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ABSTRACT

Essays in Empirical Auctions and Partially Identi�ed Econometric Models

Xun Tang

Chapter 1: (Bounds on the Counterfactual Revenue Distributions in Auctions with

Reserve Prices) In �rst-price auctions with interdependent bidder values, the distributions

of private signals and values cannot be uniquely recovered from bids in Bayesian Nash equi-

libria. Non-identi�cation invalidates structural analyses that rely on exact identi�cation of

the model primitives. In this paper I introduce tight, informative bounds on the distribution

of revenues in counterfactual �rst- and second-price auctions with binding reserve prices.

These robust bounds are identi�ed from distributions of equilibrium bids in �rst-price auc-

tions under minimal restrictions where I allow for a¢ liated signals and both private- and

common-value paradigms. The bounds can be used to compare auction formats and to se-

lect optimal reserve prices. I propose consistent nonparametric estimators of the bounds. I

extend the approach to account for observed heterogeneity across auctions, as well as en-

dogenous participation due to binding reserve prices. I use a recent data of 6,721 �rst-price

auctions of U.S. municipal bonds to estimate bounds on counterfactual revenue distributions.

I then bound optimal reserve prices for sellers with various risk attitudes.
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Chapter 2: (Semiparametric Estimation of Binary Response Models under Inequality

Quantile Restrictions) In this paper I study the estimation of a class of binary response

models where conditional medians of disturbances are bounded between known functions

of regressors. This class of models incorporates several interesting micro-econometric sub-

models with wide empirical applications. These include binary response with interval data on

regressors, simultaneous discrete games with incomplete information, and Markovian binary

choice processes. I characterize the identi�cation region of linear coe¢ cients in payo¤ func-

tions, and give fairly general restrictions on the distribution of regressors that are su¢ cient

for point identi�cation. I also show how these restrictions are satis�ed by primitive condi-

tions in some of the motivating sub-models. I then de�ne a two-step extreme estimator, and

show it is consistent regardless of point identi�cation, and converges to a normal distribution

at the rate of
p
n under point identi�cation. This is possible because point identi�cation can

be attained even when the regressors have bounded supports. Monte Carlo evidence on the

estimator�s performance in �nite samples when the model is partially identi�ed is reported.

Chapter 3: (Identi�cation of Dynamic Binary Choice Processes) In this paper, we study

the identi�cation of structural parameters in a class of dynamic binary choice processes where

transitions to future states are independent from unobservable disturbances conditional on

current actions and observable states. We give a full characterization of the set of single-

period payo¤s and disturbance distributions that generate the same choice probabilities

as observed in a given process. We show with knowledge of the disturbance distribution,

the di¤erences in payo¤s from two trivial policies of choosing the same action forever can

be uniquely recovered from choice probabilities. Furthermore, we analyze the identifying

power of various stochastic restrictions such as the statistical independence and conditional

symmetry of the disturbance distributions. For models with �nite spaces of observable states,
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we characterize the identi�cation region of single-period payo¤s under these restrictions by

checking the feasibility of a system of linear equations in the nuisance parameters, subject

to inequality constraints implied by observational equivalence and the restrictions imposed.

This approach of identi�cation through linear programming can be readily extended to cases

where single-period payo¤s are known to satisfy any form of restrictions.
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CHAPTER 1

Bounds on the Counterfactual Revenue Distributions in Auctions

with Reserve Prices

1.1. Introduction

In a structural auction model, a potential bidder does not know his own valuation of

the auctioned object, but has some noisy private signal about its value. Bidders make their

decisions conditional on these signals and their knowledge of the distribution of their com-

petitors�private signals and values. A structural approach for empirical studies of auctions

posits the distribution of bids observed can be rationalized by a joint distribution of bidder

values and signals in Bayesian Nash equilibria, and de�nes this joint distribution as the model

primitive. The objective is to extract information about this primitive from the distribution

of bids, and to use it to answer policy questions such as the choice of optimal reserve prices

or auction formats. (See Hendricks and Porter (2007) for a survey.) Depending on whether

bidders would �nd rivals� signals informative about their own values conditional on their

own signals, an auction belongs to one of the two mutually exclusive types : private values

(PV ), and common values (CV ).1 These two types have distinct implications for revenue

distributions under a given auction format.

In this paper I propose tight, informative bounds on counterfactual revenue distributions

that can be constructed from the distribution of bids in a general class of �rst-price auctions

1I use the term "interdependent values" for a larger class of auctions that encompass both PV and CV
auctions. The formal de�nition of a PV auction is one in which bidders�values are mean independent from
rival signals conditional on their own signals.
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with interdependent values and a¢ liated signals. The counterfactual formats considered

in this paper include both �rst- and second-price auctions with reserve prices.2 Thus I

introduce a uni�ed approach of policy analyses for both PV and CV auctions that does

not require exact identi�cation of model primitives. My method is motivated by several

empirical challenges related to structural CV models. First, several policy questions have

not been addressed outside the restrictive case of PV auctions due to di¢ culties resulting

from non-identi�cation of signal and value distributions.3 For a �xed reserve price, theory

ranks expected revenue for general interdependent value auctions with a¢ liated signals, but

the magnitude of expected revenue di¤erences remains an empirical question.4 Another open

issue is the choice of optimal reserve prices in general interdependent value auctions with

a¢ liated signals and �nite number of bidders.5 Since model primitives cannot be recovered

from equilibrium bids in CV auctions, these questions cannot be addressed as in PV auctions,

where point identi�cation of signal distributions helps exactly recover revenue distributions

in counterfactual formats.6 Second, it is di¢ cult to distinguish PV and CV auctions from

the distribution of bids alone under a given auction format, even though the two have distinct

implications in counterfactual revenue analyses. La¤ont and Vuong (1996) proved for a given

number of potential bidders, distributions of equilibrium bids in CV auctions can always be

2In this paper, I use the term "second-price auctions" exclusively for the sealed-bid format. This does not
include the open formats, or "English auctions".
3For a proof of non-identi�cation, see La¤ont and Vuong (1996).
4The only exception is the case with i.i.d. signals, where expected revenue from �rst-price, second-price and
English auctions are the same regardless of value interdependence.
5An exception is symmetric, independent private value auctions, where the optimal reserve price is identi�ed
from the distribution of equilibrium bids. Levin and Smith (1994) also showed in symmetric �rst-price auc-
tions, where signals are a¢ liated and values are interdependent through a common unobserved component,
the optimal reserve price converges to the seller�s true value as the number of potential bidders n goes to
in�nity. Yet the theory is otherwise silent about identifying optimal reserve prices with a �nite n.
6See Guerre et.al (2000), Li, Perrigne and Vuong (2002) and Li, Perrigne and Vuong (2003) for details. Also
note in PV auctions, the distribution of signals fXigni=1 are equivalent to the distribution of values fVigni=1
under the normalization E(VijXi = x) = x.
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rationalized by certain PV structures. Empirical methods that have been proposed for

distinguishing between the two types often have practical limitations. They either rely on

assumptions that may not be valid (such as exogenous variations of number of bidders, as

in Haile, Hong and Shum (2003)), or they may entail strong data requirements (an ex post

measure of bidder values as in Hendricks, Pinkse and Porter (2003), or many bids near a

binding reserve price as in Hendricks and Porter (2007)).7 Third, the empirical auction

literature has not considered the magnitude of the bias if a CV environment is analyzed

with a PV model in counterfactual revenue analyses.

I propose a structural estimation method through partial identi�cation of revenue dis-

tributions to address the questions above. First, the bounds on revenue distributions are

constructed directly from the bids, and do not rely on pinpointing the underlying signal and

value distributions. Second, the bounds only require a minimum set of general restrictions

on value and signal distributions that encompass both PV and CV paradigms. Third, the

bounds are tight and sharp within the general class of �rst-price auctions. The lower bound

is the true counterfactual revenue distribution under a PV structure, while the upper bound

can be close to the truth for certain types of CV models. Hence the distance between the

bounds can be interpreted as a measure of maximum error possible when a CV structure is

analyzed as PV in counterfactual analyses. The bounds can be nonparametrically estimated

consistently. Although I do not provide point estimates of revenue distributions, the bounds

are informative for answering policy questions, for they can be used to compare auction

formats, or to bound revenue maximizing reserve prices. The analysis can be extended to

risk-averse sellers immediately given the sellers�utility functions.

7A reserve price is binding if it is high enough to have a positive probability for screening bidders.
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My paper is related to the literature on robust inference in auction models. Haile and

Tamer (2003) use incomplete econometric models to bound the optimal reserve price in

independent PV English auctions, where the equilibrium bidding assumption is replaced

with two intuitive behavior assumptions. In contrast, my paper focuses on �rst-price CV

auctions. Incompleteness here arises from the range of possible rationalizing signal and value

distributions, instead of a �exible interpretation of bids. Hendricks, Pinkse and Porter (2003)

introduce nonparametric structural analyses to CV auctions. They use an ex post measure

of bidder values to test the assumption of equilibrium bidding. They also provide evidence

that the winner�s curse e¤ect dominated the competition e¤ect, leading to less aggressive

bidding in equilibrium as the number of bidders increase. Shneyerov (2006) introduces an

approach for counterfactual revenue analyses in common-value auctions without the need to

identify model primitives. In particular, he shows that for any given reserve price, equilibrium

bids from �rst-price auctions can be used to identify the expected revenues in second-price

auctions with the same reserve price. He also shows how to bound the expected gains in

revenues from English auctions under the general restriction of monotone value functions

and a¢ liated signals.

My paper makes three novel contributions. First, the focus on revenue distributions,

as opposed to distributional parameters such as expectations, allows more general revenue

analyses. Auction theory usually uses expected revenue as a criterion to compare auction

designs, but central tendency may not be justi�able in practice, say if the seller is not

risk-neutral. Knowledge of distributions is necessary for other criteria, such as maximizing

expected seller utility. (A seller may choose a design to maximize the probability that revenue

falls in a certain range.) Second, bounds on revenue distributions can be constructed for
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hypothetical reserve prices. One can then compare reserve prices within �rst- or second-

price formats. In CV auctions, a counterfactual, non-binding reserve price r creates serious

challenges in policy analyses. The probability that no one bids higher than r in equilibrium

can not be pinpointed from bids in the data, since the screening level can not be identi�ed

without further restrictions.8 Moreover, the mapping between equilibrium strategies under r

and those in the data cannot be uniquely recovered. I address this issue by bounding the bid

that a marginal bidder under a counterfactual binding r actually places in equilibrium under

the data-generating auction format.9 These bounds in turn lead to bounds on the revenue

distribution under r. Finally, the bounds on revenue distributions are robust and independent

of the exact form of signal a¢ liations and value interdependence, and are identi�ed from

the distribution of equilibrium bids alone. This robustness comes with the price of partial

identi�cation of revenue distributions. Nonetheless, one can obtain informative answers for

some policy questions.

The remainder of the paper proceeds as follows. Section 2 introduces bounds on coun-

terfactual revenue distributions in a benchmark model where data is collected from homoge-

nous auctions with exogenous participation. Section 3 de�nes nonparametric estimators for

bounds and proves their pointwise consistency. Section 4 provides Monte Carlo evidence

about the performance of the bound estimators. Section 5 extends the benchmark model

to allow for observable auction heterogeneity and endogenous participation under binding

reserve prices in the data. Section 6 applies the proposed method to U.S. municipal bond

auctions on the primary market. Section 7 concludes.

8A screening level under r is the value of signal such that only bidders with signals higher than the screening
level will choose to submit bids above r in equilibrium. See Section 2 below for a formal de�nition.
9A marginal bidder under r is the one whose signal is exactly equal to the screening level.
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1.2. Bounds on Counterfactual Revenue Distributions in the Benchmark Model

This section focuses on a benchmark case where bids are observed from increasing, sym-

metric pure-strategy Bayesian Nash Equilibria (PSBNE) in homogenous, single-unit �rst-

price auctions with a non-binding reserve price. I use distributions of these bids (denoted

G0B) to construct tight bounds on counterfactual revenue distributions for both �rst-price

and second-price auctions with reserve price r > 0 (denoted FRI(r) and FRII(r) respectively).

Extensions to cases where bids are observed from heterogenous auctions or auctions with

endogenous participation due to binding reserve prices are discussed in Section 5.

1.2.1. Model speci�cations

Consider a single-unit �rst-price auction with n potential risk-neutral bidders and a non-

binding reserve price. Each bidder receives a private signal Xi but cannot observe his own

valuation Vi. The distribution of all bids submitted in equilibrium (denoted fBigi=1;::;n) is

observed from a random sample of independent, identical auctions, but neither Xi nor Vi

can be observed. For simplicity, Xi and Vi are both scalars.10 The following assumptions are

maintained throughout the paper.

A1 (Symmetric, A¢ liated Signals) Private signals X �fXigi=1;::;n are a¢ liated with sup-

port [xL; xU ]n, and the joint distribution FX is exchangeable in all arguments.11

10Throughout the paper I use upper case letters to denote random variables and lower case letters for
corresponding realized values.
11Let Z be a random vector in RK with joint density f . Let _ and ^ denote respectively component-wise
maximum and minimum of any two vectors in RK . Variables in Z are a¢ liated if, for all z and z0 in RK ,
f(z _ z0)f(z ^ z0) � f(z)f(z0). For a more formal de�nition, see Milgrom and Weber (1982).
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A2 (Interdependent Values) A bidder�s valuation satis�es Vi = �(Xi;X�i), where �(:) is a

nonnegative, bounded, continuous function that is exchangeable inX�i � fX1; ::; Xi�1; Xi+1; :::Xng,

non-decreasing in all signals, and increasing in own signal Xi over [xL; xU ].12

Note A2 implies private signals are drawn from identical marginal distributions on

[xL; xU ], and A1 includes private values (PV ) as a special case, where �(xi;x�i) = �(xi)

8(xi;x�i) 2 [xL; xU ]n. Common values (CV ) correspond to value functions that are non-

degenerate in rival signals X�i. A pure strategy for a bidder is a function bi : Xi ! R1+ and

a pure-strategy Bayesian Nash Equilibria is a portfolio fb0;i(:)gi=1;::;n such that 8 i; b0;i(:) is

the best response to fb0;j(:)gj2f1;::;ngnfig, i.e. 8i,

b0;i(x) = argmax
b0;i

E(Vi � b0;ijmax
j 6=i

b0;j(Xj) � b0;i; Xi = x) Pr(max
j 6=i

b0;j(Xj) � b0;ijXi = x)

The regularity conditions for existence of such a PSBNE is collected in A3 below. These

restrictions are otherwise inessential for the partial identi�cation result in this paper.

A3 (Regularity Conditions) (i) �(:) is twice continuously di¤erentiable; (ii) The joint

density of fXigi=1;::;n exists on [xL; xU ]n, is continuously di¤erentiable, and 9flow; fhigh > 0

such that f(x) 2 [flow; fhigh] 8x 2 [xL; xU ]n.

McAdams (2006) proved A1, A2, and A3 are su¢ cient for the existence of unique sym-

metric, increasing PSBNE in �rst-price auctions.

De�nition 1. A joint distribution of bids fb0;igi2N in �rst-price auctions with zero re-

serve prices (denoted G0B) is rationalized by an auction de�ned by the structure f�; FXg)

if G0B is the distribution of bids in a symmetric, increasing PSBNE in this auction. Two

12Throughout the paper I use bold letters for vectors of random variables or functions (e.g.,
X =(X1; X2; :::; Xn) and �(X) = (�(X1; X�1); �(X2; X�2); :::; �(Xn; X�n)) ).
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structures f�; FXg and f~�; ~FXg are observationally equivalent if they generate the same

distribution G0B in PSBNE of �rst-price auctions.

Let b0;n(:) denote the equilibrium bidding strategy in a �rst-price auction with zero

reserve price and N = n potential bidders. The �rst-order condition of such a PSBNE is

characterized by the �rst order condition:

(1.1) b00;n(x) = [vh;n(x; x)� b0;n(x)]
fY jX;n(xjx)
FY jX;n(xjx)

for all x 2 [xL; xU ], where Yi � maxj 6=iXj, vh;n(x; y) � E(VijXi = x; Yi = y;N = n),

FY jX;n(tjx) � Pr(Yi � tjXi = x;N = n), and fY jX;n(tjx) denotes the corresponding condi-

tional density. The equilibrium boundary condition is b0;n(xL) = vh;n(xL; xL). Subscripts

for bidder indices are dropped in vh;n; FY jX and fY jX due to the symmetry in FX and �. In

an increasing PSBNE where b00;n(x) > 0 8x 2 [xL; xU ], Guerre et.al (2000) showed a link

between the primitives and G0B by manipulating (1.1) using change-of-variable :

(1.2) vh;n(x; x) = b0;n(x) +G0M jB;n(b0;n(x)jb0;n(x))=g0M jB;n(b0;n(x)jb0;n(x)) � �(b0;n(x);G
0
B)

where G0M jB;n(
~bjb) = Pr(maxj 6=i b0;n(Xj) � ~bjb0;n(Xi) = b) and g0M jB;n(

~bjb) is the correspond-

ing density.13 Bidder indices on M and B are dropped due to symmetry of FX and �.

1.2.2. Review of literature on PV auctions

In this subsection, I review the literature on identi�cation of signal distributions and optimal

reservation prices in private value auctions. The objective is to highlight how unique iden-

ti�cation of the bidder signal distributions and screening levels leads to exact identi�cation

13Following convention in the literature, I assume the second order conditions are always satis�ed and thus
�rst-order conditions are su¢ cient for characterizing the equilibrium.
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of the optimal reserve price, and to motivate my incomplete approach when the screening

level can not be point identi�ed in the more general case of interdependent values.

Guerre, Perrigne and Vuong (2000) and Li, Perrigne and Vuong (2002) showed the joint

distribution of bidder values are nonparametrically identi�ed from distribution of equilibrium

bids in �rst-price, PV auctions with no reserve prices, regardless of the form of dependence

between private signals. The main idea is that in private value auctions, the left-hand side

of (1.2) can be normalized to the signal x itself, and thus the inverse bidding function is

recovered from G0B, for both independent and a¢ liated signals.
14 Another simpli�cation

peculiar to PV auctions is that the screening level under a binding reserve price r is equal to

r itself. That is, bidders choose not to bid above r in equilibrium if and only if their private

signals are below r. To see this, note the screening level under r in a general interdependent

value auction is de�ned as :

x�(r) � inffx 2 [xL; xU ] : E(VijXi = x;maxj 6=iXj � x) � rg

In PV auctions, E(VijXi = x;maxj 6=iXj � x) = E(VijXi = x) and the normalization

E(VijXi = x) = x implies x�(r) = r. Thus in private value auctions, both signal distribution

FX and x�(r) are exactly recovered from G0B.

In principle, knowledge of FX in private value auctions is su¢ cient for �nding counter-

factual revenue distributions under a binding reserve price r. It follows that the optimal r

which maximizes expected revenue is also identi�ed. Yet in reality it can be impractical to

implement this fully nonparametric estimation due to data de�ciencies, especially when the

signals are a¢ liated. Li, Perrigne and Vuong (2003) proposed a nonparametric algorithm for

estimating optimal reserve prices that is implemented with less intensive computations. The

14In private value auctions, the conventional normalization of the signals is E(VijXi = x) = x for all x.
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idea is to express expected seller revenue under r as a functional of r itself and the observed

distribution of equilibrium bids. Then optimizing a sample analog of this objective function

over reserve prices gives a consistent estimator of the optimal reservation price. Again the

assumption of private values is indispensable for two reasons. First, it implies x�(r) = r

under appropriate normalizations, which is used for de�ning the objective function; Second,

it ensures full nonparametric identi�cation of the distributions of counterfactual equilibrium

bidding strategies.

This approach can not be applied to CV auctions with a¢ liated signals immediately

because of two non-identi�cation results. First, the screening level cannot be pinned down

without further restrictions on how bidders�signals and valuations are correlated. Second,

inverse bidding functions can not be recovered without knowledge of �. Hence underly-

ing structure f�; FXg can not be identi�ed. These pose a major challenge for identifying

counterfactual revenue distributions in CV auctions.

1.2.3. Observational equivalence of PV and CV

In this subsection I prove the observational equivalence of PV and CV paradigms when

only G0B is observed. In other words, any G
0
B is rationalized by a PV paradigm if and only

if it is also rationalized by a CV paradigm. La¤ont and Vuong (1996) already proved the

su¢ ciency in their well-known argument for the non-identi�cation of CV auctions. Below I

complete the proof of observational equivalence by showing the converse (necessity).

Besides being a main motivation for the bounds in this paper, observational equiva-

lence of PV and CV auctions also has an important implication about the e¢ ciency of the

bounds. That is, they e¤ectively exhaust all information that can be extracted from G0B and

equilibrium conditions alone for counterfactual revenue analyses. To see this, note the true
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counterfactual revenue distribution is exactly equal to the lower bound if G0B is rationalized

by a PV structure. On the other hand, it can lie anywhere within the open interval between

the bounds for certain types of CV auctions, depending on how a bidder weighs his own

signals while calculating his expected value conditional on winning. Therefore, observational

equivalence of PV and CV auctions given a rationalizable distribution G0B implies that the

possible range of counterfactual revenue distributions can not be reduced to any strict subsets

of the interval between the bounds.

Let F denote the set of joint signal distributions that satisfy A1, and � denote the set

of value functions that satisfy A2. Let �CV denote a subset of � that is non-degenerate in

rival signals X�i. The following proposition gives necessary and su¢ cient conditions for G0B

to be rationalized by some element of �CV 
F .

Proposition 2. A joint distribution of bids G0B observed in �rst-price auctions with non-

binding reserve prices can be rationalized by some f�; FXg 2 �CV 
F if and only if (i) G0B

is a¢ liated and exchangeable in all arguments; and (ii) �(b;G0B) = b+G0MijBi(bjb)=g
0
MijBi(bjb)

is strictly increasing on the support of the marginal distribution of bids [bL; bU ].

The intuition of the proof is as follows.15 Let �P be a subset of � that only depends

on bidders�own signals. La¤ont and Vuong (1996) proved if G0B is rationalized by some

f�; FXg 2 � 
 F , then it must also be rationalizable by some f~�; ~FXg 2 �P 
 F . Li, Per-

rigne and Vuong (2002) showed (i) and (ii) in Proposition 1 are necessary conditions for G0B

to be rationalized by some f~�; ~FXg 2 �P 
 F . A combined argument proves the necessity.

Su¢ ciency is proven by constructing examples how any G0B satisfying (i) and (ii) can be

rationalized by a certain type of CV auctions where bidders�values only depend on his own

15Formal proofs for all lemmae and propositions in this paper are included in the Appendix.
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and the highest rival signals. Li, Perrigne and Vuong (2002) showed the conditions in Propo-

sition 1 are also necessary and su¢ cient for G0B to be rationalized by PV auctions, and it

follows that a G0B is rationalized by some � 2 �P if and only if it is also rationalized by some

� 2 �CV . A corollary of Proposition 1 is that any private value auction is observationally

equivalent to a certain CV auction.

Note the observational equivalence of PV and CV auctions above is restricted in this

benchmark environment under a non-binding reserve price and a �xed number of bidders.

Several recent works have showed ways to derive di¤erent testable implications of the two

paradigms with augmented data. These include exogenous variations in the number of

bidders as in Haile, Hong and Shum (2003), ex post measures of bidder values as in Hendricks,

Pinkse and Porter (2003), and bid distributions under a strictly binding reserve price as in

Hendricks and Porter (2007). In such case, the lower bound point identi�es the real revenue

distribution for the PV paradigm, while the open interval between the bounds are e¢ cient

in the sense that they are tight and sharp within the class of CV auctions.

1.2.4. Bounds on FRI(r)

The conventional criterion for choosing optimal reserve prices is the expected revenue for

the seller. The Revenue Equivalence Theorem states that in auctions with independent

private values, optimal reserve prices are the same for both 2nd- and 1st-price auctions,

and are independent from the number of potential bidders. On the other hand, there is no

theoretical result about the choice of optimal reserve prices in general 1st-price auctions with

a¢ liated signals and �nite number of bidders. The answer depends on the speci�cs of model

primitives and is left open for empirical analyses. Besides, the criteria of expected revenue

itself can be hard to justify if the seller is not risk neutral. Knowledge of counterfactual
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revenue distributions will be useful for addressing both concerns. For a binding reserve price

r, I propose informative bounds on FRI(r) that can be constructed from G0B (the distribution

of equilibrium bids in �rst-price auctions with a non-binding reserve price).

1.2.4.1. Relations between G0B and FRI(r). The equilibrium strategy in �rst-price auc-

tions under a reserve price r � 0 has a closed form:

br(x; �; FX) = rL(x�(r)jx;FX) +
Z x

x�(r)

vh(s; s; �; FX)dL(sjx;FX) 8x � x�(r)

br(x; �; FX) < r 8x < x�(r)

where L(sjx;FX) � expf�
R x
s
�(u;FX)dug and �(x;FX) � fY jX(xjx)=FY jX(xjx).16 For any

given x on the closed interval [xL; xU ], L(sjx;FX) is a well-de�ned distribution function with

support [xL; x] and is �rst-order stochastically dominated by the distribution of the second

highest signal (i.e. FY jX(sjx)=FY jX(xjx)). When signals are i.i.d., the two distributions are

identical. 17

The range of r for nontrivial counterfactual analyses is [�L; �U ], where �k � �(xk;G
0
B)

for k = L;U . For r < �L, x
�(r) = xL and there is no e¤ective screening of bidders. For

r > �U , x
�(r) = xU and all bidders are screened out with probability one. Let v0 denote the

seller�s own reserve value of the auctioned object. For all r > v0, the distribution of revenue

16This section focuses on a benchmark model with �xed n. Hence the superscript n is suppressed for
notational ease.
17That L(sjx) is a well-de�ned distribution on [xL; x] is shown in Krishna (2002). Furthermore L(sjx) �
expf�

R x
s

fY jX(ujx)
FY jX(ujx)dug =

FY jX(sjx)
FY jX(xjx) , where the inequality follows from the fact that FY jX(xjz)=fY jX(xjz) is

decreasing in z when signals are a¢ liated. The equality holds when signals are i.i.d.
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in �rst-price auction with r is 18:

FRI(r)(t) = 0 8t < v0

= Pr(X(1) < x�(r)) 8t 2 [v0; r)

= Pr(X(1) � b�1r (t)) 8t 2 [r;+1)

where X(k) denotes the k-th highest order statistic out of n signals. As b0 and br are

both monotone in signals above the screening level x�(r), there exists a one-to-one mapping

between them for x � x�(r). Counterfactual revenue distribution FRI(r) would be exactly

identi�ed from G0B if the mapping between b0 and br for x � x�(r) can be recovered from

G0B. The following lemma gives a closed form for such a mapping which is also a functional

of G0B.

Lemma 3. In �rst-price auctions, for all r > 0 and x � x�(r),

br(x) = �r(b0(x);G
0
B) � r~L(b0(x

�(r))jb0(x);G0B) +
Z b0(x)

b0(x�(r))

�(~b;G0B)d~L(
~bjb0(x);G0B)

where ~L(bjb0;G0B) � exp
�
�
R b0
b
~�(u;G0B)du

�
and ~�(u;G0B) �

g0
MjB(uju)
G0
MjB(uju)

.

By construction, �r is increasing in b for b � b0(x
�(r)). Despite its closed form, �r can

not be exactly recovered from G0B as b0(x
�(r)) is not point identi�ed only under A1 and

A2. The line of reasoning for bounds on FRI(r) constructed from G0B is as follows. First,

value interdependence and signal a¢ liations imply tight bounds on b0(x�(r)) that can be

identi�ed from G0B. Second, these bounds on b0(x
�(r)) lead to envelops on the mapping �r

18Proof of this claim: By de�nition of v0, Pr(R(r) � t) = 0 for all t < v0. For all t 2 [v0; r), Pr(R(r) � t) =
Pr(R(r) = V0) = Pr(X

(1) < x�(r)). Note b
0

r(x) > 0 8(r; x) such that r � 0 and x > x�(r). Since br(x�(r)) =
r, br(x) is invertible on [r;+1). Then for t � r, Pr(R(r) � t) = Pr(R(r) < r) + Pr(r � br(X

(1)) � t) =
Pr(X(1) < x�(r)) + Pr(x�(r) � X(1) � b�1r (t)) = Pr(X(1) � b�1r (t)) for all t 2 [r;+1).
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that can also be constructed from G0B. Next, inverting these envelops at revenue level t gives

bounds on b0(b�1r (t)). Finally, evaluating the distribution of winning bids at these inverses

gives bounds on FRI(r)(t).

1.2.4.2. Bounds on the screening level x�(r) and b0(x
�(r)). Let v(x; y) � E(VijXi =

x; Yi � y), and vl(x; y) �
R y
xL
vh(s; s)

fY jX(sjx)
FY jX(yjx)

ds = E(vh(Y; Y )jXi = x; Yi � y). (For the rest

of the paper I will use v(x) and vk(x) as shorthand notations for v(x; x) and vk(x; x) for

k = l; h.) In symmetric equilibria, v(x) denotes a bidder�s expected value conditional on

winning with signal x in both 1st-price and 2nd-price auctions, and vl(x) denotes a bidder�s

expected payment conditional on winning in a 2nd-price auction with a non-binding reserve

price. A¢ liated signals and interdependent values implies vh(x) � v(x) for all x, and the

equilibrium condition in second-price auctions guarantees v(x) � vl(x) for all x. For all

r > 0, the screening level x�(r) is de�ned as the inverse of v(x) at r. Hence inverting vh(x)

and vl(x) at r gives bounds on x�(r). The following lemma formalizes this idea.

Lemma 4. (i) For all (�; FX) 2 �
 F (satisfying A1,A2), vl(x; y) � v(x; y) � vh(x; y)

for all xL � y � x � xU , and both vl(x) and vh(x) are increasing in x on [xL; xU ]. (ii)

For r 2 [vh;L; vh;U ] where vh;k � vh(xk), de�ne xl(r) � argminx2[xL;xU ][vh(x) � r]2 and

xh(r) � argminx2[xL;xU ][vl(x)� r]2. Then for all (�; FX) 2 �
F , xl(r) � x�(r) � xh(r) for

all r in the range above.

The screening level x�(r) can not fall outside this bound, provided bidders�values are non-

decreasing in both own and competitors�signals, and private signals are a¢ liated. Another

desirable property of this bound on x�(r) is its tightness, in the sense that it has exhausted

all information in the restricted set �
F .
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Lemma 5. (i) 9  � (�; FX) 2 � 
 F such that xl(r; ) = x�(r; ) for all r; and (ii)

8" > 0, 9  2 �
F such that supr2[vh;L;vh;U ] jxh(r; )� x�(r; )j � ".

The upper bound is reached if, conditional on winning in a �rst-price auction, a bidder

�nds his rivals� signals completely uninformative about his own value. This includes PV

auctions as a special case. On the other hand, the lower bound is attained if the margin

between a bidder�s own signal and the highest competing signal reveals no additional infor-

mation about his own value conditional on winning. In other words, lower and upper bounds

of screening levels correspond to two extreme cases of weights (0 and 1 respectively) that a

bidder assigns to his own signals while calculating his expected value conditional on winning.

Both vl and vh are related to G0B through equilibrium bidding condition in �rst-price auc-

tions. The non-negativity of � suggests x�(0) = xL.19 Hence 8x � xL, vh(x) = �(b0(x);G
0
B)

and

vl(x) = �l(b0(x);G
0
B) �

Z b0(x)

b0(xL)

�(~b;G0B)
g0
MjB(

~bjb0(x))
G0
MjB(b0(x)jb0(x))

d~b

It follows from Lemma 2 above that �(b;G0B) � �l(b;G
0
B) for all b 2 [b0L; b0U ] (where b0k �

b0(xk) for k = L;U), and �(b0L;G
0
B) = �l(b

0
L;G

0
B). Furthermore, both �(b;G

0
B) and �l(b;G

0
B)

are increasing over [b0L; b
0
U ] by the monotonicity of b0(:). De�ne �

0
k � �(b0(xk);G

0
B) = vh;k for

k = L;U . For r 2 [�0L; �0U ], de�ne b0(xl(r)) = argminb2[b0L;b0U ][�(b;G
0
B) � r]2 and b0(xh(r)) =

argminb2[b0L;b0U ][�l(b;G
0
B) � r]2. Then b0(x�(r)) is bounded between b0(xl(r)) and b0(xh(r))

for all r 2 [�L; �U ]. Note that fxk(r)gk=l;h are tight bounds on x�(r) implies fb0(xk(r))gk=l;h

are tight bounds on b0(x�(r)), as � and vh are bounded.

19The non-negativity of � is testable in equilibrium, for �L � �(bL;G0B) = vh(xL; xL; �; FX) = �(xL).
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1.2.4.3. Envelops on the �r-mapping and FRI(r). The �r-mapping in Lemma 1 turns

out to be a solution for a di¤erential equation :

�0r(b;G
0
B) = [�(b;G

0
B)� �r(b;G

0
B)]
~�(b;G0B)

with the boundary condition : �r(b0(x�(r))) = br(x
�(r)) = r. The lemma below shows that

replacing b0(x�(r)) with fb0(xk(r))gk=l;h in boundary conditions will lead to new solutions

f�r;k(:;G0B)gk=l;h respectively, which can be constructed from G0B and are envelops of �r from

above for all x � x�(r) and from below for all x � xh(r).

Lemma 6. For k 2 fl; hg, de�ne for b � b0(xk(r)),

�r;k(b;G
0
B) � r~L(b0(xk(r))jb;G0B) +

Z b

b0(xk(r))

�(~b;G0B)d~L(
~bjb;G0B)

Under A1-A3, �r;k(:;G0B) are increasing on [b0(xk(r)); bU ] for k = l; h, and �r;h(b;G0B) �

�r(b;G
0
B) 8b � b0(xh(r)) and �r;l(b;G0B) � �r(b;G

0
B) 8b � b0(x

�(r)).

Intuitively, for bidders with signals above the screening level, br(x) is the expectation of a

function h(t) with respect to the distribution L(tjx), where h(t) is de�ned as r for t < x�(r)

and vh(t; t) for t 2 [x�(r); x]. By the de�nition of xl(r) and the monotonicity of vh, br(x)

is smaller than the expectation of hu(t) conditional on t � x for x � x�(r) , where hu(t)

is de�ned as r for t < xl(r) and vh(t; t) for x 2 [xl(r); x]. Likewise br(x) for x � xh(r) is

greater than the expectation of hl(t), where hl(t) is de�ned as r for t < xh(r) and vh(t; t)

for x 2 [xh(r); x]. The lemma proves a version of these inequalities, with structural elements

hl, hu, L(sjx) and xk(r) replaced by corresponding functionals of G0B and b0(x) through the

manipulation of the equilibrium condition in (1.2).
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The fact that L(sjx) is stochastically increasing in x has important implications on the

performance of �r;k. Speci�cally, their di¤erences �r;l � �r;h is non-increasing in b for b �

b0(xh(r)). 20 This is a desirable property, for it implies the di¤erence between ��1r;l (t;G
0
B)

and ��1r;h(t;G
0
B) is decreasing in the revenue level t as long as both �r;l and �r;h increase at a

moderate rate.

Given the lemma above and the identi�cation of b0(xk(r)), the bounds on FRI(r) are

derived immediately.

Proposition 7. Suppose r > v0. Under A1, A2 and A3, F l
RI(r) �F:S:D: FRI(r) �F:S:D:

F u
RI(r), where �F:S:D: denotes �rst-order stochastic dominance, and

F l
RI(r)(t) = 0 8t < v0

= Pr(b0(X
(1)) < b0(xl(r)) 8t 2 [v0; r)

= Pr(b0(X
(1)) � ��1r;l (t;G

0
B)) 8t 2 [r;+1)

and

F u
RI(r)(t) = 0 8t < v0

= Pr(b0(X
(1)) < b0(xh(r))) 8t 2 [v0; r)

= Pr(b0(X
(1)) � ��1r;h(t;G

0
B)) 8t 2 [r;+1)

where ��1r;k(t;G
0
B) � argminb2[b0(xk(r));bU ][�r;k(b;G0B)� t]2.

20Proof of the claim : �0r;l(b;G
0
B) � �

0
r;h(b;G

0
B) =

~�(b;G0B)
hR b0(xh(r))
b0(xl(r))

r � �(~b;G0B)d~L(~bjb;G0B)
i
� 0 for r �

�(b;G0B) 8b � b0(xh(r)) in equilibrium. The inequality is strict if b0(xh(r)) > b0(xl(r)).
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1.2.4.4. A simpler upper bound of FRI(r). Below I propose a simpler upper bound on

FRI(r) (denoted ~F u
RI(r)) that is constructed from FRI(0) directly, rather than from G0B. This

simpler upper bound coincides with F u
RI(r) when private signals are i.i.d., but is �rst-order

stochastically dominated by F u
RI(r) otherwise. The following lemma relates br to equilibrium

strategies with no reserve price, and also helps relate FRI(r) to FRI(0) later.

Lemma 8. Under A1-A2 and for r > 0, equilibrium strategies b0 and br satisfy: (i)

b0(x) � br(x) 8x � x�(r) and (ii) the di¤erence br(x)� b0(x) is decreasing in x 8x � x�(r).

Graph 1 depicts FRI(0) and FRI(r) for the case where v0 � vh(xL; xL), re�ecting the analyt-

ical results in Lemma 5. It shows FRI(0) crosses FRI(r) only once from below at b0(x�(r)) < r.

In principle, the distance between FRI(0)(t) and FRI(r)(t) for t > r can be non-monotone due

to the distribution of X(1).

While FRI(0) as such does not suggest any lower bound on FRI(r), it does suggest a

simple upper bound of FRI(r). De�ne ~F u
RI(r)(t) = 0 for t < v0, ~F u

RI(r)(t) = Pr(b0(X
(1)) < r)

for t 2 [v0; r) and ~F u
RI(r)(t) = Pr(b0(X

(1)) � t) for t � r. In general ~F u
RI(r) is �rst-order
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stochastically dominated by F u
RI(r), but the two are equivalent if signals are i.i.d. To see

this, note FY jX(sjx)=FY jX(xjx) �F:S:D: L(sjx) when signals are a¢ liated, and the two are

identical when signals are i.i.d.. It follows vl(x) � b0(x) for all x and therefore xh(r) � b�10 (r)

for r 2 [b0L; b0U ]. Furthermore, b0(xh(r)) � r = vl(xh(r)). Then an argument similar to the

proof of Lemma 5 shows �r;h(b0(x)) = rL(xh(r)jx) +
R x
xh(r)

vh(s; s)dL(sjx) � b0(x) for all

x � xh(r). Hence �
�1
r;h(t;G

0
B) � t for t � r. All inequalities above hold with equality when

signals are i.i.d.

The alternative upper bound ~F u
RI(r) is very easy to construct. When signals are strictly

a¢ liated, it is less e¢ cient than F u
RI(r) in the sense that it is not a tight bound on FRI(r).

This is not surprising as F u
RI(r) is constructed using full information from G0B, while ~F

u
RI(r) is

a only a functional of FRI(0). On the other hand, ~F u
RI(r) is equivalent to F

u
RI(r) when signals

are i.i.d.. As this restriction has testable implications on G0B, ~F
u
RI(r) can be useful in practice.

1.2.5. Bounds on FRII(r)

This subsection proposes bounds on counterfactual revenue distributions in 2nd-price auc-

tions under reserve price r (denoted FRII(r)) that are constructed from G0B. Theory predicts

for any given reserve price r, the expected revenues in 2nd-price auctions are at least as

high as those in 1st-price auctions provided bidder signals are a¢ liated. However, the size

of this di¤erence is an open empirical question. In addition, within the format of 2nd-price

auctions, theory is silent about the choice of optimal reserve price r that maximizes expected

revenue in 2nd-price auctions when signals are not independent. Knowledge of FRII(r) helps

address these open questions.

The equilibrium strategy in a second-price auction with reserve price r is �r(x) = vh(x)

for x � x�(r) and �r(x) < r for x < x�(r). For all r > v0, the revenue distribution in a
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second-price auction with reserve price r is : 21

FRII(r)(t) = 0 8t < v0

= Pr(X(1) < x�(r)) 8t 2 [v0; r)

= Pr(X(2) < x�(r)) 8t 2 [r; vh(x�(r)))

= Pr(vh(X
(2)) � t) 8t 2 [vh(x�(r));+1)

The following proposition derives bounds on FRII(r)(t) that are constructed from G0B.

Proposition 9. Suppose v0 < r. Under A1 and A2, F u
RII(r)(t) �F:S:D: FRII(r)(t) �F:S:D:

F l
RII(r)(t), where

F l
RII(r)(t) = 0 8t < v0

= Pr(b0(X
(1)) < b0(xl(r))) 8t 2 [v0; r)

= Pr(vh(X
(2)) � t) 8t 2 [r;+1)

and

F u
RII(r)(t) = 0 8t < v0

= Pr(b0(X
(1)) < b0(xh(r))) 8t 2 [v0; r)

= Pr(b0(X
(2)) < b0(xh(r))) 8t 2 [r; vh(xh(r)))

= Pr(vh(X
(2)) � t) 8t 2 [vh(xh(r));+1)

21See proof of the following proposition for details.
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The idea of the proof is better explained by Graph 2. Both b0(xl(r)) and b0(xh(r))

are identi�ed from G0B, and b0(X
(1)) and b0(X(2)) are order statistics of G0B. Furthermore in

equilibrium vh(X
(2)) = �(b0(X

(2))) and vh(xh(r)) can be identi�ed as �(b0(xh(r))). Therefore

F l
RII(r) and F

u
RII(r) can be constructed from G0B, and the boundwidth depends on the distance

between b0(xl(r)) and b0(xh(r)), and distributions of X(1) and X(2). In the Monte Carlo

section below, I will experiment with di¤erent designs to study how this distance changes

with the a¢ liation between signals.

1.3. Nonparametric Estimation of Bounds

1.3.1. Three-step estimators fF̂ k
RI(r)gk=l;u

This section de�nes three-step estimators for the bounds on FRI(r)(t). Throughout the

section, we suppose data contains all bids submitted in Ln independent, homogenous auc-

tions, each with n potential bidders and no reserve price.22 Let C(B) � [bL; bU ] denote the
22"Independence" here has both economic and statistical interpretations. First, it requires there is no
strategic interaction or learning across the auctions so that the �rst-order condition characterizes equilibria
in all auctions. Second, the random vector of bidders�private information is independent across auctions.
"Homogeneity" means all auctions share the same commonly observed characteristics of the auctioned asset.
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support of equilibrium bids in 1st-price auctions with non-binding reserve prices. For all

(m; b) 2 C2(B), de�ne the following kernel estimators:

ĜM;B(m; b) =
1

LnhG

LnX
l=1

1

n

nX
i=1

1(mil � m)KG(
b� bil
hG

)

ĝM;B(m; b) =
1

Lnh2g

LnX
l=1

1

n

nX
i=1

Kg(
m�mil

hg
;
b� bil
hg

)

where bil and mil are respectively bidder i�s own bid and the highest competing bid against

him in auction l, Ln is the total number of auctions with n potential bidders, KG and Kg

are symmetric kernel functions with bounded hypercube supports with each side equal to 2,

and hg and hG and corresponding bandwidths. It is well known that density estimators are

asymptotically biased near boundaries of the support for b 2 [bL; bL+hg)[ (bU �hg; bU ]. Let

� � max(hg; hG) and C�(B) = [bL + �; bU � �] be an expanding subset of C(B) where ĜM;B

and ĝM;B are asymptotically unbiased. Natural estimators for the boundaries of C�(B) are:

~bL = b̂L + �; ~bU = b̂U � �

where b̂L = mini;l bil and b̂U = maxi;l bil converge almost surely to bL and bU respectively.

Nonparametric estimators for � and �l are de�ned as:

�̂(b) = b+
ĜM;B(b; b)

ĝM;B(b; b)
; ~GM;B(b; b) =

Z b

~bL

ĝM;B(t; b)dt+ ĜM;B(~bL; b)

�̂l(b) = �̂(~bL)
ĜM;B(~bL; b)

ĜM;B(b; b)
+

Z b

~bL

�̂(t)
ĝM;B(t; b)
~GM;B(b; b)

dt
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where ~GM;B and �̂l are de�ned over the random support Ĉ�(B) � [~bL;~bU ]. Let b0k;r be a

short-hand notation for b0(xk(r)). The �rst-step estimators for b0l;r and b
0
h;r are de�ned as:

b̂0l;r = argminb2Ĉ�(B)[�̂(b)� r]2; b̂0h;r = argminb2Ĉ�(B)[�̂l(b)� r]2

With estimates b̂0l;r and b̂
0
h;r, we construct kernel estimator for �r;l(b) and �r;h(b) on [~bL;~bU ].

For k = fl; hg, de�ne:

�̂r;k(b; b̂
0
k;r) � rL̂(b̂0k;rjb) +

Z b

b̂0k;r

�̂(t)�̂(t)L̂(tjb)dt 8b 2 (b̂0k;r; bU � �]

� r 8b 2 [bL + �; b̂0k;r]

where �̂(t) � ĝM;B(t; t)=ĜM;B(t; t) and L̂(tjb) � exp(�
R b
t
�̂(s)ds).

The second-step estimators for ��1r;l (t) and �
�1
r;h(t) are de�ned as:

�̂
�1
r;l (t) = argminb2Ĉ�(B)[�̂r;l(b)� t]2; �̂

�1
r;h(t) = argminb2Ĉ�(B)[�̂r;h(b)� t]2

Note that by de�nition, Ĉ�(B) � C�(B) with probability one. As a �nal step, the bounds

on the counterfactual revenue distribution under reserve price r are estimated as:

F̂ l
RI(r)(t) =

1

Ln

XLn

l=1
1(Bmax

l � �̂
�1
r;l (t)); F̂ u

RI(r)(t) =
1

Ln

XLn

l=1
1(Bmax

l � �̂
�1
r;h(t))

where Bmax
l = maxi=1;::;n bil is the highest bid in auction l.

The three-step estimators de�ned above converge in probability to F l
R(r)(t) � Pr(b0(X(1)) �

��1h;r(t)) and F
u
R(r)(t) � Pr(b0(X(1)) � ��1l;r (t)) respectively over all r and t. Below I strengthen

restrictions A1 ,A2 and A3 to include all regularity conditions needed and state the main

proposition.
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S1 For n � 2, (i) The n-dimensional vectors of private signals (x1l; x2l; ::xnl)
Ln
l=1 are

independent, identical draws from the joint distribution F (x1; ::; xn), which is exchangeable

in all n arguments and a¢ liated with support [xL; xU ]; (ii) F (x1; ::; xn) has R + n, R � 2,

continuous bounded partial derivatives on [xL; xU ]n, with density f(x) � cf > 0 for all

x 2 [xL; xU ]n.

S2 (i) The value function �n(:) : [xL; xU ]n ! R+ is nonnegative, bounded, and continuous

on the support; (ii) �n(:) is exchangeable in rival signals X�i, non-decreasing in all signals,

and increasing in own signal Xi over [xL; xU ]. (iii) �n(:) is at least R times continuously

di¤erentiable and �(xL) > 0; (iv) vh(xU) <1 and v0h(xU) <1.

S3 (i) The kernels KG(:) and Kg(:) are symmetric with bounded hypercube supports of

sides equal to 2, and continuous bounded �rst derivatives; (ii)
R
KG(b) = 1, and

R
Kg( ~B; b)d ~Bdb

= 1; (iii) KG(:) and Kg(:) are both of order R + n� 2.

Proposition 10. Let hG = cG(logL=L)
1=(2R+2n�5) and hg = cg(logL=L)

1=(2R+2n�4),

where c�s are constants.23 Suppose S1, S2 and S3 are satis�ed and R > 2n� 1, then for all

r � v(xL) and t � r, F̂ k
RI(r)(t)

p! F k
RI(r)(t) for k = l; u.

The proof proceeds in several steps. First, I prove smoothness of bid distributions in

equilibrium, using regularity conditions of smoothness of signal distributions. Second, I show

the kernel estimators �̂l and �̂ de�ned above converge in probability to �l and � uniformly

over Ĉ�(B), and use a version of the Basic Consistency Theorem (which is generalized for

objective functions de�ned on random support) to prove b̂0k;r
p! b0k;r for k = l; h and relevant

r > 0. Next, I prove �̂k;r(:; b̂0k;r)
p! �k;r(:; b

0
k;r) uniformly over Ĉ�(B) and again use the

generalized BCT to prove �̂
�1
r;k(t)

p! ��1r;k(t) for all relevant t. Finally, the Glivenko-Cantelli

23The choice of constant c�s will be discussed in the following section on Monte Carlo experiments.
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uniform law of large numbers are used to show the empirical distributions of Bmax
l evaluated

at �̂
�1
r;k(t) for k = l; h are consistent estimators for bounds on FRI(r)(t).

1.3.2. Two-step estimators fF̂ k
RII(r)gk=l;u

Given work on F̂ k
RI(r) above, de�nition of two-step estimators for fF k

RII(r)gk=l;u is straight-

forward. The estimator for F u
RII(r) is :

F̂ l
RII(r)(t) =

1

Ln

XLn

l=1
1(B

(1:n)
l < b̂0l;r) 8t 2 [v0; r)

=
1

Ln

XLn

l=1
1(B

(2:n)
l < �̂

�1
(t)) 8t 2 [r;+1)

and the estimator for F u
RII(r) is :

F̂ u
RII(r)(t) =

1

Ln

XLn

l=1
1(B

(1:n)
l < b̂0h;r) 8t 2 [v0; r)

=
1

Ln

XLn

l=1
1(B

(2:n)
l < b̂0h;r) 8t 2 [r; �̂(b̂0h;r))

=
1

Ln

XLn

l=1
1(B

(2:n)
l < �̂

�1
(t)) 8t 2 [�̂(b̂0h;r);+1)

where b̂0k;r is de�ned as above and �̂
�1
(t) = argminb2Ĉ�(B)[�̂(b)� t]

2 for t � r. Pointwise con-

sistency of F̂ k
RII(r)(t) for r � v(xL) and t � r follows from similar arguments for consistency

of F̂ k
RI(r)(t) and the fact that �̂(b̂

0
h;r)

p! �(b0h;r;G
0
B) = vh(xh(r)).

1.4. Monte Carlo Experiments

This section reports Monte Carlo experiments of the three step estimator of bounds on

FRI(r) and FRII(r). The objective is to illustrate how estimates of bounds vary with structural

parameters such as a¢ liation between private signals, number of potential bidders n and

reserve price r.
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1.4.1. Analytical impacts of signal correlations on bounds : the case with n = 2

Before discussing Monte Carlo performances of bound estimators, I study analytically how

bounds on the probability that no one bids above the reserve price in equilibrium vary

with signal correlations. For a given value function, dependence between signals a¤ects

these bounds through two channels: bounds on the screening level x�(r), and bounds on

equilibrium strategy br(:). To capture these impacts, I use a parametric design where signal

a¢ liations can be controlled.

Design 1 (n = 2 with pure common values (PCV) and a¢ liated signals) Two potential

bidders compete in an auction with Vi = (X1 + X2)=2 for i = 1; 2. Private signals are

noisy estimates of a common random variable, i.e., Xi = X0 + "i for i = 1; 2. For either

bidder, his noise "i is independent from(X0; "�i), and distributed uniformly on [�c; c] for

some 0 � c � 0:5. The common random term X0 is distributed uniformly on [c; 1� c].

The signals have triangular marginal densities on [0; 1].24 Their correlation coe¢ cient is:

corr(X1; X2) =
var(X0)

var(X0) + var("i)
=

(1� 2c)2
(1� 2c)2 + 4c2

By de�nition, vh(x) = x, vl(x) = E[X2jX2 � x;X1 = x], and v(x) = x+vl(x)
2

. In this design,

vl(x) has a closed form, and the impacts of correlations on boundwidth can be studied

analytically.

24The density function is f(x) = 4x for 0 � x � 0:5 and 4 � 4x for 0:5 � x � 1. For details, see Simon
(2000).
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Figure 1(a) plots vl(x) and vh(x) for c = [0:1 0:2 0:3 0:4]. The distance between vh

and vl is non-decreasing in signals, as vl(x) is a truncated expectation and therefore cannot

increase faster than the threshold x. Figure 1(b) plots the boundwidth xh(r) � xl(r) as a

function of reserve prices for each c. For any given reserve price, bounds on screening levels

are narrower as c decreases and correlation increases. Besides, boundwidths increase at a
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rate slower than r for high correlations. When c = 0:1 and c = 0:2, the boundwidths are

invariant over some range of r.

For di¤erent signal correlations, Figure 1(c) plots the boundwidths of the probability that

neither bidder bids above r in a 1st-price auction. That is, FX(1:2)(xh(r)) � FX(1:2)(xl(r)),

where X(1:2) is the higher of two signals. For a lower r, the boundwidth can be slightly

wider when correlations are high. But as the reserve price increases, the boundwidths are

unambiguously smaller for higher correlations. This is explained by the pattern in Figure

1(b) and the distribution of X(1:2). As Figure 1(e) shows, probability mass of X(1:2) is more

skewed to the left when signals are closer to being uncorrelated. For smaller r, xl(r) and

xh(r) are small and xh(r) � xl(r) are close for all c, while X(1:2) has more mass close to 0

for more correlated signals. Hence FX(1:2)(xh(r)) � FX(1:2)(xl(r)) is bigger for c = 0:1. As

r, xl(r) and xh(r) all increase, the boundwidths become wider for higher c because xh(r)

� xl(r) increases faster and the density of X(1:2) is higher in the relevant range as signals

become less correlated.
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Figure 1(d) plots boundwidths for the probability that neither bids above r in 2nd-price

auctions, i.e. FX(2:2)(xh(r)) � FX(2:2)(xl(r)), for di¤erent c. In this case, the boundwidths

associated with a smaller c is almost unambiguously smaller than those with smaller corre-

lations. Likewise, the pattern is explained by similar arguments as demonstrated in Figure

1(b) and the distribution of X(2:2) plotted in Figure 1(f).

1.4.2. Performance of F̂ k
RI(r) under i.i.d. signals

This subsection focuses on the performance of three-step estimators F̂ k
RI(r) when private

signals are identically and independently distributed. The i.i.d. restriction has testable

implications on observed bid distributions, and helps simplify the estimation procedures.

In this subsection, I vary n, r and distributional parameters and study their impacts on

estimator performances.

Design 2 (n � 3 with PCV and i.i.d. uniform signals) Private signals fXgi=1;::;n

are identically, independently distributed as uniform on [0; 1]. The pure common value is

Vi =
Pn

j=1Xj=n.

Design 3 (n � 3 with PCV and i.i.d. truncated normal signals) Private signals fXigi=1;::;n

are identically, independently distributed as truncated normal on [0; 1] with underlying para-

meters (�; �2). The pure common value is Vi =
Pn

j=1Xj=n.25

Independence is a special case of a¢ liation, and these two designs satisfy restrictions

for a general symmetric, interdependent value auctions (A1 and A2 ). Besides, changes in

the number of bidders are not exogenous to the value distribution, as the distribution of

the average of signals depends on n. Therefore both designs do not meet the necessary

25This form of value functions introduces a restriction/normalization on the signals, since it requires the
support of signals is the same as the support of the values.
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restrictions for tests distinguishing PV and CV auctions in Haile, Hong and Shum (2003).

This makes the partial identi�cation approach more interesting in both designs.

I experiment with di¤erent numbers of potential bidders and reserve prices for Design 2.

For each pair of �xed n and r, I replicate the nonparametric estimators of F̂ k
RI(r) for 1; 000

times, with each estimate calculated from equilibrium bids in 500 simulated �rst-price auc-

tions. For Design 2, it can be shown b0;n(x) = n�1
n
( 1
n
+ 1
2
)x, and bids are simulated as random

draws from a uniform distribution on [0; n�1
n
( 1
n
+ 1
2
)]. For Design 3, I also vary distributional

parameters � and � in addition to n and r. Likewise for each value of (n; r; �; �), I replicate

the estimator for 1; 000 times, each based on 500 simulated auctions. For Design 3, b0;n(x) =R x
xL

2
n
s + n�2

n
'(s)d

Fn�1X (s)

Fn�1X (x)
, where '(x) = � � �

�(x��
�
)��(xL��

�
)

�(x��
�
)��(xL��

�
)
and FX(s)

FX(x)
=

�( s��
�
)��(xL��

�
)

�(x��
�
)��(xL��

�
)
.

Hence equilibrium bids are simulated by �rst drawing 500 � n signals xil randomly from the

truncated distribution, and then calculate b0;n(xil) through numerical integrations.26 For

both designs, the true counterfactual distribution FRI(r) can be recovered through inverting

br(:), which can be calculated using the closed form above.

In the symmetric equilibria above, bids in both designs are i.i.d.. This testable implica-

tion can be veri�ed from the distribution of bids observed, and simpli�es the estimation as

�(b;G0Bn) = b+ 1
n�1

G0Bn (b)

g0Bn (b)
and �l(b;G

0
Bn
) = b. The simpli�ed estimator is �̂(b) � b+ 1

n�1
Ĝ0Bn (b)

ĝ0Bn (b)
,

where ĜBn(b) =
1
Ln

PLn
l=1

1
n

Pn
i=1 1(bil � b), ĝn(b) = 1

Lnhg

PLn
l=1

1
n

Pn
i=1K(

bil�b
hg
) and Ln

is the number of auctions with n bidders. For estimation, I use the tri-weight kernel

K(u) = 35
32
(1 � u2)1(juj � 1).27 Bandwidths hg is 2:98 � 1:06�̂b(nLn)�

1
4n�4 , where �̂b is

the empirical standard deviation of bids in the data. The bandwidths are chosen in line with

the consistency proposition in the appendix, while the constant factor 1:06�̂b is chosen by

26I use the midpoint approach for numerical intergrations in this paper.
27The triweight kernel is of order 2. In principle when n � 3, kernels used in ĝBn should be of higher order.
But can lead to the issue of negative density estimates. Therefore empirical literature typically ignore this
requirement and use kernels with order 2.
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the "rule of thumb" (Li, Perrigne and Vuong 2002). The multiplicative factor 2:98 is due to

the use of tri-weight kernels (Hardle 1991).

Figure 2 plots the true revenue distribution FRI(r) in Design 2 and, for di¤erent n and

r, reports the 5th percentile of F̂ l
RI(r) and the 95th percentile of F̂

u
RI(r) out of 1; 000 pairs of

estimates. The two percentiles form an estimate of the conservative 90% pointwise con�dence

interval for the bounds [F l
RI(r); F

u
RI(r)].

28 The true revenue distribution always falls within

the 90% point-wise con�dence interval for the bound. The con�dence intervals for lower r

are narrower, holding n constant. On the other hand, more potential bidders correspond to

tighter con�dence regions ceteris paribus. To understand the pattern, note the boundwidth of

the probability that no one bids above r in equilibrium is Pr(b0;n(X(1:n))� r)� Pr(b0;n(X(1:n))

28This approach for constructing a pointwise con�dence region for the bounds was used in Haile and Tamer
(2003). An alternative way to report the performance of our estimator would be to construct a pointwise
con�dence region for the true distribution introduced by Manski and Imbens (2004).
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� n�1
n
r) = FX(1:n)( n

n�1
2n
n+2

r) � FX(1:n)( 2nn+2r), which is increasing in r for a given n. For a

given r, 1
n�1

2n
n+2

r decreases in n and this o¤sets the impacts of a rising 2n
n+2

r and a more

left-skewed FX(1:n) as competition increases. The simulations suggest changes in the width

of con�dence intervals are mostly due to impacts of n and r on the boundwidths of FRI(r).
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Figure 3 reports FRI(r) and the estimated 90% con�dence interval for Design 3. Again,

the true revenue distribution falls within the 90% point-wise con�dence intervals for the

parameters considered. The impacts of n and r on the estimated con�dence intervals in

Design 3 are the same as those for Design 2 in Figure 2. In addition, Figure 3 also shows

impacts of distributional parameters � and � on con�dence intervals. First, holding n,

r and � �xed, the con�dence intervals become narrower as � increases. This is because

for all t, E(XjX � t) gets closer to t as the distribution of X is more skewed to the

left. Consequently, x�(r) decreases for a given r, while the distance between vh and vl also

becomes smaller. As a result, the bound on the screening probability is shifted to the left

and becomes tighter. Second, the impact of � on con�dence intervals depends on �, holding

n and r �xed. A higher standard deviation increases the width of con�dence intervals for

signal distributions su¢ ciently skewed to the left, but reduce the width of con�dence intervals

for signal distributions su¢ ciently skewed to the right. The impacts are more obvious for

distributions skewed to the right. This pattern is explained by similar reasoning above.

Again, simulations suggest changes in the width of con�dence intervals are mostly due to

impacts of n and r on the boundwidths of FRI(r).

1.4.3. Performance of F̂ k
RI(r) with a¢ liated signals

When signals are not i.i.d., there are no simpli�ed forms for �̂ and �̂l, and the full nonpara-

metric estimates in Section 3 applies. In this subsection I extended Design 1 for n � 3 so

that Vi =
Pn

j=1Xj=n, and experiment with the correlation parameter c to study its impact

on the performance of estimators.

With n � 3, it is impractical to derive the closed form of the inverse hazard rate

fY jX;n(uju)=FY jX;n(uju). To �nd out the true revenue distribution, I replace vh(x) and L(sjx)
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with their kernel estimates in a simulated sample of 5 � 105 auctions, and calculate the equi-

librium bidding strategies using these estimates and numerical integrations. The true FRI(r)

is then recovered with knowledge of the distribution of the highest signal X(1:n).
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For each (c; n), I simulate 200 samples, with each containing 1; 000 simulated �rst-price

auctions. For each r and revenue level t, Figure 4 reports the 5-th percentile of F̂ l
RI(r)(t) and

the 95-th percentile for F̂ u
RI(r)(t) out of 200 pairs of estimates. This forms an estimate for a

conservative 90% con�dence interval for the bounds on FRI(r). Figure 4 shows the true FRI(r)

lies within the estimated con�dence interval for r = 0:2 or 0:5, c = 0:2 or 0:4 and n = 3 or 4.

Holding r and c constant, the widths of the estimated con�dence intervals decrease slightly

as n increases. For r = 0:2, higher correlation leads to slightly wider con�dence intervals,

whereas for r = 0:5 higher signal correlation leads to obviously narrower con�dence intervals.

Smaller correlations among signals implies the distribution of X(1:n) is more skewed to the

left, and the distance between vl and vh are bigger. These explain why a higher c leads to

wider con�dence intervals when r is high at 0:5. On the other hand, when r is low at 0:2,

the left-skewness of FX(1:n) o¤sets the impact of a wider bound [xl(r); xh(r)] due to a higher
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c, and may lead to a narrower con�dence interval. Furthermore, the theory also states for

x � x�(r) the bounds on �r(b0(x)) is tighter as b0(x) increases. For t > r, this counteracts the

left skewness of FX(1:n) due to lower correlations. This prediction is consistent with patterns

in Figure 4 where con�dence intervals on FRI(r) never broaden substantially as revenue level

t increases.

1.5. Extensions

1.5.1. Heterogenous Auctions

In practice, bidding data are often collected from heterogenous auctions that report di¤erent

characteristics of auctioned objects. If commonly observed by all bidders, such heterogeneity

a¤ects bidders�strategies, and distributions of counterfactual revenues. When heterogeneity

across auctions is completely observed in the data, the logic for bounds in homogenous

auctions extends in principle to bounds on revenue distributions conditional on speci�c values

of auction features. Auctions are homogenous within subsets of the data where such features

(denoted Z) are controlled for, and the same algorithm in the benchmark model extends

immediately to bounds on the conditional revenue distribution given these characteristics

FRI(r)jZ=z. Such bounds are constructed from conditional bid distribution G0BjZ=z.

The real challenge posed by observed auction heterogeneity is empirical. The construc-

tion of bounds on conditional revenue distributions requires a large cross-sectional data of

homogenous auctions for �xed z and n. The issue of data de�ciency aggravates as the di-

mension of z becomes higher. The rest of this subsection shows if signals are independent

from auction characteristics conditional on n, and are additively separable from them in

value functions, then it is possible to "homogenize" bids across heterogenous auctions, thus

alleviating the data de�ciency problem.
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A1� (Interdependent Values) Vi;N = h(Z0) + �N(Xi;X�i), where h(:) is di¤erentiable,

and �N is bounded, continuous, exchangeable in its last N � 1 arguments, non-decreasing in

all arguments, and increasing in Xi.

A4 (Conditional Independence of X and Z) Conditional on N = n, fXigi=1;::;n is inde-

pendent from Z.

Then a PSBNE in the auction with no binding reserve price is a pro�le of strategies that

solve:

b0i(x; z;n) = argmax
b
E[(Vi � b)1fmax

j 6=i
b0j(Xj;Z) � bgjXi = x;Z = z; N = n]:

Under additional assumptions above, common knowledge of auction features impact

strategies of all bidders in the same way. As the proposition below shows, the separa-

bility and the index speci�cation of value functions are inherited by bidding strategies in

equilibrium.

Proposition 11. Under A1�, A2, A3 and A4, bidders� equilibrium strategies satisfy :

b0i(x; z;n) = h(z0) + �(x;n) 8x; z 8i, where �(x;n) �
R x
xL
�(s;n)dL(sjx;n), and �(s;n) �

E[�(X)jXi = Yi = s;N = n].

Fix the number of potential bidders n, the proposition implies E(b0ijZ = z; N = n) =

h(z0) + E(�(X;N)j N = n), where the second term is a constant independent from Z.

This becomes a single index model, and both Powell, Stock and Stocker (1989) and Ichimura

(1991) showed  can be identi�ed up to scale, and estimated consistently using average de-

rivative estimator and semiparametric least square estimators respectively. In the special

case where h(:) is known to be the identity function, an OLS regression of bids from het-

erogenous auctions on z for a �xed n will estimate  consistently. Alternatively, including
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dummies for the number of potential bidders in a pooled regression will also give consistent

coe¢ cient estimators for .

A corollary of the proposition is that for any pair of di¤erent features of auctions z and �z,

the equilibrium strategies for a given signal x are related as b0(x; z;n) = b0(x;�z;n)�h(�z0)+

h(z0). Thus when h is known, bids across heterogenous auctions can be "homogenized" at

any speci�c reference level z so that more observations are available for estimating G0B(Z).

Larger sample size leads to better performance of estimators of bounds on FRI(r)jZ=z.

1.5.2. Endogenous Participation

In practice, bidding data are often collected from homogenous auctions with a binding reserve

price r known to all bidders.29 Data from such auctions can depart from those with non-

binding reserve prices in one or both of two aspects : First, bids from potential bidders

that are screened out may not be observed. Second, data may only include auctions with

at least one bid above r, and thus exclude those where all bidders are screened out (i.e.

X(1) < x�(r)). In both cases, the algorithm in the benchmark model can not be applied

immediately.

In addition, a binding reserve price r in the data also reduces the scope of reserve prices

that are eligible for counterfactual analyses, for the logic underlying bounds in the benchmark

case only applies to revenue distributions for r0 > r. This is because bids below r reveal

no information about underlying signals as the equilibrium condition linking Gr
B with � and

FX only holds for br(x) � r. As a result, for all r0 < r, x�(r0) is lower than x�(r) and can

29In the case of heterogenous auctions, reserve prices are often set according to characteristics of the auc-
tioned object. The subsection above showed observed heterogeneities can be controlled for. For the sake of
highlighting challenges due to endogenous participation, I focus on homogenous auctions in this subsection.
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not be bounded in its small neighborhoods using equilibrium conditions.30 Throughout this

subsection, I focus on the bounds for FRI(r). Extensions to those for FRII(r) is straightforward

and omitted.

1.5.2.1. Unobserved screened bidders. Unobserved bids from bidders who are screened

out matter in bounding FRI(r0) (where r0 > r) only in the sense that they may make the

number of potential bidders unobservable. (For now assume auctions with X(1) < x�(r) are

also observed in the data.) If the number of potential bidders is known (as is often the

case in applications), then the algorithm for bounding FRI(r) can be applied, even if data do

not contain bids from bidders that are screened out. The following lemma generalizes the

equilibrium condition (1.2) for distributions rationalized under a binding r.

Proposition 12. Suppose a distribution of bids Gr
B in a �rst-price auction with reserve

price r � 0 is rationalized by (�; FX) 2 �
F . Then �(br(x);Gr
B) = vh(x; �; FX) 8 x � x�(r).

A complication due to binding reserve prices in the data is that the lower bound of v(x)

can no longer be identi�ed from Gr
B, for bids below r cannot be linked to signals through

equilibrium conditions. The solution is to bound v(x) from below with the expected payment

of a winner in second-price auctions with reserve price r. For x � x�() de�ne

vl;r(x) � r
FY jX(x

�(r)jx)
FY jX(xjx)

+

Z x

x�(r)

vh(s)
fY jX(sjx)
FY jX(xjx)

ds

Then vl;r(x) is increasing in x by monotonicity of the value function and a¢ liations be-

tween signals, and v(x) � vl;r(x) for x � x�(r) by the equilibrium condition in second-

price auctions with r. (The formal proof is similar to the benchmark case and omitted.)

Hence for all r0 > r, x�(r0) is bounded by xh;r(r0) � argminx2[x�(r);xU ](vl;r(x) � r0)2 and

30For r0 < r, it can be shown that FRI(r0) is bounded below by FRI(r) for t � r.
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xl;r(r
0) � argminx2[x�(r);xU ](vh(x) � r0)2. Then vh(x) and vl;r(x) are identi�ed from Gr

B for

x � x�(r) respectively as �(br(x);Gr
B) and

�l;r(br(x);G
r
B) � r

Gr
MjB(rjbr(x))

Gr
MjB(br(x)jbr(x))

+

Z br(x)

r

�(~b;Gr
B)

gr
MjB(rjbr(x))

Gr
MjB(br(x)jbr(x))

d~b

By similar reasoning as in the benchmark case, bounds on the �rr0-mapping (which maps

br(x) into br0(x) for x � x�(r0)) are identi�ed as

�r;r0;k(br(x);G
r
B) = r0 ~L(brk;r0jb;Gr

B) +

Z b

br
k;r0

�(~b;Gr
B)d

~L(~bjb;Gr
B)

where brk;r0 � br(xk;r(r
0)) for k = l; h, and are identi�ed as inverses of �(:;Gr

B) and �l;r(:;G
r
B)

over [r; br(xU)] respectively. It can be shown that �r;r0;k(br(:);Gr
B) is increasing for x �

xk;r(r
0), and inverting �r;r0;k(:;Gr

B) at t � r0 gives bounds on br(b�1r0 (t)). Thus bounds on

FRI(r0) can be constructed from the distribution of br(X(1)).

1.5.2.2. Unobserved screened auctions (with X(1) < x�(r)). When data exclude auc-

tions with a reserve price r that screens out all bidders (i.e. X(1) < x�(r)), we observe the

distribution of equilibrium bids br conditional on at least one bidder bids above r (denoted

Gr
BjB(1)�r) rather than G

r
B. For b > r, Gr

M jB(bjb) and grM jB(bjb) can still be identi�ed from

Gr
BjB(1)>r, and thus bounds on br(x

�(r0)) and the �r;r0-mapping can be constructed as above.

However, Gr
BjB(1)�r can only be used to construct bounds on FRI(r)jX(1)�r. That is,

Pr(�(B(1)
r ;G

r
B) < r0jB(1)

r � r) � Pr(X(1) < x�(r0)jX(1) � x�(r))

� Pr(�l;r(B
(1)
r ;G

r
B) < r0jB(1)

r � r)
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and for t � r0,

Pr(B(1)
r � ��1r;r0;l(t;G

r
B)jB(1)

r � r) � Pr(X(1) � b�1r0 (t)jX(1) � x�(r))

� Pr(B(1)
r � ��1r;r0;h(t;G

r
B)jB(1)

r � r)

where B(1)
r is shorthand for br(X(1)). The probability that r screens out all bidders Pr(X(1) <

r) is needed to bound the unconditional distribution FRI(r). It is impossible to identify this

probability solely from Gr
BjB(1)�r without further restrictions on FX. However, the lemma

below shows when bidder signals are i.i.d., Pr(X(1) < x�(r)) can be recovered from Gr
BjB(1)�r

alone. 31

Proposition 13. Suppose signals fXigi=1;::N are i.i.d. in �rst-price auctions with N

potential bidders and reservation price r. If both the number of active bidders and N are

observed, then Pr(X(1) < x�(r)) is identi�ed even if auctions with X(1) < x�(r) are not

observed.

1.5.2.3. About the number of potential bidders. That the number of potential bidders

N is observed is key to our discussion of auctions with endogenous participations so far. This

is not an issue in some applications where N is directly reported in the data, or where good

proxies exist. In other applications, the issue is more subtle.

In some applications, neither bidders nor econometricians can observe N . Then strategic

decisions can be modeled as based on subjective probability distributions of N given private

signals (denoted p(N = njX = x)). Bidders integrate vh;N , fY jX;N overN with respect to this

distribution and make strategic decisions based on these integrated primitives, so the actual

number of potential bidders becomes irrelevant in equilibria. The new equilibrium conditions

31Under A1, the auction model still has interdependent values even fXigi2N are i.i.d..
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can also be manipulated through change of variables to get an analog of (1.2) that links bid

distributions observed to model primitives.32 The logic of partial identi�cation in benchmark

models can be extended in principle to bound revenue distribution in such equilibria with

unobserved potential bidders.

In other applications where bidder signals are i.i.d., the number of potential bidders

can be identi�ed even if data only report the number of actual bidders. This is because in

equilibria, the number of actual bidders is distributed as Binomial(n; p) with p equal to the

screening probability Pr(x � x�(r)). Provided the distribution of bids and actual bidders

are rationalizable,33 both n and p are uniquely identi�ed.

1.6. Application : U.S. Municipal Bond Auctions

Municipal bonds are a chief means of debt-�nancing for U.S. state and county govern-

ments. They are usually issued to �nance public projects such as construction or renovation

of schools and public transportation facilities, etc. A main advantage of muni-bonds over

corporate securities is that interest income from them are exempt from federal and local

taxes. As a result, they appeal especially to investors in high tax brackets. In 2005, the total

par amount of outstanding municipal bonds was $1.8 trillion. 34

32One example of such an application is Hendricks, Pinkse and Porter (2003). In OCS auctions, potential
bidders�decisions to submit bids take multi-stages. HPP endogenize participations by introducing multiple
signals, each corresponding to a stage in the decision-making. Then only those still active in the last-stage
and their signals are relevant to decisions on strategic bids. The additional restrictions in the model is
that decisions to remain active till the last stage only depends on signals from previous stages, and that
conditional on last-stage signals, signals in previous stages reveal no information about bidders�values.
33See Guerre et.al (2000) for conditions for rationalizability.
34Source of information : SIFMA(2005)
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1.6.1. Institutional details

Muni-bonds are identi�ed by their issuers and several basic features (coupon rates, maturity

dates, and par amounts, etc).35 Investors valuate muni-bonds based on this information

and its implied risks (credit risks, interest rate risks, and liquidity risks, etc.). 36 On the

primary market, muni-bonds are initially issued through �rst-price, sealed-bid auctions to

underwriters (security �rms such as investment banks). Notices of these competitive sales are

posted on major industry publications such as The Bondbuyer. In practice, issuers usually

package a series of bonds for one auction, and investment banks participate by bidding a

single dollar price per $100 in par value for the whole series. The bidder with the highest

dollar price wins the right to underwrite the entire series, and consequently resell the series

to investors on secondary markets with some mark-up.

To decide whether and how to bid for a series, securities �rms tap into their research and

marketing sta¤ to assess the creditworthiness of the municipality and the market prospects

of the bonds. Typically managers meet with sales and research personnel on Monday morn-

ings to review new issues on the week�s calendar. Both in-house researchers and traders

contribute to estimates about market trends and how the issues considered may trade on

secondary markets. For issues with a large par amount, investment banks usually form

bidding syndicates, where members share responsibilities for reselling the bonds as well as

the liability for unsold bonds. A syndicate is usually clearly de�ned for each issuance, as

35A coupon rate is the interest rate stated on the bond and payable to the bondholder on a semi-annual
basis. A maturity date is the date on which the bondholder will receive par value of the bond along with its
�nal interest payment.
36Credit risk measures how likely the issuer is to default on its payment of interests and principals. Interest
rate risk is due to �ucuations in real interest rates that a¤ect the market value of bonds (to both speculators
and long-term investors). Liquidity risk refers to the situation where investors have di¢ culty �nding buyers
when they want to sell, and are forced to sell at a signi�cant discount to market value.
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underwriters traditionally stay in the group where they bid on the last occasion that the

issuer came to market.

As of 2006, more than 2,100 securities �rms are registered with the Municipal Securities

Regulatory Board and authorized as legal underwriters. However, only a small number of

these �rms are active bidders in competitive sales. By 1990, 25 leading underwriters managed

about 75 percent of the total volume of all new long-term issues either as a lone bidder or

leaders of syndicates.

1.6.2. Bond values : private or common ?

The bounds proposed introduce an approach of partial identi�cation for policy analyses which

is applicable regardless of underlying paradigms (PV or CV ). This is highly relevant in the

context of muni-bond auctions, as institutional details do not suggest conclusive evidence for

either paradigm and there are limitations in empirical methods available for di¤erentiating

between them using bid data.

The value of bonds for �rms in these auctions are resale prices on secondary markets.

On most occasions bidders on the primary market cannot foresee at what price they can

resell the bonds, and therefore only have noisy estimates. These estimates capture the

syndicates�expectation on how investors on secondary markets interpret bond features, and

depend on their beliefs about the skills of their sales and trading sta¤. The estimates are

also built on companies�perception of how investors view relevant uncertainties such as the

creditworthiness of municipalities and �uctuations of future real interest rates.

The crucial question is whether a bidding syndicate can extract additional useful infor-

mation about bond values from competitors�estimates if it had access to them. The auction

is one with common values if and only if the answer is positive. On some occasions, all �rms
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participating in an auction manage to pre-sell bonds to secondary investors prior to their

actual participation. Such auctions are private value ones, as all bidders have perfect fore-

sight of bond values. On other occasions pre-sales are not possible or limited in scope, and

�rms can have heterogenous source of information about municipalities�creditworthiness, or

di¤erent interpretation of factors related to bond values. Unless all �rms con�dently believe

their own source or interpretation dominates their competitors�, they will �nd rival signals

informative, and auctions are closer to common values.

While the informational environment per se does not justify either PV or CV conclu-

sively, data limitations also deter empirical e¤orts to discriminate between them. First, there

is strong evidence that the number of potential bidders is correlated with bond values. This

nulli�es the test proposed by Haile, Hong and Shum (2003), which requires the variation in

the number of bidders to be exogenous with respect to the distribution of values. Second,

the data does not have ex post measures of bond values that can be used to test whether

vh(x; x) = E(VijBi = b0(xi); B�i = b0(x�i)) is independent from B�i. Finally muni-bond

auctions often proceed with no explicit reserve prices and therefore the testable restrictions

in Hendricks, Pinkse and Porter (2003) are not useful.

This paper focuses on an incomplete approach for policy analyses by bounding counter-

factual revenue distributions under general restrictions that encompass both PV and CV

paradigms. In this context, distinguishing PV and CV only matters for interpreting the

tightness of bounds. The lower bound is a point estimate of counterfactual distributions

when values are private. On the other hand, if nothing is known about the values except for

their interdependence, then for a given level of revenue, any point within the bounds can be

rationalized by some value function and signal distributions.
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1.6.3. Data description

The data contains all bids submitted in 6,721 auctions of municipal bonds on the primary

market in the United States between 2004 and 2006. They are downloaded from auction

worksheets at a website of Thompson Financial. The data are from the same source as those

in Shneyerov (2006), but are more recent and the sample size is larger.

The data reports bond features including the identity of issuers, the sale date, the date

of the �rst coupon, par values of each bond in a series, coupon rates of each bond, S&P and

Moody�s ratings of each bond, the type of government credit support for the issuance (gen-

eral obligation or revenue),37 and whether the issuance is bank-quali�ed.38 It also includes

macroeconomic variables that measure opportunity costs of investing in bonds and a¤ect

bond values for investors on secondary markets.

There are 97,936 bonds in 6,721 series, with an average of 14.5 for each issuance. About

70% of the series have 10 to 20 bonds. The average coupon rate of all bonds is 4.06% and

average number of semiannual payments is 19.6. I use the par-weighted averages of coupon

rates and numbers of coupon payments as a measure of "overall" interest rates and maturity

for a series. About 90% of all issuances have a weighted average coupon rate between 3% and

5%. The weighted average maturity is approximately normally distributed with mean 20.8

and standard deviation 9.5. The total par of a series ranges from $0.1 million to $809 million,

and is skewed to the right with mean $21.4 million and median $6 million. About 64.5%

37Bonds are categorized into two groups by the degree of credit support from municipalities. General
obligation bonds are endorsed by the full faith and credit of the issuer, whereas revenue bonds promise
repayment from a speci�ed stream of future income, such as that generated by the public project �nanced
by the issue. The latter usually bears higher interest rates due to risk premium.
38The Tax Reform Act of 1986 eliminated the tax bene�ts for commercial banks from holding municipal
bonds in general. But exceptions were made for "bank-quali�ed" bonds, for which commercial banks can
still accrue interests that are tax-exempt. Hence banks have a strong appetite for bank quali�ed bonds that
are in limited supply, and bank quali�ed bonds carry a lower rate than non-bank quali�ed bonds.
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of the series are backed by full credit of municipalities, while the rest are backed by limited

municipal support, such as revenue stream from public works �nanced by the issuance.

In practice, issuers have the option to include reserve prices in the notice of sale, but few

issuers use this option and the data does not report any reserve prices.39 For each auction,

the number of bidding coalitions, the number of companies within each coalition and their

identities are all reported in the data. The number of syndicates ranges from 1 to 20, with

mean 5.6 and standard deviation 2.6. Series that received more than 3 but fewer than 7 bids

account for 68% of all auctions.

The dollar prices tendered are not always reported. However, total interest costs for all

bids are always reported.40 I use the following formula to calculate and impute missing dollar

bids :

B = (1 + TIC)�tf �

PQ
q=1

�PTq�1
t=0

Cq=2

(1+TIC
2
)t
+ Pq

(1+TIC
2
)Tq

�
PQ

q=1 Pq
� 100

where q indexes bonds in a series of Q bonds, Tq is the number of semi-annual periods

from the date of �rst coupon until maturity, Cq and Pq are coupon and principal payments

respectively, tf is the time until �rst coupon payment and B is the dollar bid per $100 of

face value.

39Shneyerov (2006) interpreted the bids as generated in equilibria with no binding reserve prices and es-
timated expected revenue in second-price auctions. In my paper I choose the same interpretation for our
counterfactual analyses for revenue distributions.
40Total interest cost (TIC) is the interest rate that equates dollar prices with discounted present value of
future cash�ows the series.
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Table 1 summarizes the distribution of all 37,547 bids submitted in 6,721 auctions. The

1st percentile is $95.32 and the 99th percentile is $109.30. The median is $99.40, the mean
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is $99.92, and the standard deviation is $2.76. The median winning dollar bid is $99.66, the

average is $100.01, and the standard deviation is $2.36.

1.6.4. Homogenization of bids

The data reports a wide variation in bond features. In competitive sales, syndicates take

these characteristics into account in their bidding decisions, and thus strategies across auc-

tions are not homogenous as the benchmark model posits. In principle bounds in the bench-

mark model still apply to subsets of homogenous auctions where bond features are held �xed.

The main empirical challenge is that large samples for auctions with these speci�c features

are needed for constructing nonparametric bounds on conditional revenue distributions. In

this subsection, I tackle this issue by homogenizing bids across auctions with distinct fea-

tures. The working assumptions are: (i) �rm estimates of bond values are independent from

publicly known bond features conditional on the number of participating syndicates; (ii)

value functions are additively separable in private signals and bond features. Under these

assumptions, the marginal e¤ects of bond characteristics on equilibrium bids are identi�ed.

(I discuss a speci�cation test of these restrictions below.) Thus bids in distinct auctions can

be homogenized by removing di¤erences due to variations in bond features as in Section 5.

In competitive sales with n bidding syndicates, ex ante bond values for a potential bidder

is :

Vil = Z
0
l + �n(Xil;X�il)

where i = 1; ::; n indexes the bidding syndicates, l = 1; 2; ::Ln indexes auctions with n syndi-

cates, Zl is a vector of publicly known features, and Xl = (Xil;X�il) is a Rn-valued random

vector of idiosyncratic signals. This speci�cation re�ects the intuition that marginal e¤ects
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of idiosyncratic information (signals Xl) may not interact with those of public information

(bond features Zl).

Syndicates in an auction may di¤er in two aspects : the number of member �rms, and

local presence of �rms�branch o¢ ces in the issuer�s state. Recent empirical works suggest

there is no conclusive evidence that they can lead to informational asymmetries.41 Hence I

maintain symmetry restrictions of �n and FX as in the benchmark model in Section 2.

The equilibrium strategy is:

(1.3) bil(xil; zl;n) = z
0
l + �l(xil; n)

where �(x; n) �
R x
xL
�n(s)dLn(sjx), Ln(sjx) � expf�

R x
s

fY jX;n(uju)
FY jX;n(uju)

dug, �n(s) �E[�N(Xi;X�i)j

Xi = maxj 6=iXj = s; N = n]. Thus strategic bids can be decomposed into two additive com-

ponents. The �rst term shows marginal e¤ects of bond features are invariant to potential

competitions, and the second term captures e¤ects of potential competition on strategic

bids. The signals and competitions interact with each other and their e¤ects can not be

separated. Regressing bids on bond features and a vector of dummies for the number of

potential bidders will estimate  consistently. That is, in the pooled regression,

(1.4) bil(xil; zl) = d
0
l� + z

0
l + uil

where dl is a vector of dummies for n, the error term uil is mean independent conditional

on dl and zl.42

41See Shneyerov (2006).
42To see this, �x n, then Proposition 5 shows equilibrium bids are:

bil(n) = 0(n) + z
0
l + "il(xil; n)

where 0(n) � E[�l(Xil; Nl)jNl = n] and "il(xil; n) � �l(xil; n)� 0(n). It follows from the independence of
Xl and Zl conditional on number of bidders that E["il(Xil; Nl)jNl = n;Zl = zl] = 0 for all (nl; zl).
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1.6.4.1. GLS estimates of index coe¢ cients. When there is an intracluster correlation

among error terms within auctions, a simple OLS will be ine¢ cient. This can happen

when syndicates�signals Xl are strictly a¢ liated. One explanation for a¢ liated signals in

�nance literature is the "herding" e¤ect among research and sales sta¤across syndicates. For

example, researchers in di¤erent syndicates tend to have similar professional backgrounds

or trainings and hence are inclined to make similar decisions on the choice and weights of

value-related factors in their analyses. Strict a¢ liation among signals could also happen when

syndicates�estimates consist of idiosyncratic noisy measurements of a common, underlying

random variable.
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Table 2 reports the GLS estimates and t-statistics of  for equation (1.4). The depen-

dent variable is the dollar price bid. The regressors include publicly known bond features

: weighted average coupon rate (wacr), weighted average maturity (wapn), total par value

of the series (totpar), a dummy for whether the series is supported by full municipal credit

(sectype), a dummy for whether the series is bank-quali�ed (BQ), a dummy for whether the

series is rated with investment grade (HR) and two interaction terms type_cr and HR_pn

respectively.43 Butler (2007) suggests local presence of syndicates in the geographical area

of the issuer could also in�uence their private information about the credibility of the issuer

and hence their estimates of the value of the series. Therefore I also include in the regressors

some dummies for the regions, MW (Midwest), NE (New England), SW (Southwest), South

and West, to test the impact of geographic location on bids.

The weighted average coupon rates and maturity are both highly signi�cant at 1% level,

with positive and negative marginal e¤ects respectively. These estimates con�rm the in-

tuition that bond values increase with cash�ows from coupons and decrease as maturity

increases because of higher interest rate and in�ation risks. Municipality support has a sig-

ni�cant positive e¤ect on the bids. Controlling for other features, the average dollar price is

$2.47 higher for bonds supported by municipalities�full credit. Bond ratings by S&P and

Moody�s have no signi�cant impact on bids ceteris paribus. A possible explanation is that

the syndicates�research forces do not consider ratings informative conditional on their own

research on bond values. The dollar prices tendered for bank-quali�ed series are on average

about 84 cents lower than non bank-quali�ed ones. The e¤ect is statistically signi�cant at

1% level. Besides, an increase of $1m in total par leads to a slight increase of 1.76 cents in

43The unit for wapn is 10 semin-annual coupon payments and the unit for totpar is $100 million.
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the dollar price. This can be explained by the fact that average participation costs for a syn-

dicate (e.g. time and e¤ort on research) per $100 in par is lower for issuance with larger par

amount. The interaction of sectype and wacr are also highly signi�cant at 1% level, suggest-

ing marginal e¤ects of coupon rates are lower for series with full municipal credit supports.

There is no conclusive evidence for regional e¤ects on bids except that dollar prices for series

issued in New England area are higher on average than those issued in Midwestern states.

1.6.4.2. Speci�cation tests. Two identifying restrictions in the regression equation (1.4)

are additive separability and conditional independence of bond features and signals in value

functions. A testable implication of these two restrictions is that marginal e¤ects are constant

and invariant to the number of potential bidders. That is, for each n, the following regression

equation holds:

bil(n) = 0(n) + z
0
l + "il(xil; n)

where 0(n) � E[�l(Xil; Nl)jNl = n] and "il(xil; n) � �l(xil; n)� 0(n) is mean-independent

conditional on Zl and n. On the other hand, if either restriction is not satis�ed, bidding

strategies are nonseparable in Zl, Xil and n. Consequently, marginal e¤ects of bond fea-

tures on bids change with the number of potential bidders. Therefore we can test the two

restrictions jointly by comparing estimates for auctions with di¤erent number of bidding

syndicates.
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Table 3(a) reports GLS estimates in regressions for n between 4 and 8. The choice of

regressors z is the same as that in (1.4). The estimates are consistent across n in signs

and signi�cance. For each signi�cant characteristic of the series, Table 3(b) reports test

statistics for pair-wise hypotheses that coe¢ cients are the same in two regressions with

di¤erent n. The statistics are constructed as the ratio of di¤erences between GLS estimates
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and the standard error of the di¤erence.44 Under null hypotheses, the test statistics are

asymptotically standard normal.

The results show di¤erences between sizes of estimates are insigni�cant. With the ex-

ception of weighted average coupon rates for n = 4, all other estimates are not signi�cantly

di¤erent from their counterparts under a di¤erent n. There is no statistically signi�cant

evidence against the hypotheses that the value function is additively separable and bond

44Note GLS estimators for di¤erent n are independent, for (Zl; Nl; Xl) are i.i.d. draws from the same joint
distribution. Hence the standard deviation of the di¤erence in two estimators can be consistently estimated
by adding up their standard errors.
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features have no bearing on the distribution of idiosyncratic signals conditional on the num-

ber of participating syndicates.

1.6.5. Results

1.6.5.1. Point and interval estimates for F̂ k
RI(r) and F̂

k
RII(r). This section reports bound

estimates on counterfactual revenue distributions for a reference bond series in auctions with

n = 4 bidding syndicates. The reference series is issued in the Midwest, bank-quali�ed,

backed by full municipal credit, and has an investment grade from S&P and the Moody�s.

The reference series has a weighted average coupon rate of 4% and maturity of 5 years, as

well as a total par of $4:84 million.45

45These are median values for series features among auctions with 4 bidding syndicates.
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Figure 5(a) plots kernel density estimates of the ordered bids "homogenized" at the

reference level, which are calculated using GLS estimates in regressions with 4 bidders. Dis-

tributions of the ordered bids are approximately normally distributed with similar standard

deviations and the di¤erences between the median of adjacent ordered bids are between $0.25

and $0.35 per $100 in par amount. I use the product of tri-weight kernels for estimating

GM;B and gM;B. The choice of bandwidths follows "rule of thumb" discussed in Monte Carlo

section.46 The data is parse close to the both boundaries even after trimming bids that

are within one bandwidth from the minimum and maximum bids reported. To avoid poor

performances of the kernel estimates of �̂l for lower dollar values, I trim the bids at the 0.5-th

and 99.5-th percentile.47 In the data, bids from the same auction are almost always trimmed

together.

Figure 6 plots estimates �̂ and �̂l and suggests the estimated bounds on b0(x
�(r)) only

widen slowly as r increases. That �̂l stays mostly above the 45-degree line is evidence for

strict a¢ liations between private estimates within each auction. Table 4 below summarizes

46The bandwidths hG and hg are respectively 2:98�1:06�̂b�(4L4)�
1

4n�5 = 2:43 and 2:98�1:06�̂b�(4L4)�
1

4n�4 =
2:57.
47The distance between the minimum bid and the 0.5-th percentile is about $5. The number is greater than
the smoothing parameter hg = 2:57 used in the estimation.
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estimated bounds on b0(x�(r)) and the probability that no one bids above r (hereafter referred

to as the all-screening probability) for di¤erent reserve prices.

Table 4 : Estimated bounds on the all-screening probability

r b̂0(xl(r)) b̂0(xh(r)) b:w: of b0(x�(r)) F̂ l
RI(r)(r�) F̂ u

RI(r)(r�)

98 97:17 97:89 0:72 0:0540 0:1256

99 98:00 98:83 0:83 0:1488 0:3860

100 98:76 99:73 0:97 0:3609 0:6865

101 99:45 100:60 1:15 0:5935 0:8837

102 100:13 101:39 1:26 0:8074 0:9516

103 100:74 102:14 1:40 0:9042 0:9702

Table 4 suggests marginal bidders under r are estimated to bid lower than r in the

scenario with no binding reserve price. It is consistent with the theoretical predictions in

Section 2 that FRI(r)(r) is smaller than FRI(0)(r). The di¤erence between the boundwidths

of the all-screening probability for r = 98 and r = 100 is mostly due to the distribution of

winning bids with no binding reserve prices. Figure 5(b) shows the distribution of b(1:4)0 has

a larger mass in [b0(xl(100)) b0(xh(100))] = [98:75 99:73] than in [b0(xl(98)) b0(xh(98))] =

[97:17 97:89]. Therefore the bounds on the all-screening probability is much wider for

r = 100 even though bounds on b0(x�(100)) is only slightly wider than those of b0(x�(98)).
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For reserve prices between $98 and $103, the solid and dotted lines in the panels of Figure

7 depict point estimates F̂ u
RI(r) and F̂

l
RI(r) respectively. In addition, I construct 100 bootstrap

samples, each containing 1075 auctions drawn with replacement from the estimating data.

For all levels of revenue, I record the 5-th percentile of F̂ l
RI(r) and 95-th percentile of F̂

u
RI(r).

They form a conservative, pointwise 90% con�dence interval of [F l
RI(r); F

u
RI(r)], and are plotted

in Figure 7 as broken lines. In addition, the table below reports the bounds on major

percentiles according to the estimates of bounds on F̂ l
RI(r) and F̂

u
RI(r).

Table 5 : Estimated bounds on quartiles of FRI(r)

r l:b: 1st u:b: 1st l:b: 2nd u:b: 2nd l:b: 3rd u:b: 3rd

98 98:47 98:66 99:18 99:28 99:93 99:98

99 99:08 99:30 99:29 99:54 100:01 100:14

100 v0 v0 v0 100:07 100:14 100:48

101 v0 v0 v0 v0 v0 101:09
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Revenue distribution above the reserve price depends on the distribution of b0(x) and the

�r functional mapping b0(x) andG0B into br(x). The densities plotted in Figure 5 (a) illustrate

homogenized winning bids are approximately normally distributed. Besides, our estimates

of bounds on �r are approximately linear. Therefore bound estimates F̂ k
RI(r)(t) for t > r

increase at decreasing rates, a pattern similar to normal distributions. By construction,

estimates of bounds on the all-screening probabilities are monotone in reserve prices (i.e.

F̂ k
RI(r)(r�) is increasing in r for k = l; u). In addition, our estimates suggest that for any pair

of reserve prices r < r0, F̂ k
RI(r0)(t) < F̂ k

RI(r)(t) for t � r0. This is consistent with the theoretical

prediction that for a given signal above the screening level, �rms bid less aggressively when

the reserve price is lowered.

Figure 8

Likewise Figure 8 plots point estimates for revenue distribution in second-price auctions

as well as the 90% con�dence intervals for [F l
RII(r)(t); F

u
RII(r)(t)].
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1.6.5.2. Choice of optimal reserve prices. Knowledge of revenue distributions in coun-

terfactual auctions enables the use of other distribution-based criteria for comparing auction

revenues, instead of just expectations.48 This is especially useful when the seller is known to

be risk-averse and expected utilities are used as criteria.

A natural consequence of our partial approach is that only bounds on these criteria

functions can be calculated. Such bounds on criteria functions are also tight and exhaust

all information possible from equilibrium bids without further restrictions on value functions

and signal distributions. As a result, answers to policy questions above involves comparing

bound estimates rather than point estimates. Bounds on criteria functions can also be used

to bound optimal reserve prices.49

A value for v0 is needed for calculating both upper and lower bounds on E(RI(r)) and

E(RII(r)). This should be measured by the amount of money that a municipality would be

able to raise if it had borrowed through an alternative, next-cheapest channel (i.e. a creditor

that requires the next lowest interests than syndicates participating in auctions). The proxy

for v0 used in this paper is $95:71, and it is calculated as the present value per $100 in par

of cash �ows from the coupon and principal payments of a reference bond, with the discount

rate being the 99-th percentile of total interest rates reported in the data.

Figure 9(a) plots estimated upper and lower bounds on E(RI(r)) (denoted Êh(RI(r)) and

Êl(R
I(r)) respectively), which are calculated from F̂ l

RI(r) and F̂
u
RI(r) through discretization

and numerical integration using midpoint approximations. The solid lines plot Êk(RI(r))

and the dotted lines plot Êk(RII(r)). The upper bounds of expected revenue correspond to

the case of PV auctions. Note estimates for Êh(RII(r)) are higher than Êh(RI(r)) for almost

48Within �rst-price auctions, each r > v0 can be justi�ed as optimal under the criterion of maximizing
Pr(RI(~r) � r). That is r = argmax~r>v0 Pr(RI(~r) � r) for all r > v0.
49For example, see Haile and Tamer (2003).
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all r in the range. This is consistent with the implication of Revenue Ranking Principle :

for a �xed level of r, the expected revenue is higher for second-price auctions when signals

are a¢ liated. For �rst-price auctions, Êh(RI(r)) is maximized at r = $98:68 to be $99:29,

and Êl(R
I(r)) is maximized at r = $96:26 to be $99:16. An argument similar to Haile

and Tamer (2003) suggests the optimal reserve price that maximizes E(RI(r)) must be in

the range [$96:12; $99:21]. For second-price auctions, Êl(RI(r)) and Êh(R
I(r)) are both

maximized at r = $96:57 with the maximum $99:94, thus providing a point estimate for

E(RI(r))-maximizing reserve price. Instead of calculating a range of r that maximizes the

expected revenue, an alternative is to pick r that maximizes either the lower or upper bound

on E(RI(r)). In the case of risk-neutral bidders, estimates for Êl(RII(r)), Êh(RII(r)) and

Êl(R
I(r)) are all close to being monotone, and their maximizers are all close to the boundary

$96.
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A major motivation for focusing on revenue distribution in counterfactual analyses is the

risk aversion of the seller. Given any speci�cation of the seller�s utility function (denoted

u(t)), fF̂ k
Rj(r)g

k=l;u
j=I;II can be used to estimate bounds on the seller�s expected utility (denoted

fUk(FRj(r))gk=l;uj=I;II). Like the case with a risk-neutral seller, these bounds can be used to

put a range on an optimal reserve price that maximizes U(FRj(r)), or be used as criteria

themselves for choosing reserve prices.

I consider three speci�cations of utilities: uDARA(t) = ln(t) (DARA) and uCRRA(t) = t1��

1��

with � = 0:6 and 0:9 (CRRA). Figure 9(b), (c) and (d) plot estimated bounds on the

expected utilities in �rst- and second-price auctions (i.e. fUk(FRj(r))gk=l;uj=I;II) for DARA,

CRRA( � = 0:6) and CRRA( � = 0:9) utility functions respectively.

Table 6 below summarizes reserve prices that maximize estimated bounds of expected

utilities in �rst-price auctions, as well as estimated bounds on optimal r� maximizing ex-

pected utilities.

Table 6 : Optimal reserve prices for �rst-price auctions

ÛDARA
l ÛDARA

h Û�=0:6
l Û�=0:6

h Û�=0:9
l Û�=0:9

h

r(maximizer) 96:19 98:65 96:23 98:68 96:25 98:66

maximum 4:593 4:594 15:711 15:719 15:822 15:824

bounds on r� [96:24; 99:20] [96:17; 99:32] [96:21; 99:20]

In second-price auctions, estimates of bounds on expected utilities under di¤erent spec-

i�cations are all maximized at $96:26, with the maxima being 4:594, 15:743 and 15:808

respectively. As a result, we get a point estimate of the optimal reserve price r� at $96:26

for all three speci�cations.
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Both maximizers across di¤erent speci�cations of utility functions are close to each other

and so are the interval estimates. This is because uDARA, u�=0:6 and u�=0:9 are all approxi-

mately linear for the range of revenues considered in this application. As a result, estimated

bounds on fU(FRj(r))gj=I;II as functions of r are close to being linear transformations of

each other.

On the other hand, estimates for di¤erent u(:) yield di¤erent implications regarding the

choice of format between �rst- and second-price auctions. For DARA utility functions, the

point estimate for the optimal reserve price in second-price auctions is $96:26, with a maxi-

mum ÛDARA(FRII(96:26)) = 4:594. This is equal to the maximized value for ÛDARA
h (FRI(98:65)).

Hence estimates suggests a seller with decreasing absolute risk aversion should prefer second-

price auctions in general, and may be indi¤erent between the two formats if the auction is

known to belong to the PV paradigm. For CRRA utilities with � = 0:6, the implication is

the same as in the case with risk-neutral sellers. However, for CRRA utilities with � = 0:9,

estimates suggest �rst-price auctions should be preferred over second-price ones. The pattern

is due to the fact that FRI(r) always crosses FRII(r) from below for any given r, and u�=0:6

increases faster than u�=0:9.

Finally a technical note is in order. Except for Êh(RI(r)) and Ûh(RI(r)), other estimates

of bounds on fE(Rj(r))gj=I;II and fU(Rj(r))gj=I;II are almost monotonically decreasing in

r. In general this need not be the case in estimation. To see this, note that none of the

estimates fF̂ k(Rj(r))gk=l;hj=I;II reported in Figure 7 and Figure 8 are stochastically ordered in

r. In this incidence, the monotonicity is explained by the fact that our measure of v0 is low

at $95:71 and that estimates b̂r(xh(r0)) are close to r0 for all (r; r0).
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1.7. Conclusion

In structural models of �rst-price auctions, interdependence of bidders�values leads to

non-identi�cation of model primitives. That is, distributions of equilibrium bids observed in

a given auction format can be rationalized by more than one possible speci�cations of signal

and value distributions. While this negative identi�cation result rules out policy analyses

that rely on exact knowledge of primitives, the distribution of bids observed in equilibria

should still convey useful information about primitives that can be extracted for counterfac-

tual revenue analyses. Following this line of reasoning, this paper derives bounds on revenue

distributions in counterfactual auctions with binding reserve prices by using equilibrium

conditions. The bounds are the tightest possible under restrictions of interdependent values

and a¢ liated signals, and can be used to compare auction formats or bounds on optimal

reserve prices. This approach also addresses the empirical di¢ culty of di¤erentiating PV

and CV paradigms in policy analyses. The bounds can be nonparametrically consistently

estimated, and Monte Carlo evidence suggests these estimators also have reasonable �nite

sample performances. Observed heterogeneity in auction characteristics can be controlled

for by conditioning counterfactual analyses on these auction features. Under the restriction

of additive separability of signals and auction characteristics in value functions, the marginal

e¤ects of auction features can be identi�ed if signals are independent from auction features

conditional on the number of bidders. By removing variations due to observable auction

heterogeneity, the bids across various auctions can be "homogenized" to bids in auctions

with given speci�c features. The issue of endogenous participation also does not pose major

challenges to the construction of bounds, provided the data report the number of potential

bidders or good proxies of this number.
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Applying this methodology to U.S. municipal bond auctions on the primary market

yields informative bound estimates of revenue distributions in counterfactual auctions with

binding reserve prices. These estimates are then used to bound the reserve prices that

maximize expected revenues for risk-neutral sellers. For risk-averse sellers, bounds on revenue

distributions are also used to bound optimal reserve prices which maximize their expected

utility under di¤erent speci�cations of utility functions.

Directions for future research include extensions of partial-identi�cation methods for more

complicated cases such as asymmetric information among bidders and unobserved auction

heterogeneity.
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CHAPTER 2

Semiparametric Estimation of Binary Response Models with

Inequality Quantile Restrictions

2.1. Introduction

Binary choice models have been used widely in empirical research in �elds such as in-

dustrial organization and labor economics. In such models, the decision-maker chooses an

action out of two alternatives if and only if its payo¤ is higher than the other. The payo¤s

is determined by observable state variables (or regressors) and disturbances (or errors) un-

observable to researchers. Researchers are interested in using choice data to make inference

about structural parameters in payo¤ the function as well as error distributions.

For the past three decades, econometricians have studied the estimation of binary choice

models under various restrictions on payo¤ functions and distribution of the errors. Among

them, a most popular identifying assumption is the statistical independence between er-

rors and regressors. Matzkin (1992) showed with the independence assumption that the

payo¤ function u and the error distribution F" can be uniquely recovered from choice prob-

abilities under fairly general form restrictions on u (such as monotonicity, concavity and

homogeneity). Other authors studied the estimation of binary response models under statis-

tical independence but with di¤erent form restrictions on the payo¤ functions (see Cosslett

(1983), Han (1987), Klein and Spady (1993), and Ichimura (1998)). Another strand of liter-

ature studies binary response models under a weaker assumption that the median of errors

is independent from regressors. This restriction allows for endogenous regressors, which are
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a concern in lots of empirical work. Manski (1985) showed the linear coe¢ cients can be

identi�ed up to scale under median independence and fairly weak assumptions on regres-

sors, and proposed a consistency maximum score estimator. Other authors have studied

the asymptotic distribution and the re�nement of maximum score estimators (see Sherman

(1988) and Horowitz (1992)). Furthermore, Manski (1988) suggested median independence

has the most identifying power among all stochastic restrictions that allow for the correlation

between regressors and unobserved disturbances.1

In this paper, I study a class of binary response models where the conditional median of

errors is bounded between known functions of the regressors. This generalization is meaning-

ful because it encompasses several interesting micro-econometric sub-models widely applied

in empirical work. As shown in Section 2, our speci�cation of the binary response model

with bounded conditional medians is general enough to incorporate binary response models

with interval data on regressors, simultaneous discrete games with incomplete information,

and Markovian binary choice processes. I characterize the identi�cation region of linear

coe¢ cients in payo¤ functions using choice probabilities observed, and derive fairly general

restrictions on the distribution of regressors that are su¢ cient for point identi�cation. I

discuss how these conditions can be satis�ed by more primitive conditions in the motivating

sub-models mentioned above. I then use the sample analog principle to de�ne a two-step

extreme estimator based on the form of the identi�cation region, with the �rst-step being

a kernel regression that estimates the conditional choice probabilities. I also show that this

two-step extreme estimator is consistent regardless of whether the coe¢ cients are point iden-

ti�ed, and it converges in distribution to a normal random variable at the rate of
p
n under

1Manski (1988) showed (1) mean independence has no identifying power in the binary response model; (2)
conditional symmetry has no additional identifying power than median independence; (3) distributional
index su¢ ciency can only identify the slope coe¢ cients up to scale and sign.
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point identi�cation. Finally, I give Monte Carlo evidence on the estimator�s performance in

�nite samples when the model is partially identi�ed.

The rest of the paper is organized as follows. Section 2 speci�es the binary response model

with bounded conditional medians and give examples of motivating sub-models. Section 3

and 4 studies the set and point identi�cation of the index coe¢ cients in payo¤ functions

respectively. Section 5 de�nes the two-step extreme estimator and proves its asymptotic

properties, including consistency and asymptotic normality under point identi�cation. Sec-

tion 6 show Monte Carlo performance of the estimator in �nite samples. Section 7 concludes.

2.2. The Model

Consider a binary choice model:2

(2.1) Y = 1(X
0
� + " � 0); � 2 RK ; � 6= 0

where the conditional median of " is de�ned as:

Med("jX) = f� 2 R : Pr(" � �jX) � 1

2
^ Pr(" � �jX) � 1

2
g

Let S(X) denote the support of X and FX denote a probability measure on S(X). The error

distribution satis�es the following stochastic restriction.

BCQ (Bounded Conditional Median): The error " is has continuous density conditional

on all x with L(x) � supMed("jx) and infMed("jx) � U(x) a:e:FX, where L(:); U(:)

2Throughout the paper I use bold letters for vectors and non-bold letters for scalars, upper cases for random
variables and lower cases for their realizations.
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are known functions such that L(x) � U(x) a:e:FX and L � infx2S(X) L(x) � �1, U �

supx2S(X) U(x) � +1.3

The inequality restriction is violated if and only if there is no median in the interval

[L(x); U(x)]. This restriction can be rewritten as: Med("jx) \ [L(x); U(x)] 6= ?; a:e:FX.

Obviously the model is general enough to allow for error distributions that are not strictly

monotone and that may have an set-valued median. In addition, this setup is general enough

to include several interesting micro-econometric models as special cases.

Model 1 (Partially linear binary choice) Let Y = 1(X0� + g(X) + " � 0) where

Med("jX = x) = 0 and L(x) � g(x) � U(x) for all x on the support of X for some

known functions L(:) and U(:). This model implies: Y = 1(X0� + ~" � 0), where L(x) �

infMed(~"jX = x) = supMed(~"jX = x) � U(x) 8x 2S(X). An empirical example of this

binary choice model with a partially linear latent variable is individual decisions for labor

participation. Suppose each individual works if and only if his monthly salary is greater than

his unemployment bene�ts, and both are solely determined by demographic characteristics

X (including gender, education, experience, etc). The median of monthly salary conditional

on X is X0�, while the unemployment bene�ts is given by g(X). Researchers observe in-

dividuals�decision to participate in the labor force and are interested in recovering �, but

only knows that unemployment bene�ts g(:) is bounded between L(:) and U(:).

Another special case of this model is a binary choice model with interval data on a

regressor studied in Manski and Tamer (2002). Let Yi = 1(X0� + V + " � 0), where

X 2 Rk; V 2 R; and Med("jx; v) = 0 8(x; v) on support. Researchers observe a random

sample of (Y;X; V0; V1) and (i) Pr(V0 � V � V1) = 1 and both V0 and V1 are bounded; (ii)

Med("jx; v0; v1) = 0 8(x; v0; v1). Then Y = 1(X0�+~" � 0) where ~" = V + ". It follows from

3The continuity of the distribution of " is a technical convenience that can be weakened to supMed("jx) 2
Med("jx):
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(i) and (ii) that v0 � infMed(~"jx; v0; v1) � supMed(~"jx; v0; v1) � v1 8(x; v0; v1). Denote

the (k + 2)-vectors [X V0 V1] by Z and [� 0 0] by �. Then the model is reformulated as

Y = 1(Z0� + ~" � 0), where L(Z) � infMed(~"jZ) � supMed(~"jZ) � U(Z) a:e:FZ with

L(Z) = V0 and U(Z) = V1. The parameter space now considered is � = fb 2 Rk+2 :

bk+1 = bk+2 = 0g. Thus the model �ts in with our framework of binary regressions with

bounded conditional medians.4 �

Model 2 (Simultaneous Discrete games with incomplete information) Consider a simple,

simultaneous 2-by-2 discrete game with the same space of pure strategies Si = f1; 0g for

players i = 1; 2. The payo¤ structure is :

0 1

0 0; 0 0;x0�2 � "2

1 x0�1 � "1; 0 x0�1 + �1 � "1;x
0�2 + �2 � "2

where x 2 RK is a vector of payo¤-related exogenous variables observed by both players,

" � ("1; "2) are private signals only observable to player i with jointly distribution F", which

is common knowledge among the players. Furthermore "1 is independent from "2 conditional

on x. The structural parameters of the model is � � (�1;�2; �1; �2), where �i < 0 for i = 1; 2.

A Bayesian Nash Equilibrium (BNE) of this game of incomplete information is de�ned by

p(x) � [p1(x) p2(x)] such that

(2.2)
�
p1(x)

p2(x)

�
=

�
F"1jX=x(x

0�1 + p2(x)�1)

F"2jX=x(x
0�2 + p1(x)�2)

�

4As discussed in the section below, Manski and Tamer (2002) provides su¢ cient conditions on the support of
[V0; V1] for � to be point identi�ed, and proposes a modi�ed maximum score estimator for the identi�cation
region that is consistent under the Hausdor¤ metric.
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where pi(x) is player i�s probability of choosing 1 conditional on X = x.5 The existence of

BNE follows from Brouwer�s Fixed Point Theorem, and Aradillas-Lopez (2007) gives fairly

general su¢ cient and necessary conditions for the equilibrium to be unique.6 It can be shown

that a generic parameters � will generate p(x) if and only if it generates pi(x) in the single-

agent binary choice model Yi = 1(x0�i + p�i(x)�i � "i � 0). Suppose Med("ijX) = 0 for

i = 1; 2. The �i�s need to be normalized to �1 for identi�cation. Then the binary choice

models fall under our general framework with Li(x) = p�i(x) = Ui(x).

Several recent literature have discussed the estimation of such static games with incom-

plete information. These include Aradillas-Lopez (2007) and Bajari, Hong, Krainer and

Nekipelov (2007). The latter shows the mean utility functions can be identi�ed nonparamet-

rically if the error distributions are i.i.d. across players for any given x, and if the conditional

error distribution F"1;"2jX is completely known to the researcher. Aradillas-Lopez focuses on

a case where ("1; "2) are allowed to be correlated with each other but have to be independent

from X. He extends the semiparametric likelihood estimator in Klein and Spady (1993) to

this game theoretic setup. In contrast, our approach estimates this game of incomplete infor-

mation through the framework of a system of binary choice models with bounded conditional

medians, and does not require the independence between ("1; "2) and exogenous variables X

that shift the payo¤ structures. �

Model 3 (Markovian binary choice process) Consider a single-agent, Markovian binary

choice process in in�nite horizon. Time is discrete and indexed by t. In each t, the agent

observes states st = (xt; "t) 2 S(X) 
 S(�) � RK 
 R2, and chooses an action dt from a

5This de�nition of Bayesian Nash Equilibrium is the same as that of Quantal Response Equilibrium in McKin-
ley and Palfrey (1995). The latter is a special case of BNE where the error distributions are independent
across actions.
6If researchers know a priori these conditions are not satis�ed, then it is convenient to discuss identi�cation
by maintaining that players stick to an equilibrium selection mechanism that is solely determined given x.
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pair of possible actions D = f0; 1g. The state space S(S) = S(X) 
 S(�) is time-invariant.

In each t, researchers observe xt, but not "t. The time-invariant single-period return is

U(st; dt) : S(S) 
 D ! R1 8 t. Conditional on the current state s and action d, the

distribution of the state next period s0 is given by a time-invariant transitional probability

pd(:js) : S(S) ! [0; 1]. The agent has a constant discount factor � 2 (0; 1) for all periods.7

The agent chooses a deterministic, Markovian decision rule d(s) that maximizes expected

present value of future utilities: E[
P1

j=0 �
jU(st+j; dt+j)jst; dt].8 The structure satis�es two

restrictions (i) the single-period return is additively separable, i.e. U(s; d) = x0�d + "d, " 2

R2; E("djx) = 0 8(x; d); and (ii) the transitional probabilities has conditional independence,

i.e. pd(s0js) = f("0jx0)gd(x0jx) 8s; s0 2 S(S) and d = 0; 1. These and some other regularity

conditions implies the Markovian binary decision process has a static representation:9

d(s) = argmaxd2f0;1g �d(x;u;g; f) + "d

where �(x) = [�0(x) �1(x)]T is the �xed point of the operator

(2.3) T �

0B@ �0(x)

�1(x)

1CA �

0B@ x0�0 + �
R
maxd02f0;1gf�d0(x0) + "0d0gp0(ds0jx)

x0�1 + �
R
maxd02f0;1gf�d0(x0) + "0d0gp1(ds0jx)

1CA :

Aguirregabiria (2007) showed through recursive substitution, �d(x) = !d(x) + �d(x) where

!d(x) = x
0�d + �

R
!d(x

0)pd(dx
0jx) and �d(x) = �

R
�d(x

0) + �d(x
0)pd(dx

0jx), and �d(:) are

7For notational ease, I will drop time subscripts for the rest of the paper due to time-invariance of period
return, transitional probabilities, and the state and action spaces.
8In general, the optimal policies should be a function of past historiesHt = fsjgtj=0. However, Strauch (1966)
showed for any history-dependent poilicy and starting state, there always exists a deterministic, Markovian
policy (a policy that depends on the current state only) with the same expeced total discounted payo¤.
The implication is that for analysis of optimal policies, it su¢ ces to focus on Markovian stationary policies.
Throughout the paper we focus on the case where the agent only considers deterministic Markovian policies.
9The regularity conditions include continuity and boundedness of ud(x), �nite expectation of maxf"1; "0g
conditional on (x; d), and that gd satis�es the Feller Property for d = 0; 1.
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de�ned as

�1(x;F�"jX; h) = h(x)F�1�"jX=x(h(x))�
Z F�1

�"jX=x(h(x))

�1
�"dF�"jX=x

�0(x;F�"jX; h) =

Z +1

F�1
�"jX=x(h(x))

�"dF�"jX=x � (1� h(x))F�1�"jX=x(h(x))

where h(x) is the observed choice probability. Let � denotes a set of F�"jX that satis�es

some extraneous restrictions (such as bounded support and symmetry), and de�ne:

L(x;h; p) � min
F�"jX2�

��(x;h; p; F�"jX); U(x;h; p) � max
F�"jX2�

��(x;h; p; F�"jX)

where �� = �1 � �0 and the existence and the form of extrema is delivered by the nature

of the restricted set �. The Markovian binary choice process can then be represented by a

static analog:

(2.4) Y = 1f~x0~+��(x)��" � 0g

where ~xt � [
P+1

s=0 �
sE0(xt+sjxt);

P+1
s=0 �

sE1(xt+sjxt)], and ~ � [�0;��1]. Under the median

independence restriction Med(�"jX) =0, the static representation in (2.4) �ts within the

framework of binary choice models with inequality conditional medians. �

2.3. Partial Identi�cation of �

Let � denote the set of conditional distributions F"jX that satisfy BCQ, and P �1jx denote

observed conditional choice probability Pr(d = 1jx). In this section I characterize the set

of coe¢ cients b 2 RK which, for some choice of F"jX 2 �, can generate the observed choice

probabilities P �1jx almost everywhere on the support of X (denoted S(X)). This reveals the

limit of what can be learned about the true parameter � from observables under BCQ, and



87

leads to the de�nition of our two-step extreme estimator. For any generic pair of coe¢ cient

b and conditional error distribution G"jX, let P1jx(b; G"jX) denote the probability of choosing

d = 1 given x, b and G"jX (i.e.P1jx(b;G"jX) �
R
1(x0b + " � 0)dG"jX=x), and let X(b;G"jX)

denote the set fx 2 S(X) : P1jx(b; G"jX) 6= P �1jxg.

De�nition 1 The true coe¢ cient � is identi�ed relative to b if 8 F"jX 2 � Pr(x 2

X(b; F"jX)) > 0. Furthermore, � is observationally equivalent to b if it is not identi�ed

relative to b. The identi�cation region of � is the set of b in RK that is observationally

equivalent to �.

Lemma 1 In Model (2.1) under BCQ, b is observationally equivalent to � if and only if

Pr(x 2 �0b) = 0, where �0b � fx 2 S(X) : (�x
0
b � L(x)^P �1jx < 1

2
) _ (�x0b � U(x)^P �1jx >

1
2
)g.

An immediate implication of Lemma 1 is that the identi�cation region under BCQ is

�0I � fb 2 RK : Pr(x 2 �0b) = 0g. Note that �0I is characterized by the distribution of

observable regressors and conditional choice probabilities only, and can be used for �nding a

non-stochastic function Q(b) that is minimized if and only if b 2 �0I . The function Q(b) can

be approximated by its sample analog and preliminary kernel estimates of P �1jx, and will be

used to de�ne our extreme estimator below. In general this set of observationally equivalent

coe¢ cients �0I will not be a singleton. But as additional restrictions are imposed on error

distributions, the size of the identi�cation region of � will be reduced. For instance, under

a slightly stronger version of BCQ, the new identi�cation region will be a subset of �0I .

BCQ-2: The error " has continuous density conditional on all x and L(x)� infMed("jx)

� supMed("jx)� U(x) a:e: FX, where L(:); U(:) are known functions such that L(x) � U(x)

a:e: FX, L � infx2S(X) L(x) > �1, and U � supx2S(X) U(x) < +1.
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Corollary 1 (Lemma 1) In Model (2.1) under BCQ-2, the identi�cation region of � is

�I � fb 2 RK : Pr(X 2 �0b) = 0g, where �b � �0b [ fx 2 S(X) : (�xTb < L(x) ^ P �1jx = 1
2
)

_ (�xTb > U(x) ^ P �1jx = 1
2
)g.

The classical restriction of median independence is a special case of BCQ-2 with L(x) =

infMed("jx) = supMed("jx) = U(x) = 0 a:e:FX. Under the classical median independence,

the identi�cation region is �0I � fb 2 RK : Pr(x 2 �0b) = 0g, where �0b � fx 2 S(X) :

(�x0b � 0 ^ P �1jx < 1
2
) _ (�x0b � 0 ^ P �1jx > 1

2
) _ (�x0b 6= 0 ^ P �1jx = 1

2
)g = fx 2 S(X) :

(�xTb < 0 ^ P �1jx � 1
2
) _ (�xTb > 0 ^ P �1jx � 1

2
) _ (�xTb = 0 ^ P �1jx 6= 1

2
)g. Note

�0b � �b � �0b when L(x) � 0 � U(x) almost everywhere on S(X). Hence �0I � �I � �0I .

The exact size of di¤erences between these sets will be determined by the distribution of

X. These characterizations of the identi�cation regions reveal little information about their

analytical properties, as P �1jx depends on unknown parameters. However, it can be shown

�0I and �I both satisfy the nice property of convexity.

Corollary 2 (Lemma 1) Under BCQ, the identi�cation region �0I is convex. Under

BCQ-2, the identi�cation region �I is convex.

2.4. Point identi�cation of �

Point identi�cation is the special case where the identi�cation region is reduced to a

singleton. Despite the generality in the characterization of �I , point identi�cation of � is

possible under fairly weak conditions on the parameter space, the support of regressors, and

the form of bounding functions..

PAR (Parameter space) The true parameter � is in the interior of �, where � is a

convex, compact subset of RK.10

10The compactness of � may be given by extraneous restrictions on the model implied by economic theories,
such as signs and bounds on the sizes of coe¢ cients.
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SX-1 (Support of X) (a) 9J � f1; 2; :::; Kg such that for all b 2 �, bj = 0 8j 2 J

and there exists no nonzero vector � 2 RK�#fJg such that Pr(X0
�J� = 0) = 1 where

X�J � (Xj)j2f1;::;KgnJ ; (b) For all b; ~b 2 � and b�J 6= ~b�J , PrfX�J2T (b�J ; ~b�J)g > 0

where T (b�J ; ~b�J) � fx�J : (L;U) \ R(x�J ;b�J ; ~b�J) 6= ? ^ x0�J(b�J � ~b�J) 6= 0g

and R(X�J ;b�J ; ~b�J) is the random interval between X
0
�Jb�J and X

0
�J
~b�J ; (c) Pr(a0 <

L(X)^U(X) <a1jX�J = x�J) > 0 for all open interval (a0; a1) � [L;U ] and almost every-

where x�J .

Proposition 1 Under BCQ-2, PAR and SX-1, � is identi�ed relative to all other b 2 �.

The support conditions in SX-1 are quite general. In particular, they allows for both

discrete coordinates and bounded support of X. Below I show how they can be satis�ed by

more primitive conditions on the support of regressors in some of the motivating models.

Model 2 (Revisited) Consider a simple 2-by-2 discrete game with incomplete informa-

tion. Below I give primitive conditions su¢ cient for the point identi�cation of �1.

(REG) (i) 9l � f1; 2; :::; Kg such that �1l = 0, �2l 6= 0 and 8 nonzero vector � 2

RK�1, Pr(X0
�l� 6= 0) > 0; (ii) 9 an unknown constant C < 1 such that P (jX0

�lb1;�lj �

C) = 1 8b1 2 �1 where �1 is the parameter space for b1; (iii) for all �x�l 2 S(X�l),

Xl is continuously distributed on the compact support S(Xlj�x�l) with the conditional density

bounded below from zero; (iv) for all b22 �2, 9xul ; xll 2 S(Xlj�x�l) such that xul b2l+�x�lb2;�l =

"u2 +1 and x
l
l�2l+ �x�l�2;�l = "l2� 1;11 (v) Let Xc

�l and X
d
�l denote respectively subvectors of

continuous and discrete coordinates of X�l. For all S such that P (Xc
�l2 S) > 0, P (Xd

�l =

0 ^Xc
�l 2 �S) > 0 8� 2 (�1; 1) where �S � f~x : ~x = �x for some x 2 Sg.

(ERR) For i = 1; 2, (i) for all x 2S(X), the conditional disturbance distributions F"ijX=x

are continuously di¤erentiable for all "i in the interior of the compact support S"i � ["iL; "iU ]

11The proof below can be adjusted to allow the support S�j to change with x.
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with the conditional median being zero, and is Lipschitz continuous on S"i with an unknown

constant Ci;" > 0; (ii) there exists an unknown constant Ci;x > 0 s.t. supt2["iL;"iU ] jF"ijx�l;x0l(t)�

F"ijx�l;xl(t)j � Ci;xjx0l � xlj for all x�l 2 S(X�l) and xl 2 S(Xljx�l).

Corollary 1 (Proposition 1) In Model 2, suppose �1 6= 0 belongs to a compact para-

meter space �1, and (REG), (ERR) are satis�ed. Then �1 is identi�ed relative to all other

b12�1.

The support conditions are quite general, and allow the regressor to have bounded sup-

port. This is an important technical nicety as the compactness of regressor supports will

come in hand in the proof of asymptotic properties of the estimator proposed in the sections

below. �

Model 1 (Revisited) Consider the binary choice model with interval data on one of

the regressors. The augmented vector of regressors is Z � [X V0 V1] 2 RK+2. Note by

construction, ZJ = [V0 V1], and L(Z) =V0, U(Z) =V1, and �J = [0 0]. Let V0 and V1

have unbounded support and the support of X not to be contained in a linear subspace of

RK . Then conditions SX1-(a) and (b) are satis�ed. And � is point identi�ed if Pr(a0 <

L(X)^U(X) <a1jX = x) > 0 for all open interval (a0; a1) � R1 and all x 2S(X). This is

exactly the conditions speci�ed in Manski and Tamer (2002). �

The identifying restrictions in SX-1 is essentially an exclusion restriction in that it re-

quires a regressor that a¤ects L(:) or U(:) but does not enter the linear index. Below I give

a di¤erent set of exclusion restrictions which requires regressors that do not a¤ect L(:) or

U(:) but enter the linear index.

SX-1� (Support of X) (a) 9k 2 f1; 2; :::; Kg such that �k 6= 0, L(x�k) = L(x) and

U(x�k) = U(x) 8x, and for almost every value of x�k = (x1; :;xk�1;xk+1; :;xK), Pr(Xk 2
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(a1; a2)jx�k) > 0 for all open interval (a0; a1) � R1; ; (b) 8b�k 6= ��k, PrfL(X) =

U(X) ^X0
�k(b�k � ��k) 6= 0g > 0.

Proposition 2 Under BCQ-2, PAR and SX-1�, � is identi�ed relative to all other b 2 �.

The support conditions SX-1� allows for discrete regressors. However, it does not satisfy

the property of bounded support for regressors.

2.5. A Two-step Extreme Estimator

I construct a two-step extreme estimator following standard steps. First I de�ne a non-

stochastic function Q(b) which is minimized if and only if b 2 �I , where �I is the identi�-

cation region of � under BCQ-2. Then I construct sample analogs Q̂n(b) of Q(b) using the

empirical distribution and a �rst-step kernel estimator. The two-step extreme estimator is

then de�ned as the minimizer of the stochastic objective function Q̂n.

SX-2 Pr(�X0b = U(X)_ �X0b = L(X)) = 0 for all b 2 �.

Lemma 2 (Identi�cation) De�ne the nonstochastic function

Q(b) � E[1(P �1jX � 1=2)(�U(X)�X0b)2+ + 1(P
�
1jX � 1=2)(�L(X)�X

0
b)2�]

where a+ � max(0; a) and a� � max(0;�a). Under BCQ-2 and SX-2, Q(b) � 0 8b 2 �I

and Q(b) = 0 if and only if b 2 �I .

For simplicity in exposition, below I will construct the two-step extreme estimator for the

case where all regressors are continuous. The extension to the case where some regressors are

discrete does not cause any conceptual or technical di¢ culty, and will be omitted. The �rst

step estimates the choice probabilities using kernel regressions. De�ne the kernel estimates
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for density f0(xi) and h0(xi) � E(YijXi = xi)f0(xi) as

f̂(xi) � (n�Kn )�1
Pn

j=1;j 6=iK[(xj�xi)=�n]; ĥ(xi) � (n�Kn )�1
Pn

j=1;j 6=i yjK[(xj�xi)=�n]

whereK(:) is a kernel function and �n is the chosen bandwidth. The nonparametric estimates

for p(xi) is p̂(xi) � ĥ(xi)=f̂(xi). Now construct the sample analog of Q(b):

Q̂n(b) =
1

n

Pn
i=1 1f

^
p(xi) �

1

2
g[�x0ib� U(xi)]

2
+ + 1f

^
p(xi) �

1

2
g[�x0ib� L(xi)]

2
�

The two-step extreme estimator is de�ned as:

�̂n = argminb2� Q̂n(b)

2.5.1. Consistency under set-identi�cation

In general, conditions for point identifying � may not be satis�ed. Therefore the concept of

a consistent estimator when the parameter is point identi�ed needs to be extended to the

case of set-identi�cation. The Hausdor¤ distance between two compact sets A and B in RK

is de�ned as

�(A;B) � maxfsup
a2A

inf
b2B

jja� bjj; sup
b2B

inf
a2A

jja� bjjg

where jj:jj is the Euclidean norm. The metric is asymmetric in the sense that �(A;B) 6=

�(B;A). Proposition 3 below proves the two-step extreme estimator is a consistent estimator

of the identi�cation region �I in the Hausdor¤ metric. For technical reasons, I replace

the indicator functions in the de�nition of Q(b) with smooth functions �(p(xi) � 1
2
) and

�(p(xi)� 1
2
) respectively. Regularity conditions for set consistency are collected below.

RD-1 (Regressors and disturbance) (i) the (K+1)-dimensional random vector (X0
i; "i) is

independently and identically distributed; (ii) The support of X (denoted S(X)) is bounded,
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and its continuous coordinates have bounded joint density f0(x); (iii) the density function

f0 is k + 1 times continuously di¤erentiable on the interior of the support S(X).

K (Kernel estimator) (i)K(:) is continuous and zero outside a bounded set; (ii)
R
K(u)du =

1 and for all l1 + :: + lk < k + 1,
R
ul11 :::u

lk
k K(u)du = 0; (iii) n�2kn =(log n)

2 ! 1 and

n�2(k+1) ! 0.

TF (Trimming functions) (i) � : R! [0; 1] is bounded with continuous and bounded �rst

and second derivatives; (ii) �(t) 2 (0; 1] for t > 0, and �(t) = 0 otherwise.

That the trimming function carries positive weights if and only if the argument is positive

is essential for identi�cation. The proof of Lemma 2 still applies with the indicator function

replaced by �. Conditions on regressors and kernels deliver the uniform convergence in

probability of p̂ to p. The smoothness of � and the boundedness of regressor supports are

convenient technicalities for proving the convergence in probability of the stochastic criterion

function to Q̂n to Q, and the root-n asymptotic normality.

Theorem 1 Suppose BCQ-2, SX-2, PAR, TF, RD-1 and K are satis�ed. Then Pr(�(�̂n;�I)

> ") ! 0 as n!1 for all " > 0.

This result of set-consistency incorporates the special case where �I is a singleton (�0 is

point identi�ed). In general, Q̂n may not be uniquely minimized even when �0 is known to

be exactly identi�ed. In this case, �̂n may be chosen randomly from the set of minimizers of

Q̂n, and it converges in probability to �0. Chernozhukov, Tamer and Hong (2008) studied

the inference of extreme estimators in a very general class of partially identi�ed models

which includes our model here. Their approach of inference is based on approximating

the distributions of criterion functions (maximized over the identi�cation region) through a

subsampling procedure.
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2.5.2. Asymptotic properties under point-identi�cation

Obviously, consistency under point identi�cation is a special case of Theorem 1. For the rest

of this section, I discuss the root-n asymptotic normality of the two-step extreme estimator

when � is point identi�ed in �. For various technical reasons, the estimator is

Q̂n(b) =
1

n

Xn

i=1
�̂ui [�x0ib� U(xi)]

2
+ + �̂

l
i[�x0ib� L(xi)]

2
�

where �̂ui � �(
^
p(xi) � 1

2
), �̂li � �(12 � p̂(xi)), and � is a smooth function that satis�es the

regularity conditions above.

RD-2 (i) f0(x) � c 8x 2S(X) for some small constant c > 0; (ii) 8 b 2 �, the Lebesgue

measure of Sj(b; ") � fx 2S(X) : sgn(L(x)� x0b) 6= sgn(L(x)� x0b � xj")g ! 0 as

"! 0; (iii)9B(:) : S(X)! R1 such that jmaxf(vli)�; (vui )+gj � B(xi) with E[B(X)] <1,

and E[B(X)jjXjj] < 1; (iv) L(:) <1 and U(:) <1 on S(X); (v)E[jj[�l(pi)(V l
i )� +

�u(pi)(V
u
i )+]Xijj2] < 1; (vi) E[jjXijj4(V l

i )
4
�] < 1, E[jjXijj4�(V u

i )
4
+] < 1 and E[jjXijj4] �

1.

Theorem 2 (Asymptotic Normality) Suppose BCQ-2, PAR, SX-1,2, RD-1,2, TF and K

are satis�ed, and matrices J and � de�ned below are both non-singular. Then
p
n(�̂��0)

d!
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N(0; J�1�J�1), where

� � V ar[�(X;h0; f0) + �(X; Y ;h0; f0)]

�(x; h0; f0) � 2

�
�

�
1

2
� h0(x)

f0(x)

�
(V l

i )� + �

�
h0(x)

f0(x)
� 1
2

�
(V u

i )+

�
x

�(x; y;h0; f0) �
�
a1(x;h0; f0)y +

h0(x)

f0(x)
a1(x;h0; f0)

�
x

a1(x;h; f) � 2

�
max(0; vui )�

0
�
h(x)

f(x)
�1
2

�
�max(0;�vli)�0

�
1

2
� h(x)

f(x)

��
J � 2n�1Ef[�l(pi)1(V l

i < 0) + �
u(pi)1(V

u
i > 0)]XiX

0
ig

The asymptotic normality proof follows similar steps in Buchinsky and Hahn (1998).

First, I let the criterion function in the second step be approximated by a version of 2nd-

order Taylor expansion of the limiting function around the true parameter but with the 1st-

order term (the "score") replaced by its sample analog that depends on �rst-step preliminary

kernel estimates. Then I showed the approximation error is small enough to be omitted in

discussing asymptotic distributions. Next I follow the standard steps in Theorem 8.1 in

Newey and McFadden (1994) to show the sample score term converges in distribution to a

normal distribution. These arguments combine to prove the asymptotic normality of our

two-step extreme estimator. Consistent estimators of the asymptotic covariance matrices

can be constructed using the sample analog principle.

Recall the general model described in Section 2 encompasses classical binary regression

with median independence as a special submodel, for which Chamberlain (1986) showed there

exists no root-n consistent semiparametric estimator when the parameter is point identi�ed.

Therefore the result that root-n asymptotic normality is attained in Theorem 2 appears to

be counter-intuitive. However, note the assumptions SX-1 and RD-1 in Theorem 2 require
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that the model is point identi�ed while the support of regressors is bounded.12 Manski (1986)

showed this can never be the case for binary regression model under median independence.

As a result, Theorem 2 does not apply to the class of model studied by Chamberlain (1986).

2.6. Monte Carlo Experiments

In this section, I study the �nite sample performance of the two-step extreme esti-

mator in the more general context where �0 is set-identi�ed. I experiment with two de-

signs of binary response models with interval data on one of the regressors. Speci�cally,

Y = 1f�0 + �1X+V + " � 0g. In the �rst design, V ~N(0; 2) and X~N(0; 4), and in

the second design V ~Uniform(�2; 3) and X~Uniform(0; 5). In both designs, "~N(0; 1),

(V;X; ") are statistically independent, and V is not observed by the researcher. Instead,

only V0 = int(V ) and V1 = int(V ) + 1 are observed. These are exactly the same designs as

considered in Manski and Tamer (2002). The su¢ cient conditions for point identi�cation in

Section 4 are not satis�ed and there is no reason to believe the coe¢ cients �0 and �1 are

point identi�ed.

I do not derive the closed form of the identi�cation region. Instead I simulate a large

data set with 105 observations, and treat it as the population for our Monte Carlo studies. I

apply the two-step extreme estimators to this data set and use the estimates to approximate

the real identi�cation region. (See Figure 1 and Figure 2.) For both designs, I reported

the performance of the estimator in samples with N = 500, 1000 and 3000 respectively. For

each sample size N considered, I simulate 100 di¤erent samples by making random draws

from the population with replacement. I calculate the two-step extreme estimates for each

of the 100 samples. I use Naradaya-Watson kernel regressions to estimate conditional choice

12Such a submodel exists within our general model. I have proven this through an example of simple discrete
games with incomplete information in Section 3.
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probabilities in the �rst step. The bandwidths are chosen through cross-validations and

Gaussian kernels are used. The maximization procedure in the second step is done by a two

dimensional grid-search.

Figure 1: Identi�cation Region (Normal)

Figure 2: Identi�cation Region (Uniform)

Figure 1 and Figure 2 con�rm the earlier proposition about the convexity of the identi�-

cation region in Section 3. The size of the identi�cation is also small relative to the variance

of regressors in the designs. There has been lots of recent contributions in the literature on

the inference of non-singleton identi�cation region. For instance, Chernozhukov, Hong and

Tamer (2003) proposed a general criterion function approach of set inference for extreme
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estimators that can be applied to our model here. In this section, I do not take this ap-

proach to report any con�dence regions. Rather, for each of the 100 estimated sets, I record

the percentage of the identi�cation region it covers (denoted P1), as well as the proportion

of the estimated set contained in the identi�cation region (denoted P2). I use these two

proportions as measures of discrepancies between the two-step estimates and the real iden-

ti�cation region. Table 1 below reports di¤erent percentiles of these two measures among

the 100 simulations.

Table 1 (a): Normal Design

P1 P2

percentile n = 500 n = 1000 n = 3000 n = 500 n = 1000 n = 3000

10% 0 0 0:054 0 0 0:344

25% 0:017 0:097 0:345 0:228 0:296 0:487

50% 0:370 0:444 0:571 0:409 0:520 0:594

75% 0:653 0:724 0:787 0:597 0:686 0:701

90% 0:841 0:860 0:934 0:808 0:839 0:853

In the normal design, Table 1(a) suggests the discrepancies between the worst estimates

and the identi�cation region is quite noticeable for small samples. In particular, the �rst

quartile of P1 (the percentage of identi�cation region covered by an estimated set) is smaller

than 10% for n = 500 and n = 1000. And the medians for P1 are both lower than 50%.

The performance is remarkable enhanced when the sample size is increased. In particular,

the �rst quartile for P1 with n = 3000 reports a much higher proportion. In comparison,

the estimators have higher �rst quartile for P2 (the percentage of an estimated set covered
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by the identi�cation region). The di¤erence between P1 and P2 for higher quartiles are less

pronounced.

Table 1 (b): Uniform Design

P1 P2

percentile n = 500 n = 1000 n = 3000 n = 500 n = 1000 n = 3000

10% 0:581 0:627 0:814 0:509 0:635 0:786

25% 0:664 0:755 0:859 0:600 0:719 0:848

50% 0:782 0:854 0:911 0:685 0:807 0:908

75% 0:925 0:949 0:968 0:843 0:895 0:954

90% 0:989 0:984 0:994 0:923 0:965 0:982

Table 1(b) suggests the performance of the estimator under the uniform design is much

better than under the normal design. This is best illustrated by lower percentiles for smaller

sample sizes. The median for P1 and P2 are remarkably high for all sample sizes.

Table 1 (c): Min{P1,P2}

Normal Uniform

percentile n = 500 n = 1000 n = 3000 n = 500 n = 1000 n = 3000

10% 0 0 0:054 0:503 0:583 0:758

25% 0:013 0:086 0:341 0:582 0:673 0:817

50% 0:294 0:367 0:477 0:659 0:748 0:858

75% 0:453 0:541 0:618 0:756 0:818 0:902

90% 0:546 0:633 0:688 0:854 0:863 0:940
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A more comprehensive measure the discrepancies between the estimates and the identi-

�cation region is minfP1; P2g reported in Table 1(c). By this criterion, the estimator also

performs obviously better under the uniform design than under the normal design.

2.7. Conclusion

In this paper I have studied the identi�cation and estimation of a class of binary response

models where the conditional median of the error term is bounded between known functions

of the regressors. I focus on the case where the payo¤ functions satisfy a linear index

speci�cation. Though the index coe¢ cients may not be exactly identi�ed, a two-step extreme

estimator can estimate the identi�cation region consistently regardless of point identi�cation.

Furthermore, when point identi�cation is achieved with bounded support of regressors, the

estimator is converges in distribution to a normal random variable at a rate of
p
n. Monte

Carlo evidence suggests the estimator has good �nite sample behavior.

Directions for future research includes the search for point identi�cation conditions when

the payo¤ functions have more general forms than linear indices. Another interesting issue

is the estimation of the model when the bounding functions L and U are only known up to

�nite dimensional parameters. In particular, it will be interesting to look at what can be

identi�ed when the payo¤ functions, as well as L and U , are known only to satisfy certain

shape restrictions.
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CHAPTER 3

Identi�cation of Dynamic Binary Choice Processes

3.1. Introduction

In a typical dynamic binary choice process, the decision-maker�s payo¤s in each period

depend on contemporary states and his choice of action, which in turn impact the distribution

of states in the future. The agent is forward-looking and makes a sequence of choices in each

period to maximize the sum of contemporary and future expected returns. The structural

parameters of the model are single-period returns, and the transitions between current and

future states. Such dynamic binary choice models have found wide applications in the

literature of empirical industrial organizations and labor economics. Recent applications

include replacement of bus engines in Rust (1994), analysis of unemployment insurance

in Ferrall (1997), the inventories of retailing �rms in Aguirregabiria (1999), evaluation of

welfare policies in Keane and Wolpin (2000), and consumer stockpiling in Hendel and Nevo

(2005). Aguirregabiria (2007) gives an updated survey of estimation and inference of dynamic

discrete choice processes.

In this paper we study the identi�cation of structural parameters in a class of dynamic

binary choice models where transitions to future states are independent from disturbances

(i.e. states unobservable to econometricians) conditional on current actions and observ-

able states. We address the question of what can be learned about the decision-maker�s

single-period payo¤s under various restrictions on disturbance distributions. This question
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of identi�cation is important for several reasons. First, the exact values of structural parame-

ters per se are interesting to researchers; Second, estimates for parameters are often needed

in empirical research for policy analyses beyond the simple prediction of choice probabilities

on the support of states observed. For example, researchers may wish to study policy im-

plications of counterfactual changes in the structural parameters, or to extrapolate choice

probabilities conditional on states out of the support observed. For these questions, struc-

tural parameters that are not identi�ed relative to the truth may have di¤erent implications,

and it is important to �nd out what features of the parameters can be uniquely recovered

from observables in the model.

There has been some recent development in the literature on identi�cation of dynamic

binary choice processes under the conditional independence restriction. Rust (1994) argued

through an example that single-period payo¤s are not identi�ed even in the absence of

disturbances. Magnac and Thesmar (2002) noted with this knowledge the di¤erences between

expected payo¤s from two sequences of choices are identi�ed: one is to choose 1 today, 0

tomorrow and behave optimally afterwards, and the other is to choose 0 for both today and

tomorrow and behave optimally afterwards. Aguirregabiria (2005) studied counterfactual

choice probabilities instead of focusing on recovering structural parameters. He showed

counterfactual choice probabilities under policy changes of single-period payo¤s can be fully

nonparametrically recovered from choice probabilities observed, provided the form of policy

change is known to the researcher. Berry and Tamer (2006) considered an optimal stopping

problem where the decision to stop brings an end to the choice process, and showed the single-

period return from not stopping is uniquely recovered when the disturbance distribution is

known.
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This paper contributes to this growing literature in several ways: First, we give a full

characterization of the set of structural parameters (single-period payo¤s and disturbance

distributions) that can generate the same choice probabilities as observed in a given dynamic

binary choice process. This introduces a convenient framework for studying the identi�cation

of single-period payo¤s under parametric and stochastic restrictions on disturbance distrib-

utions. Second, we show that with knowledge of disturbance distributions, the di¤erences

between payo¤s from two trivial policies of choosing one of the actions forever can be uniquely

recovered from choice probabilities observed. Third, we analyzed the identi�cation of single-

period payo¤s when the distribution of unobservable states is statistically independent from,

or symmetric conditional on observable states. For the case of �nite space of observable

states, the set of observationally equivalent structural parameters is characterized by a sys-

tem of linear equations. Then by de�nition, the identi�cation region of single-period payo¤s

under these stochastic restrictions is the set of vector values that guarantee the existence of

distributions which satisfy the linear equations subject to systems of linear inequality con-

straints implied by these restrictions. Hence the identi�cation region of single-period payo¤s

under these restrictions is characterized by checking feasibility of the augmented system

of linear equations in the nuisance (distributional) parameters with inequality constraints.

Though proposed in the context where no form restrictions is imposed on payo¤ functions,

this approach of identi�cation using linear programming can be readily extended to cases

where single-period payo¤s are known to satisfy any form of restrictions.

The rest of the paper proceeds as follows. Section 2 speci�es the model of dynamic binary

choice models and characterize the joint identi�cation region of the structural parameters in

the absence of any parametric or stochastic restrictions. Section 3 discusses the benchmark

situation where the distribution of disturbances is completely known. Section 4 examines
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the identifying power of various parametric and stochastic restrictions on disturbance distri-

butions. Section 5 concludes.

3.2. The Model

We consider a single-agent, dynamic binary choice process in an in�nite horizon. The

time is discrete and indexed by t. In each period t, the decision maker observes a state vector

st = (xt; "t) from the support S(S) = S(X)
S(�) � RD+2, and chooses an action jt from a

pair of possible actions J = f0; 1g.1 The state space S(S) � RD+2 is �xed over time. For each

period, researchers can observe xt, but not "t. The latter is only observed by the decision-

maker. The single-period return for the decision-maker is U(st; jt) : S(S)
J! R1 for all t.

Conditional on the current state s and action j, the distribution of states in the next period s0

is given by the transition function Hj(s
0js) : S2(S)! [0; 1]. The agent has the same discount

factor � 2 (0; 1) forever. Both the single-period return and the transition probability are �xed

over time.2 The decision-maker chooses a deterministic, Markovian decision rule j(s) that

maximizes the sum of expected present and future payo¤s: E[
P1

s=0 �
jU(st+s; jt+s)jst; jt].3

The following restrictions are maintained throughout the paper unless noted otherwise.

AS (Additive Separability) U(s; j) = uj(x) + "j, " � ["0; "1] 2 R2, E("jjx) = 0 8(x; j);

CI (Conditional Independence) Hj(s
0js) = F"jX("

0jx0)Gj(x
0jx) 8s; s02 S, j 2 f0; 1g,

where F"jX(:jx) and Gj(:jx) are distributions de�ned on S(�) and S(X) respectively for

all x 2S(X) and j 2 f0; 1g.

1Throughout the paper I use bold letters to denote vectors.
2For notational ease, I will drop time subscripts for the rest of the paper due to time-invariance of period
return, transitional probabilities, and the state and action spaces.
3In general, the optimal policies should be a function of past histories �t = fsjgtj=0. However Strauch (1966)
showed for any history-dependent poilicy and starting state, there always exists a deterministic, Markovian
policy (a policy that depends on the current state only) with the same expeced total discounted payo¤.
The implication is that for analysis of optimal policies, it su¢ ces to focus on Markovian stationary policies.
Throughout the paper we focus on the case where the agent only considers deterministic Markovian policies.
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The transitions G � [G1 G0] are identi�ed from data of observed states and actions

fjt;xtg+1t=0 directly. Throughout the paper, we maintain that the constant discount factor �

is known to econometricians, while structural parameters u � [u0(:) u1(:)] and F"jX are to be

identi�ed. CI requires that persistence between current and future states is captured by the

persistence between observable states x0 and x, and therefore actions a¤ect future states only

through fGjgj=0;1. Given our focus on Markovian policies, an important implication of CI is

that choice probabilities conditional on current states is independent from past states. That

is, Pr(jt = 1jxt) = Pr(jt = 1jxt;xt�1) for all xt;xt�1. This is a testable implication using

observable distributions. Therefore, the choice probability function p(x) � Pr(jt = 1jxt) will

be a su¢ cient statistic for the purpose of identifying u and F"jX. Lemma 1 below shows

under AS, CI and some regularity conditions, the dynamic binary choice process has a static

representation.

REG (Regularity Conditions) (i) For j 2 f0; 1g; uj 2 B(S(X)), where B(S(X)) is the

set of bounded, continuous, real-valued functions on S(X); (ii) For j 2 f0; 1g; Gj satis�es

the Feller Property;4 (iii) For all x 2S(X); j 2 f0; 1g, E[maxk2f0;1gf"t+1;kgjxt; j] <1.

Lemma 1 Under AS, CI and REG (i)-(iii), the value function of the dynamic binary

decision process has a static representation:

j(s) = argmaxj2f0;1g �j(x;u; F"jX) + "j

where �(x;u; F"jX) � [�0(x) �1(x)]
0 is the �xed point of the following operator T � �(x) �

[T1(x; �) T0(x; �)], where

(3.1) Tj(x) � uj(x) + �

Z
maxk2f0;1gf�k(x0) + "0kgdF"jX("0jx0)dGj(x

0jx)

4Gj(x
0jx) satis�es the Feller Property if for each bounded, continuous function f : S(X) ! R1,R

f(x0)dGj(x
0jx) is also bounded and continuous in x.
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As a result of this lemma, the conditional choice probability has a static representation:

p(x;u; F"jX)=F�"jX[��(x)jx], where �" � "0�"1, ��(x) � �1(x)� �0(x), and the economic

interpretation of �j(xt) is the expected return from choosing j in the current period condi-

tional on observable states xt.5 Throughout this paper, we focus on the question whether the

single-period payo¤ u can be uniquely recovered from observable distributions of fjt;xtg1t=0,

and treat F"jX as a nuisance parameter. Several technical notes are necessary before giving

a formal de�nition of identi�cation. First, we adopt the conventional sup norm on the space

of R2-valued functions jjujj1 � supj2f0;1g;x2X juj(x)j. Second, to �x ideas, we focus on cases

with �nite spaces of observable states, and leave the generalization to in�nite spaces for

future work. Speci�cally, we maintain the following support condition for the rest of the

paper.

REG-(iv) (Discrete support of observable states) The space of observable states is time-

invariant and S(X) =fx1;x2; ::;xKg, with xk 2 RD for all k.

De�nition 1 Two sets of structural parameters � � (u; F"jX) and �
0 � (u0; F 0"jX) are

observationally equivalent if p(x;�) = p(x;�0) for all x 2S(X). Let U and F denote respec-

tively sets of single-period returns and conditional error distributions. We say u is identi�ed

relative to u0 under F if 8 F"jX, F 0"jX 2 F , (u; F"jX) and (u0; F 0"jX) are not observationally

equivalent; and u is identi�ed within U under F if u is identi�ed relative to all u0 6= u in U

under F . Let p�(x) be the choice probabilities observed. The joint identi�cation region is

the set of all � such that p(x;�) = p�(x), and the identi�cation region under F is the set of

all u such that 9F"jX 2 F with p(x;u; F"jX) = p�(x).

5The conditional independence restriction can be weakened to A2�: Hj(:js) = Hj(:jx);8j; s and the repre-
sentation result is still valid.
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As a starting point for discussing identi�cations, Proposition 1 below characterizes the

joint identi�cation region of (u; F"jX) without further identifying restrictions. Let F�1�"jX(tjx)

denote the inverse of F�"jX(:jx) at t 2 [0; 1].

Proposition 1 Suppose AS, CI and REG (i)-(iv) are satis�ed. For any observed choice

probability p(x), the joint identi�cation region is

(3.2) �I � f(u; F"jX) : �!(x;u) = F�1�"jX(p(x)jx)���(x;F�"jX; p) for all x 2S(X)g

where�!(x;u) � !1(x)�!0(x), ��(x;F�"jX; p) � �1(x)��0(x); !j(x) and �d(x) are unique

�xed points of following operators:

T! � (!j(x)) � uj(x) + �

Z
!j(x

0)dGj(x
0jx)(3.3)

T� � (�j(x)) � �

Z
�j(x

0; p; F�"jX) + �j(x
0)dGj(x

0jx)(3.4)

with �d de�ned as

�0(x; p; F�"jX) �
Z q(x)

�1
[q(x)� s]dF�"jX(sjx)

�1(x; p; F�"jX) �
Z +1

q(x)

[s� q(x)]dF�"jX(sjx)

where q(x) � F�1�"jX(p(x)jx).

Proposition 1 gives a formal characterization of the joint identi�cation region of (u; F"jX)

in the absence of further restrictions. Note the assumption of a �nite state space is not

essential for the proposition. It shows how changes in di¤erent speci�cations of u(x) can be

o¤set by varying F�"jX so as to generate the same choice probabilities p(x). In the special
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case of static binary choice models (where the discount factor is 0 forever), the joint iden-

ti�cation region takes the familiar form: f(u; F"jX) : F�1�"jX(p(x)jx) = �u(x) 8 x 2S(X)g.6

Furthermore, note !j(x) is the expected payo¤ from the trivial policy of choosing j forever

conditional on current states.7 Hence Proposition 1 suggests the conditional expectation of

di¤erences in payo¤s from two trivial policies can be completely recovered from observables

with the knowledge of F�"jX.

3.3. Identi�cation with Known Transitions

This sections focuses on the identi�cation of u when F"jX is known in the dynamic binary

choice processes. Since the transition between x is observed, this implies the transition

Hj(s
0js) = F"jX("

0jx0)Gj(x
0jx) is also known under the conditional independence restriction.

Formally, we maintain the following assumption throughout this section:

KD (Known distribution) The true conditional error distribution F"jX is known to the

econometrician (i.e. the set of possible error distributions F is a known singleton).

Berry and Tamer (2006) studied the identi�cation of an optimal stopping model when

the disturbance distribution conditional on observable states is known. An optimal stopping

problem is qualitatively di¤erent from dynamic binary choice models in that the decision to

stop brings an end to the process. More importantly, the expected current and future payo¤s

from stopping is independent of payo¤s from not stopping, and therefore can be normalized

to zero for identi�cation. In their paper Berry and Tamer showed when F"jX is known, the

single-period payo¤s for not stopping can be fully nonparametrically identi�ed. Whether u

can be identi�ed with knowledge of F"jX in a general dynamic binary choice process is an

6Aguirregabiria (2005a) was the �rst to show that ��(x) can be decomposed into �!(x) and ��(x) when
the space of observed states X is �nite.
7Recursive substitution in (3.3) implies !j(xt) =

P1
s=0 �

sEjs[uj(xt+s)jxt], where Ejs(:jxt) is the expectation
with respect to the distribution induced by unconditionally choosing j for s consecutive periods after the
current state xt.
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open question not addressed by the literature so far. Aguirregabiria (2005) showed when

F"jX is known, the di¤erences between the expected payo¤ from two sequences of actions can

be identi�ed. The �rst is to take action 1 in the current period and 0 forever in the future,

and the second is to take action 0 both now and in the future forever.

In this section, we show the knowledge of F"jX helps identify u under fairly general rank

conditions on observable state transitions and locational normalization u0(x) = 0 for all

x 2 S(X). First note locational normalization of u0 is necessary for identi�cation. To see

this, let uj denote a K-vector with its k-th element being uj(xk). Let Gj denote matrices

of transitions with the (m;n)-th component de�ned as Gj
m;n = Pr(xnjxm; j).

REG (v) Gj
1 � limT!1

PT
t=1 �

t[Gj]t exists, where [Gj]t is the t-th power of Gj.

By recursive substitution, the left hand side of (3.2) is (I+G1
1)u1�(I+G0

1)u0, where I

is the K-by-K identity matrix. On the other hand, the right hand side is known for any �xed

F�"jX. Therefore (3.2) is a system of K linear equations for 2K variables, with in�nitely

many solutions. The corollary below shows that once u0 is normalized to be a zero vector,

u1 can be identi�ed under fairly week rank conditions on observable state transitions.

Corollary 1 (Proposition 1) Suppose AS, CI, REG (i)-(v) and KD are satis�ed. Then

(I +G1
1)u1 � (I +G0

1)u0 is identi�ed from the conditional choice probabilities observed.

If u0 is normalized to 0, then u1 is uniquely recovered in RK under the singleton F if and

only if the matrix (I� �G1) has full rank.

To my knowledge, this is the �rst result in the literature that speci�es conditions for non-

parametric identi�cation of �u with the knowledge of F�"jX and the normalization of u0 to

the zero vector. It also reveals precisely the impact of normalizing u0 on the identi�cation

of u1. We propose the following algorithm for nonparametric estimation of u1 with the

knowledge of F�"jX.
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Step 1: estimate p(x) nonparametrically;

Step 2: use knowledge of F�"jX and �rst-step estimates p̂ to compute ��(x;F�"jX; p̂);

Step 3: calculate �!̂(x) � F�1�"jX(p̂(x)jx)���(x;F�"jX; p̂);

Step 4: estimate Gj nonparametrically and check the rank condition;

Step 5: calculate �û(x) � (I� �Ĝj)�!̂(x).

Relative to most of the maximum-likelihood based estimation procedure in the literature,

an obvious advantage of this algorithm is that it circumvents the numerically intensive task

of solving for �xed points through iterations, and then maximizing the likelihood over the

space of payo¤ parameters. Instead, with knowledge of F"jX, �û(x) is computed by directly

plugging in preliminary kernel estimates. A direction for future research is to �nd regularity

conditions on F�"jX,G and the kernels in step 1 and 4 that could deliver desirable asymptotic

properties of the estimator.

3.4. Identi�cation with Unknown Transitions

The identi�cation result in the section above reveals what can be learned about u from the

history of actions and observable states, with full knowledge of F"jX. However, in practice,

econometricians do not always have the luxury of knowing F"jX. This section studies the

identi�cation in the cases where F"jX is known to belong to a parametric family, or to satisfy

certain stochastic restrictions such as median and statistical independence. As before we

focus on the case where the space of observable states S(X) is �nite with K elements, and

leave the generalization to in�nite spaces for future research.
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3.4.1. Parametric identi�cation

First, we study below the identifying power of the most restrictive assumptions on F . This

is the case where structural parameters are known to belong to parametric families.

PAR (Parametric Family) For all �� and x, F�"jX(��jx) = �F (��;x;�F ), uj(x) =

�uj(x;�u), where �F and �u are known up to �nite dimensional parameters �F and �u, and

are continuously di¤erentiable in �F and �u respectively for all x.

Let � � (�u;�F ), and !j;l(�u), uj;l(�u), �j;l(�F ) and �j;l(�F ) denote four K-vectors with

the k-th coordinates being @!j(xk)

@�u;l
, @uj(xk)

@�u;l
, @�j(xk)

@�F;l
and

@�j(xk)

@�F;l
respectively and l being the

index for coordinates of �u and �F . Then by de�nition of !j and �j in (3.3) and (3.4),

!j;l(�u) = (I� �Gj)�1uj;l(�u)

�j;l(�F ) = (I� �Gj)�1�Gj�j;l(�F )

By de�nition, the choice probabilities p(xk;�) = �F [�!(xk;�u) + ��(xk;�F );xk;�F ]. Then

the gradient with respect to the parameters is r�p(xk;�) = [r�up(xk;�) r�F p(xk;�)]
0,

where

r�up(xk;�) = �f(xk;�)[r�u!1(xk;�u)�r�u!0(xk;�u)]

r�F p(xk;�) = �f(xk;�)[r�F �1(xk;�F )�r�F �0(xk;�F )] +
�F�F (xk;�)

with

�f(x;�) � r�
�F (� ;x;�F )j�=�!(x;�u)+��(x;�F )

�F�F (x;�) � r�F
�F [� ;x;�F ]j�=�!(x;�u)+��(x;�F )
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The following proposition gives su¢ cient conditions for the local identi�cation of �.

Proposition 2 Let �0 = (�0u;�
0
F ) denote the vector of true structural parameters. Sup-

pose AS, CI, REG and PAR are satis�ed, and r�p(xk;�0) exists and is continuous at �0

for all xk. If r�p(xk;�0)r�p(xk;�0)
0 has full rank for some xk 2 S(X), then there exists an

open neighborhood around �0 that contains no other � observationally equivalent to �0.

Next we show an example of how Proposition 2 can be applied to check local identi�-

cation when single-period returns take a linear index speci�cation, and F"jX is uniform and

independent of X.

Example 1 Let uj(x) = x0j for all x, and let �" be independent from x and distributed

as uniform on [0; a]. Then �0u = (1;0), �
0
F = a. Let X denote a K-by-d matrix with the

k-th row being xk. Let P0 and P1 denote K-vectors with k-th coordinates being p(xk)2

and [1 � p(xk)]
2 respectively. Then �j(a) = a

2
Pj, �j(a) = (I � �Gj)�1�Gj�j(a), and

!j(j) = (I� �Gj)�1Xj. Let �!(0;1) = !1(1)�!0(0), ��(a) = �1(a)� �0(a), and

1k denote a unit column vector with the k-th element being 1. It follows from some algebra:

r�up(xk;�) =
1

a
[r�u!1(1)�r�u!0(0)]

01k

r�F p(xk;�) = f1
a
[ra�1(a)�ra�0(a)] + �F�F (�)g01k

where

ra�j(a) =
1

2
(I� �Gj)�1�GjPj

r�u!j(j) = (I� �Gj)�1X

�F�F (�) = �a�2[�!(0;1) + ��(a)]
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The rank condition in Proposition 2 can then be checked for all xk using knowledge of the

primitives Gj, �, and the observable Pj. �

Directions for future research along the line of parametric identi�cation includes checking

local identi�cations for di¤erent parametric families, as well as search for primitive conditions

for global identi�cation within certain parametric families.

3.4.2. Semiparametric identi�cation

In practice, it is not always justi�able to restrict the set of possible error distributions F

to a parametric family. On the other hand, on most occasions it is plausible to introduce

stochastic restrictions such as the conditional symmetry or statistical independence of F�"jX.

In this section, we study the identifying power of these restrictions. The de�nition of the joint

identi�cation region (3.2) suggests any stochastic restrictions on F"jX will have to interact

with observable transitions Gj to give identifying power. However, Gj is observable and

researchers do not have the freedom to put restrictions on them. In this subsection, we

�rst look at what can be learned about u under the conditional symmetry and statistical

independence of �" from x. We will also characterize the identi�cation region of u under

these restrictions, and discuss the impact of particular properties of Gj on identi�cation.

3.4.2.1. Review of static binary choice models. Manski (1988) gave a thorough treat-

ment of the identi�cation of the threshold-crossing model of binary response, where the

binary outcome y is determined by an observable random vector x and by an unobserv-

able scalar " through a model y = 1fx� + " � 0g. The conditional distribution F"jX is

continuous and strictly increasing. Given these maintained restrictions, he investigated the

identi�ability of � under di¤erent restrictions on F"jX. These include mean independence,

quantile independence, index su¢ ciency, statistical independence and the case where F"jX
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is completely known. He found that (1) mean independence has no identifying power; (2)

quantile independence implies that � is identi�ed up to scale, provided that the distribution

of x has su¢ ciently rich support; (3) index su¢ ciency can identify the slope components

of � up to scale and sign, also under certain rich support condition on x; (4) statistical

independence subsumes both quantile and statistical independence and therefore implies all

positive �ndings above; and (5) when " is independent from x with a known distribution,

identi�cation of � only requires the distribution of x to have full rank.

Matzkin (1992) discussed nonparametric identi�cation of static binary choice models,

where Pr(d = 1jx) = Pr(�" � u1(x) � u0(x)) and �" � "0 � "1. She maintained the

assumption of statistical independence between �" and x, and normalized u0(x) = 0 for all

x. She showed that, under regularity conditions such as continuous support of x and strict

monotonicity of F�", the true parameters u and F�" can be uniquely recovered from the

choice probabilities Pr(d = 1jx) within a set of utility functions such that /9 u; ~u s:t: u1(x)�

u0(x) is a monotone transformation of ~u1(x)�~u0(x). More interestingly, she constructed such

sets of utility functions using restrictions with economic substances such as monotonicity,

concavity and homogeneity. She also generalized this positive identi�cation result under

statistical independence from binary to polychotomous choice models in Matzkin (1992).

In Section 3 above, we have already shown that when F"jX is known, �u can be non-

parametrically identi�ed under fairly weak rank conditions of G if u0 is normalized to 0.

This is the dynamic analog of the positive result in the static case in Manski (1988). On

the other hand, as it turns out below, there is no direct analog of the static case in the

identi�cation of dynamic binary choice processes under the stochastic restrictions such as

conditional symmetry and statistical independence. This is not a surprising result as the
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de�nition of the joint identi�cation region suggests any restriction on F"jX has to interact

with Gj to give identifying power.

3.4.2.2. Statistical independence. Statistical independence is a strong stochastic restric-

tion that implies several popular weaker forms in the literature of semiparametric identi�ca-

tions. These include both distributional and mean index su¢ ciency, as well as distributional

and mean exclusion restrictions. By construction, the identi�cation region of u under statis-

tical independence is a strict subset of that under any of these weaker stochastic restrictions.

SI (Statistical Independence) �" is statistically independent from observable states x,

and is continuously distributed with positive density on a closed interval ["L; "U ].

Without further restrictions on u, the di¤erence between single-period returns is not

unidenti�ed under SI. To see this, note that given observable choice probabilities, the joint

identi�cation region under SI is

�I � f(u;F�") : �!(x;u) = F�1�" (p(x))���(x;F�"; p) a:e: xg

where �! and �� are de�ned as in Proposition 1 above, with �d simpli�ed as

�0(x; p; F�") �
Z q(x)

"L

F�"(s)ds(3.5)

�1(x; p; F�") � �
Z q(x)

"L

1� F�"(s)ds(3.6)

where q(x) � F�1�" (p(x)). Then it can be shown that for a given pair of true parameter

(u�; F ��"), it is always possible to perturb F
�
�" slightly to F

0
�" and �nd a corresponding u

0

that is close to u� such that (u0; F 0�") is observationally equivalent to (u
�; F ��"). Hence u

�

is not locally identi�ed.
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Let FSI be the set of F�"jX that satis�es the SI restriction. The next question is how to

characterize the identi�cation region of u under FSI . Intuitively this is the set of all u for

which there exists certain F�"jX in FSI such that p(x;u; F�"jX) = p�(x). The next corollary

of Proposition 1 formalizes this idea. Without loss of generality, order (x1; ::;xK) such that

p(xm) � p(xn) for m � n. Let Q and �0 are K-by-1 vectors, with Qk � F�1�" (p(xk)) and

�0k � �0(xk;F�").

Corollary 2 (Proposition 1) Suppose AS, CI, SI and REG are satis�ed, and normalize

u0 = 0. Then the identi�cation region of u1 under FSI is �u1 � fu1 2 RK : 	SI has

solutions in Q and �0g, where 	SI is a system of linear inequalities de�ned as:

(I� �G1)�1(u1 �Q) = [(I� �G0)�1�G0 � (I� �G1)�1�G1]�0(3.7)

"L � Q1 � Q2 � :: � QK � "U

0 � �01 � p(x1)(Q1 � "L)

p(xk�1)(Qk �Qk�1) � �0k � �0k�1 � p(xk)(Qk �Qk�1); for k = 2; :; K

Example 2 For simplicity in algebra, consider the special case of optimal stopping

problem where one of two actions j = 0 is irreversible and leads to zero expected payo¤s both

in the current and future periods. Let the single-period return for j = 1 be U1(x;") =u(x)�",

where the unobserved state " is continuously distributed on a closed interval ["L; "U ] in R1.

Let the transition when j = 1 be G(x0jx). Then by similar arguments, the joint identi�cation

region is �I � f(u;F") : F�1" (p(x)) = u(x) + �
R
�0(x

0;F"; p)dG(x
0jx) a:e: xg, where ! and

� are �xed points de�ned as before. Now consider the case for K = 2. Without loss of

generality, order x1 and x2 such that p(x1) � p(x2). Let u be a 2-by-1 vector with the

k-th coordinate being u(xk). Denote G = [1 � a a; 1 � b b]. The joint identi�cation region
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is given by the following linear system u = Q � �G�, where Q and � are 2-by-1 vectors,

with qk � F�1" (p(xk)) and �k � �0(xk;F") for k = 1; 2. Let pk denote p(xk). By de�nition,

coordinates of Q and � have to satisfy the following restrictions:

q1 � "L; q2 � q1 � 0;�q2 + "U � 0;

�1 � 0;��1 + p1(q1 � "L) � 0;

�2 � �1 � p1(q2 � q1) � 0;�1 � �2 + p2(q2 � q1) � 0

Applying the Fourier-Motzkin procedure of iterated eliminations suggests the system has

solutions (q1; q2; �1; �2) as long as the following conditions are satis�ed:

u2 � "L; u1 � "L + �ap2("U � "L) � 0

(1� �bp2)(u1 � "L) + �ap2(u2 � "L) � 0

This gives a characterization of the identi�cation region of (u1; u2) under the statistical

independence of " from x. �

Of course, a general dynamic binary choice model is qualitatively di¤erent from an op-

timal stopping problem. But the example above shares the same basic idea in the general

case in that the identi�cation regions are de�ned by checking the consistency of a system of

linear inequalities. Though the corollary is given with no restriction on u, the methodology

extends immediately to semiparametric cases where u = [u1(x;�u) u2(x;�u)] is known up

to �nite dimensional parameters. The identi�cation region of �u under FSI is simply the set

of values for which the system 	SI has solutions in Q and �0. In the example given above,

the identi�cation region is rather wide. However, the size of the set itself is informative,
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as it reveals what can be learned about u under the assumption of statistical independence

between �" and x.

3.4.2.3. Conditional symmetry. Conditional symmetry is the strongest locational sto-

chastic restriction. It implies both mean and median independence.

CS (Conditional Symmetry) F�"jX is symmetric around "M conditional on all observable

states x, and is continuously distributed with positive density on a known closed interval

["M � C; "M + C].8

Let FCS be the set of F�"jX that satis�es the CS restriction. The identi�cation region of

u under FCS can be characterized by similar arguments as in Corollary 2, except that the

inequality constraints will take a di¤erent form. Without loss of generality, let p(x1) � p(x2)

� :: � p(xM) � 1
2
, and 1

2
� p(xM+1) � :: � p(xK). Let Q and �0 denote K-by-1 vectors

with the k-th coordinate being Qk � F�1�"jX(p(xk)jxk) and �0(xk;F�"jX) =
R Qk
"L

F�"jX(sjxk)ds

respectively.

Corollary 3 (Proposition 1) Suppose AS, CI, CS and REG are satis�ed, and normalize

u0 = 0. Then the identi�cation region of u1 under FSI is �u1 � fu1 2 RK : 	CS has

solutions in Q and �0g, where 	CS is a system of linear inequalities de�ned as:

(I� �G1)�1(u1 �Q) = [(I� �G0)�1�G0 � (I� �G1)�1�G1]�0

"M � C � Qk � "M ; k �M

"M � Qk � "M + C; k > M

0 � �0k � p(xk)(Qk � "M + C); 8k �M

Qk � "M � �0k � C � p(xk)["M + C �Qk]; 8k > M

8I focus on the case with �xed support of �" for the sake of simplicity in explanation. The methodology
proposed below can be generalized to allow supports to vary with x.
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Example 3 Again consider the special case of optimal stopping problem with K = 2.

Suppose p(x1) < 1
2
< p(x2). As before, the joint identi�cation region is given by the following

linear system u = Q� �G�, subject to the inequalities above. Applying the procedures of

Fourier-Motzkin eliminations shows solutions exists if and only if "M � u1 and "M � u2.

This is the identi�cation region of u under the conditional symmetry of F"jX. �

3.4.2.4. Restrictions on observable transitions. As discussed earlier in this section,

restrictions on F"jX can only impact the identi�cation region of u through interactions with

observable transitionsGj. In practice it is possible thatGj might be invariant within certain

subset of observable states. Knowledge of such a property can contribute to the approach of

identi�cation by checking the feasibility of systems of linear inequalities.

SUB (Subset Invariance) 9�X � S(X) such that Gj(:jx) = Gj(:j~x) for j = 0; 1 and all

x; ~x 2 �X.

To incorporate this into the framework of linear system, consider the case under SI

with a �nite observable state space of K elements. Let �K � K denote the set of states with

invariant observable transitions. Note the linear equalities in the systems 	SI can be written

as

u1 �Q =� [
P1

t=1 �
t(G1)t]u1�[

P1
t=1 �

t(G1)t]�1 + [
P1

t=1 �
t(G0)t]�0

The right-hand side is a K-by-1 vector, whose coordinates in �K are identical under SUB. It

follows that for all k1; k2 2 �K, u1(xk1) � u1(xk2) = F�1�" (p(xk1)) � F�1�" (p(xk2)). Therefore,

a necessary condition for feasibility of the system is that u1(xk) has to be ranked in the

same order as F�1�" (p(xk)) for k 2 �K. Similar necessary conditions also exists for the case

under CS restrictions, except that u1(xk) in that case need to be ranked in the same order

as F�1�"jX(p(xk)jxk) instead of F
�1
�" (p(xk)) on �K.
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3.5. Conclusions

In this paper, we have introduced a new approach for studying identi�cation of structural

parameters in dynamic binary choice processes. The approach is based on characterizing the

joint identi�cation region �I of single-period payo¤s u and disturbance distributions F"jX

through a system of linear equations in these parameters. Using this framework, we show

that with knowledge of the distribution of disturbances, the di¤erences between two trivial

policies of choosing one of the two actions forever can be uniquely recovered. Furthermore

the identi�cation region of u under various stochastic restrictions on the nuisance parameter

F"jX can be de�ned as the set of u for which there exist nuisance parameters which satisfy

the linear equations characterizing �I subject to inequality constraints implied by these

restrictions. Under this framework, we show through examples that both the conditional

symmetry and the statistical independence of unobservable states have limited identifying

power on single-period payo¤s. This approach of identi�cation through linear programming

can be extended immediately to study the identifying power of any parametric or shape

restrictions on single-period payo¤s. Directions of future research include the search for

restrictions on u and F"jX that can deliver greater identifying power, as well as the de�nition

and statistical properties of new estimators that make use of the positive identi�cation

results.
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APPENDIX

Appendices for Chapter 1-3

1. Appendix for Chapter 1

1.1. Proofs of identi�cation results

Proof of Proposition 1. To prove necessity, suppose f�; FXg 2 �CV 
F generates G0B in

such an equilibrium. Then the support of B is S(B) � [bL; bU ]n, with b0L = vh(xL; �; FX) and

b0U = b0(xU ; �; FX), where vh (x; �; FX) is a shorthand for vh;n(x; x; �; FX) (with subscripts

for n dropped for notational ease). Note 8b 2 [b0L; b0U ]n, G0B(b) � Pr(b0(X;�; FX) � b) =

Pr(X � b�10 (b)) � FX(b
�1
0 (b;�; FX)), where the equality follows from the strict monotonicity

of equilibrium strategies. Then symmetry of the equilibrium and exchangeability of FX im-

pliesG0B(b) is exchangeable in b 8b 2 S(B). The a¢ liation ofB = (b0(X1; �; FX); ::; b0(Xn; �; FX))

follows from the monotonicity of b0(:) and the a¢ liation of X (by Theorem 3 in Milgrom

and Weber (1982)). The �rst-order condition (1.2) implies �(b;G0B) = vh(b
�1
0 (b); �; FX)

8b 2 [b0L; b
0
U ], where vh (x; �; FX) is increasing on the support of FX by the de�nition of

(�; FX) 2 � 
 F . Hence the strict monotonicity of b�10 (:; �; FX) implies �(b;G0B) is increas-

ing over [bL; bU ]. The proof of su¢ ciency makes use of the following claim and an example

constructed below.

Claim A1 Suppose a bid distribution G0B satis�es the necessary conditions in Proposition

1. Then f�; FXg 2 �
F rationalizes G0B in a �rst-price auctions if and only if

(.1) FX(x) = G0B(�
�1(vh(x1; �; FX);G

0
B); ::; �

�1(vh(xn; �; FX);G
0
B))
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for all x on the support of FX.

Proof of Claim A1 Suppose f�; FXg 2 � 
 F rationalizes such a G0B. Then FX(x) =

G0B(b0(x; �; FX)) for all x 2 [xL; xU ]N , where b0(:; �; FX) is the equilibrium strategy char-

acterized by the �rst-order condition (1.2), which implies b0(x; �; FX) = ��1(vh(x; �; FX);G
0
B)

for all x on support by the monotonicity of �(:;G0B). It follows FX(x) = G0B(�
�1(vh(x; �; FX);G

0
B)).

To prove su¢ ciency, suppose G0B is symmetric and a¢ liated with support [b
0
L; b

0
U ]
n, �(:;G0B)

is increasing on the support, and there exists (�; FX) 2 � 
 F that satis�es (.1). We

need to show G0B(b) = FX(b
�1
0 (b; �; FX)) 8b 2 [b0L; b

0
U ]
n, where b0(x; �; FX) is the sym-

metric, increasing equilibrium strategy characterized by (1.1).1 By supposition of (.1),

FX(x) = G0B(�
�1(vh(x; �; FX);G

0
B)) for all x on support, where the support of FX is on

[xL; xU ]
N , with xk = v�1h (�(bk;G

0
B); �; FX) for k = L;U . Hence the monotonicity of vh

and � implies G0B(b) = FX(v
�1
h (�(b;G

0
B); �; FX)) for all b 2 [bL; bU ]

n. Therefore it suf-

�ces to show that ��1(vh(:; �;FX);G0B) satis�es the characterization of equilibrium strategies

(i.e., the di¤erential equation (1.1) with the boundary condition ��1(vh(xL; �;FX);G0B) =

vh(xL; �; FX)). Note de�nition of the support of FX in (.1) implies vh(xL; �; FX) = �(bL;G
0
B),

and limb!bL �(b;G
0
B) = bL. A similar argument to Li et.al (2002) completes the proof.

Q.E.D.

Suppose �(x) = (f~�(xi; yi)gni=1) 8x 2 [xL; xU ]
n, where yi � maxj 6=i xj. That is, bid-

ders� valuations only depend on his own signal and the highest rival signal, and it is a

strictly interdependent value auction provided ~� is not degenerate in the second argument.

Then vh(x; �; FX) = (f~�(xi; yi)gni=1). Therefore, a distribution G0B that satis�es the neces-

sary conditions is rationalized by any � 2 � that satis�es "maxj 6=iXj-su¢ ciency" with the

1Existence and uniqueness of symmetric, increasing PSBNE is not an issue because the de�nition of � and
F guarantees they exist for all f�; FXg 2 �
F .
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boundary conditions: ~�(xk; xk) = �(bk), for k 2 fL;Ug, and a signal distribution de�ned as

FX(x) = G0B(�
�1(~�(x1; x1);G

0
B); ::; �

�1(~�(xn; xn);G
0
B)). �

Proof of Lemma 1. The proof uses the monotonicity and di¤erentiability of b0(:). By

change of variables,
fY jX(xjx)
FY jX(xjx)

= b00(x)
~�(b0(x);G

0
B) and for all s � x, L(sjx;FX) = ~L(b0(s)jb0(x);G0B).

Furthermore, in equilibria vh(x; x; �; FX) = �(b0(x);G
0
B) for all x 2 [xL; xU ]. By de�nition,

for x � x�(r),

br(x) = rL(x�(r)jx;FX) +
Z x

x�(r)

vh(s; s; �; FX)L(sjx;FX)�(x;FX)dx

= r~L(b0(x
�(r))jb0(x);G0B) +

Z x

x�(r)

�(b0(s);G
0
B)
~L(b0(s)jb0(x);G0B)~�(b0(s);G0B)b00(s)ds

= �r(b0(x);G
0
B)

where the last equality follows from change of variables in the integrand. �

Proof of Lemma 2. Proof of (i) : By de�nition all structures in �
F satisfy A1 and A2.

The a¢ liation of signals and monotonicity of � implies that vh(x; y) is increasing in x and

non-decreasing in y. For all x � y,

vh(x; y) �
Z y

xL

vh(x; s)
fY jX(sjx)
FY jX(yjx)

ds � v(x; y) �
Z y

xL

vh(s; s)
fY jX(sjx)
FY jX(yjx)

ds � vl(x; y)

Therefore vh(xL) = v(xL) = vl(xL) and vh(x) � v(x) � vl(x) 8x 2 [xL; xU ]. The proof of

monotonicity of vh(x; x) in x is standard and not repeated here. For any x < x0 on support,
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the law of total probability implies

vl(x
0) = E(vh(Y )jXi = x0; Yi � x0)

= E(vh(Y )jXi = x0; Yi � x)P (Yi � xjXi = x0; Yi � x0) + :::

E(vh(Y )jXi = x0; x < Yi � x0)P (x < Yi � x0jXi = x0; Yi � x0)

By monotonicity of vh and x0 > x, E(vh(Y )jXi = x0; x < Yi � x0) > vl(x). By a¢ liation of

X and Y , E(vh(Y )jXi = x0; Yi � x) � vl(x). Therefore vl(x0) � vl(x).

Proof of (ii) : follows immediately from proof of (i). �

Proof of Lemma 3. For the �rst claim, note vh(x; x; ) = v(x; x; ) 8 2 �P 
F . Hence

xl(r; ) = x�(r; ) 8 2 �P 
F . For the second claim, consider �S � f� 2 � : �(xi;x�i) =

axi + �̂(x�i) for some a > 0 and ~� exchangeable and non-decreasing in x�ig, and FI �

fFX 2 F : FX(x) = �ni=1FX(xi) for some FXg. Then �S 
 FI is a non-empty subset

of � 
 F .2 By de�nition, v(x; x; ) � vl(x; x; ) =
R x
xL
(vh(x; s)� vh(s; s))

fY jX(sjx)
FY jX(yjx)

ds =R x
xL
a(x � s)

fY jX(sjx)
FY jX(yjx)

ds � a(xU � xL) for all x 2 [xL; xU ] and  2 �S 
 FI . Hence 8" > 0,

supx jv(x; x; ) � vl(x; x; )j � " 8a 2 (0; "

xU � xL
). That is, vl(x; x) converges to v(x; x)

uniformly over x as the weight on a bidder�s own signal a approaches zero. The rest of the

proof shows this uniform convergence of vl to v implies the uniform convergence of xh(r) to

x�(r) for r in the nontrivial range as a � 0.

Claim: Suppose �(x) = axi + b
P

j 6=i xj and private signals are i.i.d. with marginal

distribution F 2 C1[xL; xU ] such that fl � F 0(x) � fu 8x 2 [xL; xU ]. Then 8" > 0 and

y � x, v(y; y)� v(x; x) � " implies y � x � "=k, where k � a+ (n� 1)bf
2
l

f2u
.

2FI � F because independence is a special case of a¢ liation.
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Proof: Denote '(x) � v(x; x). Then '0(x) = a+(n�1)bfX(x)[
R x
xL
(x�~x)fX(~x)d~x]=FX(x)2.

The bounds on fX imply '0(x) 2 [a+ (n� 1)bf
2
l

f2u
; a+ (n� 1)bf

2
u

f2l
]: Now suppose 9" > 0 and

y � x on [xL; xU ] such that v(y; y)� v(x; x) � " but y � x > "=k. Then by the Mean Value

Theorem, 9~xk between x�k and y�k such that '0(~x) < k. This contradicts the lower bound of

'0(x) on [xL; xU ]. Q.E.D.

For all " > 0, we can pick a <
k"

xU � xL
and de�ne a structure  = fa; Fg with any

F 2 C1[xL; xU ]. Then it follows from the claim that for all r � 0,

k" � sup
x2[xL;xU ]

v(x; x; a;F )� vl(x; x; a;F )

� v(xh(r); xh(r); a;F )� vl(xh(r); xh(r); a;F )

= v(xh(r); xh(r); a;F )� v(x�(r); x�(r); a;F ):

Hence by the claim above, xh(r)� x�(r) � " for all r � 0. �

Proof of Lemma 4. For all x � xl(r), that vh(x; x) � r 8x 2 [xl(r); xU ] suggests

br(x) � rL(xl(r)jx;FX) +
Z x

xl(r)

vh(s; s)dL(sjx;FX)

and for all x � xh(r),

br(x) � rL(xh(r)jx;FX) +
Z x

xh(r)

vh(s; s)dL(sjx;FX)

By non-negativity of �, x�(0) = xL and xh(r) � x�(r) � xl(r) � x�(0) for all r � 0. Hence

equation (1.2) holds for xl(r) and xh(r). Substitution and change of variable shows for all
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x � xl(r),

br(x) � �r;l(b0(x);G
0
B) � r~L(b0(xl(r))jb0(x)) +

Z b0(x)

b0(xl(r))

�(~b)d~L(~bjb0(x))

and for all x � xh(r),

br(x) � �r;h(b0(x);G
0
B) � r~L(b0(xh(r))jb0(x)) +

Z b0(x)

b0(xh(r))

�(~b)d~L(~bjb0(x))

For all b � b0(xk(r)) and k 2 fl; hg,

�0r;k(b;G
0
B) =

~�(b)

�
�(b)�

�
r~L(b0(xk(r)jb) +

Z b

b0(xk(r))

�(~b)d~L(~bjb)
��

> 0

Since b00(x) � 0 8x > xL, this implies �r;k(b0(:);G0B) is increasing for x � xk(r). �

Proof of Proposition 2. It has been shown above that b0(x�(r)) 2 [b0(xl(r)); b0(xh(r))].

By construction, �r;k(b0(xk(r));G0B) = r = br(x
�(r)). Hence both f�r;k(b0(:);G0B)gk2fl;hg are

invertible at t � r over the interval [xk(r); xU ] for k 2 fl; hg. It follows from the lemma

above that ��1r;l (t;G
0
B) � b0(b

�1
r (t)) � ��1r;h(t;G

0
B) for t � r. The rest of the proof follows

immediately. �

Proof of Lemma 5. To prove (i), note in equilibria br(x�(r)) = r = v(x�(r)) � E(VijXi =

x�(r); Yi � x�(r)) � b0(x
�(r)), where the last inequality holds by equilibrium bidding con-

ditions with no reserve prices. Besides 8x � x�(r), br(x) < b0(x) implies b0r(x) > b00(x). It

follows from Lemma 2 in Milgrom and Weber (1982) that br(x) � b0(x) for all x � x�(r).

For (ii), it su¢ ces to note sgn(b0r(x)� b00(x)) = �sgn(br(x)� b0(x)) 8x � x�(r). �

Proof of Proposition 3. By de�nition of v0, PrfRII(r) < v0g = 0. Note PrfRII(r) =

v0g = PrfX(1) < x�(r)g, Prfv0 < RII(r) < rg = 0 and PrfRII(r) = rg = PrfX(1) �
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x�(r) ^X(2) < x�(r)g. Because �0r(x) > 0 8x 2 [x�(r); xU ] and �r(x�(r)) = vh(x
�(r)) � r, it

follows Prfr < RII(r) < vh(x
�(r))g = 0. Hence:

FRII(r)(t) = 0 8t < v0

= PrfX(1) < x�(r)g 8t 2 [V0; r)

= PrfX(2) < x�(r)g 8t 2 [r; vh(x�(r)))

Next note 8t 2 [vh(x�(r));+1), PrfRII(r) 2 [vh(x�(r)); t]g = Prfvh(X(2)) 2 [vh(x�(r)); t]g.

Hence for all t in this range,

PrfRII(r) � tg = PrfRII(r) < vh(x
�(r))g+ PrfRII(r) 2 [vh(x�(r)); t]g

= PrfX(2) < x�(r)g+ Prfvh(X(2)) 2 [vh(x�(r)); t]g

= Prfvh(X(2)) � tg

This completely characterizes the counterfactual distribution of RII(r).

For t < r, F l
RII(r)(t) = Prfb0(X(1)) < b0(xl(r))g � PrfX(1) < x�(r)g = FRII(r)(t) �

Prfb0(X(1)) < b0(xh(r))g = F u
RII(r)(t). For t 2 [r; v(x�(r))),

F l
RII(r)(t) = Prfvh(X(2)) � tg � Prfvh(X(2)) < vh(x

�(r))g

= PrfX(2) < x�(r)g = FRII(r)(t) � Prfb0(X(2)) < b0(xh(r))g = F u
RII(r)(t)

due to the monotonicity of b0(:). For t 2 [v(x�(r)); vh(xh(r))),

F l
RII(r)(t) = FRII(r)(t) = Prfvh(X(2)) � tg � Prfvh(X(2)) < vh(xh(r))g

= Prfb0(X(2)) < b0(xh(r))g = F u
RII(r)(t)
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due to the monotonicity of b0(:) and vh(:). For t 2 [vh(xh(r));+1),

F l
RII(r)(t) = FRII(r)(t) = F u

RII(r)(t) = Prfvh(X(2)) � tg

and point identi�cation of revenue distribution is achieved on this range. �

Proof of Proposition 5. Auction characteristics are common knowledge among all bid-

ders. Hence the symmetric equilibrium satis�es the following �rst-order condition: (By

symmetry among the bidders, bidder indices are dropped for notational ease.)

@
@X
b(x; z;n) = [~vh(x; z;n)� b(x; z;n)]

fY jX;Z;N (xjx;z;n)
FY jX;Z;N (xjx;z;n)

where ~vh(x; z;n) � E(VijXi = Yi = x; Z = z;N = n), Yi � maxj 6=iXi, FY jX;Z;N(tjx; z;n) �

Pr(maxj 6=iXj � tjXi = x; Z = z;N = n) and fY jX;Z;N(tjx; z;n) is the corresponding condi-

tional density. The equilibrium boundary condition for all (z; n) is b(xL; z;n) = ~vh(xL; z;n).

For every z and n, the di¤erential equation is known to have the following closed form

solution :

b(x; z;n) =

Z x

xL

h(z0) + �(s;n)dL(sjx;n)

Independence of Xi and Z conditional on N implies both �(x;n) and L(sjx;n) are invariant

to z for all s and x. Hence under assumption A1�,A2 and A4, b(xL; z;n) = ~vh(xL; z;n) =

h(z0) + �(xL;n). For x > xL, b(x; z;n) = h(z0) +
R x
xL
�(s;n)dL(sjx;n) for all (x; z; n). �

Proof of Proposition 6. Di¤erentiating br(x) for x � x�(r) gives

(.2) b
0

r(x; �; FX)=�(x;FX) + br(x; �; FX) = vh(x; �; FX)
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For all r � 0 and x; y � x�(r),

FY jX(yjx) � Pr(Y � yjx = x)(.3)

= Pr(Y < x�(r)jX = x) + Pr(x�(r) � Y � yjX = x)

= Pr(br(Y ) < rjbr(X) = br(x)) + Pr(r � br(Y ) � br(y)jbr(X) = br(x))

� Gr
M jB(br(y)jbr(x))

The equality of the two terms follows respectively from the facts that Y < x�(r) if and only

if br(Y ) < r and br(x) is increasing for x � x�(r). Taking derivative of both sides w.r.t. y

for y � x�(r) gives

(.4) fY jX(yjx) = b0r(y)g
r
M jB(br(y)jbr(x))

for all x; y � x�(r). Substitute (.4) and (.3) into (.2) proves the lemma. �

Proof of Proposition 7. LetX(i:n) denote the ith largest signal among n potential bidders.

Then Pr(X(2:n) < x�(r)jX(1:n) � x�(r)) is observed. By the i.i.d. assumption, Pr(X(2:n) <

x�(r)jX(1:n) � x�(r)) =
nF n�1

r (1� Fr)

1� F n
r

, where Fr � Pr(Xi � x�(r)). The expression is

increasing in Fr. Therefore Fr is identi�ed, and Pr(X(1) < x�(r)) = F n
r . �

1.2. Proof of the consistency of fF̂ k
RI(r)gk=l;u

The lemma below extends the Basic Consistency Theorem of extreme estimators to those de-

�ned over random compact sets rather than �xed compact sets. It will be applied repeatedly

in our proof of consistency of the three-step estimators.
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Lemma B1 Let Q(:) and Q̂N(:) be nonstochastic and stochastic real-valued functions de-

�ned respectively on compact intervals � � [�l; �u] and �N � [�lN ; �uN ], where Prf[�lN ; �uN ] �

[�l; �u]g = 1 for all N and �kN ! �k almost surely for k = l; u. For every N = 1; 2; :::; let

�̂N 2 �N be such that Q̂N(�̂N) � inf�2�N Q̂N(�) + op(1). If Q(:) is continuous on � with a

unique maximizer on � at �0 2 [�l; �u] and (ii) sup�2�N
���Q̂N(�)�Q(�)

��� p! 0 as N �! +1,

then �̂N
p! �0.

Proof. In the case �0 2 (�l; �u), the proof is an adaptation from that of Theorem 4.1.1 in

Amemiya (1985) and is included in Lemma A2 of Li et.al (2003). In the case �0 = �k for

k = l; u, the continuity of Q(�) at � = �k is su¢ cient for limN!+1 Pr(�N > �k + ") = 0 for

all " > 0. The proof is standard and omitted. �

1.2.1. Regularity properties of GM;B and gM;B. Let fY;X and FY;X denote the joint

density and distribution of Yi and Xi respectively. Let �(:) be the bidding strategy under

increasing, pure-strategy perfect Bayesian Nash equilibria. That is, �(x) =
R x
xL
vh(s)dL(sjx)

where L(sjx) = expf�
R x
s

fY X(u;u)
FY X(u;u)

dug. The lemma below gives regularity results about the

smoothness of the equilibrium bidding strategy.

Lemma B2 Under S1 and S2, the equilibrium bidding function �(:) admits up to R

continuous bounded derivatives on [xL; xU ], and �
0(:) is bounded below from zero on [xL; xU ].

Proof. The proof is similar to Li et.al (2002) and omitted. �

This leads to following results of further regularity conditions of the joint density of equi-

librium bids B and highest rival bid M (denoted gM;B) and GM;B(m; b) �
R m
bL
gM;B(~b; b)d~b.

The relevant support is [bL; bU ]2 where bL = �(xL) = vh(xL) = �(xL) and bU = �(xU).
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Proposition B1 Under S1 and S2, (i) � has R continuous bounded derivatives on

[bL; bU ] and �
0(:) � c > 0 for some constant on [bL; bU ]; (ii) GM;B and gM;B both have R� 1

continuous bounded partial derivatives on [bL; bU ]2.

Proof. By de�nition in equilibrium, �(v�1h (�(b))) = b. Hence �0(b) = f�0[v�1h (�(b))]v�1
0

h (�(b))g�1

where both v�10h (:) and �0(:) are bounded below from zero and have R� 1 continuous deriva-

tives under S2 and Lemma B2. For Part(ii), note Pr(M � m;B � b) = Pr(Y � v�1h (�(m));

X � v�1h (�(b))) by the monotonicity of �(:). Hence GM;B(m; b) =
@
@B
Pr(M � m;B � b) =

v�10h (�(b))�0(b) Pr[Y � v�1h (�(m)); X = v�1h (�(b))], where the third term has R + n � 1 con-

tinuous derivatives and the �rst two terms have R � 1 continuous bounded derivatives on

[bL; bU ]
2. And gM;B(m; b) =

@
@M
GM;B(m; b) = v�10h (�(b))�0(b) v�10h (�(m))�0(m) fY;X [v

�1
h (�(m));

v�1h (�(b))], where the last term has R + n� 2 continuous derivatives on [bL; bU ]2 and v�10h (:)

has R � 1 continuous derivatives (see proof of Lemma B2 below). Hence gM;B(m; b) has

R� 1 continuous derivatives. �

1.2.2. Consistency of b̂0l;r and b̂
0
h;r. The following lemma give the rate of uniform conver-

gence of kernel estimates ĜM;B and ĝM;B to GM;B and gM;B over C2� (B), and ~GM;B to GM;B

over Ĉ2� (B). It lays a foundation for our proof of uniform convergence of �̂l and �̂ as well as

�̂l;r and �̂h;r.

Lemma B3 Let hG = cG(logL=L)
1=(2R+2n�5) and hg = cg(logL=L)

1=(2R+2n�4). Under

S1, S2, and S3,

supC2� (B) jĜM;B �GM;Bj = O(hR�1G ); supC2� (B) jĝM;B � gM;Bj = O(hR�1g )

supb2Ĉ�(B) j ~GM;B(b; b)�GM;B(b; b)j = Op(h
R�1
g )
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Furthermore, if R > n,

sup~bL�b;b2C�(B) j
ĜM;B(~bL; b)

ĜM;B(b; b)
� GM;B(~bL; b)

GM;B(b; b)
j = Op(h

R�n
g )

Proof. See the last section of Appendix B. �

The next lemma proves the uniform convergence of �̂ and �̂l over the relevant expanding

supports.

Lemma B4 Let hG = cG(logL=L)
1=(2R+2n�5) and hg = cg(logL=L)

1=(2R+2n�4). Un-

der S1, S2, and S3, supb2C�(B) j�̂(b) � �(b)j = Op(h
R�(n�1)
g ) if R > n � 1. Furthermore

supb�~bL;b2C�(B) j�̂l(b)� �l(b)j = Op(h
R�2(n�1)
g ) if R > 2n� 2 .

Proof. See the last section of Appendix B. �

The proposition below establishes the consistency of b̂0k;r using the extended version of

the Basic Consistency Theorem. The proof proceeds by verifying assumptions in Lemma B1.

Note the range of r for nontrivial analyses is the interval Sr � [v(xL); v(xU)].

Proposition B2 Let hG = cG(logL=L)
1=(2R+2n�5) and hg = cg(logL=L)

1=(2R+2n�4).

Under S1, S2, and S3, b̂0l;r
p! b0l;r if R > n�1 and b̂0h;r

p! b0h;r if R > 2(n�1) for all r 2 Sr.

Proof. It su¢ ces to show that for all r 2 Sr, (i) (�̂(b) � r)2 and (�̂l(b) � r)2 converge in

probability to (�(b)�r)2 and (�l(b)�r)2 uniformly over Ĉ�(B); (ii) (�(b)�r)2 and (�l(b)�r)2

are continuous on [b0L; b
0
U ] with unique minimizers b

0
l;r and b

0
h;r respectively on [b

0
L; b

0
U ]; and

(iii) ~bk ! b0k almost surely for k = L;U . First, by Lemma B4, supb2C�(B) j�̂(b) � �(b)j
p�! 0 and supb�~bL;(~bL;b)2C2� (B) j�̂l(b)� �l(b)j

p�! 0. And supb2C�(B)
���(�̂(b)� r)2 � (�(b)� r)2

���
� supb2C�(B)

����̂2(b)� �2(b)
��� + 2r supb2C�(B) ����̂(b)� �(b)

���, where both terms converge to 0 in
probability since supb2C�(B) �(b) � �(bU) = vh(xU ; xU) < 1.
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Likewise supb�~bL;(~bL;b)2C2� (B)
���(�̂l(b)� r)2 � (�l(b)� r)2

��� p�! 0 by similar arguments. Next,

the continuity of (�(b)� r)2 and (�l(b)� r)2 follows from the smoothness of � shown above.

Also both � and �l are increasing on [b
0
L; b

0
U ] by the monotonicity of vh(:) and vl(:) as well as

�(:) on [xL; xU ]. Thus for all r 2 [b0L; v(xU ; xU)], the minimizers of (�(b)�r)2 and (�l(b)�r)2

are unique on [b0L; b
0
U ]. Finally, that ~bk ! b0k almost surely for k = L;U follows from � �! 0

and b̂L
a:s:�! b0L. �

1.2.3. Uniform convergence of �̂k;r(:; b̂0k;r). Recall for k = l; h and r 2 Sr, �r;k(:; b0k;r) are

de�ned as:

�r;k(b; b
0
k;r) � rL(b0k;rjb) +

Z b

b0k;r

�(t)�(t)L(tjb)dt 8b 2 (b0k;r; bU ]

� r 8b 2 [bL; b0k;r]

where b0h;r = inffb 2 C(B) : �l(b) � rg and b0l;r = inffb 2 C(B) : �(b) � rg, and L(tjb) =

exp
�
�
R b
t
g(u;u)
G(u;u)

du
�
for bL � t � b � bU .

Lemma B5 Let hG = cG(logL=L)
1=(2R+2n�5) and hg = cg(logL=L)

1=(2R+2n�4). Under

S1, S2, and S3 and if R > 2n� 1,

supb2C�(B)

����� ĝM;B(b; b)

ĜM;B(b; b)
� gM;B(b; b)

GM;B(b; b)

����� = Op(h
R�2n+1)

Proof. See the last section of Appendix B. �

The following lemma shows the uniform convergence of �̂k;r(:; b̂0k;r) over Ĉ�(B) = [b̂L +

�; b̂U � �] for the relevant range of r. By construction b̂0k;r 2 Ĉ�(B) � C�(B) for r 2 Sr.
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Lemma B6 Let hG = cG(logL=L)
1=(2R+2n�5) and hg = cg(logL=L)

1=(2R+2n�4). Under

S1, S2, and S3 and suppose R > 2n� 1, then supb2C�(B)
����̂k;r(b; b̂0k;r)� �k;r(b; b

0
k;r)
��� p�! 0 for

all r 2 Sr.

Proof. First consider the case r 2 interior(Sr) (or b0k;r 2 (b0L; b0U)). By de�nition, b̂0k;r 2

C�(B), and for L large enough, b0k;r is in the interior of C�(B). By triangular inequality,

sup
b2C�(B)

����̂k;r(b; b̂0k;r)� �k;r(b; b
0
k;r)
���

� sup
b2C�(B)

1(b̂0k;r � b0k;r)1(b > b0k;r)
����̂k;r(b)� �k;r(b)

���+ :::

sup
b2C�(B)

1(b̂0k;r > b0k;r)1(b > b̂0k;r)
����̂k;r(b)� �k;r(b)

���+ :::

sup
b2C�(B)

1(b̂0k;r � b0k;r)1(b 2 (b̂0k;r; b0k;r])
����̂k;r(b)� r

���+ :::

sup
b2C�(B)

1(b̂0k;r > b0k;r)1(b 2 (b0k;r; b̂0k;r]) j�k;r(b)� rj

It su¢ ces to show all four terms (denoted A1, A2, A3 and A4 respectively) converge in

probability to 0 uniformly over b 2 C�(B) as sample size increases. For A1,

supb2C�(B) 1(b̂
0
k;r � b0k;r)1(b > b0k;r)

����̂k;r(b; b̂0k;r)� �k;r(b; b
0
k;r)
���

� supb0k;r�b�bU�� 1(b̂
0
k;r � b0k;r)fr

���L̂(b̂0k;rjb)� L(b0k;rjb)
���+ :::�����

Z b

b0k;r

�̂(t)�̂(t)L̂(tjb)� �(t)�(t)L(tjb)dt
�����+

�����
Z b0k;r

b̂0k;r

�̂(t)�̂(t)L̂(tjb)dt
�����g
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It can be shown supt�b;(t;b)2C2� (B)
���L̂(tjb)� L(tjb)

��� p�! 0 using convergence results from pre-

vious lemmae.3 Note

supb0k;r<b�bU�� 1(b̂
0
k;r � b0k;r)r

���L̂(b̂0k;rjb)� L(b0k;rjb)
���

� sup
b0k;r<b�bU��

1(b̂0k;r � b0k;r)r
���L̂(b̂0k;rjb)� L(b̂0k;rjb)

���+ :::

sup
b0k;r<b�bU��

1(b̂0k;r � b0k;r)r
���L(b̂0k;rjb)� L(b0k;rjb)

���
For su¢ ciently small �, b0k;r > bL+�. Since by construction b̂0k;r 2 C�(B), supb0k;r<b�bU�� 1(b̂

0
k;r �

b0k;r)r
���L̂(b̂0k;rjb)� L(b̂0k;rjb)

��� p�! 0. Also by mean value theorem,

���L(b̂0k;rjb)� L(b0k;rjb)
��� = ���� @@tL(tjb)jt=~b0k;r(b̂0k;r � b0k;r)

���� = ����(~b0k;r)L(~b0k;rjb)��� ���b̂0k;r � b0k;r

���
for some ~b0k;r between b̂

0
k;r and b

0
k;r. The consistency of b̂

0
k;r suggests ~b

0
k;r is bounded away

from b0L as sample size increases. Thus both �(~b
0
k;r) and L(~b

0
k;rjb) converge in probability to

some �nite constant since supC�(B) jgj <1 and infC�(B) jg0j > c > 0 and hence supb0k;r�b�bU�����L(b̂0k;rjb)� L(b0k;rjb)
��� is op(1). Next

supb0k;r<b�bU��

�����
Z b

b0k;r

�̂(t)�̂(t)L̂(tjb)� �(t)�(t)L(tjb)dt
�����

� supb0k;r�b�bU��

����̂(t)�̂(t)L̂(tjb)� �(t)�(t)L(tjb)
��� ��b� b0k;r

�� p�! 0

where the right hand side is op(1) by the uniform convergence of �̂, �̂, and L̂ over C�(B)

under the assumption of the lemma and the boundedness of �, � and L on the closed interval

3For details of the proof, see Li et.al (2003).
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[b0k;r; bU � �]. Finally

sup
b0k;r<b�bU��

1(b̂0k;r � t � b0k;r)

�����
Z b0k;r

b̂0k;r

�̂(t)�̂(t)L̂(tjb)dt
�����

� sup
b0k;r<b�bU��;(t;b)2C2�

1(b̂0k;r � t � b0k;r)
����̂(t)�̂(t)L̂(tjb)��� ���b̂0k;r � b0k;r

���
Since

sup
t�b;(t;b)2C2� (B)

����̂(t)�̂(t)L̂(tjb)� �(t)�(t)L(tjb)
��� p�! 0

and supb0k;r<b�bU��;(t;b)2C2� 1(b̂
0
k;r � t � b0k;r) j�(t)�(t)L(tjb)j is bounded w:p:a:1 by the consis-

tency of b̂0k;r, then

sup
b0k;r<b�bU��

�����
Z b0k;r

b̂0k;r

�̂(t)�̂(t)L̂(tjb)dt
����� = op(1)

and it follows A1 = op(1). For A2,

supb2C�(B) 1(b̂
0
k;r > b0k;r)1(b > b̂0k;r)

����̂k;r(b)� �k;r(b)
���

� sup
b0k;r<b�bU��

1(b > b̂0k;r > b0k;r)fr
���L̂(b̂0k;rjb)� L(b0k;rjb)

���+ :::

�����
Z b

b̂0k;r

�̂(t)�̂(t)L̂(tjb)� �(t)�(t)L(tjb)dt
�����+

�����
Z b̂0k;r

b0k;r

�(t)�(t)L(tjb)dt
�����g

where sup of the �rst and last term over b0k;r < b � bU � � are op(1) by the same argument

as above, and

supb0k;r�b�bU�� 1(b > b̂0k;r > b0k;r)

�����
Z b

b̂0k;r

�̂(t)�̂(t)L̂(tjb)� �(t)�(t)L(tjb)dt
�����

� supb0k;r�b�bU��;(t;b)2C2�

����̂(t)�̂(t)L̂(tjb)� �(t)�(t)L(tjb)
��� ���b� b̂0k;r

��� = op(1)
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For A3,

supb2C�(B) 1(b̂
0
k;r � b0k;r)1(b 2 (b̂0k;r; b0k;r])

����̂k;r(b)� r
���

= supb2C�(B) 1(b̂
0
k;r � b0k;r)1(b 2 (b̂0k;r; b0k;r])

�����rL̂(b̂0k;rjb)� r +

Z b

b̂0k;r

�̂(t)�̂(t)L̂(tjb)dt
�����

By construction, b̂0k;r 2 C�(B). The uniform convergence of L̂(tjb) for all t � b on C2� (b), the

continuity of L(tjb) in both arguments, and b̂0k;r
p�! b0k;r suggest supb2C�(B) 1(b̂

0
k;r � b0k;r \ b 2

(b̂0k;r; b
0
k;r])

���rL̂(b̂0k;rjb)� r
��� = op(1). Also for large samples, b̂0k;r is bounded away from bL

w:p:a:1 and supb2C�(B) 1(b̂
0
k;r � b0k;r \ b 2 (b̂0k;r; b0k;r])

���R bb̂0k;r �̂(t)�̂(t)L̂(tjb)dt��� = op(1). For A4,

note �k;r is continuous at b0k;r with �k;r(b
0
k;r) = r and is increasing beyond b0k;r (as proven in

the paper). Hence the consistency of b̂0k;r is su¢ cient for A4
p�! 0. In the boundary case

where b0k;r = b0L, it su¢ ces to show the convergence of terms A2 and A4. The same argument

above applies. �

1.2.4. Final step of the proof. In this subsection, I apply the extended BCT over random

compact sets to prove the consistency of �̂
�1
k;r(t; b̂

0
k;r) for an interesting range of r and t.

Lemma B7 Let hG = cG(logL=L)
1=(2R+2n�5) and hg = cg(logL=L)

1=(2R+2n�4). Under

S1, S2, and S3 and suppose R > 2n � 1, for any r 2 Sr, �̂
�1
k;r(t; b̂

0
k;r)

p! ��1k;r(t; b
0
k;r) for

k = fl; hg and all t > r.

Proof. For the range of r 2 Sr and t > r, ��1k;r(t; b
0
k;r) are unique minimizers of [�k;r(b) �

t]2 over C(B). Lemma B6 showed that supb2C�(B)
����̂k;r(b; b̂0k;r)� �k;r(b; b

0
k;r)
��� p�! 0 and

�k;r(:; b
0
k;r) is also continuous on C(B). Also ~bk ! b0k almost surely for k = L;U as sample

size increases. All conditions for Lemma B1 are satis�ed and claim is proven. �
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Lemma B8 Let F̂n(t) = 1
n

Pn
i=1 1(Zi � t) where fZigni=1 is an i.i.d. sample from a

population distributed as FZ. Then supt2R jF̂n(t) � FZ(t)j
a:s! 0. If FZ(t0) is continuous

at t0 and a sequence of random variable t̂n
p! t0 and t0 is a continuity point of F , then

F̂n(t̂n)
p! FZ(t0).

Proof. The �rst claim follows from Glivenko-Cantelli Lemma and the proof of the second

claim is standard (e.g. see Theorem 4.1.5 Amemiya 1985). �

The proof of Proposition 4 follows directly from results of the lemmae.

Proof of Proposition 4. By the �rst part of Lemma B8, 1
Ln

PLn
l=1 1(B

max
l � b)converge

in probability to Pr(Bmax
l � b) uniformly over C(B). By Lemma B7, �̂

�1
r;k(t)

p! ��1r;k(t)

for all r and t in the stated range of interests. The second part of Lemma B8 proves

F̂ l
R(r)(t)

p! F l
R(r)(t) and F̂

u
R(r)(t)

p! F u
R(r)(t) for given r and t. �

1.2.5. Proofs of lemmae in the consistency proof.

Proof of Lemma B3. That supC2� (B)
���ĜM;B �GM;B

��� = O(hR�1G ) and supC2� (B) jĝM;B � gM;Bj =

O(hR�1g ) follow from LemmaA5 in Li et.al (2002). By triangular inequality, for all b 2 Ĉ�(B),��� ~GM;B(b; b)�GM;B(b; b)
��� � R b~bL jĝM;B(t; b)� gM;B(t; b)j dt+

���ĜM;B(~bL; b)�GM;B(~bL; b)
���. Thus

supb�~bL;b2C�(B) j ~GM;B(b; b)�GM;B(b; b)j

� jbU � bLj supt�b;(t;b)2C2� (B) jĝM;B(t; b)� gM;B(t; b)j+Op(h
R�1
G ) = Op(h

R�1
g )
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since by construction Ĉ�(B) � C�(B) with probability 1 and hG < hg for L large enough.

Furthermore, note:

1f~bL � bg
��� ĜM;B(~bL;b)

ĜM;B(b;b)
� GM;B(~bL;b)

GM;B(b;b)

���
� 1f~bL�bg

ĜM;B(b;b)

���ĜM;B(~bL; b)�GM;B(~bL; b) +
GM;B(~bL;b)

GM;B(b;b)

�
GM;B(b; b)� ĜM;B(b; b)

����
� 1f~bL�bg

infb�~bL jĜM;B(b;b)j
����ĜM;B(~bL; b)�GM;B(~bL; b)

���+ ���GM;B(b; b)� ĜM;B(b; b)
����

Thus

sup~bL�b;b2C�(B) j
ĜM;B(~bL; b)

ĜM;B(b; b)
� GM;B(~bL; b)

GM;B(b; b)
j

� 1

infb2C�(B)jĜM;B(b;b)j

8><>: sup~bL�b;b2C2� (B)
jĜM;B(~bL; b)�GM;B(~bL; b)j+ :::

sup~bL�b;b2C�(B) jGM;B(b; b)� ĜM;B(b; b)j

9>=>;
where

inf
b2C�(B)

jĜM;B(b; b)j � inf
b2C�(B)

jGM;B(b; b)j � sup
b2C�(B)

jĜM;B(b; b)�GM;B(b; b)j

= inf
b2C�(B)

jGM;B(b; b)j+Op(h
R�1
g )

Note GM;B(b; b) =
R b
bL
:::
R b
bL
g(b; b2; b3; ::; bn) db2:::dbn and g(b1; ::; bn) = f(��1(b1); ::; �

�1(bn))

has R continuous derivatives on [bL; bU ]n. Using a Taylor expansion of _g(:) around (bL; ::; bL),

GM;B(b; b) = a(b � bL)
n�1 + o(jb� bLjn�1) with a � g(bL; ::; bL) > 0, and it can be shown

infb2C�(B) jGM;B(b; b)j � �hn�1 for some � > 0 and h = max(hg; hG).4 Then R > n

and h = hg for L large enough implies infb2C�(B)
���ĜM;B(b; b)

��� � �hn�1g + op(h
n�1
g ). Since

4For details, see Lemma A6 in Li et.al 2002.
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sup~bL�b;b2C�(B) jĜM;B(~bL; b)�GM;B(~bL; b)j and sup~bL�b;b2C�(B) jĜM;B(~bL; b)�GM;B(~bL; b)j are

both bounded by Op(h
R�1
g ), it follows sup~bL�b;b2C�(B) j

ĜM;B(~bL;b)

ĜM;B(b;b)
� GM;B(~bL;b)

GM;B(b;b)
j = Op(h

R�n
g ). �

Proof of Lemma B4. PropositionA2 (ii) in Li et.al (2002) showed supb2C�(B) j�̂(b)��(b)j =

Op(h
R�(n�1)
g ).

By de�nition, ~bL 2 C�(B). Note :

sup~bL�b;(~bL;b)2C2� (B)
j�̂l(b)� �l(b)j

� sup~bL�b;(~bL;b)2C2� (B)

����R b~bL �̂(t)ĝM;B(t;b)dt

~GM;B(b;b)
�

R b
~bL
�(t)gM;B(t;b)dt

GM;B(b;b)

����+ :::

sup~bL�b;(~bL;b)2C2� (B)

������̂(~bL) ĜM;B(~bL;b)

ĜM;B(b;b)
�
Z ~bL

bL

�(t)
gM;B(t;b)

GM;B(b;b)
dt

�����
The proof proceeds by showing the two terms both converge in probability to 0.

By de�nition, ~bL � bL, and
R ~bL
bL
�(t)

gM;B(t;b)

GM;B(b;b)
dt is bounded between �(bL)

GM;B(~bL;b)

GM;B(b;b)
and

�(~bL)
GM;B(~bL;b)

GM;B(b;b)
. With probability one,

sup~bL�b;(~bL;b)2C2� (B)

������̂(~bL) ĜM;B(~bL;b)

ĜM;B(b;b)
�
Z ~bL

bL

�(t)
gM;B(t;b)

GM;B(b;b)
dt

�����
� maxfsup~bL�b;(~bL;b)2C2� (B) T1(b;

~bL); sup~bL�b;(~bL;b)2C2� (B)
T2(b; ~bL)g

where

T1(b; ~bL) �
������̂(~bL)ĜM;B(~bL; b)

ĜM;B(b; b)
� �(bL)

GM;B(~bL; b)

GM;B(b; b)

�����
T2(b; ~bL) �

������̂(~bL)ĜM;B(~bL; b)

ĜM;B(b; b)
� �(~bL)

GM;B(~bL; b)

GM;B(b; b)

�����
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With probability one, for all (b;~bL) 2 C2� (B) such that b � ~bL,

T1(b; ~bL) �
����̂(~bL)� ĜM;B(~bL;b)

ĜM;B(b;b)
� GM;B(~bL;b)

GM;B(b;b)

����+ ���GM;B(~bL;b)

GM;B(b;b)

�
�̂(~bL)� �(bL)

����
where

���GM;B(~bL;b)

GM;B(b;b)

��� � 1 by construction. Thus
sup~bL�b;(~bL;b)2C2� (B)

T1(b; ~bL)

� sup~bL�b;(~bL;b)2C2� (B)

��� ĜM;B(~bL;b)

ĜM;B(b;b)
� GM;B(~bL;b)

GM;B(b;b)

��� ����̂(~bL)���+ ����̂(~bL)� �(bL)
���

Note
����̂(~bL)��� p! j�(b0L)j < 1 and

����̂(~bL)� �(bL)
��� p! 0 by the uniform convergence of �̂ over

C�(B) and ~bL
p! b0L. By Lemma 3 sup~bL�b;(~bL;b)2C2� (B)

��� ĜM;B(~bL;b)

ĜM;B(b;b)
� GM;B(~bL;b)

GM;B(b;b)

��� p! 0 if R > n.

Hence sup~bL�b;(~bL;b)2C2� (B) T1(b)
p! 0 if R > n. Then supb2 ~CT (B) T2(b)

p! 0 follows from the

same arguments.

By the triangular inequality, for all b � ~bL, and (~bL; b) 2 C2� (B)�����
Z b

~bL

�̂(t)
ĝM;B(t; b)
~GM;B(b; b)

dt�
Z b

~bL

�(t)
gM;B(t; b)

GM;B(b; b)
dt

�����
� 1

inf~bL�b;(~bL;b)2C2� (B)
j ~GM;B(b;b)j

8><>:
���R b~bL �̂(t)ĝM;B(t; b)dt� �(t)gM;B(t; b)dt

���+ :::

�(bU)
��� ~GM;B(b; b)�GM;B(b; b)

���
9>=>;

where
R b
~bL
�(t)

gM;B(t;b)

GM;B(b;b)
dt � �(bU) and

��� ~GM;B(b; b)
��� � jGM;B(b; b)j �

��� ~GM;B(b; b)�GM;B(b; b)
���.

It is shown in Lemma B3 above that infb2C�(B) jGM;B(b; b)j � �hn�1g + op(h
n�1
g ) with R > n

and sup~bL�b;(~bL;b)2C2� (B) j
~GM;B(b; b)� GM;B(b; b)j = Op(h

R�1
g ). Furthermore for all b � ~bL, and
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(~bL; b) 2 C2� (B),����Z b

~bL

�̂(t)ĝM;B(t; b)dt� �(t)gM;B(t; b)dt

����
�

Z b

~bL

����̂(t)� �(t)
��� jĝM;B(t; b)j dt+

Z b

~bL

j�(t)j jĝM;B(t; b)� gM;B(t; b)j dt

The boundedness of gM;B and � implies sup~bL�b;(~bL;b)2C2� (B)
���R b~bL �̂(t)ĝM;B(t; b)dt� �(t)gM;B(t; b)dt

��� =
Op(h

R�(n�1)
g ), which is the rate of convergence of supb2C�(B)

����̂ � �
���. As a result, sup~bL�b;(~bL;b)2C2� (B)

j
R b
~bL
�̂(t)ĝM;B(t;b)dt

~GM;B(b;b)
�

R b
~bL
�(t)gM;B(t;b)dt

GM;B(b;b)
j = Op(h

R�2(n�1)
g ) converges to zero when R > 2(n� 1). �

Proof of Lemma B5. The proof is similar to that of sup~bL�b;b2C�(B) j
ĜM;B(~bL;b)

ĜM;B(b;b)
� GM;B(~bL;b)

GM;B(b;b)
j

= Op(h
R�n
g ). On the support of C2� (B),

j ĝM;B

ĜM;B
� gM;B

GM;B
j � 1

jĜM;BjjGM;Bj
�
jGM;Bj jĝM;B � gM;Bj+ jgM;Bj

���ĜM;B �GM;B

����
It is shown supC2� (B) jĜM;B � GM;Bj = Op(h

R�1
G ) and supC2� (B) jĝM;B � gM;Bj = Op(h

R�1
g ).

Besides, supC2� (B) jGM;Bj <1 and supC2� (B) jgM;Bj <1 implies supremum of the term in the

bracket is Op(h
R�1
g ) as hg > hG for L large enough. Hence supb2C�(B) j

ĝM;B(b;b)

ĜM;B(b;b)
� gM;B(b;b)

GM;B(b;b)
j �

Op(h
R�1
g )

infb2C�(B)jĜM;Bj infb2C�(B)jGM;Bj , where the two terms in the denominator are bounded below by

�hn�1g + o(hn�1g ) and �hn�1g + o(hn�1g ) respectively by some constant � and �. It follows the

denominator is bounded below by h2n�2g + o(h2n�2g ). Hence supb2C�(B) j
ĝM;B(b;b)

ĜM;B(b;b)
� gM;B(b;b)

GM;B(b;b)
j

= Op(h
R�2n+1). �

1.3. Sharpness of the bounds

This appendix discusses the sharpness of the bounds on the revenue distributions in coun-

terfactual �rst-price auctions in the benchmark model. (The proof of sharpness of bounds

in counterfactual second-price auctions is similar and omitted.) Speci�cally, I show that for
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a given counterfactual �rst-price auction and a given revenue level t, each point within the

bounds constructed from G0B will be the true counterfactual revenue distribution under a

certain structure in the identi�ed set. Let  be a generic structure (�; FX), and let 	(G0B)

denote the set of  that are observationally equivalent relative to a rationalizable distri-

bution of bids G0B. Formally, the sharpness of bounds means for any given rationalizable

G0B, any given counterfactual reserve price r, and any revenue level t, 9 2 	(G0B) such

that FRI(r)(t; ) = p for all p 2 [F l
RI(r)(t;G

0
B); F

u
RI(r)(t;G

0
B)), where F

k
RI(r)(t;G

0
B) are robust

bounds proposed in the paper.

The proof takes three steps. In the �rst step, I show the sharpness of bounds on the

hypothetical marginal bid b0(x�(r; ); ). Let b0k;r(G
0
B( )) be a shorthand for b0(xk(r; ); )

for k = l; h, and b0r( ) for b0(x
�(r; ); ). The following lemma gives the sharpness of bounds

[b0l;r; b
0
h;r] on b

0
r( ).

Lemma C1 Consider any rationalizable distribution G0B. For all b 2 [b0l;r(G0B); b0h;r(G0B)),

9  2 	(G0B) such that b0r( ) = b.

Proof. Consider the case where �(X) = �Xi+(1��)maxj 6=iXj, and vh(x) = x for all x and

� 2 (0; 1). Let FX be de�ned as G0B(��1(x1;G0B); ::; ��1(xn;G0B)). Then (�; FX) generates

G0B in a Bayesian Nash equilibrium for all � 2 (0; 1). Also note the equilibrium bidding

strategy is invariant in � 2 (0; 1) for the given FX. Then an argument similar to Lemma 3

can be used to prove the sharpness of bounds on b0r( ). �

The second step shows bounds on b0r(t; ) � b0(b
�1
r (t; ); ) are also sharp.

Lemma C2 Consider any rationalizable distribution G0B, any counterfactual reserve

price r. For any revenue level t > r, and for all b 2 [��1r;l (t;G0B); ��1r;h(t;G0B)), 9  2 	(G0B)

such that b0r(t; ) = b.
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Proof. Note that for t > r, b0r(t; ) is de�ned as the solution to the following minimization

problem:

b0r(t; ) = argmins2[b0r( );b0U ][t� �r(s; b
0
r( ); G

0
B)]

2

where b0r( ) and �r are de�ned as before. For a given t and G
0
B, b

0
r( ) is a parameter that

determines the constraint set and the criterion function. The criterion function is continuous

in its �rst argument s and the parameter b0r( ). Therefore, the Theorem of Maximum can

be used to show b0r(t; ) is a continuous function of b
0
r( ) for all t. Then the sharpness of

bounds on b0r( ) translates into the sharpness of bounds on b
0
r(t; ). �

For the �nal step, it su¢ ces to note that G0B is invariant for all  2 	(G0B) by construc-

tion, and that the bounds on b0r( ) and b
0
r(t; ) are both sharp.

2. Appendix for Chapter 2

2.1. Proofs of identi�cation and consistency

Proof. (Lemma 1) Suppose b is such that Pr(x 2 �0b) > 0. Then by the de�nition of �, for all

x 2 �0b s:t: (�xTb � L(x)^P �1jx < 1
2
), P1jx(b; F"jX) =

R
1(" � �xTb)dF"jX=x � 1

2
8F"jX 2 �.

Likewise 8x 2 �0b s:t: (�xTb � U(x)^P �1jx > 1
2
), P1jx(b; F"jX) =

R
1(" � �xTb)dF"jX=x � 1

2

8F"jX 2 �. As a result 8x 2 �0b; P
�
1jx 6= P1jx(b; F"jX) 8F"jX 2 �. By our supposition,

Pr(x 2 �0b) > 0 and it implies Pr(x 2 X(b; F"jX)) > 0 8 F"jX 2 �. Hence � is identi�ed

relative to b. Now Suppose b is such that Pr(x 2 �0b) = 0. Then Pr(x 2 S(X) n �0b) = 1

where S(X)n�0b � fx 2 S(X) : (�xTb � L(x) ^ P �1jx � 1
2
) _ (�xTb � U(x) ^ P �1jx � 1

2
)

_ (L(x) < �xTb < U(x))g. Then 8x s:t: � xTb � L(x) ^ P �1jx � 1
2
, pick F"jX=x s:t: (i)

F"jX=x is continuous in " and L(x) � supMed("jx) and infMed("jx) � U(x); and (ii)R
1(xTb + " � 0)dF"jX=x = P �1jx. This can be done because �xTb � L(x) � supMed("jx)
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of F"jX=x requires
R
1(xTb+ " � 0)dF"jX=x � 1

2
. Likewise 8 x s:t: �xTb � U(x)^P �1jx � 1

2
,

we can pick F"jX=x s:t: (i) holds and
R
1(xTb+ " � 0)dF"jX=x = P �1jx. And 8 x s:t: L(x) <

�xTb < U(x), we can always pick F"jX=x s:t:
R
1(xTb + " � 0)dF"jX=x = P �1jx (regardless

of the value of P �1jx) while (i) still holds. Finally let F"jX be such that F"jX=x is picked as

above 8 x 2 S(X) n �0b. We have shown P1jx(b; F"jX) = P �1jx 8x 2 S(X) n �b (equivalent

to a:e:FX since Pr(x 2 �0b) = 0). Hence 9 F"jX 2 � s:t: Pr(x 2 X(b; F"jX)) = 0 and b is

observationally equivalent to �. �

Proof. (Corollary 1 of Lemma 1) The proof is similar to Lemma 1 and is omitted. �

Proof. (Corollary 2 of Lemma 1) �0I 6= ? and �I 6= ? because the true coe¢ cient � belongs

to both. To prove convexity, suppose b1 2 �0I ;b2 2 �0I . Then Pr(x 2 �0b1) = Pr(x 2 �
0
b2
) = 0.

Let b� � �b1+(1��)b2 2 �0I for some � 2 (0; 1) and �b� be de�ned as before for b�. Note

8 x 2 �0b� , either (�xTb� � U(x) ^ P �1jx > 1=2) or (�xTb� � L(x) ^ P �1jx < 1=2): Consider

the former case. Then it must be P �1jx > 1=2 and either �xTb1 � U(x) or �xTb2 � U(x).

This implies either x 2 �0b1 or x 2 �0b2 : Symmetric argument applies to the case (�xT b� �

L(x)^P �1jx < 1=2). It follows that �
0
b� � (�

0
b1
[�0b2): Then Pr(x 2 �

0
b�) � Pr(x 2 �

0
b1
)+Pr(x 2

�0b2) = 0, and b� 2 �0I . The convexity of �I is proven in the same way. �

Proof. (Proposition 1) By BCQ-2 and Lemma 1, it su¢ ces to show Pr(X 2 �b) > 0

for all b 6= �, where �b � fx : (�x0b � L(x) ^ �x0� >U(x)) _ (�x0b � U(x) ^

�x0� <L(x))g. By SX1-(a), Pr(X0
�J(��J�b�J) 6= 0) > 0. Without loss of generality, let

Pr(X0
�J��J< X

0
�Jb�J) > 0. Then by SX1-(b),(c), Pr(�X0� <L(X) � U(X) < �X0b) >

0. �
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Proof. (Corollary 1 of Proposition 1) The parameter space is compact by supposition. For

player 1, BCQ-2 is satis�ed with L(x) =U(x) =p2(x) a.e. FX, and L = 0, U = 1. By REG-

(i), Xl impacts p2(X) and p1(X) but not X0�1, and PrfX
0
�l(b1;�l � ~b1;�l) 6= 0g > 0 for all

b1; ~b1 2 �1. Hence SX-1 (a) is satis�ed. Suppose PrfX
0
�l(b�l � ~b�l) 6= 0 ^ sgn(X

0
�lb�l) 6=

sgn(X
0
�l
~b�l)) > 0, then SX1-(b) is satis�ed. Otherwise without loss of generality consider

the case Pr(X
0
�lb1;�l > X

0
�l
~b1;�l > 0) > 0. Then REG-(ii) and the closedness under scalar

multiplications in REG-(v) guarantee that SX1-(b) is satis�ed. Note for all �x�l and all �2 �

in BNE, substitution implies

p1(�x�l; xl) = F�1j�x�l;xl [�x�l�1;�l + F�2j�x�l;xl(�x�l�2;�l + xl�2;l + p1(�x�h1 ; xh1))]

Under the regularity conditions in ERR, an application of Schauder�s Fixed Point Theorem

shows p1(�x�l; xl) is continuous in xl for all �x�l. Also note

p2(xl; �x�l) = F"2jX=x[�x
0
�l�2;�l + xl�2l + p1(xl; �x�l)]

Since �2l 6= 0 and p1(xl;x�l) is continuous in xl, REG-(iii),(iv) then implies that SX1-(c) is

satis�ed. �

Proof. (Proposition 2) The proof requires slight changes from that of Lemma 2 in Manski

(1985), as one of the regressors is a known function of the other regressors, and the coe¢ cient

in front of it is normalized to be 1. The proof is omitted for brevity. �

Proof. (Lemma 2) By law of iterated expectations,

Q(b) = E[(�U(X)�X0b)2+jP �1jX � 1=2] Pr(P �1jX � 1=2)

+ E[(�L(X)�X0
b)2�jP �1jX � 1=2] Pr(P �1jX � 1=2)
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By de�nition, 8b 2 �I , Pr(�X0b�U(X) > 0 ^ P �1jX � 1=2) = 0, and Pr(�X0b�L(X) < 0

^ P �1jX � 1=2) = 0. Therefore Q(b) = 0 for all b 2 �I . On the other hand, for any

b 62 �I , at least one of the four following events have positive probability: "�X0b < L(X)

^ P �1jX = 1=2", " � X0b > U(X) ^ P �1jX = 1=2", " � X0b � U(X) ^ P �1jX > 1=2" or

" � X0b � L(X) ^ P �1jX < 1=2". Without loss of generality, let the last event occur with

positive probability. Then SX-2 ensures the inequality is strict with positive probability.

This implies the second term in Q(b) will be strictly positive. Similar arguments can be

applied to prove Q(b) > 0 if any of the other events has positive probability. �

Proof. (Theorem 1) It can be shown that the objective function Q(b) is continuous in

b under the regularity conditions. Below I will show that Q̂n(b) converges to Q(b) in

probability uniformly over �. The rest of the proof follows similar steps in Proposition 3 of

Manski and Tamer (2002) and is omitted for brevity. First note by Lemma 8.10 in Newey

and McFadden (1994), under RD-1, TF and K,

supx2S(X) jp̂(x)� p(x)j = op(n
�1=4)

By the mean value expansion of �(p̂(x) � 1
2
) and �(1

2
� p̂(x)) around �(p(x) � 1

2
) and

�(1
2
� p(x)), the uniform consistency of the �rst step estimator of p̂i, and the Law of Large

Numbers, we have for all b 2 �,

Q̂n(b)
p! Q(b)

Note that Q̂n(b) is convex in b for all n and the parameter space is compact and convex

by PAR. Then by Theorem 2.7 in Newey and McFadden (1994), point-wise convergence of

convex functions implies that Q̂n(b) converges uniformly in probability to Q(b) over �. �
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2.2. Asymptotic normality under point identi�cation

Throughout this subsection, I maintain that all conditions for point identi�cation of � (i.e.

BCQ-2, PAR and SX-1 ) and the regularity conditions RD, TF and K are satis�ed. De�ne

Gn(� ; p) �
Pn

i=1 gi(� ; p;n), where

gi(� ; p;n) � �u(pi)[(�ui � n�1=2x0i�)
2
+ � (vui )2+] + �l(pi)[(�li � n�1=2x0i�)

2
� � (vli)2�]

where �li � �L(xi)�x0i�0, �ui � �U(xi)�x0i�0, and pi, �u(pi), �li(pi) denote the true choice

probability p(xi) � Pr(Y = 1jX = xi), �(pi � 1
2
), �(1

2
� pi) respectively. By de�nition,

Gn(� ; p̂) is a convex and continuously di¤erentiable function in � and is minimized at �n =
p
n(�̂��0). Note gi(� ; p;n)f(x) is continuously di¤erentiable in � for all i and n, and under

conditions RD and TF,
R
sup�2N0 jjr�gi(� ; p;n)f(x)jjdx <1 for a small open neighborhood

N0 around the zero vector. Therefore by Lemma 3.6 in Newey and McFadden (1994) and

an application of dominated convergence theorem, it can be shown for all i, n,

(.5) r�E(gi(� ; p;n))j�=0 = �2n�1=2Ef[�l(pi)(V l
i )� + �

u(pi)(V
u
i )+]Xig = 0

It can also be shown by direct calculation of gradients that under conditions RD and TF

for all i, n, the Hessian matrix

r2
�� 0E(gi(� ; p;n))j�=0 = 2n�1Ef[�l(pi)1(V l

i < 0) + �
u(pi)1(V

u
i > 0)]XiX

0
ig
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exists and is continuous at � = 0. Thus by a Taylor expansion, �n(� ; p) = 1
2
� 0J� + o(1),

where J � r2
�� 0E(gi(� ; p;n))j�=0. Let p̂i, �̂ui , �̂li denote p̂(xi), �(p̂i � 1

2
), �(1

2
� p̂i). De�ne

!n(p) � n�1=2
Pn

i=1 �(Xi; p)

�(Xi; p) � 2[�l(pi)(V
l
i )� + �

u(pi)(V
u
i )+]Xi

�n(Xi; p; �) � �u(pi)[(V
u
i � n�1=2X0

i�)
2
+ � (V u

i )
2
+] + :::

�l(pi)[(V
l
i � n�1=2X0

i�)
2
� � (V l

i )
2
�] + n�1=2� 0�(Xi; p)

Since E[�(Xi; p)] = 0, we can rewrite for any generic choice probability ~p

Gn(� ; ~p) = �n(� ; p)� � 0!n(~p) +
Pn

i=1f�n(Xi; ~p; �)� E[�n(Xi; p; �)]g

Below I will show that Gn(� ; p̂) =
1
2
� 0J� � � 0!n(p̂) + op(1). This will enable us to use

the Convexity Lemma in Pollard (1991) and an argument similar to Buchinsky and Hahn

(1998) to show �n is asymptotically equivalent to the asymptotically normal "maximizer" of

1
2
� 0J� � � 0!n(p̂).

Lemma B1 Under the identifying conditions BCQ-2, PAR, SX-1,2 and regularity con-

ditions RD-1,2, TF-1,2 and K, !n(p̂)
d! N(0;�).

Proof. The proof proceeds by checking conditions of Theorem 8.11 in Newey and McFadden

(1994). That is, it su¢ ces to show that there exists a vector of functionals 	(x;h; f), which

is linear in (h; f) and satis�es:(i) For (h; f) with jj(h; f) � (h0; f0)jjsup small, there exists

some b(x) :S(X)! R1 such that

jj�(xi;h; f)� �(xi;h0; f0)�	(x;h� h0; f � f0)jj � b(x)jj(h; f)� (h0; f0)jj2sup
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with E[b(X)] <1, where jj:jjsup denotes the sup of the Euclidean norm of a vector-valued

function de�ned on S(X); (ii) jj	(x;h; f)jj � c(x)jj(h; f)jjsup, with E[c(x)2] < 1; (iii) 9

�1(x) and �2(x) s.t.

E[	(x;h; f)] =

Z
�1(x)h(x)+�2(x)f(x)dx

(iv) For j = 1; 2, �j(x) is continuous almost everywhere,
R
j�j(x)jdx <1, and 9 � > 0 s.t.

E[supj�j�� jj�j(X+ �)jj4] <1

To verify condition (i), de�ne the linear functional

	(xi;h; f) �
�
a1(xi;h0; f0)

f0(xi)
h(xi)�

h0(xi)a1(xi;h0; f0)

f0(xi)2
f(xi)

�
xi

where

a1(xi;h; f) � 2
�
�0
�
h(x)

f(x)
�1
2

�
(vui )+ � �0

�
1

2
� h(x)

f(x)

�
(vli)�

�
Then by 2nd order Taylor expansion,

�(xi;h; f)� �(xi;h0; f0)�	(x;h� h0; f � f0)

= [h(xi)� h0(xi) f(xi)� f0(xi)]

0B@ A1(xi; ~h; ~f) A2(xi; ~h; ~f)

A2(xi; ~h; ~f) A3(xi; ~h; ~f)

1CA�h(xi)� h0(xi)

f(xi)� f0(xi)

�
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where ~h, ~f are on the line segment connecting (h; f) and (h0; f0), and

A1(x;h; f) � a2(x;h; f)

f(x)2
x

A2(x;h; f) �
�
�h(x)a2(x;h; f)

f(x)3
� a1(x;h; f)

f(x)2

�
x

A3(x;h; f) �
(
h(x)2a2(x;h; f)

f(x)4
+
2h(x)a1(x;h; f)

f(x)3

)
x

where

a2(x;h; f) � 2
�
�00
�
h(x)

f(x)
�1
2

�
(vui )+ + �

00
�
1

2
� h(x)

f(x)

�
(vli)�

�
Then by regularity conditions in RD-2, there exists some positive constant C where

jj�(xi;h; f)� �(xi;h0; f0)�	(x;h� h0; f � f0)jj � Cjjxijj � jB(xi)j � jj(h; f)� (h0; f0)jj2sup

and condition (i) above is satis�ed. Also condition (ii) is satis�ed by conditions in RD-2.

Then note

E[	(X;h; f)] =

Z �
a1(x;h0; f0)

f0(x)
h(x)� h0(x)a1(x;h0; f0)

f0(x)2
f(x)

�
xf0(x)dx

=

Z �
a1(x;h0; f0)h(x)�

h0(x)

f0(x)
a1(x;h0; f0)f(x)

�
xdx

Hence condition (iii) is satis�ed with �1(x) =a1(x;h0; f0)x and �2(x) =
h0(x)
f0(x)

a1(x;h0; f0)x.

Condition (iv) is also satis�ed because jjXjj�jmax(0;�V l
i )j and jjXjj�jmax(0; V u

i )j both have

�nite 4th moments, �0 is bounded, and f0(x) is bounded away from zero. Let �(x; y;h0; f0)

= �1(x)y+�2(x). It then follows from Theorem 8.11 in Newey and McFadden (1994) that

!n(p̂)
d! N(0;�)
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where � � V ar[�(X;h0; f0)+�(X; Y ;h0; f0)]. Q.E.D. �

The rest of the proof shows that �n = J�1!n(p̂) + op(1) and therefore n�1=2(�̂��0) has

an asymptotically normal distribution.

Lemma B2 Under the conditions of Lemma B1 above, for any �xed � in the compact

parameter space �,

Pn
i=1f�n(Xi; p̂; �)� E[�n(Xi; p; �)]g = op(1)

Proof. First consider the term

Pn
i=1[�n(Xi; p̂; �)� �n(Xi; p; �)]

=
Pn

i=1 S
u
n(Xi; �)[�

u(p̂i)� �u(pi)] +
Pn

i=1 S
l
n(Xi; �)[�

l(p̂i)� �l(pi)]

where

Sun(Xi; �) = (vui � n�1=2X0
i�)

2
+ � (vui )2+ + 2n�1=2X0

i�(v
u
i )+

Sln(Xi; �) = (vli � n�1=2X0
i�)

2
� � (vli)2� + 2n�1=2X0

i�(v
l
i)�

Hence

j
Pn

i=1[�n(X; p̂; �)� �n(X; p; �)]j

� C1 supx2S(X) jp̂(x)� p(x)j �
�
j
Pn

i=1 S
l
n(Xi; �)j+ j

Pn
i=1 S

u
n(Xi; �)j

	
where C is the bound on the �rst derivative on �. By Lemma 8.10 and the regularity

conditions RD-2 on the kernel, the bandwidth and higher moments of Yi, supx2S(X) jp̂(x)�
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p(x)j = op(1). Also note

Sun(X; �) = 1
�
min(vu; vu � n�1=2X0�) � 0

	
n�1(X0�)2 + :::

1fvu � n�1=2X0� < 0 < vug[�(vu)2 + 2n�1=2X0� ] + :::

1fvu � n�1=2X0� > 0 > vug(vu � n�1=2X0�)2

Note �(vu)2 + 2n�1=2X0�vu � 0 both in the second and third event. Therefore Sun(X; �) �

n�1(X0�)2. By RD-2,
Pn

i=1 S
u
n(Xi; �) = Op(1). By similar arguments,

Pn
i=1 S

l
n(Xi; �) =

Op(1), and

j
Pn

i=1[�n(Xi; p̂; �)� �n(Xi; p; �)]j � op(1)Op(1) = op(1)

Now consider the second term
Pn

i=1 Tn;i �
Pn

i=1 f�n(Xi; p; �)� E[�n(Xi; p; �)]g. Note

E[(
Pn

i=1 Tn;i)
2] �

Pn
i=1E[�n(Xi; p; �)

2] � n�2
Pn

i=1Ef[�u(pi) + �l(pi)]2(X0�)4g]

where the �rst inequality is due to the cancellation of cross-product terms as a result of

independence across observations, and the second inequality follows from the above bounds

on Sun and S
l
n. Since both �

u and �l are positive and bounded, E[(
Pn

i=1 Tn;i)
2] = O(n�1).

Since E(
Pn

i=1 Tn;i) = 0 by construction, this implies (
Pn

i=1 Tn;i)
2 converges in mean square

and therefore is op(1). Q.E.D. �

The 2nd-order Taylor expansion �n(� ; p) = 1
2
� 0J� + o(1) and the preceding two lemmae

imply for each �xed � ,

Gn(� ; p̂) =
1
2
� 0J� � � 0!n(p̂) + op(1)
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Then this point-wise convergence is strengthened into uniform convergence on the support

of � , which is a convex, compact subset of RK . This enables us to rewrite

Gn(� ; p̂) =
1
2
(� � �n)J

0(� � �n)�
1

2
�0nJ�n + rn(�)

where �n � J�1!n(p̂). and sup�2T jrn(�)j = op(1) for any compact T � RK . Then it su¢ ces

to show �n =
p
n(�̂ � �0) is asymptotically equivalent to �n, i.e. �n = �n + op(1). This

result follows from standard arguments in Theorem 1 in Pollard (1991) and Lemma 3 in

Buchinsky and Hahn (1998) and the proof is omitted.

3. Appendix for Chapter 3

LetB2(S(X)) denote the space of bounded, continuousR2-valued functions, i.e. B2(S(X)) =

B(S(X))
B(S(X)); where B(S(X)) is the space of bounded, real-valued functions de�ned

on X:De�ne the norm on B2(S(X)) as jjf(x)jj = supj2f0;1g;x2S(X) jfj(x)j.

Lemma A1 (B2(S(X)); jj:jj) is a complete normed vector space.

Proof. The proof is standard and omitted for brevity. �

Lemma A2 Suppose the operator T : B2(S(X)) ! B2(S(X)) satis�es (a) 8f ;g 2

B2(S(X)), f(x) � g(x) for all x 2 S(X) implies (T � f)(x) � (T � g)(x) for all x 2 S(X)

(where the inequality is component-wise in R2); (b) 9� 2 (0; 1):s:t:T � (f(x) + a12) �

T � f(x) + �a; 8f 2 B2(S(X)); a � 0; x 2 S(X) (where 12 � [1 1]0). Then T is an

contraction mapping with modulus �:
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Proof. We need to show that 8f ;g 2 B2(S(X)); jjT � f � T � gjj � �jjf � gjj:Note:

f � g + jjf � gjj12

=) T � f � T � (g + jjf � gjj12) � T � g + �jjf � gjj12

=) T � f � T � g � �jjf � gjj12

Likewise by interchanging the role of f and bg, we have T �g�T �f � �jjf�gjj12. Combining

the two inequalities proves jjT � f � T � gjj � �jjf � gjj. �

Lemma A3 (Contraction Mapping) De�ne the operator T � f(x) � [T1(x; f) T0(x; f)],

where

Tj(x) � uj(x) + �

Z
maxk2f0;1gffk(x0) + "0kgdF"jX("0jx0)dGj(x

0jx)

Under REG, T is a contraction mapping that maps from B2(S(X)) into B2(S(X)).

Proof. Note maxk2f0;1gffk(x)g is bounded since f 2 B2(S(X)). Also:

Z
maxk2f0;1gffk(x0) + "0kgdF"jX("0jx0)dGj(x

0jx)

�
Z
maxk2f0;1gffk(x0)gdF"jX("0jx0)dGj(x

0jx) +
Z
maxk2f0;1gf"0kgdF"jX("0jx0)dGj(x

0jx)

Both terms as well as u(x) are bounded and continuous under REG. Hence T � (f(x)) is

bounded and continuous. Suppose f ;g 2 B2(S(X)), and f(x) � g(x) for all x 2 S(X): Then

Tj(x; f) = uj(x) + �

Z
maxk2f0;1gffk(x0) + "0kgdF"jX("0jx0)dGj(x

0jx)

� uj(x) + �

Z
maxk2f0;1gfgk(x0) + "0kgdF"jX("0jx0)dGj(x

0jx) = Tj(x;g)
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And:

Tj(x; f + a12) = uj(x) + �

Z
maxk2f0;1gffk(x0) + a+ "0kgdF"jX("0jx0)dGj(x

0jx)

= uj(x) + �

Z
maxk2f0;1gffk(x0) + "0kgdF"jX("0jx0)dGj(x

0jx) + �a

By Lemma A2, the operator T is a contraction mapping. �

Proof of Lemma 1. By de�nition, the Bellman Equation is:

V (s) = maxj2f0;1g U(s; j) + �

Z
V (s0)dF"jX("

0jx0)dGj(x
0jx)

Under AS and CI, V (s) = maxj2f0;1gf�j(x) + "jg, where

�j(x) � uj(x) + �

Z
V (x0; "0)dF"jX("

0jx0)dGj(x
0jx)

Substitute expression for V (s) into the de�nition of �j(x) for j 2 f0; 1g,

�j(x) = uj(x) + �

Z
maxj2f0;1gf�k(x0) + "0kgdF"jX("0jx0)dGj(x

0jx)

It follows from Lemma A3 that under REG, the operator is well-de�ned for any fu; �; F"jXg,

and that a �xed point �(x) exists. �

Proof of Proposition 1. We need to show that any (u; F"jX) can generate observed choice

probabilities p(x) if and only if it satis�es conditions in the proposition. (Su¢ ciency) Sup-

pose u;F"jX satis�es the conditions in the proposition. Then for j = 0; 1, �j(x;uj; F�"jX) �

!j(x;uj) + �j(x;F�"jX) is the unique �xed point for the following operator:

Tj � �j(x;uj; F�"jX) = uj(x) + �

Z
�j(x;uj; F�"jX) + �j(x

0; p; F�"jX)dGj(x
0jx)
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By our supposition, for all x 2S(X), ��(x) = �!(x)+��(x) = F�1�"jX(p(x)jx). Substitution

implies �0(x; p; F�"jX) =
R
maxf��(x;u; F�"jX) � s; 0gdF�"jX(sjx) and �1(x; p; F�"jX) =R

maxfs���(x;u; F�"jX); 0gdF�"jX(sjx). Then E("jjx) = 0 for all x 2S(X) implies

�j(x;uj; F�"jX) + �j(x; p; F�"jX) =

Z
maxk2f0;1gf�j(x;uj; F�"jX) + "jgdF"jX("jx):

Therefore �(x) � [�1(x) �0(x)]
0 is the unique �xed point of the operator T � �(x) �

[T1(x; �) T0(x; �)], where

Tj(x) � uj(x) + �

Z
maxk2f0;1gf�k(x0) + "0kgdF"jX("0jx0)dGj(x

0jx)

Then the proof of su¢ ciency is completed by the supposition ��(x) = F�1�"jX(p(x)jx) for all

x 2S(X). (Necessity) Now suppose (u; F"jX) generates p(x). This requires ��(x;u; F"jX) =

F�1�"jX(p(x)jx) for all x 2S(X), where �(x;u; F"jX) � [�1(x) �0(x)]
0 is the unique �xed

point of the operator T . Recursive substitution of �(x) into the de�nition of T suggests

�j(x;u; F"jX) = !j(x;uj)+ �j(x; p; F�"jX) for j = 0; 1. (See Aguirregabiria 2007 for more de-

tails.) It follows immediately F�1�"jX(p(x)jx) = �!(x;u)+��(x;F�"jX) for all x 2S(X). �

Proof of Corollary 1 (Proposition 1). Suppose u;F"jX satis�es (3.2). Then it follows

from Proposition 1 that the joint identi�cation region is characterized by the system of

linear equations

[I+G1
1]u1 � [I +G0

1]u0 = C(F"jX; p)

where Gj
1 � limT!1

PT
t=1 �

t(Gj) and C(F"jX; p) is a K-by-1 vector of constants calculated

from knowledge of F"jX and p(x). Since u0 is normalized to a K-by-1 zero vector, u1 has

unique solutions if and only if I+Gj
1 has full rank. Note I+G

j
1 = (I� �Gj)�1. Hence u1

has unique solutions if and only if (I� �Gj) has full rank. �
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Proof of Proposition 2. Suppose �0 is not locally identi�ed, and there is a sequence of

�n in a sequence of shrinking neighborhood around �0 that p(xk;�0) = p(xk;�n) for all xk.

By the mean value theorem, there exists a sequence ��n on the line segment linking �n and

�0 such that
P

lr�lp(xk;�
�
n)dn;l = 0 for all xk, where l is an index for coordinates in �0 and

dn;l � �n;l��0;l
jj�n��0jj . The sequence fdn;1g is an in�nite sequence on the unit sphere and therefore

there exists a non-zero limit d0. As �n ! �0, dn approaches d0 in the limit and we haveP
lr�lp(xk;�0)d0;l = 0 for all xk. This implies r�p(xk;�0)r�p(xk;�0)

0 is singular for all

xk. This completes the proof. �

Proof of Corollary 2 (Proposition 1). Under the assumptions of the corollary, the joint

identi�cation region is given by the linear system:

(I� �G1)�1u1 = Q� [(I� �G1)�1�G1�1 � (I� �G0)�1�G0�0]

where Q, �j are K-by-1 vectors with Qk � F�1�" (p(xk)) and �
j
k � �j(xk;F�") for j = 0; 1,

k = 1; :; K. Note that �0 � �1 = Q. Substitution gives (3.7). Since 1; :; k; :;K is ranked

in ascending order in p(xk), the statistical independence restriction requires Qk�s are also in

ascending order. Furthermore, note for k � 2, �0k = �0k�1+
R Qk
Qk�1

F�"(s)ds, where the second

term is bounded between p(xk�1)(Qk � Qk�1) and p(xk)(Qk � Qk�1). Hence the inequality

constraints must also hold. It follows that any u1 that keeps the feasibility of this linear

system of equalities and inequalities will not be identi�ed relative to the true parameter

under FSI (the set of F"jX that satis�es statistical independence). �

Proof of Corollary 3 (Proposition 1). The equalities in the linear system follows from

the same argument as in the proof of Corollary 3. The inequalities in the �rst two rows follow

immediately from the de�nitions: Qk � F�1�"jX(p(xk)jxk), and "M as the median conditional
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on all xk. Those in the last two rows uses the fact that �" has a support of length 2C and is

symmetrically distributed around "M for all xk, and the de�nition of �0k =
R Qk
"L

F�"jX(sjxk)ds

(the area beneath neath the distribution F�"jX(sjxk) up to Qk). The details in algebra are

omitted for brevity. �




