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Abstract

Essays in Macroeconomics, Production Networks and Monetary History

Pellet, Thomas Louis

Chapter 1 studies the impact of the Latin Monetary Union (1865-1927) on financial

flows between European Countries. Using Machine Learning methods, we find that this

monetary union fostered greater financial flows between members, especially before

1885 and except for France.

Chapter 2 studies a production network model with quantity rigidities and informa-

tional frictions, where firms may be restricted in how effectively they can adjust their

intermediate input quantities in response to changes in the economic environment

and they need to choose their quantities under incomplete information about the re-

alizations of shocks. The characterization results show that these two frictions lead to a

reduction in aggregate output, as firms may find it optimal to rely more heavily on less

volatile suppliers, even if it comes at the cost of forgoing more efficient ones.

Chapter 3 builds on chapter 2 by relaxing the rational expectation assumption. It

studies an agent-based model with quantity, price rigidities and decentralized labor and

goods markets with search frictions. Firms make production decisions facing unquan-

tifiable uncertainty about demand and unable to coordinate spontaneously on a Nash

equilibrium. Inductive firms optimize over a set of forecasting strategies to best predict

demand. Naive firms simply extrapolate from last period. The share of inductive firms
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is a key parameter that dramatically affects business cycle characteristics. A larger share

decreases the persistence and volatility of GDP and unemployment, making the process

that firms try to forecast memory-less and harder to predict. This leads to the paradox

that firms trying to forecast demand individually end up making larger forecast errors in

the aggregate. It also qualitatively affects the passthrough from output shocks to prices

and wages.
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À mes chers parents et Claudia.



6

Table of Contents

Abstract 2

Acknowledgements 4

Dedication 5

Table of Contents 6

List of Tables 9

List of Figures 11

Chapter 1. Financial Flows in the Latin Monetary Union: A Machine Learning

Approach 13

1.1. Introduction 14

1.2. Historical Context 16

1.3. Data 21

1.4. Model Estimation 23

1.5. Model Selection 27

1.6. Consequences of the LMU for Financial Flows 30

1.7. Conclusion 37

Chapter 2. Rigid Production Networks 39

2.1. Introduction 40

2.2. Model 46

2.3. Equilibrium Characterization 54



7

2.4. Closed-Form Results 61

2.5. Quantitative Analysis 72

2.6. Conclusions 79

Chapter 3. Production without FIRE 81

3.1. Introduction 82

3.2. Literature Review 88

3.3. Model 91

3.4. Calibration 103

3.5. Quantitative Results 108

3.6. Conclusion 127

Bibliography 128

Appendix A. Appendix to Chapter 1 135

A.1. LMU membership 135

A.2. Tradehist data 137

A.3. CPIS Statistics 138

A.4. Long-term Interest Rates 139

A.5. Description of ML Methodologies Used 141

A.6. Graphic Representation of Models’ Performance 143

A.7. Main Predictors of Bilateral Financial Flows 147

A.8. Results from Timini (2018) 148

A.9. Results Using Other Models 149

Appendix B. Appendix to Chapter 2 152

B.1. Proof of Proposition 1 152

B.2. Proof of Lemma 1 155

B.3. Proof of Proposition 2 156



8

B.4. An Auxiliary Result 159

B.5. Proof of Proposition 3 163

B.6. Proof of Proposition 4 165

B.7. Proof of Propositions 5 165

B.8. Proof of Propositions 6 169

B.9. Proof of Proposition 7 171

Appendix C. Appendix to Chapter 3 175

C.1. Summary Statistics 175

Vita 178



9

List of Tables

1.1 Performance on CPIS Financial Flows 27

1.2 Performance on Trade Flows 28

1.3 Bilateral Financial Flows (Lasso) 33

1.4 Bilateral Financial Flows (XGBoost) 36

3.1 Calibrated parameters using Simulated Method of Moments 106

3.2 Sampling Space for the SMM 106

3.3 Comparison of Empirically Estimated and Simulated Moments 110

3.4 Regression results for outcome inflation varying θ 125

3.5 Regression results for outcome vacancy rate varying θ 125

3.6 Regression results for outcome wage inflation varying θ 126

3.7 Regression results for outcome unemployment change varying θ 126

A.1 LMU Membership 135

A.2 Variables from Tradehist 137

A.3 CPIS Statistics 138

A.4 Long-Run Interest Rate Series: Statistics 139

A.5 Long-Run Interest Rate Series: Sources 140

A.6 Characteristics of ML Models 143

A.7 LMU dummy regression 149

A.8 Comparing LMU effect on France and Rest of LMU 149



10

A.9 Comparing Effect of LMU Before and After 1885 149

A.10 Interacting France and 1885 dummies 150

A.11 Comparing Effects of LMU Before and After 1874 150

A.12 Interacting 1874 and France Dummies 151

C.1 Summary Statistics for the Baseline Calibration 176

C.2 Summary Statistics for the Baseline Calibration, continuing 177



11

List of Figures

1.1 Alternative Cross-validation Methods 25

1.2 Out-of-Sample RMSE (Trade Flows) 29

2.1 Vertical Production Network 70

2.2 Supplier Bottlenecks 77

2.3 Customer Bottlenecks 78

3.1 Externally Calibrated Parameters 104

3.2 Distribution of Forecast Errors across Simulations for varying θ 112

3.3 Inductive Firms - Distribution of Forecast Errors across Simulations

for Inductive Firms 113

3.4 Naive Firms - Distribution of Forecast Errors across Simulations 113

3.5 Distribution of Relative performance of Inductive Firms across

Simulations 115

3.6 Standard Deviation of Aggregate Sales 116

3.7 Auto-correlation of Aggregate Sales 117

3.8 Standard Deviation of Unemployment Rate 117

3.9 Auto-correlation of Unemployment Rate 118

3.10 Standard Deviation of Wage Index 118

3.11 Standard Deviation of Price Index 119



12

3.12 Average Standard Deviation of Sales in the Cross-Section of Firms 120

3.13 Average Standard Deviation of Listed Prices in the Cross-Section of

Firms 121

3.14 Average Standard Deviation of Markups in the Cross-Section of Firms121

3.15 Correlation Matrix for Aggregate Variables 123

3.17 Auto-correlation of Aggregate Sales 124

A.1 LMU membership by year of accession (1880 administrative

boundaries) 136

A.2 Performance on CPIS (In-sample) 144

A.3 Performance on Trade Flows (In-sample) 145

A.4 Performance on Trade Flows (Out-sample) 146

A.5 Ranking of Features in Lasso 147

A.6 Ranking of Features in XGBoost 147

A.7 Bilateral trade flows and Monetary agreements, 1861-1913 148



13

CHAPTER 1

Financial Flows in the Latin Monetary Union: A Machine Learning

Approach

Written with Giovanni Sciacovelli1

1Prepared for the European Association of Banking History’s conference on “Monetary Unions in History”.
We are grateful to Hugo Banziger, Alain Naef and conference participants for detailed comments and
suggestions. We also thank Joel Mokyr, Carola Frydman and Martin Eichenbaum.
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1.1. Introduction

If we could go back in time, we could generate all the data we need to answer the

questions that haunt us today. But data collection cannot happen retrospectively. Eco-

nomic historians are thus dependent on their predecessor’s goodwill. How to access

historical records of national accounts at times when the notion of national accounts

did not exist? How to access records of bilateral financial flows across nations when

nation states were still in their infancy? Historical records might not exist because their

underlying economic concepts were yet to be discovered.

Accepting these intrinsic data limitations would greatly reduce the range of ques-

tions an economic historian can answer. The main danger is to fall for the “drunk and

the lamp-post” fallacy, asking the questions one can answer instead of the questions

one ought to ask.

One way forward is of course to keep searching for more data sources, discover new

historical records. And there are still treasures in archives around the world to discover.

It remains that this strategy is constrained by what contemporaries decided to record at

the time they lived. Some variables of interest have simply never been recorded so that

the precise information is lost forever. It is not possible to run a randomized control trial

in the past tense, or introduce the concept of national accounting in antic Rome. And

yet it might still be the information we need to answer important research questions.

A solution is to find clever ways of reinterpreting existing data in a new lights, to

help us measure today what they missed then. The risk is that these natural proxies

capture something else entirely. And it is not always possible to find natural proxies for

the question one wants to answer.

Another solution, and the main focus of this paper, is to extract more information

from the data we already have to generate synthetic proxies. In many historical applica-

tions, despite a missing variable of interest, many others variable are available. Building
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proxies given a set of observables is fundamentally a conditional prediction exercise.

And this is exactly the type of settings where machine learning models perform well.

The generalization of these methods in economic history could therefore relax the data

availability constraint the same way that it did in other fields like finance (Jasova et al.,

2021).

To illustrate the point, this paper considers the literature on the Latin Monetary

Union (LMU), a currency union created in 1865 by France, Italy, Belgium and Switzer-

land to unify their monetary systems under a common bimetallic standard. Long for-

gotten with the global take-over of the gold standard at the end of the XIXth century, the

literature on the LMU revived after the creation of the Euro area, its indirect descendant.

The LMU literature focused on establishing an extensive historical account of the

events that led to its creation and later collapse (Einaudi, 2000; Willis, 1901; Einaudi,

2001) and few papers try to identify causal effects of the LMU (Flandreau, 2000; Ti-

mini, 2018). Despite being monetary and financial in nature, the literature has focused

exclusively on trade in goods. The most likely explanation for this state of affairs is

data availability: bilateral trade indicators are readily available, while dis-aggregated

financial indicators are not.

This paper takes a different route. The LMU was effectively a common currency

regime with fixed exchange rates, reducing foreign exchange risks and possibly enhanc-

ing financial market integration among its members. International financial flows rather

than trade flows are for these reasons a more pertinent variable of interest. The problem

is that the data does not exist at the bilateral level and only recently researchers have

released measures of aggregated capital accounts for the period (Reinhart et al., 2016).

Can we find a way to create a synthetic proxy for bilateral financial flows that would be

good enough for causal inference applications?
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This is where machine learning models can come to the rescue. By estimating the

relationship between a large set of observables and our variable of interest in modern

times, we are able to generate a proxy for our variable of interests in historical times,

which can then be used for standard causal inference exercises.

To validate the methodology presented in this paper, we first estimate in post-WW2

data a model of trade flows for which we have 19th century data. This exercise confirms

that some machine learning models perform well out of sample, even decades before

the estimation period. The best synthetic proxy has an out of sample R2 of 0.53 in

the 1861-1913 period and errors remain relatively homogeneous around 10-15% of the

average true value in each given year.

With this new dataset, we are able to estimate the impact of the LMU on bilateral

financial flows in a panel setting with country-year and country-pair fixed effects. This

paper finds that the LMU had a significant impact on bilateral financial flows for its

members, increasing them by 5% during the entire 1865-1913 period and by above 15%

in the 1865-1885 period, when it was most active.

The structure of the paper is as follows. Section 1.2 presents the historical con-

text. Section 1.3 present the available data. Section 1.4 describes the algorithm used

to estimate the machine learning models. Section 1.5 discusses how we select the best

performing model. Section 1.6 presents the main results of the paper. Section 1.7 con-

cludes.

1.2. Historical Context

The Latin Monetary Union (LMU) was established in 1865 by France, Belgium, Switzer-

land and Italy2. The agreement revolved around the standardization of gold and silver

2Over time, additional countries joined the Union. Appendix A.1 provides additional details on the LMU
chronology.
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coinage among member countries, with the goal of reducing exchange rate uncertain-

ties and strengthening the commercial and political relations of neighbouring nations.

Both economic and political reasons led to the establishment of the Union. In the

following sections, we will review both of these reasons and provide a historical rec-

ollection of the main events that characterized the life of the LMU.

Economic Reasons. From an economic point of view, Willis (1901)3 emphasises the

importance of French monetary history in the 19th century to understand the reasons

leading to the institution of the LMU. In 1803, France established a new law setting

the ratio of exchange between gold and silver to 1:15.5. The rationale behind choosing

this ratio was that, at the time, it was broadly consistent with the market value of the

two metals. The consequence of setting such a fixed internal rate of exchange was

that, in the years following the introduction of the law, changes in the relative market

value of gold and silver led to rapid outflows of the undervalued metal. In particular,

the adoption of the gold standard by England in 1816, together with the establishment

of ratios equal to 1:15.873 and 1:16 in Holland and the United States, respectively, led

to and increase in the world market value of gold short after the introduction of the

French 1803 law. As a consequence, gold was massively exported out of France in the

first half of the 19th century, and the country’s internal medium of exchange consisted

predominantly of silver coins up until 1848. From this year thereafter there was a flow

reversal, since the market value of gold relative to silver dropped below the 1:15.5 ratio:

silver begun to outflow France, while gold started to be the most widely used medium

of exchange within the country.

As a consequence of this rapid change in the nature of the prevailing stock of coin,

the French public debate in the late 1850s was characterized by a growing interest in

3This work represents one of the most comprehensive reconstructions of the history of the Latin
Monetary Union together with Einaudi (2001). These volumes are the main sources of the historical
summary we provide in this section.
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assuring a more convenient and stable medium of exchange. This interest culminated

in the appointment, in 1858, of a commission4 whose goal was to study how to solve the

monetary issue. The commission highlighted the negative consequences that the cur-

rent system had on commerce, and proposed policies aimed at stabilizing the internal

medium of exchange by attacking money speculators. Despite the work of the commis-

sion, the recommended policies were not implemented by the French government.

In 1850, France, Belgium, Switzerland and Piedmont5 unofficially agreed to have

coins with the same nominal value. However, as the market values of gold and silver

fluctuated, creating problems similar to the ones experienced by France, Switzerland (in

1860) and Italy (in 1862) decided to unilaterally reduce the fineness of their coins. Such

unilateral practices led to a diverging currency fineness among neighbouring coun-

tries, so that arbitrage opportunity arose and the instability of the domestically used

mediums of exchange was reinforced. The situation called for a collective response,

which was invoked by Belgium in 1864 and that eventually took place with the monetary

convention of 1865 involving France, Belgium, Switzerland and Italy, leading to the

creation of the LMU.

Willis (1901) highlights that, unfortunately, the Union had the consequence of ex-

tending the status quo in France (conversion rate of 1:15.5 established by the 1803 law)

to other smaller European countries. Importantly, while the LMU solved exchange rate

problems among participating countries, it did not address the underlying issues of

the French system. Although the Union was formally dissolved in 1927, Willis (1901)

argues that, as a consequence of the structural instability of the French system, which

was passed to the Union, it de facto ceased to exist already in 1885, when additional

changes in the market prices of gold and silver6 led member countries to substantially

4Commission Chargeé d’Étudier la Situation monétaire.
5Italy was unified in 1861.
6Mostly linked to the emerge of the gold standard as international monetary system (Meissner, 2015;
Timini, 2018; Flandreau and Oosterlinck, 2012).
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revise the original LMU agreement. In particular, in the years before 1885 there had

been a reduction in the market value of silver and, similarly to the pre-LMU French

experience, this had led to massive outflows of gold from LMU countries (especially

France and Belgium) due to the official overvaluation of the metal imposed by the rules

of the Union. As a consequence, countries reacted by reducing the possibility of silver

conversion, undermining the LMU architecture.

Political Reasons

While the above reconstruction of the LMU history highlights the economic reasons

that led to its creation, other authors have emphasised that political considerations also

played an important role. Flandreau (2000), relying on notes by French senior officials

from the Quai d’Orsay’s archives, maintains that the Union represented “the starting

point for an active French diplomatic campaign that aimed to introduce a franc-based

international currency”. According to his reconstruction, during the first half of the

nineteenth century, French officials were concerned with the much greater prosperity of

England relative to France, and tended to associate it with England’s financial advance-

ment and primary role as capital exporter. In particular, the rationale behind this belief

was the idea that “investing abroad was spending at home” (Flandreau, 2000, p.34): by

investing abroad, the investing country would stimulate a demand increase from the

borrowing country, which would then buy goods from the lending nation. According to

this view, then, the LMU, by imposing the French monetary system to its neighbouring

countries and, therefore, easing financial exchanges, helped France in its goal of serving

a more important role as lending nation in international markets. At the same time, as

French capital exports to LMU members grew, borrowing countries had an incentive

to denominate their liabilities in francs to reduce possible exchange rate risk premia,

reinforcing the role of the French currency in capital markets.
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From a political perspective, however, it is important to note that not only France,

but also the other adhering countries had an incentive to join. According to Einaudi

(2000), “By attempting to join the union, states with poor public finances wanted to fa-

cilitate their international trade, improve the standard of their internal currency, acquire

monetary credibility, and gain access to international financial markets”. Hence, Ein-

audi (2000) emphasises several benefits that smaller European states aimed at reaching

by adhering to the Union: not only participation by these countries was seen as a way

to solve monetary issues, but it was also a way to enhance participation in international

trade and finance. In particular, many of these countries, such as Italy, wanted to ac-

quire credibility as borrowers, and being part of the LMU was believed to be helpful in

that regard.

The fact that adhering to the Union was also perceived as a way to access inter-

national financial markets helps explain why other countries decided not to join the

Union. As a matter of fact, soon after the establishment of the LMU in 1865, the French

government invited other countries, such as the United Kingdom and the German states,

to join the Union. Einaudi (2000), using sources from diplomatic and banking archives,

argues that, despite both Britain and Germany considered to join the Union, they lacked

the incentives of Southern European countries of importing credibility or of entering

international capital markets. Moreover, additional political considerations such as a

potential subordinate position in the system to France, eventually led these countries

to abandon the idea of adhering to the Union.

Connection to Empirical Analysis

Overall, the historical recollection of the LMU that we have provided highlights that

countries that joined the Union expected to benefit from higher access to credit and

international markets. Previous empirical work on the LMU has focused on identifying



21

the effects that it had on trade flows across member countries (Flandreau, 2000; Timini,

2018) concluding that it had a very limited impact. But we believe there may be other

important dimensions through which the Union may have played a role. In particular,

the context surrounding the birth of the Union suggests that access to international

financial markets was a critical goal. This observation provides the ground for our em-

pirical analysis, to which we turn in the next sections.

1.3. Data

In order to implement our empirical exercise we aim to gather as much information

as possible to accurately reconstruct a proxy for bilateral financial flows during the 19th

century. To achieve this goal, we rely on several data sources, which we describe in

the next section. Afterwards, we describe how we merged these sources into the final

dataset used for our exercise.

1.3.1. Data Sources

The first data source is Tradehist (Fouquin and Hugot, 2016), a dataset that has been

recently developed for the empirical investigation of bilateral trade flows during the

period 1827-2014. Five types of variables are included in the dataset: i) bilateral trade

flows, ii) country-level aggregate exports and imports, iii) GDPs, iv) exchange rates, and

v) additional bilateral factors that can favor or hamper trade7. Given the fact that Timini

(2018), which represents the most up-to-date analysis of the impact of the LMU on

trade flows, used a different dataset, it is worth emphasising why we believe Tradehist

to be the appropriate data source for our analysis. Timini (2018)’s analysis relies on

RICardo (Dedinger and Girard, 2017), a dataset containing bilateral trade flows during

the 19th century. Relative to this dataset, Tradehist has two major advantages. First, its

7Appendix A.2 provides a list of all variables included in this dataset that are used in our exercise.
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coverage is larger than that of RICardo: combining primary sources with data with pre-

existing datasets (inluding RICardo itself), Tradehist reports many more observations

than those of RICardo. Second, Tradehist combines trade data with additional variables

that are important to explain the observed trade flows. This is not the case for RICardo,

whose focus is on providing only trade and exchange rate data. Because our forecasting

exercise requires as much information as possible, having both more data points and

variables represent makes Tradehist more advantageous.

The second dataset we use is the IMF’s Coordinated Portoflio Investment Survey

(CPIS) that measures bilateral financial asset positions and financial flows. The dataset

provides detailed information on these flows, such as the sector of investment (govern-

ments, financial corporations, etc.) and the type of investment (equity, debt, etc.). In

order to capture the entirety of financial flows, we download the variable measuring

the overall investment of a country in assets of another country8. The variable is avail-

able for 15 years within the period 1997-2020, where the years 1998 and 1999 are not

available. Table A.3 in Appendix A.3 provides summary statistics regarding our collected

data.

Lastly, we supplement our dataset with a series on long-run interest rates. The ra-

tionale for including this series is that, since we are interested in financial flows, such

a variable is expected to have an important informative power. In order to create this

series, we collected information from different datasets, the most important ones being

the Global Financial Dataset9 and the Macrohistory Database10. Table A.5 in Appendix

A.4 provides a detailed description of the data sources used to construct this series.

Table A.4 provides summary statistics for our collected interest rate series.

8The variable we rely upon is “Total investment in foreign assets, Total Holdings”, whose CPIS code is
I A T T T BP6 USD.T.T.
9Available at https://globalfinancialdata.com/insights.
10Available at https://www.macrohistory.net/database/.

https://globalfinancialdata.com/insights
https://www.macrohistory.net/database/
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1.3.2. Final Dataset

In our analysis, to be as close as possible to Timini (2018), we decide to focus on the

sample of countries used in his analysis: Belgium, Denmark, Finland, France, Germany,

Greece, Italy, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, United King-

dom11. Hence, we merge data from the three previously described sources, and restrict

attention to these countries. As a consequence, our final dataset spans the period 1861-

2014 (starting 4 years before the establishment of the LMU in 1865), includes 59 vari-

ables and has an overall size of 29,681 observations12. Starting from this dataset, we use

the 1997-2014 sample to train our models in predicting bilateral financial flows, and use

the 1945-2014 sample to train models in predicting trade flows for the model selection

exercise (a more thorough description of these exercises is postponed to section 1.5).

1.4. Model Estimation

The goal is to design the best proxy for bilateral financial flows given the observables

we have. This is a pure conditional prediction exercise that is well-suited for machine

learning methods. The difficulty resides in preserving good out-of-sample performance

despite the lack of historical data on financial flows to externally validate our predic-

tions. From Kaggle data science competitions, XGBoost and LightGBM are supposed

to perform best in a time series setting13. Yet, applications to economic history are

slightly different from traditional time series forecasting exercises. It is possible that

other models would actually perform better. The reason is economic historians are

less interested in T steps ahead forecasts and more interested in predicting a variable

over an entire historical period. Machine Learning models are complex objects and

11Timini (2018) includes Austria-Hungary in his sample. However, since we will be reconstructing
financial flows data using post-WWII observations, and given that Austria-Hungary doesn’t exist anymore,
we don’t have data for this country.
12Tables A.3 and Table A.4 report statistics of our newly assembled data. The remainder of the variables,
coming from Tradehist, are thoroughly described in Fouquin and Hugot (2016).
13https://medium.com/analytics-vidhya/xgboost-lightgbm-and-other-kaggle-competition-favorites-6212e8b0e835.

https://medium.com/analytics-vidhya/xgboost-lightgbm-and-other-kaggle-competition-favorites-6212e8b0e835
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it is therefore difficult to know a priori which one will do better. It is also essential

that hyper-parameter tuning does not lead to over-fitting and preserves out-of-sample

performance over long historical periods. The methodology developed in this paper

and described in Algorithm 1 is grounded on two guiding principles to alleviate these

concerns.

Algorithm 1 Cross-validation and model estimation

1: procedure ESTIMATION(N,Xo, Xn) ▷ Xo, Xn correspond to historical/modern data
2: Split Xn sample in N period blocks
3: for F ∈ {set of ML models} do ▷ for Lasso, XGBoost, . . .
4: Create hyper parameter grid ∆F

5: for random draw δ ∈ ∆F do
6: for i ∈ N do
7: Estimate model Fδ over N \ {i} blocks ▷ Leave one out for

cross-validation
8: Compute cross-validation R2

Fδ(i)
over block i

9: Compute average cross-validation score R2
Fδ(Xn)

over all blocks

10: Select best hyper parameter δ⋆F = argmaxδ R
2
Fδ(Xn)

11: Re-estimate model on full sample Xn with cross-validated hyperparameter
δ⋆F

12: Predict historical data using Fδ⋆(Xo)
13: Compute out of sample R2

Fδ⋆ (Xo)
▷ Possible only for a test variable

14: Select best performing model out of sample F ⋆
δ⋆ = argmaxF R

2
Fδ⋆ (Xo)

The first is to be agnostic regarding the “right” model and the “right” set of hyper-

parameters to use in building our proxy variable. To account for this model uncertainty

we benchmark 9 different models with potentially different strengths and weaknesses14.

We also define a large hyper parameter grid space ∆F . Using random grid search we

explore a hundred hyper-parameter combinations for each model. This guarantees

extensive grid search to find a hyper-parameter combination that is relatively close to

the global optimum. Otherwise there would be a risk of false negatives, good models

14A description of each model and its characteristics is provided in the appendix A.5.
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that are rejected by our algorithm because the right set of hyper-parameters has not

been tried.

The second principle is to select our final model of choice to perform well even

many decades prior to the available sample. The algorithm ensures that in two separate

steps. First, we select hyper-parameters using KFold cross-validation. Practically, we

split the sample of interest into 5 blocks. For each block, we compute a model prediction

R2 based on the estimation over the other 4 blocks. We average those into a cross-

validation R2 that measure how well the model can perform out-of-sample for a given

set of hyperparameters. Hyper-parameters are thus selected so that the model has the

highest average R2 when predicting an out-of-sample block. This is the methodology

that has been shown to perform best in the finance literature (Bryzgalova et al., 2019;

Kaniel et al., 2021; Kozak et al., 2020). It is also better suited than time series split

for our purpose given that we are less interested in step ahead forecasts. Figure 1.1

illustrates the difference between the two methods where year is the “sample index”

of our sample15.

Figure 1.1. Alternative Cross-validation Methods

A. KFold B. Time Series Split

Source: https://scikit-learn.org/stable/modules/cross validation.html

One possibility would be to simply pick the model with highest cross-validation R2

and use it to build our proxy for financial flows. This is what is usually done for standard

15For a detailed discussion of the different cross-validation methods, the reader is referred to this article
from scikit-learn developers https://scikit-learn.org/stable/modules/cross validation.html.

https://scikit-learn.org/stable/modules/cross_validation.html
https://scikit-learn.org/stable/modules/cross_validation.html
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time series exercises. Would that be enough to perform well with wide historical data?

Simple KFold cross-validation guarantees that the model performs well out-of-sample,

so long as the training set is not too far away in time from the evaluation set. When

predicting historical data a century back, this methodology is likely to show its limits.

The second step is to select our final model of choice by comparing prediction per-

formance far out-of-sample for a readily available historical variable. We choose a vari-

able available for the entire 1861-2014 period and to be reconstructed for the 1861-1913

period. Since we want this exercise to be informative about the best performing model

for bilateral financial flows, the test variable should be at the same disaggregated level

and highly correlated with financial flows. As shown in figure A.5, bilateral trade flows

is an important predictor of bilateral financial flows. We therefore train our models

to predict bilateral trade flows on the 1945-2014 period. We use the same remaining

observables and the same cross-validation procedure to predict the test variable and

our variable of interest to make the comparison meaningful. Comparing our predic-

tions with the actual data for the 1861-1913 period, we can obtain a measure of out-of-

sample performance. Practically we select the model with highest out-of-sample R216.

This guarantees that the model not only performs well a few years before the training

sample, which is guaranteed by our Kfold cross-validation procedure, but also many

decades before that. Doing so we pick the model that best captures long term trends

and invariant economic relationships in the data, rather than a good forecasting model

at shorter horizon but ill-suited to historical forecasting.

16This is equivalent to selecting the model based on the lowest RMSE criterion.
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1.5. Model Selection

Starting from our nine forecasting models, we need to discriminate among them in

order to evaluate which has the best forecasting power given the characteristics of our

data.

Table 1.1. Performance on CPIS Financial Flows

ET RF LGBM NN XGBoost Ridge Lasso AdaBoost SVM

R2 (In-sample) 0.991 0.988 0.979 0.977 0.958 0.880 0.879 0.836 0.815

Folds 120 120 120 120 120 120 120 120 120

N 2483 2483 2483 2483 2483 2483 2483 2483 2483

Years 15 15 15 15 15 15 15 15 15

Notes: Regressors are ordered with decreasing in-sample R2 values. “ET” stands for Extra Trees, “RF”
stands for Random Forest, “NN” stands for Neural Network, “SVM” stands for Support Vector Machine.
Iterations measures the number of iterations in our cross-validation exercise. N measures the number of
folds available in the sample of our exercise. Years are the number of years we use to train our models
(1997-2014, 1998 and 1999 are not available in the original IMF dataset).

Table 1.1 provides a summary of the performance of our models, which we ordered

with decreasing R2 values, while figure A.2 in Appendix A.6 provides a graphical repre-

sentation of their performance. Two important points can be made looking at the table.

First, all models perform fairly well in-sample, withR2 values ranging between 0.815 for

SVM, the worst performing model, to 0.991 for Extra Trees, the best performing model.

Second, while the overall distance between the best and worst performing model is

of 0.176, five of the nine models fall within a range of only 0.033 (ET, RF, LGBM, NN,

XGBoost), so that their performance is almost identical. This table is informative about

the capacity of the different models to fit the data in sample. And it is not surprisingly

that most models do well given how flexible they are compared to a simple OLS. This is

not however the way we select the “best” model.

Ideally we would like to rank our models based on their performance at predict-

ing bilateral financial flows over the 1861-1913 period. While we cannot perform any

out-of-sample exercise for the variable we are interested in forecasting due to the data
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limitations problem we are solving, we can evaluate our models on their performance

at predicting bilateral trade flows over that same period. Based on these statistics, we

choose which models to rely upon to estimate bilateral financial flows.

Table 1.2. Performance on Trade Flows

Lasso XGBoost LGBM AdaBoost ET RF NN Ridge SVM

R2 (In-sample) 0.963 0.989 0.989 0.932 0.994 0.988 0.989 0.966 0.778

R2 (Out-sample) 0.531 0.529 0.313 0.296 0.260 0.213 0.205 -0.082 -2.566

Iterations 100 100 100 100 100 100 100 100 100

N 12381 12381 12381 12381 12381 12381 12381 12381 12381

Years 70 70 70 70 70 70 70 70 70

Notes: Regressors are ordered with decreasing out-of-sample R2 values. “ET” stands for Extra Trees, “RF” stands
for Random Forest, “NN” stands for Neural Network, “SVM” stands for Support Vector Machine. Folds measures
the number of folds in our cross-validation exercise. N measures the number of observations available in the
sample of our exercise. Years are the number of years we use to train our models (1945-2014).

Table 1.2 shows the in-sample and out-of-sample R2 values of our models, while

figures A.3 and A.4 in Appendix A.6 provide a graphical representation. The table, where

models are ordered with decreasing out-of-sample R2 values, shows the importance of

relying on out-of-sample forecasts. Similarly to the statistics of Table 1.1, the in-sample

performance of all models is very high, spanning from 0.994 for Extra Trees to 0.778 for

SVM, a 0.216 difference. Yet, the picture that we get based on the out-of-sample R2 is

different: the ranking of the models changes, and the distance between their accuracy

measures increases substantially. In particular, the two best performing models are

Lasso and XGBoost, with R2 values of 0.531 and 0.529, respectively. LGBM, the third-

best model, has an R2 that differs from that of XGBoost by 0.216, approximately the

same difference that exists between the best and worst in-sample fit of all models. Extra

Trees, the best in-sample performer, ranks fifth. The out-of-sample fit of some models

(Ridge and SVM) is so mediocre that their R2 values are negative.

Based on the results from table 1.2, we select Lasso and XGBoost as benchmark

models to reconstruct bilateral financial flows: Lasso will be our preferred model, while
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Figure 1.2. Out-of-Sample RMSE (Trade Flows)

XGBoost will be used to implement a robustness exercise17. Even though our proxy

variable cannot be a perfect measure, there are two reasons why we believe our two

models will make reasonable predictions. First, their out-of-sample performance on

trade flows, a structurally similar variable to financial flows, is high. This is shown not

only by their out-of-sample R2 values in table 1.2, but also by figure 1.2. The figure

displays a measure of the average error in the yearly predictions of our models: the

root of the mean squared error of trade flows predictions, expressed as a fraction of the

average observed trade flows values. As we can see, with the exception of the very first

year for XGBoost, the errors are always below 20% of the average yearly trade flows,

17For completeness, all of the results we show are also provided for the other models, and can be found
in Appendix A.9.
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and often below 15%18. Second, trade flows are an extremely important variable to

forecast bilateral financial flows as shown in figure A.5 in Appendix A.7. Yet this im-

portant piece of information is dropped when predicting bilateral trade flows (to avoid

autoregression), which suggests our models perform well even with a limited set of

bilateral observables. This suggests our bilateral financial flow proxy benefits from an

important extra variable, and possibly achieves higher prediction accuracy.

1.6. Consequences of the LMU for Financial Flows

After having reconstructed bilateral financial flows data using our Lasso and XG-

Boost models, we are ready to evaluate the effectiveness of the LMU on stimulating

financial flows. As emphasized in the historical recollection of section 1.2, enhancing

capital flows across members was an important reason for countries to join the Union.

Unfortunately, data availability issues have not allowed researchers to investigate this

dimension of the LMU so that, so far, the only focus has been on evaluating the impact

that it had on trade flows. Thanks to our new methodology we can instead move on and

address this question. In the following, we will first describe the empirical strategy we

use to evaluate the impact of the LMU on bilateral flows. We will then show our results

and, finally, implement a robustness exercise.

1.6.1. Empirical Strategy

In order to evaluate the impact of the LMU on bilateral financial flows, we rely on the

best practice guidelines to implement structural gravity models compiled by the WTO

Yotov et al. (2016). In particular, this implies that we will be using a Poisson regression,

which is able to deal with zero flows values and is consistent with fixed-effects19; that we

18The figure provides an additional reason to prefer our Lasso model to XGBoost: as the chart shows,
XGBoost tends to have higher RMSE relative to Lasso, especially in the first half of the sample. Since the
LMU started in 1865, this is an important period for our analysis.
19All regressions are implemented using Stata’s PPMLHDFE command Correia et al. (2020).
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will include in our specification both directional time-varying fixed-effects and country-

pair fixed-effects; and that we will use standard error clustered at the country-pair level.

Accordingly, the main regression in our analysis is:

Xi,j,t = β0 + β1LMUi,j,t + β2GSi,j,t + β3SMUi,j,t + γi,t + θj,t + δi,j + ϵi,j,t(1.1)

where Xi,j,t are our reconstructed bilateral financial flows, LMUi,j,t is a dummy variable

equal to one when both country i and country j belong to the LMU at time t, GSi,j,t

and SMUi,j,t are dummy variables equal to one when both countries belong to the Gold

Standard and Scandinavian Monetary Union at time t, respectively (we include these

two variables to be consistent with the specification for trade flows of Timini, 2018).

γi,t, θj,t, and δi,j capture importer time-varying, exporter time-varying, and country-pair

fixed-effects.

Since the LMU was characterized by a country, France, that played a pivotal role, we

follow Timini (2018) and additionally run the following regression:

Xi,j,t =β0 + β1LMU Francei,j,t + β2LMU Resti,j,t+

β3GSi,j,t + β4SMUi,j,t + γi,t + θj,t + δi,j + ϵi,j,t

(1.2)

where LMU Francei,j,t and LMU Resti,j,t are dummy variables equal to one if flows

among LMU countries involve France (LMU Francei,j,t) or not (LMU Resti,j,t). The idea

of this regression is to test whether the LMU was particularly effective in stimulating

flows between France and other members. Finally, we will run variations of these two

main specifications including additional dummy variables to test whether the LMU

was particularly effective during a sub-period of its entire existence. These will be the
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periods 1861-1885 and 1861-1874, both of which have been suggested by historians to

be time frames during which the Union was particularly effective20.

1.6.2. Results

Table 1.3 displays the results of our empirical exercise, where bilateral financial flows

are estimated through Lasso, our preferred model. Since the 6 specifications reported

in the table follow the main empirical exercises in Timini (2018) for trade flows, table

A.7 in Appendix A.8 provides Timini (2018)’s results, the most recent on the effects of

the LMU, for comparison.

The first two columns show the results of our main regressions, displaying the co-

efficients of equations 1.1 and 1.2, respectively. In column one, the LMU coefficient is

positive and significant at the 5% level, with participation in the LMU being associated

with an approximate 5% increase in bilateral financial flows. This represents the main

result of this study on the effectiveness of the LMU of bilateral financial flows. Differ-

ently from the literature on the effectiveness of the LMU on trade flows (Flandreau, 2000;

Timini, 2018), we find evidence in favor of a positive impact of the LMU on financial

flows. Column 2 moves on to investigate whether the impact of the LMU was different

when flows involved France. Both reported coefficients are positive, but only the one

associated with flows not involving France is statistically significant. This result sug-

gests that, during the entire 1865-1913 period, the Union was particularly effective in

stimulating financial flows across these countries.

Columns 3 and 4 implement an exercise to evaluate whether the impact of the Union

was greater during the 1865-1885 period since, as we discussed in section 1.2, historians

have argued that the LMU ceased to de facto exist in 1885. To do so, we interact the

20As mentioned in section 1.2, Willis (1901) suggests that the LMU de facto ceased to exist in 1885.
Moreover, Flandreau and Oosterlinck (2012) stress that in 1874 markets downgraded the possibility of
bimetallism to last, so that 1874 can be seen as the earliest date in which the effectiveness of the Union
started to decrease.
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Table 1.3. Bilateral Financial Flows (Lasso)

(1) (2) (3) (4) (5) (6)

LMU 0.051∗ -0.049∗∗∗ -0.003
(0.021) (0.014) (0.008)

LMU France 0.047 -0.059∗ -0.008
(0.031) (0.026) (0.030)

LMU Rest 0.087∗∗∗ 0.084∗∗∗ 0.097∗∗∗

(0.016) (0.008) (0.015)
LMU 1885 0.204∗∗∗

(0.036)
LMU France 1885 0.222∗∗∗

(0.045)
LMU Rest 1885 -0.033

(0.045)
LMU 1874 0.147∗∗

(0.048)
LMU France 1874 0.161∗∗

(0.055)
LMU Rest 1874 -0.105

(0.066)
GS 0.248∗∗∗ 0.247∗∗∗ 0.131∗∗ 0.124∗∗ 0.207∗∗∗ 0.203∗∗∗

(0.042) (0.042) (0.047) (0.047) (0.049) (0.047)
SMU -0.249∗∗∗ -0.250∗∗∗ -0.256∗∗∗ -0.252∗∗∗ -0.256∗∗∗ -0.250∗∗∗

(0.048) (0.045) (0.015) (0.036) (0.031) (0.035)

N 7169 7169 7169 7169 7169 7169

Notes: ∗∗∗p < 0.001,∗∗ p < 0.01,∗ p < 0.05. Dependent variable: Estimated bilateral financial
flows. All regressions include a constant, importer-year, exporter-year and importer-exporter
fixed-effects. Clustered standard errors at the importer-exporter level.

LMU dummy with a dummy capturing the pre-1885 period. The coefficients in column

3 are both highly statistically significant and, similar to Timini (2018), of opposite sign.

In particular, while the LMU coefficient is negative, the pre-1885 LMU coefficient is

positive and of much larger magnitude, so that the overall LMU effect during this period

is positive (LMU 1885 + LMU ≈ .155). Importantly, this coefficient is larger than the one

in column one, suggesting that the effectiveness of the LMU was indeed larger when we

focus on the pre-1885 period. On the other hand, the negative LMU impact after 1885

may signal a deterioration of LMU members, which is in line with findings in Timini
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(2018). Column 4 provides additional information regarding the results from column 3.

Differently from the results in column 2, we can see that the overall impact of the LMU

on stimulating flows involving France is positive (LMU France 1885 + LMU France ≈

.163) and statistically significant in the pre-1885 period, while it is negative after 1885.

A different pattern is found when looking at flows among non-France LMU members:

not much more affected in the pre-1885 period, but positive and statistically significant

after throughout the entire LMU period. Overall, columns 3 and 4 give us additional

insights on the effectiveness of the LMU: while columns 1 and 2 suggest an overall

positive impact concentrated among non-France countries, columns 3 and 4 point to

an even greater impact of the LMU and to a pivotal role of France in the pre-1885 period,

and to a reduction in non-Franch flows from then onwards. It is important to point that

such a pattern is similar to the one found in Timini (2018) for trade flows.

Finally, columns 5 and 6 report the estimates of an exercise similar to that of columns

3 and 4, but restricting attention to the 1865-1874 activity period of the LMU. The ratio-

nale for this further restriction is twofold. First, 1874 is the year in which markets started

to downgrade the possibility of bimetallism to last Flandreau and Oosterlinck (2012), so

that it could be considered the shortest possible period of actual existence of the LMU.

Second, this represents the only period during which the LMU had an overall positive

impact on trade flows according to Timini (2018).

Overall, despite minor changes in the magnitude of the coefficients, the story of

these estimates is in line with that of columns 3 and 4: the effectiveness of the LMU was

positive and larger during its first years; France was heavily responsible for these flows

initially, while flows among other countries were constantly important in the century.

However, it is important to point out that the magnitudes of the coefficients associated

with the 1874 dummy are lower than those associated with the 1885 dummy in columns

3 and 4. Hence, restricting attention to the 1865-1874 period tends to decrease the
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importance of the LMU, implying that the Union kept being effective for an additional

decade. This is important because signals a difference in financial flows pattern relative

to trade flows: while the latter were stimulated only in the very first decade of existence

of the Union, as shown in Timini (2018), the former were positively affected until 1885

(and thereafter among non-France members).

Finally, although this is not our focus of interest, we note that the coefficients on

participation to the Gold Standard (GS) are always positive, statistically significant and

fairly stable across specifications as we would expect. The coefficients on participation

to the Scandinavian Monetary Union (SMU) are always negative, statistically significant

and stable across specifications, similarly to the results of Timini (2018).

1.6.3. Robustness: XGBoost Results

In this section we evaluate the robustness of the main conclusions we reached in the

previous section. In order to do so, we run our regressions using the bilateral financial

flows as estimated through XGBoost, the second-best model according to our discus-

sion in section 1.5.

Table 1.4 shows the results we obtain using these data. Confirming the results we

obtained with Lasso data, columns 1 and 2 point to a positive and statistically significant

impact of the LMU on financial flows during the entire 1861-1913 period, with an effect

particularly pronounced for non-French flows. Comparing the magnitudes of these

estimates, we can see that those of the statistically significant coefficients are very close

to those of table 1.3.

Moving to columns 3 and 4, similarly to table 1.3, we see that the positive effects of

the LMU tend to concentrate on the 1865-1885 period (column 3, LMU = 0.058) and

that, during this time frame, the LMU was especially effective in stimulating financial

flows with France as a counterpart (column 4). These results are therefore qualitatively
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Table 1.4. Bilateral Financial Flows (XGBoost)

(1) (2) (3) (4) (5) (6)

LMU 0.046∗ 0.011 0.025
(0.019) (0.019) (0.019)

LMU France 0.005 -0.032∗∗∗ -0.019
(0.007) (0.010) (0.011)

LMU Rest 0.082∗∗ 0.052 0.066∗

(0.031) (0.036) (0.031)
LMU 1885 0.058∗∗

(0.019)
LMU France 1885 0.065∗∗∗

(0.012)
LMU Rest 1885 0.051

(0.028)
LMU 1874 0.055∗∗

(0.021)
LMU France 1874 0.064∗∗∗

(0.015)
LMU Rest 1874 0.042

(0.036)
GS -0.027∗ -0.030∗∗ -0.039∗∗ -0.041∗∗∗ -0.031∗ -0.033∗∗

(0.011) (0.011) (0.012) (0.012) (0.013) (0.012)
SMU -0.026 -0.026 -0.020 -0.019 -0.021 -0.019

(0.019) (0.016) (0.017) (0.015) (0.017) (0.014)

N 7169 7169 7169 7169 7169 7169

Notes: ∗∗∗p < 0.001,∗∗ p < 0.01,∗ p < 0.05. Dependent variable: Estimated bilateral
financial flows. All regressions include a constant, importer-year, exporter-year and
importer-exporter fixed-effects. Clustered standard errors at the importer-exporter level.

in line with those of the corresponding columns in table 1.3, but the magnitudes of these

coefficients are lower. An additional difference is that, albeit positive, the coefficient on

LMU Rest is not significant using XGBoost data.

Finally, column 5 shows that, albeit less than before 1885 (column 3, LMU 1885 =

0.058), the LMU was effective during its early years (column 5, LMU 1874 = 0.055), while

column 6 shows that it led to increased flows involving France up until 1974, and to

increased flows involving other LMU members thereafter (column 6). Both of these
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results are qualitatively in line with the results in table 1.3, but their magnitudes are

smaller.

Overall, although the estimates of bilateral financial flows coming from our XGBoost

model are a second-best option, the results in columns 1 and 2 of table 1.4 tell us that

we would have reached very similar conclusions regarding the effectiveness of the LMU

during the 1865-1913 period if we had used this data. Moreover, columns 3 to 6 show

that the qualitative conclusions we would have reached regarding the effectiveness of

the LMU during different sub-periods would have been in line with those of our Lasso

model.

Yet, it is important to stress two issues. First, as we mentioned in previous para-

graphs, the magnitudes of the estimated effects are lower once we rely on this alternative

model. Second, although this is not the focus of our exercise, the coefficients of par-

ticipation to the Gold Standard and to the Scandinavian Monetary Union are different

from those of table 1.4. In particular, the GS coefficients, although displaying a very

low statistical significance, are negative21. Differently, the SMU coefficients lose their

statistical significance.

1.7. Conclusion

This paper emphasizes that a lot more information and correlation patterns can be

extracted from existing historical data. Machine learning models can extract that infor-

mation in a systematic, comprehensive and replicable way, creating synthetic proxies

for a wide range of variables that cannot be measured otherwise. Accordingly, bringing

these methods into the economic history literature, similarly to what has been done in

21Importantly, the data we are using for our exercise on the LMU, excluding many non-European
countries, such as the United States, are not well-suited to evaluated the overall effectiveness of the Gold
Standard on financial flows. Accordingly, this variable is only introduced to control for potential omitted
variables biases in our regressions. Nonetheless, this exercise points to an incongruency of our results
depending on which proxy we use (Lasso vs. XGBoost).
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other fields, could allow to tackle important research questions that tend to be neglected

because of data availability issues.

One such example is the literature on the Latin Monetary Union, which has been

concerned with trade flows precisely because of data availability issues. From both a

theoretical perspective and the historical accounts at the time, the LMU was monetary

and financial in nature. A natural exercise would have been to study the effect of the

LMU on financial flows absent existing data limitations.

Relying on machine learning techniques, we were able to circumvent that data lim-

itation by reconstructing a proxy for financial flows across 14 countries between 1861

and 1913. It makes possible the measurement of the impact of the Latin Monetary

Union on the pattern of European financial flows through standard causal inference

methods.

Our main finding is that, differently from what has been found for trade flows, the

Latin Monetary Union did favor financial flows among its members, increasing bilateral

financial flows by 5% between 1865 and 1913 and by approximately 15% when restrict-

ing attention to the 1865-1885 period, during which the Union was most active accord-

ing to historical accounts. Moreover, we find that while flows heavily involved France

until 1885, this stopped being the case thereafter, when flows began to concentrate

among other member countries.

Overall, these results provide new insights about the history of the Latin Monetary

Union, showing that it did help member countries achieve some of the goals that had

pushed them to join the Union in the first place.
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CHAPTER 2

Rigid Production Networks

Written with Alireza Tahbaz-Salehi1

1Prepared for Carnegie-Rochester-NYU Conference on Public Policy. We are grateful to Luigi Iovino, Ariel
Zetlin-Jones, and conference participants for detailed comments and suggestions. We also thank Marios
Angeletos, Vasco Carvalho, Stephen Morris, Alessandro Pavan, Ali Shourideh, and Venky Venkateswaran.
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2.1. Introduction

Firms in any modern economy rely on a wide range of goods and services for produc-

tion, while simultaneously serving as input suppliers of other producers in the economy.

For example, as documented by Bernard et al. (2022), the median firm in Belgium uses

inputs from 53 suppliers and sells to 26 different customers. The extent of such firm-

to-firm linkages can become significantly more skewed for larger firms, as a firm like

Airbus works with roughly 12,000 different suppliers that provide products and services

for flying and non-flying parts.

While clearly an integral part of the production process, supply chain linkages be-

tween different firms can function as a source of macroeconomic risk, as disruptions

due to natural disasters (Carvalho et al., 2021), wars (Korovkin and Makarin, 2022), or

foreign trade shocks (Dhyne et al., 2022) can escalate from localized events into broader

disruptions. Not surprisingly then, an extensive (and growing) body of work in macroe-

conomics studies how the economy’s production network can serve as a mechanism for

propagation and amplification of shocks.2

However, this literature, for the most part, abstracts from two realistic frictions. First,

the benchmark models of production networks assume that firms can adjust their input

and output quantities frictionlessly in response to shocks. This is despite the fact that,

in reality, many production processes, especially in manufacturing, require advance

planning and setting up production lines that cannot be ramped up or down instan-

taneously. Similarly, while firms may be able to produce using different mixes of inputs,

switching from one mix to another may require reorganizing the production process,

a potentially costly and time-consuming endeavor. Yet another factor that may reduce

2For example, see Long and Plosser (1983) and Acemoglu et al. (2012a). More recent examples
include production network models with fairly general production functions (Baqaee and Farhi, 2019),
endogenous technologies (Acemoglu and Azar, 2020), nominal rigidities (La’O and Tahbaz-Salehi, 2022;
Rubbo, 2022), and extensive margin adjustments (Baqaee and Farhi, 2021; Acemoglu and Tahbaz-Salehi,
2020).
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firms’ short-term ability to drastically adjust their production process in response to

shocks is the presence of significant lead times in acquiring inputs: according to the

Institute for Supply Management, in January 2023, the average lead time for obtaining

production materials for manufacturing firms in the United States was 87 days. In the

same month, the average lead time for acquiring capital inputs—such as machinery,

plant equipment, software and the like—was 166 days, with 23% of firms facing lead

times exceeding one year (Institute for Supply Management, 2023a).

Of course, frictions in quantity adjustments may not be of first-order importance if

firms can perfectly anticipate future shocks and can set up contingency plans accord-

ingly. This brings us to the second friction missing from the benchmark models, which

assume that firms make their production decisions under perfect information about all

the shocks in the economy. But, this is not necessarily the case either, as it would require

firms to not only have perfect foresight, but also obtain and process a large volume of

information about a wide range of shocks.

The relevance of the above-mentioned frictions became more visible during the COVID-

19 pandemic, as various industries experienced significant disruptions in their supply

chains. For example, at the onset of the pandemic, U.S. automakers “underestimated

demand for their products,” and “expecting weak demand, they cancelled orders of

semiconductors, an item with a long lead time and with a secular increase in demand

from other industries” (Helper and Soltas, 2021). This led to significant disruptions and

price increases in the motor vehicle sector in the later stages of the pandemic.

In this paper, we develop a model that incorporates quantity rigidities and infor-

mational frictions into an otherwise standard model of production networks, where (i)

firms may be restricted in how effectively they can adjust their input quantities in re-

sponse to changes in the economic environment, and (ii) they may have to choose those
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quantities with only incomplete information about the realizations of shocks. Specif-

ically, we consider a multisector general equilibrium economy à la Long and Plosser

(1983) and Acemoglu et al. (2012a) in which firms are linked to one another via input-

output linkages and are subject to industry-level productivity and aggregate demand

shocks. Firms in each industry use Cobb-Douglas production technologies with con-

stant returns to transform labor and intermediate inputs into output. Additionally, as in

Baqaee and Farhi (2022), we allow for downward nominal wage rigidities. However, in

a departure from the rest of the literature, we assume that firms make (some or all of)

their intermediate input decisions in the presence of incomplete information about the

realization of supply and demand shocks. This modeling approach has two key impli-

cations. First, it ensures that by the time the shocks are realized (or observed), certain

input decisions made by the firms are sunk and hence cannot be adjusted. Second,

while firms in our model are subject to quantity adjustment frictions, they nonetheless

optimally plan their production in anticipation of future shocks (subject to their infor-

mation sets).

As our main theoretical result, we provide a system of equations that (implicitly)

characterizes equilibrium prices and quantities in terms of model primitives, namely,

the realized supply and demand shocks, the economy’s production network structure,

each industry’s set of rigid and flexible inputs, and the information sets of all firms in the

economy. Despite being implicit, this characterization result captures the key economic

forces that are active in the model. Specifically, it shows that, when deciding on their

quantities under incomplete information, firms need to make forecasts about prices

charged by their suppliers as well as the quantity demanded by their customers. As such,

our characterization result highlights that equilibrium prices and quantities depend on

firms’ expectations of shocks both upstream and downstream their supply chains.
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We then apply our implicit characterization result to three specific environments

that lend themselves to closed-form solutions. As our first case study, we consider an

economy consisting of only a single rigid industry subject to informational frictions,

with the remaining industries capable of adjusting their quantities with no frictions. Fo-

cusing on such an environment allows us to identify the role played by quantity rigidities

and informational frictions at each industry separately, and in particular, identify the

industries that can act as production bottlenecks for the rest of the economy. We find

that these two frictions result in a reduction in aggregate output. This is because when

firms make their intermediate input decisions under uncertainty about the realizations

of productivity shocks, they find it optimal to rely more heavily on less volatile suppliers,

even if this comes at the cost of forgoing more efficient ones. Additionally, our result in-

dicates that, all else equal, a rigid industry functions as a tighter “production bottleneck”

for the entire economy if it is simultaneously (i) an overall large supplier in the economy

and (ii) an important direct or indirect customer of other firms in the economy.

We then apply our results to study how incomplete information and the frictions in

quantity adjustments—which we refer to as real rigidities—change the mapping from

supply and demand shocks to aggregate output and inflation. We find that, in the pres-

ence of real rigidities and informational frictions, the first-order impact of productivity

shocks is dampened compared to the fully flexible benchmark; that this dampening

effect is stronger the higher the degree of real rigidities; and that the extent to which

shocks to an industry propagate to aggregate outcomes depends on the size of the rigid

industry and its exposure to the shock. As for shocks to aggregate demand, we find that,

compared to the benchmark without informational frictions, the real effect of aggregate

demand shocks is dampened, a positive demand shock is inflationary, and that the

magnitudes of both effects depend on the exact position of the rigid industry in the

production network.
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We follow up these results by focusing on two other information structures: one in

which all firms in the economy observe the same public signal, and a more general

case with an arbitrary information structure (albeit for a simplified production network

structure). Focusing on these environments, we show how the effect of real rigidities

and informational frictions can build up over the production network.

We conclude the paper with a simple quantitative assessment of our model’s impli-

cations.

Related Literature. Our paper belongs to the literature on production networks, which

explores the implications of the disaggregated structure of the economy for aggregate,

macroeconomic outcomes. In addition to the papers already mentioned, some of the

more recent works in this literature include Bigio and La’O (2020), Liu and Tsyvinski

(2023), and Baqaee and Farhi (2022). See Carvalho and Tahbaz-Salehi (2019) and Baqaee

and Rubbo (2022) for recent surveys.3 We contribute to this literature by relaxing two

of the key standing assumptions in most production network models: that firms can

make decisions under complete information and can frictionlessly adjust their interme-

diate input decisions in response to changes in the economic environment. We study

how incomplete information together with frictions in quantity adjustments change the

mapping from supply and demand shocks to aggregate output and inflation.

Our approach in using incomplete information in modeling frictions builds on ear-

lier works, such as Mankiw and Reis (2002), Woodford (2003), and Maćkowiak and Wieder-

holt (2009), among others. For the most part, this literature relies on incomplete in-

formation as a source of nominal rigidities, with the assumption that firms set their

nominal prices without complete information about the economy’s fundamentals. In

contrast to the bulk of this literature, firms in our framework are subject to real rigidities

and choose their input quantities in the presence of incomplete information. As such,

3Also see Barrot and Sauvagnat (2016), Boehm et al. (2019), and Carvalho et al. (2021) for empirical studies
of the role of production networks in propagation and amplification of shocks.
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our paper is more closely related to Angeletos et al. (2016) and Angeletos and La’O

(2020), who consider models in which firms’ incomplete information about the shocks

is a source of both real and nominal rigidities. Our point of departure from these two

papers is our focus on how real rigidities arising from firms’ incomplete information

interact with the economy’s production network structure.

More closely related to our work are two recent papers that also explore the role of

incomplete information in the context of supply chains. Kopytov et al. (2022a) develop

a model of endogenous network formation to investigate how uncertainty about the

productivity of suppliers impacts firms’ choice of technology. As in our paper, one of

the key tradeoffs faced by firms in their framework is that supply chain uncertainty

induces firms to rely more heavily on less volatile inputs, even if this comes at the cost

of forgoing more efficient one.4 They key distinction, however, is in the two papers’

modeling approach: Kopytov et al. (2022a) assume that firms choose their production

technology under incomplete information, but can flexibly adjust their quantity de-

mand in response to shocks. As such, and given the assumption of constant returns,

firms in their framework only need to form forecasts about their marginal costs. In

contrast, firms in our framework are forced to make (some or all of) their quantity

decisions prior to observing the shocks. As a result, they not only need to form forecasts

about their upstream prices, but also about their downstream demand.

The second related paper is the contemporaneous work of Bui et al. (2023), who

introduce informational frictions into a multi-country, multi-sector model with global

value chains. As in our paper, firms do not observe the shocks and only have access to

imperfect signals about productivities of various industries and countries. However,

whereas Bui et al. (2023) assume that firms choose their primary inputs (e.g., labor)

under incomplete information, firms in our model need to choose their intermediate

4Also see Grossman et al. (2023) for a related mechanism in the context of global supply chains and in the
presence of relationship-specific risk and country-wide supply disturbances.
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inputs before learning the realizations of the shocks. This distinction is consequential:

since in Bui et al. (2023) firms face no frictions in choosing their intermediate inputs,

the equilibrium only depends on firms’ expectations of their suppliers’ decisions. In

contrast, in our model, the equilibrium depends not only on firms’ forecasts of their

suppliers’ forecasts, but also on their forecasts of their customers’ forecasts.

Finally, our paper is related to the growing body of works that studies network inter-

actions in the presence of incomplete information. Examples include Calvó-Armengol

et al. (2015), de Mart́ı and Zenou (2015), Bergemann et al. (2017), and Golub and Mor-

ris (2018). We complement this literature, which is mostly focused on reduced-form

games over networks, by studying a micro-founded, general equilibrium macro model

where firms’ decisions and outcomes are interlinked with one another as a result of the

economy’s disaggregated production network structure.

Outline. The rest of the paper is organized as follows. Section 2.2 sets up the en-

vironment and defines the equilibrium concept. Section 2.3 contains the main char-

acterization result of the paper, where we show how informational frictions and real

rigidities shape equilibrium prices and quantities. In Section 2.4, we consider a few

special cases of the general model that lend themselves to explicit characterizations.

We present a quantitative analysis of the model in Section 2.5. All proofs and some

additional technical details are presented in the Online Appendix.

2.2. Model

In this section, we present a multisector model that forms the basis of our analysis.

The model, which is in the spirit of general equilibrium models of Long and Plosser

(1983) and Acemoglu et al. (2012a), closely follows the framework in La’O and Tahbaz-

Salehi (2022). As our main point of departure from the prior literature, we assume that
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firms may have to make some of their intermediate input quantity decisions under

incomplete information about the realizations of shocks.

2.2.1. Firms and Production

Consider an economy consisting of n industries indexed by i ∈ N = {1, 2, . . . , n}. Each

industry consists of two types of firms: (i) a unit mass of monopolistically-competitive

firms, indexed by k ∈ [0, 1], producing differentiated goods and (ii) a competitive pro-

ducer whose sole purpose is to aggregate the industry’s differentiated goods into a single

sectoral output. The output of each industry can be either consumed by the households

or used as an intermediate input for production by firms in other industries.

The monopolistically-competitive firms within each industry use a common constant-

returns-to-scale technology to transform labor and intermediate inputs into their dif-

ferentiated products. More specifically, the production function of firm k ∈ [0, 1] in

industry i is given by

yik = ziζil
αi
ik

n∏
j=1

x
aij
ij,k,(2.1)

where yik is the firm’s output, lik is the firm’s labor input, xij,k is the quantity of sectoral

commodity j purchased by the firm, and zi is an industry-specific productivity shock.

The constant αi > 0 denotes the share of labor in industry i’s production technology,

aij ≥ 0 parameterizes the importance of good j in the production technology of firms

in industry i, and ζi = α−αi
i

∏n
j=1 a

−aij
ij is a normalization constant. As is standard in

this literature, we summarize input-output linkages in this economy by matrix A =

[aij], which with some abuse of terminology, we refer to as the economy’s input-output

matrix. We also define the economy’s Leontief inverse as L = (I − A)−1, whose (i, j)

element captures the role of industry j as a direct or indirect intermediate input supplier
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to industry i. Throughout the paper, we normalize the steady-state value of all (log)

productivity shocks to 0, i.e., log zssi = 0 for all i.

Given the production technology (2.1), the nominal profits of firm k in industry i are

given by

πik = (1− τi)pikyik − wlik −
n∑
j=1

pjxij,k,(2.2)

where pik is the nominal price charged by the firm, pj is the nominal price of industry j’s

sectoral output, w denotes the nominal wage, and τi is an industry-specific revenue tax

or subsidy levied by the government.

As already mentioned, each industry also contains a competitive producer, which

transforms the differentiated products produced by the unit mass of firms in that in-

dustry into a sectoral good using a constant-elasticity-of-substitution (CES) production

technology, with elasticity of substitution θi > 1:

yi =

(∫ 1

0

y
(θi−1)/θi
ik dk

)θi/(θi−1)

.

The sole purpose of this producer is to ensure that each industry produces a single

sectoral good, while at the same time allowing for monopolistic competition among

firms within the same industry. Throughout the paper, we assume that the industry-

specific tax in (2.2) is set to τi = 1/(1 − θi). As is well-known, this choice undoes the

effect of monopolistic markups and ensures that the distortions in the economy are not

due to firms’ market power.



49

2.2.2. Households

In addition to the firms, the economy consists of a representative household, with pref-

erences

U(C,L) = logC − χ
L1+1/η

1 + 1/η
,

whereC andLdenote the household’s consumption and total labor supply, respectively,

η is the Frisch elasticity of labor supply, and χ > 0 is a constant that parameterizes

the representative household’s disutility of labor supply. The representative household’s

final consumption basket is a Cobb-Douglas aggregator of the sectoral goods produced

in the economy,

C =
n∏
i=1

(ci/βi)
βi ,

where ci is the amount of good i consumed and (β1, . . . , βn) are nonnegative constants

that measure various goods’ shares in the household’s consumption basket, normalized

such that
∑n

i=1 βi = 1. The representative household’s budget constraint is therefore

given by

PC =
n∑
i=1

pici = w
n∑
i=1

∫ 1

0

likdk +
n∑
i=1

∫ 1

0

πikdk + T,

where P =
∏n

i=1 p
βi
i is the nominal price of the household’s consumption bundle, w

denotes the nominal wage, πik is given by (2.2), and T denotes lump-sum transfers

from the government. To ensure that the government’s budget constraint is satisfied,

we assume that T =
∑n

i=1 τi
∫ 1

0
pikyikdk.
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Finally, we assume that the representative household is subject to the following cash-

in-advance constraint:

PC = m,

where m denotes the nominal aggregate demand in the economy. In what follows, we

interpret a decrease inm as a negative aggregate demand shock. While the most natural

source of such a shock is a monetary policy shock (say, due to a reduction in money

supply), as shown by Baqaee and Farhi (2022) in a simple dynamic extension of the

model, a decrease in expected future output, an increase in nominal interest rate, an

increase in the household’s discount factor, or a decrease in future prices—which can be

thought of as a proxy for forward guidance—can all generate effects that are isomorphic

to a decrease in m.

2.2.3. Real Rigidities and Informational Frictions

While the benchmark models of production networks assume that firms can adjust their

input and output quantities in response to supply and demand shocks, in reality, many

firms may have limited ability to do so, at least in the short run. For example, many

production processes, especially in manufacturing, require advance planning, setting

up production lines that cannot be ramped up or down instantaneously, or acquiring

inputs with significant lead times.5 Similarly, while firms may be able to produce using

different mixes of inputs, switching from one mix to another may require reorganizing

5As pointed out in the Introduction, such lead times can be particularly significant for capital inputs, such
as machinery, plant equipment, and software. According to the Institute of Supply Management (ISM), in
January 2023, only 15% of firms in the U.S. manufacturing sector faced lead times that were less than 30
days, whereas 59% of firms faced lead times that exceeded 6 months (Institute for Supply Management,
2023a). The ISM defines lead time as “the time that elapses from placement of an order until receipt of an
order, including time for order transmittal, processing, preparation and shipping.”
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the production process, a potentially costly and time-consuming endeavor. Addition-

ally, firms may not even have access to all the relevant information that would be nec-

essary for adopting their production plans in response to economic disturbances.

We model the presence of such frictions by following Angeletos et al. (2016) and

Angeletos and La’O (2020) and assuming that firms make (some or all of) their interme-

diate input decisions under incomplete information about supply and demand shocks.

Specifically, we assume that the economy lasts for two periods, t ∈ {0, 1}. At t = 0,

firms in industry i receive a common signal ωi ∈ Ωi about the realizations of the supply

and demand shocks (z,m), where z = (z1, . . . , zn). Given ωi, each firm k in industry i

chooses the intermediate input quantities xij,k for any input j ∈ Ri at t = 0, where

Ri ⊆ N denotes the set of rigid inputs of industry i. The productivity and demand

shocks are then observed by all firms at t = 1, which is when firms set prices, choose

their labor input lik, and choose the remainder of their intermediate inputs, {xij,k}j∈Fi
,

where Fi = N \ Ri denotes the set of flexible inputs of industry i. Production and

consumption also take place at t = 1.

A few remarks are in order. First, note that since firms choose their rigid intermediate

inputs before the realization of shocks, these input choices are subject to a measura-

bility constraint: {xij,k}j∈Ri
can be contingent on ωi, but not on (z,m). While related,

this measurability constraint on quantities is distinct from measurability constraints

on nominal prices, which are a source of nominal rigidities as opposed to real ones.6

Second, it is immediate to see that if either (i) all firms observe perfectly informative

signals about the realizations of the shocks, i.e., ωi = (z,m) for all i; or (ii) all inputs of all

firms are flexible, i.e., Fi = N for all i, then the above framework reduces to a standard

production network model, such as Acemoglu et al. (2012a). Third, note that firms face

no frictions in adjusting their labor input, as we assume they choose lik at t = 1. This

6See Mankiw and Reis (2002), Maćkowiak and Wiederholt (2009), and La’O and Tahbaz-Salehi (2022) for
examples of models with informational frictions as a source of nominal rigidities.
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is to ensure that at least one input is free to adjust in response to realized demand, as

otherwise markets may fail to clear.7

We conclude this discussion by introducing a measure for firms’ uncertainty about

the shocks’ realizations. For any given pair of industries i and j, define

κij =
E[vari(log zj)]
var(log zj)

,(2.3)

where log zj is the log productivity shock to industry j, vari(·) denotes the variance con-

ditional on the information set of firms in industry i, and E[·] and var(·) denote the

unconditional expectation and variance operators, respectively. The interpretation of

κij as a measure of uncertainty is fairly natural: it captures the (ex ante) volatility of log zj

conditional on i’s information set as a fraction of its unconditional volatility. By the law

of total variance, κij is always in the unit interval, [0, 1], and obtains its maximum value

of 1 if firms in industry i receive no informative signals about the realization of log zj

(in which case, var(Ei[log zj]) = 0). At the other end of the spectrum, κij = 0 if firms in

industry i face no uncertainty about the shock to industry j (i.e., vari(log zj) = 0).8

We can define a similar object to measure firms’ uncertainty about the realization of

the demand shock:

µi =
E[vari(logm)]

var(logm)
,(2.4)

7This is also the key modeling distinction between our framework and that of Bui et al. (2023), who
assume that labor input decisions are made under incomplete information, while all intermediate input
quantities can adjust freely in response to shocks.
8In the special case that all (log) shocks and signals are normally distributed, κij takes a familiar form
in terms of the signal-to-noise ratio. In particular, suppose firm i observes a single signal given by
ωi = log zj + ϵi, where log zj and ϵi are independent and normally distributed with variances σ2

z and
σ2
ϵ , respectively. In that case, κij = σ2

ϵ /(σ
2
z + σ2

ϵ ). The expression in (2.3) generalizes this concept to any
arbitrary joint distribution of shocks and signals.
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where m is the nominal aggregate demand. Once again, µi = 0 if firms in industry i

face no uncertainty about aggregate demand shocks, whereas µi = 1 if they receive no

informative signals about the realization of m.

2.2.4. Downward Nominal Wage Rigidities

While firms can set their prices pik flexibly at t = 1 after observing productivity and

demand shocks, we allow for downward nominal wage rigidities by assuming that the

nominal wagew cannot fall below an exogenously-specified value w̄. This restriction on

nominal prices means that there are two possibilities. One possibility is that w > w̄ and

the labor market clears. The other possibility is that the constraint on the nominal wage

binds (so that w = w̄), in which case the labor market is slack and does not clear, in the

sense that the total demand for labor falls short of what the representative household is

willing to supply at that wage. Taken together, we say the labor market is in equilibrium

if

(w − w̄)

(
L−

n∑
i=1

∫ 1

0

likdk

)
= 0, w ≥ w̄, L ≥

n∑
i=1

∫ 1

0

likdk,(2.5)

where L denotes the household’s labor supply and lik is the labor demand of firm k in

industry i. Clearly, the special case that w̄ = 0 corresponds to an economy with no

nominal rigidities.

2.2.5. Equilibrium

With the various model ingredients in hand, we are now ready to define our solution

concept.

Definition 1. An equilibrium is a collection of nominal prices, nominal wage, and

quantities such that
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(i) at t = 0, monopolistically-competitive firms in each industry choose their rigid

intermediate input quantities to maximize expected real value of their profits given

their information;

(ii) at t = 1, firms set their nominal prices and choose their labor and flexible interme-

diate inputs to maximize profits, taking the realized demand and their rigid input

quantities as given;

(iii) the competitive producer in each industry chooses inputs to maximize its profits

given prices;

(iv) the representative household chooses consumption and labor supply to maximize

utility subject to its budget constraint;

(v) the labor market is in equilibrium, i.e., condition (2.5) is satisfied;

(vi) all sectoral good markets clear, i.e.,

yi = ci +
n∑
j=1

∫ 1

0

xji,kdk for all i ∈ N .(2.6)

Equilibrium conditions (ii)–(vi) are all standard—capturing firm and household op-

timizing behavior and consistency restrictions on quantities—with the measurability

constraints on the rigid quantities captured by condition (i). Note that while firms in

our model are subject to quantity adjustment frictions, they nonetheless optimally plan

their production process in anticipation of future shocks subject to their information

sets.

2.3. Equilibrium Characterization

In this section, we characterize the equilibrium in terms of model primitives, namely,

the economy’s production network structure, the set of rigid and flexible intermediate

inputs, and the information sets of firms in each industry. We do so via backward in-

duction.
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Starting with decisions at t = 1, recall that firms optimally choose their labor and

flexible intermediate input quantities to meet the realized demand. This means that

firm k in industry i faces the following cost-minimization problem:

(2.7)

(lik, {xij,k}j∈Fi
) ∈ argmin wlik +

∑
j∈Fi

pjxij,k

s.t. yik = ziζil
αi
ik

n∏
j=1

x
aij
ij,k,

while taking prices, realized demand, and rigid intermediate input quantities as given.

Next, turning to the firm’s price-setting decision, the firm sets its nominal price opti-

mally to maximize profits while taking its rigid intermediate inputs and all other nomi-

nal prices as given, that is,

pik ∈ argmax (1− τi)pikyik − wlik −
∑
j∈Fi

pjxij,k(2.8)

subject to the demand curve yik = (pik/pi)
−θiyi and the labor and flexible intermediate

input optimality condition (2.7). Finally, at t = 0, firm k in industry i chooses its rigid

intermediate input quantities to maximize expected real value of its profits given its

information, that is,

({xij,k}j∈Ri
) ∈ argmax Ei

[
U ′(C)

P

(
(1− τi)pikyik − wlik −

n∑
j=1

pjxij,k

)]
,(2.9)

where Ei[·] denotes the expectation operator with respect to the information set of firms

in industry i, U ′(C) = 1/C is the household’s marginal utility, and P is the nominal price

of the consumption good bundle.

Given the above, we can characterize the equilibrium by solving for the optimization

problems (2.7)–(2.9) recursively and imposing the market clearing condition (2.6) for all

industries i. To present the equilibrium characterization result, let λi = piyi/PC denote
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industry i’s Domar weight, defined as its sales as a fraction of GDP. Given that all firms

in the same industry have identical technologies and information sets, we can drop the

firm index k in our characterization. We have the following result:

Proposition 1. Equilibrium nominal prices and Domar weights solve the system of

equations:

pi =
1

zi
wαi

∏
j∈Fi

p
aij
j

∏
j∈Ri

(
m
Ei[pj/m]

Ei[λi]/λi

)aij
(2.10)

and

λi = βi +
∑
j:i∈Fj

ajiλj +
∑
j:i∈Rj

ajiEj[λj]
pi/m

Ej[pi/m]
(2.11)

for all i ∈ N , where m is the nominal aggregate demand and w is the nominal wage.

Proposition 1 provides a system of 2n equations and 2n unknowns that expresses

sectoral Domar weights (λ1, . . . , λn) and nominal prices (p1, . . . , pn) in terms of the firms’

information sets, the realized productivity shocks, the nominal wage, and nominal ag-

gregate demand, m.

Focusing on equation (2.10), it is easy to verify that if firms in industry i are not

subject to real rigidities—either because all their inputs are flexible or because they

receive completely informative signals—then (2.10) reduces to pi =
1
zi
wαi

∏n
j=1 p

aij
j . In

other words, the nominal price of industry i is simply equal to its nominal marginal cost,

as anticipated. More generally, however, as equation (2.10) indicates, the nominal price

of industry i depends on industry i’s expectation of the prices of its rigid intermediate

inputs relative to nominal aggregate demand, Ei[pj/m], as well as its expectation of its

own equilibrium Domar weight, Ei[λi]. To see the intuition for these dependencies, note

that either an increase in Ei[pj/m] or a decrease in Ei[λi] result in a reduction in the

quantity xij of good j that firms in industry i demand at t = 0. Given that this quantity is
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sunk by the time firms set their prices at t = 1, a lower xij is akin to a lower productivity

from the point of view of firms at t = 1, thus inducing firms in industry i to set a higher

nominal price.

The intuition underlying equation (2.11) is similar. Recall that the Domar weight

of industry i—which represents that industry’s size in equilibrium—would be larger

when it faces higher demand from its downstream customers (larger xji’s). Also recall

that the demand from a customer j that is subject to real rigidities is increasing in

Ej[λj] and is decreasing in Ej[pi/m]. Therefore, as is evident from (2.11), λi increases

in its customers’ expectations of their size and decreases in their expectations of i’s

price. Finally, note that, if none of i’s customers are subject to quantity adjustment or

informational frictions, then equation (2.11) implies that λi = βi +
∑n

j=1 ajiλj , as would

be the case in the benchmark models of production networks (Carvalho and Tahbaz-

Salehi, 2019; Baqaee and Rubbo, 2022).

As already mentioned, Proposition 1 characterizes equilibrium nominal prices and

Domar weights in terms of the nominal wage and nominal aggregate demand. Given

prices and Domar weights, one can then characterize the entire allocation in terms ofm

and w. In particular, from the definition of λi, it follows immediately that the output of

industry i is given by yi = λim/pi. Also, as we show in the proof of Proposition 1, industry

i’s demand for its flexible and rigid intermediate inputs are given by

xij =


aijmλi/pj if j ∈ Fi

aijEi[λi]/Ei[pj/m] if j ∈ Ri,

(2.12)

respectively. Finally, the household’s first-order conditions imply that ci = βim/pi.

To see how quantity adjustment and informational frictions shape firms’ sourcing

decisions, it is instructive to consider the log-quadratic approximation to equation (2.12)
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for inputs j ∈ Ri:

log xij = log aij + Ei[log si] +
1

2
vari(log si) + covi(log si, sdf)

− Ei[log p̂j]−
1

2
vari(log p̂j)− covi(log p̂j, sdf),

where si = piyi/P is the real sales of industry i, p̂j = pj/P is the real price of good

j, sdf = logU ′(C) is the log stochastic discount factor (SDF), and vari(·) and covi(·, ·)

denote, respectively, the variance and covariance operators conditional on the infor-

mation sets of firms in industry i. A few observations follow. First, note that log xij

is not only decreasing in the expected value of the (log) real price of industry j, but

also in its variance. This reflects the fact that the two frictions induce firms in industry

i to rely more heavily on suppliers with less volatile prices, even if this comes at the

cost of forgoing inputs that are cheaper in expectation. Second, observe that log xij

is decreasing in the covariance of the log price of good j with the log SDF. This term

reflects the fact that firms in industry i reduce their demand for input j if it tends to be

more expensive in the states of the world with a high marginal utility of consumption.

Finally, the term covi(log si, sdf) indicates that firms in industry i increase their demand

for all inputs if they have higher sales in the states of the world with high marginal utility.

As a final remark on Proposition 1, we note that while nominal aggregate demand m

is a model primitive (and a proxy for demand shocks), the nominal wagew is an endoge-

nous object that is determined in equilibrium. The following simple lemma completes

the characterization of equilibrium by providing an additional equation that expresses

the nominal wage in terms of nominal aggregate demand, the minimum nominal wage,

and sectoral Domar weights:
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Lemma 1. The nominal wage is given by

w = max

mχ η
1+η

(
n∑
i=1

αiλi

) 1
1+η

, w̄

 .(2.13)

Furthermore, in the special case that labor supply is fully elastic, w = max {χm, w̄}.

Taken together, Proposition 1 and Lemma 1 provide a complete (albeit implicit) char-

acterization of equilibrium in the presence of informational frictions and real rigidi-

ties. Unfortunately, in general—and unless one imposes some discipline on the econ-

omy’s information structure—system of equations (2.10)–(2.13) does not lend itself to

a closed-form solution. This is due to two sources of complexity in the model. First,

as in Golub and Morris (2018), La’O and Tahbaz-Salehi (2022), and Bui et al. (2023), the

presence of network interactions in the economy means that the equilibrium depends

not only on the firms’ first-order expectations, but also on their expectations of higher

order. This is because firms need to forecast their Domar weights and input prices,

which depend not only on the firms’ own forecasts of the realized shocks, but also

on their forecasts of other firms’ forecasts, and so on. Second, and in contrast to the

prior literature, the relevant higher-order expectations do not have a simple iterative

representation in terms of cross-sectional (weighted) averages of firms’ lower-order ex-

pectations. To see this, note that, according to (2.10), the nominal price set by firms

in industry i depends on i’s expectation of its input prices—an object that depends on

the actions of its upstream suppliers—as well as on i’s expectation of its own Domar

weight—an object that is determined by the demand from its downstream customers.

This means that the equilibrium depends on iterations of expectations both upstream

and downstream over the network, significantly complicating how informational fric-

tions interact with the production network structure.9

9See the economy in Subsection 2.4.3 for a more detailed discussion.
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To explore the implications of Proposition 1 in a transparent manner, in the next

section we study various special cases of the general setting in Section 2.2 by focusing on

particular information structures. However, before doing so, we conclude this section

by studying the equilibrium’s efficiency properties.

Recall that if either (i) all firms observe perfectly informative signals about the real-

izations of the shocks or (ii) all inputs of all firms are flexible, then the model in Section

2.2 reduces to a standard production network model, where all firms price at marginal

cost.10 This means that in the absence of informational frictions and real rigidities—and

as long as the downward nominal wage rigidity constraint does not bind—the equilib-

rium is (first-best) efficient. However, such a strong efficiency result no longer holds if

frictions limit firms’ ability to adjust their input quantities in response to shocks, as a

planner could improve welfare by changing firms’ input and output quantities contin-

gent on the shocks’ realizations. Nonetheless, our next result establishes that, despite

the frictions, the equilibrium remains constrained efficient in the sense of Angeletos and

Pavan (2007): a planner who is subject to the same informational and quantity rigidity

frictions cannot improve upon the equilibrium welfare.

Proposition 2. If the downward nominal wage rigidity constraint does not bind, then

the equilibrium is constrained efficient.

This proposition extends the constrained efficiency result of Angeletos et al. (2016)

to an economy with non-trivial input-output linkages and an arbitrary specification

of rigid and flexible inputs. It establishes that, in the absence of nominal rigidities,

the equilibrium remains constrained efficient irrespective of the economy’s production

network structure, the set of rigid and flexible inputs of each industry, and the particular

10Even though firms in each industry are monopolistically competitive, setting the industry-specific taxes
in (2.2) to τi = 1/(1 − θi) undoes the effect of monopolistic markups and ensures that there are no
distortions due to market power.
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information structure. Proposition 2 also establishes that, despite the complex nature

of interactions between firms’ expectations over the production network captured by

equations (2.10) and (2.11), more precise information unambiguously improves equi-

librium welfare: since more precise information improves welfare in the planner’s solu-

tion, it would also do so in equilibrium.

2.4. Closed-Form Results

As discussed in the previous section, unless one imposes some discipline on either

the economy’s information structure or its production network architecture, equilib-

rium conditions (2.10)–(2.13) do not lend themselves to closed-form solutions. There-

fore, to explore the implications of Proposition 1 and Lemma 1 in a transparent manner,

we next focus on various special cases of the general setting in Section 2.2 that allow us

to explicitly characterize the equilibrium in terms of model primitives.

2.4.1. Frictions in a Single Industry

As a first special case of the general setting in Section 2.2, we assume that only one single

industry is subject to the quantity adjustment and informational frictions. Specifically,

we assume that firms in industry r are the only firms in the economy with incomplete

information about the realizations of productivity shocks (z1, . . . , zn) and the aggregate

demand shock, m. Firms in all other industries are not subject to real rigidities and

make all their decisions at t = 1, that is, Ri = ∅ for all i ̸= r. Focusing on this special

case allows us to identify the role played by real rigidities and informational frictions at

each industry separately.

We also impose the following assumption on the economy’s production network

structure:

Assumption 1. ℓirℓri = 0 for all industries i ̸= r.
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To interpret the above assumption, recall that the (i, j) element of the economy’s

Leontief inverse, ℓij , captures the extent to which industry i relies on industry j as a

(direct or indirect) input supplier. Therefore, under Assumption 1, there is no industry i

in the economy that is simultaneously upstream and downstream to r. We impose this

assumption to tease out the role of upstream and downstream relationships vis-à-vis

industry r in the most transparent manner. Finally, to investigate the impact of sup-

ply shocks separately from that of demand shocks, we first assume that the downward

nominal wage rigidity constraint does not bind, making shocks to nominal aggregate

demand neutral for real outcomes. We have the following result.

Proposition 3. Suppose r is the only rigid industry, Assumption 1 is satisfied, and the

downward nominal wage rigidity constraint does not bind.

(a) Then, to a first-order approximation,

logC = logC∗ − λssr
1 + 1/η

(
1− λssr

∑
i∈Rr

ari
) ∑
j∈Rr

n∑
i=1

arjℓji(log zi − Er[log zi]),(2.14)

where logC∗ =
∑n

i=1 λ
ss
i log zi − 1

1+1/η
logχ is the log output in the absence of frictions.

(b) Additionally, if labor supply is fully elastic (η → ∞), then

logC = logC∗ − λssr
∑
j∈Rr

arjKr

(
−

n∑
i=1

ℓji log zi

)
,(2.15)

where Kr[x] = logEr[ex]− x.

Proposition 3 characterizes the impact of productivity shocks on aggregate output

when firms in industry r face informational frictions in setting up their production pro-

cesses. Statement (a) characterizes aggregate output in terms of model primitives to

a first-order approximation, whereas statement (b) provides an exact characterization

for the special case that labor supply is fully elastic. It is immediate to see that the

last terms on the right-hand sides of (2.14) and (2.15) vanish when firms in industry
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r have complete information about the realizations of productivity shocks—and hence

make all their price and quantity decisions with full anticipation of all shocks. In such a

case, the expressions in (2.14) and (2.15) reduce to the standard result in the literature,

according to which the impact of a productivity shock to industry i on aggregate output

is equal to its pre-shock Domar weight, λssi . However, (2.14) and (2.15) also show that

such a simple relationship no longer holds if firms in industry r face uncertainty about

the productivity of their upstream supply chains. Specifically, the result in Proposition

3 leads to the following observations.

First, the expression in (2.15) illustrates that an increase in the uncertainty faced by

firms in the industry with rigid inputs translates into unambiguously lower (expected)

aggregate output. In particular, taking unconditional expectations from both sides of

(2.15) and using the observation that E[logEr[ex] − x] > 0 for any non-degenerate ran-

dom variable x implies that E[logC] < E[logC∗]. This is, of course, intuitive: the fact

that firms in industry r make (some or all of) their intermediate input decisions under

incomplete information about productivity shocks induces them to rely more heavily

on less volatile suppliers, even if this comes at the cost of forgoing more efficient ones.

This role of uncertainty can be seen more clearly if one considers a second-order ap-

proximation to (2.15):

E[logC] = E[logC∗]− 1

2
λssr
∑
j∈Rr

arjE

[
varr

(
n∑
i=1

ℓji log zi

)]
,(2.16)

which captures how higher uncertainty—as measured by the conditional variance of

productivities—reduces expected aggregate output.

Second, the last term on the right-hand side of (2.15) (or its second-order approxi-

mation in (2.16)) indicates that the negative impact of informational frictions on aggre-

gate output is increasing in industry r’s Domar weight, as well as in r’s uncertainty about

the supply chains of each of its rigid intermediate inputs separately, varr (
∑n

i=1 ℓji log zi).
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Not surprisingly, this uncertainty is weighted by the importance of industry j in r’s

production technology (as captured by the expenditure share arj). This means that, all

else equal, a rigid industry r functions as a tighter “production bottleneck” for the entire

economy if it is simultaneously (i) a larger supplier in the economy (as captured by the

larger Domar weight, λssr ) and (ii) a more important direct or indirect customer of other

firms in the economy (proxied by greater arj and ℓji).

Third, one can use Proposition 3 to obtain an expression for how microeconomic

shocks translate into macroeconomic outcomes. Under the assumption that industry-

level productivity shocks are independent, equation (2.14) implies that the slope coeffi-

cient of regression

logC = γ0 + γi log zi + εi(2.17)

—which captures the (average) first-order impact of shocks to industry i on aggregate

output—is given by

γi = λssi −

(
λssr

1 + 1/η
(
1− λssr

∑
i∈Rr

ari
) ∑
j∈Rr

arjℓji

)
κri,(2.18)

where κri = E[varr(log zi)]/ var(log zi) parameterizes the uncertainty of firms in industry

r about shocks to industry i (as defined in (2.3)).11 Equation (2.18) establishes that, in

the presence of real rigidities and informational frictions, (i) the first-order impact of

productivity shocks is dampened compared to the predictions of Hulten’s theorem for

the fully flexible benchmark, for which the first-order impact of a shock to industry i

is equal to λssi irrespective of the value of η; (ii) this dampening effect is stronger the

more uncertain firms in industry r are about the shock’s realization and the more elastic

the labor supply is; and (iii) the extent to which shocks to industry i shape aggregate

11Regression coefficient γi serves as the counterpart to d logC/d log zi in our incomplete-information
economy.
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outcomes depends on the size of the rigid industry r and the extent to which r is exposed

(directly or directly) to those shocks (as captured by
∑

j∈Rr
arjℓji).

Finally, it is worth pointing out that whereas aggregate labor supply in the frictionless

economy is independent of the shocks (because of the household’s logarithmic utility),

that is no longer the case in the presence of informational frictions. This is because of

the fact that rigid input choices of firms in industry r are not indexed to the realization

of shocks, and yet, all good markets have to clear irrespective of the shocks’ realizations.

The only way this can happen is for aggregate labor supply to adjust in response to the

shocks. For example, aggregate labor supply has to rise if realized shocks turn out to be

smaller than the firm’s expectations.

We next turn to the implications of demand shocks for output and inflation. To

ensure that such shocks have a non-trivial impact on real variables, we focus on the case

in which the downward nominal wage rigidity constraint bind. We have the following

counterpart to Proposition 3.

Proposition 4. Suppose r is the only rigid industry and Assumption 1 is satisfied. If

the downward nominal wage rigidity constraint binds, and in the absence of productivity

shocks,

logC = logm− log w̄ −

(
λssr
∑
j∈Rr

arj

)
Kr (− logm)(2.19)

logP = log w̄ +

(
λssr
∑
j∈Rr

arj

)
Kr (− logm) ,(2.20)

where Kr[x] = logEr[ex]− x.

This result shows that the real rigidities and firms’ uncertainty about the realiza-

tion of demand shocks reduce aggregate output, while increasing the price level (which

serves as a proxy for inflation in our model). For example, it is immediate to see that the
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expression for logC in (2.19) can be approximated by logC = logm − log w̄ − (logm −

Er[logm] + 1
2
varr(logm))λssr

∑
j∈Rr

arj to a second order, thus indicating that an increase

in varr(logm) would reduce aggregate output.

As with supply shocks, one can use Proposition 4 to characterize the (average) first-

order impact of demand shocks on output and inflation by calculating the slope coeffi-

cients of the following regressions:

logC = γ0 + γm logm+ εm(2.21)

logP = δ0 + ϕm logm+ εm.(2.22)

Using equations (2.19) and (2.20), it is easy to verify that

γm = 1− ϕm and ϕm =

(
λssr
∑
j∈Rr

arj

)
µr,(2.23)

where µr = E[varr(logm)]/ var(logm) parameterizes the uncertainty of firms in indus-

try r about the realization of logm, as defined in (2.4). Given that ϕm > 0 whenever

µr(logm) > 0, it follows immediately that real rigidities and informational frictions

dampen the real effect of positive aggregate demand shocks, while increasing their in-

flationary effects. Not surprisingly then, both of these effects are determined by the size

of the rigid industry, λssr , and the extent to which it relies on rigid intermediate inputs,∑
j∈Rr

arj .

It is also instructive to compare the coefficients γm and ϕm in (2.23) with the results of

Baqaee and Farhi (2022), who find that, in a Cobb-Douglas economy with a single factor

of production subject to nominal wage rigidity, aggregate demand shocks translate one-

for-one to aggregate output, with no impact on inflation. They also show that, hold-

ing sectoral Domar weights constant, the details of the economy’s production network

structure are irrelevant for how aggregate demand shocks impact aggregate output. As is
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evident from (2.23), neither statement is no longer true in the presence of informational

frictions: the real effect of aggregate demand shocks is dampened, a positive demand

shock leads to an increase in the price level, and both effects depend on the production

network structure.

2.4.2. Public Information

By focusing on an economy with a single rigid industry, the results in Subsection 2.4.1

abstract from the possibility that firms may be subject to multiple rigid suppliers and

customers. In this subsection, we apply the general result in Proposition 1 to an econ-

omy in which firms in all industries have access to the same public information about

the shocks (that is, ωi = ω for all industries i). Focusing on such an economy allows us

to explore how the impact of real rigidities can build up over production chains.

To express our results in this more general case, it is convenient to define the follow-

ing objects. Let Af denote the matrix whose (i, j) element is equal to the corresponding

element of matrix A if j ∈ Fi and is equal to zero otherwise. Therefore, Af captures

input-output relationships that are flexible and are not subject to quantity adjustment

frictions. Similarly, we define matrix Ar = A−Af to capture input-output relationships

that are subject to frictions. Finally, let Lf = (I − Af )
−1 denote the Leontief inverse

corresponding to the flexible inputs in the economy. We have the following result.

Proposition 5. Suppose all firms share a common information set and the downward

nominal wage rigidity constraint does not bind. If labor supply is fully elastic, then

E[logC] = E[logC∗]− 1

2
λss′Ar diag(Q) +

1

2
λss′ diag(Ar1) diag(H

′QH),(2.24)
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to a second-order approximation, where H = diag(A′
rλ

ss)Lfdiag
−1(λss),

Q =
∞∑
k=0

(Lf diag(Ar1)H
′)
k E[varω(Lf log z)]

(
H diag(Ar1)L

′
f

)k
,

and varω(·) denotes the conditional variance-covariance matrix with respect to the firms’

common information set.

This result generalizes Proposition 3 by allowing for multiple rigid industries and an

arbitrary pattern of rigid and flexible inputs, while also relaxing Assumption 1. In fact, it

is easy to verify that if there is a single industry with rigid inputs r and if Assumption 1 is

satisfied, then H diag(Ar1) = 0, in which case Q = E[varω(Lf log z)] and as a result, (2.24)

reduces to the expression in (2.16). Given its generality, we will use the characterization

in Proposition 5 as the basis of our quantification exercise in Section 2.5.

While significantly more involved than Proposition 3, the above result captures the

same economic force, according to which an increase in firms’ uncertainty about the

shocks reduces aggregate output. The intuition is also similar: the fact that intermediate

input decisions are sunk by the time firms observe the realized productivities means

that they shift their demand from more uncertain suppliers to more reliable ones, even

if it comes at the cost of lower (expected) productivity.

Next, turning to demand shocks in this setting, we can establish the following result:

Proposition 6. Suppose all firms share a common information set, the downward

nominal wage rigidity constraint binds, and labor supply is fully elastic. Then, in the



69

absence of productivity shocks,

E[logC] = E[logm]− log w̄ − 1

2
λss′ (Ar diag(G)− diag(Ar1) diag(H

′GH))E[varω(logm)]

(2.25)

E[logP ] = log w̄ +
1

2
λss′ (Ar diag(G)− diag(Ar1) diag(H

′GH))E[varω(logm)]

(2.26)

to a second-order approximation, where

G =
∞∑
k=0

(Lf diag(Ar1)H
′)kLfαα

′L′
f (H diag(Ar1)L

′
f )
k.

2.4.3. Dispersed Information and Higher-Order Expectations

While the information structure in Subsection 2.4.2 exhibits incomplete information

throughout the economy, it abstracts from the possibility that information may be dis-

persed among different firms, as all signals are assumed to be publicly observable. This

allows for a significant degree of coordination between different firms in the economy:

firms can use these public signals to coordinate not only with their direct suppliers and

customers, but also with potentially distant firms on their supply chains. We therefore

conclude this section by studying the implications of heterogeneity in the firms’ infor-

mation sets. In order to keep the analysis tractable, we focus on a simple production

network structure.

Consider the economy depicted in Figure 2.1 consisting of three industries organized

on a vertical production chain, where industry 3 is the sole input supplier to industry 2

(with expenditure share a23 = a2) and industry 2 is the sole input supplier to industry

1 (with expenditure share a12 = a1). Furthermore, assume that industry 3 only uses

labor for production (α3 = 1) and that industry 1 is the only industry that sells to the

households (β1 = 1). We have the following result:
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1

2

3

Figure 2.1. Vertical Production Network

Note: Each vertex corresponds to an industry, with a directed edge present from one vertex to another if
the former is an input-supplier to the latter. In addition to intermediate inputs, all firms use labor as an
input for production (not depicted in the figure).

Proposition 7. Suppose labor supply is fully elastic and thatm < w̄/χ. In the absence

of productivity shocks,

logC = logm− log w̄ − a1(1− a2)
∞∑
s=0

as2

(
logm− (E1E2)

sE1[logm]
)

(2.27)

logP = log w̄ + a1(1− a2)
∞∑
s=0

as2

(
logm− (E1E2)

sE1[logm]
)

(2.28)

to a first-order approximation, where (E1E2)
s+1[·] = E1E2[(E1E2)

s[·]].

Proposition 7 illustrates that, when information is dispersed, the impact of aggre-

gate demand shocks on aggregate output and the price level depends on not just firms’

first-order expectations but also on all expectations of higher order. As is well-known,

higher-order beliefs adjust more sluggishly than first-order beliefs (Angeletos and Huo,

2021). Therefore, equations (2.27) and (2.28) underscore how rigidities build up over

the production chain, dampening the real effects of positive monetary shocks, while

amplifying their inflationary effects.

That firms’ higher-order expectations can matter for aggregate economic outcomes

is not, in and of itself, novel, and it is line with prior work such as Golub and Morris
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(2018), Angeletos and Lian (2016, 2018), and La’O and Tahbaz-Salehi (2022), among oth-

ers. What distinguishes the expressions in Proposition 7 from the results in prior work is

how these higher-order expectations matter for aggregate output and price level. In par-

ticular, even though goods flow only in one direction in this economy—from upstream

suppliers to their downstream customers—the macroeconomic variables in (2.27) and

(2.28) depend on the iterated expectations in both directions: the supplier’s expecta-

tions of the customer’s expectation and vice versa. This is a consequence of the fact that,

when choosing their input quantities, firms need to form forecasts not only about their

suppliers’ input prices, but also about demand from their customers.12 But of course

the same logic applies to those customers and suppliers as well, resulting in an infinite

regress of expectations between firms in industries 1 and 2.

To further explore the implications of dispersed information in the vertical economy

in Figure 2.1 and the expressions in Propositions 7, it is instructive to focus on a para-

metric information structure with normally distributed shocks and signals. Specifically,

suppose all firms in the economy have a common prior about the aggregate demand

shock: logm ∼ N(0, 1). Additionally, suppose that firms in industry i ∈ {1, 2} receive a

public and a private signal ωi = (s̃, si), where

(2.29)
s̃ = logm+ ϵ̃ ϵ̃ ∼ N(0, σ2/(1− δ))

si = logm+ ϵi ϵi ∼ N(0, σ2/δ),

noise terms (ϵ1, ϵ2, ϵ̃) are independent, and δ ∈ (0, 1) and σ2 > 0 are parameters. Note

that the parametrization in (2.29) implies that firms’ uncertainty about logm is the same

irrespective of the value of δ. In particular, vari(logm) = σ2/(1+σ2) for all δ ∈ (0, 1). This

means that δ parameterizes the strength of the private signal vis-à-vis the public signal:

12Importantly, as one can see from equations (2.10) and (2.11), the suppliers’ and customers’ expectations
do not appear symmetrically.
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as δ → 1 all information is private, whereas at the other end of the spectrum as δ → 0 all

information is public.

Corollary 1. Under the information structure in (2.29), the first-order effects of an

aggregate demand shock on aggregate output and the price level are given by

γm = 1− ϕm and ϕm = a1σ
2 (1 + σ2) + a2δσ

2

(1 + σ2)2 − a2δ2σ4
,

where γm and ϕm are the coefficients of regressions (2.21) and (2.22), respectively.

Corollary 1 illustrates how δ, which parameterizes the extent of information disper-

sion, shapes the shock’s aggregate impact. Specifically, it is easy to verify that a more

dispersed information (i.e., a larger δ) results in greater inflation in response to positive

aggregate demand shocks. This reflects the fact that with dispersed information, it is

harder for firms in the supply chain to coordinate their production decisions with an-

other. This diminishes the real effect of positive aggregate demand shocks and implies

that such shocks manifest themselves as higher inflation.

2.5. Quantitative Analysis

In this section, we use our theoretical results to quantify the effect of informational

frictions and real rigidities on aggregate output in a calibrated version of the model. We

calibrate our model at a quarterly frequency. This amounts to assuming that firms are

unable to adjust their rigid inputs within a quarter after the realization of the shocks. For

this quantitative analysis, we also ignore the role of downward nominal wage rigidities

by setting the lower bound on the nominal wage to w̄ = 0.

As is typical in the literature on production networks, we calibrate the model to the

U.S. data using input-output tables constructed by the Bureau of Economic Analysis

(BEA). These tables provide intermediate input expenditures by various industries, as
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well as each industry’s contribution to final uses. However, to calibrate the model, we

also need to specify (i) the sets of rigid and flexible inputs for each of the industries in

the sample, as well as (ii) each industry’s corresponding information set. We therefore

start by discussing how we specify each of these.

Rigid and Flexible Inputs. To designate the sets of flexible and rigid inputs, we distin-

guish between intermediate inputs and investment goods each industry purchases from

other industries. As mentioned in the Introduction, whereas the average lead time for

obtaining production materials for manufacturing firms in the United States in January

2023 was 87 days, the average lead time for acquiring capital inputs—such as machinery,

plant equipment, software and the like—was roughly twice as large (166 days). Similarly,

while only 6% of firms faced lead times of over one year for their intermediate inputs,

the same number was 23% for capital inputs (Institute for Supply Management, 2023a).

Given this disparity in lead times, for the purpose of the calibration, we designate in-

vestment goods used by each industry as that industry’s rigid inputs, while treating

intermediates as flexible.

To calibrate the model according to the above criterion, we rely on the “investment

network” constructed by vom Lehn and Winberry (2022). Focusing on a 37-sector dis-

aggregation of the entire private nonfarm economy, vom Lehn and Winberry (2022)

construct an annual network of flows that measures the share of the total investment

expenditure of a given sector i that is purchased from another sector j for each pair of

sectors (i, j) in the economy. We treat these shares as the corresponding expenditure

shares on rigid inputs in our model, while setting expenditure shares on intermediates

equal to the expenditure shares on flexible inputs. To be more specific, we consider

the following static variant of Horvath’s (2000) model, where each industry i produces
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inputs according to the following constant returns production technology:

yi = ziζil
αi
i k

ρi
i

n∏
j=1

x
ψij

ij , αi + ρi +
n∑
j=1

ψij = 1,(2.30)

where ζi is a normalization constant, xij is the intermediate input purchased from in-

dustry j, ψij captures the expenditure share on intermediate input j, ρi is the share of

capital, and ki is the capital input, which itself is produced from other industries’ output:

ki =
n∏
j=1

g
γij
ij ,

n∑
j=1

γij = 1,(2.31)

where gij is the amount of industry j’s output used by industry i as an input into i’s

capital bundle. The market-clearing condition for the good produced by industry i is

thus given by

yi = ci +
n∑
j=1

xji +
n∑
j=1

gji,(2.32)

thus accounting for the fact that the output of industry i can either be consumed by the

households, used as an intermediate input by other industries, or serve as an input in

other industries’ capital bundle.13 Therefore, in this model—and unlike the model in

Section 2.2—the output of industry j takes a dual role in the production technology

of industry i: once as an intermediate input and once as an input in i’s investment

bundle. Nonetheless, the model in equations (2.30)–(2.32) can be mapped to the model

in Section 2.2 in a straightforward manner. By designating the capital bundle ki as a

separate industry whose inputs are all rigid and using the output of this industry as

a (flexible) input in the production technology of industry i (with share ρi), equations

13This model coincides with the model in vom Lehn and Winberry (2022) when the depreciation rate of
capital in their model is set equal to 100%, in which case the stock of capital in each industry becomes
equal to the investment good.
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(2.30)–(2.32) reduce to the model in Section 2.2, with the following (expanded) input-

output matrix:

A =


Ψ diag(ρ)

Γ 0

 ,

where Ψ = [ψij] and Γ = [γij] denote the matrices corresponding to the intermediate

input and investment networks in equations (2.30) and (2.31), respectively, and diag(ρ)

is a diagonal matrix with entries equal to the capital shares in each industry. We can

thus calibrate matrix A using the network data of vom Lehn and Winberry (2022).

Information Sets. Next, we turn to specifying the information sets. To this end, we

construct the variance-covariance matrix of (log z1, . . . , log zn) by first detrending the

TFP process for each industry and then setting the variance-covariance matrix of the

log-productivity shocks equal to the empirical variance-covariance matrix of the de-

trended processes. This amounts to assuming that while firms observe all past produc-

tivity shocks and are aware of their corresponding trends, they do not observe produc-

tivity innovations at the beginning of each quarter. Finally, note that this specification of

information structure means that all firms share a common information set (or equiva-

lently all signals are public).

Quantitative Analysis. With the economy’s information structure and the sets of flex-

ible and rigid inputs specified, we now turn to the quantitative assessment of our model’s

implications.

As a first exercise, we quantify the role of informational and quantity adjustment

frictions for aggregate output. Recall that we assume that (i) all firms share the same

common information structure, (ii) all intermediate inputs purchased from other in-

dustries are fully flexible, and (iii) all inputs purchased to construct the capital bundle
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are rigid. We can therefore use equation (2.24) in Proposition 5 to measure the drop in

expected output due to the presence of frictions, where the matrices corresponding to

the flexible and rigid inputs are given by

Af =


Ψ diag(ρ)

0 0

 and Ar =


0 0

Γ 0

 ,

respectively.

Using the calibrated model to calculate the expression on the right-hand side of

(2.24), we find that informational frictions and real rigidities result in roughly a 1% drop

in aggregate output (measured as a percentage of steady-state consumption). This means

that, according to our calibration, the interaction of the two frictions with the economy’s

production network can generate significant macroeconomic effects.

To get a more granular picture of the sources of this output loss, in a second exercise,

we calculate the expected drop in aggregate output while assuming that only capital

inputs purchased from a single industry r are subject to informational and quantity

adjustment frictions. Specifically, we assume that whereas firms in any industry i need

to commit up front to the quantity gir used for the production of their capital input,

they can flexibly adjust all other capital and intermediate inputs—including the quan-

tity of intermediate inputs xir purchased from industry r—in response to the realized

productivity shocks. To calculate the corresponding drop in aggregate output, we once

again use equation (2.24), but this time specifying matrices Af and Ar to reflect the fact

that only capital inputs from a single industry are rigid. Repeating this exercise for each

of the 37 industries in our sample allows us to rank industries based on their role as

“supplier bottlenecks” in the economy’s production network.
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Figure 2.2. Supplier Bottlenecks

Notes: The figure plots output loss as a percentage of steady-state consumption when capital inputs
purchased from a single industry are subject to frictions, while all other intermediate and capital inputs
can be adjusted flexibly. The figure only reports for the 15 industries with the largest corresponding
output loss.

Figure 2.2 reports the results for the 15 industries that result in the largest drop in ex-

pected output. At the top of the list is ‘Computer and electronic manufacturing,’ which

generates a drop in GDP equal to 0.05% of steady-state output, followed by ‘Construc-

tion’ and ‘Motor vehicles manufacturing’. Notably the resulting output loss diminishes

rapidly, indicating that a large majority of the 37 industries do not play a significant role

as supplier bottlenecks. It is also worth pointing out that four out of top six industries on

this list—construction, machinery manufacturing, motor vehicles manufacturing, and

professional/technical services—coincide with the industries vom Lehn and Winberry

(2022) identify as “investment hubs” that are responsible for producing nearly 70% of

total investment. This is to be anticipated: since these capital inputs are used widely by

many customer industries, any friction in adjusting those input quantities in response

to shocks would result in more significant aggregate effects.
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Figure 2.3. Customer Bottlenecks

Notes: The figure plots output loss as a percentage of steady-state consumption when capital inputs
purchased by a single industry are subject to frictions, while all other intermediate and capital inputs can
be adjusted flexibly. The figure only reports for the 15 industries with the largest corresponding output
loss.

As our final exercise, we repeat the previous analysis but this time assuming that

only a single industry r faces frictions when acquiring all its capital inputs, while all

other industries i ̸= r face no frictions in acquiring either their intermediate or capital

inputs. This exercise, which is in the spirit of the results in Subsection 2.4.1, allows us to

rank different industries based on their roles as “customer bottlenecks:” what fraction

of output is lost because any given industry cannot adjust its investment bundle in

response to shocks. Figure 2.3 reports the results for the 15 industries that result in

the largest drop in expected output. The picture that emerges is considerably different

from the one in Figure 2.2. This time industries with larger Domar weights—and not

necessarily larger shares in the investment network—tend to appear towards the top of

the list.
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2.6. Conclusions

In this paper, we develop a production network model, in which firms are subject

to informational frictions and real rigidities. The presence of such frictions means that

(i) firms may be restricted in how effectively they can adjust their intermediate input

quantities in response to changes in the economic environment and (ii) firms may have

to choose their quantities only with incomplete information about the realizations of

shocks. Our main theoretical result provides an implicit characterization of equilib-

rium nominal prices and Domar weights in terms of model primitives, namely, the

economy’s production network structure, the firms’ information sets, and the set of

rigid intermediate inputs. While only implicit, this result illustrates that equilibrium

prices and quantities are determined by the firms’ expectations of their upstream input

prices as well as their expectations’ of their downstream demand. We then consider

various special cases of this economy to obtain closed-form solutions for how supply

and demand shocks impact aggregate output and inflation.

A few insights emerge from the model. First, the presence of the real rigidities and

informational frictions results in an unambiguous drop in aggregate output, as firms

decide to shift demand from more efficient suppliers towards those that are less volatile.

Second, these frictions in turn reduce the passthrough of productivity shocks to aggre-

gate output and dampen the real aggregate effect of positive demand shock, while at the

same time, increasing their inflationary effect compared to the frictionless benchmark.

While aimed at incorporating two realistic frictions into an otherwise standard model

of production networks, the model developed in this paper is nonetheless still very

stylized. First, one implicit assumption in the model is that firms face the same degree

of rigidity irrespective of whether they decide to increase various quantities or decrease

them. In reality, such frictions are most likely asymmetric, as firms can more easily

reduce input and output quantities than increase them. Second, we abstracted from
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adjustment costs by assuming that once the intermediate input quantity decisions are

made, they are completely sunk and cannot be changed. But it is easy to imagine various

scenarios in which firms can adjust their production processes (even if only partially) by

incurring some adjustment costs. Third, our static model ignores the role of inventory

management as one of the key tools available to firms for responding to unanticipated

supply and demand shocks.14 We leave exploring the implications of these realistic

features for future research.

14See Ferrari (2023) for a tractable model of production networks with inventories.



81

CHAPTER 3

Production without FIRE

0I am grateful to Alireza Tahbaz-Salehi, George-Marios Angeletos, Matt Rognlie, Uri Wilensky, Laura
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facility at Northwestern University which is jointly supported by the Office of the Provost, the Office for
Research, and Northwestern University Information Technology.
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3.1. Introduction

Firms take time to produce goods. Only 8% of firms are “hand-to-mouth” and risk

ordering intermediates less than 30 days before using them in production. One reason

is that average lead time for intermediates is roughly 3 months, with more than 15% of

firms ordering at least 6 months in advance to accommodate long lead times (Institute

for Supply Management, 2023b). As a result, firms have to make some of their produc-

tion decisions in advance and the firm problem is inherently dynamic. In practice, it

often means hiring workers, setting production targets and posting prices long before

goods are sold and profits are hypothetically generated.

If firms had perfect foresight about the economy in all future periods, these pro-

duction frictions would be harmless. Firms would simply adjust production in advance

given their future demand curve to maximize their future profits. Under incomplete in-

formation, the situation is murkier. If a firm starts producing today, what will be the de-

mand when goods are finally produced and available? What will be the prevailing price

then? Firms face idiosyncratic risk at the micro level and this risk is existential because it

involves spending upfront large amount of money on intermediates, labor, capital and

overhead before revenues are generated. Indeed, post-production marketing costs only

represent 10% of firms revenues on average (Gartner, Inc., 2022). Firms frontload large

and certain payments and backload uncertain revenues, as long as production of the

good they sell is not instantaneous.

A large literature on granularity has emphasized how micro risks like demand un-

certainty can aggregate to macroeconomic fluctuations. More specifically (Pellet and

Tahbaz-Salehi, 2023; Bui et al., 2022; Kopytov et al., 2022b) have stressed the impor-

tance of production rigidities (due to inputs, labor or technology) associated with in-

formational frictions over the production networks to explain supply bottlenecks and
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inflation surprises. To account for the decentralized nature of supply chains, a key inno-

vation was to introduce heterogenous expectations and imperfect information sharing

between industries. Indeed, supply chains remain imperfectly integrated and cannot

be well approximated as a representative and centralized multi-sector firm.

However this literature still endows firms with a large amount of information about

the structure of the economy and the nature of the risk they face in the production pro-

cess. These papers only deviate slightly from the benchmark Full-Information Rational

Expectation (FIRE) framework. First, firms face a kind of uncertainty that is relatively

limited. They know the statistical distribution and the structure of the model they op-

erate in. In that sense, uncertainty is fully quantifiable and actionable. This is the

realm of known unknowns with known probabilities and state space, as opposed to a

world of unknown unknowns or “Knightian uncertainty” (Knight, 1921). Second, by the

nature of the rational expectation assumption, firms know the structural equations of

the model and reason through these equations. For example, monopolistic competitors

know the demand curve equations and use them in their maximization problem. This

fact is also common knowledge across firms, so that they can clearly reason through the

reasoning and behaviors of other firms as well. This gives rise to model structures that

often resemble that of well-defined strategic games. It is then natural to study game

theoretical solution concepts like Nash equilibrium and their predictions. This posits a

high degree of information sharing and processing across firms, especially so when the

problem they face is dynamic and spans months if not years. These assumptions are

often made for tractability reason, and it is true that they considerably simplify model

derivations and allow for analytical solutions otherwise unaccessible.

What if firms do not have access to that structural knowledge about the model itself?

When firms face this second and more radical type of uncertainty, many building blocks

of traditional FIRE models fall apart. Because firms cannot reason through structural
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equations, profit maximization alone does not suffice to guide action, since every ac-

tion leads to an unknown distribution of potential outcomes (Alchian, 1950). Firms

cannot reason through other agents’ behavior either because they lack the structural

understanding that would allow them to predict others’ behavior. In this fundamentally

uncertain environment expectations are hence necessarily mis-specified. Acknowledg-

ing their limitations and using second best reasoning, Firms use the only information

they have access to: past observations generated by the model. That is why the non-

FIRE firm is necessarily a statistician, formulating expectations conditional on past ob-

servations alone. This also implies that agents’ policy rules cannot be a function of the

model itself. Using the terminology somewhat loosely, this is akin to a measurability

constraint. The same way that firms cannot make decisions based on exogenous shocks

they have not observed yet, they cannot make decisions based on a model they do not

know.

There is strong evidence that this latter approach is closer to how the economy ac-

tually behaves, and how firms formulate expectations. Empirical evidence strongly sug-

gests persistence of price dispersion for homogeneous goods (Federal Reserve Bank

of Richmond and Trachter, 2017), failure of the law of one price, frequent backlogs

(Institute for Supply Management, 2023b) or rationing. Involuntary inventories and

unemployment are the norm rather than the exception. Yes, these facts could be cap-

tured by adding multiple frictions to a FIRE framework1. It would come at the cost

of tractability and high computational complexity, which was the reason for making

these assumptions in the first place. The fact is that FIRE-like models often have the

structure of Brouwer fixed point problems, which are hard computational problems for

modelers and firms alike (Roughgarden, 2010). Adding non-linear frictions to match

certain characteristics of the data only makes the problem harder computationally. And

1Search frictions (Burdett and Judd, 1983), exogenous price or wage rigidities are often used to model
these deviations
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yet this hard computational problem the modeler is solving is precisely the problem

firms should implicitly be solving under FIRE solution concepts.

This paper takes the view that these empirical facts are more than mere deviations

from FIRE and should be modeled accordingly. Firms operate on decentralized mar-

kets surrounded by a fog of war for at least three reasons. First, they don’t necessarily

have the incentives to coordinate with competitors, and could be hoarding information

strategically. Second, there is strong empirical evidence that sales growth and firm size

both follow fat-tailed processes, making inference harder even under complete infor-

mation (Bottazzi and Secchi, 2006). Third, there is also strong evidence that firms have

bounded rationality and limited capacity to process available information effectively

(Larsen-Hallock et al., 2022). Instead of using all public information and a well speci-

fied model to forecast sales, firms use simple linear statistical rules, i.e. mis-specified

models, to extrapolate future sales from past observations. This makes it all the more

difficult to define an optimal coordination strategy across firms. According to this view,

the fact that the aggregate economy is relatively well-behaved is the anomaly to explain.

A divine coincidence that should not be assumed ex ante by the modeler, but generated

endogenously.

In these environments fast and frugal reasoning like simple inductive or adaptive

rules become necessary and can paradoxically be more performant (Gigerenzer and

Brighton, 2009). This is what this paper focuses on, with an emphasis on the conse-

quences of frugal reasoning on macroeconomic outcomes. How sensitive is the aggre-

gate economy to the type of strategies firms are using to predict demand at the micro

level? Are business cycle characteristics a function of firms behavior and their ability

to predict what demand will be? These are the main questions this paper is trying

to answer. To capture the relevant dimensions detailed above, the model extended

from Delli Gatti et al. (2011) will include quantity rigidities, incomplete information
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and bounded rationality on the firm side à la Arthur (1994), search frictions on decen-

tralized non-Walrasian markets, price rigidities and financial frictions. Price rigidities

arise naturally given the lack of coordination around the price vector. Firms need to

post prices somewhat independently from each other before demand is realized. They

effectively face a search problem chasing the customers to sell to. Similarly, firms hire

workers for fixed-term contracts by posting vacancies and wages in advance. In that

sense both labor and goods markets are decentralized search markets. Because firms

need to produce before demand is realized, production cannot be internally financed

and requires financing. And external financing begets financial constraints. As firms try

to forecast demand the best they can, these frictions could interact in unexpected ways

and lead to interesting emergent properties at the aggregate level.

Modeling all these frictions together in a standard equation based DSGE would be

a daunting task for several reasons. By their nature, the traditional solution concepts

assumes some sort of consistency at the aggregate level. The usual practice is to use a

Nash equilibrium solution concept coordinated on prices for RBC models, or on labor

hours for New Keynesian models with nominal rigidities. Existence of a flexible margin

guarantees that the model “closes”. This assumption would be inconsistent with the

view that firms do not coordinate among each other. Heterogeneity is also particularly

costly in these types of models, and the curse of dimensionality hits relatively soon,

with very few state variables. This is particularly problematic when modeling firms with

multiple rigidities as the number of state variables increases dramatically. For instance,

decentralized labor markets with fixed term contracts make the history of posted wages

firm-level state variable. Wages history will indeed determine the average cost of goods

sold and therefore influence future production decisions.
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To circumvent these difficulties, this paper uses a different computational approach

called Agent-based Modeling (ABM). The principle is to start from the bottom-up, en-

dowing agents with policy functions at the micro level, defining precise and consistent

rules for transactions between agents and observing how this artificial economy be-

haves in the aggregate. In effect, it is taking the logic of the micro-foundation revo-

lution to its natural limit. The macroeconomy is effectively the sum of all its agents,

the same ways that humans are the sum of their cells. But because individual agents

and cells interact in complex ways, the aggregated result is non-trivial and cannot be

easily predicted from its parts. One agent is not representative of other agents, nor is

the aggregate economy well approximated by a representative agent. Heterogeneity is

a core element of this type of model. It can endogenously build up over time due to

repeated interactions and path dependencies. That is because complex interactions

can be an source of heterogeneity by themselves. One key advantage of this modeling

approach is that the marginal cost of modeling additional heterogeneity is also much

lower Because behaviors are simulated, rather than solved for under Nash equilibrium

conditions.

The literature on Agent-based models is extensive and the interested reader can

profitably read Axtell and Farmer (2023) for a recent and comprehensive account. What

I want to emphasize here is the ability of this class of models to generate emergent

behaviors at the aggregate level because aggregation is not trivial in complex systems. A

canonical example is Schelling (1971)’s segregation model which illustrates how segre-

gation can emerge in the aggregate against the preference of all agents involved. Simi-

larly, the model presented here generates business cycle fluctuations in absence of ag-

gregate shocks and despite the fact that agents have no taste for fluctuations. Business

cycles simply emerge by the aggregation of accumulated granular errors of coordination

in the system. Indeed, one of the great advantages of ABMs is to combine granularity
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with large scale interactions and realistic levels of heterogeneity to generate the type of

firm size distributions observed in the real world (Axtell, 2006).

The main result of this paper is a sufficiency result. In the stylized economy pre-

sented here, firm forecasting behavior is critical in determining the structure of the

business cycle. Inductive reasoning among firms breaks down the relationship between

quantities and prices in the simulated economies. The correlation structure of the econ-

omy is also greatly affected, with the first principal component explaining a smaller

share of the variance of the business cycle. Finally, the sales process is much more

fat-tailed in presence of inductive firms. The paper is organized as follows: Section

3.2 reviews the literature. Section 3.3 describes the model. Section 3.4 discusses the

calibration strategy. Section 3.5 presents some key results. Section 3.6 concludes.

3.2. Literature Review

This paper belongs to the literature on the origins and causes of business cycles,

which studies the mechanisms that generate fluctuations in aggregate macroeconomic

variables. The study of business cycles has a long history in macroeconomics and a

proper account is beyond the scope of this paper. Contrary to the traditional literature

on Real Business Cycles (Lucas and Prescott, 1971; Kydland and Prescott, 1982; Long and

Plosser, 1983) where exogenous TFP shocks are the necessary disturbances generating

output fluctuations, the model presented in this paper allows for fluctuations in absence

of TFP shocks thanks to micro level mismatches between supply and demand and the

finite number of firms and households.

From that perspective, this paper is similar in spirit to the literature exploring how

micro-level fluctuations can generate aggregate fluctuations with granularity (Gabaix,

2011) and propagate through the network structure of the economy (Horvath, 2000;

Acemoglu et al., 2012b; Carvalho, 2014; Carvalho et al., 2021; Baqaee and Farhi, 2019,
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2022). In particular, it is closer to Pellet and Tahbaz-Salehi (2023) where firms cannot

adjust quantities in response to unexpected demand fluctuations. The key departure

from this paper is to allow for quantity, price and wage rigidities, and therefore disequi-

librium on the labor and goods market. The flexible margins of adjustment to close the

model are involuntary inventories and unemployment, while labor and goods rationing

guarantee that demand never exceeds supply. The presence of non-Walrasian markets

in the model and the random matching process between suppliers and customers or

employers and employees will naturally introduce a random network structure in the

economy. Prices and wages are not sufficient statistics in these markets to know who

will get what. The conjonction of micro uncertainty, granularity and disequilibrium dy-

namics will propagate along the customer-supplier network and the worker-employer

network, causing feedback mechanisms and the endogenous aggregate fluctuations at

business cycle frequencies.

The endogeneity of business cycles in the model allows for a complex dynamic sys-

tem with periodicity in steady state. The possibility of limit cycles echoes a recent liter-

ature Beaudry et al. (2015, 2020a,b) reviving old ideas about endogenous cycles dating

back to Kalecki (1935); Kaldor (1940); Goodwin (1951); Guesnerie and Woodford (1993),

suggesting that the interactions across agents could, by themselves, generate fluctua-

tions in the economy. In that view, the economy naturally exhibits cyclicality and shocks

to production and demand only affect the amplitude and frequency of these cycles.

This paper also relates to the learning and bounded rationality literature (Woodford,

2013; Townsend, 1983). Faced with endogenous uncertainty about demand and lacking

a proper definition of the full problem, no unique model can be used to deduct the

optimal solution. Many possible expectation models of demand are reasonable in face

of ambiguity and heterogeneity in other firms’ beliefs. Firms would need an inaccessible

amount of information to know the true statistical process for demand. Absent a readily



90

available “rational” expectation model of the world, firms can only learn from past ob-

servations using inductive reasoning. They will adapt their production plans according

to a parametrized process developed in Arthur (1994).

This paper is also related to a long literature on inventories. Explaining inventory

management as a result of intertemporal optimization with rational expectation (Blan-

chard, 1983) has long been a focus of study. Several motives for optimal holding of in-

ventories have been proposed: the production-cost smoothing motives posit that firms

use inventories to smooth out convex costs (Eichenbaum, 1989; Kryvtsov and Midrigan,

2013). The stockout avoidance motive suggests that firms mostly hold inventories under

risk-aversion. Fixed delivery costs for intermediate inputs is an additionally source

of inventory buildup that has been proposed (Khan and Thomas, 2007). The focus of

this paper is the reverse, studying how unexpected inventory management affects firm

decisions and ultimately output. Firms in the model are lean and would ideally not hold

inventories. Because of bounded rationality and inductive reasoning, they are forced to

hold some, which will affect their future production decisions and possibly aggregate

fluctuations.

The structure of the model presented in this paper is inspired by a parallel literature

on ABMs. This literature has stressed the importance of bounded rationality with sim-

pler adaptive behaviors at the micro level but more complex interactions across agents

using micro-simulation methods imported from physics. One of fundamental charac-

teristics of micro-simulation methods is the ability to generate emergent phenomena

at the aggregated level despite having simple behaviors at the micro level2.Canonical

examples in natural sciences include traffic jams generation, flocking birds, waves in

fluid mechanics. Listing all contributions is outside the scope of this paper. In the

2Interestingly, the exact opposite is true of standard macroeconomic modeling strategies. Macro
models tend to have complex microeconomic problems (micro- foundations) and implausibly simple
interactions between these microeconomic units or even complete homogeneity (representative agent)



91

field of economics, original contributions were made in explaining segregation pat-

terns (Schelling, 1971) and the Pareto distribution of firm size (Axtell, 2006) as emergent

properties of simple individual policy rules. After the financial crisis and a renewed

interest in macro-finance topics, these methods have been exploited to study systemic

risks (Geanakoplos et al., 2012). The model is a direct extension from previous work

by Delli Gatti et al. (2011) and Gualdi et al. (2015) with non-Walrasian labor and goods

markets. The main contribution of this paper is to allow for inductive behaviors on the

firm side to forecast demand.

3.3. Model

The model presented in this section is an agent-based model extended from Delli Gatti

et al. (2011); Gualdi et al. (2015); Delli Gatti et al. (2019). As such it is a finite set of

actions taken sequentially by agents every period. Unlike DSGE models there is no

need to solve for a fixed point and equilibrium policy functions. Firms and consumers’

policy functions are the primitives of the model. In practice simulating an ABM is like

simulating a DSGE model after policy functions have been solved for, except that there

is no flexible margin guaranteeing that supply equals demand3.

As no Walrasian auctioneer magically sets prices to equate supply and demand, prices

will be set individually by each firm according to their pricing policy function. Labor is

not perfectly flexible and workers won’t supply more of it than they want to. Mismatches

on the labor and goods market will emerge as policy functions are aggregated up, some-

times leading to rationing or involuntary unemployment and inventories.

A key timing assumption is that supply, hiring and financing decisions are made

before consumption decisions, so that contemporaneous demand is not part of the

3One advantage of this approach is that it does not require the counterfactual assumption that goods
or labor supply adjusts perfectly to demand as in most New Keynesian models. See Smets and Wouters
(2007); Christiano et al. (2005) for canonical examples.



92

information set of firms. This non-Walrasian economy can see supply equate demand

on average, as firms are approximately accurate in forecasting demand over time as they

learn the statistical properties of the demand they face.

3.3.1. The agents

There are F firms and N consumers. Consumers want to consume all their cash on

hand every period. Because they get matched to a finite number of firms on the goods

market and supply decisions are sunk, they might be rationed and forced to save cash

for the next period. Consumers also own assets in the form of a fixed equity share 1
N

of all firms and receive the corresponding dividends every period. Consumers are also

endowed with one unit of labor every period that they can give to any firm in exchange

for a wage. They only take two actions in this economy: consume and supply labor.

Firms are the main focus of this model and have multiple policy rules. They have

a demand forecasting rule, a production planning rule, a pricing rule, a wage setting

rule and a hiring rule that are partly dependent on each other. Because it is not an

equilibrium model, some firms will make mistakes like overproducing or overpaying

for labor factors and generate negative profits and possibly negative equity. A Firm

that reaches negative equity at the end of the period is declared bankrupt and fires its

workers. A new firm with mean equity is created in the next period so that the number

of firms remains constant over time. At this stage it can help illustrate how the model

works by listing the sequences of actions taken by consumers and firms in one iteration

of the model.

One Iteration of the Model. The sequence of events can be summarized as follows:

(1) Firms forecast end of period sales si,t conditional on information set Ii,t

(2) Firms formulate a production plan (pi,t, Qi,t) conditional on expected sales Eisi,t

and past listed price relative to competition
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(3) Firms finance production plan with external borrowingBi,t at exogenous rate R

conditional on borrowing constraint

(4) Firms post vacancies vi,t and corresponding offered wage woi,t consistent with

the production plan and financing restrictions

(5) Unemployed workers randomly draw a fixed number of vacancies, and apply to

the highest paying wage offer

(6) Firms fill vacancies in a random order from the pool of unemployed applicants

(7) Firms produce goods conditional on production plan and financial/labor con-

straints

(8) Consumers set consumption and savings target given their income, wealth and

employment status

(9) Consumers buy goods from a random set of firms that includes the biggest one,

with a preference cheaper goods

(10) Consumers are forced to save when no goods are available to buy in the set of

firms they visited

(11) Firms pay dividends if ex post profits are positive

(12) Firms go bankrupt if ex post equity is negative

(13) Back to step 1 and repeat

3.3.2. Firm Policy Rules

In this sections I will describe the firms’ policy rules in more detail, starting with firms

and their forecasting, production, price adjustment and financing rules. In a second

part I will discuss what these rules imply in terms of inventory management and objec-

tive function.
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Adaptive Sales Forecast. Before making a production decision, a firm needs to forecast

sales. Naive firms have a simple extrapolative expectation rule4:

Esi,t = si,t−1 + ξ

where ξ is random noise that could capture news shocks5.

inductive firms have an adaptive expectation rule based on Arthur (1994). Firms

keep a history of the last 2M observations of past sales {si,t−2M , . . . , si,t−1} and past ag-

gregate sales {St−2M , . . . , St−1} each periods. Using this history, they can backtest possi-

ble forecasting strategies with memoryM by assessing the forecast error of these strate-

gies over the last M periods and pick the most accurate one. To give a simple example,

if a firm has memory 2 and is trying to forecast demand in period 5. A possible strategy

is to weight equally {si,4, si,3, S4, S3}. The firm can then look at the historical validity of

that strategy by looking at its previous prediction for period 3 and period 4.

Formally, each new firm draws J strategies corresponding to two vectors ofM scalar

weighting past firm level and aggregate level sales. Every period, these J strategies are

ranked by their ability to forecast the last M observations of individual sales. The one

that performs best is selected to predict sales in the current period.

In the limit when J → ∞, it is as if a firm with risk neutral preferences was forecasting

expected sales by estimating an AR(M) process with cross-validated parameters over

the last M observations. In other words, this limit case would correspond to natural

expectation formation with a zero weight on the rational expectation solution Fuster

et al. (2010)

4Note that even in rational expectation models, expectation formation is always backward looking.
Agents can only predict stochastic processes conditional on realized random variables, which by
definition are past observables. So the deviation here is that the forecasting rule is simple, not that it
is backward-looking.
5In practice small enough ξ shocks will tend to make pessimistic depression with zero forecasted sales,
zero output and zero income an absorbing state.
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This approach has several advantages. First, it a plausible way of formulating firms’

expectation process when faced with Knightian uncertainty(Knight, 1921). Because of

the decentralized nature of the model, neither the researcher nor the firm know the

model well enough to have a well specified model of the demand process. In that way,

it also corresponds to the type of stastistical rules that firms have been using in practice

Larsen-Hallock et al. (2022). Therefore, firms cannot formulate their decision problem

as an optimization problem and make their production plan conditional on equilibrium

demand and equilibrium prices as they would in a competitive equilibrium model. Real

and nominal rigidities combined together beget model ambiguity so that model con-

sistent expectations are not well-defined. Firms can only rely on imperfect statistical

forecasting rules, as opposed to exogenous knowledge about the model itself, to make

decisions.

Second, this specific adaptive approach is versatile among statistical forecasting rules

and accommodates complex non-linear dynamics while limiting memory and com-

putational costs. For example, exponential smoothing and auto-regressive processes

are both nested in the possible set of strategies, as long as the set of strategies is large

enough. Moving averages, trends and up to M-period cycles are other possible strate-

gies allowed by this adaptive approach

Third, it offers a strategy selection process that satisfies the condition that firms try

to “optimize” in a loose sense and would not pick an arbitrarily bad forecasting rule like

naive firms would.

Finally, this approach is computationally tractable from the modeler’s perspective,

which is essential given that the optimization step is repeated F times every period.

Why not use OLS instead? A key specificity of this algorithm is to allow for model un-

certainty through the backtesting of the strategiesM times. If firms were simply running

OLS on past observation to predict future sales, they would be using a different but still
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naive form of extrapolation based on past observations. A possible alternative would be

for firms to run a cross-validation algorithm with OLS estimation. With that alternative

strategy, firms would run OLS M times over the M different subsamples and perform

some kind of model averaging. This alternative approach is left for future research.

Production plan. After making its demand forecast, the firm decides how much to pro-

duce and at what price. Let us denote qi,t−1, si,t−1 the quantities produced and quantities

sold last period and p̄t−1 the average price for the consumer good as listed by all firms

on the market. For simplicity, firms are only able to adjust prices or quantities every

period. The action space can therefore be divided into four cases:

(1) overproduction: si,t−1 < qi,t−1 and pi,t−1 ≤ p̄t−1 : firm decreases production

relative to expected demand up to a fixed factor ηq

(2) uncompetitive: si,t−1 < qi,t−1 and pi,t−1 > p̄t−1: firm reduces listed price by up to

fixed factor ηp

(3) Increase margins: si,t−1 = qi,t−1 and pi,t−1 ≤ p̄t−1: firm increases listed price up

to fixed factor ηp

(4) Gain market share: si,t−1 = qi,t−1 and pi,t−1 > p̄t−1: firm increases production

relative to expected demand up to a fixed percentage ηq

Hence, one can write the price and sales target rules as highly non-linear functions

of multiple state variables:

sTi,t = f(Esi,t, si,t−1 − qi,t−1, pi,t−1, p̄t−1)(3.1)

pi,t = g(Esi,t, si,t−1 − qi,t−1, pi,t−1, p̄t−1)(3.2)

Note that firms won’t be allowed to price below their average cost of goods sold to

avoid firms selling at a loss. Since the only factor of production is labor, the average cost
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of goods sold is equal to the average wage paid by the firm. When work duration is one

period, this will correspond to past posted wages. When work duration is longer, cost of

goods sold will be as weighted average of wages posted in previous periods.

For firms that want to minimize inventories while maximizing sales (say for example

because the cost of an unsold good is equal to the cost of a missed sale in equilibrium),

the quantity effectively supplied will be the sales target net of existing inventories:

qi,t = sTi,t − Ii,t−1

If the forecast is correct for all firms in the economy, the economy will be in equilib-

rium. In all other cases, there will be either rationing or involuntary inventories. In that

sense, the economy is partially supply determined, as production plans collectively set

a ceiling on how much can be consumed each period. The economy remains partially

demand determined as well given that overproduction remains a possibility.

Financing needs. Firms have a simple linear production function in labor with con-

stant total factor productivity for simplicity. The production target is therefore equal to

the number of workers needed for production, and production costs can be computed

as:

payrollsi,t =

qi,t∑
c=1

Wc,t

Firms will preferably finance payrolls through internal funds Ei,t. If these funds are

insufficient, firms will borrow up to a leverage constraint:

Bi,t = min (max (payrollsi,t − Ei,t, 0) , ℓ(Et,i, si,t−1 × pi,t−1, Ii,t−1)
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The leverage constraint ℓ is a function of current equity level Ei,t, past revenues and

pledgeable inventories Ii,t−1. This is consistent with the recent corporate finance liter-

ature on corporate borrowing constraints that demonstrates how corporate financing

relies heavily on cash flow constraints, as opposed to asset constraints (Lian and Ma,

2021). This is an additional deviation from Delli Gatti et al. (2011) which uses capital

constraints.

If the firm is financially constrained, it will not be able to hire as many workers

as expected and will therefore reduce its production level to qci,t ≤ qi,t. If the level of

collateral is too low, it is possible that not even existing workers can be paid. In that case

the firm is forced to fire workers until the borrowing limit allows financing of the wage

bill.

For aggregate accounting consistency in a closed economy, aggregate firm borrow-

ing Bt will show up as consumer wealth W . The financial system is essentially transpar-

ent here, with consumers lending to firms directly.

3.3.3. The labor market

All work contracts on this labor market have a fixed duration and can only be terminated

early when firms face bankruptcy or tight financing constraints. The contract duration

is a constant parameter τ identical across firms. It can be interpreted as the number of

periods workers are expected to work with the same firm. Each period firms will have

an existing legacy payroll as a consequence of past contracts period Lli,t corresponding

to contracts that have not yet expired in period t. Firms will post vacancies if they need

new workers to reach their production target. Vacancies will therefore be equal to the

difference between production target and legacy payroll. Where legacy payroll is last

period payrolls minus worker exit at the beginning of the period Li,t−1−Ei,t. Exits could
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be due to contract expiration, or financially constrained terminations. Posted vacancies

are capped by zero since they cannot fire workers for non-financial reasons.:

Vi,t = max
(
Qc
i,t − Lli,t−1, 0

)
The assumption here is that the firm does not post negative vacancies, i.e. fire work-

ers, simply because production plan is small than existing workforce. In effect, layoffs

only happen because of financial constraints and bankruptcy in this economy. The firm

also needs to choose the posted wage at which new workers are hired:

wpi,t = max (w̄, wi,t−1 (1− ηw)) if Vi,t−1 = 0

wpi,t = max (w̄, wi,t−1 (1 + ηw)) if Vi,t−1 > 0

where w̄ is a parameter setting the minimum wage. Firms will increase posted wages

if they struggled to fill vacancies in the previous period, and lower wages if they filled all

vacancies, up to a minimum wage limit w̄.

Once firms have publicly posted vacancies, unemployed workers will randomly se-

lect Sw of them, and rank them in descending order of wage offered. Workers apply to

the top Sj . Firms that move first in accepting the application gets the worker, even if

their posted wage was not the at the maximum of the distribution. Sj can be thought

as the parameter governing how many applications unemployed workers send in the

period. Once a worker is matched to a firm, he will work for that firm for a fixed duration

Ld, unless the firm goes bankrupt or faces financial constraints. Workers that have ex-

piring contract will prioritize their former employer in the matching process, regardless

of posted wages.

Firms then select the needed number of workers from the pool of applicants. Notice

that if Fw is larger, many workers will apply to the same high paying job so that very few

will effectively be matched. Many workers will be left unemployed and firms will have
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unfilled vacancies. Hence this parameter directly drives the efficiency of the matching

process on the labor market.

After all vacancies have been filled or the pool of unemployed workers has been ex-

hausted, firms update their production plan based on their available labor force. Firms

end up producing

qrealizedi,t ≤ qci,t ≤ qi,t = sTi,t − Ii,t−1

Hence the effective production function is an indirect non-linear function of the

labor supply, expected demand, existing inventories, financial constraints and labor

constraints. Even though the production technology is apparently trivial, the sequenc-

ing of firm decisions generates complex non-linearities ex post. Aggregate fluctuations

will affect the availability of unemployed workers, corporate financing, sales targets,

inventories and feedback into the firm production plan. This mechanism will also gen-

erate non-trivial path dependencies. The presence of non-linearities will also make

revenues per factors of production endogenous, as realized sales will fluctuate for a

given workforce.

3.3.4. The goods market

Because the focus of this paper is on the production side of the economy, the goods

market is made as simple as possible. All consumers are hand-to-mouth. They want

to consume everything they have every period. Yet, demand forecasting remains non-

trivial for firms because firms do not know how many workers other firms will hire and

at what wage, so that aggregate income is highly uncertain ex ante. Supply might be too

small to fulfill demand, if for example wages have increased due to tight labor markets,

in which case consumers will be rationed and forced to save.
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In practice, consumers randomly select Sg firms as a pool of supplying firm to visit.

They also add to this list the largest firm they have interacted with last period, which

captures household preference for reliability in inventories availability. They rank these

firms in ascending order of posted price. So long as their purchasing power and the

available inventories are non-zero, consumers spend their money in the same store.

Once inventories reach zero, a they visit the next cheapest store and keep on spending

as much as they can until their cash on hand is exhausted or the store is empty, in

which case they visit the next store in their list. This iterative process stops if consumer

purchasing power goes to zero, or if it is inferior to the price of one unit of good sold

(units are indivisible here), or if the consumer has searched through all the Sg firms.

Consumers enter this market in a random order, and some might be left out from

the most affordable stores. Unsold inventories are stored for next period, net of depre-

ciation:

Ii,t = (1− δ)(Ii,t−1 + qrealizedi,t − si,t)

3.3.5. Firms entry and exit

After trading occurs on the goods market, firms’ revenues are captured by turnovers

pi,tsi,t. Net profits are computed as:

πi,t = pi,tsi,t − payrollsrealizedi,t − (R− 1)Bi,t

where payrollsrealizedi,t corresponds to labor costs after considering financial and labor

constraints. The distribution of profits to consumers follows the simple rule:

Di,t = ϕmax (πi,t, 0)
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where ϕ is the share of profits distributed to households.

Hence the law of motion for equity is the following:

Ei,t = Ei,t−1 + πi,t −Di,t −Bi,t = Ei,t−1 + (1− ϕ)πi,t −Bi,t

If equity turns negative, the firm is considered bankrupt. It exits the pool of firms,

with a corresponding tax on household cash on hand to capture the equity loss. Bank-

rupt firms are replaced by a new firm with fresh equity.

New firms start with an equity level that corresponds to the average equity in the

population of firms truncated at the 5th and 95th equity percentile. The posted wage

and listed price they start with correspond to the average values in the truncated pool

of firms. One thing to note is that the process of firm exit and entry can have dramatic

effects on model results. If entering firms have too low a posted wage and price, they

will capture the entire market quickly and make prices converge to the minimum wage.

If entering firms’ prices and wages are too high, they can fuel large inflation dynamics.
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3.4. Calibration

With 22 parameters including 3 parameters governing initial condition, the param-

eter space is large. It is not computationally feasible to explore the entire parameter

space. The goal of the calibration is to make the model a relatively accurate representa-

tion of the economy so that experiments and counterfactual varying one parameter at

a time in the model can have external validity. To restrict degrees of freedom, I will cali-

brate externally parameters that have a reasonable interpretation outside of the model.

It is one of the advantages of ABMs that some parameters have relatively transparent

empirical interpretation. Other deeper parameters capture multiple mechanisms at

once and cannot be extracted from the data so easily. For these 12 parameters, I will

use a simulated methods of moments approach described in 3.4.2 to calibrate them.

3.4.1. External Calibration

Table 3.1 shows the values of each parameter externally calibrated using multiple sources.

The number of workers in the economy I is set to match the labor force in the US

at a scale of 1 per 200 000 due to computational constraints. The number of firms is

calibrated to match a ratio of workers to firms of 4.8% as in the data.

The quarterly depreciation rate of inventories is set so that in 4 periods the annual

rate depreciation rate matches a ratio of corporate depreciations and amortizations over

GDP 5.54%. Similarly the qcompounded quarterly interest rate matches the average

rate on Aaa corporate bonds in 2023 according to Moody’s. Dividends share of profits

is calibrated to match the ratio of net dividends to net income from the NIPA tables in

Q4 2022. The work contract duration matches the median work duration of 4.1 years as

reported by the Bureau of Labor Statistics. The minimum wage is calibrated to match a

ratio of minimum wage to average wage of 33 %. Given our wage numeraire it roughly

corresponds to what an employee at full time would earn over the course of a quarter.
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All the other parameters will be estimated according to the procedure explained below.

One thing to note is that TFP is inversely related to the average price of goods sold and

can be used to pin down the average cost of a transaction.

In the initial period, firms are uniformly distributed along two dimensions: how

much equity they have and their markup over labor costs. Firm wages are distributed

U(w̄, wmax) so that the average wage is a function of w̄, wmax. The maximum markup µmax

is calibrated to 134% to match an average markup of 67.5%, in line with recent estimates

by De Loecker et al. (2020). Prices are therefore distributed U(w̄, wmax(1 + µmax

100
)) as a

markup over offered wages. Calibration of wages is done starting from nominal GDP in

the current year and taking a labor share of 59.7%

Parameter Value Units Source

I Number of workers 830 1 per 200 000 WB
F Number of firms 40 1 per 200 000 SUSB - WB
I
F

Consumer/firm ratio 4.8 I
F

SUSB - WB
δ inventories depreciation rate (Q) 1.36 % IRS - FRED
r interest rate (Q) 1.11 % Moody’s - FRED
ϕ Dividends share of profits 66.23 % BEA
Ld Work contract duration 16 Quarters BLS
w̄ Minimum wage 6 $1000 FRED
µmax Maximum markup of firms 134 % De Loecker et al. (2020)
Emax Maximum equity of firms 1781 $1000 FRB
wmax Maximum posted wage 41 $1000 BEA

Figure 3.1. Externally Calibrated Parameters

Equity is distributed U(0, Emax). Since households own firms and they only hold

equity,Emax is used to match the ratio of US net worth over GDP of 566% calculated from

the financial accounts of the United States using the Z.1 table of the Federal Reserve

Board of Governors and FRED.

Initial expected demand Eisi,0 pins down how much firms are producing in the first

period and does not have a clear empirical interpretation. Given TFP, the number of
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firms and workers, a target unemployment rate in the first period will define it implicitly.

It will be set to match an unemployment rate of 5% in line with US long-term average.

Results do not tend to be affected by µmax as the distribution of markups quickly con-

verges to its ergodic distribution. Emax does affect the likelihood of observing bankrupt-

cies early on in the simulation, which could make the system converge to an absorbing

state with no employment and no production. When equity is too low relative to min-

imum wage, firms simply cannot ramp up production, so that income never picks up

and demand remains depressed. If Eisi,t is large, the economy can momentarily see

a boom in production with rising prices and wages, but will usually revert back to its

ergodic distribution after sufficiently many iterations.

3.4.2. Internal Calibration: Simulated Method of Moments

The goal of the calibration exercise is to make the model sufficiently representative of

the US economy so to have a credible sandbox on which to run parameter experiments

and see how firms behaviors affect aggregate outcomes. The remaining 12 parameters

(table 3.1) are estimated by simulated method of moments (SMM). 20, 000 parameter

vectors are drawn from a 12-D grid space described in table 3.2. For each parameter

vector, the model is simulated for 400-periods simulation. To reduce the impact of

initial conditions, the first 100 periods are dropped from the simulated sample. The

targeted moments are the covariance matrix elements between unemployment, real

GDP, CPI and average hourly earnings. The average unemployment rate is also added

as additional moment 3.3. The preferred set of parameters listed in table 3.1 is the one

that minimizes the mean squared error relative to their empirical counterpart in the US

economy, as estimated from post-WW2 data (1950-2023).

Several elements make the calibration plausible. First of all, all estimated param-

eters are interior to the grid space (table 3.2), suggesting that bounds are not driving
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Parameter Value Units

θ Share of smart firms 21 %
M Memory size of inductive firms 27 periods
J Number of strategies of inductive firms 17 # of weight vectors drawn
ηp Maximum prices adjustment rate 24.01 %
ηq Maximum quantities adjustment rate 9.26 %
ηw Maximum wages adjustment rate 2.54 %
Sg Goods search friction 37 # store visits per period
Sl Labor market friction 5 # job screenings per period
Sj Job applications limit 2 # applications per period
ℓ Maximum leverage ratio 1.54 Bi,t

pi,tsi,t+Inv+Et

ξ Maximum size of expected demand shock 6 goods per period
TFP Real output per worker 2 # goods produced

Table 3.1. Calibrated parameters using Simulated Method of Moments

estimation outcomes. Second, the calibration implies that wages are more rigid than

prices, with quantities in between the two. This is consistent with the macroeconomic

literature stressing the importance of wage rigidities over price rigidities in explaining

output fluctuations (Christiano et al., 2005). Third, the estimated maximum leverage

ratio is in the range of values used by banks when providing funding to firms.

Parameter Lower Bound Upper bound

θ Share of smart firms 0 100
M Memory size of inductive firms 1 100
J Number of strategies of inductive firms 10 300
ηp Maximum prices adjustment rate 1 30
ηq Maximum quantities adjustment rate 0.5 15
ηw Maximum wages adjustment rate 0.5 30
Sg Goods search friction 1 40
Sl Labor market friction 1 40
Sj Job applications limit 1 Sl
ℓ Maximum leverage ratio 1 5
ξ Maximum size of expected demand shock 0 10
TFP Real output per worker 1 15

Table 3.2. Sampling Space for the SMM

An interesting finding is that the estimated model suggests firms have limited fore-

casting ability. Only 21% of them are estimated to be using inductive reasoning. And
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when they do, their memory is limited to roughly 7 years. They also use very few strate-

gies drawing only 17 vectors of weights to forecast from past observations.
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3.5. Quantitative Results

In this section I will present some of the key findings of the paper. First, I will analyze

the behavior of the artificial economy under SMM calibration. Then I will make experi-

ments changing the share of inductive firms to see how it impacts the business cycle.

Two strategies are adopted to limit the influence of initial conditions. For the same

calibration and share of inductive firms, 40 parallel economies are simulated to control

for possible initial condition effects. The first 300 observations are also discarded from

all samples to limit further the influence of initial conditions. Ultimately, there are 40

economies per parameter set with 1001 periods for each.

3.5.1. Baseline Calibration

The baseline calibration matches first and second order moments of the US data fairly

well. Unemployment is well-behaved around its average of 5.8%6. An interesting fea-

ture of the model under this calibration is the emergence of very long “super-cycles” of

price/wage spirals. Prices and wages would increase progressively as inventories are low

and firms struggle to keep up with demand. In the next phase of the cycle firms would

be forced to cut prices and wages as inventories are high and demand is low. This would

lead to a recession and the cycle would start again. These cycle drive nominal GDP up

or down in the long-run despite constant potential output. The dynamics are similar to

a model of conflict inflation, where firms fight over the price of their goods relative to

wages and the price of other goods.

Most distributions generated by the model tend to be right skewed, which is consis-

tent with the data as well. For example, the distribution of prices and wages are right

skewed with a long right tail. The distribution of markups is also right skewed with a

6All summary statistics are presented in appendixes C.1 and C.2
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long right tail. The distribution of sales follows a similar pattern due to the emergence

of super-star firms that receive most of consumer demand.

Under this parametrization, the financial constraint is not really binding. Firms do

not use much private debt to finance production because they have plenty of equity

available. When needed firms are able to borrow as much as they need to finance their

operations. Few firms go bankrupt as well. This is probably due to the fact that by

matching the equity to GDP ratio without having volatility in asset prices, firms have a

large cushion of equity to absorb demand shocks in the model.

The model also generates volatility in the vacancy rate, oscillating around 25% of job

postings on average.

Regarding the forecasting process, it appears that inductive firms end up making

more forecasting mistakes than naive firms in at least some simulation runs. As a result,

naive firms end up having a higher share of sales than inductive firms. One way to

explain this apparent paradox is to realize that with only 17 strategies to choose from in

a space of ([−1, 1]21, [−1, 1]21), inductive firms are actually quite limited in their ability

to forecast. They are also limited in their memory, which is only slightly more than 5

years. As a result, they end up making more mistakes than naive firms. Another factor

that could play a role is that given the relatively simple nature of that artificial economy,

a simple AR(1) process might be a good model.

As described in section 3.3, the microeconomic policy rules are chosen to be sim-

ple, without heterogeneity in productivity across households and firms. Yet, the model

endogenously generates relatively deep heterogeneity in most calibrations.

First of all, the heterogeneity in firm size as measured by sales or wealth accumulates

over time. Some firms do consistently well at predicting demand, pricing competitively

and producing the right amount so as to capture a large share of the goods market.

The economy is relatively quickly concentrated between few superstar firms. At the



110

Table 3.3. Comparison of Empirically Estimated and Simulated Moments

US Model

ū 5.7477 5.8876
σu 0.3185 0.6065
σp 0.0199 0.0220
σw 0.0110 0.0082
σg 0.0247 0.0949

same time, the distribution of markups is wide and skewed to the right as previously

illustrated in Axtell (2006), with a mode slightly below zero and an average above zero.

This is consistent with superstar behaviors with some firms capturing most of the profits

while more than 50% of all firms remain unprofitable.

Another interesting finding is the emergent property that firm size is positively cor-

related with higher wages. This is true despite not having any difference of productivity

across firms or workers, which goes against standard microeconomic reasoning on mar-

ginal costs of production factors. Putting the “superstar firms” literature in perspective

(Autor et al., 2020), it illustrates how firms with superior understanding of the demand

process can afford to pay higher wages, even if workers are identical, and even if the

superstar firms have no specific productivity advantage.

At an aggregate level, the economy can be relatively efficient at equalizing supply

and demand. As detailed in the next section, the economy will be closer to equilibrium

on average with more inductive firms. The economy also shows strong path depen-

dency. Series of positive demand surprises can trigger firms to ramp up production

in expectation of future positive surprises, leading to higher payrolls and aggregate in-

come for some time. An extreme case of path dependency is the existence of absorbing

states. Low output, low income, and self-fulfilling pessimistic expectations tend to be

an absorbing state as firms with low revenues, equity have tight financial constraints.
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3.5.2. Sensitivity analysis

On the production side. In the macroeconomic literature there is large debate about

the role of sticky prices and wages in generating business cycle amplification. This

model makes it possible to test whether economic activity would be more volatile under

different pricing regimes. Setting ηp to zero, we have fully sticky prices. Firms can only

adjust their production plan through the quantity margin. It appears that under this

calibration economic fluctuations in real variables are amplified, with higher volatility

in output and unemployment. When ηw is set to zero however, there is no induced

increased volatility. It is a puzzle as to why the two margins of adjustment would affect

volatility differently. I suspect that wage differentiation makes the labor market less

liquid and tends to amplify fluctuations. Uniform wages therefore tend to dampen this

channel.

Perhaps surprisingly, having very flexible prices and wages also tend to increase

volatility. Firms react too much to current economic conditions through price changes

and amplify local shocks. It is when prices are reasonably flexible, but not too much,

that the economy is most stable. This is consistent with stories of debt-deflation Fisher

(1933) where flexible prices can in fact amplify shocks rather than dampen them.

On the demand side. One key parameter on the demand side is the number of firms

that households are visiting before buying goods. When this number is small, competi-

tion across markets is limited. One firm tends to capture the entire market over time. As

it grows larger and larger, more households keep it in their list of firms. Prices go down

at first. Then prices go up as the number of bankruptcies increases and competition

diminishes in the economy. Private debt is endogenously higher in this economy than

before. This is because small firms have limited equity and need external financing

to survive. Reintroducing competition increases prices at first, since small firms with

limited capacities need to cope with the new demand coming in. After some time, the
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number of bankruptcies and the firm distribution becomes less skewed. Output also

increases and the level of unemployment goes down with higher competition.

3.5.3. Varying the Share of Inductive Firms

What happens when the share of Inductive firms in the economy changes relative to

the baseline calibration of 21%, holding everything else constant? In this section, I will

examine the consequences of varying the share of inductive firms from 0% to 100% in

increments of 25%.

Non-monotonous Impact on Forecast Errors. The first question one can ask is whether

firms collectively make less forecasting mistake when more firms use inductive reason-

ing. As shown in figure 3.2, the mean squared forecast error is increasing in the share of

inductive firms. It is highest when the share of inductive firms is 100%, and lowest when

the share of inductive firms is 0%.

Figure 3.2. Distribution of Forecast Errors across Simulations for varying θ

Notes: Aggregate forecast errors in a given period are computed as the mean squared error
of individual forecast errors, where a firm’s forecast error is simply the difference between
forecasted demand and realized demand. Aggregate forecast errors are then averaged over
the 1000 periods in a given simulation. For each value of θ, the share of inductive firms in the
economy, a boxplot depicts the distribution of averaged aggregate forecast errors across the
40 simulation runs.
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Figure 3.3. Inductive Firms - Distribution of Forecast Errors across
Simulations for Inductive Firms

Notes: Aggregate forecast errors in a given period are computed as the mean squared error
of individual forecast errors, where a firm’s forecast error is simply the difference between
forecasted demand and realized demand. Aggregate forecast errors are then averaged over
the 1000 periods in a given simulation. For each value of θ, the share of inductive firms in the
economy, a boxplot depicts the distribution of averaged aggregate forecast errors across the
40 simulation runs.

Figure 3.4. Naive Firms - Distribution of Forecast Errors across
Simulations

Notes: Aggregate forecast errors in a given period are computed as the mean squared error
of individual forecast errors, where a firm’s forecast error is simply the difference between
forecasted demand and realized demand. Aggregate forecast errors are then averaged over
the 1000 periods in a given simulation. For each value of θ, the share of inductive firms in the
economy, a boxplot depicts the distribution of averaged aggregate forecast errors across the
40 simulation runs.

To better understand this somewhat counterintuitive result, figure 3.3 and figure 3.4

show the distribution of forecast errors for inductive and simple firms respectively. The
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picture that emerges is that naive firms are relative consistent in their forecast error

regardless of the share of inductive firms, although they tend to do somewhat worse

once inductive firms are introduced. On the contrary, inductive firms perform a lot

better when few use inductive reasoning. It appears that θ = 100% is a case where they

do particularly badly. One element to keep in mind is that given the baseline calibration,

firms are endowed with a limited number of 17 strategies to choose from. As a result,

there are not necessarily better off than naive firms. In fact, their sales performance is

on average worse than naive firms. This is illustrated in figure 3.5 which shows that in

most simulation runs, inductive firms sell less than naive firms on average.

This suggests a paradox in that the presence of inductive firms might make induc-

tive reasoning less performant as aggregation of behaviors change the characteristics

of the economy. One possible intuition for this is result is that when all firms are using

inductive reasoning, the commonality of the expectation process across firms shapes

the business cycle so as to make expectations less likely to be self-fulfilling, as if the

information was already incorporated on the market already. In section 3.5.3, I will

explore how business cycle characteristics are indeed affected by the share of inductive

firms.
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Figure 3.5. Distribution of Relative performance of Inductive Firms across
Simulations

Notes: Aggregate relative performance of inductive firms is the ratio of sales per firm for
inductive firms to sales per firm for naive firms. A ratio above 1 indicates that inductive firms
sell more goods than naive firms on average. This relative performance ratio is averaged over
the 1000 periods in a given simulation. For each value of θ, the boxplot depicts the distribution
of averaged relative performance ratio across the 40 simulation runs.
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Changes in Business Cycle Characteristics. As suggested by the previous section, the

share of inductive firms in the economy has an impact on the predictability of sales.

This suggests that business cycle characteristics could be strongly affected.

To illustrate this, one can look at the variation of certain moments of the business

cycle across simulations. Figure 3.6 shows the distribution of the standard deviation of

aggregate sales for different values of θ. The picture that emerges is that the standard

deviation of aggregate sales is negatively correlated with θ. At the same time, aggregate

sales tend to be significantly less auto-correlated, going from 0.9 in absence of inductive

firms to 0.5 (figure 3.7). It is therefore not surprising that firms struggle to forecast a

process that is now less persistent.

Figure 3.6. Standard Deviation of Aggregate Sales

Notes: The statistic is computed over the 1000 periods in a given simulation. For each value of
θ, the boxplot depicts the distribution of that statistic across the 40 simulation runs.

The same patterns emerge with the unemployment rate. Again, the standard devia-

tion decreases with the share of inductive firms, and the autocorrelation is dramatically

reduced as shown in Figure 3.8 and 3.9. The unemployment rate process goes from very

persistent with an autocorrelation above 0.9 with naive firms to a process that has no

persistence when θ = 100%.
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Figure 3.7. Auto-correlation of Aggregate Sales

Notes: The statistic is computed over the 1000 periods in a given simulation. For each value of
θ, the boxplot depicts the distribution of that statistic across the 40 simulation runs.

Figure 3.8. Standard Deviation of Unemployment Rate

Notes: The statistic is computed over the 1000 periods in a given simulation. For each value of
θ, the boxplot depicts the distribution of that statistic across the 40 simulation runs.

Prices and wages somewhat behave similarly, with dramatically lower standard devi-

ation as the share of inductive firms increase (figure 3.11, 3.11. But persistence remains

high and close to 1 in all parametrizations.

All in all, firms face a dramatically different economies when their competitors are

also using inductive reasoning, and it leads to non-trivial aggregation effects.
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Figure 3.9. Auto-correlation of Unemployment Rate

Notes: The statistic is computed over the 1000 periods in a given simulation. For each value of
θ, the boxplot depicts the distribution of that statistic across the 40 simulation runs.

Figure 3.10. Standard Deviation of Wage Index

Notes: The statistic is computed over the 1000 periods in a given simulation. For each value of
θ, the boxplot depicts the distribution of that statistic across the 40 simulation runs.
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Figure 3.11. Standard Deviation of Price Index

Notes: The statistic is computed over the 1000 periods in a given simulation. For each value of
θ, the boxplot depicts the distribution of that statistic across the 40 simulation runs.



120

Impact on cross-sectional heterogeneity. The previous section has shown that the share

of inductive firms has a significant impact on business cycle aggregates. What about the

distribution of firm outcomes in the cross-section? This section shows that it also has

a significant impact on the cross-sectional distribution of firm sales, prices, wages and

markups.

Despite lower standard deviation in the aggregate, firm sales end up being more

dispersed in presence of inductive reasoning (figure 3.12). This is not surprising given

that naive firms all have the same forecasting strategy (putting a weight of 1 on past

sales), while all inductive firms draw different sets of 17 strategies to choose from. In

that sense increasing the share of inductive firms also increases the number of strategies

used to forecast demand in the population of firms.

Figure 3.12. Average Standard Deviation of Sales in the Cross-Section of
Firms

Notes: The statistic is computed each periods over the 40 firms in the sample and averaged
over the 1000 periods in a given simulation. For each value of θ, the boxplot depicts the
distribution of that statistic across the 40 simulation runs.

Yet, the variance of posted prices and markups shrinks, suggesting that labor and

goods market converge to unique prices and wages. This is shown in figure 3.13 and

3.14.
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Figure 3.13. Average Standard Deviation of Listed Prices in the Cross-
Section of Firms

Notes: The statistic is computed each periods over the 40 firms in the sample and averaged over the 1000 periods in a
given simulation. For each value of θ, the boxplot depicts the distribution of that statistic across the 40 simulation
runs.

Figure 3.14. Average Standard Deviation of Markups in the Cross-Section
of Firms

Notes: The statistic is computed each periods over the 40 firms in the sample and averaged
over the 1000 periods in a given simulation. For each value of θ, the boxplot depicts the
distribution of that statistic across the 40 simulation runs.
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Why are firms paying different wages to identical workers? As observed in the previ-

ous section, wages offered are not unique but have a cross-sectional distribution. There

are several reasons why wages can differ. First of all, different wages can compensate

for different worker abilities. So far in the model all workers are identical with respect to

labor productivity and we will therefore abstract from this dimension of heterogeneity.

The number of vacancies varies with the business cycles, giving workers a varying

bargaining power. Hence the bargaining power of workers is a time-varying endoge-

nous variable to the system. Wage differences therefore account for the macroeconomic

conditions under which workers entered the labor market. This captures a well docu-

mented that workers entering the labor force during a recession tend to do worse than

others in terms of lifetime income.

Besides bargaining power considerations, the return on a worker is not only the

result of the technology determined productivity level of the firm. It is also the result

of how successful the firm is at selling products. Some firms become much more suc-

cessful than others with higher sales, accumulate higher equity, more financial capacity

and therefore can afford to pay higher salaries to make sure no vacancies are unfilled.

Let’s take the example of two identical firms with the same number of workers, the same

production function and same productivity levels. Suppose one firm manages to sell all

its inventories while the other does not. One firm will have generated positive profits,

and will expect higher demand in the future. The other one will have generated negative

profits, will get closer to the financial constraint and expect lower demand. The first firm

will value new workers more than the second because it expects to sell the goods it will

produce with the new workers. The second will not value new workers as much, and

might even have to reduce its labor force. Hence wage offers will differ even though the

firms have similar production capacities and workers are identical.
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Correlation across Business Cycle Variables. Another way to characterize the impact

of θ on business cycle characteristics is to look at the correlation matrix for aggregate

variables. the properties of the business cycles evolve dramatically. As shown in figure

3.15, the correlation structure of the economy weakens (red) when the share of inductive

firms in the economy increases. This is consistent with the previous findings that in-

creasing the share of inductive firms reduces the persistence of business cycles, making

all variables more like white noise.

Figure 3.15. Correlation Matrix for Aggregate Variables

(a) θ = 0% (b) θ = 50%

(c) θ = 75% (d) θ = 100%
Notes: Each (i, j) cell of the matrix represents the correlation between variables i and j
across simulations for a given value of θ. The values are expressed relative to the baseline
calibration (θ = 21%). Negative (red) values imply that the correlation is lower than in the
baseline calibration, while positive (blue) values imply that the correlation is higher than in
the baseline calibration.
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Explaining the reduction in aggregate level persistence. One possible explanation for

the reduction in persistence caused by the increase in the share of inductive firms is

that introducing memory at the firm level could make discrepancies between supply

and demand less dependent on past observation, since it has been taken into account

by firms. The same way that algorithmic reduces the ability to forecast stock prices

using past observations, inductive firms could make the economy less dependent on

past shocks.

To test this hypothesis, I run a second experiment where all parameters are held

constant at the baseline calibration except for the memory of inductive firms. Figure

3.17 shows how the autocorrelation of sales decreases with the memory available to

firms. Suggesting that this mechanism could be at play.

Figure 3.17. Auto-correlation of Aggregate Sales

Notes: The statistic is computed over the 1000 periods in a given simulation. For each value of
M , the boxplot depicts the distribution of that statistic across the 40 simulation runs.

Measures of passthrough. A different way to look at the simulations is to test for some

relationships between variables and observe how they differ with variations in inductive

reasoning parameters (θ,M, J).

A key result is that the share of inductive firms can qualitatively affect the relation-

ship between aggregate variables in the model. For instance, the Phillips curve between
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inflation and output growth, although positively sloped with naive firms, turns nega-

tively slopped when the share of inductive firms is high. This is shown in table 3.4.

Table 3.4. Regression results for outcome inflation varying θ

inflation
θ 0 21 25 50 75 100

(1) (2) (3) (4) (5) (6)

gdpgrowth 0.05∗∗∗ 0.02∗∗∗ 0.01 -0.06∗∗∗ -0.11∗∗∗ -0.16∗∗∗

(0.003) (0.005) (0.008) (0.01) (0.01) (0.01)

Observations 39,880 40,040 40,040 40,040 40,040 40,040
R2 0.07186 0.80135 0.43919 0.26850 0.63163 0.83493
Within R2 0.02717 0.00551 0.00046 0.01408 0.09170 0.06191

simulation fixed effects ✓ ✓ ✓ ✓ ✓ ✓
periods fixed effects ✓ ✓ ✓ ✓ ✓ ✓

Notes: Panel regression estimates using fixest OLS with fixed effects for the simulation index (between 1 and 40) and
fixed effects for each period (1 to 1001). This way estimations are based on a 40× 10001 panel regression sample.

Similarly the Beveridge curve only displays the expected negative sign between va-

cancy rate and unemployment when the share of inductive firms is high enough (table

3.5)). Additionally the relationship between wage inflation and output growth is not

robust to the share of inductive firms in the economy (table 3.6).

Table 3.5. Regression results for outcome vacancy rate varying θ

vacancy rate
θ 0 21 25 50 75 100

(1) (2) (3) (4) (5) (6)

unemployment rate 0.18∗∗∗ -0.31∗∗∗ -0.30∗∗∗ -0.57∗∗∗ -0.71∗∗∗ -0.34∗∗∗

(0.06) (0.06) (0.09) (0.05) (0.02) (0.03)

Observations 40,040 40,040 40,040 40,040 40,040 40,040
R2 0.12054 0.23243 0.27921 0.22837 0.16872 0.04136
Within R2 0.00963 0.01396 0.01143 0.02237 0.02587 0.00819

simulation fixed effects ✓ ✓ ✓ ✓ ✓ ✓
periods fixed effects ✓ ✓ ✓ ✓ ✓ ✓
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Table 3.6. Regression results for outcome wage inflation varying θ

wage inflation
θ 0 21 25 50 75 100

(1) (2) (3) (4) (5) (6)

gdpgrowth 0.04∗∗∗ 0.03∗∗∗ 0.03∗∗∗ 0.0008 0.010∗∗∗ 0.01
(0.002) (0.003) (0.007) (0.009) (0.002) (0.009)

Observations 39,880 40,040 40,040 40,040 40,040 40,040
R2 0.11402 0.93097 0.31607 0.02102 0.30350 0.91715
Within R2 0.04871 0.02430 0.00539 3.19× 10−6 0.00183 0.00049

simulation fixed effects ✓ ✓ ✓ ✓ ✓ ✓
periods fixed effects ✓ ✓ ✓ ✓ ✓ ✓

Notes: Panel regression estimates using fixest OLS with fixed effects for the simulation index (between 1 and 40) and
fixed effects for each period (1 to 1001). This way estimations are based on a 40× 10001 panel regression sample.

One relationship is robust to changes in the share of inductive firms: Okun’s law.

The relationship between output growth and unemployment change is always nega-

tive, regardless of the share of inductive firms (table 3.7), although the magnitude of

the passthrough from output to unemployment is three times as strong in presence of

inductive firms.

Table 3.7. Regression results for outcome unemployment change varying
θ

unemployment change
θ 0 21 25 50 75 100

(1) (2) (3) (4) (5) (6)

gdpgrowth -0.48∗∗∗ -2.1∗∗∗ -2.1∗∗∗ -2.1∗∗∗ -1.8∗∗∗ -2.0∗∗∗

(0.14) (0.10) (0.09) (0.07) (0.10) (0.12)

Observations 39,880 40,040 40,040 40,040 40,040 40,040
R2 0.03274 0.10493 0.09363 0.07697 0.04739 0.03669
Within R2 0.00500 0.07624 0.06903 0.05330 0.02194 0.01099

simulation fixed effects ✓ ✓ ✓ ✓ ✓ ✓
periods fixed effects ✓ ✓ ✓ ✓ ✓ ✓

Notes: Panel regression estimates using fixest OLS with fixed effects for the simulation index (between 1 and 40) and
fixed effects for each period (1 to 1001). This way estimations are based on a 40× 10001 panel regression sample.
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3.6. Conclusion

A simple agent-based model with limited ex ante heterogeneity and no aggregate

shocks is able to match key business cycle like behaviors in the aggregate, while pro-

viding a rich heterogeneity in the cross-section. Agents do not have a preference for

fluctuations. Yet, local coordination failures in the goods and labor market accumulate

enough to make fluctuations emerge in the aggregate.

A key finding is the realization that business cycle characteristics are fragile to firms’

forecasting processes, because firms production decision conditional on their forecasts

are critical on both goods and labor markets, and therefore aggregate outcomes.

In particular, the share of inductive firms in the economy can completely flip the

sign of traditional economic relationships like the Phillips curve. This could be part of

the explanation for apparently varying empirical estimates for the Phillips curve in the

US economy, as firms have improved their forecasting process with the advent of new

technologies.

The model also provides a rich cross-sectional distribution of firms’ characteristics.

In particular, it is able to generate right skewed firm level sales and firms’ size. Cross-

sectional heterogeneity is also significantly affected by firms’ forecasting process. Prices

and wages tend to converge to a unique value when inductive reasoning is more elabo-

rate and common across firms.

Computational resources limited the scale and realism of the model. A possible

extension of the paper would be to introduce a more realistic production function, with

capital and intermediates inputs supplied in a production network. It is very well pos-

sible that introducing capital accumulation, the memory available to inductive firms

might be of better use. I leave the study of these features to future researchers.
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APPENDIX A

Appendix to Chapter 1

A.1. LMU membership

The following table and map provide a summary of the countries that participated

to the Latin Monetary Union, together with the time period during which they were part

of it.

Table A.1. LMU Membership

Country Condition Date Period

Belgium LMU founding member 23 December, 1865 1865-1927
France LMU founding member 23 December, 1865 1865-1927
Italy LMU founding member 23 December, 1865 1865-1927
Switzerland LMU founding member 23 December, 1865 1865-1927
Greece LMU member 18 November, 1868 1867-1927
Algeria (French colony) Shadowing 23 December, 1865 n.a.
Austria-Hungary Shadowing n.a. 1870-1914
Bulgaria Shadowing 9 August, 1877 1878-1914
Peru Shadowing 31 July, 1863 n.a.
Poland Shadowing 1926 1926
Pontifical State Shadowing 1866 1866-1870
Romania Shadowing 1 January, 1868 1867-1914
Russia Shadowing n.a. 1886-1865
Serbia Shadowing 11 November, 1878 187*-1914
Spain Shadowing 19 October, 1868 1868-1914
Sweden Shadowing n.a. 1868-1872
Tunisia (French colony) Shadowing 23 December, 1865 n.a.
Venezuela Shadowing 11 May, 1871 n.a.

Notes: This table is taken from Appendix II in Timini (2018), and is here reported for
simplicity. The sources of the table are Willis (1901); Einaudi (2007); Helleiner (2003).
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Figure A.1. LMU membership by year of accession (1880 administrative boundaries)
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A.2. Tradehist data

Table A.2. Variables from Tradehist

Variable Dimension Description

iso country Origin (destination) country
year year Year
FLOW country-pair-direction-year Bilateral trade flow
GDP o(d) country-year GDP of the country
SH PRIM o(d) country-year Share of primary sector in the country’s GDP
SH SECD o(d) country-year Share of secondary sector in the country’s GDP
IPTOT o(d) country-year Total imports
XPTOT o(d) country-year Total exports
BITARIFF country-pair-direction-year Tariff imposed by country d on imports from country o
TARIFF o(d) country-year Average tariff imposed by country o(d)
Distw country pair Population-weighted-great-circle distance
Dist coord country pair Great-circle distance between main cities
Dist o(d) country Internal distance of the origin (destination) country
SeaDist SHRT country-pair-year Shortest bilateral sea distance
SeaDist 2CST country-pair-year Shortest bilateral sea distance
Comlang country-pair =1 if at least one language is spoken by more than 9%

of the population in both countries
Contig country-pair =1 if the countries are contiguous
Curcol country-pair-year =1 if the origin and the dest. are in a colonial relationship
Curcol o(d) country-year =1 if the country is a colony
Evercol country pair =1 if countries ever were in a colonial relationship
XCH RATE o(d) country-year British pounds per local currency unit
POP o(d) country-year Population of the country
CONTI o(d) country Continent of the country
REGIO o(d) country Sub-continental region of the country
OECD o(d) country-year =1 if the country belongs to the OECD
EU o(d) country-year =1 if the country belongs to the E.U.
GATT o(d) country-year =1 if the country belongs to the GATT/WTO

Notes: The description of the variables follows Fouquin and Hugot (2016).
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A.3. CPIS Statistics

Table A.3. CPIS Statistics

Countries Observations FF (Mean) FF (StD)

Total 93 258459 2650.25$ 108148.27$

Advanced Economies 31 16765 64800.65$ 188875.05$

Non-Advanced Economies 62 121091 575.75$ 47257.14$

Advanced/Non-Advanced 120603 4179.84$ 157339.48$

Timini 15 4368 6766.55$ 16927.48$

Notes: FF stands for Financial Flows. The rows “Advanced Economies” and “Non-Advanced
Economies” report value where bilateral financial flows involve only advanced or non-
advanced economies, respectively. The row “Advanced/Non-Advanced” reports value for
bilateral financial flows among advanced and non-advanced entities. The row “Timini”
reports values for bilateral financial flows the subsection of countries considered in Timini
(2018).
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A.4. Long-term Interest Rates

Since the Tradehist dataset does not contain many financial variables, we supple-

ment it with long-term interest rate data assembled using different sources. The tables

below provide summary statics for our reconstructed variable, and a a description of the

sources used.

Table A.4. Long-Run Interest Rate
Series: Statistics

Country Mean StD

Austria-Hungary 5.65% 2.46%

Belgium 4.81% 2.43%

Denmark 5.62% 3.65%

Finland 5.50% 1.30%

France 4.97% 2.79%

Germany 4.81% 2.11%

Greece 9.45% 4.86%

Italy 6.40% 3.51%

Netherlands 4.37% 2.08%

Norway 5.05% 2.58%

Portugal 6.38% 4.12%

Spain 7.09% 4.24%

Sweden 5.00% 2.73%

Switzerland 3.88% 1.22%

United Kingdom 4.87% 3.18%
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Table A.5. Long-Run Interest Rate Series: Sources

Country Source Series

Austria-Hungary GFD 10y government bond yield (close), 1861-2017

Belgium GFD 10y government bond yield (close), 1861-2017

Denmark DS & GFD DS: Kursog rentetabeler for obligationsmarkedet, Tabel 6

GFD: 10y government bond yield (close), 1861-2017

Finland Autio & JST Autio: Liite 1, Oblig. Tuotto 1863-1869

JST: Long-term rates 1870-2017

France GFD 10y government bond yield (close), 1861-2017

Germany GFD 10y government bond yield (close), 1861-2017

Greece GFD & GCB GFD: Mortgage lending rate (close) 1861-1941, 2003-2013;

GCB: Long-term loans by commercial banks 1951-2002

Italy GFD 10y government bond yield (close), 1861-2017

Netherlands GFD 10y government bond yield (close), 1861-2017

Norway GFD 10y government bond yield (close), 1861-2017

Portugal GFD 10y government bond yield (close), 1861-2017

Spain GFD 10y government bond yield (close), 1861-2017

Sweden GFD 10y government bond yield (close), 1861-2017

Switzerland SNB & JST SNB: mortgage rates 1861-1880

JST: Long-term rates 1881-2017

United Kingdom GFD 10y government bond yield (close), 1861-2017

Notes: GFD stands for Global Financial Data, available at https://globalfinancialdata.com.
JST stands for the Jordà-Schularick-Taylor Macrohistory Database, available at
https://www.macrohistory.net/database/. For Finland, Autio refers to Autio (1996). For Greece,
GCB stands for the Greek Central Bank, whose historical interest rate data is available at
https://www.bankofgreece.gr/en/statistics/financial-markets-and-interest-rates/bank-deposit-and-
loan-interest-rates. For Switzerland, SNB stands for the Swiss National Bank, whose historical
interest rate data is available at: https://www.snb.ch/en/iabout/stat/statrep/statpubdis/id/statpub
histz arch#t2. For Denmark, DS stands for Danmarks Statistik (1969), available at
https://www.dst.dk/Site/Dst/Udgivelser/GetPubFile.aspx?id=19918&sid=kreditm.

https://globalfinancialdata.com
https://www.macrohistory.net/database/
https://www.bankofgreece.gr/en/statistics/financial-markets-and-interest-rates/bank-deposit-and-loan-interest-rates
https://www.bankofgreece.gr/en/statistics/financial-markets-and-interest-rates/bank-deposit-and-loan-interest-rates
https://www.snb.ch/en/iabout/stat/statrep/statpubdis/id/statpub_histz_arch#t2
https://www.snb.ch/en/iabout/stat/statrep/statpubdis/id/statpub_histz_arch#t2
https://www.dst.dk/Site/Dst/Udgivelser/GetPubFile.aspx?id=19918&sid=kreditm
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A.5. Description of ML Methodologies Used

Our goal is to reconstruct bilateral financial flows during the second half of the 19th

century as accurately as possible. In order to achieve this goal, we rely on several ma-

chine learning techniques, which have been developed precisely to obtain high per-

formance forecasts. In this section, we briefly summarize the characteristics of the

methods we use in our analysis1.

Lasso and Ridge. The first two methods we use are those of standard Lasso and

Ridge regressions Tibshirani (1996); Hoerl and Kennard (2000). These are well known

penalized regression methods whose prediction accuracy, when the set of regressors

is large relative to the amount of available observations, is enhanced through variable

selection (in the case of Lasso) or variable shrinkage (in the case of Ridge). In both cases,

the goal is to increase out-of-sample prediction accuracy by limiting the in-sample fit of

the model.

Support Vector Machine. Moving away from linear methods, the Support Vector

Machine algorithm can implement non-linear regression analyses Boser et al. (1992)

and achieve higher prediction accuracy. The idea behind this method is to classify the

training data by creating hyperplanes in a high-dimensional space, which are then used

to predict observations out-of-sample in a flexible way.

Random Forest and Extra Trees. Both the Random Forest algorithm (Breiman, 2001)

and the Extra Trees algorithm (Geurts et al., 2006) consist in creating several indepen-

dent regression trees, and then averaging across their predictions. Each regression tree

implements a classification of the data through recursive binary partitions of it. The

difference between the two methods relies on the fact that, in Extra Trees, each tree is

1This is in no way a detailed description of the algorithms we are using but, rather, an intuitive description
of their main characteristics. We provide references to studies providing a more formal description of
these methods.
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trained using the whole sample while, in Random Forest, trees are trained on a random

subset of the sample.

AdaBoost, LightGBM and XGBoost. Similar to Random Forest and Extra Trees, these

methods also rely on averaging the results from independent regression trees (Freund

and Schapire, 1999; Chen and Guestrin, 2016). Albeit with some minor differences in

the way the algorithms are implemented, all three of them sequentially evaluate the

performance of regression trees, and assign a weight to these based on the accuracy

of their forecasts. Through this iterative procedure, the algorithms build a model as a

weighted sum of the predictions of the independent trees, enhancing their individual

forecasting ability. The main difference across the algorithms is indeed linked to the

way in which the weighting is implemented.

Neural Networks. Multi-layer Perceptrons (MLP) regressors are function approxi-

mators characterized by hidden layers of basis functions stacked on top of each other

between an input layer and the output layer. Each layer is composed of neurons, which

are weighted linear summations of the output of previous layer’s neurons plus a non-

linear activation function. We use up to 4 hidden layers and 100 neurons per layer in

the cross-validation step of the algorithm.

Table A.6 below provides a summary of the main pros and cons of the ML methods

we use.
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Table A.6. Characteristics of ML Models

Method Category Pros Cons

Lasso Regularization Algorithm Model selection Linear
Ridge Regularization Algorithm Model shrinkage Linear
Support Vector Machine Instance-based Algorithm Memory-efficient Unsuited for very

classification large datasets
Random Forest Ensemble Algorithm Effective large Expensive

data handling cross-validation
Extra Trees Ensemble Algorithm Faster than Expensive

Random Forest cross-validation
AdaBoost Ensemble Algorithm Low overfit Sensible to noise
XGBoost Ensemble Algorithm High-accuracy Overfitting
LightGBM Ensemble Algorithm Faster than Overfitting

XGBoost
Neural Networks Artificial Neural Network High-accuracy Difficult

interpretability

A.6. Graphic Representation of Models’ Performance
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Figure A.2. Performance on CPIS (In-sample)

A. XGBoost B. LGBM C. Extra Trees

D. Lasso E. SVM F. Ridge

G. Random Forest H. Neural Network I. AdaBoost

Notes: Axes are in log-scale.
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Figure A.3. Performance on Trade Flows (In-sample)

A. XGBoost B. LGBM C. Extra Trees

D. Lasso E. SVM F. Ridge

G. Random Forest H. Neural Network I. AdaBoost

Notes: Axes are in log-scale.
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Figure A.4. Performance on Trade Flows (Out-sample)

A. XGBoost B. LGBM C. Extra Trees

D. Lasso E. SVM F. Ridge

G. Random Forest H. Neural Network I. AdaBoost

Notes: Axes are in log-scale.
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A.7. Main Predictors of Bilateral Financial Flows

The charts below display the 50 most important variables in the forecasting exercise

of bilateral financial flows according to Lasso (figure A.5) and XGBoost (figure A.6). The

variables are displayed with increasing importance. In both charts, it is possible to note

that variables referring to trade flows (FLOW and FLOW 1, the trade flow lag value) are

very important predictors.

Figure A.5. Ranking of Features in Lasso

Figure A.6. Ranking of Features in XGBoost
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A.8. Results from Timini (2018)

Chart A.7 below is taken directly from Timini (2018), and is provided here to ease

comparison with our results.

Figure A.7. Bilateral trade flows and Monetary agreements, 1861-1913
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A.9. Results Using Other Models

Table A.7. LMU dummy regression

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Lasso XGBoost LGBM AdaBoost ET RF NN Ridge SVM

LMU 0.051∗ 0.046∗ -0.017 0.027 -0.017∗ -0.002 0.170∗ 0.028∗∗ -0.061
(0.021) (0.019) (0.039) (0.037) (0.008) (0.019) (0.077) (0.010) (0.099)

GS 0.248∗∗∗ -0.027∗ -0.019 0.037 0.009 -0.012 -0.184∗ 0.152∗ 0.409∗∗∗

(0.042) (0.011) (0.047) (0.040) (0.012) (0.011) (0.091) (0.068) (0.066)
SMU -0.249∗∗∗ -0.026 -0.134 -0.107∗ -0.023 -0.074∗∗ 0.301∗ -0.171∗∗∗ -0.054

(0.048) (0.019) (0.109) (0.047) (0.017) (0.025) (0.130) (0.019) (0.171)

N 7169 7169 7169 7169 7169 7169 7169 7169 7169

Notes: ∗∗∗p < 0.001,∗∗ p < 0.01,∗ p < 0.05. Dependent variable: Estimated bilateral financial flows. All regressions
include a constant, importer-year, exporter-year and importer-exporter fixed-effects. Clustered standard errors.

Table A.8. Comparing LMU effect on France and Rest of LMU

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Lasso XGBoost LGBM AdaBoost ET RF NN Ridge SVM

LMU France 0.047 0.005 -0.032 0.041 -0.016 -0.009 0.257∗ 0.014 0.225∗∗

(0.031) (0.007) (0.043) (0.034) (0.009) (0.015) (0.107) (0.019) (0.078)
LMU Rest 0.087∗∗∗ 0.082∗∗ 0.007 0.007 -0.018 0.004 0.052 0.058∗∗ -0.063

(0.016) (0.031) (0.081) (0.058) (0.010) (0.024) (0.072) (0.022) (0.103)
GS 0.247∗∗∗ -0.030∗∗ -0.020 0.037 0.009 -0.013 -0.175 0.152∗ 0.409∗∗∗

(0.042) (0.011) (0.045) (0.038) (0.012) (0.011) (0.091) (0.068) (0.066)
SMU -0.250∗∗∗ -0.026 -0.134 -0.108∗ -0.023 -0.074∗∗ 0.301∗ -0.172∗∗∗ -0.054

(0.045) (0.016) (0.109) (0.047) (0.017) (0.025) (0.129) (0.020) (0.179)

N 7169 7169 7169 7169 7169 7169 7169 7169 7169

Notes: ∗∗∗p < 0.001,∗∗ p < 0.01,∗ p < 0.05. Dependent variable: Estimated bilateral financial flows. All regressions include
a constant, importer-year, exporter-year and importer-exporter fixed-effects. Clustered standard errors.

Table A.9. Comparing Effect of LMU Before and After 1885

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Lasso XGBoost LGBM AdaBoost ET RF NN Ridge SVM

LMU -0.049∗∗∗ 0.011 -0.028 0.035 -0.038∗∗∗ -0.026 0.369∗∗∗ -0.068∗∗∗ -0.976∗∗∗

(0.014) (0.019) (0.052) (0.048) (0.011) (0.022) (0.090) (0.017) (0.188)
LMU 1885 0.204∗∗∗ 0.058∗∗ 0.019 -0.014 0.035∗ 0.041∗ -0.305∗∗ 0.221∗∗∗ 1.083∗∗∗

(0.036) (0.019) (0.024) (0.026) (0.015) (0.020) (0.116) (0.067) (0.138)
GS 0.131∗∗ -0.039∗∗ -0.023 0.039 0.002 -0.021 -0.096 0.055 0.171∗

(0.047) (0.012) (0.045) (0.036) (0.012) (0.012) (0.064) (0.068) (0.071)
SMU -0.256∗∗∗ -0.020 -0.133 -0.109∗ -0.019 -0.070∗∗ 0.259∗ -0.190∗∗∗ -0.030

(0.015) (0.017) (0.110) (0.048) (0.016) (0.023) (0.131) (0.026) (0.161)

N 7169 7169 7169 7169 7169 7169 7169 7169 7169

Notes: ∗∗∗p < 0.001,∗∗ p < 0.01,∗ p < 0.05. Dependent variable: Estimated bilateral financial flows. All regressions include a
constant, importer-year, exporter-year and importer-exporter fixed-effects. Clustered standard errors.
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Table A.10. Interacting France and 1885 dummies

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Lasso XGBoost LGBM AdaBoost ET RF NN Ridge SVM

LMU France -0.059∗ -0.032∗∗∗ -0.038 0.049 -0.036∗∗∗ -0.037∗ 0.528∗∗∗ -0.097∗∗∗ -0.186
(0.026) (0.010) (0.054) (0.044) (0.009) (0.019) (0.141) (0.019) (0.106)

LMU Rest 0.084∗∗∗ 0.052 -0.011 0.013 -0.040∗∗ -0.015 0.219∗∗∗ 0.019 -0.980∗∗∗

(0.008) (0.036) (0.103) (0.073) (0.014) (0.028) (0.043) (0.038) (0.190)
LMU France 1885 0.222∗∗∗ 0.065∗∗∗ 0.010 -0.015 0.035∗∗ 0.049∗∗ -0.406∗∗∗ 0.271∗∗∗ 0.445∗∗∗

(0.045) (0.012) (0.024) (0.023) (0.012) (0.017) (0.105) (0.055) (0.083)
LMU Rest 1885 -0.033 0.051 0.031 -0.011 0.036 0.033 -0.257∗ 0.071 1.086∗∗∗

(0.045) (0.028) (0.037) (0.055) (0.019) (0.025) (0.131) (0.094) (0.142)
GS 0.124∗∗ -0.041∗∗∗ -0.024 0.040 0.002 -0.021 -0.081 0.049 0.172∗

(0.047) (0.012) (0.043) (0.034) (0.012) (0.012) (0.067) (0.069) (0.073)
SMU -0.252∗∗∗ -0.019 -0.133 -0.109∗ -0.019 -0.069∗∗ 0.250 -0.188∗∗∗ -0.031

(0.036) (0.015) (0.111) (0.048) (0.016) (0.024) (0.130) (0.028) (0.161)

N 7169 7169 7169 7169 7169 7169 7169 7169 7169

Notes: ∗∗∗p < 0.001,∗∗ p < 0.01,∗ p < 0.05. Dependent variable: Estimated bilateral financial flows. All regressions include a constant,
importer-year, exporter-year and importer-exporter fixed-effects. Clustered standard errors.

Table A.11. Comparing Effects of LMU Before and After 1874

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Lasso XGBoost LGBM AdaBoost ET RF NN Ridge SVM

LMU -0.003 0.025 -0.025 0.031 -0.029∗∗∗ -0.020 0.314∗∗∗ -0.035∗∗∗ -0.315
(0.008) (0.019) (0.044) (0.038) (0.008) (0.020) (0.092) (0.007) (0.162)

LMU 1874 0.147∗∗ 0.055∗ 0.021 -0.009 0.030∗ 0.047∗ -0.369∗∗∗ 0.201∗∗∗ 0.684∗∗∗

(0.048) (0.022) (0.018) (0.026) (0.015) (0.021) (0.088) (0.059) (0.159)
GS 0.207∗∗∗ -0.031∗∗ -0.021 0.037 0.007 -0.015 -0.144 0.112 0.381∗∗∗

(0.049) (0.012) (0.046) (0.038) (0.012) (0.010) (0.089) (0.067) (0.053)
SMU -0.256∗∗∗ -0.021 -0.132 -0.108∗ -0.020 -0.069∗∗ 0.245 -0.190∗∗∗ -0.120

(0.031) (0.017) (0.110) (0.046) (0.015) (0.022) (0.136) (0.019) (0.146)

N 7169 7169 7169 7169 7169 7169 7169 7169 7169

Notes: ∗∗∗p < 0.001,∗∗ p < 0.01,∗ p < 0.05. Dependent variable: Estimated bilateral financial flows. All regressions include a
constant, importer-year, exporter-year and importer-exporter fixed-effects. Clustered standard errors.
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Table A.12. Interacting 1874 and France Dummies

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Lasso XGBoost LGBM AdaBoost ET RF NN Ridge SVM

LMU France -0.008 -0.019 -0.035 0.054 -0.028∗∗∗ -0.031∗ 0.472∗∗∗ -0.054∗ 0.119
(0.030) (0.011) (0.047) (0.037) (0.007) (0.015) (0.134) (0.022) (0.097)

LMU Rest 0.097∗∗∗ 0.066∗ -0.008 -0.014 -0.029∗ -0.007 0.152∗∗∗ 0.037 -0.317
(0.015) (0.031) (0.096) (0.061) (0.011) (0.026) (0.045) (0.033) (0.164)

LMU France 1874 0.161∗∗ 0.064∗∗∗ 0.007 -0.040 0.034∗∗ 0.062∗∗∗ -0.514∗∗∗ 0.251∗∗∗ 0.276∗∗∗

(0.055) (0.015) (0.023) (0.027) (0.012) (0.017) (0.118) (0.059) (0.071)
LMU Rest 1874 -0.105 0.042 0.038 0.064 0.026 0.028 -0.264∗∗ 0.017 0.688∗∗∗

(0.066) (0.036) (0.053) (0.054) (0.023) (0.026) (0.087) (0.087) (0.169)
GS 0.203∗∗∗ -0.033∗∗ -0.020 0.039 0.007 -0.016 -0.126 0.109 0.382∗∗∗

(0.047) (0.012) (0.044) (0.036) (0.012) (0.010) (0.091) (0.067) (0.054)
SMU -0.250∗∗∗ -0.019 -0.134 -0.118∗ -0.019 -0.067∗∗ 0.225 -0.186∗∗∗ -0.121

(0.035) (0.014) (0.110) (0.052) (0.015) (0.022) (0.133) (0.028) (0.149)

N 7169 7169 7169 7169 7169 7169 7169 7169 7169

Notes: ∗∗∗p < 0.001,∗∗ p < 0.01,∗ p < 0.05. Dependent variable: Estimated bilateral financial flows. All regressions include a constant,
importer-year, exporter-year and importer-exporter fixed-effects. Clustered standard errors.
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APPENDIX B

Appendix to Chapter 2

This appendix contains the proofs and derivations omitted from the main body of

the paper.

B.1. Proof of Proposition 1

We characterize the equilibrium via backward induction. Starting with the firms’

decisions at t = 1, recall that firms optimally choose their labor input and flexible in-

termediate input quantities to meet the realized demand. Taking the prices, its realized

demand, and their rigid input demands as given, firm k in industry i faces the following

cost-minimization problem:

min
lik,{xij,k}j∈Fi

wlik +
∑
j∈Fi

pjxij,k

subject to yik = ziζil
αi
ik

n∏
j=1

x
aij
ij,k.

Solving this problem implies that the firm’s expenditure on labor and flexible input

demands are given by

wlik = αi(yik/Qik)
1/(1−

∑
j∈Ri

aij)(B.1)

pjxij,k = aij(yik/Qik)
1/(1−

∑
j∈Ri

aij) for all j ∈ Fi(B.2)
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respectively, where Qik only depends on the firm’s productivity, its input prices, the

nominal wage, and the intermediate input decisions that are sunk by t = 1:

Qik = ziw
−αi

∏
j∈Fi

p
−aij
j

∏
j∈Ri

(xij,k/aij)
aij .(B.3)

Therefore, the firm faces the following problem when deciding on its nominal price at

t = 1:

max
pik

(1− τi)pikyik − wlik −
∑
j∈Fi

pjxij,k(B.4)

subject to yik = (pik/pi)
−θiyi(B.5)

as well as the labor and intermediate input demand constraints (B.1) and (B.2). The

first-order conditions of this optimization implies that

(1− τi)(1− θi)(pik/pi)
−θiyi − (yik/Qik)

1/(1−
∑

j∈Ri
aij) 1

yik

dyik
dpik

= 0.(B.6)

Solving this optimization problem implies that the nominal price set by firm k in

industry i is given by

pik =
(
(pθii yi)

∑
j∈Ri

aijQ−1
ik

)1/(1+(θi−1)
∑

j∈Ri
aij)

,(B.7)

where Qik is given by (B.3) and we are using the assumption that τi = 1/(1 − θi). With

the firm’s price and quantity decisions at t = 1 in hand, we can now turn to the rigid

intermediate input decisions of the firm at t = 0. Recall that firms choose their rigid

intermediate inputs in order to maximize the expected real value of their profits given

their information set. Therefore, firm k in industry i faces the following optimization
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problem at t = 0:

max
{xij,k}j∈Ri

Ei

[
U ′(C)

P

(
(1− τi)pikyik − wlik −

n∑
j=1

pjxij,k

)]

subject to constraints (B.1)–(B.2), (B.5), and (B.7), where Ei[·] denotes the expectation

operator with respect to the information set of firms in industry i, U ′(C) = 1/C is the

household’s marginal utility, and P is the price of the consumption good bundle. Note

that, PC = m. Therefore, the first-order condition of the firm’s problem at t = 0 is given

by

Ei
[
1

m

(
(1− τi)(1− θi)(pik/pi)

−θiyi − (yik/Qik)
1/(1−

∑
j∈Ri

aij) 1

yik

dyik
dpik

)
dpik
dxij,k

]
+Ei

[
1

m

(
(yik/Qik)

1/(1−
∑

j∈Ri
aij) 1

Qik

dQik

dxij,k
− pj

)]
= 0.

Equation (B.6) implies that the first term on the right-hand side of the above equation

is equal to zero. Furthermore, note that (B.3) implies that dQik/dxij,k = aijQik/xij,k.

Therefore,

xij,k =
aij

Ei[pj/m]
Ei
[
1

m
(yik/Qik)

1/(1−
∑

j∈Ri
aij)

]
for all j ∈ Ri.(B.8)

To simplify the above, note that given that all firms within the same industry are sym-

metric, they all set the same prices and produce the same quantities, that is, pik = pi and

yik = yi. Therefore, we can drop the firm index k from (B.7) and solve for Qik in terms of

the price of firms in industry i:

Qik = (piyi)
∑

j∈Ri
aij/pi.(B.9)
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Plugging this expression back into (B.2) and (B.8), we obtain

xij,k =


aijλim/pj if j ∈ Fi

aijEi[λi]/Ei[pj/m] if j ∈ Ri,

(B.10)

where we are using the fact that the Domar weight of industry i is given by λi = piyi/m.

This expression together with the market-clearing condition (2.6) for sectoral good i

implies that

yi = ci +
∑
j∈Fi

aji
λj
pi/m

+
∑
j∈Ri

aji
Ej[λj]

Ej[pi/m]
.

Multiplying both sides of the above equation by pi/m and using the fact that ci = βim/pi—

which is a consequence of the household’s optimization problem—then establishes (2.11).

We next establish (2.10). To this end, note that equations (B.3) and (B.10) imply that

Qik = ziw
−αi

∏
j∈Fi

p
−aij
j

∏
j∈Ri

(Ei[λi]/Ei[pj/m])aij .

Combining the above equation with the expression for Qik in (B.9) then establishes

(2.10). □

B.2. Proof of Lemma 1

As a first observation, note that combining (B.1) with the expression for Qik in (B.9)

implies that the labor demand of firm k in industry i is given by lik = αiλim/w. Therefore,

aggregate demand for labor in the economy is equal to

n∑
i=1

∫ 1

0

likdk = (m/w)
n∑
i=1

αiλi.

Furthermore, note that the first-order conditions of the household’s problem imply that

total labor supply is given by L = (mχ/w)−η. Combining the above two equations
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therefore implies that the labor market equilibrium condition (2.5) is given by

(w − w̄)

(
(mχ/w)−η − (m/w)

n∑
i=1

αiλi

)
= 0, w ≥ w̄, χm/w ≤

(
1

χ

n∑
i=1

αiλi

)−1/(1+η)

.

We consider two separate cases. First, suppose thatw > w̄. The first condition above im-

plies that w = mχη/(1+η) (
∑n

i=1 αiλi)
1/(1+η). This is consistent with the original conjecture

as long as w̄ < mχη/(1+η) (
∑n

i=1 αiλi)
1/(1+η). As the second case, suppose w = w̄. In that

case, the last inequality above implies that w̄ ≥ mχη/(1+η) (
∑n

i=1 αiλi)
1/(1+η). Putting the

two cases together establishes (2.13). Finally, note that taking η → ∞ in (2.13) implies

that w = max {χm, w̄}. □

B.3. Proof of Proposition 2

We prove this result by establishing that the optimality conditions corresponding

to the planner’s problem coincide with the equilibrium conditions in equations (2.10)–

(2.13). As a first observation, note that since all firms in the same industry have identical

production technologies and information sets, we can drop the firm index k in the

planner’s problem.

To express the planner’s problem, let

s = (z,m, (ω1, . . . , ωn)) ∈ S = Rn+1
+ × Ω1 × · · · × Ωn

denote the aggregate state of the economy, consisting of all realized productivity and

demand shocks, as well as the cross-sectional profile of signals, where ωi ∈ Ωi denotes

the component of the state observable to firms in industry i. To ensure that the planner

is subject to the same information and quantity adjustment frictions as the firms, we

impose the following measurability constraint on the quantities: if j is a rigid input

of industry i (so that j ∈ Ri), then xij can be contingent on ωi, but not on the aggre-

gate state s. We capture this measurability constraint by denoting corresponding input
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quantity by xij(ωi). In contrast, if j is a flexible input for firms in industry i (so that

j ∈ Fi), then xij can be contingent on the economy’s aggregate state, in which case

we denote this quantity by xij(s). Finally, note that since labor supply, labor demand,

and consumption are not subject to informational frictions, they can depend on the

economy’s aggregate state. We therefore denote the corresponding quantities by li(s),

L(s), and ci(s), respectively.

Using the above notation, we can now express the planner’s problem as follows. The

planner maximizes the household’s expected utility

∫
s∈S

(
n∑
i=1

βi log ci(s)− χ
L1+1/η(s)

1 + 1/η

)
dG(s)(B.11)

subject to the following resource and technology constraints:

yi(s) = ci(s) +
∑
j:i∈Rj

xji(ωj) +
∑
j:i∈Fj

xji(s)(B.12)

L(s) =
n∑
i=1

li(s)(B.13)

yi(s) = ziFi(li(s), {xij(s)}j∈Fi
, {xij(ωi)}j∈Ri

), ,(B.14)

where G(s) denotes the probability distribution of the economy’s aggregate state and

Fi denotes the production function of firms in industry i and is given by (2.1). The

Lagrangian corresponding to the above problem is thus given by

L =

∫
s∈S

(
n∑
i=1

βi log ci(s)− χ
L1+1/η(s)

1 + 1/η

)
dG(s) +

∫
s∈S

ν0(s)

(
L(s)−

n∑
i=1

li(s)

)
dG(s)

+
n∑
i=1

∫
s∈S

ψi(s)
(
yi(s)− ci(s)−

∑
j:i∈Rj

xji(ωj)−
∑
j:i∈Fj

xji(s)
)
dG(s)

+
n∑
i=1

∫
s∈S

νi(s)
(
ziFi(li(s), {xij(s)}j∈Fi

, {xij(ωi)}j∈Ri
)− yi(s)

)
dG(s).
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where νi(s)dG(s) is the Lagrange multiplier corresponding to good i’s resource con-

straint (B.12), ν0(s)dG(s) is the multiplier corresponding to labor resource constraint

(B.13), and ψi(s)dG(s) is the multiplier for industry i’s technology constraint, (B.14).

Therefore, the first-order conditions with respect to ci(s), L(s), and yi(s) are given by

βi/ci(s) = ψi(s), χL1/η(s) = ν0(s), ψi(s) = νi(s),(B.15)

respectively, whereas the first-order conditions with respect to li(s) and xij(s) for j ∈ Fi

are given by

ν0(s) = νi(s)zi
∂Fi
∂li

(s) = αiνi(s)yi(s)/li(s)(B.16)

ψj(s) = νi(s)zi
∂Fi
∂xij

(s) = aijνi(s)yi(s)/xij(s),(B.17)

respectively. Finally, the first-order condition with respect to the rigid input xij(ωi) is

given by

∫
s∈Ωi

ψj(s)dG(s) = aij

∫
s∈Ωi

νi(s)yi(s)/xij(ωi)dG(s),

where Ωi ⊆ S denotes the subset of states with corresponding element ωi. Note that

dividing both sides of the above equation by G(Ωi) leads to

Ei[ψj(s)] = aijEi[νi(s)yi(s)]/xij(ωi).(B.18)

Plugging in the expressions for ci(s), xij(s), and xij(ωi) in (B.15), (B.17), and (B.18) into

the resource constraint (B.12) implies that

ψi(s)yi(s) = βi +
∑
j:i∈Rj

ajiψi(s)Ej[ψj(s)yj(s)]/Ej[ψi(s)] +
∑
j:i∈Fj

ajiψj(s)yj(s),(B.19)
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where we are using the fact that νi(s) = ψi(s), established in (B.15). Next, note that

plugging the same expressions and the expression for li(s) in (B.16) into the technology

constraint in (B.14) leads to

yi(s) = zi (ψi(s)yi(s)/ν0(s))
αi
∏
j∈Fi

(ψi(s)yi(s)/ψj(s))
aij
∏
j∈Ri

(Ei[ψi(s)yi(s)]/Ei[ψj(s)])aij .

(B.20)

Finally, plugging the expressions for L(s) and li(s) in (B.15) and (B.16) into the resource

constraint for labor (B.13) implies that

n∑
i=1

αiψi(s)yi(s) = v1+η0 (s)/χη.(B.21)

The proof is complete once we verify that equations (B.19)–(B.21) coincide with equilib-

rium conditions (2.10)–(2.13). We do so by a simple change of variables. Let

λi(s) = ψi(s)yi(s), pi(s) = ψi(s)m(s), w(s) = ν0(s)m(s),

where m(s) is an arbitrary function. Using this change of variables, it is then immediate

to verify that, as long as the downward nominal wage rigidity constraint does not bind

(that is w > w̄), then equations (B.19)–(B.21) reduce to (2.10)–(2.13). □

B.4. An Auxiliary Result

We now state and prove a result that provides an exact expression for aggregate

output in terms of model primitives and the nominal wage when there is only a single

rigid industry. We will use this result in proving Propositions 3 and 4.
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Proposition B.4.1. If r is the only industry that is subject to frictions and Assumption

1 is satisfied, then,

(B.22) logC =
n∑
j=1

λssj log zj − log(w/m)− λssr
∑
j∈Rr

arjKr

(
log(w/m)−

n∑
s=1

ℓjs log zs

)
,

where Kr(x) = logEr[exp(x)]− x.

PROOF. We first show that λr = λssr . Since industry r is the only industry subject to

informational frictions, equation (2.11) implies that

λi = βi +
n∑
j=1

ajiλj + ari

(
Er[λr]

pi/m

Er[pi/m]
− λr

)
I{i∈Rr}.(B.23)

Taking expectations from both sides of the above equation with respect to the informa-

tion set of industry r implies that Er[λi] = βi+
∑n

j=1 ajiEr[λj] for all i. Solving this system

of equations for Er[λi] implies that Er[λi] = λssi , where is the steady-state Domar weight

of industry i. Consequently, we can rewrite equation (B.23) as follows:

λi = βi +
n∑
j=1

ajiλj + ari

(
λssr

pi/m

Er[pi/m]
− λr

)
I{i∈Rr},

Furthermore, note that the steady-state Domar weights satisfy the following system of

equations: λssi = βi +
∑n

j=1 ajiλ
ss
j for all i. Subtracting this equation from the previous

one therefore implies that

∆i =
n∑
j=1

aji∆j + ari

(
λssr

pi/m

Er[pi/m]
− λr

)
I{i∈Rr}.

where ∆i = λi − λssi . Solving the above system of equations for ∆i implies that

∆i =
n∑
j=1

ℓjiarj

(
λssr

pj/m

Er[pj/m]
− λr

)
I{j∈Rr},(B.24)
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where ℓji denotes the (j, i) element of the economy’s Leontief inverse L = (I − A)−1.

Setting i = r in the above equation and using Assumption 1 then implies that the right-

hand side of the above equation is equal to zero, thus establishing that λr = λssr .

Next, note that since industry r is the only industry that is subject to frictions, equa-

tion (2.10) implies that the (log) nominal price of industry i ̸= r is given by

log pi = − log zi + αi logw +
n∑
j=1

aij log pj.

Let p̃ ∈ Rn−1 denote the vector of nominal prices for all industries i ̸= r and let Ã ∈

R(n−1)×(n−1) denote the sub-block of the input-output matrix A corresponding to all

industries except for r. Writing the above equation in vector form therefore implies that

log p̃ = − log z̃ + α̃ logw + Ã log p̃ + ãr log pr, where α̃ and z̃ denote the vectors of labor

shares and productivity shocks for all i ̸= r and ãr ∈ Rn−1 is a vector with elements ais

for all i ̸= r. Consequently,

log p̃ = L̃α̃ logw − L̃ log z̃ + L̃ãr log pr,

where L̃ = (I− Ã)−1. Under Assumption 1, the elements of L̃ can be expressed in terms

of the elements of the economy’s Leontief inverse L. In particular, ℓ̃ij = ℓij − ℓirℓrj for all

i, j ̸= r. Hence,

log pi = logw
∑
j ̸=r

(ℓij − ℓirℓrj)αj −
∑
j ̸=r

(ℓij − ℓirℓrj) log zj + log pr
∑
j ̸=r

(ℓij − ℓirℓrj)ajr

for all i ̸= r. Consequently,

log pi = (1− ℓir) logw + ℓir log pr −
∑
j ̸=r

(ℓij − ℓirℓrj) log zj(B.25)

for all i ̸= r, where we are using the fact that
∑n

j=1 ℓijαj = 1 for all i and ℓrr = 1, the latter

of which is a consequence of Assumption 1. The above equation expresses all prices
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in terms of the price of industry r and the nominal wage. With the above in hand, we

can therefore obtain an expression for aggregate output in terms of the nominal price of

industry r. In particular, the fact that logC = logm −
∑n

i=1 βi log pi together with (B.25)

implies that

logC = log(m/w)− λssr log(pr/w) +
∑
j ̸=r

(λssj − λssr ℓrj) log zj,(B.26)

where λssj denotes the steady-state Domar weight of industry j. Therefore, to obtain the

expression for aggregate output is sufficient to characterize log pr. To this end, note that

setting i = r in equation (2.10) implies that

log pr = − log zr + αr logw +
∑
j∈Fr

arj log pj + logm
∑
j∈Rr

arj +
∑
j∈Rr

arj logEr[pj/m],

where we are also using the fact that λr = λssr . Replacing for log pj from (B.25) for all j ̸= r

into the above equation and using the implication of Assumption 1 that arjℓjr = 0 for all

j ∈ Fr implies that

(B.27)

log(pr/m) = − log zr +

(
αr +

∑
j∈Fr

arj

)
log(w/m)−

∑
j∈Fr

n∑
s=1

arjℓjs log zs

+
∑
j∈Rr

arj logEr

[
exp

(
log(w/m)−

n∑
s=1

ℓjs log zs

)]
.

Plugging the above into the expression for logC in (B.26) and using Assumption 1 then

establishes (B.22). □
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B.5. Proof of Proposition 3

Proof of part (a). Recall from the proof of Proposition B.4.1 that ∆i = λi−λssi satisfies

(B.24). As a result,

n∑
i=1

αiλi =
n∑
i=1

αi(λ
ss
i +∆i) = 1 + λssr

∑
j∈Rr

arj

(
pj/m

Er[pj/m]
− 1

)
,

where we are using
∑n

i=1 αiλ
ss
i =

∑n
i=1 αiℓji = 1 and the fact that λr = λssr , established in

the proof of Proposition B.4.1. Therefore, to a first-order approximation

log

(
n∑
i=1

αiλi

)
= λssr

∑
j∈Rr

arj

(
pj/m

Er[pj/m]
− 1

)
= λssr

∑
j∈Rr

arj (log(pj/m)− Er[log(pj/m)]) .

Combining the above with equation (2.13), together with the assumption that the down-

ward constraint on nominal wage does not bind, implies that

log(w/m) =
η

1 + η
logχ+

1

1 + η
λssr
∑
j∈Rr

arj

(
log(pj/m)− Er[log(pj/m)]

)
.(B.28)

Next, recall from the proof of Proposition B.4.1 that log(pr/m) is given by (B.27). Thus, to

a first-order approximation,

log(pr/m) = − log zr +

(
αr +

∑
j∈Fr

arj

)
log(w/m)−

∑
j∈Fr

n∑
s=1

arjℓjs log zs

+
∑
j∈Rr

arjEr

[
log(w/m)−

n∑
s=1

ℓjs log zs

]
.

Plugging this back into the expression for log pi in (B.25) we get

log(pi/m) = log(w/m)−
n∑
j=1

ℓij log zj − ℓir

(∑
j∈Rr

arj

)(
log(w/m)− Er[log(w/m)]

)

− ℓir
∑
j∈Rr

arj

n∑
p=1

ℓjpEr ([log zp]− log zp)
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for all i ̸= r. Taking expectations from both sides of the above equation and subtracting

it from both sides therefore implies that

∑
i∈Rr

ari(log(pi/m)− Er[log(pi/m)]) =
∑
i∈Rr

ari

(
log(w/m)− Er[log(w/m)]

)

−
∑
i∈Rr

ari

n∑
j=1

ℓij(log zj − Er[log zj]),

Note that (B.28) implies that Er[log(w/m)] = η
1+η

logχ. Therefore, we can rewrite the

above equation as follows:

∑
i∈Rr

ari(log(pi/m)− Er[log(pi/m)]) =
∑
i∈Rr

ari

(
log(w/m)− 1

1 + 1/η
logχ

)

−
∑
i∈Rr

n∑
j=1

ariℓij(log zj − Er[log zj]),

Combining the above equation with (B.28) and solving for log(w/m) we obtain,

log(w/m) =
1

1 + 1/η
logχ− λssr

1 + η − λssr
∑

i∈Rr
ari

∑
i∈Rr

n∑
j=1

ariℓij(log zj − Er[log zj]).

Now, plugging the above expression into the expression for logC in (B.22) and perform-

ing a first-order approximation establishes (2.14). □

Proof of part (b). Recall from Proposition B.4.1 that log aggregate output is given by

(B.22). Furthermore, note that by Lemma 1, when labor supply is fully elastic and the

downward constraint on the nominal wage does not bind, log(w/m) = logχ. Therefore,

the expression in (B.22) simplifies as follows:

logC =
n∑
j=1

λssj log zj − logχ− λssr
∑
j∈Rr

arjKr

(
−

n∑
s=1

ℓjs log zs

)
,

where we are using the fact that Kr(x + a) = Kr(x) for any constant a. Noting that

logC∗ =
∑n

j=1 λ
ss
j log zj − logχ then establishes (2.15). □
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B.6. Proof of Proposition 4

Recall from Proposition B.4.1 that log aggregate output is given by (B.22). Therefore,

when the downward constraint on the nominal wage binds (that is, w = w̄) and the

absence of productivity shocks, the expression for log aggregate output reduces to

logC = logm− log w̄ −Kr (− logm)λssr
∑
j∈Rr

arj,

which coincides with the expression in (2.19). Also note that (2.20) follows immediately

from the observation that logP = logm− logC.

B.7. Proof of Propositions 5

Let Eω[·] denote the expectation operator conditional on the public signal, ω. Taking

conditional expectations from both sides of (2.11) implies thatEω[λi] = βi+
∑n

j=1 ajiEω[λj]

for all i. On the other hand, note that the steady-state Domar weights of all industries

also satisfy the following system of equations: λssi = βi+
∑n

j=1 ajiλ
ss
j . Comparing the two

equations then implies that

Eω[λi] = λssi for all i.

Plugging this into equation (2.10) and taking logarithms from both sides then implies

that

log(pi/m) = − log zi + αi log(w/m) +
∑
j∈Fi

aij log(pj/m) +
∑
j∈Ri

aij (logEω[pj/m] + log(λi/λ
ss
i ))

To simplify notation, define p̂i = pi/m and ŵ = w/m. Writing the above equation in

matrix form, we get

log p̂ = − log z + α log ŵ +Af log p̂+Ar logEω[p̂] + diag(Ar1) log(λ/λ
ss),
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where Af is the matrix whose (i, j) element is equal to aij if j ∈ Fi and is equal to zero

otherwise and Ar = A−Af . Consequently,

log p̂ = ξ + Lfα log ŵ + LfAr logEω[p̂],(B.29)

where Lf = (I−Af )
−1 and

ξ = −Lf log z + Lf diag(Ar1) log(λ/λ
ss).(B.30)

Exponentiating both sides of (B.29), taking conditional expectations, and then taking

logarithms implies that

logEω[p̂] = logEω[eξ] + Lfα log ŵ + LfAr logEω[p̂],

where note that since η → ∞, Lemma 1 implies that ŵ = w/m = χ, which is deter-

ministic and hence is measurable with the respect to the firms’ common information

structure. Solving for logEω[p̂] and using the observation that (I−LfAr)
−1 = (I−Lf (A−

Af ))
−1 = L(I−Af ), we can rewrite the above equation as follows:

logEω[p̂] = L(I−Af ) logEω[eξ] + 1 logχ,

Plugging the above expression back into (B.29) leads to the following expression for log

prices in terms of vector ξ defined in (B.30):

log p̂ = 1 logχ+ ξ + LAr logEω[eξ].

Combining this equation with the observation that logC = logm −
∑n

i=1 βi log pi we get

the following expression for log aggregate output in terms of vector ξ:

logC = − logχ− λss′(I−A)ξ − λss′Ar logEω[eξ],
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which to a second-order approximation is equal to

logC = − logχ− λss′(I−A)ξ − λss′Ar

(
Eω[ξ] +

1

2
varω(ξ)

)
.(B.31)

To express log output in (B.31) in terms of model primitives, we next need to solve for ξ

and its first two conditional moments. We thus turn to (2.11), which can be rewritten as

follows:

λ = β +A′
fλ+ diag(A′

rλ
ss)

p̂

Eω[p̂]
.

Solving for the vector of Domar weights and using (B.29), we get

λ = L′
fβ + L′

f diag(A
′
rλ

ss)
eξ

Eω[eξ]
= λss + L′

f diag(A
′
rλ

ss)

(
eξ

Eω[eξ]
− 1

)
,

and as a result,

λ/λss = 1+ diag−1(λss)L′
f diag(A

′
rλ

ss)
(
eξ−logEω [eξ] − 1

)
.(B.32)

Therefore, to a second-order approximation,

λ/λss = 1+H′
(
ξ − logEω[eξ] +

1

2
diag

(
(ξ − logEω[eξ])(ξ − logEω[eξ])′

))
= 1+H′

(
ξ − Eω[ξ]−

1

2
varω(ξ) +

1

2
diag ((ξ − Eω[ξ])(ξ − Eω[ξ])′)

)
,

whereH′ = diag−1(λss)L′
f diag(A

′
rλ

ss). Plugging the above expression into equation (B.30)

and performing a second-order approximation, we get

(B.33)

ξ = −Lf log z + Lf diag(Ar1)H
′
(
ξ − Eω[ξ]−

1

2
varω(ξ) +

1

2
diag((ξ − Eω[ξ])(ξ − Eω[ξ])′)

)
− 1

2
Lf diag(Ar1) diag(H

′(ξ − Eω[ξ])(ξ − Eω[ξ])′H).
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Taking conditional expectations from both sides of the above equation implies that

Eω[ξ] = −LfEω[log z]−
1

2
Lf diag(Ar1) diag(H

′varω(ξ)H),(B.34)

where varω(ξ) denotes the variance-covariance matrix of ξ conditional on the common

signal ω. Subtracting the above equation from (B.33) leads to

ξ − Eω[ξ] = −Lf (log z − Eω[log z])

+ Lf diag(Ar1)H
′
(
ξ − Eω[ξ]−

1

2
varω(ξ) +

1

2
diag((ξ − Eω[ξ])(ξ − Eω[ξ])′)

)
− 1

2
Lf diag(Ar1) diag(H

′(ξ − Eω[ξ])(ξ − Eω[ξ])′H) +
1

2
Lf diag(Ar1) diag(H

′varω(ξ)H).

As a result,

varω(ξ) = varω(Lf log z) + Lf diag(Ar1)H
′varω(ξ)H diag(Ar1)L

′
f .

Solving for varω(ξ) from the above equation, we get

varω(ξ) =
∞∑
k=0

(Lf diag(Ar1)H
′)kvarω(Lf log z)(H diag(Ar1)L

′
f )
k.(B.35)

Plugging the expressions in (B.34) and (B.35) into (B.31) and taking conditional expec-

tations then implies that

Eω[logC] = Eω[logC∗] +
1

2
λss′ diag(Ar1) diag(H

′varω(ξ)H)− 1

2
λss′Arvarω(ξ).

Taking unconditional expectations from both side of the above equation and lettingQ =

E[varω(ξ)] then establishes the result. □
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B.8. Proof of Propositions 6

Recall from the proof of Proposition 5 that log p̂i = log pi − logm satisfies equation

(B.29), where vector ξ is given by (B.30). In the absence of productivity shocks, and

when the downward constraint on the nominal wage binds, this implies that

log p̂ = θ + Lfα log w̄ + LfAr logEω[p̂],

where

θ = −Lfα logm+ Lf diag(Ar1) log(λ/λ
ss).(B.36)

Exponentiating both sides of the above equation, taking conditional expectations, and

then taking logarithms implies that

logEω[p̂] = logEω[eθ] + Lfα log w̄ + LfAr logEω[p̂].

Solving for logEω[p̂] and using the observation that (I−LfAr)
−1 = (I−Lf (A−Af ))

−1 =

L(I−Af ), we can rewrite the above equation as follows:

logEω[p̂] = L(I−Af ) logEω[eθ] + 1 log w̄.

Plugging the above back into the expression for log p̂ leads to the following expression

for log prices:

log p̂ = 1 log w̄ + θ + LAr logEω[eθ].
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Combining this equation with the observation that logC = −
∑n

i=1 βi log p̂i we get the

following expression for log aggregate output:

logC = − log w̄ − λss′(I−A)θ − λss′Ar logEω[eθ].

Next, note that steps identical to those in the proof of Proposition 5 imply that we can

write the ratio of Domar weights to their steady-state values as follows:

λ/λss = 1+ diag−1(λss)L′
f diag(A

′
rλ

ss)
(
eθ−logEω [eθ] − 1

)
,

and hence, to a second-order approximation,

λ/λss = 1+H′
(
θ − Eω[θ]−

1

2
varω(θ) +

1

2
diag ((θ − Eω[θ])(θ − Eω[θ])′)

)
,

Plugging the above expression into equation (B.36) and performing a second-order ap-

proximation, we get

(B.37)

θ = −Lfα logm+ Lf diag(Ar1)H
′
(
θ − Eω[θ]−

1

2
varω(θ) +

1

2
diag((θ − Eω[θ])(θ − Eω[θ])′)

)
− 1

2
Lf diag(Ar1) diag(H

′(θ − Eω[θ])(θ − Eω[θ])′H).

Taking conditional expectations from both sides of the above equation implies that

Eω[θ] = −LfαEω[logm]− 1

2
Lf diag(Ar1) diag(H

′varω(θ)H).(B.38)

Subtracting the above equation from (B.37) leads to

θ − Eω[θ] = −Lfα(logm− Eω[logm])

+ Lf diag(Ar1)H
′
(
θ − Eω[θ]−

1

2
varω(θ) +

1

2
diag((θ − Eω[θ])(θ − Eω[θ])′)

)
− 1

2
Lf diag(Ar1) diag(H

′(θ − Eω[θ])(θ − Eω[θ])′H) +
1

2
Lf diag(Ar1) diag(H

′varω(θ)H).
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As a result,

varω(θ) = varω(Lfα logm) + Lf diag(Ar1)H
′varω(θ)H diag(Ar1)L

′
f .

Solving for varω(θ) from the above equation, we get

varω(θ) =
∞∑
k=0

(Lf diag(Ar1)H
′)kvarω(Lfα logm)(H diag(Ar1)L

′
f )
k.(B.39)

Plugging the expressions in (B.38) and (B.39) into the expression for aggregate output

and taking conditional expectations then implies that

Eω[logC] = Eω[logC∗] +
1

2
λss′ diag(Ar1) diag(H

′varω(θ)H)− 1

2
λss′Arvarω(θ).

Taking unconditional expectations from both side then establishes the result. □

B.9. Proof of Proposition 7

We consider a more general vertical production network with industries 1 through n

arranged on a chain, with industry 1 as the final good producer. We then specialize this

economy to the case of n = 3 in Proposition 7.

Recall from Proposition 1 that nominal prices and Domar weights satisfy the system

of equations in (2.10) and (2.11). Applying these equations to the vertical production

network economy, we obtain

pi =
1

zi
w1−ai

(
m
Ei[pi+1/m]

Ei[λi]/λi

)ai
for 1 ≤ i ≤ n,(B.40)

λi+1 = aiEi[λi]
pi+1/m

Ei[pi+1/m]
for 1 ≤ i ≤ n− 1(B.41)

with the initial conditions that λ1 = 1 and the convention that an = 0. Solving for

Ei[λi]/Ei[pi+1/m] from (B.41) and plugging it back into (B.40) implies that pi = 1
zi
aaii (λi/λi+1)

ai w1−aipaii+1.
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Hence,

log pi = ai(φi − φi+1)− log zi + ai log pi+1 + (1− ai) logw,

for 1 ≤ i ≤ n, where φi = log λi − log λssi and we are using the fact that λssi+1 = aiλ
ss
i .

Solving the above recursion, we can express nominal prices in terms of Domar weights:

log pi = logw −
n∑
j=i

(aiai+1 . . . aj−1) log zj +
n−1∑
j=i

(aiai+1 . . . aj)(φj − φj+1).(B.42)

Next, note that, to a first-order approximation, (B.41) can be expressed as

log λi+1 = log ai + log(pi+1/m) + Ei[log λi]− Ei[log pi+1/m],

and as a result,

φi+1 = Ei[φi] + log(pi+1/m)− Ei[log pi+1/m].(B.43)

We now have a system of linear expectations (B.42) and (B.43) that fully pins down

equilibrium nominal prices and Domar weights in terms of the productivity shocks,

nominal aggregate demand, and the nominal wage.

Specializing these equations to the case of n = 3 and shutting off all productivity

shocks, it is immediate that log p3 = logw, and hence, we get the following equations:

log p2 = logw + a2(φ2 − φ3)

φ2 = log p2 − E1[log p2]− logm+ E1[logm]

φ3 = E2[φ2] + log(w/m)− E2[log(w/m)].
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Replacing for φ3 into the expression for log p2, we get

log p2 = a2(φ2 − E2[φ2]) +Q+ logm,(B.44)

where

Q = (1− a2) log(w/m) + a2E2[log(w/m)].(B.45)

Consequently, we get the following equation for φ2:

φ2 = a2(φ2 − E2[φ2])− a2(E1[φ2]− E1E2[φ2]) +Q− E1[Q]

Noting that E1[φ2] = 0, we get

φ2 = − a2
1− a2

E2[φ2] +
a2

1− a2
E1E2[φ2] +

1

1− a2
(Q− E1[Q]).(B.46)

Taking expectations with respect to the information set of firms in industry 2 from both

sides of (B.46) and solving for E2[φ2] implies that

E2[φ2] = a2E2E1E2[φ2] + E2[Q]− E2E1[Q].

We can thus solve for E2[φ2] in terms of the infinite regress of expectations as follows:

E2[φ2] =
∞∑
s=0

as2(E2E1)
s(E2[Q]− E2E1[Q]) =

∞∑
s=0

as2(E2E1)
sE2[Q]−

∞∑
s=0

as2(E2E1)
s+1[Q].

Plugging the above expression into (B.46), we get

φ2 =
1

1− a2

(
∞∑
s=0

as+1
2 (E1E2)

s+1[Q]−
∞∑
s=0

as+1
2 (E2E1)

sE2[Q] +
∞∑
s=0

as2(E2E1)
s[Q]−

∞∑
s=0

as2E1(E2E1)
s[Q]

)
.

Hence, combining this equation with (B.44) and using the observations that log p1 =

a1(φ1 − φ2) + a1 log p2 + (1 − a1) logw and φ1 = 0, we get the following expression for
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log p1:

log(p1/m) = a1

(
∞∑
s=0

as2E1(E2E1)
s[Q]−

∞∑
s=0

as+1
2 (E1E2)

s+1[Q]

)
+ (1− a1) log(w/m).

Rearranging terms, we get

log(p1/m) = a1

∞∑
s=0

as2(E1E2)
sE1

[
Q− a2E2[Q]

]
+ (1− a1) log(w/m).

On the other hand, note that (B.45) implies thatQ− a2E2[Q] = (1− a2) log(w/m). There-

fore,

log(p1/m) = a1(1− a2)
∞∑
s=0

as2(E1E2)
sE1[log(w/m)] + (1− a1) log(w/m).

By Lemma 1, the assumption that m < w̄/χ implies that w = w̄, in which case the above

equation immediately reduces to (2.28). Furthermore, noting that logm = log(PC) then

establishes (2.27). □
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APPENDIX C

Appendix to Chapter 3

C.1. Summary Statistics
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Table C.1. Summary Statistics for the Baseline Calibration

Value
Variable Statistic

agg-borrowing
mean 203.885
std 552.350

agg-equity
mean 859295.888
std 424812.277

agg-expected-demand
mean 1448.483
std 127.743

agg-forecast-error
mean 36.758
std 31.498

agg-inventories
mean 2394.449
std 1453.078

agg-sales
mean 1473.495
std 112.720

average-wage
mean 39.438
std 14.356

gdpgrowth
mean 0.001
std 0.058

goods-clearing-rate
mean 0.008
std 0.000

inflation
mean 0.005
std 0.021

kurtosis-average-cost
mean 3.543
std 4.886

kurtosis-markups
mean 0.995
std 2.290

kurtosis-pgs
mean 1.719
std 3.091

kurtosis-sales
mean 4.787
std 8.058

log-output
mean 7.317
std 0.063

marginal-wage
mean 36.688
std 12.968

mean-forecast-error-inductive
mean 21.885
std 36.901

mean-forecast-error-simple
mean 35.983
std 32.799

output-gap mean -0.013
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Table C.2. Summary Statistics for the Baseline Calibration, continuing

Value
Variable Statistic

output-gap std 0.079

price-index
mean 27.014
std 9.500

prodgrowth
mean 0.000
std 0.031

real-production
mean 1508.280
std 92.794

relative-performance-smart-firms
mean 0.053
std 0.092

rolling-output
mean 7.330
std 0.039

share-financial-constraint
mean 0.000
std 0.000

skewness-average-cost
mean -0.155
std 1.404

skewness-markups
mean 0.215
std 0.530

skewness-pgs
mean -0.511
std 0.943

skewness-sales
mean 1.442
std 1.531

stddev-average-cost
mean 8.899
std 4.291

stddev-markups
mean 25.660
std 3.138

stddev-pgs
mean 5.174
std 2.570

stddev-sales
mean 41.239
std 17.455

unemployment-change
mean -0.004
std 0.390

unemployment-rate
mean 9.140
std 5.590

vacancy-rate
mean 15.288
std 7.360

wage-inflation
mean 0.005
std 0.012
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joint “Grandes Écoles” program from HEC Paris and Sciences Po Paris.

Prior to his tenure as PhD candidate, Pellet was a research consultant at the World

Bank from 208 to 2019 on issues related to internet access in Africa. Pellet was also

a research analyst at the Peterson Institute for International Economics from 2017 to

2018. He worked with C. Fred Bergsten Senior Fellow Olivier Blanchard on issues related

to the euro area, macroeconomic policy, and capital flows. Previously, Pellet worked as

a research assistant to the chief economist at Rothschild & Co., in Paris, France and

produced debt sustainability assessments for the euro area, as well as global financial

stability reports and economic forecasts for executive committees.


	Abstract
	Acknowledgements
	Dedication
	Table of Contents
	List of Tables
	List of Figures
	Chapter 1. Financial Flows in the Latin Monetary Union: A Machine Learning Approach
	1.1. Introduction
	1.2. Historical Context
	1.3. Data
	1.4. Model Estimation
	1.5. Model Selection
	1.6. Consequences of the LMU for Financial Flows
	1.7. Conclusion

	Chapter 2. Rigid Production Networks
	2.1. Introduction
	2.2. Model
	2.3. Equilibrium Characterization
	2.4. Closed-Form Results
	2.5. Quantitative Analysis
	2.6. Conclusions

	Chapter 3. Production without FIRE
	3.1. Introduction
	3.2. Literature Review
	3.3. Model
	3.4. Calibration
	3.5. Quantitative Results
	3.6. Conclusion

	Bibliography
	Appendix A. Appendix to Chapter 1
	A.1. LMU membership
	A.2. Tradehist data
	A.3. CPIS Statistics
	A.4. Long-term Interest Rates
	A.5. Description of ML Methodologies Used
	A.6. Graphic Representation of Models' Performance
	A.7. Main Predictors of Bilateral Financial Flows
	A.8. Results from T2018
	A.9. Results Using Other Models

	Appendix B. Appendix to Chapter 2
	B.1. Proof of Proposition 1
	B.2. Proof of Lemma 1
	B.3. Proof of Proposition 2
	B.4. An Auxiliary Result
	B.5. Proof of Proposition 3
	B.6. Proof of Proposition 4
	B.7. Proof of Propositions 5
	B.8. Proof of Propositions 6
	B.9. Proof of Proposition 7

	Appendix C. Appendix to Chapter 3
	C.1. Summary Statistics

	Vita

