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ABSTRACT 

Immune checkpoint inhibitors have not been effective for immunologically “cold” 

tumors, such as prostate cancer, which contain scarce tumor infiltrating lymphocytes. We 

hypothesized that select tissue-specific and immunostimulatory bacteria can potentiate 

these immunotherapies. Here we show that a patient-derived prostate-specific microbe, 

CP1, in combination with anti-PD-1 immunotherapy, increased survival and decreased 

tumor burden in orthotopic MYC- and PTEN-mutant prostate cancer models. CP1 

administered intra-urethrally specifically homed to and colonized tumors without causing 

any systemic toxicities. CP1 increased immunogenic cell death of cancer cells, T cell 

cytotoxicity, and tumor infiltration by activated CD8 and Th17 T cells, mature dendritic 

cells, M1 macrophages, and NK cells. CP1 also decreased intra-tumoral regulatory T 

cells and VEGF. Mechanistically, blocking CP1-recruited T cells from infiltrating the 

tumor inhibited its therapeutic efficacy. CP1 is a novel immunotherapeutic tool 

demonstrating how a tissue-specific microbe can increase tumor immunogenicity and 

sensitize an otherwise resistant cancer type to immunotherapy. 
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CHAPTER 1: INTRODUCTION 

	

	

1.1 Prostate cancer  

	

Prostate cancer (PCa) is one of the most prevalent cancer types, estimated to have 

an incidence of 164,690 men and cause 29,430 deaths in 2018 (1). Prostate tumors are 

often initially treated by radical prostatectomy and radiation therapy. In addition, as these 

tumors are dependent on androgen for their growth and survival, patients with 

intermediate risk disease and beyond are also treated with androgen deprivation therapy 

(ADT). Intermediate risk disease is defined as localized prostate cancer occupying at 

least half of one prostate lobe or bilateral within the tissue, a serum prostate-specific 

antigen (PSA) ≥10 and <20 ng/ml, or a Gleason score 7 (based on histological 

quantification of tissue differentiation and glandular organization). ADT successfully 

induces tumor regression in 80-90% of treated patients. However, ADT is associated with 

major urological, cardiovascular, and skeletal adverse events and morbidities (2-5), and 

nearly all regressed tumors recur within 12-33 months as castration-resistant prostate 

cancer (CRPC) (6-8). CRPC patients have a poor prognosis with a median survival time 

of 12-37 months after initiation of ADT, or 9-30 months overall (8-10).  

In PCa, as with many other cancer types, chronic inflammation is linked to tumor 

formation and carcinogenesis (11), yet immunosuppression and immune evasion are 

hallmarks of the tumor microenvironment (12). While some cancer types display a T cell 
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inflamed phenotype with a high level of tumor infiltrating lymphocytes (TILs), many 

others do not, with decreased TILs and, often, poor response to immunotherapy (13). 

Therefore, it is crucial to understand both the level and type of inflammation and 

immunosuppression found within the prostate tumor microenvironment in order to 

optimize clinical responses to immunotherapies. 

 

 

1.2 Prostate tumor immunology and microenvironment 

 

1.2.1 Tumor infiltrating lymphocytes  

TILs are critical players in driving an anti-tumor immune response and for 

immunotherapy efficacy in many cancer types (14). Comprehensive review of multiple 

cancers determined that TILs are linked to a better prognosis in colorectal cancer, 

hepatocellular carcinoma, gallbladder carcinoma, pancreatic carcinoma, esophageal 

carcinoma, ovarian cancer, endometrial cancer, cervical cancer, transitional cell bladder 

cancer, urothelial cancer, lung cancer, breast cancer, and head and neck cancer (15). 

However, in PCa, TILs are scarce in comparison to those observed in normal prostate 

tissue and benign prostatic hyperplasia (BPH, a non-cancerous enlargement of the 

prostate) (16), with another study reporting T cell infiltration remaining constant over the 

course of disease progression, from benign glandular hyperplasia to prostatic 

intraepithelial neoplasia (PIN, a potential PCa precursor state) to malignancy (17). In 
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addition, lymphocytic aggregates and clusters, reported as both predominantly CD8 and 

CD4 T cells, are only present in normal and pre-invasive epithelial areas, but not within 

malignant cancerous lesions (18), and these PCa TILs express decreased levels of the 

important cytotoxicity cytokines perforin and IFNγ in comparison to T cells from healthy 

prostate tissue (19). However, despite these findings, others have reported increased CD4 

and CD8 T cells in PCa tissue in comparison to benign prostatic tissue (20), with CD3 T 

cells present in 69% of 16 CRPC specimens (21) and 72% of 25 high-grade 

prostatectomy/biopsy specimens (22). These inconsistencies may represent the 

heterogeneity both between and within prostate tumors, as well as between different 

stages of the disease.  

Analysis of the clinical consequences of these TILs has also yielded conflicting 

results in PCa. Low level of PCa TILs was associated with a higher risk of tumor 

progression and cancer-related death (23), and a large scale study of 3,261 prostatectomy 

samples reported that both very low and very high CD3 T cell densities were associated 

with shorter PSA recurrence-free survival (RFS) (24). Further, high CD4 TILs was linked 

with decreased PCa survival (25), high CD8 TILs with shorter time to biochemical failure 

(disease recurrence determined by rising serum PSA) (26), and high overall TILs with 

tumor invasion and as an independent predictor of shortened PSA RFS (27). These 

conflicting findings highlight the complexity of PCa TILs and the need to better 

understand not only the overall quantity of infiltrating CD3 T cells, but also the specific 

phenotypes of these cells.  
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 Within PCa, TILs are mostly Th1 T cells (CD4 T cells expressing IFNγ), and also 

display strong Th17 (CD4 T cells expressing IL-17) skewing relative to peripheral blood 

T cells, with Th17 TILs correlating with a lower Gleason score (28). In support of this 

finding, the efficacy of PCa vaccines was linked to the level of pre-treatment circulating 

Th17 T cells (29) and the ability of the treatment to induce a Th17-driven immune 

response (30).  

Additional studies have analyzed the T cell receptor (TCR) of PCa TILs to 

determine the degree of antigen-specific T cells and any clonal T cell expansion within 

the tumor microenvironment. TCR clonality analyses have demonstrated that PCa TILs 

display both oligoclonal expansion, as determined by restricted TCR Vβ gene usage (31), 

and a broad TCR repertoire, indicating a lack of antigen-specific T cell expansion (19). 

While the degree of antigen-specific T cell clonality is still unclear in PCa, a pre-clinical 

murine model identified the presence of a CD8 T cell response specific for a histone H4 

peptide only found in prostate tumor-bearing mice, signifying that the broad repertoire of 

PCa TILs may include ubiquitous self antigens exposed upon cancer formation (32). 

 Prostatic TILs also express high levels of immune checkpoint inhibitory 

molecules. These molecules normally serve an immune-regulatory role under benign 

conditions, but in the context of cancer, they are utilized by the tumor to evade the 

immune response. Specifically, PD-1 is expressed on activated and exhausted T cells 

after persistent antigen stimulation, and its interaction with its PD-L1 or PD-L2 ligands 

on antigen-presenting immune cells or tumor cells leads to T cell inhibition via SHP-2 

phosphatase-mediated inhibition of downstream phosphatidylinositol-3 kinase (PI3K) 
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signaling, as well as inhibition of IFNγ, TNFα, and IL-2 production, among other 

mechanisms (33). The majority of prostate tumors contain PD-1-positive lymphocytic 

clusters, with as high as 90% of the CD8 TILs expressing PD-1 (31), and most prostate 

tumors are PD-L1 positive (34). In addition, PSA-specific T cells from PCa patients 

display higher expression of the Tim-3 exhaustion marker, as well as the CD38 activation 

marker (35). Tim-3 is specifically involved in regulating the activity of Th1 T cells and 

CD8 T cells through its interaction with its ligand galectin-9 (36).   

Prostate tumor cells also demonstrate decreased expression MHC class I genes, 

another common mechanism by which tumors circumvent the host CD8 T cell-mediated 

immune response. 81% of Gleason 7-8 tumors display >50% HLA class I gene 

downregulation (37), and 50% of prostate tumors have been reported as HLA class I 

negative with only 22% as homogeneously class I positive, in comparison to 96% 

positivity in BPH samples (38). By immunohistochemistry (IHC), 88% of prostate 

tumors contain at least one type of HLA alteration and 50% were HLA class I negative, 

the latter of which was associated with tumor relapse, perineural invasion, and decreased 

expression of antigen presenting machinery genes (39). Prostate tumors also seemingly 

impact the TCR, as circulating CD8 and CD4 T cells from PCa patients display decreased 

TCRζ chain expression and decreased activation and proliferation in comparison T cells 

from healthy controls (40).  

1.2.2 Regulatory T cells  

Regulatory T cells (Tregs) normally function to modulate inflammation and 

promote self-tolerance. However, in the context of cancer, Tregs infiltrate the tumor, 
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suppress the anti-tumor immune response through IL-2 deprivation, expression of the 

immune inhibitory molecule CTLA-4, and secretion of IL-10 and TGF-β, and they are 

associated with poor prognosis in many cancer types (41). In PCa, multiple studies have 

confirmed higher levels of infiltrating Tregs in prostate tumors in comparison to adjacent 

benign tissue and healthy controls (20, 28, 34, 42). A large scale IHC analysis identified 

FOXP3+ (the Treg lineage-specific transcription factor) cells in 88.8% of 2,002 PCa 

samples (43). Interestingly, among benign prostatic zones, Tregs are least frequently 

found in the central zone, the region with the lowest incidence of PCa (20), suggesting a 

role for Treg-mediated immunosuppression in PCa tumorigenesis. Tregs are also 

increased in the peripheral blood of PCa patients in comparison to healthy controls (42, 

44), and they express the immune inhibitory molecules CTLA-4, GITR, and LAG3 (28).  

These increased Tregs appear to have functional consequences in PCa. Increased 

tumor infiltrating Tregs correlated with decreased PSA RFS, advanced tumor stage, and 

increased Ki67 proliferative staining (43). In a phase II trial of metastatic CRPC 

(mCRPC) patients treated with an immunotherapeutic vaccine, authors identified a 

potential link between decreased Tregs and prolonged overall survival (OS) after 

treatment (45). However, in another vaccine trial, pre-treatment level of Tregs did not 

correlate with time to disease progression (TTP, defined by rising PSA) (29).  

Many of the above clinical findings have been validated in pre-clinical PCa 

models that also offer evidence for the ability to specifically target these cells. In a 

transgenic murine model of prostate cancer dysplasia and PIN, immunosuppressive Tregs 

increased both within the tumor and in the tumor-draining lymph nodes (dLNs) during 
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the course of disease progression. Importantly, treatment with an anti-CD25 neutralizing 

antibody inhibited tumor growth (46). In a PSA-expressing TRAMP model of murine 

PCa, anti-CD25 antibody treatment was able to break CD8 immune tolerance, and, in 

combination with the otherwise ineffective anti-CTLA-4 antibody, delayed tumor growth 

(47).  

1.2.3 γδ T cells 

 γδ T cells are a T cell subset containing a TCR composed of a γ and δ chain, as 

opposed to an α and β chain. These cells display both pro- and anti-tumorigenic 

properties in cancer, as they may recruit immunosuppressive myeloid-derived suppressor 

cells (MDSCs) and macrophages and promote tumor angiogenesis, yet they can also 

directly eliminate tumor cells, produce IFNγ, upregulate tumor expression of MHC class 

I genes, and enhance CD8 T cell, Th1 T cell, and NK cell anti-tumor activity (48). 

However, research on γδ T cells has been minimal in prostate cancer. Ex vivo expanded 

human γδ T cells, specifically Vγ9Vδ2 T cells, display perforin- and granzyme-

dependent in vitro cytolytic activity against the DU-145 and PC-3 CRPC cell lines, but 

not against the LNCaP androgen-dependent PCa cell line (49). One phase I clinical trial 

evaluated mCRPC patients treated with the γδ T cell agonist zoledronate plus IL-2. γδ T 

cells from treated patients displayed an effector memory-like T cell phenotype with IFNγ 

and perforin production, and increasing numbers of these cells correlated with decreasing 

PSA and partial remission and stable disease in some patients (50). A further study 

validated that zoledronate combined with IL-2 activated and increased γδ T cells, which 

was associated with reduced PSA and PSA velocity (51). The functions and impact of γδ 
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T cells in the prostate tumor microenvironment must be better understood in order to 

therapeutically target these cells in PCa.  

1.2.4 Myeloid-derived suppressor cells  

MDSCs are an immature myeloid cell type that, like Tregs, constitutes a major 

source of immunosuppression in the tumor microenvironment. MDSCs inhibit T cell 

function through the production of reactive nitrogen and oxygen species (via iNOS, 

which leads to nitration of the TCR and inhibition of downstream signaling), deprivation 

of nutritional molecules (via arginase-1), IL-10 and TGF-β secretion, and Treg induction 

(52).  

MDSCs can be subtyped as monocytic (M-MDSCs) or granulocytic (G-MDSCs), 

the former of which is considered the more potent immunosuppressor. Multiple studies 

have identified higher levels of circulating CD14+HLA-DRlo/- M-MDSCs in the 

peripheral blood of PCa patients relative to healthy controls (44, 53, 54). These M-

MDSCs express high levels of iNOS (44), suppress T cell activity (44, 53), and directly 

correlate with multiple negative PCa prognostic markers (increased lactate 

dehydrogenase, PSA, alkaline phosphatase, anemia) (44). Interestingly, after 

prostatectomy, these high M-MDSC levels normalize and CD8 T cell IFNγ production 

increases, suggesting that post-prostatectomy may be an optimal time to administer 

immunotherapies (54). 

Circulating Lin-CD15HiCD33lo G-MDSCs are also high in PCa patients, 

increasing during disease progression from localized to metastatic cancer. These G-
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MDSCs express activated STAT3 and inhibit autologous CD8 T cell proliferation and 

IFNγ and granzyme B production (55).  

Further, both M-MDSCs (CD14+) and G-MDSCs (CD14-) were identified in the 

positive pelvic lymph nodes (PPLNs) in a report of 10 PCa patients. The CD8 T cells in 

these lymph nodes expressed decreased Ki67 in comparison to autologous circulating 

CD8 T cells, and the G-MDSCs expressed higher phosphorylated-STAT3 (important for 

arginase-1 production), PD-L1, and PD-L2, indicating that salvage pelvic lymph node 

dissection may also play a role in decreasing immunosuppression (56).  

 As with Tregs, many of the clinical MDSC findings have been validated in 

murine PCa models. In a prostate-specific PTEN knockout (KO) mouse model, arginase-

1- and iNOS-expressing MDSCs increased within the prostate immediately after PTEN 

deletion, and inhibiting the CSF-1 receptor (via GW2580) decreased both MDSC 

infiltration and immunosuppression (57). Also in this model, the tumor infiltrating 

MDSCs antagonized tumor senescence through the secretion of IL-1 receptor antagonist 

(IL-1RA), and a CXCR2 antagonist decreased tumor infiltrating MDSCs and enhanced 

the efficacy and senescence induction of docetaxel treatment (58). In another murine PCa 

model with loss of both PTEN and SMAD4, tumor-derived CXCL5 (via hyperactivated 

Hippo-YAP signaling) recruited CXCR2-expressing MDSCs, and CXCR2 inhibition 

again decreased tumor progression (59). In addition, TLR9+ murine prostate cancer cells 

were able to recruit STAT3+ G-MSDCs via the LIF cytokine. Importantly, LIF levels are 

increased in PCa patient blood and its receptor is increased on PCa patient circulating G-

MDSCs (60). Finally, in a novel mCRPC murine model, MDSC inhibition with the 
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multikinase inhibitors cabozantinib and BEZ235 synergized with the combination of anti-

CTLA-4 and anti-PD-1 immune checkpoint blockade. Interestingly, in contrast to one of 

the above findings, the efficacy of these treatments in inhibiting MDSCs was dependent 

on their ability to increase IL-1RA (61).  

1.2.5 Tumor-associated macrophages 

Macrophages are commonly observed infiltrating various tumor types, and most 

often display an M2-polarized phenotype active in promoting immunosuppression, tumor 

proliferation, and angiogenesis, in contrast to M1-polarized macrophages promote anti-

tumor immunity (62). In an analysis of 332 prostatectomy samples, the quantity of 

CD68+ tumor-associated macrophages (TAMs) was higher in malignant tissue than in 

PIN or benign tissue, and was associated with higher Gleason score. While this study did 

not find a link between TAMs and biochemical recurrence (BCR) after prostatectomy 

(63), others have associated increased TAMs with an increased risk of BCR after both 

prostatectomy (64) and ADT (65). TAMs have also been associated with decreased 

survival and increased metastases, tumor grade, stage, and tumor cell proliferation (26, 

66). In a study of 71 PCa biopsies after ADT, low level of TAMs was associated with an 

increased RFS, while high level of TAMs was associated with high PSA, Gleason score, 

T stage, and PSA failure. Further, TAM count was identified as a significant prognostic 

factor upon multivariate analysis (67). On the contrary, one study reported that decreased 

macrophage density within the tumor and stroma was associated with increased clinical 

stage, Gleason score, and positive lymph nodes, and identified TAMs as a predictive 

marker of disease-free survival (DFS) after prostatectomy (68).  
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Further analysis of the phenotype of these TAMs reported M2 macrophages 

present in 63.4% of PCa specimens. M2 TAMs were primarily observed in extra-capsular 

extension disease, while M1 TAMs were found in organ confined disease (64). 

Interestingly, another study on 100 prostatectomy samples reported higher CD68+ total 

macrophages in benign glands in comparison to malignant glands, yet higher CD204+ M2 

macrophages within the malignant glands (17). This M2 polarization appears to be due to 

prostate tumor-derived factors, as monocytes from healthy controls incubated ex vivo 

with PC-3-conditioned culture medium took on an M2 phenotype, expressing the M2 

marker CD164, secreting high IL-10 and low IL-1β and IL-12, and promoting 

angiogenesis and PC-3 proliferation, mobility, and invasiveness. These M2-like 

macrophages were dependent on upregulation on the microRNA let-7b for their pro-

tumorigenic properties (69). Finally, in both subcutaneous and orthotopic PCa mouse 

models, TAMs were important for PCa recurrence after ADT. CSF1R inhibition 

combined with ADT decreased both TAM recruitment and tumor progression (70).  

1.2.6 Dendritic cells  

Dendritic cells (DCs) are critical for an adaptive anti-tumor immune response, as 

they can present tumor antigen to T cells. However, tumor infiltrating DCs are often 

immature and unable to induce strong T cell responses. In PCa, an initial categorization 

of 15 specimens identified significantly decreased DCs within the tumor in comparison to 

within benign adjacent tissue (71). The decrease in DCs increased with tumor 

progression, as circulating levels of plasmacytoid DCs (pDCs) and myeloid DCs (mDCs) 

were further decreased in mPCa patients than in those with localized disease (72). 
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Interestingly, this decrease in DCs may be due to a tumor-secreted factor, as incubation 

with PCa patient serum inhibited monocyte differentiation into DCs, the ability of DCs to 

stimulate T cell proliferation, and the expression of the CD83, CD86, and CD40 

activation and maturation molecules, the latter of which correlated with higher PSA 

levels (73). In a study of 151 prostatectomy samples, low CD1a+ DCs was association 

with high Gleason score and tumor stage as well as low CD8 and CD4 TILs (74). In 

addition, in a transgenic murine model of prostate cancer dysplasia and PIN, tumor 

infiltrating DCs expressed decreased CD86 and MHC class II (46). Overall, systemic and 

tumor infiltrating DCs are decreased in both quantity and quality in PCa.  

1.2.7 B cells 

Like γδ T cells, B cell have contrasting roles in cancer. B cells can promote anti-

tumor immunity through both antibody-mediated mechanisms and by acting as antigen 

presenting cells (APCs), yet they can also promote angiogenesis, recruit 

immunosuppressive cells, and the regulatory B cell subset (Bregs) can secrete IL-10 and 

TGF-β (75). Accordingly, studies on B cells in PCa have yielded conflicting results. One 

study on 53 prostatectomy specimens reported increased tumor infiltrating B cells in 

malignant tissue in comparison to adjacent benign tissue (76), yet another analysis of 100 

prostatectomy samples reported decreased B cells infiltrating malignant glands relative to 

benign glands (17). In analyses of patient outcomes, B cell infiltration was increased in 

high-risk PCa and in patients that later recurred or demonstrated disease progression (76), 

yet a large scale study of 3,261 samples concluded that the level of B cell infiltration did 

not correlate with any clinical or histopathological PCa parameters (24). Despite this 
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negative finding, one case report demonstrated a biochemical response in an advanced 

CD20+CCR7+ PCa patient after treatment with the anti-CD20 antibody rituximab. 

However, it is unclear to what degree, if any, this efficacy was due to B cell inhibition 

(77). An early phase I trial (NCT01804712) evaluating rituximab as a neoadjuvant agent 

prior to PCa prostatectomy may shed light on this association.  

 In contrast to the conflicting human data, pre-clinical mouse data have suggested 

a pre-dominantly immunosuppressive role for B cells in PCa progression. In a 

subcutaneous syngeneic murine PCa model, lymphotoxin-expressing B cells were 

important in disease progression to CRPC (78). Further, a B cell subset of 

immunosuppressive IgA+ IL-10+ PD-L1+ plasmocytes were identified in mice that 

decreased oxaliplatin-induced immunogenic cell death (ICD) and CD8 T cell activation. 

This B cell subtype is also found in prostate tumors from therapy-resistant patients (79).  

1.2.8 NK cells 

NK cells are important in bridging the innate and adaptive immune systems. In 

cancer, NK cells play critical roles in promoting anti-tumor immunity through the 

production of cytokines, such as IFNγ, TNF, and GM-CSF, directly killing cancer cells, 

including those with MHC class I downregulation, augmenting APC and CD8 T cell 

activity, and in controlling metastasis (80). In PCa, NK cells have been observed within 

the lymphoid aggregates surrounding prostate tumors (18), yet they only account for 

approximately 3.6% of the total lymphocytic infiltration. NK cells in prostate tumors 

display an immature phenotype with low cytotoxic potential, in part due to 

immunosuppressive TGF-β1 within the tumor microenvironment and the inhibitor 
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receptor ILT2/LILRB1 on tumor cells. (81). Additional studies have confirmed decreased 

activity and cytotoxic ability of circulating NK cells during PCa progression, with 

minimal NK cell activity in advanced and metastatic PCa, but not in localized PCa, 

patients in remission, and healthy controls (81-87), suggesting a role for the 

immunosuppression of NK cells in PCa progression and metastasis. Differential NK cell 

activity has also been observed between PCa responders and non-responders to hormonal 

therapy (86). In addition, NK cell activity may also have diagnostic utility. PCa was 

diagnosed by IFNγ levels after stimulation with a patented stimulatory cytokine 

Promoca® with a sensitivity of 72% and specificity of 74% (87) and, more recently, a 

with sensitivity of 57%, specificity of 91%, positivity predictive value of 86%, negative 

predictive value of 69%, and an odds ratio of 13.33 by Promoca® in combination with an 

in vitro diagnostic device (IVDD) (88).  

1.2.9 Mast cells 

As with other cell types, mast cells also display great complexity in the tumor 

microenvironment, promoting tumorigenesis through increased angiogenesis, 

extracellular matrix degradation, and MDSC activity, while also displaying anti-

tumorigenic properties (89). In one PCa study, mast cells were reported as less numerous 

than T cells in the tumor microenvironment (18), while another study of 2,300 hormone-

naïve prostatectomy specimens reported mast cells present in 95.9% of samples, as 

assessed by c-kit IHC (90). Interestingly, mast cells are located both surrounding and 

infiltrating prostate tumors (18, 91), and this geographic distinction is important in 

elucidating the function of these cells. Intra-tumoral mast cells display anti-tumorigenic 
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properties, decreasing angiogenesis and tumor growth, while peri-tumoral mast cells are 

pro-tumorigenic, increasing angiogenesis (via FGF-2) and tumor growth. The peri-

tumoral mast cells increased during tumor progression to CRPC in a pre-clinical rat 

model (92).  

Analyzing mast cells also has prognostic value, as high levels of infiltrating mast 

cells is a significant independent prognostic marker of PCa-specific survival, while low 

mast cell infiltration is associated with increasing stage, metastases, and tumor cell 

proliferation (92). In line with these findings, intra-tumoral, but not peri-tumoral mast 

cells, correlated with low Gleason score (91), and others have reported an association 

between high mast cell densities and low PSA, Gleason score, and tumor stage, and 

increasing PSA RFS (90). However, on the contrary, high prostate tumor infiltrating mast 

cell count has also been associated with increasing stage, Gleason score, and PSA failure, 

as well as a shortened progression free survival (PFS) in patients treated with 

prostatectomy, irradiation therapy, or ADT (93). Finally, when classifying tumor regions 

by differentiation status, mast cell infiltration and degranulation was only observed in 

well differentiated, but not poorly differentiated, PCa specimens. In mice, mast cells 

promoted growth of only well differentiated tumors via production of matrix 

metalloprotease-9, yet they were also protective against the formation of aggressive 

neuroendocrine tumors (94). The conflicting functional and correlative outcome data 

highlight both the complexity and potential importance of mast cells in PCa progression.  
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1.2.10 Neutrophils 

Neutrophils have been associated with poor prognosis in multiple cancer types, 

yet have also displayed both pro- and anti-tumorigenic characteristics (95). Circulating 

neutrophil levels have been studied specifically in PCa with respect to patient outcomes. 

In a study of 386 African-American PCa patients, neutropenia before prostatectomy was 

a significant predictor of high tumor grade (96), validated in a study of 323 Japanese PCa 

patients reporting low circulating neutrophil count as a predictive marker of a positive 

tumor biopsy (97). Other studies have utilized the neutrophil:lymphocyte ratio (NLR) 

relative to clinical outcomes, with opposing results. In 897 PCa patients from the 

Glasgow Inflammation Outcome Study, high NLR was associated with decreased OS 

(98). High NLR was also linked to high PSA levels post-docetaxel and -prednisone 

treatment (99) as well as poor prognosis and survival in in mCRPC patients pre- (100) 

and post-docetaxel therapy (101, 102). The lack of studies on neutrophils in the prostate 

tumor microenvironment and the lack of functional analyses of these neutrophils make it 

difficult to conclude the exact role of neutrophils in PCa development, progression, or 

response to therapies.  

1.2.11 Cytokines, chemokines, and inhibitory molecules 

 As discussed, the prostate tumor microenvironment is not conducive to an anti-

tumor immune response, containing scarce quantity and activation of TILs and other 

important immune cell types, but an abundance of immunosuppressive immune cells. 

One cause of this inhibitory microenvironment may be the cytokine and chemokine 

profile of these tumors. In a study of 14 treatment-naïve PCa specimens, tumors 
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contained low levels of CCL5, CXCL9, and CXCL10, important for recruiting CD8 and 

Th1 T cells and NK cells, but high levels of CCL2, CCL22, and CXCL12, important for 

recruiting MDSCs and Tregs. As expected, these cytokine levels also corresponded with 

the degree of infiltration of these cell types. However, treatment with poly-I:C, IFNα, and 

celecoxib reversed many of these chemokine levels, leading to decreased Treg 

recruitment and increased granzyme B-expressing CD8 T cell recruitment (103). In 

addition, in murine PCa models, tumor-derived CXCL5 was implicated in recruiting 

CXCR2-expressing MDSCs into tumors (59), and surgical castration induced 

upregulation of CXCL13 to recruit pro-tumorigenic B cells (78). TGF-β1 levels are also 

high in the prostate tumor microenvironment, and are able to suppress NK cell activity 

(81) and increase extracellular matrix degeneration, angiogenesis, and the epithelial-to-

mesenchymal transition to induce tumor metastasis. Potential therapies targeting the 

TGF-β signaling pathway including neutralizing antibodies, small molecule kinase 

inhibitors, and antisense oligonucleotides (104). In addition, the IL-6 cytokine is a 

significant prognostic factor for BCR and decreased prostate cancer survival (105). iNOS 

is also highly expressed in 68% of specimens from both prostate tumor cells and the 

immune infiltrate, in comparison to lower levels in benign adjacent tissue, and high iNOS 

was associated with poor survival, metastasis, and high Gleason score, PSA, and cancer 

cell proliferation, but not TILs (106, 107). Finally, high cyclooxygenase-2 levels were 

reported in 40 of 43 PCa specimens, and correlated with high Gleason score, TILs, 

macrophage density, and microvessel density (108).  
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1.3 Prostate cancer immunotherapy 

 

Despite the immunologically cold and immunosuppressive nature of the prostate 

tumor microenvironment, PCa remains a viable target for immunotherapy for multiple 

reasons. Serial analysis of gene expression (SAGE) analysis estimated the prostate 

transcriptome at approximately 37,000, revealing 156 differentially expressed genes in 

malignant tissue (109). Further analysis comparing the prostate to other tissues has 

revealed that there are multiple overexpressed and immunogenic tissue-specific tumor-

associated antigens (TAAs), such as PSA, PAP, PSCA, and PSMA (110). TAAs are 

important for driving an antigen-specific immune response that differentiates malignant 

from benign tissue. The prostate is also an accessory organ that is not vital for survival, 

fertility, or urinary function, thereby permitting immunotherapies to induce local 

inflammation and the possibility of bystander tissue damage with minimal consequences. 

Finally, the >1 year prognosis of both early stage androgen-dependent PCa and CRPC 

allows adequate time for immunotherapies to generate and maintain a long-term durable 

immune response. As a result, multiple immunotherapies have been tested in both the 

pre-clinical and clinical setting, with mixed results.  

1.3.1 Androgen deprivation therapy 

ADT was designed to deplete and inhibit androgen function to cause prostate 

tumor cell death, yet this therapy also has multiple underappreciated immunomodulatory 

implications. With respect to T cells, firstly, ADT increases T cell infiltration into patient 

prostate tumors, which has been reported as both predominantly CD8 T cells (65) and 
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predominantly CD4 T cells (111), and these T cells display restricted TCR Vβ gene 

usage, suggesting oligoclonal antigen-specific expansion (111). Murine experiments 

confirmed increased levels of activated and antigen-specific T cells in lymphoid tissues 

after castration (112). Secondly, ADT abrogates the tolerance of CD4 T cells to prostate 

cancer antigens, which otherwise inhibits their effector function (113). Thirdly, a recent 

study demonstrated that after ADT, both AR expression and the presence of cytolytic AR-

specific T cells increased. Consequently, combining ADT with a DNA vaccine encoding 

AR decreased tumor volume and delayed CRPC development (114).  

ADT also increases the level of PCa TAMs, which was associated with an 

increased risk of BCR (65). In murine PCa models, androgen blockade again increased 

TAM recruitment (via tumor-derived M-CSF1 and CSF1), and ADT combined with 

CSF1R inhibition both blocked this recruitment and inhibited tumor progression (70). 

While B cell and Treg levels were trending, but not significantly increased after ADT in 

patients, murine castration increased tumor infiltration by lymphotoxin-expressing and 

CRPC-promoting B cells (via CXCL13) (78) and by Tregs, which exhibited increased 

inhibitory effects on CD8 T cell effector function after castration (115).  

Interestingly, there are differential immunomodulatory effects between surgical 

orchiectomy and medical ADT, and even between specific medical forms of ADT. In 

mice, surgical orchiectomy synergized with immunotherapy, while medical ADT 

suppressed the adaptive immune response by inhibiting initial T cell priming and 

activation. This immunosuppressive quality of medical ADT was specific for the AR 
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antagonists flutamide and enzalutamide, but not the gonadotropin inhibitor leuprolide and 

the androgen synthesis inhibitor abiraterone (116).  

1.3.2 Sipuleucel-T  

Sipuleucel-T became the first FDA approved cancer vaccine after demonstrating 

improved OS for patients with mCRPC (117). With this immunotherapy, patients 

undergo leukapheresis, their peripheral blood mononuclear cells (PBMCs) are exposed ex 

vivo to a fusion peptide (PA2024) of the PAP TAA and the cytokine GM-CSF, and these 

autologous cells are infused back into the patients to stimulate a PAP-specific immune 

response. GM-CSF is important in optimizing APC function, and, thus, has also been 

utilized with many other PCa immunotherapies. As a monotherapy, GM-CSF has reached 

phase II clinical trial (118, 119) and increased PSA doubling time (119), with a more 

recent phase I trial of neoadjuvant GM-CSF before prostatectomy demonstrating that the 

cytokine increased levels of circulating mature DCs, proliferating CD8 and CD4 T cells, 

and, to a lesser degree, Tregs and CD8 TILs, but not tumor infiltrating APCs (120).  

After initial phase I/II Sipuleucel-T clinical trials demonstrated preliminary 

clinical responses and the successful generation of PAP-specific T cells in PCa patients 

(121-124), a phase III trial was designed to investigate the efficacy of Sipuleucel-T for 

mCRPC. While Sipuleucel-T did not significantly improve TTP, it did significantly 

prolonged median survival time from 21.4 to 25.9 months and increased patient T cell 

responses (125). In 2010, a phase III trial with 512 mCRPC patients concluded that 

Sipuleucel-T treatment significantly increased the median survival time by 4.1 months 

(from 21.7 to 25.8 months), with an increased 36-month survival probability from 23.0% 
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to 31.7%, yet, again, did not improve TTP (117). In these patients, low pre-treatment 

PSA level (126), the generation of antigen-specific T cells (detectable in 78.8% of 

patients) (127), and positive IgG responses specific for PSA and LGALS3 (indicating 

antigen spreading) (128) were associated with increased OS. Additional integrated 

analysis of the 2 phase III trials concluded that Sipuleucel-T conferred a 33% reduced 

risk of death (129). 

 Further studies have investigated the impact of Sipuleucel-T in the neoadjuvant 

setting and in combination with other therapies. In a phase II trial of PCa patients treated 

with Sipuleucel-T prior to prostatectomy, the immunotherapy increased CD8 and CD4 

TILs, which were highly PD-1+ and Ki-67+ (130). Next-generation sequencing (NGS) of 

TCRs from these patients revealed that Sipuleucel-T treatment increased TCR sequence 

diversity and broadened the TCR repertoire (131). When combined with enzalutamide, 

Sipuleucel-T resulted in a durable complete PSA response in one mCRPC case report 

(132), and a phase II trial of Sipuleucel-T combined with abiraterone reported similar 

immune responses as seen in the Sipuleucel-T phase III trials (133). In addition, another 

phase II trial concluded that Sipuleucel-T prior to ADT induced greater immune 

responses than the reverse treatment order (134). Further, a recent phase I clinical trial 

(NCT01832870) combining Sipuleucel-T with the anti-CTLA-4 immune checkpoint 

inhibitor, ipilimumab, in 9 mCRPC patients reported that the combination was well 

tolerated and resulted in increased serum immunoglobulin specific for PA2024 and PAP, 

with 1 of the 6 surviving patients demonstrating undetectable PSA levels (135). Current 

ongoing PCa clinical trials include combining Sipuleucel-T with immediate or delayed 
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CTLA-4 blockade (phase II NCT01804465), the anti-PD-L1 immune checkpoint 

inhibitory antibody atezolizumab (phase I NCT03024216), the anti-angiogenic and 

immunomodulatory agent tasquinimod (phase II NCT02159950), a pTVG-HP DNA 

booster vaccine for PAP (phase II NCT01706458), radiation therapy (phase II 

NCT01833208, phase II NCT02232230), docetaxel (phase II NCT02793219, phase II 

NCT02793765), glycosylated recombinant IL-7 (CYT107) (phase II NCT01881867), the 

anti-VEGF antibody bevacizumab (phase II NCT00027599), and with indoximod, a small 

molecule inhibitor of the immunosuppressive indoleamine 2,3-dioxygenase (IDO). 

Preliminary reports on Sipuleucel-T combined with indoximod have demonstrated 

significant improvements in radiographic and clinical progression (phase II 

NCT01560923) (136).  

 1.3.3 Additional autologous APC-based vaccines 

In a similar approach as Sipuleucel-T, the autologous DCVAC/PCa vaccine 

involves patient leukapheresis followed by ex vivo pulsing of mature DCs with killed PCa 

LNCaP cells. A Phase I/II trial of DCVAC/PCa with cyclophosphamide for mCRPC 

resulted in an OS of 19 months (predicted at 11.8-13 months with no treatment), 

decreased circulating Tregs, and the generation of PSA-specific T cells (137). More 

recently, a phase I/II DCVAC/PCa trial reported significantly increased PSA doubling 

times in patients with PSA recurrence after prostatectomy or salvage radiotherapy (138), 

and a phase II trial of DCVAC/PCa combined with docetaxel induced TAA- or vaccine-

specific immune responses, but no changes in PFS and disease-specific survival (DSS) 

(139). There is currently an ongoing phase III trial looking at the efficacy of 
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DCVAC/PCa combined with the standard of care docetaxel and prednisone for mCRPC 

(NCT02111577).  

Additional APC-based experimental vaccines includes an earlier phase II trial of 

autologous DCs pulsed with two HLA-specific PSMA peptides, which demonstrated 

preliminary clinical responses (140). In addition, phase II trial of Dendritophage-rPSA, a 

vaccine of autologous DCs pulsed with recombinant PSA, resulted in PSA-specific 

immune responses and clinical responses in some patients (141). More recently, the 

BDCA-1 BDC-01 vaccine, in which PCa patient blood-derived CD1c+ DCs were pulsed 

ex vivo with patient HLA-restricted peptides (PSA, PAP, PSMA, and a control influenza 

peptide), was reportedly safe and well tolerated in phase I trial (142). MUC1, a 

glycoprotein overexpressed and hypoglycosylated in malignant ductal epithelial cells, 

was also tested as a TAA vaccine. In a phase I/II clinical trial with 17 CRPC patients, 

autologous DCs were loaded with MUC1 bearing truncated carbohydrate Tn antigen (Tn-

MUC1). The vaccine induced Tn-MUC1 specific T cell responses in rhesus macaques as 

well as MUC-1 specific T cell responses and improved PSA doubling time in patients 

(143). Finally, a recent phase I trial was conducted investigating BPX101 for mCRPC. 

For this in vivo activated vaccine, autologous patient APCs were transduced with the 

adenoviral vector Ad5f35f encoding rimiducid-inducible co-stimulatory molecule CD40 

and were exposed to PA001 (extracellular domain of PSMA). The vaccine induced 

immune stimulation, PSA decline, and objective tumor regressions after in vivo induced 

activation (144).  
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1.3.4 GVAX 

GVAX involves the intra-dermal injection of inactivated allogeneic LNCaP and 

PC-3 cell lines engineered to secrete GM-CSF, as first described in the B16 melanoma 

murine model (145). In comparison to Sipuleucel-T, DCVAC/PCa, and BDCA-1, GVAX 

does not require patient leukapheresis or ex vivo conditioning, and involves multiple 

TAAs. An initial phase I GVAX trial demonstrated the induction of prostate cancer-

specific T cells and B cells (146). In a phase I/II trial with hormone-naïve PCa patients 

with PSA relapse after prostatectomy, GVAX treatment led to intradermal infiltration of 

CD1a+ DCs and CD68+ macrophages at the injection site, the generation of multiple 

LNCaP and PC-3 antigen-specific antibodies, and a significantly decreased PSA velocity 

(147). Additionally, high dose GVAX increased the mean survival from 26.2 months 

(radiologic group) or 24.0 months (low dose GVAX) to 34.9 months (high dose GVAX) 

in metastatic and rising PSA PCa patients (148). An additional phase I/II trial validated 

this increased median survival time, reporting an increase from 23.1 months with low 

dose GVAX to 35 months with high dose GVAX (149). However, 2 larger scale phase III 

GVAX trials have both been terminated. The VITAL-1 trial was terminated after interim 

futility analysis concluded that the study would not meet its primary endpoint of 

improved OS (20.7 months with GVAX vs. 21.7 months with docetaxel and prednisone), 

and the VITAL-2 trial was terminated due to patient mortality.  

Despite the failure of these phase III trials, continuing GVAX research has 

focused on combining the vaccine with additional immune-modulating therapies. GVAX 

followed by ipilimumab demonstrated enhanced anti-tumor immunity and efficacy in a 
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pre-clinical PCa model (150), and, in a phase I clinical trial for mCRPC, GVAX 

combined with ipilimumab resulted in >50% PSA decline in 25% of treated patients 

(151). Recent retrospective analysis of the trial identified that increasing OS was 

associated with the ability of the combination therapy to induce activation of circulating 

DCs, and OS was inversely correlated with pre-treatment levels of M-MDSCs (152). In 

addition, a high CD8+ICOS+ T cell/Treg ratio and a high plasmacytoid DC/MDSC ratio 

correlated with increased PFS after additional mitoxantrone treatment (153). GVAX is 

also being tested in combination with cyclophosphamide and androgen ablation (phase I 

NCT01696877), and has demonstrated enhanced efficacy in a transgenic murine model 

when combined with ionizing radiation (154). 

1.3.5 Additional irradiated cell line vaccines 

Like GVAX, another vaccine approach tested irradiated allogeneic prostate cell 

lines LNCaP, OnyCap23, and P4E6. Treatment resulted in Th1 immune skewing, 

decreased PSA velocity in 11 of 26 CRPC patients, and a 58 week median TTP 

(compared to a 28 week historical control TTP) (155). More recently, in mice, a 

Streptavidin-GM-CSF surface-modified vaccine with the prostate cancer cell line RM-1 

increased CD8 and CD4 T cells, DCs, and, when combined with ICOS+ Treg depletion, 

enhanced therapeutic efficacy (156). This vaccine also increased PD-1 on T cells and PD-

L1 on tumor cells, and, consequently, combination with PD-1/PD-L1 blockade increased 

anti-tumor T cell activity and induced tumor rejection (157).  
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1.3.6 ProstVac-VF  

ProstVac-VF/PSA-TRICOM is a poxvirus-based PCa immunotherapy involving 

the administration of a recombinant vaccinia virus for initial T cell priming followed by a 

booster recombinant fowlpox virus to maintain anti-tumor immunity (158), with both 

viral vectors delivering the transgenes for PSA and the 3 costimulatory molecules, LFA-

3, ICAM-1, B7.1 (159). After initial phase I studies demonstrated that ProstVac-VF 

induced PSA-specific immune response, clinical responses, and was well tolerated in PCa 

patients (160-163), subsequent phase II trials reported 78.1% of patients with clinical 

PFS, 45.3% without PSA progression at 19.1 months, (164), and increased 3-year OS 

(17% in controls vs. 30% in treated) and median survival time (16.6 months in controls 

vs. 25.1 months in treated), but no improvement in PFS (165). This efficacy was partly 

attributed to the decreased Treg immunosuppressive function observed in post-

vaccination patient PBMCs (45), and, in mice, with the ability of the vaccine to increase 

immune activation markers, cytokine production, cytotoxic ability of PSA-specific CD8 

and CD4 T cells, and intra-tumoral activated effector T cell:Treg ratios. Interestingly, the 

vaccine also induced antigen-spreading and the subsequent rejection of challenge with 

PSA-negative tumors in mice (166). However, as with GVAX, the phase III clinical trial 

PROSPECT (NCT01322490) (167) of mCRPC patients receiving ProstVac-VF with or 

without GM-CSF was recently terminated after interim analysis concluded that the 

treatment would not improve OS.  

 As with the other PCa vaccines, subsequent approaches for ProstVac-VF involve 

combining the vaccine with additional immune-stimulating agents. A phase I trial 
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(NCT00113984) of ProstVac-VF combined with ipilimumab conferred a median OS of 

31.3 months at all doses and 37.2 months at high ipilimumab dose, while the predicted 

median OS from ProstVac-VF alone was 18.5 months (168, 169). PBMC analysis 

revealed associations between increased OS and lower pre-treatment PD-1+Tim-3- 

effector memory CD4 T cells, higher pre-treatment PD-1-Tim-3+ CD8 T cells, higher pre-

treatment CTLA-4- Tregs, and increasing Tim-3+ NK cells post-treatment (170). 

ProstVac-VF is also currently in ongoing clinical trials in combination with ipilimumab 

(phase II NCT02506114), the anti-PD-1 antibody nivolumab (phase I/II NCT02933255), 

CV301 (immunotherapeutic targeting the TAAs CEA and MUC-1) and 

M7824/MSB0011359C (fusion protein of the PD-L1 antibody and the soluble 

extracellular domain of the TGF-β receptor II) (phase II NCT03315871), docetaxel 

(phase II NCT02649855, phase II NCT00045227), flutamide (phase II NCT00450463), 

GM-CSF (phase II NCT00108732, with IL-2 phase II NCT00020254), enzalutamide 

(phase II NCT01875250, phase II NCT01867333), radiotherapy (phase II 

NCT00005916), and a phase II trial with the osteoblastic radiopharmaceutical Sm-153-

EDTMP (Quadramet®) (171).  

1.3.7 Additional viral-based PCa vaccines 

 Further research has investigated the efficacy of additional viral-based PCa 

immunotherapies. In mice, a modified vaccinia Ankara vector containing the TRICOM 

genes as well as the Twist transgene induced Twist-specific CD8 and CD4 T cell 

responses and increased survival in combination with enzalutamide in the transgenic 

TRAMP model (172), an alphavirus-based virus-like particle vector encoding PSA 
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(VLPV-PSA) induced PSA-specific immune response to overcome tolerance and delay 

tumor growth (173), a CMV vaccine expressing PSA induced antigen-specific CD8 T 

cells responses and pre-clinical anti-tumor efficacy (174), and a simian adenovirus 

(ChAdOx1) and modified vaccinia Ankara virus (MVA) encoding the TAA STEAP1, a 

cell surface TAA specifically and highly expressed in PCa (175), increased survival when 

combined with PD-1 blockade (176). In PCa patients, a PSA adenovirus vaccine induced 

PSA-specific T cell responses and resulted in longer than predicted survival in a phase I 

mCRPC trial (177), and a phase II poxviral PSA vaccine combined with external beam 

radiation therapy induced antigen spreading, yet the development of autoantibodies was 

linked to a trending decreased biochemical-free survival (178). There is also currently an 

ongoing phase III trial for localized PCa treated with radiation therapy combined with 

ProstAtak® (NCT01436968), an adenovirus encoding the herpes simplex virus thymidine 

kinase to sensitize tumors to valcyclovir. ProstAtak increased CD8 TILs (179) and 

induced clinical responses in combination with radiotherapy in phase I/II trials (180). 

More recently, an adenoviral bivalent vaccine for PSA and PSCA (Ad5-PSA+PSCA) 

decreased tumor burden and induced PSA-specific T cell responses in mice when used 

with surgifoam to sustain durable immunity (181).  

1.3.8 Additional PCa vaccines 

Multiple additional vaccines have been tested in the pre-clinical and clinical 

setting targeting various TAAs utilizing multiple delivery methods. hTERT, the reverse 

transcriptase subunit of telomerase, is both upregulated in cancer and is an immunogenic 

peptide. Therefore, a phase I/IIa trial tested a second generation hTERT vaccine (UV1) 
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combined with GM-CSF for mPCa. 85.7% of patients had detectable antigen-specific 

immune responses, 64% displayed PSA decline to <0.5ng/ml, and 45% of treated patients 

displayed no evidence of persisting disease, resulting in 77% of patients with stable 

disease at 9 months (182). In addition, a chaperone complex vaccine containing GRP170 

and PSCA also inhibited tumor growth in a pre-clinical murine study (183).  

 Multiple cytokines, in addition to GM-CSF, have also been tested as 

immunotherapeutic tools for treating PCa. IL-12 has been utilized with PCa vaccines for 

its immune-promoting anti-tumor effects. A vaccine of apoptotic murine TRAMP-C2 

cells infected with an adenovirus containing the IL-12 gene improved survival of prostate 

tumor-bearing mice (184), and a DC-based vaccine expressing IL-12 and exposed to RM-

9 PCa cell line antigens displayed similar efficacy in preclinical murine PCa models 

(185). In addition, intra-prostatic injection of TNFα in CRPC patients induced tumor 

necrosis and decreased tumor volumes, with long-term reductions in patient serum PSA 

levels (186).  

 Finally, personalized peptide vaccines (PPVs) have also been investigated for 

PCa. A phase II trial with CRPC patients administered a PPV containing up to 31 pooled 

immunogenic peptides demonstrated initial clinical responses, and high serum pre-

treatment levels of IL-6 was associated with decreased OS after treatment (187). In a 

subsequent CRPC phase II trial, a PPV of 24 HLA-A02, -A24, or -A03 restricted 

peptides with lose-dose dexamethasone increased OS and PSA PFS in comparison to 

dexamethasone alone (188). However, combining the PPV with low-dose 
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cyclophosphamide did not alter the positive immune responses, PFS, or OS, but did 

decrease Tregs and increase MDSCs to a greater degree than PPV alone (189).  

DNA-based vaccines have also been extensively studied in PCa. A plasmid DNA 

vaccine encoding PAP induced PAP-specific T cell responses after multiple 

immunizations, correlating with prolonged PSA doubling time in phase I and I/IIa trials 

(190, 191). This vaccine also elicited a Th1 T cell phenotype in 75% of patients, but 

additional real-time immune monitoring-based treatment regimens did not enhance the 

anti-tumor immune response (192). A current clinical trial (phase II NCT00849121) is 

investigating the optimal treatment schedule of this vaccine (pTVG-HP) combined with 

GM-CSF. An additional DNA PSA vaccine (pVAX/PSA) with GM-CSF and IL-2 has 

also reached clinical trial (193). More recent immunotherapies include a DNA plasmid 

encoding a human monoclonal antibody specific for PSMA that increased mouse survival 

and controlled tumor growth, likely via NK cell antibody-dependent cellular cytotoxicity 

(ADCC) (194), and PSCA plasmid vaccines that have demonstrated pre-clinical efficacy 

as a monotherapy (195), combined with an alphavirus (196), fused with HSP70 (protein 

vaccine) (197), and as a fusion plasmid of the PSCA and CTLA-4 genes, which increased 

PSCA-specific immune responses and decreased tumor growth to a greater degree than a 

PSCA-only plasmid vaccine (198).  

1.3.9 Anti-angiogenic immunomodulators 

 VEGF inhibitors and tasquinimod are both anti-angiogenic therapies that also 

display multiple immunomodulatory characteristics. Interestingly, outside of PCa, VEGF 

has demonstrated roles in promoting Treg, MDSC, and immunosuppressive TAM 
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differentiation and function, while also inhibiting the maturation of DCs and decreasing T 

cell trafficking into the tumor and subsequent effector functions (199). Prostate tumors 

express increased levels of VEGF (200), and plasma VEGF levels inversely correlated 

with survival in CRPC patients (201). In a phase III clinical trial, the anti-VEGF antibody 

bevacizumab combined with docetaxel and prednisone improved PFS and objective 

responses for mCRPC patients, but did not improve OS (202), and a more recent phase II 

trial combining bevacizumab with ADT demonstrated improved RFS compared to ADT 

alone (203). Further, the multi-kinase inhibitors sorafenib, sunitinib, and cediranib, which 

inhibit VEGF receptors, also demonstrated limited efficacy in PCa trials (204, 205), and a 

phase III trial of the VEGF inhibitor aflibercept also did not improve OS for mCRPC 

(206). However, in the above trials, the immunomodulatory effects of these VEGF 

inhibitors were not analyzed.  

 Like VEGF inhibitors, tasquinimod is an anti-angiogenic agent with additional 

immunomodulatory roles. Tasquinimod binds the calcium-binding protein S100A9, 

which promotes inflammation (207) and is upregulated in PCa (208). Interestingly, 

S100A9 is also expressed on MDSCs, TAMs, DCs, and endothelial cells, and its activity 

drives MDSC accumulation and inhibits DC differentiation (209, 210). In prostate tumor-

bearing mice, tasquinimod enhanced the efficacy of a vaccine immunotherapy, inhibited 

the immunosuppressive function and levels of MDSCs and M2-polarized TAMs, and 

increased CD8 TILs and effector functions (211). In PCa patients, tasquinimod 

demonstrated safety and initial efficacy in a phase I trial (212), and increased PFS (213), 

demonstrated benefit for patients with skeletal metastases (214), and delayed objective 
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radiographic bone scan progression (215) in phase II trial. However, a phase III trial for 

mCRPC with bone lesions was discontinued after tasquinimod did not improve OS, 

despite prolonging radiographic PFS (216). Current studies are combining tasquinimod 

with Sipuleucel-T (phase II NCT02159950) and with cabazitaxel and prednisone, which 

resulted in 63% of treated men having a >30% PSA decline and 48% with stable disease 

(217).  

1.3.10 Adoptive and chimeric antigen receptor T cell immunotherapies 

Chimeric antigen receptor (CAR) T cells, comprised of patient T cells engineered 

to express an antigen-specific antibody single-chain variable fragment fused to an 

intracellular signaling domain (such as CD3ζ), have shown strong promise in treating 

multiple cancer types (218). In prostate cancer, CARs have been designed with 

specificity for the TAAs PSMA and PSCA. PSMA-specific engineered patient derived T 

cells were first described in 1999 with the ability to lyse PSMA-expressing cancer cells 

and release multiple cytokines (219). PSMA-specific designer T cells also suppressed 

tumor growth in vivo (220), and, with the addition of a CD28 signaling domain, 

demonstrated increasing cytokine production, proliferation, in vitro cytotoxicity, and in 

vivo tumor suppression (221, 222). Additional studies have demonstrated the ability of 

PSMA CARs to eliminate murine prostate tumors (223, 224), with increased efficacy in 

combination with PD-1 blockade (225). Interestingly, as PSMA is also found on the 

tumor-associated neo-vasculature, third generation PSMA CARs containing CD28 and 

CD137/4-1BB signaling domains demonstrated enhanced efficacy in mediating vascular 

disruption and decreasing tumor burden in a pre-clinical ovarian cancer model (226). In 
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addition, the recent development of PSMA (and PSCA) “UniCARs” allow the use of 

target modules to retarget CARs in vivo in an effort to prevent CAR-induced side effects 

(227). Phase I clinical trials (NCT01140373 and NCT00664196) with second-generation 

(CD28/CD3ζ) and designer T cell PSMA CARs demonstrated safety and preliminary 

clinical responses in mCRPC (228-230). However, activated T cell engraftment also 

reportedly depleted the administered IL-2 and limited therapeutic efficacy (231).  

PSCA-specific CARs have also been developed for PCa, demonstrating 

cytotoxicity against PSCA-expressing cancer cells (232), with further efficacy in a third 

generation PSCA CAR containing CD28, OX-40, and CD3ζ signaling domains (233). 

Interestingly, in a humanized murine pancreatic cancer model, second-generation PSCA 

CARs displayed greater efficacy than third-generation CARs with an additional 4-1BB 

domain (234). In addition, T cells transduced with a CAR and a chimeric costimulatory 

receptor (CCR) that recognized both PSMA and PSCA demonstrated efficacy only 

against tumors expressing both antigens (235).  

Patient-derived T cells have also been engineered with chimeric receptors with 

specificity for the overexpressed TAA erbB2, demonstrating efficacy in locally advanced 

PCa, recurrent PCa (236), and PCa with bone metastases (237), as well as for the prostate 

antigen TARP, which was cytotoxic in vitro against PCa and breast cancer cells (238). 

Further, CARs targeting EPCAM and EMP2, found on circulating tumor cells (CTCs), 

successfully prevented lung metastasis in a preclinical PCa model (239).  
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1.3.11 Bispecific diabodies, BiTEs 

Similar to CARs activating and targeting patient T cells to specific TAAs, 

bispecific antibodies, or diabodies, commonly known as bispecific T cell engagers 

(BiTEs), have been generated to cross-link T cells (via CD3) with target surface cancer 

antigens. Bispecific diabodies for PCa have been generated with specificity for both 

PSMA (240-246), PSCA (245, 247-249), and Her2/neu, demonstrating engagement of 

both CD4 and CD8 T cells, in vitro cytotoxic killing, and in vivo tumor control (250-252) 

in pre-clinical xenograft models. In addition, in a phase I trial, 3 of 7 CRPC patients 

treated with activated T cells with the anti-CD3 x anti-Her2 bispecific antibody displayed 

decreased PSA levels (253). PSMA and EpCAM BiTEs are currently being evaluated in 

ongoing phase I clinical trials for CRPC (NCT01723475, NCT02262910, and 

NCT00635596).  

1.3.12 Immunostimulatory chemotherapy and radiation therapy 

Interestingly, chemotherapies and radiation therapy demonstrate previously 

underappreciated immunostimulatory properties, primarily through their ability to 

stimulate immunogenic cell death. In ICD, dying tumor cells release and expose specific 

damage-associated molecular patterns (DAMPs), including HMGB1, ATP, and 

calreticulin, resulting in APC recruitment, activation, and maturation, and subsequent 

priming of anti-tumor T cells (254). Of the chemotherapeutic agents using in treating 

PCa, docetaxel induces calreticulin exposure and increases antigen-specific CD8 killing 

(255) while mitoxantrone induces all major ICD markers of calreticulin cell surface 

exposure and ATP and HMGB1 release (256). Outside of ICD, docetaxel also decreased 
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MDSC quantity and function and increased CD8 T cell activity in a pre-clinical breast 

cancer model (257), and increased CCL2 chemokine production from prostate cancer cell 

lines (258). In addition, radiation therapy induces ATP and HMGB1 secretion and 

calreticulin cell surface exposure in LNCaP cells, increasing antigen presentation and 

tumor antigen-specific CD8 T cell lysis (259). Further, chemotherapies may enhance 

immunotherapy for PCa patients with high Tregs (260) or MDSCs (261, 262).  

1.3.13 CTLA-4 immune checkpoint inhibitors 

Immune checkpoint inhibitors have shown great promise in recent years, with 

anti-PD-1/PD-L1 and anti-CTLA-4 blocking antibodies gaining approval in multiple 

cancer types. These antibodies target the normally homeostatic immune regulatory 

mechanisms that act to promote immune evasion in the context of cancer. Specifically, 

CTLA-4 is normally upregulated on activated T cells, and outcompetes the T cell co-

stimulatory molecule CD28, displaying higher affinity for the B7 ligand on APCs. 

CTLA-4 activity inhibits T cell function by disrupting phosphorylation of CD3ζ and 

downstream signaling, increasing T cell motility to disrupt TCR engagement with the 

APC, and through its constitutive expression on Tregs (263).  

Initial pre-clinical studies in PCa reported that an in vivo anti-CTLA-4 inhibitory 

antibody augmented the anti-tumor immune response and decreased tumor growth (264). 

In a pilot clinical trial, treatment with the anti-CTLA-4 antibody, ipilimumab, was safe 

and induced PSA decline >50% in 2 of 14 CRPC patients (265). In a subsequent phase I 

trial, ipilimumab combined with GM-CSF administration resulted in 3 of 6 high dose 

patients demonstrating a >50% PSA decline, with responders having increased 
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circulating activated and TAA-specific CD8 T cells (266) and increased antibody 

responses to antigens both specific for individual tumors and shared between patients 

(267). Ipilimumab therapy also increased overall TCR diversity through expansion of T 

cell clonotypes, with responders displaying the least loss of T cell clonotypes (268). A 

phase I/II trial combining ipilimumab with radiotherapy reported 8 of 50 patients with 

PSA decline >50%, 1 of 50 with complete response (CR), and 6 of 50 with stable disease, 

yet there was one treatment-related death and multiple others with immune-related 

adverse events (irAEs) (269). However, in a larger scale phase III trial with 799 mCRPC 

patients progressing after docetaxel, ipilimumab after radiotherapy did not significantly 

increase OS (11.2 months in treated vs. 10.0 months placebo, P = 0.053), with 26% of 

ipilimumab-treated patients experiencing grade 3-4 irAEs. However, ipilimumab 

treatment did significantly improve PFS, and post-hoc analysis demonstrated that 

ipilimumab did significantly increase OS in patients with good prognostic features (non-

elevated alkaline phosphatase, normal hemoglobin concentration, and no visceral 

metastasis) (270). As a result, a subsequent phase III trial tested ipilimumab in 399 

chemotherapy-naïve CRPC patients without visceral metastases. However, again, 

ipilimumab did not increase OS but did increase PFS and PSA response rates, with 2% 

treatment-related deaths and 31% grade 3-4 irAEs (271). However, despite these negative 

survival results, there have been case reports of a mCRPC patient with sustained CR and 

disease free for 6 years (272) and of 2 mCRPC patients in long-term complete remission 

at 64 and 52 months after ipilimumab therapy, one of whom demonstrated high CD8 and 

Treg TILs (273). Interestingly, there is also an ongoing phase I trial (NCT02113657) 
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assessing the impact of ipilimumab therapy on T cell responses to tumor-specific neo-

antigens in patients with mCRPC.  

To optimize efficacy, CTLA-4 blockade has and is currently being tested in 

combination with other immunotherapies and immunomodulators. CTLA-4 blockade 

combined with a GM-CSF vaccine decreased tumor incidence and increased immune 

infiltration in TRAMP mice (274), increased anti-tumor immune efficacy when 

administered to mice after GVAX (150), and a phase I trial combining ipilimumab with 

GVAX induced >50% PSA decline in 25% of patients (151). Analysis revealed that 

increasing OS correlated with high pre-treatment CTLA-4+ CD4 T cells, PD-1+ CD4 T 

cells, and differentiated CD8 T cells, as well as low pre-treatment M-MDSCs and Tregs, 

and high post-treatment DC activation and seroreactivity to PSMA and other TAAs (152, 

275). High CD8+ICOS+ T cell/Treg ratio and a high pDC/MDSC ratio were also 

associated with increased PFS after further mitoxantrone therapy (153). In addition, the 

CTLA-4 antibodies ipilimumab or tremelimumab are currently in clinical trials combined 

with Sipuleucel-T (phase II NCT01804465), docetaxel (phase II NCT00050596), the PD-

L1 and PD-1 antibodies durvalumab (phase II NCT03204812) and nivolumab (phase II 

NCT02985957, phase II NCT03061539 in prostate tumors with an immunogenic 

signature of defective MMR or other DNA repair deficiencies or high inflammatory 

infiltrate, and phase II NCT02601014 in prostate tumors expressing the AR-V7 splice 

variant), and with ProstVac-VF (phase I NCT00113984, phase I NCT02506114). Results 

from trials of CTLA-4 combined with ProstVac-VF demonstrated longer than expected 

survival times (168, 169), with lower pre-treatment PD-1+Tim-3- effector memory CD4 T 
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cells, higher pre-treatment PD-1-Tim-3+ CD8 T cells, higher pre-treatment CTLA-4- 

Tregs, and increasing post-treatment Tim-3+ NK cells observed in responding patients 

(170). CTLA-4 checkpoint inhibitors are also being evaluated in phase I and II trials with 

abiraterone (NCT01688492) and multiple forms of ADT, including bicalutamide, 

flutamide, degarelix, leuprolide, and goserelin (phase II NCT01498978, phase II 

NCT00170157, phase II NCT02020070, phase II NCT01377389) (276, 277), with 

preliminary results reporting increased ICOS+ and memory T cells (278). In addition, 

CTLA-4 blockade is being combined with sargramostim (GM-CSF) (phase I 

NCT00064129), which displayed dose-dependent expansion of both activated effector 

CD4 T cells and Tregs (279). Finally, while not yet in clinical trial, pre-clinical murine 

data has demonstrated enhanced anti-tumor immunity and efficacy when combining 

CTLA-4 blockade with an agonistic antibody specific for the costimulatory molecule 

OX40 (280).  

1.3.14 PD-1/PD-L1 immune checkpoint inhibitors 

The PD-1/PD-L1 axis represents another regulatory immune checkpoint pathway 

utilized as a potent form of immunosuppression by many tumors. PD-1 is upregulated on 

late-stage exhausted T cells after persistent antigen exposure, and interacts with the PD-

L1 and PD-L2 ligands found both on APCs and on many tumor cells. This interaction 

inhibits T cell activity through SHP-2 phosphatase, decreasing production of IFNγ, 

TNFα, and IL-2, and decreasing T cell survival (33, 263). Checkpoint blockade targeting 

the PD-1/PD-L1 axis can recover the effector function of exhausted T cells, and the 

clinical benefits have resulted in FDA approvals in multiple cancer types in recent years. 
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Studies in PCa have determined that the majority of prostate tumors express moderate or 

high PD-L1 levels (21, 281), which was an independent prognostic factor for BCR (281). 

In addition, over half of prostate tumors contain PD-1+ TILs (21), with up to 90% of TILs 

being PD-1+ within each specimen (31, 34), yet another study found only 8% of 25 high-

grade prostate tumors to contain high PD-1 and PD-L1 expression (22). Consequently, 

PD-1/PD-L1 inhibitory antibodies have been evaluated in clinical trials for patients with 

PCa. In initial phase I trials with the anti-PD-1 antibody, nivolumab (BMS-

936558/MDX-1106/ONO-4538), no objective responses were observed in the 8 (282) 

and 17 (283) treated CRPC patients. However, further analysis of a subset of these 

patients revealed that these prostate tumors were negative for PD-L1 expression (282-

284), and overall PD-L1 positivity among all cancer types tested was an important 

predictor of increased infiltrating immune cells, PD-1 expression on T cells, and 

objective response to anti-PD-1 treatment (284). Additional phase I (NCT01772004 with 

avelumab, NCT02458638 with atezolizumab) and phase II (NCT02787005 with 

pembrolizumab) trials are ongoing evaluating PD-1/PD-L1 blockade in treating mCRPC, 

with PD-L1 status subtyping. Avelumab is also being tested in neuroendocrine PCa 

(phase II NCT03179410), and nivolumab in mCRPC with DNA repair defects (phase II 

NCT03040791) and mCRPC with the AR-V7 splice variant (phase II NCT02601014).  

 Interestingly, the PD-1/PD-L1 axis appears to be closely linked to enzalutamide 

treatment. Patients progressing after enzalutamide therapy display increased PD-L1+ and 

PD-L2+ circulating DCs in comparison to naïve or responding patients. Similar DC 

results were observed in a pre-clinical model of enzalutamide resistant tumors, which 
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express higher PD-L1 levels (285). In further support of this association, a phase II trial 

of mCRPC patients progressing on enzalutamide who were treated with the anti-PD-1 

antibody, pembrolizumab, reported 3 of 10 patients with rapid PSA decline and partial 

response in 2 of the 3 patients with measurable disease before treatment (286). Finally, a 

recent case report presented a patient with CRPC refractory to enzalutamide and multiple 

chemotherapies who demonstrated undetectable PSA and decreased tumor mass after 

nivolumab treatment. Interestingly, the tumor displayed loss of expression of DNA repair 

genes MSH2 and MSH6 (287). Enzalutamide has also proven capable of inhibiting 

expression of homologous recombination DNA repair genes BRCA1, RAD54L, and RMI2 

in CRPC (288). As a result, an ongoing phase II trial (NCT02312557) has been designed 

to evaluate pembrolizumab for mCRPC patients progressing after enzalutamide therapy, 

as well as a phase I trial (NCT02861573) combining concurrent pembrolizumab with 

enzalutamide, and a phase III trial (NCT03016312) combining atezolizumab with 

enzalutamide after failed treatment with an androgen synthesis inhibitor and a taxane 

regimen.  

 Additional ongoing anti-PD-1 trials include combining nivolumab with 

ipilimumab for overall mCRPC (phase II NCT02985957) and specifically in prostate 

tumors with an immunogenic signature (phase II NCT03061539), pembrolizumab with 

radium-223 (phase II NCT03093428), pembrolizumab with the pTVG-HP plasmid DNA 

vaccine (phase I/II NCT02499835), pembrolizumab with the PARP inhibitor, olaparib 

(phase I NCT02861573), pembrolizumab with docetaxel and prednisone (phase I 

NCT02861573), and the anti-PD-1 antibody, PDR001, with the anti-TGF-β antibody, 
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NIS793 (phase I NCT02947165). Ongoing combination trials with PD-L1 antibodies 

include atezolizumab with Sipuleucel-T (phase I NCT03024216), MEDI4736 with 

olaparib and/or cediranib (phase I/II NCT02484404), MSB0011359C/M7824 (fusion 

protein of avelumab and a TGF-β inhibitor) with ProstVac-VF and CV301 (a viral 

vaccine targeting the TAAs CEA and MUC-1) (phase II NCT03315871), avelumab with 

talazoparib (phase II NCT03330405), durvalumab with tremelimumab (phase II 

NCT03204812), and atezolizumab with CPI-444 (adenosine-A2A receptor antagonist) 

(phase I NCT02655822).  

Interestingly, another current phase I CRPC trial (NCT02867345) is evaluating 

the impact of ex vivo CRISPR-Cas9 knockout of PD-1 (PDCD1) from peripheral blood 

patient T cells with IL-2, followed by infusion of the autologous T cells after 

cyclophosphamide treatment. In addition, a pre-clinical murine study demonstrated 

increased efficacy of PSMA CAR T cells when combined with PD-1 blockade (225). 

While PD-1/PD-L1 inhibitors have not proven efficacious in treating prostate cancer as 

monotherapies, the number of completed trials with published results is minimal, and its 

true potential remains to be seen in combination with other immunomodulatory therapies.  

1.3.15 Other immune checkpoints and stimulatory molecules 

There are additional intriguing targetable immune checkpoint molecules, as well 

as immune stimulatory molecules, for PCa. Analysis of ipilimumab treated prostate 

tumors revealed that macrophages expressed increased PD-L1 and VISTA, both 

immunosuppressive molecules (289). However, a recent phase I trial (NCT02671955) 

with the anti-VISTA antibody (JNJ-61610588) has been prematurely-terminated. In 



	

51	

addition, in TRAMP mice, the immune inhibitory molecule Lag-3 was increased on CD8 

TILs and promoted antigen tolerance, and an anti-Lag-3 antibody increased antigen-

specific CD8 T cell activity (290). Similarly, expression of the immune checkpoint Tim-3 

was significantly higher on both circulating CD4 and CD8 T cells from PCa patients than 

BPH patients (291). Tim-3 levels also increased in malignant prostate tissue in 

comparison to adjacent benign tissue, and were a prognostic predictor of RFS and PFS 

(292). Finally, B7-H3 and B7-H4 (VTCN1) are additional immune-regulatory molecules 

overexpressed in the tumor microenvironment. B7-H3 and B7-H4 expression were 

reported in 93% and 99% of 823 prostatectomy samples, respectively (strong intensity in 

26% and 15%, respectively) (293), they were reported at significantly higher levels in 

PCa tissue than in BPH and normal prostate tissue (294-296), and their increased levels 

correlated with cancer cell proliferation, disease spread, grade, Gleason score, risk of 

BCR, and cancer-specific death (293-295, 297-299). Further, B7-H3 expression increased 

in bone metastases after ADT (299). However, despite these associations, pre-clinical 

TRAMP studies demonstrated that mice lacking B7-H3 developed larger tumors with 

increased Tregs, while B7-H4 loss did not affect tumor size (300). Further studies are 

warranted, as loss of B7-H3 or B7-H4 in the murine model even before tumor formation 

does not address the potential efficacy in inhibiting these molecules in the context of an 

established immunosuppressive tumor.  

In contrast to these inhibitory immune checkpoints, the co-stimulatory receptor 

OX40 is important in amplifying the T cell response, and a phase I trial with an OX40 

agonistic antibody demonstrated preliminary regression and stable disease in 5 PCa 
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patients (301). An OX40 agonist is currently in a phase I/II clinical trial (NCT01303705) 

in combination with cyclophosphamide and radiation for mPCa. 

1.3.16 Bacterial cancer therapies  

Interestingly, bacteria and bacterial products have long been used as direct 

microbial cancer therapeutics. The observation that an infection could induce tumor 

regression first led to the utilization of bacteria as an anti-cancer agent with Coley’s toxin 

in the 1890s. Since then, attenuated Mycobacterium bovis BCG (bacillus Calmette-

Guerin) has gained approval for treating bladder cancer, and other bacteria, mainly 

Salmonella typhimurium, Listeria monocytogenes, and Clostridium novyi spores, have 

been tested in various cancer types. Bacterial therapies contain a number of advantages 

over conventional therapies, including their ability to specifically target tumor tissue, 

being able to infiltrate into the deeper and more hypoxic tumor regions, containing innate 

tumor cytotoxicity characteristics, and their potential to be manipulated to either 

constitutively or inducibly express anti-cancer and imaging agents (302). The obligate 

anaerobe C. novyi and the facultative anaerobes S. typhimurium, L. monocytogenes, and 

Escherichia coli preferentially colonize and accumulate in tumor tissue over other benign 

tissues, either due to chemotactic molecules released from the tumor, the favorable 

hypoxic environment of the tumor, or as a result of either the inflammatory state of the 

tumor or the protection from the host immune system provided by the 

immunosuppressive tumor microenvironment. In addition to surviving in hypoxic tissue, 

bacterial motility and their ability to sense extrinsic molecules allows for them to spread 

diffusely throughout a tumor. Subsequently, bacteria have demonstrated an ability to 
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induce tumor regression, either through the expression of cytotoxic bacterial proteins, 

nutrient depletion, or through the numerous genetic manipulating strategies that have 

been employed. Specifically, bacteria have been engineered to express the bacterial toxin 

Cytolysin A, FAS ligand, TRAIL, the cytokines TNFα, IL-2, IL-18, CCL-21, and 

LIGHT, as well as multiple TAAs or personalized tumor-specific mutated and 

immunogenic neo-antigens. Bacteria have also been utilized as expression vectors for 

genetic material, inducing expression of anti-angiogenic molecules, cytokines, TAAs, or 

delivering small hairpin RNA (shRNA) or small interfering RNA (siRNA) to silence 

tumor-promoting genes. Finally, bacteria have been modified to allow for detection by 

imaging modalities including fluorescence, magnetic resonance imaging (MRI), 

bioluminescence, and positron emission tomography (PET). Many of these delivered 

factors have been tested under either constitutive expression or through more controlled 

expression, to limit systemic toxicity and improve therapeutic efficacy. L-arabinose, γ-

irradiation, salicylate, and even environmental hypoxia have all been utilized as 

triggering agents for genes cloned downstream of their appropriate inducible elements 

using the pBAD promoter, pRecA promoter, Pm promoter, and fumarate and nitrate 

reduction (FNR) regulator-containing promoters, respectively (302, 303).  

Many of these bacterial therapeutic approaches have been performed utilizing S. 

typhimurium, L. monocytogenes, and C. novyi spores. The facultative anaerobe S. 

typhimurium can preferentially home to and proliferate within tumors and augment the 

host immune response through activation of toll-like receptors (TLRs) and NOD-like 

receptors (NLRs). Multiple attenuated S. typhimurium strains have been tested expressing 
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cytotoxic agents (such as cytolysin A, diphtheria toxin, FasL, and TRAIL), cytokines 

(such as IL-2, IL-18, and CCL-21), as well as various enzymes, TAAs, and genetic 

material to induce specific gene expression or silencing. As a result, S. typhimurium has 

reached phase I clinical trials for metastatic melanoma and squamous cell carcinoma 

(304). L. monocytogenes has also been utilized as a bacterial therapeutic, especially to 

deliver tumor antigen and elicit and tumor antigen-specific host immune response. L. 

monocytogenes can infect host APCs, deliver antigen for presentation through both the 

MHC I and MHC II pathways, and can also stimulate the innate immune system. 

Attenuated L. monocytogenes strains have been used in vaccine approaches for cervical 

cancer, breast cancer, melanoma, prostate cancer, and hepatocellular carcinoma, and have 

also reached clinical trial for multiple cancer types (305). Further, C. novyi have also 

been used as anti-cancer agents, as they form spores that are able to germinate within the 

central, necrotic, hypoxic regions of the tumor, thereby reaching areas of the tumor 

resistant to most other therapies (306). Intra-tumoral injection of C. novyi spores is 

currently being tested in phase I clinical trial for solid tumor patients unresponsive to 

standard therapies (NCT01924689).  

Multiple bacterial therapies have been tested in PCa. One leucine-arginine 

auxotrophic S. typhimurium strain, A1-R, delivered intra-venously or intra-tumorally 

specifically localized to and colonized PC-3 xenograft tumors in vivo and induced tumor 

regression (307, 308). In addition, other S. typhimurium strains demonstrated an ability to 

invade PC-3M prostate cancer cells and induce tumor cell mitochondrial destruction 

(309). S. typhimurium has also been engineered to express the TAAs PSCA (310) and 
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PSA (311), the p53 gene and MDM2 siRNA (combined with cisplatin) (312), and Stat3 

siRNA and Endostatin (313). In addition, an attenuated and immunogenic L. 

monocytogenes modified to express PSA decreased tumor infiltrating Tregs, increased 

PSA-specific T cells, and induced tumor regression in pre-clinical murine PCa (314, 

315). Finally, the L. monocytogenes vaccine combined with radiation therapy 

synergistically decreased tumor growth and increased PSA-specific T cells and IFNγ 

production in treated mice (316).  

1.3.17 Future direction: synergistic combinations  

While immune checkpoint inhibitors, vaccines, and other immunotherapies have 

displayed strong efficacy as monotherapies in many cancer types, they have not achieved 

as impressive clinical results in immunologically cold tumors, such as PCa. Therefore, 

current effort has been placed in determining optimal treatment combinations that 

synergistically enhance the anti-tumor immune response, and, therefore, clinical 

outcomes. Across many cancer types, combination therapies have included immune 

checkpoint inhibitory antibodies, immune stimulatory agonists, chemotherapies, 

radiotherapies, virotherapies, vaccines, and adoptive T cell therapies. However, choosing 

which immunomodulatory therapies to combine should be carefully considered to 

achieve synergy and minimize mechanistic overlap. Hallmarks of an ideal 

immunotherapy include increasing TILs, driving TAA- and neo-antigen-specific T cell 

responses, activating T cells while minimizing their inhibition and reversing exhaustion, 

inducing ICD and recruiting and optimizing APCs, and minimizing immunosuppressive 
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cell types and molecules (317). As described above, there are multiple currently ongoing 

immunotherapeutic combinations in pre-clinical and clinical trial for PCa.  

In addition, as with ADT and chemotherapies, there are many existing therapies 

that have previously underappreciated immunomodulatory properties (318). A recent pre-

clinical study demonstrated that treatment with histone deacetylase (HDAC) inhibitors 

(pan-HDAC inhibitor vorinostat and class I HDAC inhibitor entinostat) increased LNCaP 

sensitivity to T cell antigen-specific lysis, increased levels of antigen processing and 

tumor immune recognition proteins, and reversed immune escape through activating the 

unfolded protein response (319). Further, while not in PCa, recent studies have 

demonstrated that the diabetes drug metformin could prevent CD8 T cell apoptosis and 

promoted effector function regardless of PD-1 and Tim-3 positivity (320), and also 

potentiated PD-1 blockade in vivo (321).  

 

 

1.4 CP1  

 

In this study, we analyzed the immunomodulatory ability of CP1, an Escherichia 

coli isolated from the prostate-specific secretions of a patient with chronic prostatitis 

without concurrent cystitis. Prior analysis has demonstrated that intra-urethrally 

administered CP1 specifically colonizes murine prostates before being cleared by the host 

after one month. During that time, CP1 induces local, tissue-specific Th1/Th17 T cell 

infiltration (322, 323). In addition, after administration to pre-cancerous genetically-



	

57	

susceptible mice, CP1 induces chronic inflammation, and therefore, expectedly, modestly 

increases the frequency of progression from mouse prostatic intraepithelial neoplasia 

(mPIN) (324). As increasing research has demonstrated the context-dependent balance 

between chronic inflammation promoting cancer formation and the anti-tumor immune 

response combating tumor growth, we hypothesized that, in the setting of a developed 

immunosuppressive tumor, CP1, with its innate tissue-tropism and local 

immunostimulatory properties, could be exploited on the other side of the spectrum as a 

cancer therapeutic. Here we demonstrate in multiple clinically relevant orthotopic models 

of prostate cancer that CP1 specifically ascends to and colonizes prostate tumors, induces 

infiltration by multiple anti-tumor immune cell types, increases tumor immunogenicity, 

and decreases immunosuppressive immune cell types and molecules within the tumor 

microenvironment, resulting in strong synergistic clinical benefit in combination with 

PD-1 blockade (325). In addition to treating prostate cancer, these results outline the 

potential to discover additional unique tissue-specific bacteria to benefit patients with 

other immunologically “cold” cancers, as microbes, specifically pathogenic bacteria, 

colonize various tissue niches throughout the human body (326-329).  
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CHAPTER 2: MATERIALS AND METHODS 

	

	

2.1 Mice 

All FVB/NJ mice (The Jackson Laboratory) used in this study were housed in a 

pathogen-free animal barrier facility or a containment facility, as appropriate. All 

experiments involving mice utilized male FVB/NJ mice administered intra-prostatic 

cancer cells at 6-8 weeks old, with the number of mice indicated in respective figure 

legends. All experiments and procedures were performed in compliance with ethical 

regulations and the approval of the Northwestern University Institutional Animal Care 

and Use Committee (IACUC). 

2.2 Cells lines and tissue culture 

Myc-CaP, LNCaP, and 293T cells lines (ATCC) used in this study were verified 

to be mycoplasma-free (Biotool), and human cell lines were authenticated by short 

tandem repeat (STR) loci profiling (ATCC). 293T cells were growth in DMEM 

(Corning), Myc-CaP and LNCaP in RPMI (Gibco), all supplemented with 10% heat 

inactivated fetal bovine serum (FBS; Corning) and 1% Penicillin-Streptomycin (10,000 

U/ml; Life Technologies). All cell culture was performed in a 37°C 5% CO2 incubator 

with phosphate buffered saline (PBS; VWR) and 0.25% trypsin-EDTA (Gibco).  
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2.3 Bacterial growth and inoculation 

CP1 and MG1655 were grown as previously described (323). Bacteria were 

grown in Luria Broth (LB) media (Sigma) at 37°C for 24 hours shaking followed by 24 

hours static, and were subsequently resuspended in PBS at 2×1010 cells/ml. For indicated 

in vitro assays, CP1 was heat killed at 70°C for 45 minutes. For in vivo experiments, 10µl 

of CP1 (2×108 cells), MG1655 (2×108 cells), or sterile PBS were administered intra-

urethrally by catheterization to isoflurane anesthetized mice (330). 

2.4 Library construction and whole genome sequencing 

Library construction and sequencing were performed at the Northwestern 

University sequencing core facility. DNA libraries were prepared using a Nextera XT 

DNA Library Preparation Kit (Illumina) per the manufacturer’s instructions, and then 

sequenced. Briefly, a tagmentation reaction was performed which fragmented the DNA 

and ligated on appropriate PCR. A limited-cycle PCR reaction was then performed which 

added barcode and sequencing adapter sequences to the tagmented fragments. Very short 

fragments were removed from the PCR product using Agencourt AMPure XP beads 

(Beckman Coulter). The distribution of fragment sizes in the libraries was assessed on an 

Agilent 2100 Bioanalyzer using a High Sensitivity DNA Assay (Agilent), and the 

concentrations were measured using a Qubit assay (Fischer Scientific). The resulting 

libraries were then normalized, pooled, and loaded on to a MiSeq (Illumina), using V3 

chemistry, to generate paired-end 300bp reads.  
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2.5 Whole genome assembly and annotation 

DNA quality was assessed using FastQC, and the reads were trimmed using Trim 

Galore. The trimmed reads were then used to generate genome assemblies with SPAdes 

version 3.11.1 (331) using the default parameters for paired-end reads. The resulting 

assembly graphs were visualized using Bandage (332). The genome was annotated with 

Rapid Annotation using Subsystem Technology (RAST) (333) and analyzed and 

visualized using RAST and Artemis (334). CP1 was stratified into 1 of the 4 major E. coli 

phylogenetic groups (A, B1, B2, or D) using the Clermont method based on chuA, yjaA, 

and the DNA fragment TSPE4.C2 (335), and multi-locus sequence typing (MLST) was 

performing based on the Warwick Medical School scheme of 7 housekeeping genes: adk, 

fumC, gyrB, icd, mdh, purA, and recA (336). The phylogenetic tree was created with 

concatenated MLST sequences of CP1 and reference E. coli strains using the Maximum 

Likelihood method with MEGA7 (337). This CP1 Whole Genome Shotgun project has 

been deposited at DDBJ/ENA/GenBank under the accession PZKJ00000000 

[https://www.ncbi.nlm.nih.gov/nuccore/PZKJ00000000]. The version described in this 

paper is version PZKJ01000000. 

2.6 Gentamicin protection assay 

As previously described (323), tumor cells were incubated with CP1 or MG1655 

(MOI 1) in antibiotic-free media for 2 hours at 37°C 5% CO2. To quantify bacterial 

invasion, cells were washed 4 times with PBS, treated with 50µg/ml gentamicin, 

incubated with 0.05% trypsin/0.1% Triton X-100 for 10mins at 37°C 5% CO2, and cells 

were harvested, plated on LB agar, and colonies counted after 24 hours. To quantify 
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bacterial adherence, cells were washed, immediately incubated in trypsin/Triton X-100, 

collected and plated, and adherence was measured as the difference from invasion colony 

counts. To quantify intracellular proliferation of bacteria, cells were washed and 

incubated with 50µg/ml gentamicin for 22 hours at 37°C 5% CO2, followed by cell 

collection.  

2.7 ICD and cell death assays 

Cell death from CP1 or MG1655 (MOI 1 or 10) and cancer cell co-culture was 

measure by supernatant lactate dehydrogenase (LDH; Cytotoxic 96 Non-Radioactive 

Cytotoxicity Assay, Promega). For in vitro ICD assays, 1µM mitoxantrone was used as a 

positive control. Supernatants were collected and cell counts performed after 72 hours for 

quantifying secreted ATP (Bioluminescent Assay Kit, Sigma) and high mobility group 

protein B1 (HMGB1; ELISA, Tecan Trading). Also after 24 or 72 hours, cells were 

incubated with rabbit anti-calreticulin (Abcam ab2907 1:1000) for 60 min, followed by 

Alexa Fluor 488 anti-rabbit secondary (Invitrogen A11008 1µg/ml) for 30 mins, and 

analyzed by flow cytometry. For in vivo ICD assays, HMGB1 immunofluorescence was 

quantified as the percentage of HMGB1- nuclei and calreticulin immunofluorescence was 

analyzed for cell surface staining. In vitro, caspase 3/7 activity was assessed at 6 or 24 

hours (Caspase-Glo 3/7 Assay, Promega). Early (Annexin V+ PI-) and late (Annexin V+ 

PI+) stage apoptosis were analyzed at 24 hours by flow cytometry (Annexin V Apoptosis 

Detection Kit, eBioscience). Phosphorylated MLKL, MLKL, RIP1, and full length and 

cleaved PARP were analyzed by Western blot. As indicated, select experiments included 

the addition of 50µg/ml gentamicin 2 hours after co-culture initiation.  
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2.8 Multiplex cytokine/chemokine array 

Tissue lysates were prepared in RIPA buffer (Sigma) supplemented with protease 

(cOmplete Tablets, Mini, EDTA-free, Roche) and phosphatase (PhosSTOP, Roche) 

inhibitors. Tissues were homogenized using an electric pestle or a gentleMACS 

dissociator in M Tubes (MACS Miltenyi Biotec). Protein from tissue (10µg) or in vitro 

supernatant (25µl) was added per well of a 32-plex mouse cytokine/chemokine magnetic 

bead milliplex plate (EMD Millipore), which was run using a MAGPIX Luminex plate 

reader (Thermo Fisher Scientific) and analyzed on xPONENT Software Solutions.  

2.9 293T transfection and lentiviral transduction of tumor cells 

Lentivirus was produced by co-transfection of 293T cells with 3µg luciferase 

expressing vector pLV-mCherry-P2A-luciferase, 2µg Δ8.9 HIV-1 packaging vector, 1µg 

VSVG envelope glycoprotein vector, and 2.5µl/µg Lipofectamine 2000 (Invitrogen) in 

Opti-MEM media (Gibco) in 6-well plates at 37°C 5% CO2 for 16 hours. Supernatant 

virus was collected, 0.45µm filtered, and diluted 1:5 and supplemented with 8µg/ml 

polybrene (Santa Cruz Biotechnology) before spinfecting Myc-CaP cells for 2 hours at 

32°C. At least 48 hours later, mCherry positivity was verified and sorted for top 10% 

positivity using a FacsAria SORP cell sorter (BD).  

2.10 Orthotopic surgical tumor model 

Intra-prostatic surgical injections were performed as described (338). Mice were 

administered at least 0.05 mg/kg pre-operative buprenorphine and anesthetized with 

isoflurane, verified by toe pinch. The abdominal region was shaved and sterilized, and 
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1×106 luciferase-expressing Myc-CaP prostate cancer cells in 30µl (1:1 PBS and matrigel 

[Basement Membrane Mix, Phenol Red-Free, LDEV-Free, Corning]) was injected 

(Hamilton syringe and 28-gauge needles) into one anterior prostate lobe (Fig. 1a), leading 

to the development of orthotopic prostate tumors with a clinically relevant tumor 

microenvironment and the correct prostate-draining lymph nodes (Fig. 1b). This was 

performed using micro-dissecting scissors, Graefe forceps, Graefe tissue forceps, a 

needle holder with suture cutters, and a 50 µL syringe with a 28-gauge needle (Fig. 1c). 

After performing an approximately 1 cm midline abdominal incision above the preputial 

glands (Fig. 1d), one seminal vesicle and attached anterior prostate lobe were located and 

externalized (Fig. 1e) and the PBS/matrigel cell suspension was injected into the prostate 

(Fig. 1f), as initially verified by the engorgement of the lobe and the lack of leakage (Fig. 

1g). The inner abdominal wall was closed with 5-0 absorbable sutures (J493G, eSutures) 

and the outer skin was closed with 4-0 non-absorbable sutures (699H, eSutures). 

Approximately 1 mg/kg post-operative meloxicam was administered immediately, 24, 

and 48 hours post-surgery. Sample size was determined with consideration of the 

duration of each intra-prostatic surgery and the power needed to allow for adequate 

statistical analyses with the number of experimental groups. In vivo orthotopic tumor 

growth was non-invasively monitored by in vivo bioluminescence (Fig. 2). Intra-prostatic 

injections resulted in the formation of orthotopic tumors located at the site of the anterior 

prostate lobe (Fig. 3a), with tumor volumes (Fig. 3b) and weights (Fig. 3c) with relatively 

small standard error. Immune cell infiltration was observed and analyzed in this 

syngeneic murine model (Fig. 3d), and survival endpoint was defined in advance as the 
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appearance of hemorrhagic abdominal ascites (Fig. 3e) (339) and/or decreased grooming, 

ambulation, or piloerection (340). Tumor volumes were calculated using caliper 

measurements at π/6×L×W×H, where L was length of longest axis of the tumor, and W 

and H were the perpendicular width and height, respectively. 

 

 

 

Figure 1. Anterior prostate lobe, draining lymph nodes, and representative 
technique for intra-prostatic cell injections  
Images of the (A) right anterior prostate lobe (black, *), attached right seminal vesicle 
(white), right testicle and fat pad (green), and bladder (yellow), (B) bilateral prostate-
draining para-aortic lymph nodes (orange), (C) micro-dissecting scissors, Graefe forceps, 
Graefe tissue forceps, an needle holder with suture cutters, and 50 µL syringe with 28-
gauge needle (left to right), (D) midline incisions, (E) seminal vesicle and anterior 
prostate lobe externalization, (F), intra-prostatic injection, and (G) engorgement of the 
anterior prostate lobe.  
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Figure 2. Representative in vivo bioluminescent and fluorescent tumor imaging  
Luciferase-expressing orthotopic Myc-CaP tumors were imaged using an IVIS Spectrum 
Imaging System.  
 
 
 
 

 

Figure 3. Orthotopic tumor analyses by tumor volume, weight, histology for 
immune infiltration, and survival 
Orthotopic tumors were dissected on day 30 after intra-prostatic injection and analyzed 
by (A) gross imaging, (B) tumor volume (π/6×L×W×H; L=length of the longest axis of 
the tumor, W=perpendicular width, H=perpendicular height), (C) tumor weight, (D) CD3 
IHC (scale bar=100 µm), and (E) survival, with the objective endpoint as the appearance 
of hemorrhagic abdominal ascites. (A-B) Data represented as mean ± standard error of 
the mean. 
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Orthotopic tumor modeling ideally allows for tumor development with a clinically 

representative tumor microenvironment. Prior studies have demonstrated that 

subcutaneous tumors have an altered tumor vasculature, leading to differential and less 

clinically accurate responses to anti-angiogenic therapies (341, 342). In addition, multiple 

studies have observed increased or decreased efficacy of multiple chemotherapeutics in 

treating the same cell line, depending on whether it was administered subcutaneous or 

orthotopically, the latter of which best represented what is seen in human cancer (343-

345). Further, only in an orthotopic model of colon cancer, but not in the subcutaneous 

model, did tumors produce the correct degradative enzymes necessary to induce 

metastasis (346). Finally, as immunotherapies continue to emerge at the forefront of 

cancer therapy, and especially as they have yet to provide significant benefit for prostate 

cancer (270, 283), syngeneic pre-clinical models with accurate tumor microenvironment 

and draining lymph nodes in immunocompetent hosts are critical. 

There are many factors responsible for these inconsistent findings based on tumor 

site. With a different tumor microenvironment, cancer cells are exposed to different 

tissue-specific endothelium and altered angiogenesis, thereby affecting tumor 

development (347, 348). Orthotopic tumors with the correct tumor microenvironment 

allow for clinically relevant drug delivery, hypoxic conditions, and evaluation of anti-

angiogenic therapies (349). While genetically engineered models (GEMs) do contain an 

accurate tumor microenvironment, they require long times for breeding, high cost, and 

are often based on manipulations of single or few genes knocked out or overexpressed 

beyond clinically relevant levels. In contrast, the human or murine prostate cancer cell 
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lines used in orthotopic tumors, like human tumors, are much more genetically complex 

both within single cells and in displaying heterogeneity between cells (350, 351). Also 

unlike GEMs, orthotopic cancer cell lines can be engineered to express imaging 

modalities or increased or decreased levels of other molecules of interest, and in vitro and 

in vivo experimental results can be directly compared. Orthotopic tumors can also be 

formed from primary patient-derived cells.  

2.11 In vivo treatment regimens  

CP1 was administered intra-urethrally to tumor-bearing mice on day 8 post-tumor 

injection. 100µg anti-PD-1 antibody (RMP1-14, BioXCell) or IgG2a isotype control 

(2A3, BioXCell) were administered intra-peritoneally (i.p.) every other day, as previously 

performed (352), from day 17-29 for Myc-CaP and from day 13-23 for Myc-CaP PTEN 

KO experiments. For select experiments, FTY720 (Sigma) was administered 25µg intra-

venously (i.v.) 24 hours prior to CP1 administration followed by 5µg i.p. daily until 

analysis, as previously performed (353). Mice were not randomized, rather pre-treatment 

tumor imaging was utilized to normalize tumor burden and variance among all 

experimental groups before CP1 or anti-PD-1 antibody administration (Fig. 15). Blinding 

during the course of treatment was not possible to prevent cross-contamination between 

CP1-infected and non-infected mice during handling and the daily (FTY720) and/or 

every other day (anti-PD-1 or isotype antibody) injections. Investigators were blinded to 

some outcome analyses.  



	

68	

2.12 In vivo bioluminescent imaging 

Luciferase-expressing tumor-bearing mice were injected i.p. with 10µl/g body 

weight of 15mg/ml 0.22µm filtered D-luciferin (sodium salt, Gold Bio). At least 10 

minutes after injection, mice were imaged with an IVIS Spectrum Imaging System 

(PerkinElmer). Images were analyzed and quantified using Living Image software.  

2.13 In vivo bacterial colonization 

Mice tissues were analyzed at day 1 or day 9 after intra-urethral CP1 

administration. As previously described (323), tumors, bladders, kidneys, livers, and 

spleens were aseptically excised, dissected, homogenized by electric pestle, and plated in 

serial dilutions on eosin methylene blue (EMB) agar and incubated at 37°C for 24 hours.  

2.14 RNA extraction and qRT-PCR 

Excised tissue was immediately placed in RNAlater until homogenization using 

TissueMiser Homogenizer (Fisher Scientific) or gentleMACS Dissociator in M Tubes 

(MACS Miltenyi Biotec). RNA was extracted by Trizol (Thermo Fisher Scientific) and 

subsequent RNAeasy Plus Mini kit (QIAGEN), and complementary DNA (cDNA) was 

generated using oligo d(T)16 primer (Invitrogen) and random hexamer (Promega) at 65°C 

for 5 mins, followed by the addition of dNTPs (Promega), 1x first strand buffer 

(Invitrogen), DTT (Invitrogen), SUPERase-In RNase inhibitor (Invitrogen), and M-MLV 

reverse transcriptase (Invitrogen) at 25°C for 10 mins, 37°C for 50 mins, and 70°C for 15 

mins. Quantitative reverse transcription-PCR (qRT-PCR) was performed using a 

QuantStudio 6 Flex Real-Time PCR System (Applied Biosystems) at 50°C for 2 mins, 
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95°C for 10 mins, and 40 cycles of 95°C for 15 sec, 60°C for 15 sec, and 72°C for 1 min 

using SYBR Green master mix (Bio-Rad) and the following primers: 16S (F: 

ACTCCTACGGGAGGCAGCAGT, R: TATTACCGCGGCTGCTGGC) or the mouse 

housekeeping gene RPLP0 (F: AGATGCAGCAGATCCGCA, R: 

GTTCTTGCCCATCAGCACC) (Integrated DNA Technologies). Data were analyzed 

using QuantStudio Real-Time PCR software. In Fig. 8d, 16S qRT-PCR results from CP1-

administered tumors were calibrated to 16S values of CP1 titrations of known cell counts 

(R2 = 0.98184), and were subsequently normalized to calibrated PBS-administered 

tumors, total RNA yield, and the weight of the tumor tissue from which RNA was 

extracted.  

2.15 Flow cytometry  

Single cell suspensions were generated from tumors using a gentleMACS 

Dissociator with Heaters with the Tumor Dissociation Kit in C Tubes (MACS Miltenyi 

Biotec). Tissues were passed through a 70µm filter, resuspended in 30% Percoll (Sigma), 

and overlayed on top of 70% Percoll, centrifuged without brakes, and the buffy coat layer 

was isolated and viable cells counted. Tumor-draining para-aortic (Fig. 1b) lymph nodes 

single cell suspensions were created by passing cells directly through a 70µm filter, 

followed by red blood cell lysis with ACK buffer (0.15M NH4Cl, 10mM KHCO3, 0.1mM 

Na2-EDTA; pH 7.2-7.4; 0.2µm filtered). All samples were treated with anti-mouse 

CD16/CD32 Fc block (2.4G2, BD). For intracellular staining, cells were resuspended in 

RPMI 10% FBS with 50ng/ml PMA (Sigma), 1µg/ml ionomycin (Cell Signaling), 1µl/ml 

brefeldin A (GolgiPlug; BD), 2µl/3ml monensin (GolgiStop; BD), and CD107a antibody 
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when appropriate, for 6 hours at 37°C 5% CO2. Antibodies utilized for flow cytometry 

are listed in Table 1, and all antibodies were individually titrated to determine optimal 

staining dilutions. After subsequent extracellular staining, cells were stained with 

LIVE/DEAD Fixable Blue Dead Cell Stain Kit (Invitrogen). FoxP3 panels were fixed 

and permeabilized with the FoxP3/Transcription Factor Staining Buffer Set Kit 

(eBioscience) before antibody incubation. All other panels were fixed in IC fixation 

buffer (eBioscience) before subsequent permeabilization with the Intracellular Fixation 

and Permeabilization Buffer Set Kit (eBioscience) and incubation with intracellular 

antibodies when appropriate. Samples were run on a LSRFortessa 6-Laser (BD). Controls 

and compensation were performed using anti-rat/hamster Ig, κ/negative control 

compensation particles set (BD) and appropriate fluorescence minus one and unstained 

controls. Data were analyzed using FlowJo software. A representative flow cytometry 

gating strategy is displayed in Fig. 4 (a: tumor, b: dLNs), with initial gating on overall 

morphology, singlets, live cells, and CD45 positivity before proceeding with all further 

analyses.  
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Table 1. Primary antibodies used in this study for flow cytometry. 
 
 
Antigen (mouse) Label Clone Vendor Catalog # 
CD45 PE 30-F11 BD 553081 
CD3ε V500 500A2 BD 560771 
CD4 BV786 RM4-5 BD 563727 
CD8α BUV395 53-6.7 BD 563786 
CD25  BV421 PC61 BD 562606 
FoxP3 eFluor 660 FJK-16s eBioscience 50-5773-80  
CD11b Alexa Fluor 700 M1/70 BD 557960 
Gr-1 BUV395 RB6-8C5 BD 563849 
γδ TCR BV421 GL3 BD 562892 
NKp46 Alexa Fluor 700 29A1.4 BD 561169 
B220 BV786 RA3-6B2 BD 563894 
F4/80 BV421 T45-2342 BD 565411 
CD11c BV786 HL3 BD 563735 
CD80 FITC 16-10A1 BD 563727 
CD107a BV786 1D4B BD 564349 
IFNγ Alexa Fluor 488 XMG1.2 BioLegend 505813 
TNFα Alexa Fluor 700 MP6-XT22 BD 558000 
IL-17A BUV395 TC11-18H10 BD 565246 
Granzyme B eFluor 450 NGZB eBioscience 48-8898-80 
Perforin APC eBioOMAK-D eBioscience 17-9392-80 
PD-1 APC J43 BD 562671 
PD-L1 APC 10F.9G2 BioLegend 124312 
PD-L2 BV421 TY25 BD 1564245 
CD95 BV421 Jo2 BD 562633 
CD95L APC MFL3 eBioscience 17-5911-80 
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Figure 4. Representative flow cytometry gating strategy  
For all flow cytometry analyses, initial gating was performed on overall morphology, 
singlets, live cells, and CD45+ cells, followed by antigens of interest, from (a) tumors or 
(b) dLNs. SSC-A = Side Scatter-Area, FSC-A = Forward Scatter-Area, FSC-H = 
Forward Scatter-Height. 
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2.16 Histology 

Tissues were fixed in 10% neutral buffered formalin for 24-48 hours at 4°C 

before paraffin processing at the Northwestern University histology core. For IHC, 5µm 

sections were deparaffinized and rehydrated, followed by antigen retrieval with citrate 

buffer pH6 (Dako) or 1mM EDTA pH 8, 3% H2O2 (Sigma), blocking (BioCare Blocking 

Reagent BS966M, Dako X0909, or Vector ImmPRESS 2.5% normal horse serum), 

primary antibody incubation, secondary antibody incubation (Vector biotinylated anti-rat 

IgG, Dako EnVision+ System HRP, Vector ImmPRESS HRP), streptavidin-HRP 

(Biocare) when appropriate, 3,3’-Diaminobenzidine chromogenic detection 

(SIGMAFAST tablets, Sigma), hematoxylin counterstain (Vector), tissue dehydration, 

and slide mounting (Cytoseal-XYL). IHC (Fig. 12) slides were blinded and scored 

manually over the entire tissue surface area or were quantified using ImageJ with 

quadruplicate field of views (FOVs) analyzed per sample. For E. coli 

immunofluorescence (IF), as previously described (354), slides were incubated with 

primary antibody, streptavidin-Alexa Fluor 594 secondary antibody (ThermoFisher 

Scientific, 1:500), permeabilized with 0.25% Triton-X-100, repeated primary antibody, 

anti-rabbit IgG (H+L) Alexa Fluor 488 secondary antibody (ThermoFisher Scientific, 

1:500), and DAPI (Sigma) counterstain, and mounted with ProLong Gold Antifade 

Mountant (Molecular Probes), resulting in green intracellular staining and red/yellow 

(green + red) extracellular staining. HMGB1 and calreticulin immunofluorescence was 

similarly performed with Alexa Fluor 488 secondary antibody. Primary IHC and IF 

antibodies are listed in Table 2. Brightfield images were taken with a SPOT RT Color 
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camera on a Olympus CKX41 inverted microscope and IHC and IF images with CRI 

Nuance spectral camera on a Zeiss Axioskop upright microscope or a NikonDS-Ri2 

microscope.  

Table 2. Primary antibodies used in this study for histology. 
 
Antigen (mouse) Dilution Protocol Clone Vendor Catalog # 
CD3ε 1:100 IHC CD3-12 Bio-Rad MCA1477T 
CD3ε Pre-diluted IHC 2GV6 Ventana 790-4341 
Fibrinogen 1:200 IHC ab34269 Abcam ab34269 
E. coli 1:500 IF ab20640 Abcam ab20640 
 

2.17 Chemistry panel and complete blood count 

Mouse peripheral blood was collected by cardiac puncture and placed in serum 

separator or dipotassium-EDTA tubes (BD Microtainer). Frozen serum and whole blood 

were analyzed, the latter within 24 hours after collection (Charles River Laboratory). 

Reference value ranges were used from the Charles River Laboratory, (355), the 

University of Arizona University Animal Care (https://uac.arizona.edu/clinical-

pathology), and the University of Minnesota Research Animal Resources 

(http://www.ahc.umn.edu/rar/refvalues.html).  

2.18 CRISPR knockout 

To stably express CAS9 in Myc-CaP cells, we generated VSVG pseudotyped 

lentivirus (356, 357) using 293T cells, 2nd generation packaging vectors psPAX2, 

pMD2.G, and a CAS9 (Streptococcus pyogenes CRISPR-Cas) expressing lentiviral 

vector (Addgene 52962) (358). Lentiviral infection efficacy was >90% and cells were 
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maintained with 8 µg/ml puromycin. Multiple synthetic guide RNAs (gRNAs) (CRISPR 

crRNA, Integrated DNA Technologies) were designed using the CRISPR Design Tool 

(crispr.mit.edu (359)), those with off-target effects were excluded. gRNAs were delivered 

by transient transfection reagent TransIT-X2 (Mirus Bio). Partial PTEN knockout was 

confirmed by PTEN and p-AKT western blot and IF. >40 clones were isolated by cloning 

cylinders and were screened for complete PTEN loss. Two complete PTEN knockout 

Myc-CaP clones from different gRNAs (AAAGACTTGAAGGTGTATAC [exon 2], 

TGTGCATATTTATTGCATCG [exon 5]) were selected and analyzed in parallel in 

vitro.  

2.19 Cancer genomic database analysis 

cBioPortal for Cancer Genomics (http://www.cbioportal.org) (360) was utilized to 

analyze The Cancer Genome Atlas (TCGA) Research Network 

(http://cancergenome.nih.gov/) (361) and the Stand Up To Cancer/Prostate Cancer 

Foundation (SU2C/PCF) database (362).  

2.20 Western blot 

Western blotting was carried out as previously described (363), using an anti-

rabbit IgG (H+L)-HRP conjugate (Bio-Rad) secondary antibody and imaged using a 

LAS-3000 imager (Fujifilm). Primary antibodies used are listed in Table 3.  
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Table 3. Primary antibodies used in this study for western blot. 
 
Antigen (mouse) Dilution Clone Vendor Catalog # 
PTEN 1:1000 138G6 Cell Signaling 9559 
p-AKT 1:1000 S473 Cell Signaling 4060 
pan-AKT 1:1000 C67E7 Cell Signaling 4691 
AR 1:2000 N-20 Santa Cruz Biotechnology sc-816 
c-Myc 1:1000 Y69 Abcam ab32072 
β-actin 1:3000 AC-74 Sigma A5316 
 

2.21 Cell proliferation assay 

Cell proliferation was assessed by quantification of MTS tetrazolium reduction 

(Promega). Select experiments were performed with low (1%) or charcoal-stripped (C.S.) 

FBS.  

2.22 Organoid culture 

Cells were resuspended in Hepatocyte Defined Medium (Corning) supplemented 

with 10ng/ml epidermal growth factor (Corning), 5% C.S. FBS, 1x Glutamax (Gibco), 

5% matrigel (Corning), 10uM ROCK inhibitor (Y-27632, STEMCELL Technologies), 

100nM DHT (Sigma), and 1x Gentamicin/Amphotericin (Lonza). Cells were plated in 

Ultra-Low Attachment Surface plates (Corning).  

2.23 Statistical analyses 

Statistical analyses were performed in GraphPad Prism 7 software. The number of 

technical replicates, biological replicates, and independent experiments performed are 

listed in the figure legends. Unpaired two-tailed Student’s t-test, one-way Analysis of 

Variance (ANOVA) with post-hoc Tukey, and two-way ANOVA with post-hoc Sidak 
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were utilized as appropriate. Survival studies were analyzed by Log-rank (Mantel-Cox) 

test. Correlations were analyzed by Pearson’s correlation coefficient (r). Slopes of linear 

regression trend lines were compared by Analysis of Covariance (ANCOVA). Data are 

presented as mean ± standard error of the mean (S.E.M.), unless otherwise indicated. All 

data were included, no outliers were excluded. For all analyses, results were considered 

statistically significant with P<0.05. * P<0.05, ** P<0.01, *** P<0.001, **** P<0.0001. 
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CHAPTER 3: RESULTS 

 

 

3.1 CP1 is a patient-derived UPEC that homes to prostate tumors 

CP1 is a clinically-derived E. coli from a patient with chronic prostatitis that has 

previously been shown able to colonize murine prostates and induce a tissue-specific 

local inflammatory response (323). To further characterize the bacteria, we performed 

whole genome sequencing, which revealed that CP1 contains a 5,841,456 base pair 

genome with 50.9% GC content and 5172 unique coding sequences, 74 unique rRNA 

sequences, and 95 unique tRNA sequences (Fig. 5a). Further, CP1 is categorized within 

the B2 phylogenetic group (Fig. 5b) and sequencing type 131 (ST131). Phylogenetic tree 

analysis grouped CP1 closely with other UPEC isolates, including CFT073, UTI89, 536, 

J96, and NA114. Interestingly, CP1 is an atypical ST131 E. coli, as it lacks multiple 

consensus virulence genes (each with ≥93% ST131 population prevalence). While CP1 

contained identical multi-locus sequence typing (MLST) alleles as the ST131 NA114 

strain, only NA114 contained all consensus virulence factor genes (Fig. 5b) (364), 

indicating that CP1 is potentially less virulent than other similar UPECs.  
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Figure 5. Whole genome sequencing of CP1 
(a) The sequenced CP1 genome was visualized with Artemis DNAPlotter. Tracks from 
outermost to innermost: forward coding sequence (CDS), reverse CDS, forward tRNA, 
reverse tRNA, forward rRNA, reverse rRNA, GC plot, GC skew. (b) Phylogenetic tree of 
CP1 with reference E. coli strains using the Maximum Likelihood method with 
concatenated MLST sequences, constructed with MEGA7. Branch lengths were 
measured in the number of substitutions per site. Phylogenetic groups A, B1, D, or B2 are 
indicated. Table depicts the presence or absence of ST131 consensus virulence factor 
genes (with overall ST131 population prevalence indicated) in the CP1 or NA114 
genomes. (c) Sequence comparison of the CP1 genome with the MG1655 genome, 
performed with RAST. 
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UPECs are able to colonize the urinary tract and invade and proliferate within 

host epithelial cells (365), and prior analysis of CP1 demonstrated that it is able to adhere 

to and invade benign prostate epithelial cell lines (323). To test if CP1 could invade 

prostate cancer cells, we repeated this in vitro gentamicin protection assay with the MYC-

driven murine prostate cancer cell line, Myc-CaP (366). As a control, we utilized 

MG1655, the prototypical strain of the patient-derived K-12 E. coli isolate that has been 

maintained with “minimal genetic manipulation” and whose complete genome has been 

sequenced (367). About 19.7% of the genes in CP1 were not present in the MG1655 

genome, and the remaining shared genes contained an average 93.9% identity (Fig. 5c). 

As with the benign prostate epithelial cell lines, CP1 was able to adhere to, invade, and 

intracellularly proliferate within Myc-CaP cells, and did so to a greater degree than did 

MG1655 (Fig. 6).  

 

 

Figure 6. CP1 adheres to, invades, and intracellularly proliferates within prostate 
cancer cells 
Gentamicin protection assay with CP1 and MG1655 with Myc-CaP cells in vitro, 
performed in sextuplicates, plated in serial dilutions. Data represented as mean ± S.E.M. 
Statistical significance was determined by Student’s t-test. ** P<0.01, *** P<0.001, **** 
P<0.0001. 
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A prior study has established that intra-urethral instillation of 2×108 CP1 in mice 

leads to bacterial colonization of the benign prostate, and, to a lesser degree, the bladder, 

thereby recapitulating the common natural ascending pattern of prostatic infection in 

humans (323). To similarly evaluate CP1 in a clinically relevant in vivo model of prostate 

cancer, we injected Myc-CaP cells intra-prostatically, leading to orthotopic prostate 

tumor development. 8 days after intra-prostatic injection, mice with established tumors 

were intra-urethrally administered 2x108 CP1. Tissue analysis 9 days after CP1 

administration revealed that CP1 specifically colonized prostate tumor tissue, ascending 

from the urethra to the bladder to the tumor without progressing to the kidneys or 

colonizing systemic tissues (Fig. 7a). An average 3.8×106 total CP1 colony forming units 

(CFUs) (Fig. 7a), or 3.3×106 CFU/g tumor (Fig. 7b), were cultured from tumors, 

representing approximately 1.9% of the initial CP1 inoculation (Fig. 7c). Additional 

comparison of CP1 tumor colonization on day 1 and day 9 after intra-urethral 

administration revealed no significant changes in CFUs over time (Fig. 8a-c). We also 

analyzed bacterial 16S RNA from tumor tissue as an additional means of tracking intra-

tumoral CP1. As expected, 16S RNA levels were higher in CP1-administered tumors 

(Fig. 7d). Calibrating 16S RNA values to CP1 cell counts resulted in similar values as 

those attained by tumor tissue culture at both timepoints (Fig. 8d), suggesting that viable 

but non-culturable (VBNC) CP1 were absent or minimal in this model. Finally, 

immunofluorescent analysis of tumor tissue 9 days after intra-urethral CP1 administration 

identified the presence of both extracellular (approximately 58.2%) and intracellular 

(approximately 41.8%) E. coli throughout the tumors (Fig. 7e). Importantly, CP1 
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administration did not cause any systemic toxicities, with no changes in body weight or 

any serum chemistry laboratory values, and all complete blood count (CBC) values fell 

within their normal range (Fig. 9), other than low RDW, which is clinically insignificant 

in the absence of anemia. Thus, intra-urethrally administered CP1 specifically and safely 

colonized prostate tumor tissue.  

 

 

Figure 7. CP1 specifically homes to and colonizes prostate tumor tissue 
Orthotopic prostate tumor-bearing mice were analyzed 9 days after intra-urethral CP1 
administration. (a) Bacterial colonization in the bladder, prostate tumor (also represented 
as (b) CFU/g and (c) percentage of the initial 2×108 CP1 intra-urethral inoculum), 
ipsilateral and contralateral kidneys, liver, and spleen, performed in biological triplicates, 
plated in serial dilutions. (d) 16S qRT-PCR of tumor RNA, normalized to RPLP0, 
performed in biological quadruplicates, technical duplicates. (e) E. coli IF of tumor tissue 
(yellow/red = extracellular, indicated with white arrows; green = intracellular, indicated 
with brown arrows), (scale bar, 20µm; magnified scale bar, 4µm). Mice n = 4-5/group, 
performed in 2 independent experiments, E. coli IF quantified with quadruplicate 
FOVs/tumor. Data represented as mean ± S.E.M. Statistical significance was determined 
by two-tailed Student’s t-test. * P<0.05. 
 
 
 



	

83	

 

Figure 8. Intra-tumoral CP1 is culturable and colonization levels remain constant 
over time 
(a) Total bacterial colonization, (b) bacterial colonization normalized to tumor weight, 
and (c) bacterial colonization as a percentage of the original 2×108 CP1 inoculum, 
performed on day 1 (d1) and day 9 (d9) after intra-urethral PBS or CP1 administration to 
orthotopic Myc-CaP prostate tumor-bearing mice. (d) Bacterial colonization/g tumor as 
determined by both cultured tumor tissue and 16S RT-PCR calibrated to CP1 counts on 
day 1 and day 9 after CP1 administration. Mice n = 4-5/group, tissue cultures plated in 
serial dilutions, technical duplicates, RT-PCR performed in technical duplicates. Data 
represented as mean ± S.E.M. Statistical significance was determined by (a-c) two-tailed 
Student’s t-test, (d) two-way ANOVA. 
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Figure 9. CP1 does not cause any systemic toxicities 
(a) Weights of PBS and CP1 administered mice (± anti-PD-1 antibody), plotted as days 
post-infection (d.p.i.), n.s. = not significant, n = 23-28 mice/experimental group. (b) 
Chemistry laboratory values of PBS and CP1 administered mice, yellow indicating the 
normal murine range (ALT = alanine aminotransferase, AST = aspartate 
aminotransferase, BUN = blood urea nitrogen, TBIL = total bilirubin, P- = phosphorous, 
Ca2+ = calcium, Na+ = sodium, K+ = potassium, Cl- = chloride, ALP = alkaline 
phosphatase, GGT = gamma glutamyl transferase), n = 4-5 mice/experimental group. (c) 
Complete blood count (CBC) values of CP1 administered mice, yellow indicating the 
normal murine range (WBC = white blood cell, RBC = red blood cell, HBG = 
hemoglobin, HCT = hematocrit, MCV = mean corpuscular volume, MCH = mean 
corpuscular hemoglobin, MCHC = mean corpuscular hemoglobin concentration, RDW = 
RBC distribution width, PLT = platelet count, MPV = mean platelet volume), n = 3 mice. 
Data represented as mean ± S.E.M. 



	

85	

3.2 CP1 induces ICD and pro-inflammatory cytokine production  
 

Interestingly, in vitro culture of Myc-CaP cells with CP1 resulted in cancer cell 

death in a dose-dependent manner (Fig. 10a). Therefore, we analyzed whether this was 

specifically immunogenic cell death (ICD). All three major ICD damage-associated 

molecular patterns (DAMPs): HMGB1, ATP, and calreticulin (368), were elevated in the 

presence of live, but not heat killed, CP1 (Fig. 11a). Similar results were seen with 

human LNCaP prostate cancer cells (Fig. 11b). CP1 also induced all ICD markers to a 

significantly higher level than did MG1655 (Fig. 10b, CP1 vs. MG1655: HMGB1 P = 

0.0011, ATP P = 0.009, calreticulin P = 0.0014 all by two-tailed Student’s t-test). To 

more accurately represent the quantity of CP1 present within the tumor, the in vitro ICD 

assays were repeated with the addition of gentamicin at a multiplicity of infection (MOI) 

of 1. These conditions resulted in a final average CP1:Myc-CaP ratio of 0.005, with the 

surviving intracellular CP1 representing approximately 10.9% of the initial bacteria 

added to the culture (multiple orders of magnitude less bacteria than without gentamicin). 

In the presence of gentamicin, CP1 still significantly increased the percent of calreticulin+ 

Myc-CaP cells, but did not induce HMGB1 or ATP secretion (Fig. 10c). However, it is 

important to note that in addition to decreasing total CP1 count, gentamicin also 

eliminated any potential importance of extracellular CP1 interacting with tumor cells or 

CP1 spreading between cells. Finally, we tested for ICD within tumor tissue 9 days after 

intra-urethral CP1 administration. CP1-administered prostate tumors contained an 

increased percentage of HMGB1- nuclei (Fig. 11c), signifying HMGB1 release (369), and 

areas of increased cell surface calreticulin levels (Fig. 11d).  
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Figure 10. CP1 induces ICD and select cell death markers, with and without 
gentamicin, and to a greater degree than MG1655 
(a) LDH level, as a measure of cell death, from CP1 and Myc-CaP co-culture, performed 
in triplicates. (b-i) Myc-CaP cells were co-cultured with mitoxantrone (Mx), CP1 (MOI 
1), or MG1655 (MOI 1) (b, d, g) in normal media or (c, e, f, h, i) with gentamicin (+ G) 
added after 2 hours. (b, c) ICD was measured via HMGB1 (ELISA, 72 hours), ATP 
(luminescence assay, 72 hours), and calreticulin (flow cytometry, 24 or 72 hours), 
performed in biological triplicates, technical duplicates. (d-f) Caspase 3/7 activity 
(luminescence assay, reported in relative light units [RLU]) was measured at (d, e) 6 
hours or (f) 24 hours, (d) normalized to cell count (MTT assay), performed in 
sextuplicates. (g, h) Early stage apoptosis (Annexin V+ PI-) and late stage apoptosis 
(Annexin V+ PI+) were determined by flow cytometry after 24 hours, performed in 
triplicates. (i) Western blot analysis of phosphorylated and total MLKL, RIP1, full length 
and cleaved PARP, and β-actin after 24 hours, performed in triplicates. Data represented 
as mean ± S.E.M. Statistical significance was determined by two-tailed Student’s t-test 
(each group compared to Unt, and CP1 compared to MG1655). * P<0.05, ** P<0.01, *** 
P<0.001, **** P<0.0001. 
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Figure 11. CP1 induces immunogenic cell death while increasing pro-inflammatory 
cytokines and chemokines and decreasing VEGF 
ICD was assessed in vitro from co-culture of (a) Myc-CaP or (b) LNCaP cells with 
untreated (Unt.), mitoxantrone (Mx), heat killed (HK) CP1, or live CP1 via HMGB1 
(ELISA), ATP (luminescence assay), and calreticulin (flow cytometry, with 
representative histogram [Unt = black, Mx = gray, CP1 HK = dark red, CP1 live = red]), 
performed in biological triplicates, technical duplicates, statistics compared to Unt. ICD 
was assessed in vivo by (c) HMGB1 or (d) calreticulin IF of prostate tumor tissue 9 days 
after intra-urethral CP1 administration, with representative images (each calreticulin 
image representative of a different tumor with white arrows indicating foci of cell surface 
staining, green = HMGB1 or calreticulin, scale bar, 50µm). Mice n = 4/group, HMGB1 
quantified with quadruplicate FOVs/tumor. (e) Multiplex cytokine and chemokine array 
from Myc-CaP supernatant, performed in biological triplicates, technical duplicates. Data 
represented as mean ± S.E.M. or log2 fold change with and without CP1 exposure. 
Statistical significance was determined by two-tailed Student’s t-test (a, b, each group 
compared to Unt.). * P<0.05, ** P<0.01, *** P<0.001, **** P<0.0001. 
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Further analysis of cell death pathways identified that CP1 significantly increased 

caspase 3/7 activity without gentamicin (Fig. 10d, P = 0.0103 by two-tailed Student’s t-

test, CP1 significantly greater than MG1655, P = 0.0037 by two-tailed Student’s t-test) 

and with gentamicin (Fig. 10e [P = 0.0286 by two-tailed Student’s t-test], f). CP1 

exposed Myc-CaP cells also displayed an increased late apoptotic phenotype (Annexin 

V+ PI+) without gentamicin (Fig. 10g) and an increased early apoptotic phenotype 

(Annexin V+ PI-) with gentamicin (Fig. 10h, CP1 significantly greater than MG1655, P = 

0.0329 by two-tailed Student’s t-test). However, no changes were observed in the 

phosphorylation of MLKL, RIP1 levels, or PARP cleavage after Myc-CaP culture with 

either CP1 or MG1655 and gentamicin (Fig. 10i), suggesting that CP1-induced ICD is 

occurring in a necroptosis-independent manner (369).  

Finally, CP1 significantly increased the in vitro Myc-CaP production of pro-

inflammatory cytokines and chemokines IL-9, IL-15, IL-1α, IFNγ, MIP-2, MIP-1β, G-

CSF, IL-17, KC, IL-2, and IP-10 (CXCL10), which is important for ICD, while also 

decreasing VEGF from cancer cells (Fig. 11e). Overall, CP1 induced ICD, increased pro-

inflammatory cytokines and chemokines, and decreased VEGF from cancer cells.  

 

3.3 CP1 increases TILs and reprograms the tumor microenvironment  
 

To evaluate CP1’s ability to remodel the “cold” prostate tumor 

microenvironment, we immunophenotyped tumors 9 days after intra-urethral bacterial 

administration. CP1 increased T cells not only in the tumor stroma and periphery, but 

also intra-tumorally (Fig. 12a), consisting of both CD8 and CD4 TILs (Fig. 12b). In 
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contrast, intra-urethral MG1655 administration did not result in increased TILs (Fig. 13). 

Further analysis revealed that the increased CD8 TILs in CP1-administered tumors 

expressed increased TNFα (Fig. 12c) and the activation marker PD-1 (Fig. 12d), and a 

higher percentage expressed IFNγ within the dLNs (Fig. 12e). In addition, intra-tumoral 

(Fig. 12f) and dLN (Fig. 12g) CD4 T cells were Th17-polarized. CP1 administration also 

decreased the percentage of regulatory T cell (Treg) TILs, with most tumors containing a 

>3-fold increased CD8/Treg ratio (Fig. 12h). Notably, despite increasing overall 

hematopoietic infiltration, CP1 did not increase infiltration of myeloid-derived suppressor 

cells (MDSCs; CD11b+Gr-1+) (Fig. 12i). Interestingly, CP1 significantly increased both 

mature dendritic cells (DCs) and M1-polarized macrophages to a much greater degree 

than either total cell type (Fig. 12j, k), while also increasing infiltration of NK cells (Fig. 

12l), γδ T cells (Fig. 12m), and B cells (Fig. 14a). While CP1 did not increase PD-L1 on 

tumor or hematopoietic cells, the immune compartment was a greater source of PD-L1 

within these tumors due to increased overall CD45+ infiltration (Fig. 14b-d). IL-5 and 

TNFα were the most upregulated cytokines in CP1-treated tumors, and, consistent with 

the in vitro cytokine/chemokine array, IFNγ was among the most upregulated and IL-6 

and VEGF among the most downregulated cytokines after CP1 administration (Fig. 12n). 

Overall, intra-tumoral CP1 increased infiltration of multiple anti-tumor immune cell 

types while decreasing Tregs.  
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Figure 12. CP1 increases TILs and tumor immune infiltration while decreasing 
Tregs 
(a) Blinded IHC with representative images (scale bar, 100µm) and (b-m) flow cytometry 
analysis of Myc-CaP tumors or dLNs, as indicated, displayed as cell counts normalized to 
tumor volume (scatter plots) or percentages of parent gate (scatter boxed plots), with 
representative flow cytometry plots. MDSCs were defined as CD11b+Gr-1+. (n) 
Multiplex cytokine and chemokine array from Myc-CaP tumors. Mice n = 4-5/group, 
performed in 2 independent experiments. Data represented as mean ± S.E.M. or log2 fold 
change with and without CP1 administration. Statistical significance was determined by 
two-tailed Student’s t-test. * P<0.05, ** P<0.01, *** P<0.001. 
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Figure 13. Intra-urethrally administered MG1655 does not increase prostatic TILs 
Flow cytometry analysis of orthotopic Myc-CaP tumors 9 days after intra-urethral 
administration of PBS, CP1, or MG1655, displayed as cell counts normalized to tumor 
volume. Mice n = 5/group. Data represented as mean ± S.E.M. Statistical significance 
was determined by two-tailed Student’s t-test. * P<0.05, ** P<0.01, *** P<0.001. 
 
 
 
 

 

Figure 14. CP1 increases B cells and does not increase PD-L1 expression 
Flow cytometry analysis of (a) B cells, and PD-L1 on (b) CD45- and (c) CD45+ intra-
tumoral cells, and (d) the ratio of CD45+PD-L1+/CD45-PD-L1+ cell densities. n = 4-5 
mice/experimental group, performed in 2 independent experiments. Data represented as 
mean ± S.E.M. as cell counts normalized to tumor volume (scatter plots) or percentages 
of parent gate (scatter boxed plots). Statistical significance was determined by two-tailed 
Student’s t-test. * P<0.05. 
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3.4 CP1 with PD-1 blockade is efficacious for prostate cancer  
 

To determine the functional implications of this immunomodulation, we treated 

orthotopic Myc-CaP tumor-bearing mice with intra-peritoneal anti-PD-1 antibody 

beginning 9 days after intra-urethral CP1 administration. We utilized pre-treatment in 

vivo bioluminescent imaging to normalize tumor burden and variance between 

experimental groups in this and all subsequent experiments (Fig. 15). To analyze 

survival, mice were followed after treatment termination with no additional interventions. 

Combination immunotherapy of CP1 and PD-1 blockade (CP1+PD-1) significantly 

increased survival (P = 0.0066 by Log-rank test), conferring >2-fold increased 50% 

survival time. In contrast, neither CP1 nor anti-PD-1 monotherapy significantly enhanced 

survival (Fig. 16a). In mice analyzed immediately after treatment termination, CP1+PD-1 

decreased tumor burden, as assessed by in vivo bioluminescent imaging, tumor weight, 

and tumor volume (Fig. 16b-e). In addition, CP1 treated tumors showed evidence of 

bacterial colonization, as determined by 16S RNA (Fig. 17a). Interestingly, all long-term 

surviving mice (>75 days) contained relatively high 16S RNA ratios (normalized to a 

mouse housekeeping gene) (Fig. 17b), suggesting that high bacterial load was important 

for therapeutic efficacy. In addition, as observed previously (Fig. 8), relative bacterial 

load did not increase over time (Fig. 17b). Further, within CP1 treated tumors, MIP-2 was 

the most upregulated and VEGF was again the most downregulated cytokine (Fig. 18a). 
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Figure 15. Normalization of orthotopic pre-treatment tumor burden in all in vivo 
experiments 
Pre-treatment tumor IVIS quantification of Unt., CP1, anti-PD-1 antibody, and 
combination CP1 and anti-PD-1 antibody treated mice in (a) Myc-CaP survival (Fig. 
16a,b, 17, 18a), (b) Myc-CaP analysis (Fig. 16b-e), (c) Myc-CaP PTEN KO survival 
(Fig. 20e), (d) Myc-CaP PTEN KO analysis (Fig. 18b, 20f, 21, 22), and (e) of Unt., 
FTY720, combination CP1 and anti-PD-1 antibody, and combination CP1 and anti-PD-1 
antibody and FTY720 treated mice (Fig. 23). Data represented as mean ± S.E.M. 
Statistical significance was determined by one-way ANOVA. 
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Figure 16. Combination CP1 and anti-PD-1 immunotherapy is efficacious in 
treating orthotopic prostate tumors 
(a) Kaplan Meier survival curve of Unt., CP1, anti-PD-1 antibody, or combination CP1 
and anti-PD-1 antibody treated mice, mice n = 6-12/group, performed in 3 independent 
experiments. (b) Waterfall plot of IVIS imaging quantification, with each bar 
representing the post-treatment (Tx) total flux of a single tumor normalized to both its 
own pre-tx total flux and Unt. normalized total flux, with representative images. 
Percentages indicate the fraction of tumors with values <0.0001. n = 11-17 
mice/experimental group, performed in 4 independent experiments. Post-tx tumor (c) 
volumes, (d) weights, and (e) gross images, mice n = 3-4/group. data represented as mean 
± S.E.M. Statistical significance was determined by (a) Log-rank test, (c, d) two-tailed 
Student’s t-test. ** P<0.01.  
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Figure 17. CP1 load is linked to treatment efficacy 
16S qRT-PCR of Myc-CaP survival mice tumors (a) at their endpoints and (b) plotted 
over time after tumor injection, dotted line indicates cutoff for high CP1. Data 
represented as mean ± S.E.M. Statistical significance was determined by two-tailed 
Student’s t-test. ** P<0.01. 
 
 

 

Figure 18. CP1 decreases intra-tumoral VEGF, increases pro-inflammatory 
cytokines and chemokines 
Multiplex cytokine and chemokine array from (a) Myc-CaP survival tumors, performed 
with n = 11-12 mice/experimental group, and from (b) Myc-CaP PTEN KO tumors, 
performed with n = 5-6 mice/experimental group and technical duplicates. Data 
represented as log2 fold change with and without CP1 administration. 
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3.5 CP1 with PD-1 blockade treats PTEN-deficient prostate cancer  
 

To challenge our combination immunotherapy in a second, more aggressive and 

immunosuppressive model of advanced prostate cancer, we utilized CRISPR-Cas9 to 

knock out (KO) PTEN from the Myc-CaP genome. Loss of PTEN is linked to increased 

PD-L1 in prostate and breast cancer (370), and decreased TILs and resistance to PD-1 

blockade in melanoma (371). Further, concurrent copy number gain of MYC and loss of 

PTEN is associated with prostate cancer-specific mortality, reported in 57% of metastatic 

tumors compared to 9.6% in localized disease (372). Similarly, this combination copy 

number alteration was present in 24.8% and 11.2% of SU2C/PCF metastatic and TCGA 

primary prostate tumors, respectively (Fig. 19). Myc-CaP PTEN KO cells contained 

increased phosphorylated-AKT and androgen receptor (Fig. 20a), and expressed 

approximately 2-fold higher levels of PD-L1, PD-L2, CD95, and CD95L, all important in 

tumor immune-evasion (Fig. 20b). These cells proliferated faster, particularly in low and 

charcoal-stripped serum (Fig. 20c), and more rapidly formed 3-dimensional organoids 

(Fig. 20d). Thus, we generated a novel PTEN KO Myc-CaP cell line that displayed many 

characteristics of advanced human prostate cancer.  
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Figure 19. Concurrent MYC copy number gain and PTEN copy number loss 
represents advanced human prostate cancer 
Tables of the number of samples with MYC and PTEN copy number diploid, loss, or gain 
in the TCGA and SU2C/PCF databases, with gray numbers indicating the percent of 
samples with concurrent MYC gain and PTEN loss. 
 

Figure 20. Combination CP1 and anti-PD-1 immunotherapy is efficacious in 
treating a novel orthotopic advanced prostate cancer model 
In vitro comparison of Myc-CaP and Myc-CaP PTEN KO cell lines by (a) western blot 
(p-AKT = phosphorylated AKT, AR = androgen receptor), (b) flow cytometry, (c) 
growth rate by MTS assays in normal media (10%), low serum (1%), and charcoal 
stripped (C.S.) FBS, performed in triplicates, and as (d) 3-dimensional organoids, 
performed in sextuplicates. Myc-CaP PTEN KO (e) Kaplan Meier survival curve, n = 7 
mice/experimental group, performed in 2 independent experiments, and (f) tumor 
volumes, n = 3-6 mice/experimental group. Data represented as mean ± S.E.M. Statistical 
significance was determined by (c) two-way ANOVA, (d) two-tailed Student’s t-test, (e) 
Log-rank test, (f) one-way ANOVA. * P<0.05, ** P<0.01, *** P<0.001. 
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Orthotopic Myc-CaP PTEN KO tumor-bearing mice were again administered 

intra-urethral CP1 and subsequent anti-PD-1 antibody. As previously observed, neither 

CP1 nor anti-PD-1 monotherapy significantly increased survival of mice, whereas 

CP1+PD-1 combination therapy conferred a significant 1.5-fold increased survival (P = 

0.0251 by Log-rank test) (Fig. 20e). Upon analysis immediately after treatment 

termination, combination CP1+PD-1 also significantly decreased tumor size (Fig. 20f, P 

= 0.0344 by one-way ANOVA). However, while tumor weight did not differ between 

groups (Fig. 21a), CP1 tumors were significantly denser (Fig. 21b), and contained 

increased exudate, as measured by fibrinogen (Fig. 21c). Therefore, tumor weight did not 

accurately assess therapeutic efficacy, consistent with pseudo-progressions observed with 

clinical immunotherapies (373).  
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Figure 21. CP1 increases tumor density via fibrinous exudate 
Myc-CaP PTEN KO tumor (a) weights, n = 3-4 mice/experimental group and (b) 
densities, n = 6-7 mice/experimental group. (c) Fibrinogen IHC quantified by total and 
mean positivity/FOV and representative images, quadruplicate FOVs scored per sample, 
scale bar: 50µm, n = 4-6 mice/experimental group. Data represented as mean ± S.E.M. or 
linear regression trend lines. Statistical significance was determined by (a) two-tailed 
Student’s t-test, (b) Pearson’s correlation coefficient (r) an ANCOVA comparing slopes 
of trend lines, (c) one-way ANOVA. * P<0.05, ** P<0.01, *** P<0.001. 
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3.6 CP1 increases activated TILs and decreases Tregs and VEGF  
 

In Myc-CaP PTEN KO tumors, CP1 treatment again increased TILs (Fig. 22a), 

with degranulated T cells from CP1 and/or CP1+PD-1 treated mice displaying increased 

cytotoxic functionality via IFNγ (Fig. 22b), granzyme B (Fig. 22c), and perforin (Fig. 

22d) expression. Also consistent with its effects in Myc-CaP tumors, CP1 increased PD-1 

on CD8 TILs (Fig. 22e), decreased the percentage of Treg TILs (Fig. 22f), and caused 

decreased VEGF and increased MIP-2, IL-17, and TNFα within the tumor 

microenvironment (Fig. 18b). Overall, combination CP1 and anti-PD-1 immunotherapy 

was efficacious in a second, more advanced model of the disease, increasing TILs and 

cytotoxic T cell function while decreasing Tregs and VEGF.  
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Figure 22. CP1 increases TILs and T cell cytotoxicity while decreasing Tregs in 
Myc-CaP PTEN KO tumors 
(a) IHC with representative images, quadruplicate FOVs scored per sample (scale bar, 
100µm). (b-f) Flow cytometry analyses of tumors or dLNs with representative flow 
cytometry plots. n = 3-4 mice/experimental group. Data represented as mean ± S.E.M. 
Statistical significance was determined by (a) one-way ANOVA, (b-f) two-tailed 
Student’s t-test. * P<0.05, ** P<0.01, **** P<0.0001. 
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3.7 CP1 therapeutic efficacy is dependent on recruitment of TILs  
 

To determine if CP1-recruited TILs were necessary for its efficacy with PD-1 

blockade, we utilized fingolimod (FTY720), a sphingosine-1 phosphate mimetic, to block 

egress of T cells from lymph nodes into peripheral tissues (374). This approach did not 

inhibit the quantity or functionality of baseline TILs, thereby selectively blocking only 

those T cells recruited by CP1. FTY720 administration successfully blocked the CP1-

dependent increase in both CD8 and CD4 TILs (Fig. 23a-d), and, consequently, reversed 

the anti-tumor efficacy of CP1+PD-1 combination therapy (Fig. 23e, f). Therefore, TILs 

specifically recruited by CP1 were necessary to drive the anti-tumor immune response. 
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Figure 23. CP1 therapeutic efficacy is dependent on its recruitment of TILs 
Myc-CaP PTEN KO tumor bearing mice untreated or treated with FTY720, CP1 and 
anti-PD-1 antibody, or CP1 and anti-PD-1 antibody and FTY720. (a) IHC with 
representative images, quadruplicate FOVs scored per sample (scale bar, 100µm). (b-d) 
Flow cytometry analyses of tumors. Post-tx tumor (e) volumes and (f) gross images. n = 
4-6 mice/experimental group. Data represented as mean ± S.E.M. Statistical significance 
was determined by (a-d) one-way ANOVA, (e) two-tailed Student’s t-test. * P<0.05, ** 
P<0.01, **** P<0.0001. 
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CHAPTER 4: DISCUSSION 

 

 

Immune checkpoint inhibitors have thus far failed to provide significant clinical 

benefit for prostate cancer (270, 283). Similar to other immunologically “cold” and 

unresponsive tumor types, prostate tumors display strong PD-L1 positivity (281) and 

their microenvironment contains scarce (16) but high PD-1-expressing TILs (31, 34), and 

high levels of Tregs (20, 34) and M2-polarized tumor-associated macrophages (TAMs) 

(64), all of which are linked to disease progression and death. However, another 

similarity between these cancers is that they stem from tissues frequently colonized by 

pathogenic bacteria. This study demonstrates how a unique patient-derived prostate-

specific bacteria was isolated and utilized to enhance immunotherapy efficacy in multiple 

orthotopic models of the disease. 

CP1 specifically homed to prostate tumors, ascending from the urethra to the 

bladder to the tumor without progressing to the kidneys or inducing any systemic 

toxicities. Further, CP1 induced ICD in both mouse and human prostate cancer cells, as 

determined by increased HMGB1, ATP, calreticulin, and CXCL10. ICD is important for 

the recruitment, activation, and optimization of antigen presentation of intra-tumoral DCs 

(368). Intra-tumoral CP1 increased infiltration by CD8 and CD4 TILs, both of which are 

linked to response to PD-1 blockade (14), and T cells from these mice expressed 

increased levels of IFNγ, granzyme B, perforin, and TNFα, all critical for a functional 

anti-tumor adaptive immune response (375). In addition, CP1 decreased the Treg TIL 
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phenotype with a corresponding increase in Th17 T cells. Tregs are a major source of 

immunosuppression in the tumor microenvironment (41), while IL-17 can promote anti-

tumor immunity by increasing infiltration of CD8 TILs, NK cells, and APCs, as well as 

increasing IFNγ production (376). CP1 also increased intra-tumoral levels of mature 

DCs, M1-polarized macrophages, NK cells, and γδ T cells. Prostate TAMs are typically 

M2-polarized immunosuppressive cells linked to disease progression (64, 67). However, 

the CD80+ TAMs recruited and polarized by CP1 represent an M1 macrophage proven to 

inhibit tumor growth and promote cytotoxic T cell activity (377). Additionally, NK cells 

can directly kill cancer cells, secrete IFNγ, TNF, GM-CSF and other cytokines to 

promote CD8 T cell and APC activity, while also controlling tumor metastasis and 

recognizing CD8 T cell-resistant tumors with downregulated MHC I (80, 378). γδ T cells 

can also directly eliminate cancer cells, produce IFNγ, and enhance CD8 and Th1 T cell 

and NK cell activity (48). Finally, CP1 consistently increased levels of IFNγ, TNFα, and 

the innate chemokine MIP-2, possibly secreted by the M1 macrophages (379), and 

decreased levels of VEGF and IL6 from both cancer cells and within the tumor 

microenvironment. VEGF is not only important in tumor angiogenesis, but also in 

actively suppressing the anti-tumor immune response by increasing tumor-infiltrating 

Tregs, TAMs, and MDSCs, while decreasing APC maturation and T cell infiltration and 

effector function (199). Likewise, IL-6 can promote tumorigenesis and is linked to 

prostate cancer progression (380) and MDSC recruitment (381). Thus, through multiple 

mechanisms, CP1 reprogrammed the prostate tumor microenvironment, thereby 

sensitizing tumors to anti-PD-1 immunotherapy (Fig. 24).  
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Figure 24. CP1 is a tissue-specific and multifaceted immunomodulatory tool 
(a) Intra-urethrally administered CP1 colonized tumor tissue and increases CD8 and CD4 
TILs, T cell cytotoxic function via IFNγ, granzyme B, perforin, and TNFα expression, 
skews the Th17/Treg axis to increase Th17 cells and decrease Treg TILs, increases tumor 
infiltration of mature DCs, M1 macrophages, NK cells, and γδ T cells, decreases intra-
tumoral VEGF and IL-6 and increases IFNγ, TNFα, and MIP-2, and directly kills cancer 
cells with induction of immunogenic cell death (ICD). (b) CP1 reprograms non-
immunogenic “cold” prostate tumor microenvironment and sensitizes tumors to anti-PD-
1 blockade, resulting in decreased tumor burden and increased survival.  
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 Multiple microbial cancer therapies have been previously tested in different 

cancer types. Bacteria in particular have many properties that offer potential advantages 

over other conventional therapeutic modalities. Bacteria are able to sense the external 

environment and potentially preferentially home to tumor tissue, and obligate and 

facultative anaerobes can survive and penetrate deep into the hypoxic core of tumors. 

Further, these bacteria may then stimulate a host immune response, they often display 

innate tumor cytotoxic properties, and they can be modified to express various anti-

cancer or imaging detection agents (302, 303). These studies have led to the development 

of the BCG therapy for bladder cancer, TLR agonists (382), and the use of S. 

typhimurium, L. monocytogenes, and C. novyi spores to deliver various cytokines, 

cytotoxic agents, and TAAs, even reaching the clinical trial level. Specifically in prostate 

cancer, attenuated S. typhimurium strains demonstrated an ability to localize to prostate 

xenograft tumors and induce tumor regression when delivered intra-venously or intra-

tumorally (307, 308), as well as causing direct tumor cell mitochondrial destruction 

(309). S. typhimurium were also modified to deliver prostate TAAs (310, 311), the p53 

gene and MDM2 siRNA, and Stat3 siRNA and Endostatin (313), and demonstrated 

enhanced anti-tumor efficacy when combined with cisplatin (312). In addition, attenuated 

L. monocytogenes demonstrated efficacy in inducing antigen-specific immune responses 

against PSA in pre-clinical murine PCa (314, 315), which was enhanced when combined 

with radiation therapy (316).  

CP1 displays multiple similarities and advantages in comparison to these 

microbial therapies. Unlike BCG and TLR agonists, CP1 is a live bacteria capable of 
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colonizing tumor tissue to directly induce ICD and continually enforce its multi-faceted 

immunomodulatory abilities. It is a prostate-tropic bacteria with the motility to ascend 

from the urethra to the bladder to the prostate tumor, where it survives long-term to 

augment the host immune response. In addition, in contrast to TLR agonists that activate 

limited pathways, live CP1 likely interacts with and activates may receptors and signaling 

pathways in the urogenital tract and the tumor microenvironment. Further, unlike many 

prior Salmonella (383)- and Listeria (384)-based therapies, CP1 does not require 

systemic i.v. instillation or intra-tumoral injection to reach the tumor. Intra-urethral CP1 

administration led to bacterial ascension from the urethra to specifically colonize the 

tumor, and CP1 did not induce any systemic toxicities even without attenuation of the 

bacteria. Unlike the prior bacterial cancer therapies, CP1 is novel in being a clinical 

isolate from the prostate of a patient with chronic prostatitis, thereby representing a more 

endogenous, personalized therapy for prostate cancer, displaying innate tropism for the 

tissue of interest. CP1 also was able to mobilize and activate an adaptive anti-tumor 

immune response and an innate response, conferring strong synergistic efficacy with PD-

1 blockade, without any major genetic manipulation, in contrast to some bacterial 

therapies that have been utilized predominantly as an adjuvant for a cancer vaccine. 

Importantly, CP1 was also able to concurrently decrease immunosuppressive intra-

tumoral Tregs and VEGF while increasing important anti-tumor immune cell types and 

cytokines.  

Another strength of this study was in representing multiple clinically relevant 

genetic backgrounds of prostate cancers. We utilized the androgen-dependent Myc-CaP 
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cell line (366), driven by MYC overexpression, as is seen in 80-90% of human prostate 

tumors (385). Additionally, we performed a CRISPR-Cas9 knock out of PTEN from the 

Myc-CaP genome, as concurrent MYC copy number gain and PTEN copy number loss is 

associated with prostate cancer-specific mortality and is reported in over half of deadly 

metastatic prostate tumors (372). PTEN loss is also linked to increased PD-L1 expression 

(370), decreased TILs, and resistance to PD-1 blockade (371). Further, both cell lines 

were surgically instilled into the prostate, allowing for the development of genetically 

complex and clinically relevant orthotopic tumors within prostatic microenvironments 

and with endogenous prostate-draining lymph nodes. In both models, a single dose of 

CP1 consistently augmented the anti-tumor response to significantly increase survival 

and decrease tumor burden when combined with less than two weeks of anti-PD-1 

blockade.  

In our murine models, prostate cancer cells were injected into the anterior prostate 

lobe of mice. The mouse prostate consists of the anterior, ventral, and dorsolateral 

prostate lobes, and the human prostate consists of a peripheral zone, transitional zone, 

and central zone within a single lobe (386). While prior studies have anatomically and 

histologically compared the dorsolateral mouse lobe to the human peripheral zone, the 

site of the majority of prostate cancers (387), and the anterior mouse lobe to the human 

central zone (388, 389), more recent and comprehensive analysis has demonstrated that 

the anterior lobe and dorsolateral lobe display closely related gene expression patterns, as 

compared to the ventral lobe (390). Further,  prostate cancer development has been 

observed in the anterior lobe of GEMs (386), and, for the intra-prostatic procedure, the 
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anterior lobe allows for the injection of the necessary volume of cancer cell solution with 

minimal leakage and variability.  

Subcutaneous and transgenic GEM cancer models have multiple flaws and 

limitations. Subcutaneous tumors grown in an artificial tumor microenvironment have 

demonstrated differential responses to chemotherapies, in contrast to both orthotopic 

tumors from the same cell lines and human disease (343-345). This may be due to the 

altered vasculature of subcutaneous tumors, as exemplified by their differential response 

to anti-angiogenic therapy (341, 342). On the contrary, orthotopic tumors develop with a 

proper tumor microenvironment, draining lymph nodes, and vasculature, and can be 

performed with murine cell lines, thereby also allowing for analysis of tumor 

immunology and response to immunotherapies.  

Transgenic GEMs develop tumors with a proper tumor microenvironment in an 

immunocompetent host, yet these models typically oversimplify human cancer by 

developing tumors with single or few genetic alterations (350). An analysis of Myc-CaP 

and other prostate cancer cell lines revealed that they contained much greater somatic 

copy number alterations and chromosomal alterations than tumors from the Hi-Myc mice 

and other GEMs from which they were derived (350). Further, GEMs are limited by the 

increased cost and time needed for mice breeding to perform experiments of sufficient 

power. Orthotopic tumor modeling can overcome these limitations. Human and murine 

prostate cancer cell lines contain many genetic alterations relevant to human disease 

(350), and, like human cancer, also show great heterogeneity between individual cells 

(351). Orthotopic murine syngeneic tumors allow for immunological analyses, while 
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orthotopic human xenogeneic tumors allow for analyses of therapeutics on human cells. 

Finally, unlike with GEMs, cell lines can be modified in vitro before injection, which 

allowed us to stably express luciferase for in vivo bioluminescent imaging to monitor 

tumor growth and normalize tumor burden among experimental groups, as well as to 

perform the CRISPR-Cas9 knockout of the tumor suppressor PTEN.  

Multiple future steps can be taken to overcome limitations and achieve optimal 

clinical success. While we extensively evaluated the safety of CP1, future studies can 

attempt to attenuate the bacteria without diminishing the pro-inflammatory qualities 

important for its anti-tumor efficacy. To increase its therapeutic potency, CP1 can be 

engineer similar to prior bacterial cancer therapies to deliver cytotoxic agents, cytokines 

or chemokines, tumor antigen, or genetic material, as described above (302). Specifically, 

one prior study demonstrated that an oncolytic virus engineered to express a soluble form 

of PD-1 was more efficacious that the virus combined with anti-PD-1 antibody 

administration in a preclinical melanoma model (391). The authors suggested that the 

enhanced efficacy of soluble microbial-delivered PD-1 blockade over antibody injections 

may have been due to increased affinity of the soluble molecule for its ligands, enhanced 

diffusion of the smaller molecule throughout the tumor, and the potential for the soluble 

PD-1 to bind to any additional ligand binding partners (392). Given the synergistic 

efficacy of combining CP1 with anti-PD-1 antibody, engineering CP1 to produce the 

soluble inhibitory PD-1 molecule may enhance the anti-tumor benefit. However, this 

strategy does increase the risk of systemic toxicities, as the degree of PD-1 blockade 

would be under less control than with anti-PD-1 antibody administration.   
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Further, as stated above, to optimize immunotherapy efficacy, focus has shifted 

toward combining immunotherapies with various other immunomodulatory therapeutics, 

such as adoptive T cell therapies, chemotherapies, and radiation (317). Interestingly, our 

flow cytometry analysis revealed that CP1 increased tumor infiltrating B cells. While B 

cells are able to present antigen at comparable levels as mature DCs (393) and are 

associated with increased survival (394), others have demonstrated tumor-promoting and 

immunosuppressive properties of B cell subsets in prostate cancer (79). Therefore, CP1 

may be optimized in combination with a B cell inhibitor, such as rituximab, which has 

previously resulted in a biochemical response in a patient with advanced prostate cancer 

(77).  

In addition to optimizing synergistic combination therapies, it will also be 

important to analyze specific markers that may predict response to CP1. Tumor 

mutational burden and neo-antigen load, DNA repair defects and MSI (as observed in 

prostate tumors), the status of various gene signaling pathways, and the presence of select 

bacterial species in the gut microbiome (or potentially the prostate tumor flora) may serve 

as either predictive or targetable markers with CP1 administration.  

One reason for the scarcity of TILs in the prostate tumor microenvironment may 

be its weak mutagenicity. Interestingly, in addition to increased TILs, T cell inflamed 

tumors also contain a higher tumor mutational burden (395). mCRPC tumors, on the 

contrary, displayed a low mutation rate of approximately 2 mutations/megabase (Mb) 

(396). Increased mutations increase the likelihood of generating immunogenic and tumor-

specific neo-antigens, which amplify tumor immunogenicity to increase both the 
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endogenous anti-tumor immune response and the response to exogenous 

immunotherapies. As expected, neo-antigen load directly correlates with overall 

mutational burden, and prostate tumors also display low levels of neo-antigens (397). 

Importantly, neo-antigen load, but not overall mutational burden, is significantly 

associated with increased OS across multiple tumor types (398), and, retrospective 

stratification of tumors with high neo-antigen load strongly associated with responders to 

anti-PD-1 therapy in NSCLC (399) and anti-CTLA-4 therapy in metastatic melanoma 

(400). High tumor mutational burden and neo-antigen load may also prove to be a 

valuable prognostic marker in selecting PCa patients for immunotherapy or for treatment 

with CP1.  

Mutations in DNA repair genes result in a hypermutable state and are associated 

with increased tumor neo-antigen load. As a result, pembrolizumab has been approved 

specifically for mismatch repair (MMR)-deficient or microsatellite instability (MSI)-high 

solid tumors, after clinical trials demonstrated significantly increased efficacy in treating 

those tumors in comparison to tumors with wildtype DNA repair function (401-403). In 

addition to defects in MMR, defects in the homologous recombination (HR) DNA repair 

pathway have also been linked to response to PD-1 blockade, increased neo-antigens, and 

increased TILs (399, 404-406). Specifically in PCa, 8% of Gleason 9-10 

adenocarcinomas and 5% of small cell carcinomas display loss of MSH2, with CD8 TILs 

directly correlating with mutational burden in theses tumors (407). In addition, 19% of 

localized PCa TCGA samples contain aberrations in BRCA2, BRCA1, CDK12, ATM, 

FANCD2, or RAD51C (361), 22.7% of 150 mCRPC samples contain mutations in 
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BRCA2, ATM, BRCA1, FANCA, RAD51B, RAD51C, MLH1, or MLH2 (408), and MMR 

mutations in MSH2, MLH1, or MSH6 are specifically associated with a hypermutable 

state of approximately 50 mutations/Mb (408, 409). Additional studies on mPCa have 

reported 12% and 0.7% with biallelic BRCA2 and BRCA1 mutations, respectively (410), 

a 7.3-13% germline DNA repair mutation rate (411-414), and that mCRPC have 

increased mutation rates in comparison to localized PCa (20-28% vs. 6.2-18%) (396, 

415). Patient reports have validated the use of these genes as immunotherapy biomarkers, 

as one CRPC tumor with loss of MSH2 and MSH6 expression and which was refractory 

to chemotherapies and enzalutamide responded well to nivolumab (287), and MSI was 

observed in a mCRPC enzalutamide-resistant responder to pembrolizumab (286). 

Accordingly, nivolumab is being tested in mCRPC with DNA repair defects (as defined 

by mutations in BRCA1, BRCA2, ATM, PTEN, CHEK2, RAD51C, RAD51D, PALB2, 

MLH1, MSH2, MSH6, or PMS2) (phase II NCT03040791) and ipilimumab plus 

nivolumab is being tested in mCRPC patients with defective MMR/DNA repair or high 

inflammatory infiltrate (phase II NCT03061539). Similarly, tumor stratification based on 

DNA repair status may serve as a biomarker to predict response to CP1.  

Identifying tumors with specific genetic mutations and signaling pathway 

activation may also be valuable in selecting PCa immunotherapy and CP1 responders. In 

pre-clinical murine models, PTEN knockout prostate tumors contain high levels of 

infiltrating immunosuppressive MDSCs (57-59) as well as Tregs after castration (115). 

Further, PTEN loss is linked to increased PD-L1 levels in PCa and breast cancer (370), as 

well as decreased TILs and resistance to PD-1 inhibition in melanoma (371). In addition, 
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the MYC oncogene directly regulates PD-L1 expression, while activation of the β-catenin 

pathway is associated with decreased TILs and resistance to PD-L1 and CTLA-4 

blockade (416). 

The microbiome may also prove to be a valuable resource for the success of 

immunotherapies. Initial microbiome categorization of prostate tumor tissue identified 

bacterial DNA in 87% of tumors and a total of 83 distinct microorganisms, with no single 

species correlating with the level of tissue inflammation (417). More recent ultradeep 

pyrosequencing analysis of 16 prostatectomy samples revealed the presence of many 

bacterial populations both intra- and peri-tumoral. Propionibacterium spp. was the most 

numerous bacterial genera within prostate tumors, while Staphylococcus spp. was found 

more frequently within the tumor and peri-tumoral region in comparison to non-tumor 

tissue, and Streptococcus spp. was more frequent in non-tumor tissue (418). While 

microbiome dysbiosis may play a role in prostate cancer development and pathogenesis 

(419), it may also be valuable in predicting treatment efficacy. An intact intestinal 

microbiome is critical for the maximal efficacy of cyclophosphamide and platinum 

chemotherapy, proving necessary for these treatments to induce a Th17 and Th1 anti-

tumor immune response (420) and to modulate tumor-infiltrating myeloid-derived cells 

(421), respectively. Regarding immune checkpoint inhibitors, an intact microbiome, 

specifically one that contains Bacteroides fragilis, is associated with maximal efficacy of 

CTLA-4 blockade in melanoma mice and patients (422). In addition Bifidobacterium in 

the intestinal microbiome augments DC function to synergize with PD-L1 blockade in 

murine melanoma (423). In another study, Akkermansia muciniphila was critical for PD-
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1 blockade efficacy in mice and patients with epithelial tumors. Oral supplementation 

with the bacteria increased IL-12 and recruited CCR9+CXCR3+ CD4 T cells into the 

tumor (424). Finally, analysis of melanoma patients treated with PD-1 blockade revealed 

that responders contained increased microbiome diversity and Ruminococcaceae family 

bacteria (425). Identifying similar key bacteria, either in the local prostate tumor flora or 

in the gut microbiome, and any interactions they may have with CP1, may be key to 

identifying immunotherapy responders or augmenting the response to CP1 

administration.  

Finally, this model can also be utilized to study the effects of CP1 in CRPC. 

CRPC confers a poor prognosis with a median survival time of 9-30 months, or 12-37 

months after ADT initiation, and is in need of novel treatment options (8-10). After intra-

prostatic Myc-CaP cell injection and subsequent orthotopic tumor development, mice 

were surgically castrated. Within 3 days after castration, strong tumor regression was 

observed, followed by subsequent tumor recurrence after approximately 30 days, 

representing CRPC (Fig. 25a), as tumors were now able to grow in an androgen-

independent manner. These CRPC tumors can be dissection and analyzed histologically, 

and do not display any neuroendocrine differentiation, as they maintain high AR levels 

and are negative for the neuroendocrine marker, synaptophysin (Fig. 25b). Therefore, we 

are able to model both orthotopic androgen-dependent prostate cancer and androgen-

independent CRPC in an immunocompetent host.  
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Figure 25. Intra-prostatic injections with subsequent surgical castration to model 
both androgen-dependent prostate cancer and CRPC 
(A) Mice bearing orthotopic luciferase-expressing tumors were imaged by 
bioluminescence pre- and post-castration (Cx), and (B) recurred CRPC tumors were 
dissected (black=orthotopic prostate tumor; yellow=bladder) and analyzed by H&E, AR 
IHC, and synaptophysin IHC (with positive murine control) (scale bar=50 µm).  
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In summary, CP1 is a novel, single intra-urethral dose, multi-faceted 

immunomodulatory tool capable of homing to prostate tumor tissue and reprogramming 

the “cold” microenvironment, thereby sensitizing the otherwise resistant cancer to 

immune checkpoint inhibition. The combination of CP1 and PD-1 blockade achieved 

these results in multiple, clinically relevant, orthotopic models of the highly prevalent and 

deadly disease. More broadly, this study demonstrates how select tissue-specific 

microbes, as are commonly isolated colonizing the breast (326), pharynx (327), 

intestines, bladder (328), female genital tract (329), and additional tissues throughout the 

body, can be screened and evaluated to uncover future CP1-like bacteria to potentiate 

immunotherapies in other recalcitrant cancers.  
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