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ABSTRACT

Efficient Simulation Techniques for Dielectrics and Their Effects on Electrolytes and

Patchy Colloids

Huanxin Wu

Many phenomena that occur on the nanoscale, such as the electric double layer and

the self-assembly of charged nanoparticles, are driven by the electrostatic force. Although

current simulation techniques can handle the long-range Coulomb potential efficiently,

the inhomogeneity in materials of such systems often gives rise to significant polarization

charges that have to be determined by solving the non-trivial Poisson’s equation. Thus,

dielectric effects are often ignored in previous simulation studies despite their potential

importance. This dissertation presents various techniques that can resolve the polarization

charges efficiently. These techniques are applied to uncover the significance of dielectric

effects in several systems.

In Chapter 1, the mathematical formulation for charged systems that involve inhomo-

geneous dielectric media is introduced.

Chapter 2 presents a detailed comparison between the iterative dielectric solver (IDS),

a recently developed boundary-element-based algorithm that is optimized for molecular
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dynamics (MD) simulations, and the generalized image-charge method that is designed

for Monte Carlo (MC) simulations. Both algorithms are applied to study the interaction

between two colloids immersed in electrolytes. I find that the IDS excels the image-charge

method in both efficiency and capability when multiple colloids are concerned.

In Chapter 3, the IDS is applied to study the asymmetric electrolyte distribution near

dielectric interfaces that exhibit structures on the nanoscale. I demonstrate that even for

neutral dielectric interfaces, surface structures can alter the ion distribution and further

create charge patterns on the surfaces.

Chapter 4 introduces a refinement to the IDS to accurately compute polarization

charges for anisotropic particles. We discover that the matrix equation of the IDS can be

ill-conditioned when multiple dielectric mismatches are present. An effective yet intuitive

method is proposed to improve the accuracy.

In Chapter 5, the improved IDS is applied to study the electrolyte distribution near

patchy particles, in particular Janus particles. The findings reveal that dielectric effects

substantially influence the electric double layer, which has important implications for

biological objects with dielectric anisotropy.

Chapter 6 further extends the IDS to treat conducting surfaces and bulk dielectrics,

objects with spatially varying permittivities. First, by imposing the Dirichlet boundary

condition, I show that the IDS is capable of solving equipotential problems, and even

problems with mixed boundary conditions. Then systems with bulk dielectrics are con-

sidered. With the extension of the IDS to the volume-element method, the algorithm
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obtains results identical to the theoretical prediction for the image potential of a silica–

silicon slab. These two extensions of the IDS open avenues to simulate a collection of

problems with polarization effects.

In Chapter 7, the excess surface tension of asymmetric electrolytes at dielectric in-

terfaces is studied via a combination of MC simulations and the charge renormalization

theory. I find that charge renormalization not only affects the bulk behavior of asymmet-

ric electrolytes but also their properties at interfaces. For an electrolyte–metal interface,

the surface tension could be non-monotonic at low concentrations.

I conclude this dissertation with a brief summary of the main findings and some

outlook for each chapter in Chapter 8.
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CHAPTER 1

Introduction

Electrostatic interactions are of fundamental importance for understanding the struc-

ture–function relationships of many physical and biological systems, including colloidal

suspensions, membranes, biopolymers, and energy devices [3, 4, 5]. All-atom computer

simulations of such systems are generally prohibitively expensive, due to the required

repeated evaluation of the forces or internal energies of molecular configurations. Thus,

continuum approximations and coarse-grained models are often adopted. For example,

the solvent is usually treated as an implicit continuum described by a (static) dielectric

permittivity. The ion distributions in this solvent can be described by mean-field approx-

imations such as the Poisson–Boltzmann theory and its modifications [6, 7, 8, 9]. These

continuum models have been widely used, but are only accurate in limited parameter

regimes, as polarization and many-body effects are often ignored.

Alternatively, water can be treated in the continuum approximation, whereas the

ions are treated as discrete particles, incorporating ionic correlations and ion-size effects.

This coarse-graining strategy, the so-called primitive model for electrolytes, is commonly

employed in particle-based molecular dynamics (MD) or Monte Carlo (MC) simulations

(see, e.g., [10, 11]). Although this is a powerful approach, a formidable computational

challenge that remains is the rapid calculation of electrostatic polarization due to the

dielectric mismatch at material interfaces, such as the dielectric contrast between the

implicit solvent and the solutes. Polarization is relevant in a wide range of systems,
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including colloidal suspensions [12, 13, 14], cloud droplets [15, 16], and protein folding and

stabilization [17]. Determination of the polarization field through analytical solution of

Poisson’s equation is very difficult. Closed-form representations, in the form of harmonic

series, of the Green’s function are known only for specific geometries such as planar,

spherical, and cylindrical interfaces [18, 19, 20, 21, 13, 22, 23]. Moreover, even if the

closed-form Green’s function is employed, the computation of the harmonic series during

simulations can still be too expensive if large systems are investigated.

For these reasons, methods for the determination of electrostatic polarization at dielec-

tric interfaces have attracted significant renewed attention [13, 24, 25, 26, 2, 14]. These

methods essentially seek direct numerical solutions to the Poisson’s equation that converge

rapidly and accurately.

At an arbitrary location in the domain V ∈ R3, the electric filed E satisfies the

differential form of Gauss’s law [27],

(1.1) ∇ · E(r) =
ρ(r)

ε0
,

and—if no time-dependent magnetic field is present—Faraday’s law,

(1.2) ∇× E(r) = 0 ,

where ρ(r) is the total charge density and ε0 the vacuum permittivity. From the Helmholtz

decomposition,

(1.3) E(r) = −∇Φ(r) ,
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we arrive at Poisson’s equation for the electrostatic potential Φ(r),

(1.4) −∇2Φ(r) =
ρ(r)

ε0
.

For convenience, we define the linear operator G = −∇−2, so that the solution of Eq. (1.4)

can be represented as

(1.5) Φ(r) =
Gρ(r)

ε0
=

∫
V

G0(r, r′)ρ(r′)dr′ ,

where G0 is the Green’s function for Eq. (1.4), satisfying

(1.6) −∇2G0(r, r′) = δ(r− r′) .

For free-space boundary conditions, G0 = 1/(4πε0|r−r′|) is simply the Coulomb potential

due to a unit source charge, whereas for periodic boundary conditions G0 can be treated

via the Ewald summation. Combining Eq. (1.3) and Eq. (1.5) we can represent the electric

field as

(1.7) E(r) = −∇Gρ(r)

ε0
.

We restrict ourselves to systems comprised of objects with linear and isotropic di-

electric response, i.e., characterized by a spatially varying dielectric constant ε(r) or,

equivalently, a local electric susceptibility χ(r) = ε(r)/ε0 − 1. The local polarization field

P induced by the electric field E is then given by the constitutive relation

(1.8) P(r) = ε0χ(r)E(r) .
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As a result, the polarization charge associated with the polarization field reads

(1.9) ρpol(r) = −∇ ·P(r) = −∇ · [ε0χ(r)E(r)] .

Note that the total charge density ρ at location r consists of both free charge density and

polarization charge density (also referred to as bound charge density),

(1.10) ρ(r) = ρf(r) + ρpol(r) .

In simulations of dielectric objects, ρf(r) is specified by the particle configuration, whereas

the efficient calculation of ρpol(r) is our primary objective. In the following, I discuss how

to construct a linear operator equation for the bound charge density.

Substitution of Eq. (1.3) into Eq. (1.9) yields

ρpol(r) = ε0∇ · [χ(r)∇Φ(r)]

= ε0χ(r)∇2Φ(r) + ε0∇χ(r) · ∇Φ(r) .

(1.11)

This implies that polarization charge may arise in two ways, namely nonzero divergence of

the electric field, which corresponds to locations of free charge, and spatial variation of the

electric susceptibility. The first term on the right-hand side of Eq. (1.11) can be reduced

to −χ(r)ρ(r) with Eq. (1.4) and the second term can be rewritten as −∇ε(r) · E(r).

Applying Eq. (1.10), we obtain

(1.12)
ε(r)

ε0
[ρf(r) + ρpol(r)] +∇ε(r) · E(r) = ρf(r) ,
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which can be simplified via Eq. (1.1) to

(1.13) ∇ · ε(r)E(r) = ρf(r) .

Here we have two choices for substituting the electric field E. One choice is to substitute

Eq. (1.3), resulting in an alternative form of Poisson’s equation,

(1.14) −∇ · ε(r)∇Φ(r) = ρf(r) .

This formulation differs from Eq. (1.4) in two ways: The source term of this equation is

simply the free charge density ρf , thus there is no need to solve for ρpol. In exchange, the

position-dependent dielectric constant leads to a Green’s function G̃ that is no longer in

simple Coulomb form like G0. Instead, it satisfies

(1.15) −∇ · ε(r)∇G̃(r, r′) = δ(r− r′) .

Thus, the solution for Eq. (1.14) can be represented as

(1.16) Φ(r) =

∫
V

G̃(r, r′)ρf(r
′)dr′ .

Here G̃ in the exterior region (i.e., the region outside the dielectric objects, with relative

permittivity εm) is a sum of two parts,

(1.17) G̃(r, r′) = G̃Coul(r, r
′) + G̃pol(r, r

′) ,

where G̃Coul(r, r
′) = G0(r, r′)/εm is the the Coulomb potential of a unit charge in a

dielectric medium with permittivity εm and the polarization potential G̃pol(r, r
′) satisfies
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the Laplace equation,

(1.18) ∇2G̃pol(r, r
′) = 0 .

Obviously, the difficulty in solving Eq. (1.14) lies in obtaining G̃pol. For simple geometries,

it is possible to represent G̃pol via image-charges, see Section 2.3.

On the other hand, Eq. (1.13) can be viewed as an integral equation. We substitute

Eq. (1.7) and define the operator

(1.19) A = −∇ · ε(r)

ε0
∇G

to arrive at a linear equation linking the polarization charge density and the free charge

density,

(1.20) Aρpol = b ,

with

(1.21) b = (1−A)ρf ,

where I have separated the bound charge from the free charge. Equation (1.20) is appli-

cable to general electrostatic problems in any isotropic and linear dielectric continuum,

i.e., ε(r) can be any spatially varying function. However, its numerical solution requires

discretization of the entire domain. The computational cost can be greatly reduced by

exploiting the observation that for many physical systems the dielectric constant varies

rapidly only at the interfaces between media. This justifies the approximation to confine
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ourselves to systems with sharp dielectric interfaces, where ∇ε(r) is non-zero only at the

interfaces. This leads to the boundary-element method (BEM) approach that has been

proposed in various forms [28, 29, 30, 31, 32, 33, 34, 35, 2]. The BEM offers the advantage

that arbitrary geometries can be handled with relative ease. Moreover, the BEM facili-

tates the treatment of periodic geometries commonly employed in electrostatics problems.

Since the BEM offers a completely different approach than the image-charge method,

in Chapter 2, I compare two recently proposed algorithms in each field, namely the iter-

ative dielectric solver (IDS) [2] and the generalized image-charge method [36], in details

for a spherical colloidal system. The flexibility of the BEM in geometries enables us to

answer non-trivial interfacial problems, such as the electrolyte distribution near struc-

tured dielectric interfaces (see Chapter 3). Despite the success of the original IDS, when

applied to anisotropic particles, Janus colloids for example, its accuracy is suboptimal.

I address this challenge in Chapter 4 via the Jacobi preconditioner. This improved al-

gorithm helps us to understand the electrolyte structure near patchy colloids in Chapter

5. Since the IDS is essentially based on the Neumann boundary condition, it is not ap-

plicable to equipotential surfaces, such as electrodes kept at constant potentials, despite

their wide appearance in nano-devices. In Chapter 6, I demonstrate that the IDS can

be extended to treat such Dirichlet boundary problems as well, and even problems with

mix boundary conditions, while maintaining its computational efficiency. I also propose a

volume-element method (VEM) that can handle systems with spatially varying permittiv-

ities. The dielectric effects that affect the electrolyte distribution near surfaces also have

important consequences for the surface tension. A study on the excess surface tension of

asymmetric electrolytes at dielectric interfaces is presented in Chapter 7.
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CHAPTER 2

Comparison of the iterative dielectric solver (IDS) and the

generalized image-charge method

This chapter represents a close comparison of the boundary-element method and the

generalized image-charge method. To present a complete story, I have included some of

the image-charge method derivations by Zecheng Gan and Zhenli Xu. The content of this

chapter is based on the following publication:

• Zecheng Gan∗, Huanxin Wu∗, Kipton Barros, Zhenli Xu, and Erik Luijten, Com-

parison of efficient technique for the simulation of dielectric objects in electrolytes,

J. Comp. Phys. 291, 317–333 (2015)

2.1. Introduction

The relevance of polarization problems in wide areas of science makes it pressing to

perform a quantitative comparison of the boundary-element method (BEM) and image-

charge method (ICM) in terms of accuracy, efficiency, and performance. Starting from the

Poisson’s equation, the BEM solves its boundary integral form, while the ICM originates

from its harmonic series solution. In certain cases, it is possible to avoid the evaluation

of harmonic series via an image-charge representation of the closed-form Green’s func-

tions [37, 38, 39, 40, 41]. Recently, this ICM has been extended to the treatment of

multiple spheres via recursive reflections [36]. This approach not only provides a fast

∗Z. Gan and H. Wu contributed equally to this paper
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approximation to the Green’s function, but also can be easily accelerated by well-known

algorithms, because the approximation is a sum of Coulomb potentials.

Here, two recently developed adaptations of both approaches are investigated in de-

tail. The BEM for general mobile dielectric objects was proposed and implemented in

Refs. [2, 14] for molecular dynamics (MD) simulations. It is now named the iterative

dielectric solver (IDS). The ICM for multiple spheres was presented in Ref. [36]; there

my collaborators present its first implementation within a Monte Carlo (MC) simulation.

For the IDS, surface bound charge is obtained from the solution of a dense linear system

via the generalized minimum residual (GMRES) method [42], using a formulation that

is particularly well conditioned [43, 2]. Moreover, the matrix–vector product required in

each GMRES iteration is accelerated by a fast Ewald solver, in the IDS the particle–

particle particle–mesh (PPPM) method [44, 45] (but note that the IDS is independent

of the choice of the solver). This combination of techniques yields a near-linear scaling

calculation in the number of discrete boundary elements. For the ICM, the single-sphere

image-charge formula is applied recursively using reflections between spheres. The sin-

gular or nearly singular quadrature problem for the image line charge integral has been

well approximated. The image-charge number is chosen to achieve a specified accuracy

at minimal cost. Thus, a set of image charges is constructed that represents the po-

larization potential. The Barnes–Hut octree algorithm [46, 47, 48] is used to efficiently

calculate the interaction of a source charge with other charges, in a manner tailored for

the single-particle displacements employed in MC simulations [49].

To illustrate these algorithm properties, I present results for a representative problem,

namely the ensemble-averaged mean force between a pair of colloidal particles immersed
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in an electrolyte. The mean force is typically employed to investigate the effective interac-

tions between colloids (although typically without taking into account dielectric effects),

and has attracted significant interest in recent years [50, 51, 52, 53, 54, 55, 56], due to its

fundamental importance in colloidal science. I demonstrate how the simulations can de-

compose the total mean force into contributions arising from ion–polarization interactions,

interactions between bound charges, and entropic effects.

This chapter is organized as follows. I first rederive the formulations of the IDS and

ICM in Sec. 2.2 and 2.3, respectively. Then, their computational complexity is compared

in Sec. 2.4, followed by tests of the accuracy and parameter choices of both algorithms in

Sec. 2.5. In Sec. 2.6, I present a practical illustration in the form of MD and MC simulation

results for the induced mean force between dielectric colloidal spheres. I conclude with a

summary in Sec. 2.7.

2.2. Iterative dielectric solver

Here I summarize the key ideas of the IDS [2]. Consider a model system consisting

of P uniform dielectric objects Si (1 ≤ i ≤ P), embedded in a dielectric continuum. We

assume that all objects are neither touching nor intersecting each other, i.e., Si
⋂

Sj = ∅.

The domain V can then be divided into an interior region Ω =
P⋃
i=1

Si and an exterior

region V \Ω. Any free charge within Ω is replaced with free charge density σf at the

object surfaces that produces the equivalent electric field in the exterior region (cf. [2,

Sec. IV.I]). In addition, there is a bulk free charge density ρf(r) in the exterior region.

The dielectric constant ε(r) is set to be piecewise constant, with discontinuities only at
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the object interfaces,

(2.1) ε(r) =

 ε0εi r ∈ Si,

ε0εm r ∈ (V \Ω)
,

where εi and εm are the relative permittivities of object i and the embedding medium,

respectively. The polarization charge density ρpol(r) due to variation of the dielectric

constant is then only present on the object surfaces and reduces to the surface bound

charge density σpol(r).

To obtain a linear operator equation for σpol(r) analogous to Eq. (1.20), we first recall

the standard boundary condition for the electric displacement field at any point r on the

object surfaces, as implied by Eq. (1.13),

(2.2) ε0 [εmEout(r)− εiEin(r)] · n̂ = σf(r) ,

where Ein(r) and Eout(r) are the electric field inside and outside the surface at point r,

respectively, and n̂ is the outward unit normal to the surface at r. Likewise, Eq. (1.1)

implies

(2.3) ε0 [Eout(r)− Ein(r)] · n̂ = σf(r) + σpol(r) .

Combining Eq. (2.2) and Eq. (2.3) and defining the electric field at the surface as E(r) =

[Ein(r) + Eout(r)]/2, we obtain

(2.4) ε̄i [σf(r) + σpol(r)] + ε0∆εiE(r) · n̂ = σf(r) ,
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where ε̄i = (εi + εm)/2 and ∆εi = εm − εi. This has the same form as Eq. (1.12), except

that it avoids the factor ∇ε(r) which is ill-defined at the interface. Observe how free

charge not located on the object surfaces enter this equation through the electric field E.

Finally, Eq. (2.4) is expressed in a linear form equivalent to Eq. (1.20),

(2.5) Asσpol = bs ,

where

(2.6) Asσpol ≡ ε̄iσpol + ε0∆εiEpol · n̂ ,

with

(2.7) Epol(r) =
P∑
i=1

∫
∂Si

σpol(s
′)(r− s′)

4πε0|r− s′|3
ds′

the polarization field from all surface polarization charge at s′ 6= r and

(2.8) bs = (1− ε̄i)σf − ε0∆εiEf · n̂ ,

with

(2.9) Ef(r) =
P∑
i=1

∫
∂Si

σf(s
′)(r− s′)

4πε0|r− s′|3
ds′ +

∫
V \Ω

ρf(r
′)(r− r′)

4πε0εm|r− r′|3
dr′ .

The first term on the right-hand side of Eq. (2.9) represents the contribution from all

surface charges at s′ 6= r and the second term originates from all free charge not at the

surfaces (i.e., located in the embedding medium). The fields Epol and Ef are evaluated at

each surface point.
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To solve Eq. (2.5) numerically, the IDS discretizes the interfaces intoM finite boundary

elements and transforms it into a matrix equation. Since As has been shown to be well-

conditioned [43, 2], this method of finding the polarization charge distribution is more

suitable than alternative approaches. Direct solution of the matrix form of Eq. (2.5)

requires costly [O(M3)] matrix inversion. This inversion needs to be repeated whenever

the dielectric geometry changes—e.g., in each time step in a MD simulation of dielectric

objects—and even for static dielectric geometries the solution involves dense matrix–

vector multiplication at cost O(M2). A far more efficient technique is the use of an

iterative solver, for which the IDS select GMRES [42]. GMRES only involves matrix–

vector products, and aims to minimize the norm of the residual of Eq. (2.5),

r = bs −Asσpol

= σf − ε̄(σf + σpol)− ε0∆εi(Ef + Epol) · n̂ ,

(2.10)

where Ef + Epol is the total electric field at each surface patch, which can be computed

directly with a fast Ewald solver. Thus, for a system containing M boundary elements and

N isolated free charges, the residual can be obtained at a cost O((M+N) log(M+N)) for

PPPM [44, 45] or even O(M +N) for the fast multipole method (FMM) [57, 58, 59, 60].

In practical MD simulations, once convergence has been attained in the first time step,

subsequent time steps require less than 4 iterations to obtain the surface charge density

with a relative error smaller than 10−4 [2, 14]. An additional advantage of computing the

electric field via Ewald summation is that periodic images are automatically taken into

account, as is customary for simulations of electrostatic systems in bulk geometries.
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I note that several additional considerations affect the accuracy and convergence rate.

For boundary elements of finite size and nonzero curvature, surface charge within an

element contributes to the normal component of the electric field and thus to the polar-

ization charge. To first approximation, this has been taken into account via a “curva-

ture correction.” The IDS approximates the correction term by assuming disk shaped

patches with mean curvature, which works well for the spherical colloidal system in this

chapter [61, 31]. Higher-order corrections can be applied as well [2, Sec. IV.B]. More

sophisticated treatments via numerical quadrature are discussed in Refs. [62, 43, 63]. An

alternative approach is the so-called “qualocation” method (cf. Sec. 4.1), which has been

found to yield similar accuracy [64]. The IDS further improves the convergence rate by

constraining the net charge on dielectric objects per Gauss’s law [2, Sec. IV.H].

2.3. Image-charge method

If all P dielectric objects Si are of spherical shape, then an alternative method to

the BEM is the ICM. We start with a single dielectric sphere (i.e., P = 1) of radius a

and relative permittivity ε1 with background permittivity εm. By using spherical har-

monics [65, 66] (also known as the Kirkwood series) and by using the ICM [38], the

polarization potential of a unit source charge located at rs at any position r outside the

sphere can be written as the sum of contributions from a Kelvin image qK = − ε1−εm
ε1+εm

a/rs

inside the sphere at the inversion point rK = rsa
2/rs

2 and a line image charge distributed

along x = xrs/rs with x ∈ [0, rK]. (L− 1)-point Gauss–Legendre quadrature can be used

to approximate the line charge potential [67], resulting a total of L image charges for the

polarization potential.
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Figure 2.1. Construction of image charges by reflections between dielectric
spheres (blue). A source charge q located in the exterior region induces L1

first-level image charges (green spheres, here L1 = 3) inside each sphere.
Subsequently, each first-level image induces L2 second-level images inside all
other spheres. In this example L2 = 2 and only the images for the enlarged
first-level image are shown (purple spheres). This reflection procedure is
performed recursively until convergence is reached.

When P > 1, the polarization potential can be contructed by a procedure of iterative

image charge reflections [68, 36], as illustrated in Fig. 2.1. If a unit charge is located

at rs in the exterior region, then L1 image charges are produced in each sphere. To
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include the contribution from the image charges at other spheres, L2 additional (second-

level) image charges are generated in Pj(j 6= i) for each of the L1 image charges in Pi.

Recursive iteration of this procedure yields the polarization potential [36]. If we estimate

the polarization potential at reflection level R, the number of image charges I is

(2.11) I = P

R∑
i=1

[
(P− 1)i−1

i∏
j=1

Lj

]
.

Thus I increases exponentially with R. Fortunately, the truncation error decreases rapidly.

Moreover, analysis of the quadrature error shows that for higher reflection levels i > 1,

Li may be reduced without loss of accuracy [69]. Finally, since the polarization energy

now is comprised of Coulombic interactions between image and source charges, it can be

evaluated via fast algorithms such as the FMM [57, 58, 59, 60] or treecode algorithms [46,

47, 48].

Although the ICM avoids the need to calculate surface bound charge, it can be ob-

tained directly once the electrostatic potential in the exterior region Φout(r) or the electric

field has been computed from the free and image charges. This explicit evaluation is use-

ful, e.g., for comparison with the IDS. If Eout(r) denotes the electric field in the exterior

region (relative permittivity εm), then the normal component of this field at position r on

an interface with a dielectric object (relative permittivity εin) is

(2.12) Eout(r) · n̂ = −∂Φout(r)

∂n
,

where n̂ is the outward normal. The normal component of the interior electric field in the

dielectric, at the same surface position, then follows from Eq. (2.2) and can be substituted
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in Eq. (2.3) to obtain the bound charge density

(2.13) σpol(r) =
1

εin
[(εin − εm)ε0Eout(r) · n̂− (εin − 1)σf(r)] .

I illustrate this with a practical example in Sec. 2.5.3.

2.4. Efficiency comparison

To compare the computational complexity of both methods, I consider geometries

that are amenable to both approaches, e.g., configurations of spheres. Even though the

efficiency will depend on implementation and also on the physical system considered,

general observations can be made. Specifically, the computational cost of both methods

is dominated by the electrostatic solver and hence determined by the total number of

charges that contribute to the electrostatic potential.

Consider a system of N free point charges placed outside P neutral spherical dielectric

objects. In the IDS, if a total of M surface elements are required to achieve a certain

accuracy, the total number of charges isN+M . For the PPPM method employed in [2, 14],

the computational cost of a single time step is thus O((N + M) log(N + M)), although

(as noted in [2]) the FMM may be better suited to the nonuniform distributions typical of

the IDS. For dielectric systems containing objects of similar size, M ∝ P, so that the IDS

has a nearly linear dependence on both the number of source charges N and the number

of dielectric object P. It must be noted, however, that M may have to be increased if

point charges approach a dielectric interface very closely, or if multiple dielectric objects

aggregate. In addition, I remark that in each time step GMRES typically requires 4

evaluations of the electrostatic potential to reach convergence.
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For the ICM, the same system consists of N source charges and NI image charges.

In the Barnes–Hut octree algorithm [46, 47, 48], the computational complexity of an

MC cycle scales as O(NI log(NI)) [70]. Not only does I increase as a power law of P,

cf. Eq. (2.11), it also is comparable in magnitude to M (See Sec. 2.5.2). However, whereas

for the IDS it appears additive to N in the computational cost, for the ICM it appears

multiplicatively. Thus, for large N or P, the IDS generally outperforms the ICM. An

important advantage of the ICM, on the other hand, is that geometric singularities are

naturally avoided, as it employs a closed-form expression for the Green’s function. In

addition, the number of image charges in the ICM does not depend on the colloidal size,

making it advantageous for the simulation of large colloids. Moreover, the efficiency can be

increased by dynamically tuning I based upon the geometry, e.g., when dielectric objects

are spaced far apart or source charges are not close to an object. Also, since the image

charges are distributed nonuniformly within the spheres, the computational cost can be

reduced by decreasing the number of clusters in the Barnes–Hut octree algorithm.

If the dielectric objects have arbitrary (nonuniform) surface charge density, no addi-

tional computational expense is incurred in the IDS, as this charge can be distributed

across the boundary patches. On the other hand, in the ICM this surface discretization

is generally costly, as it increases the number of source charges. For immobile objects,

the potential generated by these charges and their image charges is constant and can be

precomputed within a simulation, but for dynamic dielectric objects this is not the case.

As a concrete comparison between the IDS and ICM I consider the system of two

colloids immersed in an electrolyte, described in Sec. 2.6 below (all technical parameters

are described there as well). I determine the time it takes to obtain an independent sample
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for the net force on one of the colloids from the integrated autocorrelation time [71]. Using

the IDS, this requires 120 MD time steps, corresponding to 45 seconds of CPU time (Intel

Xeon E5-2620 v3, 2.40 GHz). When interpreting this time requirement, it is important to

note that the system contains N = 702 ions as well as M = 2944 surface elements. On the

other hand, in the ICM an independent sample is obtained after every 1000 MC cycles,

where a cycle corresponds to one proposed move per ion (on average). For the parameter

choice adopted in Sec. 2.6 (I = 310 image charges, reflection level “5332” as described in

Sec. 2.5.2) this corresponds to 50 seconds of CPU time, although this can be reduced to

40 seconds by choosing I = 248 image charges (reflection level “4332”) while retaining a

sufficient precision, cf. Sec. 2.5.2. In comparing these numbers, it should be noted that

the cylindrical simulation cell adopted for the ICM contains only 276 ions, 2.5 times less

than the periodic cell employed in the IDS (the larger cell in the IDS is chosen to avoid

artificial periodicity effects). A final practical point is that the net force follows directly

in the MD simulation, whereas relatively costly numerical differentiation [Eq. (2.19)] is

required in the MC simulation. Given the slow decorrelation of the system it is important

to avoid performing this derivative unnecessarily often.

2.5. Numerical results: Static configurations

2.5.1. Model setup

To test the performance of these two algorithms, my collaborators and I apply them to

a system of two dielectric colloids immersed in an electrolyte (Fig. 2.2). The solvent is

treated implicitly as a dielectric continuum with relative permittivity εm and the colloids

and ions are represented explicitly by spheres with a soft repulsive potential. The colloidal
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Figure 2.2. Two-dimensional illustration of the so-called primitive model of
two dielectric colloids surrounded by an electrolyte.

particles (“macroions”) have radius a and are placed at a surface-to-surface separation D.

They both carry a total free charge Q = Ze distributed uniformly on their surface and

have an internal dielectric constant εin. The ions are of diameter τ with charge q = ze

and are considered non-polarizable, although their effective charge is reduced by a factor

1/εm due to polarization of the surrounding medium.

The potential energy of the system Vtot can be expressed as a sum of three contributions

(2.14) Vtot = VLJ + VCoul + Vpol ,

where VLJ represents the non-electrostatic repulsions, VCoul the pairwise electrostatic in-

teractions between the free charges, and Vpol the polarization energy arising from the
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interactions involving bound charges. The repulsive interaction between any two parti-

cles i and j is modeled via a shifted-truncated Lennard-Jones (LJ) potential

(2.15) βuLJ(rij) =


∞ if rij ≤ ∆ij

4
[
( c
rij−∆ij

)12 − ( c
rij−∆ij

)6
]

+ 1 if ∆ij < rij < ∆ij + 2
1
6 c

0 if rij ≥ ∆ij + 2
1
6 c

,

where β = 1/(kBT ) is the inverse thermal energy (with kB Boltzmann’s constant and

T the absolute temperature), rij the distance between the particle centers, and ∆ij =

(di + dj)/2 − c the hard-core distance. Here, di and dj are the diameters of particles i

and j, respectively, and c is set to be the diameter of the mobile ions, c = τ . Thus, at

contact (D = 0, r = 2a = d) the two colloids have a repulsive Lennard-Jones interaction

energy uLJ = kBT . To avoid the singularity that would arise if the position of an ion

would coincide with a surface element, the surface elements are placed at the divergence

of the sphere–ion shifted-truncated LJ potential, i.e., at a radius a− τ/2.

The central force Ftot(D) = −∂Vtot/∂D between the two colloids thus comprises two

contributions

(2.16) Ftot(D) = FLJ(D) + Fele(D) ,

where we only consider the component parallel to their center-to-center axis, and FLJ(D) is

the force originating from the LJ interactions and Fele(D) the electrostatic force. Whereas

the former is straightforward to obtain, the evaluation of Fele(D) is nontrivial. As derived

in [2] by differentiation of the total energy, the total electrostatic force on a rigid dielectric
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object Si is

(2.17) Fele(D) =

∫
Si

f ′(r)dr ,

where f ′(r) is the parallel component of

(2.18) f(r) = εm [ρf(r) + ρpol(r)] E(r) ,

In the BEM-based calculations, I thus compute the total electrostatic force via summation

over all boundary elements.

On the other hand, when using the ICM, my collaborators evaluate Fele(D) through

numerical differentiation of the energy,

(2.19) Fele(D) ≈ −Vele(D + δD)− Vele(D)

δD
.

For a given configuration, they first evaluate the total electrostatic energy Vele = VCoul +

Vpol, and then displace one colloid by δD along the vector connecting the centers of the two

colloids. Since this entails a change in ε(r), recalculation of Vele requires the reconstruction

of all image charges. For the system specified below, we choose δD = 2× 10−5 Å.

In the numerical comparisons presented here, I set the solvent conditions to represent

water at room temperature, i.e., T = 298 K and εm = 80, resulting in a Bjerrum length

`B = e2/(4πε0εmkBT ) = 7.14 Å. The colloids have dielectric constant εin = 2 and diameter

dM = 40 Å. The electrolyte consists of Cs = 100 mM 2:2 salt (ion diameter τ = 4.5 Å),

which corresponds to a Debye length `D =
√
ε0εmkBT/(8Cse2) = 4.81 Å. I focus on

dielectric effects by choosing Q = 0 (or, equivalently, σf = 0), so that the electrostatic
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Figure 2.3. Comparison of the radial distribution of divalent ions around
an isolated dielectric colloid (radius a = 20 Å) placed in a periodic box
of linear size 180 Å (“PBC”) and in a spherical cell (radius 72.65 Å) with
hard-core boundary conditions (“HCBC”). Whereas the periodic box shows
a constant salt concentration away from the colloidal surface, the system
with the spherical hard wall exhibits significant depletion of salt near the
wall (location marked by the dashed vertical line), which in turn gives
rise to a spurious increase of the bulk concentration [indicated by the curve
“HCBC (not adjusted)”]. To account for this effect, we adjust the number of
ions such that both systems have the same effective bulk salt concentration
(curve “HCBC”).

force acting on the two colloids arises solely from the interactions of the polarization

charge induced on either colloid with the salt ions and with the induced charge on the

other colloid. I choose divalent salt, since the dielectric forces scale as z2.
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For calculations involving the ICM my collaborators employ a cylindrical cell [72],

where the ions are confined by hard walls (both the cylindrical shell and its top and

bottom), such that an ion acquires infinite energy if its center is moved outside of the

cylinder. The colloids are fixed on the cylinder axis, while the mobile ions can move freely

within the cylinder. The cylinder radius (65 Å) and length (190 Å) are chosen to be much

larger than the Debye screening length. For the IDS I instead employ a cubic, periodically

replicated box. In Sec. 2.5.2, I use configurations that are produced by the ICM, but for

the comparison calculations performed with the IDS I place these configurations (which

contain 300 ions) in a box of much larger volume (linear dimension 4500 Å) than the

cylindrical cell, to suppress effects of the periodic boundary conditions. On the other

hand, for the equilibrium results in Sec. 2.6 I find that the cylindrical volume suffers

from significant boundary effects. Ions near the cylinder walls lack a symmetric shell of

screening counterions, which in turns leads to a depletion of ions at the wall [73]. Figure 2.3

illustrates this effect for a spherical cell. If the number of ions is not adjusted to account

for this effect, the concentration in the remainder of the cylinder will be significantly

increased, hindering an accurate comparison with the IDS results. In the IDS I realize a

salt concentration of 100 mM by placing 702 ions in a box of linear dimension 180 Å, which

due to the excluded volume of the colloids results in an effective (bulk) concentration of

∼101 mM. On the other hand, in the ICM one must reduce the number of ions from 300

to 276 to achieve the same concentration in the bulk, as confirmed in Fig. 2.3 for the

spherical system. Whereas it also would have been possible to eliminate this effect via an

attractive surface potential, I demonstrate in Sec. 2.6 that a proper bulk salt concentration

surrounding the colloids is sufficient to reproduce the correct mean colloidal force.
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Figure 2.4. Accuracy of the electrostatic force between two neutral colloids

immersed in an electrolyte, as a function of surface separation, D = 3–16 Å.

Physical parameters are described in the main text. Panels (a) and (b) show

the ensemble-averaged absolute error in the component of the absolute force

along the center-to-center axis between the colloids for (a) the IDS at dif-

ferent surface discretizations (numbers in the key indicate the number of

surface elements per sphere) and (b) the ICM at different reflection levels R

and numbers of image charges Li (numbers in the key indicate the number

of image charges per reflection level). It is important to note that these

estimates significantly overestimate the error obtained in a typical simula-

tion, by averaging the absolute values of the deviations. Panels (c) and (d)

show the same data as panels (a) and (b), respectively, but normalized by

the magnitude of the force. The increase of these relative uncertainties

with increasing D simply reflects the fact that the induced forces become

very small at larger colloid separations. The exception to this trend are

the ICM data [panel (d)] for the “5332” and “5555” parameters; here the

relative deviation remains mostly flat since the effect of the decreasing force

is partly negated by the decrease in the truncation error with increasing D

[cf. panel (b)]. Force unit is kBT/`B. Ensemble averages are obtained from

100 independent equilibrium configurations, where the same set of configu-

rations is employed for the IDS and ICM calculations.
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2.5.2. Parameter dependence for the IDS and the ICM

We first examine the accuracy of both methods as a function of parameter choice (surface

discretization for the IDS and number of images and level of reflection for the ICM). For

each of 14 surface separations D (3–16 Å, in steps of 1 Å) we perform a simulation of the

system described above (cylindrical cell, 300 ions) to produce 100 independent configu-

rations corresponding to thermodynamic equilibrium. For each of these configurations,

we then compute the force on one of the colloids using the ICM with L = 5, R = 6 and

direct pairwise summation. These parameters yield an absolute accuracy of 10−7 and the

results serve as the reference values.

Figure 2.4 shows, for each separation D, the absolute error in the force on a single

colloid averaged over the 100 configurations as computed with the IDS and ICM for

various parameter choices, along with the relative errors.

For the IDS I focus on the number of surface elements. Thus, I choose a sufficiently

small convergence criterion for GMRES and high enough accuracy for the Ewald solver

(relative error 10−4 for both GMRES and Ewald) to ensure that errors resulting from

these two factors are small compared to the discretization error. As shown in Fig. 2.4(a),

for systems with 372 to 3002 patches per colloid, the ensemble-averaged absolute errors

in the forces are less than 0.003kBT/`B for all 14 separations. Moreover, they decrease

monotonically with increasing number of boundary elements, improving by an order of

magnitude between the coarsest and the finest grids. We also investigate the role of the

orientation of the surface grid [data labeled “1472*”]. Whereas all other grids are oriented

such that for both colloids a grid point (center of a surface element) lies on their center-

to-center axis, for “1472*” the grid is oriented such that this axis passes through the
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edge of a surface element. The grid orientation can have a significant effect in individual

configurations, depending on whether an ion resides close to a surface element, but I find

that such differences vanish in the ensemble averages, as expected. In practical simulations

(Sec. 2.6), I employ 1472 surface elements per colloid, which yields an absolute error less

than 10−3kBT/`B. I note that the absolute deviations provide an upper bound for the

systematic errors incurred in the simulations. Figure 2.4(c) shows the same data as

panel (a), but normalized by the magnitude of the force. As this force becomes small

when D increases, the relative deviations display an increasing trend.

Figures 2.4(b) and (d) show the absolute deviations in the force as well as the rela-

tive values of these errors for the same configurations as employed in panels (a) and (c),

but now calculated by the ICM. To study the convergence of the polarization potential,

my collaborators vary both the maximum reflection level R and the number of image

charges Li for each level. The different choices are labeled “L1L2 · · ·LR” and show a

decrease in the absolute error by at least two orders of magnitude between “333” and

“5555”. Interestingly, the results in Fig. 2.4(b) show that the number of images at the

higher reflection levels can be decreased without consequences for the accuracy, with ex-

cellent agreement between “4444” and “4332,” and quite close agreement between “5555”

and “5332”. This approach can significantly reduce the computational cost. For example,

“5332” requires I = 310 image charges per source charge (ion), five times less than “5555”

(I = 1560). The decreasing error with increasing D in panel (b) arises from the decreasing

truncation error.
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Figure 2.5. Comparison of the IDS and the ICM for the surface bound
charge density σpol induced by a monovalent positive ion at x = 60 Å on two
colloids (εin = 2) at x = 21.5 Å (“near”) and x = −21.5 Å (“far”) in water
(εm = 80). The azimuthal symmetry makes it possible to parametrize σpol

by the polar angle θ between the positive x-axis and the surface points. The
results from both methods are in excellent agreement. The curve labeled
“ICM single” represents the bound charge density on the “far” colloid in the
absence of the intervening “near” colloid, illustrating the screening effect of
the latter.
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2.5.3. Induced surface charge density

It is instructive to compare the polarization charge as computed by the IDS and the

ICM. We center the two spherical colloids at (±21.5, 0, 0)Å (i.e., at a surface separa-

tion D = 3 Å), and place a single positive monovalent ion at (60, 0, 0)Å. Even this simple

configuration is not easy to treat analytically, due to the interaction between polarization

charges on different spheres. For both colloids, we determine σpol as a function of the

polar angle θ. In the IDS, I use 1472 surface elements per colloid. For the ICM, my

collaborators use “5555” [i.e., R = 4 and Li = 5 (i = 1, . . . , 4)] and exploit (2.13) to de-

termine σpol for arbitrary θ. As shown in Fig. 2.5, the results obtained by both methods

are in excellent agreement.

I note some interesting physical aspects of the induced polarization. Since the permit-

tivity of the colloids (εin = 2) is lower than of the surrounding medium (εm = 80), positive

bound charge accumulates near θ = 0, i.e., the region facing the ion. This positive charge

is then compensated by a gradually varying negative bound charge density over the rest

of the colloidal surfaces, such that the neutrality condition is satisfied for the total bound

charge on each colloid. In the IDS, I also constrain the net bound charge to be zero after

each iteration to facilitate convergence and accuracy. In addition, σpol for the “far” sphere

(positioned on the negative x-axis) has much lower bound charge density than the “near”

sphere (positioned on the positive x-axis). This is not only due to its larger distance from

the ion, but also due to the screening effect of the bound charges on the “near” sphere,

which can be approximated as a dipole with its dipole moment pointing towards the pos-

itive source charge, partially canceling the source charge field. This is confirmed by the

curve labeled “ICM single” in Fig. 2.5, which shows the surface bound charge density on
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the sphere on the negative x-axis in the absence of the dielectric sphere on the positive

x-axis. The induced charge density is then significantly higher, especially at small θ.

2.6. Numerical results: Thermodynamic equilibrium

Having verified the accuracy of both methods and the required parameter choices,

I now proceed to evaluate their performance in practical simulations of thermodynamic

properties. As a model system, I consider the ensemble-averaged force between two neutral

dielectric colloids induced by a symmetric divalent aqueous electrolyte. As noted in

Eq. (2.16), this force has two contributions: (i) the short-range excluded-volume repulsions

that result in a depletion-type [74, 75] force that is ultimately entropic in nature and

(ii) an electrostatic contribution involving polarization charges induced by ions. The

ensemble-average of even the first contribution is not easily obtained by other means,

given that the ionic arrangements are influenced by ion–ion interactions as well as ion–

polarization interactions, where the polarization charges in turn are determined by the

ionic configurations. For the second contribution, already the force in a single sample,

Eq. (2.17) and Eq. (2.18), requires careful consideration.

For the IDS, I perform MD simulations that start from 702 ions randomly arranged

around the two colloids. I employ the velocity Verlet algorithm with a Langevin thermo-

stat (damping parameter time 20t0, where t0 = (mτ 2β)1/2 is the LJ unit time with τ the

ion diameter and m the ion mass). The RMS relative error of the PPPM method is chosen

to be O(10−4) with real space cutoff 4.0τ . Starting from a small time step (to remove

particle overlaps) I gradually increase the time step to 0.3t0. After 6 × 104 time steps
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(corresponding to 3700t0 due to the varying time step size) I commence sampling and con-

tinue for 15 × 104 time steps (45000t0). The electrostatic force on each of the colloids is

sampled after every 150 steps, whereas the shifted-truncated LJ repulsions (which exhibit

a large variance and decorrelate rapidly) are sampled 30 times more frequently. For each

separation, I perform 200 independent runs, resulting in a total of 4 × 105 independent

samples per separation for the electrostatic force and 1.2× 107 samples for the depletion

force.

The ICM is incorporated within canonical MC simulations employing single-particle

moves with a maximum displacement `B, resulting in an acceptance rate ∼47%. To realize

the efficiency of the Barnes–Hut octree algorithm for the evaluation of the energy change

resulting from a single displacement, we use a tailored variant of the octree routine [49].

The multipole acceptance criteria (MAC) and the order of approximation p in the treecode

are set to be MAC = 0.1 and p = 3, which guarantees a relative error of less than 1.4 ×

10−5. From a random configuration with 276 ions, our collaborators perform simulated

annealing over 105 cycles (a single cycle corresponds to one move per particle on average),

lowering the temperature from T = 2100 K to T = 298 K. After another 105 equilibration

cycles, they continue for 107 production cycles (100 independent runs of 105 cycles per

separation), sampling every full cycle. Per separation, this yields 5 × 104 independent

samples for the electrostatic force and 2× 106 samples for the depletion force. The force

on one colloid is computed through numerical differentiation, Eq. (2.19).

Figure 2.6(a) shows the mean electrostatic and excluded-volume force as a function

of colloid surface separation. I choose M = 2 × 1472 curved surface elements in the

IDS and four levels of reflection (“5332”) for the ICM, which has 310 image charges per
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Figure 2.6. Mean force between two neutral dielectric colloids induced by
a divalent aqueous electrolyte (100 mM). IDS data are obtained via a MD
simulation incorporating the boundary-element method, whereas the ICM
data are calculated in a MC simulation with iteratively reflected image
charges. (a) Mean electrostatic and excluded-volume force. Note that both
forces are attractive and have a similar range. (b) Decomposition of the
electrostatic force into an attractive contribution due to ion–bound charge
forces (green diamonds) and a repulsive contribution due to the forces be-
tween bound charges induced on different colloids (purple triangles; error
bars smaller than the symbol size). Note that the blue circles correspond
to the same symbols as shown in panel (a), and represent the sum of the
bound–bound forces and the bound–ion forces.
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ion (10 first-level images, 30 second-level, 90 third-level, and 180 fourth-level). I note

that Fig. 2.4(b) indicates that already with parameter choice “4332” the ICM could have

achieved an accuracy comparable to that of the IDS for 1472 patches per colloid, although

this would have reduced the number of image charges by only 20%. For all separations the

IDS/MD and ICM/MC data agree within the statistical uncertainties. These results also

demonstrate the importance of polarization effects in the induced colloidal attraction:

The electrostatic force has a magnitude of around 40% of the excluded-volume forces.

Using the IDS, I can easily decompose the polarization forces into interactions between

bound charges residing on separate colloids and interactions between bound charges and

ions [Fig. 2.6(b)]. I note that the time-averaged polarization charge vanishes, owing to the

anion–cation symmetry of the salt. However, the instantaneous force of a bound charge

on the ion that induces it is always repulsive, and this effect is stronger in the region

between both colloids, as the ion there will experience a repulsive force from bound

charges it induces on both colloids. This leads to a depletion of ions in this region, so

that the average net ion–bound charge force between the colloids is attractive, reinforcing

the depletion attraction induced by the excluded-volume interactions. On the other hand,

the bound–bound interaction between the two colloids is repulsive for symmetry reasons.

2.7. Conclusion

I have reviewed two numerical approaches for solving the Poisson equation in systems

with discontinuous dielectric constant, namely a method based upon image charges and

the IDS based upon discretization of dielectric interfaces. Specifically, both methods are

applied to systems comprised of multiple dielectric objects. The IDS can be applied to
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arbitrary geometries. The ICM avoids the need for surface discretization by exploiting

a closed-form representation of the Green’s function, but is restricted to assemblies of

spherical objects. I have analyzed the computational complexity of both approaches and

through direct comparison have demonstrated how, for a given accuracy, the number

of image charges can be reduced at higher reflection levels. My collaborators and I have

implemented both methods in particle-based simulations, the IDS within a MD simulation

and the ICM within a MC simulation. As a practical demonstration, I have used these

simulations to determine the salt-induced attractive effective force between two neutral

dielectric colloidal particles.
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CHAPTER 3

Application of the IDS to structured dielectric interfaces

This chapter represents a close comparison between my simulation results and the

linearized Poisson–Boltzmann theory. The theory part is performed by Prof. Francisco

Solis.

3.1. Introduction

The behavior of electrolytes near interfaces has important consequences for surface

properties and for processes that take place in their vicinity, such as redox reactions in

electrochemical capacitors [76], ion transfer at biomembranes [77], controlling the surface

tension of aqueous solutions [78, 79], and establishing colloidal stability via electric dou-

ble layers [80]. Despite being the very foundation of modern electrochemistry, complete

understanding of the electrolyte structure is still elusive. Direct probes of the electrolyte

structure near an interface have long been challenging in experiments [81, 82]. Theo-

retical approaches have used the classical Poisson–Boltzmann (PB) model, which offers

good descriptions for dilute symmetric electrolyte, but often breaks down at high concen-

trations, in asymmetric electrolytes, or near strongly charged surfaces [83, 84, 3]. Such

breakdown is due to features ignored in the mean field model such as ion size [85, 86],

ion hydration [87], dielectric effects [78], and the molecular-scale structure of the liquid

solution [88]. Many refinements in the theory have been made, including the modi-

fied Poisson–Boltzmann [7], the Born–Green–Yvon approximations [89], the hypernetted
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chain [90], and the charge renormalization [91]. However, we are still far from a complete

description. Surface structure can have strong influence on the interfacial properties. In

fact, physical roughness should be carefully considered in many applications [92, 93, 94].

For example, the Derjaguin–Landau–Verwey–Overbeek (DLVO) interaction, determined

by the repulsive double layer and the attractive van der Waals interaction, differs signif-

icantly for rough surfaces compared to perfect smooth ones [95, 96, 97, 98]. Moreover,

due to the permittivity mismatch at the interface, ions induce polarization charges on the

surface, which is nontrivial for structured surfaces. Such polarization charge profile has

to be determined by solving the Poisson’s equation.

Numerical solutions to the polarization problem offers another alternative. However,

even with the rapid growth of computational power, previous simulation studies have pri-

marily focused on geometrically simple surfaces that the method of image charges can be

exploited [99, 24, 100]. One can resort to finite-difference or finite-element methods for

structured interfaces. Such algorithms involve discretization of the whole 3-dimensional

space, while the induced charges only reside on the surface. Thus, these methods are in-

efficient for dynamic simulation purposes which require updating the polarization charges

at each time step. In this chapter, I apply the iterative dielectric solver (IDS) [2, 14] to

study the structured interfaces.

Since surface structures present in nanoscale that is non-feasible for first-principle nor

all-atom simulations, I simulate the system with a coarse-grained model with implicit

solvent, which captures the finite size effects, the ionic coupling, and the polarization

effects. To focus on the dielectric effects, I study neutral dielectric interfaces, where

the electrostatic interaction between the interface and the ions is purely due to surface
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Figure 3.1. Primitive model of an asymmetric electrolyte near a neutral
sinusoidal dielectric interface. The positive divalent (red) ions the nega-
tive monovalent (blue) ions are emerged in continuum water with relative
permittivity εm = 80. The medium below the interface has relative permit-
tivity εs = 2. Apart from the polarization charges, the ions also interact
with the surface via the shifted–truncated Lenard–Jones potential.

polarization charges. My collaborator also studies the system using a mean field model,

the linearized Poisson–Boltzmann equation. Careful modeling of the interaction between

the ions and interface allows him to construct a suitable boundary condition that reflects

the properties of the rough surface. The model can then reproduce the ion densities near

the surface and into the bulk.

3.2. Method and Model

Consider a neural solid–liquid interface S, where the two media have different relative

permittivities: εs(s) for the solid and εm(s) for the liquid medium. As I am able to use the

iterative dielectric solver (IDS) to address the interaction of the ions with the dielectric
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interface, I can then carry out simulations of a primitive model in this environment. I

model the hydrated ions as equal size spheres of diameter σ = 7.14Å with point charges

of valence zi embedded in their centers. In nature, biomolecular structures, such as mem-

branes and proteins often display complicated surface topographies. As a basic model,

I consider a solid–liquid interface with sinusoidal surface topography (see Fig. 3.1). The

dielectric medium is piecewise uniform separating the electrolyte and a low permittivity

medium, in my case εs = 2, representing materials such as lipid bilayers [101, 102, 103].

Such dielectric interface can be described by equation z = A cos(2πx/λ), where A is the

amplitude of surface undulation and λ is its wavelength. I start from a configuration

of A = σ and λ = 10σ for our discussion and later vary the amplitude and the surface

structure. Since the roughness length scale of our surface is much larger than the water

molecule size, I treat the background solvent as implicit dielectric continuum of relative

permittivity εm = 80. The interface is discretized into a curved rectangular mesh. To

capture the excluded volume effects and the atomistic nature of the surface, each mesh

point interacts with the ions via the shifted–truncated Lennard–Jones (LJ) interaction.

The distance between adjacent mesh points is 0.2σ. Such fine mesh also guarantees less

than 10−3 error in the force calculation of the IDS for worst configurations when ions are

closest to the surface. Since for symmetric electrolytes, dielectric effects are the same for

both ion species, it is more interesting to explore the behavior of asymmetric electrolytes.

I carry out simulations of 2:1 electrolytes at 50 mM concentration. Slab simulation box

of dimension 10 × 10 × 100σ3 is used with periodicities in both x and y directions. The

dielectric interface is centered at z = 0. The electrolyte only stays in upper half of the box.

The slab height is sufficiently high to eliminate the boundary effects. Using a Langevin
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thermostat with damping time 20t0, where t0 = (mσ2kBT )1/2 is the LJ unit time with

kBT the Boltzmann factor and m the ion mass. The system is kept at room temperature

with Bjerrum length lB = σ.

To better understand the features observed in the simulations, my collaborator and I

contrast them with results from a linearized mean field theory. He uses a standard linear

PB description of the electrolyte bulk. Boundary conditions for the model are constructed

so as to capture the behavior of the ions near the surface. In the PB approximation, the

mean field electric potential φ satisfies the equation ∇2φ − κ2φ = 0, where the square

inverse screening length is κ2 = 4πe2(
∑

i ciZ
2
i )/(ε0kBT ) with e the proton charge, ci and Zi

the concentration and the valence of the ith ion species, respectively. The charge density

ρ is then obtained from the potential as ρ = −(
∑

i ciZ
2
i )eφ/(kBT ). Boundary conditions

for the potential and surface charge density should reflect the properties of the polarizable

surface. Simulation observations and the geometric structure of the surface suggest that

the potential at the surface, at points with coordinate x along the modulation direction

should be, approximately, of the form φ|S = Φ0+Φ1 cos(2πx/λ). The constants Φ0 and Φ1

can be chosen to fit the simulations over a range of conditions. To solve the equation, it is

convenient to use curvilinear coordinates (s, y, t) adapted to the surface. The y coordinate

is unchanged, while x = s − A sin(2πs/λ) exp−t/λ and z = t + A cos(2πs/λ) exp−t/λ.

In the new coordinates, the actual surface corresponds to t = 0. The PB equation can

now be solved in a power expansion on the amplitude of the modulation. My collaborator

carries out this procedure below and show that the bulk behavior of the system can

be approximated in this way for small modulation amplitudes. It can be shown that the

leading term in the expansion of the potential has the form φ = Φ0 exp(−κt), while higher
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order terms in the expansion acquire an oscillatory behavior along the s (or x) coordinate

while decaying into the bulk along the t (or z) coordinate.

The form of the boundary condition noted above can be justified by considering the

interaction of a single ion with the polarizable surface. An approximate calculation of the

features of this interaction can be carried out as a perturbative expansion on the surface

modulation amplitude. The mean field energy of a single ion of valence Z near the surface,

ignoring the presence of all other ions, is U = (1/2)ZeφP where φP is the electric poten-

tial that arises solely from the surface polarization charges. The perturbative approach

expands the polarization potential as φP = φ
(0)
P + φ

(1)
P + . . ., and similar expansions are

applied to the charge density and the geometric quantities. The order of a term in the ex-

pansion is the power of the modulation amplitude A that appears in the expression. The

potential is calculated by first solving Eq. (2.4) for the polarization charges. The zeroth

order of this calculation corresponds to the case of a single ion near a flat interface. In

that case, we have ε̄σ(0) +ε0∆εn̂(0) ·E(0) = 0. Since n̂(0) ·E(0) receives no contribution from

other polarization charges as the fields they create are parallel to the surface, we have

n(0) ·E(0) = (4πε0)−1Zex/|x− x′|3, where x′ is a point at the surface and we take the ion

position as x = (0, 0, a). Integration of the Coulomb potential due to the resulting surface

charge density gives the standard image-charge potential φ
(0)
P = (4πε0)−1(∆ε/ε̄)Ze/(2a).

The resulting energy of the ion is U0 = (4πε0)−1(∆ε/ε̄)Z2e2/(4a). This expression is

positive when the solid phase has a lower permittivity.

The first order term in the expansion of the potential is associated with the defor-

mation of the surface. To simplify its calculation, we consider the limit where the ion

is brought to the interface. In addition, we consider first the case where its position
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coincides with a peak of the deformed surface. Results for other positions follow from

this result. According to the image-charge result, the energy in this limit is singular

but the exclusion of a small region around the ion renders the result finite. We de-

note the size of this region as a to indicate that it can be made to correspond to the

distance from the surface. The evaluation retains an explicit dependence on the wave-

length, which is the key feature of interest in our analysis. A more complex calcula-

tion, maintaining the ion at a finite distance from the interface, gives similar results.

In this limit, the first oder terms in Eq. (2.4) read ε̄σ(1) + ε0∆εn̂(1) · E(0) = 0. Other

terms in the expansion of the equation cancel due to the geometry used. The first or-

der term in the expression for the normal is n̂(1) = [−(2πA/λ) sin(2πx/λ), 0, 0]. We

obtain σ(1) = −(2πA/λ)(∆ε/ε̄)Ze sin(kx)x/(x2 + y2)3/2. The potential created at the

ion location is the integration of this density times the Coulomb potential. The poten-

tial has a leading term φ
(1)
P = (∆ε/ε̄)CZe(A/λ2) ln a with C a positive constant. For

positive ions, this excess potential is negative. For other positions, the leading term in

the potential is approximately φ
(1)
P = (∆ε/ε̄) cos(2πx/λ)CZe(A/λ2) ln a. We note that

the mean curvature of the surface R−1 = (1/2) cos(2πx/λ). Therefore, our result can be

understood as indicating the dependence of the potential as a function of the curvature

φ
(1)
P = (∆ε/ε̄)CZeR−1 ln(a)/2. This expression can be used as an approximation for the

potential in cases other than sinusoidal modulation. As a result, the energy of interaction

between ion and surface has the first order contribution U (1) = (∆ε/ε̄)(C/4)Z2eR−1 ln a.

For a particle near the surface the dominant term of its energy is given by its interaction

with the polarization charges. We can then write the excess charge density near the surface

in terms of the Boltzmann population factor exp[−(U (0) + U1))/kBT ]. Using our results
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for the potential due to the surface, we see that the expansion of this expression results

in contributions that match the from indicated by the modulated boundary condition.

Expanding the exponential factor and multiplying by the bulk densities, we obtain an

excess charge density near the surface, within an atomic diameter from it, of the form

(3.1) δq = −
∑
i

cieZ
3
i

[
C1 − C2Aλ

−2 cos(2πx/λ)
]
.

In this expression, the constants Ci are positive according to the functional form of the es-

timated potentials. Their values can be estimated in terms of the parameters of the system

but we note that, within the calculation outlined above, they depend on the specific cutoff

a chosen. Equation (3.1) retains the dependence on valencies and characteristic lengths.

In particular, we emphasize that the result is not zero for asymmetric electrolytes. The

net charge is a result of the asymmetric depletion of ions near the interface. Additionally,

the sign of the first order term indicates that the depletion is stronger at concave regions.

Given the form of the excess charge density, and the linear PB relation between charge

density and potential, this result requires the boundary values of the potential to take the

modulated form introduced above.

3.3. Results and Discussion

Figure 3.2 shows results for the ion number density near the modulated surface for the

2:1 electrolyte. In the absence of dielectric contrast, as expected, up to fluctuations, the

bulk monovalent ion density is twice of the divalent ions. Steric effects do create a small

asymmetric depletion near the surface, which are stronger for the divalent ions. This effect

appears as ions near the interface lack a symmetric shell of screening counterions. The
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Figure 3.2. (a) The divalent ion and (b) the monovalent ion density dis-
tributions above a structured interface without dielectric mismatch. (c)
and (d) are the corresponding ion distributions with permittivity mismatch
80/2. The polarization charges significantly increase the surface depletion.

asymmetric counterion shell pulls the ions towards the bulk [69]. These results serve as a

baseline to assess the effects of the dielectric contrast case. Once the dielectric contrast is

turned on, I observe a much stronger depletion of both charge species, which is enhanced

by the dielectric effects as the ions interact with their own polarization charges of the same

kind. This depletion extends further into the bulk than the one created by steric effects,

showing the long range nature of electrostatic interactions. More importantly, since the

interaction between the ion and its polarization charges scales with Z2 and decays as

r−1 with r the ion–surface distance, the divalent ions are much more depleted near the

surface than the monovalent ions. Such asymmetry breaks the balance of concentration

in the bulk, i.e., c+2 = (1/2)c−1 for charge neutrality, and results in a net negative charge

cloud above the surface [see Fig. 3.3(a)]. It is important to note that although similar

effect happens even for the interface without dielectric mismatch [see Fig. 3.3(b)] due to

difference in the counterion shell, the net charge density is substantially weaker.
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(c)

Figure 3.3. The net charge cloud formed by 50 mM 2:1 electrolyte above a
(a) structured dielectric interface of permittivity 80/2, (b) neutral interface
without dielectric mismatch. (c) The corresponding surface polarization
charge density.

Along with the charge density due to ions, my simulations also calculate the average

surface induced charge density. The net induced charge of the interface is zero, but

it presents persistent non-zero averages as a function of position, consistent with the

modulation of the ionic charge density. The average induced charge density is positive at

concave regions and negative in the convex ones as shown in Fig. 3.3(c).

The dependence of the induced charge and ion charge density on surface structure

can be further investigated by changing the parameters of the modulated surface. I have

carried out simulations where the modulation magnitude A ranges from 0 to 2σ. Figure 3.4

shows the induced charge density averaged over the y direction, along which the properties

of the system are invariant. For small amplitudes, the induced charge density profile shows

a sinusoidal pattern, consistent with the arguments developed for the linearized Poisson–

Boltzmann theory. For larger amplitudes, I observe that the induced charge density

amplitude is larger and varies more rapidly at the peak than at the valley. The sinusoidal
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Figure 3.4. The net surface polarization charge distribution at various un-
dulation amplitudes.

behavior breaks down at high amplitude (A = 2.0σ). This is caused by steric effects as

ions cannot reach the bottom of the valley since the gap between the two slopes becomes

too narrow.

For the range of amplitudes where the observed response is linear, it is possible to

analyze the simulation results in light of the linearized PB approach outlined above. For

the case A = σ, my collaborator solves the PB equation for the bulk ion density while

fitting the potential amplitudes in Eq. (3.1) to match the simulation results. With the

fitted boundary conditions, the model solutions reproduce key features of the simulations

results: the region of significant charge density deviation from neutrality in the simulations

corresponds to the screening length size from the model. In agreement to the simulations,

the model predicts a sinusoidal charge distribution along the surface modulation direction

both at the solid–liquid interface and within the bulk. Fig. 3.5 shows the ionic charge

density from the solutions to linearized PB equation. Panels (b) and (c) of the figure
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Figure 3.5. (a) The charge density obtained from solution to the linearized
PB equation. The boundary condition constants were chosen to best match
(see main text) the properties of the simulation data for undulation am-
plitude A = σ. (b) Comparison between the simulation results and the
linearized PB predictions for densities along the z coordinates for x posi-
tions that coincide with the peak and the valley of the surface, respectively.

show comparisons of the model solution with simulation results for the densities observed

along the z direction at positions above the peak and the valley of the surface. Charge

density simulation data is fitted to the functional form of the PB solution that has two

constants that can be used for the fit. The constants are determined by a least squared

fitting of the charge density above the peaks and the valleys. While the simulation results

have noise, it is possible to observe the decay of the average charge density into the bulk

as well as the difference in the values of the density at the peak and valley points.

The phenomenon I have found in my simulations and model analysis, of curvature

dependent charge depletion is generic, not limited to surfaces with modulation in a single

dimension, and can be generalized to other structures. For example, Fig. 3.6 shows the net

surface polarization charge pattern of the same 50 mM 2:1 electrolyte above a structured

dielectric interface with permittivity mismatch 80/2, but has surface modulation in both
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Figure 3.6. The surface induced charge density of a structured dielectric in-
terface with modulations in both x and y directions. Same as the sinusoidal
case, the dielectric mismatch is 80/2 with a 50 mM 2:1 electrolyte is above
the surface.

x and y directions z(x, y) = A cos(kx) sin(ky). Similar to my previous results, the valleys

acquire a negative surface polarization charge.

3.4. Conclusion

The simulations presented, along with the arguments used in the construction of the

mean field theory, demonstrate that the effect observed is universal. The local curvature

of the surface always induces effective surface polarization and ion accumulation in the

presence of asymmetric electrolytes. The effect should be observable not only in the

electrolyte bounding walls, but also at the surface of electrolyte-immersed colloids. These

findings can be applied to the design of surfaces with useful physical–chemical properties.
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CHAPTER 4

The refined IDS for multiple dielectric mismatches

The content of this chapter is based on the following publication:

• Huanxin Wu and Erik Luijten, Accurate and efficient numerical simulation of

dielectrically anisotropic particles (in submission)

4.1. Introduction

Although in principle BEM-based matrix equation solvers can be applied to obtain the

electrostatic potential around dielectric objects of arbitrary geometry and dielectric con-

figuration, it is well known that its accuracy and convergence rate are highly dependent

on the conditioning of the boundary-element equations [104]. This conditioning depends

not only on the BEM formalism [43], but also on many other factors, including object

geometry [2], level of discretization, and shape of each boundary-element [43, 105]. It can

be improved via preconditioning techniques, such as proposed in the context of both Pois-

son’s equation [106] and the Poisson–Boltzmann equation [107] for multi-region dielectric

problems with large numbers of boundary elements. However, neither the role of dielectric

heterogeneities (such as present in patchy colloids, proteins, etc.) nor the spectrum of the

BEM matrix have been examined explicitly. Here we perform such an analysis and attain

an intuitive physical understanding of the role of preconditioning. This in turn enables us

to extend the iterative dielectric solver (IDS) introduced in Refs. 2 and 14 for achieving

high accuracy and fast convergence of the BEM. The technique proposed here has been
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successfully applied to study the electric double layer of colloids that are anisotropic in

shape as well as permittivity [108] and is applicable to arbitrarily shaped objects with

multiple dielectric mismatches.

Unlike finite-difference methods (FDM) [109, 110, 111, 112] or finite-element methods

(FEM) [113, 114], which partition the entire spatial domain, BEMs instead formulate

partial differential equations as boundary integral equations, and only seek the boundary

values. For Poisson’s equation in electrostatics, the boundary values can either be the

surface charge density or the surface potential and its derivatives. The boundary-integral

formulation of Poisson’s equation is then solved to match these boundary values with given

boundary conditions. Since the permittivity often varies rapidly at dielectric boundaries,

the approximation of sharp dielectric interfaces that separate piecewise uniform media

is typically utilized in the modeling of dielectric materials [28]. Under this assumption,

Poisson’s equation only needs to be solved on two-dimensional meshes instead of three-

dimensional (3D) grids.

4.2. Methods and Results

Following the notation and the derivation of Eq. (2.4) (cf. Sec. 2.2), here I discuss

the principles of the BEM that are applied to the IDS, which help to distinguish the

IDS from previous BEM methods. The BEM discretizes the interfaces and represents the

continuous surface charge density σ(s) with a set of basis functions fi(s) defined at each

of N boundary patches,

(4.1) σ(s) = σf(s) + σpol(s) =
N∑
i=1

σifi(s) ,
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where σi is the weight at the ith patch [115]. For simplicity, piecewise-constant basis

functions are widely adopted [43, 116],

(4.2) fi(s) =


1 if s ∈ si

0 if s 6∈ si
,

where si is the enclosure of patch i. Under this approximation, σ(s) is discretized onto the

N boundary patches, each carrying a charge density σi. For a finite number of patches,

this approximate σ(s) does not satisfy Eq. (2.4) exactly, but results in a residual. To

minimize this residual, the BEM forces it to be orthogonal to a set of test functions [117].

If these test functions coincide with our basis functions, this would reduce to the standard

Galerkin method [104]. If, in addition to the discretization, we assume that the bulk free

charge distribution consists of point charges, Eq. (2.4) can be written in matrix form

Aσ = b, with

(4.3) Aij =

∫∫
si

{
ε̄(s)δij +

∫∫
sj

[
∆ε(s)

4π

n̂(s) · (s− s′)

|s− s′|3

]
ds′

}
ds

and

(4.4) bi = −
∫∫

si

[
∆ε(s)

4π

∑
k

qk
ε(rk)

n̂(s) · (s− rk)

|s− rk|3

]
ds +

∫∫
si

σf(s)ds .

The nested integral in Eq. (4.3), if evaluated via one-point quadrature at patch centroids,

can lead to two different formulations. If s is evaluated at si, we have the collocation
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approach [118], with

(4.5) Aij =

∫∫
si

ε̄(s)δijds + ai
∆ε(si)

4π

∫∫
sj

n̂(si) · (si − s′)

|si − s′|3
ds′ .

If s′ is evaluated at sj, we arrive at the qualocation approach [119], which at similar

computational effort gives much better accuracy [116, 1], especially for flat patches [64].

For large-scale simulations, the solver must not only be accurate, but also highly

efficient. IDS [2] takes the qualocation approach,

Aij = aiε̄(si)δij + aj
∆ε(si)

4π

∫∫
si

n̂(s) · (s− sj)

|s− sj|3
ds ,(4.6)

bi = −∆ε(si)

4π

∫∫
si

∑
k

qk
ε(rk)

n̂(s) · (s− rk)

|s− rk|3
ds +

∫∫
si

σf(s)ds ,(4.7)

where Eq. (4.6) can be precomputed for fixed dielectric geometries, but becomes time-

dependent for mobile dielectric objects. Thus, to reduce computational cost, the integral

is approximated by one-point (centroid) quadrature for i 6= j and a curvature correction

is added by assuming disk-shaped patches with mean curvature for i = j [31]. By fur-

ther assuming that source charges cannot approach the dielectric interfaces very closely,

and approximating Eq. (4.7) via one-point quadrature as well, we arrive at simplified

expressions for which the collocation and qualocation approaches coincide,

Aij = ε̄iδij + aj
∆εi
4π

n̂i · (si − sj)

|si − sj|3
,(4.8)

bi = −∆εi
4π

∑
k

qk
ε(rk)

n̂i · (si − rk)

|si − rk|3
+ σf(si) ,(4.9)
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Figure 4.1. Test system introduced in Ref. 1 to examine the accuracy of
various Poisson solvers. A positive unit charge is placed 4 Å from the center
of a dielectric sphere (εin = 80) of radius 5 Å. The sphere is embedded in
a background medium with relative permittivity εout = 2. Shading on the
sphere surface indicates the induced charge.

with ε̄i ≡ ε̄(si), ∆εi ≡ ∆ε(si), and n̂i ≡ n̂(si). To retain the dimensionality of Eq. (2.4),

I have divided both sides of
∑

j Aijσj = bi by the patch area ai.

In the context of the dielectrically heterogeneous particles examined below, it proves

insightful to first closely examine the performance of the IDS approach proposed in Ref. 2

for a uniform spherical particle, with specific focus on the consequences of the one-point

quadrature in Eqs. (4.8) and (4.9). We adopt a test case from Ref. 1, i.e., the polarization

potential of a dielectric sphere (εin = 80, εout = 2) of radius 5 Å, induced by a positive

unit charge (q = +e) located inside the sphere, at a distance 4 Å away from the sphere
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center (Fig. 4.1). In Ref. 1, this was found to be a remarkably challenging system, with

strong deviations between some numerical approaches and the analytical solution [120]

for the induced potential along the z-axis. The collocation approach [32] was observed

to yield a potential more than twice smaller than the analytical result for a spherical

surface discretized into 364 or 1456 flat tiles, with each tile subdivided into 100 elements

for numerical integration (Fig. 4.2). On the other hand, the qualocation method [119]

was found to yield excellent agreement with the analytical solution for the same tiling

and subdivision. Figure 4.2 shows that even the one-point quadrature implementation

of IDS performs far better than collocation with flat disks [32, 64], for similar global

discretization levels (i.e., number of patches employed for the entire sphere). Yet, the

deviation from the analytical result is still quite significant. This is fully mitigated by

imposing the “net induced-charge constraint” derived in Ref. 2. For this test case, the

net induced charge on the sphere is nonzero, and the total (free and bound) charge

Q should be q/εout (Ref. 2, Sec. IV.H). The total bound charge itself consists of two

contributions: the bound charge at the source charge location (q/εin − q) and the surface

induced charge, so that the latter must equal q/εout − q/εin. Mathematically, such “net

induced-charge constraint” is equivalent to the boundary condition at infinity, where the

electrostatic potential Φ of the system should approach Φ(r)|r→∞ = Q
4πε0r

. To enforce this

physical constraint within GMRES, for simplicity I evenly distribute the net charge over

all patches for the initial trial solution σ(0) and enforce the inner product of the patch

areas (a1, a2, . . . , aN) and each subsequent basis vector, ∆(m) =
∑N

i=1 ai(qm)i, to be zero,

by subtracting ∆(m)/N from the computed induced surface charge of each patch at every

iteration. This technique, which comes at negligible computational cost, yields excellent
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agreement with the analytical solution and rapid convergence as a function of the number

of surface patches. Indeed, the accuracy is comparable with the full qualocation approach

at similar discretization levels, while avoiding the use of subpatch discretization to obtain

the second term of Aij in Eq. (4.6) (i.e., only a single evaluation per patch, rather than

numerical integration over 100 subtiles). I note that IDS [2] employs patches with a fixed

curvature, implemented via a curvature correction [31], but this is not to be confused

with curved surface elements [64], which are computationally far more costly. Also, I

have explicitly verified that this curvature correction has a near-negligible effect on the

results in Fig. 4.2.

The high accuracy of IDS for this test case arises from two aspects of the spectrum

of the matrix operator A. First, A is well-conditioned. For Aσ = b, the L2-norm

condition number κ(A) = ηmax(A)/ηmin(A) characterizes the sensitivity of the solution σ

to a perturbation in b, where ηmax(A) and ηmin(A) are the largest and smallest singular

values of A, respectively. A perturbation δb in b will lead to a perturbation δσ in σ,

whose norm is bounded by the condition number [121],

(4.10)
‖δσ‖
‖σ‖

≤ κ(A)
‖δb‖
‖b‖

.

A typical MD simulation employs a fast Ewald solver with moderate accuracy, leading to

inaccuracies in b. Thus, an accurate solution of σ requires a small condition number κ(A).

For a normal matrix, κ(A) = |λmax(A)|/|λmin(A)|, with λ its eigenvalues. Whereas the

sphere of Fig. 4.1 is dielectrically isotropic, the patches differ slightly in area, causing the

matrix A to be asymmetric, which results in complex eigenvalues, albeit with small imag-

inary parts. The condition number κ(A) can be computed explicitly, since the spectrum λ
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Figure 4.2. Accuracy comparison between the IDS (iterative dielectric
solver) implementation of Ref. 2 and more costly alternative techniques
for the induced charge potential along the z axis for the configuration of
Fig. 4.1. Purple solid line marks the analytical solution. Open symbols rep-
resent data from Ref. 64 employing the induced charge computation (ICC)
method [32], where the sphere is discretized into 364 (red open circles) and
1456 (blue open squares) flat patches with 100 subtiles per patch. The
large discrepancy between these data and the analytical result can be sig-
nificantly reduced by using one-point quadrature [2] (dashed lines marked
“without constraint,” for comparable patch numbers, namely 372 (red) and
1472 (blue)). Enforcing the net induced-charge constraint (cf. Ref. 2 and
main text) improves the data (small red and blue solid circles) such that
they become indistinguishable from the analytical result, except near the
two surface boundary points (z = ±5Å), where discretization effects dom-
inate. This improvement, which is achieved at negligible additional com-
putational cost, can be understood from the eigenvalue spectrum of the
operator employed in the IDS (see main text).
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Figure 4.3. Complex spectrum λ of the operator A in Eq. (4.8) for the
dielectric sphere of Fig. 4.1 at different discretization levels N . As N in-
creases, the real parts of the smallest and largest eigenvalues approach 2
and 41, respectively, in agreement with Eq. (4.11) [2]. The imaginary parts
are small across the entire spectrum, reflecting the near-symmetric charac-
ter of A. The inset shows the histogram of the real parts Re(λ), illustrating
that apart from the outlying smallest eigenvalue all other values are clus-
tered.

of A was solved analytically for a spherical geometry [2],

(4.11) λ =

{
εout,

(
2

3
εout +

1

6
εin

)
, . . . ,

(
1

2
εout +

1

2
εin

)}
.

yielding κ(A) = 41/2, sufficiently small to guarantee a well-conditioned matrix.

In Fig. 4.3 I evaluate the eigenvalues of A based upon Eq. (4.8), at different discretiza-

tion levels. The extreme eigenvalues min(λ) and max(λ) gradually approach the analytical

predictions, i.e., 2 and 41, as the patch number N is increased. The relative imaginary
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parts Im(λ)/Re(λ) are indeed very small and decrease as N increases, indicating A is

close to a normal matrix. For 372 patches, we find κ(A) ≈ 9.87.

The second contribution to the accuracy of the IDS also follows from the spectrum.

Namely, the convergence rate of GMRES depends on the eigenvalue distribution of A in

the complex plane [122]. For fast convergence, the eigenvalues should be clustered away

from zero, i.e., the distance between any two eigenvalues should be much smaller than the

distance of any eigenvalue from the origin [123, 124]. Figure 4.3 shows that the minimum

eigenvalue is isolated from the other eigenvalues, compromising the quality of the spec-

trum. The eigenvector of this outlying eigenvalue is uniform, corresponding to a uniform

surface charge density [2]. As the total induced charge follows from Gauss’s theorem,

this contribution can be computed analytically and imposed as a constraint during the

GMRES iterations. Since A is real and near-symmetric, its eigenvectors are orthogonal.

Thus, the physical constraint imposed in the IDS precisely eliminates contributions of the

outlying eigenvalue. The remaining eigenvalues are clustered (cf. Fig. 4.3, inset), ensuring

fast convergence of the IDS implementation in Fig. 4.2. Since each GMRES iteration

involves evaluation of the electric field at each patch location subject to the accuracy of

the Ewald solver, reduction of the number of iterations reduces the cumulative error as

well.

The IDS, including the net-charge constraint, has been successfully applied to calculate

the self-assembly and polarization of suspensions of binary mixtures of isotropic spherical

colloids [14]. Indeed, this solver is applicable to arbitrary geometries, but the examination

of the dielectric sphere has shown that subtle issues may arise. To clarify these issues in the

case of dielectrically heterogeneous particles, where additional dielectric interfaces arise, I
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Figure 4.4. Silica/metal Janus particle of diameter 14σ (with σ = 7.14 Å).
The two hemispheres are separated by a disk-shaped dielectric interface
(hidden from view). As a test case of the dielectric solver applied to dielec-
trically anisotropic particles, I examine the surface potential induced by a
positive unit charge located at (9σ, 0, 0).
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consider the prototypical example of a Janus sphere comprised of a silica hemisphere and a

metallic hemisphere. This example exhibits three dielectric interfaces: two hemispherical

surfaces and one equatorial disk (Fig. 4.4). The silica side has permittivity εSiO2 = 4

and the permittivity of the conducting side is approximated by εh = 105. The system

is embedded in an uniform dielectric medium representing water (εm = 80). I set the

diameter of the Janus particle to d = 14σ = 10 nm, where σ = 7.14 Å is the Bjerrum

length.

To study the accuracy of the IDS, I compute the polarization charge induced on a Janus

sphere by a monovalent ion and compare the resulting surface potential to a finite-element

calculation performed using the COMSOL package (Version 5.1, 2015). The Janus particle

has azimuthal symmetry about the z-axis. The positive unit charge is placed 9σ from its

center, at a polar angle θ = π/2 (i.e., in the equatorial plane of the Janus particle), so that

the external source field acts equally on both hemispheres (Fig. 4.4). Since the IDS yields

the surface charge density rather than the potential, additional errors are introduced

when I back-compute the potential on each surface patch, especially for the contributions

from immediately neighboring patches and from the patch itself. To reduce such errors I

adopt a mesh with 10 242 patches on the sphere and 5 000 patches on the equatorial disk.

The electric field is evaluated via PPPM Ewald summation, with a periodic simulation

box that is large enough (400× 400× 400σ3) to minimize periodicity artifacts. Both the

relative error of the Ewald summation and the convergence criterion of GMRES are set to

10−6. In the finite-element calculation, a ground potential is imposed at the boundaries

of the simulation box. To suppress artifacts resulting from this, I employ the same large
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simulation cell as for the BEM-based calculation. The entire 3D volume is discretized

into a non-uniform mesh with 3 147 897 tetrahedral elements.

Figure 4.5 compares the two approaches for the total surface potential. I plot the

potential at all patch centroids as a function of their z coordinates. The red symbols show

the FEM calculation, with a constant potential on the metal hemisphere (z > 0). The

other symbols all represent BEM calculations using the IDS [2], with different conditions.

These data exhibit minor deviations from the constant potential for small positive z (i.e.,

close to the equatorial plane), caused by discretization. More important, however, are

the systematic discrepancies. If no net induced-charge constraint is imposed, the BEM

data (cyan) display a strong, systematic deviation from the FEM data. For the metal

hemisphere, the surface potential is almost twice higher than the correct result, and also

for the silica hemisphere the potential is consistently too high. I emphasize that the data

have converged, but to the incorrect result. This behavior is similar to what I observed for

the isotropic sphere (Fig. 4.2), although with significantly larger deviations. Once the net

induced-charge constraint is imposed (which amounts to a net-neutrality constraint in this

case, as the point charge is located outside the sphere) for the entire Janus particle—i.e.,

for the entire system comprised of the patches on the two hemispheres as well the patches

at the silica–metal interface—these deviations are significantly reduced, but by no means

negligible (Fig. 4.5, blue data). The potential on the metal side is mostly constant, but

still too high, and the potential on the silica side only matches the FEM calculation close

to the equator.

To understand and resolve these discrepancies, I again turn to the spectrum of the op-

erator A. I find that the large dielectric mismatches at the metal–water interface and the
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Figure 4.5. Comparison of different calculations of the total surface poten-
tial on a Janus sphere as set up in Fig. 4.4, i.e., a dielectric Janus par-
ticle embedded in water (εm = 80), with a silica hemisphere (εSiO2 = 4)
and a metal hemisphere (εh = 105), and a positive unit charge placed at
(9σ, 0, 0). The spherical dielectric interface centered at the origin has radius
7σ = 4.998 nm and is divided into 10 242 patches on the sphere and 5 000
patches on the disk that constitutes the metal–silica interface. Red data
points represent the surface potential as computed via a FEM calculation.
The potential is constant on the metal hemisphere (z > 0) and varies on
the silica hemisphere (z < 0). Cyan data are obtained with the IDS (itera-
tive BEM-based dielectric solver) without any additional constraints. Blue
data are obtained with the same solver, while constraining the net induced
charge to zero. Both data sets exhibit significant deviations from the FEM
solution. The green data points represent the IDS results obtained with a
net-neutrality constraint as well as Jacobi preconditioning of the matrix op-
erator. These results are obtained with negligible additional computational
cost compared to a standard solver, and exhibit excellent agreement with
the FEM data. See main text for a detailed discussion.
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Figure 4.6. Comparison between the scaled spectra of the matrix A for
a Janus particle (Fig. 4.4) with Jacobi preconditioning (green data) and
without preconditioning (red data). The x-axis is scaled by the maximum
of the real part of all eigenvalues. The y-axis gives the ratio between the
imaginary and real parts of each eigenvalue.

central metal–silica interface have a detrimental effect on the condition number, yielding

κ(A) = 2.93× 103. Moreover, as illustrated in Fig. 4.6 (red data), the spectrum exhibits

two groups of normalized eigenvalues, clustered around 0 and 0.65, respectively, resulting

in slow convergence. The anisotropy of the Janus particle also results in an asymmetric

matrix and significant imaginary parts for some of the eigenvalues, hindering numerical

solution of the matrix equation [125]. To improve this, I apply a preconditioner M to trans-

form the matrix equation [123], M−1Aσ = M−1b. The choice M = A would yield perfect

spectral properties, but is prohibitively costly in situations where A is dynamic. Instead,

we observe that the simple Jacobi (or diagonal) preconditioner M = diag(A) = diag(ε̄ii),

can be applied here. It is efficient for diagonally dominant matrices [123], as confirmed

by the modified spectrum (Fig. 4.6, green data). With the Jacobi preconditioning, the
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condition number drops 46-fold to 63.7, and the scaled eigenvalues are clustered around

0.50. These improvements are reflected in the corresponding results for surface potential

(Fig. 4.5, green data), which are in excellent agreement with the FEM calculations. In-

tuitively, this preconditioning remedies the disproportionate weight of patches with large

prefactors in Eq. (4.8), i.e., large ε̄i and ∆εi in the residual—precisely the situation that

arises if multiple dielectric mismatches are present. This method of preconditioning can

be implemented in a particularly simple manner, namely in each iteration of GMRES the

residual of the ith patch is normalized by ε̄ii.

4.3. Conclusion

In summary, these results demonstrate that a combination of high accuracy in the

electrostatic summation, a strict convergence criterion in the GMRES method, and a fine

discretization level in the BEM are insufficient to guarantee correctness of polarization

charge calculations. Given how widely the BEM is adopted in dielectric simulations,

unawareness of effective techniques can be problematic. I find that with proper pre-

conditioning to reduce the matrix condition number for systems with multiple dielectric

contrasts and a physical (net induced-charge) constraint to eliminate the effects of outly-

ing eigenvalues in the operator spectrum, the iterative dielectric solver of Ref. 2 is capable

of accurately and efficiently resolving induced charge in systems with multiple dielectric

contrasts. A crucial observation is that the preconditioning proposed here can be achieved

at no additional computational cost. This is essential for situations where the dielectric

environment is time-dependent, such as in dynamical simulations of colloids, proteins,

etc., and thus the induced charges must be resolved with the highest possible efficiency.
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For simplicity, I have focused on the prototypical Janus geometry. However, the tech-

niques to improve the spectrum of the BEM matrix are general and can be applied to a

broad variety of dielectric systems [108].
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CHAPTER 5

Application of the refined IDS to Janus colloids

The content of this chapter is based on the following publications:

• Huanxin Wu, Ming Han, and Erik Luijten, Dielectric effects on the ion distribu-

tion near a Janus colloid, Soft Matter, 12, 9575–9584 (2016).

• Ming Han, Huanxin Wu, and Erik Luijten, Electric double layer of anisotropic

dielectric colloids under electric fields, Eur. Phys. J. Special Topics, 225, 685–

698 (2016).

The finite–element calculation in Sec. 5.2.2 is performed by Ming Han.

5.1. Introduction

Many phenomena of interest occur at colloidal interfaces, where the dielectric mis-

match between the solvent and the colloid gives rise to induced surface (polarization)

charge, which is analytically complicated and computationally expensive to solve. Whereas

current experimental techniques face limitations in measuring these interfacial properties

at a molecular level, computer simulations can offer much insight. For isotropic colloids,

the polarization effects on the ionic density profile near colloidal surfaces are well-studied

via simulations and have been shown to be significant [12, 24, 100, 126]. Such effects on the

structure of the electric double layer (EDL) surrounding a colloid may have consequences

for many properties, such as surface ionization and complexation, chemical reactions, and

electrophoretic mobility [127].
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Recently, particles with anisotropic surface properties have attracted strong interest

due to their promise for applications in photonic materials, electronics, electrokinetics,

and drug delivery [128]. One of the simplest patchy geometries is the Janus particle,

which comprises two domains of different materials [129, 130]. There are many possible

design choices for the mismatch between these domains [131], including dipolar [132,

133], charged/hydrophobic [134, 135], or charged/magnetic [136], resulting in a variety of

self-assembled structures [133, 137, 134, 136]. Current large-scale fabrication techniques

can produce Janus particles with controllable sizes and geometries [129]. One of the

methodologies for creating spherical Janus colloids is the application of a partial coating

of a different material on a spherical colloid. The resulting dielectric heterogeneity in the

particle is crucial for a variety of phenomena, including the well-known induced-charge

electrophoresis [138]. Yet, owing to a lack of efficient modeling methods, most computer

simulation studies ignore the polarization of Janus particles by the electrolyte [133, 139,

140, 141, 142].

For complicated geometries like Janus particles, boundary-element method (BEM)-

based dielectric solvers offer advantages in convenience, capability, and efficiency [69]. In-

stead of solving Poisson’s equation on a three-dimensional grid, the BEM only discretizes

dielectric interfaces and solves the surface induced charge explicitly. Here, I apply the

approach introduced in Refs. 2, 14 to investigate the ionic distribution around a Janus

colloid via molecular dynamics simulations, in which the induced charges at dielectric

interfaces are computed dynamically. I also adopt preconditioning techniques that can
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significantly improve the accuracy and efficiency for systems with multiple dielectric con-

trasts [143]. This method has been successfully applied to study the EDL of anisotropic

dielectric colloids under external electric fields [108].

This chapter is organized as follows. First, details of my simulation model are pro-

vided in Sec. 5.2.1. After examining the effects of Janus particle coating thickness in

Sec. 5.2.2 I proceed to apply the IDS to examine the structure of symmetric and asymmet-

ric electrolytes near two types of neutral Janus colloids (silica/silicon and silica/metal)

in Sec. 5.3.1. Following that, Sec. 5.3.2 presents simulation results for the counterion

distribution around various charged Janus colloids in both salt-free and electrolyte envi-

ronments. I address the effects of colloid size and and ion radius in Sec. 5.3.3. I conclude

the chapter with a brief summary in Sec. 5.4.

5.2. Methods and model

5.2.1. Molecular dynamics simulation model

To study dielectric effects on the EDL, I investigate a single dielectric Janus colloid of

valence Z immersed in an aqueous electrolyte. The Janus sphere is comprised of two

hemispheres of different materials and exhibits three dielectric interfaces: two hemispher-

ical surfaces and one equatorial disk (Fig. 5.1). The particle has azimuthal symmetry

about the z-axis. I consider two representative types of dielectrically heterogeneous Janus

colloids. The first type consists of hemispheres made of silica (εSiO2 = 4) and silicon

(εSi = 12), respectively. The second type has a silica hemisphere and a metal hemisphere,

where the conducting side is approximated by a high permittivity εh = 105. The system

is embedded in water (εm = 80). The spherical BEM mesh, i.e., the dielectric interface
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Figure 5.1. A silica/metal Janus particle (solid circle) comprised of two
hemispheres that are separated by a disk-shaped dielectric interface (shaded
region). To ensure that mobile external charges (ions) do not approach the
particle surface—i.e., the dielectric interface separating the hemispheres
from the surrounding medium—too closely, it is surrounded by a concentric
spherical surface (dashed circle). This outer surface is modeled via a soft
repulsive potential (cf. main text). The dielectric sphere has a diameter 14σ
(with σ = 7.14 Å), whereas the effective diameter of the particle is 15σ (i.e.,
the dielectric interface is located 0.5σ below the effective particle surface).
As a test case for the effects of coating thickness (Sec. 5.2.2), we examine
the surface potential induced by a positive unit charge located at (9σ, 0, 0).
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between the water and the particle, has a radius R = 7σ, where σ = 7.14 Å is the Bjer-

rum length of water at room temperature. To prevent the ions from penetrating the BEM

mesh, this dielectric interface is placed inside a concentric soft repulsive shell, modeled by

a shifted-truncated Lennard-Jones (LJ) potential described below. As a result, the Janus

particle has an effective diameter d = 15σ = 10.71 nm. As this is far smaller than the

particle sizes typically employed in experiment, I systematically examine the effect of col-

loid size on our results in Sec. 5.3.3. Since the Janus particle is much larger than the ions,

I only discretize the dielectric interfaces of the Janus particle, i.e., I ignore anisotropic po-

larization charge distribution on the hydrated ions [144]. This approximation implies that

I also ignore the corresponding charge–dipole and dipole–dipole interactions between ions,

as well as dielectrophoretic forces. Another simplification concerns the permittivity of the

electrolyte solution, which is known to decrease with increasing ion concentration [145].

Capturing this effect requires solving the spatial and time-dependent bulk polarization,

which goes beyond the assumption of sharp dielectric interfaces adopted here, but will be

addressed in future work.

For the BEM mesh, the central disk is discretized into 183 patches and the spherical

dielectric interface into 732 patches. These 732 patches are then assigned to either hemi-

sphere, depending on the position of their center. Owing to my choice for the orientation

of the mesh, this results in 363 and 369 patches belonging to either side, respectively. The

Janus colloid is fixed at the center of a periodic cubic simulation box (30 × 30 × 30σ3),

and is surrounded by hydrated ions that are represented as spheres of diameter σ. For the

systems investigated, the Debye length is smaller than 1/10 of the simulation box size, so

that artifacts due to periodic images are negligible.
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The electrostatic interactions are taken into account via PPPM Ewald summation,

with a relative accuracy of 10−4 [146, 45]. Excluded-volume interactions between particles

i and j are modeled via an expanded shifted-truncated Lennard-Jones (LJ) potential,

(5.1) uLJ(rij) = 
∞ rij ≤ ∆ij

4kBT

[(
σ

rij−∆ij

)12

−
(

σ
rij−∆ij

)6

+ 1
4

]
∆ij < rij < ∆ij + 2

1
6σ

0 rij ≥ ∆ij + 2
1
6σ

,

where ∆ij = (di + dj)/2 − σ is the hard-core distance, with di and dj the diameters of

particles i and j. Whereas this potential diverges at rij = ∆ij, the repulsive interaction

already equals the thermal energy at rij = ∆ij +σ = (di +dj)/2. According to Ref. 2, the

average patch–patch separation must be chosen smaller than the minimum ion–patch dis-

tance, to suppress discretization effects. In my system, the closest ion–colloid separation

is r = 8σ, which allows a surface discretization with an average patch–patch separation

of approximately σ.

To investigate the EDL structure, I perform MD simulations of the ions surrounding

the colloid. Depending on the system configuration, 232 to 867 ions are involved. To

introduce thermal fluctuations, a Langevin thermostat is applied to the ions, with damping

parameter 20t0, where t0 = (mσ2/kBT )1/2 is the LJ unit time with m the ionic mass, keep

the system at room temperature (T = 298 K). The resultant Bjerrum length lB =

e2/(4πε0εmkBT ) = σ = 7.14 Å coincides with the ion size. Each simulation starts from

a random ion configuration. After an equilibration period of 2500 t0, I sample the ion
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distribution over 150000 time steps with 200 to 600 independent runs for each parameter

set, which yields 2× 105 to 6× 105 independent samples.

5.2.2. Effects of coating thickness

In many experiments, dielectrically anisotropic Janus colloids are created by deposition

of a thin metal coating [136, 138], as opposed to the evenly divided model of Fig. 5.1.

To confirm that our model properly captures the polarization effects of a Janus particle

generated by coating, my collaborator and I examine the effects of coating thickness of

a silica/metal Janus particle via finite-element calculation using COMSOL (Version 5.1,

2015), a commercial finite-element code. Under the same system setup as described in

the previous section (i.e., Janus director oriented along the z axis), in the absence of elec-

trolyte, we place a positive external point charge in the equatorial plane and δ = 2σ away

from the dielectric interface (Fig. 5.1). We consider a silica sphere with one hemisphere

coated by metal. The coating thickness is parametrized by its ratio t with respect to the

(dielectric) radius R = 7σ. To ensure high accuracy and a smooth surface potential, we

mesh the system with more than 3× 106 tetrahedral elements. As illustrated in Fig. 5.2,

the surface potential depends strongly on thickness only for very thin coatings, starting to

saturate already at t ∼ 0.01—thinner than the coating applied in most experiments. Thus,

to a good approximation, we can model the Janus colloids as evenly divided spheres, with

results that also represent the dielectric response of Janus particles with surface coatings.

The surface potential shown in Fig. 5.2 is the sum of the source potential of the unit

charge and the image potential induced by this charge. Whereas the charge is equidistant

to both hemispheres, their dielectric response is very different. It is also informative to
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Figure 5.2. Surface potential of a silica (left)/metal (right) Janus sphere
induced by an external unit charge, for four different thicknesses of the
metal coating: t = 0 (a pure silica sphere), 0.002, 0.01, and 1 (evenly
divided Janus sphere), where t is the ratio between coating thickness and
particle radius. The orientation of the Janus particle and the location of
the charge are the same as in Fig. 5.1. Although the potential is thickness
dependent, it has nearly saturated for a thickness of 1% (t = 0.01). The
potential on the right-hand side of the colloid becomes uniform, as expected
for a metal.
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Figure 5.3. Image potential of the same system as depicted in Fig. 5.2, i.e.,
a silica (left)/metal (right) Janus sphere and an external unit charge, with
4 different metal coating thicknesses. The potential shown here is solely
due to the electric charges induced on the colloidal surface.

compare the surface potential to the image potential, shown in Fig. 5.3, solely arising from

the induced electric charges on the colloidal surface. It illustrates, e.g., how the constant

surface potential on the metal hemisphere (Fig. 5.2, for t & 0.01) arises from the image

potential that varies with the polar angle and from the equally varying source potential.

5.3. Results

5.3.1. Electrolyte near a neutral dielectric Janus colloid

I first consider a neutral Janus dielectric colloid (Z = 0, no counterions) embedded in an

aqueous electrolyte. Here, all electrostatic interactions between the Janus colloid and the
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Figure 5.4. Ionic density distribution c(r, θ) of 50 mM monovalent aqueous
salt around a silica/silicon Janus colloid at various θ, where θ is the polar an-
gle with respect to the symmetry axis of the Janus colloid, i.e., 0 ≤ θ < 90◦

refers to the silicon hemisphere and 90◦ < θ ≤ 180◦ to the silica hemisphere.
For each θ, the ion concentration is averaged over [θ − 1.5◦, θ + 1.5◦]. The
dashed horizontal line marks the bulk concentration and the dashed vertical
line marks the LJ interaction cutoff distance. Whereas the relative permit-
tivities of both materials differ by a factor 3, their dielectric contrast with
the surrounding medium is comparable, so that the ion distribution shows
no θ dependence.

ions are purely due to polarization charges induced on the colloid. This allows us to isolate

the dielectric response and compare the double layer around Janus colloids with different

dielectric contrasts. I note that an ion of valence z located on the lower permittivity side

of a dielectric interface induces an attractive polarization charge proportional to z, and

vice versa. Thus, the dielectric interaction is proportional to z2.

5.3.1.1. Symmetric monovalent salt. For the silica/silicon Janus colloid, dielectric

effects are repulsive for both hemispheres, since εSiO2 < εSi < εm. As the system exhibits
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Figure 5.5. Ionic density distribution c(r, θ) of 50 mM monovalent salt
around a single silica/metal Janus colloid at various polar angles θ. The
metal side corresponds to 0 ≤ θ < 90◦, whereas the silica side corresponds
to 90◦ < θ ≤ 180◦. For each θ, the ion concentration is averaged over
[θ − 1.5◦, θ + 1.5◦]. The dashed horizontal line marks the bulk concentra-
tion. Due to the induced polarization charges, the ions aggregate around
the metal hemisphere and are depleted on the silica side.

azimuthal symmetry around the z-axis (Fig. 5.1), I calculate the ionic density distribution

c(r, θ). As illustrated in Fig. 5.4, I indeed observe a very weak depletion region near both

hemispheres beyond rc = 8.12σ (dashed vertical line), where the LJ interactions vanish,

due to dielectric repulsion. Even though the two hemispheres differ by a factor 3 in

dielectric mismatch (εSi = 3εSiO2), no clear dependence on the polar angle θ is observed.

Thus, in this case the Janus colloid behaves similar to an isotropic colloid, simply because

the dielectric contrast with the surrounding medium ∆ε/ε̄ [cf. Eq. (2.4)] differs only by

20% for the two materials.
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The situation becomes more interesting when the two hemispheres have opposite di-

electric responses. For a silica/metal Janus colloid, the silica side is repulsive to ions

whereas the metal side is attractive. This is reflected in the ionic density distribution

(Fig. 5.5), with a notable accumulation of ions near the metal hemisphere. The interfer-

ence between the metal and the silica hemispheres is very small, as c(r, θ) on the silica side

is indistinguishable from that in Fig. 5.4. An interesting consequence of the anisotropic

ion distribution is the presence of a net entropic force of strength (−0.87± 0.03 kBT/lB),

oriented along the symmetry axis (director) of the silica/metal Janus particle and point-

ing towards the silica side. Energy conservation requires that this force, arising from the

imbalanced (purely repulsive) excluded-volume LJ interactions between ions and the col-

loidal surface, be counteracted by other interactions. Indeed, I find that the electrostatic

interactions between the ions and the induced surface charge give rise to a net electrostatic

force (0.8971± 0.0007 kBT/lB), directed towards the metal side.

Although the dielectric effects are stronger for the silica/metal Janus colloid, c(r, θ)

is still independent of θ for angles belonging to the same hemisphere. Thus, to a good

approximation, one could use the angular average of the distribution over each hemisphere

to characterize the system. Since the silica/silicon Janus colloid closely resembles an

isotropic dielectric colloid, which has been well studied [12], from now on I focus on the

silica/metal Janus colloid.

5.3.1.2. Asymmetric salt. Asymmetric 2:1 and 3:1 salts, such as MgCl2 and AlCl3, are

widely used in chemical systems. As noted above, multivalent ions experience quadrat-

ically stronger dielectric repulsion and attraction than monovalent ions, giving rise to a
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symmetry breaking near interfaces where a jump occurs in the relative permittivity. Fig-

ures 5.6a and 5.6b illustrate this for the spatially varying ion concentration of a 2:1 salt

(bulk concentration 50 mM) around a silica/metal Janus particle. The divalent cations

(Fig. 5.6a) are strongly concentrated at the metal side while depleted at the silica side.

However, for the monovalent anions (Fig. 5.6b), which have a four times smaller image

potential energy, this imbalance is much weaker. Thus, although in the bulk the cation

concentration C2+ is obviously half of the anion concentration C1−, close to the silica hemi-

sphere I find C2+/C1− <
1
2
, resulting in a net negative ionic charge density (Fig. 5.6c).

Similarly, a positive ionic charge density is observed at the metal side. This net ionic

charge density close to the colloidal surface decreases near the transition between the two

hemispheres (z = 0).

Although the net charge of the ion layers near the two hemispheres is opposite in sign,

I anticipate that the difference in permittivity of the hemispheres causes both layers to

induce negative polarization charges. This is confirmed in Fig. 5.7a, where both the metal

surface and the silica surface are negatively charged but with different surface charge

density. However, the net induced charge on the colloid must vanish, and accordingly

I observe a ring of positive charges at the equator of the Janus particle, where three

domains of different relative permittivity meet. A consequence of the polarization charge

distribution on the colloid is that the particle and its associated ion cloud studied in

Fig. 5.6 acquire an effective dipole moment when immersed in an asymmetric electrolyte.

Another interesting observation is that the fluctuations in the induced charges are

rather different for the two hemispheres (Fig. 5.7b). This can be attributed to the fact
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Figure 5.6. Ion number density (σ−3) distribution of a 2:1 electrolyte around
an isolated silica/metal Janus colloid. The bulk concentration of 50 mM
corresponds to 0.0110σ−3 for divalent ions and 0.0220σ−3 for monovalent
ions. (a) Divalent cation density distribution, enhanced near the metal
surface and suppressed near the silica surface; (b) monovalent anion density
distribution, with significantly lower enhancement and suppression; (c) net
ionic charge density distribution, negative near the silica hemisphere and
positive near the metal hemisphere.
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Figure 5.7. (a) Net polarization charge density and (b) its standard devia-
tion induced on a single silica/metal Janus colloid by 50 mM 2:1 electrolyte.
Both the magnitude and the standard deviation are in units 10−5e/σ2. Note
how the fluctuations by far exceed the magnitude of the induced charge.

that ions are more likely to interact with the dielectrically attractive metal hemisphere

than with the repulsive silica hemisphere.

5.3.2. Counterion distribution near a charged dielectric Janus colloid

The situation changes when the Janus colloid also carries a free surface charge. Then, it

will attract counterions from the solution that will form an electric double layer at the

spherical surface. These ions interact with their induced charges on the Janus colloid as

well as with the surface free charges. I am particularly interested in a strength comparison

between the dielectric interactions and the intrinsic free-charge interactions.

5.3.2.1. Uniformly charged Janus colloid. I first consider an isotropically charged

silica/metal Janus colloid of Z = −60 (−30.6 mC/m2) surrounded by counterions (mono-

valent, z = 1, or divalent, z = 2) only. Figure 5.8a shows the monovalent counterion

density distribution. Although, just as for the silica/metal Janus particle in Fig. 5.6, di-

electric effects attract the counterions to the metal side and repel them from the silica side,
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the attraction between the counterions and the surface free charges is so strong that it

overwhelms the dielectric effects, resulting in little contrast between the two hemispheres.

However, for divalent counterions the dielectric effects are sufficiently strong to produce a

noticeable difference between the two hemispheres (Fig. 5.8b). This observation is consis-

tent with a quick estimation of the interaction energies. The potential energy of a z-valent

ion interacting with the free charge on the Janus colloid is zZlB
r
kBT = −7.5zkBT , where

I have set r = 8σ at contact and lB = σ. The absolute interaction energy of such an ion

with its induced polarization charge is |Ep| < |∆εε̄ |
z2lB

2(r−7σ)
kBT ≈ 1

2
z2kBT , where the upper

limit corresponds to a planar geometry and |∆ε
ε̄
| ≈ 1 for both hemispheres, but opposite in

sign. Thus, for monovalent counterions the difference in image potential energy between

the silica and metal hemispheres is approximately 2|Ep| ≈ kBT and the total attraction

experienced by the ions (including the effect of free charge) is quite similar. However, for

divalent counterions the difference in image potential energy is approximately 4kBT , as

borne out by Fig. 5.8b.

Generally, the addition of salt is expected to diminish dielectric effects. To examine

this, I also study the system with 20 mM and with 50 mM additional monovalent salt.

These salt concentrations correspond to Debye lengths of 21.5 Å (3.01σ) and 13.6 Å

(1.90σ), respectively. Here I focus on the divalent counterion system. As illustrated

in Fig. 5.9, compared to a salt-free environment, the divalent counterions become less

concentrated near the colloidal surface with increasing salt concentration. This weakened

binding simply reflects the screening of the surface charge by the salt. However, the

location of the maximum in the counterion density is almost independent of the salt

concentration, as it is determined by short-range excluded-volume effects. Moreover,
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Figure 5.8. Counterion distribution around a uniformly charged (Z = −60)
dielectric silica/metal Janus colloid. The concentration is expressed as the
number density (units of σ−3) and no additional salt is present. For mono-
valent counterions (a), there is no discernible difference in the concentration
between the two hemispheres, as the free surface charge overwhelms the di-
electric effects. However, for divalent counterions (b) these effects are far
stronger and the distribution becomes asymmetric. See main text for a
quantitative discussion.
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taking the ratio of the peak heights for the metal and the silica hemispheres as a measure

of the dielectric effects, I observe that this ratio is essentially constant at 1.4 for the three

salt concentrations—showing that the relative effects of the dielectric mismatch are not

diminished by salt at the concentrations examined here. In fact, this ratio is directly

related to the binding energy difference for divalent ions between the metal and the

silica hemispheres. Based upon our previous estimation, the interaction energy between

a divalent ion and the free charge on the Janus colloid at contact is −15kBT , while the

image potential energy is ±2kBT on the silica and the metal side, respectively, which gives

an energy ratio of 17/13 ≈ 1.31.

5.3.2.2. Anisotropically charged Janus colloid. In reality, a mismatch in dielectric

properties typically implies a difference in surface chemistry as well, and the free-charge

distribution on the surface of a Janus colloid may be anisotropic. For example, in water

a silica surface will be negatively charged due to ionization [147], whereas a metal surface

would generally be minimally charged. Here, I examine how this additional anisotropy

affects the equilibrium structure of the EDL. I consider a silica/metal Janus colloid

immersed in a 20 mM 1:1 electrolyte. The typical surface charge density of an ionized

silica particle is O(1) mC/m2 in aqueous solutions with a pH spanning from 4 to 8 and with

electrolyte concentrations ranging from 5 mM to 0.3 M [148]. Accordingly, I set the total

free surface charge on the silica side to 2e− or 10e− (−2.04 mC/m2 or −10.2 mC/m2,

respectively), while keeping the metal side neutral. Since the ionization of silica is an

equilibrium process in which silanol groups that are randomly distributed over the surface

dynamically dissociate and reassociate, I spread the free surface charge uniformly across
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Figure 5.9. Effect of salt on the density distribution of divalent counterions
around a uniformly charged (Z = −60) silica/metal Janus colloid. Data
are angularly averaged for each hemisphere (red: metal, blue: silica). As
the concentration of 1:1 salt increases from salt free (circles, solid lines),
to 20 mM (triangles, dashed lines) to 50 mM (diamonds, dotted lines),
the colloid charge becomes increasingly screened and the accumulation of
the counterions decreases. However, the effect of the dielectric mismatch
between both hemispheres remains, with a near-constant ratio between the
peaks in the concentrations around the metal hemisphere and the silica
hemisphere.



102

the silica hemisphere to represent the thermal average. All the counterions in this system

are monovalent.

For surface charge density −2.04 mC/m2 on the silica hemisphere (triangular symbols

in Fig. 5.10), the repulsive dielectric effects at the silica surface overwhelm the attraction

from its surface free charge, leaving a weakly depleted region of counterions on the silica

side. At the same time, the dielectrically attractive metal side exhibits an accumulation of

counterions. Thus, apart from the difference in global salt concentration, this distribution

essentially mimics the one in Fig. 5.5 (Sec. 5.3.1.1). This demonstrates that the EDL can

be strongly altered by dielectric effects for realistic ionization states. However, when I

increase the silica surface charge density to −10.2 mC/m2 (circular symbols in Fig. 5.10),

this hemisphere shows strong counterion accumulation, significantly surpassing the metal

side. In fact, compared to the case with lower surface charge density, even the metal side

exhibits a slight enhancement in the counterion density. This is due to the attraction

from the negative free charges on the opposing (silica side) as well as the negative charges

they induce on the metal surface.

5.3.3. Size effects

5.3.3.1. Colloidal size effects. Although the Janus colloid modeled in this paper is

larger than in earlier simulations of dielectrically isotropic spheres [99], it is still at least

an order of magnitude smaller than particles used in most experiments. To verify that

my findings apply to realistic particles, I revisit the divalent counterion distribution case

of Sec. 5.3.2.1 with 20 mM 1:1 salt, and consider a Janus colloid with the same surface

charge density as before, but four times larger diameter. To maintain the discretization
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Figure 5.10. Effect of anisotropic surface charge on the density distribu-
tion of monovalent counterions. The silica/metal Janus colloid is immersed
in a 20 mM 1:1 electrolyte. The metal hemisphere carries no free charge
(although it can acquire a polarization charge), whereas the silica hemi-
sphere carries a uniform free surface charge density of either 2e− (triangles)
or 10e− (circles). Curves show the concentration of positive ions around
either hemisphere, angularly averaged. For low free charge density on the
silica surface, the attractive polarization charge (induced by ions) on the
metal side dominates, but once the surface charge on the silica hemisphere
is increased, the electric double layer becomes concentrated on that side.
Interestingly, even the ion concentration on the metal side is slightly in-
creased by the free charges on the silica hemisphere. For consistency, I note
that the enhancement of positive ions around both hemispheres above the
bulk concentration is quantitatively consistent with the number of excess
counterions present.



104

accuracy in the IDS, the number of surface patches is increased by a factor 16. Moreover,

to permit extrapolation to even larger particles, I also model planar metallic and silica

interfaces with the same surface charge density, which correspond to an infinitely large

Janus colloid. As shown in Fig. 5.11, with increasing colloidal size the divalent ions become

more concentrated at the surface. This is mainly due to stronger attraction exerted by

the free surface charge and can be understood from a simple analysis. Consider a z-valent

ion at a distance ∆x from a uniformly charged Janus particle radius Rd (referring to the

location of dielectric jump, solid circle in Fig. 5.1), and free surface charge density σf .

The electrostatic force exerted by the the surface free charges then can be written as

(4πσfzlBkBT/e)
(

Rd

Rd+∆x

)2

and, for fixed ∆x, increases with Rd. On the other hand, the

force also decays with ion distance ∆x, at a rate that decreases with increasing colloid

size—reaching a constant value in the planar limit. As a result, more ions are concentrated

close to the surface when the colloid size increases. Despite this variation of density profile

with colloid size (represented by the trends in Fig. 5.11), the contrast between the metal

and silica hemispheres persists. Indeed, if I consider the maximum density ratio between

the two hemispheres, the four times larger Janus colloid still gives the same ratio 1.4 ratio

as in Sec. 5.3.2.1. For the planar limit, the ratio reduces to 1.307, coinciding with the

ratio 17/13 predicted in my previous energy analysis.

5.3.3.2. Ionic size effects. Until this point, I have employed a constant ion size. How-

ever, the hydrated ion radius typically increases with valence [149], which would affect

both the excluded-volume interactions and the electrostatic binding in my simulations.

To assess the magnitude of these affects, I revisit the system of Sec. 5.3.1.2, i.e., a neutral

silica/metal Janus colloid immersed in 50 mM 2:1 electrolyte, except that the divalent
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Figure 5.11. Effects of colloidal size on the density distribution of divalent
counterions immersed in 20 mM 1:1 salt. The silica/metal Janus colloids are
uniformly charged with surface free charge density σf = −9.74×10−2e−/σ2.
The density profiles are shifted such that the horizontal axis represents the
distance x of the ions to the dielectric interfaces. As the Janus colloid
diameter increases from 15σ (triangles and dashed lines; data of Fig. 5.9)
to 60σ (diamonds and dotted lines) and to infinity (circles and solid lines;
planar interface), the counterions are more attracted to the surface, but
the contrast in the counterion distribution between the metal and the silica
hemispheres persists.
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ions are 20% larger. As shown in Fig. 5.12, the concentration of divalent ions near the sur-

face is systematically higher for the simulations with larger sizes (panel b). If I angularly

average the density profile for each hemisphere (data not shown), I find that for both ion

sizes the ion distributions approach the bulk density at very similar distances from the

colloidal surface. Since the larger ions cannot approach the colloidal surface as closely as

the smaller ones, the thickness of the electric double layer is effectively reduced, and the

ion concentration is increased accordingly. In principle, this change in the distribution

of the divalent ions could in turn affect the density profiles of the (unaltered) monova-

lent ions as well as the induced surface charge densities, but no statistically significant

differences were observed.

5.3.4. Self-assembly of Janus particles

Not until recently, the role of the polarizations charges has been considered in the context

of self-assembly of binary colloidal aggregates [14]. Depending on the dielectric mismatch

between the isotropic particles and the solvent, the self-assembled structures can be qual-

itatively altered. However, as is demonstrated in the previous sections, heterogeneous

colloids might have strong asymmetric ion distribution and display properties that are

never observed for isotropic colloids. With synthesis techniques developed for more des-

ignable and controllable patchy particles, detailed manipulation of the electrostatic driven

self-assembly becomes desirable. Based on the insights from this chapter, patchy colloids

made of silica and metal will be considered. For a specific particle configuration, the

dielectric mismatch can be tuned by changing the solvent. The dielectric interactions are

attractive to free charges for both materials in non-polar solvents, while opposite in polar
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Figure 5.12. Divalent ion number density (σ−3) distribution of 50 mM 2:1
electrolyte around a silica/metal Janus colloid. (a) Both monovalent and
divalent ions have diameter σ; same data as in Fig. 5.6(a); (b) The same
system, but with divalent ions of diameter 1.2σ.

solvents like water. This opens the possibility of generating solvent-dependent structures.

Since induced charges are always weaker than source charges, to have the patchy col-

loids fully participate in the self-assembly process, similar to Ref. [14], I focus on binary

mixture of charged spherical colloidal systems, which consist charged patchy colloids and

counter-charged nanoparticles. In accordance with experiments, these particles are of size

∼ 100 nm and surface charge density ∼ 1 mC/m2. The surface charges will be uniformly

distributed on the colloidal surface or as a more realistic model, only reside on the silica

surface.
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Figure 5.13. Self-assembly of divalent Janus nanoparticles with relative rel-
ative permittivity 1 (blue surface) and 100 (red surface) in a solvent of
permittivity 2.

Here I present some preliminary work on the self-assembly of divalent uniformly

charged Janus colloid with counter-charged nanoparticles (Fig. 5.13). The size asym-

metry is 15:1. The Janus colloid has relative permittivities 1 (blue surface) and 100 (red

surface) with solvent permittivity 2, i.e., dielectric effects are attractive for the red hemi-

spheres, while repulsive for the blue. As a consequence, nanoparticles only attach to the

red hemispheres. This structure is similar to the findings in Ref. 14, except the binding

locations can be controlled by the surface coating, allowing possibilities for orientation

control.

5.4. Conclusion

I have presented a systematic examination of dielectric effects on the ion distribu-

tion around a spherical Janus particle embedded in an aqueous electrolyte solution. I

have employed molecular dynamics simulations supplemented with a boundary-element-

based preconditioned dielectric solver that computes induced polarization charges at each
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time step, at all dielectric interfaces [2, 143]. Via finite-element calculations I demon-

strated that Janus particles created by metallic coatings can—as far as dielectric effects

are concerned—be accurately represented as composed of two evenly divided hemispheres

with a dielectric mismatch at the equatorial interface.

I have investigated two typical Janus particles that are representative in their dielec-

tric configurations, namely silica/silicon and silica/metal. If such a colloid is neutral, ions

are depleted from (or attracted to) the silica (or metal) hemispheres due to the dielectric

contrast with the surrounding medium. Whereas a silica/silicon Janus colloid behaves

effectively similar to a dielectrically isotropic particle, a silica/metal Janus colloid shows

clear anisotropy in the surrounding ion distribution. In an asymmetric electrolyte, dielec-

tric effects can even result in the generation of an effective electric dipole moment on the

colloid.

For uniform highly charged silica/metal Janus colloids, the EDL contrast persists even

at high salt concentration, especially for divalent counterions. As a more realistic model,

I have also considered an anisotropically charged silica/metal Janus colloid. I found that

dielectric effects still suppress the counterion concentration on the silica side, unless this

hemisphere is highly ionized. These results demonstrate that dielectric effects cannot be

ignored for the EDL structure of Janus particles.

Dielectric effects, even with the efficient solver of Ref. 2 and the preconditioning tech-

niques of Ref. 143, are computationally costly. As a result, the Janus colloids are modeled

here as significantly smaller than their typical experimental counterparts. However, as

demonstrated in Sec. 5.3.3, the analysis presented remains applicable for larger particles.

Although free charge interactions may vary, the dielectric effects are hardly affected.
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Our findings not only clarify the effect of dielectric mismatch on the electrolyte dis-

tribution around synthetic Janus colloids, which is crucial for their colloidal interfacial

properties, but also offer a potential avenue to control dielectric self-assembly [14] and

may have implications for biological entities with dielectric anisotropy.
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CHAPTER 6

Extension of the IDS for equipotential surfaces and bulk

dielectrics

6.1. IDS for equipotential surfaces

6.1.1. Introduction

Conducting dielectric surfaces with constant electric potential widely appear in chem-

ical and biological systems. For example, nanoelectrodes when applied with a voltage

difference can mimic the transmembrane ion transport process [150]. They can also con-

fine conducting nanoparticles through electrostatic trapping [151]. In real membranes,

lipid bilayers can have pores generated by thermal fluctuations or electric fields. Due

to the high permittivity of water and the voltage difference across the membrane, each

ion channel acts as a conductor and a battery in parallel [152]. All these effects heavily

involve polarization charges that are difficult to measure in experiments. Coarse-grained

computer simulations can often provide insights into these systems.

Although finite-element methods (FEMs) or finite-difference methods (FDMs) can

resolve polarization effects for interfaces with constant potentials, they are often limited

to static systems, while in dynamical simulations, such effects need to be computed at

each time step. Thus, accurate and efficient algorithms are desirable. Moreover, to

investigate transport properties or collective motion behaviors, molecular dynamics (MD)

simulations, in which forces instead of potential energy are used to evolve the systems, are
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often more suitable than Monte Carlo (MC) simulations. The electrostatic forces are more

accurately evaluated from pairwise charge interactions than via energy derivatives. Unlike

the FEMs/FDMs that solve the 3D potential problem, the boundary-element method

(BEM) computes the polarization charges on the dielectric interfaces directly, which is

ideal for MD-based simulations. Since its introduction in the 1950s [153, 154], the BEM

has mainly attracted attentions from applied mathematicians and mechanical engineers.

Although still in its infancy for the soft matter community, several BEM-based dielectric

algorithms have been proposed [31, 32, 26, 2]. Among them, the iterative dielectric solver

(IDS), developed by Barros and Luijten [2], provides an optimized scheme for the BEM

to be applied in MD simulations. The IDS can effectively solve dielectric systems with

arbitrary geometries and surface free charges, but cannot impose constant potentials. One

of the objective of this research is to extend the current IDS to solve for systems with

constant potentials while maintaining its efficiency and accuracy.

6.1.2. Methods and results

For dielectric interfaces with constant potentials, we need to change the IDS boundary in-

tegral equation for the Poisson’s equation from the previous Neumann boundary condition

of Eq. (2.3) to the Dirichlet boundary condition, i.e., from the dielectric displacement dis-

continuity condition to the fixed surface potential constraint. Consider a dielectric surface

S embedded in space V. At an arbitrary surface location s, we have the surface charge

density σ(s) including both free and induced charges. There is also a free charge distri-

bution ρf(r) in the bulk. We impose a constant surface potential u(s) at each surface
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location. According to the Dirichlet boundary condition, we have

(6.1) lim
δ→0

∫∫
S,|s−s′|>δ

σ(s′)

4πε0|s− s′|
ds′ +

∫∫∫
V\S

ρf(r
′)

4πε0ε(r′)|s− r′|
dr′ = u(s) ,

where to avoid the divergence of the layer potential, the infinitesimal disk |s − s′| ≤ δ

is excluded. ε(r′) is the relative permittivity in the bulk location r′. If we discretize the

dielectric surface into N patches, Eq. (6.1) can be transformed into a matrix equation

Aσ = b with

(6.2) Aij =
ηi
√
ai

4πε0
+

qj
4πε0|si − sj|

,

(6.3) bj = ui(si)−
qk

4πε0ε(rk)|si − rk|
,

where ai is the area of patch i and ηi is the dimensionless geometric factor determined by its

shape. It can be shown for the disk-shaped patches with mean curvature that are typically

used in the IDS solver, η =
√

4π (see Appendix 6.3). Similar to the IDS, the matrix equa-

tion can the solved iteratively via the GMRES. More importantly, Aij requires on explicit

construction of the matrix elements, since the time-consuming matrix–vector multiplica-

tion required at each iteration of the GMRES is essentially the potential at each patch

that can be sped up by a fast Ewald solver. I implemented this algorithm in LAMMPS,

a molecular dynamics simulations package, with tweaks for the fast Ewald solvers to ob-

tain the potential per patch [155]. For a system with N surface patches and M bulk free

charges, with Ewald summation, this algorithm scales as O(N+M)3/2. It has a better scal-

ing for the particle–particle particle–mesh (PPPM) solver with O [(N +M) log(N +M)]
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and for the multi-level summation method (MSM) solver with O(N +M). Here I demon-

strate the effectiveness of this algorithm by considering a metal nanoparticle of size 14σ

(20.16 nm) kept as a constant potential u = 1V with a positive monovalent ion placed

σ above its surface (see Fig. 6.1). The metal sphere is dicretized into 1472 patches. The

extended IDS is used to resolve the polarization charges. Although the nanoparticle is

positively charged in general to keep the positive 1V potential, the polarization charge

density close to the ion is negative to balance the high potential generated by the source

ion.

Furthermore, many important electrostatic phenomena involve both dielectric objects

that have constant net charges and conducting objects that are kept at constant potentials.

For example, in electrostatic trapping, nanoparticles are polarized by a nonuniform electric

field between two nanoelectodes. In fact, since the boundary conditions for the objects are

invariant in dynamics, we can couple both Eq. (2.3) and Eq. (6.1) into the IDS. As a proof

of principle, I apply the IDS with mixed boundary conditions to study the electrostatic

trapping of a metal nanoparticle (10 nm in diameter) confined between two wedge-shaped

electrodes kept at +10V and −10V , respectively. The polarization charges for a snapshot

of the system is shown in Fig. 6.2. Since the electric field strength increases with the

curvature of the electrode, the field is strongest near the tips of the electrodes. Due to

the dielectrophoresis (DEP) force, the nanoparticle is attracted towards high field and

resides at one of the electrode due to spontaneous symmetry breaking. It is important to

note that the polarization effects are calculated dynamically throughout the simulation.

To the best of my knowledge, it is the first time that the electrostatic interactions in the
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Figure 6.1. The surface charge density distribution of a metal surface kept
at constant potential 1V with a positive monovalent ion at z = 8σ. The
metal sphere has a diameter 14σ (20.16 nm) and is discretized into 1472
surface patches. For simplicity, we assume curved disk-like patches with
uniform charge density. The metal sphere is generally positively charged
to keep the surface at a positive potential, expect around locations close to
the ion where the negative induced charges from the ion dominate.
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Figure 6.2. Simulation snapshot of the dielectrophoresis (DEP) of a 10 nm
metal nanoparticle confined between two wedge-shaped electrodes kept at
+10V and −10V . Positive and negative surface charges are shown in red
and blue colors, respectively.

DEP are fully resolved in a MD simulation. The extended IDS presents a new tool for

design and study of collective motion of nanoparticles in the DEP self-assembly.

6.2. IDS for bulk dielectrics

6.2.1. Introduction

Although the sharp dielectric mismatch model is already a faithful representation of the

real systems, it is still far from an accurate description. In most previous BEM studies,

the ions are confined in their native dielectric media [24, 26, 32, 156]. However, penetra-

ble dielectric boundaries are widely found in nature, such as the air–water interface of an

open solution, the microfluidic channels and the nanopores of a membrane. As permit-

tivity jumps at such interfaces, the ion–ion pair-interactions are different as well as their
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dielectric self-energies [157]. To the best of my knowledge, there is only one BEM-based

algorithm that allows ions to transport through a sharp dielectric boundary to a different

dielectric region [158]. However, it is still limited to sharp interfaces, which only applies

to systems with transition layer much thinner than the ion size. Moreover, smoothly

varying dielectrics can occur in any inhomogeneous electrolyte solutions, as the permit-

tivity of water is negatively correlated with the salt concentration [159], due to dielectric

saturation [160]. Similar phenomena can also happen near charged colloids, electrodes,

polyelectrolytes, or even concentrated bulk electrolytes. These problems are all beyond

the scope of the IDS.

Until now, only limited research [161, 145] has been done in bulk dielectrics due to

lack of efficient algorithms. Traditional grid-based FDM/FEM methods are prohibitively

expensive if applied in particle-based simulations, let alone with mobile bulk dielectrics.

As computational resources are growing rapidly over time, the study of mobile dielectrics

with spatially varying permittivity is now within reach.

6.2.2. Methods and results

Similar to representing the surface induced charges as boundary elements in the IDS, the

charge induced inside bulk dielectrics can be discretized into volume-elements. Thus,

instead of assuming sharp dielectric boundaries, we solve the volume counterpart of

Eq. (2.4), i.e., Eq. (1.12).

Upon grid discretization of the permittivity varying region, Eq. (1.12) can be easily

transformed into a matrix equation. The similarity in the form between Eqs. (1.12) and

Eq. (2.4) suggests that fast Ewald solvers can also be applied. Specifically, in the IDS, we
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define each boundary element with the following quantities,

(6.4) [qf , εin, εout, s, κ, n̂x, n̂y, n̂z] .

Here, qf is the total free surface charge on a patch, which together with the patch area

s gives the patch charge density σf in Eq. (1.12). The curvature κ is used for the self-

contribution correction term for curved patches. Similarly, in the VEM implementation,

we have the following parameters to define a volume element,

(6.5) [qf , ε, v, (∇ε)x, (∇ε)y, (∇ε)z, ] ,

where qf divided by the volume v gives the free charge density ρf within a volume cell.

For efficiency, the permittivity gradient ∇ε can be precomputed if we only consider rigid

dielectric objects. The self-polarization term within a volume cell requires special treat-

ment and cannot be approximated by a single parameter, especially when source charges

enter the volume cell.

This approach has mainly three advantages: (1) Discretization is required only in

regions with inhomogeneous permittivity while source charges can be either inside or

outside of dielectrics. (2) With proper force calculation, dynamic simulation of mobile

rigid bulk dielectrics can be achieved, which is applicable for various biological systems.

(3) With the independent ∇ε calculation, the discretization scheme is not limited to

cubic cells. In practice, there is a threefold challenge for this algorithm. First is to obtain

accurate and convergent solution when source charges are outside of bulk dielectrics.

Second is to allow source charges move freely inside bulk dielectrics, which needs to avoid

the divergence of polarization charges when a source charge overlaps with gird points.
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One also needs a good estimation for the self-contribution from the cell. Last, proper

force calculation needs to be conducted to enable dynamics.

For this chapter, I try to tackle the first two stages of the challenge. I implemented the

volume-element method (VEM) to consider only static configurations, i.e., no forces are

concerned. Outside of the bulk dielectrics, charges can be at arbitrary locations. However,

within bulk dielectrics, the grid is chosen such that source charges are away from the grid

points (volume–element centers). To handle the divergence problem when a source charge

approaches a grid point, I propose two ways. From the computation technique perspective,

one can use an adaptive mesh, which requires careful treatment in the grid generation.

From the physics perspective, another possible remedy is charge decomposition as adopted

in the Maxwell equation molecular dynamics (MEMD) algorithm [162]. Similar to the

particle mesh method in the PPPM, charges can be interpolated onto the grid, where the

Poisson’s equation gets solved. Then, the forces on the grid are used to back interpolate

the forces on the original charges. Future studies can be carried out in both directions.

To verify the accuracy of the VEM, I consider the image potential of a unit charge

moving through a gradual slab transition layer between silica (εSi02 = 2.1) and silicon

(εSi = 11.7). The simplest model for the transition layer is that the dielectric constant

varies linearly

(6.6) ε(z) = εSiO2 + (εSi − εSi02)η(z) ,
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where

(6.7) η(z) =


0, z < −zt

z/zt + 1, −zt < z < 0

1, 0 < z .

The image potential is defined as the electrostatic potential at the point charge due to its

induced charges.

(6.8) Eimag =
1

2

Q

4πε0

∑
i

qi
ri − r0

,

where Q and r0 are the source charge magnitude and location, qi is the induced charge

at site ri. Eimg can be solved analytically in a Fourier–Bessel form [163]. As a concrete

comparison between the VEM and the analytical solution, we choose zt = 0.5 nm and

the point charge position ranges from −1.5 nm to 1.0 nm. In the VEM calculation, as an

approximation to the infinite slab, the transition layer is 5×5 nm2 periodic in the x and y

directions and 100 nm in the z direction. Since the system has net charges, Ewald solver

for non-neutral systems is used. When the source charge enters the transition layer, only

the locations at volume cell vertices are calculated to minimize the discretization error.

As is shown in Fig. 6.3, the VEM results match very well with the analytical solutions.

With finer grid in the z direction, better agreement is observed within the transition layer.

It is important to note that at z = −0.5 nm and z = 0.0 nm, the analytical solution to

the image potential is divergent. These two unphysical singularities are remediated with

k-space dependent permittivity in the analytical solution.
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Figure 6.3. The image potential comparison between the VEM algorithm
and the analytical solution of a point charge induced at a Si–Si02 transition
layer with a linearly graded dielectric constant. The transition layer is
discretized into 100 × 100 lattice points in the x–y planes and 10 (blue
dots) or 20 (red dots) layers in the z direction.

6.3. Appendix: Self-potential for a disk-shaped patch

The original IDS assumes disk-shaped patches with a constant curvature as is shown

in Fig. 6.4. Since one-point quadrature is used in the IDS, uniform surface charge density

σ throughout the patch is assumed. Here I derive the self-potential of the patch at the

center (purple dot).

The curved patch can be discretized along the θ0 direction, giving a series of infinites-

imal thin circular rings, each of area 2πR sin θRdθ. The distance between the charges on

each ring and the patch center is 2R sin(θ/2). Thus, the total self-potential at the center
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Figure 6.4. The sketch of a curved patch with constant curvature R−1 and
uniform surface charge density σ. The self-potential of the patch is defined
as the electric potential at the center of the patch (purple dot).

is

φs =
1

4πε0

∫ θ0

0

2πσR sin θR

2R sin(θ/2)
dθ

=
1

ε0
σR sin

θ0

2
.

(6.9)

Since in the IDS, each patch is characterized with the curvature R−1 and the area a. Note

that a = 2πR2(1− cos θ0) = 4πR2 sin2 θ
2
. Therefore,

(6.10) φs =
σ
√

4πa

4πε0
.

Interestingly, the self-potential term is independent of the curvature.
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CHAPTER 7

Surface tension of asymmetric electrolytes

This chapter represents a close comparison between Monte Carlo simulations and the-

oretical research. The theoretical calculation is performed by Mingnan Ding and Prof. Xi-

angjun Xing.

7.1. Introduction

Surfactants, substances that are adsorbed onto interfaces reducing their interfacial

surface tensions, have broad applications in the detergent, oil recovery, and pharmaceu-

tical industries [164]. On the contrary, when electrolytes are present, the surface tension

of the liquid–vapor interface typically increases with their concentrations. Since the first

measurement in 1910 [165], researchers have investigated such phenomenon actively for

more than a century in both theory [78, 79, 166, 167, 168, 169, 170, 171, 172, 173] and

experiment [174, 175]. However, it remains challenging due to the intangible effects of

ion size and hydration, surface polarization, and ionic coupling. Moreover, when aque-

ous electrolytes are in contact with high permittivity media, such as metal, effects are

anticipated to be qualitative different [168, 176], but results are scarce.

With the emergence of computer simulation techniques, coarse grained models help

to incorporate many of the complicated effects, including the finite size effects, the ionic

coupling, and the surface polarization. The most simple yet effective model for electrolytes

is the restricted primitive model (RPM), which models the ions as hard spheres. Previous
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Monte Carlo simulations predominately focused on symmetric electrolytes at water–air

interface and achieved good agreements with experiments [15, 177]. The dielectric effects

and steric effects were shown to be essential for the surface tension. For asymmetric

electrolytes, the prediction for the excess surface tension is even harder since dielectrics

effects are stronger for multivalent ions than monovalent ones. Such asymmetry in valences

complicates the ion distributions. To the best of my knowledge, no simulation results

are available for asymmetric electrolytes, despite their wide appearance in chemical and

biological systems.

Theoretical approach to this problem dates back to 1924. Wagner [78] first attributed

the excess surface tension to the depletion caused by the interactions between ions and

their surface polarization charges, based on the Debye–Hückel (DH) theory of strong elec-

trolyte [6]. Since then, giants like Onsager [79] were attracted to this fascinating topic.

The famous Onsager–Samaras (OS) theory assumes constant Debye length throughout

the system and derived a limiting law for symmetric electrolytes that agrees well with

experiments at low concentrations. Under the OS framework, theories for asymmetric

electrolyte were also developed [178, 167]. To resolve the theoretical puzzle at high con-

centrations, Levin and Flores-Mena [171] introduces an ion-free layer due to ion hydration

in 2001 and achieved good accuracy even at high concentrations. This work was later gen-

eralized to general electrolyte solutions by Oshima [179]. However, the agreement between

the theories based on Levin’s framework and the experiments depends on the thickness

of the ion-free layer as a fitting parameter, which is difficult to verify experimentally. Ad-

vantageous to experiments, systems are much cleaner and more tunable in simulations.



125

In light of this, to better test theoretical assumptions, my collaborators and I compare

theories directly to our simulations.

In this chapter, I study the excess surface tension of electrolytes, especially asymmetric

electrolytes with Monte Carlo simulations near two representative dielectric interfaces. For

water–air interface, I compare my simulation results with the OS limiting law, the Levin’s

framework, and a newly developed theory based on charge renormalization. The charge

renormalization theory corrects the bulk predictions of the linearized Poisson–Boltzmann

theory and works particularly well for asymmetric electrolytes at high concentrations [91].

Although the excess surface tension originates from the excess ions near the interface, I

find it remarkable that the charge renormalization in the bulk is actually essential for

the properties at the interface. For water–metal interface, my simulations observe non-

monotonic surface tension as a function of concentration. This indicates a competing

mechanism between the dielectric adsorption and the steric effects.

7.2. Methods and Results

7.2.1. Simulation scheme

I consider aqueous electrolytes confined in a slab geometry of height H [see Fig. 7.1(a)].

The dielectric interface coincides with the Gibbs dividing surface at z = 0. The relative

permittivity of water is εw = 80. The medium on the other side of the interface has

permittivity εa = 1 or εm = 105, representing air and metal, respectively. The ions are

modelled as non-additive hard spheres with point charges at their centers. There are two

hard walls at z = 0 and z = H, i.e., the ion centers are confined in d/2 < z < H. Although

ions are normally hydrated in water resulting in much lager radii than their crystal radii,
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Figure 7.1. (a) Schematic plot of a 2:1 electrolyte near an interface between
air and water. The aqueous electrolyte is confined in a slab geometry of
height H (z direction). There is an ion-free layer with thickness d/2, where
d is the ion size. Ions entering this layer would partially lose their hydration
shell and therefore cost high energy. All ions are repelled from the interface
by their image charges with multivalent ions (red circles) pushed further
away because of their larger image charges. On average, the interface be-
haves as if negatively charged. Note that multivalent ions are surrounded
by counter-ions in both sides. As a consequence, charge renormalization ef-
fects are important. (b) Surface tension of 1:1 electrolyte (dashed solid red)
as a function of concentration with ion diameter d = 4.6Å. Two theoretical
predictions are given, namely the OS limit theory (cyan) and Levin’s theory
(green). The inset shows the corresponding number of excess ion groups
per unit area.
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the hydration is much weaker near the interface [15]. For example, in MgCl2, Cl− is weakly

hydrated at water–air interface with radii 2Å, compared to 3.32Å when fully hydrated

with an adjustment ratio 0.6. Mg2+ has hydrated radius 4.28Å in the bulk [180]. For

my model, I adopt the same adjustment ratio for the divalent ions that gives radii 2.6Å.

To avoid extra steric effects arisen from ion size asymmetry that are difficult to treat in

theories, I choose the average radius d/2 = 2.3Å for both ion species. It is important to

note that my model and my collaborators’ theory is not limited to MgCl2, but applicable

to other multivalent electrolytes. The system is at room temperature with Bjerrum length

lB = 7.2Å. I extend the slab Ewald summation with image charges incorporated to capture

the polarization effects (see Appendix 7.4). The starting point of my model is the Gibbs

adsorption isotherm.

(7.1) dγe = −Γdµ = −Γ+dµ+ − Γ−dµ− ,

where µ± are the chemical potentials of the positive and the negative ions. Since the ion

distribution near the interface is different from the bulk, Γ± represent the number of excess

ions per unit area for each ion species. As both µ± and Γ± are concentration dependent,

γe has to be integrated from zero concentration to the desired bulk concentration.

Thus, I first conduct canonical Monte Carlo simulations to obtain Γ± at various con-

centrations between 0 M and 0.273 M for a 2:1 electrolyte at both water–air and water–

metal interfaces. It appears that the chemical potentials for each ion species are needed in

order to apply Eq. (7.1). However, for arbitrary electrolyte of the form AmBn, based on

particle number conservation, the excess cations and anions have to satisfy Γ̄ = Γ+

m
= Γ−

n
.
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Together with Eq. (7.1), we have

(7.2) dγe = −Γ+

m
(mdµ+ + ndµ+) = −Γ̄dµ ,

where Γ̄ is the number of excess ion groups AmBn per unit area. This means no explicit

chemical potential for each ion species is needed to calculate the excess surface tension.

For the slab geometry,

(7.3) Γ± =

∫ H/2

0

ρ±(z)dz − H

2
cb ,

where ρ±(z) are the density distributions for cations and anions, respectively. cb is the

actual bulk density. In each simulation, I ensure the electrolyte reaches bulk concentration

at H/2 by choosing the box height H > 10λD, where λD is the Debye length. cb is obtained

by taking the density average in the bulk region (3.5λD < z < H − 3.5λD).

Another set of grand canonical Monte Carlo simulations are followed to obtain the

chemical potential as a function of concentration. I use a cubic simulation box of length

30d with periodic boundary conditions. The addition and removal of the ions are done

in the unit of neutral ion groups to maintain the system charge neutral. For each given

chemical potential, I obtain the corresponding electrolyte concentration at room temper-

ature. I interpolate the data to get the corresponding chemical potentials in the previous

canonical simulations. To avoid such chemical potential interpolation, a more elegant ap-

proach is to conduct GCMC simulations in a slab geometry, such that both the chemical

potential and the excess ion number at a certain concentration can be obtained directly.

Finally, numerical integration is performed to obtain the excess surface potential.



129

7.2.2. Surface tension at the electrolyte–air interface

The excess surface tension γe for the electrolyte–air interface has been extensively studied

theoretically over the past century, especially for symmetric electrolytes. The agreements

between previous theories and our simulations are shown in Fig. 7.1(b) for a typical 1:1

electrolyte. The prediction for the excess surface tension by the well-known OS theory

(cyan curve) gives good accuracy at relative low concentrations (ρ < 0.1 M) compared

to my simulation results (dashed solid red curve). However, its prediction is significantly

smaller than the simulation data at high concentrations. The main reason for this error

is that the OS theory ignores the depletion of ions near the interface, which gives smaller

estimation for the number of excess surface ions. To remedy such steric effects, in the

theory by Levin [171], an ion-free layer with thickness of the ion radii is introduced.

They further realized that this depletion not only leads to a correction proportional to

the ion radii, but also alters the image charge effects. In the OS theory, the image

charge interaction has been assumed to have the form e−κz in both the electrolyte and the

depletion layer, where κ is the inverse of the Debye length. However, in the actual system,

the image charge interaction decays much slower since there are no ions in the depletion

layer. This leads to a stronger repulsion from the interface to the ions. Such theory

(green curve) gives much better accuracy at high concentrations than the OS theory but

is systematically biased towards higher values.

According to the Gibbs adsorption isotherm, the prediction for the surface tension

strongly relies on the accuracy of the density profile, which is much more complicated for

2:1 electrolytes. As an example, the blue curves in Fig. 7.2(a) shows the density profile

of 2:1 electrolyte at 0.17 M concentration for the water–air interface. Since the self-image
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Figure 7.2. (a) The density profile of the 2:1 electrolyte at 0.17 M concen-
tration with a dielectric interface (water–air or water–metal) at z = 0. The
divalent ions are more depleted from or attracted to the interface than the
monovalent ions. The depletion at the other hard wall (z = 184Å) is due to
steric effects and electrostatic interactions (see main text). The bulk region
in the middle is used to calculate the bulk concentration. (b) Chemical po-
tential of the 2:1 electrolyte (dashed blue) and the 1:1 electrolyte (dashed
red) as a function of concentration with ion diameters d = 4.6Å.

potential energy scales quadratically with the ion valence, near the interface, divalent ions

are more depleted resulting a net negative charge layer. Such layer is compensated by a

positive charge layer further away from the surface, as enforced by the charge neutrality

condition of the system. The depletion region near the hard wall at z = 184Å manifests

the lack of symmetric shell of screening counterions [69].

Contrary to the complicated density profile, the excess surface tension curve is very

similar to the 1:1 electrolyte (see Fig. 7.3 red curve), except increases at a much faster rate

with concentration. At high concentrations ρ > 0.2 M (inset of Fig. 7.3), the slope ratio

between the 2:1 and 1:1 electrolytes is about 1.6. Two components attribute to the higher

surface tension for the asymmetric electrolyte. First of all, its ions are more depleted

from the interface than the 1:1 electrolyte. But since dielectric effects are relatively
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Figure 7.3. The inset shows the excess surface tension of the 2:1 electrolyte
at water–air interface obtained in my simulations (dashed red). The main
figure gives the predictions by Oshima based on Levin’s framework (green)
and my collaborators’ charge renormalization theory (blue) at low relatively
concentrations.

short-ranged, the majority of the difference originates from their chemical potentials [see

Fig. 7.2(b)], as the chemical potential of a neutral group in the 2:1 salt is about 1.5 times

larger than a neutral pair of the 1:1 salt. As a net effect, the surface tension increment

dγe/dρ for the 2:1 salt is roughly 1.6 times larger.

To predict the excess surface tension from a theoretical perspective is even more chal-

lenging. Levin’s theory has been generalized to asymmetric salts by Ohshima [179]. How-

ever, it doesn’t give satisfactory agreement with our simulation even at low concentrations

(green curve in Fig. 7.3). This is because the linearized PB theory fails to describe the

bulk properties in such case. Charge renormalization manifests itself even in low densities.

As we shall see, the renormalized charge of the divalent ions are much larger than the
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bare charge so that repulsion of ions from their image charges becomes much larger. On

the other hand, the renormalized charge gives smaller Deybe length predicting less ions

repelled from the surface.

The charge renormalization theory starts by representing Γ± via the mean potential

φ(z) of the system as

(7.4) Γ± =

∫ ∞
d/2

ρ±e
−βU(z,q±,φ(z))dz ,

where U(z, q±, φ) are the potentials of mean force for each ion species. ρ± and q± are the

corresponding densities and charges of the ions. In the PB theory, U(z, q±, φ) are set to

be

(7.5) U(z, q±, φ) ≈ q±φ(z) ,

which is a mean-field assumption. It ignores the correlation between ions that is especially

important for asymmetric electrolytes.

To give a more accurate description, the charge renormalization theory modifies this

assumption to be

(7.6) U(z, q±, φ) ≈ qR
±φ(z) + δU(z, q±) .

Here, qR
± are the renormalized charges of the ions that are illustrated and calculated

in Ref. 91. Such charge renormalization effects can be quite significant. For 0.5M 2:1

asymmetric electrolyte modelled in my simulations, the valence of the divalent ion af-

ter renormalization is about +5. This huge difference between the bare charge and the
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renormalized charge is the reason why renormalization is important for asymmetric elec-

trolytes. The second correction term of Eq. (7.6), δU(z, q±), contains the influence of the

interface. It counts the interaction between an ion and its image charge in the OS theory.

Levin and Flores-Mena pointed out that the depletion layer due to the finite size of the

ions modifies this interaction [171]. As is shown in Fig. 7.1(b), they gave a much more

accurate prediction for symmetric electrolytes. For asymmetric electrolytes, the correla-

tion between ions should be included. In the charge renormalization theory, this means

that we should replace the ion charges with the renormalized ones. Furthermore, charge

renormalization also changes the decay length of the mean potential in an unusual way,

giving a renormalized Debye length κR. κR is related to the renormalized charge through

(7.7)

(
κR
κ0

)2

=
qR

+ − qR
−

q+ − q−
.

Combining all these together, we obtain

(7.8) δU(z, q±) ' δU(d/2, q±)d

2z
e−2κRz ,

where δU(d/2, q±) as well as other details are given in the Supplementary Note 1 of

Ref. [181]. Since the renormalized charges are always larger than the bare charges, κR is

larger than κ0. This means the renormalized theory predicts a faster decay away from the

interface than the previous mean-field theories. Although this effect predicts fewer ions

that are repelled from the interface, the repulsion of ions due to image charges is greatly

enhanced by the charge renormalization. To determine the net effect, we need to solve



134

the mean potential φ(z). We write down the Poisson equation of the system for z > d/2,

(7.9) − ε0εw
d2φ(z)

dz2
= ρ+q+e

−βU(z,q+,φ) + ρ−q−e
−βU(z,q−,φ) ,

with φ′′(z) = 0 in the ion-free layer (0 < z < d/2). Combine Eq. (7.9) with Eq. (7.6) and

Eq. (7.8), after linearization, we obtain a closed equation for φ(z),

(7.10) − εRφ′′(z) + εRκ
2
Rφ(z) = S(z) .

εR is the renormalized dielectric constant that is close to εw when the density is not high

enough for charge oscillation to take place. S(z) is defined as

(7.11) S(z) ≡ ρ+q+e
−βδU(z,q+) + ρ−q−e

−βδU(z,q−) .

For the electrolyte–air interface, the boundary condition for this equation at z = 0 is

φ′(0) = 0. Consequently, the solution for Eq. (7.10) is

φ(z) =
1

2κRεR

(
e−κRz

∫ ∞
d/2

(eκRz
′
+ eκR(d−z′))S(z′)dz′

−e−κRz
∫ ∞
z

(eκRz
′
+ eκR(d−z′))S(z′)dz′

+
(
eκRz + eκR(d−z)) ∫ ∞

z

e−κRz
′
S(z′)dz′

)
.(7.12)

Substitute Eq. (7.12) into Eq. (7.4), we get

(7.13) Γ± = ρ±

∫ ∞
d/2

[
1− e−βδU(z,q±)−βqR±φ(z)

]
dz +

1

2
ρ±d .

The terms ρ±d/2 is due to the depletion layer at 0 < z < d/2.
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To obtain the surface tension, we need to further calculate the chemical potential µ±,

or in essence, dµ±. For symmetric electrolytes, the chemical potential µOS in the OS

theory has the form

(7.14) µOS = kBT log n+ const.− q2κ

8πε0εw(1 + κd)
.

In the renormalized theory, the chemical potential µ is modified to

(7.15) µ = µ0 + µex = kBT log n+ const.− q2κR

8πε0εw(1 + κRd)
,

where εw is not renormalized. As long as the density is not high enough to have charge

oscillation, dµex is much smaller than dµ0 as a function of the density. We can safely use

dµ0 instead of dµ in theoretical calculations. This is also true for asymmetric electrolyte.

With charge renormalization introduced, my collaborates’ theory matches the simulation

results very well at relative low concentrations (see Fig. 7.3 blue curve).

7.2.3. Surface tension at electrolyte–metal interface

So far I have studied the excess surface tension of the electrolyte–air interface. For the

electrolyte–metal interface [see Fig. 7.4(a)], we have a different boundary condition at

z = 0. The image charges of the ions are of the opposite sign, attracting the ions to the

interface. According to Eq. (7.1), this leads to negative surface tension. On the other

hand, the depletion among the ions and the interface persists. In light of Eq. (7.13), we

can write the excess surface ion number as

(7.16) Γ± = ρ±

(∫ ∞
d/2

[
1− e−βδU(z,q±)

]
dz +

1

2
d

)
.
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Figure 7.4. (a) Same system as Fig. 7.1(a) except the substrate is replaced
by metal. All ions are attracted towards the interface by their image
charges. The interface hence behaves as if positively charged. Furthermore,
the absorbed multivalent ions are not surrounded by counter-ions on the left,
hence the charge renormalization effects are much weaker. (b) The corre-
sponding excess surface tension of the 2:1 electrolyte as a function of concen-
tration (dashed purple). The surface tension shows non-monotonic behavior
for the electrolyte–metal case and reaches a minimum at ρ ≈ 0.07 M. The
electrolyte–air case (dashed red) is included for comparison.

The only difference between Eq. (7.16) and Eq. (7.13) is that the mean potential φ(z)

is ignored. This is because the ion densities converge to their bulk values so quickly

(roughly within half of the Debye length) that the correlation energy δU(z, q±) dominates

the exponential in Eq (7.16). Since δU(z, q±) is negative, the first term in Eq. (7.16) is

also negative, showing the competition with the ion-free layer.

To a rough estimation, based on Eq. (7.8) and the fact that U(d/2, q±)d depends

weakly on the density, the magnitude of δU decreases with the density. Thus, the net

effect is that
∫∞
d/2

e−βδU decreases. As density grows, the decay of the density profile

becomes so fast that fewer ions are attracted to the interface. Thus the 1
2
ρ±d term

dominates. Since surface tension is the integration of Γ±, the change of sign of Γ± leads
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to the non-monotomicity of surface tension. As is shown in Fig. 7.4(b), the excess surface

tension is non-monotonic with a minimum at ρ ≈ 0.07 M. Such effect is not limited to

asymmetric electrolytes. I observe the same phenomenon for symmetric electrolytes when

I increase the ionic coupling.

7.3. Conclusion

In summary, I study the excess surface tension of asymmetric electrolytes at both

water–air and water–metal interfaces. In agreement with previous studies, I find that

dielectric effects are essential for the surface tension. I demonstrate that for symmetric

electrolytes, Levin’s theory with ion-free layer is a much more faithful representation of

the system compared to the OS theory. However, such framework breaks down even at

low concentrations for asymmetric electrolytes. With charge renormalization taken into

account, our collaborators’ theoretical prediction for the excess surface tension agrees

very well with the simulation results at low concentrations. Furthermore, I find that for

electrolyte–metal interface, adding ions to water could decrease the surface tension at low

concentrations. The results presented in this paper provide a first through comparison

between theory and simulation. I demonstrate that the charge renormalization framework

is essential not only for understanding asymmetric electrolytes in the bulk, but also at

the interface. The findings in this chapter help to understand the effects of ionic coupling

on the surface tension, which has been ignored in previous theories.

7.4. Appendix: Ewald summation with image charges

Although the solution to the image charge of a planar geometry is well known [182, 66],

it is not obvious to incorporate it into the Ewald summation, as the system involves
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Figure 7.5. A system of N source charges confined in a slab geometry of
permittivity ε1. The corresponding image charges reside in the lower half
space of permittivity ε2.

multiple charges and periodic images. Here I demonstrate a technique that can obtain

the system electrostatic energy without modifying the Ewald method.

Consider a system of N source charges embedded in a medium of relative permittivity

ε1 (see Fig. 7.5). The simulation box has a dimension of Lx × Ly × Lz and is periodic in

the xy plane. The medium below has a different permittivity ε2. The polarization effects

of a single charge qi at ri = (xi, yi, zi) is equivalent to placing an image charge qIM
i at

rIM
i = (xi, yi,−zi). By solving the Poisson’s equation with boundary conditions at the

interface, the magnitude of the image charge is

(7.17) qIM
i =

ε1 − ε2
ε1 + ε2

qi
ε1
.

The total energy of the system comprises two parts: the source–source charge inter-

actions and the source–image charge interactions. The source–source charge potential
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energy is simply given by the slab Ewald summation

(7.18) USS =
1

2

∑
n

′
N∑
i=1

N∑
j=1

qiqj
4πε0ε1|rij + n|

,

where n = (nxLx, nyLy, 0) with nx, ny integers. The primed sum ignores the i = j term

when n = 0. The slab Ewald summation can be done by adding a correction to the

standard Ewald method [183]. As Ref. [182] pointed out, the potential energy between

the source and the image charges needs to be reduced by a factor of 2. I show the same

argument applies to the periodic system. I demonstrate this by adding charges one by

one from infinity and calculate the corresponding potential energy. I start from a single

charge qi. It interacts with its image charge qIM
i as well as the periodic images of qIM

i . At

any z distance from the surface, the force on qi is

(7.19) fii′ =
∑
n

1

4πε0

qiq
IM
i

|2z + n|2
,

where z = (0, 0, z). By integrating the force from infinity to zi, we have

(7.20)

uii′ = −
∫ zi

∞
fii′dz

= −
∫ zi

∞

∑
n

1

4πε0

qiq
IM
i

|2z + n|2
dz

=
1

2

∑
n

1

4πε0

qiq
IM
i

|2zi + n|
.
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When a second source charge qj is added into the system, it interacts with both qIM
i and

qIM
j as well as their periodic images.

(7.21)

uji′ = −
∫ zj

∞

∑
n

1

4πε0

qjq
IM
i

|xj + yj + z− rIM
i + n|2

dz

=
∑
n

1

4πε0

qjq
IM
i

|rj − rIM
i + n|

with xj = (xj, 0, 0) and yi = (0, yj, 0), and

(7.22) ujj′ =
1

2

∑
n

1

4πε0

qjq
IM
j

|2zj + n|
.

It is important to note that uji′ is not reduced, since qIM
i is at a fixed location. Similarly,

this process can be generalized to N source charges. The total image potential energy is

(7.23)

USI =
N∑
i=1

i∑
j=1

uij′

=
N∑
i=2

i−1∑
j=1

∑
n

1

4πε0

qiq
IM
j

|ri − rIM
j + n|

+
1

2

N∑
i=1

∑
n

1

4πε0

qiq
IM
i

|2zi + n|

=
1

2

∑
n

N∑
i=1

N∑
j=1

qiq
IM
j

4πε0|ri − rIM
j + n|

.

Eq. (7.23) shows that the image potential energy calculated by a dynamic charge addition

process is equivalent to a static configuration by counting all the source–image interaction

and reduce them by a factor of 2. This can be understood intuitively with the observation

that uij′ ≡ uji′ (two green dashed lines in Fig. 7.5). In the dynamic charge addition

process, uii′ (red dashed line) and ujj′ (blue dashed line) have 1/2 prefactor, while uji′

does not.
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Since the Ewald summation involves all pairwise interactions between charges, to

incorporate image charges into the Ewald summation, we can use a trick by reducing the

image charge magnitude by 1/2, i.e., qIM
r = qIM/2. We first calculate the total energy of

N source charges and N reduced image charges. Denote the electrostatic energy between

two groups of charges qa and qb to be U [qa, qb]. We have

(7.24)

U [q + qIM
r ] = U [q] + 2U [q, qIM

r ] + U [qIM
r ]

= U [q] + U [q, qIM] + U [qIM
r ]

= USS + USI + +U [qIM
r ] .

Thus, the actual energy of the system is U [q + qIM
r ]− U [qIM

r ].
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CHAPTER 8

Conclusion

Polarization charges constantly appear in charged soft-matter systems and change

their properties in unusual ways via many-body effects. To model such dielectric effects

accurately and efficiently has been one of the key challenges for coarse-grained simulations

as it involves solving the non-trivial Poisson’s equation at every time step. Various algo-

rithms have been proposed over the past decades. Among them, the boundary-element

method (BEM) and the image-charge method (ICM) are the two major approaches to

seek fast convergent solutions. This dissertation addresses various techniques regarding

both methods with focus on the BEM approach. Here I present a summary of results and

future outlook for each chapter.

I start with a direct comparison between the iterative dielectric solver (IDS) and the

ICM in Chapter 2. Both methods are applied to study the polarization effects of multiple

neutral dielectric spheres immersed in electrolytes. After analyzing their computational

complexities and performances in particle-based simulations, I conclude that the IDS out-

performs the ICM in complexity scaling when multiple objects are considered. The IDS is

more suitable for molecular dynamics (MD) simulations since it does not require energy

derivatives to calculate forces on dielectric objects. However, the ICM can be advanta-

geous when charges are close to the dielectric interfaces since it does not involve surface

discretization that can be expensive for the IDS. Two improvements can be made to both

algorithms. For the ICM, dynamically changing the image-charge number based on the
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charge–colloid distance can substantially reduce its computational cost. For the IDS, to

overcome the singularity problem when source charges are in the vicinity of the interface,

a non-uniform or even adaptive mesh can be explored. Furthermore, it is also possible

to seek a hybrid method of the IDS and the ICM. In fact, recently via a combination of

the ICM and the method of moments (MoM), a hybrid method has achieved O(N + M)

linear complexity for systems with N ions and M dielectric spheres [184].

As a direct application of the IDS, I investigate the asymmetric electrolyte distri-

bution near dielectric interfaces that display structures on the nanoscale in Chapter 3.

Neutral surfaces are studied to isolate the dielectric effects from the intrinsic free charge

interactions. In the presence of a repulsive dielectric interface, ion depletion is greatly

enhanced by polarization charges. Furthermore, a net charge density accumulates near

the interface that is mediated by the local curvature. Higher charge density is observed

in the concave region than the convex region. The linearized Poisson–Boltzmann theory

predicts linear charge density response to the surface undulation for small amplitudes.

The findings suggest that charge patterns can be formed simply by tuning local surface

structures.

The high accuracy of the IDS compared to other BEMs of the Poisson’s equation is

partially because its matrix equation is well-conditioned for extreme dielectric mismatches

and complicated geometries. However, in Chapter 4, I show that the IDS suffers from low

accuracy regardless of the discretization level for anisotropic particles with multiple dielec-

tric mismatches. The eigenvalue spectrum of the matrix operator is no longer compact,

suggesting a bad condition number. By introducing the Jacobi preconditioner together
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with a physical constraint, the improved IDS is able to resolve the induced charges of

anisotropic particles at high efficiency and accuracy.

The preconditioned IDS is applied to systematically study the electrolyte distribution

near a Janus particle in Chapter 5. Two typical Janus particles are investigated, namely

silica/silicon and silica/metal, as representative dielectric configurations. Anisotropic ion

distribution is observed for the silica/metal Janus colloid while no significant distinction

is found for the silica/silicon configuration. This shows that dielectric effects are not

sensitive to small changes in the dielectric mismatch. For charged silica/metal Janus

colloids, even with high concentration background salt, the electric double layer (EDL)

contrast between the two hemispheres persist. This indicates that dielectric effects are

essential for colloidal interfacial properties. Based on the results of a single Janus particle,

I proceed to a preliminary study of the self-assembly of divalent uniformly charged Janus

colloids with counter-charged nanoparticles. A chain structure is formed, similar to the

previous result of the self-assembly of binary colloidal aggregates [14] except that the

small nanoparticles only bind to the metallic hemispheres. The next step is to exploit

this phenomenon by varying the metal coating area. This might serve as a pathway to

control the Janus particle surface orientation and enable design of structures with chirality.

The boundary integral equation (BIE) formulated by the IDS is essentially based on

the Neumann boundary condition that the electric displacement field satisfies the Gauss’s

law. The presumption of the IDS is that the net charge within a dielectric object is invari-

ant. However, this condition is not valid for objects that are kept at constant potentials.

In Chapter 6, I expand the IDS to resolve equipotential problems, and even systems with

mixed boundary conditions, by imposing the Dirichlet boundary condition while keeping
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its efficiency. This new tool enables us to simulate a broad range of systems, such as

the electrostatic trapping of nanoparticles in dielectrophoresis, induced charge electro-

osmosis (ICEO), and supercapacitors. Detailed analysis of the discretization error for

this algorithm is needed. Moreover, since two BIEs are integrated into a single algorithm

while they respond differently in accuracy for the same mesh, it would be insightful to

explore preconditoning techniques for each matrix operator that can optimize the accu-

racy. Another presumption of the IDS is rooted in the sharp boundary assumption, which

faces challenges for modeling many systems, such as the penetration of ions through a

membrane and polyelectrolyte structure with spatially varying permittivity [145]. As a

proof of principle, I demonstrate that via a volume-element approach, the extended IDS

can readily resolve polarization charges within static bulk dielectrics. More challenging

future work includes solving the divergence issue when source charges approaches the grid

points, and performing appropriate force calculation to enable mobile bulk dielectrics.

I conclude the dissertation in Chapter 7 with a study of the excess surface tension of

asymmetric electrolytes, which is strongly influenced by dielectric effects. Since only flat

interfaces are concerned, the ICM is more efficient than the mesh-based IDS. I conduct

MC simulations in collaboration with theoretical research. With the recently introduced

concept of charge renormalization, my collaborator’s theory matches my simulation results

and outperforms previous theories. I find that for electrolyte–metal interface, the surface

tension would decrease upon addition of salt at low concentrations. This effect is rarely

discussed in previous studies.
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[99] R. Messina, E. González-Tovar, M. Lozada-Cassou, and C. Holm. Overcharging:

The crucial role of excluded volume. Europhys. Lett., 60:383–389, 2002.

[100] Leo Lue and Per Linse. Macroion solutions in the cell model studied by field theory

and Monte Carlo simulations. J. Chem. Phys., 135(22):224508, 2011.

[101] Alireza Mashaghi, P Partovi-Azar, Tayebeh Jadidi, Nasser Nafari, Philipp Maass,

M Reza Rahimi Tabar, Mischa Bonn, and Huib J Bakker. Hydration strongly affects

the molecular and electronic structure of membrane phospholipids. J. Chem. Phys.,

136(11):114709, 2012.

[102] JP Dilger, SG McLaughlin, TJ McIntosh, and SA Simon. The dielectric con-

stant of phospholipid bilayers and the permeability of membranes to ions. Science,

206(4423):1196–1198, 1979.

[103] Pu Tian. Computational protein design, from single domain soluble proteins to

membrane proteins. Chemical Society Reviews, 39(6):2071–2082, 2010.

[104] Kendall E. Atkinson. The Numerical Solution of Integral Equations of the Second

Kind. Cambridge University Press, Cambridge, U.K., 1997.

[105] Alexander H. Boschitsch, Marcia O. Fenley, and Huan-Xiang Zhou. Fast boundary

element method for the linear Poisson–Boltzmann equation. J. Phys. Chem. B,

106(10):2741–2754, 2002.
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[178] André Bellemans. The surface tension of ionic solutions: I. derivation of the limiting

law at infinite dilution from the poisson-boltzmann equation. Physica, 30(4):924–

930, 1964.

[179] Hiroyuki Ohshima. Surface tension of general electrolyte solutions. J. Colloid Polym.

Sci., 283(2):119–124, 2004.

[180] E. R. Nightingale, Jr. Phenomenological theory of ion solvation. effective radii of

hydrated ions. J. Chem. Phys., 63:1381–1387, September 1959.

[181] Huanxin Wu, Mingnan Ding, Xiangjun Xing, and Erik Luijten. Surface tension of

asymmetric electrolyte solutions, 2017. in preparation.

[182] David J. Griffiths. Introduction to Electrodynamics. Prentice Hall, Upper Saddle

River, New Jersey, 3rd edition, 1999.

[183] In-Chul Yeh and Max L Berkowitz. Ewald summation for systems with slab geom-

etry. J. Chem. Phys., 111(7):3155–3162, 1999.

[184] Zecheng Gan, Shidong Jiang, Erik Luijten, and Zhenli Xu. A hybrid method for

systems of closely spaced dielectric spheres and ions. SIAM Journal on Scientific

Computing, 38(3):B375–B395, 2016.


	ABSTRACT
	Acknowledgements
	Dedication
	List of Figures
	Chapter 1. Introduction
	Chapter 2. Comparison of the iterative dielectric solver (IDS) and the generalized image-charge method
	2.1. Introduction
	2.2. Iterative dielectric solver
	2.3. Image-charge method
	2.4. Efficiency comparison
	2.5. Numerical results: Static configurations
	2.5.1. Model setup
	2.5.2. Parameter dependence for the IDS and the ICM
	2.5.3. Induced surface charge density

	2.6. Numerical results: Thermodynamic equilibrium
	2.7. Conclusion

	Chapter 3. Application of the IDS to structured dielectric interfaces
	3.1. Introduction
	3.2. Method and Model
	3.3. Results and Discussion
	3.4. Conclusion

	Chapter 4. The refined IDS for multiple dielectric mismatches
	4.1. Introduction
	4.2. Methods and Results
	4.3. Conclusion

	Chapter 5. Application of the refined IDS to Janus colloids
	5.1. Introduction
	5.2. Methods and model
	5.2.1. Molecular dynamics simulation model
	5.2.2. Effects of coating thickness

	5.3. Results
	5.3.1. Electrolyte near a neutral dielectric Janus colloid
	5.3.2. Counterion distribution near a charged dielectric Janus colloid
	5.3.3. Size effects
	5.3.4. Self-assembly of Janus particles

	5.4. Conclusion

	Chapter 6. Extension of the IDS for equipotential surfaces and bulk dielectrics
	6.1. IDS for equipotential surfaces
	6.1.1. Introduction
	6.1.2. Methods and results

	6.2. IDS for bulk dielectrics
	6.2.1. Introduction
	6.2.2. Methods and results

	6.3. Appendix: Self-potential for a disk-shaped patch

	Chapter 7. Surface tension of asymmetric electrolytes
	7.1. Introduction
	7.2. Methods and Results
	7.2.1. Simulation scheme
	7.2.2. Surface tension at the electrolyte–air interface
	7.2.3. Surface tension at electrolyte–metal interface

	7.3. Conclusion
	7.4. Appendix: Ewald summation with image charges

	Chapter 8. Conclusion
	References

