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ABSTRACT

Essays in Empirical Auctions and Partially Identified Econometric Models

Xun Tang

Chapter 1: (Bounds on the Counterfactual Revenue Distributions in Auctions with
Reserve Prices) In first-price auctions with interdependent bidder values, the distributions
of private signals and values cannot be uniquely recovered from bids in Bayesian Nash equi-
libria. Non-identification invalidates structural analyses that rely on exact identification of
the model primitives. In this paper I introduce tight, informative bounds on the distribution
of revenues in counterfactual first- and second-price auctions with binding reserve prices.
These robust bounds are identified from distributions of equilibrium bids in first-price auc-
tions under minimal restrictions where I allow for affiliated signals and both private- and
common-value paradigms. The bounds can be used to compare auction formats and to se-
lect optimal reserve prices. I propose consistent nonparametric estimators of the bounds. 1
extend the approach to account for observed heterogeneity across auctions, as well as en-
dogenous participation due to binding reserve prices. I use a recent data of 6,721 first-price
auctions of U.S. municipal bonds to estimate bounds on counterfactual revenue distributions.

I then bound optimal reserve prices for sellers with various risk attitudes.



Chapter 2: (Semiparametric Estimation of Binary Response Models under Inequality
Quantile Restrictions) In this paper I study the estimation of a class of binary response
models where conditional medians of disturbances are bounded between known functions
of regressors. This class of models incorporates several interesting micro-econometric sub-
models with wide empirical applications. These include binary response with interval data on
regressors, simultaneous discrete games with incomplete information, and Markovian binary
choice processes. I characterize the identification region of linear coefficients in payoff func-
tions, and give fairly general restrictions on the distribution of regressors that are sufficient
for point identification. I also show how these restrictions are satisfied by primitive condi-
tions in some of the motivating sub-models. I then define a two-step extreme estimator, and
show it is consistent regardless of point identification, and converges to a normal distribution
at the rate of /n under point identification. This is possible because point identification can
be attained even when the regressors have bounded supports. Monte Carlo evidence on the
estimator’s performance in finite samples when the model is partially identified is reported.

Chapter 3: (Identification of Dynamic Binary Choice Processes) In this paper, we study
the identification of structural parameters in a class of dynamic binary choice processes where
transitions to future states are independent from unobservable disturbances conditional on
current actions and observable states. We give a full characterization of the set of single-
period payoffs and disturbance distributions that generate the same choice probabilities
as observed in a given process. We show with knowledge of the disturbance distribution,
the differences in payoffs from two trivial policies of choosing the same action forever can
be uniquely recovered from choice probabilities. Furthermore, we analyze the identifying
power of various stochastic restrictions such as the statistical independence and conditional

symmetry of the disturbance distributions. For models with finite spaces of observable states,



we characterize the identification region of single-period payoffs under these restrictions by
checking the feasibility of a system of linear equations in the nuisance parameters, subject
to inequality constraints implied by observational equivalence and the restrictions imposed.
This approach of identification through linear programming can be readily extended to cases

where single-period payoffs are known to satisfy any form of restrictions.
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CHAPTER 1

Bounds on the Counterfactual Revenue Distributions in Auctions

with Reserve Prices

1.1. Introduction

In a structural auction model, a potential bidder does not know his own valuation of
the auctioned object, but has some noisy private signal about its value. Bidders make their
decisions conditional on these signals and their knowledge of the distribution of their com-
petitors’ private signals and values. A structural approach for empirical studies of auctions
posits the distribution of bids observed can be rationalized by a joint distribution of bidder
values and signals in Bayesian Nash equilibria, and defines this joint distribution as the model
primitive. The objective is to extract information about this primitive from the distribution
of bids, and to use it to answer policy questions such as the choice of optimal reserve prices
or auction formats. (See Hendricks and Porter (2007) for a survey.) Depending on whether
bidders would find rivals’ signals informative about their own values conditional on their
own signals, an auction belongs to one of the two mutually exclusive types : private values
(PV), and common values (CV).! These two types have distinct implications for revenue
distributions under a given auction format.

In this paper I propose tight, informative bounds on counterfactual revenue distributions

that can be constructed from the distribution of bids in a general class of first-price auctions

T use the term "interdependent values" for a larger class of auctions that encompass both PV and C'V
auctions. The formal definition of a PV auction is one in which bidders’ values are mean independent from
rival signals conditional on their own signals.
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with interdependent values and affiliated signals. The counterfactual formats considered
in this paper include both first- and second-price auctions with reserve prices.” Thus I
introduce a unified approach of policy analyses for both PV and C'V auctions that does
not require exact identification of model primitives. My method is motivated by several
empirical challenges related to structural C'V models. First, several policy questions have
not been addressed outside the restrictive case of PV auctions due to difficulties resulting
from non-identification of signal and value distributions.> For a fixed reserve price, theory
ranks expected revenue for general interdependent value auctions with affiliated signals, but
the magnitude of expected revenue differences remains an empirical question.* Another open
issue is the choice of optimal reserve prices in general interdependent value auctions with
affiliated signals and finite number of bidders.® Since model primitives cannot be recovered
from equilibrium bids in C'V" auctions, these questions cannot be addressed as in PV auctions,
where point identification of signal distributions helps exactly recover revenue distributions
in counterfactual formats.® Second, it is difficult to distinguish PV and CV auctions from
the distribution of bids alone under a given auction format, even though the two have distinct
implications in counterfactual revenue analyses. Laffont and Vuong (1996) proved for a given

number of potential bidders, distributions of equilibrium bids in C'V" auctions can always be

In this paper, I use the term "second-price auctions" exclusively for the sealed-bid format. This does not
include the open formats, or "English auctions".

3For a proof of non-identification, see Laffont and Vuong (1996).

4The only exception is the case with i.i.d. signals, where expected revenue from first-price, second-price and
English auctions are the same regardless of value interdependence.

% An exception is symmetric, independent private value auctions, where the optimal reserve price is identified
from the distribution of equilibrium bids. Levin and Smith (1994) also showed in symmetric first-price auc-
tions, where signals are affiliated and values are interdependent through a common unobserved component,
the optimal reserve price converges to the seller’s true value as the number of potential bidders n goes to
infinity. Yet the theory is otherwise silent about identifying optimal reserve prices with a finite n.

6See Guerre et.al (2000), Li, Perrigne and Vuong (2002) and Li, Perrigne and Vuong (2003) for details. Also
note in PV auctions, the distribution of signals {X;}" ; are equivalent to the distribution of values {V;}}_,
under the normalization E(V;|X; = z) = «.
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rationalized by certain PV structures. Empirical methods that have been proposed for
distinguishing between the two types often have practical limitations. They either rely on
assumptions that may not be valid (such as exogenous variations of number of bidders, as
in Haile, Hong and Shum (2003)), or they may entail strong data requirements (an ex post
measure of bidder values as in Hendricks, Pinkse and Porter (2003), or many bids near a

T Third, the empirical auction

binding reserve price as in Hendricks and Porter (2007)).
literature has not considered the magnitude of the bias if a C'V environment is analyzed
with a PV model in counterfactual revenue analyses.

I propose a structural estimation method through partial identification of revenue dis-
tributions to address the questions above. First, the bounds on revenue distributions are
constructed directly from the bids, and do not rely on pinpointing the underlying signal and
value distributions. Second, the bounds only require a minimum set of general restrictions
on value and signal distributions that encompass both PV and C'V paradigms. Third, the
bounds are tight and sharp within the general class of first-price auctions. The lower bound
is the true counterfactual revenue distribution under a PV structure, while the upper bound
can be close to the truth for certain types of C'V models. Hence the distance between the
bounds can be interpreted as a measure of maximum error possible when a C'V' structure is
analyzed as PV in counterfactual analyses. The bounds can be nonparametrically estimated
consistently. Although I do not provide point estimates of revenue distributions, the bounds
are informative for answering policy questions, for they can be used to compare auction

formats, or to bound revenue maximizing reserve prices. The analysis can be extended to

risk-averse sellers immediately given the sellers’ utility functions.

TA reserve price is binding if it is high enough to have a positive probability for screening bidders.



14

My paper is related to the literature on robust inference in auction models. Haile and
Tamer (2003) use incomplete econometric models to bound the optimal reserve price in
independent PV English auctions, where the equilibrium bidding assumption is replaced
with two intuitive behavior assumptions. In contrast, my paper focuses on first-price C'V’
auctions. Incompleteness here arises from the range of possible rationalizing signal and value
distributions, instead of a flexible interpretation of bids. Hendricks, Pinkse and Porter (2003)
introduce nonparametric structural analyses to C'V auctions. They use an ex post measure
of bidder values to test the assumption of equilibrium bidding. They also provide evidence
that the winner’s curse effect dominated the competition effect, leading to less aggressive
bidding in equilibrium as the number of bidders increase. Shneyerov (2006) introduces an
approach for counterfactual revenue analyses in common-value auctions without the need to
identify model primitives. In particular, he shows that for any given reserve price, equilibrium
bids from first-price auctions can be used to identify the expected revenues in second-price
auctions with the same reserve price. He also shows how to bound the expected gains in
revenues from English auctions under the general restriction of monotone value functions
and affiliated signals.

My paper makes three novel contributions. First, the focus on revenue distributions,
as opposed to distributional parameters such as expectations, allows more general revenue
analyses. Auction theory usually uses expected revenue as a criterion to compare auction
designs, but central tendency may not be justifiable in practice, say if the seller is not
risk-neutral. Knowledge of distributions is necessary for other criteria, such as maximizing
expected seller utility. (A seller may choose a design to maximize the probability that revenue

falls in a certain range.) Second, bounds on revenue distributions can be constructed for
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hypothetical reserve prices. One can then compare reserve prices within first- or second-
price formats. In C'V' auctions, a counterfactual, non-binding reserve price r creates serious
challenges in policy analyses. The probability that no one bids higher than r in equilibrium
can not be pinpointed from bids in the data, since the screening level can not be identified
without further restrictions.® Moreover, the mapping between equilibrium strategies under r
and those in the data cannot be uniquely recovered. I address this issue by bounding the bid
that a marginal bidder under a counterfactual binding r actually places in equilibrium under
the data-generating auction format.” These bounds in turn lead to bounds on the revenue
distribution under . Finally, the bounds on revenue distributions are robust and independent
of the exact form of signal affiliations and value interdependence, and are identified from
the distribution of equilibrium bids alone. This robustness comes with the price of partial
identification of revenue distributions. Nonetheless, one can obtain informative answers for
some policy questions.

The remainder of the paper proceeds as follows. Section 2 introduces bounds on coun-
terfactual revenue distributions in a benchmark model where data is collected from homoge-
nous auctions with exogenous participation. Section 3 defines nonparametric estimators for
bounds and proves their pointwise consistency. Section 4 provides Monte Carlo evidence
about the performance of the bound estimators. Section 5 extends the benchmark model
to allow for observable auction heterogeneity and endogenous participation under binding
reserve prices in the data. Section 6 applies the proposed method to U.S. municipal bond

auctions on the primary market. Section 7 concludes.

8A screening level under 7 is the value of signal such that only bidders with signals higher than the screening
level will choose to submit bids above 7 in equilibrium. See Section 2 below for a formal definition.
9A marginal bidder under 7 is the one whose signal is exactly equal to the screening level.
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1.2. Bounds on Counterfactual Revenue Distributions in the Benchmark Model

This section focuses on a benchmark case where bids are observed from increasing, sym-
metric pure-strategy Bayesian Nash Equilibria (PSBN E) in homogenous, single-unit first-
price auctions with a non-binding reserve price. I use distributions of these bids (denoted
GY%) to construct tight bounds on counterfactual revenue distributions for both first-price
and second-price auctions with reserve price 7 > 0 (denoted Fpr(,y and Fgir(,y respectively).
Extensions to cases where bids are observed from heterogenous auctions or auctions with

endogenous participation due to binding reserve prices are discussed in Section 5.

1.2.1. Model specifications

Consider a single-unit first-price auction with n potential risk-neutral bidders and a non-
binding reserve price. Each bidder receives a private signal X; but cannot observe his own
valuation V;. The distribution of all bids submitted in equilibrium (denoted {B;}i=1,. ,) is
observed from a random sample of independent, identical auctions, but neither X; nor V;
can be observed. For simplicity, X; and V; are both scalars.’’ The following assumptions are
maintained throughout the paper.

A1 (Symmetric, Affiliated Signals) Private signals X ={X;};,—1_, are affiliated with sup-

port [z, ry]", and the joint distribution Fx is exchangeable in all arguments.'!

10Thromghout the paper I use upper case letters to denote random variables and lower case letters for
corresponding realized values.

ULet Z be a random vector in R¥ with joint density f. Let V and A denote respectively component-wise
maximum and minimum of any two vectors in R¥. Variables in Z are affiliated if, for all z and 2’ in R¥,
fzvz2f(znz2") > f(2)f(Z'). For a more formal definition, see Milgrom and Weber (1982).
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A2 (Interdependent Values) A bidder’s valuation satisfies V; = 6(X;, X_;), where 0(.) is a

nonnegative, bounded, continuous function that is exchangeable in X _; = { X3, .., X;_1, Xi11, ..

non-decreasing in all signals, and increasing in own signal X; over [z, ry]."

Note A2 implies private signals are drawn from identical marginal distributions on
[zr,zy], and A1 includes private values (PV') as a special case, where 0(z;,x_;) = 0(z;)
V(z,%x-;) € [zr,2zy]". Common values (CV) correspond to value functions that are non-
degenerate in rival signals X_;. A pure strategy for a bidder is a function b, : X; — R% and
a pure-strategy Bayesian Nash Equilibria is a portfolio {bg;(.)}i=1,., such that V i,bg,(.) is
the best response to {bo;(.)}jeq,. np\(i}» i€ Vi,

boﬂ'(x) = arg max E(‘/; — b07i| Hl;élX bO,j(Xj) S boﬂ',Xi = iL‘) PI'(HIQX b()’j(Xj) S bO,i‘Xi = l‘)
J7F1 JF1

bo,:

The regularity conditions for existence of such a PSBNFE is collected in A8 below. These
restrictions are otherwise inessential for the partial identification result in this paper.

A8 (Regularity Conditions) (i) 0(.) is twice continuously differentiable; (i) The joint
density of {X;},—1, , exists on [z, zy]", is continuously differentiable, and 3 fiow, frign > 0
such that f(x) € [fiow, frign) VX € [z, z0]™.

McAdams (2006) proved A1, A2, and A& are sufficient for the existence of unique sym-

metric, increasing PSBN FE in first-price auctions.

Definition 1. A joint distribution of bids {bo;}ien in first-price auctions with zero re-
serve prices (denoted G%) is rationalized by an auction defined by the structure {0, Fx})

if G is the distribution of bids in a symmetric, increasing PSBNE in this auction. Two

12Thlroughout the paper I use bold letters for vectors of random variables or functions (e.g.,
X :()(1,)(27 7Xn) and Q(X) = (9(X1,X,1),9<X2,X,2),...,Q(Xn,X,n)) )

X},



18

structures {0, Fx} and {0, Fx} are observationally equivalent if they generate the same

distribution G in PSBNE of first-price auctions.

Let by, (.) denote the equilibrium bidding strategy in a first-price auction with zero
reserve price and N = n potential bidders. The first-order condition of such a PSBNFE is
characterized by the first order condition:

fY\X;n<x|$)

(11) 0(®) = Whn(@,2) = bon(@N s

for all € [zp,2y], where YV, = max,. X, vpn(z,y) = E(Vi|X; = 2,Y; = y,N = n),
Fyixm(tlz) = Pr(Y; < t|X; = 2, N = n), and fy|x;,(t|r) denotes the corresponding condi-
tional density. The equilibrium boundary condition is by, (z1) = vpn(xL,zr). Subscripts
for bidder indices are dropped in vy, ,, Fy|x and fy|x due to the symmetry in Fx and 6. In
an increasing PSBNE where by, (v) > 0 Vx € [z, zy], Guerre et.al (2000) showed a link

between the primitives and G by manipulating (1.1) using change-of-variable :

(12) vna(z,2) = bon(®) + Ghs i (B0 (2) 100, (2)) /9h1 5 (b0, () b0 () = €(bon(2); G)

where G%Bm(iﬂb) = Pr(max;s; bon(X;) < blbon(X;) = b) and g?\/[‘B;n(l~)|b) is the correspond-

ing density.'® Bidder indices on M and B are dropped due to symmetry of Fx and .

1.2.2. Review of literature on PV auctions

In this subsection, I review the literature on identification of signal distributions and optimal
reservation prices in private value auctions. The objective is to highlight how unique iden-

tification of the bidder signal distributions and screening levels leads to exact identification

13Follovving convention in the literature, I assume the second order conditions are always satisfied and thus
first-order conditions are sufficient for characterizing the equilibrium.
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of the optimal reserve price, and to motivate my incomplete approach when the screening
level can not be point identified in the more general case of interdependent values.

Guerre, Perrigne and Vuong (2000) and Li, Perrigne and Vuong (2002) showed the joint
distribution of bidder values are nonparametrically identified from distribution of equilibrium
bids in first-price, PV auctions with no reserve prices, regardless of the form of dependence
between private signals. The main idea is that in private value auctions, the left-hand side
of (1.2) can be normalized to the signal z itself, and thus the inverse bidding function is
recovered from G%, for both independent and affiliated signals.'* Another simplification
peculiar to PV auctions is that the screening level under a binding reserve price r is equal to
r itself. That is, bidders choose not to bid above r in equilibrium if and only if their private
signals are below r. To see this, note the screening level under r in a general interdependent

value auction is defined as :
z*(r) =inf{z € [z, 2] : E(V}|X; = v, max;4 X; <z) >r}

In PV auctions, E(V;|X; = z,max;4 X; < z) = E(V;|X; = z) and the normalization
E(V;|X; = z) = x implies 2*(r) = r. Thus in private value auctions, both signal distribution
Fx and z*(r) are exactly recovered from G%.

In principle, knowledge of Fx in private value auctions is sufficient for finding counter-
factual revenue distributions under a binding reserve price r. It follows that the optimal r
which maximizes expected revenue is also identified. Yet in reality it can be impractical to
implement this fully nonparametric estimation due to data deficiencies, especially when the
signals are affiliated. Li, Perrigne and Vuong (2003) proposed a nonparametric algorithm for

estimating optimal reserve prices that is implemented with less intensive computations. The

YIn private value auctions, the conventional normalization of the signals is E(V;|X; = z) =  for all z.



20

idea is to express expected seller revenue under r as a functional of r itself and the observed
distribution of equilibrium bids. Then optimizing a sample analog of this objective function
over reserve prices gives a consistent estimator of the optimal reservation price. Again the
assumption of private values is indispensable for two reasons. First, it implies z*(r) = r
under appropriate normalizations, which is used for defining the objective function; Second,
it ensures full nonparametric identification of the distributions of counterfactual equilibrium
bidding strategies.

This approach can not be applied to C'V auctions with affiliated signals immediately
because of two non-identification results. First, the screening level cannot be pinned down
without further restrictions on how bidders’ signals and valuations are correlated. Second,
inverse bidding functions can not be recovered without knowledge of 6. Hence underly-
ing structure {0, Fx} can not be identified. These pose a major challenge for identifying

counterfactual revenue distributions in C'V auctions.

1.2.3. Observational equivalence of PV and C'V

In this subsection I prove the observational equivalence of PV and C'V paradigms when
only G% is observed. In other words, any G% is rationalized by a PV paradigm if and only
if it is also rationalized by a CV paradigm. Laffont and Vuong (1996) already proved the
sufficiency in their well-known argument for the non-identification of C'V" auctions. Below I
complete the proof of observational equivalence by showing the converse (necessity).
Besides being a main motivation for the bounds in this paper, observational equiva-
lence of PV and C'V auctions also has an important implication about the efficiency of the
bounds. That is, they effectively exhaust all information that can be extracted from G and

equilibrium conditions alone for counterfactual revenue analyses. To see this, note the true
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counterfactual revenue distribution is exactly equal to the lower bound if G% is rationalized
by a PV structure. On the other hand, it can lie anywhere within the open interval between
the bounds for certain types of C'V auctions, depending on how a bidder weighs his own
signals while calculating his expected value conditional on winning. Therefore, observational
equivalence of PV and C'V auctions given a rationalizable distribution G% implies that the
possible range of counterfactual revenue distributions can not be reduced to any strict subsets
of the interval between the bounds.

Let F denote the set of joint signal distributions that satisfy A1, and © denote the set
of value functions that satisfy A2. Let ©¢y denote a subset of © that is non-degenerate in
rival signals X_;. The following proposition gives necessary and sufficient conditions for G%

to be rationalized by some element of O¢cy ® F.

Proposition 2. A joint distribution of bids G observed in first-price auctions with non-
binding reserve prices can be rationalized by some {0, Fx} € Ocy @ F if and only if (i) G
is affiliated and exchangeable in all arguments; and (ii) £(b; G%) = b+G?\4i|Bi(b’b)/gg@mi(b‘b)

is strictly increasing on the support of the marginal distribution of bids b, by].

The intuition of the proof is as follows.!” Let ©p be a subset of © that only depends
on bidders’ own signals. Laffont and Vuong (1996) proved if G% is rationalized by some
{0, Fx} € © ®@ F, then it must also be rationalizable by some {é, FX} € Op ® F. Li, Per-
rigne and Vuong (2002) showed (i) and (iz) in Proposition 1 are necessary conditions for G%
to be rationalized by some {é, FX} € Op ® F. A combined argument proves the necessity.
Sufficiency is proven by constructing examples how any G% satisfying (i) and (i7) can be

rationalized by a certain type of C'V auctions where bidders’ values only depend on his own

I5Formal proofs for all lemmae and propositions in this paper are included in the Appendix.
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and the highest rival signals. Li, Perrigne and Vuong (2002) showed the conditions in Propo-
sition 1 are also necessary and sufficient for G§ to be rationalized by PV auctions, and it
follows that a G is rationalized by some 6 € Op if and only if it is also rationalized by some
0 € O¢y. A corollary of Proposition 1 is that any private value auction is observationally
equivalent to a certain C'V auction.

Note the observational equivalence of PV and C'V auctions above is restricted in this
benchmark environment under a non-binding reserve price and a fixed number of bidders.
Several recent works have showed ways to derive different testable implications of the two
paradigms with augmented data. These include exogenous variations in the number of
bidders as in Haile, Hong and Shum (2003), ex post measures of bidder values as in Hendricks,
Pinkse and Porter (2003), and bid distributions under a strictly binding reserve price as in
Hendricks and Porter (2007). In such case, the lower bound point identifies the real revenue
distribution for the PV paradigm, while the open interval between the bounds are efficient

in the sense that they are tight and sharp within the class of C'V' auctions.

1.2.4. Bounds on Fri(,

The conventional criterion for choosing optimal reserve prices is the expected revenue for
the seller. The Revenue Equivalence Theorem states that in auctions with independent
private values, optimal reserve prices are the same for both 2nd- and 1st-price auctions,
and are independent from the number of potential bidders. On the other hand, there is no
theoretical result about the choice of optimal reserve prices in general 1st-price auctions with
affiliated signals and finite number of bidders. The answer depends on the specifics of model
primitives and is left open for empirical analyses. Besides, the criteria of expected revenue

itself can be hard to justify if the seller is not risk neutral. Knowledge of counterfactual
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revenue distributions will be useful for addressing both concerns. For a binding reserve price
r, I propose informative bounds on Fgr(, that can be constructed from G% (the distribution
of equilibrium bids in first-price auctions with a non-binding reserve price).

1.2.4.1. Relations between G and F’ ri(r)- The equilibrium strategy in first-price auc-

tions under a reserve price r > 0 has a closed form:

b(x;0,Fx) = rL(x*(r)|:1c;Fx)—|—/ vn(s,s;0, Fx)dL(s|x; Fx) Y > 2*(r)
*(r)

by(z;0,Fx) < r Vo<az*(r)

where L(s|z; Fx) = exp{— [ A(u; Fx)du} and A(z; Fx) = fy|x(|z)/Fyx(z|z)."° For any
given x on the closed interval [z, zy], L(s|z; Fx) is a well-defined distribution function with
support [z, z] and is first-order stochastically dominated by the distribution of the second
highest signal (i.e. Fy|x(s|z)/Fy|x(x|x)). When signals are i.i.d., the two distributions are
identical. 7

The range of r for nontrivial counterfactual analyses is [£,&,,], where &, = &(xy; GS)
for k = L,U. For r < £, 2*(r) = x1 and there is no effective screening of bidders. For

r > &y, o*(r) = zy and all bidders are screened out with probability one. Let vy denote the

seller’s own reserve value of the auctioned object. For all » > vy, the distribution of revenue

16This section focuses on a benchmark model with fixed n. Hence the superscript n is suppressed for
notational ease.
"That L(s|z) is a well-defined dlstribution on [zr,z] is shown in Krishna (2002). Furthermore L(s|z) >

exp{— [ Tyix(ulz) 4 du} = Byix(612) here the inequality follows from the fact that Fy|x(z]z)/fy|x (z]2) is

FY\X(U\JU) Fy | x (z]z)’
decreasing in z when signals are affiliated. The equality holds when signals are i.i.d.
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in first-price auction with r is '%:

FRI(T)(t) = 0 Vt<u
= Pr(XW < a2*(r)) Vte [vo,7)

= Pr(X® <b7i(t)) Vtelr,+o0)

where X*®) denotes the k-th highest order statistic out of n signals. As by and b, are
both monotone in signals above the screening level x*(r), there exists a one-to-one mapping
between them for > 2*(r). Counterfactual revenue distribution Fgr() would be exactly
identified from G if the mapping between by and b, for x > x*(r) can be recovered from

G%. The following lemma gives a closed form for such a mapping which is also a functional

of G%.

Lemma 3. In first-price auctions, for all r > 0 and x > z*(r),

- bo(x) 5 s
br(x) = 6, (bo(); Gg) = rL(bo(x*(r))|bo(x); G) +/ )f(b; G)dL(blbo(z); G)
bo(z* (1)
where L(b\b’ GO =ex < f ) and ]\(u GY) = 9y (ulu)
— p b ) B/ — G—?\ﬂB(“l“) .

By construction, ¢, is increasing in b for b > bo(z*(r)). Despite its closed form, ¢, can
not be exactly recovered from G% as by(z*(r)) is not point identified only under A7 and
A2. The line of reasoning for bounds on Fpgi(,) constructed from GY is as follows. First,
value interdependence and signal affiliations imply tight bounds on bo(x*(r)) that can be

identified from G%. Second, these bounds on by(z*(r)) lead to envelops on the mapping 4,

18 Proof of this claim: By definition of vy, Pr(R(r) < t) =0 for all t < vy. For all t € [vg,r), Pr(R(r) < t)
Pr(R(r) = Vo) = Pr(X) < 2*(r)). Note b,.(z) > 0 V(r, z) such that 7 > 0 and x > z*(r). Since b, (x*(r))
7, b.(z) is invertible on [r, +00). Then for t > r, Pr(R(r) < t) = Pr(R(r) < r) 4+ Pr(r < b (X)) < t)
Pr(X®M < 2*(r)) + Pr(z*(r) < XM < b7 (t) = Pr(X(l) < b 1(t)) for all t € [r, +00).
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that can also be constructed from G%. Next, inverting these envelops at revenue level ¢ gives
bounds on by(b;1(t)). Finally, evaluating the distribution of winning bids at these inverses
gives bounds on Fpr(,(t).

1.2.4.2. Bounds on the screening level z*(r) and by(z*(r)). Let v(z,y) = E(Vi|X; =

2,Y; <y), and v(z,y) = [ va(s,s) g‘l);((jlz))ds = E(v,(Y,Y)|X; = z,Y; < y). (For the rest

of the paper I will use v(x) and vg(z) as shorthand notations for v(z,x) and wvg(z,x) for
k = 1,h.) In symmetric equilibria, v(x) denotes a bidder’s expected value conditional on
winning with signal x in both 1st-price and 2nd-price auctions, and v;(z) denotes a bidder’s
expected payment conditional on winning in a 2nd-price auction with a non-binding reserve
price. Affiliated signals and interdependent values implies v, (z) > v(x) for all z, and the
equilibrium condition in second-price auctions guarantees v(z) > v;(z) for all x. For all
r > 0, the screening level z*(r) is defined as the inverse of v(x) at r. Hence inverting vj,(x)

and v;(x) at r gives bounds on z*(r). The following lemma formalizes this idea.

Lemma 4. (i) For all (6, Fx) € © ® F (satisfying A1,A2), v(x,y) < v(z,y) < vp(x,y)
for all zp, <y < x < zy, and both vi(x) and v,(x) are increasing in x on [xr,zy|. (ii)

2 and

For r € [vnr,vnu| where vhy = vp(xy), define x(r) = argminge(y, op[vn(z) — 7]
xp(r) = arg mingepy, o,1(vi(z) — r]*. Then for all (0, Fx) € © @ F, x;(r) < a*(r) < x(r) for

all r in the range above.

The screening level 2*(r) can not fall outside this bound, provided bidders’ values are non-
decreasing in both own and competitors’ signals, and private signals are affiliated. Another
desirable property of this bound on x*(r) is its tightness, in the sense that it has exhausted

all information in the restricted set © ® F.
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Lemma 5. (i) 3¢ = (0, Fx) € O @ F such that z;(r;v) = x*(r;4) for all r; and (ii)

Ve >0, 3¢ € ORF such that sup,cpy, , v, .1 1T0(r;9) — 27 (r;9)| <e.

The upper bound is reached if, conditional on winning in a first-price auction, a bidder
finds his rivals’ signals completely uninformative about his own value. This includes PV
auctions as a special case. On the other hand, the lower bound is attained if the margin
between a bidder’s own signal and the highest competing signal reveals no additional infor-
mation about his own value conditional on winning. In other words, lower and upper bounds
of screening levels correspond to two extreme cases of weights (0 and 1 respectively) that a
bidder assigns to his own signals while calculating his expected value conditional on winning.

Both v; and vy, are related to G through equilibrium bidding condition in first-price auc-

tions. The non-negativity of 6 suggests 2*(0) = x1."" Hence Vo > zp, vy(x) = £(bo(x); GY)

and
et = [ i oy SnslinE)
(@) = lbo(); Ga) = bo(xL)€(7 B)W

It follows from Lemma 2 above that &(b; G%) > &,(b;GY) for all b € [b9,bY] (where b} =
bo(zy) for k= L,U), and £(0Y; GY) = £,(0%; G%). Furthermore, both £(b; G) and &,(b; GR)
are increasing over [bY, %] by the monotonicity of by(.). Define &} = &(by(z1); G%) = vp s for
k= L,U. Forr € [£],&y], define by(z(r)) = argmingeps po1[€(b; GB) — r]* and bo(wn(r)) =
arg minyepo 401[€;(b; G) — 7], Then by(2*(r)) is bounded between bo(z;(r)) and bo(wx(r))
for all r € [£,,&y]. Note that {zx(r)}x—; s are tight bounds on x*(r) implies {bo(zx (7)) }r=in

are tight bounds on by(z*(r)), as 6 and v, are bounded.

9The non-negativity of 6 is testable in equilibrium, for &; = &(br; GR) = v (zr, x1; 0, Fx) = 0(x1).
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1.2.4.3. Envelops on the §,-mapping and Fpi(,y. The §,-mapping in Lemma 1 turns

out to be a solution for a differential equation :
0,(b; G) = [€(b; Gg) — 6,(b; G)JA(b; Gg)

with the boundary condition : 6, (by(z*(r))) = b,.(x*(r)) = r. The lemma below shows that
replacing by(x*(r)) with {bo(xk(r))}k=is in boundary conditions will lead to new solutions
{6,.1(.; G%) } k=11 respectively, which can be constructed from G% and are envelops of 4, from

above for all > 2*(r) and from below for all x > x5 (r).

Lemma 6. For k € {l,h}, define for b > by(xx(r)),

b
5, (b: G%) = L (bl (r) b G%) + / £(5; GY)dL (blb; G

bo(zk(r))

Under A1-A8, 6,1(.;GS) are increasing on [bo(zx(r)), by] for k = 1 h, and §,5,(b; GL) <
6, (b; Gg) Vb > bo(xy(r)) and 6,,(b; Gg) > 6,(b; Gg) Vb > bo(x*(r)).

Intuitively, for bidders with signals above the screening level, b,.(z) is the expectation of a
function h(t) with respect to the distribution L(t¢|z), where h(t) is defined as r for ¢t < z*(r)
and vy (t,t) for t € [x*(r),z]. By the definition of z;(r) and the monotonicity of vy, b,(z)
is smaller than the expectation of h,(t) conditional on ¢t < z for & > z*(r) , where h,(t)
is defined as r for t < z;(r) and wvy(t,t) for = € [z;(r),z]. Likewise b.(z) for x > x(r) is
greater than the expectation of h;(t), where h;(t) is defined as r for t < z,(r) and vy (¢, 1)
for x € [z4(r), z]. The lemma proves a version of these inequalities, with structural elements
hy, by, L(s|z) and z(r) replaced by corresponding functionals of G and by(z) through the

manipulation of the equilibrium condition in (1.2).
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The fact that L(s|z) is stochastically increasing in x has important implications on the
performance of 4, ;. Specifically, their differences d,; — ¢, is non-increasing in b for b >
bo(xn(r)). * This is a desirable property, for it implies the difference between 4, Lt GY)
and 5; }11(75; GY) is decreasing in the revenue level ¢ as long as both 0., and 6, increase at a
moderate rate.

Given the lemma above and the identification of by(zx(r)), the bounds on Fgr(,) are

derived immediately.

Proposition 7. Suppose r > vy. Under A1, A2 and A3, FJI%I(T) =rs.p. Frigy =Fsp.

Fg,(r), where =g s p. denotes first-order stochastic dominance, and
F}lzj(,r,) (t) — 0 Vt < U(]
= Pr(bo(XW) < bo(2(r)) Wt € [vg,7)
= Pr(bo(XW) <61 (;GY)) Vit € [r,+00)
and

EI(T)@) = 0 Vt<ou
= Pr(bg(XV) < by(zn(r))) Wt € [vg,7)

= Pr(bo(X(l)) < 5;7,11(15; G%)) Vt € [r,+o00)

where 6;; (t; GR) = arg minyepy (a, (r),00] [0k (0; GB) — t]°.

bo (21(r))

2"Proof of the claim : 4. ,(b;GS) — 6., (b; GL) = A(b; GY) [ bo(en(r)) . _ €(b; GR)AL(b]b; G)| < 0 for r <
£(b; GR) Vb > bo(zp(r)) in equilibrium. The inequality is strict if bo(zp (1)) > bo(zi(r)).
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1.2.4.4. A simpler upper bound of Fgi(y. Below I propose a simpler upper bound on
Fgi(;y (denoted F’g, (T)) that is constructed from Fpgr(g) directly, rather than from G%. This
simpler upper bound coincides with FE,(T) when private signals are i.i.d., but is first-order
stochastically dominated by F7; ) otherwise. The following lemma relates b, to equilibrium

strategies with no reserve price, and also helps relate Frr() to Fri(g) later.

Lemma 8. Under A1-A2 and for r > 0, equilibrium strategies by and b, satisfy: (i)

bo(z) < b.(z) Vo > 2*(r) and (ii) the difference b,.(x) — bo(x) is decreasing in x Yx > z*(r).

4 Probability

1
Pr(X® < p, 7 (1)

Pr(X® <5, (r")

Pr(X® <p, 7 ()

Pr(X® < b, (1)

Pr(X? = x ()

Vo(xp) By(x"G) 1 o by(b,(@)) ! bo(xy) b,(xy) Revenue

0

Graph 1

Graph 1 depicts Fgi (g and Fgi(,) for the case where vy < vj,(zr, 1), reflecting the analyt-
ical results in Lemma 5. It shows Fpi o) crosses Fi(, only once from below at bo(2*(7)) < 7.
In principle, the distance between Fgrg)(t) and Fgr(,(t) for ¢ > r can be non-monotone due
to the distribution of X®.

While Frig) as such does not suggest any lower bound on Fgi(,y, it does suggest a

simple upper bound of Fpr(,). Define F}%I(r) (t) = 0 for t < wo, Fi,(t) = Pr(by(XM) < 7)

for t € [vg,7) and F

RI(r)(t) = Pr(bo(X(l)) < t) for t > r. In general F’E,(T) is first-order
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stochastically dominated by Fﬁ,m, but the two are equivalent if signals are i.i.d. To see
this, note Fy|x(s|z)/Fy|x(z|r) =rsp. L(s|r) when signals are affiliated, and the two are
identical when signals are i.i.d.. It follows v;(x) > bo(z) for all x and therefore z,(r) < by *(r)
for r € [b9,b%]. Furthermore, by(z,(r)) < r = v(z,(r)). Then an argument similar to the
proof of Lemma 5 shows 6, ,(bo(x)) = rL(zsy(r)|x) + f;h("’) vp(s,s)dL(s|x) > bo(x) for all
x > zp(r). Hence d, L(t; GY) < t for t > r. All inequalities above hold with equality when
signals are i.i.d.

The alternative upper bound F B ") is very easy to construct. When signals are strictly
affiliated, it is less efficient than F}%,(T) in the sense that it is not a tight bound on Fpr(,).
This is not surprising as Flg; ) is constructed using full information from G%, while Fg, ) is
a only a functional of Firy. On the other hand, F " ") is equivalent to F; ") when signals

are i.i.d.. As this restriction has testable implications on G, ~;§,(r) can be useful in practice.

1.2.5. Bounds on Fri

This subsection proposes bounds on counterfactual revenue distributions in 2nd-price auc-
tions under reserve price 7 (denoted Fgii(,)) that are constructed from G%. Theory predicts
for any given reserve price r, the expected revenues in 2nd-price auctions are at least as
high as those in 1st-price auctions provided bidder signals are affiliated. However, the size
of this difference is an open empirical question. In addition, within the format of 2nd-price
auctions, theory is silent about the choice of optimal reserve price r that maximizes expected
revenue in 2nd-price auctions when signals are not independent. Knowledge of Fpir(,) helps
address these open questions.

The equilibrium strategy in a second-price auction with reserve price r is 3,.(x) = v, (x)

for x > x*(r) and B,.(x) < r for x < x*(r). For all r > vy, the revenue distribution in a



31

second-price auction with reserve price r is : %!

FRII(T)(t) = 0 Vt<uyg
= Pr(XW < 2*(r)) Vte [vo, T)
= Pr(X® <a*(r)) Vte[ro(z*(r)))

= Pr(on(X®) <t) Vte [up(z*(r)), +o0)
The following proposition derives bounds on Fpi(,y(t) that are constructed from G%.

Proposition 9. Suppose vqg < r. Under A1 and A2, F}%H(T)(t) =rs.p. Fri)(t) 2rs.p.

FIZ%H(r) (t), where

Fll%ll(r)(t) = 0 Vt< Vo
= Pr(bo(XW) < by(z(r))) VYt € [vo,7)

= Pr(von(X®) <t) Vter,40)
and

F]%H(T,)(t) = 0 Vi< Vo
= Pr(bo(XV) < by(zn(r))) Vt € [vg,7)
= Pr(by(X®) < bo(zn(r)) Wt € [r,vp(xn(r)))

= Pr(v,(X@) <t) Ve [vp(zn(r)), +o0)

21gee proof of the following proposition for details.
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4 Probability

NG

Prix® <v,” )}

PrxX® <x,(}

Pr{X® <x ()} ——
Pr{X™ <x, (7} -
Pr{¥® <x, ()} - — . 40

Pri{X® < x"()}

Pr{ix® <x ()} e — e — e — d

v, v, () v, (x,0)) € Revenue

Graph 2

The idea of the proof is better explained by Graph 2. Both by(z;(r)) and by(zn(r))
are identified from G, and by(X 1) and by(X?)) are order statistics of G%. Furthermore in
equilibrium v, (X ®) = £(by(X?)) and vy, (21 (r)) can be identified as &(bo(z1(r))). Therefore
F é, () and F'p; 1(ry CAN be constructed from GOB, and the boundwidth depends on the distance
between by(x;(r)) and by(zp(r)), and distributions of X® and X®. In the Monte Carlo

section below, I will experiment with different designs to study how this distance changes

with the affiliation between signals.

1.3. Nonparametric Estimation of Bounds
1.3.1. Three-step estimators {Fgf(r)}kd,u

This section defines three-step estimators for the bounds on Fgi(,y(t). Throughout the
section, we suppose data contains all bids submitted in L,, independent, homogenous auc-

tions, each with n potential bidders and no reserve price.”? Let C(B) = [by,, by] denote the

221Independence” here has both economic and statistical interpretations. First, it requires there is no
strategic interaction or learning across the auctions so that the first-order condition characterizes equilibria
in all auctions. Second, the random vector of bidders’ private information is independent across auctions.
"Homogeneity" means all auctions share the same commonly observed characteristics of the auctioned asset.
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support of equilibrium bids in 1st-price auctions with non-binding reserve prices. For all

(m,b) € C*(B), define the following kernel estimators:

b—by

GMB(m b <m KG(

)

" 1 Ln 1 u m — my; b— bil
gM7B(m7b) = L h ZHZKQ( hg ’ hg )
=1 7 =1

QN

where b;; and m;; are respectively bidder i’s own bid and the highest competing bid against
him in auction [, L, is the total number of auctions with n potential bidders, K¢ and K|,
are symmetric kernel functions with bounded hypercube supports with each side equal to 2,
and h, and hg and corresponding bandwidths. It is well known that density estimators are
asymptotically biased near boundaries of the support for b € [by, by, +hy) U (by — hy, by]. Let
6 = max(hy, hg) and Cs(B) = [by, + 6, by — 8] be an expanding subset of C'(B) where Gy

and gy p are asymptotically unbiased. Natural estimators for the boundaries of Cs(B) are:

where by, = min,; b; and by = max;; by converge almost surely to by and by respectively.
Nonparametric estimators for ¢ and &, are defined as:

: G.p(b,b)
gm(b,0)

207 GMB(bL,b) gMB( )
((b) = &(br, )—GMB(b b bLS()GMB( b)

b
G’M,B(b,b):ﬂ v, (t,0)dt + Garp(br, b)
br,
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where G m,p and é’l are defined over the random support ég(B) = [ZN)L, BU] Let bgm be a

short-hand notation for by(zx(r)). The first-step estimators for b}, and b) . are defined as:

by = Arg My ey ) [E(b) — %, 82,7‘ = arg minbeé’g(B)[él(b) —r)?

With estimates ZA)?T and 327” we construct kernel estimator for 8,;(b) and 8,.,(b) on [bz, by).

For k = {I, h}, define:

Ork(bsby,) = rL(Y,|b)+ / EWA)L(tb)dt Vb € (b, by — 4]

= r Vbe[bLJré,bk’r]

where A(t) = gu.p(t,t)/Garp(t, ) and L(t|b) = exp(— ft

The second-step estimators for §, H(t) and o, +(t) are defined as:

Al . o Arl . o
0, (1) = argming s 5 [0,4(b) = 1%, 0, ,(t) = argming g [0, (0) — 1?
Note that by definition, Cs(B) C Cs(B) with probability one. As a final step, the bounds

on the counterfactual revenue distribution under reserve price r are estimated as:

n 1 Ln max =1 u 1 Ln max =1
le«zf(r)(t) = i Z (B < 57’,[ (1), RI(T)( )= I 21:1 (B < 5r,h(t>)

=1

where B"* = max;—; __, by is the highest bid in auction /.

The three-step estimators defined above converge in probability to F zl?,(r) (t) = Pr(bg(XW) <
5,;110 (t)) and F,(t) = Pr(bo(XW) < (51}1(25)) respectively over all  and t. Below I strengthen
restrictions A1 ,A2 and A8 to include all regularity conditions needed and state the main

proposition.
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S1 For n > 2, (i) The n-dimensional vectors of private signals (:Eu,mgl,..xnl)fz"l are
independent, identical draws from the joint distribution F(xq,..,x,), which is exchangeable
in all n arguments and affiliated with support |xp,xyl; (it) F(x1,..,2,) has R+n, R > 2,
continuous bounded partial derivatives on [vp,xy]", with density f(x) > ¢y > 0 for all
X € |z, zy|™.

S2 (i) The value function 0,,(.) : [zr,zy|" — Ry is nonnegative, bounded, and continuous
on the support; (ii) 0,(.) is exchangeable in rival signals X _;, non-decreasing in all signals,
and increasing in own signal X; over |[xr,xy|. (i) 0,(.) is at least R times continuously
differentiable and 0(xr) > 0; () v,(zy) < 0o and v (zy) < oco.

S8 (i) The kernels Kg(.) and K, (.) are symmetric with bounded hypercube supports of
sides equal to 2, and continuous bounded first derivatives; (ii) [ Kq(b) =1, and [ K,(B,b)dBdb

=1; (i11) Kg(.) and K,(.) are both of order R+ n — 2.

Proposition 10. Let hg = cg(log L/L)Y?E+2=5) qnd h, = c,(log L/L)Y/@E+2n=4)
where ¢’s are constants.”> Suppose S1, S2 and S3 are satisfied and R > 2n — 1, then for all

r>v(xg) and t >, pﬁ,(r)(t) 2 Fgl(r)(t) fork =1 u.

The proof proceeds in several steps. First, I prove smoothness of bid distributions in
equilibrium, using regularity conditions of smoothness of signal distributions. Second, I show
the kernel estimators é , and é defined above converge in probability to ¢, and ¢ uniformly
over C5(B), and use a version of the Basic Consistency Theorem (which is generalized for
objective functions defined on random support) to prove ZA)%T 2 by, for k =1, h and relevant
r > 0. Next, I prove 0y, (:;00,) = 0p,(:;b),) uniformly over C5(B) and again use the

generalized BCT to prove 3; ,1 (t) & 8, (t) for all relevant ¢. Finally, the Glivenko-Cantelli

23The choice of constant ¢’s will be discussed in the following section on Monte Carlo experiments.
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uniform law of large numbers are used to show the empirical distributions of B"** evaluated
a1

at 9, (t) for k = [, h are consistent estimators for bounds on Fgr (%)

1.3.2. Two-step estimators {an(r)}k:l,u

Given work on F }’; () above, definition of two-step estimators for {F¥ RIT(r) }k:l,u is straight-

forward. The estimator for F7 RIT(r) is :

- 1 Ln 1:n 7
Bl () = L—nzlzluB; V<)) Ve vo,r)
1 Ln 2:n ~—1
_ L_nzlzll(Bl( V<& (1) VtE | +00)

and the estimator for F ;{,H(r) is :

) 1 )
F]’%II(T) (t) = — (1 b?z,r) \V/t € ['UO, T)
Ln B < {0 270
- T Z bh,r) Vi € [Tu g(bh,r))
n) 2—1 /7
= IR <E ) Ve G, 4o
where Bg,r is defined as above and é’_l(t) = argming . p) [£(b) — t]2 for ¢ > r. Pointwise con-
sistency of Fk RIL(r) ( ) for r > v(xy) and ¢t > r follows from similar arguments for consistency
of FE,(T)(t) and the fact that £(B) ) & £(b) s G) = vy, (2 (r)).
1.4. Monte Carlo Experiments

This section reports Monte Carlo experiments of the three step estimator of bounds on
Frigy and Frir,y. The objective is to illustrate how estimates of bounds vary with structural
parameters such as affiliation between private signals, number of potential bidders n and

reserve price 7.
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1.4.1. Analytical impacts of signal correlations on bounds : the case with n =2

Before discussing Monte Carlo performances of bound estimators, I study analytically how
bounds on the probability that no one bids above the reserve price in equilibrium vary
with signal correlations. For a given value function, dependence between signals affects
these bounds through two channels: bounds on the screening level z*(r), and bounds on
equilibrium strategy b,(.). To capture these impacts, I use a parametric design where signal
affiliations can be controlled.

Design 1 (n = 2 with pure common values (PCV) and affiliated signals) Two potential
bidders compete in an auction with V; = (X1 + X»)/2 for i = 1,2. Private signals are
noisy estimates of a common random variable, i.e., X; = Xo + ¢; for i = 1,2. For either
bidder, his noise ¢; is independent from(Xo,e_;), and distributed uniformly on [—c,c| for
some 0 < ¢ < 0.5. The common random term Xy is distributed uniformly on [c,1 — c|.

The signals have triangular marginal densities on [0, 1].?* Their correlation coefficient is:

var(Xo) (1 —2c)?
X1, Xp) = -
corr(Xy, Xz) var(Xo) +var(g;)) (1 — 2¢)? + 4¢?

By definition, v, (z) = x, v)(x) = E[X3| Xy < 2, X; = 2|, and v(z) = :chle(w) In this design,
v(z) has a closed form, and the impacts of correlations on boundwidth can be studied

analytically.

2T he density function is f(z) = 4x for 0 < z < 0.5 and 4 — 4z for 0.5 < < 1. For details, see Simon
(2000).
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Figure 1(a) plots v(z) and v,(x) for ¢ = [0.1 0.2 0.3 0.4]. The distance between vy,

and v; is non-decreasing in signals, as v;(x) is a truncated expectation and therefore cannot

increase faster than the threshold x. Figure 1(b) plots the boundwidth xp(r) — z;(r) as a

function of reserve prices for each c. For any given reserve price, bounds on screening levels

are narrower as c¢ decreases and correlation increases. Besides, boundwidths increase at a
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rate slower than r for high correlations. When ¢ = 0.1 and ¢ = 0.2, the boundwidths are

invariant over some range of r.
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For different signal correlations, Figure 1(c) plots the boundwidths of the probability that

neither bidder bids above r in a 1st-price auction. That is, Fiyaa (z4(1)) — Fyxao ((r)),

where X (12 is the higher of two signals. For a lower r, the boundwidth can be slightly

wider when correlations are high. But as the reserve price increases, the boundwidths are

unambiguously smaller for higher correlations. This is explained by the pattern in Figure

1(b) and the distribution of X(*?). As Figure 1(e) shows, probability mass of X 1) is more

skewed to the left when signals are closer to being uncorrelated. For smaller r, z;(r) and

x,(r) are small and z,(r) — z;(r) are close for all ¢, while X?) has more mass close to 0

for more correlated signals. Hence Fyaa)(xp(r)) — Fya= (24(r)) is bigger for ¢ = 0.1. As

r, x;(r) and z,(r) all increase, the boundwidths become wider for higher ¢ because ()

— x;(r) increases faster and the density of X

become less correlated.

(1:2

) is higher in the relevant range as signals
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Figure 1(d) plots boundwidths for the probability that neither bids above r in 2nd-price
auctions, i.e. Fyo (z5(r)) — Fye2(z(r)), for different ¢. In this case, the boundwidths
associated with a smaller c¢ is almost unambiguously smaller than those with smaller corre-

lations. Likewise, the pattern is explained by similar arguments as demonstrated in Figure

1(b) and the distribution of X %2 plotted in Figure 1(f).

1.4.2. Performance of FE,(T) under i.i.d. signals

This subsection focuses on the performance of three-step estimators F g,(r) when private
signals are identically and independently distributed. The i.i.d. restriction has testable
implications on observed bid distributions, and helps simplify the estimation procedures.
In this subsection, I vary n, r and distributional parameters and study their impacts on
estimator performances.

Design 2 (n > 3 with PCV and i.i.d. uniform signals) Private signals {X}i—1. n
are identically, independently distributed as uniform on [0,1]. The pure common value is
Vi= Z?:l Xj/n.

Design 3 (n > 3 with PCV and i.i.d. truncated normal signals) Private signals {X;}i—1,.n
are identically, independently distributed as truncated normal on [0, 1] with underlying para-
meters (pi,0%). The pure common value is V; = 37, X;/n?

Independence is a special case of affiliation, and these two designs satisfy restrictions
for a general symmetric, interdependent value auctions (A7 and A2). Besides, changes in
the number of bidders are not exogenous to the value distribution, as the distribution of
the average of signals depends on n. Therefore both designs do not meet the necessary

25This form of value functions introduces a restriction/normalization on the signals, since it requires the
support of signals is the same as the support of the values.
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restrictions for tests distinguishing PV and C'V auctions in Haile, Hong and Shum (2003).
This makes the partial identification approach more interesting in both designs.

I experiment with different numbers of potential bidders and reserve prices for Design 2.
For each pair of fixed n and r, I replicate the nonparametric estimators of F' }’;,(T) for 1,000

times, with each estimate calculated from equilibrium bids in 500 simulated first-price auc-

tions. For Design 2, it can be shown by, (z) = "T_l(% + %)x, and bids are simulated as random

draws from a uniform distribution on [0, 22 (1 + 3)]. For Design 3, I also vary distributional

n

parameters p and o in addition to n and r. Likewise for each value of (n,r, u, o), I replicate

the estimator for 1,000 times, each based on 500 simulated auctions. For Design 3, by, (z) =

H)—(FLr)
B)— (L)

Hence equilibrium bids are simulated by first drawing 500 * n signals x; randomly from the

N n=2 Py (s) _ G(Et)— (L) Fx(s) _ 203
Joyus gO(S)df«é’?l(a:)’ where ¢(z) = p — O (k) _a(E) and 705 = e

o

truncated distribution, and then calculate b, (z;) through numerical integrations.?® For
both designs, the true counterfactual distribution Frr(,y can be recovered through inverting
b,(.), which can be calculated using the closed form above.

In the symmetric equilibria above, bids in both designs are i.i.d.. This testable implica-

tion can be verified from the distribution of bids observed, and simplifies the estimation as

£(b;Gg, ) = b+ 11% and &,(b; G%, ) = b. The simplified estimator is £(b) = b+ 1133"&((:)),
where G, (b) = £ 200 1ba < b), ga(b) = - D0 20, K(32) and Ly,

is the number of auctions with n bidders. For estimation, I use the tri-weight kernel
K(u) = B(1 —u)1(|u| < 1) Bandwidths hy is 2.98 % 1.066,(nL,) 71, where 6 is
the empirical standard deviation of bids in the data. The bandwidths are chosen in line with
the consistency proposition in the appendix, while the constant factor 1.06; is chosen by
267 use the midpoint approach for numerical intergrations in this paper.

2TThe triweight kernel is of order 2. In principle when n > 3, kernels used in §p, should be of higher order.

But can lead to the issue of negative density estimates. Therefore empirical literature typically ignore this
requirement and use kernels with order 2.
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the "rule of thumb" (Li, Perrigne and Vuong 2002). The multiplicative factor 2.98 is due to

the use of tri-weight kernels (Hardle 1991).
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Figure 2 plots the true revenue distribution Fgi(,y in Design 2 and, for different n and
r, reports the 5th percentile of F Il%, ) and the 95th percentile of F I (r) Out of 1,000 pairs of
estimates. The two percentiles form an estimate of the conservative 90% pointwise confidence
interval for the bounds [F]l%,(r), Ef(r)]'% The true revenue distribution always falls within
the 90% point-wise confidence interval for the bound. The confidence intervals for lower r
are narrower, holding n constant. On the other hand, more potential bidders correspond to

tighter confidence regions ceteris paribus. To understand the pattern, note the boundwidth of

the probability that no one bids above r in equilibrium is Pr(bg,, (X ™) < 7)— Pr(by,,(X 1)

28This approach for constructing a pointwise confidence region for the bounds was used in Haile and Tamer
(2003). An alternative way to report the performance of our estimator would be to construct a pointwise
confidence region for the true distribution introduced by Manski and Imbens (2004).
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n—1 _ n_ 2n 2n : O : : :
< m=r) = Fxam (55057) — Fxaw (5357), which is increasing in r for a given n. For a

given r, —- -2 4 decreases in n and this offsets the impacts of a rising -2 r and a more
? n—1n+2 n+2

left-skewed F'ya.n) as competition increases. The simulations suggest changes in the width

of confidence intervals are mostly due to impacts of n and r on the boundwidths of Fpr ).
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Figure 3 reports Fgi(,y and the estimated 90% confidence interval for Design 3. Again,
the true revenue distribution falls within the 90% point-wise confidence intervals for the
parameters considered. The impacts of n and r on the estimated confidence intervals in
Design 3 are the same as those for Design 2 in Figure 2. In addition, Figure 3 also shows
impacts of distributional parameters p and o on confidence intervals. First, holding n,
r and o fixed, the confidence intervals become narrower as jp increases. This is because
for all t, F(X|X < t) gets closer to t as the distribution of X is more skewed to the
left. Consequently, z*(r) decreases for a given r, while the distance between v, and v, also
becomes smaller. As a result, the bound on the screening probability is shifted to the left
and becomes tighter. Second, the impact of o on confidence intervals depends on i, holding
n and 7 fixed. A higher standard deviation increases the width of confidence intervals for
signal distributions sufficiently skewed to the left, but reduce the width of confidence intervals
for signal distributions sufficiently skewed to the right. The impacts are more obvious for
distributions skewed to the right. This pattern is explained by similar reasoning above.
Again, simulations suggest changes in the width of confidence intervals are mostly due to

impacts of n and r on the boundwidths of Frr (.

1.4.3. Performance of F E,(T) with affiliated signals

When signals are not i.i.d., there are no simplified forms for é and % ;, and the full nonpara-
metric estimates in Section 3 applies. In this subsection I extended Design 1 for n > 3 so
that V; = Z;Zl X;/n, and experiment with the correlation parameter ¢ to study its impact
on the performance of estimators.

With n > 3, it is impractical to derive the closed form of the inverse hazard rate

fyixn(ulw)/Fyx n(ulu). To find out the true revenue distribution, I replace vj,(x) and L(s|x)
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with their kernel estimates in a simulated sample of 5 x 10° auctions, and calculate the equi-
librium bidding strategies using these estimates and numerical integrations. The true Fgi,)

is then recovered with knowledge of the distribution of the highest signal X (™).
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For each (¢,n), I simulate 200 samples, with each containing 1,000 simulated first-price
auctions. For each r and revenue level t, Figure 4 reports the 5-th percentile of F Il%, ") (t) and
the 95-th percentile for Fﬁf (T)(t) out of 200 pairs of estimates. This forms an estimate for a
conservative 90% confidence interval for the bounds on Fgi(,). Figure 4 shows the true Fgi(,
lies within the estimated confidence interval for » = 0.2 or 0.5, ¢ = 0.2 or 0.4 and n = 3 or 4.
Holding r and ¢ constant, the widths of the estimated confidence intervals decrease slightly
as n increases. For r = 0.2, higher correlation leads to slightly wider confidence intervals,
whereas for » = 0.5 higher signal correlation leads to obviously narrower confidence intervals.
Smaller correlations among signals implies the distribution of X is more skewed to the
left, and the distance between v; and v, are bigger. These explain why a higher ¢ leads to
wider confidence intervals when r is high at 0.5. On the other hand, when r is low at 0.2,

the left-skewness of F'yn) offsets the impact of a wider bound [z;(r), z;(r)] due to a higher
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¢, and may lead to a narrower confidence interval. Furthermore, the theory also states for
x > z*(r) the bounds on §,(by(z)) is tighter as by(x) increases. For ¢ > r, this counteracts the
left skewness of F'yan) due to lower correlations. This prediction is consistent with patterns
in Figure 4 where confidence intervals on Fpr(,) never broaden substantially as revenue level

t increases.

1.5. Extensions

1.5.1. Heterogenous Auctions

In practice, bidding data are often collected from heterogenous auctions that report different
characteristics of auctioned objects. If commonly observed by all bidders, such heterogeneity
affects bidders’ strategies, and distributions of counterfactual revenues. When heterogeneity
across auctions is completely observed in the data, the logic for bounds in homogenous
auctions extends in principle to bounds on revenue distributions conditional on specific values
of auction features. Auctions are homogenous within subsets of the data where such features
(denoted Z) are controlled for, and the same algorithm in the benchmark model extends
immediately to bounds on the conditional revenue distribution given these characteristics
Frr()\z—=z- Such bounds are constructed from conditional bid distribution G%\z:z-

The real challenge posed by observed auction heterogeneity is empirical. The construc-
tion of bounds on conditional revenue distributions requires a large cross-sectional data of
homogenous auctions for fixed z and n. The issue of data deficiency aggravates as the di-
mension of z becomes higher. The rest of this subsection shows if signals are independent
from auction characteristics conditional on n, and are additively separable from them in
value functions, then it is possible to "homogenize" bids across heterogenous auctions, thus

alleviating the data deficiency problem.
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A1’ (Interdependent Values) Vi n = h(Z'vy) + 0n(X;, X_;), where h(.) is differentiable,
and fy is bounded, continuous, exchangeable in its last N — 1 arguments, non-decreasing in
all arguments, and increasing in Xj.

A4 (Conditional Independence of X and Z) Conditional on N = n, {X;};—1 _, is inde-
pendent from Z.

Then a PSBNFE in the auction with no binding reserve price is a profile of strategies that

solve:
boi(z,2z;n) = arg max E[(V; — b)l{mgxboj(Xj, Z)<b}X;,=2,Z=2z, N =n).
j#

Under additional assumptions above, common knowledge of auction features impact
strategies of all bidders in the same way. As the proposition below shows, the separa-
bility and the index specification of value functions are inherited by bidding strategies in

equilibrium.

Proposition 11. Under A1’, A2, A3 and A4, bidders’ equilibrium strategies satisfy :
boi(x,z;n) = h(Z'vy) + Ax;n) Yo, z Vi, where A\(z;n) = fo o(s;n)dL(s|z;n), and ¢(s;n) =

T

E0(X)|X; =Y, =s;N =n].

Fix the number of potential bidders n, the proposition implies E(by;|Z =2z, N = n) =
h(z'~v) + E(AMX;N)| N = n), where the second term is a constant independent from Z.
This becomes a single index model, and both Powell, Stock and Stocker (1989) and Ichimura
(1991) showed -« can be identified up to scale, and estimated consistently using average de-
rivative estimator and semiparametric least square estimators respectively. In the special
case where h(.) is known to be the identity function, an OLS regression of bids from het-

erogenous auctions on z for a fixed n will estimate ~ consistently. Alternatively, including
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dummies for the number of potential bidders in a pooled regression will also give consistent
coefficient estimators for ~.

A corollary of the proposition is that for any pair of different features of auctions z and z,
the equilibrium strategies for a given signal z are related as by(z,2;n) = bo(z,z;n) —h(Z'y)+
h(z'7y). Thus when h is known, bids across heterogenous auctions can be "homogenized" at
any specific reference level z so that more observations are available for estimating GUB(Z).

Larger sample size leads to better performance of estimators of bounds on Fgr(,)z—5-

1.5.2. Endogenous Participation

In practice, bidding data are often collected from homogenous auctions with a binding reserve
price r known to all bidders.?? Data from such auctions can depart from those with non-
binding reserve prices in one or both of two aspects : First, bids from potential bidders
that are screened out may not be observed. Second, data may only include auctions with
at least one bid above r, and thus exclude those where all bidders are screened out (i.e.
X® < 2*(r)). In both cases, the algorithm in the benchmark model can not be applied
immediately.

In addition, a binding reserve price r in the data also reduces the scope of reserve prices
that are eligible for counterfactual analyses, for the logic underlying bounds in the benchmark
case only applies to revenue distributions for " > r. This is because bids below r reveal
no information about underlying signals as the equilibrium condition linking G with 6 and

Fx only holds for b.(x) > r. As a result, for all " < r, *(') is lower than z*(r) and can

2911 the case of heterogenous auctions, reserve prices are often set according to characteristics of the auc-
tioned object. The subsection above showed observed heterogeneities can be controlled for. For the sake of
highlighting challenges due to endogenous participation, I focus on homogenous auctions in this subsection.
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not be bounded in its small neighborhoods using equilibrium conditions.*® Throughout this
subsection, I focus on the bounds for Fir(,). Extensions to those for Fiir(, is straightforward
and omitted.

1.5.2.1. Unobserved screened bidders. Unobserved bids from bidders who are screened
out matter in bounding Fgi(,.y (where ' > r) only in the sense that they may make the
number of potential bidders unobservable. (For now assume auctions with X < z*(r) are
also observed in the data.) If the number of potential bidders is known (as is often the
case in applications), then the algorithm for bounding F:(,y can be applied, even if data do
not contain bids from bidders that are screened out. The following lemma generalizes the

equilibrium condition (1.2) for distributions rationalized under a binding 7.

Proposition 12. Suppose a distribution of bids G5 in a first-price auction with reserve

price r > 0 is rationalized by (0, Fx) € O@F. Then &(b,(x); Gg) = vp(z; 6, Fx) V o > z*(r).

A complication due to binding reserve prices in the data is that the lower bound of v(x)
can no longer be identified from GF, for bids below r cannot be linked to signals through
equilibrium conditions. The solution is to bound v(z) from below with the expected payment

of a winner in second-price auctions with reserve price r. For x > x*() define

Fy | x (z|z) Fy | x (z|z)

ve() = prix @ le) +/ Uh(s)—fY‘X(slm) ds
z*(r)

Then v;,(z) is increasing in x by monotonicity of the value function and affiliations be-
tween signals, and v(z) > v,,.(x) for > a*(r) by the equilibrium condition in second-
price auctions with 7. (The formal proof is similar to the benchmark case and omitted.)
Hence for all 7' > r, 2*(r') is bounded by z,(r') = arg mingeps ()2, (vi,(x) — r’)? and

30For v < r, it can be shown that Fgri(ry is bounded below by Fgi(,) for ¢t > r.
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2, (") = arg minge () 2, (vn(z) — )% Then v, (x) and vy, (x) are identified from G for

x > z*(r) respectively as £(b.(z); Gg) and

i (ror(® o) s g (Tl (x
., (b (2); Gg) = TGGALM)))) + / ¢(b; Gg)Mdb

g (br (@) [br (2 Gy 5 (r (2)[br(2))

By similar reasoning as in the benchmark case, bounds on the ¢,-mapping (which maps
b, (x) into b, (x) for x > x*(r')) are identified as

b
Ok (bp(2); Gg) = 7' L(b}, 0 |b; GB) + §(b; Gg)dL(b|b; G)

r
bk,r’

where b, ., = b, (zy,(r")) for k = [, h, and are identified as inverses of {(.; Gg) and §,,.(.; GR)
over [r,b.(xy)] respectively. It can be shown that 0, ,x(b.(.); Gg) is increasing for = >
2, (r'), and inverting 6,/ 4(.; G) at t > r’ gives bounds on b,.(b,'(¢)). Thus bounds on
Fgi( can be constructed from the distribution of b,(X ™).

1.5.2.2. Unobserved screened auctions (with X() < 2*(r)). When data exclude auc-
tions with a reserve price r that screens out all bidders (i.e. X < 2*(r)), we observe the

distribution of equilibrium bids b, conditional on at least one bidder bids above r (denoted

G rather than Gg. For b > r, G} 5(b|b) and g} 5(b|b) can still be identified from

i )
B|BW)>r

G

B|B( >, and thus bounds on b.(z*(r")) and the J, ,,-mapping can be constructed as above.

T

However, GB|B(1)27~

can only be used to construct bounds on Fgr(,) x>, That is,

Pr(f(Bﬁl); Gp) < 7"’|B,E1) >7r) < Pr(X(l) < :L‘*(T'/)|X(1) > z*(r))

< Pr(¢,(BM;Gy) < |BY > 1)
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and for ¢t > 1/,

=
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(o9
3
ﬁ\b—‘
=
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o3
~
3
=
v
<
S~—
IA

Pr(XW <o M (0)IXW > a*(r))

< Pr(BY <6.0,(6GR) B > 1)

T

where B is shorthand for b,(X"). The probability that r screens out all bidders Pr(X® <

r) is needed to bound the unconditional distribution Fgr(,. It is impossible to identify this

r

BIBW>r without further restrictions on Fx. However, the lemma

probability solely from G

T

below shows when bidder signals are i.i.d., Pr(X® < 2*(r)) can be recovered from G,

alone. 3!

Proposition 13. Suppose signals {X;}i—1 n are i.i.d. in first-price auctions with N
potential bidders and reservation price r. If both the number of active bidders and N are
observed, then Pr(XW < z*(r)) is identified even if auctions with XV < z*(r) are not

observed.

1.5.2.3. About the number of potential bidders. That the number of potential bidders
N is observed is key to our discussion of auctions with endogenous participations so far. This
is not an issue in some applications where N is directly reported in the data, or where good
proxies exist. In other applications, the issue is more subtle.

In some applications, neither bidders nor econometricians can observe N. Then strategic
decisions can be modeled as based on subjective probability distributions of N given private
signals (denoted p(IN = n|X = x)). Bidders integrate vy, v, fy|x,n over N with respect to this
distribution and make strategic decisions based on these integrated primitives, so the actual

number of potential bidders becomes irrelevant in equilibria. The new equilibrium conditions

31Under A1, the auction model still has interdependent values even {X;}ien are iid..
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can also be manipulated through change of variables to get an analog of (1.2) that links bid
distributions observed to model primitives.*> The logic of partial identification in benchmark
models can be extended in principle to bound revenue distribution in such equilibria with
unobserved potential bidders.

In other applications where bidder signals are i.i.d., the number of potential bidders
can be identified even if data only report the number of actual bidders. This is because in
equilibria, the number of actual bidders is distributed as Binomial(n, p) with p equal to the
screening probability Pr(xz > x*(r)). Provided the distribution of bids and actual bidders

are rationalizable,*® both n and p are uniquely identified.

1.6. Application : U.S. Municipal Bond Auctions

Municipal bonds are a chief means of debt-financing for U.S. state and county govern-
ments. They are usually issued to finance public projects such as construction or renovation
of schools and public transportation facilities, etc. A main advantage of muni-bonds over
corporate securities is that interest income from them are exempt from federal and local

taxes. As a result, they appeal especially to investors in high tax brackets. In 2005, the total

par amount of outstanding municipal bonds was $1.8 trillion. **

320mne example of such an application is Hendricks, Pinkse and Porter (2003). In OCS auctions, potential
bidders’ decisions to submit bids take multi-stages. HPP endogenize participations by introducing multiple
signals, each corresponding to a stage in the decision-making. Then only those still active in the last-stage
and their signals are relevant to decisions on strategic bids. The additional restrictions in the model is
that decisions to remain active till the last stage only depends on signals from previous stages, and that
conditional on last-stage signals, signals in previous stages reveal no information about bidders’ values.
333ee Guerre et.al (2000) for conditions for rationalizability.

34Source of information : STIFMA (2005)
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1.6.1. Institutional details

Muni-bonds are identified by their issuers and several basic features (coupon rates, maturity
dates, and par amounts, etc).* Investors valuate muni-bonds based on this information
and its implied risks (credit risks, interest rate risks, and liquidity risks, etc.). *® On the
primary market, muni-bonds are initially issued through first-price, sealed-bid auctions to
underwriters (security firms such as investment banks). Notices of these competitive sales are
posted on major industry publications such as The Bondbuyer. In practice, issuers usually
package a series of bonds for one auction, and investment banks participate by bidding a
single dollar price per $100 in par value for the whole series. The bidder with the highest
dollar price wins the right to underwrite the entire series, and consequently resell the series
to investors on secondary markets with some mark-up.

To decide whether and how to bid for a series, securities firms tap into their research and
marketing staff to assess the creditworthiness of the municipality and the market prospects
of the bonds. Typically managers meet with sales and research personnel on Monday morn-
ings to review new issues on the week’s calendar. Both in-house researchers and traders
contribute to estimates about market trends and how the issues considered may trade on
secondary markets. For issues with a large par amount, investment banks usually form
bidding syndicates, where members share responsibilities for reselling the bonds as well as

the liability for unsold bonds. A syndicate is usually clearly defined for each issuance, as

35A coupon rate is the interest rate stated on the bond and payable to the bondholder on a semi-annual
basis. A maturity date is the date on which the bondholder will receive par value of the bond along with its
final interest payment.

36 Credit risk measures how likely the issuer is to default on its payment of interests and principals. Interest
rate risk is due to flucuations in real interest rates that affect the market value of bonds (to both speculators
and long-term investors). Liquidity risk refers to the situation where investors have difficulty finding buyers
when they want to sell, and are forced to sell at a significant discount to market value.



o6

underwriters traditionally stay in the group where they bid on the last occasion that the
issuer came to market.

As of 2006, more than 2,100 securities firms are registered with the Municipal Securities
Regulatory Board and authorized as legal underwriters. However, only a small number of
these firms are active bidders in competitive sales. By 1990, 25 leading underwriters managed
about 75 percent of the total volume of all new long-term issues either as a lone bidder or

leaders of syndicates.

1.6.2. Bond values : private or common ?

The bounds proposed introduce an approach of partial identification for policy analyses which
is applicable regardless of underlying paradigms (PV or CV'). This is highly relevant in the
context of muni-bond auctions, as institutional details do not suggest conclusive evidence for
either paradigm and there are limitations in empirical methods available for differentiating
between them using bid data.

The value of bonds for firms in these auctions are resale prices on secondary markets.
On most occasions bidders on the primary market cannot foresee at what price they can
resell the bonds, and therefore only have noisy estimates. These estimates capture the
syndicates’ expectation on how investors on secondary markets interpret bond features, and
depend on their beliefs about the skills of their sales and trading staff. The estimates are
also built on companies’ perception of how investors view relevant uncertainties such as the
creditworthiness of municipalities and fluctuations of future real interest rates.

The crucial question is whether a bidding syndicate can extract additional useful infor-
mation about bond values from competitors’ estimates if it had access to them. The auction

is one with common values if and only if the answer is positive. On some occasions, all firms
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participating in an auction manage to pre-sell bonds to secondary investors prior to their
actual participation. Such auctions are private value ones, as all bidders have perfect fore-
sight of bond values. On other occasions pre-sales are not possible or limited in scope, and
firms can have heterogenous source of information about municipalities’ creditworthiness, or
different interpretation of factors related to bond values. Unless all firms confidently believe
their own source or interpretation dominates their competitors’, they will find rival signals
informative, and auctions are closer to common values.

While the informational environment per se does not justify either PV or C'V conclu-
sively, data limitations also deter empirical efforts to discriminate between them. First, there
is strong evidence that the number of potential bidders is correlated with bond values. This
nullifies the test proposed by Haile, Hong and Shum (2003), which requires the variation in
the number of bidders to be exogenous with respect to the distribution of values. Second,
the data does not have ex post measures of bond values that can be used to test whether
vp(z, ) = E(V;|B; = bo(w;), B_; = bo(z_;)) is independent from B_;. Finally muni-bond
auctions often proceed with no explicit reserve prices and therefore the testable restrictions
in Hendricks, Pinkse and Porter (2003) are not useful.

This paper focuses on an incomplete approach for policy analyses by bounding counter-
factual revenue distributions under general restrictions that encompass both PV and CV
paradigms. In this context, distinguishing PV and CV only matters for interpreting the
tightness of bounds. The lower bound is a point estimate of counterfactual distributions
when values are private. On the other hand, if nothing is known about the values except for
their interdependence, then for a given level of revenue, any point within the bounds can be

rationalized by some value function and signal distributions.
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1.6.3. Data description

The data contains all bids submitted in 6,721 auctions of municipal bonds on the primary
market in the United States between 2004 and 2006. They are downloaded from auction
worksheets at a website of Thompson Financial. The data are from the same source as those
in Shneyerov (2006), but are more recent and the sample size is larger.

The data reports bond features including the identity of issuers, the sale date, the date
of the first coupon, par values of each bond in a series, coupon rates of each bond, S&P and
Moody’s ratings of each bond, the type of government credit support for the issuance (gen-
eral obligation or revenue),’” and whether the issuance is bank-qualified.*® It also includes
macroeconomic variables that measure opportunity costs of investing in bonds and affect
bond values for investors on secondary markets.

There are 97,936 bonds in 6,721 series, with an average of 14.5 for each issuance. About
70% of the series have 10 to 20 bonds. The average coupon rate of all bonds is 4.06% and
average number of semiannual payments is 19.6. I use the par-weighted averages of coupon
rates and numbers of coupon payments as a measure of "overall" interest rates and maturity
for a series. About 90% of all issuances have a weighted average coupon rate between 3% and
5%. The weighted average maturity is approximately normally distributed with mean 20.8
and standard deviation 9.5. The total par of a series ranges from $0.1 million to $809 million,

and is skewed to the right with mean $21.4 million and median $6 million. About 64.5%

3"Bonds are categorized into two groups by the degree of credit support from municipalities. General
obligation bonds are endorsed by the full faith and credit of the issuer, whereas revenue bonds promise
repayment from a specified stream of future income, such as that generated by the public project financed
by the issue. The latter usually bears higher interest rates due to risk premium.

38The Tax Reform Act of 1986 eliminated the tax benefits for commercial banks from holding municipal
bonds in general. But exceptions were made for "bank-qualified" bonds, for which commercial banks can
still accrue interests that are tax-exempt. Hence banks have a strong appetite for bank qualified bonds that
are in limited supply, and bank qualified bonds carry a lower rate than non-bank qualified bonds.
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of the series are backed by full credit of municipalities, while the rest are backed by limited
municipal support, such as revenue stream from public works financed by the issuance.

In practice, issuers have the option to include reserve prices in the notice of sale, but few
issuers use this option and the data does not report any reserve prices.>® For each auction,
the number of bidding coalitions, the number of companies within each coalition and their
identities are all reported in the data. The number of syndicates ranges from 1 to 20, with
mean 5.6 and standard deviation 2.6. Series that received more than 3 but fewer than 7 bids
account for 68% of all auctions.

The dollar prices tendered are not always reported. However, total interest costs for all

bids are always reported.*’ I use the following formula to calculate and impute missing dollar

bids :

Q To—1  Cg/2 P,
St (S ey + ey )
Q
Zq:l Pq

where ¢ indexes bonds in a series of () bonds, T}, is the number of semi-annual periods

B=(1+TIC)™" x %100

from the date of first coupon until maturity, C; and F, are coupon and principal payments
respectively, ¢; is the time until first coupon payment and B is the dollar bid per $100 of

face value.

39Shneyerov (2006) interpreted the bids as generated in equilibria with no binding reserve prices and es-
timated expected revenue in second-price auctions. In my paper I choose the same interpretation for our
counterfactual analyses for revenue distributions.

40Total interest cost (TIC) is the interest rate that equates dollar prices with discounted present value of
future cashflows the series.
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Table 1(a) : Descriptive Statistics

# of bidding syndicates 2 3 4 5 6 7 8 9 10 11
# of auctions 608 971 1075 1007 852 687 531 406 258 158

Average par value (Smil) | 4.90 922 17.33 2313 27.02 27.27 3020 3268 2654 3357
Average price (/ $100 par)[ 99.17 99.31 99.51 99.97 100.32 100.44 101.00 101.06 101.19 101.64

Average spread 087 115 118 120 148 120 1.07 104 100 1.01
Average bid 9873 9877 98.95 9942 9979 99.94 100.53 100.59 100.76 101.22
Std. dev. 167 184 195 254 258 298 297 290 307 297
Minimal bid 9028 8520 8647 87.03 8668 13.26 93.44 9167 9394 9387

Maximal bid 113.93 110,59 108.85 119.16 111.66 114.55 111.45 111.87 128.00 111.45

Tabla 1 {b) : Descriptive Statistics

Prices All Bids #of bidders  # of auctions
Min a1.17 Min 85.20 1 19 0.28
Percentiles Percentiles 2 &08 9.05
1 a6.74 1 4532 3 a7 1448
10 a7.98 10 a7.37 4 1075 15.99
20 ag.49 20 28,07 B 1007 14.98
30 ag.91 30 Q8,56 [ as2 1268
40 49,29 40 98,99 7 BT 1022
50 Q9,66 50 a9.40 8 521 7.90
&0 100.00 G0 99,81 9 406 6.04
70 100.33 70 100.28 10 258 3.84
a0 100.91 80 101.14 11 158 2.35
an 102.84 a0 102,64 12+ 149 222
a9 109.06 a9 109,30 Total 6721 00,00
Ilax 128.00 Wlax 128,00
# of auctions 6,721 # of bids 47,547
WA Coupon Rate Total Par Value  {in $million) Sec Type
Min 0.0100 Min 0105 Unlimited GO 4334 64454
1 0.0214 1 0.288 Limited GO 1061 16756
10 0.0322 10 1.275 Revenus 1326 19.729
20 0.0358 20 2160
30 0.0377 30 3.200
40 0.0302 40 4.485
50 0.0405 50 6.000
&0 0.0419 GO 8.581
70 0.0438 70 12.000
80 0.0454 80 20418
an 0.0481 a0 45,000
a9 0.0s49 a9 297.831
Il 0.0671 Wlax 809,470

Table 1 summarizes the distribution of all 37,547 bids submitted in 6,721 auctions. The

1st percentile is $95.32 and the 99th percentile is $109.30. The median is $99.40, the mean
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is $99.92, and the standard deviation is $2.76. The median winning dollar bid is $99.66, the

average is $100.01, and the standard deviation is $2.36.

1.6.4. Homogenization of bids

The data reports a wide variation in bond features. In competitive sales, syndicates take
these characteristics into account in their bidding decisions, and thus strategies across auc-
tions are not homogenous as the benchmark model posits. In principle bounds in the bench-
mark model still apply to subsets of homogenous auctions where bond features are held fixed.
The main empirical challenge is that large samples for auctions with these specific features
are needed for constructing nonparametric bounds on conditional revenue distributions. In
this subsection, I tackle this issue by homogenizing bids across auctions with distinct fea-
tures. The working assumptions are: (i) firm estimates of bond values are independent from
publicly known bond features conditional on the number of participating syndicates; (ii)
value functions are additively separable in private signals and bond features. Under these
assumptions, the marginal effects of bond characteristics on equilibrium bids are identified.
(I discuss a specification test of these restrictions below.) Thus bids in distinct auctions can
be homogenized by removing differences due to variations in bond features as in Section 5.

In competitive sales with n bidding syndicates, ex ante bond values for a potential bidder
is :

Vit = Zyy + 0, (X, X_ap)

where ¢ = 1, .., n indexes the bidding syndicates, [ = 1,2, ..L,, indexes auctions with n syndi-

cates, Z; is a vector of publicly known features, and X; = (X;;, X_;) is a R"-valued random

vector of idiosyncratic signals. This specification reflects the intuition that marginal effects
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of idiosyncratic information (signals X;) may not interact with those of public information
(bond features Z;).

Syndicates in an auction may differ in two aspects : the number of member firms, and
local presence of firms’ branch offices in the issuer’s state. Recent empirical works suggest
there is no conclusive evidence that they can lead to informational asymmetries.’! Hence I
maintain symmetry restrictions of #,, and Fx as in the benchmark model in Section 2.

The equilibrium strategy is:

(1.3) bi(xa, zi;n) = 2y + Ni(@q,n)
where Az, n) = [ 6,(s)dLa(s]2), Lu(s|z) = exp{— [ #2200 du}, 6,(s) = B[O (X;, X )|

X; = max;z X; = s, N = n|. Thus strategic bids can be decomposed into two additive com-
ponents. The first term shows marginal effects of bond features are invariant to potential
competitions, and the second term captures effects of potential competition on strategic
bids. The signals and competitions interact with each other and their effects can not be
separated. Regressing bids on bond features and a vector of dummies for the number of

potential bidders will estimate ~ consistently. That is, in the pooled regression,
(14) bil<~ril, Zl) = dgd + Z;"}’ + Uy

where d; is a vector of dummies for n, the error term u; is mean independent conditional

on d; and z,.*?

418ee Shneyerov (2006).
270 see this, fix n, then Proposition 5 shows equilibrium bids are:
bi(n) = vo(n) + z;7v + eu(@a,n)

where vy (n) = E[N (X, Ni)|N; = n] and (24, n) = Ai(24,n) —v9(n). It follows from the independence of
X; and Z; conditional on number of bidders that E[e; (X, N;)|N; =n,Z; = z;] = 0 for all (n;, z;).
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1.6.4.1. GLS estimates of index coefficients. When there is an intracluster correlation

among error terms within auctions, a simple OLS will be inefficient. This can happen

when syndicates’ signals X; are strictly affiliated. One explanation for affiliated signals in

finance literature is the "herding" effect among research and sales staff across syndicates. For

example, researchers in different syndicates tend to have similar professional backgrounds

or trainings and hence are inclined to make similar decisions on the choice and weights of

value-related factors in their analyses. Strict affiliation among signals could also happen when

syndicates’ estimates consist of idiosyncratic noisy measurements of a common, underlying

random variable.

Takle 2 . Pooled Random Effect Estimates

Est St Err t-stat p-walue

waer 1.520 0122 12.49 0.0

wapn -1.037 0,061 =171 0,00

sectype 2476 0458 5.4 0.0

B -0.837 0056 -15.00 .00

fotpar 1.764 0.108 16.32 0,00

type o -0.Ea0 0121 -5.64 000

HR 0.221 0175 1.26 0.21

HR_pn -0.002 0,087 -0.03 092

MNE 0428 .14z 200 0,00

S -0o1as a.188 -1.00 032

South 0226 0121 1.87 006

Wast -0.223 0.149 =217 002

MNE rmating 0.o17 0177 010 092

SW rating -0.0Es 0.221 -016 087

Souwth_rating 0.309 0175 1.77 0.08

West rating 0,389 0.215 1.81 007

a3 G4, 920 0450 210,97 0,00

o4 Q4. 958 0.445 213,26 0.00

as 95,323 0.438 217.61 0.00

e Q5. 579 0443 215.91 0,00

a7 95 738 0438 218.44 0,00

a8 Qe 128 0.443 216.92 0,00
Mumber of cluster 5123.00
F{ 21, 5122) 2865
Frob=F 0.00
R-zquared 042
Foot MSE 1.98
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Table 2 reports the GLS estimates and t-statistics of v for equation (1.4). The depen-
dent variable is the dollar price bid. The regressors include publicly known bond features
: weighted average coupon rate (wacr), weighted average maturity (wapn), total par value
of the series (totpar), a dummy for whether the series is supported by full municipal credit
(sectype), a dummy for whether the series is bank-qualified (BQ), a dummy for whether the
series is rated with investment grade (HR) and two interaction terms type cr and HR_ pn
respectively.®® Butler (2007) suggests local presence of syndicates in the geographical area
of the issuer could also influence their private information about the credibility of the issuer
and hence their estimates of the value of the series. Therefore I also include in the regressors
some dummies for the regions, MW (Midwest), NE (New England), SW (Southwest), South
and West, to test the impact of geographic location on bids.

The weighted average coupon rates and maturity are both highly significant at 1% level,
with positive and negative marginal effects respectively. These estimates confirm the in-
tuition that bond values increase with cashflows from coupons and decrease as maturity
increases because of higher interest rate and inflation risks. Municipality support has a sig-
nificant positive effect on the bids. Controlling for other features, the average dollar price is
$2.47 higher for bonds supported by municipalities’ full credit. Bond ratings by SéP and
Moody’s have no significant impact on bids ceteris paribus. A possible explanation is that
the syndicates’ research forces do not consider ratings informative conditional on their own
research on bond values. The dollar prices tendered for bank-qualified series are on average
about 84 cents lower than non bank-qualified ones. The effect is statistically significant at

1% level. Besides, an increase of $1m in total par leads to a slight increase of 1.76 cents in

43The unit for wapn is 10 semin-annual coupon payments and the unit for totpar is $100 million.
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the dollar price. This can be explained by the fact that average participation costs for a syn-
dicate (e.g. time and effort on research) per $100 in par is lower for issuance with larger par
amount. The interaction of sectype and wacr are also highly significant at 1% level, suggest-
ing marginal effects of coupon rates are lower for series with full municipal credit supports.
There is no conclusive evidence for regional effects on bids except that dollar prices for series
issued in New England area are higher on average than those issued in Midwestern states.

1.6.4.2. Specification tests. Two identifying restrictions in the regression equation (1.4)
are additive separability and conditional independence of bond features and signals in value
functions. A testable implication of these two restrictions is that marginal effects are constant
and invariant to the number of potential bidders. That is, for each n, the following regression

equation holds:

ba(n) = vo(n) + 2y + ca(zi, n)

where v,(n) = E[N(Xiy, Ni)|N;, = n] and ¢;(xy,n) = \(zq,n) — v9(n) is mean-independent
conditional on Z; and n. On the other hand, if either restriction is not satisfied, bidding
strategies are nonseparable in Z;, X; and n. Consequently, marginal effects of bond fea-
tures on bids change with the number of potential bidders. Therefore we can test the two
restrictions jointly by comparing estimates for auctions with different number of bidding

syndicates.
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Tabkle 3{a): GLS estimates for fixed number of potential bidders

numbsr of bidders ] -] =] i H

Intercept a8.221 95.524 92.578 93.563 95.500
188.640 91.820 TE.000 TA.ETO B4.370

WA coupon rats 0.611 1485 2.205 2.021 1.797
3.790 £.020 8.970 5.280 4.710
WA maturity -0.25a -1.082 -1.025 -0.944 -1.278
-B.550 7. 740 -8.420 -5.0E0 -5.730

Security Type 0.264 2207 4514 2.945 2180
0.390 2110 2.960 2370 1400
Bank Quaiifea -0.529 -0.7Z3 -0.554 -0.848 -1.277
-5.510 -6.580 -5.230 -5.820 -6.110

Ratings 0.061 -0.118& 0732 0435 0174
0.170 -0.210 1.760 1.010 0.320

Type"WACR -0.051 -0.925 -1.249 -1.026 -0.571
-0.250 -3.220 -4 280 -3.280 -1.430

Ratings*WAPN 0.113 0.219 -0.1&8 -0.211 0.080
0.900 1.500 -1.210 -1.520 0.330

Par amount 1423 1.770 1.449 2.200 2.182
6.220 2.390 2750 28570 5430

M.E. 0.065 0.838 0.905 0.149 0.380
0.280 2.810 2670 0.280 0.860

Soutf -0.225 -0.062 0747 0.382 0.369
-1.130 -0.220 2.260 0.830 1.060

S -0.5628 -0.443 0116 -0.209 0109
-2.2e0 -1.280 0.280 -0.280 0.140

West -0.207 -0.0665 0178 -0.500 -0.264
-3.590 -0.260 0460 -1.2E0 -0.500

NE*ratings 0.104 -0.572 -0.107 0578 -0.120
0.350 -1.590 -0.260 1.010 -0.210

South'ratings 0.508 0704 0.048 0.349 -0.169
1.670 2.2080 0.110 0.680 -0.220

West“ratings 0.943 0.208 0.018 1.037 0.010
2.700 0.660 0.030 1.760 0.010

SWratings 0.195 0.103 -0.181 0.308 -0.445
0.520 0.240 -0.2E0 0490 -0.520

numbsr of auctions 1075 1007 852 68T 531

number of bids 42300 ety 5112 4809 4248

‘R-squars’ 0.29 0.48 0.44 0.42 0.35
'F-statistic’ 17.24 3024 26.26 2547 1673

‘p-valus’ 0.00 0.00 0.00 0.00 0.00

Table 3(a) reports GLS estimates in regressions for n between 4 and 8. The choice of
regressors z is the same as that in (1.4). The estimates are consistent across n in signs
and significance. For each significant characteristic of the series, Table 3(b) reports test
statistics for pair-wise hypotheses that coefficients are the same in two regressions with

different n. The statistics are constructed as the ratio of differences between GLS estimates
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and the standard error of the difference.** Under null hypotheses, the test statistics are

asymptotically standard normal.

Tahble Aib) : Test of equal indices

W& Coupon Rats

4 5 [=] 7
4 -
b -1.924 -
= -2.336 -1.1E7 -
T 2917 20849 0.289 -
8 -2.184 0445 0.585 0.318
WA Maturity
4 b [=] T
4 -
] O.76T -
=3 0.E75 0219 -
T 0167 0424 20283 -
8 1.171 0.538 0,733 O.B16
Type
4 5 [=] 7
=l -
) -1.7486 -
[ -2.339 40.5532 -
T -1.992 -0.290 02486 -
8 -0.858 0427 O.BEE 0.647
Par amcuirg
4 5 =] 7
EY -
b -0. 788 -
=3 -0.064 0.853 -
T -1.600 -0.920 0.030 -
8 -1.336 0. 7TED -1.453 0.030
Bank Qualiffed
4 5 =] ri
E} -
g 0.245 -
=3 0.732 0.853 -
T -1.600 -0.920 -1.779 -
8 -1.336 0. 780 -1.4532 0.030

The results show differences between sizes of estimates are insignificant. With the ex-

ception of weighted average coupon rates for n = 4, all other estimates are not significantly

different from their counterparts under a different n. There is no statistically significant

evidence against the hypotheses that the value function is additively separable and bond

4“Note GLS estimators for different n are independent, for (Z1, Ny, X;) are i.i.d. draws from the same joint
distribution. Hence the standard deviation of the difference in two estimators can be consistently estimated

by adding up their standard errors.
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features have no bearing on the distribution of idiosyncratic signals conditional on the num-

ber of participating syndicates.

1.6.5. Results

1.6.5.1. Point and interval estimates for FE, () and F};, 1+ This section reports bound
estimates on counterfactual revenue distributions for a reference bond series in auctions with
n = 4 bidding syndicates. The reference series is issued in the Midwest, bank-qualified,
backed by full municipal credit, and has an investment grade from S&P and the Moody’s.
The reference series has a weighted average coupon rate of 4% and maturity of 5 years, as

well as a total par of $4.84 million.*®
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45These are median values for series features among auctions with 4 bidding syndicates.
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Figure 5(a) plots kernel density estimates of the ordered bids "homogenized" at the
reference level, which are calculated using GLS estimates in regressions with 4 bidders. Dis-
tributions of the ordered bids are approximately normally distributed with similar standard
deviations and the differences between the median of adjacent ordered bids are between $0.25
and $0.35 per $100 in par amount. I use the product of tri-weight kernels for estimating
G.p and gy . The choice of bandwidths follows "rule of thumb" discussed in Monte Carlo
section.’® The data is parse close to the both boundaries even after trimming bids that
are within one bandwidth from the minimum and maximum bids reported. To avoid poor
performances of the kernel estimates of é ; for lower dollar values, I trim the bids at the 0.5-th
and 99.5-th percentile.*” In the data, bids from the same auction are almost always trimmed

together.

Plot of S and £ (1)
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Figure 6

Figure 6 plots estimates & and &, and suggests the estimated bounds on by(z*(r)) only
widen slowly as r increases. That é' ; stays mostly above the 45-degree line is evidence for

strict affiliations between private estimates within each auction. Table 4 below summarizes

1

46The bandwidths hg and hy are respectively 2.98*1.06(%*(4L4)7T1*5 = 2.43 and 2.98%1.066p%(4L4)” -2 =
2.57.

4TThe distance between the minimum bid and the 0.5-th percentile is about $5. The number is greater than
the smoothing parameter hy = 2.57 used in the estimation.
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estimated bounds on by(x*(7)) and the probability that no one bids above r (hereafter referred

to as the all-screening probability) for different reserve prices.

Table 4 : Estimated bounds on the all-screening probability

r | bo(ai(r) | bo(xa(r)) | bw. of bo(x*(r)) | Fhugy(ro) | Farg, (ro)
98 97.17 97.89 0.72 0.0540 0.1256
99 98.00 98.83 0.83 0.1488 0.3860
100 | 98.76 99.73 0.97 0.3609 0.6865
101 | 99.45 | 100.60 1.15 0.5935 | 0.8837
102 | 100.13 101.39 1.26 0.8074 0.9516
103 | 100.74 102.14 1.40 0.9042 0.9702

Table 4 suggests marginal bidders under r are estimated to bid lower than r in the
scenario with no binding reserve price. It is consistent with the theoretical predictions in
Section 2 that Fgi()(r) is smaller than Fgi(g)(r). The difference between the boundwidths
of the all-screening probability for » = 98 and r = 100 is mostly due to the distribution of
winning bids with no binding reserve prices. Figure 5(b) shows the distribution of b(()1:4) has
a larger mass in [by(x;(100)) bo(z,(100))] = [98.75 99.73] than in [by(x;(98)) bo(z4(98))] =
[97.17 97.89]. Therefore the bounds on the all-screening probability is much wider for

r = 100 even though bounds on by(z*(100)) is only slightly wider than those of by(z*(98)).
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Figure 7

For reserve prices between $98 and $103, the solid and dotted lines in the panels of Figure
7 depict point estimates FE,(T) and F zlzf(r) respectively. In addition, I construct 100 bootstrap
samples, each containing 1075 auctions drawn with replacement from the estimating data.
For all levels of revenue, I record the 5-th percentile of b ]l%, ") and 95-th percentile of F’EI ()"
They form a conservative, pointwise 90% confidence interval of [F’ }l%,(T), Fﬁ,m], and are plotted

in Figure 7 as broken lines. In addition, the table below reports the bounds on major

percentiles according to the estimates of bounds on F Il%, ") and F " )"

Table 5 : Estimated bounds on quartiles of Frr(y

r 1.b. 1st | w.b. 1st | 1.b. 2nd | w.b. 2nd | I.b. 3rd | u.b. 3rd

98 |98.47 |98.66 99.18 99.28 99.93 | 99.98
99 199.08 199.30 |99.29 99.54 100.01 | 100.14
100 | vg Vo Up 100.07 | 100.14 | 100.48

101 Vo Vo Vo Vo Vo 101.09
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Revenue distribution above the reserve price depends on the distribution of by(z) and the
§, functional mapping by(z) and G into b.(z). The densities plotted in Figure 5 (a) illustrate
homogenized winning bids are approximately normally distributed. Besides, our estimates
of bounds on 4, are approximately linear. Therefore bound estimates F' }’g,(r) (t) for t > r
increase at decreasing rates, a pattern similar to normal distributions. By construction,
estimates of bounds on the all-screening probabilities are monotone in reserve prices (i.e.
Fk

RI(r) (r_) is increasing in r for k = [, u). In addition, our estimates suggest that for any pair

of reserve prices r < 1/, F Ef(r/) (t) < F E,(T) (t) for t > r’. This is consistent with the theoretical
prediction that for a given signal above the screening level, firms bid less aggressively when

the reserve price is lowered.
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Likewise Figure 8 plots point estimates for revenue distribution in second-price auctions

as well as the 90% confidence intervals for [F}%I,(r) (1), iy (t)].
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1.6.5.2. Choice of optimal reserve prices. Knowledge of revenue distributions in coun-
terfactual auctions enables the use of other distribution-based criteria for comparing auction
revenues, instead of just expectations.*® This is especially useful when the seller is known to
be risk-averse and expected utilities are used as criteria.

A natural consequence of our partial approach is that only bounds on these criteria
functions can be calculated. Such bounds on criteria functions are also tight and exhaust
all information possible from equilibrium bids without further restrictions on value functions
and signal distributions. As a result, answers to policy questions above involves comparing
bound estimates rather than point estimates. Bounds on criteria functions can also be used
to bound optimal reserve prices.*’

A value for vy is needed for calculating both upper and lower bounds on E(R!(r)) and
E(R'(r)). This should be measured by the amount of money that a municipality would be
able to raise if it had borrowed through an alternative, next-cheapest channel (i.e. a creditor
that requires the next lowest interests than syndicates participating in auctions). The proxy
for vy used in this paper is $95.71, and it is calculated as the present value per $100 in par
of cash flows from the coupon and principal payments of a reference bond, with the discount
rate being the 99-th percentile of total interest rates reported in the data.

Figure 9(a) plots estimated upper and lower bounds on E(R!(r)) (denoted Ej,(R(r)) and

Ej(R'(r)) respectively), which are calculated from F'

RI(r) and F

RI(r) through discretization

and numerical integration using midpoint approximations. The solid lines plot Ey(R!(r))
and the dotted lines plot Ej, (R (r)). The upper bounds of expected revenue correspond to

the case of PV auctions. Note estimates for £, (R (r)) are higher than Ej,(R’(r)) for almost

48Within first-price auctions, each r > vy can be justified as optimal under the criterion of maximizing
Pr(RI(7) > r). That is r = arg max;~,, Pr(R!(F) > r) for all r > vj.
YFor example, see Haile and Tamer (2003).
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all r in the range. This is consistent with the implication of Revenue Ranking Principle :
for a fixed level of r, the expected revenue is higher for second-price auctions when signals
are affiliated. For first-price auctions, Ej,(R!(r)) is maximized at r = $98.68 to be $99.29,
and Fy(R(r)) is maximized at r = $96.26 to be $99.16. An argument similar to Haile
and Tamer (2003) suggests the optimal reserve price that maximizes F(R!(r)) must be in
the range [$96.12,$99.21]. For second-price auctions, Ej(R’(r)) and E,(R!(r)) are both
maximized at r = $96.57 with the maximum $99.94, thus providing a point estimate for
E(R!(r))-maximizing reserve price. Instead of calculating a range of r that maximizes the
expected revenue, an alternative is to pick r that maximizes either the lower or upper bound
on E(R!(r)). In the case of risk-neutral bidders, estimates for E;(R'(r)), E,(R'(r)) and
Ej(R!(r)) are all close to being monotone, and their maximizers are all close to the boundary

$96.
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A major motivation for focusing on revenue distribution in counterfactual analyses is the
risk aversion of the seller. Given any specification of the seller’s utility function (denoted
u(t)), {F xS (r)}quj ; can be used to estimate bounds on the seller’s expected utility (denoted
{Uk(F Rj(r))}fj’j} ;). Like the case with a risk-neutral seller, these bounds can be used to
put a range on an optimal reserve price that maximizes U(Fgj()), or be used as criteria
themselves for choosing reserve prices.

I consider three specifications of utilities: uP?4#4(t) = In(t) (DARA) and u“REA(t) = TT_;
with p = 0.6 and 0.9 (CRRA). Figure 9(b), (¢) and (d) plot estimated bounds on the
expected utilities in first- and second-price auctions (i.e. {Ug(F: Rj(r))}fj’fjl) for DARA,
CRRA(p =0.6) and CRRA(p = 0.9) utility functions respectively.

Table 6 below summarizes reserve prices that maximize estimated bounds of expected

utilities in first-price auctions, as well as estimated bounds on optimal r* maximizing ex-

pected utilities.

Table 6 : Optimal reserve prices for first-price auctions

‘TDARA 77DARA | 77p=0.6 77p=0.6 | y7p=0.9 77p=0.9
U; UL U Uf U Uf

T (magimizer) 96.19  98.65 | 96.23 98.68 | 96.25  98.66

mazrimum | 4.593  4.594 |15.711 15.719 | 15.822 15.824

bounds on r* | [96.24,99.20] [96.17,99.32] | [96.21,99.20]

In second-price auctions, estimates of bounds on expected utilities under different spec-
ifications are all maximized at $96.26, with the maxima being 4.594, 15.743 and 15.808
respectively. As a result, we get a point estimate of the optimal reserve price r* at $96.26

for all three specifications.
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Both maximizers across different specifications of utility functions are close to each other
and so are the interval estimates. This is because uP4%4, /=06 and u*=* are all approxi-
mately linear for the range of revenues considered in this application. As a result, estimated
bounds on {U(Fri¢)}j=r1r as functions of r are close to being linear transformations of
each other.

On the other hand, estimates for different u(.) yield different implications regarding the
choice of format between first- and second-price auctions. For DARA utility functions, the
point estimate for the optimal reserve price in second-price auctions is $96.26, with a maxi-
mum UDARA(FRU(%_%)) = 4.594. This is equal to the maximized value for A,{?ARA(FRI(Q&%)).
Hence estimates suggests a seller with decreasing absolute risk aversion should prefer second-
price auctions in general, and may be indifferent between the two formats if the auction is
known to belong to the PV paradigm. For CRRA utilities with p = 0.6, the implication is
the same as in the case with risk-neutral sellers. However, for CRRA utilities with p = 0.9,
estimates suggest first-price auctions should be preferred over second-price ones. The pattern
is due to the fact that Frr(,) always crosses Frir(y from below for any given r, and up=0-6
increases faster than u?=%9.

Finally a technical note is in order. Except for Ej, (R (1)) and U,(R'(r)), other estimates
of bounds on {E(R?(r))};=r.1r and {U(R’(r))};=11r are almost monotonically decreasing in
r. In general this need not be the case in estimation. To see this, note that none of the
estimates {F*(R/ (r))}fj}} ; reported in Figure 7 and Figure 8 are stochastically ordered in
r. In this incidence, the monotonicity is explained by the fact that our measure of v is low

at $95.71 and that estimates b, (x; (1)) are close to ' for all (r, 7).
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1.7. Conclusion

In structural models of first-price auctions, interdependence of bidders’ values leads to
non-identification of model primitives. That is, distributions of equilibrium bids observed in
a given auction format can be rationalized by more than one possible specifications of signal
and value distributions. While this negative identification result rules out policy analyses
that rely on exact knowledge of primitives, the distribution of bids observed in equilibria
should still convey useful information about primitives that can be extracted for counterfac-
tual revenue analyses. Following this line of reasoning, this paper derives bounds on revenue
distributions in counterfactual auctions with binding reserve prices by using equilibrium
conditions. The bounds are the tightest possible under restrictions of interdependent values
and affiliated signals, and can be used to compare auction formats or bounds on optimal
reserve prices. This approach also addresses the empirical difficulty of differentiating PV
and C'V paradigms in policy analyses. The bounds can be nonparametrically consistently
estimated, and Monte Carlo evidence suggests these estimators also have reasonable finite
sample performances. Observed heterogeneity in auction characteristics can be controlled
for by conditioning counterfactual analyses on these auction features. Under the restriction
of additive separability of signals and auction characteristics in value functions, the marginal
effects of auction features can be identified if signals are independent from auction features
conditional on the number of bidders. By removing variations due to observable auction
heterogeneity, the bids across various auctions can be "homogenized" to bids in auctions
with given specific features. The issue of endogenous participation also does not pose major
challenges to the construction of bounds, provided the data report the number of potential

bidders or good proxies of this number.



78

Applying this methodology to U.S. municipal bond auctions on the primary market
yields informative bound estimates of revenue distributions in counterfactual auctions with
binding reserve prices. These estimates are then used to bound the reserve prices that
maximize expected revenues for risk-neutral sellers. For risk-averse sellers, bounds on revenue
distributions are also used to bound optimal reserve prices which maximize their expected
utility under different specifications of utility functions.

Directions for future research include extensions of partial-identification methods for more
complicated cases such as asymmetric information among bidders and unobserved auction

heterogeneity.
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CHAPTER 2

Semiparametric Estimation of Binary Response Models with

Inequality Quantile Restrictions

2.1. Introduction

Binary choice models have been used widely in empirical research in fields such as in-
dustrial organization and labor economics. In such models, the decision-maker chooses an
action out of two alternatives if and only if its payoff is higher than the other. The payoffs
is determined by observable state variables (or regressors) and disturbances (or errors) un-
observable to researchers. Researchers are interested in using choice data to make inference
about structural parameters in payoff the function as well as error distributions.

For the past three decades, econometricians have studied the estimation of binary choice
models under various restrictions on payoff functions and distribution of the errors. Among
them, a most popular identifying assumption is the statistical independence between er-
rors and regressors. Matzkin (1992) showed with the independence assumption that the
payoft function u and the error distribution F. can be uniquely recovered from choice prob-
abilities under fairly general form restrictions on u (such as monotonicity, concavity and
homogeneity). Other authors studied the estimation of binary response models under statis-
tical independence but with different form restrictions on the payoff functions (see Cosslett
(1983), Han (1987), Klein and Spady (1993), and Ichimura (1998)). Another strand of liter-
ature studies binary response models under a weaker assumption that the median of errors

is independent from regressors. This restriction allows for endogenous regressors, which are
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a concern in lots of empirical work. Manski (1985) showed the linear coefficients can be
identified up to scale under median independence and fairly weak assumptions on regres-
sors, and proposed a consistency maximum score estimator. Other authors have studied
the asymptotic distribution and the refinement of maximum score estimators (see Sherman
(1988) and Horowitz (1992)). Furthermore, Manski (1988) suggested median independence
has the most identifying power among all stochastic restrictions that allow for the correlation
between regressors and unobserved disturbances.?

In this paper, I study a class of binary response models where the conditional median of
errors is bounded between known functions of the regressors. This generalization is meaning-
ful because it encompasses several interesting micro-econometric sub-models widely applied
in empirical work. As shown in Section 2, our specification of the binary response model
with bounded conditional medians is general enough to incorporate binary response models
with interval data on regressors, simultaneous discrete games with incomplete information,
and Markovian binary choice processes. I characterize the identification region of linear
coefficients in payoff functions using choice probabilities observed, and derive fairly general
restrictions on the distribution of regressors that are sufficient for point identification. I
discuss how these conditions can be satisfied by more primitive conditions in the motivating
sub-models mentioned above. I then use the sample analog principle to define a two-step
extreme estimator based on the form of the identification region, with the first-step being
a kernel regression that estimates the conditional choice probabilities. I also show that this
two-step extreme estimator is consistent regardless of whether the coefficients are point iden-
tified, and it converges in distribution to a normal random variable at the rate of v/n under
"Manski (1988) showed (1) mean independence has no identifying power in the binary response model; (2)

conditional symmetry has no additional identifying power than median independence; (3) distributional
index sufficiency can only identify the slope coefficients up to scale and sign.
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point identification. Finally, I give Monte Carlo evidence on the estimator’s performance in
finite samples when the model is partially identified.

The rest of the paper is organized as follows. Section 2 specifies the binary response model
with bounded conditional medians and give examples of motivating sub-models. Section 3
and 4 studies the set and point identification of the index coefficients in payoff functions
respectively. Section 5 defines the two-step extreme estimator and proves its asymptotic
properties, including consistency and asymptotic normality under point identification. Sec-

tion 6 show Monte Carlo performance of the estimator in finite samples. Section 7 concludes.

2.2. The Model

Consider a binary choice model:>
(2.1) Y =1XB+e>0), BeRE, B#£0
where the conditional median of ¢ is defined as:

1
Med(e|X) ={n e R:Pr(e > nX) > 5 APr(e <nlX)> =}

DN | —

Let S(X) denote the support of X and Fx denote a probability measure on S(X). The error
distribution satisfies the following stochastic restriction.

BCQ (Bounded Conditional Median): The error € is has continuous density conditional

on all x with L(x) < sup Med(e|x) and inf Med(e|x) < U(x) a.e.Fx, where L(.),U(.)

2Throughou‘c the paper I use bold letters for vectors and non-bold letters for scalars, upper cases for random
variables and lower cases for their realizations.
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are known functions such that L(x) < U(x) a.e.Fx and L = infycgx) L(x) > —o0, U =
SUP,cg(x) U (x) < +00.”

The inequality restriction is violated if and only if there is no median in the interval
[L(x),U(x)]. This restriction can be rewritten as: Med(e|x) N [L(x),U(x)] # @, a.e.Fx.
Obviously the model is general enough to allow for error distributions that are not strictly
monotone and that may have an set-valued median. In addition, this setup is general enough
to include several interesting micro-econometric models as special cases.

Model 1 (Partially linear binary choice) Let Y = 1(X'B + g(X) + & > 0) where
Med(e]X = x) = 0 and L(x) < g(x) < U(x) for all x on the support of X for some
known functions L(.) and U(.). This model implies: Y = 1(X'B + & > 0), where L(x) <
inf Med(E|X = x) = sup Med(é|X =x) < U(x) Vx €5(X). An empirical example of this
binary choice model with a partially linear latent variable is individual decisions for labor
participation. Suppose each individual works if and only if his monthly salary is greater than
his unemployment benefits, and both are solely determined by demographic characteristics
X (including gender, education, experience, etc). The median of monthly salary conditional
on X is X'3, while the unemployment benefits is given by ¢g(X). Researchers observe in-
dividuals’ decision to participate in the labor force and are interested in recovering 3, but
only knows that unemployment benefits g(.) is bounded between L(.) and U(.).

Another special case of this model is a binary choice model with interval data on a
regressor studied in Manski and Tamer (2002). Let Y; = 1(X/8 + V + & > 0), where
X € R*V € R, and Med(e|x,v) = 0 V(x,v) on support. Researchers observe a random
sample of (Y, X, Vp, V1) and (i) Pr(Vp <V < Vi) =1 and both V; and V; are bounded; (ii)
Med(e|x,vp,v1) = 0 ¥(x,vp,v1). Then Y = 1(X'B+& > 0) where £ =V +¢. It follows from

3The continuity of the distribution of ¢ is a technical convenience that can be weakened to sup M ed(elx) €
Med(e|x).
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(i) and (ii) that vy < inf Med(g|x, vy, v1) < sup Med(&|x,vp,v1) < v1 ¥(x,v9,v1). Denote
the (k + 2)-vectors [X Vi V] by Z and [B 0 0] by a. Then the model is reformulated as
Y = 1(Z'a+ & > 0), where L(Z) < inf Med(¢|Z) < sup Med(E|Z) < U(Z) a.e.Fz with
L(Z) = Vy and U(Z) = V;. The parameter space now considered is © = {b € R*? :
bg+1 = brio = 0}. Thus the model fits in with our framework of binary regressions with
bounded conditional medians.! W

Model 2 (Simultaneous Discrete games with incomplete information) Consider a simple,
simultaneous 2-by-2 discrete game with the same space of pure strategies S; = {1,0} for

players i = 1,2. The payoff structure is :

0 1

0 0,0 07X//82 — &2

1 X'ﬁl—gl’() X’ﬂ1+51—81,xlﬁ2+52—52

where x € R¥ is a vector of payoff-related exogenous variables observed by both players,
e = (1, e9) are private signals only observable to player ¢ with jointly distribution F;, which
is common knowledge among the players. Furthermore ¢; is independent from e, conditional
on x. The structural parameters of the model is © = (3, B,, 1, J2), where §; < 0 fori =1, 2.
A Bayesian Nash Equilibrium (BNE) of this game of incomplete information is defined by

p(z) = [p1(z) p2(z)] such that
p1(x)]  [Fox=x(X'B + pa(x)d1)
22 ) = L o

4As discussed in the section below, Manski and Tamer (2002) provides sufficient conditions on the support of
[V, V1] for B to be point identified, and proposes a modified maximum score estimator for the identification
region that is consistent under the Hausdorff metric.



84

where p;(z) is player i’s probability of choosing 1 conditional on X = x.> The existence of
BNE follows from Brouwer’s Fixed Point Theorem, and Aradillas-Lopez (2007) gives fairly
general sufficient and necessary conditions for the equilibrium to be unique.® It can be shown
that a generic parameters © will generate p(x) if and only if it generates p;(x) in the single-
agent binary choice model Y; = 1(2/8; + p_;(z)d; — e; > 0). Suppose Med(g;|X) = 0 for
1 = 1,2. The §;’s need to be normalized to —1 for identification. Then the binary choice
models fall under our general framework with L;(x) = p_;(x) = U;(x).

Several recent literature have discussed the estimation of such static games with incom-
plete information. These include Aradillas-Lopez (2007) and Bajari, Hong, Krainer and
Nekipelov (2007). The latter shows the mean utility functions can be identified nonparamet-
rically if the error distributions are i.i.d. across players for any given x, and if the conditional
error distribution F;, ., x is completely known to the researcher. Aradillas-Lopez focuses on
a case where (e1,€5) are allowed to be correlated with each other but have to be independent
from X. He extends the semiparametric likelihood estimator in Klein and Spady (1993) to
this game theoretic setup. In contrast, our approach estimates this game of incomplete infor-
mation through the framework of a system of binary choice models with bounded conditional
medians, and does not require the independence between (g1, £2) and exogenous variables X
that shift the payoff structures. W

Model 3 (Markovian binary choice process) Consider a single-agent, Markovian binary
choice process in infinite horizon. Time is discrete and indexed by ¢. In each ¢, the agent
observes states s; = (x;,¢;) € S(X) ® S(e) C RE ® R?, and chooses an action d; from a
5This definition of Bayesian Nash Equilibrium is the same as that of Quantal Response Equilibrium in McKin-
ley and Palfrey (1995). The latter is a special case of BNE where the error distributions are independent
across actions.

OTf researchers know a priori these conditions are not satisfied, then it is convenient to discuss identification
by maintaining that players stick to an equilibrium selection mechanism that is solely determined given x.
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pair of possible actions D = {0, 1}. The state space S(S) = S(X) ® S(e) is time-invariant.
In each ¢, researchers observe x;, but not ¢;,. The time-invariant single-period return is
U(sy,dg) © S(S) ® D — R! V t. Conditional on the current state s and action d, the
distribution of the state next period s’ is given by a time-invariant transitional probability
pa(.s) : S(S) — [0,1]. The agent has a constant discount factor 3 € (0, 1) for all periods.”
The agent chooses a deterministic, Markovian decision rule d(s) that maximizes expected
present value of future utilities: E[) 77, BU(8t14,deyj)|st, di].5 The structure satisfies two
restrictions (i) the single-period return is additively separable, i.e. U(s,d) = X'ag + €4, € €
R?, F(gq|r) = 0 V(x,d); and (ii) the transitional probabilities has conditional independence,
ie. pa(s'ls) = f(&'|x)ga(x'|x) V¥s,s’ € S(S) and d = 0,1. These and some other regularity

conditions implies the Markovian binary decision process has a static representation:’

d(s) = arg maxge(o,1} 64(X; 1,8, f) + €4
where §(x) = [0o(x) 01(x)]? is the fixed point of the operator

§o(x) x'By + B [ maxgeqo, {04 (x') + € }po(ds’|x)

51 (X) X,,Bl + ﬁ f maxdfe{o,l}{(sd/ (X/) + 5:11}p1 (dS,|X)

(2.3) T o

Aguirregabiria (2007) showed through recursive substitution, d;(x) = wq(x) + £4(x) where
wa(x) = X'ag + B [ wa(x")pa(dx'|x) and &,(x) = B [ ka(X) + £4(x")pa(dx'|x), and rq(.) are

"For notational ease, I will drop time subscripts for the rest of the paper due to time-invariance of period
return, transitional probabilities, and the state and action spaces.

8In general, the optimal policies should be a function of past histories H, = {sj}}—o. However, Strauch (1966)
showed for any history-dependent poilicy and starting state, there always exists a deterministic, Markovian
policy (a policy that depends on the current state only) with the same expeced total discounted payoff.
The implication is that for analysis of optimal policies, it suffices to focus on Markovian stationary policies.
Throughout the paper we focus on the case where the agent only considers deterministic Markovian policies.
9The regularity conditions include continuity and boundedness of uq(x), finite expectation of max{e1, g0}
conditional on (x,d), and that g, satisfies the Feller Property for d = 0, 1.
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defined as

1 Fxl (b))
k1(X; Facx, h) = h(X)FAEX:x(h(X))—/ AedFacix=x

“+o0o
Iio(X; FAE|Xa h) = / ) AngAﬂX:x - (]- - h(x))FA_§|X:x(h(X))
il ()

where h(x) is the observed choice probability. Let I' denotes a set of Fa.x that satisfies
some extraneous restrictions (such as bounded support and symmetry), and define:

L(x;h,p) = min A&(x;h,p, Faqx), U(x;h,p) = max A&(x;h,p, Facx)

FAE\XGF FAE‘XGF

where A{ = £, — £, and the existence and the form of extrema is delivered by the nature
of the restricted set I". The Markovian binary choice process can then be represented by a

static analog:
(2.4) Y = X'+ A¢(x)—Ae > 0}

where X, = [Y.150 B°Eo(xt1s]xt), Youso B (Xe1s/x¢)], and 7 = [, —ay]. Under the median
independence restriction Med(Ae|X) =0, the static representation in (2.4) fits within the

framework of binary choice models with inequality conditional medians. W

2.3. Partial Identification of 3

Let I' denote the set of conditional distributions F,x that satisfy BC(), and Pl*‘x denote
observed conditional choice probability Pr(d = 1|x). In this section I characterize the set
of coefficients b € RX which, for some choice of F,x €T, can generate the observed choice
probabilities Pjj, almost everywhere on the support of X (denoted S(X)). This reveals the

limit of what can be learned about the true parameter 3 from observables under BC'(), and
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leads to the definition of our two-step extreme estimator. For any generic pair of coefficient
b and conditional error distribution G.x, let P x(b, G-x) denote the probability of choosing
d =1 given x, b and G.x (i.e.Pix(b, Gex) = [ 1(x'b 4+ & > 0)dG.-jx—x), and let X (b, Gox)
denote the set {z € S(X) : Pix(b, Gox) # Py, }-

Definition 1 The true coefficient 3 is identified relative to b if V Fx € I' Pr(z €
X(b, Fyx)) > 0. Furthermore, B is observationally equivalent to b if it is not identified
relative to b. The identification region of (3 is the set of b in RX that is observationally
equivalent to 3.

Lemma 1 In Model (2.1) under BCQ, b is observationally equivalent to B if and only if
Pr(z € &) =0, where &, = {x € S(X) : (—xb< L(X)AP; <)V (—xb>UX)AP;

1|x 2 1|x >
)}

An immediate implication of Lemma 1 is that the identification region under BC(Q is

N

O = {b € RX : Pr(x € &) = 0}. Note that ©} is characterized by the distribution of
observable regressors and conditional choice probabilities only, and can be used for finding a
non-stochastic function Q(b) that is minimized if and only if b € 6. The function Q(b) can
be approximated by its sample analog and preliminary kernel estimates of P1*|x, and will be
used to define our extreme estimator below. In general this set of observationally equivalent
coefficients © will not be a singleton. But as additional restrictions are imposed on error
distributions, the size of the identification region of 3 will be reduced. For instance, under
a slightly stronger version of BCQ, the new identification region will be a subset of 6.
BCQ-2: The error ¢ has continuous density conditional on all x and L(x) < inf Med(e|x)
<sup Med(e|x) < U(x) a.e. Fx, where L(.),U(.) are known functions such that L(x) < U(x)

a.e. Fx, L =infyegx) L(x) > —00, and U = supyegx) U(x) < +00.
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Corollary 1 (Lemma 1) In Model (2.1) under BCQ-2, the identification region of (3 is
O;={b cR¥ : Pr(X €¢&,) = 0}, where &, =&, U {x € S(X): (—x"b < L(x) A P}, = 3)
V (=x"b > U(x) A P}, = 3)}-

The classical restriction of median independence is a special case of BCQ-2 with L(x) =
inf Med(e|x) = sup Med(e|x) = U(x) = 0 a.e.Fx. Under the classical median independence,
the identification region is ©9 = {b € R¥ : Pr(x € &) = 0}, where £}, = {x € S(X) :
(—xb<OAP, <3)V(Xb20AP, >3V (=xb#0ANP, =3)} ={zcIX):

Vv
(—x"b < 0AP, <3V (—x"b>0AP, >3V (—x"b=0AP, # 3)} Note

Ix = 1]x

&, C & C &) when L(x) < 0 < U(x) almost everywhere on S(X). Hence @) C ©; C ©,.

The exact size of differences between these sets will be determined by the distribution of

X. These characterizations of the identification regions reveal little information about their

analytical properties, as 1*|x depends on unknown parameters. However, it can be shown
" and ©; both satisfy the nice property of convexity.

Corollary 2 (Lemma 1) Under BCQ, the identification region O is convexr. Under

BCQ-2, the identification region ©Of is convex.

2.4. Point identification of

Point identification is the special case where the identification region is reduced to a
singleton. Despite the generality in the characterization of ©;, point identification of 3 is
possible under fairly weak conditions on the parameter space, the support of regressors, and
the form of bounding functions..

PAR (Parameter space) The true parameter B is in the interior of ©, where © is a
convex, compact subset of RX 10

10 e compactness of © may be given by extraneous restrictions on the model implied by economic theories,
such as signs and bounds on the sizes of coefficients.



89

SX-1 (Support of X) (a) 3J C {1,2,..., K} such that for all b € ©,b; = 0Vj € J
and there erists no nonzero vector A € RE=#U}Y sych that Pr(X' ;A = 0) = 1 where
X ;= (X))jeq..xp0; (b) For all bb € © and b_;#b_;, Pr{X_,€T(b_;,b_;)} > 0
where T(b_;,b_;) = {x_; : (L,U)N R(x_;;b_;,b_;) # @ Ax_,(b_; —b_;) # 0}
and R(X,J;b,J,f),J) 1s the random interval between X;,b,] and XLJB,J; (c) Pr(ay <
L(X)NU(X) <a1|X_; =x_;) > 0 for all open interval (ag,a1) C [L,U] and almost every-
where X_j.

Proposition 1 Under BCQ-2, PAR and SX-1, 3 is identified relative to all other b € ©.

The support conditions in SX-1 are quite general. In particular, they allows for both
discrete coordinates and bounded support of X. Below I show how they can be satisfied by
more primitive conditions on the support of regressors in some of the motivating models.

Model 2 (Revisited) Consider a simple 2-by-2 discrete game with incomplete informa-
tion. Below I give primitive conditions sufficient for the point identification of 3,.

(REG) (i) 3l C {1,2,...., K} such that 5, = 0, By # 0 and ¥V nonzero vector A €
REL, Pr(X" A\ # 0) > 0; (i) 3 an unknown constant C < oo such that P(|X' ;b | <
C) = 1 Vb, € O, where O, is the parameter space for by; (iii) for all Xx_; € S(X_;),
X, is continuously distributed on the compact support S(X;|X_;) with the conditional density
bounded below from zero; (i) for all bo€ Oy, ¥, 2t € S(X)|X_;) such that x} by +X_by ;| =
g%+ 1 and z!By +X By = el — 1, (v) Let X¢, and X4, denote respectively subvectors of
continuous and discrete coordinates of X_;. For all S such that P(X¢,€S) >0, P(X¢, =
0ANX?, €aS)>0Vae (—1,1) where aS = {xX: X = ax for some x € S}.

(ERR) For i = 1,2, (i) for all x €S(X), the conditional disturbance distributions F,x—x

are continuously differentiable for all &; in the interior of the compact support Se, = [}, €l

HThe proof below can be adjusted to allow the support S, to change with x.
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with the conditional median being zero, and is Lipschitz continuous on S., with an unknown
constant Cyc > 0; (1i) there exists an unknown constant C; ;> 0 8.1. SUPyeies ci ) [Frypx 0y (t)—
Fo \2/(t)] < Ciglay — x| for all x_y € S(X_;) and x; € S(Xi|x_y).

Corollary 1 (Proposition 1) In Model 2, suppose B, # 0 belongs to a compact para-
meter space ©1, and (REG), (ERR) are satisfied. Then B3, is identified relative to all other
b,€0;.

The support conditions are quite general, and allow the regressor to have bounded sup-
port. This is an important technical nicety as the compactness of regressor supports will
come in hand in the proof of asymptotic properties of the estimator proposed in the sections
below. N

Model 1 (Revisited) Consider the binary choice model with interval data on one of
the regressors. The augmented vector of regressors is Z = [X Vi V3] € RE*2. Note by
construction, Z; = [Vu V4|, and L(Z) =V,, U(Z) =V, and B; = [0 0]. Let V; and V}
have unbounded support and the support of X not to be contained in a linear subspace of
RX. Then conditions SX1-(a) and (b) are satisfied. And (3 is point identified if Pr(ag <
L(X)AU(X) <a1|X = x) > 0 for all open interval (ag,a;) C R! and all x €S5(X). This is
exactly the conditions specified in Manski and Tamer (2002). W

The identifying restrictions in SX-1 is essentially an exclusion restriction in that it re-
quires a regressor that affects L(.) or U(.) but does not enter the linear index. Below I give
a different set of exclusion restrictions which requires regressors that do not affect L(.) or
U(.) but enter the linear index.

SX-1" (Support of X) (a) Ik € {1,2,..., K} such that [, # 0, L(x_;) = L(x) and

U(x_x) = U(x) Vx, and for almost every value of x_j = (X1, .,Xp—1,Xk+1, -, X ), Pr(Xg €
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(ar,a9)|x_) > 0 for all open interval (ag,a;) C RY; ; (b) Vb # B_,, Pr{L(X) =
U(X) A X (b — B_y) 0} > 0.
Proposition 2 Under BCQ-2, PAR and SX-1°, 3 is identified relative to all other b € ©.
The support conditions SX-1" allows for discrete regressors. However, it does not satisfy

the property of bounded support for regressors.

2.5. A Two-step Extreme Estimator

I construct a two-step extreme estimator following standard steps. First I define a non-
stochastic function @(b) which is minimized if and only if b € O, where ©; is the identifi-
cation region of B under BCQ-2. Then I construct sample analogs Qn(b) of Q(b) using the
empirical distribution and a first-step kernel estimator. The two-step extreme estimator is
then defined as the minimizer of the stochastic objective function Q,,.

SX-2 Pr(—X'b =U(X)V —X'b = L(X)) =0 for all b € ©.

Lemma 2 (Identification) Define the nonstochastic function
Q(b) = E[1(Pjx > 1/2)(-U(X) = X'b)} + 1(Pjx < 1/2)(~L(X) = X'b)?]

where a; = max(0,a) and a_ = max(0, —a). Under BCQ-2 and SX-2, Q(b) > 0 Vb € ©;
and Q(b) =0 if and only if b € O;.

For simplicity in exposition, below I will construct the two-step extreme estimator for the
case where all regressors are continuous. The extension to the case where some regressors are
discrete does not cause any conceptual or technical difficulty, and will be omitted. The first

step estimates the choice probabilities using kernel regressions. Define the kernel estimates
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for density fo(x;) and ho(x;) = E(Y;|X; = x;) fo(x;) as

Fxi) = (no)) 7 00 Kl =x3) foal, hxi) = (noy) ™ 300 v K 1(x—0) foa]

where K (.) is a kernel function and o, is the chosen bandwidth. The nonparametric estimates

for p(x;) is p(x;) = h(x;)/f(x;). Now construct the sample analog of Q(b):

H—xb — U(x)]2 + 1{p(x;) < =}[-x/b — L(x,)]>

DN | —
DN | =

Qulb) = = S50, Hplxi) 2

The two-step extreme estimator is defined as:

~

0, = arg minyce Qn(b)

2.5.1. Consistency under set-identification

In general, conditions for point identifying B may not be satisfied. Therefore the concept of
a consistent estimator when the parameter is point identified needs to be extended to the
case of set-identification. The Hausdorff distance between two compact sets A and B in R¥
is defined as

A,B) = inf || — b||,sup inf ||a — b
p(A, B) = max{sup inf [l = bl], sup inf [|a — bl[}

where [|.|| is the Euclidean norm. The metric is asymmetric in the sense that p(A, B) #
p(B, A). Proposition 3 below proves the two-step extreme estimator is a consistent estimator
of the identification region ©; in the Hausdorff metric. For technical reasons, I replace
the indicator functions in the definition of Q(b) with smooth functions A(p(x;) — 3) and
Alp(x;) — %) respectively. Regularity conditions for set consistency are collected below.

RD-1 (Regressors and disturbance) (i) the (K + 1)-dimensional random vector (X}, ;) is

independently and identically distributed; (ii) The support of X (denoted S(X)) is bounded,
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and its continuous coordinates have bounded joint density fo(x); (i) the density function
fo is k+ 1 times continuously differentiable on the interior of the support S(X).

K (Kernel estimator) (i) K(.) is continuous and zero outside a bounded set; (i) [ K (u)du =
Land for all l + ..+l < k+ 1, [ul ul K(u)du = 0; (i) no?*/(logn)? — oo and
nok+D) 0.

TF (Trimming functions) (i) A : R — [0, 1] is bounded with continuous and bounded first
and second derivatives; (ii) A(t) € (0,1] for t >0, and A(t) = 0 otherwise.

That the trimming function carries positive weights if and only if the argument is positive
is essential for identification. The proof of Lemma 2 still applies with the indicator function
replaced by A. Conditions on regressors and kernels deliver the uniform convergence in
probability of p to p. The smoothness of A and the boundedness of regressor supports are
convenient technicalities for proving the convergence in probability of the stochastic criterion
function to Qn to (), and the root-n asymptotic normality.

Theorem 1 Suppose BCQ-2, SX-2, PAR, TF, RD-1 and K are satisfied. Then Pr(p(én, Or)
>¢) —0asn— oo forall e > 0.

This result of set-consistency incorporates the special case where O is a singleton (3, is
point identified). In general, Qn may not be uniquely minimized even when 3, is known to
be exactly identified. In this case, Bn may be chosen randomly from the set of minimizers of
Q., and it converges in probability to Bo- Chernozhukov, Tamer and Hong (2008) studied
the inference of extreme estimators in a very general class of partially identified models
which includes our model here. Their approach of inference is based on approximating
the distributions of criterion functions (maximized over the identification region) through a

subsampling procedure.
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2.5.2. Asymptotic properties under point-identification

Obviously, consistency under point identification is a special case of Theorem 1. For the rest
of this section, I discuss the root-n asymptotic normality of the two-step extreme estimator
when 3 is point identified in ©. For various technical reasons, the estimator is

Qub) = =3 AV[-xb - U(x:)]2 + Al[-x/b — L(x,)]*

n =1

where A% = A(p(x;) — ), Al = A(3 — p(x;)), and A is a smooth function that satisfies the
regularity conditions above.

RD-2 (i) fo(x) > ¢ Vx €S(X) for some small constant ¢ > 0; (i) ¥V b € ©, the Lebesgue
measure of S;(b,e) = {x €S(X): sgn(L(x) —x'b) # sgn(L(x) —x'b — z;)} — 0 as
e — 0; (iii)3B(.) : S(X) — R such that |max{(v!)_, (v*),}| < B(x;) with E[B(X)] < oo,
and E[BX)|IX|[| < o0; (i) L() < o0 and U() <0 on S(X); @)E[|[X(p) (V1) +
A (p) (Vi) 4]l 2] < o0; (vi) BIIX|[*(V)L] < oo, BIIXl[*(V")4] < oo and E[||X[[*] <
0.

Theorem 2 (Asymptotic Normality) Suppose BCQ-2, PAR, SX-1,2, RD-1,2, TF and K

are satisfied, and matrices J and ¥ defined below are both non-singular. Then \/ﬁ(f}— Bo) <,
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N(0, J7'SJ71), where

Y = Varlé(X; ho, fo) + AX, Y ho, fo)]

A I P
ho(x)

A(x,y; ho, fo) = [al(x?ho’fO)y+fo(X)

ai(x;h, f) = 2 {max((), v A (%—%) — max(0, —v!)A’ (% - %) }
J o= 207 B{[A(p)1(V] < 0) + A"(p) L(V" > 0)] XX}

The asymptotic normality proof follows similar steps in Buchinsky and Hahn (1998).
First, I let the criterion function in the second step be approximated by a version of 2nd-
order Taylor expansion of the limiting function around the true parameter but with the 1st-
order term (the "score") replaced by its sample analog that depends on first-step preliminary
kernel estimates. Then I showed the approximation error is small enough to be omitted in
discussing asymptotic distributions. Next I follow the standard steps in Theorem 8.1 in
Newey and McFadden (1994) to show the sample score term converges in distribution to a
normal distribution. These arguments combine to prove the asymptotic normality of our
two-step extreme estimator. Consistent estimators of the asymptotic covariance matrices
can be constructed using the sample analog principle.

Recall the general model described in Section 2 encompasses classical binary regression
with median independence as a special submodel, for which Chamberlain (1986) showed there
exists no root-n consistent semiparametric estimator when the parameter is point identified.
Therefore the result that root-n asymptotic normality is attained in Theorem 2 appears to

be counter-intuitive. However, note the assumptions SX-1 and RD-1 in Theorem 2 require
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that the model is point identified while the support of regressors is bounded.'? Manski (1986)
showed this can never be the case for binary regression model under median independence.

As a result, Theorem 2 does not apply to the class of model studied by Chamberlain (1986).

2.6. Monte Carlo Experiments

In this section, I study the finite sample performance of the two-step extreme esti-
mator in the more general context where 3, is set-identified. I experiment with two de-
signs of binary response models with interval data on one of the regressors. Specifically,
Y = {8, + 5, X+V + ¢ > 0}. In the first design, V"N(0,2) and X N(0,4), and in
the second design V~"Uniform(—2,3) and X Uniform(0,5). In both designs, ¢"N(0,1),
(V, X, e) are statistically independent, and V is not observed by the researcher. Instead,
only Vo = int(V) and V; = int(V) 4+ 1 are observed. These are exactly the same designs as
considered in Manski and Tamer (2002). The sufficient conditions for point identification in
Section 4 are not satisfied and there is no reason to believe the coefficients 3, and [, are
point identified.

I do not derive the closed form of the identification region. Instead I simulate a large
data set with 10° observations, and treat it as the population for our Monte Carlo studies. I
apply the two-step extreme estimators to this data set and use the estimates to approximate
the real identification region. (See Figure 1 and Figure 2.) For both designs, I reported
the performance of the estimator in samples with N = 500, 1000 and 3000 respectively. For
each sample size N considered, I simulate 100 different samples by making random draws
from the population with replacement. I calculate the two-step extreme estimates for each
of the 100 samples. I use Naradaya-Watson kernel regressions to estimate conditional choice

12Gych a submodel exists within our general model. I have proven this through an example of simple discrete
games with incomplete information in Section 3.
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probabilities in the first step. The bandwidths are chosen through cross-validations and

Gaussian kernels are used. The maximization procedure in the second step is done by a two

dimensional grid-search.

Narmal, PN = 100000, betal = 1, beta2 = -1
250

beta2
(=]

Figure 1: Identification Region (Normal)

Uniform, PN = 100000, betalO = 1, beta2 = -1

heta2
(=]

1 Ty

. . . . . . . . . )
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Figure 2: Identification Region (Uniform)

Figure 1 and Figure 2 confirm the earlier proposition about the convexity of the identifi-
cation region in Section 3. The size of the identification is also small relative to the variance
of regressors in the designs. There has been lots of recent contributions in the literature on
the inference of non-singleton identification region. For instance, Chernozhukov, Hong and

Tamer (2003) proposed a general criterion function approach of set inference for extreme
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estimators that can be applied to our model here. In this section, I do not take this ap-
proach to report any confidence regions. Rather, for each of the 100 estimated sets, I record
the percentage of the identification region it covers (denoted P1), as well as the proportion
of the estimated set contained in the identification region (denoted P2). T use these two
proportions as measures of discrepancies between the two-step estimates and the real iden-
tification region. Table 1 below reports different percentiles of these two measures among

the 100 simulations.

Table 1 (a): Normal Design

P1 P2

percentile | n =500 n = 1000 n = 3000 | n =500 n = 1000 n = 3000

10% 0 0 0.054 0 0 0.344
25% 0.017 0.097 0.345 0.228 0.296 0.487
50% 0.370 0.444 0.571 0.409 0.520 0.594
75% 0.653 0.724 0.787 0.597 0.686 0.701

90% 0.841 0.860 0.934 0.808 0.839 0.853

In the normal design, Table 1(a) suggests the discrepancies between the worst estimates
and the identification region is quite noticeable for small samples. In particular, the first
quartile of P1 (the percentage of identification region covered by an estimated set) is smaller
than 10% for n = 500 and n = 1000. And the medians for P1 are both lower than 50%.
The performance is remarkable enhanced when the sample size is increased. In particular,
the first quartile for P1 with n = 3000 reports a much higher proportion. In comparison,

the estimators have higher first quartile for P2 (the percentage of an estimated set covered
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by the identification region). The difference between P1 and P2 for higher quartiles are less

pronounced.

Table 1 (b): Uniform Design

P1 P2

percentile | n =500 n = 1000 n = 3000 | n =500 n = 1000 n = 3000

10% 0.581 0.627 0.814 0.509 0.635 0.786
25% 0.664 0.755 0.859 0.600 0.719 0.848
50% 0.782 0.854 0.911 0.685 0.807 0.908

75% 0.925 0.949 0.968 0.843 0.895 0.954

90% 0.989 0.984 0.994 0.923 0.965 0.982

Table 1(b) suggests the performance of the estimator under the uniform design is much
better than under the normal design. This is best illustrated by lower percentiles for smaller

sample sizes. The median for P1 and P2 are remarkably high for all sample sizes.

Table 1 (c): Min{P1,P2}

Normal Uniform

percentile | n =500 n = 1000 n = 3000 |n =500 n=1000 n = 3000

10% 0 0 0.054 0.503 0.583 0.758
25% 0.013 0.086 0.341 0.582 0.673 0.817
50% 0.294 0.367 0.477 0.659 0.748 0.858
5% 0.453 0.541 0.618 0.756 0.818 0.902

90% 0.546 0.633 0.688 0.854 0.863 0.940
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A more comprehensive measure the discrepancies between the estimates and the identi-
fication region is min{ P1, P2} reported in Table 1(c). By this criterion, the estimator also

performs obviously better under the uniform design than under the normal design.

2.7. Conclusion

In this paper I have studied the identification and estimation of a class of binary response
models where the conditional median of the error term is bounded between known functions
of the regressors. I focus on the case where the payoff functions satisfy a linear index
specification. Though the index coefficients may not be exactly identified, a two-step extreme
estimator can estimate the identification region consistently regardless of point identification.
Furthermore, when point identification is achieved with bounded support of regressors, the
estimator is converges in distribution to a normal random variable at a rate of /n. Monte
Carlo evidence suggests the estimator has good finite sample behavior.

Directions for future research includes the search for point identification conditions when
the payoff functions have more general forms than linear indices. Another interesting issue
is the estimation of the model when the bounding functions L and U are only known up to
finite dimensional parameters. In particular, it will be interesting to look at what can be
identified when the payoff functions, as well as L and U, are known only to satisfy certain

shape restrictions.
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CHAPTER 3

Identification of Dynamic Binary Choice Processes

3.1. Introduction

In a typical dynamic binary choice process, the decision-maker’s payoffs in each period
depend on contemporary states and his choice of action, which in turn impact the distribution
of states in the future. The agent is forward-looking and makes a sequence of choices in each
period to maximize the sum of contemporary and future expected returns. The structural
parameters of the model are single-period returns, and the transitions between current and
future states. Such dynamic binary choice models have found wide applications in the
literature of empirical industrial organizations and labor economics. Recent applications
include replacement of bus engines in Rust (1994), analysis of unemployment insurance
in Ferrall (1997), the inventories of retailing firms in Aguirregabiria (1999), evaluation of
welfare policies in Keane and Wolpin (2000), and consumer stockpiling in Hendel and Nevo
(2005). Aguirregabiria (2007) gives an updated survey of estimation and inference of dynamic
discrete choice processes.

In this paper we study the identification of structural parameters in a class of dynamic
binary choice models where transitions to future states are independent from disturbances
(i.e. states unobservable to econometricians) conditional on current actions and observ-
able states. We address the question of what can be learned about the decision-maker’s

single-period payoffs under various restrictions on disturbance distributions. This question
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of identification is important for several reasons. First, the exact values of structural parame-
ters per se are interesting to researchers; Second, estimates for parameters are often needed
in empirical research for policy analyses beyond the simple prediction of choice probabilities
on the support of states observed. For example, researchers may wish to study policy im-
plications of counterfactual changes in the structural parameters, or to extrapolate choice
probabilities conditional on states out of the support observed. For these questions, struc-
tural parameters that are not identified relative to the truth may have different implications,
and it is important to find out what features of the parameters can be uniquely recovered
from observables in the model.

There has been some recent development in the literature on identification of dynamic
binary choice processes under the conditional independence restriction. Rust (1994) argued
through an example that single-period payoffs are not identified even in the absence of
disturbances. Magnac and Thesmar (2002) noted with this knowledge the differences between
expected payoffs from two sequences of choices are identified: one is to choose 1 today, 0
tomorrow and behave optimally afterwards, and the other is to choose 0 for both today and
tomorrow and behave optimally afterwards. Aguirregabiria (2005) studied counterfactual
choice probabilities instead of focusing on recovering structural parameters. He showed
counterfactual choice probabilities under policy changes of single-period payofts can be fully
nonparametrically recovered from choice probabilities observed, provided the form of policy
change is known to the researcher. Berry and Tamer (2006) considered an optimal stopping
problem where the decision to stop brings an end to the choice process, and showed the single-
period return from not stopping is uniquely recovered when the disturbance distribution is

known.
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This paper contributes to this growing literature in several ways: First, we give a full
characterization of the set of structural parameters (single-period payoffs and disturbance
distributions) that can generate the same choice probabilities as observed in a given dynamic
binary choice process. This introduces a convenient framework for studying the identification
of single-period payoffs under parametric and stochastic restrictions on disturbance distrib-
utions. Second, we show that with knowledge of disturbance distributions, the differences
between payoffs from two trivial policies of choosing one of the actions forever can be uniquely
recovered from choice probabilities observed. Third, we analyzed the identification of single-
period payoffs when the distribution of unobservable states is statistically independent from,
or symmetric conditional on observable states. For the case of finite space of observable
states, the set of observationally equivalent structural parameters is characterized by a sys-
tem of linear equations. Then by definition, the identification region of single-period payoffs
under these stochastic restrictions is the set of vector values that guarantee the existence of
distributions which satisfy the linear equations subject to systems of linear inequality con-
straints implied by these restrictions. Hence the identification region of single-period payoffs
under these restrictions is characterized by checking feasibility of the augmented system
of linear equations in the nuisance (distributional) parameters with inequality constraints.
Though proposed in the context where no form restrictions is imposed on payoff functions,
this approach of identification using linear programming can be readily extended to cases
where single-period payoffs are known to satisfy any form of restrictions.

The rest of the paper proceeds as follows. Section 2 specifies the model of dynamic binary
choice models and characterize the joint identification region of the structural parameters in
the absence of any parametric or stochastic restrictions. Section 3 discusses the benchmark

situation where the distribution of disturbances is completely known. Section 4 examines
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the identifying power of various parametric and stochastic restrictions on disturbance distri-

butions. Section 5 concludes.

3.2. The Model

We consider a single-agent, dynamic binary choice process in an infinite horizon. The
time is discrete and indexed by ¢. In each period ¢, the decision maker observes a state vector
s; = (x4, &;) from the support S(S) = S(X)®S(€) C RP™2, and chooses an action j; from a
pair of possible actions J = {0, 1}.! The state space S(S) C RP*? is fixed over time. For each
period, researchers can observe x;, but not ;. The latter is only observed by the decision-
maker. The single-period return for the decision-maker is U(sy, j;) : S(S) ® J — R! for all ¢.
Conditional on the current state s and action j, the distribution of states in the next period s’
is given by the transition function H;(s'|s) : S?(S) — [0, 1]. The agent has the same discount
factor 5 € (0,1) forever. Both the single-period return and the transition probability are fixed
over time.? The decision-maker chooses a deterministic, Markovian decision rule j(s) that
maximizes the sum of expected present and future payoffs: E[Y_ 87U (Syys, jris)|St, ji]
The following restrictions are maintained throughout the paper unless noted otherwise.

AS (Additive Separability) U(s, j) = u;(x) + £;, € = [0, 1] € R?, E(gj|x) = 0 V(x,7);

CI (Conditional Independence) H;(s'|s) = Fox(e'|x')G;(x'|x) Vs,s'e S, j € {0,1},
where F,x(.|x) and G;(.|x) are distributions defined on S(€) and S(X) respectively for
all x €S(X) and j € {0, 1}.
1Throughout the paper I use bold letters to denote vectors.
2For notational ease, I will drop time subscripts for the rest of the paper due to time-invariance of period
return, transitional probabilities, and the state and action spaces.
3In general, the optimal policies should be a function of past histories ; = {s; }i_o- However Strauch (1966)
showed for any history-dependent poilicy and starting state, there always exists a deterministic, Markovian
policy (a policy that depends on the current state only) with the same expeced total discounted payoff.

The implication is that for analysis of optimal policies, it suffices to focus on Markovian stationary policies.
Throughout the paper we focus on the case where the agent only considers deterministic Markovian policies.
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The transitions G = [G; Gy] are identified from data of observed states and actions
{Je, %}, directly. Throughout the paper, we maintain that the constant discount factor
is known to econometricians, while structural parameters u = [ug(.) u1(.)] and F,x are to be
identified. CI requires that persistence between current and future states is captured by the
persistence between observable states x’ and x, and therefore actions affect future states only
through {G;};—01. Given our focus on Markovian policies, an important implication of CI is
that choice probabilities conditional on current states is independent from past states. That
is, Pr(j; = 1|x;) = Pr(ji = 1|x4,x4—1) for all x;,x, ;. This is a testable implication using
observable distributions. Therefore, the choice probability function p(x) = Pr(j, = 1|x;) will
be a sufficient statistic for the purpose of identifying u and Fgx. Lemma 1 below shows
under AS, CI and some regularity conditions, the dynamic binary choice process has a static
representation.

REG (Regularity Conditions) (i) For j € {0,1}, u; € B(S(X)), where B(S(X)) is the
set of bounded, continuous, real-valued functions on S(X); (ii) For j € {0,1}, G; satisfies
the Feller Property;* (iii) For all x €S(X), j € {0,1}, Flmaxgeqo13{ctt1x}|xe, j] < 00.

Lemma 1 Under AS, CI and REG (i)-(i1i), the value function of the dynamic binary

decision process has a static representation:
J(s) = argmax;cqo1y 0;(x; u, Fex) + ¢

where d(x;u, Fox) = [00(x) 61(x)]" is the fixed point of the following operator 1" o §(x) =

[T1(x;0) To(x;0)], where

(3.1) Ti(x) = u;(x) + B / maxpeqo {56(<) + £ }dFux (€'x)dG, (X |x)

4G, (x'|x) satisfies the Feller Property if for each bounded, continuous function f : S(X) — R!,
| f(x")dG,(x'|x) is also bounded and continuous in x.
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As a result of this lemma, the conditional choice probability has a static representation:
P(x; W, Fepx)=Faqx [Ad(x)|x], where Ae = g —e1, Ad(x) = 01(x) — 0p(x), and the economic
interpretation of §,(x;) is the expected return from choosing j in the current period condi-
tional on observable states x;.> Throughout this paper, we focus on the question whether the
single-period payoff u can be uniquely recovered from observable distributions of {j;, x;}52,,
and treat Fyx as a nuisance parameter. Several technical notes are necessary before giving
a formal definition of identification. First, we adopt the conventional sup norm on the space
of R*-valued functions |[ul|ec = sup;ecqo1y.xex [4;(X)|. Second, to fix ideas, we focus on cases
with finite spaces of observable states, and leave the generalization to infinite spaces for
future work. Specifically, we maintain the following support condition for the rest of the
paper.

REG-(iv) (Discrete support of observable states) The space of observable states is time-
invariant and S(X) ={x1, X, .., Xx }, with x;, € R? for all k.

Definition 1 Two sets of structural parameters 8 = (u, [ x) and 0’ = (u', F!

e|X> are

observationally equivalent if p(x; 0) = p(x;0') for all x €S(X). Let U and F denote respec-
tively sets of single-period returns and conditional error distributions. We say u is identified
relative to u’" under F it V Fex, Fx € F, (u, Fex) and (0, F{|x) are not observationally
equivalent; and u is identified within U under F if u is identified relative to all u’ # u in U
under F. Let p*(x) be the choice probabilities observed. The joint identification region is
the set of all @ such that p(x;0) = p*(x), and the identification region under F is the set of

all u such that 3Fx € F with p(x;u, Fyx) = p*(x).

The conditional independence restriction can be weakened to A2”: H,(.]s) = H;(.|x),Vj,s and the repre-
sentation result is still valid.



107

As a starting point for discussing identifications, Proposition 1 below characterizes the
joint identification region of (u, F¢x) without further identifying restrictions. Let F'y 1‘X(t|x)
denote the inverse of Fa.x(.|x) at t € [0, 1].

Proposition 1 Suppose AS, CI and REG (i)-(iv) are satisfied. For any observed choice

probability p(x), the joint identification region is
3.2) O ={(u, Fx) : Aw(x;u) = FA81|X( (x)[x) — AL(x; Facx, p) for all x €5(X)}

where Aw(x; 1) = wy (%) —wo(x), AL(X; Facx, p) = &1 (%) —§o(x); w;(x) and &,4(x) are unique

fixed points of following operators:

33) Lo (@) = i) +8 [ w()dG(x]x)

(3.4) Teo(6,0) = B [ rxip Fae) + &, (x)dGy (x|x)
with k4 defined as

ko(X; D, Facx) = — s]dFaqx(8]%)

k1(X;p, Facx) = [s — q(x)]dFacx (s]x)

where ¢(x) = FA;‘X( (x)|x).

Proposition 1 gives a formal characterization of the joint identification region of (u, Fx)
in the absence of further restrictions. Note the assumption of a finite state space is not
essential for the proposition. It shows how changes in different specifications of u(x) can be

offset by varying Fa.x so as to generate the same choice probabilities p(x). In the special
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case of static binary choice models (where the discount factor is 0 forever), the joint iden-
tification region takes the familiar form: {(u, Fx) : FA’Ellx(p(x)]x) = Au(x) V x €5(X)}.5
Furthermore, note w;(x) is the expected payoff from the trivial policy of choosing j forever
conditional on current states.” Hence Proposition 1 suggests the conditional expectation of

differences in payoffs from two trivial policies can be completely recovered from observables

with the knowledge of Fa.x.

3.3. Identification with Known Transitions

This sections focuses on the identification of u when Fx is known in the dynamic binary
choice processes. Since the transition between x is observed, this implies the transition
H;(s'|s) = Fox(€'|x')Gj(x'|x) is also known under the conditional independence restriction.
Formally, we maintain the following assumption throughout this section:

KD (Known distribution) The true conditional error distribution Fx is known to the
econometrician (i.e. the set of possible error distributions F is a known singleton).

Berry and Tamer (2006) studied the identification of an optimal stopping model when
the disturbance distribution conditional on observable states is known. An optimal stopping
problem is qualitatively different from dynamic binary choice models in that the decision to
stop brings an end to the process. More importantly, the expected current and future payoffs
from stopping is independent of payoffs from not stopping, and therefore can be normalized
to zero for identification. In their paper Berry and Tamer showed when Fx is known, the

single-period payoffs for not stopping can be fully nonparametrically identified. Whether u

can be identified with knowledge of F,x in a general dynamic binary choice process is an

6 Aguirregabiria (2005a) was the first to show that Ad(x) can be decomposed into Aw(x) and A¢(x) when
the space of observed states X is finite.

"Recursive substitution in (3.3) implies w;(x;) = > oo o B°Ejs[uj(xe45)|xe], where Ej(.|x;) is the expectation
with respect to the distribution induced by unconditionally choosing j for s consecutive periods after the
current state x;.
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open question not addressed by the literature so far. Aguirregabiria (2005) showed when
F¢x is known, the differences between the expected payoff from two sequences of actions can
be identified. The first is to take action 1 in the current period and 0 forever in the future,
and the second is to take action 0 both now and in the future forever.

In this section, we show the knowledge of F;x helps identify u under fairly general rank
conditions on observable state transitions and locational normalization uy(x) = 0 for all
x € S(X). First note locational normalization of ug is necessary for identification. To see
this, let u; denote a K-vector with its k-th element being u;(x;). Let G’ denote matrices
of transitions with the (m,n)-th component defined as G7, ,, = Pr(x,[Xy,, j).

REG (v) Gl =limp o 3.1, B'[G7]" exists, where [G7]' is the t-th power of G.

By recursive substitution, the left hand side of (3.2) is (I+ GL )u;—(I+ G2 )ug, where I
is the K-by-K identity matrix. On the other hand, the right hand side is known for any fixed
Facx. Therefore (3.2) is a system of K linear equations for 2K variables, with infinitely
many solutions. The corollary below shows that once ug is normalized to be a zero vector,
u; can be identified under fairly week rank conditions on observable state transitions.

Corollary 1 (Proposition 1) Suppose AS, CI, REG (i)-(v) and KD are satisfied. Then
I+ GL)u — (I+ GY%)ug is identified from the conditional choice probabilities observed.
If ug is normalized to 0, then u; is uniquely recovered in R¥ under the singleton F if and
only if the matrix (I — SG!) has full rank.

To my knowledge, this is the first result in the literature that specifies conditions for non-
parametric identification of Au with the knowledge of Fa.x and the normalization of u, to
the zero vector. It also reveals precisely the impact of normalizing ug on the identification
of u;. We propose the following algorithm for nonparametric estimation of u; with the

knowledge of Fax.
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Step 1: estimate p(x) nonparametrically;

Step 2: use knowledge of Fa.x and first-step estimates p to compute A&(x; Facx,D);

Step 3: calculate Aw(x) = F&;‘X(ﬁ(xﬂx) — AE(x; Facix, D);

Step 4: estimate G’ nonparametrically and check the rank condition;

Step 5: calculate Ad(x) = (I — SGI)AG(x).

Relative to most of the maximum-likelihood based estimation procedure in the literature,
an obvious advantage of this algorithm is that it circumvents the numerically intensive task
of solving for fixed points through iterations, and then maximizing the likelihood over the
space of payoff parameters. Instead, with knowledge of Fyx, At(x) is computed by directly
plugging in preliminary kernel estimates. A direction for future research is to find regularity
conditions on Fa.x, G and the kernels in step 1 and 4 that could deliver desirable asymptotic

properties of the estimator.

3.4. Identification with Unknown Transitions

The identification result in the section above reveals what can be learned about u from the
history of actions and observable states, with full knowledge of F,x. However, in practice,
econometricians do not always have the luxury of knowing Fx. This section studies the
identification in the cases where Fx is known to belong to a parametric family, or to satisfy
certain stochastic restrictions such as median and statistical independence. As before we
focus on the case where the space of observable states S(X) is finite with K elements, and

leave the generalization to infinite spaces for future research.
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3.4.1. Parametric identification

First, we study below the identifying power of the most restrictive assumptions on F. This

is the case where structural parameters are known to belong to parametric families.

PAR (Parametric Family) For all Ae and x, Fax(Aelx) = F(Ae,x;0p), uj(x) =
u;(x;0,), where F and @ are known up to finite dimensional parameters O and 0,, and

are continuously differentiable in O and 6, respectively for all x.

Let 0 = (0.,0r), and w;,;(0.), 1;,(0.), k;,(0r) and &;,(6r) denote four K-vectors with

Owj(xg) Ouj(x) 0Okj(xy)
00y, > 00,; ' 00p,

the k-th coordinates being and agjé(:lk) respectively and [ being the

index for coordinates of €, and 8. Then by definition of w; and &; in (3.3) and (3.4),

wji(0.) = (I-BG7) " u;(0,)
£(0r) = (I-pG)"'pG K, (0r)
By definition, the choice probabilities p(xy; 0) = F[Aw(xk; 0,) + A&(xx; 0F), X; 0] Then

the gradient with respect to the parameters is Vgp(xy;0) = [Vo,p(Xk;0) Vo,p(xx;0)],

where

Vo,p(x1:0) = [f(xx;0)[Vg,w1(xx;0.) — Vg, wo(xx; 0.)]
Vorp(x1;0) = [f(xk;0)[Vo,& (x5 08) — Vo, & (xk;0F)] + Fo,.(xk;0)
with

= VTF(Tv X3 GF) |T:Aw(x;0u)+A§(x;9F)

=

n

2
I

VGFF[Ta X3 HF] ’T:Aw(x;ﬂu)—&—Aﬁ(x;Op)

;ij\
5
Kol
=
Il
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The following proposition gives sufficient conditions for the local identification of 6.

Proposition 2 Let 8, = (8°,0%) denote the vector of true structural parameters. Sup-
pose AS, CI, REG and PAR are satisfied, and Vgp(xy;80p) exists and is continuous at 6,
for all x;. If Vep(xx; 00)Vep(xk; 0p) has full rank for some x;, € S(X), then there exists an
open neighborhood around 6, that contains no other @ observationally equivalent to .

Next we show an example of how Proposition 2 can be applied to check local identifi-
cation when single-period returns take a linear index specification, and Fx is uniform and
independent of X.

Example 1 Let u;(x) = x'v; for all x, and let Ae be independent from x and distributed
as uniform on [0, a]. Then 6° = (v,,7,), % = a. Let X denote a K-by-d matrix with the
k-th row being x;. Let Py and P; denote K-vectors with k-th coordinates being p(xy)?
and [1 — p(xy)]* respectively. Then k;(a) = 4P;, &;(a) = (I — fG7)"'8G/k;(a), and
w;(y;) = I- BGj)_IX’Yj- Let Aw(vo,71) = wi(71) — wo(70): A&(a) = &;(a) — &y(a), and

1; denote a unit column vector with the k-th element being 1. It follows from some algebra:

1 '
Veup(Xk; 9) = a[veuwl(’h) - Voqu(’Yo)] 1y

Vorp(i8) = {[Vati(a) — Vabola)] + o, (6)}'1,
where

Vg la) = (- BG) TGP,
Vow;(v;) = (I-pG)"'X

Fy,.(0) = —a*Q[Aw(PyO,fyl)—i—A{(a)]
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The rank condition in Proposition 2 can then be checked for all x; using knowledge of the
primitives G’, 3, and the observable P;. W

Directions for future research along the line of parametric identification includes checking
local identifications for different parametric families, as well as search for primitive conditions

for global identification within certain parametric families.

3.4.2. Semiparametric identification

In practice, it is not always justifiable to restrict the set of possible error distributions F
to a parametric family. On the other hand, on most occasions it is plausible to introduce
stochastic restrictions such as the conditional symmetry or statistical independence of Fa.x.
In this section, we study the identifying power of these restrictions. The definition of the joint
identification region (3.2) suggests any stochastic restrictions on Fyx will have to interact
with observable transitions G’ to give identifying power. However, G’ is observable and
researchers do not have the freedom to put restrictions on them. In this subsection, we
first look at what can be learned about u under the conditional symmetry and statistical
independence of Ae from x. We will also characterize the identification region of u under
these restrictions, and discuss the impact of particular properties of G’ on identification.

3.4.2.1. Review of static binary choice models. Manski (1988) gave a thorough treat-
ment of the identification of the threshold-crossing model of binary response, where the
binary outcome y is determined by an observable random vector x and by an unobserv-
able scalar € through a model y = 1{x3 + ¢ > 0}. The conditional distribution F,x is
continuous and strictly increasing. Given these maintained restrictions, he investigated the
identifiability of 3 under different restrictions on F,x. These include mean independence,

quantile independence, index sufficiency, statistical independence and the case where Fx
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is completely known. He found that (1) mean independence has no identifying power; (2)
quantile independence implies that 3 is identified up to scale, provided that the distribution
of x has sufficiently rich support; (3) index sufficiency can identify the slope components
of 5 up to scale and sign, also under certain rich support condition on x; (4) statistical
independence subsumes both quantile and statistical independence and therefore implies all
positive findings above; and (5) when ¢ is independent from x with a known distribution,
identification of B only requires the distribution of x to have full rank.

Matzkin (1992) discussed nonparametric identification of static binary choice models,
where Pr(d = 1|x) = Pr(Ae < wuy(x) — up(x)) and Ae = g9 — ;. She maintained the
assumption of statistical independence between Ae and x, and normalized ug(x) = 0 for all
x. She showed that, under regularity conditions such as continuous support of x and strict
monotonicity of Fa., the true parameters u and Fa. can be uniquely recovered from the
choice probabilities Pr(d = 1|x) within a set of utility functions such that 7 u, @ s.t. u;(x) —
up(x) is a monotone transformation of @ (x) —g(x). More interestingly, she constructed such
sets of utility functions using restrictions with economic substances such as monotonicity,
concavity and homogeneity. She also generalized this positive identification result under
statistical independence from binary to polychotomous choice models in Matzkin (1992).

In Section 3 above, we have already shown that when F,x is known, Au can be non-
parametrically identified under fairly weak rank conditions of G if ug is normalized to O.
This is the dynamic analog of the positive result in the static case in Manski (1988). On
the other hand, as it turns out below, there is no direct analog of the static case in the
identification of dynamic binary choice processes under the stochastic restrictions such as

conditional symmetry and statistical independence. This is not a surprising result as the
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definition of the joint identification region suggests any restriction on Fyx has to interact
with G’ to give identifying power.
3.4.2.2. Statistical independence. Statistical independence is a strong stochastic restric-
tion that implies several popular weaker forms in the literature of semiparametric identifica-
tions. These include both distributional and mean index sufficiency, as well as distributional
and mean exclusion restrictions. By construction, the identification region of u under statis-
tical independence is a strict subset of that under any of these weaker stochastic restrictions.
SI (Statistical Independence) Ac is statistically independent from observable states x,
and is continuously distributed with positive density on a closed interval [er,ey].
Without further restrictions on u, the difference between single-period returns is not
unidentified under SI. To see this, note that given observable choice probabilities, the joint

identification region under SI is
Or = {(WFa) : Aw(x;u) = Fi2 (p(x)) — A&(x; Fac, p) ae. x}

where Aw and A¢ are defined as in Proposition 1 above, with x, simplified as

q(x)
(35) Ho(X; D, FAa) = / FAE(S)dS
er
q(x)
(3.6) k1(x;p, Fac) = —/ 1 — Fac(s)ds
eL

where q(x) = Fx!(p(x)). Then it can be shown that for a given pair of true parameter
(u*, F1.), it is always possible to perturb F. slightly to Fy. and find a corresponding u’
that is close to u* such that (u’, Fy_) is observationally equivalent to (u*, FA.). Hence u*

is not locally identified.
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Let Fsr be the set of Fa.x that satisfies the SI restriction. The next question is how to
characterize the identification region of u under Fg;. Intuitively this is the set of all u for
which there exists certain Fa.x in Fgr such that p(x;u, Faqx) = p*(x). The next corollary
of Proposition 1 formalizes this idea. Without loss of generality, order (xi,..,Xx) such that
p(x,) < p(x,) for m < n. Let Q and k° are K-by-1 vectors, with Q; = Fx!(p(x;)) and
kY = Ko(Xk; Fae)-

Corollary 2 (Proposition 1) Suppose AS, CI, SI and REG are satisfied, and normalize

ug = 0. Then the identification region of u; under Fg; is 6, = {u; € RX . Wg; has

solutions in Q and k°}, where Wgq; is a system of linear inequalities defined as:

(37) ([I-BGH(wm—-Q) = [I-BG")'BG’ - (I-pG")'BG]x’

IN

L Q1 <Q<..<Qr<cpy

0 < k) <p(x1)(Q1—er)

p(xk-1)(Qr — Q—1) < KL — ki1 < p(x)(Qk — Qi-1), for k=2, K

Example 2 For simplicity in algebra, consider the special case of optimal stopping
problem where one of two actions j = 0 is irreversible and leads to zero expected payoffs both
in the current and future periods. Let the single-period return for j = 1 be U; (x,6) =u(x)—¢,
where the unobserved state ¢ is continuously distributed on a closed interval e, ey] in R.
Let the transition when j = 1 be G(x|x). Then by similar arguments, the joint identification
region is O = {(u,F.) : F. N (p(x)) = uw(x) + B [ ko(x; F-, p)dG(X'|x) a.e. x}, where w and
¢ are fixed points defined as before. Now consider the case for K = 2. Without loss of
generality, order x; and xs such that p(x;) < p(x3). Let u be a 2-by-1 vector with the

k-th coordinate being u(xy). Denote G = [1 — a a;1 — b b]. The joint identification region
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is given by the following linear system u = Q — SGk, where Q and k are 2-by-1 vectors,
with ¢z = F- (p(xy)) and ki, = ko(xg; FL) for k = 1,2. Let p denote p(x;). By definition,

coordinates of Q and k have to satisfy the following restrictions:

¢G1 > €32 —q1 > 0;—q2 + ey > 05
k1 > 0;—k1 +pi(qn —er) > 0;

ke — K1 —p1(ge — 1) > 0561 — Ko +p2(g2 — 1) >0

Applying the Fourier-Motzkin procedure of iterated eliminations suggests the system has

solutions (g1, g2, K1, k2) as long as the following conditions are satisfied:

U >er; uy —ep+ Papa(ey —er) >0

(1 — Bbpa)(ur — er) + Bapa(ug —er) >0

This gives a characterization of the identification region of (u;,us) under the statistical
independence of ¢ from x. W

Of course, a general dynamic binary choice model is qualitatively different from an op-
timal stopping problem. But the example above shares the same basic idea in the general
case in that the identification regions are defined by checking the consistency of a system of
linear inequalities. Though the corollary is given with no restriction on u, the methodology
extends immediately to semiparametric cases where u = [u;(x;0,,) uz(x;0,)] is known up
to finite dimensional parameters. The identification region of 6, under Fg; is simply the set
of values for which the system Wg; has solutions in Q and k°. In the example given above,

the identification region is rather wide. However, the size of the set itself is informative,
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as it reveals what can be learned about u under the assumption of statistical independence
between Ae and x.

3.4.2.3. Conditional symmetry. Conditional symmetry is the strongest locational sto-
chastic restriction. It implies both mean and median independence.

CS (Conditional Symmetry) Facx is symmetric around €y conditional on all observable
states x, and s continuously distributed with positive density on a known closed interval
lers — Coenr + O3

Let Fcs be the set of Fa.x that satisfies the CS restriction. The identification region of
u under Feg can be characterized by similar arguments as in Corollary 2, except that the
inequality constraints will take a different form. Without loss of generality, let p(x;) < p(x2)
<L < plxy) < %, and % < p(xar41) < .. < p(xk). Let Q and k° denote K-by-1 vectors
with the k-th coordinate being Qy = F;;‘X(p(xkﬂxk) and ko(Xp; Facx) = fi’“ Facix (s]|xi)ds
respectively.

Corollary 3 (Proposition 1) Suppose AS, CI, CS and REG are satisfied, and normalize
uy = 0. Then the identification region of u; under Fg; is ©,, = {u; € R¥ : Upyg has

solutions in Q and k°}, where ¥rg is a system of linear inequalities defined as:

(I-6GY) " (w - Q) = [(I-BGY) 4G — (I HG')'SG]x"

IN

em —C Qn<em, E<M

IN

EM Qpn<enu+C, kE>M
0 < k) <pxp)(Qr—en+0), Vk<M

Qr—en < . <C—=p(xp)lem +C —Qxl, Vo> M

81 focus on the case with fixed support of Ae for the sake of simplicity in explanation. The methodology
proposed below can be generalized to allow supports to vary with x.
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Example 3 Again consider the special case of optimal stopping problem with K = 2.
Suppose p(x1) < % < p(x2). As before, the joint identification region is given by the following
linear system u = Q — SGk, subject to the inequalities above. Applying the procedures of
Fourier-Motzkin eliminations shows solutions exists if and only if )y > u; and g3, > us.
This is the identification region of u under the conditional symmetry of F,x. W
3.4.2.4. Restrictions on observable transitions. As discussed earlier in this section,
restrictions on F;x can only impact the identification region of u through interactions with
observable transitions G7. In practice it is possible that G7 might be invariant within certain
subset of observable states. Knowledge of such a property can contribute to the approach of
identification by checking the feasibility of systems of linear inequalities.

SUB (Subset Invariance) 3X C S(X) such that G’(.|x) = GI(.|X) for j = 0,1 and all
x,%x € X.

To incorporate this into the framework of linear system, consider the case under ST
with a finite observable state space of K elements. Let K C K denote the set of states with
invariant observable transitions. Note the linear equalities in the systems Wg; can be written
as

w - Q=— 7, A(G)Tw—[2, B1(G) k" + 22, B(G") ]k’
The right-hand side is a K-by-1 vector, whose coordinates in K are identical under SUB. It
follows that for all ki, ky € K, uy(xg,) — w1 (Xk,) = Fal(p(xk,)) — FAZ(p(Xk,)). Therefore,
a necessary condition for feasibility of the system is that u;(x)) has to be ranked in the
same order as Fx!(p(x;)) for k € K. Similar necessary conditions also exists for the case
under C'S restrictions, except that u;(xj) in that case need to be ranked in the same order

as FA_Ellx(p(xk)]Xk) instead of F!(p(xy)) on K.
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3.5. Conclusions

In this paper, we have introduced a new approach for studying identification of structural
parameters in dynamic binary choice processes. The approach is based on characterizing the
joint identification region ©; of single-period payoffs u and disturbance distributions F;x
through a system of linear equations in these parameters. Using this framework, we show
that with knowledge of the distribution of disturbances, the differences between two trivial
policies of choosing one of the two actions forever can be uniquely recovered. Furthermore
the identification region of u under various stochastic restrictions on the nuisance parameter
Fgix can be defined as the set of u for which there exist nuisance parameters which satisfy
the linear equations characterizing ©; subject to inequality constraints implied by these
restrictions. Under this framework, we show through examples that both the conditional
symmetry and the statistical independence of unobservable states have limited identifying
power on single-period payoffs. This approach of identification through linear programming
can be extended immediately to study the identifying power of any parametric or shape
restrictions on single-period payoffs. Directions of future research include the search for
restrictions on u and Fx that can deliver greater identifying power, as well as the definition
and statistical properties of new estimators that make use of the positive identification

results.
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APPENDIX

Appendices for Chapter 1-3

1. Appendix for Chapter 1

1.1. Proofs of identification results

Proof of Proposition 1. To prove necessity, suppose {0, Fx} € O¢y ® F generates G in
such an equilibrium. Then the support of B is S(B) = [by, by]", with 80 = vj,(z1; 0, Fx) and
v, = bo(zy; 0, Fx), where vy, (z;6, Fx) is a shorthand for vy, ,(x,z;6, Fx) (with subscripts
for n dropped for notational ease). Note Vb € [09,b%]", G&(b) = Pr(be(X;0, Fx) < b) =
Pr(X < by*(b)) = Fx(by'(b;f, Fx)), where the equality follows from the strict monotonicity
of equilibrium strategies. Then symmetry of the equilibrium and exchangeability of Fx im-
plies G%(b) is exchangeable in b Vb € S(B). The affiliation of B = (by(X1; 0, Fx), ., bo(X,; 0, Fx))
follows from the monotonicity of by(.) and the affiliation of X (by Theorem 3 in Milgrom
and Weber (1982)). The first-order condition (1.2) implies £(b;G%) = vi(by*(b); 0, Fx)
Vo € [09,bY], where vy, (x;6, Fx) is increasing on the support of Fx by the definition of
(0, Fx) € © ® F. Hence the strict monotonicity of by*(.; 0, Fx) implies £(b; G) is increas-
ing over [by, by|. The proof of sufficiency makes use of the following claim and an example
constructed below.

Claim A1 Suppose a bid distribution G% satisfies the necessary conditions in Proposition

1. Then {0, Fx} € © ® F rationalizes Gy in a first-price auctions if and only if

(1) Px(x) = Gg(& (vn(2130. Fx); Gp), -, € (vn(03 0, Fx); Gg))
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for all x on the support of Fx.

Proof of Claim A1 Suppose {, Fx} € © @ F rationalizes such a G§. Then Fx(x) =
G%(bo(x;0, Fx)) for all x € [z, zp]Y, where by(.;0, Fx) is the equilibrium strategy char-
acterized by the first-order condition (1.2), which implies by(z; 6, Fx) = ¢ (vn(2; 0, Fx); G%)
for all 2 on support by the monotonicity of £(.; G%). It follows Fx (x) = G% (&' (va(x; 0, Fx); G%)).
To prove sufficiency, suppose G% is symmetric and affiliated with support [69,0%]", £(.; GR)
is increasing on the support, and there exists (0, Fx) € © ® F that satisfies (.1). We
need to show G%(b) = Fx(by'(b;0, Fx)) ¥Yb € [b9,b2]", where by(x;0, Fx) is the sym-
metric, increasing equilibrium strategy characterized by (1.1).! By supposition of (.1),
Fx(x) = GR(€ Y (vi(x;0, Fx); G%)) for all 2 on support, where the support of Fx is on
(21, zp)Y, with ), = v; 1 (£(by; GY); 0, Fx) for k = L,U. Hence the monotonicity of vy,
and ¢ implies G%(b) = Fx(v; ' (&(b;GY);0, Fx)) for all b € [by,by]". Therefore it suf-
fices to show that &' (vy(.; 0; Fx); G%) satisfies the characterization of equilibrium strategies
(i.e., the differential equation (1.1) with the boundary condition & ' (v, (wy;0; Fx); G%) =
vp(zr; 0, Fx)). Note definition of the support of Fx in (.1) implies vy (z1; 0, Fx) = £(br; GS),
and limy ., £(b;G%) = br. A similar argument to Li et.al (2002) completes the proof.
Q.E.D.

Suppose 0(x) = ({0(z;,4:)},) Vx € [z, 2p]", where y; = max;z ;. That is, bid-
ders’ valuations only depend on his own signal and the highest rival signal, and it is a
strictly interdependent value auction provided 0 is not degenerate in the second argument.
Then v, (x;0, Fx) = ({6(zi,4:)}™,). Therefore, a distribution G% that satisfies the neces-

sary conditions is rationalized by any 6 € © that satisfies "max;.; X;-sufficiency" with the

IExistence and uniqueness of symmetric, increasing PSBNE is not an issue because the definition of © and
F guarantees they exist for all {0, Fx} € © ® F.
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boundary conditions: 6(xy, ) = £(by), for k € {L, U}, and a signal distribution defined as

Fx(x) = GB(E 1 (0(21,21): GB), -, € (O(n, 20); GB))- U

Proof of Lemma 1. The proof uses the monotonicity and differentiability of by(.). By

change of variables, Trix(el) by (z)A(bo(z); GY) and for all s < z, L(s|z; Fx) = L(bo(s)|bo(x); G).

Fy|x (z]z)

Furthermore, in equilibria vy, (z, x; 60, Fx) = £(by(x); GS) for all z € [z, zy]. By definition,

for x > x*(r),

bo(z) = TL(x*@’)‘x;FX)‘f‘/ un(s, s; 6, Fx)L(s|; Fx)A(x; Fx )dx
2 (1)

= PE(ba" D)8 + [ el GBI n(s)li): G ofo)s GV 5

= 6,(bo(x); Gp)

where the last equality follows from change of variables in the integrand. OJ

Proof of Lemma 2. Proof of (i) : By definition all structures in © ® F satisfy A1 and A2.
The affiliation of signals and monotonicity of 6§ implies that v, (z,y) is increasing in = and

non-decreasing in y. For all © > v,

vp(z,y) > /y vp(z, s)leX—(S|I)ds =v(z,y) > /y vp (s, S)fYIX—<S|x)d3 = v(z,y)

oL Fyx(y|z) . Fyx (y|)

Therefore vy, (zy) = v(xy) = v(xy) and vy (x) > v(z) > v(x) Vo € [rr,zy|. The proof of

monotonicity of v, (z,z) in z is standard and not repeated here. For any = < z’ on support,
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the law of total probability implies

v(2') = B (Y)|Xi=2Y; <)
= Eun(Y)|Xi=2"Y; <x)P(Y; < 2| X =2,Y; <af) + ...

E(wv,(V)|X; =22 <Y; <2 )Pz <Y; <2|X; =2"Y; <2

By monotonicity of v, and 2’ > z, E(v,(Y)|X; = 2/, < Y; < 2’) > v (z). By affiliation of
X and Y, E(v,(Y)|X; =2,Y; < x) > v/(x). Therefore v(z') > v(x).

Proof of (ii) : follows immediately from proof of (). O

Proof of Lemma 3. For the first claim, note vy, (z, z;¢) = v(z, x;¢) Vi € ©Op ® F. Hence
x(r; ) = x*(r;¢) Vi € ©p @ F. For the second claim, consider Og = {0 € © : 0(x;,x_;) =
ax; + é(x_i) for some a > 0 and 0 exchangeable and non-decreasing in x_;}, and F; =
{Fx € F : Fx(x) = ', Fx(x;) for some Fx}. Then ©g ® F; is a non-empty subset
of ® ® F.? By definition, v(x,z;v) — vz, 2;9) = ffL(vh(x, s)— vp(s,s)) g‘;((j‘z))ds =

[, alz —s) g"i((zl‘?)ds < a(zy —xyp) for all z € [z, 2y] and ¢ € Og ® F;. Hence Ve > 0,

sup, |v(z, z;v¢) — vz, ;)| < e Va € (0, ﬁ) That is, v(x,z) converges to v(x, )
uniformly over x as the weight on a bidder’s own signal a approaches zero. The rest of the
proof shows this uniform convergence of v; to v implies the uniform convergence of x(r) to
x*(r) for r in the nontrivial range as a | 0.

Claim: Suppose 0(x) = ax; +b) . ,;x; and private signals are i.i.d. with marginal
distribution F € C'zp,zy] such that f; < F'(z) < f, Vx € |xp,2y]. Then Ve > 0 and
y >, v(y,y) —v(z,z) < e implies y —x < ¢/k, where k = a+ (n — 1)b§—§.

2F; C F because independence is a special case of affiliation.
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Proof: Denote p(z) = v(x,x). Then ¢'(x) = a—i—(n—l)bfx(m)[f;L(a:—j)fx(j)di]/FX(m)Q.

The bounds on fx imply ¢'(z) € [a + (n — 1)bf—l2

Fra+(n— 1)b§—’2]. Now suppose Je > 0 and
u 1

y > x on [z, xy] such that v(y,y) —v(z,z) < e but y — x > ¢/k. Then by the Mean Value

Theorem, 3%; between xj and y; such that ¢'(Z) < k. This contradicts the lower bound of

¢'(z) on [z, zy].  Q.E.D.

For all ¢ > 0, we can pick a < and define a structure ¢ = {a, F'} with any

Ty — X,
F € C'zp,zy]. Then it follows from the claim that for all » > 0,

ke > sSup U(xax;¢a,F) _Ul(xv'r;,lvba,F)

$€[$L,$U]

> v(zn(r), oa(r); e r) — vi(zn(r), zn(r); Yo r)
= v(@n(r), za(r); o) — v(@*(r), 2" (r); ¥o,p)-

Hence by the claim above, z,(r) — z*(r) < € for all » > 0. O

Proof of Lemma 4. For all z > x;(r), that v,(z,z) > r Vo € [x,(r), zy] suggests
b-(z) < rL(x(r)|z; Fx) +/ vp(s, s)dL(s|x; Fx)
zy(r)
and for all = > x;(r),

by(x) > rL(xp(r)|z; Fx) + /x vp(s, s)dL(s|x; Fx)

xp(r)

By non-negativity of 6, 2*(0) = z1 and z,(r) > 2*(r) > x;(r) > 2*(0) for all » > 0. Hence

equation (1.2) holds for z;(r) and z,(r). Substitution and change of variable shows for all



X Z l’l(?"),

bo(x)

br(z) < 0r1(bo(z); Gp) Eri(bo(:vz(r))!bo(fc))Jr/b( ())S(E)di(glbo(:v))

and for all = > z,(r),
- bo(x) -
br(x) = 0, (bo(2); G) = rL(bo(xa(r))[bo(2) +/ §(0)dL(blbo(x))

bo(zn(r))

For all b > by(xy(r)) and k € {I, h},

>0

540:68) = A0 60— (rEutontl0) + [ ebrar))

o(zk(r))

Since by(z) > 0 Va > xp, this implies 0, (bo(.); GB) is increasing for z > xx(r).
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U

Proof of Proposition 2. It has been shown above that bo(x*(r)) € [bo(xi(r)), bo(zn(r))].

By construction, 6, x(bo(zx(r)); Gy) = r = b.(z*(r)). Hence both {3, 4(bo(.); GE) reqn} are

invertible at ¢t > r over the interval [zy(r),zy] for k € {l,h}. It follows from the lemma

above that 4, ) (t;G%) < bo(b, '(t)) < 6,,(t; Gy) for t > r. The rest of the proof follows

immediately.

O

Proof of Lemma 5. To prove (i), note in equilibria b,(z*(r)) = r = v(z*(r)) = E(V;|X; =

x*(r),Y; < a*(r)) > bo(z*(r)), where the last inequality holds by equilibrium bidding con-

ditions with no reserve prices. Besides V& > x*(r), b.(z) < bo(x) implies 0. (z) > by(z). It

follows from Lemma 2 in Milgrom and Weber (1982) that b.(z) > bo(z) for all = > z*(r).

For (i), it suffices to note sgn (b (z) — by(x)) = —sgn(b.(z) — bo(x)) Vo > x*(r).

O

Proof of Proposition 3. By definition of vy, Pr{R!/(r) < vy} = 0. Note Pr{R!!(r) =

vo} = Pr{X® < 2*(r)}, Pr{vy < R!(r) < r} = 0 and Pr{R/I(r) = r} = Pr{xX®W

v
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2*(r) A X@ < 2*(r)}. Because f.(z) > 0 Vo € [2*(r), xy] and B, (z*(r)) = vp(2*(r)) > 7, it
follows Pr{r < R (r) < v(z*(r))} = 0. Hence:
FRH(T)(t) = 0 Vi<
= Pr{XW <a*(r)} Vte |[Viy,r)
= Pr{X® <a*(r)} Vte[rv(z*(r)))
Next note Vt € [v,(z*(r)), +00), Pr{R!(r) € [v,(z*(r)), 1]} = Pr{on(X@) € [v,(x*(r)), 1]}
Hence for all ¢ in this range,
Pr{R"(r) <t} =  Pr{R"(r) < vp(a*(r))} + Pr{R"(r) € [v,(2*(r)), t]}
= Pr{X® <a2*(n)} + Pr{oa(X?) € [vn(a*(r)). 1]}
= Pr{vh(X(Q)) <t}
This completely characterizes the counterfactual distribution of R (r).
For t < 7, Fpu,(t) = Pr{bo(XW) < bo(a:(r))} < Pr{XW < 2*(r)} = Fauy(t) <
Pr{by(XW) < by(zp(r))} = FRiry(t). For t € [r,v(z*(r))),
Frugy(t) = Pr{va(X®) <t} < Pr{v,(X®) <ui(2*(r))}

= Pr{X(z) < 1'*(7’)} = FRII(T)(t) < Pr{bo(X(z)) < bo(ﬂfh( ))} F}%H(T ( )

due to the monotonicity of by(.). For t € [v(z*(r)), vn(xn(r))),

Fruy(t) = Frigy(t) = Pr{v(X®) <t} < Pr{u(X®) < vi(an(r))}

= Pr{b(X®) <bo(wn(r))} = Frrigy(t)
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due to the monotonicity of by(.) and wvy(.). For t € [v,(xy(r)), +00),
Fiytr(t) = ot (£) = Fir gy () = Prioa(X®) <1}

and point identification of revenue distribution is achieved on this range. 0

Proof of Proposition 5. Auction characteristics are common knowledge among all bid-
ders. Hence the symmetric equilibrium satisfies the following first-order condition: (By

symmetry among the bidders, bidder indices are dropped for notational ease.)

Iyvix,z;n (zlz,2;n)

2b(x, z;n) = [0n(z, ;1) — b(z, 2; n)]FY‘X’Z;N(ﬂ%m)

0X

where Oy, (z,z;n) = E(Vi|X; =Y, =2,Z = ;N =n), Y; = max,» X;, Fy|xzn(tlz,z;n) =
Pr(max;, X; <t|X; =2,7Z = 2;N =n) and fy|x,zn(t|z, z;n) is the corresponding condi-
tional density. The equilibrium boundary condition for all (z,n) is b(x, z;n) = Op(xp, 2;1).
For every z and n, the differential equation is known to have the following closed form

solution :

b zim) = [ "h() + (s; n)dL (sl )

L

Independence of X; and Z conditional on N implies both ¢(x;n) and L(s|x;n) are invariant
to z for all s and x. Hence under assumption A1°,A2 and A4, b(xp,z;n) = Op(xL, 2;0) =

h(Z'7y) + ¢(xr;n). For x > xp, b(x,z;n) = h(2'y) + f;L o(s;n)dL(s|z;n) for all (x,z,n). O

Proof of Proposition 6. Differentiating b,(x) for > x*(r) gives

(.2) b, (x;0, Fx)/A(x; Fx) + by (20, Fx) = vs(2: 60, Fx)
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For all r > 0 and x,y > z*(r),

(3) Frx(yls) = Pr(Y < ylo—a)
= Pr(Y <z*(r)| X =2)+Pr(z*(r) <Y < y|X =1x)
= Pr(b, (V) < rlby(X) = by (@) + Prlr < bu(Y) < by ()b (X) = b, (2))

= 7M|B<br(y)|br(x))

The equality of the two terms follows respectively from the facts that Y < z*(r) if and only
if b,.(Y) < r and b,(z) is increasing for x > z*(r). Taking derivative of both sides w.r.t. y

for y > z*(r) gives

(-4) frix(yle) = b,.(y) 935 (- (y)[br(2))

for all z,y > x*(r). Substitute (.4) and (.3) into (.2) proves the lemma. O

Proof of Proposition 7. Let X #™ denote the ith largest signal among n potential bidders.

Then Pr(X@®™ < 2*(r)| X" > 2*(r)) is observed. By the i.i.d. assumption, Pr(X®") <
nE" (1 - F))
1— Fn
increasing in F,. Therefore F, is identified, and Pr(X(®) < 2*(r)) = F™. O

P (PIX0D > 0t (r) =

, where F, = Pr(X; < 2*(r)). The expression is

T

1.2. Proof of the consistency of {F};,(T)}k:l,u

The lemma below extends the Basic Consistency Theorem of extreme estimators to those de-
fined over random compact sets rather than fixed compact sets. It will be applied repeatedly

in our proof of consistency of the three-step estimators.
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Lemma B1 Let Q(.) and Qy/(.) be nonstochastic and stochastic real-valued functions de-
fined respectively on compact intervals © = [0',0"] and Oy = [0y, 0%], where Pr{[0y,0%] C
[0',0"]} =1 for all N and 6% — 6% almost surely for k = l,u. For every N = 1,2,..., let
On € O be such that Qn(0y) < infgeo, Qn(0) + 0p(1). If Q(.) is continuous on © with a
unique mazimizer on © at 0 € [0',0"] and (ii) suppee, Qn(0) — Q)] 20 as N — +oo,

then Oy 2 0.

Proof. In the case 6, € (6’l, 6"), the proof is an adaptation from that of Theorem 4.1.1 in
Amemiya (1985) and is included in Lemma A2 of Li et.al (2003). In the case 6 = 6% for
k = 1, u, the continuity of Q(6) at # = 6 is sufficient for limy_, . Pr(fy > 6% + &) = 0 for

all € > 0. The proof is standard and omitted. O

1.2.1. Regularity properties of Gy, p and gy p. Let fy x and Fy x denote the joint
density and distribution of Y; and X; respectively. Let 3(.) be the bidding strategy under
increasing, pure-strategy perfect Bayesian Nash equilibria. That is, f(z) = f;L vp(s)dL(s|x)
where L(s|z) = exp{— [ g’;—%du} The lemma below gives regularity results about the
smoothness of the equilibrium bidding strategy.

Lemma B2 Under S1 and S2, the equilibrium bidding function B(.) admits up to R

continuous bounded derivatives on [xr,zy], and ('(.) is bounded below from zero on [xy, xy].
Proof. The proof is similar to Li et.al (2002) and omitted. O

This leads to following results of further regularity conditions of the joint density of equi-
librium bids B and highest rival bid M (denoted g p) and Gasp(m,b) = [, gar,5(b, b)db.

The relevant support is [br, by]* where by, = B(xr) = viy(zr) = 0(x1) and by = B(xy).
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Proposition B1  Under S1 and S2, (i) £ has R continuous bounded derivatives on
(b1, by] and &'(.) > ¢ > 0 for some constant on [b,by|; (i1) Gu.p and gy p both have R —1

continuous bounded partial derivatives on [br, by]?.

Proof. By definition in equilibrium, 8(v, *(£(b))) = b. Hence £'(b) = {8'[v; 1 (£(b))]v;, ¥ (€(b))} !
where both v} V'(.) and 8'(.) are bounded below from zero and have R — 1 continuous deriva-
tives under S2 and Lemma B2. For Part(ii), note Pr(M < m, B < b) = Pr(Y < v, '(£(m)),
X < v, (&(b))) by the monotonicity of 5(.). Hence Gy p(m,b) = 2 Pr(M < m,B < b) =
v, Y(E(D))E (B) Pr[Y < vy H(E(m)), X = v, *(£(D))], where the third term has R +n — 1 con-
tinuous derivatives and the first two terms have R — 1 continuous bounded derivatives on
by, bul?. And gar,p(m,b) = 2 Gy p(m, ) = v Y (€(B))E () vy (Em)E (m) fyx o (E(m)),
v, 1(€(b))], where the last term has R+ n — 2 continuous derivatives on [by, by|? and v; ¥(.)
has R — 1 continuous derivatives (see proof of Lemma B2 below). Hence gpp(m,b) has

R — 1 continuous derivatives. [l

1.2.2. Consistency of o), and b} . The following lemma give the rate of uniform conver-
gence of kernel estimates CA}'M7B and Gy 5 to Gy and gy 5 over C3(B), and GM,B to Gy
over ég(B ). It lays a foundation for our proof of uniform convergence of é ; and é‘ as well as
3l,r and 3;1’,".

Lemma B3 Let hg = cg(log L)L)V ?E+20=5) and h, = c,(log L/ L)Y ?E+2=4) " Under

S1, 52, and S3,

SUpPc2(p) Gars — Gursl = O(RETY), supce(p) |98 — 9u,B| = O(hl™)

SUPye () |Gars (0, b) — Garp(b,b)] = Op(hF)
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Furthermore, if R > n,

GMB(EIM b) . GM,B(E[M b)
Gup(b,b)  Gup(b D)

| = O0p(hy™)

SUDg, <bbeCs(B | g

Proof. See the last section of Appendix B. 0

The next lemma proves the uniform convergence of é and é ; over the relevant expanding
supports.

Lemma B4 Let hg = cg(log L) L)Y@E+2=5) qnd h, = c,(log L/ L)Y *E+2n=4 /.
der S1, S2, and S3, supycc,(p) E() — €)Y = O,(RF ™ VY if R > n — 1. PFurthermore

SUDPy>5, beCs (B |5l( ) = &i(0)] = Oy(hy hy 2" ) if R>2n—2.
Proof. See the last section of Appendix B. 0J

The proposition below establishes the consistency of ZA)%T using the extended version of
the Basic Consistency Theorem. The proof proceeds by verifying assumptions in Lemma B1.
Note the range of r for nontrivial analyses is the interval S, = [v(z 1), v(zy)].

Proposition B2  Let hg = cg(log L/L)Y?E+2=5) and h, = c,(log L/ L)Y @E+n=4),

Under S1, S2, and S3, Y —>b0 if R>n—1 and b} —>b27T if R>2(n—1) forallreSs,.

7’ T’

Proof. It suffices to show that for all r € S,, (i) (£(b) — )2 and (£,(b) — r)? converge in
probability to (£(b)—r)? and (£;(b) —r)? uniformly over Cs(B); (ii) (£(b) —r)? and (£,(b) —7)?2
are continuous on [b7,b);] with unique minimizers b), and b} . respectively on [b7,b(]; and
(iii) by — 0 almost surely for k = L,U. First, by Lemma Bj, SUDpecy (B) 1£(b) — £(b)]

5 0 and SUPy>5, (b ,b)eC2(B ’5;( ) —&(b)] - 0. And SUPpec;s(B) ((E(b) - 7")2 — (&(b) — 7")2

< SUDPpecy(B) éQ(b) —&(b)| + 2r SUDpe oy (B) &(b) — f(b)‘, where both terms converge to 0 in

probability since supyec, gy €(0) < €(br) = vn(zv, 2v) < 0.
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Likewise sup,>j, 4, yecz(n) (&,(b) — )2 — (£,(b) — )| = 0 by similar arguments. Next,
the continuity of (£(b) — r)? and (£,(b) — r)? follows from the smoothness of £ shown above.
Also both £ and ¢, are increasing on [b9, Y] by the monotonicity of vy,(.) and v;(.) as well as
B(.) on [z, xy]. Thus for all r € [BY, v(zy, T7)], the minimizers of (£(b) —7)? and (&,(b) —r)?
are unique on [b9,5%]. Finally, that b, — b} almost surely for k = L, U follows from § — 0

and by, =% 19 . O

1.2.3. Uniform convergence of 4., (.; 62;)- Recall for k = I, h and r € S, 0, (; b)) are
defined as:

b
Srge(b3 b)) = TL(b),[b) + E(O)A()L(t|b)dt Vb € (b, bu]

0
bk,r

= r Vbe [b, 0]

where b . = inf{b € C(B) : §(b) > r} and b}, = inf{b € C(B) : {(b) > r}, and L(t|b) =

exp (= [ §du) for by, <t <b < by
Lemma B5 Let hg = cg(log L/L)YCE+2=5 qnd h, = c,(log L/ L)Y ?E+2=4) " Under

S1, S2, and S8 and if R > 2n —1,

gu,(b,b) _ gu,5(b,b)

sup , =0 hR*2n+1

bGCg(B) GM7B(b’ b) GM,B(b7 b) p( )

Proof. See the last section of Appendix B. 0J
The following lemma shows the uniform convergence of oy, ,(.; l;g’T) over Cs(B) = [by, +

§,by — 0] for the relevant range of r. By construction ZA),%J, e C5(B) C Cs(B) for r € S,.
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Lemma B6 Let hg = cg(log L)L)V 2E+20=5) and h, = c,(log L/ L)Y E+2=4) " Under
S1, 52, and S3 and suppose R > 2n —1, then supycc,(p) 8k,r(b§ 1;271”) — Ok (D5 07,) 250 for

all r € S,.

Proof. First consider the case r € interior(S,) (or by, € (b7,by;)). By definition, égm €

C5(B), and for L large enough, b, is in the interior of C5(B). By triangular inequality,

sup S;W,(b; 132 ) — Ok (b; bgT)
beCs(B) ’ ’

IA

sup 1(B9, < 0),)1(b > b))
beCs(B) ’ ’ ’

5o (b) — 5km(b)‘ +..

sup 1(B9, > 09,)1(b > b))
beCs(B) ' ’ '

5ror(b) — 6k,r(b)‘ T

sup 1000, < 0,)1(0 € (00, 10,) | (8) = 7] + .
beCs(B)

sup 1(B, > 07,)1(b € (b, bR, ) [6k.r (B) — 7
beCs(B)

It suffices to show all four terms (denoted A;, Ay, A3z and A4 respectively) converge in

probability to 0 uniformly over b € C5(B) as sample size increases. For Aj,

SUPpecy(m) L (bR, < 00, )1(0 > b)) |0k (b3 B0,) — O (B3 B7,)

< supy e s 100, < 00,010 | EGL 1) = LOAID)| + ..

b

" EOAD L)t

70
bk,'r'

E()A()L(t]b) — E(OA() L(t[b)dt

0
bk,'r'

+

}
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It can be shown sup,<;, ; pyecz(s) L(t|b) — L(t|b)‘ . 0 using convergence results from pre-

vious lemmae.? Note

Py cpen s 10, < 00,07 | LR, I0) — LO, 1)

< s 10, <07 LG, )~ LG+

b, <b<by—o

swp 1, < 0, )r LG, 1) — LOf,1b)|

b, <b<by—d

For sufficiently small §, b . > by+9. Since by construction 1327,, € C5(B), supy p<py—s 1(52’7" <

by, )T I:(ZA)QTU)) — L(327T|b) 0. Also by mean value theorem,

. ) .
L(by»[b) — L(bg . b)| = | o L(t[b) =0 (b, — BR,)
at k,r

— [AGE L@, )| B2, —of,

for some Bg}r between l;g’r and by .. The consistency of Bg’r suggests IN)%T is bounded away
from 0% as sample size increases. Thus both A(i)%r) and L(ng\b) converge in probability to

some finite constant since supg;(g) |9 < 0o and infe(p) [¢'| > ¢ > 0 and hence supy <y<p, s

L(,,1b) — (1R, [b)

is 0,(1). Next

su
Pbgm<bgbU—5

/bo EBA)L(t|b) — £()A(E) L(t[b)dt

< supyy <pen,—s |EOADLD) — EOAMLHD)| b= 8L, | =0

where the right hand side is 0,(1) by the uniform convergence of &, A, and L over Cs(B)

under the assumption of the lemma and the boundedness of £, A and L on the closed interval

3For details of the proof, see Li et.al (2003).
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0%, bu — 6]. Finally

sup 1B, <t <b),)
by . <b<by—§

Br o 4
| Ewio L

< swp (0, <t <o) GOADLED)| |7, -,

by . <b<by—4,(t,b)eC;

Since

s [EAWDLEE) — EOAWD L) 0

t<b,(t,b)eCZ(B)
and Supyo _pcp, 5 (1p)ec? 1(327T <t <byp,) [§(t)A(t)L(t]b)] is bounded w.p.a.1 by the consis-
tency of b7, then

sup = 0,(1)

b9 <b<by—6

/hYQYuﬁmmw

70
bk,'r

and it follows A; = 0,(1). For A,,

B (6) — 31 (1)

Supb605(B) 1(82,T > bz,'r)l(b > l;(lz,r)

< s 10>, > ) LG )~ L)+
b2,r<b§bU_6
b b
- COARL(ED) — EMAR)L(tb)dt) + | | - EOAR)L(E[b)de |}
ka bk,r

where sup of the first and last term over b, < b < by — 0 are 0,(1) by the same argument

as above, and

20 0
SUPy) | <b<by -5 1(b > b, > b,)

[ &wiwLan - oo L

EOADLU) — €OAD L) b B, | = 0,(1)

< SUDPR0  <b<by —4,(t,b)eC?
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For As;,

SWDiecymy 10, < BLI10 € (0 00,1) |3 (0) — 7|

b
rL(bY,|b) —r+ [ E()A(t)L(t[b)dt

;0
bk,r

= Supb€C§(B) 1<b2,r < bg,r)l(b € (62,7‘7 bz,r])

By construction, Bgﬁr € Cs(B). The uniform convergence of L(t|b) for all t < b on C2(b), the
continuity of L(¢|b) in both arguments, and ZA)%T RN by, suggest suPyccy (p) 1(6277“ <by,.Nbe
(6., 00,]) [rL(BY,.|b) — 7| = 0,(1). Also for large samples, 59, is bounded away from by
w.p.a.l and sup,ec, g 109, < b, Nbe (B),,69,]) ‘ féré(tm(t)ﬁ(ﬂb)dt — 0,(1). For Ay,
note 0y, is continuous at by, with dx,(by,) = 7 and is increasing beyond by . (as proven in
the paper). Hence the consistency of IAJ%T is sufficient for A4 —— 0. In the boundary case
where b} . = 17, it suffices to show the convergence of terms A2 and A4. The same argument

above applies. O]

1.2.4. Final step of the proof. In this subsection, I apply the extended BCT over random

compact sets to prove the consistency of 3;(1&, Bg’r) for an interesting range of r and t.
Lemma B7 Let hg = cg(log L/L)YCE+2=5) and h, = c,(log L/ L)Y @E+2n=4) " Under

S1, 82, and S3 and suppose R > 2n — 1, for any r € S,, (AS,;i(t, 132,,4) 2 Opr(t;00,) for

k=A{l,h} and all t > r.

Proof. For the range of r € S, and t > r, 5,;7{(25; by,) are unique minimizers of [0, (b) —
t]* over C(B). Lemma B6 showed that supjcc,(p Ok (B B0,) — 0 (b509,)| — 0 and
Okr(-5b2,) is also continuous on C'(B). Also by — b almost surely for k = L,U as sample

size increases. All conditions for Lemma B1 are satisfied and claim is proven. 0
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Lemma B8 Let F,(t) = L3 W(Z; < ) where {Z;} | is an i.i.d. sample from a
population distributed as Fy. Then sup,cg |Fo(t) — Fz(t)| 23 0. If Fy(ty) is continuous

at to and a sequence of random wvariable t, B to and ty is a continuity point of F, then

Eo(t) 2 Fylto).

Proof. The first claim follows from Glivenko-Cantelli Lemma and the proof of the second

claim is standard (e.g. see Theorem 4.1.5 Amemiya 1985). O
The proof of Proposition 4 follows directly from results of the lemmae.

Proof of Proposition 4. By the first part of Lemma BS, - L S~ 1(BM@x < b)converge
in probability to Pr(B** < b) uniformly over C(B). By Lemma B7, 5;k(t) 2, 5;,1@)
for all » and t in the stated range of interests. The second part of Lemma B8 proves

lez(r)( ) = Fl( )(t) and F ) (t) 2 Fp,(¢) for given r and t. 0
1.2.5. Proofs of lemmae in the consistency proof.

Proof of Lemma B3. That supcs g ‘G’MB - GM7B‘ = O(hE™) and supce(p) [9m,8 — 98| =
O(h[") follow from Lemma A5 in Li et.al (2002). By triangular inequality, for all b € Cs5(B),

éM,B(ba b) — GM7B(b, b)’ S fgi |QM7B(t; b) — gM7B(t, b)| dt+ )GM7B(BLa b) — GM7B(Z~?L,b) . ThU.S

SUPp>5, beCs (B |GMB(b b) — Gu,p(b,b)|

< by = br|sup,<y, pyeczp) 10m,8(10) = g (t,b)] + Op(hG™) = Op(h )
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since by construction C5(B) C C5(B) with probability 1 and hg < h, for L large enough.

Furthermore, note:

7 GM,B(l;lmb) _ G]M,B(ZL:b)
1{bL < b}’ Gar.p(bb) G, B (b,b) ‘

7 G b b) A
< 20 C (b, b) — Garp(be,b) + GG (Garn(b,b) = Garn(b,0) )
1{b.<b} A 7 7 .
< e (G e, b) = Gus(bn, )] + | Gasn(b,5) ~ Cars(b.1)])
Thus
GM B(bL7 b) GM,B(EIN b)
SUP, <p beCs B)‘ GMB(b b) - GMB(b, b) ’
_ L suPs, < pecz () | Gars(br, b) = Garp (b, b)| + .
— inf G b,b A
bEC(S(B)| Mm,B( )l SupBLgb,beC(;(B) |GM,B(Z77 b) _ GM,B(by b)|
where

inf |GMB(b b)] > inf |Gup(bb)| — sup |Gup(b,b) — Grp(b,b)|

beCs(B beCs(B) beCs(B)
— inf |Garp(b,b)] + Op(hEY)
beCs(B)

Note Garp(b,0) = J. o [ g(b,bs,ba, .. by) dbyccdby and g(by, .. by) = £(57 (1), o 57 (b))
has R continuous derivatives on [by,, by]”. Using a Taylor expansion of ¢(.) around (by, .., br),
Gup(b,b) = a(b— b)) + o(|b — b.|"") with a = g(bg,..,br) > 0, and it can be shown
infpecy(p) |Garp(b,b)| > ah™! for some a > 0 and h = max(hy,hg).! Then R > n

and h = hy for L large enough implies infyccy () )CA?MB(b, b)) > ozhgfl + Op(h;}*l). Since

4For details, see Lemma A6 in Li et.al 2002.
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SUDG, <ppecy (8 |GaB (0L, b) — Garp(be, b)| and sup;, < e, (m) |Gars(br, b) — Garp(br, b)| are

both bounded by O, (h}~"), it follows sup;, ; 4ec, (5 |C2;B;f;bl;) GGI‘L BBbbLbb | = Op(hi™). O

~

Proof of Lemma B4. Proposition A2 (i) in Li et.al (2002) showed supyec, ) [§(b)—&(D)]

Op(hy "),
By definition, b;, € C5(B). Note :

SUDPG, <b,(br,,b)eC2(B) €,(b) — &;(b)]

2 E®an,ptb)dt [ €(t)gar,p(tb)dt
< supj i 2 L— — =L
- bLSbv(vab)eca (B) G]\LB(b,b) G]VI,B(b:b)

. ~ (7 GM G, (br,b) gM B(
SuprS@(vab)ECg(B) g(b G, 5(b,b) / g Gar,p(b,b)

The proof proceeds by showing the two terms both converge in probability to 0.

By definition, by, > by, and [}* €(t) 2% B dt is bounded between &(by, —GM 2OLb) o4
b GM D)

13 (EL)M With probability one,

: } &7 GMBbLb) gMBtb
SUDg, <b, (b ,b)eC2(B) §(br) Gt (bb) / £(t) G, (b, b)

< maX{SUPBLgb,(EL,b)ecg(B) Ty (b; br), SUPp,, <b, (b, ,b)eC2(B) Ty(b;br)}

where

=
—
S
=
h
N~—
Il
72 2%%
—~
h
N~—
>

GM,B(BLa b) o (EL) GM,B(BLab)
GM,B(b, b) GM,B(ba b)

o3
—~
S
=
h
SN—
Il
7229
—~
[=ak]
h
SN—
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With probability one, for all (b,b;) € C2(B) such that b > by,

7)< [&(0) (Gt — Gentd )| + | Genlit (€60 — €|
where M‘ < 1 by construction. Thus
SUPBLgbxahmecg(B)jl(b;BL)
S SUP, < (by, b)eC2(B) C;”jf;?,f;;) %A;IBB?bLbb)’ ’5 + ‘é(BL) —&(b)
Note ‘f( )| L €(b9)] < oo and ‘é’ (br) — &(br) ‘ 2, 0 by the uniform convergence of & over

Gur,p(br,b) GM,B(ELJ’)
Gr.5(b,b) G, (b))

Cs(B) and by, 2 19. By Lemma 3 SUD;, <, (5, 4)eC2(B) ‘
Hence sup;, o, 4, nyecz(s) Ty(b) % 0 if R > n. Then SUDPpe iy () 12(D) % 0 follows from the
same arguments.

By the triangular inequality, for all b > by, and (by,,b) € C3(B)

gur,B(t,b) ’ gm,B(t,b)
bLg()GM,B b b)dt_ b 5()GMB< b)dt

£)gar5(t,b)dt — &(t)gum,B(t, b)dt) +
inf;

b1, <b,(by,,b)eC2(B) |C~"MvB(b’b)| ‘ _ ‘
s \ g(bU) GM7B(b, b) GM7B<b, b)

< 1

where [ £(t) 2200t < &(by) and |Gy 5(b, b)‘ > |Garp(b,b)] — ‘C:M,B(b, b) — Garn(b,b).

It is shown in Lemma B3 above that infyecy sy [Gar,s(b,0)| > ahl ™'+ 0,(hi~") with R > n

and sup;, o, G, pecz(p) |Grp(b,0)— Garp(b,b)| = Op(hf ). Furthermore for all b > by, and
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(b,b) € C3(B),

b

E(D)anr.n(t, b)dt — E()garn(t, b)dt‘

br
b
S /
br

The boundedness of g, 5 and § implies supy, <, G, pec2(s) ‘fbbL E)garp(t,b)dt — () gars(t, b)dt| =

E(t) = £()| gn,p(t,b)] dt + A €)1 19a0,5(8,0) — gar,5(t, b)| di

Op(h;%—(n—l))’ which is the rate of convergence of supyec, () ’é - f). As aresult, SUDG, <4, (b, .b)eC2(B)

Jo, E0arp(t0)dt fi) E(D)gar,p(tb)dt
’ é]y[yB(b,b) G]W B(b b)

| = Op(hfﬂ("*l)) converges to zero when R > 2(n—1). O

G, 5(br,b) i GM,B(Bva)|

Proof of Lemma B5. The proof is similar to that of sup;, <}, jec,(5) | s Curn®D)
=5, M,B (b, BY

= Op(hf~™). On the support of C3(B),

IM.B _ 9M.B | < 1 (|
G, B GuB' — |@M,B||GM,B|

GM,B| \gm.B — gM,B| + |gM,B| GM,B — GM,BD

It is shown supcep IGup — Gupl = O,(hE™1) and SUpc2(p) \gn.8 — gu,B| = Op(hS1).

Besides, supce(p) |Gar,s| < 00 and supee ) |gi,5| < oo implies supremum of the term in the

g, B(b,b) g, B(D,b) ‘

bracket is O, (hf~") as hy > hg for L large enough. Hence supyec, (g IR TR )

Op(hy'™")
infrecy () |Gm,B| infoecy () |G, 5]

ah?~t +o(hp~") and Bh7~" + o(hy~") respectively by some constant o and . It follows the

, where the two terms in the denominator are bounded below by

g, B(b:0)  gm,B(b:D) |
G, B(b,b) Gr,B(b,b)

denominator is bounded below by vh2"~2 4 o(h2"~?). Hence supycc,(s) |2

— Op(hRf2n+1)' ]

1.3. Sharpness of the bounds

This appendix discusses the sharpness of the bounds on the revenue distributions in coun-
terfactual first-price auctions in the benchmark model. (The proof of sharpness of bounds

in counterfactual second-price auctions is similar and omitted.) Specifically, I show that for
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a given counterfactual first-price auction and a given revenue level ¢, each point within the
bounds constructed from G% will be the true counterfactual revenue distribution under a
certain structure in the identified set. Let 1) be a generic structure (6, Fx), and let U(Gg)
denote the set of ¢ that are observationally equivalent relative to a rationalizable distri-
bution of bids G%. Formally, the sharpness of bounds means for any given rationalizable
GY%, any given counterfactual reserve price r, and any revenue level ¢, 3¢ € ¥(G%) such

that Fri((t;¢) = p for all p € [F}; ., (t; GR), Fii(,, (1 Gg)), where Fii; (t; G) are robust

")
bounds proposed in the paper.

The proof takes three steps. In the first step, I show the sharpness of bounds on the
hypothetical marginal bid bo(z*(r;4);10). Let b ,.(Gx(¢)) be a shorthand for bo(zy(r;1); 1))
for k =1, h, and b2(¢)) for bo(x*(r;1)); ). The following lemma gives the sharpness of bounds
4,8, on 12(0).

Lemma C1 Consider any rationalizable distribution G%. For all b € [b),(GB), b} .(G%)),

3¢ € U(GY) such that b9(¢) = b.

Proof. Consider the case where §(X) = aX;+ (1 —«) max;; X, and vy () = x for all x and
a € (0,1). Let Fx be defined as G% (¢ (21, GR), .., € (2,;GL)). Then (o, Fx) generates
G% in a Bayesian Nash equilibrium for all & € (0,1). Also note the equilibrium bidding
strategy is invariant in « € (0,1) for the given Fx. Then an argument similar to Lemma 3

can be used to prove the sharpness of bounds on 5°(v)). U

The second step shows bounds on b9(t; 1) = bo(b; 1 (¢;1); %) are also sharp.
Lemma C2 Consider any rationalizable distribution G%, any counterfactual reserve
price r. For any revenue level t > r, and for all b € [5, ) (t; G%),0,,(t; G})), I ¥ € W(GY)

such that 0%(t;¢) = b.
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Proof. Note that for t > r, b2(¢;) is defined as the solution to the following minimization

problem:
b)(t; ) = arg mingepo ) p9, [t — 0,(s; b(1), G)J?

where 02(¢)) and 4, are defined as before. For a given ¢ and G%, 02(1)) is a parameter that
determines the constraint set and the criterion function. The criterion function is continuous
in its first argument s and the parameter b°(¢)). Therefore, the Theorem of Maximum can
be used to show 02(¢;4)) is a continuous function of »2(1)) for all £. Then the sharpness of

bounds on b2(1)) translates into the sharpness of bounds on b2(¢; ). O

For the final step, it suffices to note that G% is invariant for all ¢ € U(GY) by construc-

tion, and that the bounds on %(¢)) and b2(¢;1)) are both sharp.

2. Appendix for Chapter 2

2.1. Proofs of identification and consistency

Proof. (Lemma 1) Suppose b is such that Pr(z € &) > 0. Then by the definition of T, for all

X € f;) s.t. (—XTb < L(X)/\P"< < %), Pl\x(b>Fs\X) = f 1(8 > —XTb)dFE|X:x > %VFE‘X el.

1|x
Likewise Vx € &} s.t. (—x'b > U(x) APy > ), Pux(b, Fox) = [1(e > —x"b)dFx—x < 3

VE,x € I'. As a result Vx € &, P}

|x

Pr(x € &) > 0 and it implies Pr(x € X(b, [ x)) > 0V F.x € I'. Hence 3 is identified

# Pix(b, F.x) YF,x € I'. By our supposition,

relative to b. Now Suppose b is such that Pr(x € &) = 0. Then Pr(x € S(X) \ &) =1
where S(X)\& = {x € S(X) : (~x"b < L(x) A iy > 1) V (~xTb > U(x) A P}, < })
V (L(x) < =x"b < U(x))}. Then Vx s.t. —x"b < L(x) A P, > 3, pick Fyx—x s.t. (i)
F,x=x is continuous in ¢ and L(x) < sup Med(e|x) and inf Med(c|x) < U(x); and (i)

)

[1(x"b+e > 0)dF. x—x = Pj,. This can be done because —xTb < L(x) < sup Med(e|x
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of F.x—x requires | 1(xTb+¢e > 0)dF.x—x > % Likewise V x s.t. —x'b > U(x) /\Pl*Ix < %,

we can pick Fix—x s.t. (i) holds and [1(x"b +¢ > 0)dFix—x = P},,. And V¥ x s.t. L(x) <
—x"b < U(x), we can always pick F.x_x s.t. [1(x"b+¢e > 0)dF x—x = P, (regardless
of the value of P;},) while (i) still holds. Finally let F.x be such that F.x_x is picked as
above V x € S(X) \ &, We have shown Py, (b, F.x) = Ph,vx € S(X) \ &, (equivalent
to a.e.Fx since Pr(x € &) = 0). Hence 3 F,x € I s.t. Pr(x € X(b,F.x)) = 0 and b is

observationally equivalent to 3. 0

Proof. (Corollary 1 of Lemma 1) The proof is similar to Lemma 1 and is omitted. 0

Proof. (Corollary 2 of Lemma 1) ©; # & and ©; # & because the true coefficient 5 belongs
to both. To prove convexity, suppose by € ©7, by € ©}. Then Pr(x € £, ) =Pr(x € §,,) = 0.
Let b, = ab; 4 (1 — a)b, € O] for some o € (0,1) and &, be defined as before for b,. Note

V x € &, , either (—x"b, > U(x) A Py,

> 1/2) or (—x'b, < L(x) A P},

1|x

< 1/2). Consider
the former case. Then it must be Py, > 1/2 and either —x"b; > U(x) or —x"by > U(x).
This implies either x € afgl or X € 5;)2. Symmetric argument applies to the case (—x'b, <
L(x) APy, < 1/2). It follows that &, € (&,U&,). ThenPr(x e &, ) <Pr(xe§, )+Pr(xe

&,) =0, and b, € ©}. The convexity of ©; is proven in the same way. O

Proof. (Proposition 1) By BCQ-2 and Lemma 1, it suffices to show Pr(X € &) > 0
for all b # B, where &, = {x : (—xb < L(x) A XB>U(x)) V (—xb > U(x) A
—x'B <L(x))}. By SX1-(a), Pr(X’' ;(B_,—b_;) #0) > 0. Without loss of generality, let
Pr(X' ;8_,< X' ;b_;) > 0. Then by SX1I-(b),(c), Pr(—X'8 <L(X) < U(X) < -X'b) >

0. U
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Proof. (Corollary 1 of Proposition 1) The parameter space is compact by supposition. For
player 1, BCQ-2 is satisfied with L(x) =U(x) =p?(x) a.e. Fx,and L =0, U = 1. By REG-
(i), X; impacts p*(X) and p'(X) but not X3, and Pr{X' (by_; — by _;) # 0} > 0 for all
by, by € ©;. Hence SX-1 (a) is satisfied. Suppose Pr{X",(b_; — b_;) # 0 A sgn(X_b_;) #
sgn(X'_b_;)) > 0, then SX1-(b) is satisfied. Otherwise without loss of generality consider
the case Pr(X' by _; > X' ;by_; > 0) > 0. Then REG-(ii) and the closedness under scalar
multiplications in REG-(v) guarantee that SX1-(b) is satisfied. Note for all X_; and all B€ ©

in BNE, substitution implies

P1 ()_(—b fEl) - F61|)_(_l,xl [)_(—l/Bl,—l + FSQ‘)_(_I,JII ()_(—lﬂ27—l + Ilﬁ2,l + P1 ()_(—hu xh1)>]

Under the regularity conditions in FRR, an application of Schauder’s Fixed Point Theorem

shows p1(X_;, x;) is continuous in x; for all X ;. Also note

pQ(mla )_(,l) = F52|X:x[)_(,_l,62’,l + xlﬂm + pl (xl, )_(,l)]

Since 3y # 0 and p'(x;,x_;) is continuous in x;, REG- (i), (iv) then implies that SX1-(c) is

satisfied. H

Proof. (Proposition 2) The proof requires slight changes from that of Lemma 2 in Manski
(1985), as one of the regressors is a known function of the other regressors, and the coefficient

in front of it is normalized to be 1. The proof is omitted for brevity. 0

Proof. (Lemma 2) By law of iterated expectations,

Q(b) = E[(-U(X)—-X'b)}|Px > 1/2|Pr(Pjx > 1/2)

+  E[(-L(X) - X'b)2|Pix < 1/2]Pr(Pix < 1/2)
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By definition, Vb € O, Pr(—X'b —U(X) > 0 A Pj)x > 1/2) =0, and Pr(—X'b — L(X) < 0
A Pix < 1/2) = 0. Therefore Q(b) = 0 for all b € ©;. On the other hand, for any
b ¢ Oy, at least one of the four following events have positive probability: 7 — X'b < L(X)
A Pix = /27,7 = X'b > U(X) A Pix = /27,7 = X'b > U(X) A Pix > 1/2” or
7 —X'b < L(X) A Pjix < 1/27. Without loss of generality, let the last event occur with
positive probability. Then SX-2 ensures the inequality is strict with positive probability.
This implies the second term in Q(b) will be strictly positive. Similar arguments can be

applied to prove Q(b) > 0 if any of the other events has positive probability. O

Proof. (Theorem 1) It can be shown that the objective function Q(b) is continuous in
b under the regularity conditions. Below I will show that Q,(b) converges to Q(b) in
probability uniformly over ©. The rest of the proof follows similar steps in Proposition 3 of
Manski and Tamer (2002) and is omitted for brevity. First note by Lemma 8.10 in Newey

and McFadden (1994), under RD-1, TF and K,

Supxes(x) |]§(X) — p(x)| = Op(n_1/4)

By the mean value expansion of A(p(x) — 3) and A(3 — p(x)) around A(p(x) — 3) and

1

A(5 — p(x)), the uniform consistency of the first step estimator of p;, and the Law of Large

Numbers, we have for all b € O,
Qu(b) > Q(b)

Note that Qn(b) is convex in b for all n and the parameter space is compact and convex
by PAR. Then by Theorem 2.7 in Newey and McFadden (1994), point-wise convergence of

convex functions implies that Qn(b) converges uniformly in probability to Q(b) over ©. [
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2.2. Asymptotic normality under point identification

Throughout this subsection, I maintain that all conditions for point identification of 3 (i.e.

BCQ-2, PAR and SX-1) and the regularity conditions RD, TF and K are satisfied. Define

G”(T7p> = Z?:l gl(Tupa n)v where
gi(r,pim) = NI — n™ i — ]+ A [0 — ) — ()]

where vl = —L(x;) — %8y, v! = —U(x;) — x,3,, and p;, A%(p;), Al(p;) denote the true choice
probability p(x;) = Pr(Y = 1|X =x;), A(p; — 1), A(3 — p;) respectively. By definition,
Gn(7,p) is a convex and continuously differentiable function in 7 and is minimized at 7,, =
Vn(B—PB,). Note g;(r, p;n) f(x) is continuously differentiable in 7 for all i and n, and under
conditions RD and TF, [ sup,cy, ||V-9:(7,p;n)f(x)||dx < oo for a small open neighborhood
Ny around the zero vector. Therefore by Lemma 3.6 in Newey and McFadden (1994) and

an application of dominated convergence theorem, it can be shown for all 7, n,
(-5) VB (gi(7. pin)) o = =207 V2E{[A (i) (V) - + A*(p:) (V") +]Xi} = 0

It can also be shown by direct calculation of gradients that under conditions RD and TF

for all 7, n, the Hessian matrix

Ve E(gi(T,pin))lr—0 = 207 B{[A'(pi) L(Vi' < 0) + A" (p)) LV > 0)] XX}
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exists and is continuous at 7 = 0. Thus by a Taylor expansion, I',(7,p) = 37'J7 + o(1),

where J = V2 E(gi(7,p;n))|r—0. Let p;, A, Al denote p(x;), A(p; — 3), A(X — p;). Define

1
2 2

wa(p) = n Y0 E(X,p)
(X p) = 2[A (p) (V- + A(pi) (V) 4] X,
pa(Xisp,m) = APV = 072X = (VL] +

A(p)[(Vi = n™2Xim)2 = (V2] + 0 27E(Xa, p)
Since E[£(X;,p)] = 0, we can rewrite for any generic choice probability p

Gn(7,9) = Tn(7,p) = T'wn(p) + 2 {pn(Xi, 5, 7) = Blp,(Xi, p, 7)]}

Below I will show that G,,(7,p) = 37'J7 — T'w,(p) + 0p(1). This will enable us to use
the Convexity Lemma in Pollard (1991) and an argument similar to Buchinsky and Hahn
(1998) to show 7, is asymptotically equivalent to the asymptotically normal "maximizer" of
7' JT — 7w, (D).

Lemma B1 Under the identifying conditions BCQ-2, PAR, SX-1,2 and reqularity con-

ditions RD-1,2, TF-1,2 and K, w,(p) > N(0,3).

Proof. The proof proceeds by checking conditions of Theorem 8.11 in Newey and McFadden
(1994). That is, it suffices to show that there exists a vector of functionals ¥(x;h, f), which
is linear in (h, f) and satisfies:(i) For (h, f) with ||(h, f) — (ho, fo)||sup small, there exists

some b(x) :5(X) — R! such that

HS(Xtha f) - £<X27 hOafO) - \I](th - h’Oaf - fO)H < b(X)H(h’7 f) - (h[)?fO)qup
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with E[b(X)] <oo, where ||.||sup denotes the sup of the Euclidean norm of a vector-valued
function defined on S(X); (ii) ||¥(x;h, )| < e(x)||(h, f)sup, With E[e(x)?] < oo; (iii) 3
A1(x) and A\y(x) s.t.

E[U(x; b, f)] = / A () h()+ Ao (%) f (x)dx
(iv) For j = 1,2, \;(x) is continuous almost everywhere, [|\;(x)|dx < oo, and 3 1 > 0 s.t.
Esupy,j<, [ (X + 0[] < o0

To verify condition (i), define the linear functional

a1(xs; ho, fo)
fO(Xi>

atxan fy=2{x (55 -3) o0 - (5- 15 ) oh)-}

Then by 2nd order Taylor expansion,

U(xs;h, f) = { h(x;) —

where

§(xi; b, f) — §(x%i5 ho, fo) — Y (%58 — ho, f — fo)

(b ) Aol ) ) [ux» _ ho<xi>]
f(x;) — fo(x)

= [h(xi) — ho(x:) f(x:) — fo(xi)] o 3
Ag(xi3h, f)  As(xis b, f)
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where h, f are on the line segment connecting (h, f) and (ho, fo), and

Mxih, ) = —”S@’Z;;f)

e = [ hRash ) abh D))
aatinf) = { et o }

wh ) = Jh el ) | 2hEahf) |
As(x;h, f) = { f(x)4 + f(X)3 }

where

atah ) =2{a (F9-2) @t ar (5700 (-

Then by regularity conditions in RD-2, there exists some positive constant C' where

16 Gxis B, f) = §(xis o, fo) = B3 h = ho, f = fo)ll < Cllxil| - [BGxi)| - [|(h, f) = (ho, fo)l [z

and condition (i) above is satisfied. Also condition (ii) is satisfied by conditions in RD-2.

Then note

pleecn ] [ {2l - BbIO o) 0 g

— /{m(x; ho, fo)h(x) — }}sg; ap(x; ho,fo)f(x)} xdx

Hence condition (iii) is satisfied with A\;(x) =a;(x; ho, fo)x and Aa(x) :}}gé;‘;al(x; ho, fo)x.

Condition (iv) is also satisfied because ||X||-| max(0, —V})| and ||X[|-| max(0, V;*)| both have

finite 4th moments, A’ is bounded, and fy(x) is bounded away from zero. Let A(x, y; ho, fo)

= A\ (x)y+A2(x). It then follows from Theorem 8.11 in Newey and McFadden (1994) that

wa(p) > N(0,%)



156

where ¥ = Var[(X; ho, fo)+AX, Y ho, fo)].  Q.E.D. O

The rest of the proof shows that 7, = J 'w,(p) + 0,(1) and therefore n~/2(3 — B,) has
an asymptotically normal distribution.
Lemma B2 Under the conditions of Lemma Bl above, for any fixed T in the compact

parameter space ©,

2im{pn(Xi;0,7) = Elp,(Xi, p, 7))} = 0p(1)

Proof. First consider the term

Z?:l[pn(xﬁﬁa 7—) - pn(X’Hp7 T)]
= Yy S T)[A(p) — AM(pa)] + Doy L (X ) [A (5i) — A (pa)]
where
SuXyr) = (vf —n PXir)3 = ()] + 20 VPX T (v)) 4
S;(Xi; T) = (vl n_l/zX;T)Q_ — (vﬁ)Q_ + 2n_1/2X;T(v§)_

i_

Hence

where C' is the bound on the first derivative on A. By Lemma 8.10 and the regularity

conditions RD-2 on the kernel, the bandwidth and higher moments of Y;, supycgx) [P(x) —
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p(x)| = 0,(1). Also note

SHX;7) = 1{min(v" v" - n~Y2X't) > 0} n ' (X'7)* + ...
o —n 12X < 0 < v} = (v")? + 20~ V2X'7] + ...

o —n7V2X'7r > 0 > 0"} (" — n~V2X/7)?

Note —(v*)2 + 2n~Y/2X'70" > 0 both in the second and third event. Therefore S*(X;7) <
nY(X'T)2. By RD-2, > S*(Xi;7) = O,(1). By similar arguments, Y ., SL(X;;7) =
0,(1), and

2 imalpn(Xi; 5, 7) = pu(Xi p, T)]| < 0,(1)0p(1) = 0,(1)

Now consider the second term > | T,,; = > ", {p,(Xs;p,7) — Ep,(X;,p,7)]}. Note
B2 Toi)') < 300 Elpn(Xisp, 7)%) < n72 300 B{[A" (i) + A (po)*(X'7) "]

where the first inequality is due to the cancellation of cross-product terms as a result of
independence across observations, and the second inequality follows from the above bounds
on S* and S!. Since both A* and A are positive and bounded, E[(> ", T,.:)%] = O(n™1).
Since E(>1 | T,.;) = 0 by construction, this implies (3., 7),;)? converges in mean square

and therefore is 0,(1).  Q.E.D. O

The 2nd-order Taylor expansion I', (7, p) = $7'J7 + o(1) and the preceding two lemmae

imply for each fixed 7,

Gn(T,p) = %T,JT — T'wn(p) + op(1)
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Then this point-wise convergence is strengthened into uniform convergence on the support

of 7, which is a convex, compact subset of R¥. This enables us to rewrite

~ ] 1 !
Gu(m,p) = 5(r —n,)J (T —n,) — 3+ (T

where 7,, = J 'w,(p). and sup, . |1 (7)| = 0,(1) for any compact ' C R¥. Then it suffices
to show 7, = \/n(B — B,) is asymptotically equivalent to 7,, i.e. 7, = 1, + 0,(1). This
result follows from standard arguments in Theorem 1 in Pollard (1991) and Lemma 3 in

Buchinsky and Hahn (1998) and the proof is omitted.

3. Appendix for Chapter 3

Let B%(S(X)) denote the space of bounded, continuous R?-valued functions, i.e. B*(S(X)) =
B(S(X)) ® B(S(X)), where B(S(X)) is the space of bounded, real-valued functions defined
on X Define the norm on B?*(S(X)) as ||f(x)|| = sup;c(o.1y.xesx) [ (X)]-

Lemma A1l (B?(S(X)),]|.]|) is a complete normed vector space.
Proof. The proof is standard and omitted for brevity. 0

Lemma A2 Suppose the operator T : B?(S(X)) — B?(S5(X)) satisfies (a) Vf,g €
B?(S(X)), f(x) < g(x) for all x € S(X) implies (T o f)(x) < (T o g)(x) for all x € S(X)
(where the inequality is component-wise in R?); (b) 38 € (0,1).5.t.T o (f(x) + aly) <
T o f(z) + Ba, Vf € B?(S(X)), a > 0, x € S(X) (where 1, = [1 1]'). Then T is an

contraction mapping with modulus f.
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Proof. We need to show that Vf,g € B?(S(X)),||T of — T o g|| < 8|If — g||-Note:

f < g+|/f—gllL,
— Tof<To(g+||f-g|lls) <Tog+ flIf —glll,
= Tof—-Tog<pj|f—gl|ll2

Likewise by interchanging the role of f and bg, we have T'og—Tof < j||f —g||12. Combining

the two inequalities proves ||[T o f — T o g|| < B||f — g||. O

Lemma A3 (Contraction Mapping) Define the operator 1" o f(x) = [T1(x;f) To(x; )],
where

500 = ) + 5 [ masieioa{filx) + e dPux(€x)dG, (¢ x)

Under REG, T is a contraction mapping that maps from B?(S(X)) into B?(S(X)).

Proof. Note maxyeqo,13{fi(x)} is bounded since f € B*(S(X)). Also:
[ o e + el ddFax (&6 (<

< [ masicioa ()P (€ AC () + [ macqoa) (<} dPupe(e'x) G (x )

Both terms as well as u(x) are bounded and continuous under REG. Hence T o (f(x)) is

bounded and continuous. Suppose f, g € B?(S(X)), and f(x) < g(x) for all x € S(X). Then

Tisf) = w(x)+0 / maxye (o1} { /i (X') + €} }dFex (€'x)dG; (X |x)

< u(x)+ 0 / maxke(0,11{9s (X) + ejJdFepx (€'[x)dG; (X x) = T;(x; 8)
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And:
Tj(x;f +aly) = wi(x)+ / maxye(o,11{./5(X) + a + &} tdFex (€'x)dG;(x'x)
= wu(x) + B/maxke{o,l}{fk(ml) + e, o x (€']x')dG; (X' |x) + Ba
By Lemma A2, the operator T is a contraction mapping. 0
Proof of Lemma 1. By definition, the Bellman Equation is:
V(s) = maxjeo1y U(s, j) + ﬁ/V(S’)dFsm(E'!X')de(X’|X>

Under AS and CI, V(s) = max;c(o13{0;(x) + ¢,}, where

5(0) = (o) + 5 [ V&) ()
Substitute expression for V (s) into the definition of §,(x) for j € {0, 1},

530) = uy () + 5 [ maxieqo (Bu(x) + f}dFupe(e'x )G (x )

It follows from Lemma A3 that under REG, the operator is well-defined for any {u, 3, Fx },

and that a fixed point d(x) exists. O

Proof of Proposition 1. We need to show that any (u, Fx) can generate observed choice
probabilities p(x) if and only if it satisfies conditions in the proposition. (Sufficiency) Sup-
pose u,F,x satisfies the conditions in the proposition. Then for j = 0,1, 6;(x;u;, Facx) =

wj(x;u;) + &;(X; Facx) is the unique fixed point for the following operator:

Tjo6;(x;uj, Facx) = u;(x) + 8 / 0 (%5 uj, Facx) + /(X' 0, Facx)dG5 (X' |x)
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By our supposition, for all x €S(X), Ad(x) = Aw(x)+A{(x) = FA’51|X(p(x)\x). Substitution
implies ko(X;p, Facx) = fmax{A5(x;u,FAg|X) — 5,0 dFacx(s|x) and k(x5 p, Facx) =
[ max{s — Ad(x;u, Facx), 0}dFa-x(s|x). Then E(g;]x) = 0 for all x €S(X) implies

0;5(x5uy, Facx) + K5(X5p, Facx) = /maxke{o,1}{5j(x; uj, Facx) + €5 dFox (g]x).

Therefore d(x) = [01(x) 0o(x)]" is the unique fixed point of the operator T o §(x) =
T3 (x; ) To(x; 6)], where

T;(x) = uj(x) + B/maxke{071}{(5k(x') + e, JdFex (€'|x')dG (x|x)

Then the proof of sufficiency is completed by the supposition Aj(x) = F A_El‘x(p(xﬂx) for all
x €5(X). (Necessity) Now suppose (u, F¢x) generates p(x). This requires Ad(x;u, Fex) =
Fg;lx(p(x)]x) for all x €5(X), where §(x;u, Frx) = [01(x) 6o(x)]" is the unique fixed
point of the operator T. Recursive substitution of d(x) into the definition of T suggests
0i(x;u, Fex) = wj(x;u;) +&;(x; p, Fagx) for j = 0, 1. (See Aguirregabiria 2007 for more de-

£

tails.) It follows immediately F&l‘x(p(x)fx) = Aw(x;u) + AL(x; Facx) for all x €S(X). O

Proof of Corollary 1 (Proposition 1). Suppose u,Fx satisfies (3.2). Then it follows
from Proposition 1 that the joint identification region is characterized by the system of
linear equations

I+ GLJu — [+ G2 Juy = C(Fx,p)

where G7_ = limp_ o, Zthl B'(GY) and C(F,x,p) is a K-by-1 vector of constants calculated
from knowledge of Fyx and p(x). Since ug is normalized to a K-by-1 zero vector, u; has
unique solutions if and only if I + G7_ has full rank. Note I+ G/ = (I — 8G7)~!. Hence u,

has unique solutions if and only if (I — SG’) has full rank. O
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Proof of Proposition 2. Suppose 6, is not locally identified, and there is a sequence of
0,, in a sequence of shrinking neighborhood around 6, that p(xy;0o) = p(xx; 6,) for all xx.
By the mean value theorem, there exists a sequence @ on the line segment linking 6,, and

0, such that ), Vg,p(xs; 0;,)d,; = 0 for all x;, where [ is an index for coordinates in 8, and

_ 0,00,
dn1 = 75, =g,

The sequence {d,, 1} is an infinite sequence on the unit sphere and therefore
there exists a non-zero limit dg. As 8,, — 6y, d,, approaches dg in the limit and we have
> 1 Vo, p(xk;600)do; = 0 for all x;,. This implies Vgp(xx; 89)Vep(xy;0o)’ is singular for all

Xj. This completes the proof. 0J

Proof of Corollary 2 (Proposition 1). Under the assumptions of the corollary, the joint

identification region is given by the linear system:
I-8GH " 'w =Q—[I-B8GH) 'BG'K' — (I-BG%) 'BG 'K

where Q, 7 are K-by-1 vectors with Qx = Fx!(p(xx)) and ni = Kj(xp; Fae) for j = 0,1,
k =1,.,K. Note that k° — k! = Q. Substitution gives (3.7). Since 1,.,k,., K is ranked
in ascending order in p(xy), the statistical independence restriction requires Q);’s are also in
ascending order. Furthermore, note for k > 2, k) = s)_;+ [ 6?:4 Fac(s)ds, where the second
term is bounded between p(xj_1)(Qr — Qx—1) and p(x;)(Qr — Qr—1). Hence the inequality
constraints must also hold. It follows that any u; that keeps the feasibility of this linear
system of equalities and inequalities will not be identified relative to the true parameter

under Fgs; (the set of F,x that satisfies statistical independence). O

Proof of Corollary 3 (Proposition 1). The equalities in the linear system follows from
the same argument as in the proof of Corollary 3. The inequalities in the first two rows follow

immediately from the definitions: Q) = FA_51|X(p(xk)|xk), and €); as the median conditional
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on all x;. Those in the last two rows uses the fact that Ae has a support of length 2C' and is
symmetrically distributed around e, for all x;, and the definition of k) = fi’“ Facx (s|xy)ds

(the area beneath neath the distribution Fa.x(s|xx) up to Q). The details in algebra are

omitted for brevity. O





