
NORTHWESTERN UNIVERSITY

Methods for Derivative-Free Optimization with Applications in Machine

Learning

A DISSERTATION

SUBMITTED TO THE GRADUATE SCHOOL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

for the degree

DOCTOR OF PHILOSOPHY

Field of Industrial Engineering and Management Sciences

By

Melody Qiming Xuan

EVANSTON, ILLINOIS

September 2023

2

© Copyright by Melody Qiming Xuan 2023

All Rights Reserved

3

ABSTRACT

Methods for Derivative-Free Optimization with Applications in Machine Learning

Melody Qiming Xuan

Derivative-free optimization (DFO) has received growing attention due to important

problems arising in practice. Various research communities, ranging from machine learning

to engineering design, have adopted distinct DFO methods. In this thesis, we present

extensive studies as a meaningful step towards a comprehensive understanding of DFO

methods. We study the relative merits of this disparate class of methods in a controlled

setting, where the derivatives of the functions are unavailable and the functions values are

subject to noise.

In Chapter 2, we provide numerical investigations of finite-difference-based approaches

against interpolation-based methods for solving unconstrained, (nonlinear) least-square

and constrained optimization problems. This approach relies on finite differences to

perform gradient approximations and applies existing gradient-based nonlinear optimization

solvers. The numerical results demonstrate the effectiveness of finite-difference-based

methods for both deterministic and noisy problems, when a proper implementation of

finite differences is employed. The empirical results suggest that finite-difference-based

4

methods are competitive with IBO methods, which are among the most reliable and

efficient DFO solvers.

We present in Chapter 3 an adaptive procedure to choosing a reliable finite differencing

interval for noisy DFO problems, using a bisection approach. When noise is present in

the objective function, the finite differencing interval needs to be chosen meticulously

to balance the truncation error and noise. In particular, the optimal interval depends

on the noise level of the function and a bound on the higher-order derivative. We show

that the proposed adaptive procedure produces near-optimal differencing intervals without

explicitly approximating higher-order derivatives. We demonstrate its robustness and

accuracy on selected problems.

In Chapter 4, we investigate general constrained DFO, where the constraints are ana-

lytically available. We propose to extend unconstrained interpolation-based optimization

methods by combining them with a general-purpose nonlinear programming solver. This is

a feasible method that constructs quadratic models of the objective and generates feasible

iterates at every iteration. We discuss its effectiveness and limitations in this chapter. Our

numerical results suggest that, when the objective is expensive to evaluate and the cost

for evaluating constraints is negligible, this seemingly expensive approach is competitive

with a state-of-the-art constrained DFO solvers that employs finite differences.

Next, in Chapter 5 we consider a DFO problem that arises in Natural Language

Processing. With the wide success of pre-trained large language models (LLMs) and their

growing model size, it is imperative to consider strategies that efficiently adapt pre-trained

general LLMs to individual language tasks. In particular, we consider prompt design,

which makes use of different prompts to condition LLMs for different tasks. We propose

5

to treat prompt design as a noisy DFO problem, wherein we search for a prompt that

optimizes performance without accessing the parameters of the underlying LLM. We

present competitive results for solving prompt design using DFO methods and identify

the relative merits of NEWUOA, FD L-BFGS and CMA-ES.

The observations in Chapter 5 motivate us to further analyze the relative strengths

of NEWUOA and CMA-ES in Chapter 6. In particular, we consider a broader range of

unconstrained problems from the CUTEst problem set. We observe that, contrary to

the noiseless problems, while NEWUOA still demonstrates greater efficiency in achieving

a desired level of accuracy, it is adversely affected by noise in function evaluations and

consequently achieves lower accuracy compared to CMA-ES. Therefore, we investigate

the impact of noise on IBO methods and briefly discuss strategies to improve the final

accuracy of IBO methods in the presence of noise.

6

Acknowledgements

I am deeply thankful to all those whose support and contributions have made this

dissertation possible.

First and foremost, I would like extend my sincerest gratitude to my advisor, Jorge

Nocedal, for his unwavering support and guidance throughout my Ph.D. journey. I consider

myself immensely fortunate to have you as my advisor, mentor, friend, and someone I will

always look up to. Thank you for providing me with all the opportunities, insights and

guidance, and for your compassion, patience and understanding. I never could imagine

having a better advisor in this academic journey.

I could not have completed my work without the efforts of many inspiring researchers

with whom I have interacted and learned from. I would like to extend my sincere thanks

to Andreas Waechter and Frank E. Curtis for serving on my thesis committee. I am

especially grateful for their feedback and insights into various research topics. I would also

like to express my gratitude to Ermin Wei and Richard Byrd for providing many insightful

comments. I also had the privilege of collaborating with many exceptional researchers,

including Figen, Michael and Yuchen.

I would like to thank the IEMS faculty for all the inspiring courses and conversations. I

am also grateful to the IEMS staff, including Agnes, Brittany, Colleen, Kendall, Johnathan,

and Stephen for helping me with many matters. I am also thankful to my IEMS first-year

cohort and friends for all the cherished moments and support.

7

I am profoundly grateful to the members of the Optimization Lab at L375: Albert,

Alejandra, Michael, Raghu, Ruby, Shigeng, Shima, Xiaochun, Xinyi and Yuchen. Thank

you for all the inspiring discussions, support, endless conversations and all the great times

we have had.

Finally, I would like to extend my heartfelt gratitude to my family and friends. Mom

and Dad, thank you for your unconditional love and support as always. Mandy, thank

you for being such a sweet little sister who brings all the laughters. Oliver, thank you so

much for being in my life, for always supporting me and seeing the best in me, for all the

memories we have created together and for the much more to come. To my most adorable

furry family member Doodle, thank you for showing up in my life four years ago and filling

my days with boundless joy - although you have no idea what I am writing about. To

all my friends, especially Huiming, thank you for your encouragement and sharing many

great memories with me.

8

Table of Contents

ABSTRACT 3

Acknowledgements 6

Table of Contents 8

List of Tables 11

List of Figures 23

Chapter 1. Introduction 32

1.1. Gradient Approximations 34

1.2. Interpolation-Based Optimization (IBO) Methods 38

1.3. Covariance Matrix Adaptation - Evolution Strategy (CMA-ES) 42

1.4. Bayesian Optimization 45

1.5. An Application: Prompting Large Language Models 46

Chapter 2. On the Numerical Performance of Finite-Difference Based Methods for

Derivative-Free Optimization 48

2.1. Introduction 48

2.2. Unconstrained Optimization 54

2.3. Nonlinear Least Squares 64

2.4. Constrained Optimization 73

9

2.5. Final Remarks 81

Chapter 3. Adaptive Finite-Difference Interval Estimation for Noisy Derivative-Free

Optimization 83

3.1. Introduction 83

3.2. An Adaptive Forward-Difference Interval Estimation Procedure 88

3.3. Generalized Finite-Difference Interval Estimation 94

3.4. Numerical Experiments 108

3.5. Final Remarks 118

Chapter 4. A Feasible Nonlinear Programming Approach for Constrained

Derivative-Free Optimization 119

4.1. Introduction 119

4.2. The FIBO Algorithm 122

4.3. Numerical Experiments 129

4.4. Final Remarks 133

Chapter 5. Prompting Large Language Models with Derivative-Free Optimization 135

5.1. Introduction 135

5.2. Problem Formulation 138

5.3. Numerical Experiments for Optimizing Prompts 140

5.4. Final Remarks 144

Chapter 6. Analyzing the Performance of DFO Methods on a Wider Class of

Problems 146

6.1. Introduction 146

10

6.2. Numerical Experiments 148

6.3. On the Accuracy of IBO methods in the Presence of Noise 154

6.4. Final Remarks 161

References 163

Appendix A. On the Numerical Performance of Finite-Difference Based Methods for

Derivative-Free Optimization 173

A.1. Numerical Investigation of Lipschitz Estimation 173

A.2. Investigation of Parameters for NEWUOA 181

A.3. Complete Numerical Results 183

Appendix B. Adaptive Finite-Difference Interval Estimation for Noisy Derivative-Free

Optimization 226

B.1. Finite-Difference Formula Derivation and Tables 226

B.2. Complete Experimental Results 233

Appendix C. A Feasible Nonlinear Programming Approach for Constrained

Derivative-Free Optimization 250

C.1. Numerical Results for Feasible Initial Points 251

C.2. Numerical Results for Infeasible Initial Point 256

Appendix D. Analyzing the Performance of DFO Methods on a Wider Class of

Problems 264

D.1. Proof for Theorem 6.3.1 264

D.2. Numerical Results for Comparing DFO-TR against CMA-ES 266

11

List of Tables

3.1 Schemes for approximating the d-th order derivative used in the

experiments. The scheme is defined by S = (w, s) as in (3.3.1); q is

defined in (3.3.2). 109

3.2 Subset of unconstrained CUTEst problems and their problem dimensions

[42]. 113

5.1 Test accuracy: Prompt Optimization for RoBERTa-large. 143

5.2 Test accuracy: Prompt Optimization for T5-large. 144

A.1 Noiseless Unconstrained CUTEst Problems Tested. n is the number of

variables. 189

A.2 Noiseless Unconstrained CUTEst Problems Tested. n is the number of

variables. 190

A.3 Noiseless Unconstrained CUTEst Problems Tested. n is the number of

variables. 191

A.4 Noiseless Unconstrained CUTEst Problems Tested. n is the number of

variables. 192

A.5 Noiseless Unconstrained CUTEst Problems Tested. n is the number of

variables. 193

12

A.6 Noisy Unconstrained CUTEst Problems Tested. n is the number of

variables. σf is the standard deviation of the noise. 195

A.7 Noisy Unconstrained CUTEst Problems Tested. n is the number of

variables. σf is the standard deviation of the noise. 196

A.8 Noisy Unconstrained CUTEst Problems Tested. n is the number of

variables. σf is the standard deviation of the noise. 197

A.9 Noisy Unconstrained CUTEst Problems Tested. n is the number of

variables. σf is the standard deviation of the noise. 198

A.10 Noisy Unconstrained CUTEst Problems Tested. n is the number of

variables. σf is the standard deviation of the noise. 199

A.11 Noisy Unconstrained CUTEst Problems Tested. n is the number of

variables. σf is the standard deviation of the noise. 200

A.12 Noisy Unconstrained CUTEst Problems Tested. n is the number of

variables. σf is the standard deviation of the noise. 201

A.13 Noisy Unconstrained CUTEst Problems Tested. n is the number of

variables. σf is the standard deviation of the noise. 202

A.14 Noisy Unconstrained CUTEst Problems Tested. n is the number of

variables. σf is the standard deviation of the noise. 203

A.15 Noisy Unconstrained CUTEst Problems Tested. n is the number of

variables. σf is the standard deviation of the noise. 204

A.16 Noisy Unconstrained CUTEst Problems Tested. n is the number of

variables. σf is the standard deviation of the noise. 205

13

A.17 Noisy Unconstrained CUTEst Problems Tested. n is the number of

variables. σf is the standard deviation of the noise. 206

A.18 Noisy Unconstrained CUTEst Problems Tested. n is the number of

variables. σf is the standard deviation of the noise. 207

A.19 Benchmarking Problems Tested. n is the number of variables and m is

the dimension of the residual vector. 208

A.20 Benchmarking Problems Tested. n is the number of variables and m is

the dimension of the residual vector. 209

A.21 Benchmarking Problems Tested. n is the number of variables and m is

the dimension of the residual vector. 210

A.22 Benchmarking Problems Tested. n is the number of variables and m is

the dimension of the residual vector. 211

A.23 Benchmarking Problems Tested. n is the number of variables and m is

the dimension of the residual vector. 212

A.24 Benchmarking Problems Tested. n is the number of variables and m is

the dimension of the residual vector. 213

A.25 Benchmarking Problems Tested. n is the number of variables and m is

the dimension of the residual vector. 214

A.26 Properties of small-scale CUTEst problems. 215

A.27 Instances of variable-size CUTEst problems. 216

A.28 Summary of the results for small-scale noiseless constrained CUTEst

problems. The horizontal bars divide cases (i), (ii), (iii), and (iv). 217

14

A.29 Function evaluations to obtain φk ≤ φ∗ + TOL · max{1.0, |φ∗|} for

small scale noiseless constrained problems. 218

A.30 Optimality gap |φ(xk)− φ∗| for small scale noisy constrained CUTEst

problems. 220

A.31 Feasibility error ‖max{ψ(xk), 0}‖∞ for small scale noisy constrained

CUTEst problems. 221

A.32 Number of function evaluations to obtain (2.4.5) for noise level

σf = 10−7. 222

A.33 Number of function evaluations to obtain (2.4.5) for noise level

σf = 10−5 223

A.34 Number of function evaluations to obtain (2.4.5) for noise level

σf = 10−3. 224

A.35 Number of function evaluations to obtain (2.4.5) for noise level

σf = 10−1. 225

B.1 Table containing the finite-difference formula, deterministic error

bound |f (1)(t;h) − φ(1)(t)| ≤ εg(h) for generic h, optimal h∗, and

optimal error εg(h
∗) for forward-difference schemes with number of

points m ∈ {2, 3, 4, 5}. 231

B.2 Table containing the finite-difference formula, deterministic error

bound |f (1)(t;h) − φ(1)(t)| ≤ εg(h) for generic h, optimal h∗, and

optimal error εg(h
∗) for central-difference schemes with number of

points m ∈ {2, 4, 6}. 231

15

B.3 Table containing the finite-difference formula, MSE error bound

E[(f (1)(t;h)− φ(1)(t))2] ≤ σ2
g(h) for generic h, optimal h∗, and optimal

error σg(h
∗) for forward-difference schemes with number of points

m ∈ {2, 3, 4, 5}. 232

B.4 Table containing the finite-difference formula, MSE error bound

E[(f (1)(t;h)− φ(1)(t))2] ≤ σ2
g(h) for generic h, optimal h∗, and optimal

error σg(h
∗) for central-difference schemes with number of points

m ∈ {2, 4, 6}. 232

B.5 Detailed results for φ(t) = cos(t) with different noise levels; r represents

the final testing ratio; h∗ is the h that minimizes δS(h;φ, t, εf) reported

by minimize scalar function in scipy.optimize and could be

unreliable. 234

B.6 Detailed results for φ(t) = a · sin(b · t) with εf = 1E-3; r represents the

final testing ratio; h∗ is the h that minimizes δS(h;φ, t, εf) reported

by minimize scalar function in scipy.optimize and could be

unreliable. 235

B.7 Detailed results for φ(t) = a · sin(b · t) with εf = 1E-3; r represents the

final testing ratio; h∗ is the h that minimizes δS(h;φ, t, εf) reported

by minimize scalar function in scipy.optimize and could be

unreliable. 238

B.8 Detailed results for special examples, with εf = 1E-3; r represents the

final testing ratio; h∗ is the h that minimizes δS(h;φ, t, εf) reported

16

by minimize scalar function in scipy.optimize and could be

unreliable. 239

B.9 Comparison between the Moré-Wild heuristic against our adaptive

procedure on function φ(t) = sin(t) with various εf and t. We use “−−”

to report the cases where Moré-Wild heuristic fails. Subscript “MW”

labels the results corresponding to Moré-Wild heuristic, and subscript

“ada” labels the results corresponding to our adaptive procedure; δ is

the relative error, and δ is the worst-case relative error. 240

B.10 Comparison between the Moré-Wild heuristic against our adaptive

procedure on function φ(t) = a · (exp(b · t) − 1) with εf = 1E-3 at

t = 0. We use “−−” to report the cases where Moré-Wild heuristic

fails. Subscript “MW” labels the results corresponding to Moré-Wild

heuristic, and subscript “ada” labels the results corresponding to our

adaptive procedure; δ is the relative error, and δ is the worst-case

relative error. 241

B.11 Total number of function evaluations used and final accuracy achieved

by forward-difference L-BFGS method with different choices of the

finite-difference interval. 242

B.12 Total number of function evaluations used and final accuracy achieved

by forward-difference L-BFGS method with different choices of the

finite-difference interval. 243

17

B.13 Total number of function evaluations used and final accuracy achieved

by forward-difference L-BFGS method with different choices of the

finite-difference interval. 244

B.14 Total number of function evaluations used and final accuracy achieved

by forward-difference L-BFGS method with different choices of the

finite-difference interval. 245

B.15 Total number of function evaluations used and final accuracy achieved

by central-difference L-BFGS method with different choices of the

finite-difference interval. 246

B.16 Total number of function evaluations used and final accuracy achieved

by central-difference L-BFGS method with different choices of the

finite-difference interval. 247

B.17 Total number of function evaluations used and final accuracy achieved

by central-difference L-BFGS method with different choices of the

finite-difference interval. 248

B.18 Total number of function evaluations used and final accuracy achieved

by central-difference L-BFGS method with different choices of the

finite-difference interval. 249

C.1 Noiseless Problems with Feasible x0; n: number of variables, m:

number of constraints, #iter: number of (outer) iterations, #feval:

number of function evaluations, time: total CPU time passed, f :

final objective value, feas err: final feasibility error, #iter(sub):

18

total number of iterations for solving TR subproblem, #ceval: total

number of constraint evaluations(note that the number of constraint

evaluations and function evaluations are same for KNITRO), time(sub):

total CPU time elapsed for solving subproblem. * indicates that FIBO

terminates with singular interpolation system error, ** indicates that

FIBO terminates with maximum number of iterations, *** indicates

that FIBO terminates with maximum number of function evaluations. 251

C.2 Noiseless Problems with Feasible x0. τ = 10−1; n: number of variables,

m: number of constraints, #iter: number of (outer) iterations, #feval:

number of function evaluations, time: total CPU time passed, f :

final objective value, feas err: final feasibility error, #iter(sub):

total number of iterations for solving TR subproblem, #ceval: total

number of constraint evaluations(note that the number of constraint

evaluations and function evaluations are same for KNITRO), time(sub):

total CPU time elapsed for solving subproblem. * indicates that FIBO

terminates with singular interpolation system error, ** indicates that

FIBO terminates with maximum number of iterations, *** indicates

that FIBO terminates with maximum number of function evaluations. 252

C.3 Noiseless Problems with Feasible x0. τ = 10−3; n: number of variables,

m: number of constraints, #iter: number of (outer) iterations, #feval:

number of function evaluations, time: total CPU time passed, f :

final objective value, feas err: final feasibility error, #iter(sub):

total number of iterations for solving TR subproblem, #ceval: total

19

number of constraint evaluations(note that the number of constraint

evaluations and function evaluations are same for KNITRO), time(sub):

total CPU time elapsed for solving subproblem. * indicates that FIBO

terminates with singular interpolation system error, ** indicates that

FIBO terminates with maximum number of iterations, *** indicates

that FIBO terminates with maximum number of function evaluations. 253

C.4 Noiseless Problems with Feasible x0. τ = 10−5; n: number of variables,

m: number of constraints, #iter: number of (outer) iterations, #feval:

number of function evaluations, time: total CPU time passed, f :

final objective value, feas err: final feasibility error, #iter(sub):

total number of iterations for solving TR subproblem, #ceval: total

number of constraint evaluations(note that the number of constraint

evaluations and function evaluations are same for KNITRO), time(sub):

total CPU time elapsed for solving subproblem. * indicates that FIBO

terminates with singular interpolation system error, ** indicates that

FIBO terminates with maximum number of iterations, *** indicates

that FIBO terminates with maximum number of function evaluations. 254

C.5 Noiseless Problems with Feasible x0. τ = 10−7; n: number of variables,

m: number of constraints, #iter: number of (outer) iterations, #feval:

number of function evaluations, time: total CPU time passed, f :

final objective value, feas err: final feasibility error, #iter(sub):

total number of iterations for solving TR subproblem, #ceval: total

number of constraint evaluations(note that the number of constraint

20

evaluations and function evaluations are same for KNITRO), time(sub):

total CPU time elapsed for solving subproblem. * indicates that FIBO

terminates with singular interpolation system error, ** indicates that

FIBO terminates with maximum number of iterations, *** indicates

that FIBO terminates with maximum number of function evaluations. 255

C.6 Noiseless Problems with Infeasible x0; n: number of variables, m:

number of constraints, #iter: number of (outer) iterations, #feval:

number of function evaluations, time: total CPU time passed, f :

final objective value, feas err: final feasibility error, #iter(sub):

total number of iterations for solving TR subproblem, #ceval: total

number of constraint evaluations(note that the number of constraint

evaluations and function evaluations are same for KNITRO), time(sub):

total CPU time elapsed for solving subproblem. * indicates that FIBO

terminates with singular interpolation system error, ** indicates that

FIBO terminates with maximum number of iterations, *** indicates

that FIBO terminates with maximum number of function evaluations. 259

C.7 Noiseless Problems with Infeasible x0. τ = 10−1; n: number of

variables, m: number of constraints, #iter: number of (outer)

iterations, #feval: number of function evaluations, time: total CPU

time passed, f : final objective value, feas err: final feasibility error,

#iter(sub): total number of iterations for solving TR subproblem,

#ceval: total number of constraint evaluations(note that the number of

constraint evaluations and function evaluations are same for KNITRO),

21

time(sub): total CPU time elapsed for solving subproblem. * indicates

that FIBO terminates with singular interpolation system error, **

indicates that FIBO terminates with maximum number of iterations,

*** indicates that FIBO terminates with maximum number of function

evaluations. 260

C.8 Noiseless Problems with Infeasible x0. τ = 10−3; n: number of

variables, m: number of constraints, #iter: number of (outer)

iterations, #feval: number of function evaluations, time: total CPU

time passed, f : final objective value, feas err: final feasibility error,

#iter(sub): total number of iterations for solving TR subproblem,

#ceval: total number of constraint evaluations(note that the number of

constraint evaluations and function evaluations are same for KNITRO),

time(sub): total CPU time elapsed for solving subproblem. * indicates

that FIBO terminates with singular interpolation system error, **

indicates that FIBO terminates with maximum number of iterations,

*** indicates that FIBO terminates with maximum number of function

evaluations. 261

C.9 Noiseless Problems with Infeasible x0 τ = 10−5; n: number of variables,

m: number of constraints, #iter: number of (outer) iterations, #feval:

number of function evaluations, time: total CPU time passed, f :

final objective value, feas err: final feasibility error, #iter(sub):

total number of iterations for solving TR subproblem, #ceval: total

number of constraint evaluations(note that the number of constraint

22

evaluations and function evaluations are same for KNITRO), time(sub):

total CPU time elapsed for solving subproblem. * indicates that FIBO

terminates with singular interpolation system error, ** indicates that

FIBO terminates with maximum number of iterations, *** indicates

that FIBO terminates with maximum number of function evaluations. 262

C.10 Noiseless Problems with Infeasible x0 τ = 10−7; n: number of variables,

m: number of constraints, #iter: number of (outer) iterations, #feval:

number of function evaluations, time: total CPU time passed, f :

final objective value, feas err: final feasibility error, #iter(sub):

total number of iterations for solving TR subproblem, #ceval: total

number of constraint evaluations(note that the number of constraint

evaluations and function evaluations are same for KNITRO), time(sub):

total CPU time elapsed for solving subproblem. * indicates that FIBO

terminates with singular interpolation system error, ** indicates that

FIBO terminates with maximum number of iterations, *** indicates

that FIBO terminates with maximum number of function evaluations. 263

23

List of Figures

2.1 Efficiency, Noiseless Case. Log-ratio profiles for the total number of

function evaluations to achieve (2.2.7) with ε(x) = 0. The left figure

compares forward-difference l-bfgs with newuoa, and the right

figure compares central-difference l-bfgs with newuoa. 58

2.2 Accuracy, Noisy Case for σf = 10−5. Log-ratio optimality gap profiles

comparing newuoa against forward-difference l-bfgs (left) and

central-difference l-bfgs (right). 61

2.3 Efficiency, Noisy Case for σf = 10−5. Log-ratio profiles for the number

of function evaluations to achieve (2.2.14) for τ = 10−2 (left) and 10−6

(right), comparing newuoa against forward-difference l-bfgs (top)

and central-difference l-bfgs (bottom). These plots are representative

of the other noise levels σf ∈ {10−1, 10−3, 10−5, 10−7}. 63

2.4 Accuracy, Noiseless Case. Log-ratio optimality gap profiles comparing

dfo-ls and lmder for ε(x) = 0. 68

2.5 Efficiency, Noiseless Case. Log-ratio profiles comparing dfo-ls

and lmder for ε(x) = 0. The figures measure number of function

evaluations to satisfy (2.2.7) for τ = 10−1 (left), 10−3 (middle), and

10−6 (right). 68

24

2.6 Accuracy, Noisy Case. Log-ratio optimality gap profiles comparing

dfo-ls and lmder for σf = 10−1 (upper left), 10−3 (upper right),

10−5 (bottom left), 10−7 (bottom right). The bounds on the second

derivatives are kept constant over the optimization process. 71

2.7 Efficiency, Noisy Case. Log-ratio profiles comparing dfo-ls and

lmder for σf = 10−1 (top row) , and 10−3 (bottom row). The figure

measures the number of function evaluations to satisfy (2.2.14) for

τ = 10−1 (left column), and 10−6 (right column). Lipschitz constants

were estimated only at the start of the lmder run. 72

2.8 Accuracy, Noiseless Case. Log-ratio profiles comparing knitro and

cobyla for ε(x) = εi(x) = 0. The figure plots the ratios (2.4.3) for

problems for which the two solvers yielded the same solution. 77

2.9 Efficiency, Noiseless Case. Log-ratio profiles comparing knitro and

cobyla for ε(x) = εi(x) = 0. The figures measure number of function

evaluations to satisfy (2.2.7) for τ = 10−1 (left), 10−3 (middle), and

10−6 (right). 78

2.10 Accuracy, Noisy Case. Log-ratio profiles comparing accuracy in the

objective by knitro and cobyla, for σf = 10−1 (upper left), 10−3

(upper right), 10−5 (bottom left), and 10−7 (bottom right). 80

2.11 Efficiency, Noisy Case. Log-ratio profiles (2.4.4) comparing knitro

and cobyla for σf = 10−3 (top row) and 10−7 (bottom row). The

25

figure measures the number of function evaluations to satisfy (2.4.5)

for τ = 10−2 (left) and 10−6 (right). 81

3.1 Worst case relative error δS(h;φ, t, εf) for forward and central

differences against h on function φ(t) = cos(t) with different noise

levels; the vertical dashed line represents the h† output by Algorithm

3.2. 110

3.2 Worst case relative error δS(h;φ, t, εf) against h on several special

cases; the vertical dashed line represents the h† output by Algorithm

3.2. 112

3.3 Comparison of forward-difference L-BFGS methods with difference

intervals determined using a fixed interval, the Moré and Wild heuristic,

and our adaptive algorithm. Comparisons are made on representative

problems with noise level εf = 10−1 (top) and 10−5 (bottom). The

solid line plots the observed function value and the dashed line plots

the true function value. The dashed black line shows the noise level εf

of the function. 116

3.4 Comparison of central-difference L-BFGS methods with difference

intervals determined using a fixed interval and our adaptive algorithm.

Comparisons are made on representative problems with noise level

εf = 10−5. The solid line plots the observed function value and the

dashed line plots the true function value. The dashed black line shows

the noise level εf of the function. 117

26

4.1 Log-ratio Plot for Comparing the Final Accuracy (4.3.1) of FIBO and

FD. 131

4.2 Log-ratio plot comparing FIBO and FD in terms of the

number of function evaluations to satisfy (4.3.2) for τ =

10−1 (upper left), 10−3 (upper right), 10−5 (bottom left), 10−7 (bottom right).132

4.3 Log-ratio plot comparing FIBO and FD in terms of the

number of constraint evaluations to satisfy (4.3.2) for τ =

10−1 (upper left), 10−3 (upper right), 10−5 (bottom left), 10−7 (bottom right).133

5.1 Training and Validation Loss for Prompt Optimization of RoBERTa-

large for Solving SST-2. 143

5.2 Training and Validation Loss for Prompt Optimization of T5-large for

Solving DBPedia. 144

6.1 (Selected) Accuracy Log-Ratio Profiles for Noiseless Problems. Plots of

(6.2.1) comparing CMA-ES and NEWUOA within a budget of 0.5n (upper

left), 2n (upper right), 10n (bottom left) and 500n (bottom right). 149

6.2 (Selected) Efficiency Log-Ratio Profiles for Noiseless Problems. Plots

of (6.2.3) comparing CMA-ES and NEWUOA with τ = 0.1 (upper left),

10−4 (upper right), 10−6 (bottom left) and 10−8 (bottom right). 151

6.3 (Selected) Accuracy Log-Ratio Profiles for Noisy Problems (εf = 10−3).

Plots of (6.2.1) comparing CMA-ES and NEWUOA within a budget of 0.5n

(upper left), 2n (upper right), 10n (bottom left) and 500n (bottom

right). 152

27

6.4 (Selected) Efficiency Log-Ratio Profiles for Noisy Problems (εf = 0.1).

Plots of (6.2.3) comparing CMA-ES and NEWUOA with τ = 0.1 (upper

left), 10−4 (upper right), 10−6 (bottom left) and 10−8 (bottom right). 154

6.5 (Selected) Efficiency Log-Ratio Profiles for Noisy Problems (εf = 10−7).

Plots of (6.2.3) comparing CMA-ES and NEWUOA with τ = 0.1 (upper

left), 10−2 (upper right), 10−4 (bottom left) and 10−6 (bottom right). 155

6.6 Solving noiseless and noisy SROSENBR function with 10 variables

using different initial trust region ∆0. Left: noiseless. Right: noise

level = 0.1. 157

6.7 (Selected) Accuracy Log-Ratio Profiles for Noisy Problems with noise

level 0.001 (Left) and 10−7(Right). Plots of (6.2.1) comparing CMA-ES

and NEWUOA with restarts within a budget of 500n. 158

6.8 (Selected) Efficiency Log-Ratio Profiles for Noisy Problems with noise

level 0.001 (Left) and 10−7(Right). Plots of (6.2.3) comparing CMA-ES

and NEWUOA with restarts for τ = 10−8. 158

6.9 Solving DIXMAANJ with 90 variables using NEWUOA with restarts and

CMA-ES. The noise level is 10−3. 159

6.10 (Selected) Accuracy Log-Ratio Profiles for Noisy Problems with noise

level 0.001 (Left) and 10−7(Right). Plots of (6.2.1) comparing NEWUOA

with and without restarts using a budget of 500n. 160

28

6.11 Solving noisy SROSENBR function with 10 variables and noise level of

0.1 using different initial trust region ∆0. The ratio test in NEWUOA is

relaxed as in (6.3.3). 160

A.1 Accuracy, Noisy Case with σf = 10−3. Log-ratio optimality gap

profiles comparing forward difference l-bfgs with L = 1 and other

fixed Lipschitz estimation schemes. The noise level is σf = 10−3, but is

representative for σf ∈ {10−1, 10−3, 10−5, 10−7}. 177

A.2 Accuracy, Noisy Case with σf = 10−3. Log-ratio optimality gap profiles

comparing forward difference l-bfgs with fixed and adaptive Lipschitz

estimation schemes. The noise level is σf = 10−3, but is representative

for σf ∈ {10−1, 10−3, 10−5, 10−7}. 178

A.3 Accuracy, Noisy Case with σf = 10−3. Log-ratio optimality gap profiles

comparing forward difference l-bfgs with fixed and adaptive Lipschitz

estimation schemes. The noise level is σf = 10−3, but is representative

for σf ∈ {10−1, 10−3, 10−5, 10−7}. 178

A.4 Accuracy, Noisy Case with σf = 10−3. Log-ratio optimality gap profiles

comparing forward difference l-bfgs with component MW and random

MW Lipschitz estimation schemes. 180

A.5 Accuracy, Noisy Case with σf = 10−3. Log-ratio optimality gap profiles

comparing forward difference l-bfgs with theoretical componentwise

Lipschitz estimates and the Moré and Wild Lipschitz estimation

schemes. 181

29

A.6 Accuracy, Noisy Case with σf = 10−3. Log-ratio optimality gap profiles

comparing newuoa against forward difference l-bfgs with the Moré

and Wild Lipschitz estimation schemes. We compare l-bfgs with

Component MW (left) and Random MW (right). 181

A.7 Noisy Case. Log-ratio optimality gap profiles comparing newuoa with

p = 2n+ 1 and p = n+ 2 points. The noise levels are σf = 10−1 (top

left), σf = 10−3 (top right), 10−5 (bottom left), and 10−7 (bottom

right). 183

A.8 Noisy Case. Log-ratio function evaluation profiles comparing newuoa

with p = 2n+ 1 and p = n+ 2 points. The noise levels are σf = 10−1

(top left), σf = 10−3 (top right), 10−5 (bottom left), and 10−7 (bottom

right). 184

A.9 Noisy Case. Log-ratio optimality gap profiles comparing newuoa with

p = 3n+ 1 and p = 2n+ 1 points. The noise levels are σf = 10−1 (top

left), σf = 10−3 (top right), 10−5 (bottom left), and 10−7 (bottom

right). 185

A.10 Noisy Case. Log-ratio function evaluation profiles comparing newuoa

with p = 3n+ 1 and p = 2n+ 1 points. The noise levels are σf = 10−1

(top left), σf = 10−3 (top right), 10−5 (bottom left), and 10−7 (bottom

right). 186

A.11 Noisy Case. Log-ratio optimality gap profiles comparing forward

difference l-bfgs against newuoa with p = n+ 2 points. The noise

30

levels are σf = 10−1 (top left), σf = 10−3 (top right), 10−5 (bottom

left), and 10−7 (bottom right). 187

A.12 Noisy Case. Log-ratio optimality gap profiles comparing central

difference l-bfgs against newuoa with p = 3n+ 1 points. The noise

levels are σf = 10−1 (top left), σf = 10−3 (top right), 10−5 (bottom

left), and 10−7 (bottom right). 188

A.13 Noisy Case with σf = 10−5. Log-ratio optimality gap profiles

comparing newuoa with ρend = 10−6 and 10−12. 188

A.14 Efficiency, Noiseless Case. Log-ratio profiles comparing knitro with

an l-bfgs Hessian approximation of memory one and memory 10

when ε(x) = 0. The figures measure number of function evaluations to

satisfy (2.2.7) for τ = 10−1 (left), 10−3 (middle), 10−6 (right). 219

B.1 Worst case relative error δS(h;φ, t, εf) against h on function

φ(t) = cos(t) with different noise levels; the vertical dashed line

represents the h† output by Algorithm 3.2. 236

B.2 Worst case relative error δS(h;φ, t, εf) against h on function

φ(t) = a · sin(b · t) for different a and b; the vertical dashed line

represents the h† output by Algorithm 3.2. 237

C.1 Infeasible x0. Log-ratio Plot for Comparing the Final Accuracy (4.3.1)

of FIBO and FD. 256

31

C.2 Infeasible x0. Log-ratio plot comparing FIBO and FD in terms

of the number of function evaluations to satisfy (4.3.2) for τ =

10−1 (upper left), 10−3 (upper right), 10−5 (bottom left), 10−7 (bottom right).257

C.3 Infeasible x0. Log-ratio plot comparing FIBO and FD in terms

of the number of constraint evaluations to satisfy (4.3.2) for τ =

10−1 (upper left), 10−3 (upper right), 10−5 (bottom left), 10−7 (bottom right).258

D.1 (Selected) Accuracy Log-Ratio Profiles for Noisy Problems with noise

level 0.001 (Left) and 10−7(Right). Plots of (6.2.1) comparing CMA-ES

and DFO-TR with restarts within a budget of 500n. 267

D.2 (Selected) Efficiency Log-Ratio Profiles for Noisy Problems with noise

level 0.001 (Left) and 10−7(Right). Plots of (6.2.3) comparing CMA-ES

and DFO-TR with restarts for τ = 10−8. 267

D.3 (Selected) Accuracy Log-Ratio Profiles for Noisy Problems with noise

level 0.001 (Left) and 10−7(Right). Plots of (6.2.1) comparing DFO-TR

with and without ratio relaxation using a budget of 500n. 268

32

CHAPTER 1

Introduction

The problem of minimizing a smooth function when its derivatives are not available

has been widely studied in the literature [29, 59, 69]. A variety of methods have been

proposed to solve general unconstrained derivative-free optimization (DFO) problems, with

some being extended to nonlinear least squares and general constrained problems. Various

research communities have indeed adopted distinct DFO methods to solve important

problems arising from machine learning to engineering design. The objective function in

those applications is often expensive to evaluate and may be perturbed with noise, e.g.,

computational noise, while DFO methods are typically designed for noiseless problems. In

this thesis, we study several disparate classes of DFO methods in a controlled setting for

different classes of problems.

Let us consider a problem of the form

min
x∈Ω

φ(x)(1.0.1)

where φ : Rn → R is a smooth function and Ω ⊆ Rn denotes the feasible set. The feasible

set Ω is specified by a set of equality and inequality constraints:

(1.0.2) Ω = {x ∈ Rn|ψi(x) = 0, ∀i ∈ E ;ψj(x) ≤ 0,∀j ∈ I},

33

where ψ : Rn → Rm is smooth, and E and I are finite index sets that can be empty

(the problem reduces to unconstrained optimization if E = I = ∅). We assume that the

objective values φ(x) are only accessible through a (noisy) zero-order oracle such that the

derivatives of φ are not available. Following the taxonomy of constraints [35], we assume

that the constraints can be analytically available with access to their derivatives (class A)

or only accessible via a (noisy) zero-order oracle (class S).

Formally, we define the noisy zero-order oracles of the objective and constraints as:

f(x) = φ(x) + ε(x)(1.0.3)

ci(x) = ψi(x) + εi(x)(1.0.4)

where ε(·) and εi(·) model the noise, which can be either deterministic or stochastic.

In practice, such evaluation errors can stem from finite precision arithmetics as well as

stochastic optimization problems encountered in machine learning applications. When

the noise is uniformly bounded, we refer to εf and εc as the noise levels of the functions

respectively, where

|ε(x)| ≤ εf , |εi| ≤ εc.(1.0.5)

In the case when the noise terms are stochastic, we denote the standard deviations σf , σc of

the noise terms as the noise levels of the objective and constraints respectively. The noise

level can be estimated via sampling (stochastic) and/or the difference table (deterministic)

[70]. Thus we assume throughout this thesis that the noise levels of the functions are

known.

34

Several approaches have been developed for solving problem (1.0.1), including gradient

approximation based methods, interpolation-based optimization (IBO) methods and

randomized algorithms. In Chapter 2, we consider unconstrained, nonlinear least-squares

and constrained optimization problems that can be only accessed via a noisy zeroth-

order oracle with stochastic noise. We provide a sophisticated adaptive finite-difference

differencing interval selection scheme in Chapter 3 for bounded noise. In Chapter 4, we

study (1.0.1) where both E and I can be nonempty and the constraints are available in

analytical forms. In Chapter 5, we present an application of noisy unconstrained DFO

problem arising in large language models. In Chapter 6 we consider unconstrained DFO

problems again with noisy evaluations to study the behavior of DFO methods and discuss

potential strategies for improving the final accuracy of interpolation-based optimization

methods.

In the remainder of this chapter, we provide an overview of several classes of methods

that can be applied to solve (1.0.1) and discuss their advantages and disadvantages,

respectively. For methods that are not covered in this thesis, such as direct search and

deterministic global optimization methods, see [59].

1.1. Gradient Approximations

One simple yet effective approach to solving (1.0.1) is to perform approximations to

the derivatives and apply derivative-based optimization solvers. Since the idea remains

the same for both the objective and constraints, we will describe gradient approximation

based on f(x). Overall, such approach computes an estimate g(x) of the gradient ∇φ(x)

35

via forward differences (FD)

g(x) =
N∑
i=1

f(x+ hui)− f(x)

h
ui(1.1.1)

or central differences (CD)

g(x) =
N∑
i=1

f(x+ hui)− f(x− hui)
2h

ui(1.1.2)

where {u1, u2, ..., uN} is a set of directions and h is the differencing interval or sampling

radius [8]. We describe two strategies of constructing gradient approximations below.

1.1.1. Finite Differences

For standard finite differences, (1.1.1) and (1.1.2) reduce to

[g(x)]i =
f(x+ hiei)− f(x)

hi
(FD)(1.1.3)

[g(x)]i =
f(x+ hiei)− f(x− hei)

2hi
(CD)(1.1.4)

respectively for i = 1, ..., n, with N = n and ui = ei where ei denotes the unit vector along

the i-th coordinate.

When no noise is present in the function φ with ε(x) ≡ 0, the estimated gradient g(x)

of ∇φ(x) can be computed by either (1.1.3) or (1.1.4) using

hi = max(1, |xi|)
√
εM (FD)(1.1.5)

hi = max(1, |xi|) 3
√
εM (CD)(1.1.6)

36

where εM denotes the machine precision. Such choice of differencing is designed to handle

roundoff errors and is common in practice [7]. The central differences scheme (1.1.4)

requires more function evaluations but provides a more accurate estimate of the gradient

than the forward differences (1.1.3) scheme.

However, in the presence of noise in the function, the choice of the finite differencing

interval can be delicate. To see this, consider the case of applying forward differences to a

function with bounded noise. By Taylor expansion and (1.0.3), we have

E[([g(x)]i − [∇φ(x)]i)
2] ≤ L2

ih
2
i

4
+

2ε2f
h2
i

(1.1.7)

where Li is an upper bound for |eTi ∇2φ(x)ei| [71]. Therefore, the choice of the differencing

interval hi must carefully balance the truncation error and the noise. If hi is chosen too

large, the truncation error resulting from the first term on the right-hand side of (1.1.7)

damages the accuracy of the gradient approximation. On the other hand, if hi is too small,

the noise term dominates the approximation error. A near-optimal choice of the forward

differencing interval can be obtained by minimizing the right-hand side of (1.1.7). With

the noise level εf and bound of second derivative Li in hand, we can obtain

hi =
4
√

8

√
εf
Li

(1.1.8)

Similarly, one can compute the expected error on the central differences case and the

resulting differencing interval is

hi = 3

√
3εf
Mi

(1.1.9)

37

where Mi is the bound on the third derivative along the i-th coordinate direction.

Since the bounds on the second and third derivative are not available, one can estimate

them by employing the procedure proposed by Gill et. al or Moré and Wild [40, 71] in

practice. A more robust procedure that avoids direct estimation of the bounds is proposed

in [92].

Finite differences enjoy two appealing features as they can be incorporated into

existing derivative-based optimization solvers and can be easily parallelized in the function

evaluations. However, when noise is present, one must carefully choose the differencing

interval, which requires knowledge of the noise level and bounds on the higher-order

derivatives. Kelly developed an implicit filtering method with diminishing differencing

intervals, assuming that the noise diminishes as the iterate approaches the solution [21, 55].

Berahas et al. proposed a finite-difference-based L-BFGS method for solving problems

with non-diminishing noise, combining strategies for noise level and bound on higher-order

derivatives [7]. Such requirements call for a sophisticated and robust procedure to further

improve the performance of finite-difference-based methods.

1.1.2. Gaussian Smoothing

An alternative for approximating the gradient is to employ samplings along random

directions, with the most popular choice being Gaussian directions [73]. Such approach

is referred to as Gaussian Smoothing and has been proved efficient for applications in

reinforcement learning [22, 88]. In particular, it considers (1.1.3) or (1.1.4) by sampling

standard Gaussian directions ui ∼ N (0, I) for i = 1, ..., N .

38

To motivate such choice, consider the Gaussian smoothed version of function f :

fh(x) = Eu∼N (0,I)[f(x+ hu)] =

∫
Rn
f(x+ hu)π(u|0, I)du

where π(u|0, I) denotes the density function of the standard Gaussian distribution evaluated

at u. It can be shown that, the gradient of smoothed function F (x) can be computed as

∇fh(x) =
1

h
Eu∼N (0,I)[f(x+ hu)u] =

1

h
Eu∼N (0,I)[(f(x+ hu)− f(x))u]

Therefore, by employing the idea of sample average approximations, one can obtain (1.1.3)

for the forward difference case. We can verify that, when noise is not present, it follows

that for hi → 0,

Eu∼N (0,I)[g(x)] = ∇φ(x).

When the function evaluation is noisy, similar as in the finite differences case, there

are two sources of error. Because of the Gaussian distributed directions, [g(x)]i can be

arbitrarily large. Additionally, the performance of this approach is sensitive to the choice

of the sampling radius h. As illustrated in [9], the randomized gradient approximation

can perform significantly worse than the deterministic methods. See [8, 9] for further

discussions on gradient approximations.

1.2. Interpolation-Based Optimization (IBO) Methods

Interpolation-based optimization (IBO) methods have been extensively studied for

unconstrained DFO problems due to their robustness and efficiency; see [29] for a thorough

description. IBO methods typically construct a quadratic model of the objective via linear

39

interpolation and generate the next iterate using a trust-region framework. While finite

differences require at least n+ 1 function evaluations at every iteration, IBO methods can

make progress with only one function evaluation. However, it demands higher algebra

cost due to interpolation. We provide a basic description of a general unconstrained IBO

method in Algorithm 1.1, conceding that the details may vary for different IBO methods.

At each iteration k, IBO methods construct a quadratic model of the objective around

the current iterate xk

(1.2.1) mk(xk + s) = f(xk) + gTk s+
1

2
sTHks,

where gk and Hk are computed by interpolating points in the poised interpolation set

Yk = {y0, y1, y2, ..., ym} ⊆ Rn:

f(yi) = m(yi), i = 0, 1, ...,m

This can be done uniquely with a cost of O(n6) when m = (n + 1)(n + 2)/2. The cost

can be reduced to O(m2) by employing a minimum Frobenius norm update of the Hessian

approximation [78].

IBO methods aim to approximate the objective within a neighborhood of the current

iterate xk

(1.2.2) B(xk,∆k) = {x ∈ Rn|‖x− xk‖2 ≤ ∆k},

where ∆k is referred to as the trust region radius. Note that other norms could also be

used in (1.2.2). For unconstrained optimization, a trust region subproblem is solved at

40

each iteration to obtain a candidate step sk for the next iterate

(1.2.3) min
s∈B(0,∆k)

mk(xk + s).

By evaluating the ratio test

(1.2.4) ρk =
f(xk)− f(xk + sk)

mk(xk)−mk(xk + sk)
,

the algorithm accepts the step sk if ρk is greater than or equal to a nonnegative user-defined

value. The next iterate is then defined as xk + sk and the trust region ∆k may be increased.

Otherwise, the method rejects the step and checks whether the interpolation set Yk is

sufficiently poised. The interpolation set Yk is maintained and updated at every iteration

to reflect the geometry of the objective around the current iterate xk. It is required to

satisfy certain geometry conditions to ensure quality of the interpolated. If Yk is not

well-poised, the algorithm improves the interpolation set for better model quality and

leaves ∆k unchanged to avoid premature shrinkage of the trust region. If the model is

sufficiently accurate, the algorithm follows classical trust region methods by reducing the

trust region [29].

41

Algorithm 1.1. IBO algorithm framework for solving unconstrained DFO problems.

1: Parameters: 0 ≤ η < 1, and ∆0 > 0.

2: Choose x0, a starting point, and construct an initial poised interpolation set Y0.

3: Let k = 0.

4: while no convergence test is satisfied do

5: Build a local (quadratic) model (1.2.1) using interpolation set Yk.

6: Compute a step sk by solving the trust region subproblem (1.2.3).

7: Compute the ratio defined by (1.2.4).

8: if ρk ≥ η then

9: Set xk+1 = xk + sk.

10: Choose ∆k+1 ≥ ∆k.

11: Update Yk to include xk+1.

12: else if Yk needs to be improved then

13: Set xk+1 = xk.

14: Set ∆k+1 = ∆k.

15: Improve Yk using a geometry-improving procedure.

16: else

17: Set xk+1 = xk.

18: Choose ∆k+1 < ∆k.

19: Update Yk to include xk + sk.

20: end if

21: Yk+1 = Yk

22: k = k + 1

23: end while

42

Unconstrained IBO methods have been extended by Powell to solve bound constrained

[79], linear constrained [76, 80] and inequality constrained problems [77]. When the

constraints are convex and the projection operator is known, [24, 51] propose to enforce

the constraints in the trust region subproblem (1.2.3) and establish convergence analysis.

A few works have been proposed to handle general (potentially nonconvex) constraints

[11, 23, 26, 83]. However, no convergence result is known for general constrained IBO

methods.

Surprisingly, as demonstrated in [93], IBO methods can be directly applied to noisy

functions without modifications to their noiseless counterparts and achieve competent

performance. Some noisy variants of IBO methods handle unconstrained stochastic DFO

problems by maintaining model accuracy with high probability [17, 20]. Other works

explore different strategies for extending unconstrained IBO to noisy problems, including

[18, 99], in which the ratio test is modified or restarts are employed.

1.3. Covariance Matrix Adaptation - Evolution Strategy (CMA-ES)

Covariance Matrix Adaptation Evolution Strategy (CMA-ES) is a randomized DFO

method that conducts iterative sampling based on a multivariate Gaussian distribution

with adaptive parameters. Many variants of this approach have been proposed to adopt

different sampling and parameter update strategies, although the main idea remains the

same [46].

To elaborate, at each iteration k, the algorithm CMA-ES samples new candidate solutions

from a multivariate Gaussian distribution N (mk, σ
2
kCk), where σk is the stepsize, mk is

the mean vector and Ck is the covariance matrix. In contrast to Gaussian Smoothing,

43

in which the sampling distribution is fixed throughout the optimization procedure, this

algorithm updates the parameters of the Gaussian distribution using information from

past iterations: 1) the mean vector is computed as a weighted average of the best samples

in the current iteration 2) the covariance matrix is modified via low-rank updates such

that the variance along promising directions (i.e., directions that are more likely to reduce

the objective) is increased 3) the stepsize σk is updated based on the cumulative path

from past iterations to facilitate convergence. We provide a formal algorithm statement

for basic CMA-ES in Algorithm 1.2.

After sampling λ new candidates {x1, ..., xλ} from the given Gaussian distribution

N (mk, σ
2
kCk) at iteration k, the algorithm evaluate at those points and rank them such

that f(x(1)) ≤ f(x(2)) ≤ ... ≤ f(x(λ)). The new mean mk+1 is then moved to a weighted

average of the best µ sampled points at the current iteration

(1.3.1) mk+1 =
λ∑
i=1

wix(i) = m(k) +
λ∑
i=1

wi(x(i) −m(k)).

where wi are pre-specified weights such that
∑µ

i=1wi = 1, w1 ≥ w2 ≥ ... ≥ wµ > 0.

Since reestimating the covariance matrix from scratch using {x1, ..., xλ} can be unstable,

the algorithm performs a rank-µ update that exploits information from all past samples,

and a rank-one update, which captures the correlation between consecutive steps in the

past. The scale of the distribution depends on the stepsize σk, which depends on the

cumulative path in the past. Intuitively, the length of the cumulative path is shorter if the

past steps cancel out each and longer if they point at similar directions.

44

Algorithm 1.2. (µ, λ) CMA-ES

1: Parameters: cσ, dσ, cc, c1, cµ (parameters for updates); λ ≥ µ > 0 (parameters for

sampling); wi :
∑µ

i=1wi = 1, w1 ≥ w2 ≥ ... ≥ wµ > 0 (weight parameters)

2: Initialization: m0 ∈ Rn, C0 = I , σ0 > 0; pσ,0 = 0, pc,0 = 0; k = 0

3: while Not Terminated do

4: Sampling:

5: Eigendecomposition: Ck = BD2BT

6: Sample λ points zj ∼ N (0, I) for j = 1, ..., λ

7: yj = BDzk ∼ N (0, Ck)

8: xj = mk + σkyj ∼ N (mk, σ
2
kCk)

9: Rank and Recombination:

10: Evaluate f(x1), ..., f(xλ)

11: Select the best µ points: x(1), ..., x(µ) such that f(x(1)) ≤ f(x(2)) ≤ ... ≤ f(x(λ))

12: Let ȳw =
∑µ

i=1wiy(i) where y(i) corresponds to x(i)

13: Update parameters

14: Update m:

15: mk+1 = mk +
∑λ

i=1wi(x(i) −m(k))

16: Update stepsize:

17: pσ,k+1 = (1− cσ)pσ,k +
√
cσ(2− cσ)µeff(Ck)

1
2 ȳw

18: σk+1 = σk exp { cσ
dσ

(
‖pσ,k+1‖

E[‖N (0,I)‖] − 1)}

19: Update Covariance Matrix:

20: pc,k+1 = (1− cc)pσ,k + hσ
√
cc(2− cc)µeffȳw

21: Ck+1 = (1− c1 − cµ)Ck + c1pc,k+1p
T
c,k+1 + cµ

∑µ
i=1wiy(i)y

T
(i)

22: k = k + 1

23: end while

45

The covariance matrix Ck is designed to learn second order information of the objective,

although no analysis has been established [45]. This method has been widely applied to

practical applications such as Reinforcement Learning [98] and hyperparameter tuning

[64]. The method does not involve any approximations to the gradient of the objective

function and relies solely on rankings to perform updates. CMA-ES enjoys the benefit

of having few algorithm parameters and is believed to work well on difficult problems

that are ill-conditioned, require many function evaluations to solve and have relatively

high dimensionality. It has been found to outperform 31 DFO methods on a collection of

black-box functions [47], including IBO methods. However, when only a small number of

function evaluations are available, CMA-ES can be inferior to other methods such as IBO.

Convergence analysis has been established on a modified version of CMA-ES [36].

1.4. Bayesian Optimization

Bayesian Optimization (BO) methods have been proposed to solve DFO problems

with expensive objective evaluations and simple constraints. It has been popular for

hyperparameter tuning in the machine learning community. See [39] for a complete

overview for BO methods.

The basic idea of BO consists of two steps: i) modeling the objective function and

ii) optimizing the acquisition function to obtain the next iterate. BO methods employ

Gaussian Process (GP) regression to build a surrogate model for the objective function and

quantify the uncertainty in the function. Given a set of evaluated points, GP assumes that

the objective values are drawn from some multivariate Gaussian distribution with a mean

vector and covariance matrix. Utilizing the properties of Gaussian distribution, one can

46

compute a conditional distribution, or in the nomenclature of BO, posterior probability

distribution, based on all available data for a new point that hasn’t been evaluated. The

mean vector and kernel for the covariance matrix are hyperparameters for BO and remains

flexible as long as several properties are satisfied; see [39]. The acquisition function is

then defined based on the poster distribution, with careful balance between exploration

and exploitation. Common choices of acquisition functions include expected improvement,

upper confidence bound and knowledge gradient [39]. The general idea indicates that the

next iterate should either have a better expected objective (Exploitation) or high variance

(Exploration). This is important for BO as the method is designed for global optimization.

When the objective contains stochastic Gaussian noise, BO can be easily adapted by

incorporating such information in the kernel function. However, BO methods are only

efficient for problems with small number of variables (up to 20) as it scales poorly with

the dimension due to the GP component. The performance of the methods also relies on

proper choice of the GP component, e.g., picking a good kernel, and can be volatile.

1.5. An Application: Prompting Large Language Models

DFO problems arise in many applications from engineering to machine learning,

especially when the objective results from black-box simulations or model evaluation.

Examples include hyperparameter tuning [58], adversarial attacks [19], traffic model

calibration [4], parameter estimation [103] to name a few.

One recent application comes from the field of Natural Language Processing, where a

general pre-trained large language model (LLM) needs to be adapted to address individual

language tasks. Given the massive size of the LLMs, one approach that has gained

47

increasing attention is to append a prompt, e.g., task description, to every input sequence,

while keeping the language model parameters frozen. This approach is appealing as it

eliminates the need for storing separate copies of the model parameters for each task.

Unfortunately, this prompt design process is often done in a manual trial-and-error manner,

yielding results that may not be as effective as model tuning. To address this, one strategy

is to append a continuous prompt p to every input sequences xi and perform optimization

on this continuous vector without changing parameters of the massive language model.

Suppose we wish to classify the correct label yi for each input sequence xi using loss

function L. The prompt optimization problem can thus be formulated as

(1.5.1) min
p∈RD

1

N

N∑
i=1

L(f(p;xi), yi)

where f is the pre-trained language model and N the number of training samples. With

the massive size of the LLMs, computing the derivatives of the objective function via

backpropagation can be prohibitively memory intensive. In addition, some LLMs are

released as API services that only allows input and output manipulations, the users

cannot perform backpropagation to obtain derivatives of the objective function in (1.5.1).

As a result, this problem must be considered as a DFO problem that has no access

to the derivatives of the functions. Additionally, the problem is a noisy DFO problem

with deterministic errors as LLMs are often implemented in half or single precision. In

Chapter 5, we will present our numerical experiments to improve the performance of LLMs

on solving a collection of language tasks in a DFO setting.

48

CHAPTER 2

On the Numerical Performance of Finite-Difference Based

Methods for Derivative-Free Optimization

2.1. Introduction

The problem of minimizing a nonlinear objective function when gradient information

is not available has received much attention in the literature; see e.g., [29, 59] and

the references therein. A variety of methods have been developed for unconstrained

optimization, and some of these methods have been extended to deal with constraints. The

important benchmarking paper by Moré and Wild [69] showed that traditional methods,

such as the Nelder-Mead simplex method [72] and a leading pattern-search method [44],

are not competitive with the interpolation-based trust-region approach pioneered by Powell

[78] and developed concurrently by several other authors [29]. The advantages of Powell’s

approach reported in [69] were observed for both smooth and nonsmooth problems, as well

as noisy and noiseless objective functions. Rios and Sahinidis [85] confirmed the findings

of Moré and Wild concerning the inefficiency of traditional methods based on Nelder-Mead

or pattern searches. Based on these studies, we regard the interpolation-based approach

of Powell as a leading method for derivative-free optimization (DFO).

There is, however, an alternative approach for DFO that has been largely neglected

in the nonlinear optimization literature. It consists of approximating derivatives using

finite differences, and using them within standard derivative-based nonlinear optimization

49

algorithms. Many of the papers in the DFO literature dismiss this approach at the outset

as being too expensive in terms of functions evaluations or as ineffective in the presence of

noise. As a result of this prevalent view, the vast majority of papers on DFO methods

do not present comparisons against a finite-difference approach. We believe that if such

comparisons had been made, particularly in the noiseless setting, research in the field

would have followed a different trajectory. Ironically, as pointed out by Berahas et al. [7],

the finite-difference approach is widely used by practitioners for noiseless problems, often

unwittingly, as many established optimization codes invoke a finite-difference option when

derivatives are not provided. A disconnect occurred between research and practice, and

no systematic effort was made to bridge this gap.

This paper builds upon Berahas et al. [7] and Nesterov and Spokoiny [73], and aims to

bring the gradient approximation approach to the forefront of DFO research by illustrating

its performance on a variety of unconstrained and constrained problems, with and without

noise. Gradient approximations can be computed using finite differences or random

sampling techniques [73]. In this paper, we study only the former approach.

As is well known, the use of finite differences is delicate in the presence of noise, and

unless carefully implemented, can lead to inefficiencies or outright failure. Nevertheless,

when the standard deviation of the noise is known or can be estimated, the approximation

of derivatives can be placed on a solid theoretical footing. One can view this task as

the computation of derivatives of a smoothed function [73], or as the computation of an

estimator that minimizes a mean squared error [71].

Finite-difference-based methods for DFO enjoy two appealing features. They can easily

exploit parallelism in the evaluation of functions during finite differencing, and they can be

50

built using existing software for constrained and unconstrained optimization, sometimes

rather easily. This obviates the need to redesign existing unconstrained DFO methods

to handle more general problems, an effort that has taken two decades for interpolation-

based trust-region methods [25–29, 76, 79, 80], and is yet incomplete. The strategy often

suggested of simply applying an unconstrained DFO method to a penalty or augmented

Lagrangian reformulation will not yield an effective general purpose method, as is known

from modern research in nonlinear programming; see e.g. [75, chapter 17].

To gauge the efficiency of the finite-difference approach for DFO, we implemented it

within three derivative-based codes: l-bfgs [75] for unconstrained optimization; lmder

[68] for nonlinear least squares; and knitro [16] for inequality constrained optimization.

In l-bfgs we employ a relaxed line search for which convergence results in the presence of

(errors) or noise are established in [7, 53, 104]. lmder and knitro were not modified in

any way, and thus our tests provide baseline performance as noise-tolerant variations of

these methods should yield improved performance. (Convergence results have not been

established for lmder and knitro in the noisy setting, but [99] analyzes a modification

of trust region methods that is relevant to lmder.) We tested the aforementioned codes

against three established codes designed specifically for DFO: newuoa [78] for general

unconstrained optimization; dfo-ls [18] for nonlinear least squares; and cobyla [77]

for inequality constrained optimization. A large number of experiments were performed

in this study. In sections 2.2, 2.3, and 2.4, we display graphs or tables that attempt to

summarize the findings as well as possible. The complete set of results, as well as fine

details of implementation, are presented in a companion technical report [94].

51

2.1.1. Literature Review

Gill et al. [40] proposed an adaptive approach for computing the difference interval h,

assuming that a bound on the errors in the objective function is known. This work,

inspired by earlier research by Lyness [65], pays careful attention to the estimation of

bounds on the second (or third) derivatives, since these bounds are needed to obtain an

accurate estimate of h. Examples are presented illustrating cases when the approach may

fail. To our knowledge, [40] is the first in-depth study (in the context of optimization) of

finite-difference gradient approximations in the presence of errors. There was, however, no

follow-up on the application of these techniques for derivative-free optimization.

The paper that influenced our work the most is by Moré and Wild [71], who discuss

how to choose the differencing interval as a function of the noise level and a bound on the

second (or third) derivative, so as to obtain nearly optimal gradient estimates. The noise

level, defined as the standard deviation of the noise, can be estimated by sampling (in the

case of stochastic noise) or using a table of differences [70] (in the case of computational

noise). The authors propose ECnoise, a practical procedure for estimating stochastic or

computational noise [70]. They also give some attention to the practical estimation of the

second derivative.

Nesterov and Spokoiny [73] analyze first-order methods with randomized gradient

approximations. They establish worst case complexity bounds for nonsmooth and smooth

problems. Numerical experiments with these types of methods are reported in [8, 10].

Kelley et al. [21, 55] propose a finite-difference BFGS method, called implicit filtering,

designed for the case when noise can be diminished at any iteration, as needed. In that

approach, the finite-difference interval decreases monotonically.

52

The book by Conn, Scheinberg and Vicente [29] gives a thorough treatment of the

interpolation-based trust-region approach for DFO. It presents foundational theoretical

results as well as detailed algorithmic descriptions. Larson, Menickelly and Wild [59] give

a comprehensive review of DFO methods as of 2018. Their survey covers deterministic

and randomized methods, noisy and noiseless objective functions, problem structures such

as least squares and empirical risk minimization, and various types of constraints.

Audet and Hare [2] review direct-search and pattern-search methods, and describe a

variety of practical applications solved with mads, and nomad. Neumaier [74] reviews

methods endowed with convergence guarantees, with an emphasis on global optimization.

Kimiaei [57] proposes a randomized method, called VSBBON that implements a noisy

line search and employs quadratic models in subspaces determined adaptively.

2.1.2. Contributions of this Paper

To our knowledge, this is the first systematic investigation into the practical performance

of finite-difference-based DFO methods relative to established techniques, across a range

of problems, with and without noise in the functions. The main contributions of this

paper can be summarized as follows. We use the acronym “fd-dfo method” for a method

that employs some form of finite differences to approximate the gradient of the objective

function and (possibly) the constraints.

(1) For noiseless functions, we found that the fd-dfo methods are at least as efficient,

if not superior, to established methods, across all three categories of problems,

without the use of sophisticated procedures for determining the finite-difference

interval.

53

(2) For noisy functions, we observed that newuoa is more efficient and accurate

than the finite-difference l-bfgs method for unconstrained optimization, but

not by a wide margin. dfo-ls is comparable to the finite-difference version of

lmder, for least-squares problems. A simple finite-difference version of knitro

has comparable performance with cobyla, for inequality-constrained problems.

(3) The differencing formulas used in our experiments performed well on most, but not

all noisy problems. More sophisticated techniques for estimating bounds on the

second (or third) derivatives will improve the accuracy of the differencing interval,

as well as the overall performance of FD-DFO methods, on noisy problems.

Conclusions (1) and (2) are based on sequential execution. If function evaluations

can be parallelized, we expect FD-based methods to have a clear advantage over existing

DFO methods, for all classes of problems. On the other hand, we should note that the

interpolation-based trust-region methods we tested (newuoa and dfo-ls) proved to be

more robust in the presence of noise than we expected. These methods do not require

knowledge of the noise level in the objective function and yet performed reliably for most

levels of noise, suggesting that the internal logic of the algorithm normally reacts correctly

to the noise inherent in the problem (although rare failures were observed).

We also comment on some limitations of this work. For each problem class, we employed

only one established DFO code to benchmark the efficiency of the corresponding FD-DFO

method. We found it essential to work with a small number of codes that we could

understand well, but benchmarking other software is desirable. Another limitation of this

study is that it considers only one model of noise: additive uniformly-distributed bounded

noise. Although we experimented with normal noise and observed that the FD-based codes

54

worked well, we do not know how robust these methods are for heavy tail distributions

or anisotropic noise. We focused on just one simple model of noise because this already

raised some important algorithmic questions that need to be resolved to make FD-DFO

methods highly reliable in practice.

As our focus was on scalable local optimization methods, we did not consider global

optimization methods, such as Bayesian optimization, surrogate optimization, evolutionary

methods [37, 39, 45], or other global optimization methods that employ restarts, grid

searches or surrogate models [74, 87].

2.2. Unconstrained Optimization

Let us consider the solution of unconstrained optimization problems of the form

(2.2.1) min
x∈Rn

φ(x),

given only noisy evaluations,

(2.2.2) f(x) = φ(x) + ε(x).

Here, ε(x) denotes (deterministic) computational error or the realization of a random

variable at x representing noise. The function φ is assumed to be smooth. We compare the

performance of newuoa and l-bfgs with finite-difference gradients on 73 unconstrained

CUTEst problems [42], varying the dimension of each problem up to n ≤ 300 whenever

possible. All experiments were run in double precision. The methods tested in our

experiments are as follows.

55

• NEWUOA: A model-based trust-region derivative-free algorithm that forms quadratic

models using interpolation of function values, combined with a minimum Frobenius-

norm update of the Hessian approximation; see Powell [78]. We called the code in

Python 3.7 through pdfo developed by Ragonneau and Zhang [84]. We used the

default settings in newuoa, which in particular, set the number of interpolation

points to 2n+ 1.

• FD-L-BFGS: A finite-difference implementation of the limited-memory BFGS

algorithm [75] with a bisection Armijo-Wolfe line search. We use a memory of

size 10. Forward- and central-difference options are tested. At intermediate trial

points generated during the line search, the directional derivative is computed via

forward- or central-differences along the direction of interest.

Instead of newuoa we could have used dfotr [5], which in our experience is often

competitive with newuoa in terms of function evaluations, but has much higher per-

iteration cost.

We first consider the case when noise is not present and later study the effect of noise

on the performance of the algorithms.

2.2.1. Experiments on Noiseless Functions

In the first set of experiments, we let ε(x) ≡ 0, so that the only errors in the function

evaluations are due to machine roundoff, and we let εM denote unit roundoff. The

approximate gradient g(x) ∈ Rn of the objective function φ(x), computed by finite

56

differencing, is given as:

[g(x)]i =
f(x+ hiei)− f(x)

hi
, hi = max{1, |[x]i|}

√
εM ; (forward differencing)

(2.2.3)

[g(x)]i =
f(x+ hiei)− f(x− hiei)

2hi
, hi = max{1, |[x]i|} 3

√
εM . (central differencing)

(2.2.4)

The directional derivative Dpφ(x) = ∇φ(x)Tp of φ along a direction p is required

within the Armijo-Wolfe line search employed by l-bfgs. It is approximated as:

g(x; p) =
f(x+ hpu)− f(x)

h
‖p‖, h =

√
εM ; (forward differencing)(2.2.5)

g(x; p) =
f(x+ hpu)− f(x− hpu)

2h
‖p‖, h = 3

√
εM ; (central differencing)(2.2.6)

where pu = p/‖p‖ is the normalized direction.

These choices of h can be improved by including contributions of the second and third

derivatives, respectively, as discussed in the next subsection. However, we found that in

the noiseless setting, and for our test functions, such a refinement is not needed to make

the finite-difference l-bfgs approach competitive.

The algorithms are terminated when either

(2.2.7) φ(xk)− φ∗ ≤ τ ·max{1, |φ∗|},

with τ = 10−6, or when the limit of 500× n function evaluations is reached. The optimal

value φ∗ is determined by running BFGS with exact gradients (provided by CUTEst [42])

57

until no more progress can be made on the function. Complete numerical results are given

in the technical report [94].

In Figure 2.1, we summarize the results using log-ratio profiles proposed by Morales

[67], which in this case report the quantity

(2.2.8) log2

(
evalsLBFGS

evalsNEWUOA

)
,

where evalsLBFGS and evalsNEWUOA denote the total number of function evaluations for

fd-l-bfgs and newuoa to satisfy (2.2.7) or reach the maximum number of function

evaluations. In the figures, the ratios (2.2.8) are plotted in increasing order. Thus, the

larger the shaded region, the more successful a method.

Overall, we observe in these tests (with τ = 10−6) that forward-difference l-bfgs

outperforms newuoa on the majority of problems in terms of function evaluations. This

is perhaps surprising because newuoa was designed to be parsimonious in terms of

function evaluations, whereas finite-difference l-bfgs requires n function evaluations per

iteration. It is also notable that this is achieved without any additional information (for

example, the Lipschitz constant of the gradient for forward differencing) to squeeze out

the best possible accuracy of the gradient in the finite-difference l-bfgs approach. As

expected, central-difference l-bfgs requires significantly more function evaluations than

the forward-difference option, and does not provide significant benefit in terms of solution

accuracy for the majority of the problems. In particular, when run in double precision,

forward-difference l-bfgs is able to converge to the same tolerance that one would expect

with analytical gradients.

58

0 50 100
Problem

4

2

0

2

4

lo
g 2

(ev
al
s L
BF
G
S

ev
al
s N

EW
U
O
A
)

NEWUOA

FD L-BFGS

0 50 100
Problem

4

2

0

2

4

lo
g 2

(ev
al
s L
BF
G
S

ev
al
s N

EW
U
O
A
)

NEWUOA

CD L-BFGS

Figure 2.1. Efficiency, Noiseless Case. Log-ratio profiles for the total number
of function evaluations to achieve (2.2.7) with ε(x) = 0. The left figure
compares forward-difference l-bfgs with newuoa, and the right figure
compares central-difference l-bfgs with newuoa.

In terms of CPU time, newuoa’s execution time grows much faster with the problem

dimension than l-bfgs’ because one iteration of newuoa requires O(n2) flops, whereas

the iteration cost of l-bfgs is O(n) flops and all test functions are inexpensive to evaluate.

Across all the problems, we observe that when n ≈ 100, newuoa can take at least 5-10

times longer than l-bfgs in terms of wall-clock time.

While newuoa is an inherently sequential algorithm, finite-difference l-bfgs offers

ample opportunities for parallelism when computing the finite-difference approximation

to the gradient. This is an often overlooked benefit of finite-difference-based methods in

the DFO literature, as we are not aware of implementations of model-based trust-region

methods that benefit significantly from parallelism.

These results also indicate that finite-difference l-bfgs is likely to be much more

efficient than direct search methods (Nelder-Mead or pattern search) on noiseless problems

since the latter are not competitive with the interpolation-based trust region approach, as

mentioned above.

59

2.2.2. Experiments on Noisy Functions

In this set of experiments, we synthetically inject uniform stochastic noise into the objective

function. In particular, we sample ε(x) ∼ σfU(−
√

3,
√

3) i.i.d. independent of x, where

σf ∈ {10−1, 10−3, 10−5, 10−7}. By construction of ε(x), we have that σ2
f = E[ε(x)2]. We

refer to standard deviation of the noise σf as the noise level.

We employ a more precise formula for the finite-difference interval than in the noiseless

setting — one that depends both on the noise level σf and on the curvature of the function.

Specifically, we compute a different hi for each coordinate direction based on the well

known results in [71]. We define

[g(x)]i =
f(x+ hiei)− f(x)

hi
, hi =

4
√

8

√
σf
Li

; (forward differencing)(2.2.9)

[g(x)]i =
f(x+ hiei)− f(x− hiei)

2hi
, hi = 3

√
3σf
Mi

, (central differencing)(2.2.10)

where Li and Mi are bounds on the second and third derivative along the i-th coordinate

direction ei.

We estimate Li using a second-order difference. Given a direction p ∈ Rn where

‖p‖ = 1, we define

∆(t) = f(x+ tp)− 2f(x) + f(x− tp),

where t is the second-order differencing interval. The Lipschitz constant L along the

direction p can thus be approximated as L ≈ ∆(t)/t2. However, as with the choice of h,

we need to be careful in the selection of t, and for this purpose we employ an iterative

60

technique proposed by Moré and Wild [71], whose goal is to find an interval t that satisfies

|∆(t)| ≥ τ1εf , τ1 � 1(2.2.11)

|f(x± tp)− f(x)| ≤ τ2 max{|f(x)|, |f(x± tp)|}, τ2 ∈ (0, 1).(2.2.12)

These heuristic conditions aim to ensure that t is neither too small nor too large; see [71]

for a full description of the Moré-Wild (MW) technique. This technique cannot, however,

be guaranteed to find a t that satisfies (2.2.11), (2.2.12). To account for this, we developed

the following procedure for estimating the constants Li for forward differencing.

Procedure I. Adaptive Estimation of L

1. At the first iteration of the l-bfgs method, invoke the MW procedure to compute

ti, for i = 1, ..., n. If such a ti can be found to satisfy (2.2.11), (2.2.12), set Li =

max{10−1, |∆(ti)|/t2i } in (2.2.9). Otherwise, set it to Li = 10−1. Store the Li in a vector

L. To calculate the directional derivative in the Armijo-Wolfe line search, set the Lipschitz

constant to L = ‖L‖/
√
n.

2. If at any iteration of the l-bfgs algorithm the line search returns a steplength

αk < 0.5, then re-estimate the vector L by calling the MW procedure as in step 1 at the

current iterate xk.

We modify the line search in fd-l-bfgs to better handle noise; see Shi et al. [91]

for details. No other changes were made to the l-bfgs method. It is well known, that

when the gradient is sufficiently accurate, l-bfgs generates well-scaled directions so that

αk = 1 is acceptable. Thus, the occurrence of αk < 0.5 is viewed as an indication that the

61

curvature of the problem may have changed, and should be re-estimated. The function

evaluations performed in the estimation of L will be accounted for in the numerical results

presented below.

The technique for computing differencing interval for central differences is described in

[94].

2.2.2.1. Accuracy. We first compare the accuracy achieved by each algorithm, as

measured by the optimality gap φ(xk) − φ∗. We do so by running newuoa until ρ =

ρend = 10−6, and running the fd-l-bfgs method until the objective function could not be

improved over 5 consecutive iterations. In Figure 2.2, we report the log-ratio profile

(2.2.13) log2

(
φlbfgs − φ∗

φnewuoa − φ∗

)

for σf = 10−5, where φlbfgs, φnewuoa denote the lowest objective achieved by each method.

(The results are representative of those obtained for σf ∈ {10−1, 10−3, 10−7}.) Since we

include only runs where both solvers converged to the same local minimizer, the differences

in both the numerator and denominator are nonnegative.

0 50 100
Problem

10

5

0

5

10

lo
g 2
(

LB
FG
S

*

N
EW

U
O
A

*
)

NEWUOA

FD L-BFGS

0 50 100
Problem

10

5

0

5

10

lo
g 2
(

LB
FG
S

*

N
EW

U
O
A

*
)

NEWUOA

CD L-BFGS

Figure 2.2. Accuracy, Noisy Case for σf = 10−5. Log-ratio optimality gap
profiles comparing newuoa against forward-difference l-bfgs (left) and
central-difference l-bfgs (right).

62

As seen in Figure 2.2, newuoa achieves higher accuracy in the solution than forward-

difference l-bfgs, while central-difference l-bfgs yields far better accuracy than both.

It is not surprising that central differencing yields much higher accuracy than forward

differencing since the noise levels of their gradient approximations are, respectively, O(σ
2/3
f)

and O(σ
1/2
f). On the other hand, it is not straightforward to analyze the error contained

in the gradient approximation constructed by newuoa, and in turn its final accuracy. To

try to shed some light into this question, we tested newuoa using only n+ 1 interpolation

points and observed that it now lags behind fd-l-bfgs in terms of accuracy. More

generally, our tests suggest that the choice p = 2n+ 1 recommended by Powell strikes the

right balance between accuracy in the solution and the speed of algorithm.

2.2.2.2. Efficiency. We now report the number of function evaluations required to

achieve

(2.2.14) φ(xk)− φ̃∗ ≤ τ · (φ(x0)− φ̃∗),

for varied τ . Here, φ̃∗ denotes the best solution obtained by newuoa. In Figure 2.3, we

report log-ratio profiles based on

(2.2.15) log2

(
evalsLBFGS

evalsNEWUOA

)
.

We observe from this figure that newuoa is more efficient than forward-difference l-bfgs.

The advantage is less significant for τ = 10−2 but becomes pronounced for τ = 10−6, which

is consistent with our earlier observation about the ability of newuoa to achieve higher

accuracy. Central-difference l-bfgs is also less efficient overall than newuoa, but becomes

more competitive as τ is decreased. It is notable that newuoa is able to deliver such

63

0 50 100
Problem

4

2

0

2

4

lo
g 2

(ev
al
s L
BF
G
S

ev
al
s N

EW
U
O
A
)

NEWUOA

FD L-BFGS

0 50 100
Problem

4

2

0

2

4

lo
g 2

(ev
al
s L
BF
G
S

ev
al
s N

EW
U
O
A
)

NEWUOA

FD L-BFGS

0 50 100
Problem

4

2

0

2

4

lo
g 2

(ev
al
s L
BF
G
S

ev
al
s N

EW
U
O
A
)

NEWUOA

CD L-BFGS

0 50 100
Problem

4

2

0

2

4

lo
g 2

(ev
al
s L
BF
G
S

ev
al
s N

EW
U
O
A
)

NEWUOA

CD L-BFGS

Figure 2.3. Efficiency, Noisy Case for σf = 10−5. Log-ratio profiles for the
number of function evaluations to achieve (2.2.14) for τ = 10−2 (left) and
10−6 (right), comparing newuoa against forward-difference l-bfgs (top)
and central-difference l-bfgs (bottom). These plots are representative of
the other noise levels σf ∈ {10−1, 10−3, 10−5, 10−7}.

strong performance without knowledge of the noise level of the function. The adjustment

of the two trust-region radii in newuoa seems to be quite effective: shrinking the radii fast

enough to ensure steady progress, but not so fast as to create models dominated by noise.

To our knowledge, there has been no in-depth study of the practical behavior of newuoa

(or similar codes) in the presence of noise; we regard this as an interesting research topic.

The results reported in this section highlight the importance of developing more

effective finite difference estimation techniques than those employed in our experiments.

Recent work along these lines is described in [92].

64

2.3. Nonlinear Least Squares

In many unconstrained optimization problems, the objective function has a nonlinear

least-squares form. Therefore, it is important to pay particular attention to this problem

structure in the derivative-free setting. We write the problem as

min
x∈Rn

φ(x) = 1
2
‖γ(x)‖2 = 1

2

m∑
i=1

γ2
i (x),

where γ : Rn → Rm is a smooth function. We assume that the Jacobian matrix [J(x)]ij =

∂γi(x)
∂xj

is not available but that the individual residual functions γi(x) can be computed.

More generally, the evaluation of the γi may contain noise so that the observed residuals

are given by

ri(x) = γi(x) + εi(x), i = 1, . . . ,m,

where εi(x) models noise as in (2.2.1). Thus, the minimization of the true objective

function φ must be performed based on noisy observations ri(x) that define the observed

objective function

(2.3.1) f(x) = 1
2
‖r(x)‖2 = 1

2

m∑
i=1

r2
i (x).

Since noise is incorporated into each residual function, the model of noise is different

from the additive noise model in the general unconstrained case discussed in the previous

section. In particular, the function evaluation f(x) = 1
2

∑m
i=1 γ

2
i (x) + 2εi(x)γi(x) + ε2i (x)

contains both multiplicative and additive components of noise.

Our goal is to study the viability of methods based on finite-difference approximations

to the Jacobian. To this end, we employ a classical Levenberg-Marquardt trust-region

65

method where the Jacobian is approximated by differencing, and perform tests comparing

it against a state-of-the-art DFO code designed for nonlinear least-squares problems. The

rationale behind the selection of codes used in our experiments is discussed next.

Interpolation Based Trust Region Methods.

Cartis and Roberts [86] proposed a Gauss-Newton type approach, referred to as dfo-

gn, in which an approximation of the Jacobian is computed by linear interpolation using

n + 1 function values at recently generated points. An improved version of dfo-gn is

dfo-ls [18], which provides a variety of options and heuristics to accelerate convergence

and promote a more accurate solution. The numerical results reported by Roberts et al.

[18] indicate that dfo-ls is a state-of-the-art code for DFO least squares, and therefore

will be used in our benchmarking.

Finite-Difference Gauss-Newton Method.

One can employ finite differencing to estimate the Jacobian matrix J(x) within any

method for nonlinear least squares, and since this is a mature area, there are a number

established solvers. We chose lmder for our experiments, which is part of the MINPACK

package [68] and is also available in the scipy library. We did not employ lmdif, the

finite-difference version of lmder, because it does not allow the use of different differencing

intervals for each of the residual functions ri(x); we elaborate on this point below. Another

code available in scipy is trf [13], but our tests show that lmder is slightly more

efficient in terms of function evaluations, and tends to give higher accuracy in the solution.

The code nls, recently added to the Galahad library [43] would provide an interesting

alternative. That method, however, includes a tensor to enhance the Gauss-Newton model,

66

and since this may give it an advantage over dfo-ls, we decided to employ the more

traditional code lmder.

In summary, the solvers used in our tests are:

• LMDER: A derivative-based Levenberg-Marquardt trust-region algorithm from the

MINPACK software library [68], where the finite-difference module is supplied by

us. We call the code in Python 3.7 through scipy version 1.5.3, using the default

parameter settings.

• DFO-LS: The most recent DFO software developed by Cartis et al. [18] for

nonlinear least squares. This method uses linear interpolation to construct an

approximation to the Jacobian matrix, which is then used in a Gauss-Newton-type

method. We used version 1.0.2 in our experiments, with default settings except

that the model.abs tol parameter is set to 0 to avoid early termination.

The test problems in our experiments are those used by Moré and Wild [69], which

have also been employed by Roberts and Cartis [86] and Zhang et al. [105]. The 53

unconstrained problems in this test set include both zero and nonzero residual problems,

with various starting points, and are all small dimensional, with n ≤ 12. To measure

efficiency, we regard m evaluations of individual residual components ri(·) as one function

evaluation. These m evaluations of the individual residual components are not necessarily

performed at the same point. We terminate the algorithms when either: i) the maximum

number of function evaluations (500×n) is reached, ii) an optimality gap stopping condition,

specified below, is triggered; or iii) the default termination criterion of the two codes is

satisfied with tolerance of 10−8 (this controls the minimum allowed trust region radius).

67

2.3.1. Experiments on Noiseless Functions

We first consider the noiseless case corresponding to εi(x) ≡ 0, ∀i. For lmder, we estimate

the Jacobian J(x) using forward differences. As before, let εM denote machine precision.

We first evaluate {r(x + hjej)}nj=1, where hj is defined as in (2.2.3), and compute the

Jacobian estimate as

[Ĵ(x)]ij =
ri(x+ hjej)− ri(x)

hj
.(2.3.2)

As in the previous section, we consider log-ratio profiles to compare the efficiency and

accuracy of lmder and dfo-ls. We record

log2

(
evalslmder

evalsdfols

)
and log2

(
φlmder − φ∗

φdfols − φ∗

)
,

where φ∗ is obtained from [86], φdfols, φlmder denote the best function values achieved by

the respective methods, and evalsdfols, evalslmder denote the number of function evaluations

needed to satisfy the termination test (2.2.7) for various values of τ . If either of the solvers

reach the maximum number of function evaluations before finding a solution that satisfies

(2.2.7), we will set the ratio to a very large number (or negated). If both solvers fail,

then the log-ratio is zero. The results comparing dfo-ls and lmder are summarized in

Figures 2.4 and 2.5. The complete table of results is given in the technical report [94].

The performance of the two methods appears to be comparable since the area of

the shaded regions is similar. This may be surprising since the Gauss-Newton approach

seems to be a particularly effective way of designing an interpolation-based trust-region

method, requiring only linear interpolation to yield useful second-order information. Cartis

68

0 20 40
Problem

10

5

0

5

10

lo
g 2
(LM

D
ER

*

D
FO
LS

*
)

LMDER

DFO-LS

Figure 2.4. Accuracy, Noiseless Case. Log-ratio optimality gap profiles
comparing dfo-ls and lmder for ε(x) = 0.

0 20 40
Problem

4

2

0

2

4

lo
g 2

(ev
al
s L

M
D
ER

ev
al
s D

FO
LS
)

LMDER

DFO-LS

0 20 40
Problem

4

2

0

2

4

lo
g 2

(ev
al
s L

M
D
ER

ev
al
s D

FO
LS
)

LMDER

DFO-LS

0 20 40
Problem

4

2

0

2

4

lo
g 2

(ev
al
s L

M
D
ER

ev
al
s D

FO
LS
)

LMDER

DFO-LS

Figure 2.5. Efficiency, Noiseless Case. Log-ratio profiles comparing dfo-ls
and lmder for ε(x) = 0. The figures measure number of function evaluations
to satisfy (2.2.7) for τ = 10−1 (left), 10−3 (middle), and 10−6 (right).

and Roberts [86] dismiss finite-difference methods at the outset, and do not provide

numerical comparisons with them. However, the tradeoffs of the two methods merit careful

consideration. dfo-ls requires only one function evaluation per iteration, but its gradient

approximation, Ĵ(xk)
T r(xk), is inaccurate until the iterates approach to the solution

and the trust region has shrunk. In contrast, the finite-difference Levenberg-Marquardt

method in lmder computes quite accurate gradients in this noiseless setting, requiring a

much smaller number of iterations, but at a much higher cost per iteration in terms of

function evaluations. The tradeoffs of the two methods appear to yield, in the end, similar

performance, but we should note that dfo-ls is typically more efficient in the early stages

of the optimization, as illustrated in Figure 2.5 for the low tolerance level τ = 10−1. On

69

the other hand, the finite-difference approach is more amenable to parallel execution, as

mentioned in the previous section.

Let us now consider the linear algebra cost of the two methods. A typical iteration of

dfo-ls solves the interpolation system with LU factorization, for n different right hand

sides, at a per-iteration cost of O(mn2) flops, assuming that m > n. (dfo-ls offers a

number of options, such as regression, which may involve a higher cost, but we did not

invoke those options.) The linear algebra cost of the finite-difference version of lmder

described above is O(mn) flops. Therefore, in terms of CPU time, lmder is faster than

dfo-ls whenever the cost of function evaluations does not dominate the iteration cost.

2.3.2. Experiments on Noisy Functions

Let us assume that the noise model is the same across all residual functions, i.e., εi(x) are

i.i.d. for all i. As in Section 2.2.2, we generate noise independently of x, following a uniform

distribution, εi(x) ∼ σfU(−
√

3,
√

3), with noise levels σf ∈ {10−1, 10−3, 10−5, 10−7}.

Differencing will be performed more precisely than in the noiseless case. Following [70],

the forward-difference approximation of the Jacobian is defined as

[Ĵ(xk)]ij =
ri(x+ hijej)− ri(x)

hij
, where hij = 81/4

(
σf
Lij

)1/2

,(2.3.3)

where Lij is a bound on |eTj ∇2γi(x)ej| within the interval [x, x+hijej]. To estimate Lij for

every pair (i, j), and at every iteration, would be impractical, and normally unnecessary.

Several strategies can be designed to provide useful information at an acceptable cost. For

concreteness, we estimate Lij once at the beginning of the run of lmder.

70

More concretely, we compute a different hij for every residual function γi and each

coordinate direction ej at the starting point, and keep hij constant throughout the run of

lmder. The {Lij} for i = 1, ...,m, j = 1, ..., n are obtained by applying the Moré-Wild

(MW) procedure [71] described in the previous section to estimate the Lipschitz constant

for function γi along coordinate directions ej. If the MW procedure fails, we set Lij = 1.

The cost of computing the Lij, in terms of function evaluations, is accounted for in the

results reported below.

In dfo-ls, we did not employ restarts, and set the obj has noise option to its default

value False, which also changes some trust-region-related parameters. We did so for two

reasons. First, restarts introduce randomness, and as Cartis et al. [18] observed, can lead

the algorithm to a different minimizer, making comparisons difficult. In addition, restarts

are designed to allow the algorithm to make further progress as it reaches the noise level

of the function.

Accuracy. We compare the best optimality gap achieved by lmder and dfo-ls. We run

the algorithms using their default parameters (except that we set model.abs tol = 0 for

dfo-ls) until no further progress could be made. In Figure 2.6, we plot the log-ratio

profiles

(2.3.4) log2

(
φlmder − φ∗

φdfols − φ∗

)
,

for noise levels σf ∈ {10−1, 10−3, 10−5, 10−7}.

We observe that dfo-ls is more accurate than lmder, which points to the strengths

of dfo-ls, since it does not require knowledge of the noise level of the function in its

71

0 20 40
Problem

10

5

0

5

10

lo
g 2
(LM

D
ER

*

D
FO
LS

*
)

LMDER

DFO-LS

0 20 40
Problem

10

5

0

5

10

lo
g 2
(LM

D
ER

*

D
FO
LS

*
)

LMDER

DFO-LS

0 20 40
Problem

10

5

0

5

10

lo
g 2
(LM

D
ER

*

D
FO
LS

*
)

LMDER

DFO-LS

0 20 40
Problem

10

5

0

5

10

lo
g 2
(LM

D
ER

*

D
FO
LS

*
)

LMDER

DFO-LS

Figure 2.6. Accuracy, Noisy Case. Log-ratio optimality gap profiles compar-
ing dfo-ls and lmder for σf = 10−1 (upper left), 10−3 (upper right), 10−5

(bottom left), 10−7 (bottom right). The bounds on the second derivatives
are kept constant over the optimization process.

internal logic. However, our implementation of lmder is not sophisticated, as fixing the

Lipschitz constant at the start of the finite-difference method is not always a good strategy.

An interesting open question is whether the adaptive strategies recently proposed in [92]

would close the accuracy gap.

Efficiency. To measure the efficiency of the algorithms in the noisy case, we record the

number of function evaluations required to satisfy the termination condition (2.2.14),

where φ̃∗ denotes the best objective value achieved by the two solvers, for a given noise

level. To do so, both solvers were run until they could not make more progress. The

differencing interval in lmder was computed as in the experiments measuring accuracy

for the noisy setting, i.e., by employing only the Moré-Wild procedure at the first iteration.

72

In Figure 2.7, we plot

(2.3.5) log2

(
evalslmder

evalsdfols

)

for two values of the tolerance parameter τ and for two levels of noise. We omit the plots

for other values of τ and σ, as they demonstrate similar performance. (When (2.2.14)

cannot be satisfied for a solver within the given budget of 500× n function evaluations,

we set the corresponding value in (2.3.5) to a very large number.)

0 20 40
Problem

4

2

0

2

4

lo
g 2

(ev
al
s L

M
D
ER

ev
al
s D

FO
LS
)

LMDER

DFO-LS

0 20 40
Problem

4

2

0

2

4
lo
g 2

(ev
al
s L

M
D
ER

ev
al
s D

FO
LS
)

LMDER

DFO-LS

0 20 40
Problem

4

2

0

2

4

lo
g 2

(ev
al
s L

M
D
ER

ev
al
s D

FO
LS
)

LMDER

DFO-LS

0 20 40
Problem

4

2

0

2

4

lo
g 2

(ev
al
s L

M
D
ER

ev
al
s D

FO
LS
)

LMDER

DFO-LS

Figure 2.7. Efficiency, Noisy Case. Log-ratio profiles comparing dfo-ls
and lmder for σf = 10−1 (top row) , and 10−3 (bottom row). The figure
measures the number of function evaluations to satisfy (2.2.14) for τ = 10−1

(left column), and 10−6 (right column). Lipschitz constants were estimated
only at the start of the lmder run.

There is no clear winner among the two codes used in the experiments reported in

Figure 2.7. For low accuracy (τ = 0.1), lmder appears to be more efficient, whereas

the opposite is true for high accuracy (τ = 10−6). We note again that dfo-ls is able to

73

handle different noise levels efficiently and reliably, without knowledge of the noise level or

Lipschitz constants. On the other hand, the finite-difference approach is competitive even

with a fairly coarse Lipschitz estimation procedure, and perhaps more important, it can

be incorporated into existing codes (doing so in lmder required little effort). In other

words, in the finite-difference approach to derivative-free optimization, algorithms do not

need to be constructed from scratch but can be built as adaptations of existing codes.

2.3.2.1. Commentary. Our finite-difference approach is tailored to each individual

residual component and each coordinate direction. However, it is natural to question

the necessity of estimating the Lipschitz constant for each component of each individual

residual, as we did in our experiments, since this is affordable only if one can evaluate

residual functions individually. One can envision problems for which a much simpler

Lipschitz estimation suffices. For example, in data-fitting applications all individual

residual functions γi may be similar in nature. In this setting, one could use a single

Lipschitz constant, say L, across all components and residual functions, especially when

the variables are scaled prior to optimization. L could be updated a few times in the

course of the optimization process. On the other hand, if the scale of the variables varies

significantly, one can compute Lipschitz constants Li for each component across all residual

functions, requiring the estimation of n Lipschitz constants.

2.4. Constrained Optimization

We now consider inequality-constrained nonlinear optimization problems of the form

(2.4.1) min
x∈Rn

φ(x) s.t. ψ(x) ≤ 0, l ≤ x ≤ u,

74

where ψ : Rn → Rm represents a set of m linear or nonlinear constraints, l, u ∈ Rn, and φ

and ψ are twice continuously differentiable. We assume that the derivatives of φ and ψ are

not available, and more generally that we have access only to noisy function evaluations:

(2.4.2) f(x) = φ(x) + ε(x), cj(x) = ψj(x) + εj(x).

We assume the same noise model for the objective and each of the constraint functions, for

simplicity. We do not present comparisons for general problems involving both equality

and inequality constraints because we were not able to find an established DFO code

of such generality that was sufficiently robust in our experiments (cobyla accepts only

inequality constraints).

To our knowledge, there have been very few comparative studies of DFO methods for

constrained optimization as judged by the very few references in the comprehensive review

by Larson et al. [59]. The best known interpolation-based DFO software available for

solving problem (2.4.1) is cobyla, developed by Powell [77]. The method implemented in

that code constructs linear approximations to φ and ψ at every iteration using function

interpolation at points placed on a simplex in Rn; it is designed to handle only inequality

constraints. A more recent method by Powell, in the spirit of newuoa, is lincoa [76].

It implements an interpolation-based trust-region approach but it can handle only linear

constraints.

There are many production-quality software packages for deterministic constrained

optimization where we could implement the finite difference DFO approach. We chose

knitro because one of the algorithms it offers is a simple sequential quadratic programming

(SQP) method that is close in spirit to cobyla. We did not to employ the interior-point

75

methods offered by knitro, which are known to be very powerful techniques for handling

inequality constraints, because they may put cobyla at an algorithmic disadvantage.

In the same vein, we did not employ snopt because it implements a sophisticated SQP

method with many advanced features to improve efficiency and reliability. In short, we

selected a simple nonlinear optimization method to more easily identify the strengths and

weaknesses of the finite difference approach.

The two codes are tested under the following settings.

• COBYLA. We ran the version of cobyla maintained in the pdfo package [84]. We

set the final trust region radius to 10−8 (rhoend=1e-8) to observe its asymptotic

behavior, particularly in the noiseless case. We ran pdfo version 1.0, and called

cobyla via its Python interface (Python 3.7.7).

• KNITRO. We ran Artelys Knitro 12.2 with alg=4 (an SQP algorithm), gradopt=2

(forward differencing), and hessopt=6 (L-BFGS). The choice of the finite difference

interval h is described below. In order to make the algorithm as close as possible to

cobyla, we set the memory size of L-BFGS updating to its minimum value, t = 1

(lmsize=1). For consistency with cobyla, we disabled the termination test based

on the optimality error by setting opttol=1e-16, and findiff terminate=0,

and instead terminate when the computed step is less than 10−8 (by setting

xtol=1e-8 and xtol iters=1). We called knitro via its Python interface.

As in the previous sections, we used test problems from the CUTEst set [42], which

were called through the Python interface, PyCUTEst version 1.0. We recall from (2.4.1)

that n and m refer to the number of variables and constraints, respectively (excluding

bound constraints). We first selected fixed-size problems that have at least one general

76

nonlinear inequality and have no equality constraints, and for which n ≤ 100 and m ≤ 100.

The characteristics of the resulting 49 problems are listed in the technical report [94].

2.4.1. Experiments on Noiseless Functions

In the first set of experiments, we applied cobyla and knitro to solve the 49 small-scale,

fixed-size CUTEst problems with exact function evaluations, i.e., with ε(x) = εj(x) ≡ 0 for

all i. As in prior sections, the approximate gradient g(x) ∈ Rn of the objective function

and Jacobian Ĵ(x) ∈ Rm×n of the constraints are evaluated by simple forward differences,

where hi is set as in (2.2.3). Both algorithms were stopped when the number of function

evaluations exceed 500 max (n,m), or when the trust-region radius or steplength reaches

its lower bound for cobyla or knitro, respectively. Both solvers report feasibility error

as the max-norm of constraint violations.

We sorted the results into four groups, according to the following outcomes:

(i) Both solvers converged to a feasible point with approximately the same objective

function values.

(ii) The solvers converged to feasible points with different objective function values.

(iii) One of the solvers terminated at an infeasible point.

(iv) Both solvers terminated at infeasible points.

There were 32 problems associated with outcome (i). We can use them to safely compare

the performance of the two solvers in terms of accuracy and efficiency. (We comment on

outcomes (ii)-(iv) in the companion technical report [94].)

77

Given that the two codes achieved feasibility in these 32 problems, we measure accuracy

by comparing the best objective function value obtained by each solver with the value φ∗

obtained by running knitro with exact gradients until it could not make further progress.

(In all the runs for determining φ∗, feasibility error was less than 10−10.) To measure

accuracy, we report the ratios

(2.4.3) log2

(
max{φKNITRO − φ∗, 10−8}
max{φCOBYLA − φ∗, 10−8}

)
.

We compare accuracy up to eight digits because reporting, say, the ratio 10−12/10−15

would be misleading, given that the accuracy in the constraint violation could have the

inverse ratio. The results are presented in Figure 2.8, which shows that for most problems

both solvers were able to achieve eight digits of accuracy; for the remaining problems,

knitro gave higher accuracy.

0 10 20 30
Problem

10

5

0

5

10

lo
g 2
(m

ax
{

KN
IT
RO

,1
O

8 }
m
ax
{

CO
BY

LA
,1
0

8 }
)

COBYLA

KNITRO

Figure 2.8. Accuracy, Noiseless Case. Log-ratio profiles comparing knitro
and cobyla for ε(x) = εi(x) = 0. The figure plots the ratios (2.4.3) for
problems for which the two solvers yielded the same solution.

To measure efficiency, we conducted a series of experiments using the same subset of

32 problems corresponding to outcome (i). We record the number of function evaluations,

evalsKNITRO and evalsCOBYLA, required by the two codes to satisfy condition (2.2.7) for

various values of τ . (If a solver fails to satisfy this test, we set the number of evaluations

78

0 10 20 30
Problem

4

2

0

2

4

lo
g 2

(ev
al
s K

N
IT
RO

ev
al
s C

O
BY

LA
) COBYLA

KNITRO

0 10 20 30
Problem

4

2

0

2

4

lo
g 2

(ev
al
s K

N
IT
RO

ev
al
s C

O
BY

LA
) COBYLA

KNITRO

0 10 20 30
Problem

4

2

0

2

4

lo
g 2

(ev
al
s K

N
IT
RO

ev
al
s C

O
BY

LA
) COBYLA

KNITRO

Figure 2.9. Efficiency, Noiseless Case. Log-ratio profiles comparing knitro
and cobyla for ε(x) = εi(x) = 0. The figures measure number of function
evaluations to satisfy (2.2.7) for τ = 10−1 (left), 10−3 (middle), and 10−6

(right).

to a large value.) Figure 2.9 plots the ratios

(2.4.4) log2

(
evalsKNITRO

evalsCOBYLA

)

for τ ∈ {10−1, 10−3, 10−6}. The technical report [94] contains the complete set of results.

We observe that for low accuracy, cobyla is slightly more efficient, while knitro becomes

significantly more efficient when high accuracy is required.

We should note that employing memory size t = 1 in L-BFGS updating yields a very

weak quadratic model in the SQP method of knitro. We experimented with a memory

of size t = 10 and observed that the performance of knitro improved, particularly in the

early iterations of the runs, but not dramatically, which was surprising.

We also conducted experiments with CUTEst test problems of variable dimension and

noted that the advantage of the FD approach becomes greater as the dimension of the

problem increases; see [94]. This stands in stark contrast with a common perception in

the DFO literature that finite differences require too many function evaluations compared

to methods specifically designed for DFO problems.

79

2.4.2. Experiments on Noisy Functions

We now inject artificial noise in the evaluation of the objective and constraint functions,

using the same noise model as in the unconstrained setting. We employ forward differences

to approximate the gradient and Jacobian, with finite-difference interval

hi = max{1, |[x]i|}
√
σf , i = 1, ..., n.

We do not include Lipschitz constant estimates because this simple formula suffices for

our purposes.

In the first experiment, we ran the two codes with their least stringent termination tests

to observe the quality of the final solutions. As in the noiseless case, we set rhoend=1e-8

for cobyla and xtol=1e-8 for knitro, and impose a limit of 500 max{n,m} function

evaluations. We tested the 32 CUTEst problems for which both solvers converged to

the same feasible solution in the noiseless case (outcome (i) above). In Figure 2.10, we

compare the accuracy, φ(xk) − φ∗, in the true objective given by the code codes, up to

eight digits, as in (2.4.3). If the feasibility violation is large compared to the noise level, i.e.

‖max{ψ(xk), 0}‖∞ ≥
√

3
√
σf , we mark the corresponding run as a failure. We observe

from Figure 2.10 that the performance of the two solvers is comparable, with knitro

slightly more efficient for low accuracy. Interestingly, for the highest accuracy, σf = 10−7,

the performance of the codes is remarkably close (note that the log ratio is nearly zero for

about half of the problems).

80

0 10 20 30
Problem

10

5

0

5

10

lo
g 2
(m

ax
{

KN
IT
RO

,1
O

8 }
m
ax
{

CO
BY

LA
,1
0

8 }
)

COBYLA

KNITRO

0 10 20 30
Problem

10

5

0

5

10

lo
g 2
(m

ax
{

KN
IT
RO

,1
O

8 }
m
ax
{

CO
BY

LA
,1
0

8 }
)

COBYLA

KNITRO

0 10 20 30
Problem

10

5

0

5

10

lo
g 2
(m

ax
{

KN
IT
RO

,1
O

8 }
m
ax
{

CO
BY

LA
,1
0

8 }
)

COBYLA

KNITRO

0 10 20 30
Problem

10

5

0

5

10

lo
g 2
(m

ax
{

KN
IT
RO

,1
O

8 }
m
ax
{

CO
BY

LA
,1
0

8 }
)

COBYLA

KNITRO

Figure 2.10. Accuracy, Noisy Case. Log-ratio profiles comparing accuracy
in the objective by knitro and cobyla, for σf = 10−1 (upper left), 10−3

(upper right), 10−5 (bottom left), and 10−7 (bottom right).

Next, we compare the efficiency of the two solvers for two levels of accuracy in the

objective. Specifically, we record the number of function evaluations required to satisfy

(2.4.5) φ(xk)− φ̃∗ ≤ τ(φ(x0)− φ̃∗) and ‖max{ψ(xk), 0}‖∞ ≤
√

3
√
σf ,

for τ ∈ {10−2, 10−6}, where φ̃∗ is the minimum objective value obtained by the two

codes. Figure 2.11 plots the ratios (2.4.4), and suggests that it is difficult to choose

between the two codes. Therefore, in our tests on noisy problems, an unsophisticated

code (knitro/sqp) for deterministic nonlinear optimization, using a simple strategy for

choosing the finite difference interval, is competitive with cobyla, a method specifically

designed for derivative-free optimization.

81

0 10 20 30
Problem

4

2

0

2

4

lo
g 2

(ev
al
s K

N
IT
RO

ev
al
s C

O
BY

LA
) COBYLA

KNITRO

0 10 20 30
Problem

4

2

0

2

4

lo
g 2

(ev
al
s K

N
IT
RO

ev
al
s C

O
BY

LA
) COBYLA

KNITRO

0 10 20 30
Problem

4

2

0

2

4

lo
g 2

(ev
al
s K

N
IT
RO

ev
al
s C

O
BY

LA
) COBYLA

KNITRO

0 10 20 30
Problem

4

2

0

2

4

lo
g 2

(ev
al
s K

N
IT
RO

ev
al
s C

O
BY

LA
) COBYLA

KNITRO

Figure 2.11. Efficiency, Noisy Case. Log-ratio profiles (2.4.4) comparing
knitro and cobyla for σf = 10−3 (top row) and 10−7 (bottom row). The
figure measures the number of function evaluations to satisfy (2.4.5) for
τ = 10−2 (left) and 10−6 (right).

2.5. Final Remarks

Finite-difference approximations are widely employed in numerical analysis, particularly

for solving differential equations. The limitations of finite-difference methods are well-

documented, particularly in the noisy case. However, optimization provides a more benign

setting as errors do not necessarily accumulate; if a poor gradient estimation yields a

bad step, it may be corrected at a later step. Two attractive features of finite-difference

methods for derivative-free optimization are the simplicity of building them upon existing

nonlinear (gradient-based) optimization solvers, and their ease of parallelization.

Our numerical study indicates that finite-difference-based optimization methods can

be made competitive, in most cases, against state-of-the-art methods designed specifically

82

for DFO. Results to that effect were reported by Berahas et al. [7] in the context of uncon-

strained optimization. Our study tests a simpler version of L-BFGS than that explored in

[7], and more important, considers also least squares and constrained optimization—settings

for which comparative studies do not exist, to the best of our knowledge.

Our experiments show that the finite-difference approach can be further improved by

employing more sophisticated (adaptive) procedures for computing the finite-difference in-

terval. The key is in better automatic estimation of local Lipschitz constants. Investigation

along this important line of inquiry should lead to more robust methods for derivative-free

optimization.

83

CHAPTER 3

Adaptive Finite-Difference Interval Estimation for Noisy

Derivative-Free Optimization

3.1. Introduction

A powerful approach for derivative-free optimization is to utilize finite differences. This

is done by computing a finite-difference approximation to the gradient, and substituting

the exact gradient with the approximation within a known nonlinear optimization method;

see [93]. These methods operate by spending at least n+ 1 function evaluations at each

iteration to take a meaningful step, where n is the total number of variables. This lies

in contrast to interpolation-based methods, which utilize prior function evaluations with

only one new evaluation at each iteration; see [29, 59]. Therefore, in order for the finite-

difference approach to be effective, one must ensure that the quality of the gradient is

satisfactory and significant progress is being made at each iteration of the algorithm (as

opposed to n steps of the interpolation-based approach).

Often, black-box functions to be optimized are contaminated by stochastic or com-

putational noise. This noise could arise naturally from modeling randomness within a

simulation, or as a bi-product of an adaptive computation, for example through the early

termination of an iterative solver. The presence of noise has largely prevented finite-

difference methods from gaining more popularity within the derivative-free optimization

84

community, as the precise choice of the finite-difference interval becomes increasingly

critical as the noise level increases.

In particular, the finite-difference interval requires knowledge of both the noise level

and higher-order derivative of the function. While the former may be known a priori or

can be estimated by sampling or computing difference tables [70], the latter quantity is

not normally available to the user. In order to make finite-difference methods a viable

alternative in the presence of noise, a robust procedure is needed for estimating higher-order

derivatives, either implicitly or explicitly.

To put this more precisely, let us consider the problem of estimating the d-th order

derivative of a smooth univariate function φ : R→ R. We will assume that we are only

provided noisy function evaluations of the form

(3.1.1) f(t) = φ(t) + ε(t)

where ε : R→ R models the error, and that the error is bounded, i.e., there exists εf ≥ 0

such that |ε(t)| ≤ εf . We call εf the noise level of the function. We focus on the univariate

case, although this can be easily extended to the multivariate setting for computing the

gradient by applying the procedure to each component.

The simplest and cheapest finite-difference approximation to the first derivative is the

forward-difference approximation. If φ(d) denotes the d-th order derivative of φ, then the

forward-difference approximation is computed by

(3.1.2) φ(1)(t) ≈ f(t+ h)− f(t)

h
, f (1)(t;h)

85

where h > 0 is the finite-difference interval. Note the slight abuse of notation by denoting

f (d) as the finite-difference approximation to the d-th order derivative. With no noise,

excluding round-off error, one would ideally choose h as small as possible, the common

practical choice being h = max{1, |x|}√εM , where εM is machine precision, to handle

rounding errors. However, this choice of the finite-difference interval may be poor under

the presence of large errors, as is well-known.

To see this, consider the following decomposition of the error in the forward-difference

approximation:

(3.1.3)
∣∣f (1)(t;h)− φ(1)(t)

∣∣ ≤ ∣∣∣∣φ(t+ h)− φ(t)

h
− φ(1)(t)

∣∣∣∣+

∣∣∣∣ε(t+ h)− ε(t)
h

∣∣∣∣ .
We will call the error induced by the first term truncation error since it arises from

truncation of the Taylor series, and the error induced by the second term measurement

error due to error in the function evaluations.

Note that if h is small, then the truncation error is small but the measurement error

may be large. On the other hand, if h is too large, the measurement error may be small but

the truncation error may be too high. Therefore, the optimal h trades off these two terms

by making the error from each of these two sources equal. In this paper, we propose an

adaptive procedure for estimating the finite-difference interval in the presence of noise that

properly balances these two different sources of error. The procedure must be: (1) reliable,

that is, applicable to most, if not all, practical problems of interest; (2) accurate, producing

near-optimal estimates of the finite-difference interval; and (3) efficient, employing the

least number of function evaluations possible. We argue that our procedure achieves these

goals in many practical situations.

86

This paper is organized into five sections. We present the notation and literature review

in the rest of this section. In Section 2, we introduce our finite-difference interval estimation

procedure for the forward-difference case. In Section 3, we present the generalized procedure

for arbitrary finite-difference schemes and provide theoretical guarantees for the termination

of our procedure. Extensive numerical results on synthetic problems with injected noise

are provided in Section 4, and concluding remarks are made in Section 5.

3.1.1. Literature Review

The problem of estimating derivatives, particularly in the presence of rounding errors,

is a fundamental question within numerical analysis and scientific computing. Fornberg

proposed a stable algorithm for generating finite-difference formulas on arbitrarily spaced

grids [38]. Lyness and Moler observed that the Cauchy integral theorem allows one

to evaluate the d-th derivative of a complex function as a closed complex integral via

numerical integration techniques [66]. This was simplified and extended by Squire and

Trapp who observed that one could avoid cancellation error by using complex perturbations

in the Taylor expansion, called complex step differentiation [96]. This has more recently

led to extensions of the complex step to evaluating the Hessian by Hare and Srivastava

[50]. Brekelmans, et al. compared design of experiments schemes against standard

finite-difference schemes within the stochastic noise regime [14].

To handle rounding errors, Curtis and Reid describe a heuristic that estimates the

truncation and rounding errors using central and forward-difference estimates. The ratio

between the two estimates of these errors are used to determine the finite-difference interval

[30]. Stepleman and Winarsky use a set of decreasing central-difference intervals. The

87

optimal interval is obtained by the smallest interval that does not violate monotonic

decrease in the absolute difference between consecutive central-difference estimates [97].

Gill, Murray, Saunders, and Wright introduced an adaptive procedure for computing

forward-difference intervals by utilizing a ratio to determine the second derivative [40, 41].

Their procedure has some similarities with our approach, which we discuss in Section 3.2.1.

Barton proposed an adaptive procedure for handling rounding or multiplicative errors

by interpreting the function values as correct up to a fixed number of significant digits

and ensuring that at least a certain number of significant digits change from the resulting

difference interval [6]. Most recently, Moré and Wild proposed a heuristic for estimating the

second derivative for determining the forward-difference interval that checks two conditions:

(1) if the noise dominates the second-order derivative; and (2) if the forward and backward

difference is too large relative to the function values [71]. A comparison of the resulting

errors between finite-difference and simplex gradients were analyzed in [9, 49].

Incorporating finite differences into optimization methods have also had a long history.

Kiefer and Wolfowitz first applied finite differences to stochastic approximation [56]. Kelley

developed an implicit filtering BFGS method that utilizes finite differences in the case where

noise decays as the iterates converge to the solution [21, 55]. Berahas, et al. proposed a

finite-difference L-BFGS method that incorporates ECNoise and a heuristic for estimating

the second derivative by Moré and Wild into L-BFGS [7, 70, 71]. Most recently, Shi, et al.

tested finite-difference methods within the unconstrained, least squares, and constrained

settings assuming knowledge of the noise level [93].

88

3.1.2. Notation

In the following sections, we will use Bachmann-Landau notation liberally. Suppose

f, g : R → R≥0. We will write g(h) = O(f(h)) if there exists a C ∈ R such that

g(h) = Cf(h). If g(h) = o(f(h)), then for every ε > 0 there exists a constant N such that

|g(h)| ≤ ε|f(h)| for all h ≤ N . Similarly, if g(h) = O(f(h)), then there exists constants

ε > 0 and N such that |g(h)| ≤ ε|f(h)| for all h ≤ N .

We will use φ(d) : R→ R to denote the d-th order derivative of φ. For a given vector

x ∈ Rn, [x]i denotes the i-th component of x. Similarly, for a given matrix A ∈ Rn, [A]ij

denotes the (i, j)-th entry of A. We will use ‖ · ‖ to denote the standard Euclidean norm

unless otherwise specified.

3.2. An Adaptive Forward-Difference Interval Estimation Procedure

Suppose we are interested in determining the finite-difference interval for the forward-

difference approximation of the first derivative of φ. Since the Taylor expansion of the

function φ is given by

φ(t+ h) = φ(t) + φ(1)(t)h+
φ(2)(t)

2
h2 + o(h2),

the total error can be bounded by

|φ(1)(t)− f (1)(t;h)| ≤ |φ
(2)(t)|h

2︸ ︷︷ ︸
T1

+
2εf
h︸︷︷︸
T2

+o(h).

89

By ignoring the higher-order term, this yields an optimal interval (with respect to the

upper bound) of

(3.2.1) h∗ ≈ 2

√
εf

|φ(2)(t)|
.

This formula requires an estimate of the second derivative |φ(2)(t)|. We now propose a

procedure that yields an interval h = O
(√

εf
|φ(2)(t)|

)
without estimating |φ(2)(t)| separately.

Our procedure balances the truncation T1 and measurement error T2. To do so, it

estimates the ratio between these two errors directly and attempts to find an interval h

for which this ratio is close to some constant value. We claim that the ratio T1/T2 of the

truncation over measurement error can be approximated, for example, by the testing ratio

(3.2.2) r(h; f, t, εf) =
|f(t+ 4h)− 4f(t+ h) + 3f(t)|

8εf
.

Given rl > 1 and ru > rl + 2, we perform a bisection search to find an interval h > 0 that

satisfies

(3.2.3) r(h; f, t, εf) ∈ [rl, ru].

In particular, if r(h; f, t, εf) < rl, then the numerator is dominated by noise, indicating

that h is too small. On the other hand, if r(h; f, t, εf) > ru, then the numerator signifi-

cantly dominates the noise, which implies that h is too large. Our procedure for forward

differences is summarized in Algorithm 3.1.

90

Algorithm 3.1. Adaptive Forward-Difference Interval Estimation

1: Input: One-dimensional noisy function f : R → R; noise level εf > 0; lower- and

upper-bound (rl, ru) = (1.5, 6);

2: Output: Finite-difference interval h such that (3.2.3) holds.

3: h← 2√
3

√
εf ;

4: l← 0, u← +∞;

5: while True do

6: Evaluate r(h; f, t, εf) = |f(t+4h)−4f(t+h)+3f(t)|
8εf

;

7: if r(h; f, t, εf) < rl then

8: l← h;

9: else if r(h; f, t, εf) > ru then

10: u← h;

11: else

12: break;

13: end if

14: if u = +∞ then

15: h← 4h;

16: else if l = 0 then

17: h← h/4;

18: else

19: h← (l + u)/2;

20: end if

21: end while

22: return h

91

To see why this procedure works to give us a near-optimal h, note that

(3.2.4) φ(t+ 4h)− 4φ(t+ h) + 3φ(t) = 6φ(2)(t)h2 + o(h2).

Therefore, if we expand (3.2.2), we obtain:

(3.2.5) r(h; f, t, εf) =

∣∣∣∣3φ(2)(t)h2

4εf
+
ε(t+ 4h)− 4ε(t+ h) + 3ε(t)

8εf
+ o(h2)

∣∣∣∣ .
Since

∣∣∣ ε(t+4h)−4ε(t+h)+3ε(t)|
8εf

∣∣∣ ≤ 1 by the fact that |ε(t)| ≤ εf for all t ∈ R, by imposing (3.2.3)

and ignoring the o(h2) term, we approximately have

(3.2.6)
3|φ(2)(t)|h2

4εf
∈ [rl − 1, ru + 1] ⇐⇒ h ∈ 2√

3

√
εf

|φ(2)(t)|
· [
√
rl − 1,

√
ru + 1].

Therefore, if rl and ru are chosen properly, such as rl = 1.5 and ru = 6, we obtain

h ∈ [
√

0.5,
√

7] ·
√

εf
|φ(2)(t)| , which is the same order as the optimal finite-difference interval

(3.2.1), differing only by a small constant factor.

By scaling h by a factor of 4 in Algorithm 3.1 when u =∞ or l = 0, the new trial h

only requires a single new function evaluation to check the testing ratio when h is updated

monotonically.

In addition, the testing ratio is affine-invariant with respect to the function of interest

in the sense that r(h; f, t, εf) remains unchanged if applied to a modified function f̃(t) =

af(t) + b for a 6= 0 and b ∈ R with noise level |a|εf , i.e. r(h; f̃ , t, |a|εf) = r(h; f, t, εf).

Therefore, the finite-difference interval h will correctly remain unchanged under this

transformation.

92

3.2.1. Comparison to Prior Methods

Although the definition of the testing ratio appears similar to the ratio in Gill, et al. [40],

which is defined as the inverse ratio

(3.2.7)
4εf

|f(t+ h̃)− 2f(t) + f(t− h̃)|
,

our approach markedly differs from theirs in three aspects: (1) we utilize the h derived

from Algorithm 3.1 directly as the chosen difference interval, whereas Gill, et al. use the

difference interval h̃ to estimate the second derivative; (2) our approach utilizes a bisection

search to find h rather than monotonically increasing or decreasing h; and (3) it relies on

second-order forward-difference instead of central-difference estimates.

The first aspect follows from the observation made in (3.2.6) that h = O
(√

εf
|φ(2)(t)|

)
.

Hence, the difference interval h obtained by our bisection procedure is near-optimal in

that it is only a small constant factor away from the optimal interval (except for certain

cases discussed below). Two observations can be made from this derivation. The first is

that since f(t+ h) and f(t) are used in the evaluation of the testing ratio, one can reuse

prior function evaluations from the bisection procedure to estimate f (1)(t;h). The second

observation is that the derivation motivates an initial choice of h = O(
√
εf) as opposed to

h = O(4
√
εf), as used in Moré and Wild [71]. This is corroborated by our experiments in

Section 3.4.

The second aspect follows from different tradeoffs between cost and accuracy in the

finite-difference interval estimate. In particular, whereas Gill, et al.’s procedure is cheaper

93

but yields a less accurate estimate, our procedure is able to guarantee a sufficiently accurate

estimate at higher cost.

Lastly, the third aspect is designed to avoid cancellation due to symmetry in the

numerator of the testing ratio. In particular, Gill, et al. [40] rely on a testing ratio using

the central difference:

(3.2.8)
4εf

|f(t+ h̃)− 2f(t) + f(t− h̃)|
∈ [0.001, 0.1].

However, we can obtain poor estimates of the derivative due to cancellation under symmetry

of the function, for example, on a quartic function φ(t) = t4 near (but not at) t = 0 with

sufficiently large noise.

Our procedure also differs from Moré and Wild’s procedure [71]. Their procedure

estimates the second derivative by

(3.2.9) φ(2)(t) ≈ f(t+ h̃)− 2f(t) + f(t− h̃)

h̃2
= f (2)(t; h̃),

with interval h̃ > 0, then inserts this estimate into the optimal formula (3.2.6). The

difference interval h̃ is required to satisfy

|f(t+ h̃)− 2f(t) + f(t− h̃)| ≥ τ1εf(3.2.10)

|f(t± h̃)− f(t)| ≤ τ2 max{|f(t)|, |f(t± h̃)|}(3.2.11)

with τ1 � 1 and τ2 ∈ (0, 1). Their method attempts to satisfy this within two trials as

follows:

94

(1) Set h̃1 = 4
√
εf and compute µ1 = |f (2)(t; h̃1)|. If conditions (3.2.10) and (3.2.11)

are satisfied for h̃1, return µ1.

(2) Set h̃2 = 4
√
εf/µ1 and compute µ1 = |f (2)(t; h̃2)|. If conditions (3.2.10) and

(3.2.11) are satisfied for h̃2, return µ2.

(3) If |µ1 − µ2| ≤ 1
2
µ2, return µ2.

If the heuristic is unable to return an estimate µ after two trials, this is considered as a

failure.

Similar to Gill’s procedure, this method differs from ours in that it estimates the second

derivative rather than utilizing the h derived from the testing ratio directly. As a result, it

initializes h̃ = O(4
√
εf) rather than O(

√
εf). We have found this to be a poor initial choice

of h̃, particularly when εf is large, as we will see in Section 3.4.

While (3.2.10) appears similar to the testing ratio, it is better interpreted as ensuring

that noise does not dominate the second-derivative estimation due to the large choice

of τ1 = 100. The second condition (3.2.11) is not affine-invariant in the sense that

adding a sufficiently large b can force the condition to be satisfied. This is undesirable as

perturbations of the function should not change the overall behavior of the method.

3.3. Generalized Finite-Difference Interval Estimation

Typically, finite-difference interval estimation procedures for numerical optimization

focus on forward differences [6, 40, 71]. However, in the noisy regime, higher-order

finite-difference approximations, such as central differences, can yield more accurate

approximations; see [93]. As a result, in order to attain the highest possible accuracy,

one must design methods that efficiently find a near-optimal difference interval for more

95

general finite-difference schemes. To handle this, we propose a generalization of the

forward-difference case, Algorithm 3.1, for d-th order derivatives.

Consider a finite-difference approximation scheme S = (w, s) defined over m points,

where we approximate φ(d)(t) using the equation

(3.3.1) f
(d)
S (t;h) =

∑m
j=1 wj · f(t+ hsj)

hd
≈ φ(d)(t)

where w ∈ Rm and s ∈ Rm are the associated weights and shifts of the finite-difference

scheme. As in the forward-difference setting, we will use a slight abuse of notation by

denoting the finite-difference approximation as f
(d)
S (t;h). Forward-difference and central-

difference schemes for approximating the first derivative (i.e., d = 1) are obtained by

defining s and w as s = (0, 1)T and w = (−1, 1)T and s = (−1, 1)T and w = (−1
2
, 1

2
)T ,

respectively. The standard second-order central-difference scheme is defined as s =

(−1, 0, 1)T and w = (1,−2, 1)T .

In order for the finite-difference scheme to be valid, the coefficients w and shifts s must

be chosen such that the Taylor expansion of the finite-difference approximation over the

function φ satisfies

(3.3.2)
m∑
j=1

wj · φ(t+ hsj) = φ(d)(t)hd + cqφ
(q)(t)hq + o (hq) ,

96

where q ≥ d+ 1 denotes the order of the remainder term1. This ensures that f
(d)
S (t;h) ≈

φ(d)(t). In order to guarantee this, the finite-difference scheme S must satisfy

1

l!

m∑
j=1

wjs
l
j =

1 if l = d

0 if l < q, l 6= d

and as a result

cq =
1

q!

m∑
j=1

wjs
q
j .

See Appendix B.1 for more detail on how generic finite-difference schemes are derived.

Therefore, in the presence of noise, the worst-case error for the finite-difference scheme

of interest can be bounded by

|f (d)(t;h)− φ(d)(t)| ≤ |cq|
∣∣φ(q)(t)

∣∣hq−d + ‖w‖1εfh
−d + o

(
hq−d

)
.

One can define an approximately optimal choice of h:

(3.3.3) h∗ ≈
∣∣∣∣ d

q − d
· ‖w‖1εf
cqφ(q)(t)

∣∣∣∣1/q .
While εf is assumed to be known and d, q, w and cq are available, the q-th order

derivative φ(q)(x) is unknown and often difficult to estimate. Following the idea from the

forward-difference case, we propose a procedure for estimating (3.3.3) directly. We first

construct a testing ratio rS associated with scheme S:

rS(h; f, t, εf) =

∣∣∣∑m̃
j=1 w̃j · f(t+ hs̃j)

∣∣∣
εf

1Note that the order of accuracy can be higher than d+ 1 for certain schemes, such as central-difference
approximations.

97

where w̃, s̃ ∈ Rm̃ where m̃ ≥ q + 1, s̃j 6= s̃k for all j 6= k, and w̃ and s̃ satisfies

(3.3.4)
m̃∑
j=1

w̃j · φ(t+ hs̃j) = crφ
(q)(t)hq + o (hq) , cr =

1

q!

m̃∑
j=1

w̃j s̃
q
j 6= 0.

Without loss of generality, we require w̃ to satisfy

‖w̃‖1 = 1,

the reason for which will be evident below. We then perform a bisection search to find an

interval h that satisfies

(3.3.5) rS(h; f, t, εf) ∈ [rl, ru]

for some rl > 1 and ru > rl + 2. The procedure is summarized in Algorithm 3.2.

98

Algorithm 3.2. Adaptive Finite-Difference Interval Estimation

1: h← h0;

2: l← 0, u← +∞;

3: while True do

4: Evaluate rS(h; f, t, εf);

5: if rS(h; f, t, εf) < rl then

6: l← h;

7: else if rS(h; f, t, εf) > ru then

8: u← h;

9: else

10: break;

11: end if

12: if u = +∞ then

13: h← ηh;

14: else if l = 0 then

15: h← h/η;

16: else

17: h← (l + u)/2;

18: end if

19: end while

20: return h

99

By (3.3.4), we can see that

rS(h; f, t, εf) =

∣∣∣∣∣crφ(q)(t)hq

εf
+

∑m̃
j=1 w̃j · ε(t+ hs̃j)

εf
+ o (hq)

∣∣∣∣∣(3.3.6)

=

∣∣∣∣crφ(q)(t)hq

εf
+ ∆ + o (hq)

∣∣∣∣ , ∆ ,

∑m̃
j=1 w̃j · ε(t+ hs̃j)

εf
.(3.3.7)

Note that by definition of ∆, |∆| ≤ 1. This is a consequence of the requirement that

‖w̃‖1 = 1 and that |ε(t)| ≤ εf for all t ∈ R. Therefore, if we have rS(h; f, t, εf) ∈ [rl, ru]

and if we the ignore o (hq) term, then we (approximately) have

(3.3.8)

∣∣∣∣crφ(q)(t)hq

εf

∣∣∣∣ ∈ [rl − 1, ru + 1],

i.e.,

(3.3.9) h ∈

[(
rl − 1

|cr|
εf

|φ(q)(t)|

)1/q

,

(
ru + 1

|cr|
εf

|φ(q)(t)|

)1/q
]
.

Note from (3.3.3) that h has the same dependence on εf and φ(q)(t) as h∗. As in the

forward-difference case, our algorithm is invariant to affine transformations with respect

to the function.

Example 1 (First-Order Central Difference). Consider the first-order central-difference

scheme for approximating the first derivative:

(3.3.10) f
(1)
S (t;h) =

f(t+ h)− f(t− h)

2h
,

100

where s = (−1, 1)T and w = (−1
2
, 1

2
)T . The Taylor expansion of the numerator is given as:

φ(t+ h)− φ(t− h)

2h
= φ(1)(t) +

φ(3)(t)h2

6
+ o(h2).

The full error of the derivative approximation and the approximate optimal choice of h

are: ∣∣∣f (1)
S (t;h)− φ(1)(t)

∣∣∣ ≤ ∣∣φ(3)(t)
∣∣h2

6
+
εf
h

+ o(h2), h∗ ≈ 3

√
3εf
|φ(3)(t)|

.

One example of a valid testing ratio is:

(3.3.11) rS(h; f, t, εf) =
|f(t+ 3h)− 3f(t+ h) + 3f(t− h)− f(t− 3h)|

8εf
.

Example 2 (Second-Order Central Difference). Consider the second-order central-difference

scheme for approximating the second derivative:

(3.3.12) f
(2)
S (t;h) =

f(t+ h)− 2f(t) + f(t− h)

h2
,

where s = (−1, 0, 1)T and w = (−1
2
, 1

2
)T . The Taylor expansion of the numerator is given

as:

φ(t+ h)− 2φ(t) + φ(t− h)

h2
= φ(2)(t) +

φ(4)(t)h2

24
+ o(h2).

The full error of the derivative approximation and the approximate optimal choice of h

are: ∣∣∣f (2)
S (t;h)− φ(2)(t)

∣∣∣ ≤ ∣∣φ(4)(t)
∣∣h2

24
+

4εf
h2

+ o(h2), h∗ ≈ 2 4

√
6εf
|φ(4)(t)|

.

101

One example of a valid testing ratio is:

(3.3.13) rS(h; f, t, εf) =
|f(t+ 2h)− 4f(t+ h) + 6f(t)− 4f(t− h) + f(t− 2h)|

16εf
.

3.3.1. Practical Considerations

In order to make the procedure both efficient and robust, we discuss a number of practical

considerations below.

I. Generation of Testing Ratio. Although many choices of rS are possible for any finite-

difference scheme S, it would be useful to have a method for automatically generating

valid testing ratios that efficiently utilize function values. A simple yet useful way to

construct rS is through the formula

(3.3.14) rαS(h; fS, t, εf) =

∣∣∣(f (d)
S (t;h)− α−df (d)

S (t;αh)
)
hd
∣∣∣

Aεf
,

where α 6= 1 and A is computed by normalizing the coefficients such that ‖w̃‖1 = 1 is

satisfied.

This approach is guaranteed to generate a valid testing ratio rS for any α 6= 1 since it

cancels out the φ(d)(t) term in the Taylor expansion, leaving only the relevant higher-order

term of order q of interest. In particular, since

m∑
j=1

wj · φ(t+ hsj) = φ(d)(t)hd + cqφ
(q)(t)hq + o(hq)

m∑
j=1

wj · φ(t+ αhsj) = φ(d)(t)(αh)d + cqφ
(q)(t)(αh)q + o(hq),

102

we obtain that

(
f

(d)
S (t;h)− α−df (d)

S (t;αh)
)
hd =

m∑
j=1

(
wj · φ(t+ hsj)− α−dwj · φ(t+ αhsj)

)
= cq(1− αq−d)φ(q)(t)hq + o(hq),

which satisfies (3.3.4) with an effective cr = cq(1− αq−d)/A as desired.

For finite-difference schemes with equidistant points, a small modification to the

bisection search allows us to reuse 1 – 2 function evaluations at each iteration, depending

on the original scheme S. To do this, we can multiply or divide by the same factor η = α

when monotonically increasing or decreasing h within the bisection search, as done with

η = 4 in the forward-difference algorithm (Algorithm 3.1).

In addition, with this choice of the testing ratio, the function evaluations needed

within the finite-difference scheme is implicitly evaluated within the testing ratio. We can

therefore obtain the finite-difference approximation using previously computed function

values at no additional cost.

II. Choice of rl and ru. Ideally, one should choose rl and ru such that they are close to

the optimal ratio

r∗ =
d

q − d
·
∣∣∣∣crcq
∣∣∣∣ · ‖w‖1

in order to yield an h that is close to h∗ in (3.3.3). However, this is not directly possible

in the presence of noise, which requires that 1 < rl < ru − 2 in order to ensure finite-

termination; see Section 3.3.2. We therefore select (rl, ru) sufficiently large such that

1 < rl < ru− 2 and, if possible, such that r∗ is logarithmically centered within the interval

103

[rl, ru]:

(3.3.15) rl = max

{
1 + η,

r∗

β

}
, ru = max {3(1 + η), βr∗}

for some η > 0 and β > 1. (In our experiments, we set η = 0.1 and β = 2.)

Note that when rl, ru > r∗, the algorithm may overestimate |φ(q)(t)| and hence under-

estimate h. In order to avoid this in practice, we have found that it is preferable to choose

a testing ratio such that the optimal ratio r∗ ≥ β(1 + η). This could be done by choosing

a different testing ratio, such as by choosing a larger α in (3.3.14).

III. Initialization of h0. Since the difference interval h that satisfies the procedure is

approximately of the form (3.3.9), it is preferable to initialize h0 = O(ε
1/q
f). Two possible

choices are h0 = ε
1/q
f or

(
d
q−d ·

‖w‖1
|cq | · εf

)1/q

. The latter is based on the assumption that

|φ(q)(t)| ≈ 1. If instead the finite-difference interval is re-estimated within an optimization

algorithm, we can initialize h0 as the difference interval h used at the prior outer iteration

of the algorithm.

We observe that on rare occasions a poor initial choice of h0 can result in large error

in the derivative approximation. This occurs when the initial choice of h0 is too large to

capture the local behavior of the function. Reducing the initial interval h0 resolves this issue.

IV. Handling of Special Cases. The Taylor expansion analysis elucidates two possible

failure cases for our procedure. In particular, observe that

rS(h; f, t, εf) =

∣∣∣∣crφ(q)(t)hq

εf
+ ∆ + o(hq)

∣∣∣∣ .

104

If h is large (for example, when the noise level εf is high), the higher-order terms o(hq) can

dominate the other terms in the Taylor series expansion. This can yield poor estimates of

h even if the condition rS(h; f, t, εf) ∈ [rl, ru] is satisfied. In practice, we have not found

this to be a common issue.

The more common case is when φ(q)(t) ≈ 0. In this case, rS will be dominated by ∆.

In this case, rS(h; f, t, εf) < rl for all h and h will thus monotonically increase until the

maximum number of iterations is reached (which we set max iter to 20). This occurs,

for example, with any (q − 1)-th degree polynomial. In this case, the method provides

a warning but does not flag this as a failure. Note that in this case, h is a good choice

because sending h∗ →∞ would allow for indefinite reduction in the noise.

V. Extension to Standard Deviation. In some settings, we only have access to the stan-

dard deviation of the noise, where ε(x) is modeled as a random variable. Assuming

E[ε(x)] = 0, one can extend this procedure to the stochastic setting by replacing εf with

σf =
√

E[ε(x)2]. While finite termination (see next subsection) is not guaranteed, if the

procedure succeeds, it will yield an h that has the same dependence on σf and |φ(2)(t)| as

the optimal finite-difference interval with respect to its mean-squared error.

VI. Error Bound Estimate on Gradient. Using the h we obtain from our procedure, we

can approximate the error bound. Ignoring the o(hq−d) term, the error is approximately

given by:

εg(t;h) ≈ |cq|
∣∣φ(q)(t)

∣∣hq−d + ‖w‖1εfh
−d.

105

As we have shown in (3.3.8), we can bound
∣∣φ(q)(t)

∣∣ by

∣∣φ(q)(t)
∣∣ ≤ εf (ru + 1)

|cr|hq
.

Therefore, we can approximately bound the error by

εg(t;h) .

(
|cq|
|cr|

(ru + 1) + ‖w‖1

)
εfh
−d.

In practice, we have found that this error bound is able to obtain an order-of-magnitude

of the actual error, but may underestimate the error due to the o(hq−d) term.

3.3.2. Finite Termination

Next, we prove a finite termination theorem for Algorithm 3.2. We start by making the

following assumptions:

Assumption 3.3.1. The testing ratio rS satisfies:

|rS(h;φ, t, εf)− rS(h; f, t, εf)| ≤ 1, ∀t ∈ R, h > 0

This assumption is satisfied by our requirement that ‖w̃‖1 = 1 and that |ε(t)| ≤ εf .

Note that this can be easily satisfied by simply rescaling the numerator to ensure that the

total noise accumulated in the numerator is bounded by εf .

Assumption 3.3.2. As a function of h, rS(h;φ, t, εf) is continuous with rS(0;φ, t, εf) =

0, and there exists an integer K ∈ N such that

rS(2Kh0;φ, t, εf) ≥ ru − 1

106

Assuming that εf > 0, the requirement that rS(0;φ, t, εf) = 0 is automatically satisfied

by validity of the testing ratio (3.3.4). The second part of Assumption 3.3.2, while technical,

is satisfied, for example, when
∣∣φ(q)(ξ)

∣∣ ≥ η > 0 for all ξ ∈ [minj{t+ hs̃j},maxj{t+ hs̃j}].

With these assumptions, we can now show finite termination.

Theorem 3.3.3. Suppose Assumptions 3.3.1 and 3.3.2 are satisfied. In addition,

suppose ru and rl are chosen such that 0 < rl < ru− 2. Then, Algorithm 3.2 will terminate

successfully in a finite number of iterations.

Proof. We assume that h ≥ 0. Assume by contradiction that Algorithm 3.2 does

not terminate finitely. We denote the variables l, u, h used at the beginning of the k-th

iteration of Algorithm 3.2 as lk, uk, hk, respectively. Obviously, we have

0 ≤ lk ≤ hk ≤ uk, ∀k ∈ N,

and

lk ≤ lk+1 < uk+1 ≤ uk, ∀k ∈ N.

First, we show that rS(lk;φ, t, εf) < rl + 1 for all k ∈ N, by induction on k. Clearly

this is true for k = 0 since l0 = 0, and we have rS(0;φ, t, εf) = 0 by Assumption 3.3.2.

Suppose the statement holds for k ≤ K. We have two cases: (1) rS(hK ; f, t, εf) < rl, which

by Assumption 3.3.1 implies rS(hK ;φ, t, εf) ≤ rS(hK ; f, t, εf) + 1 < rl + 1. In this case

lK+1 = hK , so rS(lK+1;φ, t, εf) = rS(hK ;φ, t, εf) < rl+1. (2) rS(hK ; f, t, εf) > ru, in which

case lK+1 = lK so by the induction hypothesis rS(lK+1;φ, t, εf) = rS(lK ;φ, t, εf) < rl + 1.

Therefore the induction hypothesis holds for (K + 1)-th iteration.

107

By a similar argument, we can show that either uk = +∞, or uk < +∞ and

rS(uk;φ, t, εf) > ru − 1 for all k ∈ N.

In summary, we can show that for all k ∈ N, we have

either rS(lk;φ, t, εf) < rl + 1 < ru − 1 < rS(uk;φ, t, εf),(3.3.16)

or rS(lk;φ, t, εf) < rl + 1 and uk = +∞.(3.3.17)

Next, we claim that there exists K1 ∈ N such that uk < +∞ for k ≥ K1. Suppose

this is not the case, then we have rS(hk; f, t, εf) < rl, ∀k ∈ N. In this case, we have

hk+1 = 2lk+1 = 2hk, so hk = 2kh0 for all k ∈ N. By Assumption 3.3.2, there exists K ∈ N

such that rS(hK ;φ, t, εf) ≥ ru − 1, and since rS(hK ; f, t, εf) ≥ rS(hK ;φ, t, εf)− 1, we have

rS(hK ; f, t, εf) ≥ ru − 2 > rl, contradicting the inequality rS(hk; f, t, εf) < rl, ∀k ∈ N.

This proves the existence of K1.

We are now ready to present the contradiction. For k ≥ K1, since uk <∞, we have

uk+1 − lk+1 =
1

2
(uk − lk)

This implies that uk − lk → 0. Since rS(h;φ, t, εf) (as a function of h) is continuous and

uK1 < +∞, [0, uK1] is compact so rS(h;φ, t, εf) (as a function of h) is uniformly continuous

on [0, uK1]. Note that lk, uk ∈ [0, uK1] for k ≥ K1, therefore we have

rS(uk;φ, t, εf)− rS(lk;φ, t, εf)→ 0

108

This contradicts the fact that

rS(lk;φ, t, εf) < rl + 1 < ru − 1 < rS(uk;φ, t, εf), ∀k ∈ N, k ≥ K1

Therefore, Algorithm 3.2 must terminate finitely. Clearly, whenever it terminates, the

output hR must satisfy

rS(hR; f, t, εf) ∈ [rl, ru].

�

3.4. Numerical Experiments

In this section, we present numerical results demonstrating the reliability of our finite-

difference interval estimation procedure. We first utilize the method for computing first

and second derivatives of commonly tested functions, with added noise. We then insert

our procedure into a standard L-BFGS implementation and demonstrate its usefulness

on a subset of synthetic noisy CUTEst problems [42]. All methods were implemented in

Python 3.

3.4.1. Finite-Difference Interval Estimation

We first test our proposed procedure on several univariate functions. We focus on the

case where d = 1 and 2 as this is most relevant to optimization. We test Algorithm 3.2

using 6 different estimating schemes, shown in Table 3.1. The testing ratios are generated

using formula (3.3.14) with different choices of α. The α for each scheme is chosen as the

smallest integer such that r∗ > β = 2.

109

label d s w q α r∗ Comment

FD 1 (0, 1) (−1, 1) 2 4 3 forward difference
CD 1 (−1, 1) (−1/2, 1/2) 3 3 3 central difference

FD 3P 1 (0, 1, 2) (−3/2, 2,−1/2) 3 3 3.69 forward difference w/ 3 points
FD 4P 1 (0, 1, 2, 3) (−11/6, 3,−3/2, 1/1) 4 3 8.25 forward difference w/ 4 points
CD 4P 1 (−2,−1, 1, 2) (1/12,−2/3, 2/3,−1/12) 5 2 2.5 central difference w/ 4 points
L2 CD 2 (−1, 0, 1) (1,−2, 1) 4 2 3 2nd-order central difference

Table 3.1. Schemes for approximating the d-th order derivative used in the
experiments. The scheme is defined by S = (w, s) as in (3.3.1); q is defined
in (3.3.2).

For a specific testing function φ at point t with noise εf and scheme S = (w, s), we

plot the worst case relative error, as a function of differencing interval h, defined as:

δS(h;φ, t, εf) =
1

|φ(d)(t)|

[∣∣∣∣∣
∑p

j=1wjφ(t+ sjh)

hd
− φ(d)(t)

∣∣∣∣∣+ ‖w‖1
εf
hd

]
.

This function captures the relative error of the estimation scheme S on the noisy function

f at t, in the worst case. The differencing interval h that minimizes δS(h;φ, t, εf) is the

optimal h. Notice that δS(h;φ, t, εf) is a deterministic function that does not rely on the

realization of actual noise in f(t).

We manually inject uniformly distributed, stochastic noise into φ,

f(t) = φ(t) + ε(t), ε(t) ∼ Uniform(−εf , εf),

independent of all other quantities. We then apply Algorithm 3.2 to obtain h†. We plot h†

and observe how far it is from the minimizer of δS(h;φ, t, εf). In Appendix B.2, we report the

minimizer of the function δS(h;φ, t, εf) obtained by scipy.optimize.minimize scalar.

110

10 4 10 3 10 2 10 1 100 101

h

10 4

10 3

10 2

10 1

100

101

102

103

wo
rs

t c
as

e
re

la
tiv

e
er

ro
r

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]
FD, (t) = cos(t), t=1.0

[1] f = 1e 08 (h=2.00E-04)
[2] f = 1e 07 (h=6.32E-04)
[3] f = 1e 06 (h=3.50E-03)
[4] f = 1e 05 (h=6.32E-03)
[5] f = 0.0001 (h=2.00E-02)
[6] f = 0.001 (h=6.32E-02)
[7] f = 0.01 (h=5.00E-01)
[8] f = 0.1 (h=6.32E-01)

10 4 10 3 10 2 10 1 100 101

h

10 4

10 2

100

102

wo
rs

t c
as

e
re

la
tiv

e
er

ro
r

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]
CD, (t) = cos(t), t=1.0

[1] f = 1e 08 (h=3.11E-03)
[2] f = 1e 07 (h=6.69E-03)
[3] f = 1e 06 (h=1.44E-02)
[4] f = 1e 05 (h=3.11E-02)
[5] f = 0.0001 (h=6.69E-02)
[6] f = 0.001 (h=1.44E-01)
[7] f = 0.01 (h=3.11E-01)
[8] f = 0.1 (h=6.69E-01)

Figure 3.1. Worst case relative error δS(h;φ, t, εf) for forward and central
differences against h on function φ(t) = cos(t) with different noise levels;
the vertical dashed line represents the h† output by Algorithm 3.2.

3.4.1.1. Robustness to Different Noise Levels. To demonstrate that our method is

reliable across a range of noise levels, we test our adaptive procedure for both forward and

central differences (FD, CD) on the simple function φ(t) = cos(t) for different noise levels.

The plot of the worst case relative error and obtained interval h† are illustrated in Figure

3.1. Our results demonstrate that our method performs consistently well across a range of

noise levels. For all figures on all finite-difference schemes listed in Table 3.1 and complete

numerical results, see Appendix B.2.

3.4.1.2. Difficult and Special Examples. In this subsection, we consider examples of

difficult functions given in [40] and [93]. These examples include:

(1) φ(t) = (et − 1)
2
, at t = −8. This function has extremely small first and second-

order derivative at t = −8, but quickly increases as t increases beyond t = 0; a

naive choice of h =
√
εf/|φ(2)(t)| for forward differences can result in an extremely

large h and lead to huge error.

(2) φ(t) = e100t, at t = 0.01.

111

(3) φ(t) = t4 + 3t2 − 10t, at t = 0.99999. This function is considered difficult because

φ′(1) = 0, and represents a case where the estimated derivative is very close to 0.

In addition, this function is a fourth-order polynomial, so the optimal h for CD 4P

is +∞.

(4) φ(t) = 10000t3 + 0.01t2 + 5t, at t = 10−9. This example is difficult in that it has

approximate central symmetry at t = 0, which can lead to issues for adaptive

procedures such as those proposed in [40].

For each example, we again fix εf = 10−3, and perform our estimation procedure for

different schemes, and plot the worst case relative error. The results can be found in

Figure 3.2.

For the first two examples, we see that our procedure is able to estimate the derivative

well even when the function increases rapidly. These are cases where using our adaptive

procedure is significantly more effective than computing an interval based on higher-order

derivative information at the point of interest, as observed in [93].

It is also interesting to observe the results for the two polynomials. For φ(t) =

t4 + 3t2− 10t and scheme CD 4P, our procedure generates a large h†; this is consistent with

the fact that scheme CD 4P has q = 5, and φ(5)(ξ) = 0 for all ξ on this example, which

implies that we should choose h to be as large as possible. This similarly holds true for

the schemes FD 4P and CD 4P on the function φ(t) = 10000t3 + 0.01t2 + 5t.

While theoretically speaking we should choose h =∞ in such cases, we can observe in

Figure 3.2 that this is not the case. When plotting the worst-case relative error, we see that

there exists a large h such that δS(h;φ, t, εf) is minimized, beyond which the relative error

begins to sharply increase. This phenomenon is due to round-off error. When h becomes

112

10 2 10 1 100

h

101

103

105

107

wo
rs

t c
as

e
re

la
tiv

e
er

ro
r

[1]
[2]

[3]

[4]

[5]

[6]

(t) = (et 1.0)2, t = 8.0, f = 0.001
[1] FD (h=1.01E+00)
[2] CD (h=1.30E+00)
[3] FD_3P (h=8.18E-01)
[4] FD_4P (h=9.21E-01)
[5] CD_4P (h=1.43E+00)
[6] L2_CD (h=2.34E+00)

10 6 10 5 10 4 10 3 10 2 10 1

h

10 2

100

102

104

106

108

1010

1012

wo
rs

t c
as

e
re

la
tiv

e
er

ro
r

[1][2]

[3]

[4]

[5]

[6]

(t) = e100t, t = 0.01, f = 0.001
[1] FD (h=4.32E-04)
[2] CD (h=1.19E-03)
[3] FD_3P (h=1.12E-03)
[4] FD_4P (h=1.90E-03)
[5] CD_4P (h=3.18E-03)
[6] L2_CD (h=3.66E-03)

10 5 10 3 10 1 101 103 105

h

10 1

102

105

108

1011

1014

1017

1020

wo
rs

t c
as

e
re

la
tiv

e
er

ro
r

[1]

[2]

[3,4]

[5]

[6]

(t) = t4 + 3t2 10t, t = 0.99999, f = 0.001
[1] FD (h=1.58E-02)
[2] CD (h=4.81E-02)
[3] FD_3P (h=6.06E-02)
[4] FD_4P (h=1.54E-01)
[5] CD_4P (h=9.39E+02)
[6] L2_CD (h=2.34E-01)

10 5 10 3 10 1 101 103 105

h

10 6

10 3

100

103

106

109

1012

wo
rs

t c
as

e
re

la
tiv

e
er

ro
r

[1,2][3]

[4]

[5]
[6]

(t) = 10000t3 + 0.01t2 + 5t, t = 1e 09, f = 0.001
[1] FD (h=3.95E-03)
[2] CD (h=3.56E-03)
[3] FD_3P (h=4.49E-03)
[4] FD_4P (h=6.72E+02)
[5] CD_4P (h=8.35E+02)
[6] L2_CD (h=9.59E+02)

Figure 3.2. Worst case relative error δS(h;φ, t, εf) against h on several special
cases; the vertical dashed line represents the h† output by Algorithm 3.2.

too large, round-off error (which is multiplicative) will dominate εf ; this approximately

happens when maxj |φ(t+ sjh)| εM becomes comparable to εf .

3.4.2. Finite-Difference L-BFGS

In order to show the robustness of our procedure, we apply it within the L-BFGS method.

We now let φ denote a smooth multivariate function, φ : Rn → R, and consider the

problem

(3.4.1) min
x∈Rn

φ(x),

113

while only provided noisy function evaluations of the form

(3.4.2) f(x) = φ(x) + ε(x), ε(x) ∼ Uniform(−εf , εf),

where εf ∈ {10−1, 10−3, 10−5, 10−7}. We perform our tests on a subset of synthetically

generated noisy CUTEst problems [42] detailed in Table 3.2.

Problem Dim (n) Problem Dim (n) Problem Dim (n) Problem Dim (n)

AIRCRFTB 5 CRAGGLVY 100 FREUROTH 100 PFIT4LS 3
ALLINITU 4 CUBE 2 GENROSE 100 QUARTC 100
ARWHEAD 100 DENSCHND 3 GULF 3 SINEVAL 2
BARD 3 DENSCHNE 3 HAIRY 2 SINQUAD 100
BDQRTIC 100 DIXMAANH 90 HELIX 3 SISSER 2
BIGGS3 3 DQRTIC 100 NCB20B 100 SPARSQUR 100
BIGGS5 5 EDENSCH 36 NONDIA 100 TOINTGSS 100
BIGGS6 6 EIGENALS 110 NONDQUAR 100 TQUARTIC 100
BOX2 2 EIGENBLS 110 OSBORNEA 5 TRIDIA 100
BOX3 3 EIGENCLS 30 OSBORNEB 11 WATSON 31
BRKMCC 2 ENGVAL1 100 PENALTY1 100 WOODS 100
BROWNAL 100 EXPFIT 2 PFIT1LS 3 ZANGWIL2 2
BROWNDEN 4 FLETCBV3 100 PFIT2LS 3
CLIFF 2 FLETCHBV 100 PFIT3LS 3

Table 3.2. Subset of unconstrained CUTEst problems and their problem
dimensions [42].

The L-BFGS method has the form

(3.4.3) xk+1 = xk − αkHkg(xk),

where g(xk) is a finite-difference approximation to the gradient, Hk is the L-BFGS matrix

with memory of 10 (see [75]), and αk is a steplength selected by a relaxed Armijo-Wolfe

line search designed to handle noise.

114

To describe the line search, let αjk denote the jth trial steplength at iteration k. Similar

to Shi et al.[90], the Armijo condition is relaxed as follows:

(3.4.4)

f(xk + αjkpk)

≤ f(xk) + c1α
j
kg(xk)

Tpk if j = 0, g(xk)
Tpk < −εg(xk)‖pk‖

≤ f(xk) + c1α
j
kg(xk)

Tpk + 2εf if j ≥ 1, g(xk)
Tpk < −εg(xk)‖pk‖

< f(xk) if g(xk)
Tpk ≥ −εg(xk)‖pk‖,

where c1 = 10−4, c2 = 0.9, and εg(xk) is the estimated gradient error described below.

Thus, we relax the line search only when the gradient is reliable; otherwise, we enforce

simple decrease. We check the Wolfe condition by evaluating the directional derivative

∇φ(x)Tp using finite differences along the direction p, as in [90].

3.4.2.1. Forward Differences. In the first set of experiments, the gradient approxima-

tion g(xk) is obtained by forward differences,

[g(xk)]i =
f(x+ hiei)− f(x)

hi
, i = 1, . . . n,

where the differencing interval hi is determined by one of the following three strategies.

1. Fixed. The interval h is fixed across all components i and for the entire iteration. This

strategy tries to emulate the common practice of hand-tuning hi at the start using problem

specific information. We simulate this using the formula

(3.4.5) h = 2

√
εf
L2

, where L2 = max

{
10−1,

√∑n
i=1[∇2φ(x0)]2ii

n

}
,

115

which assumes that the diagonals of the Hessian are known. The gradient error is

approximated assuming L2 is correct, that is, εg(x) = 2
√
nL2εf . We created this option

for benchmarking purposes only.

2. MW. The Moré-Wild heuristic for estimating and interval hi for every component i of the

gradient. We set L2 = max{10−1, L̂2}, where L̂2 is the estimate given by the Moré and

Wild heuristic. If the heuristic fails, we set L2 = 10−1. The gradient error is estimated

similar to Fixed but componentwise, i.e., εg(x) = 2
√
εf
∑n

i=1 L2,i.

3. Adaptive Our adaptive procedure for estimating hi along each component using

Algorithm 3.1.

For the MW and Adaptive strategies, we re-estimate the second derivative or finite-

difference interval whenever a partial derivative needs to be approximated. For example,

when computing the full gradient, we estimate the finite-difference interval along each

coordinate direction separately. We chose not to compare against Gill et al. [40] as we

regard the Moré-Wild heuristic to be an improvement over their approach.

We present results for a few representative problems in Figure 3.3. The L-BFGS method

described above is terminated if no further progress is made on the objective function over

5 consecutive iterations. Figure 3.3 plots the optimality gap φ(xk)−φ∗ against the number

of function evaluations. The optimal value φ∗ is obtained by solving the original problem

to completion without noise with L-BFGS. While we found Moré and Wild’s heuristic to

work well for εf < 10−1, their heuristic fails frequently for the case where εf = 10−1. (This

can be seen in the complete results presented in Appendix B.2.) For this reason, we report

results for εf = 10−1 and 10−5 to demonstrate the robustness of our algorithm compared

116

0 50000 100000 150000 200000
Function Evaluations

10 1

100

101

102

103

(x
k)

*

CRAGGLVY

L-BFGS (Fixed)
L-BFGS (MW)
L-BFGS (Adaptive)

0 2500 5000 7500 10000 12500
Function Evaluations

10 1

100

(x
k)

*

DIXMAANH

L-BFGS (Fixed)
L-BFGS (MW)
L-BFGS (Adaptive)

0 5000 10000 15000
Function Evaluations

10 1

100

101

102

103

(x
k)

*

TRIDIA
L-BFGS (Fixed)
L-BFGS (MW)
L-BFGS (Adaptive)

0 5000 10000 15000
Function Evaluations

100

102

104

(x
k)

*

WOODS
L-BFGS (Fixed)
L-BFGS (MW)
L-BFGS (Adaptive)

0 2500 5000 7500 10000 12500
Function Evaluations

10 4

10 2

100

102

(x
k)

*

CRAGGLVY
L-BFGS (Fixed)
L-BFGS (MW)
L-BFGS (Adaptive)

0 2500 5000 7500 10000 12500
Function Evaluations

10 5

10 4

10 3

10 2

10 1

100

(x
k)

*

DIXMAANH
L-BFGS (Fixed)
L-BFGS (MW)
L-BFGS (Adaptive)

0 10000 20000 30000 40000
Function Evaluations

10 4

10 2

100

102

(x
k)

*

TRIDIA
L-BFGS (Fixed)
L-BFGS (MW)
L-BFGS (Adaptive)

0 5000 10000 15000 20000 25000
Function Evaluations

10 4

10 2

100

102

104

(x
k)

*

WOODS
L-BFGS (Fixed)
L-BFGS (MW)
L-BFGS (Adaptive)

Figure 3.3. Comparison of forward-difference L-BFGS methods with differ-
ence intervals determined using a fixed interval, the Moré and Wild heuristic,
and our adaptive algorithm. Comparisons are made on representative prob-
lems with noise level εf = 10−1 (top) and 10−5 (bottom). The solid line
plots the observed function value and the dashed line plots the true function
value. The dashed black line shows the noise level εf of the function.

to Moré and Wild for different noise levels. When Moré and Wild’s heuristic succeeds,

we observe that our algorithm (Adaptive) is able to more efficiently achieve comparable

accuracy to the Moré and Wild heuristic, while attaining more accurate solutions than

using a fixed interval for some problems. The lack of accuracy in the Fixed strategy can

be explained by inability for a fixed interval to adapt to changes in the Hessian over the

course of the iteration — an exception being the TRIDIA problem, which is very well

scaled.

3.4.2.2. Central Differences. In the second set of experiments, we employ central

differences,

[g(x;h)]i =
f(x+ hiei)− f(x− hiei)

2hi
.

The differencing interval is determined via a Fixed strategy or the Adaptive procedure

described in Algorithm 3.2. (The Moré and Wild’s heuristic does not apply to this case.)

117

0 10000 20000 30000
Function Evaluations

10 4

10 2

100

102

(x
k)

*

CRAGGLVY
L-BFGS (Fixed)
L-BFGS (Adaptive)

0 10000 20000 30000 40000 50000
Function Evaluations

10 10

10 8

10 6

10 4

10 2

100

(x
k)

*

DIXMAANH
L-BFGS (Fixed)
L-BFGS (Adaptive)

0 20000 40000 60000 80000 100000
Function Evaluations

10 14

10 10

10 6

10 2

102

(x
k)

*

TRIDIA
L-BFGS (Fixed)
L-BFGS (Adaptive)

0 5000 10000 15000 20000 25000
Function Evaluations

10 4

10 2

100

102

104

(x
k)

*

WOODS
L-BFGS (Fixed)
L-BFGS (Adaptive)

Figure 3.4. Comparison of central-difference L-BFGS methods with differ-
ence intervals determined using a fixed interval and our adaptive algorithm.
Comparisons are made on representative problems with noise level εf = 10−5.
The solid line plots the observed function value and the dashed line plots
the true function value. The dashed black line shows the noise level εf of
the function.

For the Fixed strategy, we choose

(3.4.6)

h = 3

√
3εf
L3

, where L3 = max

10−1,

√√√√ 1

n

n∑
i=1

(
[∇2φ(x0 + h̃ei)]ii − [∇2φ(x0)]ii

h̃

)2

and h̃ = max{1, |[x0]i|}

√
εM . Note that noiseless forward differences are applied to the

true Hessian to estimate the third derivative along each coordinate direction at the initial

point. This synthetic Fixed strategy is presented for benchmarking purposes; it is not

generally viable in practice.

Representative results are shown in Figure 3.4. Similar to the forward-difference case,

our algorithm is able to obtain higher accuracy in the solution compare to the Fixed

strategy, but at higher cost as expected. Complete experimental results for all problems

and noise levels are presented in Appendix B.2.

118

3.5. Final Remarks

We have developed a principled and robust procedure for determining the difference

interval for estimating gradients in optimization methods, assuming that the noise level

is known. Our procedure applies to any finite-difference scheme, including central- and

higher-order difference schemes. It performs a bisection search on a ratio that balances the

truncation and measurement errors such that one typically attains a near-optimal difference

interval. Whereas some methods for estimating the difference interval prioritize efficiency,

such as Moré and Wild [71], and others compromise cost and accuracy, such as Gill, et al.

[40], our approach is designed to be as robust as possible so that finite-difference gradient

approximations can be reliably used in established nonlinear optimization techniques for

solving noisy problems.

As demonstrated in our experiments, reusing previous difference intervals from prior

iterations allows us to reduce the cost of the estimation procedure. Additional savings

can achieved by re-estimating the difference interval periodically; for simple problems

only a few times during the course of the optimization will suffice. The ability to exploit

parallelism by distributing the computation of the gradient is an advantage that should not

be underestimated when comparing the finite-difference approach with other techniques

for derivative-free optimization.

119

CHAPTER 4

A Feasible Nonlinear Programming Approach for Constrained

Derivative-Free Optimization

4.1. Introduction

Interpolation-based trust-region optimization (IBO) methods are among the most

efficient and reliable techniques for unconstrained derivative-free optimization (DFO) [69].

Yet extending IBO methods to general constrained optimization is not straightforward

and has received limited attention in the literature [59]. In this paper, we investigate a

method first proposed by Conn et al. [26] designed for problems where the constraints

and their derivatives are available analytically. This is a feasible method that constructs

a quadratic model of the objective using an IBO approach and computes a step by

minimizing this model subject to the original constraints of the problem and a trust region.

The step computation is in general a nonlinear optimization sub-problem that is solved

using a general purpose nonlinear solver. We refer to this approach as FIBO, for feasible

interpolation-based optimization method. The numerical results presented in [26], and

subsequently [23], are inconclusive and the FIBO approach is rarely, if ever, used in practice.

In this paper, we present numerical results that suggest that, for an important class of

practical applications, our proposed implementation of FIBO is competitive with the best

methods proposed to date.

120

The problem under consideration is

min
x

f(x)(4.1.1)

s.t. ci(x) = 0, i ∈ E(4.1.2)

ci(x) ≤ 0, i ∈ I(4.1.3)

for some finite index sets E and I, and where f : Rn → R and ci(x) : Rn → R, i ∈ I ∪ E ,

are smooth functions. We assume that the derivatives of f are not available but those of

the constraints ci(x) are.

Applications of this problem setting are often found in practical applications in which

the objective is provided by a simulation model and the constraints are given analytically,

involving say trigonometric functions, or linear constraints. To cite a concrete example,

in constrained reinforcement learning a single reward objective may not be sufficient and

various constraints must be enforced to ensure safety requirements or physical limitations

of the task [54].

4.1.1. Literature Review

Early methods for analytically constrained derivative-free optimization followed heuristic

penalty and augmented Lagrangian approaches in which pattern search methods are

employed to solve the sub-problems; see [59] for a survey of these methods. An important

drawback of this approach is that derivative information of the constraints is not exploited.

SID-PSM requires derivatives of the constraints but is difficult to scale to high dimensions

[85]. In addition, as demonstrated by Moré and Wild [69] and Sahinidis [85], pattern

121

search methods are inefficient compared to IBO methods, both on smooth and nonsmooth

DFO problems.

Powell developed efficient IBO methods and software to deal with increasingly more

complex sets of constraints. BOBYQA [79] is designed for problems with simple bounds;

it builds upon the minimum-Frobenius norm update method first introduced in NEWUOA.

Powell’s last code, LINCOA, is able to deal with linear constraints [80]. These methods

are quite sophisticated as they seek to minimize linear algebra costs. They are accessible

through the Python and Matlab interface developed by Zaikun [84]. Powell did not develop

an IBO methods to handle general (nonlinear) constraints other than COBYLA, which

solves general inequality constrained DFO problems by constructing linear models of the

objective and constraints. An extension of this approach, named COBYQA, was proposed by

Ragonneau [83] to handle both equality and inequality constraints via quadratic models.

A variety of IBO methods have been proposed to enforce feasibility of the iterates.

When the constraints are analytically available, this set of methods often impose the

constraints in the trust region subproblem at every iteration. This line of work was

first extended to convex constraints by [24], in which the authors provide convergence

analysis assuming that the local model is always fully-linear. [51] extended the global

convergence analysis by proposing a generalized fully-linear model in the general convex

constrained case, relaxing this fully-linear model assumption. However, [51] only provides

numerical results on least-square functions and neither work demonstrate the effectiveness

of their approach on general objective functions. Limited work has been done when general

constraints are present, as the resulting subproblem from the constraint enforcement is

in general computationally expensive to solve. To our knowledge, this approach was first

122

explored by Conn et. al [26]. Yet the numerical experiments do not provide convincing

evidence regarding the effectiveness of the method due to the ill-considered experiment

settings. In particular, the other DFO methods being considered do not exploit the

availability of constraint derivatives. [23] revisited this approach but under the same

reason, does not provide additional insights into this framework. No convergence proof

has yet been established for this feasible approach with general constraints. A similar idea

is again explored in CONDOR, which is designed to solve general inequality constraints by

treating bound and linear constraints via active-set methods and the remaining with SQP

[11]. For a thorough treatment of IBO methods, see [29].

A recent line of work in unconstrained DFO focuses on methods that employ finite

difference approximations to the gradient [7, 73, 93]. This approach can be effective

even for noisy functions, if the finite difference interval is chose appropriately. Given

that state-of-the-art nonlinear programming solvers normally include a finite difference

option for both functions and constraints, they should serve as a benchmark for testing

constrained DFO methods.

4.2. The FIBO Algorithm

Let us begin by sketching a basic IBO method for unconstrained derivative-free optimiza-

tion, and refer the reader to [29, 78] for a discussion of many fine points of implementation.

The algorithm starts by evaluating the objective function at a set Y0 of points on a stencil

around the initial point x0. The algorithm then sets k ← 0 and constructs a quadratic

model

(4.2.1) mk(xk + s) = f(xk) + gTk s+
1

2
sTHks.

123

This model can be defined in two different ways. Assuming that Yk is poised and that

|Y0| = (n+ 1)(n+ 2)/2, this model is uniquely specified by requiring that it interpolate the

function values at the current interpolation set. An alternative IBO approach that greatly

reduces the linear algebra costs of the iteration employs only |Yk| = 2n+ 1 interpolation

points and defines a model through a minimum Frobenius norm update of the matrix Hk

subject to |Yk| interpolation conditions.

Regardless of how the model is constructed, the trial step sk is given by the solution of

the trust region subproblem

min
s

mk(xk + s)(4.2.2a)

s.t. ‖s‖2 ≤ ∆k.(4.2.2b)

As in any trust region method, acceptance of the step sk is determined based on a ratio

ρk =
f(xk)− f(xk + sk)

mk(xk)−mk(xk + sk)
(4.2.3)

of actual vs predicted reduction in the objective. If sufficient decrease is obtained (ρk ≥ η

for some η ∈ (0, 1)), the new iterate is defined as xk+1 = xk + sk; otherwise the step is

rejected and one sets xk+1 = xk.

The trust region ∆k is increased for successful steps. Otherwise, the algorithm considers

two cases. If the interpolation set is not poised, (i.e., if the interpolation points (nearly)

lie in a linear subspace of Rn), ∆k remains unchanged to avoid premature shrinkage of the

trust region and Yk is improved via a geometry phase. If the step is rejected and Yk is

poised, then ∆k is decreased.

124

The set Yk is normally updated at every iteration by removing one point from Yk

(for example, the furthest from xk+1) and by adding xk+1 to this set. This trust region

interpolation-based approach has proved to be a very efficient for solving unconstrained

DFO problems.

We can now describe FIBO, the extension of this method to the constrained optimization

problem (4.2.2). We assume—and this is important—that the constraints are both

analytically available and inexpensive to evaluate compared to the objective function.

Then, it is realistic to compute the step by

min
s

mk(xk + s) = f(xk) + gTk s+ 1
2
sTHks(4.2.4a)

s.t. ci(xk + s) = 0, i ∈ E(4.2.4b)

ci(xk + s) ≤ 0, i ∈ I(4.2.4c)

‖s‖2 ≤ ∆k.(4.2.4d)

The model mk in (4.2.4a) is constructed by interpolating function values at a set of

interpolation points, and as in the unconstrained case, models the objective function f .

Note that (4.2.4) includes the original constraints of the problem and is, in general, a

nonlinear programming problem that must be solved using any general-purpose nonlinear

programming solver (KNITRO in our experiments).

Let us assume for now that (4.2.4) can be solved to optimality. If the initial iterate is

feasible, then all subsequent iterates will be feasible and it is therefore sufficient for mk

to model only the objective and disregard the contribution of the constraints. All other

details of the algorithm, such as the update of the interpolation set and trust region, are

125

defined as in the unconstrained IBO method. In fact, to develop the FIBO method one

can start with any IBO method for unconstrained optimization and simply replace the

step computation (4.2.2) by (4.2.4).

This framework therefore provides substantial flexibility in that any IBO method can

be used to construct the model and handle the trust region logic, and any nonlinear

programming code can be invoked to solve the trust region subproblem (4.2.4). We state

the proposed method in Algorithm 4.1.

126

Algorithm 4.1. FIBO

1: Parameters: 0 ≤ η < 1, and ∆0 > 0.

2: Choose x0, a feasible starting point, and construct an initial poised interpolation set

Y0.

3: Let k = 0.

4: while no convergence test is satisfied do

5: Build a local (quadratic) model (4.2.1) using interpolation set Yk.

6: Compute a step sk by solving the trust region subproblem (4.2.4).

7: Compute the ratio defined by (4.2.3).

8: if ρk ≥ η then

9: Set xk+1 = xk + sk.

10: Choose ∆k+1 ≥ ∆k.

11: Update Yk to include xk+1.

12: else if Yk needs to be improved then

13: Set xk+1 = xk.

14: Set ∆k+1 = ∆k.

15: Improve Yk using a geometry-improving procedure.

16: else

17: Set xk+1 = xk.

18: Choose ∆k+1 < ∆k.

19: Update Yk to include xk + sk.

20: end if

21: Yk+1 = Yk

22: k = k + 1

23: end while

127

We now comment on the following salient properties of this approach.

Application to Noisy DFO. The FIBO method can be applied to noisy DFO problems

without additional modifications. As noted in [93], IBO methods are normally efficient

and robust in the presence of noise for reasons that are not well understood, and one

can expect these benefits in the constrained case as well. An added advantage is that

information regarding the noise level in the problem is not required, compared to DFO

methods that employ finite differences.

Feasibility. Assuming that the nonlinear programming solver is successful at every

iteration, all iterates of the FIBO algorithm are feasible. This is a desirable property for

DFO problems in which the objective function is not defined outside the feasible set. (The

nonlinear programming method used to solve the subproblem (4.2.4) typically generates

infeasible iterates, but it is only the quadratic objective mk of this subproblem that is

evaluated at those points and not the original objective function.) Although the success of

the nonlinear solver is not guaranteed since the subproblem (4.2.4) is not convex, we did

not observe any failures in our experiments—and we should note that other approaches

for constrained DFO [59] do not provide convergence guarantees in all situations, either.

Feasible Interpolation. As discussed in [59], sufficiently good model accuracy can be

difficult or impossible to obtain when only feasible points are interpolated. A similar

situation occurs when the objective cannot be evaluated at infeasible points. The initial

interpolation set has to be constructed differently to include only feasible points. We do

not explore this possibility in this work.

Per-Iteration Cost. The three main expenses of the FIBO iteration are:

128

(1) Evaluation of the objective f . This cost is problem dependent but there are many

applications where the function evaluation is much more costly than all other

computations in the algorithm.

(2) Construction of the quadratic model. Computing the model mk from scratch at

every iteration requires O(n6) flops, which is quite expensive when the number of

variables is large Nevertheless, Powell’s approach implemented in NEWUOA requires

only O(n2) flops since it employs only O(n) interpolation points.

(3) Solution of the Trust Region Problem. When the number of variables n is very

small (say less than 100), the cost of solving (4.2.4) is of no concern even if

the nonlinear programming algorithm performs many iterations to return an

accurate solution, provided the constraints are inexpensive to evaluation. But

as the number of variables becomes large the total linear algebra cost on the

nonlinear programming is of concern. Note, in particular that since the Hessian

of mk is dense, each evaluation of mk requires O(n2) flops. Similarly, if the cost of

evaluating the constraints and their derivatives is high, then the FIBO approach is

not viable given the need for multiple evaluations for the solution of a single trust

region step. In the next section, we quantify more precisely the class of problems

for which FIBO is efficient.

In summary, the FIBO method is appropriate for problems with

• expensive function evaluation (at least as expensive as O(n2) operations),

• inexpensive constraint evaluation,

such that the cost associated with solving the subproblem (4.2.4) and solving the interpo-

lation system is dominated by computational overhead of the objective evaluation.

129

4.3. Numerical Experiments

We adapt the Python code for DFOTR to incorporate general constraints. In particular,

we replace the original module for solving trust region subproblem by calling KNITRO

to solve the general constrained subproblem. Note that the derivative information of

this subproblem (4.2.4) is available. Since DFOTR picks the interpolation point with the

minimum objective value as the best iterate, we disable this option as such point may be

infeasible.

We will compare FIBO with finite-difference based KNITRO (denoted by FD), which has

been demonstrated to be effective for noiseless problems [93]. We do not present numerical

results for solving noisy constrained problems as we believe the problems can be solved

similarly as in the nonnoisy constrained case. The details of the solvers are described

below.

• FIBO. We employ the code DFOTR to perform trust region updates, with final

trust region radius 10−8. The maximum number of function evaluations allowed

is set to be 500 × max(m,n), where n is the number of variables and m the

number of constraints. We set the stop predict convergence test to 0 avoid early

termination caused by the ratio test. All remaining parameters are set to default.

We use KNITRO with exact gradients to solve the trust region subproblem and the

parameters of KNITRO are set to default except alg = 4 (SQP) and hessopt =

6 (L-BFGS).

• FD. We ran KNITRO with alg = 4 (SQP) and hessopt = 6 (L-BFGS). The

memory size is set to be 10 (default value for lmsize). We set xtol = 1e-8,

130

xtol iters = 1, and findiff terminate=0 to obtain similar convergence cri-

terion as DFOTR. Maximum number of function evaluations allowed is 500 ×

max(m,n). We perform forward differencing to the objective and provide exact

derivative information of constraints to the algorithm.

We consider 38 general constrained problems and assume that the initial points x0 are

feasible. Since the initial point provided by CUTEst is usually infeasible, we ran KNITRO

to obtain a feasible point by replacing the objective by 0. The cost to obtain a feasible

solution is omitted for now, as we assume the constraints are not expensive to evaluate.

Note that the observations remain the same when we include the cost of obtaining a

feasible starting point for FIBO and run FD from an infeasible initial point x0. See C.2 for

detailed numerical results.

We study the performance of FIBO by comparing its final objective accuracy and the

associated cost. To study the accuracy of the solvers, we measure accuracy with log-ratios:

(4.3.1) log2(
max(fFIBO − f ∗, 10−8)

max(fFD − f ∗, 10−8)
)

where fFIBO and fFD are the final accuracy obtained by the corresponding approach, and

the optimal value f ∗ is obtained by running KNITRO with exact gradient. We compare the

final accuracy of the two methods up to 8 digits and report the ratios using log-ratio plot

in Figure 4.1 [67]. The ratios (4.3.1) are plotted in increasing order such that the area of

the shaded region provides a rough idea of the relative performance of the methods. FD

achieves higher accuracy than FIBO, but not by a wide margin. For full numerical results,

see Appendix C.2.

131

0 10 20 30
Problem

10

5

0

5

10

lo
g 2

(f O
ut

er
D

FO
f*

f F
D

f*
)

FIBO

FD

Figure 4.1. Log-ratio Plot for Comparing the Final Accuracy (4.3.1) of FIBO
and FD.

To understand the efficiency of the compared algorithms, we terminate the algorithms

when

(4.3.2) f(xk) ≤ f ∗ + τ ·max(1, |f ∗|)

where f ∗ is the optimal solution obtained by running KNITRO with exact gradients on the

test problems, and τ is the desired accuracy level. In particular, we look at the number of

objective evaluations and constraint evaluations to understand the associated cost to reach

a given accuracy level. We denote the number of function evaluations required to satisfy

(4.3.2) by evalsFIBO and evalsFD respectively for the corresponding method. Similarly, we

use cevalsFIBO and cevalsFD to denote the number of constraint evaluations required to

satisfy (4.3.2). If the condition (4.3.2) cannot be satisfied by an algorithm, we simply set

the corresponding quantity as a very large number. We specifically present results for

τ = 10−1, 10−3, 10−5 and 10−7 to study the efficiency for reaching different accuracy levels.

Again, we summarize the results using the log-ratio profile proposed by Morales [67] and

132

plot the quantities

(4.3.3) log2(
evalsFIBO

evalsFD

), log2(
cevalsFIBO

cevalsFD

).

The plots for comparing the number of objective evaluations and constraints evaluations

are reported in Figure 4.2 and 4.3.

0 10 20 30
Problem

4

2

0

2

4

lo
g 2

(ev
al

s F
IB

O
ev

al
s F

D
)

FIBO

FD

0 10 20 30
Problem

4

2

0

2

4

lo
g 2

(ev
al

s F
IB

O
ev

al
s F

D
)

FIBO

FD

0 10 20 30
Problem

4

2

0

2

4

lo
g 2

(ev
al

s F
IB

O
ev

al
s F

D
)

FIBO

FD

0 10 20 30
Problem

4

2

0

2

4

lo
g 2

(ev
al

s F
IB

O
ev

al
s F

D
)

FIBO

FD

Figure 4.2. Log-ratio plot comparing FIBO and FD in terms of
the number of function evaluations to satisfy (4.3.2) for τ =
10−1 (upper left), 10−3 (upper right), 10−5 (bottom left), 10−7 (bottom right).

As indicated by Figure 4.2, FIBO outperforms finite-difference based KNITRO in terms

of objective evaluations across various accuracy levels. Yet FD outperforms FIBO in terms

of constraint evaluations across all accuracy levels. Since each constraint evaluation is

associated with an evaluation of the quadratic model (4.2.1), FIBO is very effective when

each evaluation of the objective function is at least as expensive as O(n2) and the cost of

133

0 10 20 30
Problem

4

2

0

2

4
lo

g 2
(ce

va
ls

FI
BO

ce
va

ls
FD

)

FIBO

FD

0 10 20 30
Problem

4

2

0

2

4

lo
g 2

(ce
va

ls
FI

BO
ce

va
ls

FD
)

FIBO

FD

0 10 20 30
Problem

4

2

0

2

4

lo
g 2

(ce
va

ls
FI

BO
ce

va
ls

FD
)

FIBO

FD

0 10 20 30
Problem

4

2

0

2

4

lo
g 2

(ce
va

ls
FI

BO
ce

va
ls

FD
)

FIBO

FD

Figure 4.3. Log-ratio plot comparing FIBO and FD in terms of
the number of constraint evaluations to satisfy (4.3.2) for τ =
10−1 (upper left), 10−3 (upper right), 10−5 (bottom left), 10−7 (bottom right).

each constraint evaluation is negligible. Otherwise, when the cost of solving the subproblem

(4.2.4) is formidable, FD is a viable approach.

4.4. Final Remarks

We have demonstrated the effectiveness of the FIBO approach based on empirical

investigations. When only analytical constraints are present, our study has revealed

that, with minor modifications, existing unconstrained IBO methods can be extended to

solve general constrained DFO problems. Our numerical results indicate that FIBO is a

competitive method for problems where the cost of the objective function dominates that of

the constraints. Our framework applies to any IBO methods and gradient-based nonlinear

134

programming solvers. Yet more sophisticated algorithmic designs are required when the

constraints cannot be violated, or black-box constraints are present. It is non-trivial to

compute interpolation points that are feasible, when model-improving points are necessary

to improve model quality. In addition, when constraints are expensive to evaluate, further

algorithmic development for IBO is required to improve efficiency of the proposed method.

We have observed fair performance of FIBO even if the termination test for (4.2.4) is

relaxed, but the relaxation strategy requires more careful investigations.

135

CHAPTER 5

Prompting Large Language Models with Derivative-Free

Optimization

5.1. Introduction

Pre-trained large language models (LLMs) like GPT-4 have been widely successful in

various language tasks. However, LLMs are general-purpose models and require additional

adaptations, such as fine-tuning or prompting, to address specific language tasks like

sentiment analysis. Fine-tuning requires updates of the model parameters on each new

language task [52]. This process can be resource-intensive and challenging given the model

complexity and the limited sample size of the subsequent task. Additionally, maintaining

separate copies of the language model for different tasks poses additional challenge in

terms of storage requirements, especially given the massive size of the LLMs. On the

other hand, prompting offers a storage-efficient solution by appending a prompt, e.g., task

description texts, to the input text while keeping the parameters of the pre-trained model

frozen. Prompting has demonstrated its effectiveness on LLMs with the appealing feature

of using the same pre-trained model on a variety of tasks [15]. However, effective design of

the prompts still remains a challenge: they are often designed in a manual trial-and-error

manner and can be sensitive to perturbations.

Several efforts have been proposed to tackle this challenge, including gradient-based

approaches that optimize continuous prompts, which are continuous vectors instead of

136

discrete texts [60, 61]. However, accessing the gradient of the loss function through

backpropagation in LLMs like GPT-4 is often not available, as they typically only allow

input and output manipulations. Furthermore, the massive size of LLMs makes computing

derivatives of the objective function through backpropagation impractical, primarily due

to memory constraints. Moreover, LLMs are usually implemented using finite precision

arithmetic, with common choices in half and single precision. This choice of precision

can introduce higher roundoff errors during model evaluation compared to computations

performed in double precision.

In light of this limitation, we approach prompt design as a noisy derivative-free

optimization (DFO) problem. Several classes of DFO methods have gained popularity

within different research communities, each offering unique advantages. Randomized

methods such as evolution strategies have been widely embraced within the machine

learning communities. This class of methods employs iterative sampling based on a

stochastic distribution, which may be updated to leverage iteration information. Their

effectiveness has been demonstrated on applications arising from Reinforcement Learning

[98] to Natural Language Processing [100]. Alternatively, interpolation based optimization

(IBO) methods and finite-difference (FD) based methods have been recognized as the state-

of-the-art DFO algorithms within the optimization community for their robustness and

efficiency [93]. These methods rely on utilizing function values to construct approximations

to the objective function and/or gradients.

Considering the diverse range of DFO methods available, each with its unique advan-

tages, we examine these approaches in solving the noisy DFO problem arising from prompt

design.

137

5.1.1. Literature Review

Transformer-based Language Models. Transformer-based language models have

have been in the spotlight in recent years due to their impressive performance on a wide

range of language tasks. The original transformer architecture was proposed in [101], which

introduced the self-attention mechanism within an encoder-decoder structure, allowing

the model to extract contextual information from the input sequence. The text-to-text

transformer (T5) model uses the encoder-decoder structure [82]. Examples of model

usage include question-answering. BERT and its variants use an encoder structure in the

seq-2-seq architecture to extract general text representations [33]. They can be extended

to applications such as sentiment classification. The GPT-2 [81] and GPT-3 [15] are

decoder-based transformer models, so that they are trained in an autoregressive manner.

The model can be used in, for instance, automatic sentence completion and text generation.

In practice, LLMs often have billions of parameters and thus require significant compu-

tational resources and memory, making gradient-based training infeasible for many users

and applications. Furthermore, the majority of performant LLMs, such as GPT-4, and

BARD, are not open-sourced. They are exclusively accessed through blackbox APIs that

typically consume and generate natural language sequences. Due to the limited access to

the models, leveraging them to address specific language tasks can be challenging. This

calls for effective strategies such as prompt design.

Prompting. Prompts are pieces of information to be prepended to the input X so

that the language model can generate a desirable output Y using the extra information.

Prompting is desirable for large-size language models, for its advantage of not requiring

updates or storage of all model parameters as in the fine-tuning paradigm, which can be

138

prohibitively expensive. Various prompting approaches have been proposed and yet it still

remains an open question to achieve competitive performance against fine-tuning. See [62]

for a thorough treatment.

Prompts can be classified into hard prompts and soft prompts. Hard prompts are

often composed of task descriptions texts that rely on manual efforts. For instance, “I felt

bored watching the movie.” may be more likely to be classified as a negative sentence by

a language model if we append the prompt “It was ’ to the sentence and ask the model

to generate the word at the corresponding position. Yet hard prompts can be sub-optimal

and sensitive to prompt choices [60]. In contrast, soft prompts are continuous vectors

to be injected to the input. They do not necessarily use the same embedding as in the

pre-trained language models. The vectors can be tuned or they can be treated as learnable

parameters and be optimized via gradient-based methods through backpropagation [60, 61],

if the gradient information of the pretrained LLM is available.

However, as mentioned in the previous sections, LLMs may only be accessed as

blackboxes so that their gradient information or parameters are not accessible. As a result,

[100] proposed Black-Box Tuning, which optimizes continuous prompts by employing the

Covariance Matrix Adaptation Evolution Strategy (CMA-ES) method. Other blackbox

approaches for prompt tuning include [32, 34], which employ discrete prompt optimization.

5.2. Problem Formulation

We consider a general classification task, which predicts a label y ∈ Y for a given

input sequence x = (x1, ..., xL) of length L using a general-purpose pre-trained LLM. To

simplify the setting, we assume access to the embedding matrix E of the LLM and we

139

denote X ∈ RL×D as the embedded representation of the original input sequence x, where

D is the embedding dimension. The embedded input X can be viewed as a numerical

representation of the original text sequence via a linear projection using the embedding

matrix.

Our goal is to search for a continuous prompt p ∈ Rd to be combined with every

embedded input Xi in the training samples by solving the following optimization problem:

(5.2.1) min
p∈Rd

1

N

N∑
i=1

L(f(p;Xi), yi),

where L is the loss function (e.g., cross entropy loss function), f is the black-box pre-trained

language model and N is the number of training samples. The size of the prompt p is

typically chosen as d = Lp ×D, where Lp is a user-provided hyperparameter. Note that

the prompt p ∈ Rd and the i-th embedded input Xi ∈ RLi×D may be passed to the rest of

the LLM in the form of either

 p
Xi

 ∈ R(Li+Lp)×D, or p̂+Xi ∈ RLi×D, where p̂ ∈ RLi×D is

usually generated from p using zero padding. We consider the latter form of prompt-input

combination in our experiments, as it in general results in shorter input sequences lengths

and thus less training time. In addition, p = 0 can be used as a natural starting point.

Note that the same prompt is appended to every training sample.

The key challenge in solving (5.2.1) lies in the dimensionality of the problem. Since

the embedding dimension (D) is often very high, the size of prompt vector p is on a

scale of thousands. Yet it has been empirically shown that LLMs have low intrinsic

dimensionality. In other words, by tuning only hundreds of parameters and performing

random projection onto the full parameter space, one make achieve reasonably good

140

performance on downstream NLP tasks [1]. Therefore, (5.2.1) can be reformulated as

(5.2.2) min
z∈Rn

1

N

N∑
i=1

L(f(Az;Xi), yi)

where A ∈ Rd×n is a random projection matrix such that n� d.

Recall that the gradient of the function f is not available or very expensive to compute.

Thus (5.2.1) and (5.2.2) are unconstrained derivative-free optimization problems.

Furthermore, the problem formulation (5.2.2) is noisy in practice as LLMs are typically

implemented in single precision, half precision or mixed precision due to GPU memory

constraints and speed concerns. Therefore, DFO algorithms such as finite differences must

be applied carefully when such deterministic noise is present in the function evaluations.

We remark that our approach assumes that the continuous projected prompt Az in

(5.2.2) can be combined with the embedding representation X of the input sequence x

directly. However, there are cases when a given LLM only accepts text inputs and does

not provide access to its embeddings. In such scenarios, the prompt must be prepended to

the input text sequence before passing through the embedding. This renders the prompt

p discrete and (5.2.1) intractable to solve. We argue that it can be beneficial for LLM

services to include a feature that enables seamless integration of continuous prompts into

the embeddings. This would simplify the handling of hard prompts, ultimately benefiting

a wide range of language tasks and workflows.

5.3. Numerical Experiments for Optimizing Prompts

We evaluate the effectiveness of our proposed approach based on transformer-based

language models RoBERTa and T5, in addressing several common language classification

141

tasks, including sentiment classification, natural language inference and topic classification.

To tackle these tasks, we examine three state-of-the-art classes of DFO algorithms: IBO

methods, finite differences and randomized algorithms for solving the problem (5.2.2). We

describe below our experiments details.

5.3.1. Experiment Setup

Datasets. We evaluate on 6 common language classification datasets: SST-2 [95], Yelp

P. [106], SNLI [12], RTE [102], DBpedia [3], AG’s News [106]. The datasets include tasks

such as sentiment analysis, topic classification and natural language inferences.

Few-Shot Learning. It has been demonstrated that LLMs have great power for

few-shot learning [15]. To simulate the scarce data setting, we consider a 16-shot learning

setting in our experiments. In particular, we randomly choose 16 samples for each class

to construct the training and validation set. As in [100], we use the original test set for

consistency with existing benchmarks.

Backbone Model. In our experiments, we consider open-source transformer-based

models RoBERTa-large [63] and T5-large [82] for solving the language tasks so that the

prompts can be directly applied to the embedded representations. The chosen models are

representative of bi-directional encoder and encoder-decoder models respectively.

Hyperparameters. We employ cross entropy loss as our loss function L and use

accuracy to measure performance. We consider the decision variable z of dimension 500

(n = 500) along with prompt length Lp = 50. We employ a projection matrix A that

is generated from a Gaussian distribution with mean and covariate matrix computed

using the mean and standard deviation of the language model embeddings. Note that

142

the projection matrix A remains fixed during the experiments. We set a budget of 20,000

function evaluations in our numerical experiments.

DFO Solvers. We describe below the implementation details of the DFO algorithms.

• CMA-ES: A stochastic DFO algorithm developed by [45]. We call an Python

implementation of CMA-ES via the pycma module with version 3.3.0. The parame-

ters are set to default and no additional information is provided regarding noise.

Specifically, the method samples 4 + 3
√
n points at every iteration.

• FD L-BFGS: A finite-difference based implementation of the limited-memory BFGS

algorithm with a bisection Armijo-Wolfe linesearch. The memory size is set to

10. We used forward differencing to compute a finite difference approximation

of the gradient and the directional derivative along the search direction during

linesearch. We employed differencing interval h of size 0.1 based on machine

epsilon for single precision and an estimated bound on the second order derivative

of the loss function.

• NEWUOA: A state-of-the-art unconstrained IBO method that is available through

the PDFO package [84]. We set rhoend = 10−8 as a termination criterion for this

algorithm. All other parameters are set to default.

We use z = 0 as the starting point for all algorithms.

5.3.2. Results

We comment on the training loss of the prompt optimization problem (5.2.2) across

different datasets. Our observations reveal interesting insights into the performance of

different solvers. Overall we observe that CMA-ES quickly reduces the training loss within

143

n function evaluations. On the other hand, FD LBFGS requires n+ 1 function evaluations

to approximate a gradient and NEWUOA requires 2n+ 1 function evaluations for quadratic

model construction during the first iteration. As the number of model evaluation increases,

we notice that NEWUOA becomes more efficient in minimizing the training loss compared

to the other solvers. When a sufficiently large number of model evaluations is allowed,

CMA-ES may obtain the lowest training loss among the solvers we have compared. We

also observe that FD L-BFGS tends to be the least efficient solvers among the solvers. To

illustrate the relative performance across the solvers, we plot representative training loss

and validation loss in Figure 5.1 and Figure 5.2.

Figure 5.1. Training and Validation Loss for Prompt Optimization of
RoBERTa-large for Solving SST-2.

Dataset SST-2 Yelp P. AG’s News DBPedia SNLI RTE

CMA-ES 89.79 85.82 83.89 85.65 45.04 42.24
NEWUOA 88.30 91.62 83.11 95.78 44.51 42.24

FD L-BFGS 86.93 91.85 81.68 82.70 47.94 53.07
Manual Prompt 83.60 89.64 75.75 31.92 38.82 51.43

Table 5.1. Test accuracy: Prompt Optimization for RoBERTa-large.

Moreover, we present the final test accuracy based on the model that corresponds

to the lowest validation loss. The results are summarized in Table 5.1 and Table 5.2

144

Figure 5.2. Training and Validation Loss for Prompt Optimization of T5-
large for Solving DBPedia.

Dataset SST-2 Yelp P. AG’s News DBPedia SNLI RTE

CMA-ES 86.70 95.91 83.51 93.25 46.62 46.93
NEWUOA 86.01 93.97 77.74 89.46 42.59 56.32

FD L-BFGS 91.28 94.92 77.64 90.26 40.17 53.79
Manual Prompt 69.04 82.24 40.07 59.40 40.18 54.51

Table 5.2. Test accuracy: Prompt Optimization for T5-large.

for RoBERTa-large and T5-large, respectively. We also include results for a manually

tuned prompt, which in general yields lower accuracy compared to the final test accuracy

obtained by the DFO solvers. Our numerical experiments indicate that NEWUOA exhibit

comparatively lower test accuracy across the evaluated datasets despite its efficiency in

reducing the training loss. For RoBERTa-large, neither FD L-BFGS nor CMA-ES emerges

as a clear winner. In contrast, when T5-large is used as the backbone model, CMA-ES

achieves the highest test accuracy across majority of the datasets.

5.4. Final Remarks

We have addressed an important problem of adapting large language models to various

language classification tasks by leveraging DFO algorithms. We have demonstrated the

145

efficacy of several DFO algorithms, including CMA-ES, NEWUOA and FD L-BFGS in solving this

DFO problem. Our numerical study has highlighted the efficiency of NEWUOA in effectively

minimizing the training loss. Additionally, we have observed the potential of CMA-ES in

achieving the lowest training loss when a sufficiently large number of model evaluations

are employed. Nevertheless, further investigation is needed to assess the generalization of

DFO methods on the testing set, as well as a more sophisticated formulation of the DFO

problem. We also note that the unavailability of embedding information for some existing

LLMs poses challenges for this prompt design approach. Additional investigations can be

conducted to study the feasibility of utilizing external embeddings for this prompt design

problem and to provide insights into the applicability of DFO methods in this setting.

146

CHAPTER 6

Analyzing the Performance of DFO Methods on a Wider Class of

Problems

6.1. Introduction

Motivated by the observations in Chapter 5, we delve deeper into the comparative

analysis of DFO methods by exploring more generalized problem settings. We are interested

in whether the relative performance of the compared DFO solvers, concerning the objective

presented in problem (5.2.2), extends to other functions in general. We aim to gain

further insights into the relative merits and performance characteristics of these DFO

methods across a broader range of problem scenarios, and identify potential avenues for

improving their performance in practice. In particular, we explore strategies for improving

the accuracy of IBO methods in the presence of noise.

Formally, we now consider general unconstrained DFO problems of the following form

as in (1.0.1) (assuming Ω = Rn)

(6.1.1) min
x∈Rn

φ(x)

where φ : Rn → R is a smooth function. Recall from Chapter 1 that the derivatives of φ

are not available and only noisy evaluations of the function can be observed:

(6.1.2) f(x) = φ(x) + ε(x),

147

where ε(x) models the evaluation error at x. We assume that the noise ε(x) is stochastic

and independent of x. See Chapter 1 for further discussions on the noise model.

As has been well-studied in [93], NEWUOA and FD-LBFGS are competitive for noiseless

problems, with NEWUOA showcasing a slight advantage over FD L-BFGS for noisy problems.

Consequently, we narrow down our empirical investigations to NEWUOA and CMA-ES for

solving unconstrained DFO problems. Therefore, the solvers tested in this chapter are as

follows.

CMA-ES. We call an Python implementation of CMA-ES via the pycma module with

version 3.3.0. The parameters are set to default and no additional information is provided

with respect to noise. To elaborate, the method samples 4 + 3
√
n points at every iteration.

NEWUOA. We use NEWUOA through a Python wrapper PDFO [84]. We set rhoend = 10−8

as a termination criterion for this algorithm. All other parameters are set to default, e.g.,

the number of interpolation point is set to 2n+ 1.

To summarize the per-iteration cost of the methods, NEWUOA incurs O(n2) flops of

computation cost at every iteration due to interpolation, while CMA-ES requires O(n3) flops

due to eigendecomposition of the covariance matrix. The computation cost of CMA-ES can

be reduced to O(n2) when the decomposition is performed at every n/10 iterations [48].

We will investigate the above methods on both noiseless and noisy functions in

Section 6.2 to study the effect of noise on their performance.

148

6.2. Numerical Experiments

We selected 73 unconstrained CUTEst problems with varying dimensions up to 200

to test the performance of NEWUOA and CMA-ES. We compare them on problems with and

without noise to simulate different settings of DFO problems.

Several metrics have been proposed in the literature to study the relative performance

of different methods, including performance profiles, data profiles and the log-ratio profiles

[67, 69]. We choose the log-ratio profile [67] in our study, as in contrast to the other two

options, it provides both an overview of the general performance of the methods and their

relative performance for each specific problem. Specifically, the height of the plotted bars

and the area of the shaded region can offer insights into the performance of the algorithms

with relative scale, although it works the best when only two methods are being compared.

We present our empirical findings based on accuracy and efficiency of the algorithms.

6.2.1. Noiseless Functions

We first present the case when the functions do not contain noise, i.e., the true objective

is always returned in double precision.

Accuracy. To measure the accuracy of the final solutions obtained by CMA-ES and

NEWUOA, we vary the budget, i.e. total number of function evaluations allowed, from 0.5n

to 500n and compare the optimality gap achieved by them. Formally, we compare the

relative accuracy of CMA-ES and NEWUOA up to 8 digits by computing the log-ratio:

(6.2.1) log2

max(φCMA-ES − φ∗, 10−8)

max(φNEWUOA − φ∗, 10−8)

149

where φCMA-ES and φNEWUOA denote the best objectives achieved by the corresponding

algorithms within the given budget, and φ∗ denotes the optimal objective value. We plot

(6.2.1) in an increasing order so that the areas of the shaded regions give a general overview

of the relative performance of the compared methods, with each bar demonstrating the

relative accuracy for a given problem.

0 50 100 150
Problem

10

5

0

5

10

lo
g 2

(CM
A

ES
*

N
EW

U
O

A
*

)

CMA-ES

NEWUOA

0 50 100 150
Problem

10

5

0

5

10

lo
g 2

(CM
A

ES
*

N
EW

U
O

A
*

)
CMA-ES

NEWUOA

0 50 100 150
Problem

10

5

0

5

10

lo
g 2

(CM
A

ES
*

N
EW

U
O

A
*

)

CMA-ES

NEWUOA

0 50 100 150
Problem

10

5

0

5

10

lo
g 2

(CM
A

ES
*

N
EW

U
O

A
*

)

CMA-ES

NEWUOA

Figure 6.1. (Selected) Accuracy Log-Ratio Profiles for Noiseless Problems.
Plots of (6.2.1) comparing CMA-ES and NEWUOA within a budget of 0.5n
(upper left), 2n (upper right), 10n (bottom left) and 500n (bottom right).

As observed in Figure 6.1, CMA-ES can achieve higher accuracy than NEWUOA when the

allowed number of function evaluations is limited to less than 2n. This behavior aligns

with our expectations since NEWUOA requires 2n+ 1 function evaluations to perform the

first iteration. However, as the allowed budget for function evaluations increases, NEWUOA

150

outperforms CMA-ES on nearly all problems. Nevertheless, it is worth noting that when

a significantly larger budget of 500n function evaluations is allowed, the performance

gap between NEWUOA and CMA-ES is narrowed. This indicates that CMA-ES can require a

considerate number of function evaluations to reach the solution.

Efficiency. We can further study the relative performance of CMA-ES and NEWUOA by

checking the minimum number of function evaluations required by each method to satisfy

(6.2.2) φ(xk)− φ∗ ≤ τ ·max(1, |φ∗|)

where φ∗ is the optimal objective value and τ is a pre-specified accuracy level. We denote

the required number of function evaluations as evalCMA-ES and evalNEWUOA. We fix the

budget as 500n function evaluations and vary τ from 0.1 to 10−8 to study the performance

with respect to various accuracy levels and plot the log-ratio

log2

evalCMA-ES

evalNEWUOA

(6.2.3)

in an increasing order in Figure 6.2.

We observe that NEWUOA is much more efficient than CMA-ES in achieving (6.2.2) across

nearly all problems, regardless of the accuracy level. Therefore, when dealing with noiseless

DFO problems where attaining a specific accuracy level is deemed sufficient or when the

budget is sufficiently large for model construction, NEWUOA is more preferable. Otherwise,

if only fewer than 2n function evaluations are available, CMA-ES can be served as an

alternative for potential higher accuracy.

151

0 50 100 150
Problem

10

5

0

5

10
lo

g 2
(fe

va
l C

M
A

ES
fe

va
l N

EW
U

O
A

)

CMA-ES

NEWUOA

0 50 100 150
Problem

10

5

0

5

10

lo
g 2

(fe
va

l C
M

A
ES

fe
va

l N
EW

U
O

A
)

CMA-ES

NEWUOA

0 50 100 150
Problem

10

5

0

5

10

lo
g 2

(fe
va

l C
M

A
ES

fe
va

l N
EW

U
O

A
)

CMA-ES

NEWUOA

0 50 100 150
Problem

10

5

0

5

10

lo
g 2

(fe
va

l C
M

A
ES

fe
va

l N
EW

U
O

A
)

CMA-ES

NEWUOA

Figure 6.2. (Selected) Efficiency Log-Ratio Profiles for Noiseless Problems.
Plots of (6.2.3) comparing CMA-ES and NEWUOA with τ = 0.1 (upper left),
10−4 (upper right), 10−6 (bottom left) and 10−8 (bottom right).

6.2.2. Noisy Functions

We now present results for problems with stochastic noise. To simulate a noisy setting,

we inject i.i.d Gaussian noise with mean zero and variance ε2f to the 73 noiseless CUTEst

functions:

(6.2.4) f(x; ξ) = φ(x) + ε(x; ξ), ε(x; ξ) ∼ N (0, ε2f),

where εf is denoted as the noise level of the problem.

Accuracy. To investigate the robustness of both CMA-ES and NEWUOA against compu-

tation errors, we ran the solvers using the same parameter settings as in the noiseless

152

case. Similar to Section 6.2.1, we measure the best true objective value obtained by both

methods within budgets ranging from 0.5n to 500n function evaluations. We report the

log-ratio profiles in Figure 6.3 for a noise level of 10−3, which is representative for other

noise levels. The log-ratio profiles reveal that for very small budgets (≤ 2n), CMA-ES is

slightly more competitive than NEWUOA. However, as the budget increases to medium level,

NEWUOA consistently outperforms CMA-ES in terms of final accuracy. Intriguingly, when

more generous budgets of function evaluations are allowed, CMA-ES demonstrates its ability

to achieve significantly higher accuracy than NEWUOA across a majority of the problems.

0 50 100 150
Problem

10

5

0

5

10

lo
g 2

(CM
A

ES
*

N
EW

U
O

A
*

)

CMA-ES

NEWUOA

0 50 100 150
Problem

10

5

0

5

10

lo
g 2

(CM
A

ES
*

N
EW

U
O

A
*

)

CMA-ES

NEWUOA

0 50 100 150
Problem

10

5

0

5

10

lo
g 2

(CM
A

ES
*

N
EW

U
O

A
*

)

CMA-ES

NEWUOA

0 50 100 150
Problem

10

5

0

5

10

lo
g 2

(CM
A

ES
*

N
EW

U
O

A
*

)

CMA-ES

NEWUOA

Figure 6.3. (Selected) Accuracy Log-Ratio Profiles for Noisy Problems (εf =
10−3). Plots of (6.2.1) comparing CMA-ES and NEWUOA within a budget of
0.5n (upper left), 2n (upper right), 10n (bottom left) and 500n (bottom
right).

153

Efficiency. We evaluate the efficiency of CMA-ES and NEWUOA in the noisy setting by

comparing the number of function evaluations, denoted as evalCMA-ES evalNEWUOA, that

are required to achieve

φ(xk)− φ∗ ≤ τ · (φ(x0)− φ∗),(6.2.5)

where τ varies from 0.1 to 10−8 and φ∗ denotes the optimal objective value. We plot the

log-ratio (6.2.3) in Figure 6.4 and 6.5 to report the efficiency of the methods corresponding

to noise levels of 10−1 and 10−7 respectively. Our observations indicate that NEWUOA is

more efficient than CMA-ES in obtaining a given accuracy level when the desired accuracy

level is low or the noise level is low. For highly noisy problems, CMA-ES and NEWUOA are

competitive in achieving high accuracy levels. This finding highlights the advantage of

CMA-ES when an abundant number of function evaluations are available for solving noisy

DFO problems, especially when high accuracy is desirable.

We note that, compared to the noiseless case, the efficiency of NEWUOA in solving

functions with high noise levels and the final accuracy obtained by it under large budgets

are both impacted by noise. Although NEWUOA is more competitive than CMA-ES in solving

noiseless problems, with the presence of noise, CMA-ES is more capable of achieving high

accuracy especially for large noise levels. This implies that the presence of noise poses

additional challenges for NEWUOA, impacting its effectiveness in solving unconstrained DFO

problems. In light of this finding, we briefly discuss in the next section the effect of noise

on the performance of an IBO method and potential strategies to mitigate the effects of

noise on the performance of NEWUOA and other IBO methods.

154

0 50 100 150
Problem

10

5

0

5

10
lo

g 2
(fe

va
l C

M
A

ES
fe

va
l N

EW
U

O
A

)

CMA-ES

NEWUOA

0 50 100 150
Problem

10

5

0

5

10

lo
g 2

(fe
va

l C
M

A
ES

fe
va

l N
EW

U
O

A
)

CMA-ES

NEWUOA

0 50 100 150
Problem

10

5

0

5

10

lo
g 2

(fe
va

l C
M

A
ES

fe
va

l N
EW

U
O

A
)

CMA-ES

NEWUOA

0 50 100 150
Problem

10

5

0

5

10

lo
g 2

(fe
va

l C
M

A
ES

fe
va

l N
EW

U
O

A
)

CMA-ES

NEWUOA

Figure 6.4. (Selected) Efficiency Log-Ratio Profiles for Noisy Problems (εf =
0.1). Plots of (6.2.3) comparing CMA-ES and NEWUOA with τ = 0.1 (upper
left), 10−4 (upper right), 10−6 (bottom left) and 10−8 (bottom right).

6.3. On the Accuracy of IBO methods in the Presence of Noise

Recall from Chapter 1 that IBO methods rely on model construction and ratio tests

to perform updates within a trust region framework. With the presence of noise in the

objective function, the quadratic model can be inaccurate due to the noisy function

values of the interpolation points. Moreover, the noise can cause the ratio test to suggest

misleading suggestions for step acceptance or rejection, as the noise can lead to arbitrarily

wrong ratio values. Despite these challenges, our numerical results suggest that NEWUOA

still demonstrates reasonable progress even when noise is present. To shed light on this

observation, we present below a result that provides an upper bound for the approximation

155

0 50 100 150
Problem

10

5

0

5

10
lo

g 2
(fe

va
l C

M
A

ES
fe

va
l N

EW
U

O
A

)

CMA-ES

NEWUOA

0 50 100 150
Problem

10

5

0

5

10

lo
g 2

(fe
va

l C
M

A
ES

fe
va

l N
EW

U
O

A
)

CMA-ES

NEWUOA

0 50 100 150
Problem

10

5

0

5

10

lo
g 2

(fe
va

l C
M

A
ES

fe
va

l N
EW

U
O

A
)

CMA-ES

NEWUOA

0 50 100 150
Problem

10

5

0

5

10

lo
g 2

(fe
va

l C
M

A
ES

fe
va

l N
EW

U
O

A
)

CMA-ES

NEWUOA

Figure 6.5. (Selected) Efficiency Log-Ratio Profiles for Noisy Problems (εf =
10−7). Plots of (6.2.3) comparing CMA-ES and NEWUOA with τ = 0.1 (upper
left), 10−2 (upper right), 10−4 (bottom left) and 10−6 (bottom right).

error of the underdetermined quadratic model m(x), when bounded noise is present. See

Appendix D for a proof based on [29]. A similar bound can be obtained by considering

the mean squared approximation error.

Theorem 6.3.1. Suppose |ε(x)| ≤ εf ,∀x ∈ Rn and φ : Rn → R is continuously differ-

entiable with ∇φ being L2-Lipschitz continuous. We further assume that the interpolation

set Y = {y0, y1, ..., yp} is poised in B(y0; ∆). Then for all x ∈ B(y0; ∆), we have that

‖∇φ(x)−∇m(x)‖ ≤
5
√
p

2
‖M̂ †‖(L2 + ‖H‖)∆ +

2
√
p‖M̂ †‖εf

∆
(6.3.1)

|φ(x)−m(x)| ≤
5
√
p‖M̂ †‖+ 1

2
(‖H‖+ L2)∆2 + (2

√
p‖M̂ †‖+ 1)εf(6.3.2)

156

where M̂ † = (M̂TM̂)−1M̂T and

M̂ =

[
(y1 − y0)/∆ (y2 − y0)/∆ ... (yp − y0)/∆

]

Note that in contrast to the noiseless case when εf = 0, for which the upperbound in

(6.3.1) and (6.3.2) shrink to zero, instead the upperbound for (6.3.1) tends to infinity due

to the additional noise term. Therefore, when the trust region is sufficiently large and the

noise term is dominated by the other term, one can expect IBO methods to make progress

similarly as in the noiseless case. However, one cannot expect IBO methods to progress

effectively once the trust region becomes too small. Indeed, by minimizing the right-hand-

side of (6.3.1), the trust region that minimizes the approximation is ∆ = 2
√

εf
5(‖H‖+L2)

.

We present in Figure 6.6 an example of NEWUOA failing to make progress when the

initial trust region is too small. We observe that when noise is not present in the function,

NEWUOA is able to achieve similar accuracy level no matter what value the initial trust

region is set to, although efficiency of the algorithm may differ. However, in the presence

of noise, NEWUOA may stagnate when the trust region is too small with respect to the noise

level (and potentially other characteristics of the function and interpolation set), with the

algorithm keeps shrinking the trust region.

It has been found in [93] that using more interpolation points can be beneficial in

increasing the final accuracy of NEWUOA. However, as there is an upper limit in the number

of interpolations in quadratic model construction (we do not consider regression model),

we briefly discuss three strategies that can improve the accuracy of an IBO method in the

presence of noise.

157

Figure 6.6. Solving noiseless and noisy SROSENBR function with 10 vari-
ables using different initial trust region ∆0. Left: noiseless. Right: noise
level = 0.1.

Restarts. A simple yet effective strategy of achieving higher accuracy for NEWUOA

is to employ restarts. To elaborate, instead of terminate NEWUOA when the trust region

converges to the minimum size (10−8 in our setting), we restart the algorithm at the

returned solution by considering it as the new initial point. Therefore, we abandon every

point in the interpolation set and reset the trust region radius to the initial value. We

repeat this process until we have reached the allowable budget, i.e., the maximum number

of function evaluations. We have observed effectiveness of this approach in our empirical

studies and we visualize the findings in the log-ratio plots in Figure 6.7 and Figure 6.8.

However, this naive approach can be deemed inefficient as in Figure 6.9. Note that

by increasing the trust region to large size, the algorithm evaluates at a great number of

points that have high function values and are far from the solution. We speculate that

more effective restart procedure can be developed such that the function evaluations are

used more efficiently. For instance, by using a smaller initial trust region for later runs

or by setting the minimum trust region to be on the order of the noise level allows more

158

0 50 100 150
Problem

10

5

0

5

10

lo
g 2

(CM
A

ES
*

N
EW

U
O

A
*

)

CMA-ES

NEWUOA

0 50 100 150
Problem

10

5

0

5

10

lo
g 2

(CM
A

ES
*

N
EW

U
O

A
*

)

CMA-ES

NEWUOA

Figure 6.7. (Selected) Accuracy Log-Ratio Profiles for Noisy Problems with
noise level 0.001 (Left) and 10−7(Right). Plots of (6.2.1) comparing CMA-ES

and NEWUOA with restarts within a budget of 500n.

0 50 100 150
Problem

10

5

0

5

10

lo
g 2

(fe
va

l C
M

A
ES

fe
va

l N
EW

U
O

A
)

CMA-ES

NEWUOA

0 50 100 150
Problem

10

5

0

5

10

lo
g 2

(fe
va

l C
M

A
ES

fe
va

l N
EW

U
O

A
)

CMA-ES

NEWUOA

Figure 6.8. (Selected) Efficiency Log-Ratio Profiles for Noisy Problems with
noise level 0.001 (Left) and 10−7(Right). Plots of (6.2.3) comparing CMA-ES

and NEWUOA with restarts for τ = 10−8.

restarts and potentially higher accuracy. See [18] for a restart strategy for noisy least

square problems.

Ratio Test Relaxation. As suggested in [99], applying relaxation to the ratio test

can mitigate the effect of noise in the objective, particularly to prevent the trust region

from becoming excessively small. Therefore, we modify NEWUOA such that the ratio test is

159

Figure 6.9. Solving DIXMAANJ with 90 variables using NEWUOA with restarts
and CMA-ES. The noise level is 10−3.

relaxed as

(6.3.3)
f(xk)− f(xk + s) + 2εf

mk(xk)−mk(xk + s) + 2εf
.

However, contrary to our expectations, our numerical experiments demonstrate that

relaxing the ratio test for NEWUOA does not improve the final accuracy overall. We present

the accuracy log-ratio plots in Figure 6.10. Interestingly, we have observed accuracy

improvements in DFOTR, a different IBO algorithm, when performing the same ratio

relaxation. This outcome may be attributed to the utilization of a trust region lower

bound in NEWUOA, which prevents the algorithm from accepting steps that are too small

with respect to this bounds. Indeed, as shown in Figure 6.11, NEWUOA is unable to recover

from an initial trust region is too small even though the ratio test has been relaxed. This

observation indicates that more sophisticated design may be required to further improve

the robustness of NEWUOA for solving noisy DFO problems.

160

0 50 100 150
Problem

10

5

0

5

10

lo
g 2

(Tr
ue

*

Fa
ls

e
*
)

relaxed = True

relaxed = False

0 50 100 150
Problem

10

5

0

5

10

lo
g 2

(Tr
ue

*

Fa
ls

e
*
)

relaxed = True

relaxed = False

Figure 6.10. (Selected) Accuracy Log-Ratio Profiles for Noisy Problems with
noise level 0.001 (Left) and 10−7(Right). Plots of (6.2.1) comparing NEWUOA

with and without restarts using a budget of 500n.

Figure 6.11. Solving noisy SROSENBR function with 10 variables and noise
level of 0.1 using different initial trust region ∆0. The ratio test in NEWUOA

is relaxed as in (6.3.3).

Adaptive Sampling. When the noise term ε(x) in the problem (6.1.2) is stochastic,

another viable approach for obtaining an higher accuracy is to employ sample averaging

so that the function value at each point is computed as an average of multiple evaluations

at the same point [20, 31, 89]. The noise level of the function is therefore reduced due

to variance reduction. An adaptive sample averaging strategy can balance the tradeoff

161

between the efficiency of the IBO method and the final accuracy. However, theoretical

convergence of existing adaptive sample averaging based IBO methods often require a

sample size of O(∆−4
k). This is not desirable even though in practice the sample size

is chosen as O(∆−1
k), as it leads to inefficiency in early iterations. Since IBO methods

can often make progress before the trust region become too small, a more sophisticated

sampling strategy may be available. For instance, the sample size may only need to

be increased when the trust region reaches a given level, say the trust region size that

minimizes the upper bound of (6.3.1). Yet in our preliminary studies we have observed

difficulties in the algorithm in making progress when the trust region is not adequately

enlarged and the interpolation set is not adjusted. We speculate that an optimal adaptive

sampling strategy requires careful handling of factors such as the sample size, trust region

management and positioning of the interpolation sets.

6.4. Final Remarks

We have performed a comparative study of NEWUOA and CMA-ES on a broad set of

unconstrained problems in this chapter. We have observed that NEWUOA outperforms

CMA-ES in terms of efficiency and accuracy when the function evaluations are exact.

Notably, our findings indicate that, in the presence of noise, NEWUOA is still more efficient

than CMA-ES for obtaining desirable accuracy levels within a moderate number of function

evaluations. Yet as opposed to the noiseless case, it obtains lower final accuracy than

CMA-ES when a large budget of function evaluations are available.

This performance gap motivates us to analyze the challenges associated with noisy

evaluations for IBO methods and to understand potential strategies for improving their

162

performance in the presence of noise. In particular, our preliminary empirical results suggest

that utilizing naive restarts with NEWUOA can significantly narrow down the performance

gap between CMA-ES in terms of final accuracy. However, relaxing the ratio test does not

lead to improved accuracy of NEWUOA as opposed to other IBO methods such as DFO-TR.

In addition, the effectiveness of adaptive sampling is contingent upon further investigation.

These findings highlight the importance of designing more efficient restarts for improving

the accuracy, the limited impact of relaxing the ratio tests, the need for more meticulous

design of adaptive sampling, and the necessity of further redesign of the classical IBO

methods in the presence of noise.

163

References

[1] Aghajanyan, A., Zettlemoyer, L., and Gupta, S. Intrinsic dimension-
ality explains the effectiveness of language model fine-tuning. arXiv preprint
arXiv:2012.13255 (2020).

[2] Audet, C., and Hare, W. Derivative-free and blackbox optimization.

[3] Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., and
Ives, Z. Dbpedia: A nucleus for a web of open data. In The Semantic Web:
6th International Semantic Web Conference, 2nd Asian Semantic Web Conference,
ISWC 2007+ ASWC 2007, Busan, Korea, November 11-15, 2007. Proceedings (2007),
Springer, pp. 722–735.

[4] Balakrishna, R., Antoniou, C., Ben-Akiva, M., Koutsopoulos, H. N.,
and Wen, Y. Calibration of microscopic traffic simulation models: Methods and
application. Transportation Research Record 1999, 1 (2007), 198–207.

[5] Bandeira, A. S., Scheinberg, K., and Vicente, L. N. Computation of
sparse low degree interpolating polynomials and their application to derivative-free
optimization. Mathematical programming 134, 1 (2012), 223–257.

[6] Barton, R. R. Computing forward difference derivatives in engineering optimiza-
tion. Engineering optimization 20, 3 (1992), 205–224.

[7] Berahas, A. S., Byrd, R. H., and Nocedal, J. Derivative-free optimization of
noisy functions via quasi-Newton methods. SIAM Journal on Optimization 29, 2
(2019), 965–993.

[8] Berahas, A. S., Cao, L., Choromanski, K., and Scheinberg, K. Linear
interpolation gives better gradients than Gaussian smoothing in derivative-free
optimization. arXiv preprint arXiv:1905.13043 (2019).

[9] Berahas, A. S., Cao, L., Choromanski, K., and Scheinberg, K. A the-
oretical and empirical comparison of gradient approximations in derivative-free
optimization. arXiv preprint arXiv:1905.01332 (2019).

164

[10] Berahas, A. S., Cao, L., Choromanski, K., and Scheinberg, K. A the-
oretical and empirical comparison of gradient approximations in derivative-free
optimization. Foundations of Computational Mathematics (2021), 1–54.

[11] Berghen, F. V., and Bersini, H. Condor, a new parallel, constrained extension
of powell’s uobyqa algorithm: Experimental results and comparison with the dfo
algorithm. Journal of computational and applied mathematics 181, 1 (2005), 157–175.

[12] Bowman, S. R., Angeli, G., Potts, C., and Manning, C. D. A large anno-
tated corpus for learning natural language inference. arXiv preprint arXiv:1508.05326
(2015).

[13] Branch, M. A., Coleman, T. F., and Li, Y. A subspace, interior, and conjugate
gradient method for large-scale bound-constrained minimization problems. SIAM
Journal on Scientific Computing 21, 1 (1999), 1–23.

[14] Brekelmans, R. C. M., Driessen, L. T., Hamers, H. J. M., and Den Her-
tog, D. Gradient estimation schemes for noisy functions. Journal of Optimization
Theory and Applications 126, 3 (2005), 529–551.

[15] Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal,
P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al. Language
models are few-shot learners. Advances in neural information processing systems 33
(2020), 1877–1901.

[16] Byrd, R. H., Nocedal, J., and Waltz, R. KNITRO: An integrated package for
nonlinear optimization. In Large-Scale Nonlinear Optimization (2006), G. di Pillo
and M. Roma, Eds., Springer, pp. 35–59.

[17] Cao, L., Berahas, A. S., and Scheinberg, K. First-and second-order high
probability complexity bounds for trust-region methods with noisy oracles. arXiv
preprint arXiv:2205.03667 (2022).

[18] Cartis, C., Fiala, J., Marteau, B., and Roberts, L. Improving the flex-
ibility and robustness of model-based derivative-free optimization solvers. ACM
Transactions on Mathematical Software (TOMS) 45, 3 (2019), 1–41.

[19] Chen, P.-Y., Zhang, H., Sharma, Y., Yi, J., and Hsieh, C.-J. Zoo: Zeroth
order optimization based black-box attacks to deep neural networks without training
substitute models. In Proceedings of the 10th ACM Workshop on Artificial Intelligence
and Security (2017), ACM, pp. 15–26.

[20] Chen, R., Menickelly, M., and Scheinberg, K. Stochastic optimization using

165

a trust-region method and random models. Mathematical Programming 169, 2 (2018),
447–487.

[21] Choi, T., and Kelley, C. T. Superlinear convergence and implicit filtering.
SIAM Journal on Optimization 10, 4 (2000), 1149–1162.

[22] Choromanski, K., Pacchiano, A., Parker-Holder, J., Tang, Y., Jain, D.,
Yang, Y., Iscen, A., Hsu, J., and Sindhwani, V. Provably robust blackbox
optimization for reinforcement learning, 2019.

[23] Conejo, P., Karas, E. W., and Pedroso, L. G. A trust-region derivative-free
algorithm for constrained optimization. Optimization Methods and Software 30, 6
(2015), 1126–1145.

[24] Conejo, P., Karas, E. W., Pedroso, L. G., Ribeiro, A. A., and Sachine,
M. Global convergence of trust-region algorithms for convex constrained minimization
without derivatives. Applied Mathematics and Computation 220 (2013), 324–330.

[25] Conn, A. R., Scheinberg, K., and Toint, P. L. On the convergence of
derivative-free methods for unconstrained optimization. Approximation theory and
optimization: tributes to MJD Powell (1997), 83–108.

[26] Conn, A. R., Scheinberg, K., and Toint, P. L. A derivative free optimization
algorithm in practice. In Proceedings of 7th AIAA/USAF/NASA/ISSMO Symposium
on Multidisciplinary Analysis and Optimization, St. Louis, MO (1998), vol. 48, p. 3.

[27] Conn, A. R., Scheinberg, K., and Vicente, L. Error estimates and poisedness
in multivariate polynomial interpolation. Tech. rep., IBM T. J. Watson Research
Center, 2006.

[28] Conn, A. R., Scheinberg, K., and Vicente, L. Geometry of interpolation sets
in derivative free optimization. Mathematical Programming, Series A 111 (2007),
141–172.

[29] Conn, A. R., Scheinberg, K., and Vicente, L. N. Introduction to derivative-
free optimization, vol. 8. SIAM, 2009.

[30] Curtis, A. R., and Reid, J. K. The choice of step lengths when using differences
to approximate Jacobian matrices. IMA Journal of Applied Mathematics 13, 1 (1974),
121–126.

[31] Deng, G., and Ferris, M. C. Adaptation of the uobyqa algorithm for noisy
functions. In Proceedings of the 2006 winter simulation conference (2006), IEEE,

166

pp. 312–319.

[32] Deng, M., Wang, J., Hsieh, C.-P., Wang, Y., Guo, H., Shu, T., Song,
M., Xing, E. P., and Hu, Z. Rlprompt: Optimizing discrete text prompts with
reinforcement learning. arXiv preprint arXiv:2205.12548 (2022).

[33] Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert: Pre-training
of deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805 (2018).

[34] Diao, S., Huang, Z., Xu, R., Li, X., Lin, Y., Zhou, X., and Zhang,
T. Black-box prompt learning for pre-trained language models. arXiv preprint
arXiv:2201.08531 (2022).

[35] Digabel, S. L., and Wild, S. M. A taxonomy of constraints in simulation-based
optimization. arXiv preprint arXiv:1505.07881 (2015).

[36] Diouane, Y., Gratton, S., and Vicente, L. N. Globally convergent evolution
strategies. Mathematical Programming 152 (2015), 467–490.

[37] Eriksson, D., Bindel, D., and Shoemaker, C. A. pysot and poap: An
event-driven asynchronous framework for surrogate optimization. arXiv preprint
arXiv:1908.00420 (2019).

[38] Fornberg, B. Generation of finite difference formulas on arbitrarily spaced grids.
Mathematics of computation 51, 184 (1988), 699–706.

[39] Frazier, P. I. A tutorial on bayesian optimization. arXiv preprint arXiv:1807.02811
(2018).

[40] Gill, P. E., Murray, W., Saunders, M. A., and Wright, M. H. Computing
forward-difference intervals for numerical optimization. SIAM Journal on Scientific
and Statistical Computing 4, 2 (1983), 310–321.

[41] Gill, P. E., Murray, W., and Wright, M. H. Practical Optimization. Academic
Press, London, 1981.

[42] Gould, N. I., Orban, D., and Toint, P. L. CUTEst: a constrained and
unconstrained testing environment with safe threads for mathematical optimization.
Computational Optimization and Applications 60, 3 (2015), 545–557.

[43] Gould, N. I. M., Orban, D., and Toint, P. L. GALAHAD, a library of
thread-safe fortran 90 packages for large-scale nonlinear optimization. ACM Trans.

167

Math. Softw. 29, 4 (2003), 353–372.

[44] Gray, G. A., and Kolda, T. G. Algorithm 856: Appspack 4.0: Asynchronous
parallel pattern search for derivative-free optimization. ACM Transactions on
Mathematical Software (TOMS) 32, 3 (2006), 485–507.

[45] Hansen, N. The cma evolution strategy: A tutorial. arXiv preprint
arXiv:1604.00772 (2016).

[46] Hansen, N., Arnold, D. V., and Auger, A. Evolution strategies. Springer
handbook of computational intelligence (2015), 871–898.

[47] Hansen, N., Auger, A., Ros, R., Finck, S., and Poš́ık, P. Comparing
results of 31 algorithms from the black-box optimization benchmarking bbob-2009.
In Proceedings of the 12th annual conference companion on Genetic and evolutionary
computation (2010), pp. 1689–1696.

[48] Hansen, N., and Ostermeier, A. Completely derandomized self-adaptation in
evolution strategies. Evolutionary computation 9, 2 (2001), 159–195.

[49] Hare, W., Jarry-Bolduc, G., and Planiden, C. Error bounds for overdeter-
mined and underdetermined generalized centred simplex gradients. arXiv preprint
arXiv:2006.00742 (2020).

[50] Hare, W., and Srivastava, K. Applying complex-step derivative approximations
in model-based derivative-free optimization.

[51] Hough, M., and Roberts, L. Model-based derivative-free methods for convex-
constrained optimization. arXiv preprint arXiv:2111.05443 (2021).

[52] Howard, J., and Ruder, S. Universal language model fine-tuning for text
classification. arXiv preprint arXiv:1801.06146 (2018).

[53] Jin, B., Scheinberg, K., and Xie, M. High probability complexity bounds for
line search based on stochastic oracles. Advances in Neural Information Processing
Systems 34 (2021).

[54] Junges, S., Jansen, N., Dehnert, C., Topcu, U., and Katoen, J.-P. Safety-
constrained reinforcement learning for mdps. Lecture Notes in Computer Science
(2016), 130–146.

[55] Kelley, C. T. Implicit filtering, vol. 23. SIAM, 2011.

168

[56] Kiefer, J., Wolfowitz, J., et al. Stochastic estimation of the maximum of a
regression function. The Annals of Mathematical Statistics 23, 3 (1952), 462–466.

[57] Kimiaei, M. Line search in noisy unconstrained black box optimization. Tech. rep.,
Technical report, University of Vienna, 2020.

[58] Klein, A., Falkner, S., Bartels, S., Hennig, P., and Hutter, F. Fast
bayesian hyperparameter optimization on large datasets. Electronic Journal of
Statistics 11, 2 (2017), 4945–4968.

[59] Larson, J., Menickelly, M., and Wild, S. M. Derivative-free optimization
methods. Acta Numerica 28 (2019), 287–404.

[60] Lester, B., Al-Rfou, R., and Constant, N. The power of scale for parameter-
efficient prompt tuning. arXiv preprint arXiv:2104.08691 (2021).

[61] Li, X. L., and Liang, P. Prefix-tuning: Optimizing continuous prompts for
generation. arXiv preprint arXiv:2101.00190 (2021).

[62] Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H., and Neubig, G. Pre-train,
prompt, and predict: A systematic survey of prompting methods in natural language
processing. ACM Computing Surveys 55, 9 (2023), 1–35.

[63] Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis,
M., Zettlemoyer, L., and Stoyanov, V. Roberta: A robustly optimized bert
pretraining approach. arXiv preprint arXiv:1907.11692 (2019).

[64] Loshchilov, I., and Hutter, F. Cma-es for hyperparameter optimization of
deep neural networks. arXiv preprint arXiv:1604.07269 (2016).

[65] Lyness, J. N. Has numerical differentiation a future. In Proceedings Seventh
Manitoba Conference on Numerical Mathematics, Utilitas Mathematica Publishing
(1977).

[66] Lyness, J. N., and Moler, C. B. Numerical differentiation of analytic functions.
SIAM Journal on Numerical Analysis 4, 2 (1967), 202–210.

[67] Morales, J. L. A numerical study of limited memory BFGS methods, 2002.
Applied Mathematics Letters.

[68] Moré, J. J., Garbow, B. S., and Hillstrom, K. E. User guide for MINPACK-1.
Tech. Rep. 80–74, Argonne National Laboratory, Argonne, Illinois, USA, 1980.

169

[69] Moré, J. J., and Wild, S. M. Benchmarking derivative-free optimization
algorithms. SIAM Journal on Optimization 20, 1 (2009), 172–191.

[70] Moré, J. J., and Wild, S. M. Estimating computational noise. SIAM Journal
on Scientific Computing 33, 3 (2011), 1292–1314.

[71] Moré, J. J., and Wild, S. M. Estimating derivatives of noisy simulations. ACM
Transactions on Mathematical Software (TOMS) 38, 3 (2012), 19.

[72] Nelder, J. A., and Mead, R. A simplex method for function minimization.
Computer Journal 7 (1965), 308–313.

[73] Nesterov, Y., and Spokoiny, V. Random gradient-free minimization of convex
functions. Foundations of Computational Mathematics 17, 2 (2017), 527–566.

[74] Neumaier, A. Complete search in continuous global optimization and constraint
satisfaction. Acta numerica 13 (2004), 271–369.

[75] Nocedal, J., and Wright, S. Numerical Optimization, 2 ed. Springer New York,
1999.

[76] Powell, M. Linearly constrained optimization algorithm. Tech. rep., Cambridge
University, 2005.

[77] Powell, M. J. A direct search optimization method that models the objective
and constraint functions by linear interpolation. In Advances in optimization and
numerical analysis. Springer, 1994, pp. 51–67.

[78] Powell, M. J. The NEWUOA software for unconstrained optimization without
derivatives. In Large-scale nonlinear optimization. Springer, 2006, pp. 255–297.

[79] Powell, M. J. The bobyqa algorithm for bound constrained optimization without
derivatives. Cambridge NA Report NA2009/06, University of Cambridge, Cambridge
(2009), 26–46.

[80] Powell, M. J. On fast trust region methods for quadratic models with linear
constraints. Mathematical Programming Computation 7, 3 (2015), 237–267.

[81] Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I.,
et al. Language models are unsupervised multitask learners. OpenAI blog 1, 8
(2019), 9.

[82] Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M.,

170

Zhou, Y., Li, W., and Liu, P. J. Exploring the limits of transfer learning with a
unified text-to-text transformer. The Journal of Machine Learning Research 21, 1
(2020), 5485–5551.

[83] Ragonneau, T. M. Model-based derivative-free optimization methods and software.
arXiv preprint arXiv:2210.12018 (2022).

[84] Ragonneau, T. M., and Zhang, Z. PDFO: Cross-platform interfaces for Powell’s
derivative-free optimization solvers (version 1.0), 2020.

[85] Rios, L. M., and Sahinidis, N. V. Derivative-free optimization: a review
of algorithms and comparison of software implementations. Journal of Global
Optimization 56, 3 (2013), 1247–1293.

[86] Roberts, L., and Cartis, C. A derivative-free gauss–newton method. Mathe-
matical Programming Computation (2019).

[87] Sahinidis, N. V., and Tawarmalani, M. BARON 7.2.5: Global Optimization of
Mixed-Integer Nonlinear Programs, User’s Manual, 2005.

[88] Salimans, T., Ho, J., Chen, X., Sidor, S., and Sutskever, I. Evolution
strategies as a scalable alternative to reinforcement learning, 2017.

[89] Shashaani, S., Hashemi, F. S., and Pasupathy, R. ASTRO-DF: A class of
adaptive sampling trust-region algorithms for derivative-free simulation optimization.
optimization online (2015).

[90] Shi, H.-J. M., Xie, Y., Byrd, R., and Nocedal, J. A noise-tolerant quasi-
newton algorithm for unconstrained optimization. arXiv preprint arXiv:2010.04352
(2020).

[91] Shi, H.-J. M., Xie, Y., Byrd, R., and Nocedal, J. A noise-tolerant quasi-
newton algorithm for unconstrained optimization. SIAM Journal on Optimization
32, 1 (2022), 29–55.

[92] Shi, H.-J. M., Xie, Y., Xuan, M. Q., and Nocedal, J. Adaptive finite-
difference interval estimation for noisy derivative-free optimization. arXiv preprint
arXiv:2110.06380 (2021).

[93] Shi, H.-J. M., Xuan, M. Q., Oztoprak, F., and Nocedal, J. On the
numerical performance of derivative-free optimization methods based on finite-
difference approximations. arXiv preprint arXiv:2102.09762 (2021).

171

[94] Shi, M., Nocedal, J., Oztoprak, F., and Xuan, M. Additional numerical
results for the paper: “On the numerical performance of finite-difference based
methods for derivative-free optimization. Technical report, Northwestern University,
Evanston, IL U.S.A., 2022.

[95] Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning, C. D., Ng,
A. Y., and Potts, C. Recursive deep models for semantic compositionality over a
sentiment treebank. In Proceedings of the 2013 conference on empirical methods in
natural language processing (2013), pp. 1631–1642.

[96] Squire, W., and Trapp, G. Using complex variables to estimate derivatives of
real functions. SIAM review 40, 1 (1998), 110–112.

[97] Stepleman, R. S., and Winarsky, N. D. Adaptive numerical differentiation.
Mathematics of Computation 33, 148 (1979), 1257–1264.

[98] Stulp, F., and Sigaud, O. Path integral policy improvement with covariance
matrix adaptation. arXiv preprint arXiv:1206.4621 (2012).

[99] Sun, S., and Nocedal, J. A trust region method for the optimization of noisy
functions. arXiv preprint arXiv:2201.00973 (2022).

[100] Sun, T., Shao, Y., Qian, H., Huang, X., and Qiu, X. Black-box tuning
for language-model-as-a-service. In International Conference on Machine Learning
(2022), PMLR, pp. 20841–20855.

[101] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez,
A. N., Kaiser, L., and Polosukhin, I. Attention is all you need. Advances in
neural information processing systems 30 (2017).

[102] Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., and Bowman,
S. R. Glue: A multi-task benchmark and analysis platform for natural language
understanding. arXiv preprint arXiv:1804.07461 (2018).

[103] Wild, S. M., Sarich, J., and Schunck, N. Derivative-free optimization for
parameter estimation in computational nuclear physics. Journal of Physics G:
Nuclear and Particle Physics 42, 3 (2015), 034031.

[104] Xie, Y., Byrd, R. H., and Nocedal, J. Analysis of the BFGS method with
errors. SIAM Journal on Optimization 30, 1 (2020), 182–209.

[105] Zhang, H., Conn, A. R., and Scheinberg, K. A derivative-free algorithm for
least-squares minimization. SIAM Journal on Optimization 20, 6 (2010), 3555–3576.

172

[106] Zhang, X., Zhao, J., and LeCun, Y. Character-level convolutional networks for
text classification. Advances in neural information processing systems 28 (2015).

173

APPENDIX A

On the Numerical Performance of Finite-Difference Based

Methods for Derivative-Free Optimization

A.1. Numerical Investigation of Lipschitz Estimation

A.1.1. Investigation of Theoretical Lipschitz Estimates

In Section 2.2.2, we approximated the bound on the second and third derivative L

and M (or the Lipschitz constant of the first and second derivative) along the interval

I = {x± tp : t ∈ [0, h0]} for h0 > 0 every time finite-differencing is performed.

For forward-differencing, we employed the Moré and Wild heuristic [71]. The heuristic

estimates the bound on the second derivative of a univariate function with noise. Assume

φ : R → R is univariate. If we let ∆(t) = f(x + t) − 2f(x) + f(x − t), then t > 0 must

satisfy two conditions:

|∆(t)| ≥ τ1εf , τ1 � 1(A.1.1)

|f(x± t)− f(x)| ≤ τ2 max{|f(x)|, |f(x± t)|}, τ2 ∈ (0, 1).(A.1.2)

In practice, τ1 = 100 and τ2 = 0.1. The first condition ensures that h is sufficiently large

such that the second-order difference is not dominated by noise, while the second condition

enforces that the difference is not dominated by a particular evaluation, so that there is

174

“equal” contribution from each function evaluation in the finite-difference approximation.

If conditions (A.1.1) and (A.1.2) are satisfied, then we take L = max{10−1, |∆(t)|/t2}.

For central differencing, we used a theoretical estimate based on knowledge of the true

Hessian ∇2φ(x):

(A.1.3) M = max

{
10−1,

|pT (∇2φ(x+ h̃ p
‖p‖)−∇

2φ(x))p|

h̃‖p‖2

}

where h̃ =
√
εM . Since this estimate is ideal, we do not include the cost of evaluating M

in the number of function evaluations. In both cases, the maximum is taken to ensure that

the bound is strictly bounded away from 0 so that (2.2.9) and (2.2.10) remain well-defined.

One may ask whether or not a refined choice of L or M is necessary for finite-difference

l-bfgs. To show the impact of Lipschitz estimation on the performance of finite-difference

methods, we focus on forward-difference l-bfgs and compare nine different theoretical

Lipschitz estimation schemes. The first five consider techniques where L is fixed for the

entire run based on information at the initial point. We test this because it is frequently

claimed that using an initial estimate of L is sufficient for the entire run; see [40, 71]. The

first approach requires no additional information about the function, while the others

incorporate information about the Hessian at the current point. The latter four techniques

similarly incorporate information about the Hessian but re-estimate L whenever the

finite-difference gradient or directional derivative is evaluated.

All of these techniques rely on the assumption that |D2
pφ(x)| ≈ |D2

pφ(ξ)| for some

ξ ∈ [x, x+ h]. As we will see, both of these approximations that are based on conventional

wisdom are challenged in our experiments.

175

(1) Fix L = 1. This requires no additional knowledge about the problem at no added

cost.

(2) Fix L = max{10−1, ‖∇2φ(x0)‖2}. Similar to fixing L = 1, but incorporates

knowledge of the initial Hessian.

(3) Fix L = max
{

10−1, 1
n

∑n
i=1 |[∇2φ(x0)]ii|

}
. This can be obtained by choosing h

such that the bound on ‖g(x0)−∇φ(x0)‖1 at the initial point is minimized.

(4) Fix L = max
{

10−1, 1√
n

√∑n
i=1[∇2φ(x0)]2ii

}
. This can be obtained by choosing h

such that the bound on ‖g(x0)−∇φ(x0)‖2
2 at the initial point is minimized.

(5) Fix L to a vector (max{10−1, |[∇2φ(x0)]ii|})ni=1 and use the ith component for

estimating the ith component of g(x). Uses ‖L‖2/
√
n when estimating h for the

directional derivative in the line search.

(6) Evaluate L = max{10−1, ‖∇2φ(x)‖2} each time finite-differencing is performed.

(7) Evaluate L = max
{

10−1, 1
n

∑n
i=1 |[∇2φ(x)]ii|

}
each time finite-differencing is

performed.

(8) Evaluate L = max
{

10−1, 1√
n

√∑n
i=1[∇2φ(x)]2ii

}
each time finite-differencing is

performed.

(9) Evaluate L = max {10−1, |[∇2φ(x)]ii|} when evaluating [g(x)]i. When the direc-

tional derivative along p ∈ Rn is computed, evaluates L = max
{

10−1, |p
T∇2φ(x)p|
‖p‖22

}
.

Each method is terminated when it cannot make more progress over 5 consecutive

iterations. The optimal value φ∗ is obtained by running l-bfgs on the non-noisy function

until no more progress can be made.

176

To compare the solution quality between two algorithms, we will use log-ratio profiles

as proposed in [67] over the optimality gaps for each algorithm. The log-ratio profiles

report

(A.1.4) log2

(
φnew − φ∗

φold − φ∗

)

for each problem plotted in increasing order. The area of the shaded region is representative

of the general success of the algorithm.

One may ask whether or not using L = 1 is sufficient, without any additional knowledge

of the second derivative. As seen in Figure A.1, when compared against the other fixed

Lipschitz estimation schemes, the difference is not significant. In particular, the additional

information from the Hessian does not yield significant benefits over setting L = 1 because

the bound on the second derivative does not remain valid over the entire run of the

algorithm. This may be surprising as it has been commonly suggested that it is sufficient

to fix the Lipschitz estimate; see [40, 71]. In fact, we will see that it is more crucial for

the algorithm to have a right estimate of L during the later stages of the run than at the

beginning of the run in order to achieve high accuracy.

To further support why an adaptive L is important to achieve high accuracy, we

compare the fixed L approaches against the adaptive L in Figure A.2.

As seen in Figure A.2, we see that using Lipschitz estimation at every iteration yields

much higher accuracy than the alternatives. Upon inspection of individual runs, one

can observe many cases where fixing the Lipschitz constant is unstable and inadequate,

potentially leading to poor gradient approximations that result in early stagnation of the

algorithm. This suggests that it is imperative to adaptively re-estimate L in order to

177

0 50 100
Problem

10

5

0

5

10

lo
g 2
(ne

w
*

ol
d

*
) L=1

L= 2 (x0) 2

0 50 100
Problem

10

5

0

5

10

lo
g 2
(ne

w
*

ol
d

*
) L=1

L= 1
nTr(| 2 (x0)|)

0 50 100
Problem

10

5

0

5

10

lo
g 2
(ne

w
*

ol
d

*
) L=1

L= 1
n

n

i=1
[2 (x0)]2ii

0 50 100
Problem

10

5

0

5

10

lo
g 2
(ne

w
*

ol
d

*
) L=1

L= (|[2 (x0)]ii|)

Figure A.1. Accuracy, Noisy Case with σf = 10−3. Log-ratio optimality
gap profiles comparing forward difference l-bfgs with L = 1 and other
fixed Lipschitz estimation schemes. The noise level is σf = 10−3, but is
representative for σf ∈ {10−1, 10−3, 10−5, 10−7}.

reduce the noise in the gradient and squeeze the best possible accuracy out of forward

difference l-bfgs.

In addition, since estimating L for each direction is most competitive out of the adaptive

variants as seen in Figure A.3, we present the results for a heuristic approach in our main

work. However, our investigation reveals that the simple mean or root mean square can

provide potentially cheaper alternatives if they can be estimated without knowledge of the

componentwise Lipschitz constants.

To our knowledge, there are two weaknesses with the componentwise estimation

approach. The first is that for a small subset of problems, it is prone to underestimate the

Lipschitz constant, as discussed in Section 2.2. The second weakness is that the approach,

if performed at each iteration and approximated through finite-differencing, is far too

178

0 50 100
Problem

10

5

0

5

10

lo
g 2
(ne

w
*

ol
d

*
) L= 2 (x0) 2

L= 2 (xk) 2

0 50 100
Problem

10

5

0

5

10

lo
g 2
(ne

w
*

ol
d

*
) L= 1

nTr(| 2 (x0)|)

L= 1
nTr(| 2 (xk)|)

0 50 100
Problem

10

5

0

5

10

lo
g 2
(ne

w
*

ol
d

*
)

L= 1
n

n

i=1
[2 (x0)]2ii

L= 1
n

n

i=1
[2 (xk)]2ii

0 50 100
Problem

10

5

0

5

10

lo
g 2
(ne

w
*

ol
d

*
) L= (|[2 (x0)]ii|)

L= |pT 2 (xk)p|

Figure A.2. Accuracy, Noisy Case with σf = 10−3. Log-ratio optimality gap
profiles comparing forward difference l-bfgs with fixed and adaptive Lips-
chitz estimation schemes. The noise level is σf = 10−3, but is representative
for σf ∈ {10−1, 10−3, 10−5, 10−7}.

0 50 100
Problem

10

5

0

5

10

lo
g 2
(ne

w
*

ol
d

*
) L= 2 (xk) 2

L= |pT 2 (xk)p|

0 50 100
Problem

10

5

0

5

10

lo
g 2
(ne

w
*

ol
d

*
) L= 1

nTr(| 2 (xk)|)

L= |pT 2 (xk)p|

0 50 100
Problem

10

5

0

5

10

lo
g 2
(ne

w
*

ol
d

*
)

L= 1
n

n

i=1
[2 (xk)]2ii

L= |pT 2 (xk)p|

Figure A.3. Accuracy, Noisy Case with σf = 10−3. Log-ratio optimality gap
profiles comparing forward difference l-bfgs with fixed and adaptive Lips-
chitz estimation schemes. The noise level is σf = 10−3, but is representative
for σf ∈ {10−1, 10−3, 10−5, 10−7}.

expensive. We propose a few possible practical heuristics for handling this in the following

section.

179

A.1.2. Practical Heuristics for Lipschitz Estimation

Two heuristics were proposed for estimating the Lipschitz constant. Moré and Wild

[71] proposed a simple heuristic for estimating the bound on the second derivative of a

univariate function with noise, as described in Section 2.2. Gill, et al. [40] proposed a

similar procedure that instead enforces that the relative cancellation error lies within an

interval

(A.1.5)
4εf
|∆(h)|

∈ [0.001, 0.1].

Note that the lower bound on the interval in (A.1.5) corresponds to (A.1.1).

Both of these heuristics were proposed with particular initial guesses of h and additional

conditions to handle certain cases where the methods can fail. These heuristics were

employed only at the beginning of the iteration for each variable component, then remains

fixed for the entire run.

The only work to our knowledge that employs re-estimation of the Lipschitz constant

for finite-differencing derivative-free optimization is Berahas, et al. [7]. In his work, the

Lipschitz constant is re-estimated whenever the line search fails and the recovery procedure

is triggered. Similarly, we will use the Moré and Wild heuristic to estimate the Lipschitz

constant, but only re-estimate the Lipschitz constant when α < 0.5 after the first iteration,

as described in Procedure I in Section 2.2. We compare two variants of the Lipschitz

estimation procedure:

(1) Component MW: We use the Moré and Wild heuristic to estimate the Lipschitz

constant with respect to each component. This is performed at the first iteration

180

and subsequent iterations for line search methods when the line search from the

prior iteration gives a steplength αk < 0.5. When estimating the directional

derivative along the search direction pk, we use the root mean square of the

component-wise estimates.

(2) Random MW: We use the Moré and Wild heuristic to estimate the Lipschitz constant

along a random direction sampled uniformly from a sphere, i.e., p ∼ S(0, I). This

is performed at the first iteration and subsequent iterations for line search methods

when the line search from the prior iteration gives a steplength αk < 0.5.

We compare both Moré and Wild heuristics against newuoa and theoretical compo-

nentwise Lipschitz estimation in Figures A.4, A.5, and A.6. In general, Component MW

gives a better solution than Random MW. When we compare these methods against newuoa

in Figure A.6, the performance of the methods are relatively the same as the theoretical

Lipschitz estimates.

0 50 100
Problem

10

5

0

5

10

lo
g 2
(ne

w
*

ol
d

*
) Component MW

Random MW

Figure A.4. Accuracy, Noisy Case with σf = 10−3. Log-ratio optimality
gap profiles comparing forward difference l-bfgs with component MW and
random MW Lipschitz estimation schemes.

181

0 50 100
Problem

10

5

0

5

10

lo
g 2
(ne

w
*

ol
d

*
) L= |pT 2 (xk)p|

Component MW

0 50 100
Problem

10

5

0

5

10

lo
g 2
(ne

w
*

ol
d

*
) L= |pT 2 (xk)p|

Random MW

Figure A.5. Accuracy, Noisy Case with σf = 10−3. Log-ratio optimality gap
profiles comparing forward difference l-bfgs with theoretical componentwise
Lipschitz estimates and the Moré and Wild Lipschitz estimation schemes.

0 50 100
Problem

10

5

0

5

10

lo
g 2
(

LB
FG
S

*

N
EW

U
O
A

*
)

NEWUOA

FD L-BFGS

0 50 100
Problem

10

5

0

5

10
lo

g 2
(

LB
FG
S

*

N
EW

U
O
A

*
)

NEWUOA

FD L-BFGS

Figure A.6. Accuracy, Noisy Case with σf = 10−3. Log-ratio optimality
gap profiles comparing newuoa against forward difference l-bfgs with the
Moré and Wild Lipschitz estimation schemes. We compare l-bfgs with
Component MW (left) and Random MW (right).

A.2. Investigation of Parameters for NEWUOA

In this section, we empirically investigate the influence of the parameters for newuoa

for the noisy setting. Although these parameters have been optimized for the noiseless

setting, it is not generally known how these parameters may impact its performance on

noisy unconstrained problems. By default, newuoa employs p = 2n + 1 interpolation

points when constructing the quadratic model at each iteration with an initial trust region

radius of ρbeg = 1 and a final trust region radius of ρend = 10−6.

182

A.2.1. Number of Interpolation Points

In Section 2.2, we observed that newuoa is able to converge to a better quality neighbor-

hood than l-bfgs with forward differencing, but inferior to central differencing. Since

newuoa by default employs p = 2n+ 1 points, it is natural to both ask if: (1) decreasing

the number of interpolation points would yield a less accurate quadratic model, with a

potentially less accurate gradient; and (2) increasing the number of points used in the

interpolation may improve the accuracy of the solution to be competitive with central

differencing.

To do this, we run newuoa with p = n + 2 and p = min
{

3n+ 1, (n+1)(n+2)
2

}
inter-

polation points and compare their optimality gaps and number of function evaluations.

In Figures A.7 and A.8, we report the log-ratio profiles for the objective function and

function evaluations when comparing newuoa with p = n+ 2 and p = 2n+ 1 points. We

see that with higher noise levels, newuoa with p = n+ 2 tends to terminate earlier, while

for lower noise levels, it is less efficient than newuoa with p = 2n+ 1 points. In terms

of solution quality, newuoa with p = 2n+ 1 is able to converge to a higher accuracy in

general than newuoa with p = n + 2 points. This is similarly seen when we compare

p = 3n+ 1 and p = 2n+ 1 points in Figures A.9 and A.10.

When we compare newuoa with p = n+ 2 points against forward difference l-bfgs,

we see that l-bfgs is now competitive against newuoa, unlike when newuoa employed

p = 2n+ 1 points; see Figure A.11. However, when we increase the number of points to

p = 3n+ 1, newuoa is still not competitive against central differencing, as seen in Figure

A.12.

183

0 50 100
Problem

10

5

0

5

10

lo
g 2
(ne

w
*

ol
d

*
) p=2n+1

p= n+2

0 50 100
Problem

10

5

0

5

10

lo
g 2
(ne

w
*

ol
d

*
) p=2n+1

p= n+2

0 50 100
Problem

10

5

0

5

10

lo
g 2
(ne

w
*

ol
d

*
) p=2n+1

p= n+2

0 50 100
Problem

10

5

0

5

10

lo
g 2
(ne

w
*

ol
d

*
) p=2n+1

p= n+2

Figure A.7. Noisy Case. Log-ratio optimality gap profiles comparing
newuoa with p = 2n + 1 and p = n + 2 points. The noise levels are
σf = 10−1 (top left), σf = 10−3 (top right), 10−5 (bottom left), and 10−7

(bottom right).

A.2.2. Trust Region Radius

One can also ask if decreasing the final trust region radius could allow newuoa to converge

to a better solution. To test this, we change ρend = 10−12 and compare against the default

ρend = 10−6 in Figure A.13. From our experiments, changing the final trust region radius

makes almost no difference on the solution quality and efficiency.

A.3. Complete Numerical Results

In this appendix, we present our complete numerical results.

184

0 50 100
Problem

4

2

0

2

4

lo
g 2

(ev
al
s n

ew
ev

al
s o

ld
) p=2n+1

p= n+2

0 50 100
Problem

4

2

0

2

4

lo
g 2

(ev
al
s n

ew
ev

al
s o

ld
) p=2n+1

p= n+2

0 50 100
Problem

4

2

0

2

4

lo
g 2

(ev
al
s n

ew
ev

al
s o

ld
) p=2n+1

p= n+2

0 50 100
Problem

4

2

0

2

4

lo
g 2

(ev
al
s n

ew
ev

al
s o

ld
) p=2n+1

p= n+2

Figure A.8. Noisy Case. Log-ratio function evaluation profiles comparing
newuoa with p = 2n + 1 and p = n + 2 points. The noise levels are
σf = 10−1 (top left), σf = 10−3 (top right), 10−5 (bottom left), and 10−7

(bottom right).

A.3.1. Unconstrained Optimization

A.3.1.1. Noiseless Functions. In this section, we list the number of function evaluations

(#feval), ratio between number of function evaluations to the number of function evaluations

taken by newuoa (RATIO), CPU time (CPU), and optimality gap (φ(x)− φ∗) for each

problem instance in Tables A.1-A.5. Function evaluations marked with a ∗ denote cases

where the algorithm reached the maximum number of function evaluations. Instances

where newuoa samples a point that satisfies (2.2.7) within the initial 2n+ 1 evaluations

are denoted by ∗∗. Problems marked with a ‡ denote cases where newuoa and l-bfgs

converge to different minimizers. Optimality gaps marked with a † denote failures of the

algorithm to converge to a valid solution satisfying (2.2.7).

185

0 50 100
Problem

10

5

0

5

10

lo
g 2
(ne

w
*

ol
d

*
) p=3n+1

p=2n+1

0 50 100
Problem

10

5

0

5

10

lo
g 2
(ne

w
*

ol
d

*
) p=3n+1

p=2n+1

0 50 100
Problem

10

5

0

5

10

lo
g 2
(ne

w
*

ol
d

*
) p=3n+1

p=2n+1

0 50 100
Problem

10

5

0

5

10

lo
g 2
(ne

w
*

ol
d

*
) p=3n+1

p=2n+1

Figure A.9. Noisy Case. Log-ratio optimality gap profiles comparing
newuoa with p = 3n + 1 and p = 2n + 1 points. The noise levels are
σf = 10−1 (top left), σf = 10−3 (top right), 10−5 (bottom left), and 10−7

(bottom right).

186

0 50 100
Problem

4

2

0

2

4

lo
g 2

(ev
al
s n

ew
ev

al
s o

ld
) p=3n+1

p=2n+1

0 50 100
Problem

4

2

0

2

4

lo
g 2

(ev
al
s n

ew
ev

al
s o

ld
) p=3n+1

p=2n+1

0 50 100
Problem

4

2

0

2

4

lo
g 2

(ev
al
s n

ew
ev

al
s o

ld
) p=3n+1

p=2n+1

0 50 100
Problem

4

2

0

2

4

lo
g 2

(ev
al
s n

ew
ev

al
s o

ld
) p=3n+1

p=2n+1

Figure A.10. Noisy Case. Log-ratio function evaluation profiles comparing
newuoa with p = 3n + 1 and p = 2n + 1 points. The noise levels are
σf = 10−1 (top left), σf = 10−3 (top right), 10−5 (bottom left), and 10−7

(bottom right).

187

0 50 100
Problem

10

5

0

5

10

lo
g 2
(

LB
FG
S

*

N
EW

U
O
A

*
)

NEWUOA

FD L-BFGS

0 50 100
Problem

10

5

0

5

10

lo
g 2
(

LB
FG
S

*

N
EW

U
O
A

*
)

NEWUOA

FD L-BFGS

0 50 100
Problem

10

5

0

5

10

lo
g 2
(

LB
FG
S

*

N
EW

U
O
A

*
)

NEWUOA

FD L-BFGS

0 50 100
Problem

10

5

0

5

10

lo
g 2
(

LB
FG
S

*

N
EW

U
O
A

*
)

NEWUOA

FD L-BFGS

Figure A.11. Noisy Case. Log-ratio optimality gap profiles comparing
forward difference l-bfgs against newuoa with p = n + 2 points. The
noise levels are σf = 10−1 (top left), σf = 10−3 (top right), 10−5 (bottom
left), and 10−7 (bottom right).

188

0 50 100
Problem

10

5

0

5

10

lo
g 2
(

LB
FG
S

*

N
EW

U
O
A

*
)

NEWUOA

CD L-BFGS

0 50 100
Problem

10

5

0

5

10

lo
g 2
(

LB
FG
S

*

N
EW

U
O
A

*
)

NEWUOA

CD L-BFGS

0 50 100
Problem

10

5

0

5

10

lo
g 2
(

LB
FG
S

*

N
EW

U
O
A

*
)

NEWUOA

CD L-BFGS

0 50 100
Problem

10

5

0

5

10

lo
g 2
(

LB
FG
S

*

N
EW

U
O
A

*
)

NEWUOA

CD L-BFGS

Figure A.12. Noisy Case. Log-ratio optimality gap profiles comparing central
difference l-bfgs against newuoa with p = 3n+ 1 points. The noise levels
are σf = 10−1 (top left), σf = 10−3 (top right), 10−5 (bottom left), and 10−7

(bottom right).

0 50 100
Problem

10

5

0

5

10

lo
g 2
(ne

w
*

ol
d

*
)

end=10 6

end=10 12

0 50 100
Problem

4

2

0

2

4

lo
g 2

(ev
al
s n

ew
ev

al
s o

ld
) end=10 6

end=10 12

Figure A.13. Noisy Case with σf = 10−5. Log-ratio optimality gap profiles
comparing newuoa with ρend = 10−6 and 10−12.

189
NEWUOA FD L-BFGS CD L-BFGS

Problem n #feval RATIO CPU φ(x)− φ∗ #feval RATIO CPU φ(x)− φ∗ #feval RATIO CPU φ(x)− φ∗

AIRCRFTB 5 661 1.000 0.1 6.963× 10−7 296 4.48× 10−1 0.02 6.518× 10−7 536 8.11× 10−1 0.03 8.288× 10−7

ALLINITU 4 41 1.000 0.09 3.073× 10−6 58 1.415 0.01 4.240× 10−6 103 2.512 0.01 4.240× 10−6

ARWHEAD 100 201∗∗ 1.000 0.09 0.000 1130 5.622 0.06 2.474× 10−7 2240 1.1144× 101 0.07 2.476× 10−7

BARD 3 69 1.000 0.09 7.032× 10−8 102 1.478 0.01 5.244× 10−7 176 2.551 0.01 5.246× 10−7

BDQRTIC 100 3682 1.000 1.85 3.731× 10−4 3178 8.63× 10−1 0.14 2.923× 10−4 6308 1.713 0.18 2.914× 10−4

BIGGS3 3 73 1.000 0.09 4.599× 10−7 85 1.164 0.01 5.422× 10−7 152 2.082 0.01 5.423× 10−7

BIGGS5‡ 5 103 1.000 0.08 −3.722× 10−5 416 4.039 0.04 6.651× 10−7 767 7.447 0.05 4.321× 10−7

BIGGS6‡ 6 338 1.000 0.08 −1.444× 10−4 323 9.56× 10−1 0.03 5.357× 10−7 593 1.754 0.03 5.654× 10−7

BOX2 2 2∗∗ 1.000 0.08 5.847× 10−19 57 2.8500× 101 0.01 9.947× 10−7 95 4.7500× 101 0.01 9.947× 10−7

BOX3 3 2∗∗ 1.000 0.08 5.847× 10−19 52 2.6000× 101 0.01 7.371× 10−7 91 4.5500× 101 0.01 7.371× 10−7

BRKMCC 2 10 1.000 0.08 1.440× 10−7 32 3.200 0.0 4.066× 10−9 51 5.100 0.0 4.088× 10−9

BROWNAL 10 917 1.000 0.11 9.998× 10−7 177 1.93× 10−1 0.01 1.707× 10−7 331 3.61× 10−1 0.01 1.707× 10−7

BROWNAL 100 18069 1.000 9.53 9.993× 10−7 1039 5.8× 10−2 0.07 1.040× 10−7 2051 1.14× 10−1 0.1 1.047× 10−7

BROWNAL 200 100000∗ 1.000 207.31 3.184× 10−6 823 8× 10−3 0.13 8.254× 10−7 1626 1.6× 10−2 0.16 8.243× 10−7

BROWNDEN 4 140 1.000 0.09 2.900× 10−2 131 9.36× 10−1 0.01 1.448× 10−2 225 1.607 0.01 1.449× 10−2

CLIFF 2 84 1.000 0.09 5.220× 10−7 240 2.857 0.02 3.101× 10−7 365 4.345 0.02 2.076× 10−7

CRAGGLVY 4 182 1.000 0.09 8.761× 10−7 135 7.42× 10−1 0.01 5.854× 10−7 244 1.341 0.01 5.854× 10−7

CRAGGLVY 10 511 1.000 0.1 1.650× 10−6 482 9.43× 10−1 0.03 1.176× 10−6 910 1.781 0.04 1.168× 10−6

CRAGGLVY 50 2670 1.000 0.45 1.523× 10−5 2301 8.62× 10−1 0.1 1.289× 10−5 4544 1.702 0.14 1.292× 10−5

CRAGGLVY 100 5679 1.000 2.92 3.219× 10−5 4503 7.93× 10−1 0.21 1.932× 10−5 8946 1.575 0.29 1.934× 10−5

CUBE 2 173 1.000 0.08 8.157× 10−7 114 6.59× 10−1 0.01 3.107× 10−7 190 1.098 0.01 3.036× 10−7

DENSCHNA 2 22 1.000 0.09 2.893× 10−10 38 1.727 0.01 9.517× 10−10 64 2.909 0.01 9.521× 10−10

DENSCHNB 2 21 1.000 0.09 9.135× 10−8 25 1.190 0.0 3.867× 10−11 42 2.000 0.0 3.877× 10−11

DENSCHNC 2 66 1.000 0.09 7.333× 10−8 68 1.030 0.01 8.949× 10−8 111 1.682 0.01 8.951× 10−8

DENSCHND 3 312 1.000 0.07 9.794× 10−7 208 6.67× 10−1 0.02 9.534× 10−7 356 1.141 0.02 9.537× 10−7

DENSCHNE 3 127 1.000 0.09 4.487× 10−7 141 1.110 0.01 1.599× 10−7 237 1.866 0.01 1.210× 10−7

DENSCHNF 2 28 1.000 0.09 5.079× 10−9 48 1.714 0.01 5.450× 10−9 77 2.750 0.01 5.468× 10−9

Table A.1. Noiseless Unconstrained CUTEst Problems Tested. n is the number of variables.

190
NEWUOA FD L-BFGS CD L-BFGS

Problem n #feval RATIO CPU φ(x)− φ∗ #feval RATIO CPU φ(x)− φ∗ #feval RATIO CPU φ(x)− φ∗

DIXMAANA 15 596 1.000 0.09 9.909× 10−7 138 2.32× 10−1 0.01 1.096× 10−7 265 4.45× 10−1 0.01 1.096× 10−7

DIXMAANA 90 1594 1.000 0.61 9.626× 10−7 738 4.63× 10−1 0.03 6.577× 10−7 1465 9.19× 10−1 0.04 6.578× 10−7

DIXMAANA 300 8117 1.000 37.53 9.936× 10−7 2720 3.35× 10−1 0.15 2.979× 10−9 5428 6.69× 10−1 0.21 2.978× 10−9

DIXMAANB 15 395 1.000 0.1 8.586× 10−7 122 3.09× 10−1 0.01 3.845× 10−9 233 5.90× 10−1 0.01 3.845× 10−9

DIXMAANB 90 1491 1.000 0.56 9.724× 10−7 647 4.34× 10−1 0.03 6.536× 10−10 1283 8.60× 10−1 0.04 6.537× 10−10

DIXMAANB 300 6446 1.000 27.48 9.980× 10−7 2117 3.28× 10−1 0.15 7.825× 10−10 4223 6.55× 10−1 0.15 7.845× 10−10

DIXMAANC 15 197 1.000 0.08 9.747× 10−7 158 8.02× 10−1 0.01 8.216× 10−7 302 1.533 0.01 8.216× 10−7

DIXMAANC 90 1611 1.000 0.63 9.914× 10−7 558 3.46× 10−1 0.03 1.352× 10−7 1104 6.85× 10−1 0.03 1.353× 10−7

DIXMAANC 300 4643 1.000 18.87 9.964× 10−7 2120 4.57× 10−1 0.15 5.674× 10−7 4227 9.10× 10−1 0.15 5.672× 10−7

DIXMAAND 15 251 1.000 0.1 9.036× 10−7 179 7.13× 10−1 0.01 4.536× 10−7 340 1.355 0.01 4.536× 10−7

DIXMAAND 90 2090 1.000 0.81 9.552× 10−7 745 3.56× 10−1 0.04 6.242× 10−7 1474 7.05× 10−1 0.04 6.242× 10−7

DIXMAAND 300 7155 1.000 33.18 9.791× 10−7 2425 3.39× 10−1 0.18 3.136× 10−7 4834 6.76× 10−1 0.18 3.136× 10−7

DIXMAANE 15 377 1.000 0.1 7.225× 10−7 293 7.77× 10−1 0.02 4.958× 10−7 564 1.496 0.02 4.959× 10−7

DIXMAANE 90 3081 1.000 1.28 9.840× 10−7 3499 1.136 0.15 8.197× 10−7 6956 2.258 0.2 8.202× 10−7

DIXMAANE 300 18666 1.000 107.25 9.993× 10−7 19633 1.052 0.96 5.643× 10−7 39197 2.100 1.42 6.031× 10−7

DIXMAANF 15 274 1.000 0.09 9.301× 10−7 226 8.25× 10−1 0.01 7.285× 10−7 434 1.584 0.01 7.286× 10−7

DIXMAANF 90 3104 1.000 1.33 9.964× 10−7 2674 8.61× 10−1 0.11 3.730× 10−7 5313 1.712 0.15 3.731× 10−7

DIXMAANF 300 16182 1.000 92.5 9.988× 10−7 14504 8.96× 10−1 0.69 9.006× 10−7 28952 1.789 1.06 9.011× 10−7

DIXMAANG 15 286 1.000 0.08 8.435× 10−7 277 9.69× 10−1 0.01 2.101× 10−7 533 1.864 0.02 2.102× 10−7

DIXMAANG 90 3429 1.000 1.47 9.922× 10−7 2857 8.33× 10−1 0.12 6.520× 10−7 5678 1.656 0.16 6.522× 10−7

DIXMAANG 300 21081 1.000 126.91 9.999× 10−7 14806 7.02× 10−1 0.78 9.894× 10−7 30158 1.431 1.1 8.871× 10−7

DIXMAANH 15 375 1.000 0.1 8.025× 10−7 280 7.47× 10−1 0.02 1.341× 10−7 537 1.432 0.02 1.342× 10−7

DIXMAANH 90 3106 1.000 1.27 9.943× 10−7 2588 8.33× 10−1 0.11 6.407× 10−7 5138 1.654 0.15 6.405× 10−7

DIXMAANH 300 35784 1.000 212.15 9.999× 10−7 14207 3.97× 10−1 0.69 7.042× 10−7 28356 7.92× 10−1 1.05 6.752× 10−7

DIXMAANI 15 586 1.000 0.1 9.553× 10−7 549 9.37× 10−1 0.03 9.880× 10−7 1060 1.809 0.04 9.880× 10−7

DIXMAANI 90 13092 1.000 6.05 9.966× 10−7 15925 1.216 0.62 9.862× 10−7 33132 2.531 0.91 9.270× 10−7

DIXMAANI 300 121834 1.000 774.33 9.999× 10−7 150107∗ 1.232 6.82 2.119× 10−6 150155∗ 1.232 5.3 1.720× 10−5

DIXMAANJ 15 563 1.000 0.1 9.736× 10−7 479 8.51× 10−1 0.03 1.809× 10−7 926 1.645 0.03 1.797× 10−7

DIXMAANJ 90 12417 1.000 6.11 9.923× 10−7 11508 9.27× 10−1 0.53 9.628× 10−7 22883 1.843 0.74 9.706× 10−7

DIXMAANJ 300 120362 1.000 718.6 9.987× 10−7 77321 6.42× 10−1 3.61 9.974× 10−7 150156∗ 1.248 5.37 1.028× 10−6

DIXMAANK 15 559 1.000 0.1 9.181× 10−7 533 9.53× 10−1 0.03 3.242× 10−7 1029 1.841 0.04 3.230× 10−7

DIXMAANK 90 12601 1.000 5.72 9.969× 10−7 7463 5.92× 10−1 0.3 9.902× 10−7 15018 1.192 0.41 9.893× 10−7

DIXMAANK 300 80808 1.000 455.59 9.997× 10−7 23567 2.92× 10−1 1.12 9.623× 10−7 47649 5.90× 10−1 1.74 9.108× 10−7

DIXMAANL 15 752 1.000 0.1 9.740× 10−7 502 6.68× 10−1 0.03 4.740× 10−7 967 1.286 0.03 4.714× 10−7

DIXMAANL 90 10608 1.000 4.87 9.970× 10−7 10323 9.73× 10−1 0.41 9.519× 10−7 20517 1.934 0.57 8.891× 10−7

DIXMAANL 300 150000∗ 1.000 875.24 3.192× 10−6 34747 2.32× 10−1 1.67 9.946× 10−7 69364 4.62× 10−1 2.51 9.926× 10−7

Table A.2. Noiseless Unconstrained CUTEst Problems Tested. n is the number of variables.

191
NEWUOA FD L-BFGS CD L-BFGS

Problem n #feval RATIO CPU φ(x)− φ∗ #feval RATIO CPU φ(x)− φ∗ #feval RATIO CPU φ(x)− φ∗

DQRTIC 10 502 1.000 0.1 9.719× 10−7 258 5.14× 10−1 0.02 4.439× 10−7 488 9.72× 10−1 0.02 4.439× 10−7

DQRTIC 50 2847 1.000 0.43 8.852× 10−7 1467 5.15× 10−1 0.06 7.890× 10−7 2894 1.017 0.08 7.888× 10−7

DQRTIC 100 6061 1.000 2.81 9.769× 10−7 3277 5.41× 10−1 0.13 5.471× 10−7 6508 1.074 0.17 5.462× 10−7

EDENSCH 36 928 1.000 0.14 2.175× 10−4 577 6.22× 10−1 0.03 7.341× 10−5 1131 1.219 0.03 7.341× 10−5

EIGENALS 6 5∗∗ 1.000 0.08 0.000 83 1.6600× 101 0.01 7.344× 10−9 152 3.0400× 101 0.01 7.099× 10−9

EIGENALS 110 55000∗ 1.000 40.44 1.716× 10−3 42138 7.66× 10−1 2.12 9.758× 10−7 55108∗ 1.002 2.13 2.142× 10−5

EIGENBLS‡ 6 113 1.000 0.09 −3.033× 10−4 91 8.05× 10−1 0.01 9.727× 10−9 167 1.478 0.01 9.145× 10−9

EIGENBLS 110 37505 1.000 27.4 9.993× 10−7 55010∗ 1.467 2.68 9.280× 10−4 55088∗ 1.469 2.1 4.002× 10−2

EIGENCLS 30 1630 1.000 0.19 9.383× 10−7 2634 1.616 0.12 9.353× 10−7 5174 3.174 0.16 8.934× 10−7

ENGVAL1 2 32 1.000 0.08 6.651× 10−9 38 1.188 0.0 2.191× 10−7 60 1.875 0.0 2.191× 10−7

ENGVAL1 50 2234 1.000 0.38 5.211× 10−5 585 2.62× 10−1 0.02 3.074× 10−5 1148 5.14× 10−1 0.03 3.074× 10−5

ENGVAL1 100 1941 1.000 0.92 1.076× 10−4 1337 6.89× 10−1 0.07 4.197× 10−6 2651 1.366 0.07 4.198× 10−6

EXPFIT 2 42 1.000 0.09 9.588× 10−7 46 1.095 0.01 1.427× 10−9 75 1.786 0.0 1.420× 10−9

FLETCBV3‡ 10 1106 1.000 0.11 1.063× 10−3 261 2.36× 10−1 0.01 −1.664× 10−5 521 4.71× 10−1 0.02 −4.710× 10−5

FLETCBV3‡ 100 50000∗ 1.000 28.66 1.333× 105 19708 3.94× 10−1 0.87 −3.486× 10−1 16125 3.23× 10−1 0.54 −1.107× 101

FLETCHBV‡ 10 945 1.000 0.09 1.490× 105 263 2.78× 10−1 0.02 −1.278× 101 278 2.94× 10−1 0.01 −5.322× 103

FLETCHBV‡ 100 50000∗ 1.000 27.77 1.210× 1013 18068 3.61× 10−1 0.8 −6.240× 106 20933 4.19× 10−1 0.67 −7.016× 107

FREUROTH 2 55 1.000 0.09 2.214× 10−5 81 1.473 0.01 3.932× 10−5 134 2.436 0.01 3.932× 10−5

FREUROTH 10 367 1.000 0.09 6.524× 10−4 286 7.79× 10−1 0.02 1.194× 10−6 538 1.466 0.02 1.194× 10−6

FREUROTH 50 5840 1.000 0.86 5.844× 10−3 1053 1.80× 10−1 0.04 4.888× 10−4 2073 3.55× 10−1 0.06 4.886× 10−4

FREUROTH 100 2881 1.000 1.44 1.188× 10−2 1950 6.77× 10−1 0.09 2.601× 10−3 3868 1.343 0.12 2.589× 10−3

GENROSE 5 199 1.000 0.08 9.086× 10−7 226 1.136 0.02 9.527× 10−9 411 2.065 0.02 9.367× 10−9

GENROSE 10 645 1.000 0.1 8.369× 10−7 896 1.389 0.06 8.050× 10−7 1614 2.502 0.06 1.032× 10−7

GENROSE 100 17249 1.000 9.45 9.954× 10−7 25453 1.476 1.01 8.013× 10−7 50198∗ 2.910 1.4 1.939× 10−5

GULF 3 876 1.000 0.12 6.954× 10−7 225 2.57× 10−1 0.03 7.913× 10−8 392 4.47× 10−1 0.04 6.048× 10−7

HAIRY 2 261 1.000 0.09 1.214× 10−6 86 3.30× 10−1 0.01 2.209× 10−7 149 5.71× 10−1 0.01 2.996× 10−7

HELIX 3 65 1.000 0.09 3.569× 10−8 149 2.292 0.01 6.812× 10−7 86 1.323 0.0 8.521× 102†

JENSMP‡ 2 4∗∗ 1.000 0.09 −5.469× 102 16 4.000 0.0 0.000 21 5.250 0.0 0.000
KOWOSB 4 150 1.000 0.09 7.089× 10−7 183 1.220 0.02 2.824× 10−7 332 2.213 0.02 2.825× 10−7

MEXHAT 2 46 1.000 0.09 1.036× 10−2† 203 4.413 0.02 7.395× 10−7 339 7.370 0.02 4.707× 10−7

Table A.3. Noiseless Unconstrained CUTEst Problems Tested. n is the number of variables.

192
NEWUOA FD L-BFGS CD L-BFGS

Problem n #feval RATIO CPU φ(x)− φ∗ #feval RATIO CPU φ(x)− φ∗ #feval RATIO CPU φ(x)− φ∗

MOREBV 10 379 1.000 0.09 9.458× 10−7 366 9.66× 10−1 0.02 6.782× 10−7 695 1.834 0.03 6.843× 10−7

MOREBV 50 21488 1.000 3.71 9.988× 10−7 25029∗ 1.165 0.98 1.368× 10−6 25035∗ 1.165 0.68 6.088× 10−6

MOREBV 100 11143 1.000 6.29 9.999× 10−7 15512 1.392 0.59 9.985× 10−7 31067 2.788 0.82 9.992× 10−7

NCB20B 21 478 1.000 0.11 4.093× 10−5 169 3.54× 10−1 0.01 −4.368× 10−11 322 6.74× 10−1 0.01 −4.334× 10−11

NCB20B 22 627 1.000 0.11 4.361× 10−5 154 2.46× 10−1 0.01 2.493× 10−5 292 4.66× 10−1 0.01 2.493× 10−5

NCB20B 50 3345 1.000 0.59 9.936× 10−5 1465 4.38× 10−1 0.07 9.906× 10−5 2892 8.65× 10−1 0.1 9.912× 10−5

NCB20B 100 7309 1.000 4.02 1.963× 10−4 3376 4.62× 10−1 0.21 1.794× 10−4 6708 9.18× 10−1 0.3 1.797× 10−4

NCB20B 180 11313 1.000 22.07 3.470× 10−4 4375 3.87× 10−1 0.35 3.384× 10−4 8718 7.71× 10−1 0.56 3.379× 10−4

NONDIA 10 198 1.000 0.1 4.267× 10−7 167 8.43× 10−1 0.01 1.459× 10−11 298 1.505 0.01 1.053× 10−11

NONDIA 20 426 1.000 0.1 8.903× 10−7 341 8.00× 10−1 0.02 2.571× 10−10 655 1.538 0.02 2.929× 10−10

NONDIA 30 569 1.000 0.12 9.936× 10−7 492 8.65× 10−1 0.02 3.712× 10−7 956 1.680 0.03 3.738× 10−7

NONDIA 50 799 1.000 0.2 9.829× 10−7 792 9.91× 10−1 0.03 3.825× 10−8 1556 1.947 0.04 3.691× 10−8

NONDIA 90 1302 1.000 0.58 9.192× 10−7 1301 9.99× 10−1 0.06 1.233× 10−7 2574 1.977 0.07 1.188× 10−7

NONDIA 100 1683 1.000 0.89 9.873× 10−7 1543 9.17× 10−1 0.07 1.028× 10−10 3057 1.816 0.09 1.125× 10−10

NONDQUAR 100 50000∗ 1.000 29.28 8.675× 10−6 50056∗ 1.001 1.88 1.137× 10−5 50189∗ 1.004 1.32 3.611× 10−5

OSBORNEA‡ 5 1094 1.000 0.09 1.204× 10−5 477 4.36× 10−1 0.05 8.442× 10−7 888 8.12× 10−1 0.06 8.390× 10−7

OSBORNEB 11 1529 1.000 0.14 9.678× 10−7 1044 6.83× 10−1 0.08 9.551× 10−7 2216 1.449 0.11 6.312× 10−7

PENALTY1 4 577 1.000 0.09 9.994× 10−7 868 1.504 0.09 9.134× 10−7 1425 2.470 0.09 9.856× 10−7

PENALTY1 10 1332 1.000 0.11 9.944× 10−7 1523 1.143 0.09 9.903× 10−7 2942 2.209 0.11 8.873× 10−7

PENALTY1 50 6082 1.000 0.89 9.985× 10−7 5773 9.49× 10−1 0.22 9.994× 10−7 11797 1.940 0.32 9.652× 10−7

PENALTY1 100 13215 1.000 6.44 9.969× 10−7 11175 8.46× 10−1 0.43 7.672× 10−7 21381 1.618 0.57 9.919× 10−7

PFIT1LS‡ 3 417 1.000 0.11 2.892× 10−4 351 8.42× 10−1 0.03 9.871× 10−7 403 9.66× 10−1 0.03 6.795× 10−7

PFIT2LS‡ 3 767 1.000 0.1 1.243× 10−2 1502∗ 1.958 0.17 2.818× 10−4 1509∗ 1.967 0.11 1.528× 10−3

PFIT3LS‡ 3 907 1.000 0.1 8.228× 10−2 1502∗ 1.656 0.17 1.504× 10−2 1501∗ 1.655 0.11 3.622× 10−2

PFIT4LS‡ 3 1088 1.000 0.1 2.673× 10−1 1505∗ 1.383 0.15 5.424× 10−2 1508∗ 1.386 0.1 9.180× 10−2

QUARTC 25 1004 1.000 0.13 8.886× 10−7 765 7.62× 10−1 0.04 4.947× 10−7 1492 1.486 0.05 4.946× 10−7

QUARTC 100 6061 1.000 2.82 9.769× 10−7 3277 5.41× 10−1 0.13 5.471× 10−7 6508 1.074 0.16 5.462× 10−7

SINEVAL 2 254 1.000 0.08 6.706× 10−9 309 1.217 0.04 3.585× 10−9 522 2.055 0.04 1.305× 10−7

Table A.4. Noiseless Unconstrained CUTEst Problems Tested. n is the number of variables.

193
NEWUOA FD L-BFGS CD L-BFGS

Problem n #feval RATIO CPU φ(x)− φ∗ #feval RATIO CPU φ(x)− φ∗ #feval RATIO CPU φ(x)− φ∗

SINQUAD 5 125 1.000 0.09 6.682× 10−6 61 4.88× 10−1 0.01 3.061× 10−6 108 8.64× 10−1 0.01 3.061× 10−6

SINQUAD 50 3325 1.000 0.55 1.132× 10−3 795 2.39× 10−1 0.04 4.489× 10−6 1562 4.70× 10−1 0.05 4.553× 10−6

SINQUAD 100 8318 1.000 4.3 3.985× 10−3 1545 1.86× 10−1 0.07 2.755× 10−3 3062 3.68× 10−1 0.09 2.758× 10−3

SISSER 2 24 1.000 0.09 8.489× 10−7 54 2.250 0.01 5.876× 10−7 92 3.833 0.01 5.876× 10−7

SPARSQUR 10 184 1.000 0.09 8.876× 10−7 184 1.000 0.01 6.336× 10−7 348 1.891 0.01 6.336× 10−7

SPARSQUR 50 1645 1.000 0.29 6.775× 10−7 1046 6.36× 10−1 0.04 3.744× 10−7 2065 1.255 0.06 3.744× 10−7

SPARSQUR 100 2932 1.000 1.37 8.999× 10−7 2150 7.33× 10−1 0.09 3.880× 10−7 4270 1.456 0.12 3.880× 10−7

TOINTGSS 10 234 1.000 0.09 1.038× 10−5 24 1.03× 10−1 0.0 0.000 45 1.92× 10−1 0.0 0.000
TOINTGSS 50 775 1.000 0.18 9.723× 10−6 104 1.34× 10−1 0.0 −3.000× 10−9 205 2.65× 10−1 0.01 −3.000× 10−9

TOINTGSS 100 1199 1.000 0.55 9.778× 10−6 204 1.70× 10−1 0.02 4.000× 10−9 405 3.38× 10−1 0.01 4.000× 10−9

TQUARTIC 5 92 1.000 0.09 5.444× 10−7 85 9.24× 10−1 0.01 1.078× 10−8 150 1.630 0.01 1.074× 10−8

TQUARTIC 10 277 1.000 0.09 9.847× 10−7 172 6.21× 10−1 0.01 5.228× 10−9 325 1.173 0.01 5.313× 10−9

TQUARTIC 50 5022 1.000 0.75 9.949× 10−7 646 1.29× 10−1 0.03 1.681× 10−8 1265 2.52× 10−1 0.03 1.725× 10−8

TQUARTIC 100 20515 1.000 10.51 9.991× 10−7 1538 7.5× 10−2 0.07 6.818× 10−9 3053 1.49× 10−1 0.08 6.223× 10−9

TRIDIA 10 186 1.000 0.09 9.019× 10−7 210 1.129 0.01 5.451× 10−8 396 2.129 0.01 5.446× 10−8

TRIDIA 20 446 1.000 0.1 8.062× 10−7 690 1.547 0.04 8.068× 10−7 1340 3.004 0.04 8.064× 10−7

TRIDIA 30 768 1.000 0.13 9.962× 10−7 1481 1.928 0.07 6.309× 10−7 2906 3.784 0.08 6.315× 10−7

TRIDIA 50 1446 1.000 0.3 8.806× 10−7 3128 2.163 0.15 9.300× 10−7 6187 4.279 0.19 9.292× 10−7

TRIDIA 100 3450 1.000 2.11 9.968× 10−7 8783 2.546 0.32 9.677× 10−7 17468 5.063 0.43 9.208× 10−7

WATSON 12 4966 1.000 0.21 9.982× 10−7 1324 2.67× 10−1 0.08 9.773× 10−7 2708 5.45× 10−1 0.11 9.950× 10−7

WATSON 31 15500∗ 1.000 1.11 6.438× 10−5 13875 8.95× 10−1 0.65 9.957× 10−7 15530∗ 1.002 0.51 5.664× 10−6

WOODS 4 497 1.000 0.08 1.434× 10−7 178 3.58× 10−1 0.02 4.447× 10−9 312 6.28× 10−1 0.02 4.353× 10−9

WOODS 100 50000∗ 1.000 28.69 1.371× 10−4 2972 5.9× 10−2 0.13 7.208× 10−7 5902 1.18× 10−1 0.16 6.252× 10−7

ZANGWIL2 2 12 1.000 0.09 5.085× 10−7 11 9.17× 10−1 0.0 −1.000× 10−10 19 1.583 0.0 −9.999× 10−11

Table A.5. Noiseless Unconstrained CUTEst Problems Tested. n is the number of variables.

194

A.3.1.2. Noisy Functions. In this section, we list the best optimality gap (φ(x)− φ∗)

and the number of function evaluations (#feval) needed to achieve this for each problem

instance, varying the noise level σf ∈ {10−1, 10−3, 10−5, 10−7}, in Tables A.6-A.18. Function

evaluations marked with a ∗ denote cases where the algorithm reached the maximum

number of function evaluations. Instances where newuoa samples a point that satisfies

(2.2.7) within the initial 2d+ 1 evaluations are denoted by ∗∗. Problems marked with a ‡

denote cases where newuoa and l-bfgs converge to different minimizers.

A.3.2. Nonlinear Least Squares Problems

A.3.2.1. Noiseless Functions. In this section, we list the number of function evaluations

(#feval), CPU time (CPU), and optimality gap (φ(x) − φ∗) for each problem instance

in Tables A.19. Function evaluations marked with a ∗ denote cases where the algorithm

reached the maximum number of function evaluations.

A.3.2.2. Noisy Functions. In this section, we list the best optimality gap (φ(x)−φ∗) and

the number of function evaluations (#feval) needed to achieve this for each problem instance,

varying the noise level σf ∈ {10−1, 10−3, 10−5, 10−7}, in Tables A.21-A.24. Function

evaluations marked with a ∗ denote cases where the algorithm reached the maximum

number of function evaluations.

A.3.3. Constrained Optimization

A.3.3.1. Test Problem Summary.

195

NEWUOA FD L-BFGS CD L-BFGS

Problem n σf #feval φ(x)− φ∗ #feval φ(x)− φ∗ #feval φ(x)− φ∗

AIRCRFTB 5 1× 10−1 43 7.257× 10−1 53 7.277× 10−1 231 2.623× 10−1

AIRCRFTB 5 1× 10−3 70 1.772× 10−1 715 9.938× 10−2 904 6.648× 10−5

AIRCRFTB 5 1× 10−5 159 1.006× 10−2 1221 3.355× 10−4 927 1.042× 10−5

AIRCRFTB 5 1× 10−7 317 2.893× 10−4 1176 4.119× 10−6 1106 7.139× 10−12

ALLINITU 4 1× 10−1 26 1.020× 10−1 24 2.881 108 1.980× 10−3

ALLINITU 4 1× 10−3 38 9.901× 10−4 97 2.614× 10−4 189 7.467× 10−7

ALLINITU 4 1× 10−5 44 1.337× 10−6 62 1.721× 10−5 320 5.606× 10−9

ALLINITU 4 1× 10−7 58 1.186× 10−8 74 1.612× 10−7 170 3.518× 10−10

ARWHEAD 100 1× 10−1 201∗∗ 0.000 508 8.433× 10−2 1022 5.894× 10−2

ARWHEAD 100 1× 10−3 201∗∗ 0.000 1035 3.525× 10−2 2037 1.305× 10−3

ARWHEAD 100 1× 10−5 201∗∗ 0.000 1765 1.925× 10−4 2444 5.061× 10−6

ARWHEAD 100 1× 10−7 201∗∗ 0.000 1434 1.346× 10−5 2660 6.841× 10−9

BARD 3 1× 10−1 20 1.665× 10−1 53 9.347× 10−1 102 2.119× 10−3

BARD 3 1× 10−3 36 5.403× 10−4 77 1.030× 10−3 116 1.876× 10−3

BARD 3 1× 10−5 47 1.256× 10−3 294 1.898× 10−3 310 2.731× 10−6

BARD 3 1× 10−7 87 1.685× 10−7 198 6.076× 10−8 230 3.753× 10−9

BDQRTIC 100 1× 10−1 2283 1.132 2482 5.246 3476 2.697× 10−1

BDQRTIC 100 1× 10−3 4736 9.554× 10−2 2664 1.099× 10−1 6583 4.061× 10−3

BDQRTIC 100 1× 10−5 7755 4.134× 10−3 6619 3.957× 10−4 11431 9.216× 10−7

BDQRTIC 100 1× 10−7 5083 6.419× 10−6 6543 6.829× 10−6 9934 4.423× 10−9

BIGGS3‡ 3 1× 10−1 8 1.366 160 1.311 168 9.756× 10−1

BIGGS3‡ 3 1× 10−3 67 2.251× 10−3 155 6.556× 10−4 389 1.958× 10−5

BIGGS3‡ 3 1× 10−5 73 1.776× 10−6 78 2.858× 10−6 293 1.380× 10−6

BIGGS3‡ 3 1× 10−7 85 1.154× 10−8 95 1.538× 10−6 389 8.357× 10−9

BIGGS5‡ 5 1× 10−1 30 1.300 15 1.373 435 1.113× 10−1

BIGGS5‡ 5 1× 10−3 113 3.932× 10−2 266 1.181× 10−1 253 3.142× 10−2

BIGGS5‡ 5 1× 10−5 176 −4.496× 10−3 285 1.808× 10−2 818 8.487× 10−6

BIGGS‡5 5 1× 10−7 265 −5.529× 10−3 580 6.905× 10−5 1077 2.321× 10−8

BIGGS6 6 1× 10−1 30 3.144× 10−1 121 3.515× 10−1 283 2.855× 10−1

BIGGS6 6 1× 10−3 43 2.937× 10−1 126 2.897× 10−1 1549 3.092× 10−2

BIGGS6 6 1× 10−5 363 −4.550× 10−3 586 −3.402× 10−3 1324 −5.568× 10−3

BIGGS6 6 1× 10−7 657 −5.612× 10−3 1612 −5.608× 10−3 1778 −5.648× 10−3

BOX2 2 1× 10−1 2∗∗ 5.847× 10−19 187 7.590× 10−2 26 3.168× 10−1

BOX2 2 1× 10−3 2∗∗ 5.847× 10−19 66 4.861× 10−1 387 1.276× 10−6

BOX2 2 1× 10−5 2∗∗ 5.847× 10−19 42 4.089× 10−6 132 1.362× 10−6

BOX2 2 1× 10−7 2∗∗ 5.847× 10−19 56 1.849× 10−6 108 2.693× 10−8

BOX3 3 1× 10−1 2∗∗ 5.847× 10−19 28 2.056× 10−2 55 2.102× 10−2

BOX3 3 1× 10−3 2∗∗ 5.847× 10−19 181 1.408× 10−3 94 4.054× 10−6

BOX3 3 1× 10−5 2∗∗ 5.847× 10−19 86 9.697× 10−6 149 6.273× 10−7

BOX3 3 1× 10−7 2∗∗ 5.847× 10−19 67 6.791× 10−7 370 4.093× 10−8

BRKMCC 2 1× 10−1 14 1.160× 10−2 107 1.085× 10−1 71 4.542× 10−3

BRKMCC 2 1× 10−3 22 8.434× 10−8 55 3.649× 10−4 51 1.407× 10−6

BRKMCC 2 1× 10−5 10 1.371× 10−7 45 5.221× 10−5 62 2.565× 10−10

BRKMCC 2 1× 10−7 19 3.325× 10−10 34 4.961× 10−8 156 1.995× 10−10

Table A.6. Noisy Unconstrained CUTEst Problems Tested. n is the number
of variables. σf is the standard deviation of the noise.

196

NEWUOA FD L-BFGS CD L-BFGS

Problem n σf #feval φ(x)− φ∗ #feval φ(x)− φ∗ #feval φ(x)− φ∗

BROWNAL 10 1× 10−1 46 9.212× 10−2 53 2.719× 10−2 384 4.202× 10−5

BROWNAL 10 1× 10−3 123 1.232× 10−2 65 5.759× 10−5 223 2.969× 10−5

BROWNAL 10 1× 10−5 248 3.218× 10−4 77 3.062× 10−5 740 1.092× 10−5

BROWNAL 10 1× 10−7 458 6.915× 10−6 77 2.974× 10−5 821 2.971× 10−5

BROWNAL 100 1× 10−1 610 1.164 725 5.055× 10−2 2664 1.297× 10−5

BROWNAL 100 1× 10−3 4084 2.877× 10−2 725 5.541× 10−4 3677 1.287× 10−5

BROWNAL 100 1× 10−5 7907 3.839× 10−4 725 1.908× 10−5 3763 3.096× 10−8

BROWNAL 100 1× 10−7 11449 7.999× 10−5 827 1.336× 10−5 3540 2.445× 10−8

BROWNAL 200 1× 10−1 1514 7.945× 10−1 821 5.423× 10−3 7494 8.719× 10−7

BROWNAL 200 1× 10−3 11839 3.645× 10−2 821 4.205× 10−4 7494 8.234× 10−7

BROWNAL 200 1× 10−5 22817 3.574× 10−4 1833 1.073× 10−5 5291 9.198× 10−9

BROWNAL 200 1× 10−7 26754 5.228× 10−6 1833 9.284× 10−7 1626 8.243× 10−7

BROWNDEN 4 1× 10−1 219 3.762× 10−2 151 5.209× 10−1 327 1.623× 10−4

BROWNDEN 4 1× 10−3 163 3.183× 10−4 358 3.298× 10−3 276 5.083× 10−7

BROWNDEN 4 1× 10−5 239 1.428× 10−6 351 3.116× 10−5 751 2.212× 10−9

BROWNDEN 4 1× 10−7 224 1.020× 10−8 159 1.909× 10−7 292 −4.075× 10−10

CLIFF 2 1× 10−1 19 9.252× 10−2 51 2.902× 102 809 5.153× 10−1

CLIFF 2 1× 10−3 31 1.389× 10−3 201 2.902× 102 412 3.190× 10−4

CLIFF 2 1× 10−5 25 8.089× 10−4 644 1.027 272 2.209× 10−4

CLIFF 2 1× 10−7 68 1.705× 10−8 407 4.054× 10−2 335 2.192× 10−4

CRAGGLVY 4 1× 10−1 14 8.946× 10−1 253 7.327× 10−1 285 4.782× 10−2

CRAGGLVY 4 1× 10−3 72 4.048× 10−3 271 7.551× 10−3 147 5.397× 10−4

CRAGGLVY 4 1× 10−5 173 1.960× 10−5 262 8.396× 10−5 338 6.253× 10−6

CRAGGLVY 4 1× 10−7 199 1.186× 10−6 160 3.749× 10−4 620 3.188× 10−8

CRAGGLVY 10 1× 10−1 195 6.511× 10−1 663 3.023× 101 912 2.336× 10−1

CRAGGLVY 10 1× 10−3 345 4.337× 10−2 731 2.444× 10−2 828 5.647× 10−4

CRAGGLVY 10 1× 10−5 573 7.120× 10−4 716 6.673× 10−4 1466 4.751× 10−7

CRAGGLVY 10 1× 10−7 1066 7.874× 10−7 1602 5.150× 10−6 1466 4.121× 10−9

CRAGGLVY 50 1× 10−1 1364 1.968 2041 5.834 3529 8.585× 10−1

CRAGGLVY 50 1× 10−3 1853 4.989× 10−2 4908 5.233× 10−2 4192 9.901× 10−3

CRAGGLVY 50 1× 10−5 2312 4.363× 10−4 3101 9.898× 10−4 5860 1.281× 10−5

CRAGGLVY 50 1× 10−7 3654 2.357× 10−6 7127 9.978× 10−6 7120 4.856× 10−8

CRAGGLVY 100 1× 10−1 3091 2.974 5275 1.228× 101 7272 1.469
CRAGGLVY 100 1× 10−3 5041 1.878× 10−1 3918 6.386× 10−1 7959 1.298× 10−2

CRAGGLVY 100 1× 10−5 4955 4.727× 10−4 6241 5.729× 10−3 15314 1.573× 10−5

CRAGGLVY 100 1× 10−7 7008 5.223× 10−6 11106 3.053× 10−5 12688 2.635× 10−7

CUBE 2 1× 10−1 26 2.098 34 6.758× 10−2 65 4.380× 10−2

CUBE 2 1× 10−3 68 9.524× 10−2 43 4.164× 10−2 346 7.350× 10−4

CUBE 2 1× 10−5 135 1.075× 10−3 40 4.267× 10−2 213 2.049× 10−7

CUBE 2 1× 10−7 145 3.614× 10−6 141 9.286× 10−4 563 8.023× 10−8

DENSCHNA 2 1× 10−1 12 1.802× 10−1 31 1.032× 10−1 72 7.139× 10−2

DENSCHNA 2 1× 10−3 18 2.990× 10−5 66 1.196× 10−3 387 1.375× 10−6

DENSCHNA 2 1× 10−5 22 3.337× 10−7 73 1.087× 10−5 82 6.062× 10−9

DENSCHNA 2 1× 10−7 22 1.233× 10−10 44 5.951× 10−8 151 1.453× 10−11

Table A.7. Noisy Unconstrained CUTEst Problems Tested. n is the number
of variables. σf is the standard deviation of the noise.

A.3.3.2. Noiseless Functions. In this section, we list the final objective value(φ(x)),

number of function evaluations (#feval), CPU time (CPU), and feasibility error(feaserr)

for each problem instance in Tables A.28-A.29.

197

NEWUOA FD L-BFGS CD L-BFGS

Problem n σf #feval φ(x)− φ∗ #feval φ(x)− φ∗ #feval φ(x)− φ∗

DENSCHNB 2 1× 10−1 14 2.282× 10−2 23 2.369× 10−1 293 4.982× 10−4

DENSCHNB 2 1× 10−3 17 1.807× 10−5 40 8.803× 10−4 387 1.432× 10−6

DENSCHNB 2 1× 10−5 27 2.693× 10−7 61 1.017× 10−6 42 5.983× 10−11

DENSCHNB 2 1× 10−7 26 7.582× 10−9 32 2.194× 10−8 136 9.498× 10−12

DENSCHNC 2 1× 10−1 30 −7.755× 10−2 18 5.033× 10−2 281 3.323× 10−2

DENSCHNC 2 1× 10−3 62 2.780× 10−5 80 1.775× 10−2 219 2.208× 10−5

DENSCHNC 2 1× 10−5 55 −1.834× 10−1 160 6.362× 10−6 387 1.055× 10−8

DENSCHNC 2 1× 10−7 54 −1.834× 10−1 218 2.200× 10−6 136 −1.285× 10−10

DENSCHND 3 1× 10−1 142 3.571× 101 269 3.030× 101 228 1.318× 10−3

DENSCHND 3 1× 10−3 279 2.258× 10−3 216 1.288× 101 414 4.836× 10−5

DENSCHND 3 1× 10−5 216 2.909× 10−4 240 2.218× 10−5 326 7.702× 10−6

DENSCHND 3 1× 10−7 319 1.084× 10−6 432 1.318× 10−7 679 8.619× 10−8

DENSCHNE 3 1× 10−1 29 1.570 44 1.003 66 1.038
DENSCHNE 3 1× 10−3 42 1.003 132 9.994× 10−1 138 9.993× 10−1

DENSCHNE 3 1× 10−5 73 9.999× 10−1 75 9.993× 10−1 389 9.993× 10−1

DENSCHNE 3 1× 10−7 116 1.080× 10−8 346 9.993× 10−1 295 1.651× 10−10

DENSCHNF 2 1× 10−1 19 3.023× 10−3 199 1.909× 10−2 100 2.349× 10−3

DENSCHNF 2 1× 10−3 26 1.388× 10−5 80 2.299× 10−4 100 8.045× 10−6

DENSCHNF 2 1× 10−5 32 2.913× 10−8 59 6.314× 10−7 77 2.843× 10−8

DENSCHNF 2 1× 10−7 38 2.403× 10−9 58 8.740× 10−10 136 4.048× 10−11

DIXMAANA 15 1× 10−1 202 2.011 278 3.989 727 3.807× 10−3

DIXMAANA 15 1× 10−3 401 1.671× 10−2 426 4.111× 10−3 516 7.512× 10−6

DIXMAANA 15 1× 10−5 564 5.826× 10−5 291 2.041× 10−5 413 2.145× 10−8

DIXMAANA 15 1× 10−7 650 7.482× 10−7 170 1.288× 10−6 660 5.438× 10−11

DIXMAANA 90 1× 10−1 1357 9.089× 10−1 1596 1.935× 101 4121 1.338× 10−2

DIXMAANA 90 1× 10−3 1820 1.564× 10−2 6783 4.443× 10−2 3657 3.093× 10−5

DIXMAANA 90 1× 10−5 2384 2.123× 10−4 3552 2.365× 10−4 3657 1.304× 10−7

DIXMAANA 90 1× 10−7 2302 1.072× 10−6 2031 1.824× 10−6 4663 1.690× 10−10

DIXMAANA 300 1× 10−1 11454 2.772 2091 5.752× 101 13555 6.279× 10−2

DIXMAANA 300 1× 10−3 12409 3.370× 10−2 5739 4.750× 10−2 7272 1.397× 10−4

DIXMAANA 300 1× 10−5 21687 2.406× 10−4 4530 6.880× 10−4 17895 3.066× 10−7

DIXMAANA 300 1× 10−7 18612 3.404× 10−6 5134 6.485× 10−6 7860 8.727× 10−10

DIXMAANB 15 1× 10−1 199 1.796 136 2.402 278 6.595× 10−3

DIXMAANB 15 1× 10−3 384 1.563× 10−2 700 7.149× 10−3 270 1.424× 10−5

DIXMAANB 15 1× 10−5 389 1.644× 10−5 351 5.285× 10−5 505 1.552× 10−8

DIXMAANB 15 1× 10−7 373 2.098× 10−7 274 6.291× 10−7 491 5.018× 10−10

DIXMAANB 90 1× 10−1 1588 1.101 277 1.692× 101 1880 2.910× 10−2

DIXMAANB 90 1× 10−3 1406 1.029× 10−2 4163 1.213× 10−2 1101 5.186× 10−5

DIXMAANB 90 1× 10−5 1918 2.728× 10−4 1568 9.443× 10−5 2937 2.263× 10−7

DIXMAANB 90 1× 10−7 1932 1.523× 10−6 2282 5.621× 10−7 2937 1.318× 10−9

DIXMAANB 300 1× 10−1 7971 2.504 905 5.660× 101 11680 5.947× 10−2

DIXMAANB 300 1× 10−3 12927 3.555× 10−2 11239 9.529× 10−2 7371 2.935× 10−4

DIXMAANB 300 1× 10−5 14656 2.960× 10−4 8463 2.769× 10−3 14914 1.849× 10−6

DIXMAANB 300 1× 10−7 19729 3.256× 10−6 5138 2.711× 10−5 7282 1.165× 10−9

Table A.8. Noisy Unconstrained CUTEst Problems Tested. n is the number
of variables. σf is the standard deviation of the noise.

We now comment on outcomes (ii)-(iv) mentioned in Section 2.4.1.

198

NEWUOA FD L-BFGS CD L-BFGS

Problem n σf #feval φ(x)− φ∗ #feval φ(x)− φ∗ #feval φ(x)− φ∗

DIXMAANC 15 1× 10−1 123 3.678× 10−1 696 9.417× 10−1 413 4.277× 10−3

DIXMAANC 15 1× 10−3 214 1.694× 10−3 784 9.657× 10−3 627 7.834× 10−5

DIXMAANC 15 1× 10−5 252 1.523× 10−4 621 3.658× 10−5 413 2.695× 10−8

DIXMAANC 15 1× 10−7 249 2.681× 10−7 528 4.150× 10−8 627 1.283× 10−10

DIXMAANC 90 1× 10−1 853 1.678 2077 3.626 2649 1.112× 10−2

DIXMAANC 90 1× 10−3 2546 1.886× 10−2 1016 6.657× 10−2 1880 4.973× 10−5

DIXMAANC 90 1× 10−5 2245 1.953× 10−4 2971 4.662× 10−4 1880 1.398× 10−7

DIXMAANC 90 1× 10−7 2873 2.169× 10−6 2869 9.707× 10−6 5905 1.894× 10−10

DIXMAANC 300 1× 10−1 5706 2.660 908 2.909× 101 12855 5.278× 10−2

DIXMAANC 300 1× 10−3 15396 2.200× 10−2 9990 1.601× 10−1 13555 1.924× 10−4

DIXMAANC 300 1× 10−5 17952 3.248× 10−4 8167 2.040× 10−4 9111 2.439× 10−7

DIXMAANC 300 1× 10−7 20832 3.234× 10−6 7261 1.070× 10−5 6639 9.021× 10−10

DIXMAAND 15 1× 10−1 197 2.209 71 2.464 394 1.834× 10−2

DIXMAAND 15 1× 10−3 189 1.568× 10−3 210 3.272× 10−3 1730 6.885× 10−6

DIXMAAND 15 1× 10−5 265 2.640× 10−5 517 1.972× 10−4 660 1.423× 10−7

DIXMAAND 15 1× 10−7 245 3.120× 10−7 583 1.876× 10−6 1730 6.047× 10−11

DIXMAAND 90 1× 10−1 1468 1.597 647 4.471 1880 2.476× 10−2

DIXMAAND 90 1× 10−3 2428 2.428× 10−2 2637 6.034× 10−2 3075 1.075× 10−4

DIXMAAND 90 1× 10−5 1511 2.151× 10−4 5883 2.672× 10−4 2449 2.126× 10−7

DIXMAAND 90 1× 10−7 2339 1.634× 10−6 2957 1.455× 10−6 3970 4.576× 10−10

DIXMAAND 300 1× 10−1 6087 3.295 1211 2.487× 101 11680 6.232× 10−2

DIXMAAND 300 1× 10−3 28875 4.695× 10−2 15937 2.861× 10−2 13555 2.324× 10−4

DIXMAAND 300 1× 10−5 36583 1.968× 10−4 7259 1.237× 10−3 6695 8.301× 10−7

DIXMAAND 300 1× 10−7 31821 2.379× 10−6 6958 1.154× 10−5 7282 1.251× 10−9

DIXMAANE 15 1× 10−1 117 2.680 228 2.593 516 4.750× 10−2

DIXMAANE 15 1× 10−3 483 6.719× 10−2 907 2.567× 10−3 759 9.723× 10−5

DIXMAANE 15 1× 10−5 359 6.662× 10−5 496 4.389× 10−5 875 3.665× 10−8

DIXMAANE 15 1× 10−7 473 5.981× 10−8 515 4.413× 10−7 1730 2.043× 10−10

DIXMAANE 90 1× 10−1 957 2.077 2228 1.048× 101 5905 1.522× 10−1

DIXMAANE 90 1× 10−3 2231 5.295× 10−2 2558 5.724× 10−2 7854 2.745× 10−3

DIXMAANE 90 1× 10−5 2422 1.047× 10−3 3592 1.658× 10−3 14178 2.990× 10−6

DIXMAANE 90 1× 10−7 3565 3.468× 10−6 6643 5.020× 10−6 9472 1.434× 10−8

DIXMAANE 300 1× 10−1 5797 6.472 5878 1.576× 101 17895 5.082× 10−1

DIXMAANE 300 1× 10−3 39321 1.160× 10−1 11096 1.216× 10−1 42978 5.040× 10−3

DIXMAANE 300 1× 10−5 35575 3.907× 10−3 16015 3.572× 10−3 41288 6.960× 10−5

DIXMAANE 300 1× 10−7 29189 1.864× 10−5 27787 3.545× 10−5 51466 5.905× 10−8

DIXMAANF 15 1× 10−1 186 1.292 133 9.307× 10−1 394 8.259× 10−2

DIXMAANF 15 1× 10−3 189 1.051× 10−2 409 5.640× 10−3 413 3.139× 10−5

DIXMAANF 15 1× 10−5 296 2.329× 10−5 574 1.101× 10−4 825 8.220× 10−8

DIXMAANF 15 1× 10−7 351 2.811× 10−7 546 1.188× 10−6 1730 1.116× 10−10

DIXMAANF 90 1× 10−1 1055 1.623 277 6.676 3143 7.567× 10−2

DIXMAANF 90 1× 10−3 1855 1.150× 10−1 2279 3.255× 10−2 6862 1.656× 10−3

DIXMAANF 90 1× 10−5 3117 2.379× 10−4 4615 5.649× 10−4 6955 1.941× 10−6

DIXMAANF 90 1× 10−7 6296 1.248× 10−5 4327 6.372× 10−6 9524 6.810× 10−9

DIXMAANF 300 1× 10−1 4652 2.581 904 2.266× 101 11680 1.549× 10−1

DIXMAANF 300 1× 10−3 10797 1.173× 10−1 4840 2.153× 10−1 31414 5.266× 10−3

DIXMAANF 300 1× 10−5 41760 2.501× 10−3 15493 6.550× 10−3 41516 2.248× 10−5

DIXMAANF 300 1× 10−7 17405 3.175× 10−5 22658 3.595× 10−5 59871 2.087× 10−8

Table A.9. Noisy Unconstrained CUTEst Problems Tested. n is the number
of variables. σf is the standard deviation of the noise.

199

NEWUOA FD L-BFGS CD L-BFGS

Problem n σf #feval φ(x)− φ∗ #feval φ(x)− φ∗ #feval φ(x)− φ∗

DIXMAANG 15 1× 10−1 118 1.301 53 8.760× 10−1 1730 2.446× 10−2

DIXMAANG 15 1× 10−3 219 3.590× 10−3 532 8.830× 10−3 1104 4.679× 10−5

DIXMAANG 15 1× 10−5 259 1.628× 10−5 310 9.965× 10−4 1730 9.830× 10−8

DIXMAANG 15 1× 10−7 354 1.419× 10−7 1235 2.106× 10−6 1730 3.410× 10−10

DIXMAANG 90 1× 10−1 1253 1.630 2284 1.752 4496 9.061× 10−2

DIXMAANG 90 1× 10−3 3690 9.785× 10−2 2011 3.834× 10−2 6194 1.981× 10−3

DIXMAANG 90 1× 10−5 2545 3.136× 10−4 2579 8.481× 10−4 6124 7.697× 10−6

DIXMAANG 90 1× 10−7 3047 8.060× 10−6 7112 6.479× 10−6 8861 7.244× 10−9

DIXMAANG 300 1× 10−1 7837 3.509 908 1.259× 101 12260 3.429× 10−1

DIXMAANG 300 1× 10−3 40449 1.096× 10−1 9353 2.259× 10−1 17101 4.560× 10−3

DIXMAANG 300 1× 10−5 33893 3.070× 10−3 8463 2.846× 10−3 35863 3.047× 10−5

DIXMAANG 300 1× 10−7 149998 4.680× 10−4 21147 6.501× 10−5 44939 9.867× 10−8

DIXMAANH 15 1× 10−1 167 5.656× 10−1 54 9.557× 10−1 394 2.593× 10−2

DIXMAANH 15 1× 10−3 280 7.738× 10−3 395 4.275× 10−3 705 3.527× 10−5

DIXMAANH 15 1× 10−5 365 3.603× 10−5 419 6.578× 10−5 825 7.652× 10−8

DIXMAANH 15 1× 10−7 400 1.836× 10−7 767 2.555× 10−7 830 9.052× 10−10

DIXMAANH 90 1× 10−1 1598 2.375 963 1.997 3163 8.808× 10−2

DIXMAANH 90 1× 10−3 2287 1.070× 10−1 3112 9.064× 10−2 8780 3.029× 10−3

DIXMAANH 90 1× 10−5 3252 2.565× 10−4 5492 8.586× 10−4 6194 4.423× 10−6

DIXMAANH 90 1× 10−7 5217 3.169× 10−6 4430 6.061× 10−6 8780 4.295× 10−9

DIXMAANH 300 1× 10−1 19419 5.492 1211 1.205× 101 6759 3.222× 10−1

DIXMAANH 300 1× 10−3 33582 2.678× 10−1 15009 1.093× 10−1 17702 4.861× 10−3

DIXMAANH 300 1× 10−5 25154 4.098× 10−3 15460 4.812× 10−3 40314 1.688× 10−5

DIXMAANH 300 1× 10−7 25753 1.920× 10−5 22065 2.289× 10−5 41288 8.904× 10−8

DIXMAANI 15 1× 10−1 113 5.926× 10−1 1218 1.032 516 3.909× 10−2

DIXMAANI 15 1× 10−3 358 6.615× 10−3 504 1.797× 10−2 1053 2.345× 10−3

DIXMAANI 15 1× 10−5 467 6.109× 10−4 1343 3.261× 10−4 1476 1.374× 10−6

DIXMAANI 15 1× 10−7 636 6.946× 10−6 792 1.308× 10−6 1611 4.603× 10−9

DIXMAANI 90 1× 10−1 951 2.135 3000 4.382 7696 2.633× 10−1

DIXMAANI 90 1× 10−3 1824 4.215× 10−2 2824 5.241× 10−2 7466 5.757× 10−3

DIXMAANI 90 1× 10−5 3278 7.114× 10−3 5618 4.747× 10−3 18792 1.816× 10−4

DIXMAANI 90 1× 10−7 10692 2.134× 10−4 12783 1.281× 10−4 36022 5.632× 10−7

DIXMAANI 300 1× 10−1 7480 5.731 12317 1.749× 101 21554 9.401× 10−1

DIXMAANI 300 1× 10−3 12194 1.431× 10−1 10792 1.467× 10−1 43977 1.445× 10−2

DIXMAANI 300 1× 10−5 25477 9.917× 10−3 34341 6.574× 10−3 70880 3.511× 10−4

DIXMAANI 300 1× 10−7 36578 1.928× 10−4 74070 2.406× 10−4 150151∗ 1.779× 10−5

DIXMAANJ 15 1× 10−1 156 1.786× 10−1 52 6.219× 10−1 1124 3.543× 10−2

DIXMAANJ 15 1× 10−3 309 2.567× 10−2 584 1.557× 10−2 1536 7.979× 10−4

DIXMAANJ 15 1× 10−5 672 7.838× 10−5 835 2.748× 10−4 1124 7.681× 10−7

DIXMAANJ 15 1× 10−7 685 4.621× 10−7 789 3.246× 10−5 2031 1.804× 10−8

DIXMAANJ 90 1× 10−1 1141 1.187 277 3.668 1880 7.149× 10−2

DIXMAANJ 90 1× 10−3 2186 4.912× 10−2 2853 5.441× 10−2 7696 2.858× 10−3

DIXMAANJ 90 1× 10−5 4146 3.591× 10−3 3791 3.090× 10−3 11399 4.242× 10−5

DIXMAANJ 90 1× 10−7 13470 6.305× 10−4 7251 3.692× 10−5 29130 2.883× 10−7

DIXMAANJ 300 1× 10−1 4325 2.391 904 1.236× 101 11680 1.834× 10−1

DIXMAANJ 300 1× 10−3 23360 1.285× 10−1 8042 1.123× 10−1 36345 8.119× 10−3

DIXMAANJ 300 1× 10−5 19573 3.531× 10−3 18352 5.437× 10−3 41369 5.491× 10−5

DIXMAANJ 300 1× 10−7 31059 1.801× 10−4 33637 5.060× 10−5 84610 2.777× 10−6

Table A.10. Noisy Unconstrained CUTEst Problems Tested. n is the number
of variables. σf is the standard deviation of the noise.

200

NEWUOA FD L-BFGS CD L-BFGS

Problem n σf #feval φ(x)− φ∗ #feval φ(x)− φ∗ #feval φ(x)− φ∗

DIXMAANK 15 1× 10−1 123 2.036× 10−1 70 3.310× 10−1 270 5.345× 10−2

DIXMAANK 15 1× 10−3 226 4.148× 10−2 1229 1.660× 10−2 1024 8.734× 10−4

DIXMAANK 15 1× 10−5 533 4.054× 10−4 759 7.894× 10−5 1730 3.452× 10−7

DIXMAANK 15 1× 10−7 710 1.111× 10−6 724 3.219× 10−7 1595 4.578× 10−9

DIXMAANK 90 1× 10−1 962 2.115 961 9.536× 10−1 1880 3.049× 10−1

DIXMAANK 90 1× 10−3 1921 4.371× 10−2 2718 9.449× 10−2 10211 3.178× 10−3

DIXMAANK 90 1× 10−5 3646 8.827× 10−4 7155 1.234× 10−3 8157 3.217× 10−5

DIXMAANK 90 1× 10−7 6961 5.780× 10−4 5158 2.208× 10−5 14626 1.152× 10−6

DIXMAANK 300 1× 10−1 4131 3.657 908 6.765 12777 4.528× 10−1

DIXMAANK 300 1× 10−3 30156 1.396× 10−1 10483 3.126× 10−1 21925 3.813× 10−3

DIXMAANK 300 1× 10−5 17158 7.029× 10−3 16876 3.556× 10−3 26675 6.708× 10−5

DIXMAANK 300 1× 10−7 52657 1.527× 10−4 15408 7.813× 10−5 82360 6.627× 10−7

DIXMAANL 15 1× 10−1 152 1.451 88 5.246× 10−1 1246 5.972× 10−2

DIXMAANL 15 1× 10−3 370 3.861× 10−2 866 1.485× 10−2 1694 5.900× 10−4

DIXMAANL 15 1× 10−5 782 6.330× 10−5 1050 1.029× 10−4 1476 1.103× 10−6

DIXMAANL 15 1× 10−7 873 1.152× 10−6 638 1.039× 10−6 1730 2.064× 10−8

DIXMAANL 90 1× 10−1 1230 1.224 1363 1.218 2817 1.846× 10−1

DIXMAANL 90 1× 10−3 2191 4.680× 10−2 2539 1.429× 10−1 5193 2.433× 10−3

DIXMAANL 90 1× 10−5 3048 1.131× 10−3 3152 2.455× 10−3 8780 3.050× 10−5

DIXMAANL 90 1× 10−7 7705 2.888× 10−4 5990 1.848× 10−5 32927 1.567× 10−7

DIXMAANL 300 1× 10−1 7660 3.606 1211 6.900 11674 1.739× 10−1

DIXMAANL 300 1× 10−3 33194 1.813× 10−1 11079 2.767× 10−1 19562 4.733× 10−3

DIXMAANL 300 1× 10−5 149998 3.705× 10−2 10571 5.175× 10−3 26767 4.075× 10−5

DIXMAANL 300 1× 10−7 61830 7.296× 10−4 24171 5.364× 10−5 57101 1.891× 10−6

DQRTIC 10 1× 10−1 139 1.786× 10−1 927 1.449× 10−1 762 2.816× 10−4

DQRTIC 10 1× 10−3 152 4.676× 10−3 304 6.109× 10−3 749 3.770× 10−5

DQRTIC 10 1× 10−5 429 8.020× 10−5 943 3.905× 10−5 675 8.733× 10−9

DQRTIC 10 1× 10−7 405 3.782× 10−8 676 1.675× 10−6 675 1.032× 10−8

DQRTIC 50 1× 10−1 1672 7.132× 10−1 1197 8.681× 10−1 2857 7.958× 10−2

DQRTIC 50 1× 10−3 1719 7.324× 10−3 2008 7.825× 10−3 2651 3.038× 10−4

DQRTIC 50 1× 10−5 2369 2.603× 10−5 2629 1.445× 10−4 3341 1.758× 10−6

DQRTIC 50 1× 10−7 2435 1.473× 10−6 2493 1.915× 10−6 3341 2.992× 10−8

DQRTIC 100 1× 10−1 4920 3.885× 10−1 4766 6.422 7146 4.248× 10−2

DQRTIC 100 1× 10−3 5612 9.569× 10−3 4517 2.474× 10−3 5960 1.807× 10−4

DQRTIC 100 1× 10−5 6494 5.767× 10−5 6534 7.941× 10−4 7146 2.060× 10−6

DQRTIC 100 1× 10−7 6913 8.633× 10−7 1119 1.906× 107 7344 2.041× 10−8

EDENSCH 36 1× 10−1 873 9.721× 10−1 1071 1.223 2104 1.290× 10−1

EDENSCH 36 1× 10−3 1175 1.187× 10−2 2031 1.116× 10−2 1772 3.795× 10−4

EDENSCH 36 1× 10−5 1166 1.001× 10−4 1324 5.176× 10−4 1772 8.173× 10−7

EDENSCH 36 1× 10−7 1331 1.083× 10−6 1300 3.572× 10−6 1824 2.417× 10−9

EIGENALS 6 1× 10−1 5∗∗ 0.000 96 5.364× 10−1 509 2.108× 10−1

EIGENALS 6 1× 10−3 5∗∗ 0.000 82 1.041× 10−2 252 5.299× 10−4

EIGENALS 6 1× 10−5 5∗∗ 0.000 250 4.298× 10−4 152 1.284× 10−7

EIGENALS 6 1× 10−7 5∗∗ 0.000 294 5.331× 10−6 395 1.289× 10−10

EIGENALS 110 1× 10−1 2393 9.021 3176 1.692× 101 8820 1.404× 10−1

EIGENALS 110 1× 10−3 6471 8.081× 10−1 3365 2.275× 10−1 5137 1.253× 10−2

EIGENALS 110 1× 10−5 36272 2.114× 10−2 6187 1.407× 10−2 41789 2.313× 10−4

EIGENALS 110 1× 10−7 54998 2.423× 10−4 32572 1.418× 10−4 55103∗ 2.471× 10−5

Table A.11. Noisy Unconstrained CUTEst Problems Tested. n is the number
of variables. σf is the standard deviation of the noise.

201

NEWUOA FD L-BFGS CD L-BFGS

Problem n σf #feval φ(x)− φ∗ #feval φ(x)− φ∗ #feval φ(x)− φ∗

EIGENBLS‡ 6 1× 10−1 51 1.421× 10−1 32 1.096 252 3.986× 10−3

EIGENBLS‡ 6 1× 10−3 109 3.843× 10−2 240 1.223× 10−3 376 4.336× 10−5

EIGENBLS‡ 6 1× 10−5 217 −1.840× 10−1 247 2.792× 10−5 299 1.340× 10−7

EIGENBLS‡ 6 1× 10−7 307 −1.849× 10−1 190 9.576× 10−8 256 5.404× 10−10

EIGENBLS 110 1× 10−1 705 3.389 1761 1.122× 101 4023 1.707
EIGENBLS 110 1× 10−3 5295 1.452 2754 1.596 7292 1.552
EIGENBLS 110 1× 10−5 18185 2.700× 10−2 21793 2.398× 10−2 55096∗ 5.814× 10−3

EIGENBLS 110 1× 10−7 30763 5.299× 10−4 46722 9.959× 10−4 55088∗ 2.591× 10−2

EIGENCLS 30 1× 10−1 400 1.610 1107 1.185× 101 1812 4.235× 10−1

EIGENCLS 30 1× 10−3 686 3.905× 10−1 1546 2.774× 10−2 3424 1.360× 10−3

EIGENCLS 30 1× 10−5 1590 1.176× 10−3 1935 1.016× 10−3 4427 1.116× 10−5

EIGENCLS 30 1× 10−7 2212 6.465× 10−6 3159 1.266× 10−5 6325 3.770× 10−8

ENGVAL1 2 1× 10−1 22 3.602× 10−2 24 5.487× 10−1 146 1.987× 10−2

ENGVAL1 2 1× 10−3 30 9.036× 10−5 203 4.722× 10−3 146 2.480× 10−5

ENGVAL1 2 1× 10−5 33 5.987× 10−8 54 2.397× 10−6 91 2.265× 10−8

ENGVAL1 2 1× 10−7 36 3.361× 10−9 56 3.129× 10−8 91 1.713× 10−11

ENGVAL1 50 1× 10−1 1298 1.868 2612 6.147 1160 2.136× 10−1

ENGVAL1 50 1× 10−3 1125 2.268× 10−2 634 1.857× 10−2 3720 2.678× 10−4

ENGVAL1 50 1× 10−5 2643 1.160× 10−4 894 5.713× 10−5 1460 2.359× 10−6

ENGVAL1 50 1× 10−7 2802 9.129× 10−7 1354 1.628× 10−6 2651 2.889× 10−9

ENGVAL1 100 1× 10−1 2362 1.585 3555 1.187× 101 1638 3.397× 10−1

ENGVAL1 100 1× 10−3 3400 1.462× 10−2 2805 4.521× 10−2 4885 8.850× 10−4

ENGVAL1 100 1× 10−5 3501 1.729× 10−4 1334 5.313× 10−4 5960 2.445× 10−6

ENGVAL1 100 1× 10−7 3166 1.293× 10−6 4913 3.878× 10−6 4095 6.088× 10−9

EXPFIT 2 1× 10−1 17 3.207 54 4.954 126 4.794× 10−2

EXPFIT 2 1× 10−3 33 3.946× 10−3 58 4.299× 10−3 67 4.256× 10−5

EXPFIT 2 1× 10−5 38 3.463× 10−7 107 2.064× 10−6 260 7.468× 10−10

EXPFIT 2 1× 10−7 49 8.778× 10−10 68 2.677× 10−8 91 5.019× 10−11

FLETCBV3‡ 10 1× 10−1 21∗∗ 3.228× 10−2 32 3.228× 10−2 21 3.228× 10−2

FLETCBV3‡ 10 1× 10−3 21∗∗ 3.228× 10−2 29 3.228× 10−2 21 3.228× 10−2

FLETCBV3‡ 10 1× 10−5 22 3.228× 10−2 27 3.228× 10−2 21 3.228× 10−2

FLETCBV3‡ 10 1× 10−7 965 8.774× 10−4 27 3.228× 10−2 403 3.228× 10−2

FLETCBV3‡ 100 1× 10−1 202 1.785× 105 2486 1.785× 105 1952 1.785× 105

FLETCBV3‡ 100 1× 10−3 202 1.785× 105 447 1.785× 105 4029 1.785× 105

FLETCBV3‡ 100 1× 10−5 50000∗ 1.349× 105 11892 1.785× 105 49799 2.028× 102

FLETCBV3‡ 100 1× 10−7 49999 5.761× 104 222 1.785× 105 50010∗ 1.015× 101

FLETCHBV‡ 10 1× 10−1 863 2.240× 104 639 2.653× 103 1087 1.218× 104

FLETCHBV‡ 10 1× 10−3 1289 1.540× 105 1118 8.389× 103 1356 −4.764× 103

FLETCHBV‡ 10 1× 10−5 790 2.228× 105 708 −4.605× 103 1445 −7.519× 103

FLETCHBV‡ 10 1× 10−7 977 8.461× 104 759 7.233× 102 952 4.236× 102

FLETCHBV‡ 100 1× 10−1 50000∗ 1.581× 1013 40962 −7.187× 109 50076∗ −6.387× 109

FLETCHBV‡ 100 1× 10−3 50000∗ 1.731× 1013 50015∗ −9.179× 109 50085∗ −3.093× 109

FLETCHBV‡ 100 1× 10−5 50000∗ 1.704× 1013 33119 −8.684× 108 50068∗ −5.710× 109

FLETCHBV‡ 100 1× 10−7 50000∗ 1.391× 1013 8369 7.425× 1010 50080∗ −5.308× 109

Table A.12. Noisy Unconstrained CUTEst Problems Tested. n is the number
of variables. σf is the standard deviation of the noise.

(ii) The solvers converged to feasible points with different objective function values.

There are three such problems, for all of which COBYLA terminated due to the limit on

202

NEWUOA FD L-BFGS CD L-BFGS

Problem n σf #feval φ(x)− φ∗ #feval φ(x)− φ∗ #feval φ(x)− φ∗

FREUROTH 2 1× 10−1 38 6.304× 10−2 35 5.015× 101 368 3.877× 10−4

FREUROTH 2 1× 10−3 35 5.507× 10−1 347 1.660× 10−3 141 1.496× 10−5

FREUROTH 2 1× 10−5 70 8.659× 10−7 83 9.381× 10−5 387 3.302× 10−8

FREUROTH 2 1× 10−7 73 4.594× 10−10 138 1.112× 10−6 261 4.996× 10−10

FREUROTH 10 1× 10−1 125 4.555× 101 137 5.548× 101 1466 8.708× 10−3

FREUROTH 10 1× 10−3 371 3.964× 10−3 467 1.341× 10−1 562 4.686× 10−5

FREUROTH 10 1× 10−5 433 3.004× 10−4 295 1.857× 10−3 842 5.755× 10−8

FREUROTH 10 1× 10−7 435 1.512× 10−6 602 1.348× 10−5 630 −3.206× 10−10

FREUROTH 50 1× 10−1 1629 5.744× 101 2466 5.503× 101 2651 6.734× 10−2

FREUROTH 50 1× 10−3 6822 6.137 3983 3.723× 10−2 2857 5.299× 10−5

FREUROTH 50 1× 10−5 7662 1.340× 10−3 5024 3.387× 10−4 2487 2.101× 10−7

FREUROTH 50 1× 10−7 6619 9.762× 10−6 1257 1.453× 10−6 3063 5.975× 10−10

FREUROTH 100 1× 10−1 1868 5.751× 101 920 6.619× 101 8609 6.268× 10−2

FREUROTH 100 1× 10−3 8308 9.577 3192 5.430× 10−2 6050 1.752× 10−4

FREUROTH 100 1× 10−5 5029 1.824× 10−3 4095 2.290× 10−4 5769 4.168× 10−7

FREUROTH 100 1× 10−7 5293 7.505× 10−6 6187 1.098× 10−5 5907 −5.191× 10−9

GENROSE 5 1× 10−1 35 3.849 68 3.246 180 2.711
GENROSE 5 1× 10−3 162 4.182× 10−2 234 2.566 446 9.023× 10−4

GENROSE 5 1× 10−5 221 8.543× 10−5 260 2.548× 10−3 413 2.278× 10−7

GENROSE 5 1× 10−7 261 9.023× 10−7 317 4.476× 10−5 454 1.113× 10−9

GENROSE 10 1× 10−1 84 9.259 221 8.902 805 8.892
GENROSE 10 1× 10−3 585 4.321× 10−3 446 8.816 1564 1.860× 10−4

GENROSE 10 1× 10−5 654 3.114× 10−5 1016 7.485× 10−3 1935 1.029× 10−6

GENROSE 10 1× 10−7 726 7.303× 10−7 964 8.881× 10−5 1904 5.181× 10−10

GENROSE 100 1× 10−1 1868 1.189× 102 3231 1.335× 102 7344 1.119× 102

GENROSE 100 1× 10−3 15359 1.081× 102 2247 1.108× 102 50024∗ 6.559× 101

GENROSE 100 1× 10−5 18075 6.885× 10−3 29786 5.081× 10−3 50009∗ 2.770× 10−1

GENROSE 100 1× 10−7 18030 1.719× 10−6 29847 4.748× 10−5 50005∗ 2.194× 10−2

GULF 3 1× 10−1 26 7.047 41 6.637 389 6.622
GULF 3 1× 10−3 38 7.032 38 6.622 229 4.534× 10−3

GULF 3 1× 10−5 115 6.882× 10−2 267 3.649× 10−3 370 4.462× 10−3

GULF 3 1× 10−7 333 6.930× 10−3 217 4.381× 10−3 688 2.460× 10−7

HAIRY 2 1× 10−1 49 3.471× 102 71 2.721× 102 387 1.950× 10−4

HAIRY 2 1× 10−3 351 2.426× 10−4 186 8.522× 10−4 413 2.326× 10−8

HAIRY 2 1× 10−5 226 1.256× 10−8 175 9.401× 10−7 516 5.074× 10−11

HAIRY 2 1× 10−7 252 2.339× 10−8 87 1.508× 10−6 210 4.974× 10−14

HELIX 3 1× 10−1 26 9.616× 10−2 188 7.615 374 2.785× 10−1

HELIX 3 1× 10−3 38 1.865× 10−2 314 4.147 23 8.522× 102

HELIX 3 1× 10−5 72 1.822× 10−6 453 3.021× 10−6 23 8.521× 102

HELIX 3 1× 10−7 84 4.567× 10−7 167 1.171× 10−4 23 8.521× 102

JENSMP‡ 2 1× 10−1 24 −1.786× 103 18 0.000 21 0.000
JENSMP‡ 2 1× 10−3 78 −1.896× 103 18 0.000 21 0.000
JENSMP‡ 2 1× 10−5 87 −1.896× 103 18 0.000 21 0.000
JENSMP‡ 2 1× 10−7 67 −1.896× 103 18 0.000 21 0.000
KOWOSB 4 1× 10−1 1∗∗ 5.006× 10−3 72 1.383× 10−3 9 5.006× 10−3

KOWOSB 4 1× 10−3 20 2.240× 10−3 261 3.305× 10−3 104 2.435× 10−4

KOWOSB 4 1× 10−5 44 1.249× 10−4 112 1.767× 10−4 220 6.118× 10−5

KOWOSB 4 1× 10−7 111 2.694× 10−5 1309 6.915× 10−7 314 5.638× 10−8

Table A.13. Noisy Unconstrained CUTEst Problems Tested. n is the number
of variables. σf is the standard deviation of the noise.

203

NEWUOA FD L-BFGS CD L-BFGS

Problem n σf #feval φ(x)− φ∗ #feval φ(x)− φ∗ #feval φ(x)− φ∗

MEXHAT 2 1× 10−1 30 1.166× 10−2 98 4.477× 10−1 146 4.231× 10−1

MEXHAT 2 1× 10−3 43 1.102× 10−2 80 8.450× 10−1 709 4.227× 10−1

MEXHAT 2 1× 10−5 45 1.110× 10−2 203 4.173× 10−1 232 1.568× 10−3

MEXHAT 2 1× 10−7 44 1.036× 10−2 210 4.226× 10−1 660 1.383× 10−4

MOREBV 10 1× 10−1 1∗∗ 1.599× 10−2 19 1.599× 10−2 21 1.599× 10−2

MOREBV 10 1× 10−3 81 1.262× 10−2 131 1.451× 10−2 937 1.506× 10−3

MOREBV 10 1× 10−5 184 2.345× 10−3 433 1.847× 10−3 796 1.441× 10−6

MOREBV 10 1× 10−7 386 1.283× 10−7 988 7.402× 10−5 1003 5.675× 10−9

MOREBV 50 1× 10−1 1∗∗ 1.321× 10−3 93 1.321× 10−3 101 1.321× 10−3

MOREBV 50 1× 10−3 105 1.122× 10−3 101 1.321× 10−3 828 4.204× 10−4

MOREBV 50 1× 10−5 746 3.981× 10−4 997 7.841× 10−4 2064 2.290× 10−5

MOREBV 50 1× 10−7 1322 3.021× 10−5 1283 4.621× 10−5 12825 7.628× 10−6

MOREBV 100 1× 10−1 1∗∗ 3.633× 10−4 190 3.633× 10−4 201 3.633× 10−4

MOREBV 100 1× 10−3 1∗∗ 3.633× 10−4 201 3.633× 10−4 2669 1.495× 10−4

MOREBV 100 1× 10−5 320 2.538× 10−4 309 3.571× 10−4 3457 6.772× 10−6

MOREBV 100 1× 10−7 3087 1.417× 10−5 2809 1.540× 10−5 14045 1.546× 10−6

NCB20B 21 1× 10−1 1∗∗ 3.000× 10−3 22 3.000× 10−3 232 3.177× 10−4

NCB20B 21 1× 10−3 113 1.441× 10−5 74 2.964× 10−4 421 6.287× 10−6

NCB20B 21 1× 10−5 260 1.402× 10−4 1332 5.741× 10−6 686 6.098× 10−9

NCB20B 21 1× 10−7 708 1.224× 10−5 260 4.816× 10−8 650 −5.574× 10−11

NCB20B 22 1× 10−1 121 5.384× 10−3 23 6.000× 10−3 388 1.036× 10−3

NCB20B 22 1× 10−3 121 1.817× 10−3 174 8.594× 10−4 935 8.921× 10−4

NCB20B 22 1× 10−5 265 2.971× 10−4 298 1.075× 10−5 578 3.829× 10−6

NCB20B 22 1× 10−7 715 2.307× 10−5 345 1.163× 10−7 908 2.372× 10−9

NCB20B 50 1× 10−1 212 9.199× 10−2 121 1.099× 10−1 938 1.883× 10−2

NCB20B 50 1× 10−3 734 7.836× 10−3 1513 1.296× 10−3 1866 3.565× 10−4

NCB20B 50 1× 10−5 1757 4.549× 10−4 838 3.965× 10−4 3623 9.630× 10−5

NCB20B 50 1× 10−7 4316 6.696× 10−5 2253 8.619× 10−5 23370 2.289× 10−6

NCB20B 100 1× 10−1 481 3.871× 10−1 1565 3.458× 10−1 2938 3.874× 10−2

NCB20B 100 1× 10−3 1748 1.447× 10−2 2557 2.895× 10−2 5703 8.588× 10−4

NCB20B 100 1× 10−5 5976 7.143× 10−4 5154 3.922× 10−4 10509 8.218× 10−5

NCB20B 100 1× 10−7 15651 4.301× 10−5 6944 6.476× 10−5 32343 1.546× 10−5

NCB20B 180 1× 10−1 1664 4.700× 10−1 1648 1.184 5833 1.772× 10−1

NCB20B 180 1× 10−3 6604 4.261× 10−2 2007 5.420× 10−2 12753 1.807× 10−3

NCB20B 180 1× 10−5 12066 1.067× 10−3 10462 3.299× 10−4 22900 2.856× 10−5

NCB20B 180 1× 10−7 26507 2.789× 10−5 11118 2.804× 10−5 28345 2.440× 10−5

NONDIA 10 1× 10−1 84 4.198 407 6.547 124 6.487
NONDIA 10 1× 10−3 144 1.406× 10−3 79 6.481 579 1.101× 10−4

NONDIA 10 1× 10−5 168 3.507× 10−5 93 6.480 349 5.342× 10−7

NONDIA 10 1× 10−7 195 2.695× 10−7 185 1.575× 10−7 322 4.429× 10−10

NONDIA 20 1× 10−1 154 2.666 814 4.149 885 4.485
NONDIA 20 1× 10−3 356 2.292× 10−3 140 4.435 744 5.560× 10−4

NONDIA 20 1× 10−5 403 3.163× 10−5 382 1.709× 10−3 996 4.738× 10−7

NONDIA 20 1× 10−7 468 1.399× 10−6 383 4.588× 10−7 1933 3.743× 10−9

NONDIA 30 1× 10−1 199 1.497 169 3.286 517 3.271
NONDIA 30 1× 10−3 566 6.818× 10−3 780 1.606× 10−2 1319 1.828× 10−3

NONDIA 30 1× 10−5 589 1.475× 10−4 689 8.898× 10−4 1082 5.285× 10−6

NONDIA 30 1× 10−7 634 3.771× 10−7 1319 6.491× 10−7 1551 4.326× 10−9

Table A.14. Noisy Unconstrained CUTEst Problems Tested. n is the number
of variables. σf is the standard deviation of the noise.

204

NEWUOA FD L-BFGS CD L-BFGS

Problem n σf #feval φ(x)− φ∗ #feval φ(x)− φ∗ #feval φ(x)− φ∗

NONDIA 50 1× 10−1 317 8.665× 10−1 269 1.505 423 1.520
NONDIA 50 1× 10−3 635 8.814× 10−3 375 1.498 1659 2.467× 10−3

NONDIA 50 1× 10−5 851 7.108× 10−5 3599 4.640× 10−4 1659 6.908× 10−6

NONDIA 50 1× 10−7 1132 1.517× 10−6 1731 1.971× 10−5 1556 1.127× 10−8

NONDIA 90 1× 10−1 573 3.893× 10−1 1087 6.154× 10−1 744 5.843× 10−1

NONDIA 90 1× 10−3 1374 3.301× 10−1 563 5.766× 10−1 2052 9.232× 10−3

NONDIA 90 1× 10−5 1720 9.430× 10−5 564 5.781× 10−1 3319 2.610× 10−5

NONDIA 90 1× 10−7 1788 2.403× 10−6 1306 4.184× 10−6 4057 5.888× 10−8

NONDIA 100 1× 10−1 419 3.342× 10−1 418 4.850× 10−1 824 4.930× 10−1

NONDIA 100 1× 10−3 1610 2.086× 10−1 927 4.803× 10−1 4544 1.815× 10−2

NONDIA 100 1× 10−5 1907 1.474× 10−4 934 4.658× 10−1 4975 4.317× 10−5

NONDIA 100 1× 10−7 2235 2.091× 10−6 2668 5.756× 10−5 4072 1.010× 10−7

NONDQUAR 100 1× 10−1 828 5.744× 10−1 1433 7.564× 10−1 3532 1.006× 10−1

NONDQUAR 100 1× 10−3 1842 1.889× 10−2 5568 2.000× 10−2 7272 5.244× 10−3

NONDQUAR 100 1× 10−5 4661 1.475× 10−3 8339 1.946× 10−3 20194 3.394× 10−4

NONDQUAR 100 1× 10−7 26783 1.700× 10−4 21822 1.549× 10−4 50037∗ 3.497× 10−5

OSBORNEA‡ 5 1× 10−1 52 1.127× 10−2 8 8.790× 10−1 170 1.485× 10−1

OSBORNEA‡ 5 1× 10−3 64 5.240× 10−2 9 8.790× 10−1 496 7.589× 10−4

OSBORNEA‡ 5 1× 10−5 135 3.040× 10−3 260 1.902× 10−3 1638 2.432× 10−5

OSBORNEA‡ 5 1× 10−7 504 4.404× 10−5 677 2.252× 10−5 1033 2.247× 10−5

OSBORNEB 11 1× 10−1 89 5.190× 10−1 308 6.677× 10−1 1031 2.972× 10−1

OSBORNEB 11 1× 10−3 172 3.075× 10−1 829 3.219× 10−1 1238 7.480× 10−2

OSBORNEB 11 1× 10−5 1052 7.968× 10−3 1249 2.882× 10−3 2334 7.854× 10−5

OSBORNEB 11 1× 10−7 1708 8.191× 10−6 1555 6.681× 10−6 2395 9.143× 10−9

PENALTY1 4 1× 10−1 49 1.917× 10−2 40 8.686× 10−3 100 4.980× 10−3

PENALTY1 4 1× 10−3 87 2.835× 10−5 165 3.661× 10−5 95 4.498× 10−5

PENALTY1 4 1× 10−5 117 3.573× 10−5 55 1.741× 10−4 106 3.829× 10−5

PENALTY1 4 1× 10−7 113 2.254× 10−5 97 3.820× 10−5 140 3.826× 10−5

PENALTY1 10 1× 10−1 358 4.733× 10−1 1167 5.627× 10−2 284 1.327× 10−3

PENALTY1 10 1× 10−3 178 3.567× 10−5 347 2.207× 10−4 353 9.096× 10−5

PENALTY1 10 1× 10−5 194 2.463× 10−5 335 6.078× 10−5 595 6.005× 10−5

PENALTY1 10 1× 10−7 245 2.985× 10−5 352 5.882× 10−5 477 5.965× 10−5

PENALTY1 50 1× 10−1 2527 5.606× 10−1 2274 1.423 2076 8.180× 10−3

PENALTY1 50 1× 10−3 2455 6.140× 10−5 2697 1.201× 10−4 2281 2.999× 10−4

PENALTY1 50 1× 10−5 2298 5.576× 10−5 1786 9.926× 10−5 2384 1.322× 10−4

PENALTY1 50 1× 10−7 3919 8.208× 10−6 1523 8.616× 10−5 16116 7.338× 10−6

PENALTY1 100 1× 10−1 5649 8.758× 10−1 6442 6.236 4687 8.428× 10−3

PENALTY1 100 1× 10−3 6701 1.019× 10−4 3923 1.489× 10−4 5093 1.859× 10−4

PENALTY1 100 1× 10−5 5940 9.287× 10−5 4516 1.904× 10−4 5907 1.878× 10−4

PENALTY1 100 1× 10−7 10954 1.256× 10−5 6607 1.677× 10−4 28399 5.191× 10−6

PFIT1LS‡ 3 1× 10−1 35 4.034 67 9.281 389 5.246
PFIT1LS‡ 3 1× 10−3 111 9.255× 10−1 1415 7.002 447 2.288× 10−4

PFIT1LS‡ 3 1× 10−5 325 1.154× 10−2 342 2.235× 10−6 502 2.581× 10−6

PFIT1LS‡ 3 1× 10−7 482 2.955× 10−4 258 4.493× 10−5 453 2.489× 10−6

PFIT2LS‡ 3 1× 10−1 113 5.174× 101 81 9.874× 101 620 2.712× 10−1

PFIT2LS‡ 3 1× 10−3 410 2.136 123 1.245× 102 537 6.269× 10−3

PFIT2LS‡ 3 1× 10−5 618 5.570× 10−2 430 4.757× 10−3 537 1.772× 10−3

PFIT2LS‡ 3 1× 10−7 706 1.251× 10−2 340 2.704× 10−3 870 1.648× 10−3

Table A.15. Noisy Unconstrained CUTEst Problems Tested. n is the number
of variables. σf is the standard deviation of the noise.

205

NEWUOA FD L-BFGS CD L-BFGS

Problem n σf #feval φ(x)− φ∗ #feval φ(x)− φ∗ #feval φ(x)− φ∗

PFIT3LS‡ 3 1× 10−1 162 1.868× 102 390 7.944× 101 817 3.682× 10−1

PFIT3LS‡ 3 1× 10−3 546 7.561 640 9.159× 10−1 612 3.276× 10−2

PFIT3LS‡ 3 1× 10−5 1012 9.384× 10−2 615 4.587× 10−2 702 3.154× 10−2

PFIT3LS‡ 3 1× 10−7 1012 8.229× 10−2 444 4.374× 10−2 1504∗ 2.782× 10−2

PFIT4LS‡ 3 1× 10−1 234 2.464× 102 78 2.144× 103 723 1.842× 10−1

PFIT4LS‡ 3 1× 10−3 612 2.736× 101 758 6.570 715 1.234× 10−1

PFIT4LS‡ 3 1× 10−5 1181 8.871× 10−1 471 1.677× 10−1 1506∗ 1.433× 10−1

PFIT4LS‡ 3 1× 10−7 1374 2.619× 10−1 597 1.249× 10−1 1502∗ 1.086× 10−1

QUARTC 25 1× 10−1 599 4.172× 10−1 1716 2.004 1203 1.376× 10−2

QUARTC 25 1× 10−3 759 7.392× 10−3 767 3.811× 10−2 1496 8.968× 10−5

QUARTC 25 1× 10−5 828 6.201× 10−6 1245 8.620× 10−5 1750 3.508× 10−7

QUARTC 25 1× 10−7 1040 4.136× 10−7 1584 1.148× 10−6 2807 1.313× 10−8

QUARTC 100 1× 10−1 4920 3.885× 10−1 4766 6.422 7146 4.248× 10−2

QUARTC 100 1× 10−3 5612 9.569× 10−3 4517 2.474× 10−3 5960 1.807× 10−4

QUARTC 100 1× 10−5 6494 5.767× 10−5 6534 7.941× 10−4 7146 2.060× 10−6

QUARTC 100 1× 10−7 6913 8.633× 10−7 1119 1.906× 107 7344 2.041× 10−8

SINEVAL 2 1× 10−1 12 5.231 4 5.552 108 4.632
SINEVAL 2 1× 10−3 152 9.339× 10−1 194 3.587 700 2.082× 10−4

SINEVAL 2 1× 10−5 226 1.682× 10−5 450 1.856× 10−1 488 1.360× 10−7

SINEVAL 2 1× 10−7 295 1.841× 10−8 425 1.955× 10−5 563 9.899× 10−13

SINQUAD 5 1× 10−1 36 1.503 333 5.219 107 1.121× 10−2

SINQUAD 5 1× 10−3 98 8.682× 10−3 79 6.186× 10−3 121 3.326× 10−5

SINQUAD 5 1× 10−5 140 1.602× 10−5 77 3.260× 10−5 121 9.620× 10−8

SINQUAD 5 1× 10−7 170 1.177× 10−6 135 5.826× 10−9 205 −3.938× 10−10

SINQUAD 50 1× 10−1 1724 1.740 742 2.222× 101 3929 1.376× 10−1

SINQUAD 50 1× 10−3 3724 3.119× 10−2 1101 9.615× 10−3 3616 2.544× 10−4

SINQUAD 50 1× 10−5 4234 3.236× 10−4 849 2.589× 10−4 2857 6.467× 10−7

SINQUAD 50 1× 10−7 6464 1.670× 10−6 1261 1.644× 10−6 2083 5.443× 10−9

SINQUAD 100 1× 10−1 4978 4.096 1247 1.048× 101 3062 1.026× 10−1

SINQUAD 100 1× 10−3 7193 2.876× 10−2 2470 6.295× 10−2 3265 2.132× 10−4

SINQUAD 100 1× 10−5 10426 3.206× 10−4 1948 9.257× 10−4 3468 5.694× 10−7

SINQUAD 100 1× 10−7 15008 2.263× 10−6 2152 3.046× 10−6 4079 3.929× 10−9

SISSER 2 1× 10−1 4∗∗ 3.000× 10−4 20 2.326× 10−2 65 2.424× 10−4

SISSER 2 1× 10−3 15 1.764× 10−4 139 2.826× 10−5 204 1.415× 10−4

SISSER 2 1× 10−5 20 2.270× 10−5 44 3.731× 10−5 85 2.188× 10−9

SISSER 2 1× 10−7 27 1.467× 10−8 71 4.270× 10−7 116 6.695× 10−12

SPARSQUR 10 1× 10−1 42 2.779× 10−1 104 4.304× 10−2 403 5.561× 10−3

SPARSQUR 10 1× 10−3 85 2.675× 10−3 212 6.281× 10−3 384 6.274× 10−5

SPARSQUR 10 1× 10−5 184 4.915× 10−5 740 2.770× 10−5 384 3.317× 10−7

SPARSQUR 10 1× 10−7 241 1.377× 10−6 398 1.386× 10−7 579 1.307× 10−8

SPARSQUR 50 1× 10−1 1070 7.980× 10−1 1303 6.397× 10−1 1316 1.918× 10−2

SPARSQUR 50 1× 10−3 1034 4.918× 10−3 1078 1.952× 10−2 3577 9.425× 10−5

SPARSQUR 50 1× 10−5 1472 2.315× 10−5 2755 4.135× 10−5 2651 5.338× 10−7

SPARSQUR 50 1× 10−7 1847 3.804× 10−7 1706 5.903× 10−6 2651 6.858× 10−9

SPARSQUR 100 1× 10−1 2912 5.988× 10−1 3387 1.953 5960 1.100× 10−2

SPARSQUR 100 1× 10−3 2484 4.672× 10−3 2435 5.029× 10−2 3677 5.412× 10−5

SPARSQUR 100 1× 10−5 2664 7.151× 10−5 5794 1.737× 10−4 4292 6.552× 10−6

SPARSQUR 100 1× 10−7 3757 3.002× 10−7 4591 2.610× 10−6 5960 1.082× 10−8

Table A.16. Noisy Unconstrained CUTEst Problems Tested. n is the number
of variables. σf is the standard deviation of the noise.

206

NEWUOA FD L-BFGS CD L-BFGS

Problem n σf #feval φ(x)− φ∗ #feval φ(x)− φ∗ #feval φ(x)− φ∗

TOINTGSS 10 1× 10−1 65 4.850× 10−1 759 2.072 101 1.831× 10−2

TOINTGSS 10 1× 10−3 164 1.448× 10−2 301 3.304× 10−2 165 8.167× 10−6

TOINTGSS 10 1× 10−5 211 2.845× 10−5 124 3.624× 10−4 200 2.744× 10−8

TOINTGSS 10 1× 10−7 277 2.113× 10−7 124 3.539× 10−6 200 5.802× 10−11

TOINTGSS 50 1× 10−1 388 1.033 563 1.183× 101 724 6.155× 10−2

TOINTGSS 50 1× 10−3 878 1.276× 10−2 415 4.651× 10−2 2132 1.554× 10−5

TOINTGSS 50 1× 10−5 923 1.748× 10−4 693 1.140× 10−3 724 5.405× 10−8

TOINTGSS 50 1× 10−7 1574 1.030× 10−6 693 1.136× 10−5 724 −2.877× 10−9

TOINTGSS 100 1× 10−1 1638 1.693 590 7.090 2660 6.483× 10−2

TOINTGSS 100 1× 10−3 1521 2.165× 10−2 509 7.545× 10−2 1646 3.228× 10−5

TOINTGSS 100 1× 10−5 2692 2.385× 10−4 508 1.898× 10−3 2526 2.620× 10−8

TOINTGSS 100 1× 10−7 2312 3.442× 10−6 508 1.893× 10−5 2526 4.046× 10−9

TQUARTIC 5 1× 10−1 22 4.614× 10−1 24 6.142× 10−1 40 4.540× 10−1

TQUARTIC 5 1× 10−3 63 5.640× 10−3 242 9.902× 10−2 234 5.290× 10−4

TQUARTIC 5 1× 10−5 107 1.155× 10−5 202 8.160× 10−4 818 1.004× 10−6

TQUARTIC 5 1× 10−7 137 7.045× 10−8 95 1.098× 10−6 163 9.192× 10−9

TQUARTIC 10 1× 10−1 44 6.151× 10−1 274 7.097× 10−1 92 5.464× 10−1

TQUARTIC 10 1× 10−3 174 4.406× 10−2 543 2.485× 10−1 344 5.223× 10−3

TQUARTIC 10 1× 10−5 277 2.548× 10−5 466 4.217× 10−2 722 7.389× 10−6

TQUARTIC 10 1× 10−7 388 8.693× 10−7 805 6.160× 10−5 535 4.256× 10−8

TQUARTIC 50 1× 10−1 191 6.732× 10−1 170 7.480× 10−1 310 7.002× 10−1

TQUARTIC 50 1× 10−3 1487 3.648× 10−1 1155 5.611× 10−1 1534 6.796× 10−1

TQUARTIC 50 1× 10−5 3112 6.435× 10−3 1441 2.121× 10−2 2117 1.390× 10−4

TQUARTIC 50 1× 10−7 5704 8.027× 10−5 3736 3.333× 10−4 1785 3.649× 10−7

TQUARTIC 100 1× 10−1 226 7.236× 10−1 236 7.828× 10−1 610 7.423× 10−1

TQUARTIC 100 1× 10−3 1085 7.089× 10−1 790 7.232× 10−1 3629 7.219× 10−1

TQUARTIC 100 1× 10−5 26574 2.458× 10−2 2675 1.765× 10−1 4298 5.460× 10−4

TQUARTIC 100 1× 10−7 31937 2.808× 10−4 4860 4.761× 10−4 5838 2.894× 10−7

TRIDIA 10 1× 10−1 128 1.555 124 1.392 594 3.847× 10−4

TRIDIA 10 1× 10−3 174 1.649× 10−3 305 2.065× 10−2 495 1.429× 10−6

TRIDIA 10 1× 10−5 176 2.353× 10−5 242 3.449× 10−4 698 4.786× 10−9

TRIDIA 10 1× 10−7 226 1.205× 10−7 279 3.036× 10−6 848 2.043× 10−12

TRIDIA 20 1× 10−1 301 7.391× 10−1 812 1.072 2309 4.788× 10−4

TRIDIA 20 1× 10−3 312 9.505× 10−3 443 1.352× 10−1 1432 1.038× 10−6

TRIDIA 20 1× 10−5 396 4.890× 10−5 821 4.616× 10−4 2029 3.474× 10−9

TRIDIA 20 1× 10−7 500 5.289× 10−7 864 3.588× 10−6 1992 7.669× 10−12

TRIDIA 30 1× 10−1 454 8.863× 10−1 3249 7.566 2694 2.364× 10−3

TRIDIA 30 1× 10−3 599 7.428× 10−3 2486 6.494× 10−2 2403 4.586× 10−5

TRIDIA 30 1× 10−5 753 1.083× 10−4 1254 1.150× 10−3 3111 7.820× 10−7

TRIDIA 30 1× 10−7 849 7.455× 10−7 2292 5.997× 10−6 4598 6.846× 10−11

TRIDIA 50 1× 10−1 670 1.625 1604 8.841 3723 1.190× 10−1

TRIDIA 50 1× 10−3 1124 1.616× 10−2 1824 2.452× 10−1 6195 7.991× 10−6

TRIDIA 50 1× 10−5 1056 4.101× 10−4 3602 1.237× 10−3 5985 2.190× 10−6

TRIDIA 50 1× 10−7 1784 1.022× 10−6 3450 2.572× 10−5 7640 1.634× 10−8

TRIDIA 100 1× 10−1 2183 5.214 4778 2.202× 101 9774 1.524× 10−1

TRIDIA 100 1× 10−3 4301 3.587× 10−2 3474 6.746× 10−1 15035 9.421× 10−5

TRIDIA 100 1× 10−5 4682 4.705× 10−4 10097 2.340× 10−3 20327 4.890× 10−7

TRIDIA 100 1× 10−7 3650 4.093× 10−6 11716 3.468× 10−5 22968 8.918× 10−9

Table A.17. Noisy Unconstrained CUTEst Problems Tested. n is the number
of variables. σf is the standard deviation of the noise.

207

NEWUOA FD L-BFGS CD L-BFGS

Problem n σf #feval φ(x)− φ∗ #feval φ(x)− φ∗ #feval φ(x)− φ∗

WATSON 12 1× 10−1 91 1.602× 10−1 260 2.747× 10−1 407 9.362× 10−2

WATSON 12 1× 10−3 170 7.112× 10−2 752 7.265× 10−3 737 8.831× 10−3

WATSON 12 1× 10−5 708 6.531× 10−4 1487 2.403× 10−3 1470 1.808× 10−4

WATSON 12 1× 10−7 1664 2.355× 10−4 1077 1.868× 10−4 1559 1.367× 10−5

WATSON 31 1× 10−1 283 1.444 567 2.596 1379 2.727× 10−1

WATSON 31 1× 10−3 982 1.556× 10−1 1465 1.648× 10−1 4316 6.367× 10−3

WATSON 31 1× 10−5 4133 4.936× 10−3 2191 1.682× 10−2 3826 1.420× 10−3

WATSON 31 1× 10−7 13951 1.468× 10−4 4582 8.715× 10−4 8624 1.013× 10−4

WOODS 4 1× 10−1 86 8.655 378 5.200× 10−1 391 2.498× 10−1

WOODS 4 1× 10−3 87 7.873 300 1.818× 10−1 567 1.248× 10−5

WOODS 4 1× 10−5 432 1.680× 10−5 786 1.295× 10−3 513 6.023× 10−7

WOODS 4 1× 10−7 515 4.005× 10−7 278 3.224× 10−6 391 6.204× 10−10

WOODS 100 1× 10−1 8056 1.617× 102 5272 4.980× 101 5925 6.411
WOODS 100 1× 10−3 27605 4.700× 10−1 9371 4.582× 10−1 7344 1.666× 10−3

WOODS 100 1× 10−5 35366 1.415× 10−2 4207 4.455× 10−3 9097 9.510× 10−6

WOODS 100 1× 10−7 50000∗ 6.216× 10−2 4756 7.326× 10−5 7528 3.725× 10−7

ZANGWIL2 2 1× 10−1 7 1.455× 10−3 14 2.786× 10−2 31 1.009× 10−3

ZANGWIL2 2 1× 10−3 17 1.572× 10−5 13 1.557× 10−3 31 1.987× 10−6

ZANGWIL2 2 1× 10−5 21 6.543× 10−8 13 1.164× 10−6 516 3.655× 10−9

ZANGWIL2 2 1× 10−7 16 3.964× 10−10 13 1.167× 10−8 516 −9.150× 10−11

Table A.18. Noisy Unconstrained CUTEst Problems Tested. n is the number
of variables. σf is the standard deviation of the noise.

the number of function evaluations. We removed the limit on the number of evaluations

for COBYLA to see if it converges to a different local solution. For HS67, COBYLA

terminates with a final objective function value of −1116.415 after 32606 evaluations, and

for CRESC4 it converges to a feasible solution with f = 1.03523 after 4706634 evaluations.

(iii) One of the solvers terminated at an infeasible point. There are seven problems for

which knitro terminated at a feasible point but cobyla at an infeasible one. For all

of these problems, cobyla hits the limit on the number of function evaluations; it can

make further progress in feasibility if the budget of evaluations is increased. For problems

HS101, HS102, and HS103, knitro also hits the evaluation limit; however, it gets a better

solution –a feasible one with a lower objective value– for all three problems.

208

LMDER DFOLS

Problem (n,m) #feval φ(x)− φ∗ #feval φ(x)− φ∗

LINEAR(FR) (9, 45) 21 1.421× 10−14 45 −1.421× 10−14

LINEAR(FR) (9, 45) 21 1.279× 10−13 49 0.000
LINEAR(R1) (7, 35) 16 −3.099× 10−7 61 −3.099× 10−7

LINEAR(R1) (7, 35) 16 −3.099× 10−7 56 −3.099× 10−7

LINEAR(R10RC) (7, 35) 16 1.493× 10−8 56 1.493× 10−8

LINEAR(R10RC) (7, 35) 16 1.493× 10−8 62 1.493× 10−8

ROSENBR (2, 2) 39 0.000 50 3.788× 10−24

ROSENBR (2, 2) 17 0.000 14 1.498× 10−20

HELIX (3, 3) 49 3.941× 10−59 44 2.532× 10−28

HELIX (3, 3) 57 5.921× 10−47 80 5.476× 10−20

POWELLSG (4, 4) 331 6.610× 10−35 54 1.074× 10−18

POWELLSG (4, 4) 346 7.106× 10−35 47 1.467× 10−14

FREUROTH (2, 2) 60 3.688× 10−6 122 3.679× 10−6

FREUROTH (2, 2) 87 3.793× 10−6 107 3.679× 10−6

BARD (3, 15) 21 3.066× 10−10 32 3.066× 10−10

BARD (3, 15) 169 1.742× 101 107 1.066× 10−1

KOWOSB (4, 11) 99 4.429× 10−12 77 3.849× 10−12

MEYER (3, 16) 456 −4.829× 10−6 1500∗ 3.715× 104

WATSON (6, 31) 57 5.359× 10−11 81 5.355× 10−11

WATSON (6, 31) 85 5.357× 10−11 105 5.355× 10−11

WATSON (9, 31) 144 1.393× 10−13 409 1.468× 10−13

WATSON (9, 31) 134 1.382× 10−13 499 1.454× 10−13

WATSON (12, 31) 276 1.198× 10−15 340 2.214× 10−9

WATSON (12, 31) 181 3.636× 10−16 1013 2.246× 10−9

BOX3D (3, 10) 25 3.390× 10−32 52 1.921× 10−27

JENSMP (2, 10) 46 −1.764× 10−5 70 −1.764× 10−5

BROWNDEN (4, 20) 94 1.684× 10−3 167 1.626× 10−3

BROWNDEN (4, 20) 96 1.733× 10−3 189 1.626× 10−3

CHEBYQUAD (6, 6) 59 4.434× 10−32 54 1.239× 10−23

CHEBYQUAD (7, 7) 58 6.915× 10−32 49 5.120× 10−29

CHEBYQUAD (8, 8) 168 −2.725× 10−10 258 −2.743× 10−10

CHEBYQUAD (9, 9) 94 4.143× 10−32 87 4.535× 10−28

CHEBYQUAD (10, 10) 108 1.731× 10−3 191 −3.036× 10−10

CHEBYQUAD (11, 11) 320 −4.428× 10−10 352 −4.481× 10−10

BROWNAL (10, 10) 79 2.840× 10−29 52 7.676× 10−19

OSBORNE1 (5, 33) 157 −3.025× 10−12 783 3.737× 10−12

OSBORNE2 (11, 65) 101 −3.705× 10−9 150 −3.706× 10−9

OSBORNE2 (11, 65) 148 1.750 138 1.750
BDQRTIC (8, 8) 508 3.759× 10−6 336 8.111× 10−6

BDQRTIC (10, 12) 662 3.152× 10−6 457 3.874× 10−6

BDQRTIC (11, 14) 1046 3.296× 10−6 554 2.046× 10−5

BDQRTIC (12, 16) 1119 −1.268× 10−6 561 5.775× 10−5

Table A.19. Benchmarking Problems Tested. n is the number of variables
and m is the dimension of the residual vector.

209

LMDER DFOLS

Problem (n,m) #feval φ(x)− φ∗ #feval φ(x)− φ∗

CUBE (5, 5) 388 0.000 295 3.119× 10−18

CUBE (6, 6) 1024 0.000 714 4.127× 10−24

CUBE (8, 8) 4008∗ 2.090× 10−8 4000∗ 4.753× 10−11

MANCINO (5, 5) 19 4.224× 10−22 25 6.176× 10−20

MANCINO (5, 5) 25 4.686× 10−22 27 8.536× 10−18

MANCINO (8, 8) 28 5.795× 10−22 23 3.152× 10−12

MANCINO (10, 10) 34 8.218× 10−22 25 3.069× 10−11

MANCINO (12, 12) 53 1.322× 10−22 32 2.454× 10−17

MANCINO (12, 12) 53 5.201× 10−22 35 2.798× 10−9

HEART8LS (8, 8) 37 3.402× 10−30 46 1.082× 10−23

HEART8LS (8, 8) 109 3.402× 10−30 2293 1.001× 10−10

Table A.20. Benchmarking Problems Tested. n is the number of variables
and m is the dimension of the residual vector.

For two problems, cobyla terminated at a feasible point but knitro at an infeasible

one. For problem POLAK6, knitro stalls at an infeasible point. For SPIRAL, it gets

close to feasibility but runs out its evaluation budget before it can reduce the feasibility

error further.

(iv) Both solvers terminated at infeasible points. For all three of those problems,

knitro declares convergence to infeasible stationary points. For problems S365 and

BURKEHAN, cobyla terminates due to the condition on the final trust region radius

whereas for POLAK2 it stops due to the function evaluation limit.

210

LMDER DFOLS

Problem (n,m) σf #feval φ(x)− φ∗ #feval φ(x)− φ∗

LINEAR(FR) (9, 45) 1× 10−1 65 3.565× 101 70 3.641× 101

LINEAR(FR) (9, 45) 1× 10−3 126 5.008× 10−2 97 6.606× 10−2

LINEAR(FR) (9, 45) 1× 10−5 115 5.170× 10−4 81 2.889× 10−5

LINEAR(FR) (9, 45) 1× 10−7 114 5.523× 10−6 76 2.296× 10−6

LINEAR(FR) (9, 45) 1× 10−1 229 2.822× 102 77 1.112× 103

LINEAR(FR) (9, 45) 1× 10−3 115 6.086× 10−2 89 2.179× 10−2

LINEAR(FR) (9, 45) 1× 10−5 115 5.482× 10−4 78 2.305× 10−4

LINEAR(FR) (9, 45) 1× 10−7 114 5.546× 10−6 76 2.240× 10−6

LINEAR(R1) (7, 35) 1× 10−1 69 6.470× 10−2 74 3.081
LINEAR(R1) (7, 35) 1× 10−3 65 3.221× 10−3 84 1.482× 10−4

LINEAR(R1) (7, 35) 1× 10−5 70 −2.904× 10−7 74 −2.969× 10−7

LINEAR(R1) (7, 35) 1× 10−7 108 −3.099× 10−7 73 −3.098× 10−7

LINEAR(R1) (7, 35) 1× 10−1 68 6.471× 10−2 78 2.155
LINEAR(R1) (7, 35) 1× 10−3 118 7.437× 10−5 86 1.577× 10−4

LINEAR(R1) (7, 35) 1× 10−5 106 −3.049× 10−7 84 −2.926× 10−7

LINEAR(R1) (7, 35) 1× 10−7 103 −3.099× 10−7 79 −3.099× 10−7

LINEAR(R10RC) (7, 35) 1× 10−1 63 3.666× 10−1 71 8.280× 10−1

LINEAR(R10RC) (7, 35) 1× 10−3 82 7.472× 10−6 82 2.771× 10−4

LINEAR(R10RC) (7, 35) 1× 10−5 106 2.101× 10−8 75 2.978× 10−8

LINEAR(R10RC) (7, 35) 1× 10−7 72 1.493× 10−8 73 1.493× 10−8

LINEAR(R10RC) (7, 35) 1× 10−1 62 3.666× 10−1 79 9.209× 10−1

LINEAR(R10RC) (7, 35) 1× 10−3 67 1.272× 10−3 89 2.258× 10−4

LINEAR(R10RC) (7, 35) 1× 10−5 106 2.103× 10−8 82 1.660× 10−8

LINEAR(R10RC) (7, 35) 1× 10−7 109 1.495× 10−8 75 1.985× 10−8

ROSENBR (2, 2) 1× 10−1 44 7.600× 10−2 51 4.584× 10−1

ROSENBR (2, 2) 1× 10−3 77 3.078× 10−7 50 6.040× 10−8

ROSENBR (2, 2) 1× 10−5 67 4.501× 10−10 55 1.122× 10−10

ROSENBR (2, 2) 1× 10−7 65 3.663× 10−14 49 2.148× 10−14

ROSENBR (2, 2) 1× 10−1 105 4.118× 10−3 71 3.578× 10−2

ROSENBR (2, 2) 1× 10−3 49 7.177× 10−7 35 6.097× 10−11

ROSENBR (2, 2) 1× 10−5 44 4.539× 10−10 54 3.365× 10−10

ROSENBR (2, 2) 1× 10−7 29 3.064× 10−14 28 2.191× 10−15

HELIX (3, 3) 1× 10−1 61 4.158× 10−2 59 5.023× 10−2

HELIX (3, 3) 1× 10−3 61 1.328× 10−6 62 1.265× 10−5

HELIX (3, 3) 1× 10−5 71 7.012× 10−10 66 7.646× 10−10

HELIX (3, 3) 1× 10−7 70 4.893× 10−14 77 2.031× 10−14

HELIX (3, 3) 1× 10−1 61 1.767 66 8.701× 10−3

HELIX (3, 3) 1× 10−3 75 5.707× 10−6 76 1.429× 10−6

HELIX (3, 3) 1× 10−5 73 4.865× 10−10 74 8.032× 10−10

HELIX (3, 3) 1× 10−7 70 5.016× 10−14 47 3.085× 10−16

POWELLSG (4, 4) 1× 10−1 78 6.286× 10−2 62 9.436× 10−2

POWELLSG (4, 4) 1× 10−3 82 3.495× 10−6 54 7.641× 10−5

POWELLSG (4, 4) 1× 10−5 86 3.364× 10−9 54 7.255× 10−10

POWELLSG (4, 4) 1× 10−7 131 2.803× 10−14 55 4.174× 10−15

POWELLSG (4, 4) 1× 10−1 79 6.338× 10−2 59 2.036× 10−3

POWELLSG (4, 4) 1× 10−3 86 3.404× 10−5 64 2.126× 10−7

POWELLSG (4, 4) 1× 10−5 131 2.607× 10−10 61 1.502× 10−8

POWELLSG (4, 4) 1× 10−7 121 1.694× 10−13 56 2.861× 10−15

Table A.21. Benchmarking Problems Tested. n is the number of variables
and m is the dimension of the residual vector.

211

LMDER DFOLS

Problem (n,m) σf #feval φ(x)− φ∗ #feval φ(x)− φ∗

FREUROTH (2, 2) 1× 10−1 42 1.724 68 4.634× 10−2

FREUROTH (2, 2) 1× 10−3 48 7.582× 10−3 75 4.555× 10−6

FREUROTH (2, 2) 1× 10−5 59 7.704× 10−5 113 3.717× 10−6

FREUROTH (2, 2) 1× 10−7 64 4.523× 10−6 91 3.679× 10−6

FREUROTH (2, 2) 1× 10−1 55 2.546 83 1.310× 10−2

FREUROTH (2, 2) 1× 10−3 66 1.265× 10−2 78 1.331× 10−5

FREUROTH (2, 2) 1× 10−5 80 4.987× 10−5 102 3.681× 10−6

FREUROTH (2, 2) 1× 10−7 91 7.027× 10−6 122 3.679× 10−6

BARD (3, 15) 1× 10−1 45 2.370× 10−1 46 5.987× 10−2

BARD (3, 15) 1× 10−3 41 1.168× 10−5 38 4.673× 10−5

BARD (3, 15) 1× 10−5 53 4.713× 10−8 34 1.404× 10−9

BARD (3, 15) 1× 10−7 44 8.436× 10−10 35 3.068× 10−10

BARD (3, 15) 1× 10−1 41 1.355× 101 56 9.256× 10−2

BARD (3, 15) 1× 10−3 73 2.035× 101 65 4.982× 10−5

BARD (3, 15) 1× 10−5 98 2.282 54 1.114× 10−9

BARD (3, 15) 1× 10−7 115 1.611× 101 102 1.066× 10−1

KOWOSB (4, 11) 1× 10−1 35 5.005× 10−3 42 3.088× 10−2

KOWOSB (4, 11) 1× 10−3 57 1.418× 10−4 44 1.561× 10−4

KOWOSB (4, 11) 1× 10−5 92 4.081× 10−8 60 4.916× 10−8

KOWOSB (4, 11) 1× 10−7 84 1.302× 10−8 64 2.981× 10−10

MEYER (3, 16) 1× 10−1 182 8.301× 104 67 1.113× 105

MEYER (3, 16) 1× 10−3 666 4.770 252 7.380× 104

MEYER (3, 16) 1× 10−5 504 8.423× 10−3 1498 4.022× 104

MEYER (3, 16) 1× 10−7 497 −1.300× 10−6 1500∗ 4.031× 104

WATSON (6, 31) 1× 10−1 96 1.592× 10−1 71 1.232× 10−1

WATSON (6, 31) 1× 10−3 83 1.818× 10−4 79 1.328× 10−4

WATSON (6, 31) 1× 10−5 82 6.905× 10−5 82 7.375× 10−7

WATSON (6, 31) 1× 10−7 103 5.333× 10−9 78 8.703× 10−10

WATSON (6, 31) 1× 10−1 95 2.562× 10−1 80 1.150× 10−1

WATSON (6, 31) 1× 10−3 236 4.267× 10−4 82 2.052× 10−4

WATSON (6, 31) 1× 10−5 116 5.311× 10−5 87 1.676× 10−7

WATSON (6, 31) 1× 10−7 116 2.197× 10−8 85 6.039× 10−10

WATSON (9, 31) 1× 10−1 95 1.791× 10−1 95 6.326× 10−2

WATSON (9, 31) 1× 10−3 183 2.761× 10−4 113 1.112× 10−4

WATSON (9, 31) 1× 10−5 386 3.603× 10−5 114 5.717× 10−6

WATSON (9, 31) 1× 10−7 531 1.175× 10−7 220 9.384× 10−10

WATSON (9, 31) 1× 10−1 134 1.338 128 3.406× 10−2

WATSON (9, 31) 1× 10−3 390 7.293× 10−3 115 2.543× 10−4

WATSON (9, 31) 1× 10−5 580 1.436× 10−4 113 4.061× 10−6

WATSON (9, 31) 1× 10−7 533 4.147× 10−7 337 5.464× 10−9

WATSON (12, 31) 1× 10−1 147 1.829× 10−1 133 4.518× 10−1

WATSON (12, 31) 1× 10−3 199 1.942× 10−4 129 4.431× 10−4

WATSON (12, 31) 1× 10−5 736 1.863× 10−5 130 1.202× 10−7

WATSON (12, 31) 1× 10−7 713 4.164× 10−8 234 1.337× 10−8

WATSON (12, 31) 1× 10−1 188 7.230× 10−1 127 1.600× 10−1

WATSON (12, 31) 1× 10−3 255 1.086× 10−2 139 2.802× 10−4

WATSON (12, 31) 1× 10−5 530 3.237× 10−2 196 1.911× 10−8

WATSON (12, 31) 1× 10−7 851 1.854× 10−4 183 1.560× 10−8

Table A.22. Benchmarking Problems Tested. n is the number of variables
and m is the dimension of the residual vector.

212

LMDER DFOLS

Problem (n,m) σf #feval φ(x)− φ∗ #feval φ(x)− φ∗

BOX3D (3, 10) 1× 10−1 44 1.674× 10−1 53 1.181× 10−1

BOX3D (3, 10) 1× 10−3 63 1.532× 10−3 43 5.394× 10−6

BOX3D (3, 10) 1× 10−5 56 1.738× 10−9 46 5.818× 10−12

BOX3D (3, 10) 1× 10−7 55 1.758× 10−13 57 2.248× 10−13

JENSMP (2, 10) 1× 10−1 46 3.728× 103 47 2.684× 10−1

JENSMP (2, 10) 1× 10−3 44 4.102× 10−2 51 1.660× 10−2

JENSMP (2, 10) 1× 10−5 53 1.445× 10−3 59 6.415× 10−5

JENSMP (2, 10) 1× 10−7 51 −7.215× 10−6 47 −8.720× 10−6

BROWNDEN (4, 20) 1× 10−1 75 1.521× 103 84 3.922× 102

BROWNDEN (4, 20) 1× 10−3 86 3.277× 101 97 2.897
BROWNDEN (4, 20) 1× 10−5 98 7.498× 10−2 140 9.534× 10−3

BROWNDEN (4, 20) 1× 10−7 105 2.529× 10−3 144 4.056× 10−3

BROWNDEN (4, 20) 1× 10−1 90 2.384× 103 102 8.007× 102

BROWNDEN (4, 20) 1× 10−3 102 4.493× 101 97 3.732
BROWNDEN (4, 20) 1× 10−5 117 4.912× 10−2 115 1.440× 10−1

BROWNDEN (4, 20) 1× 10−7 114 2.743× 10−3 130 2.798× 10−3

CHEBYQUAD (6, 6) 1× 10−1 54 4.243× 10−2 64 2.304× 10−2

CHEBYQUAD (6, 6) 1× 10−3 57 3.020× 10−2 73 9.161× 10−7

CHEBYQUAD (6, 6) 1× 10−5 93 4.322× 10−10 61 1.447× 10−11

CHEBYQUAD (6, 6) 1× 10−7 91 4.785× 10−14 63 1.792× 10−13

CHEBYQUAD (7, 7) 1× 10−1 46 3.377× 10−2 67 1.045× 10−2

CHEBYQUAD (7, 7) 1× 10−3 118 6.182× 10−6 64 1.901× 10−5

CHEBYQUAD (7, 7) 1× 10−5 97 9.566× 10−10 73 2.030× 10−10

CHEBYQUAD (7, 7) 1× 10−7 95 1.043× 10−13 73 6.456× 10−14

CHEBYQUAD (8, 8) 1× 10−1 69 2.683× 10−2 79 6.164× 10−2

CHEBYQUAD (8, 8) 1× 10−3 93 1.261× 10−2 96 1.182× 10−3

CHEBYQUAD (8, 8) 1× 10−5 128 1.039× 10−3 199 6.120× 10−7

CHEBYQUAD (8, 8) 1× 10−7 240 6.147× 10−7 208 1.288× 10−9

CHEBYQUAD (9, 9) 1× 10−1 54∗∗ 2.888× 10−2 86 2.597× 10−2

CHEBYQUAD (9, 9) 1× 10−3 100 2.013× 10−2 100 4.981× 10−5

CHEBYQUAD (9, 9) 1× 10−5 134 2.326× 10−9 102 6.629× 10−10

CHEBYQUAD (9, 9) 1× 10−7 161 3.856× 10−14 104 3.012× 10−14

CHEBYQUAD (10, 10) 1× 10−1 94 4.026× 10−2 89 2.091× 10−2

CHEBYQUAD (10, 10) 1× 10−3 153 9.237× 10−4 87 4.596× 10−3

CHEBYQUAD (10, 10) 1× 10−5 163 5.114× 10−6 113 4.622× 10−5

CHEBYQUAD (10, 10) 1× 10−7 207 1.732× 10−3 163 5.151× 10−8

CHEBYQUAD (11, 11) 1× 10−1 78 2.983× 10−2 87 1.920× 10−2

CHEBYQUAD (11, 11) 1× 10−3 104 9.225× 10−3 93 6.273× 10−3

CHEBYQUAD (11, 11) 1× 10−5 213 4.205× 10−4 235 8.670× 10−7

CHEBYQUAD (11, 11) 1× 10−7 449 1.141× 10−6 246 1.473× 10−8

Table A.23. Benchmarking Problems Tested. n is the number of variables
and m is the dimension of the residual vector.

213

LMDER DFOLS

Problem (n,m) σf #feval φ(x)− φ∗ #feval φ(x)− φ∗

BROWNAL (10, 10) 1× 10−1 127 1.419 89 1.655× 102

BROWNAL (10, 10) 1× 10−3 147 5.220× 10−7 99 3.284× 10−5

BROWNAL (10, 10) 1× 10−5 155 4.102× 10−10 89 9.707× 10−10

BROWNAL (10, 10) 1× 10−7 131 1.084× 10−13 75 1.308× 10−14

OSBORNE1 (5, 33) 1× 10−1 53 1.279 53 5.737
OSBORNE1 (5, 33) 1× 10−3 75 3.424× 10−3 86 4.512× 10−1

OSBORNE1 (5, 33) 1× 10−5 86 1.010× 10−2 225 2.446× 10−2

OSBORNE1 (5, 33) 1× 10−7 376 4.951× 10−8 185 2.446× 10−2

OSBORNE2 (11, 65) 1× 10−1 113 1.297 104 2.226
OSBORNE2 (11, 65) 1× 10−3 426 6.798× 10−3 153 2.216× 10−4

OSBORNE2 (11, 65) 1× 10−5 308 9.726× 10−5 174 6.715× 10−7

OSBORNE2 (11, 65) 1× 10−7 235 1.654× 10−7 148 8.159× 10−10

OSBORNE2 (11, 65) 1× 10−1 124 2.799× 101 111 2.293× 101

OSBORNE2 (11, 65) 1× 10−3 204 1.754 132 1.750
OSBORNE2 (11, 65) 1× 10−5 277 1.750 134 1.750
OSBORNE2 (11, 65) 1× 10−7 223 1.750 139 1.750
BDQRTIC (8, 8) 1× 10−1 124 5.023 89 4.566
BDQRTIC (8, 8) 1× 10−3 128 2.317 103 2.289× 10−1

BDQRTIC (8, 8) 1× 10−5 265 2.905× 10−3 122 1.864× 10−2

BDQRTIC (8, 8) 1× 10−7 437 2.902× 10−5 173 8.502× 10−5

BDQRTIC (10, 12) 1× 10−1 128 1.221× 101 97 1.447× 102

BDQRTIC (10, 12) 1× 10−3 197 1.021× 10−1 124 1.141
BDQRTIC (10, 12) 1× 10−5 340 5.836× 10−3 153 3.739× 10−2

BDQRTIC (10, 12) 1× 10−7 574 6.811× 10−5 262 7.248× 10−4

BDQRTIC (11, 14) 1× 10−1 139 7.006 106 9.772× 101

BDQRTIC (11, 14) 1× 10−3 188 1.299× 10−1 127 3.141
BDQRTIC (11, 14) 1× 10−5 396 6.226× 10−3 190 7.543× 10−2

BDQRTIC (11, 14) 1× 10−7 725 4.880× 10−5 333 2.513× 10−3

BDQRTIC (12, 16) 1× 10−1 137 5.551 125 1.355× 102

BDQRTIC (12, 16) 1× 10−3 204 2.591× 10−1 135 2.972
BDQRTIC (12, 16) 1× 10−5 283 1.565× 10−2 191 5.335× 10−2

BDQRTIC (12, 16) 1× 10−7 626 3.785× 10−4 323 3.455× 10−3

CUBE (5, 5) 1× 10−1 96 2.386× 10−2 54 6.129× 10−2

CUBE (5, 5) 1× 10−3 112 3.481× 10−3 90 1.519× 10−4

CUBE (5, 5) 1× 10−5 250 1.971× 10−10 367 4.920× 10−12

CUBE (5, 5) 1× 10−7 415 9.699× 10−14 272 1.508× 10−13

CUBE (6, 6) 1× 10−1 127 1.312× 10−2 56 5.761× 10−2

CUBE (6, 6) 1× 10−3 162 1.853× 10−4 82 1.329× 10−4

CUBE (6, 6) 1× 10−5 832 8.835× 10−7 460 2.319× 10−6

CUBE (6, 6) 1× 10−7 958 9.762× 10−14 758 4.059× 10−14

CUBE (8, 8) 1× 10−1 168 2.402× 10−1 63 9.869× 101

CUBE (8, 8) 1× 10−3 185 8.640× 10−6 87 7.661× 10−4

CUBE (8, 8) 1× 10−5 621 1.251× 10−5 263 1.030× 10−4

CUBE (8, 8) 1× 10−7 3431 6.217× 10−8 1763 2.522× 10−7

Table A.24. Benchmarking Problems Tested. n is the number of variables
and m is the dimension of the residual vector.

214

LMDER DFOLS

Problem (n,m) σf #feval φ(x)− φ∗ #feval φ(x)− φ∗

MANCINO (5, 5) 1× 10−1 47 7.329× 10−2 48 1.334× 10−2

MANCINO (5, 5) 1× 10−3 45 7.341× 10−6 44 5.405× 10−8

MANCINO (5, 5) 1× 10−5 39 7.341× 10−10 33 1.657× 10−12

MANCINO (5, 5) 1× 10−7 39 7.342× 10−14 25 3.807× 10−15

MANCINO (5, 5) 1× 10−1 47 7.435× 10−2 58 2.132× 10−2

MANCINO (5, 5) 1× 10−3 45 7.511× 10−6 44 1.457× 10−5

MANCINO (5, 5) 1× 10−5 45 1.247× 10−9 27 4.630× 10−10

MANCINO (5, 5) 1× 10−7 45 8.751× 10−14 27 4.120× 10−14

MANCINO (8, 8) 1× 10−1 72 1.550× 10−1 82 1.228× 10−1

MANCINO (8, 8) 1× 10−3 78 1.130× 10−7 57 8.045× 10−6

MANCINO (8, 8) 1× 10−5 60 1.549× 10−9 46 2.898× 10−10

MANCINO (8, 8) 1× 10−7 60 1.549× 10−13 23 7.222× 10−13

MANCINO (10, 10) 1× 10−1 109 8.335× 10−5 82 7.748× 10−3

MANCINO (10, 10) 1× 10−3 107 8.191× 10−9 59 8.847× 10−6

MANCINO (10, 10) 1× 10−5 74 6.522× 10−10 45 1.015× 10−10

MANCINO (10, 10) 1× 10−7 74 6.526× 10−14 36 5.372× 10−15

MANCINO (12, 12) 1× 10−1 114 3.374× 10−4 107 3.447× 10−2

MANCINO (12, 12) 1× 10−3 101 3.354× 10−8 77 8.807× 10−6

MANCINO (12, 12) 1× 10−5 101 3.353× 10−12 60 9.663× 10−10

MANCINO (12, 12) 1× 10−7 101 3.357× 10−16 32 9.721× 10−14

MANCINO (12, 12) 1× 10−1 114 3.374× 10−4 126 9.117× 10−2

MANCINO (12, 12) 1× 10−3 114 3.348× 10−8 72 9.369× 10−6

MANCINO (12, 12) 1× 10−5 101 3.357× 10−12 35 4.632× 10−9

MANCINO (12, 12) 1× 10−7 101 3.452× 10−16 35 2.607× 10−9

HEART8LS (8, 8) 1× 10−1 113 6.289× 10−2 71 1.356× 10−1

HEART8LS (8, 8) 1× 10−3 83 1.244× 10−6 66 3.717× 10−6

HEART8LS (8, 8) 1× 10−5 82 1.508× 10−11 66 3.928× 10−12

HEART8LS (8, 8) 1× 10−7 79 1.167× 10−15 67 1.275× 10−14

HEART8LS (8, 8) 1× 10−1 156 5.632 86 5.270
HEART8LS (8, 8) 1× 10−3 566 7.222× 10−6 77 4.911
HEART8LS (8, 8) 1× 10−5 164 1.102× 10−9 172 4.794
HEART8LS (8, 8) 1× 10−7 161 5.788× 10−14 376 4.428

Table A.25. Benchmarking Problems Tested. n is the number of variables
and m is the dimension of the residual vector.

215

Number of Number of
Objective Variables One-sided Two-sided Constraints Linear Nonlinear

Problem Type (n) Bounds Bounds (m) Ineq. Ineq.

BURKEHAN quadratic 1 1 0 1 0 1
CANTILVR linear 5 5 0 1 0 1
CB2 linear 3 0 0 3 0 3
CB3 linear 3 0 0 3 0 3
CHACONN1 linear 3 0 0 3 0 3
CHACONN2 linear 3 0 0 3 0 3
CRESC4 general 6 3 1 8 0 8
CRESC50 general 6 3 1 100 0 100
DEMBO7 quadratic 16 0 16 20 1 19
DIPIGRI general 7 0 0 4 0 4
GIGOMEZ2 linear 3 0 0 3 0 3
GIGOMEZ3 linear 3 0 0 3 0 3
HALDMADS linear 6 0 0 42 0 42
HS100 general 7 0 0 4 0 4
HS100MOD general 7 0 0 4 0 4
HS101 general 7 0 7 5 0 5
HS102 general 7 0 7 5 0 5
HS103 general 7 0 7 5 0 5
HS104 general 8 0 8 5 0 5
HS13 quadratic 2 2 0 1 0 1
HS34 linear 3 0 3 2 0 2
HS64 general 3 3 0 1 0 1
HS66 linear 3 0 3 2 0 2
HS67 general 3 0 3 14 0 14
HS72 linear 4 0 4 2 0 2
HS85 general 5 0 5 21 1 20
HS88 quadratic 2 0 0 1 0 1
HS89 quadratic 3 0 0 1 0 1
HS90 quadratic 4 0 0 1 0 1
HS91 quadratic 5 0 0 1 0 1
HS92 quadratic 6 0 0 1 0 1
HS93 general 6 6 0 2 0 2
MADSEN linear 3 0 0 6 0 6
MATRIX2 quadratic 6 4 0 2 0 2
MINMAXBD linear 5 0 0 20 0 20
POLAK1 linear 3 0 0 2 0 2
POLAK2 linear 11 0 0 2 0 2
POLAK3 linear 12 0 0 10 0 10
POLAK5 linear 3 0 0 2 0 2
POLAK6 linear 5 0 0 4 0 4
S365 quadratic 7 4 0 5 0 5
S365MOD quadratic 7 4 0 5 0 5
SNAKE linear 2 0 0 2 0 2
SPIRAL linear 3 0 0 2 0 2
SYNTHES1 general 6 0 6 6 4 2
TWOBARS general 2 0 2 2 0 2
WOMFLET linear 3 0 0 3 0 3

Table A.26. Properties of small-scale CUTEst problems.

216

Problem SIF Parameter Testing Name d m

SVANBERG N = 10 SVANBERGN10 10 10
SVANBERG N = 50 SVANBERGN50 50 50
SVANBERG N = 100 SVANBERGN100 100 100
SVANBERG N = 500 SVANBERGN500 500 500

READING4 N = 2 READING4N2 2 2
READING4 N = 50 READING4N50 50 50
READING4 N = 100 READING4N100 100 100
READING4 N = 500 READING4N500 500 500

COSHFUN M = 3 COSHFUNM3 10 3
COSHFUN M = 8 COSHFUNM8 25 8
COSHFUN M = 14 COSHFUNM14 43 14
COSHFUN M = 20 COSHFUNM20 61 20

Table A.27. Instances of variable-size CUTEst problems.

217

KNITRO COBYLA

Problem φ(x) #feval CPU feaserr φ(x) #fevals CPU feaserr

CB3 2.0000 40 0.023 2.22e-16 2.0000 44 0.157 0.00e+00
CHACONN2 2.0000 40 0.021 0.00e+00 2.0000 48 0.156 0.00e+00
GIGOMEZ3 2.0000 40 0.022 0.00e+00 2.0000 45 0.160 0.00e+00

HS100 680.6301 360 0.160 0.00e+00 680.6300 454 0.272 0.00e+00
DIPIGRI 680.6301 389 0.152 2.84e-14 680.6300 458 0.288 0.00e+00

HS93 135.0760 2247 1.040 4.44e-16 135.0760 3000* 0.873 0.00e+00
HS64 6299.8424 144 0.093 0.00e+00 6299.8400 409 0.244 0.00e+00

POLAK3 5.9330 902 0.414 3.89e-16 5.9330 3139 0.071 0.00e+00
POLAK1 2.7183 60 0.034 0.00e+00 2.7183 326 0.232 0.00e+00

HS104 3.9512 718 0.282 0.00e+00 3.9512 3977 0.131 0.00e+00
HS100MOD 678.6796 477 0.207 0.00e+00 678.6790 385 0.240 0.00e+00
TWOBARS 1.5087 63 0.037 0.00e+00 1.5087 83 0.172 0.00e+00

HS85 -2.2156 117 0.078 7.11e-15 -2.2156 299 0.242 0.00e+00
CB2 1.9522 72 0.041 1.11e-16 1.9522 111 0.173 0.00e+00

CHACONN1 1.9522 55 0.030 0.00e+00 1.9522 120 0.175 0.00e+00
MADSEN 0.6164 73 0.042 0.00e+00 0.6164 112 0.175 0.00e+00

HS66 0.5182 43 0.026 4.44e-16 0.5182 101 0.170 0.00e+00
MINMAXBD 115.7064 420 0.335 6.17e-14 115.7060 924 0.395 0.00e+00

CANTILVR 1.3400 170 0.078 3.61e-16 1.3400 281 0.227 0.00e+00
HS92 1.3627 976 0.988 4.60e-17 1.3627 3000* 0.993 0.00e+00

HALDMADS 0.0001 113 0.073 4.44e-16 0.0001 669 0.341 0.00e+00
HS34 -0.8340 59 0.033 4.44e-16 -0.8340 47 0.149 0.00e+00
HS90 1.3627 570 0.475 0.00e+00 1.3629 2000* 0.066 0.00e+00

SNAKE 0.0000 25 0.029 1.02e-16 0.0000 72 0.165 0.00e+00
HS72 727.6794 108 0.103 1.73e-18 727.6794 1002 0.424 4.77e-18

GIGOMEZ2 1.9522 79 0.048 2.22e-16 1.9522 111 0.169 1.11e-16
SYNTHES1 0.7593 96 0.041 0.00e+00 0.7593 174 0.186 1.54e-23

HS88 1.3627 209 0.156 0.00e+00 1.3627 167 0.203 2.09e-17
HS13 0.9999 140 0.155 2.61e-13 1.0000 86 0.168 1.07e-27

MATRIX2 0.0000 275 0.131 3.60e-17 0.0000 216 0.199 5.20e-18
WOMFLET 0.0000 103 0.070 5.89e-10 0.0000 117 0.181 8.99e-18

S365 0.0000 63 0.032 1.72e-07 0.0000 210 0.215 4.35e-17

HS67 -1162.1187 285 0.198 0.00e+00 -980.1600 7000* 0.885 0.00e+00
CRESC50 0.5952 16704 17.912 0.00e+00 7.9917 50000* 4.863 0.00e+00
CRESC4 0.8719 688 0.363 0.00e+00 44.5901 4000* 0.318 0.00e+00

HS91 1.3627 1229 1.057 9.96e-18 1.1199 2500* 0.583 6.50e-04
DEMBO7 174.7870 3225 1.594 3.61e-16 250.0720 10000* 0.238 7.29e-02
POLAK5 50.0000 65 0.043 0.00e+00 34.4929 1500* 0.571 1.55e+01

HS101 1809.7691 3500* 1.908 1.38e-13 3000.1900 3500* 0.077 1.99e-01
HS89 1.3627 315 0.257 2.17e-17 0.6520 1500* 0.742 5.12e-02

HS102 911.8816 3500* 1.965 4.67e-12 3000.3500 3500* 0.096 3.60e-01
HS103 543.6680 3500* 1.858 2.57e-16 3000.1700 3500* 0.091 1.76e-01

SPIRAL 0.0195 1500* 0.796 1.34e-05 0.0958 1500* 0.508 0.00e+00
POLAK6 -78.6745 474 1.311 8.55e+01 0.0000 2500* 0.765 0.00e+00

S365MOD 0.2500 162 0.204 1.25e+00 0.0301 247 0.211 3.26e-01
BURKEHAN 10.0000 13 0.007 1.01e+02 0.0000 54 0.175 1.00e+00

POLAK2 29.9570 2641 5.119 5.39e+01 -259.2500 5500* 0.794 3.14e+02

Table A.28. Summary of the results for small-scale noiseless constrained
CUTEst problems. The horizontal bars divide cases (i), (ii), (iii), and (iv).

218
TOL = 10−6 TOL = 10−3 TOL = 10−1

KNITRO COBYLA KNITRO COBYLA KNITRO COBYLA

problem φ∗ target φ φ(x) #fevals φ(x) #fevals target φ φ(x) #fevals φ(x) #fevals target φ φ(x) #fevals φ(x) #fevals

CB3 2.000000 2.00000 2.00000 30 2.00000 25 2.00200 2.00000 30 2.00000 25 2.20000 2.00000 30 2.00351 18
CHACONN2 2.000000 2.00000 2.00000 30 2.00000 32 2.00200 2.00000 30 2.00021 24 2.20000 2.00000 30 2.06187 19

GIGOMEZ3 2.000000 2.00000 2.00000 30 2.00000 39 2.00200 2.00000 30 2.00000 39 2.20000 2.00000 30 2.00000 39

HS100 680.630057 680.63074 680.63013 124 680.63000 247 681.31069 680.75511 75 680.63000 247 748.69306 714.00000 1 714.00000 1
DIPIGRI 680.630057 680.63074 680.63013 124 680.63000 410 681.31069 680.75511 75 680.63100 141 748.69306 714.00000 1 714.00000 1

HS93 135.075964 135.07610 135.07610 871 135.07600 2416 135.21104 135.14058 229 135.21000 270 148.58356 137.06640 1 137.06600 1

HS64 6299.842428 6299.84873 6299.73981 64 6299.84000 335 6306.14227 6302.48265 54 6305.80000 316 6929.82667 6687.88225 30 6684.54000 239
POLAK3 5.933003 5.93301 5.93301 469 5.93300 2637 5.93894 5.93353 349 5.93644 2350 6.52630 5.93353 349 5.94016 2328

POLAK1 2.718282 2.71828 2.71828 50 2.71828 265 2.72100 2.71828 50 2.71834 253 2.99011 2.71828 50 2.83811 250
HS104 3.951163 3.95117 3.95117 290 3.95116 1764 3.95511 3.95148 231 3.95381 730 4.34628 3.95946 193 4.15766 173

HS100MOD 678.679638 678.68032 678.67969 173 678.68000 169 679.35832 679.08174 63 679.18500 50 746.54760 714.00000 1 714.00000 1

TWOBARS 1.508652 1.50865 1.50865 50 1.50865 33 1.51016 1.50865 50 1.50892 21 1.65952 1.50865 50 1.65447 10
HS85 -2.215605 -2.21560 -2.21560 110 -2.21560 299 -2.21339 -2.21560 110 -2.21500 247 -1.99404 -2.21560 110 -2.02180 158

CB2 1.952224 1.95223 1.95222 52 1.95222 57 1.95418 1.95222 52 1.95230 41 2.14745 1.95222 52 1.95230 41

CHACONN1 1.952224 1.95223 1.95222 40 1.95222 55 1.95418 1.95222 40 1.95222 55 2.14745 1.95222 40 2.00282 13
MADSEN 0.616432 0.61643 0.61643 58 0.61643 65 0.61743 0.61643 58 0.61643 65 0.71643 0.61643 58 0.65433 22

HS66 0.518163 0.51816 0.51816 33 0.51816 37 0.51916 0.51866 21 0.51817 28 0.61816 0.58000 1 0.58000 1

MINMAXBD 115.706440 115.70656 115.70644 343 115.70600 800 115.82215 115.70644 343 115.72100 766 127.27708 118.74188 246 115.72100 766
CANTILVR 1.339956 1.33996 1.33994 107 1.33995 189 1.34130 1.33994 107 1.33997 130 1.47395 1.33994 107 1.34758 107

HS92 1.362657 1.36266 1.36266 844 1.36265 2121 1.36402 1.36327 405 1.36310 203 1.49892 1.36327 405 1.36310 203
HALDMADS 0.000122 0.00012 0.00012 97 0.00013 669 0.00112 0.00012 97 0.00057 51 0.10012 0.00012 97 0.00057 51

HS34 -0.834032 -0.83403 -0.83403 54 -0.83400 40 -0.83303 -0.83403 54 -0.83400 25 -0.73403 -0.83186 44 -0.83400 25

HS90 1.362657 1.36266 1.36185 259 1.36287 2000 1.36402 1.36185 259 1.36311 159 1.49892 1.36185 259 1.36311 159
SNAKE 0.000000 0.00000 0.00000 17 0.00000 67 0.00100 0.00000 17 0.00009 61 0.10000 0.00000 17 0.00009 61

HS72 727.679358 727.68009 727.66249 72 727.67973 877 728.40704 727.66249 72 728.36304 856 800.44729 727.66249 72 738.77714 832

GIGOMEZ2 1.952224 1.95223 1.95222 64 1.95223 47 1.95418 1.95222 64 1.95266 32 2.14745 1.95222 64 2.08642 13
SYNTHES1 0.759284 0.75929 0.75928 72 0.75928 79 0.76028 0.75928 72 0.75928 79 0.85928 0.75928 72 0.79837 17

HS88 1.362657 1.36266 1.36249 189 1.36266 138 1.36402 1.36249 189 1.36387 123 1.49892 1.36249 189 1.36387 123

HS13 0.999872 0.99987 0.99987 116 1.00000 86 1.00087 1.00060 88 1.00085 41 1.09987 1.07956 40 1.07745 22
MATRIX2 0.000000 0.00000 0.00000 131 0.00000 187 0.00100 0.00001 107 0.00000 187 0.10000 0.00001 107 0.09622 46

WOMFLET 0.000000 0.00000 0.00000 78 0.00000 104 0.00100 0.00000 78 0.00000 104 0.10000 0.00000 78 0.00000 104

S365 0.000000 0.00000 0.00000 63 0.00000 179 0.00100 0.00000 63 0.00000 179 0.10000 0.00000 63 0.00000 179

Table A.29. Function evaluations to obtain φk ≤ φ∗ + TOL ·max{1.0, |φ∗|} for small scale noiseless
constrained problems.

219

0 10 20 30
Problem

4

2

0

2

4

lo
g 2
(ev

al
s K

N
IT
RO

_m
1)

ev
al
s K

N
IT
RO

_m
10

))

KNITRO_m10

KNITRO_m1

0 10 20 30
Problem

4

2

0

2

4

lo
g 2
(ev

al
s K

N
IT
RO

_m
1)

ev
al
s K

N
IT
RO

_m
10

))

KNITRO_m10

KNITRO_m1

0 10 20 30
Problem

4

2

0

2

4

lo
g 2
(ev

al
s K

N
IT
RO

_m
1)

ev
al
s K

N
IT
RO

_m
10

))

KNITRO_m10

KNITRO_m1

Figure A.14. Efficiency, Noiseless Case. Log-ratio profiles comparing kni-
tro with an l-bfgs Hessian approximation of memory one and memory
10 when ε(x) = 0. The figures measure number of function evaluations to
satisfy (2.2.7) for τ = 10−1 (left), 10−3 (middle), 10−6 (right).

A.3.3.3. Noisy Functions. In this section, we list the final objective value(φ(x)),

feasibility error(feaserr) and the number of function evaluations (#feval) needed to achieve

this for each problem instance, varying the noise level σf ∈ {10−1, 10−3, 10−5, 10−7}, in

Tables A.30-A.35. Function evaluations marked with a ∗ denote cases where the algorithm

reached the maximum number of function evaluations. An ‘f’ marks the cases where the

feasibility error is large compared to the noise level, i.e., ‖max{ψ(x), 0}‖∞ ≥
√

3σf .

220

KNITRO COBYLA

σf 0.0 1e-07 1e-05 1e-03 1e-01 0.0 1.00e-07 1.00e-05 1.00e-03 1.00e-01

CB3 4.92e-12 1.00e-08 2.00e-06 1.35e-04 1.51e-01 8.36e-12 1.00e-08 6.00e-06 1.10e-03 2.97e-01
CHACONN2 1.72e-12 1.00e-08 1.60e-05 3.80e-04 8.27e-02 1.72e-12 1.00e-08 3.00e-06 1.01e-03 f

GIGOMEZ3 9.80e-13 1.00e-08 2.00e-06 1.35e-04 1.62e-01 9.80e-13 1.00e-08 1.00e-05 9.30e-05 f

HS100 2.05e-12 2.37e-06 2.14e-04 1.34e-02 2.16e+00 5.87e-07 1.63e-06 9.62e-04 3.13e-02 3.65e-02
DIPIGRI 4.09e-12 3.24e-05 1.87e-04 1.25e-02 1.98e+00 2.05e-12 1.63e-06 4.23e-04 3.21e-02 9.14e-01

HS93 3.90e-09 4.34e-03 6.21e-02 2.49e-01 2.69e+00 3.96e-05 1.52e-01 4.88e-01 1.79e+00 1.99e+00

HS64 2.28e-09 4.29e-05 3.10e-03 4.90e+00 8.78e+02 2.28e-09 2.62e-04 7.11e-02 f f
POLAK3 1.00e-12 6.51e-07 2.13e-04 4.39e-03 f 1.01e-12 5.65e-06 3.58e-04 4.13e-04 f

POLAK1 1.00e-12 1.72e-07 6.17e-06 1.53e-03 2.62e+00 9.90e-13 1.72e-07 1.17e-06 3.40e-02 5.15e+00

HS104 1.05e-11 5.36e-05 1.30e-02 2.99e-02 6.63e-01 1.05e-11 1.55e-03 1.38e-02 1.37e-01 2.74e+00
HS100MOD 1.02e-12 2.01e-05 2.48e-04 2.06e-02 1.34e+00 1.02e-12 1.11e-07 2.13e-04 8.63e-03 1.20e+00

TWOBARS 1.51e-12 4.18e-07 1.14e-05 1.39e-04 9.27e-02 1.51e-12 4.18e-07 1.54e-04 1.56e-03 5.86e-02

HS85 6.00e-14 3.12e-07 3.12e-07 5.72e-03 9.27e-01 4.51e-06 3.12e-07 6.88e-07 4.82e-01 9.59e-01

CB2 3.70e-13 5.06e-07 4.49e-06 5.47e-04 2.05e-01 3.70e-13 4.94e-07 3.49e-06 8.49e-06 f

CHACONN1 8.80e-13 4.94e-07 6.49e-06 3.96e-03 1.34e-01 1.07e-12 4.94e-07 1.51e-06 6.81e-04 2.44e-02
MADSEN 1.00e-12 5.64e-07 7.56e-06 1.11e-04 2.58e-01 1.01e-12 5.64e-07 6.44e-06 2.90e-04 2.66e-01

HS66 8.64e-13 2.74e-07 1.37e-05 6.56e-04 2.53e-02 8.64e-13 2.74e-07 4.27e-06 5.23e-04 9.11e-03

MINMAXBD 1.01e-12 3.21e-07 5.63e-05 3.75e-03 f 2.52e-10 3.21e-07 2.03e-05 1.65e-04 1.31e+01
CANTILVR 4.40e-13 3.61e-07 1.64e-06 1.72e-03 1.91e-01 4.40e-13 6.39e-07 7.16e-05 8.57e-03 f

HS92 1.06e-09 1.16e-02 1.18e-01 f 9.97e-01 1.40e-07 5.02e-03 2.51e-01 2.14e+00 1.07e+00

HALDMADS 9.94e-13 3.71e-07 1.06e-05 7.51e-03 2.53e-01 9.52e-06 3.66e-05 5.66e-05 4.94e-04 f
HS34 2.89e-13 4.45e-07 2.55e-06 4.24e-04 6.93e-01 3.92e-09 4.45e-07 1.24e-05 1.82e-03 8.34e-01

HS90 1.06e-09 1.09e-04 6.99e-01 f 5.73e-01 2.18e-04 7.24e-03 3.13e-01 1.30e+00 1.03e+00

SNAKE 7.96e-13 f 2.28e+00 4.51e+01 8.35e+00 6.74e-07 2.12e-02 3.24e-02 3.56e-02 1.28e+00
HS72 0.00e+00 6.83e-02 2.53e+01 3.78e+02 f 0.00e+00 1.63e-02 f f f

GIGOMEZ2 0.00e+00 4.94e-07 1.15e-05 3.21e-04 7.78e-02 0.00e+00 4.94e-07 2.95e-05 9.14e-04 1.04e-01
SYNTHES1 0.00e+00 2.39e-06 7.39e-06 6.80e-03 1.22e+00 4.00e-15 2.61e-06 7.98e-02 8.49e-02 1.10e+00

HS88 1.10e-13 1.29e-04 3.85e-02 4.04e-01 1.32e+00 4.08e-12 1.76e-04 1.82e-01 7.87e-01 1.13e+00

HS13 2.97e-08 1.08e-02 4.54e-02 1.43e-01 6.42e-01 1.28e-04 6.70e-03 2.95e-02 1.15e-01 1.38e+00
MATRIX2 7.93e-16 1.00e-08 1.10e-05 3.63e-03 7.53e-02 3.82e-17 1.00e-08 3.80e-05 2.52e-03 1.19e+00

WOMFLET 7.89e-13 2.90e-05 1.39e-03 8.39e-03 6.25e+00 7.89e-13 1.00e-08 2.00e-06 3.12e-03 3.34e+00

S365 0.00e+00 1.00e-08 1.00e-08 1.00e-08 1.00e-08 8.89e-35 1.00e-08 1.00e-08 1.00e-08 1.00e-08

Table A.30. Optimality gap |φ(xk)− φ∗| for small scale noisy constrained
CUTEst problems.

221

KNITRO COBYLA

σf 0.0 1e-07 1e-05 1e-03 1e-01 0.0 1.00e-07 1.00e-05 1.00e-03 1.00e-01

CB3 2.22e-16 0.00e+00 0.00e+00 7.50e-05 0.00e+00 0.00e+00 0.00e+00 1.20e-05 0.00e+00 3.71e-02

CHACONN2 0.00e+00 0.00e+00 0.00e+00 1.22e-04 2.54e-01 0.00e+00 0.00e+00 5.00e-06 0.00e+00 1.53e+00

GIGOMEZ3 0.00e+00 0.00e+00 0.00e+00 7.50e-05 0.00e+00 0.00e+00 0.00e+00 0.00e+00 3.32e-04 5.89e-01

HS100 0.00e+00 5.00e-06 2.10e-05 6.18e-04 1.01e-01 0.00e+00 0.00e+00 0.00e+00 0.00e+00 1.67e-01
DIPIGRI 2.84e-14 3.10e-05 3.00e-06 5.53e-04 1.38e-01 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

HS93 4.44e-16 0.00e+00 1.00e-05 1.03e-03 1.13e-01 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

HS64 0.00e+00 0.00e+00 1.00e-05 2.18e-03 4.96e-01 0.00e+00 0.00e+00 0.00e+00 1.82e-01 4.97e+00
POLAK3 3.89e-16 1.00e-06 8.00e-06 1.34e-03 5.56e-01 0.00e+00 0.00e+00 0.00e+00 8.60e-03 8.72e+00

POLAK1 0.00e+00 0.00e+00 0.00e+00 2.54e-04 6.74e-02 0.00e+00 0.00e+00 1.10e-05 9.15e-04 9.40e-02

HS104 0.00e+00 0.00e+00 0.00e+00 1.04e-03 2.81e-01 0.00e+00 0.00e+00 3.00e-06 2.80e-02 3.70e-01
HS100MOD 0.00e+00 0.00e+00 2.80e-05 3.91e-04 1.77e-01 0.00e+00 0.00e+00 0.00e+00 0.00e+00 7.18e-02

TWOBARS 0.00e+00 0.00e+00 9.00e-06 1.28e-03 1.86e-02 0.00e+00 0.00e+00 0.00e+00 1.04e-03 1.40e-01

HS85 7.11e-15 1.00e-06 7.00e-06 1.52e-04 0.00e+00 0.00e+00 0.00e+00 0.00e+00 1.41e-03 0.00e+00
CB2 1.11e-16 0.00e+00 1.40e-05 0.00e+00 1.15e-02 0.00e+00 0.00e+00 6.00e-06 1.02e-03 1.10e+00

CHACONN1 0.00e+00 1.00e-06 1.40e-05 0.00e+00 2.43e-03 0.00e+00 0.00e+00 2.00e-06 7.34e-04 2.38e-02
MADSEN 0.00e+00 0.00e+00 0.00e+00 4.89e-04 0.00e+00 0.00e+00 0.00e+00 1.00e-05 3.03e-04 0.00e+00

HS66 4.44e-16 0.00e+00 3.00e-06 0.00e+00 0.00e+00 0.00e+00 0.00e+00 5.00e-06 1.21e-03 4.57e-02

MINMAXBD 6.17e-14 2.20e-05 1.90e-05 2.96e-04 4.65e+02 0.00e+00 0.00e+00 0.00e+00 1.53e-03 0.00e+00
CANTILVR 3.61e-16 0.00e+00 8.00e-06 0.00e+00 5.74e-02 0.00e+00 0.00e+00 0.00e+00 0.00e+00 2.47e+00

HS92 4.60e-17 0.00e+00 2.58e-04 1.33e-01 1.35e-01 0.00e+00 0.00e+00 6.73e-04 1.04e-03 7.11e-02

HALDMADS 4.44e-16 2.00e-06 1.40e-05 0.00e+00 0.00e+00 0.00e+00 0.00e+00 1.50e-05 9.94e-04 1.82e+01
HS34 4.44e-16 0.00e+00 6.00e-06 0.00e+00 1.15e-01 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

HS90 0.00e+00 0.00e+00 1.20e-05 1.33e-01 1.40e-01 0.00e+00 0.00e+00 1.07e-03 6.30e-05 1.20e-01

SNAKE 1.02e-16 1.70e-03 2.12e-04 2.90e-03 1.87e-01 0.00e+00 1.00e-06 3.00e-06 3.27e-04 3.65e-01
HS72 1.73e-18 0.00e+00 7.31e-04 4.62e-02 5.76e-01 4.77e-18 0.00e+00 7.94e-03 3.47e-01 3.26e+00

GIGOMEZ2 2.22e-16 2.00e-06 0.00e+00 6.68e-04 1.78e-01 1.11e-16 0.00e+00 0.00e+00 1.29e-03 0.00e+00

SYNTHES1 0.00e+00 1.00e-06 5.00e-06 0.00e+00 2.09e-01 1.54e-23 0.00e+00 0.00e+00 0.00e+00 0.00e+00

HS88 0.00e+00 0.00e+00 4.40e-05 2.05e-03 1.26e-01 2.09e-17 0.00e+00 3.57e-04 1.82e-02 1.47e-01

HS13 2.61e-13 0.00e+00 1.20e-05 4.07e-04 6.52e-02 1.07e-27 0.00e+00 3.00e-06 0.00e+00 0.00e+00
MATRIX2 3.60e-17 0.00e+00 9.00e-06 7.30e-04 2.95e-02 5.20e-18 0.00e+00 6.00e-06 3.17e-04 0.00e+00

WOMFLET 5.89e-10 1.50e-05 1.00e-06 4.53e-04 5.05e-02 8.99e-18 0.00e+00 5.00e-06 0.00e+00 0.00e+00

S365 1.72e-07 0.00e+00 2.00e-06 6.43e-04 6.98e-03 4.35e-17 0.00e+00 7.00e-06 1.70e-04 1.72e-02

Table A.31. Feasibility error ‖max{ψ(xk), 0}‖∞ for small scale noisy con-
strained CUTEst problems.

222
τ = 10−6 τ = 10−2

KNITRO COBYLA KNITRO COBYLA
problem φ(x) feaserr #fevals φ(x) feaserr #fevals φ(x) feaserr #fevals φ(x) feaserr #fevals

CB3 2.000000 0.00e+00 35 2.000000 0.00e+00 30 1.9999980 6.00e-06 30 2.000030 1.20e-05 20

CHACONN2 1.999998 6.00e-06 30 2.000000 0.00e+00 29 1.9999980 6.00e-06 30 1.999631 5.01e-04 22
GIGOMEZ3 2.000000 0.00e+00 35 2.000000 0.00e+00 24 2.0000000 0.00e+00 35 2.000000 0.00e+00 24

HS100 680.630087 8.00e-06 173 680.630055 1.15e-04 125 680.7482460 0.00e+00 75 680.707367 0.00e+00 87
DIPIGRI 680.630025 3.10e-05 189 680.630055 2.80e-05 205 680.7513980 0.00e+00 75 680.638226 2.42e-04 114

HS93 135.080301 1.00e-06 650 135.092558 2.00e-06 f 135.0937190 1.00e-06 477 135.080622 5.37e-04 535

HS64 6299.795253 2.10e-05 77 6300.065790 1.20e-05 312 6688.2748180 5.70e-05 30 6704.980195 1.24e-04 238
POLAK3 5.933006 1.00e-06 357 5.933005 1.19e-04 1333 5.9332460 1.55e-04 268 5.939929 0.00e+00 1220

POLAK1 2.718281 1.00e-06 50 2.718279 9.00e-06 251 2.7182600 5.50e-05 45 2.743571 7.00e-05 216

HS104 3.951218 0.00e+00 305 3.952662 1.00e-06 f 3.9535870 1.20e-05 198 3.953450 4.63e-04 353
HS100MOD 678.679616 5.42e-04 146 678.679644 7.50e-05 179 678.7677270 4.00e-06 110 678.849653 0.00e+00 83

TWOBARS 1.508653 0.00e+00 55 1.508652 0.00e+00 40 1.5086550 3.00e-06 45 1.508930 0.00e+00 21

HS85 -2.215605 0.00e+00 152 -2.215605 9.00e-06 246 -2.2156220 5.41e-04 145 -2.206122 0.00e+00 233
CB2 1.952224 2.00e-06 57 1.952225 1.00e-06 48 1.9522210 4.00e-06 52 1.960966 0.00e+00 22

CHACONN1 1.952225 1.00e-06 40 1.952225 1.00e-06 37 1.9521680 8.20e-05 35 1.955056 0.00e+00 20

MADSEN 0.616433 0.00e+00 58 0.616432 4.74e-04 32 0.6164330 0.00e+00 58 0.616264 5.11e-04 31

HS66 0.518164 0.00e+00 33 0.518163 0.00e+00 37 0.5186740 0.00e+00 21 0.518026 3.71e-04 26

MINMAXBD 115.706388 1.17e-04 485 115.706134 4.03e-04 783 115.7063880 1.17e-04 485 115.919506 0.00e+00 741
CANTILVR 1.339957 0.00e+00 211 1.339958 3.80e-05 131 1.3415130 0.00e+00 187 1.347590 0.00e+00 107

HS92 1.374297 0.00e+00 f 1.367672 0.00e+00 139 1.3742970 0.00e+00 f 1.366663 2.00e-06 117

HALDMADS 0.000121 6.00e-06 78 0.000159 1.00e-06 f 0.0001210 6.00e-06 78 0.000159 1.00e-06 f
HS34 -0.834033 1.00e-06 54 -0.834032 0.00e+00 34 -0.8320120 0.00e+00 44 -0.834016 0.00e+00 25

HS90 1.362766 0.00e+00 326 1.368155 1.00e-06 f 1.3608930 2.00e-06 206 1.360847 1.10e-05 156

SNAKE -22.242365 1.70e-03 f -0.021173 2.00e-06 f -22.2423650 1.70e-03 f -0.021173 2.00e-06 f
HS72 727.747619 0.00e+00 f 727.695652 0.00e+00 870 721.1362080 3.33e-04 66 720.999346 3.14e-04 815

GIGOMEZ2 1.952224 1.00e-06 64 1.952225 1.80e-05 46 1.9520790 2.15e-04 59 1.952432 0.00e+00 31

SYNTHES1 0.759272 1.60e-05 64 0.759285 1.00e-06 53 0.7591430 1.95e-04 56 0.785862 1.00e-06 30
HS88 1.362528 0.00e+00 331 1.362528 0.00e+00 114 1.3581270 5.00e-06 240 1.354190 8.00e-06 93
HS13 0.989068 0.00e+00 97 1.006571 0.00e+00 f 1.1183300 0.00e+00 36 1.138030 0.00e+00 19

MATRIX2 0.000000 0.00e+00 153 0.000001 0.00e+00 113 0.0000000 0.00e+00 153 0.000001 0.00e+00 113
WOMFLET 0.000029 1.50e-05 f 0.000006 6.00e-05 121 0.0230460 4.21e-04 81 0.000468 3.02e-04 68

S365 0.000000 5.41e-04 54 0.000000 3.13e-04 48 0.0000000 5.41e-04 54 0.000000 3.13e-04 48

Table A.32. Number of function evaluations to obtain (2.4.5) for noise level σf = 10−7.

223
τ = 10−6 τ = 10−2

KNITRO COBYLA KNITRO COBYLA
problem φ(x) feaserr #fevals φ(x) feaserr #fevals φ(x) feaserr #fevals φ(x) feaserr #fevals

CB3 2.000003 0.00e+00 47 2.000000 8.00e-06 32 1.999981 2.50e-05 30 2.000031 1.10e-05 20

CHACONN2 2.000006 4.00e-06 45 2.000001 2.79e-04 31 1.999999 1.90e-05 30 1.999624 5.08e-04 22
GIGOMEZ3 2.000003 0.00e+00 47 2.000003 1.26e-03 25 2.000003 0.00e+00 47 2.000003 1.26e-03 25

HS100 680.630284 9.00e-06 160 680.630275 1.47e-04 152 680.849165 0.00e+00 46 680.757842 1.82e-03 56
DIPIGRI 680.630221 7.00e-06 149 680.630243 5.00e-05 164 680.817892 1.54e-03 56 680.718994 3.36e-04 58

HS93 135.138021 1.00e-05 229 135.416906 1.60e-05 f 135.133971 1.16e-03 66 135.416906 1.60e-05 f

HS64 6299.871889 0.00e+00 66 6299.950263 2.61e-03 308 6708.036271 2.43e-03 25 6669.894009 2.09e-03 246
POLAK3 5.933216 8.00e-06 313 5.933217 7.40e-05 2303 5.932429 3.09e-03 270 5.943411 4.15e-03 2186

POLAK1 2.718282 6.00e-06 50 2.718280 1.20e-05 269 2.718182 9.00e-04 45 2.743588 4.30e-05 230

HS104 3.964210 0.00e+00 170 3.963888 1.04e-04 f 3.964996 3.71e-04 109 3.965500 9.61e-04 113
HS100MOD 678.679887 1.30e-05 193 678.679885 5.49e-04 122 678.947334 1.28e-03 73 678.953589 0.00e+00 52

TWOBARS 1.508641 9.00e-06 155 1.508665 1.90e-05 f 1.508463 1.28e-04 41 1.508969 0.00e+00 21

HS85 -2.215605 1.70e-05 106 -2.215605 3.30e-05 243 -2.215628 6.85e-04 99 -2.206170 8.10e-05 235
CB2 1.952220 1.40e-05 60 1.952219 7.00e-06 64 1.957493 6.23e-04 44 1.960991 0.00e+00 22

CHACONN1 1.952218 1.40e-05 58 1.952220 1.40e-05 42 1.952172 6.10e-05 35 1.955070 0.00e+00 20

MADSEN 0.616425 9.00e-06 146 0.616425 1.17e-04 40 0.616422 2.61e-04 49 0.613403 3.27e-03 20

HS66 0.518177 3.00e-06 f 0.518158 1.00e-05 37 0.518164 3.50e-05 32 0.518055 1.87e-03 19

MINMAXBD 115.706237 5.45e-04 926 115.705937 1.72e-03 779 115.705316 2.33e-03 919 122.679517 0.00e+00 719
CANTILVR 1.339958 8.00e-06 149 1.339959 3.30e-05 151 1.338856 2.67e-03 91 1.342286 4.59e-03 111

HS92 1.244708 2.58e-04 f 1.112153 6.73e-04 140 1.244708 2.58e-04 f 1.109888 7.50e-04 68

HALDMADS 0.000133 1.40e-05 101 0.000179 1.40e-05 f 0.000133 1.40e-05 101 0.000135 5.10e-05 77
HS34 -0.834035 6.00e-06 52 -0.834035 3.20e-05 32 -0.833901 0.00e+00 36 -0.834014 0.00e+00 25

HS90 2.061544 1.20e-05 f 1.049278 1.07e-03 118 2.061544 1.20e-05 f 1.049423 1.07e-03 72

SNAKE -2.275095 2.12e-04 87 -0.032419 3.00e-06 f -2.269176 2.34e-04 69 -0.032419 3.00e-06 f
HS72 702.418590 7.31e-04 f 528.392603 7.94e-03 f 702.418590 7.31e-04 f 528.392603 7.94e-03 f

GIGOMeZ2 1.952237 0.00e+00 81 1.952209 1.80e-05 f 1.952214 1.60e-03 49 1.952439 0.00e+00 31

SYNTHES1 0.759275 6.00e-06 122 0.759278 2.40e-05 113 0.758501 1.34e-04 56 0.839094 0.00e+00 29
HS88 1.324205 4.40e-05 f 1.180569 3.57e-04 67 1.324205 4.40e-05 f 1.177325 3.68e-04 47
HS13 0.954433 1.20e-05 331 1.029338 5.00e-06 f 1.089502 0.00e+00 36 1.138525 0.00e+00 19

MATRIX2 0.000012 9.00e-06 135 0.000038 6.00e-06 f 0.000012 9.00e-06 135 0.000038 6.00e-06 f
WOMFLET 0.001388 1.00e-06 f -0.000003 2.33e-03 80 0.017147 1.63e-03 90 0.001884 1.73e-04 68

S365 0.000000 6.32e-04 54 0.000000 5.30e-03 36 0.000000 6.32e-04 54 0.000000 5.30e-03 36

Table A.33. Number of function evaluations to obtain (2.4.5) for noise level σf = 10−5

224
τ = 10−6 τ = 10−2

KNITRO COBYLA KNITRO COBYLA
problem φ(x) feaserr #fevals φ(x) feaserr #fevals φ(x) feaserr #fevals φ(x) feaserr #fevals

CB3 2.000135 7.50e-05 57 2.001105 0.00e+00 f 1.991529 1.86e-02 25 1.999922 9.37e-04 17

CHACONN2 2.000382 1.20e-04 30 2.000360 1.84e-03 f 1.989816 2.59e-02 25 2.007665 3.71e-02 19
GIGOMEZ3 2.000135 7.50e-05 f 1.999908 3.32e-04 35 2.000135 7.50e-05 f 1.999908 3.32e-04 35

HS100 680.643454 6.18e-04 118 680.653293 2.80e-03 f 680.862278 2.56e-03 47 680.751163 1.19e-02 46
DIPIGRI 680.642602 5.53e-04 146 680.653238 2.48e-03 f 680.858601 0.00e+00 47 680.938844 1.37e-02 46

HS93 135.324499 1.03e-03 126 136.540776 7.65e-03 f 135.323447 3.39e-03 35 136.540776 7.65e-03 f

HS64 6294.941500 2.18e-03 74 6307.172876 1.82e-01 f 6746.496044 5.01e-02 20 6307.172876 1.82e-01 f
POLAK3 5.937398 1.34e-03 f 5.932593 8.61e-03 1645 5.954694 7.66e-03 252 5.909504 3.84e-02 1510

POLAK1 2.719811 2.51e-04 86 2.752280 9.16e-04 f 2.723341 7.78e-04 36 2.736065 3.33e-02 231

HS104 3.981084 1.04e-03 174 4.087923 2.80e-02 f 3.981888 9.32e-04 154 4.087923 2.80e-02 f
HS100MOD 678.700188 3.91e-04 f 678.688238 0.00e+00 99 678.964451 3.27e-03 73 678.817053 2.85e-02 61

TWOBARS 1.508513 1.28e-03 f 1.507091 1.04e-03 27 1.508513 1.28e-03 f 1.507577 1.34e-02 21

HS85 -2.209889 1.52e-04 271 -1.733123 1.41e-03 f -2.211306 1.94e-02 127 -1.733123 1.41e-03 f
CB2 1.952771 0.00e+00 f 1.952216 1.02e-03 45 1.943877 1.91e-02 51 1.956972 0.00e+00 23

CHACONN1 1.956186 0.00e+00 f 1.952905 7.34e-04 23 1.949855 4.28e-02 46 1.934334 2.62e-02 15

MADSEN 0.616321 4.89e-04 f 0.616142 3.03e-04 35 0.619826 0.00e+00 68 0.612382 1.21e-02 26

HS66 0.518819 0.00e+00 f 0.517640 1.21e-03 48 0.518819 0.00e+00 f 0.518165 1.35e-02 13

MINMAXBD 115.710191 2.96e-04 f 115.706307 4.03e-02 756 115.703385 1.16e-02 538 121.478546 2.68e-02 717
CANTILVR 1.341675 0.00e+00 141 1.347345 3.04e-03 f 1.343901 5.05e-03 84 1.336533 4.03e-02 145

HS92 0.003678 1.33e-01 f 0.507997 2.58e-02 f 0.003678 1.33e-01 f 0.507997 2.58e-02 f

HALDMADS 0.007637 0.00e+00 f 0.000616 9.93e-04 71 0.007637 0.00e+00 f 0.000616 9.93e-04 71
HS34 -0.833608 0.00e+00 71 -0.834809 1.73e-03 f -0.832197 0.00e+00 36 -0.832210 0.00e+00 22

HS90 0.001271 1.33e-01 f 0.683684 1.11e-02 f 0.001271 1.33e-01 f 0.683684 1.11e-02 f

SNAKE -45.074608 2.90e-03 130 -0.035633 3.27e-04 f -44.926682 3.22e-02 60 -0.035633 3.27e-04 f
HS72 349.372500 4.62e-02 f 66.439486 3.47e-01 f 349.372500 4.62e-02 f 66.439486 3.47e-01 f

GIGOMeZ2 1.951903 6.68e-04 f 1.951310 1.29e-03 48 1.951903 6.68e-04 f 1.951561 7.74e-04 36

SYNTHES1 0.766084 0.00e+00 76 0.755256 1.12e-03 f 0.790862 1.53e-03 56 0.844177 0.00e+00 29
HS88 0.958819 2.05e-03 f 0.575949 1.82e-02 45 0.958819 2.05e-03 f 0.576448 1.81e-02 26
HS13 0.857313 4.07e-04 48 1.114815 0.00e+00 f 0.857380 4.06e-04 38 1.114815 0.00e+00 f

MATRIX2 0.003633 7.30e-04 f 0.002521 3.17e-04 68 0.003633 7.30e-04 f 0.002521 3.17e-04 68
WOMFLET 0.008386 4.53e-04 f 0.003122 0.00e+00 108 0.007706 5.15e-02 69 -0.051536 5.38e-02 87

S365 0.000000 4.03e-02 45 0.000000 5.11e-02 32 0.000000 4.03e-02 45 0.000016 4.64e-02 25

Table A.34. Number of function evaluations to obtain (2.4.5) for noise level σf = 10−3.

225
τ = 10−6 τ = 10−2

KNITRO COBYLA KNITRO COBYLA
problem φ(x) feaserr #fevals φ(x) feaserr #fevals φ(x) feaserr #fevals φ(x) feaserr #fevals

CB3 2.151366 0.00e+00 200 2.297095 3.71e-02 f 2.151799 0.00e+00 183 2.297095 3.71e-02 f

CHACONN2 1.917274 2.54e-01 f 0.544480 1.53e+00 f 1.917274 2.54e-01 f 0.544480 1.53e+00 f
GIGOMEZ3 2.162155 0.00e+00 f 1.558092 5.89e-01 f 2.162155 0.00e+00 f 1.554036 5.32e-01 20

HS100 682.785696 1.01e-01 f 680.545842 2.09e-01 f 682.785696 1.01e-01 f 680.679716 3.84e-01 25
DIPIGRI 682.612679 1.38e-01 f 681.544064 0.00e+00 49 682.612679 1.38e-01 f 681.282921 7.16e-02 39

HS93 132.388506 1.13e-01 126 135.053154 4.58e-02 f 132.388506 1.13e-01 126 135.053154 4.58e-02 f

HS64 7178.300921 4.96e-01 33 13921.561135 4.97e+00 f 6221.151364 5.05e-01 27 13921.561135 4.97e+00 f
POLAK3 5.768461 5.56e-01 f -2.341289 8.72e+00 f 5.768461 5.56e-01 f -2.341289 8.72e+00 f

POLAK1 5.342043 6.74e-02 86 7.870717 9.39e-02 f 5.381476 1.35e-01 62 7.870717 9.39e-02 f

HS104 3.287811 2.81e-01 f 1.208522 3.70e-01 30 3.287811 2.81e-01 f 1.193347 3.97e-01 10
HS100MOD 680.016339 1.77e-01 f 679.878287 7.18e-02 45 680.111489 8.61e-02 53 679.599540 2.77e-01 34

TWOBARS 1.601395 1.86e-02 f 1.450060 1.40e-01 30 1.601395 1.86e-02 f 1.450155 1.40e-01 12

HS85 -1.288983 0.00e+00 30 -1.256810 0.00e+00 f -1.288983 0.00e+00 30 -1.256810 0.00e+00 f
CB2 2.157319 1.15e-02 f 0.871901 1.10e+00 f 2.157319 1.15e-02 f 0.871901 1.10e+00 f

CHACONN1 2.085730 2.43e-03 f 1.976579 2.38e-02 27 2.085730 2.43e-03 f 1.979692 2.45e-02 12

MADSEN 0.874476 0.00e+00 70 0.882487 0.00e+00 f 0.874516 0.00e+00 33 0.882487 0.00e+00 f

HS66 0.543480 0.00e+00 f 0.509050 4.56e-02 37 0.543480 0.00e+00 f 0.508822 4.63e-02 20

MINMAXBD -33.388429 4.65e+02 f 112.975518 2.81e+00 f -33.388429 4.65e+02 f 112.975518 2.81e+00 f
CANTILVR 1.531159 5.74e-02 f 0.934009 2.47e+00 f 1.531159 5.74e-02 f 0.934009 2.47e+00 f

HS92 0.366123 1.35e-01 f 0.293398 7.11e-02 48 0.366123 1.35e-01 f 0.297797 7.09e-02 35

HALDMADS 0.252628 0.00e+00 f -3.027998 1.82e+01 f 0.252628 0.00e+00 f -3.027998 1.82e+01 f
HS34 -0.141457 1.15e-01 49 -0.750941 2.99e-01 f -0.140985 1.15e-01 25 -0.750941 2.99e-01 f

HS90 0.790027 1.40e-01 f 0.331080 1.20e-01 48 0.790027 1.40e-01 f 0.331906 1.20e-01 13

SNAKE -8.350669 1.87e-01 93 1.284550 3.65e-01 f -8.350669 1.87e-01 93 1.284550 3.65e-01 f
HS72 67.968573 5.76e-01 f 8.946566 3.26e+00 f 67.968573 5.76e-01 f 8.946566 3.26e+00 f

GIGOMeZ2 1.874401 1.78e-01 78 2.056211 0.00e+00 f 1.874484 1.90e-01 70 2.056211 0.00e+00 f

SYNTHES1 1.977343 2.09e-01 f 1.855036 0.00e+00 11 1.841763 3.65e-01 69 1.855036 0.00e+00 11
HS88 0.047086 1.26e-01 16 0.235414 1.47e-01 f 0.047086 1.26e-01 16 0.235414 1.47e-01 f
HS13 0.357703 6.52e-02 48 2.381364 0.00e+00 f 0.551282 1.71e-02 19 2.381364 0.00e+00 f

MATRIX2 0.075268 2.95e-02 194 1.186858 0.00e+00 f 0.075268 2.95e-02 194 1.186858 0.00e+00 f
WOMFLET 6.254269 5.05e-02 f 3.338088 0.00e+00 48 6.254269 5.05e-02 f 3.336520 0.00e+00 35

S365 0.000000 9.22e-02 45 0.000000 5.72e-02 24 0.000000 9.22e-02 45 -0.001477 1.53e-01 23

Table A.35. Number of function evaluations to obtain (2.4.5) for noise level σf = 10−1.

226

APPENDIX B

Adaptive Finite-Difference Interval Estimation for Noisy

Derivative-Free Optimization

B.1. Finite-Difference Formula Derivation and Tables

We summarize the different standard finite-difference schemes with equidistant points,

their theoretical error, optimal steplength, and optimal error in terms of the noise level εf

and local bound on the q-th derivative Lq for a smooth univariate function φ : R→ R in

Tables B.1 and B.2. For completeness, we provide a complete derivation of the errors for a

generic finite-difference approximation to the d-th order derivative below.

We will use f : R→ R to denote the noisy function evaluations f(t) = φ(t) + ε(t). We

will consider two settings for ε(t): (1) we will assume that ε(t) is bounded, i.e., |ε(t)| ≤ εf

for all t; (2) we will assume that ε(t) is a random variable with E[ε(t)] = 0 and E[ε(t)2] = σ2
f

for all t. The tables vary the number of evaluated points m and is dependent on the local

Lipschitz constant Lq ≥ 0 which bounds the q-th derivative

|φ(q)(t+ h0s)| ≤ Lq

for all s ∈ [s1, sm], where q is the order of the remainder term in the Taylor expansion.

In the most general case, given distinct shifts {sj}mj=1 and points {t1, ..., tm} = {t +

hs1, t+ hs2, ..., t+ hsm}, one can derive a generic finite-difference method to approximate

227

the d-th derivative of the form:

φ(d)(t) ≈
∑m

j=1wjf(t+ sjh)

hd
= f (d)(t;h).

We will assume without loss of generality that s1 < s2 < ... < sm. First, note that f (d)

can be decomposed into a noiseless finite-difference formula and its corresponding error:

f (d)(t;h) =

∑m
j=1 wjφ(t+ sjh)

hd
+

∑m
j=1wjε(t+ sjh)

hd
.

Considering the noiseless finite-difference term, since the function is smooth, one can write

the Lagrange remainder form of the Taylor series expansions for each function evaluation

without noise as:

φ(t+ hsj) =

q−1∑
l=0

1

l!
φ(l)(t)slj +

1

q!
φ(q)(ξj)s

q
j

for ξj ∈ [t, t+ hsj] for j = 1, ...,m. Therefore, if the weights w satisfy

1

d!

m∑
j=1

wjs
l
j =

0 for l 6= d, l = 0, 1, ..., q − 1

1 for l = d

then ∑m
j=1wjφ(t+ sjh)

hd
= φ(d)(t) +

hq−d

q!

m∑
j=1

wjφ
(q)(ξj)s

q
j .

This can be written compactly by the linear system of equations:

V (s)Tw = d! · ep−d

228

where V (s) ∈ Rm×q is the Vandermonde matrix defined as

V (s) =

sq−1
1 sq−2

1 . . . s0
1

sq−1
2 sq−2

2 . . . s0
2

...
...

. . .
...

sq−1
m sq−2

m . . . s0
m

and ep−d ∈ Rp is the (p− d)-th coordinate vector.

To derive a reasonable bound on the total error, suppose we are given h0 > 0 and a

bound on φ(q)

|φ(q)(t+ sh0)| ≤ Lq

for all s ∈ [s1, sm]. If we assume that the error is bounded, i.e., |ε(t)| ≤ εf , then one can

then bound the error in the approximation by:

|f (d)(t;h)− φ(d)(t)| ≤ Lqh
q−d

q!

m∑
j=1

|wjsqj |+
‖w‖1εf
hd

= εg(h)

for all 0 < h ≤ h0. If we assume instead that Var(ε(t)) = σ2
f , then we can similarly show

E[(f (d)(t;h)− φ(d)(t))2] ≤
L2
qh

2(q−d)

(q!)2

m∑
j=1

w2
js

2q
j +

‖w‖2
2σ

2
f

h2d
= σ2

g(h)

for all 0 < h ≤ h0.

The above Taylor series analysis is pessimistic in that it requires multiple ξj points,

and therefore yields a loose bound when applying the triangle inequality. Instead, one can

consider the derivation of finite-difference schemes for approximating the first derivative

229

at an interpolation point using Lagrange polynomials, which yields a tighter bound on the

error.

As above, suppose we are given distinct points {t1, ..., tm} = {t+ hs1, ..., t+ hsm} and

we are interested in approximating φ(1)(t). Recall that the Lagrange basis polynomials are

defined as:

ψp,j(t̃) =

∏
k 6=j(t̃− tk)∏
k 6=j(tj − tk)

=
ωm(t̃)

ω
(1)
m (tj)(t̃− tj)

, ωm(t̃) =
m∏
j=1

(t̃− tj).

Then the Lagrange interpolation is defined as:

`(t̃) =
m∑
j=1

ψm,j(t̃)φ(tj).

It is well-known that the remainder is

φ(t̃)− `(t̃) =
ωm(t̃)

m!
φ(m)(ξ)

for some ξ ∈ [t1, tm]. Note that the finite-difference formula can simply be obtained by

differentiating the Lagrange polynomial

`(1)(t̃) =
m∑
j=1

ψ
(1)
m,j(t̃)φ(tj).

Therefore, the finite-difference coefficients are obtained by evaluating ψ
(1)
m,j(t̃). The error is

also obtained by noting

φ(1)(t̃) = `(1)(t̃) +
ω

(1)
m (t̃)

m!
φ(m)(ξ) +

ωm(t̃)

m!
φ(m)(ξ)

dξ

dx
.

230

Since

ω(1)
m (t̃) =

m∑
j=1

∏
k 6=j

(t̃− tk),

plugging in t̃ = ti for any i = 1, ...,m, we get the following equality

φ(1)(ti) = `(1)(ti) +
ω

(1)
m (ti)

m!
φ(m)(ξ) = `(1)(ti) +

∏
j 6=i

(ti − tj)
φ(m)(ξ)

m!
.

Given h0 > 0 and a bound on φ(m)

|φ(m)(t+ h0s)| ≤ Lm

for all s ∈ [s1, sm] and assuming t = ti is one of the interpolation points, we obtain the

bound

|φ(1)(t)− `(1)(t)| ≤ Lmh
m−1

m!

∣∣∣∣∣∏
j 6=i

sj

∣∣∣∣∣
and if we incorporate the error in the function evaluations, we obtain a error and variance

bounds of

|f (1)(t;h)− φ(1)(t)| ≤ Lmh
m−1

m!

∣∣∣∣∣∏
j 6=i

sj

∣∣∣∣∣+
‖w‖1εf
h

= εg(h)

E[(f (1)(t;h)− φ(1)(t))2] ≤ L2
mh

2(m−1)

(m!)2

∏
j 6=i

s2
j +
‖w‖2

2σ
2
f

h2
= σ2

g(h)

for all 0 < h ≤ h0.

231
Table B.1. Table containing the finite-difference formula, deterministic error bound |f (1)(t;h) −
φ(1)(t)| ≤ εg(h) for generic h, optimal h∗, and optimal error εg(h

∗) for forward-difference schemes
with number of points m ∈ {2, 3, 4, 5}.

m f (1)(t;h) εg(h) h∗ εg(h
∗)

2 f(t+h)−f(t)
h

L2h
2 +

2εf
h 2

√
εf
L2

2
√
L2εf

3 −3f(t)+4f(t+h)−f(t+2h)
2h

L3h
2

3 +
4εf
h

3

√
6εf
L3

62/3L
1/3
3 ε

2/3
f

4 −11f(t)+18f(t+h)−9f(t+2h)+2f(t+3h)
6h

L4h
3

4 +
20εf
3h

4

√
80εf
9L4

8·53/4
3
√
3
L
1/4
4 ε

3/4
f

5 −25f(t)+48f(t+h)−36f(t+2h)+16f(t+3h)−3f(t+4h)
12h

L5h
4

5 +
32εf
3h

5

√
40εf
3L5

4
(
5
3

)4/5
22/5L

1/5
5 ε

4/5
f

Table B.2. Table containing the finite-difference formula, deterministic error bound |f (1)(t;h) −
φ(1)(t)| ≤ εg(h) for generic h, optimal h∗, and optimal error εg(h

∗) for central-difference schemes
with number of points m ∈ {2, 4, 6}.

m f (1)(t;h) εg(h) h∗ εg(h
∗)

2 f(t+h)−f(t−h)
2h

L3h
2

6 +
εf
h

3

√
3εf
L3

32/3

2 L
1/3
3 ε

2/3
f

4 f(t−2h)−8f(t−h)+8f(t+h)−f(t+2h)
12h

L5h
4

30 +
3εf
2h

5

√
45εf
4L5

1
4

(
3
2

)4/5
54/5L

1/5
5 ε

4/5
f

6 −f(t−3h)+9f(t−2h)−45f(t−h)+45f(t+h)−9f(t+2h)+f(t+3h)
60h

L7h
6

140 +
11εf
6h

7

√
385εf
9L7

776/7

12·35/7· 7
√
5
L
1/7
7 ε

6/7
f

232
Table B.3. Table containing the finite-difference formula, MSE error bound E[(f (1)(t;h)−φ(1)(t))2] ≤
σ2
g(h) for generic h, optimal h∗, and optimal error σg(h

∗) for forward-difference schemes with number
of points m ∈ {2, 3, 4, 5}.

p f (1)(t;h) σ2
g(h) h∗ σg(h

∗)

1 f(t+h)−f(t)
h

L2
2h

2

4
+

2ε2f
h2 81/4

√
εf
L2

21/4
√
L2εf

2 −3f(t)+4f(t+h)−f(t+2h)
2h

L2
3h

4

9
+

13ε2f
2h2 (3

2
)1/3131/6 3

√
εf
L3

6√3 3√13

22/3
L

1/3
3 ε

2/3
f

3 −11f(t)+18f(t+h)−9f(t+2h)+2f(t+3h)
6h

L2
4h

6

16
+

265ε2f
18h2 (2

3
)3/82651/8 4

√
εf
L4

1
3

8

√
2
3
2653/8L

1/4
4 ε

3/4
f

4 −25f(t)+48f(t+h)−36f(t+2h)+16f(t+3h)−3f(t+4h)
12h

L2
5h

8

25
+

2245ε2f
72h2

53/104491/10√
2 5√3

5

√
εf
L5

57/104492/5

4·34/5 L
1/5
5 ε

4/5
f

Table B.4. Table containing the finite-difference formula, MSE error bound E[(f (1)(t;h)−φ(1)(t))2] ≤
σ2
g(h) for generic h, optimal h∗, and optimal error σg(h

∗) for central-difference schemes with number
of points m ∈ {2, 4, 6}.

p f (1)(t;h) σ2
g(h) h∗ σg(h

∗)

2 f(t+h)−f(t−h)
2h

L2
3h

4

36
+

ε2f
2h2

3
√
3 3

√
εf
L3

6√3
2
L

1/3
3 ε

2/3
f

4 f(t−2h)−8f(t−h)+8f(t+h)−f(t+2h)
12h

L2
5h

8

900
+

65ε2f
72h2

(
5
2

)3/10
131/10 5

√
εf
L5

57/10·132/5

12· 5
√
2

L
1/5
5 ε

4/5
f

6 −f(t−3h)+9f(t−2h)−45f(t−h)+45f(t+h)−9f(t+2h)+f(t+3h)
60h

L2
7h

12

1402
+

2107ε2f
1800h2

72/7431/14

33/14
7

√
εf
L7

717/14433/7

60·32/7 L
1/7
7 ε

6/7
f

233

B.2. Complete Experimental Results

Here, we present the complete experimental results from Section 3.4.

B.2.1. Robustness to Different Noise Levels

We test our procedure on a simple function φ(t) = cos(t) for different noise levels using

different schemes listed in Table 3.1. These are shown in Figure B.1. Detailed numerical

results, including the number of iterations and relative error, are listed in Table B.5.

Observe that our method is able to consistently achieve low relative error using a

similar number of function evaluations across all tested noise levels. This is a desirable

property, as it demonstrates that our initial choice of the interval h and our method is

consistent over different noise levels.

B.2.2. Affine Invariance

One advantage of our proposed method is that the testing ratio remains unchanged under

affine transformations of the function. It is particularly obvious that our procedure is

invariant when adding a constant to the function. Hence, we focus on transformations of

the form φ(t)→ a · φ(b · t) for some a, b 6= 0.

To do this, we test Algorithm 3.2 on the function φ(t) = a · sin(b · t) at t = 0 for various

a and b. We fix the noise level to be εf = 10−3. The results are shown in Figure B.2.

Detailed results can be found in Table B.6 and B.7. As seen in Figure B.2, our method is

affine-invariant and can output consistently correct results for different a and b.

234

Table B.5. Detailed results for φ(t) = cos(t) with different noise levels; r
represents the final testing ratio; h∗ is the h that minimizes δS(h;φ, t, εf)
reported by minimize scalar function in scipy.optimize and could be
unreliable.

scheme h† h∗ r #iters #Evals relative error εf
FD 2.00e-04 2.72e-04 2.08 1 3 1.86e-05 1.00e-08
FD 6.32e-04 8.59e-04 2.00 1 3 4.21e-05 1.00e-07
FD 3.50e-03 2.73e-03 4.79 4 8 1.17e-03 1.00e-06
FD 6.32e-03 8.64e-03 1.77 1 3 1.72e-03 1.00e-05
FD 2.00e-02 2.76e-02 2.00 1 3 1.69e-03 1.00e-04
FD 6.32e-02 9.05e-02 1.73 1 3 5.07e-04 1.00e-03
FD 5.00e-01 1.73e+00 3.89 3 6 9.86e-02 1.00e-02
FD 6.32e-01 8.26e+00 1.52 1 3 2.97e-01 1.00e-01
CD 3.11e-03 3.29e-03 2.40 1 4 1.89e-06 1.00e-08
CD 6.69e-03 7.09e-03 2.66 1 4 5.39e-06 1.00e-07
CD 1.44e-02 1.53e-02 2.72 1 4 9.35e-06 1.00e-06
CD 3.11e-02 3.29e-02 2.05 1 4 3.34e-04 1.00e-05
CD 6.69e-02 7.09e-02 2.18 1 4 1.33e-03 1.00e-04
CD 1.44e-01 1.53e-01 2.55 1 4 3.32e-03 1.00e-03
CD 3.11e-01 3.30e-01 1.89 1 4 3.84e-02 1.00e-02
CD 6.69e-01 7.74e+00 2.01 1 4 5.71e-02 1.00e-01
FD 3P 3.91e-03 4.14e-03 2.88 1 5 1.01e-05 1.00e-08
FD 3P 8.43e-03 8.92e-03 3.24 1 5 2.01e-05 1.00e-07
FD 3P 1.82e-02 1.92e-02 2.76 1 5 2.05e-04 1.00e-06
FD 3P 3.91e-02 4.11e-02 3.28 1 5 5.82e-04 1.00e-05
FD 3P 8.43e-02 8.77e-02 2.86 1 5 5.65e-03 1.00e-04
FD 3P 1.82e-01 1.86e-01 3.10 1 5 2.29e-02 1.00e-03
FD 3P 3.91e-01 2.99e+00 2.88 1 5 9.96e-02 1.00e-02
FD 3P 2.53e+00 2.12e+01 5.75 2 7 4.17e-01 1.00e-01
FD 4P 2.16e-02 2.04e-02 9.36 5 18 2.14e-06 1.00e-08
FD 4P 4.61e-02 3.67e-02 16.51 4 13 1.14e-05 1.00e-07
FD 4P 8.19e-02 4.76e-01 10.80 4 13 9.43e-05 1.00e-06
FD 4P 1.70e-01 1.25e-01 4.40 5 18 6.15e-04 1.00e-05
FD 4P 2.59e-01 3.28e+00 14.62 4 13 7.80e-04 1.00e-04
FD 4P 3.07e-01 3.28e+00 4.23 1 6 5.46e-03 1.00e-03
FD 4P 5.46e-01 8.78e+00 6.44 1 6 3.19e-02 1.00e-02
FD 4P 2.91e+00 8.79e+00 4.28 2 8 9.55e-01 1.00e-01
CD 4P 4.08e-02 4.22e-02 2.52 1 6 1.16e-07 1.00e-08
CD 4P 6.46e-02 6.69e-02 2.04 1 6 8.34e-07 1.00e-07
CD 4P 1.02e-01 1.06e-01 1.95 1 6 8.81e-06 1.00e-06
CD 4P 1.62e-01 1.68e-01 1.79 1 6 4.29e-05 1.00e-05
CD 4P 2.57e-01 2.67e-01 1.71 1 6 4.00e-04 1.00e-04
CD 4P 4.08e-01 4.25e-01 1.89 1 6 8.32e-04 1.00e-03
CD 4P 8.07e-01 7.97e+00 4.83 4 20 5.87e-03 1.00e-02
CD 4P 1.54e+00 2.06e+01 4.25 3 14 2.34e-01 1.00e-01
L2 CD 3.29e-02 3.07e-02 3.78 4 15 1.00e-04 1.00e-08
L2 CD 4.68e-02 5.46e-02 1.89 1 5 8.55e-05 1.00e-07
L2 CD 1.04e-01 9.71e-02 4.22 4 15 7.28e-04 1.00e-06
L2 CD 1.48e-01 1.73e-01 1.90 1 5 1.06e-03 1.00e-05
L2 CD 3.29e-01 3.07e-01 4.03 4 15 8.28e-03 1.00e-04
L2 CD 5.85e-01 5.49e-01 3.81 4 15 2.84e-02 1.00e-03
L2 CD 1.04e+00 9.87e-01 3.45 4 15 7.95e-02 1.00e-02
L2 CD 2.96e+00 1.55e+01 5.45 2 7 5.40e-01 1.00e-01

235

Table B.6. Detailed results for φ(t) = a·sin(b·t) with εf = 1E-3; r represents
the final testing ratio; h∗ is the h that minimizes δS(h;φ, t, εf) reported by
minimize scalar function in scipy.optimize and could be unreliable.

a b scheme h† h∗ r #iters #Evals relative error

0.10 0.10 FD 2.53e+00 3.94e+00 1.89 5 8 1.75e-02
0.10 1.00 FD 3.48e-01 3.94e-01 4.34 6 11 5.29e-02
0.10 10.00 FD 2.77e-02 3.94e-02 2.68 4 8 2.01e-05
1.00 0.10 FD 1.39e+00 1.82e+00 2.61 7 12 1.30e-02
1.00 1.00 FD 1.58e-01 1.82e-01 4.91 3 6 3.01e-03
1.00 10.00 FD 1.58e-02 1.82e-02 4.58 2 4 6.97e-03

10.00 0.10 FD 6.32e-01 8.44e-01 3.23 4 7 4.76e-04
10.00 1.00 FD 6.32e-02 8.44e-02 3.38 1 3 2.83e-04
10.00 10.00 FD 6.92e-03 8.44e-03 3.34 5 9 2.92e-03
0.10 0.10 CD 3.89e+00 3.12e+00 5.47 4 10 2.51e-02
0.10 1.00 CD 2.88e-01 3.12e-01 2.30 3 10 1.38e-02
0.10 10.00 CD 3.20e-02 3.12e-02 3.13 4 14 1.70e-02
1.00 0.10 CD 1.30e+00 1.44e+00 2.17 3 8 2.81e-03
1.00 1.00 CD 1.44e-01 1.44e-01 2.97 1 4 3.46e-03
1.00 10.00 CD 1.60e-02 1.44e-02 4.06 3 10 4.27e-03

10.00 0.10 CD 6.49e-01 6.70e-01 2.73 5 16 7.02e-04
10.00 1.00 CD 7.21e-02 6.70e-02 3.74 4 14 8.66e-04
10.00 10.00 CD 5.34e-03 6.70e-03 1.52 4 12 4.75e-04
0.10 0.10 FD 3P 4.91e+00 8.14e+01 2.93 4 11 2.13e-02
0.10 1.00 FD 3P 5.45e-01 8.14e+00 2.45 2 7 6.48e-02
0.10 10.00 FD 3P 7.57e-02 8.14e-01 4.90 5 15 1.61e-01
1.00 0.10 FD 3P 1.64e+00 2.14e+01 2.25 3 9 8.79e-03
1.00 1.00 FD 3P 1.82e-01 2.14e+00 3.63 1 5 1.86e-04
1.00 10.00 FD 3P 2.02e-02 1.83e-02 4.43 3 9 1.15e-02

10.00 0.10 FD 3P 8.18e-01 8.45e-01 3.48 5 13 1.71e-03
10.00 1.00 FD 3P 9.09e-02 8.45e-02 4.58 4 11 1.77e-03
10.00 10.00 FD 3P 1.01e-02 8.45e-03 6.67 6 15 1.00e-03
0.10 0.10 FD 4P 9.33e+00 8.44e+01 4.95 9 31 1.63e-01
0.10 1.00 FD 4P 9.79e-01 8.44e+00 9.64 8 32 1.50e-01
0.10 10.00 FD 4P 1.96e+00 1.78e+01 7.71 7 29 9.60e-01
1.00 0.10 FD 4P 2.76e+00 3.59e+00 4.47 3 11 3.59e-03
1.00 1.00 FD 4P 3.07e-01 3.59e-01 6.55 1 6 8.16e-03
1.00 10.00 FD 4P 6.62e-01 5.88e+00 10.15 8 35 9.49e-01

10.00 0.10 FD 4P 1.84e+00 2.25e+00 6.57 4 14 3.68e-04
10.00 1.00 FD 4P 2.05e-01 2.71e+00 10.68 3 10 2.90e-04
10.00 10.00 FD 4P 3.07e-01 4.62e+00 16.47 1 6 8.38e-01
0.10 0.10 CD 4P 6.52e+00 7.97e+01 2.12 5 14 5.73e-03
0.10 1.00 CD 4P 6.11e-01 7.97e+00 1.57 3 14 4.45e-03
0.10 10.00 CD 4P 7.64e-02 7.97e-01 4.32 5 18 1.06e-02
1.00 0.10 CD 4P 4.08e+00 4.10e+00 2.30 7 26 9.02e-04
1.00 1.00 CD 4P 4.08e-01 4.10e-01 2.30 1 6 9.02e-04
1.00 10.00 CD 4P 3.82e-02 4.10e-02 1.68 6 20 6.98e-04

10.00 0.10 CD 4P 2.45e+00 2.58e+00 1.89 5 18 1.18e-04
10.00 1.00 CD 4P 2.55e-01 2.58e-01 2.31 4 20 1.39e-04
10.00 10.00 CD 4P 2.55e-02 2.58e-02 2.31 5 14 1.39e-04

236

10 4 10 3 10 2 10 1 100 101

h

10 4

10 3

10 2

10 1

100

101

102

103

wo
rs

t c
as

e
re

la
tiv

e
er

ro
r

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]
FD, (t) = cos(t), t=1.0

[1] f = 1e 08 (h=2.00E-04)
[2] f = 1e 07 (h=6.32E-04)
[3] f = 1e 06 (h=3.50E-03)
[4] f = 1e 05 (h=6.32E-03)
[5] f = 0.0001 (h=2.00E-02)
[6] f = 0.001 (h=6.32E-02)
[7] f = 0.01 (h=5.00E-01)
[8] f = 0.1 (h=6.32E-01)

10 4 10 3 10 2 10 1 100 101

h

10 4

10 2

100

102

wo
rs

t c
as

e
re

la
tiv

e
er

ro
r

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]
CD, (t) = cos(t), t=1.0

[1] f = 1e 08 (h=3.11E-03)
[2] f = 1e 07 (h=6.69E-03)
[3] f = 1e 06 (h=1.44E-02)
[4] f = 1e 05 (h=3.11E-02)
[5] f = 0.0001 (h=6.69E-02)
[6] f = 0.001 (h=1.44E-01)
[7] f = 0.01 (h=3.11E-01)
[8] f = 0.1 (h=6.69E-01)

10 4 10 3 10 2 10 1 100 101

h

10 4

10 2

100

102

104

wo
rs

t c
as

e
re

la
tiv

e
er

ro
r

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]
FD_3P, (t) = cos(t), t=1.0

[1] f = 1e 08 (h=3.91E-03)
[2] f = 1e 07 (h=8.43E-03)
[3] f = 1e 06 (h=1.82E-02)
[4] f = 1e 05 (h=3.91E-02)
[5] f = 0.0001 (h=8.43E-02)
[6] f = 0.001 (h=1.82E-01)
[7] f = 0.01 (h=3.91E-01)
[8] f = 0.1 (h=2.53E+00)

10 4 10 3 10 2 10 1 100 101

h

10 4

10 2

100

102

104

wo
rs

t c
as

e
re

la
tiv

e
er

ro
r

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]
FD_4P, (t) = cos(t), t=1.0

[1] f = 1e 08 (h=2.16E-02)
[2] f = 1e 07 (h=4.61E-02)
[3] f = 1e 06 (h=8.19E-02)
[4] f = 1e 05 (h=1.70E-01)
[5] f = 0.0001 (h=2.59E-01)
[6] f = 0.001 (h=3.07E-01)
[7] f = 0.01 (h=5.46E-01)
[8] f = 0.1 (h=2.91E+00)

10 4 10 3 10 2 10 1 100 101

h

10 5

10 3

10 1

101

103

wo
rs

t c
as

e
re

la
tiv

e
er

ro
r

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]
CD_4P, (t) = cos(t), t=1.0

[1] f = 1e 08 (h=4.08E-02)
[2] f = 1e 07 (h=6.46E-02)
[3] f = 1e 06 (h=1.02E-01)
[4] f = 1e 05 (h=1.62E-01)
[5] f = 0.0001 (h=2.57E-01)
[6] f = 0.001 (h=4.08E-01)
[7] f = 0.01 (h=8.07E-01)
[8] f = 0.1 (h=1.54E+00)

10 4 10 3 10 2 10 1 100 101

h

10 3

10 1

101

103

105

107

wo
rs

t c
as

e
re

la
tiv

e
er

ro
r

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]
L2_CD, (t) = cos(t), t=1.0

[1] f = 1e 08 (h=3.29E-02)
[2] f = 1e 07 (h=4.68E-02)
[3] f = 1e 06 (h=1.04E-01)
[4] f = 1e 05 (h=1.48E-01)
[5] f = 0.0001 (h=3.29E-01)
[6] f = 0.001 (h=5.85E-01)
[7] f = 0.01 (h=1.04E+00)
[8] f = 0.1 (h=2.96E+00)

Figure B.1. Worst case relative error δS(h;φ, t, εf) against h on function
φ(t) = cos(t) with different noise levels; the vertical dashed line represents
the h† output by Algorithm 3.2.

237

10 3 10 2 10 1 100 101

h

10 2

10 1

100

101

102

wo
rs

t c
as

e
re

la
tiv

e
er

ro
r

FD, (t) = a sin(b t), t = 0.0, f = 0.001
a = 0.1, b = 0.1 (h=2.53E+00)
a = 0.1, b = 1.0 (h=3.48E-01)
a = 0.1, b = 10.0 (h=2.77E-02)
a = 1.0, b = 0.1 (h=1.39E+00)
a = 1.0, b = 1.0 (h=1.58E-01)
a = 1.0, b = 10.0 (h=1.58E-02)
a = 10.0, b = 0.1 (h=6.32E-01)
a = 10.0, b = 1.0 (h=6.32E-02)
a = 10.0, b = 10.0 (h=6.92E-03)

10 3 10 2 10 1 100 101

h

10 2

10 1

100

101

102

wo
rs

t c
as

e
re

la
tiv

e
er

ro
r

CD, (t) = a sin(b t), t = 0.0, f = 0.001
a = 0.1, b = 0.1 (h=3.89E+00)
a = 0.1, b = 1.0 (h=2.88E-01)
a = 0.1, b = 10.0 (h=3.20E-02)
a = 1.0, b = 0.1 (h=1.30E+00)
a = 1.0, b = 1.0 (h=1.44E-01)
a = 1.0, b = 10.0 (h=1.60E-02)
a = 10.0, b = 0.1 (h=6.49E-01)
a = 10.0, b = 1.0 (h=7.21E-02)
a = 10.0, b = 10.0 (h=5.34E-03)

10 3 10 2 10 1 100 101

h

10 2

10 1

100

101

102

wo
rs

t c
as

e
re

la
tiv

e
er

ro
r

FD_3P, (t) = a sin(b t), t = 0.0, f = 0.001
a = 0.1, b = 0.1 (h=4.91E+00)
a = 0.1, b = 1.0 (h=5.45E-01)
a = 0.1, b = 10.0 (h=7.57E-02)
a = 1.0, b = 0.1 (h=1.64E+00)
a = 1.0, b = 1.0 (h=1.82E-01)
a = 1.0, b = 10.0 (h=2.02E-02)
a = 10.0, b = 0.1 (h=8.18E-01)
a = 10.0, b = 1.0 (h=9.09E-02)
a = 10.0, b = 10.0 (h=1.01E-02)

10 3 10 2 10 1 100 101

h

10 2

10 1

100

101

102

103

wo
rs

t c
as

e
re

la
tiv

e
er

ro
r

FD_4P, (t) = a sin(b t), t = 0.0, f = 0.001
a = 0.1, b = 0.1 (h=9.33E+00)
a = 0.1, b = 1.0 (h=9.79E-01)
a = 0.1, b = 10.0 (h=1.96E+00)
a = 1.0, b = 0.1 (h=2.76E+00)
a = 1.0, b = 1.0 (h=3.07E-01)
a = 1.0, b = 10.0 (h=6.62E-01)
a = 10.0, b = 0.1 (h=1.84E+00)
a = 10.0, b = 1.0 (h=2.05E-01)
a = 10.0, b = 10.0 (h=3.07E-01)

10 3 10 2 10 1 100 101

h

10 3

10 2

10 1

100

101

102

wo
rs

t c
as

e
re

la
tiv

e
er

ro
r

CD_4P, (t) = a sin(b t), t = 0.0, f = 0.001
a = 0.1, b = 0.1 (h=6.52E+00)
a = 0.1, b = 1.0 (h=6.11E-01)
a = 0.1, b = 10.0 (h=7.64E-02)
a = 1.0, b = 0.1 (h=4.08E+00)
a = 1.0, b = 1.0 (h=4.08E-01)
a = 1.0, b = 10.0 (h=3.82E-02)
a = 10.0, b = 0.1 (h=2.45E+00)
a = 10.0, b = 1.0 (h=2.55E-01)
a = 10.0, b = 10.0 (h=2.55E-02)

10 3 10 2 10 1 100 101 102

h

10 1

101

103

105

107

wo
rs

t c
as

e
re

la
tiv

e
er

ro
r

L2_CD, (t) = a cos(b t), t = 0.0, f = 0.001
a = 0.1, b = 0.1 (h=9.36E+00)
a = 0.1, b = 1.0 (h=9.36E-01)
a = 0.1, b = 10.0 (h=8.78E-02)
a = 1.0, b = 0.1 (h=3.74E+00)
a = 1.0, b = 1.0 (h=4.68E-01)
a = 1.0, b = 10.0 (h=4.39E-02)
a = 10.0, b = 0.1 (h=2.81E+00)
a = 10.0, b = 1.0 (h=2.34E-01)
a = 10.0, b = 10.0 (h=2.93E-02)

Figure B.2. Worst case relative error δS(h;φ, t, εf) against h on function
φ(t) = a · sin(b · t) for different a and b; the vertical dashed line represents
the h† output by Algorithm 3.2.

B.2.3. Difficult and Special Examples

Here, we present the full table of results for the examples listed in Section 3.4 in Table

B.8 with εf = 10−3. For reference, the considered problems are:

238

Table B.7. Detailed results for φ(t) = a·sin(b·t) with εf = 1E-3; r represents
the final testing ratio; h∗ is the h that minimizes δS(h;φ, t, εf) reported by
minimize scalar function in scipy.optimize and could be unreliable.

a b scheme h† h∗ r #iters #Evals relative error

0.10 0.10 L2 CD 9.36e+00 8.42e+00 4.39 8 23 5.97e-02
0.10 1.00 L2 CD 9.36e-01 8.42e-01 4.79 2 7 4.28e-02
0.10 10.00 L2 CD 8.78e-02 8.99e-01 3.28 5 15 5.32e-02
1.00 0.10 L2 CD 3.74e+00 4.70e+00 1.99 4 11 9.49e-03
1.00 1.00 L2 CD 4.68e-01 4.70e-01 2.57 1 5 2.13e-02
1.00 10.00 L2 CD 4.39e-02 4.70e-02 2.15 6 17 1.70e-02

10.00 0.10 L2 CD 2.81e+00 2.64e+00 3.59 5 15 7.63e-03
10.00 1.00 L2 CD 2.34e-01 2.64e-01 2.62 2 7 6.94e-04
10.00 10.00 L2 CD 2.93e-02 2.64e-02 5.02 5 13 3.94e-03

(1) φ(t) = (et − 1)
2
, at t = −8.

(2) φ(t) = e100t, at t = 0.01.

(3) φ(t) = t4 + 3t2 − 10t, at t = 0.99999.

(4) φ(t) = 10000t3 + 0.01t2 + 5t, at t = 10−9.

B.2.4. Comparison with Moré-Wild Heuristic

We compare our adaptive forward-difference procedure against the Moré-Wild heuristic

[71], as described in Section 3.2.1.

First, observe that if function φ has (near) central symmetry at t, then Moré-Wild

heuristic is very likely to fail. To demonstrate this, we test on φ(t) = sin(t) with various

value of t close to 0 and different noise levels εf . The results are summarized in Table B.9.

Next, we test our adaptive procedure and the Moré-Wild heuristic on φ(t) = a ·

(exp(b · t)− 1) at t = 0, with a fixed noise level: εf = 1E-3. We summarize our result in

Table B.10. Notice that Moré-Wild heuristic may not be able to find a suitable estimation

for h, in which case a failure is declared. In such cases, we will report the result as “−−”.

239

Table B.8. Detailed results for special examples, with εf = 1E-3; r represents
the final testing ratio; h∗ is the h that minimizes δS(h;φ, t, εf) reported by
minimize scalar function in scipy.optimize and could be unreliable.

φ(t) scheme h† h∗ r #iters #Evals relative error(
et − 1.0

)2
FD 1.01e+00 1.46e+00 4.49 3 5 1.02e+00(

et − 1.0
)2

CD 1.30e+00 1.53e+00 3.38 3 8 5.73e-02(
et − 1.0

)2
FD 3P 8.18e-01 3.82e+02 2.28 5 13 6.63e-01(

et − 1.0
)2

FD 4P 9.21e-01 3.82e+02 4.14 2 8 4.15e+00(
et − 1.0

)2
CD 4P 1.43e+00 3.82e+02 1.84 5 22 1.11e+00(

et − 1.0
)2

L2 CD 2.34e+00 8.68e+00 3.03 6 19 3.90e-01
e100t FD 4.32e-04 3.79e-04 3.72 7 11 2.74e-02
e100t CD 1.19e-03 1.03e-03 4.29 7 20 3.09e-03
e100t FD 3P 1.12e-03 3.82e+02 3.08 8 19 6.81e-03
e100t FD 4P 1.90e-03 3.82e+02 6.54 8 23 4.97e-03
e100t CD 4P 3.18e-03 3.82e+02 2.15 8 20 4.60e-04
e100t L2 CD 3.66e-03 3.64e-03 3.01 8 19 1.18e-02
t4 + 3t2 − 10t FD 1.58e-02 1.48e-02 3.55 2 4 7.97e+02
t4 + 3t2 − 10t CD 4.81e-02 5.00e-02 2.94 2 6 2.15e+01
t4 + 3t2 − 10t FD 3P 6.06e-02 6.16e-02 3.64 2 7 2.38e+02
t4 + 3t2 − 10t FD 4P 1.54e-01 1.39e-01 11.90 4 13 1.93e+02
t4 + 3t2 − 10t CD 4P 9.39e+02 4.87e+03 1.62 16 48 2.71e-03
t4 + 3t2 − 10t L2 CD 2.34e-01 2.11e-01 4.53 2 7 5.38e-03
10000t3 + 0.01t2 + 5t FD 3.95e-03 4.64e-03 4.36 3 5 5.46e-02
10000t3 + 0.01t2 + 5t CD 3.56e-03 3.68e-03 2.63 6 18 4.02e-02
10000t3 + 0.01t2 + 5t FD 3P 4.49e-03 4.64e-03 3.65 6 15 1.17e-02
10000t3 + 0.01t2 + 5t FD 4P 6.72e+02 3.20e+03 11.72 8 22 2.37e-06
10000t3 + 0.01t2 + 5t CD 4P 8.35e+02 1.03e+04 1.95 12 28 1.99e-07
10000t3 + 0.01t2 + 5t L2 CD 9.59e+02 2.84e+03 1.95 12 27 7.49e-08

We can see that when the Moré-Wild heuristic does not declare a failure, it usually

outputs an interval h that is quite close to our procedure and produces similar relative

error as ours. However, there are many cases where Moré-Wild heuristic fails, while our

procedure works very robustly in all cases.

B.2.5. Finite-Difference L-BFGS

We present the total number of function evaluations and final optimality gap φ(x)− φ∗

used by each method in Tables B.11–B.18.

240

Table B.9. Comparison between the Moré-Wild heuristic against our adap-
tive procedure on function φ(t) = sin(t) with various εf and t. We use “−−”
to report the cases where Moré-Wild heuristic fails. Subscript “MW” labels
the results corresponding to Moré-Wild heuristic, and subscript “ada” labels
the results corresponding to our adaptive procedure; δ is the relative error,
and δ is the worst-case relative error.

εf t hMW δMW δMW hada δada δada
1.00e-08 1.00e-08 −− −− −− 3.20e-03 0.000 0.000
1.00e-08 1.00e-06 −− −− −− 3.20e-03 0.000 0.000
1.00e-08 1.00e-04 1.68e-02 0.000 0.000 3.20e-03 0.000 0.000
1.00e-08 1.00e-02 1.68e-03 0.000 0.000 2.00e-03 0.000 0.000
1.00e-08 0.00e+00 −− −− −− 3.20e-03 0.000 0.000
1.00e-06 1.00e-08 −− −− −− 1.40e-02 0.000 0.000
1.00e-06 1.00e-06 −− −− −− 1.40e-02 0.000 0.000
1.00e-06 1.00e-04 −− −− −− 1.40e-02 0.000 0.000
1.00e-06 1.00e-02 1.69e-02 0.000 0.000 1.40e-02 0.000 0.000
1.00e-06 0.00e+00 −− −− −− 1.40e-02 0.000 0.000
1.00e-04 1.00e-08 −− −− −− 5.00e-02 0.001 0.004
1.00e-04 1.00e-06 −− −− −− 6.50e-02 0.003 0.004
1.00e-04 1.00e-04 −− −− −− 5.00e-02 0.001 0.004
1.00e-04 1.00e-02 −− −− −− 5.00e-02 0.001 0.005
1.00e-04 0.00e+00 −− −− −− 6.50e-02 0.000 0.004
1.00e-02 1.00e-08 −− −− −− 2.00e-01 0.058 0.107
1.00e-02 1.00e-06 5.20e-01 0.067 0.083 3.50e-01 0.018 0.077
1.00e-02 1.00e-04 −− −− −− 3.50e-01 0.019 0.077
1.00e-02 1.00e-02 −− −− −− 3.50e-01 0.029 0.079
1.00e-02 0.00e+00 6.10e-01 0.085 0.094 3.50e-01 0.032 0.077

In general, our adaptive procedure is more robust to different noise levels. Our method

only fails when the initial choice of h is not sufficiently small to initially identify the local

behavior of the function. This can be seen, for example, with the BOX2 example. On the

other hand, Moré and Wild’s heuristic frequently fails when the noise level is large (for

example, with εf = 10−1). This is due both to the case where φ(x) ≈ 0 and hence (3.2.11)

fails, as well as the case where two iterations are insufficient to find an h that satisfies

their conditions. In both cases, we denote a failure case with ∗. As expected, using a

fixed interval is always efficient, but may perform poorly when the Hessian in the function

changes, as described in Section 3.4.

241

Table B.10. Comparison between the Moré-Wild heuristic against our adap-
tive procedure on function φ(t) = a · (exp(b · t)− 1) with εf = 1E-3 at t = 0.
We use “−−” to report the cases where Moré-Wild heuristic fails. Subscript
“MW” labels the results corresponding to Moré-Wild heuristic, and subscript
“ada” labels the results corresponding to our adaptive procedure; δ is the
relative error, and δ is the worst-case relative error.

a b hMW δMW δMW hada δada δada
0.01 0.01 −− −− −− 4.05e+01 0.135 0.727
0.01 0.10 −− −− −− 4.05e+00 0.145 0.727
0.01 1.00 −− −− −− 4.43e-01 0.275 0.710
0.01 10.00 4.68e-02 0.177 0.702 3.95e-02 0.084 0.732
0.01 100.00 −− −− −− 3.95e-03 0.123 0.732
0.10 0.01 −− −− −− 1.62e+01 0.032 0.209
0.10 0.10 −− −− −− 1.77e+00 0.074 0.207
0.10 1.00 1.64e-01 0.072 0.209 1.58e-01 0.095 0.210
0.10 10.00 1.62e-02 0.096 0.209 1.58e-02 0.055 0.210
0.10 100.00 −− −− −− 1.73e-03 0.078 0.207
1.00 0.01 −− −− −− 7.08e+00 0.041 0.065
1.00 0.10 −− −− −− 6.32e-01 0.034 0.064
1.00 1.00 5.26e-02 0.029 0.065 6.32e-02 0.036 0.064
1.00 10.00 5.28e-03 0.012 0.065 6.92e-03 0.014 0.064
1.00 100.00 −− −− −− 6.18e-04 0.009 0.064

10.00 0.01 −− −− −− 2.53e+00 0.012 0.021
10.00 0.10 1.76e-01 0.011 0.020 2.53e-01 0.009 0.021
10.00 1.00 1.68e-02 0.006 0.020 1.58e-02 0.005 0.021
10.00 10.00 1.68e-03 0.002 0.020 2.47e-03 0.014 0.021
10.00 100.00 −− −− −− 2.47e-04 0.010 0.021

100.00 0.01 −− −− −− 6.32e-01 0.003 0.006
100.00 0.10 5.39e-02 0.002 0.006 6.32e-02 0.004 0.006
100.00 1.00 5.31e-03 0.001 0.006 6.92e-03 0.001 0.006
100.00 10.00 5.31e-04 0.000 0.006 6.18e-04 0.001 0.006
100.00 100.00 −− −− −− 6.18e-05 0.001 0.006

242

Table B.11. Total number of function evaluations used and final accuracy
achieved by forward-difference L-BFGS method with different choices of the
finite-difference interval.

Fixed Interval Moré-Wild Adaptive
Problem n εf #Evals φ(x)− φ∗ #Evals φ(x)− φ∗ #Evals φ(x)− φ∗
AIRCRFTB 5 1× 10−1 1373 7.651 1457 4.777× 10−1 559 4.950× 10−1

ALLINITU 4 1× 10−1 656 2.767 972 3.708× 10−1 686 1.003× 10−1

ARWHEAD 100 1× 10−1 2513 2.027× 10−1 8784 3.040× 10−1 2811 2.458× 10−1

BARD 3 1× 10−1 650 8.311× 10−1 602 7.581× 10−2 670 3.942× 10−1

BDQRTIC 100 1× 10−1 2601 6.278 9213 5.902 5246 4.438
BIGGS3 3 1× 10−1 650 1.195 726 1.348 674 1.545
BIGGS5 5 1× 10−1 662 1.294 1457 1.319 696 1.359
BIGGS6 6 1× 10−1 668 4.026× 10−1 853 5.483× 10−1 693 6.766× 10−1

BOX2 2 1× 10−1 644 4.345× 10−2 709 4.095× 10−2 1975 3.406∗

BOX3 3 1× 10−1 650 4.843× 10−2 1385 1.887× 10−1 676 7.527× 10−2

BRKMCC 2 1× 10−1 644 4.391× 10−2 709 5.850× 10−3 658 1.674× 10−1

BROWNAL 100 1× 10−1 2513 5.097× 10−2 10800 4.318× 10−2 3293 1.250× 10−2

BROWNDEN 4 1× 10−1 656 1.159× 10−1 1364 1.568× 10−1 1328 1.465× 10−1

CLIFF 2 1× 10−1 644 2.902× 102 861 1.180× 101 1593 3.385× 10−1

CRAGGLVY 100 1× 10−1 8011 1.850× 102 207136 5.048× 102∗ 11498 1.906× 101

CUBE 2 1× 10−1 644 4.352× 10−2 6340 4.227∗ 659 8.670× 10−2

DENSCHND 3 1× 10−1 650 2.254× 102 2062 2.627× 10−1 1018 9.226× 10−3

DENSCHNE 3 1× 10−1 650 1.151 2062 1.059 542 1.018
DIXMAANH 300 1× 10−1 3713 1.382× 101 22922 1.392× 101 7809 1.280× 101

DQRTIC 100 1× 10−1 2513 1.743× 102 26299 4.930 10912 4.944× 10−1

EDENSCH 36 1× 10−1 2129 1.674 4995 1.642 4624 3.352
EIGENALS 110 1× 10−1 2609 5.105× 101 63118 1.496× 101 11630 1.236× 101

EIGENBLS 110 1× 10−1 5103 6.717 8306 1.292× 101 5098 6.533
EIGENCLS 30 1× 10−1 1452 1.401 10899 1.218× 101 4088 1.907
ENGVAL1 100 1× 10−1 2295 7.316× 10−1 610646 2.114× 102∗ 4956 1.186
EXPFIT 2 1× 10−1 644 6.682× 10−1 31080 1.270× 102∗ 659 6.881× 10−2

FLETCBV3 100 1× 10−1 2549 1.785× 105 9488 1.785× 105 21950 8.454× 103

FLETCHBV 100 1× 10−1 40856 −1.175× 109 135927 1.154× 109 166981 5.696× 109

FREUROTH 100 1× 10−1 2295 7.097× 101 9658 5.756× 101 4008 5.912× 101

GENROSE 100 1× 10−1 4326 1.421× 102 36745 1.321× 102 5347 1.364× 102

GULF 3 1× 10−1 650 6.713 1385 6.820 670 6.664
HAIRY 2 1× 10−1 644 9.325× 101 1328 4.889× 102∗ 1008 7.985× 10−2

HELIX 3 1× 10−1 650 7.601 745 7.591 671 7.656
NCB20B 100 1× 10−1 2295 4.793× 10−1 5531 2.000× 10−1 5393 1.280× 10−1

NONDIA 100 1× 10−1 2513 5.546× 10−1 10800 4.717× 10−1 5076 3.770× 10−1

NONDQUAR 100 1× 10−1 2613 8.483× 10−1 33658 7.457 5707 3.571× 10−1

OSBORNEA 5 1× 10−1 662 1.748× 10−1 52825 1.142× 102∗ 2869 1.722× 10−1

OSBORNEB 11 1× 10−1 698 1.178 1014 3.021 769 1.851
PENALTY1 100 1× 10−1 8895 1.008× 102 20136 1.131 12532 1.268
PFIT1LS 3 1× 10−1 17316 1.346× 102 745 4.139 675 7.796
PFIT2LS 3 1× 10−1 20616 2.684× 102 1385 2.350× 101 1991 4.006
PFIT3LS 3 1× 10−1 20088 9.024× 102 2126 2.933 1988 2.171
PFIT4LS 3 1× 10−1 21702 2.771× 103 3839 2.704 1989 9.426
QUARTC 100 1× 10−1 2513 1.743× 102 26299 4.930 10912 4.944× 10−1

SINEVAL 2 1× 10−1 644 5.576 566 4.712 664 5.554
SINQUAD 100 1× 10−1 4326 1.254× 101 28209 3.331× 101 5281 9.760
SISSER 2 1× 10−1 644 3.393× 10−2 2026 1.611× 10−1 664 7.452× 10−3

SPARSQUR 100 1× 10−1 4326 1.365 506948 6.928× 101∗ 5592 1.209× 10−1

TOINTGSS 100 1× 10−1 2513 2.071× 101 8784 1.467× 101 4133 9.678
TQUARTIC 100 1× 10−1 2513 1.108 62958 3.128∗ 3391 7.331× 10−1

TRIDIA 100 1× 10−1 2513 8.478× 101 18300 1.691× 101 5677 3.935× 101

WATSON 31 1× 10−1 1881 7.753× 10−1 4702 1.993 2174 2.873
WOODS 100 1× 10−1 10414 8.618× 101 16987 2.907× 102 5255 5.533× 101

ZANGWIL2 2 1× 10−1 644 2.686× 10−2 1349 3.307× 10−2 657 3.852× 10−2

243

Table B.12. Total number of function evaluations used and final accuracy
achieved by forward-difference L-BFGS method with different choices of the
finite-difference interval.

Fixed Interval Moré-Wild Adaptive
Problem n εf #Evals φ(x)− φ∗ #Evals φ(x)− φ∗ #Evals φ(x)− φ∗
AIRCRFTB 5 1× 10−3 1008 3.772× 10−1 817 3.313× 10−1 560 3.286× 10−1

ALLINITU 4 1× 10−3 656 2.354× 10−3 563 1.858× 10−3 686 1.172× 10−3

ARWHEAD 100 1× 10−3 2513 4.510× 10−2 7331 4.407× 10−2 4951 4.160× 10−2

BARD 3 1× 10−3 650 2.093× 10−3 602 3.467× 10−3 538 3.273× 10−3

BDQRTIC 100 1× 10−3 6017 9.588× 10−2 8733 1.151× 10−1 8551 9.804× 10−2

BIGGS3 3 1× 10−3 650 8.010× 10−4 712 1.375× 10−2 672 2.297× 10−2

BIGGS5 5 1× 10−3 662 1.813× 10−1 1457 1.261× 10−1 680 1.453× 10−1

BIGGS6 6 1× 10−3 668 2.904× 10−1 853 2.907× 10−1 563 2.909× 10−1

BOX2 2 1× 10−3 644 1.964× 10−4 709 2.624× 10−6 661 1.882× 10−5

BOX3 3 1× 10−3 650 9.556× 10−4 726 4.567× 10−4 672 3.568× 10−4

BRKMCC 2 1× 10−3 644 3.552× 10−3 566 3.872× 10−3 661 8.029× 10−4

BROWNAL 100 1× 10−3 2513 6.869× 10−4 10800 4.648× 10−4 3293 1.670× 10−4

BROWNDEN 4 1× 10−3 656 1.183× 10−3 706 1.912× 10−3 1327 8.187× 10−4

CLIFF 2 1× 10−3 644 2.902× 102 28980 8.220× 10−1 1008 3.059× 10−4

CRAGGLVY 100 1× 10−3 7993 4.852 8619 1.046 7272 9.025× 10−1

CUBE 2 1× 10−3 644 4.201× 10−2 709 4.951× 10−2 659 4.381× 10−2

DENSCHND 3 1× 10−3 631 4.109 1385 1.170× 10−3 1018 9.852× 10−4

DENSCHNE 3 1× 10−3 650 9.994× 10−1 745 1.000 672 1.002
DIXMAANH 300 1× 10−3 7774 1.041 37580 7.456× 10−2 15794 9.375× 10−2

DQRTIC 100 1× 10−3 6609 4.832 21149 9.935× 10−3 11600 1.713× 10−2

EDENSCH 36 1× 10−3 1194 5.382× 10−2 6085 2.188× 10−2 3234 3.748× 10−2

EIGENALS 110 1× 10−3 4850 3.394× 10−1 22676 8.848× 10−2 8753 7.456× 10−2

EIGENBLS 110 1× 10−3 1932 2.084 21095 1.631 6825 1.740
EIGENCLS 30 1× 10−3 1875 7.554× 10−2 8449 7.032× 10−2 3187 8.686× 10−2

ENGVAL1 100 1× 10−3 2295 8.024× 10−2 9658 2.733× 10−2 4841 4.366× 10−2

EXPFIT 2 1× 10−3 644 6.733× 10−3 566 3.801× 10−4 663 3.592× 10−4

FLETCBV3 100 1× 10−3 2549 1.785× 105 9488 1.785× 105 29889 −1.181× 102

FLETCHBV 100 1× 10−3 33825 −7.812× 108 141125 6.878× 107 62282 −6.875× 108

FREUROTH 100 1× 10−3 4861 2.366× 10−1 9725 2.041× 10−2 8226 4.143× 10−2

GENROSE 100 1× 10−3 5779 1.109× 102 17379 1.108× 102 7561 1.110× 102

GULF 3 1× 10−3 650 6.626 599 6.622 672 6.622
HAIRY 2 1× 10−3 644 7.979× 10−3 566 7.030× 10−4 853 3.304× 10−3

HELIX 3 1× 10−3 650 4.079× 10−3 1091 2.495× 10−4 671 3.746× 10−4

NCB20B 100 1× 10−3 2295 1.400× 10−2 8984 5.856× 10−3 6650 4.462× 10−3

NONDIA 100 1× 10−3 2513 4.911× 10−1 13295 4.862× 10−1 8550 4.612× 10−1

NONDQUAR 100 1× 10−3 5534 9.503× 10−2 29253 1.247× 10−2 8653 3.602× 10−2

OSBORNEA 5 1× 10−3 662 1.525× 10−1 54694 2.093 553 1.567× 10−1

OSBORNEB 11 1× 10−3 555 3.697× 10−1 2314 3.170× 10−1 766 3.115× 10−1

PENALTY1 100 1× 10−3 4326 2.200× 101 14928 1.345× 10−3 12554 2.741× 10−4

PFIT1LS 3 1× 10−3 17244 7.787 2062 6.076× 10−2 1312 4.829× 10−2

PFIT2LS 3 1× 10−3 19169 1.147× 102 2062 5.424× 10−2 1310 8.222× 10−2

PFIT3LS 3 1× 10−3 21645 6.633× 102 2062 2.615× 10−2 1993 4.635× 10−2

PFIT4LS 3 1× 10−3 22928 2.305× 103 2631 2.308× 10−1 1992 2.053× 10−1

QUARTC 100 1× 10−3 6609 4.832 21149 9.935× 10−3 11600 1.713× 10−2

SINEVAL 2 1× 10−3 644 1.557 2026 2.780× 10−1 1299 1.695× 10−1

SINQUAD 100 1× 10−3 4326 3.852× 10−2 19928 1.067× 10−1 5543 7.637× 10−2

SISSER 2 1× 10−3 644 2.069× 10−3 566 1.051× 10−3 664 2.094× 10−4

SPARSQUR 100 1× 10−3 6609 3.112× 10−2 14021 8.064× 10−2 6625 3.022× 10−3

TOINTGSS 100 1× 10−3 2513 2.198× 10−1 5071 1.026× 10−1 3730 6.133× 10−2

TQUARTIC 100 1× 10−3 2513 7.227× 10−1 7529 7.241× 10−1 4090 7.220× 10−1

TRIDIA 100 1× 10−3 7921 3.607× 10−1 28195 3.539× 10−1 9887 4.283× 10−1

WATSON 31 1× 10−3 1881 1.862× 10−1 10162 2.201× 10−2 2919 1.754× 10−1

WOODS 100 1× 10−3 11923 7.268× 10−1 10536 6.643 5493 6.472
ZANGWIL2 2 1× 10−3 644 8.620× 10−4 566 8.797× 10−4 657 6.881× 10−4

244

Table B.13. Total number of function evaluations used and final accuracy
achieved by forward-difference L-BFGS method with different choices of the
finite-difference interval.

Fixed Interval Moré-Wild Adaptive
Problem n εf #Evals φ(x)− φ∗ #Evals φ(x)− φ∗ #Evals φ(x)− φ∗
AIRCRFTB 5 1× 10−5 662 3.023× 10−1 1880 2.674× 10−4 2014 4.084× 10−4

ALLINITU 4 1× 10−5 656 1.835× 10−5 706 1.146× 10−5 682 6.468× 10−6

ARWHEAD 100 1× 10−5 3832 1.827× 10−4 11900 3.262× 10−4 7570 5.117× 10−4

BARD 3 1× 10−5 650 1.894× 10−3 602 1.878× 10−3 674 1.903× 10−3

BDQRTIC 100 1× 10−5 10225 3.227× 10−3 14968 2.305× 10−4 9860 5.248× 10−4

BIGGS3 3 1× 10−5 631 2.826× 10−4 712 2.404× 10−4 670 1.581× 10−4

BIGGS5 5 1× 10−5 1008 2.170× 10−2 3911 1.064× 10−4 2030 9.355× 10−3

BIGGS6 6 1× 10−5 1014 1.863× 10−3 2170 9.419× 10−5 1348 4.434× 10−4

BOX2 2 1× 10−5 644 3.493× 10−6 1349 8.092× 10−6 658 2.480× 10−6

BOX3 3 1× 10−5 650 7.493× 10−6 726 4.612× 10−6 672 1.114× 10−5

BRKMCC 2 1× 10−5 644 3.927× 10−7 566 1.244× 10−5 661 3.079× 10−5

BROWNAL 100 1× 10−5 2513 1.963× 10−5 9567 1.629× 10−5 4851 1.487× 10−5

BROWNDEN 4 1× 10−5 656 3.971× 10−6 1145 1.268× 10−5 1324 1.062× 10−5

CLIFF 2 1× 10−5 644 2.902× 102 1349 2.275× 10−4 1008 2.238× 10−4

CRAGGLVY 100 1× 10−5 7993 8.012× 10−2 13711 8.641× 10−3 10935 1.884× 10−2

CUBE 2 1× 10−5 644 4.069× 10−2 709 1.148× 10−2 662 4.524× 10−3

DENSCHND 3 1× 10−5 996 1.720× 10−1 936 1.141× 10−5 1016 2.311× 10−5

DENSCHNE 3 1× 10−5 650 9.993× 10−1 563 9.993× 10−1 672 9.993× 10−1

DIXMAANH 300 1× 10−5 19344 1.035× 10−2 38056 5.615× 10−3 15708 8.080× 10−3

DQRTIC 100 1× 10−5 3486 2.687× 10−1 16434 1.667× 10−4 14109 1.864× 10−4

EDENSCH 36 1× 10−5 1194 4.513× 10−4 4840 5.362× 10−4 4624 7.831× 10−4

EIGENALS 110 1× 10−5 4921 1.929× 10−2 18980 1.337× 10−2 10030 1.353× 10−2

EIGENBLS 110 1× 10−5 3178 1.556 11368 1.553 46254 1.018× 10−2

EIGENCLS 30 1× 10−5 4370 5.560× 10−4 9380 8.302× 10−4 6373 5.415× 10−4

ENGVAL1 100 1× 10−5 2601 2.285× 10−4 8619 2.302× 10−4 7134 2.310× 10−4

EXPFIT 2 1× 10−5 644 4.595× 10−5 563 6.982× 10−6 666 6.814× 10−6

FLETCBV3 100 1× 10−5 4326 1.785× 105 44623 1.785× 105 100756 −1.304× 102

FLETCHBV 100 1× 10−5 113423 3.562× 109 315886 5.660× 107 213807 1.765× 109

FREUROTH 100 1× 10−5 4326 2.559× 10−3 10097 5.248× 10−4 7166 6.820× 10−4

GENROSE 100 1× 10−5 27714 8.446× 10−3 86415 5.674× 10−3 56271 1.067× 10−2

GULF 3 1× 10−5 650 6.596× 10−3 1091 2.275× 10−3 675 3.771× 10−3

HAIRY 2 1× 10−5 644 1.129× 10−4 1328 4.688× 10−6 1008 8.137× 10−6

HELIX 3 1× 10−5 650 7.422× 10−4 1385 8.376× 10−5 650 4.881× 10−5

NCB20B 100 1× 10−5 4790 4.231× 10−4 13270 3.565× 10−4 9691 3.061× 10−4

NONDIA 100 1× 10−5 4326 2.174× 10−4 21377 1.572× 10−2 8423 1.396× 10−2

NONDQUAR 100 1× 10−5 11923 9.225× 10−3 33549 1.510× 10−3 14104 1.836× 10−3

OSBORNEA 5 1× 10−5 853 7.139× 10−4 62478 5.603× 10−1 1334 1.215× 10−3

OSBORNEB 11 1× 10−5 1137 1.051× 10−1 4506 2.381× 10−3 2936 3.325× 10−3

PENALTY1 100 1× 10−5 4326 1.113× 10−1 20475 1.893× 10−4 12804 1.877× 10−4

PFIT1LS 3 1× 10−5 17338 1.609× 10−2 2062 2.921× 10−6 1312 2.320× 10−5

PFIT2LS 3 1× 10−5 18947 3.652× 10−2 2062 3.200× 10−3 1310 2.463× 10−3

PFIT3LS 3 1× 10−5 21038 2.034× 10−1 2062 2.364× 10−2 1999 2.822× 10−2

PFIT4LS 3 1× 10−5 22064 2.451× 10−1 2631 1.004× 10−1 1990 1.177× 10−1

QUARTC 100 1× 10−5 3486 2.687× 10−1 16434 1.667× 10−4 14109 1.864× 10−4

SINEVAL 2 1× 10−5 625 4.640× 10−3 2026 3.676× 10−3 1977 1.667× 10−4

SINQUAD 100 1× 10−5 2613 1.417× 10−3 11616 1.581× 10−4 5545 2.677× 10−4

SISSER 2 1× 10−5 644 7.894× 10−6 709 2.995× 10−7 658 3.218× 10−6

SPARSQUR 100 1× 10−5 8365 9.873× 10−4 14478 7.713× 10−5 8320 3.739× 10−5

TOINTGSS 100 1× 10−5 2513 2.193× 10−3 10274 6.054× 10−4 3729 1.167× 10−3

TQUARTIC 100 1× 10−5 4571 2.622× 10−1 9184 1.534× 10−1 10072 1.199× 10−1

TRIDIA 100 1× 10−5 9428 1.900× 10−3 45233 3.442× 10−3 19815 2.348× 10−3

WATSON 31 1× 10−5 3072 3.088× 10−3 14287 8.549× 10−3 6393 6.386× 10−3

WOODS 100 1× 10−5 7964 8.185× 10−3 25179 5.822× 10−3 13779 3.840× 10−3

ZANGWIL2 2 1× 10−5 644 8.737× 10−6 670 1.685× 10−5 657 7.597× 10−6

245

Table B.14. Total number of function evaluations used and final accuracy
achieved by forward-difference L-BFGS method with different choices of the
finite-difference interval.

Fixed Interval Moré-Wild Adaptive
Problem n εf #Evals φ(x)− φ∗ #Evals φ(x)− φ∗ #Evals φ(x)− φ∗
AIRCRFTB 5 1× 10−7 662 9.768× 10−5 2985 1.199× 10−5 1334 1.001× 10−5

ALLINITU 4 1× 10−7 656 2.172× 10−7 706 1.061× 10−7 543 7.839× 10−8

ARWHEAD 100 1× 10−7 4326 1.643× 10−6 11900 5.117× 10−7 5842 1.049× 10−6

BARD 3 1× 10−7 650 2.376× 10−5 706 7.175× 10−7 660 1.273× 10−7

BDQRTIC 100 1× 10−7 8011 1.802× 10−5 14968 5.277× 10−6 12535 4.346× 10−6

BIGGS3 3 1× 10−7 650 2.348× 10−7 726 3.990× 10−7 1018 1.386× 10−6

BIGGS5 5 1× 10−7 1008 6.378× 10−6 1614 1.637× 10−6 2869 3.891× 10−5

BIGGS6 6 1× 10−7 1014 −5.616× 10−3 2724 −5.595× 10−3 2023 −5.647× 10−3

BOX2 2 1× 10−7 644 1.726× 10−6 690 1.547× 10−7 658 1.865× 10−6

BOX3 3 1× 10−7 650 7.911× 10−7 602 6.639× 10−7 862 5.213× 10−7

BRKMCC 2 1× 10−7 644 2.465× 10−7 670 4.240× 10−7 661 9.632× 10−7

BROWNAL 100 1× 10−7 4326 2.571× 10−7 9567 1.334× 10−5 7259 5.981× 10−7

BROWNDEN 4 1× 10−7 656 3.507× 10−7 1145 1.214× 10−7 1324 1.468× 10−7

CLIFF 2 1× 10−7 644 2.902× 102 861 2.198× 10−4 1300 2.192× 10−4

CRAGGLVY 100 1× 10−7 4678 1.570× 10−2 18164 1.153× 10−4 14124 7.253× 10−5

CUBE 2 1× 10−7 990 1.798× 10−4 1349 1.188× 10−4 662 1.404× 10−4

DENSCHND 3 1× 10−7 650 3.918× 10−2 1385 3.805× 10−8 1311 1.209× 10−7

DENSCHNE 3 1× 10−7 650 9.993× 10−1 1091 1.427× 10−7 1015 8.898× 10−8

DIXMAANH 300 1× 10−7 62344 1.773× 10−4 63812 2.194× 10−5 37104 2.753× 10−5

DQRTIC 100 1× 10−7 4571 5.119× 10−3 20136 3.509× 10−7 17121 4.377× 10−6

EDENSCH 36 1× 10−7 2165 2.262× 10−6 3168 3.776× 10−6 4624 3.756× 10−6

EIGENALS 110 1× 10−7 23459 1.291× 10−3 132863 2.204× 10−4 43487 2.893× 10−4

EIGENBLS 110 1× 10−7 38955 1.169× 10−3 182840 9.604× 10−4 92870 9.672× 10−4

EIGENCLS 30 1× 10−7 3906 1.173× 10−5 12408 9.139× 10−6 6345 8.639× 10−6

ENGVAL1 100 1× 10−7 4326 1.734× 10−6 8997 3.737× 10−6 6527 2.550× 10−6

EXPFIT 2 1× 10−7 644 3.707× 10−7 709 5.737× 10−8 666 4.705× 10−8

FLETCBV3 100 1× 10−7 39622 4.451× 102 281142 1.666× 102 208557 −5.161× 101

FLETCHBV 100 1× 10−7 116172 −1.393× 109 311603 2.365× 109 212997 5.073× 109

FREUROTH 100 1× 10−7 4678 2.155× 10−5 10097 8.099× 10−6 7165 6.707× 10−6

GENROSE 100 1× 10−7 27731 1.016× 10−4 83521 6.277× 10−5 56975 8.924× 10−5

GULF 3 1× 10−7 650 4.478× 10−3 1163 3.909× 10−3 1992 1.893× 10−5

HAIRY 2 1× 10−7 644 1.478× 10−6 670 1.107× 10−7 1008 2.080× 10−7

HELIX 3 1× 10−7 650 7.990× 10−6 1091 1.355× 10−5 674 1.967× 10−6

NCB20B 100 1× 10−7 12717 2.174× 10−5 34691 2.432× 10−5 21290 2.303× 10−5

NONDIA 100 1× 10−7 5779 2.912× 10−6 24808 1.134× 10−5 5826 8.625× 10−4

NONDQUAR 100 1× 10−7 8438 1.256× 10−3 102555 1.348× 10−4 44583 1.199× 10−4

OSBORNEA 5 1× 10−7 662 8.747× 10−5 47678 1.721× 10−1 2014 2.290× 10−5

OSBORNEB 11 1× 10−7 2015 1.342× 10−5 4408 1.260× 10−5 3626 2.063× 10−5

PENALTY1 100 1× 10−7 4326 6.722× 10−4 15829 1.869× 10−4 13984 1.870× 10−4

PFIT1LS 3 1× 10−7 15490 5.585× 10−4 2062 1.259× 10−6 1021 7.981× 10−6

PFIT2LS 3 1× 10−7 18475 3.194× 10−2 2126 1.834× 10−3 1314 1.441× 10−3

PFIT3LS 3 1× 10−7 19911 4.062× 10−2 2062 2.782× 10−2 1989 3.161× 10−2

PFIT4LS 3 1× 10−7 22339 2.817× 10−1 2631 1.171× 10−1 2842 1.668× 10−1

QUARTC 100 1× 10−7 4571 5.119× 10−3 20136 3.509× 10−7 17121 4.377× 10−6

SINEVAL 2 1× 10−7 625 7.770× 10−4 2026 9.623× 10−7 1300 5.182× 10−4

SINQUAD 100 1× 10−7 3400 1.629× 10−5 11616 1.584× 10−6 5543 6.333× 10−6

SISSER 2 1× 10−7 644 2.687× 10−7 709 1.365× 10−9 661 6.235× 10−8

SPARSQUR 100 1× 10−7 4861 2.668× 10−5 26138 1.350× 10−7 12562 2.022× 10−7

TOINTGSS 100 1× 10−7 2513 2.192× 10−5 10651 6.014× 10−6 3729 1.168× 10−5

TQUARTIC 100 1× 10−7 8895 1.645× 10−2 14021 8.050× 10−4 10062 1.413× 10−3

TRIDIA 100 1× 10−7 10619 2.499× 10−5 47586 2.839× 10−5 21947 3.486× 10−5

WATSON 31 1× 10−7 4264 1.161× 10−3 13658 1.172× 10−3 4585 1.854× 10−3

WOODS 100 1× 10−7 6609 5.611× 10−5 25179 4.354× 10−5 10111 9.748× 10−5

ZANGWIL2 2 1× 10−7 644 8.738× 10−8 670 1.683× 10−7 657 7.832× 10−8

246

Table B.15. Total number of function evaluations used and final accuracy
achieved by central-difference L-BFGS method with different choices of the
finite-difference interval.

Fixed Interval Adaptive
Problem n εf #Evals φ(x)− φ∗ #Evals φ(x)− φ∗
AIRCRFTB 5 1× 10−1 602 4.455× 10−1 3074 4.451× 10−1

ALLINITU 4 1× 10−1 848 7.698× 10−1 1371 3.378× 10−3

ARWHEAD 100 1× 10−1 4001 4.137× 10−2 5021 5.157× 10−2

BARD 3 1× 10−1 669 2.616× 10−3 947 1.535× 10−2

BDQRTIC 100 1× 10−1 8594 2.047× 10−1 11555 1.918× 10−1

BIGGS3 3 1× 10−1 669 2.607× 10−1 1150 1.154× 10−2

BIGGS5 5 1× 10−1 693 8.829× 10−2 1125 3.740× 10−2

BIGGS6 6 1× 10−1 705 2.966× 10−1 1419 2.907× 10−1

BOX2 2 1× 10−1 657 1.013× 10−2 560 6.435× 10−3

BOX3 3 1× 10−1 669 4.700× 10−2 594 1.444× 10−3

BRKMCC 2 1× 10−1 657 4.767× 10−4 2418 1.983× 10−4

BROWNAL 100 1× 10−1 7175 1.321× 10−5 12140 1.331× 10−7

BROWNDEN 4 1× 10−1 681 4.778× 10−4 2247 1.814× 10−3

CLIFF 2 1× 10−1 657 2.902× 102 4819 2.413× 10−2

CRAGGLVY 100 1× 10−1 11144 2.765 23987 6.089× 10−1

CUBE 2 1× 10−1 657 4.421× 10−2 3101 4.462× 10−2

DENSCHND 3 1× 10−1 669 5.418× 10−3 2310 8.228× 10−3

DENSCHNE 3 1× 10−1 669 1.015 576 1.025
DIXMAANH 300 1× 10−1 32019 7.301× 10−1 41575 4.225× 10−2

DQRTIC 100 1× 10−1 10891 4.910× 10−1 28135 7.032× 10−4

EDENSCH 36 1× 10−1 4217 5.638× 10−2 6835 7.687× 10−2

EIGENALS 110 1× 10−1 7295 2.049 20145 1.099× 10−1

EIGENBLS 110 1× 10−1 12096 2.326 13672 1.801
EIGENCLS 30 1× 10−1 3161 6.304× 10−1 8124 3.930× 10−1

ENGVAL1 100 1× 10−1 6704 1.473× 10−1 11258 2.414× 10−1

EXPFIT 2 1× 10−1 7418 2.456× 101 5915 2.093× 10−2

FLETCBV3 100 1× 10−1 2546 1.785× 105 136921 −1.561× 102

FLETCHBV 100 1× 10−1 138282 6.330× 109 380580 −1.079× 109

FREUROTH 100 1× 10−1 6216 2.650× 10−1 14495 4.930× 10−2

GENROSE 100 1× 10−1 7084 1.116× 102 28786 1.117× 102

GULF 3 1× 10−1 669 6.621 2124 6.728
HAIRY 2 1× 10−1 657 1.261× 10−4 1483 6.896× 10−4

HELIX 3 1× 10−1 505 8.544× 102 4900 2.476× 101

NCB20B 100 1× 10−1 3028 2.230 12309 4.906× 10−2

NONDIA 100 1× 10−1 4782 4.941× 10−1 9226 4.929× 10−1

NONDQUAR 100 1× 10−1 7210 1.974× 10−1 14490 7.337× 10−2

OSBORNEA 5 1× 10−1 693 1.530× 10−1 2345 8.790× 10−1

OSBORNEB 11 1× 10−1 746 6.496× 10−1 3119 1.366
PENALTY1 100 1× 10−1 7210 3.404× 10−2 21785 1.847× 10−4

PFIT1LS 3 1× 10−1 17843 1.276× 101 3706 8.023× 10−1

PFIT2LS 3 1× 10−1 3466 1.453× 102 2827 5.360× 10−1

PFIT3LS 3 1× 10−1 26780 8.283× 102 3807 1.767× 10−1

PFIT4LS 3 1× 10−1 27602 2.416× 103 3727 3.979× 10−1

QUARTC 100 1× 10−1 10891 4.910× 10−1 28135 7.032× 10−4

SINEVAL 2 1× 10−1 501 5.547 3266 7.918
SINQUAD 100 1× 10−1 5279 2.818× 10−1 11289 3.892
SISSER 2 1× 10−1 657 9.267× 10−3 491 2.900× 10−5

SPARSQUR 100 1× 10−1 5345 6.181× 10−2 18495 1.016× 10−2

TOINTGSS 100 1× 10−1 5391 1.021× 10−2 8324 4.000× 10−9

TQUARTIC 100 1× 10−1 2605 8.336× 10−1 12297 7.326× 10−1

TRIDIA 100 1× 10−1 10830 1.695× 10−1 88893 5.839× 10−13

WATSON 31 1× 10−1 2880 2.177× 10−1 5954 1.693× 10−1

WOODS 100 1× 10−1 5279 6.439 21136 5.545
ZANGWIL2 2 1× 10−1 657 4.902× 10−4 1351 −9.999× 10−11

247

Table B.16. Total number of function evaluations used and final accuracy
achieved by central-difference L-BFGS method with different choices of the
finite-difference interval.

Fixed Interval Adaptive
Problem n εf #Evals φ(x)− φ∗ #Evals φ(x)− φ∗
AIRCRFTB 5 1× 10−3 594 4.451× 10−1 2306 4.451× 10−1

ALLINITU 4 1× 10−3 574 3.325× 10−3 1377 1.847× 10−5

ARWHEAD 100 1× 10−3 7175 5.590× 10−4 8379 6.125× 10−4

BARD 3 1× 10−3 669 1.905× 10−3 713 1.883× 10−3

BDQRTIC 100 1× 10−3 11220 3.667× 10−3 31078 4.314× 10−4

BIGGS3 3 1× 10−3 669 1.009× 10−3 1363 1.314× 10−4

BIGGS5 5 1× 10−3 1333 1.649× 10−2 1921 1.418× 10−2

BIGGS6 6 1× 10−3 705 5.181× 10−2 1844 −3.749× 10−3

BOX2 2 1× 10−3 657 1.287× 10−5 560 1.740× 10−4

BOX3 3 1× 10−3 669 3.555× 10−5 1351 5.017× 10−5

BRKMCC 2 1× 10−3 657 2.500× 10−6 556 3.658× 10−7

BROWNAL 100 1× 10−3 4782 8.022× 10−6 12030 2.446× 10−8

BROWNDEN 4 1× 10−3 681 2.721× 10−6 1525 1.803× 10−7

CLIFF 2 1× 10−3 657 2.902× 102 3590 2.497× 10−4

CRAGGLVY 100 1× 10−3 11976 1.745× 10−2 30115 2.086× 10−3

CUBE 2 1× 10−3 657 4.239× 10−2 2418 4.580× 10−2

DENSCHND 3 1× 10−3 669 4.714× 10−3 1969 6.472× 10−4

DENSCHNE 3 1× 10−3 669 9.993× 10−1 1002 9.994× 10−1

DIXMAANH 300 1× 10−3 28496 1.428× 10−2 48610 3.693× 10−3

DQRTIC 100 1× 10−3 11015 1.313× 10−2 25201 2.425× 10−5

EDENSCH 36 1× 10−3 2128 2.700× 10−4 4599 2.101× 10−4

EIGENALS 110 1× 10−3 8516 4.539× 10−2 27468 1.303× 10−2

EIGENBLS 110 1× 10−3 47792 3.108× 10−2 25441 1.551
EIGENCLS 30 1× 10−3 4087 2.953× 10−3 10419 1.545× 10−3

ENGVAL1 100 1× 10−3 7210 1.658× 10−4 14954 4.131× 10−4

EXPFIT 2 1× 10−3 9839 3.021 1013 2.602× 10−4

FLETCBV3 100 1× 10−3 2546 1.785× 105 198233 −1.561× 102

FLETCHBV 100 1× 10−3 107444 −1.473× 109 239215 3.847× 109

FREUROTH 100 1× 10−3 7175 4.683× 10−4 14972 1.047× 10−4

GENROSE 100 1× 10−3 54819 2.202× 10−3 124290 9.891× 10−4

GULF 3 1× 10−3 1309 2.995× 10−3 1782 4.249× 10−3

HAIRY 2 1× 10−3 418 5.279× 10−6 4113 1.608× 10−7

HELIX 3 1× 10−3 432 8.522× 102 2867 2.475× 101

NCB20B 100 1× 10−3 5918 1.353× 10−1 14781 1.608× 10−3

NONDIA 100 1× 10−3 6475 1.027× 10−2 10213 1.263× 10−2

NONDQUAR 100 1× 10−3 7084 1.973× 10−2 28713 3.712× 10−3

OSBORNEA 5 1× 10−3 1333 2.881× 10−3 2237 8.790× 10−1

OSBORNEB 11 1× 10−3 2082 2.869× 10−1 3565 7.271× 10−2

PENALTY1 100 1× 10−3 7210 1.928× 10−4 20312 1.917× 10−4

PFIT1LS 3 1× 10−3 24764 1.500× 101 2027 1.183× 10−3

PFIT2LS 3 1× 10−3 28415 1.973× 102 2030 4.006× 10−3

PFIT3LS 3 1× 10−3 31502 1.018× 103 3796 3.066× 10−2

PFIT4LS 3 1× 10−3 31607 3.352× 103 3891 9.033× 10−2

QUARTC 100 1× 10−3 11015 1.313× 10−2 25201 2.425× 10−5

SINEVAL 2 1× 10−3 588 5.327 3436 4.873× 10−5

SINQUAD 100 1× 10−3 5391 6.603× 10−4 14970 1.277× 10−4

SISSER 2 1× 10−3 657 9.026× 10−6 684 5.497× 10−5

SPARSQUR 100 1× 10−3 5542 2.341× 10−3 19979 2.489× 10−5

TOINTGSS 100 1× 10−3 2896 1.267× 10−5 9505 4.000× 10−9

TQUARTIC 100 1× 10−3 19220 2.492× 10−1 8491 7.221× 10−1

TRIDIA 100 1× 10−3 17514 3.205× 10−5 92231 4.283× 10−15

WATSON 31 1× 10−3 3173 2.462× 10−2 9834 2.186× 10−3

WOODS 100 1× 10−3 11220 3.320× 10−3 23074 6.287× 10−4

ZANGWIL2 2 1× 10−3 657 9.871× 10−7 598 −9.999× 10−11

248

Table B.17. Total number of function evaluations used and final accuracy
achieved by central-difference L-BFGS method with different choices of the
finite-difference interval.

Fixed Interval Adaptive
Problem n εf #Evals φ(x)− φ∗ #Evals φ(x)− φ∗
AIRCRFTB 5 1× 10−5 612 4.451× 10−1 2558 3.293× 10−1

ALLINITU 4 1× 10−5 681 7.277× 10−6 2035 7.767× 10−9

ARWHEAD 100 1× 10−5 7487 4.138× 10−6 7477 1.108× 10−6

BARD 3 1× 10−5 669 1.867× 10−3 1500 1.678× 10−7

BDQRTIC 100 1× 10−5 11220 1.539× 10−6 19106 4.834× 10−6

BIGGS3 3 1× 10−5 669 4.019× 10−6 1088 3.251× 10−7

BIGGS5 5 1× 10−5 1756 4.920× 10−5 3617 1.465× 10−5

BIGGS6 6 1× 10−5 2358 −5.228× 10−3 4142 −5.625× 10−3

BOX2 2 1× 10−5 657 2.137× 10−6 1327 1.773× 10−6

BOX3 3 1× 10−5 669 6.746× 10−7 1349 7.643× 10−7

BRKMCC 2 1× 10−5 437 5.850× 10−10 558 1.300× 10−9

BROWNAL 100 1× 10−5 3508 1.384× 10−7 19759 1.759× 10−16

BROWNDEN 4 1× 10−5 681 7.291× 10−9 2060 −1.455× 10−11

CLIFF 2 1× 10−5 657 2.902× 102 4442 2.272× 10−4

CRAGGLVY 100 1× 10−5 17145 3.635× 10−5 32645 5.568× 10−6

CUBE 2 1× 10−5 657 2.696× 10−7 2510 3.013× 10−6

DENSCHND 3 1× 10−5 1015 3.165× 10−4 1878 2.382× 10−6

DENSCHNE 3 1× 10−5 669 9.993× 10−1 1073 7.559× 10−8

DIXMAANH 300 1× 10−5 45747 8.540× 10−5 235332 1.565× 10−10

DQRTIC 100 1× 10−5 13738 1.501× 10−4 28793 1.977× 10−6

EDENSCH 36 1× 10−5 2382 3.038× 10−7 6843 3.233× 10−7

EIGENALS 110 1× 10−5 27694 1.556× 10−3 93131 2.888× 10−4

EIGENBLS 110 1× 10−5 86034 9.991× 10−4 167257 1.114× 10−3

EIGENCLS 30 1× 10−5 5297 3.243× 10−5 15418 5.660× 10−6

ENGVAL1 100 1× 10−5 5244 1.653× 10−6 12432 7.819× 10−7

EXPFIT 2 1× 10−5 2953 1.015× 10−2 1097 3.382× 10−7

FLETCBV3 100 1× 10−5 61879 −7.404× 101 405665 −1.561× 102

FLETCHBV 100 1× 10−5 69727 1.786× 109 168055 −3.029× 108

FREUROTH 100 1× 10−5 6618 1.671× 10−6 17360 1.873× 10−7

GENROSE 100 1× 10−5 53552 5.526× 10−6 119843 3.104× 10−6

GULF 3 1× 10−5 669 4.155× 10−3 2094 1.869× 10−6

HAIRY 2 1× 10−5 657 3.882× 10−9 2015 2.389× 10−11

HELIX 3 1× 10−5 445 8.521× 102 5026 2.475× 101

NCB20B 100 1× 10−5 14030 1.578× 10−3 37332 7.086× 10−5

NONDIA 100 1× 10−5 7210 1.054× 10−5 13740 1.839× 10−5

NONDQUAR 100 1× 10−5 18545 9.490× 10−4 55137 2.686× 10−4

OSBORNEA 5 1× 10−5 693 9.012× 10−4 2295 8.790× 10−1

OSBORNEB 11 1× 10−5 3861 4.164× 10−4 5596 2.698× 10−5

PENALTY1 100 1× 10−5 9496 1.868× 10−4 22443 1.875× 10−4

PFIT1LS 3 1× 10−5 26200 5.375 2883 8.388× 10−6

PFIT2LS 3 1× 10−5 29030 1.010× 102 2008 2.499× 10−3

PFIT3LS 3 1× 10−5 30940 6.034× 102 2339 4.427× 10−2

PFIT4LS 3 1× 10−5 31645 2.140× 103 6937 7.936× 10−2

QUARTC 100 1× 10−5 13738 1.501× 10−4 28793 1.977× 10−6

SINEVAL 2 1× 10−5 18967 3.956 3089 2.075× 10−7

SINQUAD 100 1× 10−5 5127 1.373× 10−6 16276 4.398× 10−7

SISSER 2 1× 10−5 657 3.088× 10−7 1337 5.212× 10−11

SPARSQUR 100 1× 10−5 7464 2.220× 10−5 19032 5.543× 10−6

TOINTGSS 100 1× 10−5 8221 2.253× 10−8 8385 4.000× 10−9

TQUARTIC 100 1× 10−5 12669 8.689× 10−4 15299 3.231× 10−4

TRIDIA 100 1× 10−5 20802 5.305× 10−7 107193 1.824× 10−17

WATSON 31 1× 10−5 7718 1.087× 10−3 16253 1.209× 10−3

WOODS 100 1× 10−5 9234 2.150× 10−5 24007 3.869× 10−6

ZANGWIL2 2 1× 10−5 657 2.019× 10−9 1347 −1.000× 10−10

249

Table B.18. Total number of function evaluations used and final accuracy
achieved by central-difference L-BFGS method with different choices of the
finite-difference interval.

Fixed Interval Adaptive
Problem n εf #Evals φ(x)− φ∗ #Evals φ(x)− φ∗
AIRCRFTB 5 1× 10−7 1585 6.912× 10−12 2929 2.059× 10−22

ALLINITU 4 1× 10−7 463 1.644× 10−8 1493 3.211× 10−10

ARWHEAD 100 1× 10−7 5391 1.192× 10−8 8298 2.636× 10−9

BARD 3 1× 10−7 669 2.756× 10−9 1357 4.989× 10−9

BDQRTIC 100 1× 10−7 11220 1.885× 10−8 27324 6.486× 10−9

BIGGS3 3 1× 10−7 669 1.115× 10−8 1357 5.031× 10−10

BIGGS5 5 1× 10−7 1530 2.281× 10−8 3911 4.135× 10−9

BIGGS6 6 1× 10−7 2022 −5.642× 10−3 5582 −5.649× 10−3

BOX2 2 1× 10−7 657 3.579× 10−9 678 1.419× 10−9

BOX3 3 1× 10−7 669 6.337× 10−7 1092 6.848× 10−10

BRKMCC 2 1× 10−7 657 2.043× 10−10 680 2.005× 10−10

BROWNAL 100 1× 10−7 3799 2.783× 10−8 24944 6.904× 10−19

BROWNDEN 4 1× 10−7 681 −3.638× 10−10 1695 −3.929× 10−10

CLIFF 2 1× 10−7 657 5.621× 10−1 10094 2.902× 102

CRAGGLVY 100 1× 10−7 18747 5.581× 10−7 39527 3.028× 10−8

CUBE 2 1× 10−7 657 1.452× 10−7 1905 7.199× 10−9

DENSCHND 3 1× 10−7 1309 1.440× 10−5 2057 8.977× 10−8

DENSCHNE 3 1× 10−7 669 3.754× 10−11 2034 2.051× 10−10

DIXMAANH 300 1× 10−7 52791 4.060× 10−7 394134 0.000
DQRTIC 100 1× 10−7 14367 2.836× 10−6 29677 2.399× 10−9

EDENSCH 36 1× 10−7 2434 1.106× 10−9 6835 8.345× 10−10

EIGENALS 110 1× 10−7 86646 7.971× 10−6 194737 2.282× 10−6

EIGENBLS 110 1× 10−7 194875 1.129× 10−6 257660 9.239× 10−4

EIGENCLS 30 1× 10−7 7754 1.060× 10−7 17966 7.350× 10−8

ENGVAL1 100 1× 10−7 7210 5.117× 10−9 13746 7.956× 10−9

EXPFIT 2 1× 10−7 3032 6.553× 10−5 1341 8.708× 10−10

FLETCBV3 100 1× 10−7 101241 −2.737× 101 693140 −8.437× 101

FLETCHBV 100 1× 10−7 106670 1.635× 109 410157 −1.297× 109

FREUROTH 100 1× 10−7 6382 −3.050× 10−9 14775 −5.215× 10−9

GENROSE 100 1× 10−7 53767 2.215× 10−8 118006 2.538× 10−8

GULF 3 1× 10−7 1504 3.522× 10−7 2098 5.298× 10−8

HAIRY 2 1× 10−7 657 1.723× 10−12 1511 0.000
HELIX 3 1× 10−7 413 8.521× 102 2825 5.755× 10−13

NCB20B 100 1× 10−7 31569 2.837× 10−5 73674 1.549× 10−5

NONDIA 100 1× 10−7 6618 6.417× 10−8 14890 6.216× 10−8

NONDQUAR 100 1× 10−7 77500 5.554× 10−5 239505 1.867× 10−5

OSBORNEA 5 1× 10−7 1333 2.245× 10−5 2162 1.562× 10−1

OSBORNEB 11 1× 10−7 2933 1.612× 10−8 6229 6.560× 10−9

PENALTY1 100 1× 10−7 8565 1.868× 10−4 76226 2.507× 10−6

PFIT1LS 3 1× 10−7 26224 4.862× 10−4 4269 2.294× 10−5

PFIT2LS 3 1× 10−7 28717 1.295× 10−2 14332 2.756× 10−5

PFIT3LS 3 1× 10−7 28777 5.848× 10−2 22899 1.676× 10−5

PFIT4LS 3 1× 10−7 29320 2.991× 10−1 25011 1.775× 10−5

QUARTC 100 1× 10−7 14367 2.836× 10−6 29677 2.399× 10−9

SINEVAL 2 1× 10−7 1722 1.177× 10−11 1879 1.601× 10−10

SINQUAD 100 1× 10−7 5544 5.534× 10−9 16166 3.215× 10−9

SISSER 2 1× 10−7 657 2.663× 10−8 703 6.479× 10−9

SPARSQUR 100 1× 10−7 10891 3.396× 10−7 24709 2.323× 10−9

TOINTGSS 100 1× 10−7 4087 4.042× 10−9 6671 4.000× 10−9

TQUARTIC 100 1× 10−7 9496 3.400× 10−7 19028 3.207× 10−7

TRIDIA 100 1× 10−7 30055 2.966× 10−10 114846 1.242× 10−19

WATSON 31 1× 10−7 8296 1.016× 10−4 21230 1.002× 10−4

WOODS 100 1× 10−7 8594 5.693× 10−7 20454 7.795× 10−8

ZANGWIL2 2 1× 10−7 657 −9.543× 10−11 1345 −1.000× 10−10

250

APPENDIX C

A Feasible Nonlinear Programming Approach for Constrained

Derivative-Free Optimization

251
C.1. Numerical Results for Feasible Initial Points

FIBO knitro
Problem n m #iter #feval time f feas err #iter(sub) #ceval time(sub) #iter #feval time f feas err
HS13 2 1 3 5 0.29 1.000 1.309× 10−14 136 191 0.28 20 104 0.09 9.983× 10−1 6.579× 10−10

HS22 2 2 2 4 0.04 1.000 0.000 10 25 0.03 1 8 0.01 1.000 0.000
HS23 2 5 4 6 0.04 2.000 0.000 12 16 0.03 6 28 0.03 2.000 0.000
HS26 3 1 53 56 12.96 7.103× 10−10 2.220× 10−16 5245 39137 12.85 34 244 0.1 7.434× 10−12 6.661× 10−16

HS32 3 2 4 7 0.04 1.000 0.000 10 16 0.03 2 15 0.01 1.000 0.000
HS34 3 2 6 9 0.1 −8.340× 10−1 1.776× 10−15 32 70 0.08 7 44 0.02 −8.340× 10−1 0.000
HS40 4 3 22 26 0.36 −2.500× 10−1 1.110× 10−16 56 225 0.26 5 44 0.01 −2.500× 10−1 1.110× 10−16

HS44 4 6 3 8 0.04 −1.000(*) 0.000 12 23 0.03 5 36 0.03 −1.500× 101 0.000
HS47 5 3 23 28 3.67 1.989× 10−7 3.781× 10−11 1391 7878 3.47 72 696 0.41 1.007× 101 6.661× 10−16

HS50 5 3 19 24 1.17 1.056 2.398× 10−14 126 423 1.1 16 121 0.04 7.669× 10−17 4.441× 10−16

HS64 3 1 43 46 1.04 6.300× 103 0.000 300 662 0.95 12 65 0.04 6.300× 103 0.000
HS66 3 2 2 6 0.03 5.182× 10−1(*) 3.563× 10−12 7 12 0.02 7 43 0.03 5.182× 10−1 0.000
HS67 3 14 45 49 1.7 −1.162× 103(*) 0.000 472 1408 1.59 14 75 0.03 −1.162× 103 0.000
HS72 4 2 7 11 0.26 7.277× 102 2.819× 10−18 44 99 0.21 8 55 0.03 7.277× 102 4.337× 10−19

HS75 4 5 16 20 0.49 5.174× 103 5.684× 10−14 97 180 0.43 6 43 0.04 5.174× 103 8.527× 10−14

HS85 5 21 31 36 1.46 −2.216 0.000 357 903 1.31 11 85 0.06 −2.216 1.421× 10−14

HS87 6 4 9 15 0.74 8.997× 103 2.274× 10−13 80 287 0.71 14 223 0.07 8.997× 103 2.416× 10−13

HS88 2 1 5 7 0.4 1.363 0.000 92 318 0.39 27 156 0.08 1.363 2.893× 10−17

HS89 3 1 10 13 1.42 1.363 0.000 246 889 1.39 5 35 0.04 7.283× 10−8(†) 1.332× 10−1

HS90 4 1 12 16 4.22 1.363 0.000 738 3531 4.18 33 285 0.15 1.363 6.600× 10−18

HS93 6 2 42 48 2.9 1.351× 102 4.800× 10−12 517 2433 2.61 26 295 0.13 1.351× 102 0.000
HS98 6 4 3 10 0.05 3.136(*) 1.776× 10−15 5 8 0.02 4 40 0.02 3.136 1.776× 10−15

HS100 7 4 106 113 29.46 6.806× 102 0.000 3280 22448 28.72 51 587 0.21 6.806× 102 7.161× 10−15

HS101 7 5 103 110 19.42 1.810× 103 3.955× 10−16 2616 15697 18.39 35 354 0.19 1.810× 103 0.000
HS102 7 5 103 110 15.11 9.119× 102 3.816× 10−16 1985 10240 13.86 21 254 0.13 9.119× 102 2.498× 10−16

HS103 7 5 56 63 5.5 5.437× 102 1.318× 10−16 825 4072 4.59 20 238 0.1 5.437× 102 2.359× 10−16

HS104 8 5 245 253 43.5 3.951 9.714× 10−17 6813 37268 41.25 30 359 0.1 3.951 2.082× 10−16

LOADBAL 31 31 1 15499 0.93 1.547(***) 1.798× 10308 0 1 0.0 40 1380 0.21 4.529× 10−1 2.665× 10−15

OPTPRLOC 30 30 9 39 1.0 −1.642× 101 1.990× 10−13 54 127 0.45 16 583 0.13 −1.642× 101 1.421× 10−13

CB3 3 3 1 4 0.01 2.000 0.000 2 3 0.0 2 15 0.01 2.000 0.000
CRESC50 6 100 1000 1006 215.01 5.939× 10−1(**) 5.482× 10−13 26160 96691 210.07 438 5787 1.76 5.946× 10−1 1.188× 10−14

DEMBO7 16 20 19 35 2.37 1.748× 102 4.073× 10−15 302 795 2.07 17 354 0.16 1.749× 102 6.661× 10−16

DNIEPER 57 24 24 81 7.72 1.874× 104 5.684× 10−14 273 1094 3.25 8 534 0.11 1.874× 104 5.684× 10−14

EXPFITA 5 22 1 10999 0.6 2.999× 101(***) 1.798× 10308 0 1 0.0 19 140 0.05 1.137× 10−3 1.421× 10−14

HIMMELBI 100 12 114 215 72.23 −1.467× 103(*) 1.789× 10−9 2618 12586 67.95 72 7487 0.72 −1.736× 103 1.066× 10−14

SYNTHES1 6 6 1 2999 0.21 1.000× 101(***) 1.798× 10308 0 1 0.0 9 81 0.03 7.593× 10−1 1.110× 10−16

TWOBARS 2 2 7 9 0.1 1.509 0.000 24 108 0.09 9 57 0.03 1.509 4.441× 10−16

DIPIGRI 7 4 116 123 85.85 6.806× 102 3.581× 10−11 7461 26264 84.59 48 581 0.18 6.806× 102 0.000

Table C.1. Noiseless Problems with Feasible x0; n: number of variables, m: number of constraints,
#iter: number of (outer) iterations, #feval: number of function evaluations, time: total CPU time
passed, f : final objective value, feas err: final feasibility error, #iter(sub): total number of iterations
for solving TR subproblem, #ceval: total number of constraint evaluations(note that the number of
constraint evaluations and function evaluations are same for KNITRO), time(sub): total CPU time
elapsed for solving subproblem. * indicates that FIBO terminates with singular interpolation system
error, ** indicates that FIBO terminates with maximum number of iterations, *** indicates that
FIBO terminates with maximum number of function evaluations.

252
FIBO knitro

Problem n m #iter #feval time f feas err #iter(sub) #ceval time(sub) #iter #feval time f feas err
HS13 2 1 2 4 0.2 1.000 1.310× 10−14 75 104 0.19 8 36 0.02 1.080 0.000
HS22 2 2 1 3 0.03 1.000 1.789× 10−12 9 23 0.02 0 3 0.0 1.000 1.843× 10−14

HS23 2 5 3 5 0.05 2.000 0.000 11 14 0.03 3 16 0.01 2.040 0.000
HS26 3 1 4 7 0.09 1.996× 10−2 9.592× 10−14 32 66 0.07 14 87 0.04 4.252× 10−7 9.633× 10−7

HS32 3 2 4 7 0.09 1.000 0.000 10 16 0.04 2 15 0.02 1.000 0.000
HS34 3 2 5 8 0.09 −7.820× 10−1 1.066× 10−14 31 68 0.08 4 29 0.02 −8.266× 10−1 0.000
HS40 4 3 1 5 0.02 −2.454× 10−1 2.554× 10−15 5 15 0.01 0 4 0.0 −2.454× 10−1 7.334× 10−9

HS44 4 6 3 8 0.09 −1.000(*) 0.000 12 23 0.07 4 30 0.02 −1.500× 101 0.000
HS47 5 3 6 11 0.14 5.639× 10−2 1.466× 10−12 46 118 0.12 17 134 0.04 4.638× 10−8 3.167× 10−9

HS50 5 3 19 24 1.26 1.056 2.398× 10−14 126 423 1.19 9 71 0.03 4.941× 10−2 4.441× 10−16

HS64 3 1 1 4 0.05 6.813× 103 4.742× 10−11 14 72 0.05 0 3 0.0 6.813× 103 0.000
HS66 3 2 1 4 0.02 5.800× 10−1 3.563× 10−12 6 10 0.01 0 3 0.0 5.800× 10−1 0.000
HS67 3 14 31 34 1.91 −1.053× 103 0.000 402 1319 1.82 8 45 0.02 −1.157× 103 0.000
HS72 4 2 1 5 0.01 7.407× 102 0.000 2 5 0.01 0 4 0.0 7.407× 102 0.000
HS75 4 5 1 5 0.02 5.350× 103 1.259× 10−8 4 8 0.01 5 37 0.03 5.174× 103 7.739× 10−8

HS85 5 21 29 34 1.22 −2.061 1.421× 10−14 348 880 1.04 10 78 0.05 −2.216 2.389× 10−8

HS87 6 4 1 7 0.07 8.997× 103 2.274× 10−13 9 24 0.06 0 5 0.0 8.997× 103 2.956× 10−12

HS88 2 1 1 3 0.07 1.385 2.158× 10−14 19 41 0.07 0 3 0.0 1.385 0.000
HS89 3 1 2 5 0.29 1.365 1.123× 10−16 57 205 0.28 5 35 0.03 7.283× 10−8(†) 1.332× 10−1

HS90 4 1 2 6 0.53 1.446 6.661× 10−16 86 454 0.52 24 228 0.11 1.362 5.472× 10−7

HS93 6 2 1 7 0.11 1.371× 102 2.946× 10−11 10 24 0.11 0 5 0.0 1.371× 102 0.000
HS98 6 4 2 8 0.03 3.136 0.000 4 6 0.02 3 32 0.02 3.136 0.000
HS100 7 4 1 8 0.12 7.140× 102 0.000 22 79 0.12 0 5 0.0 7.140× 102 0.000
HS101 7 5 26 33 5.24 1.982× 103 3.053× 10−16 740 4383 5.04 9 106 0.04 1.848× 103 0.000
HS102 7 5 34 41 4.55 9.948× 102 2.776× 10−17 641 3320 4.29 11 159 0.05 9.191× 102 0.000
HS103 7 5 15 22 1.69 5.623× 102 8.913× 10−12 276 1263 1.63 16 202 0.06 5.437× 102 1.040× 10−7

HS104 8 5 1 9 0.11 4.200 1.459× 10−11 14 41 0.11 0 6 0.0 4.200 0.000
LOADBAL 31 31 1 15499 0.97 1.547(***) 1.798× 10308 0 1 0.0 6 231 0.04 5.252× 10−1 1.710× 10−14

OPTPRLOC 30 30 5 35 0.46 −1.567× 101 2.220× 10−16 44 104 0.4 2 103 0.04 −1.587× 101 6.661× 10−16

CB3 3 3 1 4 0.01 2.000 0.000 2 3 0.01 1 10 0.01 2.000 7.270× 10−13

CRESC50 6 100 16 22 2.44 6.057× 10−1 9.032× 10−11 344 1528 2.38 58 700 0.32 6.155× 10−1 0.000
DEMBO7 16 20 13 29 1.39 1.879× 102 5.917× 10−8 198 507 1.19 15 318 0.1 1.749× 102 1.869× 10−13

DNIEPER 57 24 4 61 1.82 1.941× 104 4.264× 10−11 96 457 1.35 2 177 0.03 1.874× 104 1.800× 10−7

EXPFITA 5 22 1 10999 0.61 2.999× 101(***) 1.798× 10308 0 1 0.0 7 56 0.02 9.889× 10−2 1.354× 10−14

HIMMELBI 100 12 114 215 70.47 −1.467× 103(*) 1.789× 10−9 2618 12586 68.05 3 408 0.09 −1.643× 103 0.000
SYNTHES1 6 6 1 2999 0.22 1.000× 101(***) 1.798× 10308 0 1 0.0 7 65 0.02 7.593× 10−1 3.261× 10−7

TWOBARS 2 2 2 4 0.05 1.523 7.885× 10−9 13 38 0.04 7 49 0.05 1.509 2.179× 10−9

DIPIGRI 7 4 1 8 0.14 7.140× 102 0.000 22 79 0.13 0 5 0.0 7.140× 102 0.000

Table C.2. Noiseless Problems with Feasible x0. τ = 10−1; n: number of variables, m: number of
constraints, #iter: number of (outer) iterations, #feval: number of function evaluations, time: total
CPU time passed, f : final objective value, feas err: final feasibility error, #iter(sub): total number
of iterations for solving TR subproblem, #ceval: total number of constraint evaluations(note that
the number of constraint evaluations and function evaluations are same for KNITRO), time(sub):
total CPU time elapsed for solving subproblem. * indicates that FIBO terminates with singular
interpolation system error, ** indicates that FIBO terminates with maximum number of iterations,
*** indicates that FIBO terminates with maximum number of function evaluations.

253
FIBO knitro

Problem n m #iter #feval time f feas err #iter(sub) #ceval time(sub) #iter #feval time f feas err
HS13 2 1 2 4 0.18 1.000 1.310× 10−14 75 104 0.17 18 88 0.08 1.001 0.000
HS22 2 2 1 3 0.03 1.000 1.789× 10−12 9 23 0.02 0 3 0.0 1.000 1.843× 10−14

HS23 2 5 3 5 0.04 2.000 0.000 11 14 0.03 4 20 0.02 2.000 0.000
HS26 3 1 36 39 1.85 1.737× 10−4 1.040× 10−12 754 4338 1.77 14 87 0.03 4.252× 10−7 9.633× 10−7

HS32 3 2 4 7 0.05 1.000 0.000 10 16 0.03 2 15 0.02 1.000 0.000
HS34 3 2 6 9 0.11 −8.340× 10−1 1.776× 10−15 32 70 0.08 6 39 0.01 −8.340× 10−1 5.446× 10−9

HS40 4 3 2 6 0.03 −2.491× 10−1 2.189× 10−9 8 21 0.02 3 32 0.02 −2.500× 10−1 2.040× 10−9

HS44 4 6 3 8 0.05 −1.000(*) 0.000 12 23 0.03 4 30 0.03 −1.500× 101 0.000
HS47 5 3 23 28 3.41 1.989× 10−7 3.781× 10−11 1391 7878 3.33 72 696 0.35 1.007× 101 6.661× 10−16

HS50 5 3 19 24 1.02 1.056 2.398× 10−14 126 423 0.96 11 85 0.03 1.339× 10−6 8.882× 10−16

HS64 3 1 13 16 0.46 6.303× 103 1.443× 10−15 126 399 0.44 7 40 0.02 6.300× 103 7.051× 10−10

HS66 3 2 2 5 0.02 5.182× 10−1 3.563× 10−12 7 12 0.02 3 21 0.02 5.186× 10−1 0.000
HS67 3 14 38 41 1.51 −1.162× 103 0.000 448 1377 1.42 9 50 0.02 −1.161× 103 0.000
HS72 4 2 5 9 0.17 7.284× 102 0.000 38 90 0.16 3 24 0.02 7.277× 102 1.663× 10−7

HS75 4 5 16 20 0.32 5.174× 103 5.684× 10−14 97 180 0.28 5 37 0.04 5.174× 103 7.739× 10−8

HS85 5 21 31 36 0.95 −2.216 0.000 357 903 0.87 10 78 0.05 −2.216 2.389× 10−8

HS87 6 4 1 7 0.07 8.997× 103 2.274× 10−13 9 24 0.06 0 5 0.0 8.997× 103 2.956× 10−12

HS88 2 1 2 4 0.2 1.363 9.216× 10−16 41 139 0.19 23 140 0.06 1.362 4.623× 10−7

HS89 3 1 4 7 0.49 1.363 3.663× 10−16 101 374 0.48 5 35 0.04 7.283× 10−8(†) 1.332× 10−1

HS90 4 1 6 10 1.54 1.363 5.260× 10−17 277 1541 1.52 24 228 0.14 1.362 5.472× 10−7

HS93 6 2 21 27 1.5 1.352× 102 4.695× 10−11 333 1706 1.43 8 87 0.04 1.351× 102 0.000
HS98 6 4 2 8 0.04 3.136 0.000 4 6 0.01 3 32 0.02 3.136 0.000
HS100 7 4 51 58 15.18 6.813× 102 1.388× 10−17 1609 11182 15.01 3 55 0.02 6.811× 102 0.000
HS101 7 5 44 51 7.81 1.812× 103 3.006× 10−10 1239 7244 7.65 18 198 0.1 1.810× 103 2.139× 10−8

HS102 7 5 69 76 10.13 9.125× 102 4.272× 10−13 1483 7663 9.89 15 200 0.06 9.119× 102 5.354× 10−7

HS103 7 5 37 44 3.94 5.437× 102 7.980× 10−16 671 3465 3.8 16 202 0.08 5.437× 102 1.040× 10−7

HS104 8 5 47 55 6.18 3.952 5.218× 10−15 1210 6047 5.99 20 259 0.05 3.951 1.537× 10−7

LOADBAL 31 31 1 15499 0.9 1.547(***) 1.798× 10308 0 1 0.0 9 330 0.05 4.531× 10−1 1.421× 10−14

OPTPRLOC 30 30 6 36 0.44 −1.642× 101 0.000 47 111 0.39 3 136 0.06 −1.641× 101 0.000
CB3 3 3 1 4 0.01 2.000 0.000 2 3 0.01 1 10 0.0 2.000 7.270× 10−13

CRESC50 6 100 68 74 18.0 5.942× 10−1 0.000 2416 11257 17.76 438 5787 1.81 5.946× 10−1 1.188× 10−14

DEMBO7 16 20 18 34 2.11 1.749× 102 1.067× 10−10 301 793 2.03 15 318 0.1 1.749× 102 1.869× 10−13

DNIEPER 57 24 5 62 1.42 1.874× 104 1.405× 10−9 100 465 1.35 2 177 0.06 1.874× 104 1.800× 10−7

EXPFITA 5 22 1 10999 0.58 2.999× 101(***) 1.798× 10308 0 1 0.0 12 91 0.03 1.355× 10−3 6.750× 10−14

HIMMELBI 100 12 114 215 68.58 −1.467× 103(*) 1.789× 10−9 2618 12586 67.1 12 1326 0.26 −1.734× 103 5.684× 10−14

SYNTHES1 6 6 1 2999 0.21 1.000× 101(***) 1.798× 10308 0 1 0.0 7 65 0.02 7.593× 10−1 3.261× 10−7

TWOBARS 2 2 3 5 0.06 1.509 4.742× 10−11 16 55 0.05 7 49 0.04 1.509 2.179× 10−9

DIPIGRI 7 4 51 58 11.33 6.812× 102 6.939× 10−18 1491 9509 11.16 3 55 0.01 6.811× 102 0.000

Table C.3. Noiseless Problems with Feasible x0. τ = 10−3; n: number of variables, m: number of
constraints, #iter: number of (outer) iterations, #feval: number of function evaluations, time: total
CPU time passed, f : final objective value, feas err: final feasibility error, #iter(sub): total number
of iterations for solving TR subproblem, #ceval: total number of constraint evaluations(note that
the number of constraint evaluations and function evaluations are same for KNITRO), time(sub):
total CPU time elapsed for solving subproblem. * indicates that FIBO terminates with singular
interpolation system error, ** indicates that FIBO terminates with maximum number of iterations,
*** indicates that FIBO terminates with maximum number of function evaluations.

254
FIBO knitro

Problem n m #iter #feval time f feas err #iter(sub) #ceval time(sub) #iter #feval time f feas err
HS13 2 1 3 5 0.29 1.000 1.309× 10−14 136 191 0.28 19 100 0.1 9.983× 10−1 6.579× 10−10

HS22 2 2 1 3 0.03 1.000 1.789× 10−12 9 23 0.02 0 3 0.0 1.000 1.843× 10−14

HS23 2 5 3 5 0.03 2.000 0.000 11 14 0.02 5 24 0.02 2.000 0.000
HS26 3 1 38 41 8.14 8.872× 10−7 4.441× 10−16 3356 26976 8.07 14 87 0.03 4.252× 10−7 9.633× 10−7

HS32 3 2 4 7 0.04 1.000 0.000 10 16 0.03 2 15 0.02 1.000 0.000
HS34 3 2 6 9 0.11 −8.340× 10−1 1.776× 10−15 32 70 0.08 6 39 0.01 −8.340× 10−1 5.446× 10−9

HS40 4 3 4 8 0.06 −2.500× 10−1 1.058× 10−12 13 32 0.04 3 32 0.03 −2.500× 10−1 2.040× 10−9

HS44 4 6 3 8 0.05 −1.000(*) 0.000 12 23 0.04 4 30 0.02 −1.500× 101 0.000
HS47 5 3 23 28 3.42 1.989× 10−7 3.781× 10−11 1391 7878 3.35 72 696 0.38 1.007× 101 6.661× 10−16

HS50 5 3 19 24 1.11 1.056 2.398× 10−14 126 423 1.06 11 85 0.04 1.339× 10−6 8.882× 10−16

HS64 3 1 17 20 0.55 6.300× 103 0.000 156 435 0.52 7 40 0.02 6.300× 103 7.051× 10−10

HS66 3 2 2 5 0.03 5.182× 10−1 3.563× 10−12 7 12 0.02 4 27 0.02 5.182× 10−1 0.000
HS67 3 14 39 42 1.45 −1.162× 103 0.000 450 1380 1.38 10 55 0.03 −1.162× 103 0.000
HS72 4 2 6 10 0.24 7.277× 102 6.263× 10−14 43 97 0.22 4 31 0.02 7.277× 102 1.572× 10−10

HS75 4 5 16 20 0.31 5.174× 103 5.684× 10−14 97 180 0.27 5 37 0.03 5.174× 103 7.739× 10−8

HS85 5 21 31 36 0.92 −2.216 0.000 357 903 0.83 10 78 0.05 −2.216 2.389× 10−8

HS87 6 4 2 8 0.11 8.997× 103 7.844× 10−12 15 43 0.1 3 33 0.03 8.997× 103 2.396× 10−8

HS88 2 1 4 6 0.31 1.363 1.301× 10−14 69 218 0.3 23 140 0.08 1.362 4.623× 10−7

HS89 3 1 5 8 0.55 1.363 0.000 113 432 0.54 5 35 0.04 7.283× 10−8(†) 1.332× 10−1

HS90 4 1 11 15 3.6 1.363 8.118× 10−18 718 3450 3.57 24 228 0.1 1.362 5.472× 10−7

HS93 6 2 25 31 1.57 1.351× 102 3.331× 10−16 371 1842 1.5 8 87 0.05 1.351× 102 0.000
HS98 6 4 2 8 0.03 3.136 0.000 4 6 0.02 3 32 0.02 3.136 0.000
HS100 7 4 89 96 24.86 6.806× 102 0.000 2860 19399 24.54 14 212 0.07 6.806× 102 0.000
HS101 7 5 71 78 12.74 1.810× 103 2.776× 10−16 2004 11919 12.48 18 198 0.08 1.810× 103 2.139× 10−8

HS102 7 5 78 85 10.45 9.119× 102 0.000 1601 8225 10.11 15 200 0.07 9.119× 102 5.354× 10−7

HS103 7 5 39 46 4.22 5.437× 102 6.106× 10−16 685 3515 4.09 16 202 0.09 5.437× 102 1.040× 10−7

HS104 8 5 80 88 13.31 3.951 0.000 2262 12381 13.0 20 259 0.04 3.951 1.537× 10−7

LOADBAL 31 31 1 15499 0.88 1.547(***) 1.798× 10308 0 1 0.0 17 594 0.09 4.529× 10−1 1.483× 10−14

OPTPRLOC 30 30 8 38 0.52 −1.642× 101 4.504× 10−10 53 125 0.44 13 487 0.11 −1.642× 101 4.092× 10−8

CB3 3 3 1 4 0.01 2.000 0.000 2 3 0.01 1 10 0.0 2.000 7.270× 10−13

CRESC50 6 100 1000 1006 214.64 5.939× 10−1(**) 5.482× 10−13 26160 96691 211.17 438 5787 1.92 5.946× 10−1 1.188× 10−14

DEMBO7 16 20 19 35 2.06 1.748× 102 4.073× 10−15 302 795 1.97 17 354 0.14 1.749× 102 6.661× 10−16

DNIEPER 57 24 5 62 1.4 1.874× 104 1.405× 10−9 100 465 1.36 2 177 0.06 1.874× 104 1.800× 10−7

EXPFITA 5 22 1 10999 0.63 2.999× 101(***) 1.798× 10308 0 1 0.0 13 98 0.03 1.137× 10−3 6.047× 10−12

HIMMELBI 100 12 114 215 68.51 −1.467× 103(*) 1.789× 10−9 2618 12586 67.29 31 3273 0.41 −1.736× 103 1.155× 10−14

SYNTHES1 6 6 1 2999 0.21 1.000× 101(***) 1.798× 10308 0 1 0.0 7 65 0.02 7.593× 10−1 3.261× 10−7

TWOBARS 2 2 3 5 0.06 1.509 4.742× 10−11 16 55 0.05 7 49 0.03 1.509 2.179× 10−9

DIPIGRI 7 4 87 94 78.71 6.806× 102 1.265× 10−13 7019 23030 78.4 14 212 0.06 6.806× 102 0.000

Table C.4. Noiseless Problems with Feasible x0. τ = 10−5; n: number of variables, m: number of
constraints, #iter: number of (outer) iterations, #feval: number of function evaluations, time: total
CPU time passed, f : final objective value, feas err: final feasibility error, #iter(sub): total number
of iterations for solving TR subproblem, #ceval: total number of constraint evaluations(note that
the number of constraint evaluations and function evaluations are same for KNITRO), time(sub):
total CPU time elapsed for solving subproblem. * indicates that FIBO terminates with singular
interpolation system error, ** indicates that FIBO terminates with maximum number of iterations,
*** indicates that FIBO terminates with maximum number of function evaluations.

255
FIBO knitro

Problem n m #iter #feval time f feas err #iter(sub) #ceval time(sub) #iter #feval time f feas err
HS13 2 1 3 5 0.29 1.000 1.309× 10−14 136 191 0.28 19 100 0.1 9.983× 10−1 6.579× 10−10

HS22 2 2 1 3 0.03 1.000 1.789× 10−12 9 23 0.02 0 3 0.0 1.000 1.843× 10−14

HS23 2 5 3 5 0.04 2.000 0.000 11 14 0.03 5 24 0.03 2.000 0.000
HS26 3 1 43 46 12.4 2.878× 10−8 1.110× 10−16 5194 38850 12.32 28 203 0.08 2.719× 10−11 8.518× 10−7

HS32 3 2 4 7 0.05 1.000 0.000 10 16 0.03 2 15 0.02 1.000 0.000
HS34 3 2 6 9 0.09 −8.340× 10−1 1.776× 10−15 32 70 0.07 6 39 0.02 −8.340× 10−1 5.446× 10−9

HS40 4 3 4 8 0.05 −2.500× 10−1 1.058× 10−12 13 32 0.04 3 32 0.05 −2.500× 10−1 2.040× 10−9

HS44 4 6 3 8 0.05 −1.000(*) 0.000 12 23 0.03 4 30 0.02 −1.500× 101 0.000
HS47 5 3 23 28 3.44 1.989× 10−7 3.781× 10−11 1391 7878 3.36 72 696 0.36 1.007× 101 6.661× 10−16

HS50 5 3 19 24 1.12 1.056 2.398× 10−14 126 423 1.06 13 100 0.03 2.358× 10−8 4.441× 10−16

HS64 3 1 17 20 0.55 6.300× 103 0.000 156 435 0.52 7 40 0.02 6.300× 103 7.051× 10−10

HS66 3 2 2 5 0.03 5.182× 10−1 3.563× 10−12 7 12 0.02 5 33 0.02 5.182× 10−1 5.154× 10−11

HS67 3 14 40 43 1.46 −1.162× 103 2.274× 10−12 458 1389 1.36 11 60 0.03 −1.162× 103 1.364× 10−12

HS72 4 2 7 11 0.21 7.277× 102 2.819× 10−18 44 99 0.2 4 31 0.02 7.277× 102 1.572× 10−10

HS75 4 5 16 20 0.31 5.174× 103 5.684× 10−14 97 180 0.28 5 37 0.04 5.174× 103 7.739× 10−8

HS85 5 21 31 36 1.41 −2.216 0.000 357 903 1.3 10 78 0.03 −2.216 2.389× 10−8

HS87 6 4 9 15 0.7 8.997× 103 2.274× 10−13 80 287 0.67 6 73 0.03 8.997× 103 1.152× 10−8

HS88 2 1 4 6 0.31 1.363 1.301× 10−14 69 218 0.3 23 140 0.07 1.362 4.623× 10−7

HS89 3 1 6 9 0.68 1.363 5.535× 10−16 142 532 0.66 5 35 0.04 7.283× 10−8(†) 1.332× 10−1

HS90 4 1 11 15 3.6 1.363 8.118× 10−18 718 3450 3.57 24 228 0.1 1.362 5.472× 10−7

HS93 6 2 36 42 2.18 1.351× 102 0.000 483 2291 2.06 9 96 0.05 1.351× 102 0.000
HS98 6 4 2 8 0.02 3.136 0.000 4 6 0.02 3 32 0.01 3.136 0.000
HS100 7 4 106 113 28.46 6.806× 102 0.000 3280 22448 28.08 28 362 0.19 6.806× 102 5.093× 10−11

HS101 7 5 90 97 15.48 1.810× 103 2.742× 10−12 2377 14118 15.15 20 216 0.1 1.810× 103 1.032× 10−8

HS102 7 5 89 96 12.09 9.119× 102 2.012× 10−16 1847 9679 11.74 15 200 0.08 9.119× 102 5.354× 10−7

HS103 7 5 42 49 4.08 5.437× 102 4.302× 10−16 713 3618 3.92 16 202 0.08 5.437× 102 1.040× 10−7

HS104 8 5 88 96 13.71 3.951 4.441× 10−16 2400 13125 13.38 20 259 0.05 3.951 1.537× 10−7

LOADBAL 31 31 1 15499 0.89 1.547(***) 1.798× 10308 0 1 0.0 18 627 0.09 4.529× 10−1 8.549× 10−15

OPTPRLOC 30 30 8 38 0.51 −1.642× 101 4.504× 10−10 53 125 0.43 13 487 0.11 −1.642× 101 4.092× 10−8

CB3 3 3 1 4 0.01 2.000 0.000 2 3 0.0 1 10 0.0 2.000 7.270× 10−13

CRESC50 6 100 1000 1006 214.17 5.939× 10−1(**) 5.482× 10−13 26160 96691 210.8 438 5787 1.87 5.946× 10−1 1.188× 10−14

DEMBO7 16 20 19 35 2.11 1.748× 102 4.073× 10−15 302 795 2.04 17 354 0.15 1.749× 102 6.661× 10−16

DNIEPER 57 24 23 80 3.43 1.874× 104 5.684× 10−14 272 1088 3.27 6 416 0.08 1.874× 104 5.623× 10−7

EXPFITA 5 22 1 10999 0.6 2.999× 101(***) 1.798× 10308 0 1 0.0 14 105 0.04 1.137× 10−3 1.776× 10−14

HIMMELBI 100 12 114 215 69.11 −1.467× 103(*) 1.789× 10−9 2618 12586 68.01 41 4300 0.52 −1.736× 103 7.105× 10−15

SYNTHES1 6 6 1 2999 0.23 1.000× 101(***) 1.798× 10308 0 1 0.0 7 65 0.02 7.593× 10−1 3.261× 10−7

TWOBARS 2 2 5 7 0.1 1.509 0.000 21 84 0.08 7 49 0.03 1.509 2.179× 10−9

DIPIGRI 7 4 96 103 80.88 6.806× 102 4.547× 10−13 7235 24605 80.56 28 365 0.1 6.806× 102 7.237× 10−11

Table C.5. Noiseless Problems with Feasible x0. τ = 10−7; n: number of variables, m: number of
constraints, #iter: number of (outer) iterations, #feval: number of function evaluations, time: total
CPU time passed, f : final objective value, feas err: final feasibility error, #iter(sub): total number
of iterations for solving TR subproblem, #ceval: total number of constraint evaluations(note that
the number of constraint evaluations and function evaluations are same for KNITRO), time(sub):
total CPU time elapsed for solving subproblem. * indicates that FIBO terminates with singular
interpolation system error, ** indicates that FIBO terminates with maximum number of iterations,
*** indicates that FIBO terminates with maximum number of function evaluations.

256

C.2. Numerical Results for Infeasible Initial Point

We now include the cost of obtaining an initial feasible point for FIBO. In other words,

the CPU time and number of constraint evaluations associated with obtaining a feasible

starting point are counted. Simple comparison with the previous table indicates that

only a few constraint evaluations are needed in order to obtain a feasible solution. As for

KNITRO, we instead run from the given initial point x0, which is potentially infeasible.

0 10 20 30
Problem

10

5

0

5

10

lo
g 2

(f O
ut

er
D

FO
f*

f F
D

f*
)

FIBO

FD

Figure C.1. Infeasible x0. Log-ratio Plot for Comparing the Final Accuracy
(4.3.1) of FIBO and FD.

As indicated by Figures C.1-C.3, the conclusions remain the same as in Section 4.3

and the cost of obtaining a feasible starting point is quite negligible.

257

0 10 20 30
Problem

4

2

0

2

4
lo

g 2
(ev

al
s F

IB
O

ev
al

s F
D

)

FIBO

FD

0 10 20 30
Problem

4

2

0

2

4

lo
g 2

(ev
al

s F
IB

O
ev

al
s F

D
)

FIBO

FD

0 10 20 30
Problem

4

2

0

2

4

lo
g 2

(ev
al

s F
IB

O
ev

al
s F

D
)

FIBO

FD

0 10 20 30
Problem

4

2

0

2

4

lo
g 2

(ev
al

s F
IB

O
ev

al
s F

D
)

FIBO

FD

Figure C.2. Infeasible x0. Log-ratio plot comparing FIBO and FD in
terms of the number of function evaluations to satisfy (4.3.2) for τ =
10−1 (upper left), 10−3 (upper right), 10−5 (bottom left), 10−7 (bottom right).

258

0 10 20 30
Problem

4

2

0

2

4
lo

g 2
(ce

va
ls

FI
BO

ce
va

ls
FD

)

FIBO

FD

0 10 20 30
Problem

4

2

0

2

4

lo
g 2

(ce
va

ls
FI

BO
ce

va
ls

FD
)

FIBO

FD

0 10 20 30
Problem

4

2

0

2

4

lo
g 2

(ce
va

ls
FI

BO
ce

va
ls

FD
)

FIBO

FD

0 10 20 30
Problem

4

2

0

2

4

lo
g 2

(ce
va

ls
FI

BO
ce

va
ls

FD
)

FIBO

FD

Figure C.3. Infeasible x0. Log-ratio plot comparing FIBO and FD in
terms of the number of constraint evaluations to satisfy (4.3.2) for τ =
10−1 (upper left), 10−3 (upper right), 10−5 (bottom left), 10−7 (bottom right).

259
FIBO knitro

Problem n m #iter #feval time f feas err #iter(sub) #ceval time(sub) #iter #feval time f feas err
HS13 2 1 3 5 0.32 1.000 1.309× 10−14 136 193 0.28 20 106 0.09 9.983× 10−1 6.579× 10−10

HS22 2 2 2 4 0.05 1.000 0.000 10 27 0.03 5 24 0.01 1.000 0.000
HS23 2 5 4 6 0.05 2.000 0.000 12 18 0.03 7 32 0.01 2.000 0.000
HS26 3 1 53 56 13.0 7.103× 10−10 2.220× 10−16 5245 39138 12.85 34 244 0.11 7.434× 10−12 6.661× 10−16

HS32 3 2 4 7 0.05 1.000 0.000 10 17 0.03 2 15 0.01 1.000 0.000
HS34 3 2 6 9 0.12 −8.340× 10−1 1.776× 10−15 32 71 0.08 7 44 0.02 −8.340× 10−1 0.000
HS40 4 3 22 26 0.37 −2.500× 10−1 1.110× 10−16 56 229 0.26 7 51 0.02 −2.500× 10−1 1.665× 10−16

HS44 4 6 3 8 0.06 −1.000(*) 0.000 12 24 0.03 5 36 0.01 −1.500× 101 0.000
HS47 5 3 23 28 3.67 1.989× 10−7 3.781× 10−11 1391 7879 3.47 72 696 0.35 1.007× 101 6.661× 10−16

HS50 5 3 19 24 1.18 1.056 2.398× 10−14 126 424 1.1 16 121 0.04 7.669× 10−17 4.441× 10−16

HS64 3 1 43 46 1.07 6.300× 103 0.000 300 674 0.95 16 89 0.04 6.300× 103 1.110× 10−16

HS66 3 2 2 6 0.04 5.182× 10−1(*) 3.563× 10−12 7 13 0.02 7 43 0.01 5.182× 10−1 0.000
HS67 3 14 45 49 1.71 −1.162× 103(*) 0.000 472 1409 1.59 14 75 0.03 −1.162× 103 0.000
HS72 4 2 7 11 0.32 7.277× 102 2.819× 10−18 44 111 0.21 15 96 0.05 7.277× 102 1.301× 10−18

HS75 4 5 16 20 0.54 5.174× 103 5.684× 10−14 97 185 0.43 7 48 0.03 5.174× 103 2.842× 10−14

HS85 5 21 31 36 1.47 −2.216 0.000 357 904 1.31 11 85 0.03 −2.216 1.421× 10−14

HS87 6 4 9 15 0.76 8.997× 103 2.274× 10−13 80 290 0.71 14 216 0.07 8.997× 103 2.274× 10−13

HS88 2 1 5 7 0.43 1.363 0.000 92 329 0.39 19 106 0.06 1.363 0.000
HS89 3 1 10 13 1.52 1.363 0.000 246 1033 1.39 28 172 0.09 1.363 9.636× 10−18

HS90 4 1 12 16 4.26 1.363 0.000 738 3541 4.18 48 426 0.24 1.363 0.000
HS93 6 2 42 48 2.9 1.351× 102 4.800× 10−12 517 2434 2.61 26 295 0.08 1.351× 102 0.000
HS98 6 4 3 10 0.09 3.136(*) 1.776× 10−15 5 13 0.02 6 56 0.01 3.136 0.000
HS100 7 4 106 113 29.47 6.806× 102 0.000 3280 22449 28.72 51 587 0.16 6.806× 102 7.161× 10−15

HS101 7 5 103 110 19.45 1.810× 103 3.955× 10−16 2616 15705 18.39 56 582 0.22 1.810× 103 0.000
HS102 7 5 103 110 15.14 9.119× 102 3.816× 10−16 1985 10248 13.86 37 386 0.13 9.119× 102 2.498× 10−16

HS103 7 5 56 63 5.53 5.437× 102 1.318× 10−16 825 4079 4.59 28 284 0.08 5.437× 102 2.220× 10−16

HS104 8 5 245 253 43.52 3.951 9.714× 10−17 6813 37274 41.25 17 190 0.04 3.951 1.943× 10−16

LOADBAL 31 31 1 15499 0.94 1.547(***) 1.798× 10308 0 2 0.0 40 1380 0.19 4.529× 10−1 2.665× 10−15

OPTPRLOC 30 30 9 39 1.01 −1.642× 101 1.990× 10−13 54 130 0.45 12 456 0.06 −1.642× 101 1.279× 10−13

CB3 3 3 1 4 0.03 2.000 0.000 2 9 0.0 7 40 0.01 2.000 0.000
CRESC50 6 100 1000 1006 215.05 5.939× 10−1(**) 5.482× 10−13 26160 96697 210.07 456 6023 2.46 5.948× 10−1 4.547× 10−13

DEMBO7 16 20 19 35 2.42 1.748× 102 4.073× 10−15 302 800 2.07 45 893 0.2 1.748× 102 3.608× 10−16

DNIEPER 57 24 24 81 7.75 1.874× 104 5.684× 10−14 273 1097 3.25 6 418 0.07 1.874× 104 5.684× 10−14

EXPFITA 5 22 1 10999 0.62 2.999× 101(***) 1.798× 10308 0 2 0.0 19 140 0.05 1.137× 10−3 1.421× 10−14

HIMMELBI 100 12 114 215 72.25 −1.467× 103(*) 1.789× 10−9 2618 12588 67.95 96 9950 1.01 −1.736× 103 2.842× 10−14

SYNTHES1 6 6 1 2999 0.24 1.000× 101(***) 1.798× 10308 0 2 0.0 9 81 0.02 7.593× 10−1 1.110× 10−16

TWOBARS 2 2 7 9 0.13 1.509 0.000 24 113 0.09 11 57 0.02 1.509 2.220× 10−16

DIPIGRI 7 4 116 123 85.87 6.806× 102 3.581× 10−11 7461 26265 84.59 48 581 0.16 6.806× 102 0.000

Table C.6. Noiseless Problems with Infeasible x0; n: number of variables, m: number of constraints,
#iter: number of (outer) iterations, #feval: number of function evaluations, time: total CPU time
passed, f : final objective value, feas err: final feasibility error, #iter(sub): total number of iterations
for solving TR subproblem, #ceval: total number of constraint evaluations(note that the number of
constraint evaluations and function evaluations are same for KNITRO), time(sub): total CPU time
elapsed for solving subproblem. * indicates that FIBO terminates with singular interpolation system
error, ** indicates that FIBO terminates with maximum number of iterations, *** indicates that
FIBO terminates with maximum number of function evaluations.

260
FIBO knitro

Problem n m #iter #feval time f feas err #iter(sub) #ceval time(sub) #iter #feval time f feas err
HS13 2 1 2 4 0.2 1.000 1.310× 10−14 75 106 0.19 8 38 0.02 1.080 0.000
HS22 2 2 1 3 0.04 1.000 1.789× 10−12 9 25 0.02 3 16 0.01 1.000 1.231× 10−6

HS23 2 5 3 5 0.07 2.000 0.000 11 16 0.03 3 16 0.01 2.075 0.000
HS26 3 1 4 7 0.09 1.996× 10−2 9.592× 10−14 32 67 0.07 14 87 0.03 4.252× 10−7 9.633× 10−7

HS32 3 2 4 7 0.1 1.000 0.000 10 17 0.04 2 15 0.01 1.000 0.000
HS34 3 2 5 8 0.11 −7.820× 10−1 1.066× 10−14 31 69 0.08 4 29 0.01 −8.266× 10−1 0.000
HS40 4 3 1 5 0.03 −2.454× 10−1 2.554× 10−15 5 19 0.01 4 33 0.01 −2.500× 10−1 5.162× 10−8

HS44 4 6 3 8 0.1 −1.000(*) 0.000 12 24 0.07 4 30 0.01 −1.500× 101 0.000
HS47 5 3 6 11 0.15 5.639× 10−2 1.466× 10−12 46 119 0.12 17 134 0.04 4.638× 10−8 3.167× 10−9

HS50 5 3 19 24 1.26 1.056 2.398× 10−14 126 423 1.19 9 71 0.03 4.941× 10−2 4.441× 10−16

HS64 3 1 1 4 0.09 6.813× 103 4.742× 10−11 14 84 0.05 5 30 0.02 6.705× 103 3.942× 10−5

HS66 3 2 1 4 0.05 5.800× 10−1 3.563× 10−12 6 11 0.01 0 3 0.0 5.800× 10−1 0.000
HS67 3 14 31 34 1.92 −1.053× 103 0.000 402 1320 1.82 8 45 0.02 −1.157× 103 0.000
HS72 4 2 1 5 0.03 7.407× 102 0.000 2 17 0.01 11 72 0.04 7.277× 102 8.766× 10−7

HS75 4 5 1 5 0.06 5.350× 103 1.259× 10−8 4 13 0.01 5 36 0.03 5.174× 103 1.880× 10−4

HS85 5 21 29 34 1.23 −2.061 1.421× 10−14 348 881 1.04 10 78 0.03 −2.216 2.389× 10−8

HS87 6 4 1 7 0.1 8.997× 103 2.274× 10−13 9 27 0.06 3 33 0.02 8.997× 103 3.775× 10−8

HS88 2 1 1 3 0.13 1.385 2.158× 10−14 19 52 0.07 16 94 0.05 1.363 1.074× 10−8

HS89 3 1 2 5 0.41 1.365 1.123× 10−16 57 349 0.28 23 147 0.07 1.362 7.400× 10−7

HS90 4 1 2 6 0.56 1.446 6.661× 10−16 86 464 0.52 36 334 0.15 1.363 1.142× 10−7

HS93 6 2 1 7 0.13 1.371× 102 2.946× 10−11 10 25 0.11 0 5 0.0 1.371× 102 0.000
HS98 6 4 2 8 0.06 3.136 0.000 4 11 0.02 4 40 0.01 3.214 0.000
HS100 7 4 1 8 0.14 7.140× 102 0.000 22 80 0.12 0 5 0.0 7.140× 102 0.000
HS101 7 5 26 33 5.28 1.982× 103 3.053× 10−16 740 4391 5.04 26 269 0.1 1.810× 103 2.249× 10−5

HS102 7 5 34 41 4.59 9.948× 102 2.776× 10−17 641 3328 4.29 25 272 0.09 9.129× 102 5.866× 10−5

HS103 7 5 15 22 1.72 5.623× 102 8.913× 10−12 276 1270 1.63 20 212 0.07 5.434× 102 3.104× 10−4

HS104 8 5 1 9 0.15 4.200 1.459× 10−11 14 47 0.11 11 130 0.03 3.951 5.769× 10−7

LOADBAL 31 31 1 15499 0.99 1.547(***) 1.798× 10308 0 2 0.0 6 231 0.04 5.252× 10−1 1.710× 10−14

OPTPRLOC 30 30 5 35 0.48 −1.567× 101 2.220× 10−16 44 107 0.4 12 456 0.06 −1.642× 101 1.279× 10−13

CB3 3 3 1 4 0.02 2.000 0.000 2 9 0.01 5 30 0.01 2.000 3.017× 10−6

CRESC50 6 100 16 22 2.49 6.057× 10−1 9.032× 10−11 344 1534 2.38 10 91 0.06 6.567× 10−1 9.586× 10−4

DEMBO7 16 20 13 29 1.44 1.879× 102 5.917× 10−8 198 512 1.19 16 358 0.12 1.748× 102 1.074× 10−5

DNIEPER 57 24 4 61 1.86 1.941× 104 4.264× 10−11 96 460 1.35 5 359 0.07 1.874× 104 3.740× 10−10

EXPFITA 5 22 1 10999 0.62 2.999× 101(***) 1.798× 10308 0 2 0.0 7 56 0.02 9.889× 10−2 1.354× 10−14

HIMMELBI 100 12 114 215 70.51 −1.467× 103(*) 1.789× 10−9 2618 12588 68.05 3 408 0.05 −1.625× 103 0.000
SYNTHES1 6 6 1 2999 0.23 1.000× 101(***) 1.798× 10308 0 2 0.0 7 65 0.02 7.593× 10−1 3.261× 10−7

TWOBARS 2 2 2 4 0.07 1.523 7.885× 10−9 13 43 0.04 4 26 0.01 1.558 0.000
DIPIGRI 7 4 1 8 0.15 7.140× 102 0.000 22 80 0.13 0 5 0.0 7.140× 102 0.000

Table C.7. Noiseless Problems with Infeasible x0. τ = 10−1; n: number of variables, m: number
of constraints, #iter: number of (outer) iterations, #feval: number of function evaluations, time:
total CPU time passed, f : final objective value, feas err: final feasibility error, #iter(sub): total
number of iterations for solving TR subproblem, #ceval: total number of constraint evaluations(note
that the number of constraint evaluations and function evaluations are same for KNITRO), time(sub):
total CPU time elapsed for solving subproblem. * indicates that FIBO terminates with singular
interpolation system error, ** indicates that FIBO terminates with maximum number of iterations,
*** indicates that FIBO terminates with maximum number of function evaluations.

261
FIBO knitro

Problem n m #iter #feval time f feas err #iter(sub) #ceval time(sub) #iter #feval time f feas err
HS13 2 1 2 4 0.19 1.000 1.310× 10−14 75 106 0.17 18 90 0.08 1.001 0.000
HS22 2 2 1 3 0.04 1.000 1.789× 10−12 9 25 0.02 3 16 0.01 1.000 1.231× 10−6

HS23 2 5 3 5 0.05 2.000 0.000 11 16 0.03 4 20 0.01 2.001 0.000
HS26 3 1 36 39 1.86 1.737× 10−4 1.040× 10−12 754 4339 1.77 14 87 0.03 4.252× 10−7 9.633× 10−7

HS32 3 2 4 7 0.06 1.000 0.000 10 17 0.03 2 15 0.01 1.000 0.000
HS34 3 2 6 9 0.11 −8.340× 10−1 1.776× 10−15 32 71 0.08 6 39 0.01 −8.340× 10−1 5.446× 10−9

HS40 4 3 2 6 0.05 −2.491× 10−1 2.189× 10−9 8 25 0.02 4 33 0.01 −2.500× 10−1 5.162× 10−8

HS44 4 6 3 8 0.05 −1.000(*) 0.000 12 24 0.03 4 30 0.01 −1.500× 101 0.000
HS47 5 3 23 28 3.41 1.989× 10−7 3.781× 10−11 1391 7878 3.33 72 696 0.36 1.007× 101 6.661× 10−16

HS50 5 3 19 24 1.02 1.056 2.398× 10−14 126 423 0.96 11 85 0.03 1.339× 10−6 8.882× 10−16

HS64 3 1 13 16 0.5 6.303× 103 1.443× 10−15 126 411 0.44 9 54 0.02 6.306× 103 0.000
HS66 3 2 2 5 0.03 5.182× 10−1 3.563× 10−12 7 13 0.02 3 21 0.01 5.186× 10−1 0.000
HS67 3 14 38 41 1.51 −1.162× 103 0.000 448 1378 1.42 9 50 0.02 −1.161× 103 0.000
HS72 4 2 5 9 0.2 7.284× 102 0.000 38 102 0.16 11 72 0.05 7.277× 102 8.766× 10−7

HS75 4 5 16 20 0.35 5.174× 103 5.684× 10−14 97 185 0.28 5 36 0.03 5.174× 103 1.880× 10−4

HS85 5 21 31 36 0.96 −2.216 0.000 357 904 0.87 10 78 0.03 −2.216 2.389× 10−8

HS87 6 4 1 7 0.09 8.997× 103 2.274× 10−13 9 27 0.06 3 33 0.01 8.997× 103 3.775× 10−8

HS88 2 1 2 4 0.23 1.363 9.216× 10−16 41 150 0.19 16 94 0.05 1.363 1.074× 10−8

HS89 3 1 4 7 0.6 1.363 3.663× 10−16 101 518 0.48 23 147 0.07 1.362 7.400× 10−7

HS90 4 1 6 10 1.57 1.363 5.260× 10−17 277 1551 1.52 36 334 0.16 1.363 1.142× 10−7

HS93 6 2 21 27 1.51 1.352× 102 4.695× 10−11 333 1707 1.43 8 87 0.03 1.351× 102 0.000
HS98 6 4 2 8 0.06 3.136 0.000 4 11 0.01 6 56 0.01 3.136 0.000
HS100 7 4 51 58 15.19 6.813× 102 1.388× 10−17 1609 11183 15.01 3 55 0.02 6.811× 102 0.000
HS101 7 5 44 51 7.84 1.812× 103 3.006× 10−10 1239 7252 7.65 26 269 0.1 1.810× 103 2.249× 10−5

HS102 7 5 69 76 10.15 9.125× 102 4.272× 10−13 1483 7671 9.89 26 282 0.09 9.120× 102 3.705× 10−6

HS103 7 5 37 44 3.97 5.437× 102 7.980× 10−16 671 3472 3.8 20 212 0.07 5.434× 102 3.104× 10−4

HS104 8 5 47 55 6.2 3.952 5.218× 10−15 1210 6053 5.99 11 130 0.03 3.951 5.769× 10−7

LOADBAL 31 31 1 15499 0.92 1.547(***) 1.798× 10308 0 2 0.0 9 330 0.05 4.531× 10−1 1.421× 10−14

OPTPRLOC 30 30 6 36 0.45 −1.642× 101 0.000 47 114 0.39 12 456 0.06 −1.642× 101 1.279× 10−13

CB3 3 3 1 4 0.03 2.000 0.000 2 9 0.01 5 30 0.01 2.000 3.017× 10−6

CRESC50 6 100 68 74 18.03 5.942× 10−1 0.000 2416 11263 17.76 456 6023 2.47 5.948× 10−1 4.547× 10−13

DEMBO7 16 20 18 34 2.17 1.749× 102 1.067× 10−10 301 798 2.03 16 358 0.11 1.748× 102 1.074× 10−5

DNIEPER 57 24 5 62 1.45 1.874× 104 1.405× 10−9 100 468 1.35 5 359 0.07 1.874× 104 3.740× 10−10

EXPFITA 5 22 1 10999 0.59 2.999× 101(***) 1.798× 10308 0 2 0.0 12 91 0.03 1.355× 10−3 6.750× 10−14

HIMMELBI 100 12 114 215 68.61 −1.467× 103(*) 1.789× 10−9 2618 12588 67.1 16 1734 0.19 −1.734× 103 3.553× 10−15

SYNTHES1 6 6 1 2999 0.22 1.000× 101(***) 1.798× 10308 0 2 0.0 7 65 0.02 7.593× 10−1 3.261× 10−7

TWOBARS 2 2 3 5 0.08 1.509 4.742× 10−11 16 60 0.05 9 49 0.02 1.509 8.844× 10−8

DIPIGRI 7 4 51 58 11.34 6.812× 102 6.939× 10−18 1491 9510 11.16 3 55 0.01 6.811× 102 0.000

Table C.8. Noiseless Problems with Infeasible x0. τ = 10−3; n: number of variables, m: number
of constraints, #iter: number of (outer) iterations, #feval: number of function evaluations, time:
total CPU time passed, f : final objective value, feas err: final feasibility error, #iter(sub): total
number of iterations for solving TR subproblem, #ceval: total number of constraint evaluations(note
that the number of constraint evaluations and function evaluations are same for KNITRO), time(sub):
total CPU time elapsed for solving subproblem. * indicates that FIBO terminates with singular
interpolation system error, ** indicates that FIBO terminates with maximum number of iterations,
*** indicates that FIBO terminates with maximum number of function evaluations.

262
FIBO knitro

Problem n m #iter #feval time f feas err #iter(sub) #ceval time(sub) #iter #feval time f feas err
HS13 2 1 3 5 0.29 1.000 1.309× 10−14 136 191 0.28 19 102 0.09 9.983× 10−1 6.579× 10−10

HS22 2 2 1 3 0.04 1.000 1.789× 10−12 9 25 0.02 3 16 0.01 1.000 1.231× 10−6

HS23 2 5 3 5 0.04 2.000 0.000 11 16 0.02 5 24 0.01 2.000 0.000
HS26 3 1 38 41 8.15 8.872× 10−7 4.441× 10−16 3356 26977 8.07 14 87 0.03 4.252× 10−7 9.633× 10−7

HS32 3 2 4 7 0.05 1.000 0.000 10 17 0.03 2 15 0.01 1.000 0.000
HS34 3 2 6 9 0.11 −8.340× 10−1 1.776× 10−15 32 71 0.08 6 39 0.01 −8.340× 10−1 5.446× 10−9

HS40 4 3 4 8 0.08 −2.500× 10−1 1.058× 10−12 13 36 0.04 4 33 0.01 −2.500× 10−1 5.162× 10−8

HS44 4 6 3 8 0.05 −1.000(*) 0.000 12 24 0.04 4 30 0.01 −1.500× 101 0.000
HS47 5 3 23 28 3.42 1.989× 10−7 3.781× 10−11 1391 7878 3.35 72 696 0.36 1.007× 101 6.661× 10−16

HS50 5 3 19 24 1.11 1.056 2.398× 10−14 126 423 1.06 11 85 0.03 1.339× 10−6 8.882× 10−16

HS64 3 1 17 20 0.58 6.300× 103 0.000 156 447 0.52 11 64 0.03 6.300× 103 6.916× 10−6

HS66 3 2 2 5 0.03 5.182× 10−1 3.563× 10−12 7 13 0.02 4 27 0.01 5.182× 10−1 0.000
HS67 3 14 39 42 1.46 −1.162× 103 0.000 450 1381 1.38 10 55 0.03 −1.162× 103 0.000
HS72 4 2 6 10 0.27 7.277× 102 6.263× 10−14 43 109 0.22 11 72 0.04 7.277× 102 8.766× 10−7

HS75 4 5 16 20 0.34 5.174× 103 5.684× 10−14 97 185 0.27 5 36 0.03 5.174× 103 1.880× 10−4

HS85 5 21 31 36 0.94 −2.216 0.000 357 904 0.83 10 78 0.03 −2.216 2.389× 10−8

HS87 6 4 2 8 0.13 8.997× 103 7.844× 10−12 15 46 0.1 3 33 0.02 8.997× 103 3.775× 10−8

HS88 2 1 4 6 0.34 1.363 1.301× 10−14 69 229 0.3 16 94 0.05 1.363 1.074× 10−8

HS89 3 1 5 8 0.64 1.363 0.000 113 576 0.54 23 147 0.08 1.362 7.400× 10−7

HS90 4 1 11 15 3.63 1.363 8.118× 10−18 718 3460 3.57 36 334 0.18 1.363 1.142× 10−7

HS93 6 2 25 31 1.58 1.351× 102 3.331× 10−16 371 1843 1.5 8 87 0.03 1.351× 102 0.000
HS98 6 4 2 8 0.05 3.136 0.000 4 11 0.02 6 56 0.01 3.136 0.000
HS100 7 4 89 96 24.87 6.806× 102 0.000 2860 19400 24.54 14 212 0.07 6.806× 102 0.000
HS101 7 5 71 78 12.77 1.810× 103 2.776× 10−16 2004 11927 12.48 27 280 0.1 1.810× 103 2.398× 10−5

HS102 7 5 78 85 10.48 9.119× 102 0.000 1601 8233 10.11 28 305 0.09 9.119× 102 2.176× 10−6

HS103 7 5 39 46 4.26 5.437× 102 6.106× 10−16 685 3522 4.09 20 212 0.07 5.434× 102 3.104× 10−4

HS104 8 5 80 88 13.33 3.951 0.000 2262 12387 13.0 11 130 0.03 3.951 5.769× 10−7

LOADBAL 31 31 1 15499 0.89 1.547(***) 1.798× 10308 0 2 0.0 17 594 0.09 4.529× 10−1 1.483× 10−14

OPTPRLOC 30 30 8 38 0.54 −1.642× 101 4.504× 10−10 53 128 0.44 12 456 0.06 −1.642× 101 1.279× 10−13

CB3 3 3 1 4 0.03 2.000 0.000 2 9 0.01 5 30 0.01 2.000 3.017× 10−6

CRESC50 6 100 1000 1006 214.67 5.939× 10−1(**) 5.482× 10−13 26160 96697 211.17 456 6023 2.37 5.948× 10−1 4.547× 10−13

DEMBO7 16 20 19 35 2.11 1.748× 102 4.073× 10−15 302 800 1.97 16 358 0.1 1.748× 102 1.074× 10−5

DNIEPER 57 24 5 62 1.43 1.874× 104 1.405× 10−9 100 468 1.36 5 359 0.07 1.874× 104 3.740× 10−10

EXPFITA 5 22 1 10999 0.63 2.999× 101(***) 1.798× 10308 0 2 0.0 13 98 0.03 1.137× 10−3 6.047× 10−12

HIMMELBI 100 12 114 215 68.54 −1.467× 103(*) 1.789× 10−9 2618 12588 67.29 41 4291 0.45 −1.736× 103 1.421× 10−14

SYNTHES1 6 6 1 2999 0.21 1.000× 101(***) 1.798× 10308 0 2 0.0 7 65 0.01 7.593× 10−1 3.261× 10−7

TWOBARS 2 2 3 5 0.08 1.509 4.742× 10−11 16 60 0.05 9 49 0.02 1.509 8.844× 10−8

DIPIGRI 7 4 87 94 78.71 6.806× 102 1.265× 10−13 7019 23031 78.4 14 212 0.06 6.806× 102 0.000

Table C.9. Noiseless Problems with Infeasible x0 τ = 10−5; n: number of variables, m: number of
constraints, #iter: number of (outer) iterations, #feval: number of function evaluations, time: total
CPU time passed, f : final objective value, feas err: final feasibility error, #iter(sub): total number
of iterations for solving TR subproblem, #ceval: total number of constraint evaluations(note that
the number of constraint evaluations and function evaluations are same for KNITRO), time(sub):
total CPU time elapsed for solving subproblem. * indicates that FIBO terminates with singular
interpolation system error, ** indicates that FIBO terminates with maximum number of iterations,
*** indicates that FIBO terminates with maximum number of function evaluations.

263
FIBO knitro

Problem n m #iter #feval time f feas err #iter(sub) #ceval time(sub) #iter #feval time f feas err
HS13 2 1 3 5 0.29 1.000 1.309× 10−14 136 191 0.28 19 102 0.09 9.983× 10−1 6.579× 10−10

HS22 2 2 1 3 0.04 1.000 1.789× 10−12 9 25 0.02 3 16 0.01 1.000 1.231× 10−6

HS23 2 5 3 5 0.05 2.000 0.000 11 16 0.03 6 28 0.01 2.000 0.000
HS26 3 1 43 46 12.41 2.878× 10−8 1.110× 10−16 5194 38851 12.32 28 203 0.08 2.719× 10−11 8.518× 10−7

HS32 3 2 4 7 0.05 1.000 0.000 10 17 0.03 2 15 0.01 1.000 0.000
HS34 3 2 6 9 0.09 −8.340× 10−1 1.776× 10−15 32 71 0.07 6 39 0.01 −8.340× 10−1 5.446× 10−9

HS40 4 3 4 8 0.07 −2.500× 10−1 1.058× 10−12 13 36 0.04 4 33 0.01 −2.500× 10−1 5.162× 10−8

HS44 4 6 3 8 0.05 −1.000(*) 0.000 12 24 0.03 4 30 0.01 −1.500× 101 0.000
HS47 5 3 23 28 3.44 1.989× 10−7 3.781× 10−11 1391 7878 3.36 72 696 0.33 1.007× 101 6.661× 10−16

HS50 5 3 19 24 1.12 1.056 2.398× 10−14 126 423 1.06 13 100 0.03 2.358× 10−8 4.441× 10−16

HS64 3 1 17 20 0.59 6.300× 103 0.000 156 447 0.52 11 64 0.03 6.300× 103 6.916× 10−6

HS66 3 2 2 5 0.03 5.182× 10−1 3.563× 10−12 7 13 0.02 5 33 0.01 5.182× 10−1 5.154× 10−11

HS67 3 14 40 43 1.46 −1.162× 103 2.274× 10−12 458 1390 1.36 11 60 0.03 −1.162× 103 1.364× 10−12

HS72 4 2 7 11 0.25 7.277× 102 2.819× 10−18 44 111 0.2 11 72 0.04 7.277× 102 8.766× 10−7

HS75 4 5 16 20 0.35 5.174× 103 5.684× 10−14 97 185 0.28 5 36 0.03 5.174× 103 1.880× 10−4

HS85 5 21 31 36 1.42 −2.216 0.000 357 904 1.3 10 78 0.03 −2.216 2.389× 10−8

HS87 6 4 9 15 0.7 8.997× 103 2.274× 10−13 80 287 0.67 6 75 0.02 8.997× 103 7.329× 10−11

HS88 2 1 4 6 0.34 1.363 1.301× 10−14 69 229 0.3 16 94 0.05 1.363 1.074× 10−8

HS89 3 1 6 9 0.78 1.363 5.535× 10−16 142 676 0.66 23 147 0.07 1.362 7.400× 10−7

HS90 4 1 11 15 3.63 1.363 8.118× 10−18 718 3460 3.57 36 334 0.18 1.363 1.142× 10−7

HS93 6 2 36 42 2.19 1.351× 102 0.000 483 2292 2.06 9 96 0.03 1.351× 102 0.000
HS98 6 4 2 8 0.05 3.136 0.000 4 11 0.02 6 56 0.01 3.136 0.000
HS100 7 4 106 113 28.46 6.806× 102 0.000 3280 22448 28.08 28 362 0.11 6.806× 102 5.093× 10−11

HS101 7 5 90 97 15.51 1.810× 103 2.742× 10−12 2377 14126 15.15 28 289 0.11 1.810× 103 1.302× 10−5

HS102 7 5 89 96 12.12 9.119× 102 2.012× 10−16 1847 9687 11.74 29 314 0.1 9.119× 102 7.385× 10−7

HS103 7 5 42 49 4.11 5.437× 102 4.302× 10−16 713 3625 3.92 20 212 0.07 5.434× 102 3.104× 10−4

HS104 8 5 88 96 13.73 3.951 4.441× 10−16 2400 13131 13.38 11 130 0.03 3.951 5.769× 10−7

LOADBAL 31 31 1 15499 0.9 1.547(***) 1.798× 10308 0 2 0.0 18 627 0.09 4.529× 10−1 8.549× 10−15

OPTPRLOC 30 30 8 38 0.53 −1.642× 101 4.504× 10−10 53 128 0.43 12 456 0.06 −1.642× 101 1.279× 10−13

CB3 3 3 1 4 0.02 2.000 0.000 2 9 0.0 5 30 0.01 2.000 3.017× 10−6

CRESC50 6 100 1000 1006 214.2 5.939× 10−1(**) 5.482× 10−13 26160 96697 210.8 456 6023 2.34 5.948× 10−1 4.547× 10−13

DEMBO7 16 20 19 35 2.11 1.748× 102 4.073× 10−15 302 795 2.04 16 358 0.11 1.748× 102 1.074× 10−5

DNIEPER 57 24 23 80 3.47 1.874× 104 5.684× 10−14 272 1091 3.27 5 359 0.06 1.874× 104 3.740× 10−10

EXPFITA 5 22 1 10999 0.6 2.999× 101(***) 1.798× 10308 0 2 0.0 14 105 0.04 1.137× 10−3 1.776× 10−14

HIMMELBI 100 12 114 215 69.13 −1.467× 103(*) 1.789× 10−9 2618 12588 68.01 46 4805 0.48 −1.736× 103 2.132× 10−14

SYNTHES1 6 6 1 2999 0.24 1.000× 101(***) 1.798× 10308 0 2 0.0 7 65 0.02 7.593× 10−1 3.261× 10−7

TWOBARS 2 2 5 7 0.11 1.509 0.000 21 89 0.08 9 49 0.02 1.509 8.844× 10−8

DIPIGRI 7 4 96 103 80.89 6.806× 102 4.547× 10−13 7235 24606 80.56 28 365 0.11 6.806× 102 7.237× 10−11

Table C.10. Noiseless Problems with Infeasible x0 τ = 10−7; n: number of variables, m: number
of constraints, #iter: number of (outer) iterations, #feval: number of function evaluations, time:
total CPU time passed, f : final objective value, feas err: final feasibility error, #iter(sub): total
number of iterations for solving TR subproblem, #ceval: total number of constraint evaluations(note
that the number of constraint evaluations and function evaluations are same for KNITRO), time(sub):
total CPU time elapsed for solving subproblem. * indicates that FIBO terminates with singular
interpolation system error, ** indicates that FIBO terminates with maximum number of iterations,
*** indicates that FIBO terminates with maximum number of function evaluations.

264

APPENDIX D

Analyzing the Performance of DFO Methods on a Wider Class of

Problems

D.1. Proof for Theorem 6.3.1

Proof. By definition of the quadratic model (4.2.1), we have that

f(yi)−m(x) = m(yi)−m(x)

= (yi − x)T (g +Hx) +
1

2
(yi − x)TH(yi − x)

= (yi − x)T∇m(x) +
1

2
(yi − x)TH(yi − x)

Therefore, using Taylor expansion, it holds that

(yi − x)T (∇m(x)−∇φ(x))

(D.1.1)

= φ(yi)− (yi − x)T∇φ(x)− φ(x)− 1

2
(yi − x)TH(yi − x) + φ(x)−m(x) + ε(yi)

(D.1.2)

=
1

2
(yi − x)T∇2f(x+ ti(y

i − x))(yi − x)− 1

2
(yi − x)TH(yi − x) + φ(x)−m(x) + ε(yi)

(D.1.3)

for some ti ∈ (0, 1)

265

Subtracting the (D.1.3) associated with y0 from i = 1, ..., p,

(yi − y0)(∇m(x)−∇φ(x))

=
1

2
(yi − x)T∇2f(x+ ti(y

i − x))(yi − x)− 1

2
(yi − x)TH(yi − x)

− 1

2
(y0 − x)T∇2f(x+ ti(y

0 − x))(y0 − x) +
1

2
(y0 − x)TH(y0 − x) + ε(yi)− ε(y0)

≤ 5

2
(‖H‖+ L2)∆2 + 2εf

where the last inequality is derived using ‖yi − x‖ ≤ 2∆ and ‖y0 − x‖ ≤ ∆ and the

bounded noise assumption.

Combining p equations, we have that

‖M(∇m(x)−∇φ(x))‖ ≤
5
√
p

2
(‖H‖+ L2)∆2 + 2

√
pεf

where

M =

[
y1 − y0 y2 − y0 ... yp − y0

]

Defining the scaled matrix M̂ = M/∆, we have that

‖∇m(x)−∇φ(x)‖ ≤
5
√
p‖M̂ †‖
2

(‖H‖+ L2)∆ +
2
√
p‖M̂ †‖εf

∆

266

In addition, substituting x = y0 in (D.1.3), we have that

(yi − y0)T (∇m(x)−∇φ(x)) ≤ 1

2
(L2 + ‖H‖)∆2 + φ(y0)−m(y0) + ε(yi)

=⇒ m(y0)− φ(y0) ≤ 1

2
(L2 + ‖H‖)∆2 + ‖∇m(x)−∇φ(x)‖∆ + εf

≤
5
√
p‖M̂ †‖+ 1

2
(‖H‖+ L2)∆2 + (2

√
p‖M̂ †‖+ 1)εf

�

D.2. Numerical Results for Comparing DFO-TR against CMA-ES

An alternative IBO solver is DFO-TR, which has higher linear algebra cost than NEWUOA

at every iteration. Therefore, we consider problems with less than 50 variables and

validate our findings with respect to NEWUOA. We set final trust region radius to 10−8 and

the stop predict convergence test to 0 to avoid early termination. As demonstrated in

Figure D.1 - D.2, similar conclusions can be made regarding the relative performance of

DFOTR and CMA-ES. However, we note in Figure D.3 that relaxing the ratio test improves

the final accuracy of DFO-TR, especially when the noise level is large.

267

0 50 100
Problem

10

5

0

5

10

lo
g 2

(CM
A

ES
*

D
FO

TR
*

)

CMAES

DFOTR

0 50 100
Problem

10

5

0

5

10

lo
g 2

(CM
A

ES
*

D
FO

TR
*

)

CMAES

DFOTR

Figure D.1. (Selected) Accuracy Log-Ratio Profiles for Noisy Problems with
noise level 0.001 (Left) and 10−7(Right). Plots of (6.2.1) comparing CMA-ES

and DFO-TR with restarts within a budget of 500n.

0 25 50 75 100
Problem

10

5

0

5

10

lo
g 2

(fe
va

l C
M

A
ES

fe
va

l D
FO

TR
)

CMAES

DFOTR

0 25 50 75 100
Problem

10

5

0

5

10

lo
g 2

(fe
va

l C
M

A
ES

fe
va

l D
FO

TR
)

CMAES

DFOTR

Figure D.2. (Selected) Efficiency Log-Ratio Profiles for Noisy Problems with
noise level 0.001 (Left) and 10−7(Right). Plots of (6.2.3) comparing CMA-ES

and DFO-TR with restarts for τ = 10−8.

268

0 50 100
Problem

10

5

0

5

10

lo
g 2

(Tr
ue

*

Fa
ls

e
*
)

relaxed = True

relaxed = False

0 25 50 75
Problem

10

5

0

5

10

lo
g 2

(Tr
ue

*

Fa
ls

e
*
)

relaxed = True

relaxed = False

Figure D.3. (Selected) Accuracy Log-Ratio Profiles for Noisy Problems with
noise level 0.001 (Left) and 10−7(Right). Plots of (6.2.1) comparing DFO-TR

with and without ratio relaxation using a budget of 500n.

	ABSTRACT
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Chapter 1. Introduction
	1.1. Gradient Approximations
	1.2. Interpolation-Based Optimization (IBO) Methods
	1.3. Covariance Matrix Adaptation - Evolution Strategy (CMA-ES)
	1.4. Bayesian Optimization
	1.5. An Application: Prompting Large Language Models

	Chapter 2. On the Numerical Performance of Finite-Difference Based Methods for Derivative-Free Optimization
	2.1. Introduction
	2.2. Unconstrained Optimization
	2.3. Nonlinear Least Squares
	2.4. Constrained Optimization
	2.5. Final Remarks

	Chapter 3. Adaptive Finite-Difference Interval Estimation for Noisy Derivative-Free Optimization
	3.1. Introduction
	3.2. An Adaptive Forward-Difference Interval Estimation Procedure
	3.3. Generalized Finite-Difference Interval Estimation
	3.4. Numerical Experiments
	3.5. Final Remarks

	Chapter 4. A Feasible Nonlinear Programming Approach for Constrained Derivative-Free Optimization
	4.1. Introduction
	4.2. The FIBO Algorithm
	4.3. Numerical Experiments
	4.4. Final Remarks

	Chapter 5. Prompting Large Language Models with Derivative-Free Optimization
	5.1. Introduction
	5.2. Problem Formulation
	5.3. Numerical Experiments for Optimizing Prompts
	5.4. Final Remarks

	Chapter 6. Analyzing the Performance of DFO Methods on a Wider Class of Problems
	6.1. Introduction
	6.2. Numerical Experiments
	6.3. On the Accuracy of IBO methods in the Presence of Noise
	6.4. Final Remarks

	References
	Appendix A. On the Numerical Performance of Finite-Difference Based Methods for Derivative-Free Optimization
	A.1. Numerical Investigation of Lipschitz Estimation
	A.2. Investigation of Parameters for NEWUOA
	A.3. Complete Numerical Results

	Appendix B. Adaptive Finite-Difference Interval Estimation for Noisy Derivative-Free Optimization
	B.1. Finite-Difference Formula Derivation and Tables
	B.2. Complete Experimental Results

	Appendix C. A Feasible Nonlinear Programming Approach for Constrained Derivative-Free Optimization
	C.1. Numerical Results for Feasible Initial Points
	C.2. Numerical Results for Infeasible Initial Point

	Appendix D. Analyzing the Performance of DFO Methods on a Wider Class of Problems
	D.1. Proof for Theorem 6.3.1
	D.2. Numerical Results for Comparing DFO-TR against CMA-ES

