
u

ri
za

ti
o

n

     Flue Gas

Li
gh

t 
R

e
fl

u
x

Bed 2
C

o
u

n
te

r-
C

u
rr

e
n

t 
D

e
p

re
ss

u
ri

za
ti

o
n

CO2 

Product      Flue Gas

Fe
e

d

P
re

ss
u

ri
za

ti
o

n



30 

 

one operating step to another, the boundary conditions around the column change. This results in the process 

never reaching a steady state. However, after several cycles, PSA processes do reach a state where the 

conditions in the bed do not change from one cycle to another, which is defined as cyclic steady state (CSS). 

Therefore, although the bed is constantly changing during a cycle, the conditions of the column remain 

constant between cycles.  

 In order to solve for the CSS conditions of a column for a given set of operating conditions, successive 

substitution is employed to reach the steady state. In this technique, the column is run for one cycle. After 

one cycle has been run, the cycle is repeated with the conditions of the column at the end of the cycle 

inputted as the initial conditions for the next cycle. This method is chosen because it replicates the PSA 

process in real life and is simple to implement compared to other methods for determining CSS. However, 

with the successive substitution approach, another problem that arises is how to determine when CSS has 

been achieved. The three definitions that have been used in the literature are:  

1. The change in the state variables between consecutive cycles is below a certain relative or absolute 

threshold.26,43,51 

2. The change in PSA performance indicator measurements (e.g. purity, recovery, mass balance) is below 

a certain relative or absolute threshold.25,39,51 

3. The PSA cycle is run for a predefined number of cycles and the conditions of the final cycle are taken 

as CSS.2,40 

 In this work, CSS is defined as a combination of the first and second methods. CSS is said to have been 

reached when the maximum change in the state variables (e.g. molar loading for all components, mole 

fraction of the gas phase, temperature) is below 0.5%. In addition, in order to ensure no further accumulation 

is occurring in the column, the ratio of the gas entering the column to the gas exiting the column over the 

entire cycles needs to be between 0.995 and 1.005 for CSS to be achieved. 
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2.4.  NSGA-II Optimization Algorithm  

 While it is important to be able to successfully model the PSA process, this is only one part of the 

overall modeling process. In the Skarstrom cycle shown in Figure 2.2, several of the operating parameters 

such as the velocity of the feed gas, the length of the column and the time of individual steps can take on a 

range of values which will have a dramatic effect on the final product. In order to determine the highest 

purity or lowest cost of the PSA process, it is necessary to use an optimization algorithm to determine the 

optimal operating values. Several strategies have been successfully used to determine the optimal operating 

conditions for PSA systems including complete discretization equation based56,59 and reduced order 

modeling.60 For this work, a genetic algorithm is used to determine the optimal conditions, specifically the 

nondominated sorting genetic algorithm II (NSGA-II).61 NSGA-II is an evolutionary genetic algorithm that 

has been designed for efficient solution of multi-objective problems. Like most evolutionary algorithms, 

NSGA-II works by creating an initial population containing random sets of values of the variables and then 

evaluating these solutions. Then, an offspring population set is created by performing genetic operations 

such as mutation and cross-over on the parent population. The offspring population is then evaluated. The 

offspring and the parent population are ranked based on the objective values and the best solutions are 

selected as the new parent population. Finally, a new offspring population is created and evaluated. This 

process is repeated until a cutoff criterion is reached, such as maximum number of generations or maximum 

time evaluation.  

 In most of this work, the NSGA-II algorithm is used to determine the optimal operating conditions to 

minimize the overall cost of capturing CO2 while ensuring that the CO2 purity and recovery are above 90%. 

The overall cost of capturing CO2 includes the operating cost and the capital cost of the entire process.   
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Chapter 3: Optimization of Two-Stage Pressure/Vacuum Swing 

Adsorption with Variable Dehydration Level for Post-

Combustion Carbon Capture 

3.1. Introduction 

 In 2010, 30.4 gigatons of CO2 were emitted into the atmosphere worldwide, with around 38% of the 

emissions in the US coming from the generation of electricity.62 To reduce these emissions, there have been 

substantial efforts to develop renewable energy technologies with minimal net carbon emissions. However, 

over the next few decades, fossil fuels will continue to play an important role in our energy mix. Therefore, 

there is a significant interest in reducing the CO2 emissions from existing power plants via Carbon Capture 

and Storage (CCS).63 Although several methods exist for CCS, including absorption,4,64,65 

membranes,4,64,66,67 and algae,68,69 Pressure/Vacuum Swing Adsorption (P/VSA) is perhaps the most 

promising method due to its higher performance and lower energy requirements compared to the other 

technologies.1–4 Due to this, P/VSA has been studied extensively for post-combustion carbon capture, 

including both experimental and computational studies of various process configurations and adsorbent 

materials.2,25,26,39,51,59,70,71 However, in most published investigations, the flue gas being fed into the P/VSA 

bed is assumed to be completely dehydrated, containing only CO2 and N2. In reality, flue gas contains SOx, 

NOx, and water in addition to the CO2 and N2. While NOx and SOx are already removed from flue gas in 

many power plants, additional removal of water, if it is required for CCS, would represent an additional 

cost that must be considered in evaluating CCS technologies.  

 Several experimental studies have investigated the impact of water on the adsorption of CO2 for various 

materials. Wang and LeVan72 investigated the effects of water on CO2 adsorption for zeolites 13X and 5A. 

They measured the adsorption of CO2 at water loadings of 1.0 mol/kg, 3.4 mol/kg, and 9.4 mol/kg at 

temperatures from 0°C to 50°C. Their results showed that at the highest water loading, corresponding to a 
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relative humidity of less than 1.4%, both of the zeolites experienced a tenfold decrease in CO2 adsorption. 

Liu et al.73 investigated the adsorption of pure component CO2 and H2O, along with their mixtures, in the 

metal-organic frameworks (MOFs) HKUST-1 and Ni-MOF-74. They determined that the two MOFs were 

able to maintain higher CO2 loadings at high water loadings compared to zeolites 13X and 5A. In another 

work, Yazaydin et al.74 computationally and experimentally showed that CO2 adsorption in HKUST-1 can 

be slightly enhanced by hydrating the crystal to 4 wt% compared to a fully dehydrated sample. In this 

system, the water molecules coordinated to the open metal sites of the MOF, and the enhanced CO2 

adsorption was attributed to higher Coulombic interactions between the water and CO2 molecules compared 

to the interactions between the MOF and CO2.  

 In addition to studies of CO2/water mixtures on different adsorbent materials, there have been several 

experimental investigations of P/VSA systems for post-combustion CO2 capture with wet flue gas streams. 

Li et al.75 experimentally demonstrated the effect of water on the performance of a VSA process for carbon 

capture. The VSA process used zeolite 13X as the adsorbent and consisted of three steps: pressurization, 

adsorption with the feed gas, and counter-current evacuation. With dry flue gas, the process achieved a 

recovery of 78.5% and a purity of 69%, with a column productivity of 0.287 kg CO2/(hr∙kg adsorbent). 

When wet flue gas was used, the recovery dropped to 60.4%, the productivity dropped to 0.225 kg 

CO2/(hr∙kg adsorbent), and the purity rose to 72%. This change in performance was due to water adsorbing 

in the zeolite, reducing the CO2 capacity of the adsorbent. In a follow up study, Li et al.76 examined the use 

of a layered bed using zeolite 13X along with F200 and CDX-activated alumina as the desiccant. With the 

layered bed, they were able to achieve a CO2 purity of 74.8% and a recovery of 77.6%.  

 The effect of water on the performance of a VSA process from an optimization perspective has been 

studied by Krishnamurthy et al.27 They studied the effect of water on the performance of a 4-step VSA 

process with zeolite 13X. They showed that, although the process was still able to achieve the overall goal 

of 95% purity and 90% recovery, the water increased the energy consumption to 230 kWh/ton and reduced 
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the productivity of the bed to 1.03 tons of CO2/(m3 adsorbent ∙ day). This is compared to the dry flue gas 

case, where the energy consumption was 154 kWh/ton and the productivity was 1.52 tons of CO2/(m3 

adsorbent ∙ day). They also examined a new two-bed, dual-adsorbent process. The first bed contained silica 

gel and dehydrated the flue gas before feeding the product to the second bed containing zeolite 13X. With 

this configuration, they were able to achieve a minimum energy consumption of 177 kWh/ton and a 

productivity of 1.29 tons/(m3 adsorbent ∙ day) for wet flue gas. 

 Even with recent research progress on adsorption technologies for carbon capture, there are still 

significant gaps in our knowledge. Although several studies have investigated the detrimental effect of 

water on the performance of the system and the systematic optimization of the process to overcome this, 

most CCS studies treat the stream entering the CO2 capture unit as either fully saturated with water or bone 

dry.  However, using standard technology for water removal prior to CO2 capture, the water level could be 

treated as a decision variable.  To the best of our knowledge, no work has attempted to optimize the 

humidity level to minimize the overall cost of adsorption-based carbon capture. In addition, most work on 

process-level optimization of P/VSA processes only investigated a single adsorbent material. A notable 

exception is the work of Hasan et al.,40 where 70 zeolites were evaluated using full process optimization 

after first screening through hundreds of zeolite structures.  

 In this work, we aim to provide insight into the optimal operating conditions for various adsorbents for 

post-combustion CO2 capture at the lowest total cost including the costs of dehydration and compression. 

We develop a detailed P/VSA simulation model that accounts for pressure drop, heat effects, isotherm non-

linearity, and deleterious effects of water on the adsorption of CO2. We then use this model to simulate a 

two-stage Skarstrom cycle and optimize several operating parameters including the water level in the gas 

stream that enters the P/VSA system, in order to give the lowest cost while maintaining necessary purity 

and recovery constraints. This optimization is performed for two zeolites and two MOFs. Finally, we use 
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the results to compare the performance of the different materials in order to gain insight into the optimal 

water level in the flue gas to minimize the total cost. 

3.2. Methods  

 In this section, we describe the process model for the P/VSA technology, the feed dehydration 

technologies, and the compression of the CO2 product. These models are used to simulate the process, 

which is then optimized to determine the minimum cost of CO2 capture for each adsorbent material.  

3.2.1  Problem Statement 

 The overall goal of this work is to determine the minimum cost for separating CO2 from flue gas and 

compressing it for pipeline transportation. It is assumed that the flue gas is at 1 atm and 313 K, with a 

composition of 14.1 mol% CO2, 5.5 mol% H2O, and the remainder N2.77 The total flow rate of the flue gas 

is assumed to be 1 kmol/s, approximately equivalent to the emissions from a 30 megawatt coal power 

plant.78 It is noted that 30 MW is a small scale power plant, and additional issues might arise from scaling 

up the process, primarily due to uncertainty of adsorbent costs and required vacuum pressures. For the final 

product, the purity and recovery are both set to 90% for most calculations; some additional calculations 

using 95% purity are presented in the Appendix B. The purity and recovery are set to minimize compression 

costs for pipeline transportation and ensure that a significant portion of the CO2 emission is captured. For 

pipeline transportation, the CO2 product is then compressed to 110 bar and maintained below 35°C. A 

Skarstrom cycle is used as the cycle configuration due to its operational simplicity and its long history of 

use in industry.  The cycle consists of the following steps: 1) Pressurization, 2) Adsorption, 3) Counter-

Current Depressurization, and 4) Light-Product Purge.21 The bed begins at the low pressure (PL). During 

the pressurization step, the flue gas is used to raise the pressure of the column from the low pressure to the 

high pressure (PH). After the bed is pressurized, the valve at the end of the column is opened and the flue 

gas flows through the bed, with relatively pure N2 leaving the bed. When the bed is almost saturated, the 

valve at the end of the column is closed, and the bed is depressurized from the front end. Finally, after the 
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column is depressurized, some of the N2 gas from the adsorption step is fed into the end of the column to 

increase the recovery of CO2.  In order to meet the purity and recovery constraints, a two-stage Skarstrom 

cycle is used, where the product stream from the first stage is fed into the second stage. This configuration 

has been studied theoretically24,25,79,80 and experimentally,58,81 showing that over 90% purity and recovery 

can be achieved. The overall two-stage P/VSA system with the compression chain is shown in Figure 3.1. 

Although two-stage PSA systems are directly linked together in industrial applications, for this work, it is 

assumed that there is a buffer tank between the two stages, allowing a uniform feed stream for the second 

stage. 

Tank

Feed 

Flue 

Gas

N2

CO2 

Product

Tank

PH2

N2
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30 oC

PH1

↑

PL1

PH1 PL1

PH1

↓

PL1

PH2

↑

PL2

PH2

↓

PL2
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Figure 3.1. P/VSA cycle with post-separation compression 
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3.2.2  P/VSA Model Formulation 

 The adsorption model used in this work involves a system of coupled partial differential equations 

(PDEs) and non-linear algebraic equations.21 The following assumptions are made: 

 The Ideal Gas Law accurately describes the gas phase; 

 The viscosity of the gas is independent of pressure; 

 There are no radial effects in the concentration, pressure, or temperature in both the gas and solid 

phase; 

 There is thermal equilibrium between the gas phase and the solid phase; 

 The Ergun equation is used to represent the axial pressure drop; 

 The particle size and void fraction are constant throughout the bed; 

 The linear driving force model41 is used to describe gas diffusion into the adsorbent; 

 The temperature outside the wall is maintained constant.  

 All of the equations used in the model are put into non-dimensional forms. The non-dimensional 

variables are as follows: 
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 In our model, we use the following component mass balance to calculate the mole fraction of CO2 (yi) 

in the gas phase:  
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where 0 / LPe u L D  and    0 0 01 / /sRT q P      . The axial dispersion coefficient, DL, is given 

by the following equation:21 

 00.7L m pD D r u    (3.3) 

The mole fraction of N2 is calculated through the equation: 

 
2 2

1CO Ny y    (3.4) 

The overall mass balance results in the following equation for calculating the total pressure: 
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The following energy balance is used to represent the temperature in the wall:  
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The temperature of the gas and solid phases in the column are calculated by the following equation:      
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where 
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 The linear driving force (LDF) is used to calculate the mass transfer between the gas phase and the 

solid phase. 
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The pressure drop throughout the column is calculated using the Ergun equation. 
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 For all of the equations above, the parameters used for the simulation are provided in Appendix B. In 

order to solve these equations, the initial and boundary conditions of the column need to be known. When 

initializing the simulation, it is assumed the bed and the column wall are in equilibrium with the flue gas at 

atmospheric temperature. Since the first step in the Skarstrom cycle is the pressurization step, the pressure 

in the bed is initially at the purge pressure.  
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 After starting up, the initial conditions of each step are assumed to be the same as the bed profile at the 

end of the previous step. The boundary conditions for each step are provided below, where Z=0+ and Z=1- 

are the two ends of the column. For the pressurization step at Z= 0+ and Z = 1-, the boundary conditions are 

given by equations (3.21) and (3.22), respectively.  
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 The boundary conditions for the adsorption step at Z=0+ and Z=1- are given by equations (3.23) and 

(3.24). 
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 It is noted that for the adsorption step, the inlet pressure is used as the inlet boundary condition, from 

which the inlet velocity is then calculated. The boundary conditions for the depressurization step at Z=0+ 

and Z=1- are given by equations (3.25) and (3.26). 
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The boundary conditions for the purge step at Z=0+ and Z=1- are given by equations (3.27) and (3.28). 
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where yi,ads and Tads are the time averaged mole fraction and temperature during the adsorption step at the 

Z=1- boundary. 

 This Skarstrom cycle is continuously simulated until a cyclic steady state (CSS) is reached, which 

happens when the changes in the state variables are less than 0.5% between the end of the purge step and 

the beginning of the pressurization step. Once the bed has reached CSS, the performance of the process is 

evaluated via the purity of the CO2 stream and the recovery of the CO2, which is calculated as the CO2 that 

is not lost during the adsorption step (see Appendix B). When the wet flue gas is used as the feed, the purity 

is calculated on a dry basis, as it is assumed that the water can easily be separated from the CO2 while the 

product is being prepared for pipeline transportation.   
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3.2.3 Adsorbent Materials 

 For this study, four materials are chosen: zeolite 5A, zeolite 13X, and the MOFs Ni-MOF-74 and 

HKUST-1. For all these materials, dual-site competitive Langmuir adsorption with temperature dependent 

isotherm parameters are used to describe the adsorption. For zeolite 5A, HKUST-1, and Ni-MOF-74, 

experimental CO2 and N2 isotherms82–86 were retrieved from the literature and fitted to the following 

equations:  
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  (3.29) 

Zeolite 13X is described by the following dual site Langmuir equations given by Haghpanah et al.51  
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  (3.30) 

where C is the molar concentration in the gas phase moles per cubic meter. The fitted isotherms at 40°C 

and the selectivity at 1 bar for each material are displayed in Figure 3.2. 

 When humid flue gas is used as the feed to the P/VSA system, the impact of water on the performance 

is accounted for by reducing the equilibrium molar loading of the adsorbent for both CO2 and N2 

 
* *

, ,i humid i dryq q    (3.31) 
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where α is the impact factor of water on the CO2 and N2 uptake. It is assumed that the presence of water 

equally impacts the adsorption of N2 and CO2. Using the results of Liu et al.73 and Yu et al.,72 the impact of 

water is accounted for in the simulation through the following equation:  
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where qw is the water loading predicted from the isotherms, and Lwl is the penetration length of the water 

front. The water isotherms for both zeolites are given by a Toth isotherm:87 
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 The water isotherm of Ni-MOF-74 is given by73 
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where wl is the mole fraction of water in the gas. Finally, the water isotherm of HKUST-1 is given by73  
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The length of the water front penetration is calculated through the following equation. 
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 The isotherm parameters for all of the materials are provided in Tables B2.3-B2.5. 
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3.2.4 Feed Dehydration 

Two dehydration technologies were developed for analysis: triethylene glycol (TEG) absorption 

and cooling and condensation (C&C). In TEG absorption, the flue gas is fed into the bottom of an absorption 

column with lean TEG fed from the top as shown in Figure 3.3. The TEG absorbs the water from the gas. 

The TEG is then regenerated through distillation. In C&C, the flue gas is chilled through a refrigeration 

cycle incorporating Refrigerant-152a. The liquid water is then separated from the flue gas in a flash drum 

as shown in Figure 3.4. 

 

Figure 3.2. (a) CO2 isotherms for all materials at 40°C and (b) comparison of the CO2 selectivity over N2 

of each material over the range of temperatures experienced. 

 

0 0.5 1 1.5
0

1

2

3

4

5

6

7

CO
2
 Partial Pressure (bar)

C
O

2
 M

o
la

r 
L
o
a
d
in

g
 (

m
o
l/
k
g
)

 

 

Zeolite 13X

Zeolite 5A

Ni-MOF-74

HKUST-1

(a)

280 300 320 340 360 380
10

0

10
1

10
2

10
3

10
4

Temperature (K)

S
e
le

c
ti
v
it
y

 

 

Zeolite 13X

Zeolite 5A

Ni-MOF-74

HKUST-1

(b)



45 

 

P-6

Dry Flue Gas

Wet Flue 

Gas

Makeup 

TEG

Cooling 

Water Cooling 

Water

Water

Purge Gas

 

Figure 3.3. TEG absorption scheme. 

 

 

 

 

Cooling 

Water

10 bar

10 bar

45 oC

Wet 

Flue Gas

Water

Dry Flue 

Gas

 

Figure 3.4. Cooling and condensation scheme. 
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Figure 3.5. Total Annualized Cost of dehydration methods. 

 

Table 3.1 Estimated parameters for annualized dehydration cost. 

Technology a ($/year) b ($/year) 

Cooling and Condensation -377,405 -1,100,000 

TEG Absorption -118,480 137,095 

 For both technologies, Aspen HYSYS was used to simulate the process, and total annualized costs were 

estimated using relevant literature as described in Appendix B.88,89 The costs of the processes were then 

fitted to logarithmic functions based on the desired water level as shown in Figure 3.5 in order to integrate 

the dehydration technologies with the P/VSA system. This allows the water level of the gas entering the 

P/VSA unit to be modeled as a continuous operating parameter instead of as discrete points as in our 

previous preliminary investigation.90 The general equation for the Total Annualized Cost of dehydration is  

 ln( )DC a wl b     (3.37) 
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with the coefficients for each technology provided in Table 3.1.  The dependence of the total cost on the 

required dehydration level for each technology is shown in Figure 3.5. At lower levels of dehydration (i.e., 

higher amounts of water remaining in the treated gas stream), C&C is cheaper due to lower capital costs 

compared with TEG absorption. However, at higher levels of dehydration, the temperature needed to 

condense the desired amount of water results in high operating costs associated with the refrigeration cycle. 

It was determined that the water level remaining in the flue gas at which the two technologies are 

economically equivalent is 0.8 mol%. Above this value, cooling and condensing is selected, while below it 

TEG absorption is a better choice.   

3.2.5  Post Separation Compression 

 For transportation through a pipeline network, it is necessary to compress the CO2 product stream to 

110 bar.63 This compression is accomplished through a 5-stage compressor train with intercooling to 

compress the stream to 90 bar (Figure 3.1). At 90 bar, the gas is then cooled and condensed at 22°C.91 Once 

the CO2 is condensed, the stream is pressurized to 110 bar using a pump.  

3.2.6  Process Economics 

All equations used for sizing the equipment, along with calculating the capital and operating costs 

of the P/VSA process, are retrieved from relevant sources and described in the Appendix B.88,89 For the 

adsorbent, the cost of the zeolites is assumed to be $1/kg. For the two MOFs, we are using the estimated 

mass production cost based on the work of Liu et al.92 It is assumed that HKUST-1 would cost $21/kg and 

Ni-MOF-74 would cost $7/kg. For calculations of operating cost, it is assumed that the P/VSA unit runs for 

8,000 hours per year and that the cost of electricity for the compressors, vacuum pumps, and liquid pumps 

is $0.06/kWh. For calculation of the annualization factor, the lifetime of all capital equipment except for 

the adsorbents is assumed to be 20 years. For the adsorbent, the lifetime is assumed to be 5 years. The 

interest rate for both is assumed to be 10%. 
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In calculating the total cost of the P/VSA column, it is necessary to know the inner diameter and 

the wall thickness. The column is assumed to be made from carbon steel and to have a thickness of 0.015 

m. The column diameter is determined by the feed rate, velocity of the inlet gas, and the number of columns 

used. The diameter is calculated as follows:2 
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  (3.38) 

where tc is the cycle time of the process, which is the sum of the times of each step, uads is the velocity of 

the feed gas during the adsorption step, N is the number of columns and PH is in Pa. In order to prevent the 

diameter of the column from becoming too large, the number of columns is set to 12 for the first stage and 

4 for the second stage. The difference in number of columns for each stage is to maintain a roughly 

equivalent diameter between the two stages. 

3.2.7 Solution Techniques 

 To solve the system of PDEs, we first discretize the spatial variables using the finite volume method 

(FVM)93 using a weighted essentially non-oscillatory (WENO)94 scheme, as this method has been shown 

in previous investigations to allow for the use of a smaller number of finite volumes without sacrificing the 

accuracy of the simulation.51 The equations are discretized into 10 volume elements and then the set of 

ordinary differential equations are solved using MATLAB’s stiff solver ode15s.53 The objectives of each 

case study are optimized using the nondominated sorting genetic algorithm (NSGA-II), as this allowed the 

full model to be used in the optimization algorithm and allows for parallel implementation.61 For the NSGA-

II, the population is set to 10 times the number of decision variables, which are shown in Table 3.2. The 

algorithm is set to run for at least 60 generations or until no visible improvement is seen in the objective 

functions for 5 generations.  
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3.3. Results and Discussion 

 In order to achieve the final goal of minimizing the cost of the P/VSA system, three case studies are 

examined. First, we examine the maximum purity and recovery for each material using a single stage with 

dry flue gas. This is done in order to determine the single-stage capabilities of all the materials and from 

there to eliminate any materials not capable of achieving the desired purity and recovery in two stages. For 

the second case study, we minimize the total cost of a two-stage P/VSA system while maintaining the 

required purity and recovery of 90% each. For this case study, it is assumed that the flue gas is dehydrated 

completely prior to the P/VSA system. We do not consider the cost of the dehydration for this case study, 

since it will be equal for all materials. In the third case study, we minimize the cost of the entire 

superstructure including the dehydration, with the dehydration level as one of the optimization variables. 

For all three case studies, the bounds of the operating variables are listed in Table 3.2. For each case study, 

the genetic algorithm is run for each material separately.  

3.3.1 Single-Stage Maximized Purity and Recovery 

 In the first study, the capabilities of each material in a single-stage Skarstrom cycle are tested. This 

results in 7 potential decision variables for optimization: the times for each of the four steps in the cycle, 

the length of the column, the adsorption pressure and the purge pressure. In order to reduce the number of 

decision variables, the pressurization steps and depressurization steps were allowed to run until the column 

was fully pressurized or depressurized, respectively. We also set the purge pressure a priori. Due to the 

highly nonlinear shape of the CO2 isotherms for these materials, lower purge pressures are desirable to 

increase the working capacity of the adsorbents, resulting in higher purities and recoveries. However, there 

are practical limits on how low the pressure can be. Therefore, the purge pressure is set to a lower bound 

of 0.1 bar, since the purpose of this case study is to determine the capabilities of the materials in a practical 

system. This results in four decision variables for optimization for each of the materials.  
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 The Pareto curves resulting from the optimization for the four materials are shown in Figure 3.6. It is 

immediately apparent that none of the four materials is capable of achieving the desired goal of 90% purity 

while recovering 90% of the CO2 in a single-stage Skarstrom cycle. The best performing material, zeolite 

13X, is only able to achieve a purity of 76% with a recovery close to 90%. It is also apparent that HKUST-

1 is the worst performing material. While zeolite 5A and Ni-MOF-74 are able to achieve purities of 70% 

and 67%, respectively, HKUST-1 is unable to reach even 30% purity. When comparing the adsorbent 

isotherms in Figure 3.2, it is apparent that this low performance is due to the lower CO2 uptake of HKUST-

1 compared to the other materials. The internal column profiles of gas-phase CO2 mole fraction, CO2 and 

N2 loading, and temperature for zeolite 13X and HKUST-1 for the highest purity points are shown in Figure 

3.7. The optimized values of the decision variables are provided in the figure captions.  When economics 

are not considered, it is optimal to pressurize the feed stream.  For example, PH is 4.46 bar for 13X and 4.2 

bar for Ni-MOF-74. It should be noted that by lowering the vacuum pressure even further, it would be 

possible to achieve the 90% purity goal with the three best performing materials. However, due to issues 

with scaling up vacuum pumps capable of achieving these low pressures we set the lower bound for the 

vacuum pressure to be 0.1 bar. 

 From the mole fraction profiles in Figure 3.7, it is seen that zeolite 13X (solid lines) is able to achieve 

significantly higher purity of CO2 after the depressurization step (red) compared to HKUST-1 (dashed 

lines). This difference in performance between zeolite 13X and HKUST-1 can be explained by the working 

capacities for both gases, which can be approximated as the change in the molar loading between the end 

of the adsorption step (green) and the end of the purge step (black) integrated across the bed. Using this 

approximation, the CO2 and N2 working capacities of zeolite 13X are 0.7 and 0.15 mol/kg, respectively. 

For HKUST-1, the CO2 and N2 working capacities are 0.22 and 0.45 mol/kg, respectively. It is also seen  
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Figure 3.6. Pareto curves for multi-objective optimization of purity and recovery.  

 

Table 3.2. Upper and lower bounds on the operating parameters for each case study. 

Case Study PH 

(bar) 

PL (bar) tads (s) tpurge (s) L (m) Humidity Level 

(mol%) 

1 stage maximum 

purity/ recovery 

1-10 Fixed at 

0.1 

20-2000 20-2000 1-5 Fixed at 0% 

2 stage dry flue gas 

minimum cost 

1-10 0.1- 0.5 20-2000 20-2000 1-5 Fixed at 0% 

2 stage wet flue gas 

minimum cost 

1-10 0.1- 0.5 20-2000 20-2000 1-5 0.01 - 5.5 mol% 
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Figure 3.7. Internal column profiles for the highest purity shown in Figure 3.6.  Solid lines correspond to 

Zeolite 13X, PH=4.46 bar, tads=794 s, tpur=789 s, L=4.28 m, cycle time=1945 s. Dashed lines correspond to 

HKUST-1, PH=1.5 bar, tads=680 s, tpur=646 s, L=4.81 m, cycle time=1642 s. For both materials, the profiles 

correspond to the bed at the end of each step with the colors corresponding to Pressurization (Blue), 

Adsorption (Green), Depressurization (Red), and Purge (Black). 
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Table 3.3. Minimum cost breakdown for a two-stage system with dry flue gas.  Costs are in $ million per 

year. 

Material Operating Costs Annualized Capital 

Costs 

Post-Separation 

Costs 

Total Costs 

Zeolite 13X 2.47 0.27 2.44 5.19 

Zeolite 5A 2.68 0.25 2.47 5.40 

Ni-MOF-74 3.16 0.86 2.42 6.44 

  

 

Table 3.4. Optimal operating parameters for the first stage of the two-stage PSA system with dry flue gas. 

The cycle time is the sum of the times required for each step. 

Material Adsorption 

Pressure (bar) 

Purge Pressure 

(bar) 

Adsorption 

Time (s) 

Purge 

Time (s) 

Length 

(m) 

Cycle 

Time (s) 

Zeolite 13X 1.00 0.10 726 382 1.73 1173 

Zeolite 5A 1.27 0.10 521 291 1.69 878 

Ni-MOF-74 1.36 0.10 657 418 1.50 1145 

 

Table 3.5. Optimal operating parameters for the second stage of the two-stage PSA system with dry flue 

gas. The cycle time is the sum of the times required for each step. 

Material Adsorption 

Pressure (bar) 

Purge Pressure 

(bar) 

Adsorption 

Time (s) 

Purge 

Time (s) 

Length 

(m) 

Cycle 

Time (s) 

Zeolite 13X 1.26 0.10 589 249 3.81 1120 

Zeolite 5A 1.30 0.10 664 449 4.95 1520 

Ni-MOF-74 2.66 0.10 330 215 3.22 939 
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that a significant change in temperature occurs in the column during the P/VSA cycle. Between the end of 

the adsorption step and the end of the purge step, the average temperature in the column decreases by 20°C. 

This shift in the temperature helps to explain why the working capacity achieved during the P/VSA cycle 

is smaller than working capacities calculated simply from the isotherms of the material. In addition, due to 

a temperature gradient developed in the column, the difference between the maximum and minimum 

temperature experienced throughout the cycle is around 40°C. Since it will be difficult for HKUST-1 to 

achieve the purity and recovery goals of 90% each, HKUST-1 is not considered in the other case studies.  

3.3.2 Dry Flue Gas, Two-Stage Minimized Cost 

 Since one stage cannot meet the desired purity and recovery, a two-stage P/VSA process is constructed 

and the system is optimized for minimum total cost with the minimum purity and recovery as constraints. 

In this case study, the flue gas is assumed to be completely dehydrated prior to the separation process. This 

allows us to compare the performance of each of the adsorbents under dry conditions initially. Since a two-

stage configuration is used and the purge pressure is allowed to vary in order to reduce operating costs of 

the vacuum pump, the number of decision variables increases to ten for this case study.  

 The minimum cost from the optimization for each of the materials is shown in Table 3.3.  The optimal 

operating parameters are provided in Tables 3.4 and 3.5.  The adsorption pressures are notably lower than 

in the previous section, now that the cost of pressurization is taken into account.  However, the purge 

pressures all optimize to 0.1 bar, indicating that the economic cost of the vacuum pumps and their operation 

is justified by the improved performance at this low desorption pressure.  

 Based on the total costs, zeolite 13X is the best performing material of the three studied. The total cost 

for zeolite 13X is $5.19 million per year, corresponding to a cost of $32.1 per ton of CO2 captured. It can 

be seen that the majority of the costs for the process are associated with the operating costs (compressor 

and vacuum pump costs for the P/VSA process) and the post-separation compression costs (which 

encompass both capital and operating costs for the 5-stage compressor train, heat exchangers and pumps). 
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The annualized capital costs account for only approximately 5% of the overall costs of the system. Ni-

MOF-74 has the highest costs, costing $1.2 million dollars more per year than zeolite 13X. This is largely 

due to higher operating costs associated with higher adsorption pressures in both the first and second stages, 

as shown in Table 3.4 and Table 3.5. However, Ni-MOF-74 also has significantly higher capital costs than 

the two zeolites, because the MOF itself is more expensive to produce than the two zeolites. It should be 

noted that the cost of the MOF is one of the most uncertain parameters in the model. 

3.3.3 Wet Flue Gas, Two-Stage Minimized Cost 

 Before performing an optimization of a two-stage system with wet flue gas, we compared results for a 

single stage with wet and dry flue gas to determine the magnitude of the effect that water has on the CO2 

purity and recovery.  A single-stage Skarstrom cycle is simulated with zeolite 13X as the adsorbent and 5.5 

mol% water in the feed stream under the following operating parameters: PH= 1 bar, PL= 0.1 bar, tads= 726 

s, tpur= 382 s, L= 1.73 m. Under these conditions, a purity of 52.1% (on a dry basis) is achieved with a 

recovery of 93.1%. This is compared to the dry flue gas at the same operating parameters, where a purity 

of 49.7% and a recovery of 97.5 % is achieved. The internal column profiles for the dry and wet flue gas 

conditions are shown in Figure 3.8. It can be seen that in the presence of water the CO2 front travels further 

into the bed than under dry flue gas conditions. This is because water reduces the adsorption capacity of 

the first section of the bed. This results in more CO2 being lost during the adsorption step and a decrease in 

the overall recovery. The presence of water also decreases the amount of N2 in the column, resulting in 

increased purity for the wet flue gas conditions. Based on these results, it can be concluded that complete 

dehydration of the flue gas before the P/VSA cycle is unnecessary (at least for some adsorbents). For 13X, 

the water front stays concentrated at the entrance of the bed, and the first section of the bed acts as a 

desiccant.  

Next, the operating parameters of a two-stage Skarstrom cycle are optimized for each material in 

the presence of water. For this case study, 11 decision variables are used: the ten decision variables 
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mentioned in the previous case study along with the water level in the gas stream entering the P/VSA 

system. This results in a population of 110 for the optimization run, which is run for at least 60 generations 

for each material. Since water is a heavy product, more readily adsorbed by all the adsorbents, the water 

that is adsorbed in the first stage of the system also enters the second stage. Therefore, it is assumed that 

the humidity level in the feed entering the first stage is also the humidity level entering the second stage.  

 From the optimization, the minimum cost for each material is shown in Table 3.6, and the corresponding 

operating parameters are given in Tables 3.7 and 3.8. Zeolite 13X and 5A have the lowest total costs of 

$5.52 million per year and $5.53 million per year respectively, or ~$34.1 per ton of CO2. While zeolite 13X 

has the lowest operating cost of the three materials, it has higher capital costs than zeolite 5A. One 

interesting result of the optimization is that all of the materials required little to no dehydration before the 

P/VSA columns. The water levels for all of the adsorbents are seen in Table 3.7 and Table 3.8.  All of the 

materials were able to accomplish this by using the first section of the column as a desiccant, dehydrating 

the flue gas in the process, and having the second section of the column separate the CO2 from the N2. This 

is seen in the column profiles of zeolite 13X in Figures 3.9, 3.10. The water front is seen in the reduced 

CO2 loading at the front of the bed in the first and second stage column profiles of zeolite 13X shown in 

Figures 3.9 and 3.10. Note that in all cases, the length of the column that is affected by water is less than 

the length of one of the finite volumes. In order to account for this, the water penalty factor is adjusted so 

the average decrease in the loading over the entire finite volume is equal to the penalty factor over the 

length of the column affected. For zeolite 13X, the water front penetrated the first 0.15 m of the bed in the 

first stage, and the first 0.1 m of the second stage. For the zeolite 5A, the water front penetrated 0.08 m and 

0.03 m for the first and second stages, respectively. Finally, for Ni-MOF-74, the water front penetrated 0.12 

m and 0.07 m for the first and second stages, respectively.  
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Figure 3.8. Internal column profiles comparing dry (dashed lines) and wet (solid lines) flue gas using a 

single stage with zeolite 13X under the same operating parameters. The profiles correspond to the bed at 

the end of each step with the colors corresponding to Pressurization (Blue), Adsorption (Green), 

Depressurization (Red), and Purge (Black).   
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Figure 3.9. Internal column profiles of the 1st stage of a two-stage P/VSA system with wet flue gas using 

zeolite 13X. The profiles correspond to the bed at the end of each step with the colors corresponding to 

Pressurization (Blue), Adsorption (Green), Depressurization (Red), and Purge (Black). 
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Figure 3.10. Internal column profiles of the 2nd stage of a two-stage P/VSA system like Fig. 3.9 with wet 

flue gas using zeolite 13X. The profiles correspond to the bed at the end of each step with the colors 

corresponding to Pressurization (Blue), Adsorption (Green), Depressurization (Red), and Purge (Black). 
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Table 3.6. Minimum cost breakdown for a 2-stage system with wet flue gas.  Costs are in $ million per year 

Material Operating 

Costs 

Capital 

Costs 

Post-Separation 

Costs 

Dehydration 

Costs 

Total 

Costs 

Dehydration 

Technology 

Zeolite 13X 2.66 0.39 2.46 0 5.52 None 

Zeolite 5A 2.83 0.24 2.46 0 5.53 None 

Ni-MOF-74 3.49 0.83 2.46 0.084 6.86 C&C 

 

Table 3.7. Optimal operating parameters for the first stage of the two-stage PSA system with wet flue gas. 

The cycle time is the sum of the times required for each step. 

Material Adsorption 

Pressure 

(bar) 

Purge 

Pressure 

(bar) 

Adsorption 

Time (s) 

Purge 

Time (s) 

Length 

(m) 

Humidity 

Level (%) 

Cycle 

Time (s) 

Zeolite 13X 1.21 0.10 676 263 3.23 5.50 1053 

Zeolite 5A 1.48 0.10 562 335 2.10 5.50 975 

Ni-MOF-74 1.81 0.10 709 553 1.90 4.34 1354 

 

Table 3.8. Optimal operating parameters for the second stage of the two-stage PSA system with wet flue 

gas. The cycle time is the sum of the times required for each step. 

Material Adsorption 

Pressure 

(bar) 

Purge 

Pressure 

(bar) 

Adsorption 

Time (s) 

Purge 

Time (s) 

Length 

(m) 

Humidity 

Level (%) 

Cycle Time 

(s) 

Zeolite 13X 1.71 0.10 370 257 3.56 5.50 883 

Zeolite 5A 1.44 0.10 307 246 3.57 5.50 788 

Ni-MOF-74 2.90 0.14 300 154 3.90 4.34 773 
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3.4. Conclusion 

 A robust simulator was developed that is capable of modeling a P/VSA process accounting for heat 

effects, pressure drops, and non-linear isotherms. It uses a finite volume scheme coupled with a WENO 

scheme for quickly and accurately solving the system of PDEs. With this simulation, a genetic algorithm 

was used to optimize the operating parameters for CO2 capture, allowing us to investigate the performance 

of three different materials with and without the presence of water in the flue gas stream. The model also 

includes the use of absorption or cooling and condensation to partially dehydrate the flue gas before it enters 

the P/VSA system. The results of this study indicate that under dry flue gas conditions, zeolite 13X is the 

best performing material with a cost of CO2 capture of $32.1 per ton of CO2. Under the wet flue gas 

conditions, both zeolite 13X and zeolite 5A performed equally well with a cost of CO2 capture of ~$34.1 

per ton of CO2. It is also seen that all of the adsorbents tested used the first section of the P/VSA column as 

a desiccant to dehydrate the flue gas, presumably due to the adsorbents strong interactions with the water. 

This results in little to no dehydration prior to the adsorption column being needed. This work emphasizes 

that the level of water removed before a P/VSA cycle for CO2 capture is an important variable and some 

adsorbent materials could even operate with minimum dehydration of the flue gas. Finally, it is also seen 

that a two-stage Skarstrom cycle is a valid approach for capturing CO2 with 90% recovery and 90% purity. 

Future work should consider other cycles, which may accomplish this separation in a single stage. 
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Chapter 4: Development of a General Evaluation Metric for Rapid 

Screening of Adsorbent Materials for Post-Combustion CO2 

Capture 

4.1. Introduction 

 The atmospheric CO2 concentration is escalating rapidly and is thought to be responsible for unusual 

climate changes observed around the globe.95 Most scenarios for limiting global temperature increases to 

less than 2°C include a near-term role for carbon capture technologies,96 such as amine scrubbing, before 

more permanent, renewable energy technologies become economically viable. In amine scrubbing, CO2 is 

absorbed by an aqueous amine solution, followed by stripping of the captured CO2 out of the liquid phase 

by heating. However, there is a significant energy penalty associated with heating the aqueous amine. 

Because of this, alternative technologies, such as adsorption-based technology, are proposed.  

 Adsorption-based technology is attractive due to its low cost of regeneration compared with amine 

scrubbing.97 Adsorption-based technologies can be divided into three main processes differing in how the 

adsorbent is regenerated: (1) pressure swing adsorption (PSA), (2) temperature swing adsorption (TSA), 

and (3) a combination of both PSA and TSA. The performance of these processes is highly dependent on 

the adsorbent material, and the development of improved adsorbents is arguably the main challenge in 

realizing industrial-scale deployment of adsorption-based CO2 capture technology.  

 Several adsorbent materials, such as activated carbons and zeolites, have been evaluated in PSA 

processes for CO2 capture in recent years.40,98 In addition, a new class of porous materials, metal-organic 

frameworks (MOFs),99,100 have been gaining interest because MOFs generally have higher CO2 uptake31,101 

than traditional adsorbent materials and can, in some instances, maintain their high uptake in the presence 

of water.102–104 However, with over 5,000 MOFs already synthesized,38 and the potential to synthesize 
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countless additional MOF structures, it is difficult to quickly find the best MOFs for CO2 capture or other 

separation challenges.  

 A key challenge in screening adsorbents for CO2 capture is choosing performance metrics that can be 

calculated at the early stages of materials screening. Some minimum basic information that can be 

reasonably obtained for a new material is the uptake of CO2 and N2 at relevant conditions, either from 

experiment or molecular simulation. With this information (and some additional assumptions, for example 

about the kinetics of adsorption), one option would be to perform macroscopic process simulation of a PSA 

process to rank materials based on the cost of CO2 capture. However, carrying out such simulations, 

including optimization of the operating parameters, in a high-throughput manner is currently not feasible 

for tens of thousands of MOF structures and requires expertise not common to researchers synthesizing 

new MOFs.  

 An alternative approach is to develop an evaluation metric that can accurately capture the process-level 

information to rank materials based on the features of equilibrium isotherm data. Simple examples of such 

metrics include the working capacity and the selectivity. However, one often finds that materials with high 

working capacity have low selectivity or vice versa. Thus, researchers have tried to develop metrics that 

incorporate both the selectivity and the working capacity with some weighting.  Prominent examples are 

shown in Table 4.1. These metrics require single-component adsorption isotherms and typically estimate 

the mixture thermodynamics using the multi-component Langmuir model or Ideal Adsorbed Solution 

Theory (IAST). One of them, the Adsorbent Performance Indicator,105 also requires the CO2 enthalpy of 

adsorption, to account for the ease of regeneration of the adsorbent materials. These metrics have been 

proposed over the years to rank different adsorbents without carring out full-scale process simulations, but 

are largely based on physical intuition and have not been thoroughly tested in the context of process 

modelling and simulation results.  
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 More recently, efforts have focused on the development of performance measures based on simplified 

process models of PSA or TSA processes as proposed by Lin and co-workers,32 Krishna,106 Braun and co-

workers,107 and Huck and co-workers.108 These models are simple and can be applied for large-scale 

screening but are limited in terms of their applicability for ranking adsorbents on their expected 

performance because the metrics do not directly take into account whether the material meets the specified 

purity and recovery requirements. 

 

Table 4.1. Definitions of the various performance metrics found in the literature that are evaluated in this 

study. Subscripts 1 and 2 represent components 1 and component 2, where 1 is the more strongly adsorbing 

species 

Adsorbent Metric Definition Reference 

Henry Selectivity 

,1

0

,2

H

H

K

K
   

(Knaebel, 1999)109 

PSA Sorbent Selection Parameter  

1

1,2

2

WC
S

WC
  

(Rege and Yang, 2001)110 

Adsorbent Performance Indicator  
 

1,2 1

,1

1

ads

WC
API

H

 



 

(Wiersum et al., 2013)105 

Adsorbent Figure of Merit  
2

1

1 1

2

AFM WC



  

(Notaro, 1998)111 

Adsorbent Figure of Merit  
2

1 1

2

2 2

WC
AFM

WC




  

(Rege and Yang, 2001)110 

Separation Factor  

1 2

2 1

WC y
SF

WC y
  

(Pirngruber et al., 2012)112 
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 An emerging approach in the field is to directly integrate process modelling into adsorbent materials 

screening, to find correlations between material properties and process objectives. An example of such 

investigations is the work of Maring and Webley where they found a moderate correlation between the cost 

of CO2 capture and the heat of adsorption of CO2.113 Rajagopalan and co-workers evaluated the capabilities 

of metrics to screen potential adsorbents by determining the performance (CO2 purity of the final product, 

energy requirements, and productivity) of four adsorbents (Mg-MOF-74, UTSA-16, Zeolite 13X and an 

activated carbon) along with three hypothetical adsorbents using a four step PSA cycle with light product 

pressurization. After comparing the performance results of the different adsorbents along with the 

calculated metric values, they found that the working capacity of N2 was the best predictor of the process 

performance of the different adsorbents.114 However, these investigations evaluated only a handful of 

materials, and the conclusions drawn from the work may not be generalized in predicting the performance 

of other adsorbent materials. One exception to this is the work by Khurana and Farooq,115 who developed 

and validated a neural network model for 74 adsorbent materials to predict if an adsorbent material could 

achieve certain purity and recovery requirements.  

 In this contribution, we examined over 2,900 MOFs for post-combustion CO2 capture to identify the 

best adsorbent materials with the lowest cost of CO2 capture while meeting the required purity and recovery 

targets. Performing PSA simulations on 2,900 MOFs would take considerable computational resources. 

Since many of these materials may not be good candidates for post-combustion CO2 capture, we first carried 

out PSA simulations on generic adsorbent materials to find the optimal ranges of the internal energy of 

adsorption for CO2 and N2, along with the adsorbent density, to achieve the desired goals for CO2 capture. 

The optimal ranges were coupled with the cost of metals in the MOFs to reduce the MOF dataset to 369 

candidates. Among these 369 candidate MOFs, we found 190 were able to achieve the desired CO2 purity 

and recovery goals of 90% with the chosen PSA cycle. For these 190 materials, we carried out full-scale 

process simulations and economic analyses to calculate the CO2 capture cost for each MOF. Using the data 
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generated from process simulations and economic analyses, we developed a general evaluation metric 

(GEM) that can be used to identify high-performing adsorbent materials for post-combustion CO2 capture. 

We compared this metric with other evaluation metrics from the literature using the Spearman correlation 

coefficient and found that the predicted cost of CO2 capture and the GEM correlates better than any other 

metric reported in the literature. 

4.2. Computational Methods 

4.2.1 Widom Particle Insertions  

 Widom particle insertion calculations were carried out at 298 K for all structures in the CoRE MOF 

2014 DDEC database116 using the RASPA code to predict the internal energy change upon adsorption in 

the infinite-dilution limit.117 5,000 configurational-biased insertions of CO2 and N2 were used for each 

structure. The Lennard-Jones (LJ) plus Coulomb potential was used to model the non-bonded interactions 

between MOF atoms and CO2 and N2 atoms (also for the interactions among the guest molecules for GCMC 

simulations below): 

  𝑉𝑖𝑗 = 4𝜀𝑖𝑗 [(
𝜎𝑖𝑗

𝑟𝑖𝑗
)

12

− (
𝜎𝑖𝑗

𝑟𝑖𝑗
)

6

] +
𝑞𝑖𝑞𝑗

4𝜋𝜖0𝑟𝑖𝑗
     (4.1) 

Here i and j are the interacting atoms; rij is the distance between atoms i and j; qi is the partial charge of 

atom i; ε and σ are the LJ parameters; and 𝜖0 is the vacuum permittivity constant (8.854187817 x 10-12 

C2/(J-m)).  For the MOF atoms, LJ parameters were taken from the Universal Force Field (UFF),118 and 

partial charges were obtained from the DDEC results of Nazarian et al.116 The Transferable Potentials for 

Phase Equilibria (TraPPE)119 were used to model the adsorbate molecules. LJ parameters for unlike atoms 

were approximated with the Lorentz-Berthelot mixing rules, and LJ potentials beyond 12.8 Å were 

truncated without applying tail corrections. All simulations were performed with an N x N x N simulation 

box to satisfy the minimum image convention with respect to the 12.8 Å cutoff. The Ewald summation 

technique was used to calculate Coulombic interactions, with alpha and kvec parameters using 10-6 
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precision. Throughout the simulation, the MOF atoms were held fixed at their crystallographic positions 

(as reported in CoRE MOF 2014 DDEC database).116  

4.2.2 Grand Canonical Monte Carlo (GCMC) simulations† 

 GCMC simulations were carried out to compute the single- and multi-component adsorption isotherms 

for CO2 and N2 at 0.01 - 10 bar and 298 K in 369 MOFs. The same force field was used as described above 

for the Widom insertion calculations, and again the RASPA code was used. Isotherms were generated by 

performing the simulations starting at the lowest pressure and using the final configuration from each 

pressure as the initial configuration for the next simulation. This procedure helps the system reach 

equilibrium faster. Mixture isotherms were calculated for a 15:85 gas-phase mixture of CO2 and N2. The 

Peng-Robinson equation of state was used to compute the gas phase fugacity values for CO2 and N2, which 

are needed as inputs to the simulation. The Metropolis-Hasting algorithm was used to sample the phase 

space for specified fugacities and temperature. Both pure and mixture GCMC simulations used 5,000 

equilibration cycles followed by 5,000 production cycles to collect ensemble averages of the system 

properties. In a cycle, N Monte Carlo moves are performed, where N is the maximum between 20 and the 

number of adsorbate molecules in the simulation box at the beginning of the cycle. Insertion, deletion, 

translation, and rotation moves were used with equal probabilities. For mixture simulations, identity change 

moves were also used in conjunction with the other Monte Carlo moves with equal probabilities.  

4.2.3  Equilibrium Isotherm Fitting 

 To perform process level simulations, it is necessary to have an analytical expression or other rapid 

method to calculate the CO2 and N2 molar loadings at various pressures, gas-phase concentrations, and 

temperatures. In this work, the pure-component CO2 and N2 isotherms from the GCMC simulations were 

fitted to dual and single-site Langmuir models, respectively. For the CO2 isotherm, we assume that the 

                                                      
† All GCMC simulations were performed by Dr. Yongchul Chung.  
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stronger site, designated as site 1, only adsorbs CO2, while CO2 and N2 compete on the weaker site, 

designated as site 2:  

 2 2 2 2 2 2

2

2 2 2 2 2 2

, ,1 ,1 , ,2 ,2

,1 ,2 ,21 1

sat CO CO CO sat CO CO CO

CO

CO CO CO CO N N

q B p q B p
q

B p B p B p
 

  
  (4.2) 

 2 2 2

2

2 2 2 2

, ,2 ,2

,2 ,21

sat N N N

N

CO CO N N

q B p
q

B p B p


 
  (4.3) 

Here qsat,i,s and Bi,s are the saturation loading and isotherm parameter of component i on site s, respectively. 

In order to maintain thermodynamic consistency,120 we set the saturation loading of site 2 equal for N2 and 

CO2. The isotherms were then simultaneously fitted to minimize the absolute square error. After all of the 

parameters were fitted, we used an Arrhenius-type equation to account for the temperature dependence of 

the CO2 and N2 loading,  
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i s i s
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B b

RT

 
  

 
  (4.4) 

where 
iU  is the internal energy change upon adsorption in the infinite-dilution limit calculated from the 

Widom particle insertion method.  For simplicity, we will sometimes call 
iU the “heat of adsorption” 

below. To test the accuracy of the isotherm predictions, we compared the results against multi-component 

GCMC simulations of 10 random MOFs from the CoRE MOF database. For the 10 random MOFs, the 

mean unsigned errors between the multicomponent Langmuir model and the GCMC data are 0.049 and 

0.022 mol/kg for CO2 and N2, respectively. 

4.2.4  Process Simulation, Optimization, and Economic Analysis 

 Process simulation, optimization, and economic analysis were carried out for 369 MOFs to evaluate 

their CO2 capture performance. The PSA model developed in the previous chapter was used as a starting 

point to develop a four-step Fractionated Vacuum Pressure Swing Adsorption (FVPSA) cycle (see Figure  
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4.1).2,51,56 We note that in order to accelerate the simulation time, we assume that the column behaves 

adiabatically to reduce the energy balance equations. 

 In this work, we used the four-step FVPSA cycle, as shown in Figure 4.1. This cycle consists of the 

following steps: (1) Pressurization, (2) Feed, (3) Co-Current Depressurization, and (4) Counter-Current 

Depressurization. The bed begins the Pressurization step at the low pressure (PL) and is pressurized up to 

the feed pressure (PH) using the flue gas during this step. Once the bed is fully pressurized, the top of the 

column is opened, and the flue gas is fed through, which is the beginning of the “Feed” step. During this 

Feed step, the CO2 preferentially adsorbs in the MOFs, concentrating the CO2 in the column, while N2 flows 

out the top. After a predetermined amount of time, the bottom inlet of the column is closed, and vacuum is 

pulled from the top of the column, dropping the pressure to an intermediate value (PI), which is the start of 

the “Co-Current Depressurization” step. This step is used to further remove N2 from the column, increasing 

the purity of the final CO2 product. Once PI has been reached, the top of the column is closed, and the 

pressure at the bottom of the column is dropped back to PL. It is during this final step, the Counter-Current 

Depressurization step, that the CO2 is collected. The cost of the overall process is calculated using the 

economic equations provided in Appendix B. The process for each MOF is then optimized using the non-

dominated sorting genetic algorithm (NSGA-II)61 and the following optimization variables:  feed pressure 

(PH), intermediate pressure (PI), column length (L), and time of the feed step (tfeed). The lower pressure, PL, 

is set at 0.1 bar. Additional details are available in Appendix B. Initial optimizations were done for 369 

MOFs to determine the maximum CO2 purity that could be obtained while recovering 90% of the CO2.  

And for those 190 MOFs that could achieve 90% CO2 purity, a second optimization was done to minimize 

the overall cost, with constraints of 90% CO2 purity and 90% recovery of CO2. We note that the reported 

cost in this chapter only includes the capital and operating costs of the FVPSA cycle. Dehydration and post-

combustion compression costs are not included.  
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Figure 4.1. Post-combustion carbon capture schematic utilizing the fractionated vacuum pressure swing 

adsorption (FVPSA) cycle (top insert) for capturing the CO2. Note that we have considered only the carbon 

capture portion of the process in this work and have not included the compression costs of the CO2 product. 

 

4.3. Results and Discussion  

4.3.1 Development of a Pre-Screening Heuristic 

 Performing process-level optimization on the 5,109 materials in the CoRE MOF database would be 

tremendously time-consuming.  In addition, many materials are unlikely to meet the given CO2 purity and 

recovery constraints for a given PSA cycle. We, therefore, sought to use initial process-level modelling to 

develop heuristics that could be used in a pre-screening stage to reduce the number of materials that would 

need to be evaluated using process-level optimization.  

 To do this, we created a “generic” adsorbent and modelled it at the process simulation level to study 

the effect of the heats of adsorption of CO2 and N2 and the density of the adsorbent material on the separation 

performance. The adsorption properties of the generic adsorbent are described by the dual-site competitive 
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Langmuir model, and we varied the heats of adsorption for CO2 and N2 and the adsorbent density to study 

the effect of these variables on system performance.  

 First, we fixed the density of adsorbent at 1.1 g/cm3, and carried out process simulation and optimization 

to maximize the CO2 purity (subject to the 90% recovery constraint) with different values of the heats of 

adsorption for CO2 and N2. Figure 4.2a shows that the heat of adsorption for N2 has a large effect on the 

maximum attainable CO2 purity. In particular, if the magnitude of the N2 heat of adsorption is above 16 

kJ/mol, the adsorbent is unable to achieve a CO2 purity of 90%. In addition, the difference between the N2 

and CO2 heats of adsorption plays a significant role, and there appears to be an optimal range of this 

difference around 20 – 30 kJ/mol when the heat of adsorption for N2 is 10 kJ/mol. The peak occurs because, 

at high CO2 heats of adsorption, the amount of CO2 adsorbed at desorption conditions is too high, reducing 

the working capacity of CO2 for the material.  These results are consistent with previous investigations.121  

 Next, we fixed the CO2 and N2 internal energies of adsorption to –32 kJ/mol and –10 kJ/mol, 

respectively, and carried out process simulation and optimization to minimize the energy consumption of 

the process for different values of the adsorbent density. Figure 4.2b shows that the required energy for 

capturing CO2 at 90% purity and 90% recovery is high for adsorbent materials with low density. (Note that, 

for this study, the saturation loading and the density of the material were treated as independent of each 

other to determine the effects of the density only.) As the density of the adsorbent material increases, the 

energy required to capture CO2 decreases until it levels off around 0.9 g/cm3. Since heat is generated during 

the PSA adsorption step and consumed during the desorption step, a dense MOF material helps to moderate 

the temperature changes throughout the PSA cycle by acting as a “heat sink.” Indeed, we find that, at low 

adsorbent density (<0.9 g/cm3), the temperature variations in the column during the PSA cycle are larger, 

resulting in a decrease in performance (higher energy requirements for CO2 capture) due to lower CO2 

loadings at higher temperatures. As the density of the adsorbent increases, the column behaves more 

isothermally, which improves the working capacity of the column, allowing for smaller pressure ratios 
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between the high and low pressure to be used to achieve the desired CO2 working capacity. Since the low 

pressure is fixed in these simulations to 0.1 bar, this results in lower feed pressures being selected. 

 
Figure 4.2. a. Optimal heats of adsorption analysis for the FVPSA cycle using a generic adsorbent material 

with density of 1.1 g/cm3. Each point represents the highest CO2 purity that could be achieved while 

recovering 90% of the CO2 product. Each line represents a different N2 internal energy of adsorption. The 

dashed horizontal line is the DOE target for a CO2 purity of 90%; b. Minimum energy required to capture 

a tonne of CO2 as a function of sorbent density for a generic adsorbent with CO2 internal energy of 

adsorption of –32 kJ/mol and N2 internal energy of adsorption of –10 kJ/mol. The generic adsorbent 

material in both studies has a single site Langmuir isotherm for CO2 and N2, with saturation loading of 10 

mol/kg, and an Arrhenius equation pre-exponential parameter of 10-10 Pa-1 and 10-09 Pa-1 for CO2 and N2 

respectively. 

 Based on these studies with a generic adsorbent, we propose the following pre-screening heuristics.  

Adsorbents should be eliminated from consideration if (1) the N2 heat of adsorption is less than –16 kJ/mol, 

(2) the magnitude of the difference in the heats of adsorption for CO2 and N2 is greater than 35 kJ/mol or 

less than 15 kJ/mol, or (3) the adsorbent density is < 0.9 g/cm3.  While these heuristics were developed for 

the FVPSA cycle, they may also apply to other cycles, and testing this hypothesis would be an interesting 

topic for future study. 
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4.3.2 MOF Screening 

 We started our MOF screening with the 5,109 structures in the CoRE MOF database. A flow diagram 

for the reduction of MOFs under consideration for economic evaluation is shown in Figure 4.3. Due to the 

importance of accurately modelling electrostatic interactions between the MOF and CO2, we removed 

MOFs without DDEC partial atomic charges, leaving 2,902 structures. Next, we removed any MOFs where 

the cost of the metal nodes is prohibitively expensive, because any adsorbent used for CO2 capture 

application will need to be produced on a large scale, and any MOF containing expensive metal nodes will 

significantly increase the capital cost of such a system. We estimated the cost of the metal for each MOF 

on a mass basis and removed any MOFs where the cost of metal is greater than $40 per kg.   

 At this point, we had 800 MOFs.  Additional structures were eliminated based on the heuristics 

developed above.  Thus, we filtered out (1) MOFs with N2 heats of adsorption less than –16 kJ/mol; (2) 

MOFs where the magnitude of the difference in the heats of adsorption between CO2 and N2 is > 35 kJ/mol 

or < 15 kJ/mol; and (3) MOFs with density < 0.9 g/cm3. We note that in Figure 4.3, the criteria listed are 

the criteria for keeping the MOFs and not for removing them. 

Following this procedure, we were left with 390 MOFs, for which we carried out GCMC simulations at 

post-combustion CO2 capture conditions. Based on the results from the molecular simulations, we removed 

an additional 21 MOFs that had very low CO2 uptake (qCO2 < 0.1 mol/kg at a CO2 pressure of 10 bar). With 

this set of 369 MOFs, process simulation and optimization were performed to determine the maximum CO2 

purity that could be achieved while recovering 90% of the CO2. Based on the results from these process  
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Figure 4.3. Flow diagram for the filtering of candidate MOFs from the CoRE MOF Database. We note that 

the criteria listed in the boxes are the criteria for keeping MOFs and not removing them. Dark blue boxes 

contain filters based on intrinsic material properties, such as availability of atomic partial charges and the 

cost of metal. Sky blue boxes are filters based on the heuristics developed from both GCMC and FVPSA 

simulations. Green boxes are filters based on GCMC simulation results. Orange boxes are filters based on 

FVPSA simulations. 
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simulations, we removed structures that were not able to achieve a 90% CO2 purity. For the remaining 190 

MOF materials, we performed process-level optimization to determine the minimum cost of CO2 capture, 

subject to the constraints of 90% CO2 purity and 90% CO2 recovery.  

4.3.3 Evaluation Metrics from the Literature  

 Using the calculated cost of CO2 capture for the 190 MOFs that meet the purity target, we tested simple 

evaluation metrics from the literature to see how well they perform in ranking the adsorbents. Table 4.2 

shows the Spearman correlation coefficients for various metrics versus the cost of CO2 capture. To calculate 

these metrics, we used the following definitions, based on the work of Chung and co-workers121:  
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where 𝑁𝐶𝑂2
𝑎𝑑𝑠 and 𝑁𝑁2

𝑎𝑑𝑠 are the CO2 and N2 loadings for a 15:85 CO2/N2 mixture at 1 bar and 313 K, and 

𝑁𝐶𝑂2
𝑑𝑒𝑠 and 𝑁𝑁2

𝑑𝑒𝑠 are the CO2 and N2 loadings for a 90:10 CO2/N2 mixture at 0.1 bar and 313 K. The desorption 

conditions were chosen to approximate the final conditions of the adsorption bed at the end of the 

depressurization step.  

 Table 4.2 shows that the best performing metric among the existing evaluation metrics is the Separation 

Factor (SF), with a Spearman Correlation Coefficient of 0.45. Other metrics show low correlation with 
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respect to the cost of CO2 capture.  Figure 4.4a shows that there is little correlation between the Separation 

Factor (SF) and the cost of CO2 at high SF values.  Upon examining these results in more detail, we noticed  

Table 4.2. Spearman correlation coefficient between the screening metrics and the CO2 capture cost. 

Metrics that include the working capacity of N2 have higher correlation coefficients than the others.  The 

right column is the Spearman correlation coefficient between the CO2 capture cost and the evaluation 

metrics with a minimum N2 working capacity of 0.01 mol/kg implemented. It can be seen that by 

implementing this minimum value, all of the metrics experienced an increase in the magnitude of the 

correlation. 

Evaluation Metric |rs| |rs| with modified N2 
working capacity 

SF 0.45 0.75 

AFM2 0.38 
0.44 

S 0.37 
0.43 

WCN2 0.33 
0.40 

 αads 0.31 
0.31 

AFM1 0.30 
0.30 

API 0.30 
0.30 

αdes 0.30 
0.30 

α0 0.24 
0.24 

αads / αads 0.23 
0.23 

WCCO2 0.04 
0.04 
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Figure 4.4. a. Relationship between the cost of CO2 capture and the Separation Factor (SF). For MOFs with 

low nitrogen working capacity, the SF values are inflated due to very low working capacities of N2. This 

leads to no obvious trend between the Separation Factor and the cost of CO2 capture; b.  Relationship 

between the cost of CO2 capture and the Modified Separation Factor (with WCN2 < 0.01 mol/kg values set 

to 0.01 mol/kg), which shows a clearer trend. 

  



78 

 

that the MOFs with the highest SF values all have very low N2 working capacities.  For example, all of the 

MOFs with SF values above 500 have N2 working capacities below 0.01 mol/kg (Figure 4.4a). Since the 

N2 working capacity appears in the denominator of the SF, even a very small (absolute) variation in WCN2 

– for example, small changes within the experimental uncertainty – may have a large impact on the SF. 

Figure 4.4b shows that if we set a minimum N2 working capacity of 0.01 mol/kg, to limit its effect on the 

Separation Factor,  

  
22 ,mod max ,0.01NNWC WC   (4.9) 

the Spearman correlation coefficient improves to 0.75. The new Spearman Correlation Coefficients for all 

metrics that contain the working capacity of N2 are shown in Table 4.2. For the remainder of the work, we 

use a modified working capacity of N2 with a minimum value of 0.01 mol/kg as shown in equation 4.9. 

4.3.4 General Evaluation Metric (GEM) for MOF Ranking 

 Although the correlation between the cost of CO2 capture and the modified SF is reasonably high, we 

wanted to use our large dataset of process-level optimization results to create an evaluation metric with 

even higher ability to rank adsorbents based on the cost of CO2 capture. To do this, we created a general 

evaluation metric (EM) containing all features found in the literature metrics along with a few others such 

as the N2 heat of adsorption and the crystal density of the MOF: 

 
           

 

2 2 2 2,mod

5,5

d ea b c f

CO N ads des CO NEM WC WC U U

a f

    

  

  (4.10) 

where |ΔUCO2| and | ΔUN2|are the magnitudes of the heats of adsorption of CO2 and N2, respectively, in 

kJ/mol, and ρ is the crystalline density of the MOF in kg/m3.  Starting with this expression, we optimized 

the exponents on the different features, allowing them to range from -5 to 5, to maximize the magnitude of 

the Spearman Correlation Coefficient. The optimized EM is  
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       (4.11) 

We find that the metric has a higher correlation coefficient than any other performance metric, with 𝑟𝑠 =

−0.87.  

 Equation 4.11 contains a large number of features that might provide redundant information. For 

example, the selectivities at desorption conditions and adsorption conditions may be related. Therefore, we 

tested the impact of removing each feature on the correlation coefficient. After all the features had been 

tested, the feature with the smallest impact on the performance was removed. This process was repeated 

until only one feature was left. The results from this analysis are shown in Figure 4.5.  Note that the process 

of removing features moves from right to left in Figure 4.5. 

 Figure 4.5 shows that there is some overlap in the information provided by the seven features. Starting 

from the left, after the fourth feature (∆𝑈𝑁2), little improvement is seen in the performance with additional 

features. The most important feature is the working capacity of N2. While this is initially a surprising result, 

it is important to note that due to the high CO2 purity required for CCS applications (> 90%), an increase 

in the N2 captured during the feed step will require lower vacuum pressure during the CoC-Depressurization 

step, resulting in higher energy costs. In addition, similar observations on the impact of N2 adsorption on 

the performance of the P/VSA cycle have been reported in the literature.113,114 After the working capacity 

of N2, the CO2 working capacity is the next most important feature, which agrees with traditional thinking 

on the importance of the CO2 adsorbed and released during the PSA cycle. Besides the CO2 and N2 working 

capacities, the CO2/N2 selectivity at desorption conditions (i.e., low pressure) and the N2 internal energy of 

adsorption are also important features. The N2 internal energy of adsorption is important as it reflects the 

impact that the temperature change has on the N2 loading throughout the cycle. The importance of the 
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CO2/N2 selectivity at desorption conditions, rather than at the adsorption conditions, is because the CO2 

product is collected during the desorption step. While it is beneficial for the MOF to initially adsorb  

 

Figure 4.5. The importance of each feature in the evaluation metric (EM) (equation 4.11) developed in this 

work for the Spearman correlation coefficient (SCC). The higher the value of SCC, the better the metric is 

in terms of predicting the cost of CO2 capture. From right to left, the features are the adsorbent density, the 

selectivity at adsorption conditions, the internal energy of adsorption of CO2, the internal energy of 

adsorption of N2, the selectivity at desorption conditions, the working capacity of CO2, and the working 

capacity of N2. SCC for each column is calculated with the feature listed on top plus the features listed in 

the previous columns. For example, the three EM features used to calculate SCC in the third column are 

the N2 working capacity, the CO2 working capacity, and the selectivity at desorption condition. 
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Figure 4.6. Relationship between the four feature General Evaluation Metric (Equation 4.12) and the cost 

of CO2 capture. The Spearman correlation coefficient is –0.86. 
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significantly more CO2 than N2 during the feed step, it is more important that during the desorption steps 

the CO2 is de-adsorbing and being collected as a pure product. Thus, the CO2/N2 selectivity at the desorption 

conditions appears in the denominator of the evaluation metric, and we want to minimize this value. The 

resulting general evaluation metric (GEM) which contains the most important features is:  
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           (4.12) 

Figure 4.6 shows the CO2 capture costs for each of the MOFs plotted against the four-feature general 

evaluation metric. The Spearman correlation coefficient is –0.86.  

4.3.5 Metric Validation  

 How does the GEM rank MOFs that are unable to achieve the purity and recovery goals, and how well 

does the metric perform with new adsorbent data? To answer the first question, we took the 369 MOFs for 

which we had performed PSA simulation and optimization and calculated their GEM values. The results 

are plotted as a function of the maximum CO2 purity attainable by each MOF in Figure 4.7. The results 

show that GEM can separate the high-performing MOFs (blue data points) from the MOFs that are unable 

to attain the purity and recovery goals (yellow data points). For the second question, we randomly selected 

58 additional MOFs from the CoRE MOF DDEC 2014 database that were removed previously, ensuring to 

include MOFs removed for each criterion in Figure 4.3. We then carried out FVPSA simulation and 

optimization. In addition to these 58 MOFs, we also tested zeolite 13X to see how the metric performed 

with a well-known high-performing adsorbent. The isotherms for zeolite 13X were retrieved from the 

literature, where they were fitted to experimental results.51 Of these 59 materials (which includes zeolite 

13X), only nine were able to achieve the CO2 purity and recovery goals. For these nine materials, we 

calculated the cost of CO2 capture and plotted the results as a function of the GEM along with the original 

data points which were used to develop the GEM. See Figure 4.8. From these results, we can see that the  
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Figure 4.7. Maximum CO2 purity as a function of the four feature General Evaluation Metric. Materials 

that were not able to attain 90% purity are assigned an arbitrary cost of CO2 capture of $55 per tonne of 

CO2. 
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Figure 4.8. Validation of the four feature General Evaluation Metric. Results for all nine of the adsorbents 

in the validation data set, which the GEM was not trained on, are in good agreement with the trend from 

the training data. The training data is from 190 CoRE MOFs, and the validation data is from 58 CoRE MOF 

structures that failed the original screening criteria and zeolite 13X. Only those materials able to meet the 

purity and recovery requirements are plotted. Adsorption isotherm data for the CoRE MOFs are from 

GCMC simulations, and isotherm data for zeolite 13X is based on experimental data.51  

  

Zeolite 13X
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Table 4.3. High-performing metal-organic frameworks from the screening with reported experimental gas 

adsorption data. Accessible geometric surface area, pore limiting diameter, and largest cavity diameter are 

calculated using Zeo++ software with probe radius = 1.55 Å. 

REFCODE 
or Sorbent 
Material 

Cost of CO2 
capture  

($ per tonne 
of CO2) 

GEM Experimental 
BET Surface 
Area (m2/g) 

Accessible 
Geometric 

Surface 
Area (m2/g) 

Pore Limiting 
Diameter (Å) 

Largest 
Cavity 

Diameter 
(Å) 

Ref. 

PIJROR  
(Ln-PCP) 

30.1 0.84 731 1219 7.7 8.3 122 

HOWQEQ 
(JUC-68) 

31.7 1.23 - 0 3.4 5.0 123 

BAXSIE 32.4 1.60 450 707 5.1 5.3 124 

GULWOA 33.2 0.97 510 1612 7.2 7.6 125 

UBACUX 33.7 1.40 440 0 3.4 7.3 126 

XUCNOZ 34.6 0.67 230 0 3.2 6.7 127 

HEBTEP 35.1 0.86 - 0 3.1 4.7 128 

SAMLAV0
2 

35.3 0.51 590 
(Langmuir) 

1335 4.6 6.4 129 

BETFUD 
(UCY-5) 

35.3 0.88 - 2003 4.3 6.2 130 

TISGUY 35.9 0.83 - 0 3.5 5.9 131 

YEGCUJ 36.3 0.61 600 911 4.8 7.3 132 

KIXXOG 36.4 0.70 -a 0 2.7 3.8 133 

JITPOS 37.6 0.49 117 811 4.9 5.9 134 

SAMLAV0
3 

37.8 0.45 590 
(Langmuir) 

1321 4.6 6.4 129 

FUFREE 38.0 0.90 < 10 0 3.1 3.7 135 

PEJMOI 38.3 0.54 254 763 4.7 7.8 136 

NERSUA 38.7 0.61 < 20 1702 6.9 7.1 137 

WAJHIA 38.9 0.95 725 0 2.7 3.6 138 

ODODIW 
(PCN-513) 

41.0 0.37 - 1702 4.6 7.2 139 

ZEBMAW 41.8 0.71 - 1367 3.8 7.1 140 
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new data points show good correlation with the general trend of the plot, and the metric was able to 

accurately rank eight of the nine validation data points.  

4.3.6 High-performing MOFs  

 Based on the screening, we identified a number of MOFs with low cost of CO2 capture. Although all 

MOFs in the CoRE MOF database have been synthesized in the lab and have existing synthesis procedures, 

there is no guarantee that all of these MOFs can be successfully activated to yield porosity. One way to 

check if the MOF can be successfully activated is to see if the original paper reports gas adsorption 

isotherms for the synthesized MOF. Table 4.3 lists the structures predicted to have low CO2 capture cost 

and with reported gas adsorption isotherms. The best performing MOF emerging from the screening is 

PIJROR (Ln-PCP),122 which is a lanthanide based MOF. Based on our calculations, this structure can attain 

a 97.7% pure CO2 stream and can capture CO2 in a FVPSA process at a cost of $30 per tonne of CO2. The 

structure is composed of a 1-dimensional channel densely populated with open metal sites, which likely 

affect the adsorption of CO2 molecules at low pressure and, subsequently, the cost of CO2 capture. Since 

our molecular simulations do not consider the interaction between open metal sites with CO2 molecules 

beyond a simple general force field, further investigation is needed to validate the performance that we 

predicted for this structure. Since the cost of CO2 capture for zeolite 13X is around $36 per tonne of CO2 

captured, Ln-PCP is predicted to outperform zeolite 13X. 

4.4. Conclusions  

 In this work, we developed a hierarchical screening approach for assessing adsorbents for their 

performance in post-combustion CO2 capture using pressure-swing adsorption, and we used the approach 

to screen 5,109 MOFs from the literature. The approach relies on adsorption data predicted by molecular 

simulation and eliminates materials using simple heuristics based on the heats of adsorption for CO2 and 

N2.  These heuristics were developed using process-level PSA modelling on “generic” adsorbents defined 

by their isotherms, heats of adsorption, and density. We applied the developed heuristics and other factors 
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to the CoRE MOF database to reduce the number of candidate materials from 5,109 to 369.  Process-level 

modelling and optimization was performed for these 369 materials, and the dataset was further reduced to 

190 structures based on other factors, such as CO2 uptake and purity requirement. These 190 structures are 

predicted to be able to meet desired purity and recovery targets for post-combustion CO2 capture. 

 Following this, we carried out process simulation, optimization, and economic analysis on these 190 

MOFs to calculate the cost of carbon capture per tonne of CO2 using pressure-swing adsorption. These 

simulations then provided a rich data set to test and develop simple evaluation metrics for ranking adsorbent 

materials for post-combustion CO2 capture based on overall cost. We started by testing the ability of 

existing metrics from the literature to rank the adsorbent materials for post-combustion CO2 capture and 

found that the metrics reported in the literature have difficulty ranking the materials based on the cost of 

CO2 capture obtained from PSA simulation and optimization.  Using our data set, we then sought to develop 

a new general evaluation metric (GEM) by optimizing the weighting of seven isotherm features that 

maximizes the magnitude of the Spearman correlation coefficient between the cost of CO2 capture and the 

product of those features. We found that only 4 features, CO2 working capacity, N2 working capacity, 

selectivity at desorption condition, and heat of adsorption of N2 were necessary to approximately rank the 

materials based on the cost of CO2 capture. Among these features, the N2 working capacity appears to be 

the most important feature, and we noticed that it is also present in all of the best performing metrics found 

in the literature. The GEM developed in this work can guide future design and screening of materials 

without having to rely on computationally expensive process modelling and optimization. The proposed 

GEM development approach may also be applicable to other separation systems.  
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Chapter 5: Process-Level Modeling to Evaluate Selected Metal-

Organic Frameworks for Post-Combustion Capture 

5.1. Introduction  

 Over the last few decades, thousands of MOFs have been synthesized for a variety of applications such 

as gas separation and storage,36,141,142 catalysis applications,143,144 and destruction of chemical warfare 

agents.145,146 Over the years, there have been numerous MOFs that have been synthesized and reported as 

“promising” for CCS applications. In general, MOFs were reported as promising by having high CO2 

working capacity, high CO2 / N2 selectivity at adsorption conditions, or some combination of the two. In 

this study, we wanted to evaluate these top performing MOFs using process-level simulations.  

 The main goal of this chapter is to investigate fifteen MOFs that have been synthesized and reported in 

the literature as promising for CO2 capture applications. We perform process-level simulations for each 

MOF using a 5-step PSA cycle to see whether the MOFs can achieve the DOE’s goals for CCS. For each 

MOF that can achieve the goals, we then maximize the productivity and minimize the energy requirements 

to compare their economic performance. In addition to the main goal, we also investigate the impact the 

specific PSA cycle has on the relative economic performance of the different MOFs.   

5.2. Methodology 

5.2.1 Adsorbent Isotherm Fitting‡ 

 For this study, experimental CO2 and N2 isotherms along with heat of adsorption data were gathered 

for 15 MOFs, listed in Table 5.1, along with zeolite 13X. The zeolite 13X isotherms were obtained from 

previous experimental results.51 For all MOFs, the pure component CO2 isotherms were fitted to dual-site 

                                                      
‡ Benjamin Bucior provided assistance with the research in finding the MOFs along with calculating the crystalline 

density of MOFs. 
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Langmuir isotherm models, and the pure component N2 isotherms were fitted to single-site Langmuir 

isotherm models. To model the competitive isotherms of the two gases, we assumed that the stronger 

adsorbing CO2 site, designated as site 1, only adsorbs CO2 while CO2 and N2 compete for the weaker site 

2:  
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where qsat,i,s and Bi,s are the saturation loading and isotherm parameter of component i for site s. To account 

for the temperature effects on the CO2 and N2 loading, Arrhenius equations were fitted for the isotherm 

parameters, 
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i s i s

U
B b

RT

 
  

 
  (5.3) 

where iU  is the internal energy of adsorption of component i. One problem that arose while collecting 

the isotherm data was the lack of reporting of N2 heat of adsorption data. While most scientists know the 

importance of the CO2 heat of adsorption on the economic feasibility of MOFs for CCS applications and 

report the data, N2 heat of adsorption data is often not reported. For MOFs with no N2 heat of adsorption 

data reported, we assumed the heat of adsorption to be 12 kJ/mol. To justify this assumption, we performed 

a sensitivity analysis on the impact the N2 heat of adsorption has on the maximum CO2 purity and economic 

performance of the MOF, which is reported in Appendix D.  
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5.2.2 PSA Cycle 

 In this study, we used a 5-step modified Skarstrom cycle, as shown in Figure 5.1. This cycle consists 

of the following steps: (1) Pressurization, (2) Feed, (3) Heavy Reflux, (4) Counter-Current (CnC) 

Depressurization, and (5) Light Reflux. The cycle starts with the bed, initially at the low pressure (PL), 

being pressurized up to the feed pressure (PH) using the feed flue gas. After the bed is pressurized, the top 

end of the column is opened, and the feed gas is fed through. During this step, the CO2 is concentrated at 

the front of the column, while the N2 is leaving through the other end of the column. After a predetermined 

time, the gas flowing into the column is switched from the flue gas to heavy product collected during the 

Light Reflux step. Since this heavy product has a higher concentration of CO2 than the feed gas, this step 

further increases the concentration of CO2 at the entrance of the column. At the end of the Heavy Reflux 

step, the end of the column is closed, and the pressure at the entrance of the column is dropped to PL. During 

this step, all the emissions from the entrance are collected as the CO2 product. Once the bed is fully 

depressurized, some of the light product produced during the feed step is fed into the end of the column. 

As mentioned above, a fraction of the heavy product produced in this step, which is predetermined at the 

start of the cycle, is used as the feed gas during the Heavy Reflux step. While this reflux reduces the amount 

of CO2 collected during the cycle, it does significantly enhance the maximum CO2 purity that can be 

achieved with different adsorbents, and has been shown in previous investigations to be promising.43 
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Table 5.1. MOFs investigated during this study along with references for the experimental measurements 

of their CO2 and N2 isotherms and heats of adsorption 

MOF BET Surface Area  

(m2/g) 

Isotherm Reference 

Co-MOF-74 1327 Cho et al.147 

Cu-BTTRi 1770 Demessence et al.148 

Cu-TDPAT 1938 Zhang et al.149 

Mg-MOF-74 1640 Marring et al.113 

MOF-177 4690 Mason et al.150 

Ni-MOF-74 1218 Bae and Long83 and Yu et 

al.84 

NTU-105 3543 Wang et al.151  

Sc2BDC3 596 Pillai et al.152  

SIFSIX-2-Cu-i 735 Nugent et al.153 

SIFSIX-3-Ni 368 Elsaidi et al.(2015)154 and 

Elsaidi et al. (2017)155 

Ti-MIL-91 380 Benoit et al.156 

UiO-66 1230 Hu et al.157 

UTSA-16 628 Xiang et al.158  

ZIF-8 1025 Zhang et al.159 

Zn-MOF-74 1176 Xiang et al.158 
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Figure 5.1. Schematic of the 5-step modified Skarstrom cycle used in this study. It is noted that the 

schematic displays the ordering of the steps for a single column. So, one column will first run the 

pressurization step, followed by the feed step.  
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5.2.3 NSGA Optimization Technique 

In analyzing the capabilities of the different adsorbents, it is necessary to optimize the operating 

parameters of the 5-step Modified Skarstrom cycle to determine the maximum CO2 purity and recovery, 

along with maximum productivity and minimum energy requirement for each MOF and zeolite. We use the 

nondominated sorting genetic algorithm (NSGA-II)61 for the optimization of the cycles. In this study, we 

perform two separate optimizations: process-level optimization and economic-level optimization. With the 

process-level optimization, we maximize the CO2 purity and recovery to identify the MOFs that can achieve 

the DOE’s goal of 90% CO2 purity and recovery. The CO2 purity and recovery are defined as 
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For this optimization, we set the population of the NSGA-II algorithm to 40 and run the algorithm for 60 

generations. Since we are only interested in knowing whether the MOFs can achieve the goal and not 

concerned with a high-level accuracy, we use a course level discretization for this stage of the optimization, 

dividing the column into 10 finite volume elements.  

 Once the MOFs that can achieve the DOE’s goals are identified, we then perform economic-level 

optimization, minimizing the energy requirement and maximizing the productivity. The energy requirement 

and productivity are calculated as follows: 
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The economic-level optimization is performed in two sections. We first perform a coarse level optimization, 

dividing the column into 10 finite volume elements, and run this optimization for 100 generations with a 

population of 60. The NSGA-II is initialized with the final results from the process-level optimization. Once 

the course-level optimization has been run, we then perform a finer level optimization with 30 finite volume 

elements, initializing this with the coarse level optimization results. We still use a population of 60 for this 

optimization, but we run the NSGA-II for only 30 generations. The decision variables that are optimized 

are listed in Table 5.2.  

5.3.Results 

5.3.1 Purity / Recovery Maximization 

 The Pareto curves for the purity / recovery optimization are shown in Figure 5.2. As seen from the 

figure, there is a large range in performance among the sixteen adsorbents. At the low end of the 

performance, we can see that MOF-177 can only purify the CO2 product up to 30%. This makes sense, as 

MOF-177 has a large surface area (~4500 m2/g) and a low crystalline density (0.43 g/cm3).160 While this 

large surface area structure is beneficial for applications that need large saturation capacities at high 

pressures such as hydrogen storage, at the low pressures at which CO2 capture operates this hinders the 

performance of MOF-177. At the other end of the performance, we see that there are several MOFs that 

can achieve the CO2 purity goal of 90% while recovering 90% of the CO2. Along with zeolite 13X, which 

has been shown in earlier chapters to be able to achieve the goals, we found Mg-, Ni-, and Zn-MOF-74, 
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SIFSIX-Cu-2-I, SIFSIX-Ni-3, UTSA-16, Cu-TDPAT, and Ti-MIL91 met or exceeded the purity goal. From 

these results, we focused the economic analysis on these nine adsorbents.  

 

Figure 5.2. Purity / Recovery Pareto front for the 15 MOFs and Zeolite 13X. Of the 16 adsorbents tested, 

only 9 were able to achieve the DOE’s goals for CO2 capture.  

 



96 

 

Table 5.2. Decision parameters optimized and fixed for the modified Skarstrom cycle 

Parameter PH [bar] tfeed [s] αLR [-] Vfeed [m/s] αHR [-] PL  

Process 

Optimization 

1 - 10 10 - 1000 0.01 – 0.99 0.1 - 2 Fixed at 1 Fixed at 

0.1  

Economic 

Optimization 

1 - 10 10 - 1000 0.01 – 0.99 0.1 - 2 0 - 1 0.1 – 0.5 

 

5.3.2 Economic Analysis 

 While the process-level optimization results do provide information on the capabilities of the 

adsorbents to achieve the purity and recovery goals, the economic performance of the adsorbents is what 

will ultimately determine whether it will be implemented for CCS or not. In this analysis, we use the 

adsorbent productivity and energy requirement as a proxy for the economic cost of the different adsorbents. 

In the economic analysis, the best performing material will have the lowest energy requirements, 

minimizing the electricity needed to capture the CO2, and the highest productivity, minimizing the amount 

of material needed to capture the CO2 from a given flue gas flow rate. The results from the economic 

optimization are shown in Figure 5.3. We note that in the optimization, we set a constraint requiring that 

all points have a CO2 purity and recovery above 90%, so all the points are meeting the CCS goals.  

 From these results, we can see a clear difference in the performance of different MOFs at higher 

productivities. At this end of the front, UTSA-16 is the best performing material, followed by zeolite 13X, 

Cu-TDPAT, and Ni-MOF-74. However, at the low energy requirements end of the Pareto curves, all of the 

materials converge around 150 kWh/ton CO2. This convergence suggests that depending on the cost of 

commercially synthesizing the different MOFs, we could potentially see a small or large difference in 

economic costs between the materials depending on where along the Pareto front the minimum cost is 

realized.  

 In order to understand the economic performance of the different adsorbents, we took the best and worst 

performing materials (UTSA-16 and SIFSIX-3-Ni, respectively) along with zeolite 13X, which performed 
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well, and plotted their CO2 and N2 isotherms, shown in Figure 5.4. From the isotherms we see that the 

performance of the difference materials seems to be more strongly related to CO2 isotherm than the N2 

isotherm. While SIFSIX-3-Ni has a very low N2 isotherm, its CO2 isotherm is very sharp at low pressures 

resulting in a low CO2 working capacity. This sharp isotherm is in sharp contrast to UTSA-16, which has a 

high CO2 uptake with a gradual increase in the CO2 uptake over the pressure range. This difference in CO2 

uptake is even more visible when the working capacity of the three materials are calculated, shown in Table  

 

Figure 5.3. The energy / productivity Pareto front for the 9 adsorbents capable of achieving the DOE’s 

goals. The best performing material from this analysis is UTSA-16. All of these points are ensured to have 

a CO2 purity and recovery above 90%.  
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Figure 5.4. Pure Component Isotherms for (a) CO2 and (b) N2 at 313 K. The difference in CO2 working 

capacity between the three materials is visible, explaining the difference in performance. 

Table 5.3. Working capacities of three adsorbents (mol/kg) under adsorption conditions with a CO2 mole 

fraction of 15% and 90%. Adsorption conditions are taken as 1 bar pressure and 313 K. Desorption 

conditions are taken as a 90:10 CO2:N2 stream at 0.1 bar at 313 K. 

Adsorbent WCCO2 (yCO2 = 0.15) WCCO2 (yCO2 = 0.9) 

UTSA-16 0.49 3.92 

SIFSIX-3-Ni 0.07 0.21 

Zeolite 13X 0.32 1.51 

 

5.3. We define the working capacity earlier in chapter 4 as: 

 , ,i ads i des iWC N N    (5.8) 

where Nads,i and Ndes,i are the uptake of component i at adsorption and desorption conditions, respectively. 

Similar to before, the desorption loading is for a 90:10 CO2:N2 stream at 0.1 bar and 313 K. For the 

adsorption loading, we calculate the working capacity for two streams. First we look at a 15:85 CO2:N2 

stream at 1 bar and 313 K, along with a 90:10 CO2:N2 stream under the same pressure and temperature. 

While the conditions of the first stream are defined from the flue feed gas, since a heavy reflux step is used 

in this cycle, the CO2 gas mole fraction in the column before the depressurization step is probably closer to 

90% than 15%. From Table 5.3, we see there is a massive difference between the CO2 working capacities 

of the three adsorbents. For the 15:85 CO2:N2 stream, SIFSIX-3-Ni has a low working capacity of 0.07 
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mol/kg, compared to zeolite 13X and UTSA-16 which have working capacities of 0.32 and 0.49 mol/kg, 

respectively. This difference in working capacities is magnified when the 90:10 CO2:N2 stream is examined. 

UTSA-16 has the largest large working capacity of 3.92 mol/kg, followed by zeolite 13X at 1.51 mol/kg. 

The working capacity of SIFSIX-3-Ni is still very low at only 0.21 mol/kg. These differences in CO2 

working capacities help to explain the difference in the performance at higher productivities, as the CO2 

working capacity of a material should be directly related to how much CO2 a given mass of adsorbent can 

cycle through over a given time.  

5.4. Conclusion 

 In this work, we tested 15 MOFs that were reported in the literature as promising candidates for carbon 

capture applications and tested them using a five-step Modified Skarstrom cycle, conducting both process- 

and economic-level analysis.  From the process-level analysis, we found that only 8 of the MOFs examined 

were able to achieve a CO2 purity and recovery of 90%, the DOE’s goal for CCS. Economic-level analysis 

was then conducted on these 8 MOFs, along with zeolite 13X, using productivity and energy requirement 

as proxies for the economic cost of the adsorbents. From these results, we found that at low energy 

requirement values, all the MOFs converged around the same value of ~160 kWh / ton CO2. However, at 

higher productivity values, we saw a clear difference emerge, with UTSA-16 the best performing MOF, 

followed by zeolite 13X, Cu-TDPAT, and Ni-MOF-74. We conclude that one reason for the good 

performance of the UTSA-16 MOF is its high CO2 working capacity, especially under adsorption similar 

to what would be experienced during Heavy Reflux step, i.e. a 90:10 CO2:N2 stream at 1 bar and 313 K.  
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Chapter 6: Rapid Simulation of Pressure Swing Adsorption Cycles 

Using Artificial Neural Networks 

6.1. Introduction 

There has been a significant increase in the CO2 concentration in the atmosphere, with most scientists 

agreeing that this increase in CO2 is the primary cause of recent global temperature increases.63,161 With 

fossil fuels expected to be a significant part of the world’s energy mix in the foreseeable future, it is 

important to develop new technologies to reduce and manage CO2 emissions. One method for reducing 

CO2 emissions in the near-term future is carbon capture and sequestration (CCS), where the CO2 is 

separated, concentrated and stored in underground rock formations.63 There are currently several methods 

capable of performing the separation of CO2 from N2, including absorption,65,104 membranes,64,162 and 

cryogenic distillation.163 Of these technologies, amine scrubbing is the commercial method for separating 

CO2 from N2. In this technique, an aqueous amine solution is used to absorb CO2, separating it from the N2. 

Afterwards, the CO2 is recovered by heating the solution. Unfortunately, the energy penalty to regenerate 

the aqueous amine is quite high, and making it cost prohibitive for CCS application. Due to the high energy 

penalty, pressure swing adsorption (PSA) has gained much interest recently as a feasible alternative, due to 

its low energy requirements.65,97 

One key challenge for successful commercial implementation of PSA technology for CCS is to design 

appropriate cycles for the task. In most commercial PSA applications, the weakly adsorbed (light) 

component is typically the product of value, and the more strongly adsorbed component (heavy) is 

discarded as waste. Therefore, commercial PSA processes typically focus on high purities for the light 

component, which explains the use of light reflux steps.21 However, for CCS, the heavy product (CO2) is 

the product of concern, requiring high purities and recoveries. Thus for CCS, it is necessary to design cycles 

for purifying the strongly adsorbed CO2.  
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The synthesis of PSA cycles for carbon capture has been a well-studied problem in recent years. While 

there are only six PSA steps (pressurization, feed, depressurization, heavy reflux, light reflux, and pressure 

equilibration), the different combination of steps and interactions between different steps leads to hundreds 

of possible cycles. There have been several studies that have looked at large numbers of cycles to determine 

the optimal one. Reynolds et al.43 examined nine different cycles incorporating a heavy reflux step using 

K-promoted HTlc at high temperatures. From this study, they found that the best cycle was a 5-step cycle 

with light and heavy reflux steps. The heavy reflux feed came from the countercurrent depressurization 

step, achieving a CO2 purity and recovery of 98.7% and a feed throughput of 5.8 L STP/hr/kg. The next 

best was a similar cycle with the heavy reflux feed coming from the light reflux step, achieving a CO2 purity 

of 96.5%, recovery of 71.1% and a feed throughput of 57.6 L STP/hr/kg. Haghpanah et al.39 modified their 

base 4-step Fractionated Vacuum Pressure Swing Adsorption (FVPSA) cycle with heavy reflux, light 

reflux, pressure equilibration and light product pressurization steps, examining the economic performance 

of six different cycles with zeolite 13X. From their analysis, they found that a 4-step cycle with a light 

product pressurization step achieved the best economic performance (lowest energy requirements and 

highest adsorbent productivity). In both studies, a brute force approach was taken, where every cycle was 

simulated and tested. One exception to this approach is the work by Agarwal et al.59 where they developed 

a 2-bed PSA superstructure capable of simulating most PSA steps. They used this superstructure to 

determine the PSA cycle that could achieve the highest CO2 recovery while maintaining a CO2 purity of 

90%, finding the optimal cycle to be a 6-step cycle with pressure equilibration and heavy reflux steps. A 

similar analysis was performed for pre-combustion CCS.42  

Finding optimal solutions for PSA processes is often challenging primarily due to sets of partial 

differential and algebraic equations (PDAE) that need to be solved. One approach to reduce the complexity 

of the problem is using surrogate models, which approximate the underlying model but are computationally 

cheaper to evaluate. While several different surrogate models have been proposed over the years for PSA, 
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including proper orthogonal decomposition60 and Kriging models,2 one interesting surrogate model is 

artificial neural networks (ANN). ANNs have gained popularity in recent years for solving complex 

problems including estimating life-cycle impact,164 predicting adsorption energies calculated from density 

functional theory,165 and predicting properties such as density, viscosity, refractive index and thermal 

conductivity of quaternary systems.166 In addition to these applications, several studies have looked into 

using ANNs as surrogate models for PSA cycles. Sundaram167 used a three-layer neural network to study 

the relationship between the input and output variables for three different PSA cycles. In addition to this 

study, there have been several works using ANNs for optimization purposes, training the ANNs on PSA 

data to minimize relative cost of nitrogen separation,168 maximize the product purities of propylene/propane 

separation,169 and maximize the N2 purity from N2/methane separation.170 Sant Anna et al.170 also showed 

that the use of ANN surrogate models reduced the optimization time from 15.7 hrs to 50 s. However, in all 

these cases, ANNs were used to model the entire PSA process and not individual steps. This results in 

different ANNs needing to be trained for different PSA cycles. If the ANNs were trained on individual 

steps, the ANNs could be combined for any desired cycle without the need for additional training or PSA 

simulations to collect the training data.  To the best of our knowledge, no previous work has investigated 

using ANNS for surrogate models of individual PSA steps.  

In this work, we present a framework for creating and training artificial neural networks (ANN) to act 

as surrogate models for individual pressure swing adsorption (PSA) steps. This is done to reduce the number 

of equations necessary to solve the steps, reducing the computational time required. We then use these 

ANNs to maximize the purity and recovery of the PSA cycle. We demonstrate the applicability of this 

framework by testing three different PSA cycles with zeolite 13X. Among the three cycles, all possible 

PSA steps are tested. In the future, we plan to use this framework to synthesize optimal PSA cycles for 

different adsorbents.  
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6.2.Methodology 

6.2.1 Artificial Neural Network Structures  

 ANNs are nonlinear approximation models that have shown great predictive abilities over a variety of 

tasks. ANN models consist of three types of layers: input, output and hidden layers. Each of these layers 

consists of many neurons, with the neurons in the hidden layers containing activation functions to decide 

whether a neuron is turned on or off. The neurons in each layer are connected to each other by weights, 

which are trained during the training process to reduce the error between the predicted and expected output 

values. In addition to the weights, the first three layers also have a bias term which is similar to the other 

neurons, except that it is always turned on. An example of an ANN is shown in Figure 6.1.  

 We divided all possible PSA steps into six possible types: 1) Co-Current Pressurization, 2) Counter-

Current Pressurization, 3) Co-Current Feed, 4) Counter-Current Feed, 5) Co-Current Depressurization, and 

6) Counter Current Depressurization. The Co or Counter current designation is the direction of the gas flow 

during the step in relation to the flue gas feed direction (feed in through the heavy product end is considered 

co-current). Using these six step types, most PSA operations can be modeled.  

 For each step type, there are 12ANNs: 10 ANNs for predicting the 5 state variables at 10 measured 

locations throughout the column, 1 ANN for each location, and 2 ANNs to predict the CO2 and total gas 

flowing into/out of each end of the column.  

 For all steps, a four layered ANN is used as a surrogate model, with two hidden layers containing 20 

hidden nodes each. The number of nodes in the input layer are different for each of the six step types (the 

number of input nodes is not dependent on the direction of the gas in the column). Each step will have 50 

input nodes for the 5 state variables (absolute pressure, CO2 gas phase mole fraction, CO2 molar loading, 

N2 molar loading, and column temperature) at 10 measured locations throughout the column. In addition to 

the state variable input nodes, there are input nodes for the operating parameters for each step. For 
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pressurization steps, there are three operating parameters: the column length (L), the final column pressure 

(P0), and the CO2 mole fraction of the feed gas (y0). For depressurization steps, there are two operating 

parameters: the column length (L) and the final column pressure (P0). For feed steps, there are five operating 

parameters: the column length (L), the operating pressure (P0), the Feed gas molar flow rate ( 0N& ), the CO2 

mole fraction of the feed gas (y0), and the duration of the feed step (t). The length of the column is constant 

among all the steps; however all other input parameters can vary between different steps.  
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Figure 6.1. Diagram of a Fractionated Vacuum Pressure Swing Adsorption (FVPSA) Cycle and the ANN 

used to represent the Feed step. The input into the ANN is the column profile at the beginning of the step 

(which includes all the state variables) and operating parameters important for the feed step. The output of 

the ANN is the column profile at the end of the Feed step and CO2 and N2 that is being fed into / emitted 

from the column during the step. 
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Figure 6.2. A general schematic for the artificial neural network. The initial profile of the column is fed 

into the input layer along with the operating parameters. The neural network calculates the profile of the 

column at the end of the step or the CO2 / N2 that is fed/emitted from the column. 

 The number of output nodes in the output layer is dependent on whether the ANN is used to predict the 

column state variables at the end of the step or the CO2 and N2 enter/leaving the column. For ANNs used 

to predict the final conditions of the column, there are 5 output nodes, one for each state variable at one of 

the measured locations in the column. For ANNs used to predict the gases entering and leaving the column, 

there are two output nodes, one to predict the CO2 entering/leaving the column and one to predict the total 

amount of gas entering/leaving the column. An example of this model is shown in Figure 6.2.  

6.2.2 Data Collection and Initial Training 

 In order to initialize the ANNs, it is necessary to have simulation data for training purposes. The initial 

training data was first gathered by collecting 300 sample points of the operating variable using the Latin 

hypercube sampling method, to ensure that the variable space is well sampled. We then simulated each set 

of operating variables using our PDAE based PSA simulation described in Chapter 2, running the 

simulations until cyclic steady state (CSS) is achieved. CSS is defined as when the change in the column 
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profile between the start and end of the cycle is less than 0.5%. It typically takes anywhere from 10 to 200 

cycles to find CSS. While the simulations are proceeding, the initial and final column profiles of every fifth 

cycle along with the CO2 being fed into / flowing out of the column for each step are collected. This data 

collection strategy allows for a large number of data points to be collected while ensuring that each of the 

points is different. We also specify that the last cycle, the cycle that reaches CSS, is collected.  

 Once the training data has been collected, the ANNs are then initially trained using the ANN regression 

toolbox in Matlab.171 We train the ANNs on 95% of the data using the Bayesian regularization method. The 

ANNs are trained for either 600 epochs, i.e. 600 updates of the ANN weights, or until the normalized mean 

squared error reaches 10-8 for the state variable ANNs and the mean square error for the CO2 and total 

emissions reaches 10-2.  

 

6.2.3 Optimization Framework and ANN Retraining 

 Once the ANNs are initially trained, the weights are fed into GAMS172 where they are used to determine 

the optimal CO2 purity-recovery Pareto front. We use the epsilon-constraint method173 to establish the 

Pareto front, and the nonlinear programing (NLP) problems are solved using CONOPT.174  In order to test 

the accuracy of the ANN solution, we take the initial column profile points and operating variables and 

simulate one cycle with the PDAE simulation. We then calculate the error between the ANN predictions 

and PDAE simulation results for all steps and state variables. If the normalized error between the PDAE 

simulation and ANN solution is greater than 10-03 for any of the state variables for any of the steps, then the 

simulation data is added to the training data set and the ANNs are retrained on the entire data set, initial 

training data along with new simulation data points, for 20 epochs. If the normalized error is less than 10-

03 for all points, optimization framework ends and the ANN results are reported as the optimal Pareto front. 

A flow chart of the optimization framework is shown in Figure 6.3. 
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6.3. Results 

 To test the accuracy of the ANNs and the ability to use them for optimization problems, we model three 

different PSA cycles, which can be seen in Figure 6.4. We first examine a 3-step cycle composed of a co-

current (CoC) pressurization step, a CoC feed step, and a counter-current (CnC) depressurization step.113 

Next, we test the framework on a Skarstrom cycle, which is the same as the first cycle with the addition of 

a light reflux (CnC Feed step) at the end of the cycle.55 Finally, we analyze a 5-step cycle containing a light 

product Pressurization step (CnC pressurization), Feed step, Heavy Reflux step (CoC feed), CoC 

Depressurization step, and a CnC Depressurization step. For all cycles, we use zeolite 13X as the 

adsorbent.51  

6.3.1 Three Step Cycle 

 The optimization framework required 29 iterations to reach the optimal solution. At the end of the 

algorithm, the average mean square error for all three steps was 1.7x10-08. This error is broken down further  
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Calculate optimal solutions 
using ANN surrogate 

models

ANN error < ε?

Perform initial training 
of ANNs

End

Determine the accuracy of 
the surrogate model 

solutions

Add PDAE solutions to 
training data set and 

retrain ANNs

 

Figure 6.3. Flow diagram of the algorithm used to calculate the purity / recovery Pareto front. The ANNs 

are used with a derivative based optimization solver to calculate the optimal Pareto front. The predicted 

optimal points are then simulated with the PADE equations to determine the accuracy of the ANN results. 

If the error between the ANN results and the PDE simulation results is greater than 10-03 for any point in 

the column, the PDAE simulation results are added to the training data set and the ANNs are retrained with 

the new training data set. 
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Figure 6.4. Schematics of the three steps tested in this chapter: (a) 3 step cycle, (b) Skarstrom cycle, and (c) 

5 step cycle. 
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Figure 6.5. Comparison of the (a) CO2 gas mole fraction, (b) CO2 molar loading, and (C) temperature profiles 

throughout the column between the neural network and PDAE simulation results for the result with the 

highest CO2 purity with a CO2 recovery of 90%. The different colored data points correspond to the profiles 

at the end of the Feed Pressurization (red), Feed (blue), and CnC Depressurization (black) steps. From these 

plots, it is seen that there is good agreement between the ANN and PDAE simulation results, with only small 

differences at the end of the column during the Feed step. (d) The Pareto front established from the ANNs 

for the three step PSA cycle.  
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Figure 6.6. Comparison of the (a) CO2 gas mole fraction, (b) CO2 molar loading, and (C) temperature 

profiles throughout the column between the neural network and PDAE simulation results for the result 

with the highest CO2 purity with a CO2 recovery of 91%. The different colored data points correspond to 

the profiles at the end of the Feed Pressurization (red), Feed (blue), and CnC Depressurization (black) 

steps. From these plots, we can see that the CO2 front is not reaching the end of the column at the end of 

the Feed step. Due to this, there is a significant decrease in the maximum CO2 purity for a recovery of 

90% and 91%. The ANN predicted CO2 purity and recovery are 76.6% and 91% respectively. The PDAE 

simulation predicted CO2 purity and recovery are 76.6% and 90.5% respectively.  
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Table 6.1. The Mean Square Error of the final ANNs (ANNs at the end of the optimization framework) for 

all data points in the training set. The MSE is broken down by the state variable and the PSA step.  

 
Pressure 

MSE 

CO2 mole 

fraction MSE 

CO2 molar 

loading MSE 

N2 molar 

loading MSE 

Temperature 

MSE 

Pressurization 
6.7e-09 2.0e-08 1.1e-08 1.2e-08 8.01e-09 

Feed 
2.3e-08 3.0e-08 3.8e-08 2.0e-08 2.6e-08 

CnC 

Depressurization 
9.5e-09 3.0e-08 8.8e-09 2.7e-09 6.7e-09 

 

Table 6.2. Validation results between the ANNs and PDAE simulations for the three step cycle.  

 
ANN  PDAE Simulations 

CO2 Purity 79.1% 78.6% 

CO2 Recovery 90.0% 88.8% 

Computation Time for 1000 

Simulations [s] 

0.5 2560 
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for the different steps and state variables in Table 6.1. From Table 6.1, we can see that there is good 

agreement between the ANN and the PDAE simulation results for all the steps. In Figure 6.5, the column 

profiles from the ANN and PDAE CO2 gas phase mole fraction, CO2 molar loading and temperature are 

shown for the result with the highest CO2 purity at 90% recovery. From this plot, we can see that there is 

good agreement between the ANN and PDAE simulations. The only difference between the two is that the 

ANN slightly overpredicts all three state variables at the end of the Feed step. In Table 6.2, we compare the 

predicted purities and recoveries of the ANNs and PDAE simulations along with the time required to 

simulate 1000 cycles.  

 In Figure 6.5, we see the CO2 purity / recovery Pareto front for the 3-step cycle. One interesting aspect 

of the front is that there is a sharp decrease in purity that occurs when increasing the recovery from 90.5% 

to 91%.  Upon examining the column profiles of the 91% recovery point, we found that the reason for this 

drop off is that CO2 is breaking through the column at the end of the Feed step. When examining the column 

profiles for the 91% recovery point (Figure 6.6), we see that there is significant decrease in the CO2 molar 

loading at the end of the 91% recovery compared to 90% recovery point. This decrease in the CO2 molar 

loading results in less CO2 that can be capture during the depressurization step, which is why there is a 

sharp decrease in the CO2 purity at that point in the Pareto front.  

6.3.2 Four Step Cycle (Skarstrom Cycle) 

 With good results coming from the 3-step cycle, we wanted to increase the number of steps to ensure 

that the predictive ability is seen with more commercially relevant cycles. For the Skarstrom cycle, the 

optimization algorithm required 77 iterations before the solution was finalized. At the end of the algorithm, 

the average mean square error for the four steps was 5.8 10-08. The mean square error is broken down further 

between different steps and state variables in Table 6.3. In general, there was still good agreement, as the 

MSE for all the steps was low. However, we can see that for the Skarstrom cycle the Feed Step was the 

most difficult step to simulate, with MSEs for all its state variables higher than the other steps. In Figure 
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6.7, the column profile from the ANN and PDAE CO2 gas phase mole fraction, molar loading and 

temperature are shown for the result with the highest CO2 purity at 90% recovery. We continue to see good 

agreement between the two results, with the only differences in this cycle seen in the CO2 mole fraction 

and temperature of the light reflux step. In Table 6.4, we compare the predicted purities and recoveries of 

the ANNs and PDAE simulations along with the time required to simulate 1000 cycles. In this case, we see 

even better agreement, with no difference between the CO2 purity and a small difference between the CO2 

recoveries. Looking at the difference in computational time, a three order of magnitude speed up is achieved 

by using the ANNs over the PDAE simulation. The CO2 purity / recovery Pareto front is shown in Figure 

6.7. As stated above, this Pareto front is formed by setting the minimum CO2 recovery throughout the range 

of values, and then maximizing the CO2 purity. From this, a smooth Pareto front is seen with a significant 

drop off in the CO2 recovery if a purity higher than 84% is desired.  

6.3.3  Five Step Cycle  

Our final case study for the ANNs surrogate model framework is a 5-step PSA cycle. The cycle consists 

of (1) a Light Product Pressurization step, (2) a Feed step, (3) a Heavy Reflux step, (4) a Co-Current 

Depressurization step, and (5) a Counter-Current Depressurization step. A fraction of the heavy product 

from the Counter-Current depressurization step is used as the feed for the Heavy Reflux step. It is noted 

that the Feed step and the Heavy Reflux step are both modeled by the CoC Feed step. This results in CoC 

Feed step having a training data set twice the size as the other steps. In order to maintain the necessary 

accuracy for the CoC Feed step, we increase the number of nodes in the hidden layers to 30 each.  

For the 5-step PSA cycle, 190 iterations were required to find the optimal solution. The average mean 

square error of the 5 steps is 4.4x10-07, which is about an order of magnitude higher than the Skarstrom 

cycle. Upon further examination of the breakdown of the MSE, shown in Table 6.5, we can see that this 

higher error is due to the Heavy Reflux and Co-Current Depressurization steps. Both steps had high error 
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for all the state variables. In particular, we can see that the prediction of the CO2 gas mole fraction had the 

highest error, with both steps having a MSE over 1x10-06 for this state variable. However, even with this  

 

 

         

Figure 6.7. Comparison of the (a) CO2 gas mole fraction, (b) CO2 molar loading, and (C) Temperature 

column profile throughout the column between the neural network and PDE simulation results for the result 

with the highest CO2 purity with a CO2 recovery of 90%. The lines correspond to the profile at the end of 

the Feed Pressurization (red), Feed (blue), CnC Depressurization (purple), and Light Reflux (black) steps. 

(d) The Pareto front established from the ANNs for the Skarstrom cycle.   
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Figure 6.8. Comparison of the (a) CO2 gas mole fraction, (b) CO2 molar loading, and (C) Temperature 

column profile throughout the column between the neural network and PDE simulation results for the result 

with the highest CO2 purity with a CO2 recovery of 90%. The lines correspond to the profile at the end of 

the Light Product Pressurization (red), Feed (blue), Heavy Reflux (purple), CoC Depressurization (black), 

and CnC Depressurization (green) steps. 
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Table 6.3. The Mean Square Error of the final ANNs (ANNs at the end of the optimization framework) for 

all data points in the training set for the Skarstrom cycle. The MSE is broken down by the state variable 

and the PSA step. 

 
Pressure 

MSE 

CO2 mole 

fraction MSE 

CO2 molar 

loading MSE 

N2 molar 

loading MSE 

Temperature 

MSE 

Pressurization 
4.9e-09 1.4e-08 1.5e-08 9.1-09 1.1e-08 

Feed 
5.1e-08 1.1e-07 1.7e-07 7.9e-08 1.6e-07 

CnC 

Depressurization 
1.2e-08 1.0e-07 2.3e-08 2.2e-09 1.5e-08 

Light Reflux 
5.9e-08 1.5e-07 7.3e-08 1.9e-08 5.0e-08 

 

 

Table 6.4. Validation results between the ANNs and PDAE simulations for the Skarstrom cycle. 

 
ANN  PDAE Simulations 

CO2 Purity 82.0% 82.0% 

CO2 Recovery 90.0% 89.9% 

Computation Time for 1000 

Simulations [s] 

0.7 1270 
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Table 6.5. The Mean Square Error of the final ANNs (ANNs at the end of the optimization framework) for 

all data points in the training set for the five step PSA cycle. The MSE is broken down by the state variable 

and the PSA step. From this, we can see the CoC Depressurization step and the Heavy Reflux step had 

some of the higher errors compared to the other three steps. 

 
Pressure 

MSE 

CO2 mole 

fraction MSE 

CO2 molar 

loading MSE 

N2 molar 

loading MSE 

Temperature 

MSE 

Pressurization 
1.0e-09 2.2e-08 2.4e-08 8.6e-09 2.7e-08 

Feed 
1.4e-07 3.1e-07 3.7e-07 1.0e-07 4.4e-07 

Heavy Reflux 
3.7e-08 1.8e-06 1.5e-07 8.0e-08 8.5e-08 

CoC  

Depressurization 
1.8e-07 5.4e-06 8.6e-07 7.8e-08 4.0e-07 

CnC 

Depressurization 
3.4e-08 2.6e-07 5.3e-08 2.9e-09 3.1e-08 

 

Table 6.6. Validation results between the ANNs and PDAE simulations for the Skarstrom cycle. 

 
ANN  PDAE Simulations 

CO2 Purity 99.8% 99.7% 

CO2 Recovery 90.0% 89.4 

Computation Time for 1000 

Simulations [s] 

0.7 3760 
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higher error, there is still good agreement between the ANN and PDAE solutions as shown in Figure 6.8. 

From these plots, the only difference between the two solutions that can be seen is with the CO2 moles 

fraction profiles at the end of the column at the end of the Co-Current Depressurization step. In Table 6.6, 

we compare the CO2 purity and recovery predictions between ANN and PDAE solutions. There is good 

agreement between the two, with small differences between the predicted purities and recoveries. In respect 

to the computational time required to simulate 1000 cycles, a three order of magnitude difference is 

achieved with the ANNs solving the simulations in less than 1 s.    

6.4. Conclusions 

 In this work, we showed that artificial neural networks can be used as surrogate models for the rapid 

simulation of the individual steps of various PSA cycles. We created six PSA step types that are able to 

simulate the most common PSA steps used in industrial operations. For each PSA cycle, we trained separate 

ANNs for each step type using simulation data from our PDAE model. We then use these ANNs to calculate 

the highest CO2 purity that can be achieved for each cycle while maintaining a pre-determined CO2 

recovery, retraining the ANNs as necessary to improve the accuracy of the predications.  

 Three PSA cycles were considered in this work: a three-step PSA cycle, the Skarstrom cycle, and a 

five-step PSA cycle. Among all three cycles, the six step types that are capable of representing most PSA 

steps in industrial applications are tested. With all three cycles, we found good agreement between the ANN 

and the PDAE simulation when looking at the column profiles throughout the cycle and the predicted CO2 

recovery and purity. Moreover, we saw a roughly three order of magnitude speed up with the ANN 

simulations compared to the PDAE simulations. The use of ANN of surrogate models for PSA steps should 

allow for effective synthesis of PSA cycles for different adsorbents to minimize the cost of CO2 capture.  
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Chapter 7: Conclusions and Recommendations 

 In this chapter, we highlight the important conclusion from the previous chapters and provide 

suggestions for future research directions. 

7.1. Conclusions  

 In Chapter 3, we showed the impact water has on the performance of different adsorbents for CO2 

capture, with zeolite 13X performing the best under dry flue gas conditions, but zeolite 13X and zeolite 5A 

performing equally well under wet flue gas conditions. In addition to these results, we also found that the 

best option to handle the water in the flue gas is to feed the gas directly into the bed and let the first section 

of the bed act as a desiccant, while the remainder of the bed separates the CO2 from the N2. 

 In Chapter 4, we developed a general evaluation metric to rapidly rank MOFs based on their expected 

costs of CO2 capture. This metric contains the working capacities of CO2 and N2, along with the selectivity 

of CO2 over N2 at desorption conditions, and the internal energy of adsorption of N2. From this 

investigation, we also found the working capacity of N2 to be the single most predictive feature for ranking 

the MOFs. 

 In Chapter 5, we investigated 15 MOFs that were reported in the literature as promising for CCS 

applications, calculating their process and economic performance using a 5-step modified Skarstrom cycle. 

From this analysis, we found that the best performing MOF from the selection was UTSA-16, followed by 

zeolite 13X, Cu-TDPAT, and Ni-MOF-74.  

 In Chapter 6, we used Artificial Neural Networks as surrogate models for individual PSA steps to allow 

for the rapid simulation and optimization of three PSA cycles. We showed that ANNs are capable of 

simulating most of the potential steps that can be used in industrial PSA operation, testing this approach 

with a three-step PSA cycle, a Skarstrom cycle, and a 5-step PSA cycle with heavy reflux step.  
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7.2. Recommendation for Future Research 

 From the research performed in this dissertation, two promising research directions emerged. First, it 

would be interesting to continue investigating the impact of water on the PSA cycle performance, looking 

into different cycles and adsorbents. Second, it would be interesting to perform cycle synthesis on different 

adsorbents to determine difference in ideal cycles between materials. 

 In Chapter 3, a two-stage Skarstrom cycle was developed to capture the CO2 and tested with multiple 

adsorbents. However, during the investigation we found that the Skarstrom cycle is a poor cycle for CCS, 

since it required two stages to achieve 90% CO2 purity goal. Therefore it would be interesting to expand 

the research to look at the effect of water on other cycles such as the FVPSA or Modified Skarstrom cycle. 

The inclusion of steps such as the heavy reflux step might result in the water front going further into the 

bed, further hindering the performance. In addition, all four of the adsorbents examined in Chapter 3 were 

hydrophilic. Further investigation should look into the difference in performance between hydrophilic 

MOFs and hydrophobic MOFs like SIFSIX-3-Ni and ZIF-8.  

 In Chapter 6, we used artificial neural networks (ANNs) as surrogate models for the rapid simulation 

of PSA cycles. Ideally, these surrogate models will be used for cycle synthesis with mixed integer nonlinear 

programming (MINLP) solvers. One interesting direction to investigate with the cycle synthesis is to 

determine the ideal cycle for different adsorbents. So far, work looking into cycle synthesis has used a 

single adsorbent to test the different cycles. It would be interesting to determine the optimal cycle for 

different adsorbents and determine if adsorbents with different isotherms (high CO2 and N2 working 

capacities vs low CO2 and N2 working capacities) have different ideal cycles. In addition, our work focused 

on the rapid simulation of PSA cycle with a binary gas mixture. In the future, it would be interesting to 

investigate optimal PSA cycles for different adsorbents when there are three or more gases.  
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Appendix A: Nomenclature 

A: area of column [m2] 

Cp,a: specific heat capacity of the adsorbed phase [J/mol/K] 

Cp,g: specific heat capacity of the gas [J/mol/K] 

Cp,s: specific heat capacity of the adsorbent [J/kg/K] 

Cp,w: specific heat capacity of the wall [J/kg/K] 

D: inner diameter of column [m]  

Dm: molecular diffusivity of CO2- N2 mixture [m2/s] 

DL: axial dispersion coefficient [m2/s] 

F: molar feed flow rate [mol/s] 

ki: mass transfer coefficient of component i [s-1] 

hin: inner heat transfer coefficient [W/m2/K] 

hout: outer heat transfer coefficient [W/m2/K] 

H: enthalpy [J/mol] 

Kw: thermal conductivity of the wall [W/m/K] 

Kz: effective gas thermal conductivity [W/m/K] 

L: length of column [m] 

Lwf: length of column affected by the water front [m] 

MWi: Molecular weight of component i [kg/mol] 

N: number of columns 

P: pressure [Pa] 

P0: Adsorption pressure [Pa] 

�̅�: Dimensionless pressure 

qi: molar loading of component i in the solid phase [mol/ kg] 

qi
*: equilibrium molar loading of component i in the solid phase [mol/ kg] 

qs0: molar loading scaling factor [mol/kg] 

ri: column inner radius [m] 

ro: column outer radius [m] 

rp: radius of adsorbent pellet [m] 
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R: Universal Gas Constant [J/mol/K] 

tc: cycle time of the PSA unit [s] 

t: time 

T: temperature [K] 

Ta: ambient temperature [K] 

T0: Feed Temperature [K] 

Tw: column wall temperature [K] 

�̅�: Dimensionless temperature 

�̅�𝑤: Dimensionless wall temperature 

u0: Velocity scaling factor  [m/s] 

uz: superficial gas velocity [m/s] 

ūz: dimensionless superficial gas velocity 

U: internal energy [J/mol] 

wl: water mole fraction in feed gas to PSA unit 

xi: dimensionless molar loading of component i in the solid phase 

xi
*: dimensionless equilibrium molar loading of component i in the solid phase 

yi: mole fraction of component i in the gas phase 

z: bed length coordinates [m]  

Z: dimensionless length coordinates 

 

Greek Symbols 

α: water penalty factor 

αLR: light reflux ratio (fraction of the Feed light product that is sent to the light reflux step) [-] 

αHR: heavy reflux ratio (fraction of the light reflux heavy product that is sent to the heavy reflux step) [-] 

ε: bed void fraction 

μ: gas viscosity [Pa*s] 

ρg: density of gas [mol/m3] 

ρs: density of adsorbent [kg/m3] 

ρw: density of wall [kg/m3] 

π: dimensionless group in energy balances 
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τ: dimensionless time 

 

Subscripts 

ads: adsorption step 

atm: atmospheric 

depress: counter current depressurization step 

H: high 

i: index of component 

in: stream coming in 

j: stage number 

L: low 

out: stream coming out 

pres: pressurization step 

pur: purge step 
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Appendix B: Economic Equations and Equation Parameters 

P/VSA Simulation and Isotherm Parameters 

The CO2, N2, and the H2O isotherm parameters for all of the materials, along with the operating variables 

used in the simulations are provided below. 

Table B.1. Operating variables for the P/VSA simulations. 

ε 0.37 

rp [mm] 1 

kco2 [s-1] 0.1631 

kN2 [s-1] 0.2044 

ρw [kg/m3] 7800 

Cp,a [J/mol/K] 30.7 

Cp,g [J/mol/K] 30.7 

Cp,s [J/kg/K] 1070 

Cp,w [J/kg/K] 502 

μ  [Pa*s] 1.72 x 10-5 

Dm [m2/s] 1.2995 x 10-5 

Kz [W/m/K] 0.09 

Kw [W/m/K] 16 

hin [W/m2/K] 8.6 

hout [W/m2/K] 2.5 

T0 [K] 313 

Ta [K] 298 

u0 [m/s] 1 

qs0 [mol/kg] 5.84 
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Table B.2. Densities of the four adsorbents in chapter 3.  

Material  Zeolite 13X Zeolite 5A HKUST-1 Ni-MOF-74 

ρs [kg/m3] 1130 1130 881 1195 

 

Table B.3. Isotherm parameters for CO2 and N2 for zeolite 5A, HKUST-1 and Ni-MOF-74.  

Parameter* Zeolite 5A HKUST-1 Ni-MOF-74 

Component CO2 N2 CO2 N2 CO2 N2 

bi [kPa-1] 1.41 X 10-7 3.71 X 10-7 6.84 X 10-8 6.81 X 10-7 4.47 X 10-8 1.40 X 10-7 

di  [kPa-1] 0.00 0.00 4.52 X 10-6 0.00 4.71 X 10-10 0.00 

qb,i [mol/kg] 3.4 3.30 12.4 8.00 6.21 11.9 

qd,i [mol/kg] 0.00 0.00 1.16 0.00 7.15 0.00 

ΔUb,i [kJ/mol] -37.4 -19.4 -25.7 -12.5 -37.8 -19.4 

ΔUd,i [kJ/mol] 0.00 0.00 -25.7 0.00 -37.8 0.00 

 

Table B.4. Isotherm parameters for CO2 and N2 for zeolite 13X. 

Parameter* CO2 N2 

bi [m3/mol] 8.65 X 10-7 2.50 X 10-6 

di  [m3/mol] 2.63 X 10-8 0.00 

qb,i [mol/kg] 3.09 5.84 

qd,i [mol/kg] 2.54 0.00 

ΔUb,i [kJ/mol] -36.6 -15.8 

ΔUd,i [kJ/mol] -35.7 0.00 

*  In the dual-site Langmuir isotherms, qb,i and qd,i are the saturation loadings of component i for the first and second sites, 

respectively, ΔUb,i and ΔUd,i are the heats of adsorption for component i for the first and second sites, respectively, and bi and di are 

the isotherm parameters for component i for the first and second sites, respectively. 
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Table B.5. Water isotherm and impact parameters. 

Zeolite 13X 

Parameters a [mol/kg/kPa] b [kPa-1] t [-] c [kg/mol] 

Values 35000 2333 0.383 0.337 

Zeolite 5A 

Parameters a [mol/kg/kPa] b [kPa-1] t [-] c [kg/mol] 

Values 3.56 x 106 1.52 x 105 0.18 0.337 

Ni-MOF-74 

Parameters qb [mol/kg] b  [kPa-1] qd  [mol/kg] d [kPa-1] c [kg/mol] 

Values 27.7 16.42 0.975 0.27 0.142 

HKUST-1 

Parameters a [kPa-5] b [kPa-4] c [kPa-3] d [kPa-2] e [kPa-1] c [kg/mol] 

Values 0.132 -2.25 13.5 -33.5 35.9 0.095 

 

Process Objective Equations 

The following equations are used to calculate the purity, recovery and mass balance of each stage.  
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Economic Equations 

The total annualized cost (TAC) of the P/VSA system, dehydration technology and the post separation 

compression is calculated as followed: 

TAC ACC + AOC + PSCC + DC  

where ACC and AOC are the Annualized Capital Cost and Annualized Operating Cost of the P/VSA 

system, PSCC is the overall annual cost of the post separation compression (PSC) system, and DC is the 

overall annual dehydration cost. The cost parameters used in the economic evaluation can be found in Table 

S6.  
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Table B.1. Economic Parameters.  

Interest Rate 10% 

Life Span of Equipment  20 years 

Cost of TEG $2000/ ton 

Cost of Electricity  $0.06 / kWh 

Operating Time 8000 hours/year 

Cost of Cooling Water $0.02/m3 

Cost of Natural Gas  $4.76 / MMBtu 

Cost of Chilled Water $4/GJ 

 

  

P/VSA System 

The annualized capital cost is defined as: 

 , , ,ACC equip bm equip j adsorb adsorb j j

j

C C MC     

where ϕequip and ϕadsorb are the annualization factors for the equipment and adsorbents, respectively, Cbm,equip,j 

is the bare module cost for the equipment and Cadsorb,j is the cost of the adsorbent. The maintenance cost is 

assumed to be equal to 5% of the annualized equipment costs.  

The equipment cost is calculated as follows:  

 , . , , , , , , , , , ,bm equip j col j bm comp p comp j bm vac p vac j bm col p col jC N F C F C F C    

where Fbm is the bare module factor for each piece of equipment and Cp,comp, Cp,vac and Cp,col are the purchase 

cost of the compressor, vacuum pump and column, respectively. We use a bare module factor of 2.15 for 

the compressors and vacuums and 4.15 for the column.  
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The purchase cost of the column is calculated using the following equation: 

, , , , ,p col j v j pl j dr jC C C C    

where Cv,j is the cost of the vessel for a single column in stage j with a weight of Wj, Cpl,j is the cost of the 

platforms and ladders and Cdr,j is the cost of the flow distributor. These are calculated as follows:  

  , 2 1.6col j in col in col colW r t L r t     

   
2

, , ,exp 7.0132 0.18255ln 2.2 0.02297ln 2.2v j col j col jC W W   
  

 

     0.7396 0.70684

, ,6.56 3.28pl j in j jC r L  

 
2

, ,125 3.28dr j in jC r  

where Lj and rin,j are the length and radius of the columns in stage j, tcol is the thickness of the column and 

ρs is the density of the material. We use carbon steel for the column with a density of 7800 kg/m3 and a 

thickness of 0.015 m.  

The purchase cost of the vacuum pumps for stage j, Cp,vac,j, is calculated as follows:  

0, 0

,

Rec
0.588

Pur

j j j

j

j L j

y F RT
Q

P
&  

 
0.35

, , 8250p vac j jC Q &  

where y0,j is the mole fraction of CO2 in the feed gas, Recj is the CO2 recovery, Purj is the purity of the CO2 

product, and PL,j is the purge pressure.  

The purchase cost of the compressor, Cp,comp,j, is calculated using the following expressions.  
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where η is the efficiency of the compressor/vacuum pump. It is noted that either a blower or a compressor 

is able to perform the compression duties for the P/VSA cycles. If the adsorption pressure is below 2 bar, 

the blower is used with an efficiency of 80%. If the adsorption pressure is above 2 bar, than a compressor 

with an efficiency of 75% is used.  

The purchase cost of the adsorbent is calculated with the following expression: 

,p adsorbent pk s pC C V  

2

p inV r L  

where Cpk is the cost of the adsorbent, ρs is the density of the adsorbent and Vp is the packing volume of the 

adsorbent.  

Finally, the operating cost, OCj is calculated as follows: 

 , , , , ,

,

8000 3600
pres j ads j depress j pur j col j

j c j

AOC EC W W W W N
t


     

where EC is the cost of electricity, Wpres,j, Wads,j, Wdepress,j and Wpur,j are the energy requirements for the 

pressurization, adsorption, depressurization and purge steps, respectively, and tc,j is the cycle time of stage 

j. The energy requirements are calculated as follows.  
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Post-Separation Compression 

For calculating the cost of the PSC system, the following equation is used: 

 

     
5 6

, , , , , , ,

1 1

PSCC
k l

bm comp k comp k bm HE l HE l bm pump pumpC AOC C AOC C AOC
 

        

where Cbm,comp,k and AOCcomp,k are the bare module cost for compressor k, Cbm,HE,l and AOCHE,l are the bare 

module cost and operating costs for Heat Exchanger l, and Cbm,pump and AOCpump are the bare module cost 

and operating costs for the pump. It is noted that as shown in Figure 1, the PSC section consists of five 

compressors, six heat exchangers (five using cooling water as the coolant and one using chilled water) and 

a pump. The bare module cost for each piece of equipment is given as follows: 
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where Fmat are the material factors for the equipment, Fproduct is the molar feed rate of the CO2 product 

stream, FP,HE is the pressure factor for the heat exchangers, Qproduct is the volumetric flow rate of the liquid 

CO2 product, H is the required pump head of the pump ηmotor and ηpump are the efficiencies of the motor and 

pump, respectively, ρproduct,l is the density of the liquid product and ppump,psc is the power requirements from 

the pump. We assumed that the liquid density of the product is 770 kg per m3. 

The Annualized Operating Costs of the PSC section is calculated as follows: 

,
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where Ccool,k and Qcool,k are the cost and volumetric flow rate requirements of coolant needed for Heat 

Exchanger k.  
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Dehydration Schemes 

 Both the Cooling and Condensing (C&C) and triethylene absorption (TEG) dehydration schemes are 

modeled in Aspen HYSYS using the UNIQUAC Fluids package. Based off of the results of the simulations, 

the annualized cost for each scheme is estimated using cost equations from literature.1  

For the C&C scheme, the Total Annualized Cost is calculated using the following equation. 

 & , , , ,C C comp HE bm comp bm vessel bm HE m

m

TAC EC P CWC Q C C C
 

       
 

  

where Pcomp is the power requirements of the compressor, CWC is the cost of the cooling water, QHE is the 

necessary flow rate of water required by the heat exchangers, and Cp,comp, Cp,HE,m and Cp,vessel are the purchase 

cost of the compressor, the heat exchanger and the vessel. These purchase costs are calculated using the 

following equations  
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2

10 100.4485log 0.1074logV V

 

where Ai is the heat transfer area of heat exchanger m in m2, V is the volume of the process vessel in m3 and 

Pcomp is in units of kW. We used a bare module factor of 2.27 for the compressor, 3.29 for the heat 

exchangers and 4.07 for the process vessel.  

For the TEG dehydration scheme, the Total Annualized Cost was calculated using the following equation.  
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TEG pump HE TEG TEG NG

bm vessel bm HE m bm pump bm FH bm tower n
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where Ppump is the power requirements of the pump, MUTEG is the makeup flowrate of triethylene glycol, 

HR is the heating requirements of the fired heater, CNG is the cost of natural gas, CTEG is the cost of 

triethylene glycol, Cp,pump is the purchase cost of the pump, Cp,FH is the purchase cost of the fired heater and 

Cp,tower,j is the purchase cost of tower. For the heat exchangers and the vessel, the same equations are used. 

The purchase costs of the towers, pumps, and fire heater were calculated with the following equations. 
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2

10 , , 10 102.9949 0.4465log 0.3961logp trays n tray trayC A A  

 

where Atray is the area of the tray in m2 and Ppump is in kW. In calculating the purchase cost of tower m, the 

cost of the column is calculated using the same equations as the vessels above. The bare module factors 

used are 2 for the trays, 3.24 for the pump and 2.2 for the fire heater.  
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Appendix C: Competitive dual-site Langmuir isotherm validation 

 In order to perform the process level simulations, it is necessary calculate the CO2/N2 mixture loadings 

at various pressures, temperatures, and gas-phase mole fractions throughout the process simulation.  Thus, 

one needs an analytical expression or some other way of very quickly calculating the mixture behavior from 

the single-component isotherms. As is common in the literature, we decided to use a two site competitive 

Langmuir isotherm to determine the mixture loadings at various pressures, temperatures, and gas-phase 

mole fractions. As mentioned in Chapter 4, the pure CO2 and N2
 isotherms of the adsorbents were fitted 

simultaneously to a dual and single site Langmuir isotherm (equations 2 and 3 from main text), respectively. 

In order to employ the competitive isotherms, we assumed that the CO2 site with the larger binding energy 

(site with the larger  term) only adsorbs CO2. For the weaker CO2 binding energy site, the CO2 and 

the N2 molecules compete for the adsorption sites. In order to maintain thermodynamic consistency for this 

site, the saturation loading for CO2 and N2 are set equal to each other on this site.120 In order to confirm the 

accuracy of using this competitive isotherm model to predict mixture loadings, mixture GCMC simulations 

were run on ten random MOFs from the CoRE MOF data set. These mixture GCMC simulations were run 

up to 10 bar with a 15:85 CO2/N2 gas-phase composition at 313 K. The mixture simulation data were then 

compared to the predicted loading from the competitive isotherm model. The results from all ten MOFs are 

shown below. It is seen from the ten MOFs that the mixture loading results were predicted reasonably well 

by fitting competitive isotherms to the pure component loading data. The mean unsigned errors between 

the multicomponent Langmuir model and the GCMC data are 0.049 and 0.022 mol/kg for CO2 and N2, 

respectively. 

2 ,CO sB
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Figure C.1. Pure Component and Mixture Isotherms for AMIMEP 

  

Figure C.2. Pure Component and Mixture Isotherms for FIJDIM12 

  

Figure C.3. Pure Component and Mixture Isotherms for MOF ISUCUV 
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Figure C.4. Pure Component and Mixture Isotherms for LAGNEO 

  

Figure C.5. Pure Component and Mixture Isotherms for LEVNOQ 

  

Figure C.6. Pure Component and Mixture Isotherms for LIGHAM 
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Figure C.7. Pure Component and Mixture Isotherms for NANMEW 

 

 

 

Figure C.8. Pure Component and Mixture Isotherms for QOCSAD 
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Figure C.9. Pure Component and Mixture Isotherms for MOF TISKOW 

  

Figure C.10. Pure Component and Mixture Isotherms for XAMLUS 
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Appendix D: N2 Heat of Adsorption Sensitivity Analysis 

 In most experimental studies looking into synthesizing new MOFs for CO2 capture applications, the 

primary focus is on measuring the CO2 isotherm at room temperature in order to be able to report the CO2 

working capacity. It is also quite common for studies to measure the isosteric heat of adsorption of CO2 to 

see how strongly the CO2 is binding to the MOF and the isotherm of N2 at room temperature to calculate 

the selectivity of CO2 over N2. However, the isosteric heat of adsorption of N2 is commonly not reported. 

This was the case for three of the MOFs that we examined in Chapter 5: Co-MOF-74, SIFSIX-3-Ni and 

SIFSIX-2-Cu-i. In order to see the impact the N2 heat of adsorption has on the final results of the PSA 

analysis, we performed a sensitivity analysis on SIFSIX-2-Cu-i and Co-MOF-74. For both of these MOFs, 

N2 isotherms were reported at 298 K. We took these isotherms and fitted the isotherm to an Arrhenius-type 

equation as noted above to account for temperature effects. Process-level optimization was performed for 

each N2 heat of adsorption and the results are reported below in Figure D.1. In this analysis, we see there is 

a big difference in the range of CO2 purities between the two MOFs. While the range was only 2% for 

SIFSIX-2-Cu-i, the range for Co-MOF-74 was higher at 6%. However, for both MOFs we see that the 

choice of N2 heat of adsorption value did not determine whether the MOF achieved the DOE’s goal or not. 

SIFSIX-2-Cu-i was able to exceed the goal no matter the N2 heat of adsorption value, and Co-MOF-74 was 

unable to meet the goal no matter the heat of adsorption value. From this analysis, if N2 heat of adsorption 

data was unable to be obtained for a specific MOF, but the remaining information was found, we assumed 

the N2 heat of adsorption was 12 kJ/mol.  
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Figure D.1. Purity / recovery Pareto fronts for (a) Co-MOF-74 and (b) SIFSIX-2-Cu-i, with N2 heat ranging 

from -8 kJ/mol to -16 kJ/mol. While the range in CO2 purity was significant, 73% - 79%, the range for 

SIFSIX-2-Cu-i was smaller, 91% - 93%.  

 

 


