
NORTHWESTERN UNIVERSITY

Application of Constrained Optimization Models to Recommender Systems

A DISSERTATION

SUBMITTED TO THE GRADUATE SCHOOL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

for the degree

DOCTOR OF PHILOSOPHY

Field of Industrial Engineering and Management Sciences

By

Sinan Seymen

EVANSTON, ILLINOIS

June 2023

2

© Copyright by Sinan Seymen 2023

All Rights Reserved

3

ABSTRACT

Application of Constrained Optimization Models to Recommender Systems

Sinan Seymen

Recommender systems (RSs) have become essential tools that provide personalized rec-

ommendations to their users. These systems may consider user, item provider, and system

requirements simultaneously. With the inclusion of possibly clashing considerations, there

is a growing focus on solving multiple-objective recommender system (MORS) problems as

efficiently as possible. The constrained optimization models can be applied to MORS prob-

lems and obtain the optimal solution that can beat myopic heuristics approaches. In this

dissertation, we investigate the applications of constrained optimization models to tackle

MORS problems.

In Chapter 1, we give an introduction and overview of the application of constrained

optimization models to RS problems.

In Chapter 2, we unify different considerations into a constrained optimization framework

where different sets of metrics can be improved by simply using different sets of constraints.

Rather than focusing solely on user needs, we tackle some of the most frequently investigated

considerations in RSs, such as novelty, diversity, calibration, and fairness of the recommenda-

tions. We offer models that can handle multiple considerations simultaneously. Our scalable

4

constrained optimization model tackling the calibration problem is the first in the RS liter-

ature. Also, our models are simple and easy to generalize with other considerations. Our

experimental results show that the optimization models we offer can outperform state-of-

the-art heuristics. We illustrate reasons why the heuristics might struggle to find the optimal

solution using a small example.

In Chapter 3, we offer a novel constrained optimization model that combines the RS ideas

with inventory management. We consider both the preferences of the customers and retailer

considerations while direct customer demand by item recommendations. These recommen-

dations will consider perishability and inventory in an online retailing setting, in which we

aim to minimize the number of wasted and stockout products. Our model can solve prob-

lems with stochastic supply and demand, where the demand, perishability, and inventory

are considered not deterministic. We reformulate this model to be able to handle large data

and stochasticity. We also note that creating recommendation lists only considering user

needs or retailer needs can be counterproductive to the quality of the solution. If the user

needs are the exclusive focus, this can lead to stockouts and a large number of perished

items. Similarly, if the retailer’s needs are the exclusive focus, this can lead to low utility

recommendations to the users. Our model tackles this MORS problem by reducing waste

by recommending soon-to-perish items, reducing stockouts by considering inventory, and

making retailer and user-relevant recommendations simultaneously. We propose heuristic

methods to improve the scalability issue the constrained optimization models may face. We

compare the performance of these heuristics and note that the optimal solution quality does

not decrease significantly.

In Chapter 4, we focus on ways to alleviate feasibility and scalability issues that can arise

using constrained optimization models in MORS problems. We propose a Dantzig-Wolfe

5

(DW) decomposition-inspired optimization model that overcomes these limitations. We de-

fine within-list and across-list constraints, and how our model handles scalability considering

these constraints. We compare our model with a recently proposed constrained optimization

model; and state-of-the-art heuristics that specialize in one objective at a time using the

MovieLens 20M dataset. We claim that our model can scale, find near-optimal solutions,

and solve MORS problems with the flexibility to incorporate different considerations.

We discuss the future research possibilities of applying constrained optimization models

to RS problems in Chapter 5.

6

Acknowledgments

I would like to express my sincere gratitude to my advisor Prof. Edward C. Malthouse

for his guidance, understanding, kindness, and support. I have improved both as a scholar

and as a person under his supervision.

I am extremely grateful to my other committee members Prof. David Morton and Dr.

Anna-Lena Sachs for their valuable feedback and support throughout my Ph.D. journey.

I would like to extend my thanks to Prof. Bill White and Prof. Marita Poll for their

support and dedication. I learned a great deal from our discussions.

I am indebted to my parents, Sevim and Suat Seymen. This work would not be possible

without their sacrifices. I am grateful to my spouse for always supporting me and being

accommodating. I am incredibly lucky to have them.

I appreciate that the Northwestern IEMS staff and my Ph.D. colleagues were always there

with help, advice, and friendship. Similarly, I am glad to have our cats, Alfie and Maggie.

They are always friendly and fluffy and made working from home an enjoyable experience.

Thank you, Mariana Escallon-Barrios, Melody Qiming Xuan, and Qimeng Yu for making

my time during Ph.D. fun and memorable. I am also grateful to everyone that joined

and/or helped me throughout this journey: Ross Gregory, Handan Kilincli, Shima Dezfulian,

Stephen Pedersen, and Agnes Kaminski. It has been an amazing journey with everyone.

7

Table of Contents

ABSTRACT 3

Acknowledgments 6

List of Tables 9

List of Figures 10

Chapter 1. Introduction 12

1.1. Overview 13

1.2. Motivation 15

Chapter 2. Constrained Optimization Models Applied to Recommender System

Problems 18

2.1. A Unified Optimization Toolbox for Solving Popularity Bias, Fairness, and

Diversity in Recommender Systems 19

2.2. A Constrained Optimization Approach for Calibrated Recommendations 36

Chapter 3. Making Smart Recommendations for Perishable and Stockout Products 50

3.1. Introduction 51

3.2. Related Works 54

3.3. Problem Definition and Formulation 56

3.4. Computational Study 65

8

3.5. Future Research & Conclusion 78

Chapter 4. A Large-scale Constrained Optimization Model for Multi-Objective

Recommender Systems 81

4.1. Introduction 82

4.2. Literature Review 84

4.3. Methodology 88

4.4. Benchmarks 95

4.5. Computational Study 99

4.6. Discussion & Future Direction 112

Chapter 5. Future Work 114

5.1. Publications 116

References 118

9

List of Tables

2.1 Results of Comb-Opt with different parameter choices 33

2.2 Toy example for a single user 40

4.1 Literature review of RS considerations categorized into within- and across-list

constraints. 88

4.2 Sample run configurations 101

10

List of Figures

2.1 Comparison of xQuAD with Pop-Opt ... 30

2.2 Fairness Results without upper bounds... 31

2.3 Fairness Results with upper bounds .. 31

2.4 Diversity Results.. 32

2.5 Precision value... 45

2.6 Recall value ... 45

2.7 KL-divergence value .. 46

2.8 Total Variation value ... 46

2.9 Fairness Z - value... 47

2.10 Popularity value... 47

2.11 Aggregate Diversity value.. 48

2.12 Heuristic solution for λ = 0.8 .. 48

3.1 Benchmark comparison of user perspective objective values 70

3.2 Benchmark comparison of retailer perspective objective values 70

3.3 Benchmark comparison of user rating objective values 71

3.4 Benchmark comparison of retailer sales objective values................................... 71

3.5 Benchmark comparison of stockout objective values ... 72

3.6 Benchmark comparison of perishability objective values................................... 72

3.7 Objective value comparison for N = {100, 500} .. 76

11

3.8 Objective value comparison of using scenarios .. 77

3.9 Objective value changes with the number of scenarios in (a), Objective values

for different perspectives with different weights in (b), in setting HH............... 78

4.2 Popularity values for different popularity penalty values 102

4.3 Utility values for different popularity penalty values... 102

4.4 Fairness values for different popularity penalty values 102

4.5 Diversity for different diversity incentive values .. 103

4.6 Popularity for different popularity penalty values ... 103

4.7 Utility values for different diversity incentive values ... 104

4.8 Utility values for different popularity penalty values... 104

4.9 Fairness values for different diversity incentive values....................................... 105

4.10 Fairness values for different popularity penalty values 105

4.11 Diversity-Utility Graph ... 108

4.12 Popularity metric evaluation of DW and Diversity models 108

4.13 Z metric evaluation of DW and Diversity models ... 108

4.15 Popularity-Utility Graph ... 109

4.16 Diversity metric evaluation of DW and Popularity models 109

4.17 Z metric evaluation of DW and Popularity models... 109

4.19 Fairness-Utility Graph ... 111

4.20 Popularity metric evaluation of DW and Fairness models................................. 111

4.21 Diversity metric evaluation of DW and Fairness models 111

12

CHAPTER 1

Introduction

13

1.1. Overview

In the most general terms, recommender systems (RSs) are information filtering systems

that recommend an item or items to users. Initially, the preference of the user was the main

criterion for these recommendations [Melville and Sindhwani, 2017]. In recent years, this

idea is challenged by including factors other than the needs of the users, such as the needs

of the item providers, the platform itself, or any kind of stakeholders in the recommendation

process. With the addition of other considerations, the problems became bigger or more

complex, requiring trade-offs between multiple objectives. In the literature, these problems

can be tackled by greedy approaches that recommend one item at a time optimizing objective

functions myopically [Patro et al., 2020, Steck, 2018, 2011, Herlocker et al., 2004, Abdollah-

pouri et al., 2019b]. Our work focuses on offering constrained optimization models that aim

to find optimal or near-optimal solutions by creating recommendation lists holistically.

RSs are ingrained in our daily lives. We use these systems while deciding which song

to listen to, which movie to watch, and which product to purchase from a retailer [Harper

and Konstan, 2015, Chen et al., 2020]. In all of these examples, there is a mechanism trying

to come up with the best item recommendation for the users. There can be millions or

even billions of possible combinations of item-user pairs. The quality of these combinations

depends on the needs of the users, the providers of the items, and the platform itself. The

fairness of recommendations is important so that each provider will be represented similarly

[Patro et al., 2020]. Some works try to alleviate the problem of popular items getting an unfair

advantage by the algorithms [Abdollahpouri et al., 2019a], and others try to “diversify" the

items recommended to each user so the user will be happier with the wide range of selections

14

available to them [Herlocker et al., 2004]. We propose constrained optimization models to

tackle these issues in RS settings.

Constrained optimization models are not frequently explored in the context of RS. The

constrained mixed-integer programs (MIP) are utilized even less for solving RS problems.

We specifically focus on MIP and find items that should be recommended to the users in

the system considering a variety of metrics. Sürer et al. [2018] work with a constrained

MIP model and consider the fairness of stakeholders. Malthouse et al. [2019b] create an

optimization model that chooses the relevant advertisements that should be recommended

to the users. Some research considers models that use continuous decision variables [Agarwal

et al., 2011, 2012, Jambor and Wang, 2010]. These decision variables usually indicate the

probability of recommending an item to a user. They usually function similarly to the

continuous relaxation of MIP, and they need to be rounded to the closest integer values.

Therefore, coming up with k item lists using continuous decision variables requires additional

tuning because continuous values need to be converted to integers. By utilizing MIP ideas, we

can directly create a recommendation list with k items for each user. There are other works

solving optimization problems, such as a graph optimization approach that is suggested to

solve the diversity problem [Antikacioglu and Ravi, 2017]. Although not in the RS setting,

there are MIP model suggestions in the literature solving problems retailers face [Nguyen

and Chen, 2019, 2022]. Similarly, one work proposes an MIP model that is solved by using

a heuristic approach [Chen et al., 2020] in a retailer setting. Overall, we investigate the

possibilities and advantages of applying optimization modeling ideas to the RS problems.

Next, we define our motivation, discuss the results of our work so far, and outline the

future research opportunities we aim to explore.

15

1.2. Motivation

The motivation behind this dissertation is to investigate the application of constrained

optimization models in the field of RSs. Our work discusses the application of optimization

models in solving MORS and Multistakeholder problems where the solution needs to tackle

multiple objective functions simultaneously.

In Chapter 2, we propose an optimization toolbox that can combine and tackle multiple

objective functions simultaneously. We offer distinct constrained optimization models that

share the same objective function and solve various MORS sub-problems. These models can

be combined or modified by the system designer according to the problem at hand. We tackle

problems that are frequently investigated in the literature, such as popularity bias, fairness,

and diversity issues. The constrained optimization model proposed can be solved optimally

for thousands of items and users. We show that our approach can perform more highly than

state-of-the-art heuristics that focus on a single metric using the MovieLens dataset 1M.

Feasibility and scalability are identified as possible drawbacks of using constrained optimiza-

tion models in an RS setting. We introduce heuristics that can be applied to alleviate the

scalability issue, without significantly deteriorating the solution quality.

Next, we propose an optimization model to solve the calibration problem. Firstly, ours

is the first optimization programming model that solves the calibration problem in RS.

Secondly, we demonstrate the advantages of solving a problem holistically rather than my-

opically. The shortcomings of the state-of-the-art heuristic approach are illustrated with an

example. Then, we also prove the success of our optimization model in the results section.

Thirdly, this chapter discusses when the optimization programming techniques are the most

successful, where the problem is scalable. When the model can be solved for each user or

16

item separately, the problems can be solved with millions of users and items, which is the

case in this chapter. Therefore, we discover a novel topic and apply optimization models to

solve the problems common in this area.

Our motivation in Chapter 2 is to offer constrained optimization models that are efficient

and easy-to-use to solve RS problems that are frequently observed in the literature. We

investigate the RS literature, and find a gap that could be filled by constrained optimization

models. We create a generalizable and easy-to-modify toolbox to show that RS problems

can be solved using optimization models in a highly efficient way. The MovieLens dataset

is used to show that the optimization problem can find solutions that beat state-of-the-art

approaches. We are the first to come up with such a toolbox that is capable of solving

different metrics, with mixing and matching, under one model.

In Chapter 3, we propose an optimization model for solving perishability issues in an

online retail setting. In this section, a subset of the items are deemed soon-to-perish and

will be unfit for consumption if not sold. We use RS to change the demands of the users

by recommending items that are soon-to-perish to avoid losses for the retailer. Addition-

ally, we alleviate the sustainability issues emerging from items perishing. We focus on the

effect of perishability on the environment and consider our work as a realistic solution. We

include uncertainty which results in a multitude of options to recommend items to users. It

is not known what would be the demand of the users, the number of perishable items, or

the amount of inventory. Because of this uncertainty, stockouts become a problem due to

over-recommendation of some items. This results in users not getting the items they desire.

We create different scenarios to solve the uncertainty using a sample average approximation

method. The model incorporating uncertainty requires more memory relative to the deter-

ministic case with only one scenario. A new optimization model and a heuristic approach

17

are suggested to deal with the scalability problem. We investigate the solution quality of the

optimization model, heuristics, and benchmarks.

In Chapter 4, we propose a constrained optimization model that improves the scalability

issue. The constrained optimization models can suffer from scalability with larger datasets,

and the problem can be exacerbated when tackling multiple objective functions simultane-

ously, as in MORS problems. Our model uses a large-scale Dantzig-Wolfe algorithm and can

scale well. We define within- and cross-list constraints, and note that cross-list constraints

are the primary reason scalability is a problem in constrained optimization models. We show

how our model tackles cross-list constraints. We compare the solution quality of our model

with state-of-the-art heuristics and an optimization model. We offer a heuristic approach

that removes a significant number of decision variables, while not reducing the objective

function value.

In Chapter 5, we outline three significant future research directions. Some questions are

raised during the results we have produced in the earlier chapters, and we want to offer

answers to those questions. Briefly, we want to implement our models in an online setting,

where we receive feedback from the users in real time. Secondly, we worked with a variety

of metrics during our work. It is unclear how changes in one metric affect the other metrics,

and in what ways the dataset properties play a role in these changes. Thirdly, we want to

further discuss the scalability problem, and propose more specialized large-scale optimization

models to overcome MORS problems.

18

CHAPTER 2

Constrained Optimization Models Applied to Recommender

System Problems

19

2.1. A Unified Optimization Toolbox for Solving Popularity Bias, Fairness, and

Diversity in Recommender Systems

.

2.1.1. Introduction

The initial focus of recommender systems (RS) was on estimating users’ preferences accu-

rately, where measures including Root Mean Squared Error (RMSE), precision and recall

were the primary objectives. Researchers later recognized the importance of other metrics

such as diversity and novelty [Herlocker et al., 2004], fairness between multiple stakeholders

[Abdollahpouri et al., 2020] and so on. Various types of criteria have been recognized as

important considerations for the success of a RS and for each of them numerous algorithms

have been proposed. For example, for improving the fairness of the RS from the providers’

perspective, algorithms such as FairRec [Patro et al., 2020] (based on fair resource allocation)

and FairMatch [Mansoury et al., 2020] (based on a graph-based maximum flow approach),

and PFAR [Liu and Burke, 2018] (based on the weighted sum of relevance and fair exposure

using the Maximum Marginal Relevance approach) are proposed, each offering a different

approach for solving the same problem. Similarly, for mitigating the popularity bias problem

Kamishima et al. [2014] uses the concept of neutrality for controlling this bias, Abdollah-

pouri et al. [2019a] mitigates popularity bias via ensuring a balanced exposure of two groups

of popular and less popular items in each recommendation list, Vargas and Castells [2014]

swaps the role of items and users and change the recommendation process as if the goal is to

recommend users to each item, and many others. For improving the diversity of the recom-

mendations within each list, Zhou et al. [2010] proposes a “heat-spreading" algorithm that

20

can be coupled in a highly efficient hybrid with a diffusion-based recommendation method

[Zhou et al., 2007], Eskandanian et al. [2017] performs collaborative filtering independently

on different segments of users based on the degree of diversity in their profiles, and Di Noia

et al. [2017] uses a post-processing re-ranking technique to enhance the diversity of an initial

recommendation list, and numerous other techniques.

One issue is that all the mentioned approaches for tackling different non-accuracy prob-

lems are implemented in isolation and cannot be easily combined to improve two or more

aspects at the same time. We address this limitation by developing a constrained optimiza-

tion toolkit that addresses popularity, fairness, and diversity metrics. Our framework is easy

to implement and incorporate other metrics. We believe unifying all different non-accuracy

related problems in RS under one umbrella can greatly benefit the research community and

therefore we study how to create a list of k items for each user, assuming the preferences of

each user for each item have already been estimated using some existing RS. We show how to

write various considerations (e.g., diversity, popularity, fairness) as an optimization problem,

and show how it can be solved as a post-processing step. We show that our toolkit achieves

a comparable performance to the best-in-class algorithms for each specific task, but our

toolkit is also able to improve more than one non-accuracy aspect of the recommendations

by combining different constraints designed for separate aspects.

2.1.2. The Constrained Optimization Toolbox

Optimization models are applied to RS in different forms. Rodriguez et al. [2012] formulates

recommendations as a constrained optimization problem and proposes the TalentMatch al-

gorithm that matches job candidates to job posts. Another early paper using optimization

with RS is Ribeiro et al. [2012], which searches a Pareto frontier balancing accuracy, diversity

21

and novelty. Jugovac et al. [2017] proposes a multi-objective, post-processing model, reviews

the literature on multi-objective RS, and tests different heuristic solutions. Sürer et al. [2018]

proposes integer programming models to solve RS by recommending items from stakeholders

(providers) in the system in a sufficient amount for fairness. Antikacioglu and Ravi [2017]

use a graph optimization approach to increase diversity of the recommendation lists. Simi-

larly, in [Adomavicius and Kwon, 2011b], aggregate diversity is increased by graph-theoretic

approach. Gogna and Majumdar [2017] use regularization terms in the objective function

to increase the diversity and the novelty of the solution. Other multi-objective optimiza-

tion models [Agarwal et al., 2011, 2012] are implemented to solve content recommendation

problems. Works [Agarwal et al., 2011, 2012] consider an objective function that maximizes

the probability of recommendations using continuous decision variables. In another line of

work, Jambor and Wang [2010] propose a constrained linear optimization model for increas-

ing the long-tail item recommendations. Most of these approaches have been tailored to

solve particular RS problems, while we aim at unifying different non-accuracy aspects of the

recommendations into a simple and flexible optimization approach.

This section describes our approach to solve different problems such as popularity bias,

provider fairness, and diversity in RS using constrained optimization. For all problems, our

technique maximizes the same objective function: the average ratings across all user and

item pairs in the recommendations (i.e., the relevance of the recommendations). Different

problems are addressed by adding different types of constraints. Thus, all problems have a

similar structure, making it very easy to use and understand.

In the literature, some works [Gao and Shah, 2020, Díez et al., 2019] have recently

investigated problems including more than one non-accuracy metric. However, it is not easy

to modify these models to remove some metrics and include others. Most of the time, these

22

algorithms need significant changes to be able to incorporate different metrics other than

ones that are already proposed. We suggest a framework that alleviates this problem, where

different metrics can be easily mixed and matched. In other words, our approach is inspired

by how one can create a different oatmeal each morning by simply using different toppings

to the base oats: the relevance objective is the base and different types of constraints are

the toppings. In the following subsections, we discuss the our optimization model in more

details.

2.1.2.1. Base Top-k Model. We now formalize the toolkit, beginning with notation. Let

U denote the set of users and I be the set of items in the system. Suppose k items are to

be recommended to each user. We assume that the ratings have been predicted with some

existing algorithm, with r̂iu representing the predicted rating for user u and item i. Decision

variables xiu indicate which items are recommended, with xiu = 1 if item i is recommended

to user u, and 0 otherwise.

Our base model has an objective to maximize the average predicted ratings of all recom-

mended items, subject to the constraint that each user u receives k recommendations. We

can write this as an optimization problem as follows:

max
x

1

k|U |
∑
i∈I

∑
u∈U

r̂iuxiu(2.1)

subject to:
∑
i∈I

xiu = k (∀u ∈ U)(2.2)

xiu ∈ {0, 1} (∀i ∈ I, u ∈ U)(2.3)

Note that r̂iuxiu equals r̂iu for recommended items and 0 otherwise, and therefore their sum

divided by the number of recommendations made by the system (k|U |) gives the average

23

rating. Constraint (2.2) forces the model to recommend k items to every user u. Constraint

(2.3) forces decision variables xiu to be binary (an item is either recommended or not).

This problem can be solved efficiently by sorting items for each user in descending order

of predicted ratings, and then selecting the top k items for every user. Both the objective

function and constraints are used in the upcoming models. Therefore, we can consider this

Top-k model as the base, and add constraints according to the needs of the system.

2.1.2.2. Popularity Model. Many RS have a well-known bias to recommend popular

items frequently and not give enough exposure to the majority of other, less popular, items

[Abdollahpouri et al., 2019a]. This bias can be avoided with our popularity optimization

model (Pop-Opt), which extends the base by adding a constraint to limit the aggregate

popularity of all recommended items to a given user. We implement this idea by putting

an upper bound (α) on the total popularity of the recommended items. We have the same

objective function in (2.1) subject to constraints (2.2), (2.3), and

(2.4)
∑
i∈I

∑
u∈U

xiuωi ≤ α,

where ωi measures the popularity of item i as the ratio of the number of ratings item i

received to the total number of ratings of all items in the system. Constraint (2.4) sums

the popularity values of the recommended items and forces the sum to be at most α, a

tuning parameter that can be adjusted based on the needs of the system. At one extreme,

if α is very large then the selected items can be popular without exceeding threshold α and

the system can focus on maximizing the average ratings. As we decrease α, the system is

forced to make trade-offs and recommend some items with equal or lower ratings that are

also less popular (more novelty). Choosing values for α is very intuitive. If we somewhat

24

care about popularity, the average of ωi times k|U | can be used as a starting α value.

Select a smaller value of α to offer less popular items. Constraint (2.4) is called a knapsack

constraint in the literature [Martello and Toth, 1987], and one big advantage of using this

simple structure is that off-the-shelf optimization programs such as Gurobi are very efficient

in solving this common structure. We evaluate the model with the average recommended

popularity over all lists (ARP), and aggregate diversity (Agg. Div.), which is the number of

unique recommended items [Adomavicius and Kwon, 2011a]:

ARP =
1

|U |
∑
u∈U

∑
i∈Lu

ωi

|Lu|
(2.5)

Agg. Div. =
1

|I|

∣∣∣∣∣⋃
u∈U

Lu

∣∣∣∣∣(2.6)

where Lu is the set of all items recommended to user u. Smaller values of ARP are desir-

able because they indicate lower popularity (more novelty). Higher values of Agg. Div is

desirable because it shows the algorithm has covered a larger number of unique items in its

recommendations.

2.1.2.3. Provider Fairness Model. In multi-stakeholder contexts such as a retail plat-

form, provider fairness ensures that different providers (e.g., vendors) receive some minimum

threshold number of recommendations. We assume that items are partitioned into groups.

For example, items on a retail platform could be grouped by vendor or news articles could

be grouped by publisher (e.g., Fox News, MSNBC, CNN, etc.). Let Gs be the set of item

indices in group s ∈ S, where S is the set of all groups. Similar to Pop-Opt, provider fairness

can be expressed as a constraint. Our provider fairness optimization (Fair-Opt) model uses

the same objective function (2.1) as the base, subject to constraints (2.2), (2.3), and a new

25

one that imposes a lower and upper bound (both can be tuned by the system designer) on

the number of times items recommended from each group:

(2.7) ψsCs ≥
∑
i∈Gs

∑
u∈U

xiu ≥ γsCs (∀s ∈ S)

where Cs =
|Gs|
|I|

· k|U | is the fraction of items in group s times the total number of items

recommended. Tuning parameters γs and ψs control the lower and upper bounds for the

number of times items recommended from group s.

The literature on fairness usually only considers the lower bound [Sürer et al., 2018, Patro

et al., 2020]. Without upper bounds, however, some items can be offered significantly more

frequently than the rest, which creates an unfair distribution of recommendations across

items. We choose upper bound parameter ψsCs as ⌊1 + (2− γs)Cs⌋, which depends on γs.

Different upper bounds can be selected according to the needs of the system.

We now discuss the selection of the number of groups. On one extreme, there could be

one group with |G1| = |I| and C1 = k|U |, which is the total items recommended, and the

constraint would have no effect (for reasonable values of ϕ1 and γ1). The other extreme is

where each item is a separate group, i.e., every provider has one item in the system. This

case is called the item fairness problem, where all γs = γ, ∀s.

We measure fairness with Z (Inequality in Producer Exposures) [Patro et al., 2020],

which is defined as follows:

(2.8) Z = −
∑
s∈S

(
Rs

|U |k

)
log|S|

(
Rs

|U |k

)
,

26

where Rs =
∑

u∈U 1(s ∈ Lu) is the total number of recommendations from group s. This

metric is 1 when every provider gets the same number of recommendations, and decreases

as the disparity between providers increases.

2.1.2.4. Diversity Model. Another consideration in creating top-k lists is to have diversity

in that the recommended items are not highly similar to each other [Ziegler et al., 2005]. Our

approach is to put items in distinct groups (based on their topic, genre, etc.), and constrain

the number of distinct groups represented in each top-k list to be at least w, which is another

tuning parameter under the control of the system designer. Our diversity optimization model

(Div-Opt) is the same as the base model, i.e., objective (2.1) subject to (2.2) and (2.3), with

additional constraints:

∑
i∈Gs

xiu ≥ ysu (∀s ∈ S, u ∈ U)(2.9)

∑
s∈S

ysu ≥ w (∀u ∈ U)(2.10)

ysu ∈ {0, 1} (∀s ∈ S, u ∈ U)(2.11)

We introduce a new decision variable ysu that indicates whether any items from group s are

recommended to user u. Constraint (2.11) guarantees that the new decision variable ysu only

takes values 0 or 1. Constraint (2.9) ensures that at least one recommendation is made from

category s for user u, ysu can get value of 1. Otherwise, it is always fixed to 0. Constraint

(2.10) ensures that the top-k list for each user u includes at least w distinct categories.

Note that in the Div-Opt formulation every item belongs to exactly one group, which we

call the binarized version. This problem can be solved in an efficient manner through sorting

[Malthouse et al., 2019b, Bradley and Smyth, 2001]. One solution is to sort through every

27

category separately according to the estimated ratings of the users, and recommend at least

w items from separate categories. Next, we recommend items according to highest ratings

until every user has exactly k items in their lists. We need Div-Opt when we mix and match

different considerations to optimize combinations of metrics at the same time.

Our metric of choice for the diversity is ILS (Intra-list similarity) [Ziegler et al., 2005],

defined as follows:

(2.12) ILS =
1

|U |
∑
u∈U

∑
i∈Lu

∑
i′∈Lu
i′ ̸=i

d(i, i′)

|Lu|(|Lu| − 1)
,

where Lu is the recommendation list of user u, and d(i, i′) is the distance between two items

in the same list. We slightly modify the metric in [Ziegler et al., 2005], to put our ILS values

between 0 and 1, where low values are desirable.

2.1.2.5. Combining different objectives. We combine all the different parts of the op-

timization models from the previous subsections. Unlike existing approaches, the beauty of

our toolbox for solving different non-accuracy aspects of RS is that all constraints introduced

so far can be included together. Our combined model (Comb-Opt) has the same objective

function as in (2.1) subject to constraints (2.2), (2.3), (2.4), (2.7), (2.9), (2.10), and (2.11).

Our models use different ideas from the constrained optimization literature, including

upper and lower bounding in Fair-Opt, weighted sums in Pop-Opt, and auxiliary variables in

Div-Opt. Using these ideas, readers can include their own metrics with small modifications.

Our framework can therefore accommodate different metrics if they can be modeled as

constraints. Similarly, the metrics we have investigated can be modeled differently. Our

main consideration is to use the same objective function for all the models and keep the

constraints as simple as possible.

28

We now discuss some shortcomings of the combined model and provide potential ways

of approaching them. First, some values of parameters w, α, γ, ψ may be infeasible, which

means that there does not exist any solution satisfying all the constraints at the same time.

One solution is to grid-search different parameters. Another solution is to penalize these

constraints on the objective function whenever they are not satisfied. Second, creating

decision variables for large models can require a lot of memory. In that case, some sort of

approximation is required to make the models smaller. One way to do this is to fix some

of the decision variables to 0 or 1 according to their estimated utilities before starting the

optimization. Some item-user pairs with very low predicted ratings can be ignored at the

start of the process, so they basically require no memory. To keep the models and the

discussion compact, we leave these for future work.

2.1.3. Results

In this section, we compare our optimization model for solving the non-accuracy aspects

of RS (popularity bias, diversity, and provider fairness) with various other models proposed

specifically to solve each individual problem. We use the MovieLens 1M data set [Harper and

Konstan, 2015] since it contains the genre of each movie, which is needed for the diversity

problem. If a movie has more than one genre then we randomly assign one out of listed genres

and keep the assignments consistent throughout. All the problems are solved using a laptop

with Intel(R) Core (TM) i7-8750H CPU @ 2.20GHz 2.21 GHz, processor information, and

with 16.0 GB of installed RAM. We use the Gurobi software [Gurobi Optimization, LLC,

2021] with optimization gap 10−4 throughout. Gurobi uses the branch & bound (B&B)

algorithm, and it can have exponential time complexity [Morrison et al., 2016] in worst-case

29

scenario. However, Gurobi includes heuristics on top of B&B, and in practice the solution

time performance is significantly better than exponential.

We apply the Singular Value Decomposition (SVD) [Koren et al., 2009] method im-

plemented in the Python Surprise package [Hug, 2017] to estimate ratings for every user-

item pair, although any RS algorithm could be used. We solve the optimization problems

as a post-processing step using the predicted rating matrix. All our optimization models

and benchmarks are solved using the same predicted ratings matrix. We set the size of

the recommendation list given to each user to k = 10. Our code is available at GitHub:

https://github.com/sseymen-tech/unified_toolbox.

2.1.3.1. Popularity Bias. We compare our Pop-Opt technique with the approach pro-

posed in [Abdollahpouri et al., 2019a] (we label it xQuAD), which is one of the most efficient

approaches proposed in recent years for controlling popularity bias. Figure 2.1 shows the

average popularity of the recommendations (ARP) and the aggregate diversity for Pop-Opt

and xQuAD for different values of α. From left to right, α changes from 0.03 to 0.16 with

increments of 0.01. Larger α values give the same result because Constraint (2.4) is satisfied

trivially. We can see that, for larger values of α, the Pop-Opt achieves a comparable average

popularity to the xQuAD model with even slightly better average rating. Regarding aggre-

gate diversity, we also see that our model outperforms xQuAD for larger values of α which,

as we mentioned before, is a tunable parameter. Thus, Pop-Opt can achieve a comparable

performance with the state-of-the-art technique to mitigate popularity bias.

2.1.3.2. Provider Fairness. For provider fairness, we compare our Fair-Opt with FairRec

[Patro et al., 2020], which is specifically designed for this task. Figures 2.2 and 2.3 show the

fairness metric Z and average rating for both techniques. From left to right the γ parameters

used in both algorithms are (0.99, 0.95, 0.9, 0.8, 0.5, 0.3, 0). We observe that for both relaxed

https://github.com/sseymen-tech/unified_toolbox

30

4.6
2

4.6
5

4.6
8

4.7
1

Avg. Rating

0.04

0.08

0.12

0.16

A
R

P

Model
Pop-Opt xQuAD Top-k

ARP metric comparison

4.6
2

4.6
5

4.6
8

4.7
1

Avg. Rating

0.29

0.30

0.31

A
g
g
.

D
iv

er
si

ty

Model
Pop-Opt xQuAD Top-k

Agg. Diversity metric comparison

Figure 2.1. Comparison of xQuAD with Pop-Opt

and strict upper bound choices, Fair-Opt beats FairRec in both average rating and fairness

metrics. When we compare Fair-Opt results with and without upper bounds in Figures 2.2

and 2.3, we notice that upper bounds improve fairness value Z without reducing the average

rating of the recommendations.

2.1.3.3. Diversity. We compare our diversity model (Div-Opt) with one of the most com-

mon ways of improving diversity in recommendation lists that uses a simple weighted sum

of relevance and Intra List Similarity (ILS) [Bradley and Smyth, 2001] (It is denoted by

WS in the plot). In Figure 2.4, from left to right Div-Opt parameter w takes values

31

4.1 4.3 4.5 4.7

Avg. Rating

0.7
0.8
0.9

1

Z

Model
Fair-Opt FairRec Top-k

Figure 2.2. Fairness Results
without upper bounds

3.9 4.1 4.3 4.5 4.7

Avg. Rating

0.7
0.8
0.9

1

Z

Model
Fair-Opt FairRec Top-k

Figure 2.3. Fairness Results
with upper bounds

(10, 9, 8, 7, 6, 5, 0). From 5 to 0 solutions are the same. for w = 10, we achieve ILS=0,

because every user is recommended one item from every distinct category. Thus, Div-Opt

can increase the number of distinct recommended genres to every user without a significant

decrease in average rating. Div-Opt has achieved a comparable performance to the WS

algorithm when w = (9, 8, 7, 6, 5, 0) yet outperforms it for w = 10 as its ILS is close to zero

but has a higher average rating.

32

4.5
5

4.6
0

4.6
5

4.7
0

Avg. Rating

0
0.03
0.06
0.09
0.12

ILS
Model

Div-Opt WS Top-k

Figure 2.4. Diversity Results

2.1.3.4. Combined Model Results. Table 2.1 exhibits the results of our Comb-Opt

model. Algorithms that optimize for a specific metric should perform well on that met-

ric, but Comb-Opt can achieve great performance on ILS, Z and ARP without significantly

lowering the average rating value. The results for xQuAD with lowest and highest popu-

larity metric ARP (highest and lowest average rating respectively) are reported. Similarly,

the results for WS for lowest and highest ILS are reported. For the item fairness metric, we

remove upper bounds from (no ψ parameter) both FairRec and Comb-Opt, except with the

solutions with superscript ∗, which represent the solutions with upper bounds.

33

Model w γ α ILS Z ARP Avg. Rating Agg. Div.

Comb-Opt 1 0.9 0.09 0.142 0.969 0.067 4.128 1.0
Comb-Opt∗ 6 0.9 0.055 0.129 0.999 0.053 4.055 1.0
Comb-Opt 7 0.1 0.085 0.080 0.668 0.085 4.672 1.0
Comb-Opt 7 0.5 0.08 0.089 0.843 0.079 4.421 1.0
Comb-Opt 7 0.1 0.08 0.080 0.668 0.080 4.669 1.0
Comb-Opt 7 0.5 0.05 0.092 0.838 0.050 4.393 1.0
Comb-Opt 7 0.99 0.05 0.104 0.994 0.050 4.017 1.0
Comb-Opt 8 0.8 0.1 0.058 0.934 0.076 4.206 1.0
Comb-Opt 9 0.1 0.08 0.022 0.658 0.080 4.653 1.0

Top-k - - - 0.118 0.630 0.155 4.707 0.282
FairRec - 0.8 - 0.143 0.946 0.077 4.133 1.0
FairRec - 0.99 - 0.147 0.998 0.054 3.945 1.0
FairRec∗ - 0.99 - 0.147 0.999 0.052 3.936 1.0
xQuAD - - - 0.103 0.629 0.089 4.678 0.303
xQuAD - - - 0.118 0.634 0.147 4.707 0.291

WS - - - 0 0.698 0.118 4.536 0.351
WS - - - 0.118 0.634 0.147 4.707 0.291

Table 2.1. Results of Comb-Opt with different parameter choices

Note that in Table 2.1 Comb-Opt∗(w = 6, γ = 0.9, α = 0.055) beats all FairRec results

in all metrics, except ARP of FairRec∗. Comb-Opt(w = 7, γ = 0.1, α = 0.08) beats both

xQuAD solutions in all metrics except average rating. Comb-Opt loses a bit of average rating

but improves all the other metrics.

Recall that high Z, Agg. Div., and ARP values, and low ARP and ILS values are desired.

In our experiments with Comb-Opt, we see that all metrics can be improved simultaneously.

If one does not care about a certain metric, the constraints for that metric can be ignored in

the combined model. Parameters can overwrite each other, for example in Comb-Opt with

w = 1, γ = 0.9 and α = 0.09, we have a relatively low ARP = 0.067 when our bound is 0.09.

This happens because when γ goes to 1, every item is recommended proportionally close to

each other, which gives non-popular items to be recommended as frequently as popular ones.

Therefore, the α = 0.09 bound is trivially satisfied by the fairness constraints. However, this

34

is normal since we are dealing with different problems at the same time, and it is expected

that they have some effect on each other.

Parameter choice plays a significant role, and while optimizing more than one metric,

grid-search of parameters are suggested to see the behavior of the data. Comb-Opt with

parameters w = 7, γ = 0.5, and α = 0.08, for example, seem to find a good balance of

all metrics. If some metrics are not important in the given problem, their corresponding

constraints can be discarded. For example, if diversity is not important, Comb-Opt with

parameters w = 1, γ = 0.9, and α = 0.09 finds a solution with good fairness Z and popularity

ARP metrics at the same time. Overall, parameter choice can be made according to the

needs of the system.

Overall, Comb-Opt tends to improve all the metrics at the same time. If the RS goal

is to alleviate popularity bias, fairness, and diversity metrics, we suggest adding all the

constraints proposed in this chapter. However, if one does not care about fairness, then it

makes sense to remove the fairness constraints from the Comb-Opt. Then we immediately

have a solution that can alleviate popularity bias and diversity metrics. On the other hand,

the constraints proposed in this chapter can be removed and new ones can be added easily,

according to the needs of the specific RS.

2.1.4. Conclusions and discussion

We propose an optimization toolbox for solving different types of non-accuracy problems.

This method focuses on finding the optimal solution of the system given different constraints,

which aim to solve various non-accuracy problems such as popularity bias, provider fairness,

and diversity. We show that, all these different metrics can be considered at the same time

35

while generating recommendations, and they can even beat algorithms specialized for the

specific problems.

One downside of our model is its memory requirement. Therefore, for larger problems,

scaling of the models is an issue. There are possible solutions to these problems, such as

focusing on sub-optimal solutions which are close to optimal, fixing values to some decision

variables before starting to optimization and so on. We leave the problem of finding good

approximations of Comb-Opt for future work.

Our toolbox can be applied to many other problems. For example, retailers concerned

with stock-outs can add upper bounds for how often an item is offered. Likewise, a platform

with perishable items (e.g., fresh produce or meat, hotel rooms, airline seats) could add a

lower bound so they are offered more frequently. In situations with sponsored recommenda-

tions, the manufacturer of the item may have a maximum advertising budget that it is willing

to spend, which could be handled by adding upper bounds. Seymen et al. [2021a] applies

a similar approach to the top-k list calibration problem. All these individual problems and

various combinations of them and can easily be solved simply by modifying the constraints

or adding new ones. Thus, post-processing optimization models offer a flexible toolkit for

managing RS involving multiple objectives and/or stakeholders.

36

2.2. A Constrained Optimization Approach for Calibrated Recommendations

2.2.1. Introduction

Recommender systems (RS) are important tools to help users find relevant and interesting

items from a potentially large pool of candidates. While the initial focus of RS evaluation

was on the accuracy of the recommended items, other criteria such as fairness [Wang and

Joachims, 2021, Patro et al., 2020], popularity [Abdollahpouri et al., 2017a, 2019b], diversity

[Kaminskas and Bridge, 2016, Mansoury et al., 2020] and others [Ge et al., 2010, Kotkov

et al., 2018] have attracted attention due to their crucial role in the success of the RS.

One topic that recently has gained attention is calibration. Assume items are classified into

topics. Simply, a calibrated recommendation list for each user is the one that consists of

items in the same proportion of the topics the user has previously liked. For example, in a

movie recommender, if a user’s previous history contains 20% drama, 60% action, and 20%

romance movies, a calibrated recommendation list would match the previous proportions of

genres. The goal of calibrated recommendations is to reflect the interests of a user in the

recommended list in their appropriate proportions while also maximizing the sum of the

ratings of the recommended items.

Even though the concept of calibration was discussed more than a decade ago [Bella

et al., 2010], its importance was realized recently by Steck in [Steck, 2018], which proposed

a greedy approach to iteratively construct a top-k list that is calibrated and also relevant to

the user. The greedy algorithm adds one item at a time to the list until k items are included

for each user. Although greedy approaches for calibration often provide great improvements

in terms of making the recommendations more calibrated, we show that they can result in

inefficient solutions in that a better solution is missed because of their myopic nature. This

37

chapter contributes to the literature by suggesting an optimization model that can calibrate

the recommendation lists and maintain a good level of accuracy at the same time. Due

to the non-linearity of the Kullback-Leibler divergence (aka KL-divergence) measure used

by Steck, we propose using a different distance measure and show it has experimental and

intuitive advantages. The main advantage of using an optimization model is the possibility

to consider items in a holistic manner. This way, all k items are considered at the same

time, so that, intricate combinations of different items are considered before creating the

top-k lists. Optimization models are also easy to modify, and we discuss how our model can

easily include other considerations such as fairness or diversity.

We apply our approach to solve the calibration problem using the MovieLens dataset and

compare our results with Steck’s state-of-the-art heuristic algorithm. Experimental results

show that our optimization technique outperforms the heuristic both in terms of making the

recommendation lists more calibrated and maintaining as good or better level of accuracy.

Additionally, we observe that our approach has secondary effects to reduce popularity bias

and increase the fairness of the recommendations and results in fairer recommendations with

less concentration on popular items. Although there are works applying optimization ideas

to RS [Sürer et al., 2018, Malthouse et al., 2019b, Agarwal et al., 2011], to the best of our

knowledge, ours is the first to solve calibration using a non-greedy (an example of a greedy

approach is the one proposed in [Steck, 2018]) approach.

2.2.2. Calibration

This section discusses the different models used to solve the calibrated RS problem for top-k

lists, where every user is recommended exactly k items. We also propose a multi-objective

optimization model to solve the calibration problem.

38

Let I be defined as the set of items, U the set of users and G the set of types (e.g., genres)

we want to calibrate. Define r̂iu as the estimated rating of each item i ∈ I offered to user

u ∈ U . Note that the total number of recommendations made is k|U |. Items are grouped

into types. For example, in the case of movies the types could be genres, or for news articles

the types could be topics. When an item belongs to multiple types (e.g., a movie can have

multiple genres) we set equal probabilities to each type for that item. Let Iu denote the set

of items rated by the user u in our training set, and let L(u) be defined as the list of items

recommended to user u where |L(u)| = k,∀u ∈ U .

Next, define p(g|u) as the proportion of items that user u rated in the past of type

g. It represents the distribution of the user’s preference of each type considering user’s past

history. Then, q(g|u) is the proportion of items of type g we recommend to user u. Assuming

equally weighted types, our distributions can be represented as follows:

p(g|u) =
∑

i∈Iu p(g|i)
|Iu|

(∀g ∈ G, u ∈ U)(2.13)

q(g|u) =
∑

i∈L(u) p(g|i)
|L(u)|

(∀g ∈ G, u ∈ U)(2.14)

Similar to Steck [2018], we define p(g|i) as the fraction of items for each type g. Therefore,

if an item has two types, p(g|i) is 0.5 for those two types and 0 for the rest. Calibration

is generally an NP-hard problem, because the problem is combinatorial. It is therefore not

trivial to find the best set of items that matches the user’s past history distribution p, while

also offering items with high estimated ratings.

39

2.2.2.1. Steck’s Heuristic Model. For the calibration problem, Steck uses the KL-distance

of distributions p(g|u) and q(g|u) [Steck, 2018]:

(2.15) CKL(p, q) =
∑
g∈G

p(g|u) log
(
p(g|u)
q̇(g|u)

)
,

where q̇(g|u) = (1 − α)q(g|u) + αp(g|u) with small values of α to make the equation well

defined when q(g|u) = 0. We drop types where p(g|u) = 0 from the summation to alleviate

the divergence problem when q(g|u) = 0. In this chapter, we used α = 0.01 as in Steck

[2018]. Smaller values of CKL(p, q) are desirable because they indicate the distributions p

and q are close to each other, while larger values indicate the distributions are far away.

Steck [2018] proposed the following objective function for each user u:

(2.16) max
L(u),|L(u)|=k

(
(1− λ)

∑
i∈I

r̂iu − λCKL (p, q(L(u)))

)
.

For every user u, equation 2.16 is maximized to find the best overall recommendation list

L(u). Therefore, CKL(p, q(L(u))) values are penalized by λ and the scores of the items are

promoted by (1− λ) where λ ∈ [0, 1]. We use a grid-search for obtaining λ. In Steck [2018],

equation 2.16 is solved in a greedy manner, where every user u starts with an empty list

of recommendations L(u). Then, in every iteration the item i with the highest value in

equation 2.16 is added to the L(u) until k items are recommended to every user u in the

system. Note that as with other greedy approaches, making a decision in every step results

in myopic, and sometimes suboptimal solutions [Pearl, 1984, Wilt and Ruml, 2016]. An item

that was the best option before can lose its desirability after adding other items to the list.

2.2.2.2. Potential Drawback of Heuristic Calibration. Before discussing our opti-

mization technique for calibration, we demonstrate a problem with greedy heuristics such

40

as Steck [2018], Oh et al. [2011] to show the value that our approach can bring. Assume

that we are solving the top-k calibration problem with k = 3 for a single user. There are

six items and three genres in the system: A, B and C. This user watched every genre with

equal probability in the past, so p(g|u) = [1/3, 1/3, 1/3]. We give the estimated rating and

genre information of the six items in the system for this user in Table 2.2. For α = 0.01

and λ = 0.9, the best solution is to offer items [1, 2, 3], with total estimated ratings 13.5

and KL-distance 0. Steck’s heuristic offers the list [6, 4, 3] with total estimated ratings 11.7

and KL-distance 0.026. This happens because in first step of the greedy approach, Item-6

maximizes equation (2.16), although it has a low estimated rating for that user.

Item Estimated Rating Genre
Item-1 4.5 [A]
Item-2 4.5 [B]
Item-3 4.5 [C]
Item-4 4.2 [A, B]
Item-5 4.2 [A, C]
Item-6 3 [A, B, C]

Table 2.2. Toy example for a single user

2.2.2.3. Optimization Model. Our model must decide which k items to recommend to

each user. For this purpose, let decision variable xiu = 1 if item i is recommended to user

u, and 0 otherwise (Constraint 2.19). For every user u, exactly k of the xiu values should

equal 1 (Constraint 2.18). Ignoring calibration for now, the only criterion is to maximize the

41

estimated ratings r̂iu. This model can be represented as follows:

max
x

1

k|U |
∑
i∈I

∑
u∈U

r̂iuxiu(2.17)

subject to:
∑
i∈I

xiu = k (∀u ∈ U)(2.18)

xiu ∈ {0, 1} (∀i ∈ I, u ∈ U)(2.19)

Note that this problem can be solved by sorting the values of r̂iu for every user u and

recommending the first k items. Next, we add calibration to this base model and solve a

multi-objective optimization model.

As mentioned earlier, due to the non-linearity of KL Divergence measure, we use the

total variation [Levin and Peres, 2017, Chambolle, 2004] between two probability measures

P and Q, which is defined as follows when both measures are defined on a finite set:

(2.20) Total Variation(P,Q) =
1

2
∥P −Q∥1 =

1

2

∑
g∈G

|P (g)−Q(g)|

We use the total variation distance because it is intuitive and efficient to solve in a commercial

optimization software. Notice that the p and q distributions come from a finite set since there

is a finite set of items in the system. Total variation is the ℓ1 norm between the distributions

[Levin and Peres, 2017], and we try to minimize this distance for every user. Total variation

gives a linear objective function, which commercial optimization software can efficiently

solve. Next, we add an intuitive adjustment to the total variation formulation:

(2.21) Weighted Total Variation(P,Q) =
1

2

∑
g∈G

ζ(P (g))|P (g)−Q(g)|

42

Equation 2.21 includes a general function ζ(P (g)) of users’ proportion of genres in the

past history P . Genres g with large values of p(g|u) indicate that user u is more inclined to

prefer items from genre g. Therefore, we want to penalize differences with large p values more,

so that we offer the types which the user prefers the most. Therefore, ζ should be a non-

negative (because calibration problem aims to minimize the distance) and non-decreasing

function of P . In our experiments we use ζ(x) = x+ 1, which is an increasing, non-negative

function that takes values between 1 to 2. This function can be tuned differently for other

data sets, e.g., an exponential function can be used if one wants to increase the penalty for

higher p values, or different scale depending on the distance metric and the range of ratings.

The optimization model we solve that considers calibration, which we name Calib-Opt,

includes Constraints (2.18) and (2.19) with the following objective function:

(2.22) max
x

1

k|U |
∑
u∈U

[
(1− λ)

∑
i∈I

r̂iuxiu − λ
∑
g∈G

ζ(p(g|u))
2

∣∣∣p(g|u)−∑
i∈I

xiu
p(g|i)
k

∣∣∣] ,
where

∑
i∈I
xiu

p(g|i)
k

= q(g|u) is the proportion of items of type g recommended to user u. As

with Steck’s algorithm, parameter λ is the weight given to calibration and (1 − λ) is the

weight given to estimated ratings. Larger values of λ imply more emphasis on calibration.

In our illustrative example in Table 2.2, optimization works holistically and considers all

combinations at the same time to obtain the best solution [1, 2, 3].

Our optimization model is scalable. We solve objective function (2.22) for every user

separately, so the number of users do not hinder our model. We can solve our model with

very large item sets by only considering items that have the highest estimated utility (e.g.,

top 1000 items) which in practice works efficiently [Bradley and Smyth, 2001].

43

2.2.3. Experimental Setting

Our experiments use the MovieLens 1M data set. We remove movies rated fewer than 10

times, leaving 3260 movies, 6040 users and 18 item types (genres). We divide the remaining

ratings data to 80% training and 20% test set and use the training set to estimate the rating

matrix with the Singular Value Decomposition (SVD) implemented in the Python surprise

package [Hug, 2020b, 2017]. The ratings of the items are explicit, and take values between

1 and 5.

Our goal is to compare Calib-Opt with Steck’s algorithm. For KL-distance Equation (2.15),

we use α = 0.01, consistent with Steck. For optimization, we use the Gurobi software [Gurobi

Optimization, LLC, 2021] and limit the time to 10 minutes with optimization gap 10−4 for

every user separately. Gurobi implements the branch&bound algorithm to solve mixed inte-

ger programs. In worst-case scenarios, this algorithm can have exponential time complexity

[Morrison et al., 2016]. However, because of the algorithms and heuristics included with

branch&bound, Gurobi performs significantly better than exponential complexity in prac-

tice.

We compare the algorithms on Precision, Recall, KL-distance (Equation 2.15), and Total

Variance (Equation 2.20). Additionally, we now define the evaluation metrics for fairness

Z (Inequality in Producer Exposures) [Patro et al., 2020], popularity ARP (Average Rec-

ommendation Popularity) [Abdollahpouri et al., 2019a] and Aggregate Diversity (Agg. Div.)

[Adomavicius and Kwon, 2011a]:

44

Z = −
∑
i∈I

(
Ri

|U |k

)
log|I|

(
Ri

|U |k

)
(2.23)

ARP =
1

|U |
∑
u∈U

∑
i∈L(u)

ωi

|L(u)|
(2.24)

Agg. Div. =
1

|I|

∣∣∣∣∣⋃
u∈U

L(u)

∣∣∣∣∣(2.25)

In Equation (2.23), Ri =
∑

u∈U 1(i ∈ L(u)) gives the total number of times item i is recom-

mended. If every item is recommended exactly the same number of times then Z = 1, but

as the inequality between item recommendations increases Z decreases. Therefore, larger Z

values are desirable. In Equation (2.24), ωi is the number of times item i is rated by the

users. Lower popularity (higher novelty) solutions have lower ARP values, which are more

desirable for alleviating the popularity problem. Agg. Div. in Equation (2.25) calculates

the proportion of items recommended at least once, and a value 1 indicates that every item

is recommended at least once.

2.2.4. Results

Figures 2.5–2.11 compare Calib-Opt and Steck’s heuristic on different metrics as a function

of λ values, where Calib-Opt is labeled “Opt” and the heuristic is labeled “H.” We begin with

accuracy. Figures 2.5 and 2.6 show that precision and recall have inverted-U shaped curves

that increase up to a certain value of λ and decrease thereafter. We believe the reason

for the inverted-U shape is that making recommendations more calibrated can help with

recommending items that match user’s interests, which in turn improves the accuracy of the

recommendations as well. However, when λ is large there will be too little emphasis on the

predicted ratings, resulting in a loss in accuracy. Comparing the approaches, we can see that

45

Calib-Opt has better precision and recall for most λ values, which shows the superiority of

our approach in giving more accurate recommendations.

0
0.2

5
0.5

0
0.7

5 1
0.08

0.09

0.10

0.11

Pr
ec

isi
on

Model
 Opt H

Figure 2.5. Precision value

0
0.2

5
0.5

0
0.7

5 1

0.030

0.035

0.040

0.045

Re
ca

ll

Model
 Opt H

Figure 2.6. Recall value

Next, we discuss calibration metrics. Even though Calib-Opt uses the Weighted Total

Variation distance, Figure 2.7 shows that it also outperforms the heuristic on KL-divergence.

This can be explained by the fact that two distances implemented are highly correlated

[Pinsker, 1964]. Figure 2.8 shows that Calib-Opt always performs better on Total Variation.

Taken together, these results indicate that Calib-Opt better matches the distribution of genre

preferences.

We now study whether Calib-Opt offers secondary benefits on fairness, popularity and

aggregate diversity. Figure 2.9 shows that Calib-Opt dominates the heuristic on fairness

across λ values. Likewise, Figure 2.10 shows that Calib-Opt has lower values of ARP across

λ. Larger λ values should create lists with a larger variety of personalized items for the user.

46

We observe, however, that the greedy heuristic perpetuates these biases we would like to

avoid. Moreover, Figure 2.11 shows that Calib-Opt gives better value of Agg. Div. than the

heuristic. For λ ∈ [0, 0.8] Calib-Opt has substantially better Agg. Div. than the heuristic

indicating that Calib-Opt recommends a higher proportion of items at least once from the

item set.

0
0.2

5
0.5

0
0.7

5 1

0.25

0.50

0.75

1

1.25

KL
 D

ist
an

ce

Model
 Opt H

Figure 2.7. KL-divergence
value

0
0.2

5
0.5

0
0.7

5 1

0.4

0.6

0.8
To

ta
l V

ar
iat

ion

Model
 Opt H

Figure 2.8. Total Variation
value

We now attempt to explain why greedy approaches exacerbate the popularity and fair-

ness biases by investigating how the heuristic selects items. Figure 2.11 shows that with

increasing λ values, aggregate diversity increases. The heuristic approach seems to struggle

with recommending different items, at least compared to the Calib-Opt. Most notably, for

λ ∈ [0, 0.8] the heuristic approach does not improve aggregate diversity significantly. A low

aggregate diversity metric means that the heuristic approach recommends only a small sub-

set of the items in the system. This might explain why popularity metric is not improving.

47

0
0.2

5
0.5

0
0.7

5 1
0.625

0.650

0.675

0.700

0.725

0.750

Z
- F

ai
rn

es
s V

al
ue

Model
 Opt H

Figure 2.9. Fairness Z - value

0
0.2

5
0.5

0
0.7

5 1
0.13

0.14

0.15

0.16

0.17

0.18

Po
pu

lar
ity

Model
 Opt H

Figure 2.10. Popularity value

The same “popular” items are recommended, and there is little change in aggregate diver-

sity values in heuristic approach. Calib-Opt, however, has better popularity and aggregate

diversity metrics. We think this is the result of considering the lists holistically.

Figure 2.12 shows the total number of times an item is recommended across all users,

plotted against the number of genres the item has. “Fair” shows the number of recommen-

dations if every item is recommended in almost equal amounts (fairest), “First” and “Last”

show the total number of times items are recommended in first and last (item k) iterations

respectively, considering the number of genre tags. We investigate the quality of the solution

for λ = 0.8 because it has the best accuracy metrics. For the first item selected by the

heuristic, items with three to six genres are over-recommended while one and two genres

are under-recommended. This happens because when the list is empty, the decrease in KL-

distance is greater when we include items with more genres as we discussed in Section 2.2.

48

This bias creates unfairness, because, items with more genres are represented more than the

items with fewer genres. This problem is alleviated as we add more items to the recommen-

dation lists, because calibration of the list only marginally changes when we add the last

item compared to the first one.

0
0.2

5
0.5

0
0.7

5 1

0.30

0.35

0.40

Ag
g.

 D
ive

rs
ity

Model
 Opt H

Figure 2.11. Aggregate Diver-
sity value

1 2 3 4 5 6
Number of genre tags

0

1000

2000

3000

Re
co

m
m

en
da

tio
n

Nu
m

be
r

Model
Fair First Last

Figure 2.12. Heuristic solution
for λ = 0.8

2.2.5. Conclusion

In this chapter, we proposed and solved a multi-objective constrained optimization model

to solve top-k RS problem with calibration. We showed that our optimization model was

easy to scale and beneficial to use, making significant improvements to the state-of-the-art

heuristic approaches in the literature. We propose a small example that illustrates why the

heuristic fails to find the optimal solution. Additionally, our model improved popularity and

fairness metrics as a by-product of considering the recommended list holistically.

49

Solving an optimization model for calibration offers another benefit. Our optimization

model only makes changes in the objective function, therefore, it is easy to modify and

adapt for other metrics frequently discussed in RSs. Popularity, fairness can be optimized

directly, instead of improved as a by-product. Similarly, other metrics such as diversity and

inventory considerations can be added to our model as different constraints. We leave the

implementation of these additional ideas on top of calibration metric as a future research

direction.

50

CHAPTER 3

Making Smart Recommendations for Perishable and Stockout

Products

51

3.1. Introduction

With about one-third of food lost or wasted, avoiding food waste has become a global

challenge due to its environmental and economic impact [Blakeney, 2019]. One out of four

calories of food intended for consumption was wasted in 2009 [Lipinski et al., 2013]. Ad-

ditionally, 28% of the items sold by retailers are wasted because they expire without other

flaws [Lebersorger and Schneider, 2014]. Reasons for waste include spillage, spoilage, and a

significant decrease in the quality of the product. Wasted food emits significant amounts of

greenhouse gas to the air [Stavi and Lal, 2013], deforests the Amazon [Marchand, 2012], and

causes significant negative effects on the climate with very little in return.

Retail food waste occurs when supply exceeds demand. A simple solution is for retailers

to order less and thus decrease supply. This, however, increases the number of stockouts and

consequently reduces customer goodwill [Anderson et al., 2006]. While the stockout problem

has been studied for many years [Jing and Lewis, 2011], it has become more critical recently

because of supply chain disruptions due to extreme weather events, port congestion, labor

relations [Goodman, 2022], COVID-19 lockdowns, manufacturing delays and human errors

(e.g., Suez Canal being blocked) [Zimmerman, 2021]. Increasing inventory can cause higher

holding costs and lower clearance sale pricing, which results in lower overall revenue for the

retailer [Smith and Achabal, 1998].

Although the decision maker has a notion of what to expect in the future, customer de-

mand and whether they would buy a recommended item is not deterministic. Consequently,

inventory levels are also stochastic since the decision maker does not know in advance how

much demand will occur on a specific day and how much stock will be left at the end of the

day. Additionally, inventory levels might not be recorded correctly, or a set of items might

52

arrive sooner or later than expected, causing the inventory to fluctuate unexpectedly. Some

soon-to-perish items might go bad sooner or later than expected according to the storage

conditions and the type of item [Hertog et al., 2014]. We propose a novel solution using rec-

ommender systems (RS) that uses a personalized top-k list to direct demand toward items

that will perish soon and away from items that are nearing stockout while accounting for the

above-mentioned uncertainties. Therefore, we make recommendations that not only consider

consumer preferences, but also the status of the available stock. Thus, we show how to use

RS to manage inventory, integrating inventory management, RS, and promotions literatures.

In the RS literature, earlier works mostly focused solely on user preferences. More recent

works started incorporating the needs of the item providers, the RS platform/system itself,

and other stakeholders. Multistakeholder recommender systems (MRS) are introduced as

systems that include the objectives of parties other than the users. These objectives may

conflict with each other, and solutions recommended by MRS algorithms take all these

objectives into account while creating the recommendation lists that consist of items offered

to the users [Abdollahpouri et al., 2020]. Abdollahpouri et al. [2017b, 2020] discuss multiple

real-world problems that can be solved using MRS algorithms. For example, in problems that

are encountered in an e-commerce retailer setting, the business and retailer considerations

are intuitive to consider as well as the user considerations. A traditional RS algorithm

could recommend the highest estimated utility items to maximize the user utility/rating.

However, these solutions can cause problems in the system by increasing the stockouts and

perishability significantly. In our work, the system is considered a stakeholder and aims

to lower the number of perished items and stockouts. Similarly, the retailer is another

stakeholder that wants to increase the sales revenue as much as possible from the possible

revenue obtained from the item recommendations. Consequently, we offer a model that

53

solves an e-commerce retailer MRS problem [Burke and Abdollahpouri, 2017] by including

system (sustainability, stockouts) and the provider (revenue) considerations on top of the

users’ considerations.

Given the proliferation of digital shopping environments such as websites and mobile

shopping apps where many user behaviors can be recorded, more data is available to tailor

promotions to the needs of individual users [Cheung et al., 2003]. Relevant interactions can be

facilitated with an RS so that users receive personalized recommendations that match their

preferences. Creating recommendations, however, is more complicated than recommending

items of interest to a user because multiple objectives and stakeholders are involved [Abdol-

lahpouri et al., 2020, 2017b]. While we are unaware of any research that uses multi-objective

RS to avoid perishables and stockouts at the same time, there has been research that stud-

ied other retail objectives and stakeholders. Sürer et al. [2018] consider vendors on a retail

platform as well as the preference of users when creating top-k lists. Seymen et al. [2021a,b]

suggest MIP models that create top-k lists utilizing interactions of the users with vendors

on a retail platform.

We contribute to the RS literature by proposing and solving a mixed-integer-programming

(MIP) model that combines RS and inventory management. Our proposed model creates

recommendation lists that consider both user and retailer perspectives, as well as the system-

enforced perishability and stockout concerns. Additionally, our model accounts for the sto-

chastic nature of perishables, demands, and inventory levels. By including stochasticity and

considerations of the users, the retailer, and the system, we discuss the complex economical

impacts of RS in an online retailer setting. As far as we know, our approach to this on-

line retailing problem and our optimization model are novel additions to the RS literature.

Furthermore, using ideas from our optimization model, we propose heuristics that improve

54

scalability efficiently. Finally, we discuss the results of our optimization model and heuris-

tics and show that our approaches offer solutions that improve user, retailer, and system

objectives simultaneously.

3.2. Related Works

This section surveys relevant literature from sales promotion, RS, and inventory manage-

ment. There is extensive research in the sales promotion literature showing the effectiveness

of email promotions, and RS articles have already investigated the effects of personalization

in driving retail sales. Likewise, there is research in the inventory management literature

showing the importance of alleviating the stockout and perishability issues, mostly focus-

ing on the retailer. Our contribution is to combine these approaches to create personalized

email promotions that consider both the user’s preferences as well as retailer and supply

chain objectives to avoid perishables and stockouts.

Sales promotion is a widely used strategy defined as an “action-oriented marketing event

whose purpose is to have a direct impact on the behavior of the firm’s customers” [Neslin,

2002, p. xvii]. Promotions include price discounts, feature advertising, and other touch

points such as targeted emails, special displays, and coupons. Promotions stimulate market

demand, enable retailers to sell excess items, and increase their revenue. There is a long

literature studying sales promotions and their effects [Neslin, 2002], including some with a

specific focus on e-commerce and email promotions. Most of the e-commerce promotions

literature shows a positive link between sales promotions and increases in demand [Lewis

and Reiley, 2014, Agrawal et al., 2020]. Sahni et al. [2017] conclude that personalized emails

increase the total expenditure of customers by 37.2%.

55

Others have used RS to implement personalized shopping lists. Lin et al. [2005] show that

timely recommendations resulted in sales growth. Malthouse et al. [2019a] solve the problem

of sponsored recommendations and content in retailing including ad revenue and user utility.

Kaminskas et al. [2017] implement recommendations by using text and co-occurrence based

approaches. Wan et al. [2018] solve recommendations using natural language processing

ideas. Chen et al. [2020] solve linear optimization-based algorithms, which offer items to

users in a deterministic setting using RS considering user ratings with perishable items.

Dadouchi and Agard [2018] propose an RS method that lowers stockouts. Specifically, RS

can be used to increase the revenue of the firm by engaging customers to buy more in the

immediate time period [Dias et al., 2008]. Our MIP model offers an exact solution to creating

personalized shopping lists by incorporating both the user and retailer perspectives and also

actively modifying the demands before the customer arrivals.

Perishable items and limited inventory appear in multiple works in the dynamic assort-

ment and inventory control literature, but without considering how promotions can be used

to manage them. Bernstein et al. [2015] solve which items should be offered to which users

with limited inventory, not considering perishable items. Talebian et al. [2014] create dy-

namic assortments considering perishable items with infinite inventory. Amiri et al. [2020]

maximize the number of perishable items sold considering one vendor and multiple buyers.

Fan et al. [2020] consider both replenishment strategies and the pricing of the perishables.

Chua et al. [2017] decide whether and how much to discount items using dynamic program-

ming. Others solve problems with perishable inventory by incorporating partial information

[Duan and Liao, 2013], uncertain demands [Gutierrez-Alcoba et al., 2017, Kırcı et al., 2019],

or time delays happening in the supply chain [Dolgui et al., 2018]. Nguyen and Chen [2019,

2022] build a MIP model and consider perishability and stockouts in an inventory model

56

setting. Chen et al. [2020] propose a RS model with perishability in a deterministic setting

without stockouts, Dadouchi and Agard [2018] propose an RS method that lowers stockouts,

Nguyen and Chen [2019, 2022] propose a model with both perishability and stockouts, but

not including user ratings/utility and item recommendation aspects of RS. We close this

gap by developing a model that considers stochasticity, perishability, stockouts, user ratings

and retailer revenue/sales simultaneously. Furthermore, we offer heuristics to improve the

scalability of the suggested optimization model.

3.3. Problem Definition and Formulation

This section proposes a MIP model and a heuristic to solve an item recommendation

problem considering both retailer and user perspectives. We maximize both the quality of

the recommendations for the users and the impact on the retailer’s profitability (perishability,

sales). For this purpose, we first discuss the problem definition and assumptions. We then

illustrate and explain our optimization model and heuristic.

3.3.1. Problem Definition and Optimal Solution

We consider an online retailer selling physical items to their users over the internet. The

retailer periodically creates a personalized top-k promotion list such as a weekly email rec-

ommending items (I) to a known set of users (U); hereafter we use the RS term user instead

of retailing terms customer or consumer. Therefore, we solve the problem of selecting which

k items should be recommended to the users in the form of personalized email promotions.

While creating top-k lists is a common RS task, we allow lists with fewer than k items to

accommodate situations with very low inventory levels; hereafter we use the term “top-k

list” with the understanding that some lists may have fewer than k items. We assume that

57

recommending item i to user u might result in a demand increase γiu for the said item. Note

that the RS can increase demand without reducing the price and thus profit margin. We

assume that the retailer’s purchase cost of item i is ci, and that the retailer earns profit ρ×ci

when it sells the item, where ρ is the markup and pi = (1 + ρ) × ci is the revenue (selling

price). We allow for items to have different prices pi but assume a constant markup ρ (this

assumption can be easily relaxed).

When deciding which items should be recommended, the following four aspects are con-

sidered. Firstly, since the available in-stock inventory (L) is limited, there is a possibility

of stockouts if users are unable to buy items due to unavailability. When users attempt to

purchase a recommended item i that is out of stock, we assume that the retailer incurs a

penalty of qi, which measures a loss of goodwill and revenue from the sale. Secondly, some

items are perishable with quantity E considered soon-to-perish (0 ≤ Ei ≤ Li, ∀i ∈ I).

Soon-to-perish items must be sold as soon as possible; otherwise, they will be discarded

since the retailer cannot sell expired items. For any discarded item, the retailer incurs a

penalty ci (i.e., there is no cost to dispose of the perished items nor salvage value). We also

assume that items are shipped following the FIFO (first-in-first-out) method, where items

that expire the soonest are shipped first. Retailers enforce FIFO by keeping longer-lasting

items in storage. FIFO is often used in the literature with perishable items [Karaesmen

et al., 2011]. Thirdly, different users may have different ratings (r̂iu) for different items; the

RS should recommend items that are of interest to the user, and the user would not have

purchased without the recommendation. Lastly, different items have different prices pi, so

the RS should recommend items that result in higher revenue for the retailer.

We consider these four aspects from either the user’s or retailer’s perspective. We create

these perspectives by including system-enforced sustainability and stockout considerations to

58

the traditional user consideration of utility/rating and retailer consideration of revenue. From

the user’s perspective, the recommended list should have items with a high average rating,

while avoiding stockouts. The retailer wants to stimulate demand for items that generate

high profit, while also avoiding items to perish. Balancing between these perspectives is

crucial. The retailer may, for example, need to recommend items with a lower user rating

to avoid items perishing. The retailer thus determines the recommendation lists considering

the number of perishable items, demand, inventory, and possible demand increase after

recommendations. If these values are known with certainty, the problem is deterministic.

In this case, after finalizing all recommendation lists, the decision maker knows exactly how

many items will be sold, what the profits will be, the average user rating, the numbers of

stockout and perished items, and their costs. However, in practice, the decision maker rarely

has access to complete information.

By considering stochasticity in our model we obtain top-k lists that account for unex-

pected situations. Therefore, we incorporate uncertainties in inventory (L) and soon-to-

perish items (E) (both vectors of length |I|), and demands with |I| × |U | matrix D. For

example, if each value in L,E,D were binary then there would be a total of 22|I|+|I||U | sce-

narios to investigate. Even with only two realizations, an exhaustive enumeration would

be intractable. One solution to this problem is to use Monte Carlo sampling to obtain

a finite number of scenarios and the Sample Average Approximation (SAA) method to

solve them [Kim et al., 2015]. We define a function max
x∈X

[F (x) := Eξ f(x, ξ)]. We as-

sume f is real-valued and cannot be computed directly, x is a point in solution space

X ⊆ Rd(d < ∞), and ξ is some random vector independent of x. We first generate

S scenarios ξ1, ξ2, . . . , ξS from random vector ξ that are independent and identically dis-

tributed unless noted otherwise. Assume that the probability of each scenario equals 1/S.

59

Applying the SAA method, we solve max
x∈X

[
fS(x) :=

1

S

S∑
j=1

f(x, ξj)

]
, with the maximizer of

fS(x) converging (as S → ∞) to the maximizer of f(x) under mild conditions [Ahmed

and Shapiro, 2002]. In our problem, assume that we know the distributions of L,E,D.

Then, by Monte Carlo sampling, assume we obtain S scenarios by sampling, such that

ξ1 = (L1,E1,D1), . . . , ξj = (Lj,Ej,Dj), . . . , ξS = (LS,ES,DS). The superscript j is

the scenario index, and each possible scenario ξj contains the information of the triple

(Lj,Ej,Dj). The number S is decided by the decision maker. We use the shorthand

notation [S] = {1, 2, . . . , S}.

3.3.1.1. Preliminary Optimization Model. Decision variable aiu equals 1 if we recom-

mend item i to user u and 0 otherwise. The estimated rating of item i for user u is denoted

as r̂iu. For scenario j and item i, the quantity sold is xji , the quantity of unmet demand

(number of stockouts) is yji , and the number of perished items is zji . Every user u has a

demand value Dj
iu for a given item i and scenario j, and demand increases by γiu if i is

recommended to u. Increasing the demand of an item recommended to a user assumption is

used in simulations in the literature [Fleder and Hosanagar, 2009, Hazrati and Ricci, 2022].

60

max
a,x,y,z

1

S

S∑
j=1

[
λ

(∑
i∈I

∑
u∈U

r̂iuaiu/k −
∑
i∈I

qiy
j
i

)
+ (1− λ)

(∑
i∈I

ρcix
j
i −

∑
i∈I

ciz
j
i

)]
(3.1)

subject to:∑
i∈I

aiu ≤ k (∀u ∈ U)(3.2)

xji ≤ Lj
i (∀i ∈ I, j ∈ [S])(3.3)

zji ≥ Ej
i − xji (∀i ∈ I, j ∈ [S])(3.4)

yji + xji =
∑
u∈U

(
Dj

iu + γiuaiu
)

(∀i ∈ I, j ∈ [S])(3.5)

xji , y
j
i , z

j
i ≥ 0, aiu ∈ {0, 1} (∀i ∈ I, u ∈ U, j ∈ [S])(3.6)

Equation (3.1) specifies our multi-objective function that considers both the user and retailer

perspectives. Inside the left parenthesis, we maximize the average estimated ratings and

minimize the cost incurred when a demanded item is out of stock (stockout). Inside the

right parenthesis, we maximize the revenue of the retailer from the sales and minimize the

cost incurred from the perished items. We divide the estimated ratings by k to lower the

effect of choice of k on the solution quality. Trade-off parameter λ ∈ [0, 1] is specified by

the analyst to control the weight given to the user versus retailer perspective. If λ = 1

then we only consider the user perspective, and if λ = 0 then we only consider the retailer

perspective. Constraint (3.2) enforces that we recommend at most k items to each user.

We cannot sell more items than the available inventory, enforced by constraint (3.3). If the

number of items sold for i is less than the soon-to-perish count Ei, then the difference is

assumed to perish. Constraint (3.5) controls the flow of demand with the right-hand side

equaling the modified demand after recommendations. Therefore, total modified demand is

61

either sold or is considered stockout. Constraint (3.6) specifies the values that the decision

variables can take.

3.3.1.2. Reformulated Optimization Model. In a deterministic setting with S = 1, this

model can be easily solved for thousands of users and items. When the number of scenarios

increases, however, the number of constraints and decision variables increases rapidly. Next,

we propose an optimization model that is more efficient with memory and time as the number

of scenarios grows.

Since we assume FIFO we can preprocess some of the uncertainties. For each scenario j

and item i, we update Ej
i = max

(
0, Ej

i −
∑
u∈U

Dj
iu

)
and Lj

i = max

(
0, Lj

i −
∑
u∈U

Dj
iu

)
. These

are the respective counts of inventory (Lj
i) and soon-to-perish items (Ej

i) when the RS is

not applied (we only consider initial demands). Next, suppose that we sort the number of

perishable items (E) and inventory (L) as follows for each i, E1
i ≤ E2

i ≤ · · · ≤ ES−1
i ≤ ES

i ,

and L1
i ≤ L2

i ≤ · · · ≤ LS−1
i ≤ LS

i . Then, we create two incremental increase arrays for each

i: Ẽj
i = Ej

i −E
j−1
i , ∀j ∈ {2, . . . , S} with Ẽ1

i = E1
i , and, L̃j

i = Lj+1
i −Lj

i , ∀j ∈ {1, . . . , S−1}

with L̃S
i = LS

i . Define Xi =
∑
u∈U

(γiu × aiu), which represents the expected demand increase

for item i after implementing the RS. Next, we apply the remodeling idea suggested by

Ferguson and Dantzig [1956] as follows:

62

max
a,ỹ,z̃

1

S

S∑
j=1

λ

(∑
i∈I

∑
u∈U

r̂iuaiu/k − j
∑
i∈I

qiỹ
j
i

)
+(3.7)

(1− λ)

(∑
i∈I

ρciX
j
i − (S + 1− j)

∑
i∈I

ci(Ẽ
j
i − z̃ji)− j

∑
i∈I

ρciỹ
j
i

)

subject to:∑
i∈I

aiu ≤ k (∀u ∈ U)(3.8)

ỹji ≤ L̃j
i (∀i ∈ I, j ∈ [S])(3.9)

z̃ji ≤ Ẽj
i (∀i ∈ I, j ∈ [S])(3.10)

S∑
j=1

z̃ji ≤ Xi (∀i ∈ I)(3.11)

S∑
j=1

ỹji ≥ Xi − L1
i (∀i ∈ I)(3.12)

ỹji , z̃
j
i ≥ 0, aiu ∈ {0, 1} (∀i ∈ I, u ∈ U, j ∈ [S])(3.13)

Equation (3.7) is a reformulation of equation (3.1) with new decision variables. For item i, z̃ji

is the number of soon-to-perish items sold and ỹji is the number of stockouts in j scenarios.

Then, for calculating the perished items we use the coefficient (S + 1 − j) and penalize

ci(Ẽ
j
i − z̃ji). or calculating the stockouts we use the coefficient j and penalize qiỹji . Note

that we use incremental increase arrays (Ẽ, L̃) in this step. Because of how Xj
i is defined,

every recommendation increases the equation (3.7) by ρci. The additional term j
∑
i∈I
ρciỹ

j
i

removes this increase if item i stockouts. Constraint (3.8) remains the same as constraint

(3.2). Constraints (3.9) and (3.10) are simple bounds on decision variables ỹ and z̃, which

are generally easily handled by commercial optimization software. Constraint (3.11) enforces

63

that sum of z̃ji cannot exceed Xi. Constraint (3.12) enforces that sum of ỹji should be greater

than or equal to Xi − L1
i . Constraint (3.13) remains the same as constraint (3.6), except

in this model, decision variable x is removed. The value of Ẽj
i is 0 if Ej

i = Ej−1
i (same

with Lj
i). Then, the corresponding decision variable z̃ji (ỹji) is removed since it is fixed to 0.

These changes improve the previous optimization model’s computational time and memory

requirement.

3.3.2. Heuristic Algorithm

For very large datasets, optimization models can struggle with large memory requirements

and slow solution times. We offer a heuristic that scales better for larger datasets. This

heuristic is both easy to implement and fast to run. We first randomize the order of users.

In each step, we recommend a single item i to user u, and then move on to the next user.

This procedure continues until either all users have k items in their lists or adding an item

to a user’s list decreases the objective function value, which only happens if all the inventory

is depleted. For a given user u, we recommend the item i∗ that solves the objective function:

(3.14)

i∗u = argmax
i∈I

1

S

S∑
j=1

λ(r̂iu/k− qi min(0, Lj
i − γiu)) + (1− λ)(ρcimin(Lj

i , γiu) + cimin(Ej
i , γiu))

After each recommendation, the L,E and recommendation lists of users are updated: Ej
i∗ =

max(0, Ej
i∗ − γi∗u), and Lj

i∗ = max(0, Lj
i∗ − γi∗u). Each item i∗ recommended to user u has

rating r̂i∗u/k. The value of γi∗u is the demand increase of item i∗ for user u. If the term

Li∗ − γi∗u is negative, recommending item i∗ to user u causes a stockout having penalty qi∗ .

When a soon-to-perish item i∗ is recommended to user u, we incentivize that recommendation

by the cost of the item (ci∗) times the number of soon-to-perish items sold (min{Ei∗ , γi∗u}).

64

Lastly, when the retailer sells an item, the objective value increases by ρ× ci. The heuristic

requires solving objective function (3.14) at most k|U | times.

3.3.3. Solving the Model with Massive Datasets

Our optimization model can be solved optimally for hundreds of scenarios and thousands of

users and items. However, in cases with thousands of scenarios and millions of users and

items, we need approximation methods to obtain a solution in a reasonable length of time.

This subsection discusses two approximation approaches. First, co-clustering [George and

Merugu, 2005] can be applied to users, items, or both. Rather than focusing on each item and

user individually, we can cluster them. This can be done by aggregating items similar to each

other as only one item, or by aggregating users in clusters if they have similar preferences for

similar items. Consequently, even billions of users and items can be manageable in smaller

clusters. We apply this idea by reducing the item space using the taxonomy of the categories

in our dataset.

Second, we apply a simple idea that we call the “best-N approach,” in which we recom-

mend item i to user u only if either item i is one of the top N rated items by that user u, or

user u is one of the top N users that rated that item i the highest. None of the other user-

item pairs will be considered for recommendation. The decision maker can choose N by using

a grid-search algorithm. A similar approach was implemented in the RS literature [Bradley

and Smyth, 2001] with good results by solely focusing on the user top N lists. Normally, the

number of decision variables created for recommending an item i to user u (aiu) is |I| × |U |.

Implementing the best-N approach decreases this number to at most N × (|I|+ |U |). Thus,

we reduce the number of decision variables by orders of magnitude, which alleviates both

the solution time and memory requirements of the model. The heuristic model’s solution

65

time improves similarly. With the best-N approach, some users and items might appear

significantly more than others and result in over recommending some items and under rec-

ommending others. We alleviate this issue by subtracting the mean rating of each item and

user by itself, i.e., de-biasing them. Consequently, items or users will be included in the

best-N list only if the rating gain observed is higher relative to the item-user pair.

3.4. Computational Study

This section discusses the data used in this chapter and the computational results of

the models proposed. All results are obtained by using a laptop with Intel(R) Core(TM)

i7-8750H CPU @ 2.20GHz 2.21 GHz processor information with 16.0 GB of installed RAM

specifications. The optimization model is solved using Gurobi, a commercially available

mathematical programming solver, Gurobi Optimization, LLC [2021] 9.5.0 with the opti-

mization gap set to 10−4 and a one-hour time limit. Gurobi obtains the global optimal

solution (within the optimization gap) using a linear-programming based branch&bound al-

gorithm [Morrison et al., 2016]. In the worst case, the algorithm implemented in Gurobi can

have exponential time complexity [Morrison et al., 2016], but in practice, the time complexity

is much better than exponential. The heuristic approach is solved with Python 3.7.

3.4.1. Dataset Description

We consider an online grocery retailer located in the United States and learn user prefer-

ences from their purchase history. We examine regular users who have shopped at least 15

times within the last 6 months, giving 3731 users (|U |) with 78,195 orders. These orders

include 27,158 unique item stock-keeping units (SKUs). Each SKU has a price, brand, and

category from a retailer-provided taxonomy. We aggregate the SKUs following Malthouse

66

et al. [2019a]: we match the retailer-provided taxonomy of sub-categories with brand names

to come up with 4106 (|I|) unique item names. For example, “HAIR PRODUCTS - BRAND

NAME", is considered one item. We manually tag delivery items, fresh market items, and

some dairy items as soon-to-perish items using sub-categories. The number of perishable

items is 651 out of 4106.

Average demand values are calculated by averaging the quantity bought for each user-

item pair for a week, denoted as Diu. We create a |U | × |I| rating matrix by using the

function log(x + 1), x as the number of orders including item i ∈ I for user u ∈ U . Next,

we compare prediction algorithms SVD, k-NN, and Co-clustering using the Surprise package

[Hug, 2020a] to estimate the values of unknown item-user pairs. We use the SVD algorithm,

which performed the best using 5-fold cross-validation, with RMSE and MAE values of

0.24 and 0.20, which is better than for k-NN (RMSE=0.26, MAE=0.21) and co-clustering

(RMSE=0.60, MAE=0.55). Finally, the values are min-max normalized between 0 and 1.

Denote the value calculated for item-user pair as ηiu, which we take as the probability of

buying an item i in case it is recommended to the user u. We assume that the probability

of buying and money spent on an item correlates with the utility of that item to the user.

Therefore, the ratings are calculated as r̂iu = (1 + ρ) × ci × ηiu, which is the price times

purchase probability. With this assumption, all values in the objective function are in dollars.

More complex utility/rating choices can be considered by the decision maker. The γiu values

are calculated as
⌈
Dui + 0.1

⌉
× ηiu. This value is continuous and can be interpreted as the

average expected increase in demand when item i is recommended to user u. We assume

high purchase probability and high previous demand are both important in recommender

quality. We consider that recommendations can play two different roles: either the user will

be reminded to order their regular needs, or they will be recommended novel items that they

67

might want to buy. Because γ is not related to ci, items with low purchase probability and

low previous demand will rarely get recommended for that user, even if the item has a high

price. Stockout costs qi are set equal to costs of the items ci, ∀i ∈ I. We use a constant

markup value ρ = 0.26 [Richards and Liaukonytė, 2023] for simplicity, but the decision maker

can choose different markups for different products.

3.4.2. Evaluation Procedure

This subsection discusses the settings and metrics used to evaluate our models, and bench-

marks implemented to compare our approaches. These benchmarks are denoted Bp, Br, Bs,

and Bu, and they solely optimize perishability, retailer sales, stockouts, and average user

rating objective functions, respectively. In other words, each benchmark obtains a solution

considering only one criterion. Therefore, we compare our solutions solving multiple ob-

jectives with those focusing on a singular objective. The letter H indicates the heuristic

solution and O indicates optimization. This letter is followed by a number indicating the

weight (λ) value. For example, the optimization solution with weight λ = 0.5 is denoted as

O5. We obtain solutions for λ ∈ {0.1, 0.5, 0.9}, corresponding to a higher focus on retailer

perspective, equal focus, and a higher focus on user perspective, respectively.

We investigate four settings: high perishables and low stockout risk (HL), low perishables

and high stockout risk (LH), both high risk (HH), and finally, both low risk (LL) settings.

Settings with a high risk of perishables have a larger number of soon-to-perish items E, and

those with a high risk of stockout have lower levels of inventories L. We choose ψ = {0.2, 0.6}

and ϵL = {30, 100}, and their combinations create our four settings. We generate inventory

levels using Li ∼ Poisson(ϵL +
∑
u∈U

Diu), where Diu is the expected demand for item i and

user u. Average demands vary greatly from as low as 0.4 to as much as thousands. We choose

68

lower ϵL values for high-risk stockouts and higher values otherwise. The demand values Diu

are distributed as Poisson(Diu). In this way, we create upper bounds that are tight relative to

the total demand of each item. We create a number of soon-to-perish items as a percentage

of inventories such as Ei = Liψi, where ψi is distributed as a truncated normal N (ψ, 0.1)

with bounds [0, 1], ∀i ∈ I. Some items perish sooner than others, and the decision maker

can incorporate this by choosing higher values of ψi for items that perish more rapidly and

lower values otherwise. We base the number of soon-to-perish items as a percentage of the

inventory, so higher inventory will result in a larger number of soon-to-perish items. For

high-risk perishable cases ψi will be closer to 1, and 0 otherwise. As a shorthand notation,

HH is ψ = 0.6, ϵL = 30, HL is ψ = 0.6, ϵL = 100, LH is ψ = 0.2, ϵL = 30, and finally, LL is

ψ = 0.2, ϵL = 100.

Unless stated otherwise, we generate 500 scenarios (S) for L,E, and D considering each

of the four settings. We obtain solutions for each approach by solving the problem with these

500 scenarios. Then, we generate 2500 new out-of-sample scenarios to test the quality of the

obtained solutions. Overall, a solution is better if it has higher user ratings, retailer sales,

or lower perishability and stockout objective values. These objective values (metrics) are

calculated as follows, where xiu is 1 if item i is recommended to user u and 0 otherwise, si is

the number of item i sold, zi is the number of perished item i, yi is the number of stockouts

of item i:

69

Ratings =
∑
i∈I

∑
u∈U

r̂iu
k
xiu, Sales =

∑
i∈I

ρcisi,(3.15)

Perishability =
∑
i∈I

cizi, Stockouts =
∑
i∈I

qiyi,

User Perspective = Ratings − Stockouts,

Retailer Perspective = Sales − Perishability

3.4.3. Results

This subsection presents and discusses results obtained using our optimization model and

heuristics, and compares them with solutions of benchmark models. Furthermore, we inves-

tigate the effect of including stochasticity and heuristics on the solution quality.

3.4.3.1. Solution Quality of Optimization Approach. We compare our model’s solu-

tion with the benchmarks in Figures 3.1 to 3.6. In the Figures 3.5,3.6 lower values and for

the rest higher values are better. We use the best-N method with N = 100 and offer at

most k = 10 items to every user. Figure 3.1 shows that the overall objective values for the

user perspective, which includes user ratings and stockouts, are similar for all approaches,

except for Bu, which is the benchmark where only the average user rating is optimized. De-

spite Bu performing well in terms of user rating (Figure 3.3), users would experience many

stockouts (Figure 3.5) that reduce customer goodwill, which results in significantly worse

user perspective objective value. As expected, in the high stockout risk settings (HH and

LH) the number of stockouts observed is greater, causing slightly lower user perspective ob-

jective values. The optimal approach achieves the highest user perspective objective values

for all settings.

70

Bp
Br

Bs
Bu

O1
O5

O9

1500

1000

500

0

U
se

r
P
e
rs

p
e
ct

iv
e
 O

b
je

ct
iv

e

HH

Bp
Br

Bs
Bu

O1
O5

O9

HL

Bp
Br

Bs
Bu

O1
O5

O9

LH

Bp
Br

Bs
Bu

O1
O5

O9

LL

Figure 3.1. Benchmark com-
parison of user perspective ob-
jective values

Bp
Br

Bs
Bu

O1
O5

O9

1500

1000

500

0

R
e
ta

ile
r

P
e
rs

p
e
ct

iv
e
 O

b
je

ct
iv

e

HH

Bp
Br

Bs
Bu

O1
O5

O9

HL

Bp
Br

Bs
Bu

O1
O5

O9

LH

Bp
Br

Bs
Bu

O1
O5

O9

LL

Figure 3.2. Benchmark com-
parison of retailer perspective
objective values

Considering the objective values from the retailer perspective, which include perished

items and sales, we observe more varied results than those from the user perspective. The

values for the high perishables and low stockouts (HL) are the lowest, indicating that many

items perish, which generates high waste costs, as illustrated by Figure 3.6. The exact oppo-

site setting with low perish and high stockout (LH) achieves the highest retailer perspective

values because of the low waste costs. The retailer perspective objective values are similar

for HH and LL, which is surprising at first because they consider exact opposite situations.

Looking into these results in more detail, we see that for LL, the sales are higher than for

HH (Figure 3.4), but so are the number of perished items. In general, the solutions tend to

slightly decrease the sales objective values to improve the perishability objective, resulting

71

Bp
Br

Bs
Bu

O1
O5

O9
0

50

100

150

200

250

U
se

r
R

a
ti

n
g
 O

b
je

ct
iv

e

HH

Bp
Br

Bs
Bu

O1
O5

O9

HL

Bp
Br

Bs
Bu

O1
O5

O9

LH

Bp
Br

Bs
Bu

O1
O5

O9

LL

Figure 3.3. Benchmark com-
parison of user rating objective
values

Bp
Br

Bs
Bu

O1
O5

O90

100

200

300

400

S
a
le

s
O

b
je

ct
iv

e

HH

Bp
Br

Bs
Bu

O1
O5

O9

HL

Bp
Br

Bs
Bu

O1
O5

O9

LH

Bp
Br

Bs
Bu

O1
O5

O9

LL

Figure 3.4. Benchmark com-
parison of retailer sales objec-
tive values

in a better retailer perspective objective value. We next discuss each individual objective in

more detail.

When considering the user ratings in Figure 3.3, Bu performs the best, but as discussed

before, suffers from a high number of stockouts (Figure 3.5), which negatively affects users.

Interestingly, the solution Br results in high user ratings as well but incurs higher stockouts

too. The Br solution offers items with the greatest monetary gain considering the users’

probability of buying the item recommended to them. This can also be observed from

Figure 3.4, where Br achieves the highest sales objective values. This benchmark is different

from only offering items with high price margins, and additionally considers the probability

of users buying the recommended item, thus achieving recommendations with high user

ratings. Therefore, this competitive benchmark considers both retailer and user information,

72

Bp
Br

Bs
Bu

O1
O5

O9
0

500

1000

1500

S
to

ck
o
u
t

O
b
je

ct
iv

e

HH

Bp
Br

Bs
Bu

O1
O5

O9

HL

Bp
Br

Bs
Bu

O1
O5

O9

LH

Bp
Br

Bs
Bu

O1
O5

O9

LL

Figure 3.5. Benchmark com-
parison of stockout objective
values

Bp
Br

Bs
Bu

O1
O5

O9
0

500

1000

1500

P
e
ri

sh
a
b
ili

ty
 O

b
je

ct
iv

e

HH

Bp
Br

Bs
Bu

O1
O5

O9

HL

Bp
Br

Bs
Bu

O1
O5

O9

LH

Bp
Br

Bs
Bu

O1
O5

O9

LL

Figure 3.6. Benchmark com-
parison of perishability objec-
tive values

and is most similar to approaches that maximize the retailer’s expected profit [Das et al.,

2009, Akoglu and Faloutsos, 2010]. Since the monetary return is the only consideration, Br

solutions result in large numbers of stockouts and perished items. Since the recommendations

are not scenario dependent, the user rating of each solution is the same for all scenarios.

Figure 3.4 shows the sales objective function values. The LL setting results in the

greatest sales due to the retailer being able to sell the highest profit items in a low-risk

stockout and perishability environment. Counterintuitively, most of the time sales increase

when the optimization solution focuses less on the retailer perspective. This happens because

an increased focus on the retailer perspective usually lowers the current sales in favor of selling

lower-margin and lower-rating items that will perish soon, causing long-term profits instead of

short-term. Generally, less focus on retailer perspective results in less focus on recommending

73

soon-to-perish items, thus increasing the retailer sales but decreasing the retailer perspective

objective value due to perished items. This is again an important distinction that traditional

RS might miss while trying to maximize the revenue of the retailer. However, the LH setting

is an exception to this rule. The optimization solutions in setting LH already have a low

number of perished items (Figure 3.6) and thus a weight increase results in recommending

high-rating items that are not necessarily high profit for the retailer while lowering the

stockouts. Benchmarks Bs and Bp perform the worst because sales are negatively affected

when the only concern is selling soon-to-perish items or keeping the stockouts to a minimum.

The number of stockouts (Figure 3.5) is in a similar range for all approaches except

for benchmark Bu. Interestingly, the Bu approach might seem to be user-centric, however,

it results in a poor user experience because of the large number of stockouts, where users

cannot purchase items that were recommended to them. This is an important and general

shortcoming of the top-k recommendation rule and is a disadvantage of applying RS without

considering demand changes that follow. Our optimization solution considers user experience

overall and results in users obtaining the items that are recommended to them. Next, bench-

mark Bs solely focuses on minimizing the stockout objective function. In this benchmark,

not recommending anything is one solution with the optimal value of 0. This benchmark is

useful for analyzing the solution quality when little to no recommendations are made. The

objective values of perishability, user ratings, and sales are significantly underperforming.

Interestingly, due to the existence of multiple-optima solutions, the sales objective value is

not exactly zero in some cases. For the optimal solutions, larger weights result in better

stockout objective values because the focus shifts to the user perspective.

Figure 3.6 shows the perishability objective function values. HL has the highest per-

ishability values due to high inventory (low stockout risk) and high-risk perishability, which

74

results in the greatest number of soon-to-perish items. We observe that low stockout with

a low perishability ratio (LL) can result in a larger number of perished items than low in-

ventory with a high perishability ratio (HH). Thus, we note that low risk stockout is not

always desirable and the retailer should order less to reduce the number of perished items

due to high inventory levels. The benchmark Bp minimizes the perishability objective func-

tion by recommending soon-to-perish items first, and thus achieves the best perishability

results. The optimization solution with weight 0.1 is a close second to Bp in the perisha-

bility objective. However, benchmark Bp struggles when it comes to sales and user ratings.

The proposed recommendations are neither what users prefer nor the items with high-profit

margins. If the RS focuses solely on soon-to-perish items, both retailer and user perspectives

suffer. The perishability objective, in general, decreases when the weight decreases due to

more focus on the retailer perspective.

Overall, considering the user and retailer perspectives in Figures 3.1 and 3.2, the bench-

mark Bu performs badly on the user metrics due to stockouts, and Bs performs badly on

retailer metrics due to low sales. Benchmark Br performs worse in user perspective when

stockout is high risk, and in retailer perspective when perishability is high risk. Bench-

mark Br might seem like a good option for the retailer at first, however, the stockouts and

perished items that are ignored make it undesirable. Benchmark Bp performs worse than

our models on user ratings and sales, due to recommendations being made towards selling

the soon-to-perish items without considering user ratings or revenue. We have investigated

two additional benchmarks: user-perspective (consider both user rating and stockouts) and

retailer-perspective (consider both retailer sales and perishability). The user-perspective

benchmark was only slightly better in user perspective objective value while significantly

worse in retailer perspective objective value relative to the optimization solution due to a

75

high number of perished items. The retailer-perspective objective value was almost identical

to the optimization solution but significantly worse in user perspective solution due to a high

number of stockouts. Overall, the optimization solutions perform the best when considering

both the user and retailer perspectives.

3.4.3.2. Solution Quality of Heuristic Approach. Figure 3.7 compares the objective

function values for heuristic approaches. Each subfigure considers one of the four settings

with best-N approach applied, where N ∈ {100, 500}. The difference in the objective values

between N = 100 and 500 is minimal. The objective function value difference is even smaller

for N > 500. This result is very useful for a retailer offering a large number of products

since only considering a smaller subset of the most preferred products for each user and most

preferred users for each product decreases the problem size significantly. Therefore, using the

best-N approach improves the memory and solution time for both models while maintaining

the solution quality. We note that our heuristic approach also achieves objective function

values close to the optimal solution (within 1%). The heuristic performs similarly to the

optimization model that considers all the metrics in Equation 3.15.

3.4.3.3. Solution Quality Comparison of Stochastic and Deterministic Cases. We

analyze the solutions using expected values of L,E,D instead of creating 500 scenarios for

demand, inventory, and perishability. We denote these solutions with A and use the same

weights as before, i.e., {0.1, 0.5, 0.9}. Figure 3.8 shows that it is advantageous to consider

stochasticity because using only the expected values ignores the variance of the data. We

conclude that it is better to account for uncertainty compared to using a solution estimated

with averages.

76

H1
H5

H9
O1

O5
O9

110

130

150

170

Ob
jec

tiv
e V

alu
e

100

H1
H5

H9
O1

O5
O9

500

(a) ψ = 0.2 and ϵL = 100 (Setting LL)

H1
H5

H9
O1

O5
O9

150

200

250

Ob
jec

tiv
e V

alu
e

100

H1
H5

H9
O1

O5
O9

500

(b) ψ = 0.2 and ϵL = 30 (Setting LH)

H1
H5

H9
O1

O5
O9

800

600

400

200

0

Ob
jec

tiv
e V

alu
e

100

H1
H5

H9
O1

O5
O9

500

(c) ψ = 0.6 and ϵL = 100 (Setting HL)

H1
H5

H9
O1

O5
O9

90

100

110

120

130

Ob
jec

tiv
e V

alu
e

100

H1
H5

H9
O1

O5
O9

500

(d) ψ = 0.6 and ϵL = 30 (Setting HH)

Figure 3.7. Objective value comparison for N = {100, 500}

3.4.3.4. Solution Quality Changes with Weights and Number of Scenarios. Fig-

ure 3.9 provides additional insights by focusing on HH (high in both perishability and stock-

outs). The discussions are similar in other settings. Subfigure (a) shows that creating 500

scenarios is more than adequate, and after 100 scenarios the improvement in the objective

function value is negligible. We also observe that fewer scenarios result in a significant drop

in performance for weight λ ∈ {0.1, 0.5, 0.9}. Therefore, solutions obtained by considering a

variety of scenarios perform better. For example, a decision maker who considers only the

77

A1 A5 A9 O1 O5 O9
75

100

125

150

175

Ob
jec

tiv
e V

alu
e

(a) Setting LL

A1 A5 A9 O1 O5 O90

100

200

Ob
jec

tiv
e V

alu
e

(b) Setting LH

A1 A5 A9 O1 O5 O9
800

600

400

200

0

Ob
jec

tiv
e

Va
lu

e

(c) Setting HL

A1 A5 A9 O1 O5 O9
0

50

100

Ob
jec

tiv
e V

alu
e

(d) Setting HH

Figure 3.8. Objective value comparison of using scenarios

latest 3 weeks’ worth of data (S = 3) would be at a significant disadvantage. Subfigure (b)

shows the trade-off curve between the user and retailer perspectives with weights ranging

from 0 to 1. We observe that increasing the weight from 0 to 0.5 almost triples the user

perspective objective while reducing only 0.1 of retailer perspective objective. Therefore,

considering both perspectives rather than only one improves the overall quality of the so-

lution. The decision maker can select the best weight according to the needs of the user,

retailer, or both.

78

0 100 200 300 400 500
of | |

0

40

80

120

O
b
je

ct
iv

e
 V

al
u
e

Weight
0.1
0.5
0.9

(a)

50 75 100 125
User Perspective Objective

100

50

0

50

100

Re
ta

ile
r P

er
sp

ec
tiv

e
O

bj
ec

tiv
e

(b)

Figure 3.9. Objective value changes with the number of scenarios in (a), Ob-
jective values for different perspectives with different weights in (b), in setting
HH

3.5. Future Research & Conclusion

This article proposes a MIP model and heuristics that consider RS objectives from the

user and retailer perspectives. The user perspective aims to obtain highly rated item rec-

ommendations while minimizing stockouts. The retailer perspective aims to maximize profit

while minimizing the losses incurred by the perished items. Our models find solutions that

are high in quality for both criteria. We offer approximation methods that scale better than

the optimization model. We propose a heuristic model and show that its solution quality is

nearly as good as the optimal one. Therefore, the reader can decide to aim for the optimal

solution and use the optimization model, or use the heuristic, which is faster to solve and

more scalable. Finally, we study the improvements made to the objective function values

79

using our models, and compared the solutions with each of the benchmarks in different

settings.

Our work can be extended in multiple directions. Firstly, more emphasis on inventory

could be incorporated into the retailer perspective. In this way, excess inventory could be

considered and items with higher storage spaces might need to be recommended more often.

In our work, we create recommendations considering inventory as constant (although not

deterministic), however, inventory levels of items could be added as decision variables as well.

Note that, different user segments could behave differently to stockouts (e.g., purchasing a

substitute), and incurring different penalties to different user segments can be a possible

direction.

The stochasticity can be applied to different parts with more knowledge of the uncer-

tainties. Scenarios can be generated using the background knowledge of the system. For

example, the inventory generation process can represent a problem with supply chain dis-

ruptions. Our work assumes the distribution of the parameters, but more work can be done

solely focusing on the solution quality changes tied to the distributions. If more complex

distributions are considered, the solution quality of the models may change, and it would be

worthwhile to investigate the changes in solution quality with changes in distributions.

While creating our parameters such as the ratings of the items for the users and the

effect of recommendation on the increased demand for a given item, we had to make certain

assumptions. We use an online retailer dataset in an offline setting. If our work is extended

to an online setting then it would be possible to understand and update our parameters

accordingly. Next, by obtaining data from the users continuously, we could improve the

quality of the parameters for each user to reflect their needs better. Even in an offline

80

setting, future research can include different parameter creation ideas and investigate the

changes in solution qualities in different settings.

81

CHAPTER 4

A Large-scale Constrained Optimization Model for Multi-Objective

Recommender Systems

82

4.1. Introduction

Recommender systems (RSs) filter information to make personalized recommendations

based on the user’s needs. One of their main objectives is recommending each user “relevant”

items. However, “relevant” can convey different ideas for different users and problems. For

example, businesses can employ RSs to recommend travel destinations, clothing, movies,

songs, and many other types of products or services to their user base. While issues such

as diversity and novelty have been discussed for over a decade in RS setting [Ziegler et al.,

2005, Vargas and Castells, 2011], the focus has largely been on accuracy and decision-support

metrics of the user such as root mean square error (RMSE), precision or recall. However,

focusing only on the user results in item provider and system needs and objectives being

ignored. In recent years, the RS literature has increasingly considered the objectives of item

providers and the RS platform in addition to the user needs, leading to the emergence of RS

problems with multiple objectives [Abdollahpouri et al., 2020].

Multi-objective recommender systems (MORSs) are designed to optimize or balance mul-

tiple objectives simultaneously [Jannach, 2022]. The methods solving MORS problems find

a solution that considers all the objectives. For example, multistakeholder recommender

systems [Abdollahpouri et al., 2020] consider the needs of multiple stakeholders and can

be studied as a special type of MORS [Jannach, 2022]. Given that most businesses need to

tackle multiple objectives [Jannach and Jugovac, 2019], it is crucial to solve MORS problems

as efficiently as possible. For example, some job matching RSs such as LinkedIn recommend

jobs matching both business-side requirements with user qualifications and job-seeking intent

[Rodriguez et al., 2012]. However, because of the inclusion of multiple objective functions,

MORS problems may require more specialized approaches [Jannach, 2022].

83

Appropriately implemented constrained optimization models provide an effective means

to solve multi-objective problems, and therefore they have been recently used to solve MORS

problems [Seymen et al., 2021b, Sürer et al., 2018, Seymen et al., 2022]. They can find

a solution optimizing an objective function satisfying a given set of constraints that are

expressed as mathematical expressions. For example, if we want to offer items to users

matching their previous history as in the calibration RS problem [Seymen et al., 2021a, Steck,

2018], we can employ a constrained optimization model that finds a list that optimizes user

utilities and a calibration metric simultaneously. These models use constraints to address

considerations encountered in RS problems.

Several problems can arise while implementing constrained optimization models. When

the models include integer decision variables, such as in mixed-integer programs (MIP),

scalability and feasibility can prove hard to achieve. Seymen et al. [2021b] discuss the

feasibility and scalability issues of the MIP model they offer to solve MORS problems with

diversity, popularity, and fairness considerations. Solving a MIP model can require significant

memory to handle a large branch-and-bound tree [Morrison et al., 2016] used in the solution

method. As the number of users and items increases, scalability can become a significant

drawback. There are a couple of ways to alleviate this issue.

One solution to the scalability problem is to use heuristics [Bradley and Smyth, 2001,

Seymen et al., 2022, Agarwal et al., 2011], which make the problem smaller or offer items

one step at a time. However, the heuristic solutions obtained this way may be of inferior

quality according to the objective function due to their myopic nature [Seymen et al., 2022,

2021a]. Some considerations are harder to scale than others, which is discussed further in

Section 4.2, and heuristic approaches can relax these considerations to improve scalability.

Another solution to the scalability problem is to reformulate the models [Seymen et al.,

84

2022] to alleviate memory issues. Furthermore, finding feasible solutions to optimization

models and the parameter selection can pose challenges when there are multiple objectives

to consider. It is not always trivial to choose parameter settings that result in high-quality

solutions. In our work, we implement a large-scale optimization algorithm that tackles both

the feasibility and scalability issues.

In the literature, solving constrained optimization models in RSs using commercially

available software is usually deemed disadvantageous due to their memory requirements. In

this work, we offer a large-scale optimization model that solves a variety of MORS problems.

It recommends k items to users in post-processing. We estimate the utilities of item-user

pairs using some RS algorithm and then decide which k items to recommend users in the

system considering multiple objectives. Our main goal is to alleviate the scalability problem

of constrained optimization models while dealing with multiple objectives. We also define

and discuss the types of constraints that can affect scalability for constrained optimization

models. We illustrate how our large-scale optimization model exploits the structure of these

constraints to improve scalability. We discuss the performance of our model using the Movie-

Lens 20M dataset tackling fairness, popularity, and diversity considerations. Additionally, we

compare the results of our large-scale model with solutions of a state-of-the-art constrained

optimization model and heuristics.

4.2. Literature Review

In recent years, constrained optimization models have been applied to a variety of prob-

lems in MORSs. Several mixed-integer programming (MIP) models are offered, where the

goal is to recommend k items to each user considering a variety of constraints. These models

efficiently tackle multiple objectives simultaneously [Sürer et al., 2018, Seymen et al., 2021b,

85

2022]. Sürer et al. [2018] propose a MIP model to solve a multistakeholder RS problem.

However, their Lagrangian relaxation procedure results in infeasible solutions that should

be made feasible, which essentially is a heuristic approach. Seymen et al. [2021b] offer a

MIP model addresses diversity, popularity, and fairness metrics simultaneously and beats

state-of-the-art heuristics, but their model can have issues with feasibility and scalability.

Malthouse et al. [2019a] employ integer decision variables to trade off user utility with ad

revenue, but their model does not address what we will call across-list constraints.

Other works [Agarwal et al., 2011, 2012] employ linear programming models to find

recommendations as probabilities. Chen et al. [2020] use incentives to sell soon-to-perish

items rather than including explicit constraints for perishability. Jambor and Wang [2010]

use linear decision variables to decrease the popularity bias of recommendations. These

linear decision variables might represent the probability or importance factor of an item for

a user, so higher values would make the item more likely to be recommended. These decision

variables are later binarized to specify whether an item is recommended to a user or not,

similar to MIP models.

Popularity bias in RSs refers to the inclination to recommend popular items beyond their

justified popularity while under-recommending relevant but less popular items, despite their

potential value to certain users [Abdollahpouri et al., 2019b, Abdollahpouri, 2020]. This bias

is extensively investigated in the RS literature due to its prevalence and importance [Abdol-

lahpouri et al., 2019a, Jannach et al., 2015, Zhang et al., 2021, Deldjoo et al., 2022]. One way

to tackle this issue with constrained optimization is to restrict the overall popularity of the

recommendations with an upper bound (UB) [Seymen et al., 2021b]. The popularity value

of each item can be calculated by the number of users who interacted with the item before.

In this way, the system designer can control the popularity of the overall recommendations.

86

There are a variety of ways [Kunaver and Požrl, 2017, Castells et al., 2021] researchers

define and measure diversity. Castells et al. [2021] assess diversity by the difference of items

from each other in a user list in RS context. This is one way to evaluate diversity at

the user-level. There are works considering the diversity of items for all users across their

recommendation lists as well [Adomavicius and Kwon, 2011a, Zhou et al., 2010]. Seymen

et al. [2021b], Sürer et al. [2018] aim to improve the diversity of each user’s top-k list by

forcing each list to have at least some specified number of unique items. In this way, the

system designer can set the acceptable lower limit of diversity for each user’s list. For

example, a music recommendation system designer can force the optimization model to

recommend at least 8 different artists in a top-10 list, assuming the artist information is

available for those songs.

Fairness is extensively researched in RSs. Deldjoo et al. [2023] discuss fairness as a

subjective and social construct. Wang et al. [2023] provide definitions for fairness in certain

contexts, such as individual fairness, outcome fairness, process fairness and more. They note

that alleviating RS unfairness is a crucial goal that results in increased user interaction,

greater motivation for the item providers, increased long-term efficiency of the system and

many other benefits. We focus on RSs that create unfair distributions of recommended items

among the item providers. This unfairness can lead to relevant providers not getting enough

recommendations for their items [Patro et al., 2020]. Additionally, item provider might

choose to leave the system if their items are not recommended to the users. The system

designer can specify a lower bound on the number of items recommended for each provider

to ensure that every item provider is recommended at some level [Patro et al., 2020, Sürer

et al., 2018]. Similarly, upper bounds can be included as constraints so that no provider gets

87

over-recommended [Seymen et al., 2021b]. In this way, the system designer can specify that

the number of allowed recommendations for each provider is in a set interval.

The issues mentioned above can be modeled as constraints in different ways. It is useful

to group constraints as within-list and across-list. The scope of within-list constraints is a

single user list independent from other users. For example, a constraint to recommend 60%

horror movies to every user individually is within-list since the recommendations of each

user are independent of each other. Formally, within-list constraints only include decision

variables with one specific user. Models that exclusively incorporate within-list constraints

[Seymen et al., 2021a, Malthouse et al., 2019a] have fewer scalability issues because the

problem separates, and each user’s problem can be solved independently. In such settings,

the memory requirements become trivial and the computing time can be improved greatly

by solving different subproblems on different processors.

Across-list constraints apply across more than one users’ recommendation lists concur-

rently. For example, limiting the number of recommendations of an item or group of items

due to stockout possibility can be formulated as an across-list constraint [Seymen et al.,

2022], since the total number of recommendations depend on all the users. Sürer et al. [2018]

increase the recommended retailer/provider diversity using both within-list and across-list

constraints. Therefore, when across-list constraints are considered, the recommendation de-

cision for one user changes the decision for another, and then the problem should consider

every user recommendation list simultaneously. This is why the across-list constraints in

RS problems can be considered complicating constraints, since their inclusion makes sepa-

rating the problem impossible. It is worthwhile to remove or relax across-list constraints

and capture them in different ways. Depending on the problem, across-list constraints can

be represented as within-list constraints, or even pre-processing steps, without resulting in

88

significant accuracy loss. Table 4.1 summarizes which papers have addressed the different

types of constraints.

Consideration Within-List Across-List

Diversity [Seymen et al., 2021b]
[Sürer et al., 2018] [Sürer et al., 2018]

Popularity [Seymen et al., 2021b]
[Jambor and Wang, 2010]

Fairness [Malthouse et al., 2019a] [Seymen et al., 2022, 2021b]
[Agarwal et al., 2011, 2012]

Table 4.1. Literature review of RS considerations categorized into within- and
across-list constraints.

4.3. Methodology

This section defines the post-processing top-k RS problem and then describes our Dantzig-

Wolfe decomposition algorithm to solve large-scale RS problems.

4.3.1. Problem definition

We formulate a post-processing top-k RS problem as a constrained optimization model. Let

U denote the set of users and I be the set of items in the system. We assume that items are

partitioned into groups. For example, items on a retail platform can be grouped by vendor,

movies in terms of popularity, songs by the artist on a music platform, or news articles by

the publisher (e.g., FNC, CNN, etc.). Let Is be the partitions of set I for s ∈ S, with S

as the set of all groups. Therefore, ∪s∈SIs = I and Is ∩ Is′ = ∅ for s ̸= s′. Index s stands

for the supplier, although groups could be entities other than suppliers, such as a manual

grouping of retail items based on similarity as in dairy, or expiration day, as in perishable or

non-perishable [Seymen et al., 2022].

89

We assume that the predicted ratings or utilities r̂iu have already been estimated with

an existing RS algorithm for item i and user u. The decision variables are denoted as xiu,

which take the value 1 if the system recommends item i to user u, and 0 otherwise. Our

generic optimization model is as follows:

max
x

1

k|U |
∑
u∈U

∑
s∈S

∑
i∈Is

r̂iuxiu

subject to

βs ≥
∑
u∈U

∑
i∈Is

xiu ≥ αs (∀s ∈ S)(4.1)

∑
s∈S

∑
i∈Is

xiu = k (∀u ∈ U)(4.2)

xiu ∈ {0, 1} (∀s ∈ S, i ∈ Is, u ∈ U)(4.3)

The objective function maximizes the average utility of all recommended items in the

top-k lists. Constraint (4.1) forces the model to recommend at least αs and at most βs many

items from the group s. Because the set Is denotes the set of items provided by each group

s, if recommendations for each group are determined in proportion to the number of items in

their corresponding set, as expressed by the ratio k|U ||Is|
|I| , it is possible to establish upper and

lower bounds using the set Is. For example, setting αs = 0.9× |Is|, βs = 1.1× |Is| (rounded

to the nearest integer) would lead to recommendations falling within a narrow interval for

each group s. Constraint (4.2) ensures that the model recommends exactly k items to every

user u ∈ U . Constraint (4.3) requires the decision variables xiu to be binary.

90

The across-list constraint (4.1) is common in the MORS literature. By maximizing user

utility in the objective function and enforcing constraints on the number of items recom-

mended from each group, the model aims to satisfy the preferences of individual users, while

also ensuring that groups are adequately represented in the recommendations. Further-

more, popularity and diversity considerations can be represented as within- or across-list

constraints as discussed in Section 4.2.

Solving this model can be cumbersome when the user and item sets are large. The

scalability is a significant disadvantage of this model because it has |U | · |I| decision variables

and 2|S| + |U | constraints. Without the across-list constraints of type (4.1), this problem

could be solved for every user through sorting. We propose using the well-known DW

decomposition algorithm with delayed column generation to solve these large-scale problems

by handling the across-list Constraint (4.1) in an efficient way.

4.3.2. Dantzig-Wolfe Decomposition Approach

The Dantzig-Wolfe (DW) decomposition is an algorithm for solving large-scale optimization

models, originally developed by Dantzig and Wolfe [1960]. The DW decomposition breaks

down the original optimization problem into a set of smaller subproblems by exploiting

special structures. Then, each of these sub-models are solved separately. In this way, the

DW decomposition can solve problems with many decision variables or constraints that are

difficult or impossible to solve using other methods. Assume a model with the following

simple representation:

91

max
x

cx,

subject to

Ax ≤ b

x ≥ 0.

Now assume that matrix A in constraint Ax ≤ b has the following block-angular structure:

A =

A11 A12 . . . A1n

A21 0 . . . 0

0 A32 . . . 0

...
...

0 0 . . . Amn

.

If the first row of the matrix A is removed, the structure of the remaining rows allows the

associated optimization problem to separate into smaller, independent subproblems that can

be solved concurrently. Note that, the first block of rows, A11 to A1n corresponds to the

across-list Constraint (4.1) and the block diagonal part of A maps to users.

Let P be the set of all solutions that satisfy the Constraints (4.2) and (4.3). Let Bp

denote a specific solution, where Biup = xiu, p ∈ P . Define R̂p as the utility of solution p

i.e., its objective function value, and Wp as the weight of given solution p, whose meaning

will become clear shortly. We take the convex combination of all the solutions Bp, which

gives us the convex hull of the problem. The aim is to start with a subset of known solutions

Bp, and find the maximizing solution in the convex hull. Consequently, the DW master

problem is given below:

max
W

∑
p∈P

R̂pWp

92

subject to∑
i∈Is

∑
u∈U

∑
p∈P

BiupWp ≥ αs (∀s ∈ S)(4.4)

∑
i∈Is

∑
u∈U

∑
p∈P

BiupWp ≤ βs (∀s ∈ S)(4.5)

∑
p∈P

Wp = 1(4.6)

Wp ≥ 0 (∀p ∈ P)(4.7)

In the DW master problem, we maximize a linear program, using convex combination

of solutions represented by Biup. Constraints (4.4) and (4.5) represent our across-list con-

straints. Constraint (4.6) requires weights Wp to sum to 1. Constraint (4.7) forces weights

of the solutions to be non-negative.

Next, using the dual variable information obtained from the solution of the master prob-

lem, we separate and solve the following problem for each user u independently:

min
x

∑
u∈U

∑
s∈S

∑
i∈Is

(qs − ps − r̂iu)xiu − v

subject to

Constraints (4.2) and (4.3)

The objective function is the reduced cost of W decision variables, where qs, ps, and, v are

the dual variables of Constraints (4.4), (4.5), and (4.6), respectively. Reduced costs represent

the improvement that can be made by including solutions to the master problem that were

not considered before. If we have any non-positive reduced cost for a user u, we include that

93

solution p to the set of solutions P in the master problem, and solve the master problem

again. We continue to solve these subproblems until all of them have positive reduced cost

values.

The DW approach is more desirable when the subproblems are easy to solve. In our work,

the subproblems for user u can be solved by simple sorting of predicted ratings modified by

dual variables, qs−ps−r̂iu, and recommending items until every user is recommended exactly

k items. Note that the DW approach stops when the optimal solution to the relaxed model

is found. We name our model using the DW approach the DW model. In our results section,

we show that the solution is in very close proximity to the global optimum for the MovieLens

20M data.

Next, we discuss the application of penalties when considering popularity bias and diver-

sity metrics. Here, we shift our focus to MORSs by solving multiple different subproblems

simultaneously. We address popularity bias by penalizing each item by its popularity. With

diversity, we follow [Seymen et al., 2021b] and put items into distinct groups based on their

genre. We define list diversity as the number of distinct groups recommended to a user in

their top-k lists. In contrast to [Seymen et al., 2021b], we do not include diversity as a con-

straint, but as a separate objective function. As a result, the diversity is handled differently

between the two models.

We incentivize recommending items that belong to distinct genres to increase recommen-

dation list diversity for the users. We define a trade-off parameter between diversity and

utility. A high incentive parameter might cause the DW model to recommend lower util-

ity items in order to increase the diversity of a recommendation list, while a low incentive

parameter might result in higher utility and lower diversity recommendation lists.

94

In the DW model, we address the popularity bias problem by penalizing the recommenda-

tion of popular items using the following pre-processing step: r̂i = r̂i−γωi, ∀i ∈ I, γ ∈ [0,∞),

where ωi denotes the popularity value of item i and γ is the popularity penalty value. Our

approach is better suited for addressing feasibility and scalability issues, compared to models

that utilize across-list constraints [Seymen et al., 2021b].

Considering the DW model, we create a new set I∗su that includes all the items that are

candidates to be offered to each user u from supplier s if we solve the DW model to optimality.

First, we define Vsu as the set of k items with highest utility (after applying popularity

penalty) for supplier s and user u. We also define a function g(·) that determines the set of

distinct genres of a list of items. Therefore, |g(Vsu)| results in the number of distinct genres

belonging to the top-k solution of each u−s pair. Next, we take the item with the maximum

utility for each supplier s, user u, and genre g. Then, the value η = min(k, |g(Is)|)−|g(Vsu)|

is the number of distinct genres that can be added to the set Vsu to include at least k or

|g(Is)| many distinct items. We add η many items with distinct genres to the set Vsu which

results in |I∗su| = |Vsu|+ η.

Theorem 1: Consider DW model that tackles fairness by Constraint (4.1), popularity

with popularity penalties, and diversity with diversity incentives. We recommend k items in

set I for users in set U while maximizing the overall predicted utility. Every item belongs

to a genre group g ∈ T and supplier group s ∈ S. The optimal recommendation list of the

DW model can be obtained recommending items exclusively from set I∗su, ∀s ∈ S, u ∈ U .

Proof 1: Assume a feasible solution to the DW model x̃ with objective function value

f(x̃). Define Ls′u′ (x) as the list of items recommended to user u′ from supplier s′ . Assume

Ls′u′ (x) has at least one item i
′ ̸∈ I∗

s′u′ with xi′u′ = 1 for user u′ supplier s′ . Since, x̃ is

feasible, constraints of type 4.1 are satisfied.

95

Define a set I−
s′u′ := {i|i ∈ I∗

s′u′ and xiu′ = 0}. Firstly, assume g(Ls′u′ (x) \ i′) =

g(Ls′u′ (x)). Note, set I−
s′u′ ∩ Vs′u′ ̸= ∅ because xi′u′ = 1, i

′ ̸∈ I∗
s′u′ and |I∗

s′u′ | ≥ k. Then,

for any i
′′ ∈ I−

s′u′ ∩ Vs′u′ , we can obtain a new solution with xi′′u′ = 1, xi′u′ = 0 which is

feasible (fairness stays the same) with f(x̃2) ≥ f(x̃1) because r̂i′′u′ ≥ r̂i′u′ (conclusion 1).

Secondly, assume |g(Ls′u′ (x) \ i′)| < |g(Ls′u′ (x))| (cond. 2). If ∃i′′ ∈ I−
s′u′ s.t. g(i′′) = g(i

′
)

conclusion 1 applies. Then, ̸ ∃i′′ ∈ I−
s′u′ s.t. g(i′′) = g(i

′
). This means g(i′) ̸∈ I∗

s′u′ due to

cond. 2. Therefore, |g(Is′)| > k, and ∃i′′ s.t. |g(i′′ ∪ (Ls′u′ (x) \ i′))| = |g(Ls′u′ (x))|, because

|g(Ls′u′ (x) \ i′)| < k, while |g(I∗
s′u′)| = k. Due to construction of set I∗

s′u′ , all items i′′ ∈ I−
s′u′

result in better objective function values when switched with i′ .

Using Theorem 1, the number of decision variables can be reduced from |I| × |U | to at

most 2|S|×k×|U | in the preprocessing step. This reduction allows us to focus on the “best”

items each supplier provides to each user. When the number of suppliers is low and the

number of items they provide is high, we can eliminate millions of decision variables without

a decrease in the objective function value.

4.4. Benchmarks

In this section we compare state-of-the-art benchmarks with DW. We present a con-

strained optimization model as a benchmark that can solve MORS problems optimally, but

may face scalability issues in larger datasets. We also present single-constraint models that

scale well, but struggle with tackling multiple objective functions simultaneously.

96

4.4.1. Unified Optimization Toolbox

Seymen et al. [2021b] propose an integer optimization model to alleviate the problems of

popularity bias, diversity, and, fairness (discussed in Chapter 2). We call their model Uni,

short for unified, and briefly discuss the details of it here:

max
x

1

k|U |
∑
i∈I

∑
u∈U

r̂iuxiu(4.8)

subject to: Constraints (4.1,4.2,4.3)(4.9) ∑
i∈I

∑
u∈U

xiuωi ≤ ψ,(4.10)

∑
i∈Fj

xiu ≥ yju (∀j ∈ T, u ∈ U)(4.11)

∑
j∈T

yju ≥ w (∀u ∈ U)(4.12)

yju ∈ {0, 1} (∀j ∈ T, u ∈ U)(4.13)

Constraints (4.1,4.2,4.3) are shared between our generic suggested model and Uni so that

the two models produce the same top-k lists for their users with fairness implemented as an

across-list type constraint. The Uni model forces that each user receives at least w many dis-

tinct genre recommendations by implementing within-list type constraints (4.11,4.12,4.13),

where T is the set of genres, and Fj is the set of items with genre j ∈ T . The Uni model

also implements across-list constraints (4.10) to make sure that overall popularity of the

suggested items are below parameter ψ, which is defined by the system designer.

For given parameters ψ and w, the advantage of Uni is the ease of explanation. We know

exactly the value of total popularity and number of distinct items recommended to each

user. However, this approach does not scale to large instances since popularity and fairness

97

are defined as across-list constraints. Additionally, although diversity is controlled with a

set of within-list constraints, the constraints are imposed on users without considering how

they react to them. For example, one user might only want recommendations from a small

set of groups, and by forcing the diversity constraint we might decrease the utility of this

user significantly. In that case, it could be beneficial to use a wu value that is different for

each user, but then this value is not easy to come up with. In our DW approach, we solve

these problems by implementing incentives to increase diversity, and penalties to decrease

the popularity.

4.4.2. Single-constraint models

This subsection discusses single-constraint models in more detail. A single-constraint model

refers to a model that solves only one of the subproblems of fairness, popularity bias, and

diversity in addition to maximizing user utility. Throughout, Lu = {i | xiu = 1} represents

the set of items that are recommended to user u.

4.4.2.1. Diversity. Diversity in top-k lists has received considerable attention in the liter-

ature [Kunaver and Požrl, 2017, Castells et al., 2021, Ziegler et al., 2005]. The objective is

to increase the diversity of the recommended items, where each item is assumed to belong

to some group and two items belonging to two different groups are dissimilar. In this case,

the problem can be solved independently for each user. Consequently, simple sorting ideas

are useful to maximize recommendation list diversity. We use an efficient heuristic model

[Smyth and McClave, 2001] aimed at maximizing both the diversity and utility of the user

recommendation lists. We call this heuristic the “Diversity” model. The heuristic uses a

weight parameter to create a trade-off between utility and Intra-List Diversity (ILD) [Smyth

98

and McClave, 2001], where ILD is defined as:

ILD =
1

|U |
∑
u∈U

∑
i∈Lu

∑
i′∈Lu
i′ ̸=i

1− sim(i, i′)

|Lu|(|Lu| − 1)
.(4.14)

ILD metric measures the average diversity of all items in a given top-k list, across all

users. The sim(·) is a function that measures similarity between two items. In this work, this

measure takes value 1 if two items share the same genre, and 0 otherwise. Higher diversity

lists have higher ILD values.

4.4.2.2. Popularity. Popularity is another important consideration. Like diversity, pop-

ularity can be solved without employing across-list constraints. Therefore, we can use an

algorithm that is similar to the one we use for diversity [Kunaver and Požrl, 2017]. The

heuristic uses a weight parameter to create a trade-off between utility and total popularity

of the recommendation lists. We call this heuristic the “Popularity” model. Consistent with

DW, we use a weight parameter to penalize the popularity of the item by minimizing the

ARP (Average Recommendation Popularity [Abdollahpouri et al., 2019a]). ARP is defined

as:

ARP =
1

|U |
∑
u∈U

∑
i∈Lu

ωi

|Lu|
.(4.15)

ARP value is the average popularity value of items recommended to users. We define

ωi as the number of users who have rated an item i in the dataset. Lower popularity

recommendations have lower ARP values.

4.4.2.3. Fairness. Furthermore, we consider fairness in our computational study. The

provider fairness problem requires across-list constraints, which may result in issues with

99

scalability. We compare our model with a state-of-the-art heuristic algorithm, FairRec [Patro

et al., 2020]. FairRec tackles fairness in a similar manner to ours, where the aim is to allocate

items fairly. We modify FairRec to accommodate multiple item recommendations by the

same provider, and call it the “Fairness” model. We employ one of the fairness metrics

suggested in this work:

Z = −
∑
s∈S

(
Rs

|U |k

)
log|S|

(
Rs

|U |k

)
,(4.16)

where Rs =
∑

u∈U
∑

i∈L(u) 1(i ∈ Is) gives the total number of times items of item provider

s is recommended. If all providers’ items are recommended in equal amounts, then Z value

becomes 1. When the inequality between item provider recommendations increases, the Z

value decreases.

4.5. Computational Study

We conduct a computational study using the MovieLens 20M dataset. In the first sub-

section, we describe the dataset and evaluation procedure in more detail. Then, we compare

the DW model with Uni and the single-constraint models. All the results were obtained by

running the computations on a pc with 12th Gen Intel(R) Core(TM) i7-12700H, 2.70 GHz

processor and 16GB of RAM.

4.5.1. Dataset Description

The MovieLens 20M dataset has 20 million recorded ratings between items (movies) and

users. Users rate items with a value between 0.5 and 5 as an explicit rating. We have a total

of 138,493 users and 18,345 items. We remove items rated less than five times because we

do not deal with the cold start problem. We use the ALS algorithm in PySpark to estimate

100

utilities of the user-item pairs without rating information in the dataset. We employ the

ALS algorithm with 5-fold cross-validation to estimate the utilities due to its efficiency with

handling large-scale data.

First, we create 15 groups (S = 15) and distribute items randomly. In practice these

groups would be likely created using known item features, e.g., provider information. After

estimating the utilities, we apply Theorem 1 to remove items that will not be in the optimal

recommendation lists. Some items may have more than one genre in the dataset. Only one

genre is assigned to those items randomly, as in [Seymen et al., 2021b]. We use the resulting

dataset in the following section.

4.5.2. Results

We divide our results into two subsections. First, we discuss the results of DW and Uni models

using a subset of the MovieLens 20M dataset. Second, we solve the whole dataset with DW

Model, and compare our methods with the benchmarks discussed in 4.4.2.

We evaluate sixteen configurations of different diversity and popularity parameters. We

provide the parameters used for each sample run in Table 4.2 below. If not noted otherwise,

we chose 1.4|Is| as upper bounds and 0.6|Is| as lower bounds for item providers throughout

this chapter. This selection improves the fairness metric Z while not being too strict on the

utilities.

An increase in the popularity penalty value should result in lower utility with a lower

popularity bias. An increase in the diversity incentive should result in lower utility with

a higher diversity value. Utility decreases with the increase in both parameters because

popularity and diversity have a trade-off relationship with utility. If we only maximize the

predicted utilities of the recommendation lists, we offer the highest utility items without

101

Sample No Pop penalty Div. incentive Sample No Pop penalty Div. incentive
1 0 0 9 1.0 0
2 0 0.1 10 1.0 0.1
3 0 0.2 11 1.0 0.2
4 0 0.5 12 1.0 0.5
5 0.5 0 13 2.0 0
6 0.5 0.1 14 2.0 0.1
7 0.5 0.2 15 2.0 0.2
8 0.5 0.5 16 2.0 0.5

Table 4.2. Sample run configurations

considering popularity bias or diversity. But if we put more weight on diversity and pop-

ularity, the models might select lower utility items to create less popular and more diverse

recommendation lists. A solution is better if it has higher utility, ILD and Z values, or

lower ARP values. For better readability, we divide utilities with 104.

4.5.3. Small data: DW vs. Uni

For comparing DW and Uni constrained optimization models, we first solve the DW model

with parameters given in Table 4.2 using four randomly selected subsets of 2500 users. We

use a smaller part of MovieLens 20M because Uni faces scalability issues. We calculate the

values of popularity, diversity, and the number of provider recommendations. Then, we solve

the Uni model using these values to match the metrics as closely as possible. Note that we

round the diversity value for Uni because selecting non-integer w value is same as selecting

⌈w⌉, since the left-hand-side will always have integer values in Constraint (4.12). Therefore,

we round the value to match the diversity value of DW solution.

4.5.3.1. Without Diversity. Since the DW and Uni models handle diversity differently,

we start by comparing the solutions of the models without the diversity consideration. There-

fore, in the DW model, the diversity incentive is selected as 0, and w = 0 in Constraint 4.12

102

in the Uni model. We compare the performance regarding popularity, utility and fairness in

the boxplots shown in Figures 4.2 to 4.4 for the parameters presented in Table 4.2.

0.05

0.10

0.15

0.20

Po
pu

la
rit

y
(A

RP
) V

al
ue

0.0 0.5

DW Uni
0.05

0.10

0.15

0.20
1.0

DW Uni

2.0

Figure
4.2. Popu-
larity values
for different
popularity
penalty val-
ues

11.80

11.85

11.90

11.95

Ut
ilit

y
Va

lu
e

0.0 0.5

DW Uni
11.80

11.85

11.90

11.95
1.0

DW Uni

2.0

Figure
4.3. Utility
values for
different
popularity
penalty val-
ues

0.984

0.985

0.986

0.987

Fa
irn

es
s (

Z)
 V

al
ue

0.0 0.5

DW Uni

0.984

0.985

0.986

0.987

1.0

DW Uni

2.0

Figure
4.4. Fair-
ness values
for different
popularity
penalty val-
ues

We note that the popularity values are almost the same, as can be observed in Figure 4.2.

As expected, the popularity value approaches 0 with an increase in the popularity penalty.

If we set the diversity incentive to zero, the overall utilities decrease with the increase in

popularity penalty (Figure 4.3) because the models offer lower utility items to lower the

overall popularity of the recommendations. Note that both models still perform very close

to each other, with DW having only a slight advantage over Uni. This shows that DW

produces solutions very close to optimal without the scalability problem of Uni model. The

DW model has a slightly lower fairness value as observed in Figure 4.4. The very small

difference in fairness can be explained by the DW model finding a slightly higher utility

103

solution than Uni, showcasing the trade-off between them. The Z values are very close to 1,

meaning we achieve fair recommendations for providers using either model. The upper and

lower bounds can be relaxed or tightened for looser or stricter fairness.

0.80

0.85

0.90

0.95

1

Di
ve

rs
ity

 (I
LD

) V
al

ue

0.0 0.1

DW Uni

0.80

0.85

0.90

0.95

1
0.2

DW Uni

0.5

Figure 4.5. Diversity for
different diversity incentive
values

0.1

0.2

0.3

Po
pu

la
rit

y
(A

RP
) V

al
ue

0.0 0.5

DW Uni

0.1

0.2

0.3
1.0

DW Uni

2.0

Figure 4.6. Popularity for
different popularity penalty
values

4.5.3.2. With Diversity. In addition to fairness, utility, and, popularity, we now take

diversity into consideration. Figures 4.5 to 4.10 show the results of comparing the DW and

Uni models. We observe that the DW model can find solutions within approximately 0.1%

of the optimal solution. In all graphs, the x-axes show the models, and the y-axes show the

metric value.

104

11.6

11.7

11.8

11.9

Ut
ilit

y
Va

lu
e

0.0 0.1

DW Uni

11.6

11.7

11.8

11.9

0.2

DW Uni

0.5

Figure 4.7. Utility values for
different diversity incentive
values

11.6

11.7

11.8

11.9

Ut
ilit

y
Va

lu
e

0.0 0.5

DW Uni

11.6

11.7

11.8

11.9

1.0

DW Uni

2.0

Figure 4.8. Utility values for
different popularity penalty
values

Figure 4.5 shows that the DW and Uni models obtain slightly different values of the

diversity metric ILD, with DW having higher variance. The results for diversity are closely

linked to utility and fairness, and if one solution is better in diversity then it is worse in either

utility or fairness (Figures 4.7,4.9). For example, DW solutions with diversity incentive 0.5

results in higher diversity than Uni solutions. In those samples, we observe that DW obtains

lower utility (Figure 4.7). This result shows that we do not observe Pareto dominance

between the two models.

Figure 4.6 compares the average popularity of the recommendations. Both models per-

form similarly regarding popularity. The popularity value decreases (values closer to zero

are better) with the increase in popularity penalty, but the rate of decrease slows down. The

105

0.981

0.983

0.985

0.987

Fa
irn

es
s (

Z)
 V

al
ue

0.0 0.1

DW Uni

0.981

0.983

0.985

0.987
0.2

DW Uni

0.5

Figure 4.9. Fairness values
for different diversity incen-
tive values

0.981

0.983

0.985

0.987

Fa
irn

es
s (

Z)
 V

al
ue

0.0 0.5

DW Uni

0.981

0.983

0.985

0.987
1.0

DW Uni

2.0

Figure 4.10. Fairness val-
ues for different popularity
penalty values

system designer can determine whether utility or popularity is more important, and set the

parameters accordingly.

Overall, utility decreases with an increase in diversity and popularity (Figures 4.7,4.8).

However, the decrease in utility is not very large between samples, which means our solutions

can improve on diversity and popularity while not resulting in a strong decrease in utility.

Increasing diversity and lowering popularity bias results in, at most, a 3% predicted utility

decrease, while the diversity of each users’ recommendation lists can be improved by up to

approximately 20% and popularity values by up to approximately 80%.

In Figures 4.9 and 4.10, we observe fairness value Z. We set the upper and lower bounds

to the same values throughout this results section. The system designer can change this

106

interval, and tighter intervals will result in higher Z values. Our interval selection is quite

strict, therefore, all the Z values observed are close to 1. Since fairness is not included in the

objective function, as long as the constraints of upper and lower bounds are satisfied, the

models do not aim to improve fairness further. Therefore, small changes between values are

expected and do not necessarily mean one solution is better. If one model beats the other

one in fairness, they do worse in either utility, diversity, or popularity.

Overall, the DW method finds solutions very close to the Uni model optimal solution. In

comparison, DW is much better in scalability. We posit that the scalability and efficiency of

DW make it a better model for large datasets considering the insignificant decrease in the

solution quality compared to the Uni model optimal solution.

4.5.4. Big data: DW vs. single-constraint heuristics

We compare DW model with single-constraint heuristics that focus exclusively on one of

the considerations of fairness, popularity bias, or diversity. The models are compared using

the whole MovieLens 20M dataset. The notations Div(X) and Pop(Y) are used to describe

solutions with diversity incentive value X, and popularity penalty value Y .

4.5.4.1. Diversity. In this subsection, we conduct a comparison between the results of the

DW model and the “Diversity” model (see Section 4.4.2.1). The solutions of the heuristic

is presented in Figure 4.11 under the label “Diversity.” The rest of the labels illustrate

the solutions of the DW Model with respect to different popularity penalty values. For

each model, we select various diversity incentive values (Table 4.2) to compare the solution

qualities. We show the popularity and fairness values of these models in Figure 4.12 and

Figure 4.13, respectively.

107

The DW solution with zero popularity penalty increases the fairness metric (Figure 4.13)

while performing very similarly to Diversity model in utility and diversity (Figure 4.11)

considerations. We can observe that the utility decreases around 1% when we increase the

popularity penalty, but the popularity value improves as well (Figure 4.12). Overall, DW

model with popularity penalty zero finds as high diversity solutions as the Diversity model,

while improving the fairness.

4.5.4.2. Popularity. In this subsection, we conduct a comparison between the results of

the DW model and the “Popularity” model (see Section 4.4.2.2). The solutions of the heuristic

is presented in Figure 4.15 under the label “Popularity.” The rest of the labels illustrate

the solutions of the DW Model with respect to different diversity incentive values. For

each model, we select various popularity penalty values (Table 4.2) to compare the solution

qualities. We show the diversity and fairness values of these models in the Figure 4.16 and

Figure 4.17, respectively.

We note that the DW model with diversity incentive zero (model does not consider

diversity) results in higher fairness (Figure 4.17) while decreasing the utility by less than 0.5%

compared to Popularity heuristic solution. For example, DW solution with diversity incentive

zero with worst fairness has Z value of 0.984, with standard deviation 26566. The number

of recommendations take values between 53 to 130 thousands. Comparatively, Popularity

model with worst fairness has Z value of 0.963, with standard deviation 40786. The number

of recommendations take values between 29 to 183 thousands. In other terms, inclusion of

fairness consideration increases the recommendations from less represented providers, while

decreases the recommendations from more represented ones. Lastly, we observe that as the

diversity incentive increases, utility decreases (Figure 4.15) as expected. However, the DW

108

0.80 0.85 0.90 0.95 1
Diversity (ILD) Value

645

650

655

660

Ut
ilit

y
Va

lu
e

Model
DW Pop(0)
DW Pop(0.5)
DW Pop(1.0)
DW Pop(2.0)
Diversity

Figure 4.11. Diversity-Utility
Graph

0.1

0.2

0.3

Po
pu

la
rit

y
(A

RP
) V

al
ue

Figure 4.12. Popu-
larity metric eval-
uation of DW and
Diversity models

0.978

0.980

0.982

0.984

0.986

Fa
irn

es
s (

Z)
 V

al
ue

Figure 4.13. Z met-
ric evaluation of DW
and Diversity mod-
els

109

0.1 0.2 0.3
Popularity (ARP) Value

645

650

655

660

Ut
ilit

y
Va

lu
e

Model
DW Div(0.0)
DW Div(0.1)
DW Div(0.2)
DW Div(0.5)
Popularity

Figure 4.15. Popularity-
Utility Graph

0.80

0.85

0.90

0.95

1

Di
ve

rs
ity

 (I
LD

) V
al

ue

Figure 4.16. Diver-
sity metric evalu-
ation of DW and
Popularity models

0.965

0.970

0.975

0.980

0.985

Fa
irn

es
s (

Z)
 V

al
ue

Figure 4.17. Z
metric evaluation
of DW and Popu-
larity models

110

solution with diversity incentive 0.1 improves all the considerations simultaneously with a

utility reduction of less than 0.5%.

4.5.4.3. Fairness. In this subsection, we compare DW results with a state-of-the-art algo-

rithm Patro et al. [2020] that tackles fairness consideration (see Section 4.4.2.3). We modify

the available code to solve fairness at the provider level, and name it “Fairness” model. The

labels starting with DW in Figure 4.19 illustrate the solution quality of the DW Model with

respect to different diversity incentive and popularity penalty values. For each model, we se-

lect variety of different weights to control the fairness. We show the popularity and diversity

values of these models in the Figure 4.20 and Figure 4.21, respectively.

The DW solution with zero popularity penalty and diversity incentive performs better

than the Fairness model in all considerations. DW model uses optimization ideas that offer

lists holistically [Seymen et al., 2021a] rather than one step at a time, which might explain the

higher utility and fairness solutions observed in Figure 4.19. Interestingly, the DW solutions

with zero popularity penalty performs better than the Fairness solutions (Figure 4.20) in the

popularity consideration. This might be due to incorporating upper bounds to item provider

recommendation numbers, resulting in a decreased number of “popular” items recommended

[Seymen et al., 2021b]. Lastly, we note that DW solution with diversity incentive 0.1 and

popularity penalty 0.5 can improve diversity 3% and popularity bias 70% with a decrease

less than 1% in utility.

111

0.980 0.985 0.990 0.995
Fairness (Z) Value

659

660

661

662

Ut
ilit

y
Va

lu
e

Model
DW Pop(0) Div(0.0)
DW Pop(0) Div(0.1)
DW Pop(0.5) Div(0.0)
DW Pop(0.5) Div(0.1)
Fairness

Figure 4.19. Fairness-Utility
Graph

0.10

0.15

0.20

0.25

Po
pu

la
rit

y
(A

RP
) V

al
ue

Figure 4.20. Popu-
larity metric eval-
uation of DW and
Fairness models

0.80

0.82

0.84

0.86

0.88

Di
ve

rs
ity

 (I
LD

) V
al

ue

Figure 4.21. Diver-
sity metric evalu-
ation of DW and
Fairness models

112

4.6. Discussion & Future Direction

In this work, we offer a post-processing large-scale optimization model inspired by Dantzig-

Wolfe (DW) decomposition. The DW model improves the scalability of constrained opti-

mization models by leveraging the structure of across-list constraints in RS, and can obtain

near-optimal solutions.

First, we compare DW model with a constrained optimization model which finds the exact

solution using a small fraction of MovieLens 20M dataset. We show that solution quality of

DW is near-optimal. Next, we compare the DW model with benchmarks focusing on only one

consideration at a time using the entire MovieLens 20M dataset. We note that our model can

improve multiple objectives simultaneously and perform as good as the benchmarks focusing

only on one objective. Therefore, we argue that our model is scalable, efficient in finding

near-optimal solutions, and capable of handling multiple objective functions simultaneously

in RS.

We offer a heuristic to increase the memory-efficiency of our model, which can find the

sets of most relevant items considering popularity, diversity, and fairness. This heuristic

removes a significant number of items that would not be recommended to users. Therefore,

the optimal solution is not removed from the feasible region. This approach is not model

dependent, and can be used by other RS approaches in the literature.

Feasible region reduction ideas are important for optimization models that may face

memory-related problems. We note that our model and the heuristic work most efficiently

when the number of across-list constraints in the optimization model is relatively small.

Therefore, one future research area is coming up with ideas that work well in case of high

number of across-list constraints. Similarly, investigation of across-list constraints and ways

113

to deal with them in an online setting is a highly relevant future research area, especially

considering businesses that offer real-time recommendations to customers.

The objective of this work is to address the issue of scalability in constrained optimization

models by leveraging the structure of across-list constraints. We showcase the high research

potential of using large-scale optimization ideas in MORS problems. We note that using

a variety of different metrics and measures can lead to markedly different contributions in

tackling a multitude of MORS problems.

114

CHAPTER 5

Future Work

115

In-depth discussion on scalability problem: In Chapter 2, we solve the scalability issue

completely by solving calibrated recommender system (RS) problems for each user indepen-

dently. In Chapter 3, we propose heuristics and reformulations to alleviate the scalability

problem, without causing a significant objective function value decrease. In Chapter 4, we

propose a large-scale optimization model that uses the Dantzig-Wolfe (DW) decomposition

method idea to solve massive datasets. However, the application of large-scale optimiza-

tion ideas to RS problems is not frequently researched. Therefore, there is still a significant

amount of research potential in investigating optimization models to tackle massive RS prob-

lems. Combining heuristics with large-scale models, or improving the base DW algorithm

to improve the computational time of our model can be investigated further. We defined

complicating constraints as across-list constraints, and there could be more specialized ways

to tackle these constraints by exploiting the special structures arising in different problems.

Using the DW approach might not be the best choice to apply to some problems, and future

research can define and propose applications of other algorithms.

Optimization in online setting: We conducted our experiments in the offline setting,

however, the constrained optimization models we offer can be extended to the online setting.

One direction that can be taken is testing the validity of our models in an online setting,

where the utilities and preferences of the users can be updated after the recommendations.

This is relevant for a multitude of reasons. Firstly, the recommended items can get feedback

from the user after the creation of recommendation lists. The calibration values in Chap-

ter 2 can be continuously updated, which might result in a better understanding of user

preferences. The users’ preferences and interests might change over time, and this change

can be captured better in an online setting. Secondly, in Chapter 3, an online setting can

116

capture the stockout and perishability changes better, giving more insight into the solution

quality of the optimization model. In an offline setting, it is more difficult to measure the

benefits of recommending a novel item to a user. Because the recommendation is not in

the test set, the recommendation of a novel item would be a miss. However, in reality,

the user might be positively surprised about the new recommendation our models suggest,

and rate that recommendation highly, which can be observed more easily in an online setting.

Investigating interactions of metrics: In Chapter 2, we notice that improving fairness

might result in recommendations with less popularity bias. The increase in the calibration

of the recommendations can increase the accuracy first, then decrease it. In Chapter 3,

recommending soon-to-perish items results in lower stockouts. One future research focus is

to better our understanding of the interactions of these metrics and considerations. To that

end, we might want to apply different constrained optimization models to tackle multiple

considerations using a variety of datasets. Currently, the impact of each consideration on the

quality of the solution is not well understood. A comprehensive work delving into further

details of metric interactions would be one future research area.

5.1. Publications

The works discussed in this dissertation resulted in three publications:

• First section of Chapter 2 published as [Seymen et al., 2021b]: Sinan Seymen,

Himan Abdollahpouri, and Edward Carl Malthouse. A unified optimization toolbox

for solving popularity bias, fairness, and diversity in recommender systems. In

Workshop of Multi-Objective Recommender Systems (MORS’21), in conjunction

with the 15th ACM Conference on Recommender Systems, RecSys, 2021b.

117

• Second section of Chapter 2 published as [Seymen et al., 2021a]: Sinan Seymen,

Himan Abdollahpouri, and Edward C. Malthouse. A constrained optimization ap-

proach for calibrated recommendations. In Proceedings of the 15th ACM Conference

on Recommender Systems, RecSys ’21, page 607–612, New York, NY, USA, 2021a.

Association for Computing Machinery. ISBN 9781450384582. doi: 10.1145/3460231.3478857.

URL https://doi.org/10.1145/3460231.3478857.

• Chapter 3 published as [Seymen et al., 2022]: Sinan Seymen, Anna-Lena Sachs, and

Edward C Malthouse. Making smart recommenda- tions for perishable and stockout

products. In Workshop of Multi-Objective Recommender Systems (MORS’22), in

conjunction with the 16th ACM Conference on Recommender Systems, RecSys,

2022.

118

References

Himan Abdollahpouri. Popularity Bias in Recommendation: A Multi-stakeholder Perspec-

tive. PhD thesis, University of Colorado Boulder, https://arxiv.org/pdf/2008.08551.pdf,

8 2020.

Himan Abdollahpouri, Robin Burke, and Bamshad Mobasher. Controlling popularity bias

in learning-to-rank recommendation. In Proceedings of the Eleventh ACM Conference on

Recommender Systems, RecSys ’17, page 42–46, New York, NY, USA, 2017a. Association

for Computing Machinery. ISBN 9781450346528. doi: 10.1145/3109859.3109912. URL

https://doi.org/10.1145/3109859.3109912.

Himan Abdollahpouri, Robin Burke, and Bamshad Mobasher. Recommender systems as

multistakeholder environments. In Proceedings of the 25th Conference on User Modeling,

Adaptation and Personalization, UMAP ’17, page 347–348, New York, NY, USA, 2017b.

Association for Computing Machinery. ISBN 9781450346351. doi: 10.1145/3079628.

3079657. URL https://doi.org/10.1145/3079628.3079657.

Himan Abdollahpouri, Robin Burke, and Bamshad Mobasher. Managing popularity bias in

recommender systems with personalized re-ranking. In The Thirty-Second International

Flairs Conference, 2019a.

Himan Abdollahpouri, Masoud Mansoury, Robin Burke, and Bamshad Mobasher. The un-

fairness of popularity bias in recommendation. arXiv preprint arXiv:1907.13286, 2019b.

https://doi.org/10.1145/3109859.3109912
https://doi.org/10.1145/3079628.3079657

119

Himan Abdollahpouri, Gediminas Adomavicius, Robin Burke, Ido Guy, Dietmar Jannach,

Toshihiro Kamishima, Jan Krasnodebski, and Luiz Pizzato. Multistakeholder recommen-

dation: Survey and research directions. User Modeling and User-Adapted Interaction, 30:

127–158, 2020. URL https://doi.org/10.1007/s11257-019-09256-1.

Gediminas Adomavicius and YoungOk Kwon. Improving aggregate recommendation diver-

sity using ranking-based techniques. IEEE Transactions on Knowledge and Data Engi-

neering, 24(5):896–911, 2011a.

Gediminas Adomavicius and YoungOk Kwon. Maximizing aggregate recommendation diver-

sity: A graph-theoretic approach. In Proc. of the 1st International Workshop on Novelty

and Diversity in Recommender Systems (DiveRS 2011), pages 3–10. Citeseer, 2011b.

Deepak Agarwal, Bee-Chung Chen, Pradheep Elango, and Xuanhui Wang. Click shaping

to optimize multiple objectives. In Proceedings of the 17th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, KDD ’11, page 132–140, New

York, NY, USA, 2011. Association for Computing Machinery. ISBN 9781450308137. doi:

10.1145/2020408.2020435. URL https://doi.org/10.1145/2020408.2020435.

Deepak Agarwal, Bee-Chung Chen, Pradheep Elango, and Xuanhui Wang. Personalized

click shaping through lagrangian duality for online recommendation. In Proceedings of the

35th International ACM SIGIR Conference on Research and Development in Information

Retrieval, SIGIR ’12, page 485–494, New York, NY, USA, 2012. Association for Computing

Machinery. ISBN 9781450314725. doi: 10.1145/2348283.2348350. URL https://doi.

org/10.1145/2348283.2348350.

Narendra Agrawal, Sami Najafi-Asadolahi, and Stephen A Smith. Optimization of opera-

tional decisions in digital advertising: A literature review. Channel Strategies and Market-

ing Mix in a Connected World, pages 99–146, 2020. doi: 10.1007/978-3-030-31733-1_5.

https://doi.org/10.1007/s11257-019-09256-1
https://doi.org/10.1145/2020408.2020435
https://doi.org/10.1145/2348283.2348350
https://doi.org/10.1145/2348283.2348350

120

URL https://doi.org/10.1007/978-3-030-31733-1_5.

Shabbir Ahmed and Alexander Shapiro. The sample average approximation method for

stochastic programs with integer recourse. Science, 12, 01 2002.

Leman Akoglu and Christos Faloutsos. Valuepick: Towards a value-oriented dual-goal rec-

ommender system. In 2010 IEEE International Conference on Data Mining Workshops,

pages 1151–1158. IEEE, 2010.

Seyyed Amir Hossein Salehi Amiri, Ali Zahedi, Morteza Kazemi, Javad Soroor, and Mostafa

Hajiaghaei-Keshteli. Determination of the optimal sales level of perishable goods in a two-

echelon supply chain network. Computers & Industrial Engineering, 139:106156, 2020.

Eric T Anderson, Gavan J Fitzsimons, and Duncan Simester. Measuring and mitigating the

costs of stockouts. Management Science, 52(11):1751–1763, 2006.

Arda Antikacioglu and R. Ravi. Post processing recommender systems for diversity. In

Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, KDD ’17, page 707–716, New York, NY, USA, 2017. Association for

Computing Machinery. ISBN 9781450348874. doi: 10.1145/3097983.3098173. URL https:

//doi.org/10.1145/3097983.3098173.

Antonio Bella, Cèsar Ferri, José Hernández-Orallo, and María José Ramírez-Quintana. Cal-

ibration of machine learning models. In Handbook of Research on Machine Learning Ap-

plications and Trends: Algorithms, Methods, and Techniques, pages 128–146. IGI Global,

2010.

Fernando Bernstein, A Gürhan Kök, and Lei Xie. Dynamic assortment customization with

limited inventories. Manufacturing & Service Operations Management, 17(4):538–553,

2015.

https://doi.org/10.1007/978-3-030-31733-1_5
https://doi.org/10.1145/3097983.3098173
https://doi.org/10.1145/3097983.3098173

121

Michael Blakeney. Food loss and food waste: Causes and solutions. Edward Elgar Publishing,

2019.

K. Bradley and B. Smyth. Improving recommendation diversity. In Proceedings of the

12th National Conference in Artificial Intelligence and Cognitive Science, pages 75–84,

Maynooth, Ireland, 2001.

Robin Burke and Himan Abdollahpouri. Patterns of multistakeholder recommendation.

arXiv preprint arXiv:1707.09258, 2017.

Pablo Castells, Neil Hurley, and Saul Vargas. Novelty and diversity in recommender systems.

In Recommender Systems Handbook, pages 603–646. Springer, 2021. URL https://doi.

org/10.1007/978-1-0716-2197-4_16.

Antonin Chambolle. An algorithm for total variation minimization and applications. Journal

of Mathematical Imaging and Cision, 20(1):89–97, 2004.

Du Chen, Yuming Deng, Guangrui Ma, Hao Ge, Yunwei Qi, Ying Rong, Xun Zhang, and

Huan Zheng. Inventory based recommendation algorithms. In 2020 IEEE International

Conference on Big Data (Big Data), pages 617–622. IEEE, 2020.

Kwok-Wai Cheung, James T Kwok, Martin H Law, and Kwok-Ching Tsui. Mining customer

product ratings for personalized marketing. Decision Support Systems, 35(2):231–243,

2003.

Geoffrey A Chua, Reza Mokhlesi, and Arvind Sainathan. Optimal discounting and replen-

ishment policies for perishable products. International Journal of Production Economics,

186:8–20, 2017.

C. Dadouchi and B. Agard. Lowering penalties related to stock-outs by shifting de-

mand in product recommendation systems. Decision Support Systems, 114:61–69, 2018.

ISSN 0167-9236. doi: https://doi.org/10.1016/j.dss.2018.08.004. URL https://www.

https://doi.org/10.1007/978-1-0716-2197-4_16
https://doi.org/10.1007/978-1-0716-2197-4_16
https://www.sciencedirect.com/science/article/pii/S0167923618301258
https://www.sciencedirect.com/science/article/pii/S0167923618301258

122

sciencedirect.com/science/article/pii/S0167923618301258.

George B Dantzig and Philip Wolfe. Decomposition principle for linear programs. Operations

research, 8(1):101–111, 1960.

Aparna Das, Claire Mathieu, and Daniel Ricketts. Maximizing profit using recommender

systems. arXiv preprint arXiv:0908.3633, 2009.

Yashar Deldjoo, Dietmar Jannach, Alejandro Bellogin, Alessandro Difonzo, and Dario

Zanzonelli. A survey of research on fair recommender systems. arXiv preprint

arXiv:2205.11127, 2022.

Yashar Deldjoo, Dietmar Jannach, Alejandro Bellogin, Alessandro Difonzo, and Dario

Zanzonelli. Fairness in recommender systems: research landscape and future direc-

tions. User Modeling and User-Adapted Interaction, pages 1–50, 2023. URL https:

//doi.org/10.1007/s11257-023-09364-z.

Tommaso Di Noia, Jessica Rosati, Paolo Tomeo, and Eugenio Di Sciascio. Adaptive multi-

attribute diversity for recommender systems. Information Sciences, 382:234–253, 2017.

M. Benjamin Dias, Dominique Locher, Ming Li, Wael El-Deredy, and Paulo J.G. Lisboa. The

value of personalised recommender systems to e-business: A case study. In Proceedings

of the 2008 ACM Conference on Recommender Systems, RecSys ’08, page 291–294, New

York, NY, USA, 2008. Association for Computing Machinery. ISBN 9781605580937. doi:

10.1145/1454008.1454054. URL https://doi.org/10.1145/1454008.1454054.

Jorge Díez, David Martínez-Rego, Amparo Alonso-Betanzos, Oscar Luaces, and Antonio

Bahamonde. Optimizing novelty and diversity in recommendations. Progress in Artificial

Intelligence, 8(1):101–109, 2019. ISSN 2192-6360. doi: 10.1007/s13748-018-0158-4. URL

https://doi.org/10.1007/s13748-018-0158-4.

https://www.sciencedirect.com/science/article/pii/S0167923618301258
https://www.sciencedirect.com/science/article/pii/S0167923618301258
https://www.sciencedirect.com/science/article/pii/S0167923618301258
https://www.sciencedirect.com/science/article/pii/S0167923618301258
https://doi.org/10.1007/s11257-023-09364-z
https://doi.org/10.1007/s11257-023-09364-z
https://doi.org/10.1145/1454008.1454054
https://doi.org/10.1007/s13748-018-0158-4

123

Alexandre Dolgui, Manoj Kumar Tiwari, Yerasani Sinjana, Sri Krishna Kumar, and Young-

Jun Son. Optimising integrated inventory policy for perishable items in a multi-stage

supply chain. International Journal of Production Research, 56(1-2):902–925, 2018.

Qinglin Duan and T Warren Liao. A new age-based replenishment policy for supply chain

inventory optimization of highly perishable products. International Journal of Production

Economics, 145(2):658–671, 2013.

Farzad Eskandanian, Bamshad Mobasher, and Robin Burke. A clustering approach for

personalizing diversity in collaborative recommender systems. In Proceedings of the 25th

Conference on User Modeling, Adaptation and Personalization, pages 280–284, 2017.

Tijun Fan, Chang Xu, and Feng Tao. Dynamic pricing and replenishment policy for fresh

produce. Computers & Industrial Engineering, 139:106127, 2020.

Allen R Ferguson and George B Dantzig. The allocation of aircraft to routes—an example

of linear programming under uncertain demand. Management Science, 3(1):45–73, 1956.

Daniel Fleder and Kartik Hosanagar. Blockbuster culture’s next rise or fall: The impact of

recommender systems on sales diversity. Management Science, 55(5):697–712, 2009. URL

https://doi.org/10.1287/mnsc.1080.0974.

Ruoyuan Gao and Chirag Shah. Toward creating a fairer ranking in search engine results.

Information Processing & Management, 57(1):102138, 2020. ISSN 0306-4573. doi: https:

//doi.org/10.1016/j.ipm.2019.102138. URL https://www.sciencedirect.com/science/

article/pii/S0306457319304121.

Mouzhi Ge, Carla Delgado-Battenfeld, and Dietmar Jannach. Beyond accuracy: Evaluating

recommender systems by coverage and serendipity. In Proceedings of the Fourth ACM

Conference on Recommender Systems, RecSys ’10, page 257–260, New York, NY, USA,

2010. Association for Computing Machinery. ISBN 9781605589060. doi: 10.1145/1864708.

https://doi.org/10.1287/mnsc.1080.0974
https://www.sciencedirect.com/science/article/pii/S0306457319304121
https://www.sciencedirect.com/science/article/pii/S0306457319304121

124

1864761. URL https://doi.org/10.1145/1864708.1864761.

Thomas George and Srujana Merugu. A scalable collaborative filtering framework based on

co-clustering. In Fifth IEEE International Conference on Data Mining (ICDM’05), pages

4–pp. IEEE, 2005.

Anupriya Gogna and Angshul Majumdar. Diablo: Optimization based design for improving

diversity in recommender system. Information Sciences, 378:59–74, 2017.

Peter S. Goodman. New supply chain risk: 22,000 dockworkers who may soon strike.

New York Times, 03 2022. URL https://www.nytimes.com/2022/03/28/business/

dockworkers-strike-supply-chain.html.

Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2021. URL https://www.

gurobi.com.

Alejandro Gutierrez-Alcoba, Roberto Rossi, Belen Martin-Barragan, and Eligius MT Hen-

drix. A simple heuristic for perishable item inventory control under non-stationary sto-

chastic demand. International Journal of Production Research, 55(7):1885–1897, 2017.

F. Maxwell Harper and Joseph A. Konstan. The movielens datasets: History and context.

ACM Trans. Interact. Intell. Syst., 5(4), dec 2015. ISSN 2160-6455. doi: 10.1145/2827872.

URL https://doi.org/10.1145/2827872.

Naieme Hazrati and Francesco Ricci. Recommender systems effect on the evolution of

users’ choices distribution. Information Processing & Management, 59(1):102766, 2022.

ISSN 0306-4573. doi: https://doi.org/10.1016/j.ipm.2021.102766. URL https://www.

sciencedirect.com/science/article/pii/S0306457321002466.

Jonathan L Herlocker, Joseph A Konstan, Loren G Terveen, and John T Riedl. Evaluating

collaborative filtering recommender systems. ACM Transactions on Information Systems

(TOIS), 22(1):5–53, 2004.

https://doi.org/10.1145/1864708.1864761
https://www.nytimes.com/2022/03/28/business/dockworkers-strike-supply-chain.html
https://www.nytimes.com/2022/03/28/business/dockworkers-strike-supply-chain.html
https://www.gurobi.com
https://www.gurobi.com
https://doi.org/10.1145/2827872
https://www.sciencedirect.com/science/article/pii/S0306457321002466
https://www.sciencedirect.com/science/article/pii/S0306457321002466

125

Maarten LATM Hertog, Ismail Uysal, Ultan McCarthy, Bert M Verlinden, and Bart M Nico-

laï. Shelf life modelling for first-expired-first-out warehouse management. Philosophical

Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences,

372(2017):20130306, 2014.

Nicolas Hug. Surprise, a Python library for recommender systems. http://surpriselib.

com, 2017.

Nicolas Hug. Surprise: A python library for recommender systems. Journal of Open

Source Software, 5(52):2174, 2020a. doi: 10.21105/joss.02174. URL https://doi.org/

10.21105/joss.02174.

Nicolas Hug. Surprise: A python library for recommender systems. Journal of Open Source

Software, 5(52):2174, 2020b.

Tamas Jambor and Jun Wang. Optimizing multiple objectives in collaborative filter-

ing. In Proceedings of the Fourth ACM Conference on Recommender Systems, RecSys

’10, page 55–62, New York, NY, USA, 2010. Association for Computing Machinery.

ISBN 9781605589060. doi: 10.1145/1864708.1864723. URL https://doi.org/10.1145/

1864708.1864723.

Dietmar Jannach. Multi-objective recommender systems: Survey and challenges. arXiv

preprint arXiv:2210.10309, 2022.

Dietmar Jannach and Michael Jugovac. Measuring the business value of recommender

systems. ACM Trans. Manage. Inf. Syst., 10(4), dec 2019. ISSN 2158-656X. doi:

10.1145/3370082. URL https://doi.org/10.1145/3370082.

Dietmar Jannach, Lukas Lerche, Iman Kamehkhosh, and Michael Jugovac. What recom-

menders recommend: an analysis of recommendation biases and possible countermea-

sures. User Modeling and User-Adapted Interaction, 25:427–491, 2015. URL https:

http://surpriselib.com
http://surpriselib.com
https://doi.org/10.21105/joss.02174
https://doi.org/10.21105/joss.02174
https://doi.org/10.1145/1864708.1864723
https://doi.org/10.1145/1864708.1864723
https://doi.org/10.1145/3370082
https://doi.org/10.1007/s11257-015-9165-3
https://doi.org/10.1007/s11257-015-9165-3

126

//doi.org/10.1007/s11257-015-9165-3.

Xiaoqing Jing and Michael Lewis. Stockouts in online retailing. Journal of Marketing

Research, 48(2):342–354, 2011. doi: 10.1509/jmkr.48.2.342. URL https://doi.org/10.

1509/jmkr.48.2.342.

Michael Jugovac, Dietmar Jannach, and Lukas Lerche. Efficient optimization of multiple

recommendation quality factors according to individual user tendencies. Expert Systems

with Applications, 81:321–331, 2017.

Marius Kaminskas and Derek Bridge. Diversity, serendipity, novelty, and coverage: A survey

and empirical analysis of beyond-accuracy objectives in recommender systems. ACM

Trans. Interact. Intell. Syst., 7(1), dec 2016. ISSN 2160-6455. doi: 10.1145/2926720. URL

https://doi.org/10.1145/2926720.

Marius Kaminskas, Derek Bridge, Franclin Foping, and Donogh Roche. Product-seeded and

basket-seeded recommendations for small-scale retailers. Journal on Data Semantics, 6

(1):3–14, 2017.

Toshihiro Kamishima, Shotaro Akaho, Hideki Asoh, and Jun Sakuma. Correcting popularity

bias by enhancing recommendation neutrality. In RecSys Posters, 10 2014.

Itir Z Karaesmen, Alan Scheller-Wolf, and Borga Deniz. Managing perishable and aging

inventories: review and future research directions. Planning Production and Inventories

in the Extended Enterprise, pages 393–436, 2011. doi: 10.1007/978-1-4419-6485-4_15.

URL https://doi.org/10.1007/978-1-4419-6485-4_15.

Sujin Kim, Raghu Pasupathy, and Shane G. Henderson. A guide to sample average approx-

imation, pages 207–243. Springer, New York, NY, 2015. ISBN 978-1-4939-1384-8. doi:

10.1007/978-1-4939-1384-8_8. URL https://doi.org/10.1007/978-1-4939-1384-8_8.

https://doi.org/10.1007/s11257-015-9165-3
https://doi.org/10.1007/s11257-015-9165-3
https://doi.org/10.1007/s11257-015-9165-3
https://doi.org/10.1007/s11257-015-9165-3
https://doi.org/10.1509/jmkr.48.2.342
https://doi.org/10.1509/jmkr.48.2.342
https://doi.org/10.1145/2926720
https://doi.org/10.1007/978-1-4419-6485-4_15
https://doi.org/10.1007/978-1-4939-1384-8_8

127

Mervegül Kırcı, Işık Biçer, and Ralf W Seifert. Optimal replenishment cycle for perishable

items facing demand uncertainty in a two-echelon inventory system. International Journal

of Production Research, 57(4):1250–1264, 2019.

Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for recom-

mender systems. Computer, 42(8):30–37, 2009. doi: 10.1109/MC.2009.263.

Denis Kotkov, Joseph A. Konstan, Qian Zhao, and Jari Veijalainen. Investigating serendipity

in recommender systems based on real user feedback. In Proceedings of the 33rd Annual

ACM Symposium on Applied Computing, SAC ’18, page 1341–1350, New York, NY, USA,

2018. Association for Computing Machinery. ISBN 9781450351911. doi: 10.1145/3167132.

3167276. URL https://doi.org/10.1145/3167132.3167276.

Matevž Kunaver and Tomaž Požrl. Diversity in recommender systems – a survey. Knowledge-

Based Systems, 123:154–162, 2017. ISSN 0950-7051. doi: https://doi.org/10.1016/

j.knosys.2017.02.009. URL https://www.sciencedirect.com/science/article/pii/

S0950705117300680.

Sandra Lebersorger and Felicitas Schneider. Food loss rates at the food retail, influencing

factors and reasons as a basis for waste prevention measures. Waste Management, 34(11):

1911–1919, 2014.

David A Levin and Yuval Peres. Markov chains and mixing times, volume 107. American

Mathematical Soc., 2017.

Randall A Lewis and David H Reiley. Online ads and offline sales: measuring the effect

of retail advertising via a controlled experiment on yahoo! Quantitative Marketing and

Economics, 12(3):235–266, 2014.

Koung-Lung Lin, JY-J Hsu, Han-Shen Huang, and Chun-Nan Hsu. A recommender for tar-

geted advertisement of unsought products in e-commerce. In Seventh IEEE International

https://doi.org/10.1145/3167132.3167276
https://www.sciencedirect.com/science/article/pii/S0950705117300680
https://www.sciencedirect.com/science/article/pii/S0950705117300680

128

Conference on E-Commerce Technology (CEC’05), pages 101–108. IEEE, 2005.

Brian Lipinski, Craig Hanson, Richard Waite, Tim Searchinger, James Lo-

max, and Lisa Kitinoja. Installment 2 of "creating a sustainable food fu-

ture": Reducing food loss and waste. World Resources Institute Working

Paper, pages 1–40, 2013. URL https://search.issuelab.org/resource/

installment-2-of-creating-a-sustainable-food-future-reducing-food-loss-and-waste.

html.

Weiwen Liu and Robin Burke. Personalizing fairness-aware re-ranking. In International

Workshop on Fairness Accountability and Transpatency in Recommender Systems (FAC-

TREC), arXiv preprint arXiv:1809.02921, 2018.

Edward C Malthouse, Yasaman Kamyab Hessary, Khadija Ali Vakeel, Robin Burke, and

Morana Fudurić. An algorithm for allocating sponsored recommendations and content:

Unifying programmatic advertising and recommender systems. Journal of Advertising, 48

(4):366–379, 2019a.

Edward C Malthouse, Khadija Ali Vakeel, Yasaman Kamyab Hessary, Robin Burke, and

Morana Fuduric. A multistakeholder recommender systems algorithm for allocating spon-

sored recommendations. In In Workshop on Recommendation in Multi-stakeholder Envi-

ronments with ACM RecSys19, 2019b.

Masoud Mansoury, Himan Abdollahpouri, Mykola Pechenizkiy, Bamshad Mobasher, and

Robin Burke. Fairmatch: A graph-based approach for improving aggregate diversity in

recommender systems. In Proceedings of the 28th ACM Conference on User Modeling,

Adaptation and Personalization, UMAP ’20, page 154–162, New York, NY, USA, 2020. As-

sociation for Computing Machinery. ISBN 9781450368612. doi: 10.1145/3340631.3394860.

URL https://doi.org/10.1145/3340631.3394860.

https://search.issuelab.org/resource/installment-2-of-creating-a-sustainable-food-future-reducing-food-loss-and-waste.html
https://search.issuelab.org/resource/installment-2-of-creating-a-sustainable-food-future-reducing-food-loss-and-waste.html
https://search.issuelab.org/resource/installment-2-of-creating-a-sustainable-food-future-reducing-food-loss-and-waste.html
https://doi.org/10.1145/3340631.3394860

129

Sébastien Marchand. The relationship between technical efficiency in agriculture and defor-

estation in the brazilian amazon. Ecological Economics, 77:166–175, 2012.

Silvano Martello and Paolo Toth. Algorithms for knapsack problems. In Silvano Martello,

Gilbert Laporte, Michel Minoux, and Celso Ribeiro, editors, Surveys in Combinatorial

Optimization, volume 132 of North-Holland Mathematics Studies, pages 213–257. North-

Holland, 1987. doi: https://doi.org/10.1016/S0304-0208(08)73237-7. URL https://www.

sciencedirect.com/science/article/pii/S0304020808732377.

Prem Melville and Vikas Sindhwani. Recommender Systems, pages 1056–1066. Springer,

Boston, MA, 2017. ISBN 978-1-4899-7687-1. doi: 10.1007/978-1-4899-7687-1_964. URL

https://doi.org/10.1007/978-1-4899-7687-1_964.

David R. Morrison, Sheldon H. Jacobson, Jason J. Sauppe, and Edward C. Sewell.

Branch-and-bound algorithms: A survey of recent advances in searching, branching,

and pruning. Discrete Optimization, 19:79–102, 2016. ISSN 1572-5286. doi: 10.1016/

j.disopt.2016.01.005. URL https://www.sciencedirect.com/science/article/pii/

S1572528616000062.

Scott A Neslin. Sales promotion. Handbook of Marketing, 13:311–338, 2002. URL https:

//sk.sagepub.com/reference/hdbk_marketing.

Duc Huy Nguyen and Haoxun Chen. Optimization of a perishable inventory system with

both stochastic demand and supply: comparison of two scenario approaches. Croatian

Operational Research Review, 10(1):175–185, 2019.

Duc Huy Nguyen and Haoxun Chen. An effective approach for optimization of a perishable

inventory system with uncertainty in both demand and supply. International Transactions

in Operational Research, 29(4):2682–2704, 2022.

https://www.sciencedirect.com/science/article/pii/S0304020808732377
https://www.sciencedirect.com/science/article/pii/S0304020808732377
https://doi.org/10.1007/978-1-4899-7687-1_964
https://www.sciencedirect.com/science/article/pii/S1572528616000062
https://www.sciencedirect.com/science/article/pii/S1572528616000062
https://sk.sagepub.com/reference/hdbk_marketing
https://sk.sagepub.com/reference/hdbk_marketing

130

Jinoh Oh, Sun Park, Hwanjo Yu, Min Song, and Seung-Taek Park. Novel recommendation

based on personal popularity tendency. In 2011 IEEE 11th International Conference on

Data Mining, pages 507–516. IEEE, 2011. doi: 10.1109/ICDM.2011.110.

Gourab K Patro, Arpita Biswas, Niloy Ganguly, Krishna P. Gummadi, and Abhijnan

Chakraborty. Fairrec: Two-sided fairness for personalized recommendations in two-sided

platforms. In Proceedings of The Web Conference 2020, WWW ’20, page 1194–1204, New

York, NY, USA, 2020. Association for Computing Machinery. ISBN 9781450370233. doi:

10.1145/3366423.3380196. URL https://doi.org/10.1145/3366423.3380196.

Judea Pearl. Heuristics: Intelligent search strategies for computer problem solving. Addison-

Wesley Longman Publishing Co., Inc., USA, 1984. ISBN 0201055945.

Mark S Pinsker. Information and information stability of random variables and processes.

Holden-Day, 1964.

Marco Tulio Ribeiro, Anisio Lacerda, Adriano Veloso, and Nivio Ziviani. Pareto-efficient

hybridization for multi-objective recommender systems. In Proceedings of the Sixth ACM

Conference on Recommender Systems, RecSys ’12, page 19–26, New York, NY, USA,

2012. Association for Computing Machinery. ISBN 9781450312707. doi: 10.1145/2365952.

2365962. URL https://doi.org/10.1145/2365952.2365962.

Timothy J Richards and Jura Liaukonytė. Switching cost and store choice. American Journal

of Agricultural Economics, 105(1):195–218, 2023.

Mario Rodriguez, Christian Posse, and Ethan Zhang. Multiple objective optimization in

recommender systems. In Proceedings of the Sixth ACM Conference on Recommender

Systems, RecSys ’12, page 11–18, New York, NY, USA, 2012. Association for Computing

Machinery. ISBN 9781450312707. doi: 10.1145/2365952.2365961. URL https://doi.

org/10.1145/2365952.2365961.

https://doi.org/10.1145/3366423.3380196
https://doi.org/10.1145/2365952.2365962
https://doi.org/10.1145/2365952.2365961
https://doi.org/10.1145/2365952.2365961

131

Navdeep S Sahni, Dan Zou, and Pradeep K Chintagunta. Do targeted discount offers serve as

advertising? evidence from 70 field experiments. Management Science, 63(8):2688–2705,

2017.

Sinan Seymen, Himan Abdollahpouri, and Edward C. Malthouse. A constrained optimization

approach for calibrated recommendations. In Proceedings of the 15th ACM Conference on

Recommender Systems, RecSys ’21, page 607–612, New York, NY, USA, 2021a. Association

for Computing Machinery. ISBN 9781450384582. doi: 10.1145/3460231.3478857. URL

https://doi.org/10.1145/3460231.3478857.

Sinan Seymen, Himan Abdollahpouri, and Edward Carl Malthouse. A unified optimization

toolbox for solving popularity bias, fairness, and diversity in recommender systems. In

Workshop of Multi-Objective Recommender Systems (MORS’21), in conjunction with the

15th ACM Conference on Recommender Systems, RecSys, 2021b.

Sinan Seymen, Anna-Lena Sachs, and Edward C Malthouse. Making smart recommenda-

tions for perishable and stockout products. In Workshop of Multi-Objective Recommender

Systems (MORS’22), in conjunction with the 16th ACM Conference on Recommender

Systems, RecSys, 2022.

Stephen A Smith and Dale D Achabal. Clearance pricing and inventory policies for retail

chains. Management Science, 44(3):285–300, 1998.

Barry Smyth and Paul McClave. Similarity vs. diversity. In Case-Based Reasoning Research

and Development: 4th International Conference on Case-Based Reasoning, ICCBR 2001

Vancouver, BC, Canada, July 30–August 2, 2001 Proceedings 4, pages 347–361. Springer,

2001. URL https://doi.org/10.1007/3-540-44593-5.

Ilan Stavi and Rattan Lal. Agriculture and greenhouse gases, a common tragedy. a review.

Agronomy for Sustainable Development, 33(2):275–289, 2013.

https://doi.org/10.1145/3460231.3478857
https://doi.org/10.1007/3-540-44593-5

132

Harald Steck. Item popularity and recommendation accuracy. In Proceedings of the Fifth

ACM Conference on Recommender Systems, RecSys ’11, page 125–132, New York, NY,

USA, 2011. Association for Computing Machinery. ISBN 9781450306836. doi: 10.1145/

2043932.2043957. URL https://doi.org/10.1145/2043932.2043957.

Harald Steck. Calibrated recommendations. In Proceedings of the 12th ACM Conference on

Recommender Systems, RecSys ’18, page 154–162, New York, NY, USA, 2018. Association

for Computing Machinery. ISBN 9781450359016. doi: 10.1145/3240323.3240372. URL

https://doi.org/10.1145/3240323.3240372.

Özge Sürer, Robin Burke, and Edward C. Malthouse. Multistakeholder recommendation

with provider constraints. In Proceedings of the 12th ACM Conference on Recommender

Systems, RecSys ’18, page 54–62, New York, NY, USA, 2018. Association for Computing

Machinery. ISBN 9781450359016. doi: 10.1145/3240323.3240350. URL https://doi.

org/10.1145/3240323.3240350.

Masoud Talebian, Natashia Boland, and Martin Savelsbergh. Pricing to accelerate demand

learning in dynamic assortment planning for perishable products. European Journal of

Operational Research, 237(2):555–565, 2014.

Saúl Vargas and Pablo Castells. Rank and relevance in novelty and diversity metrics for

recommender systems. In Proceedings of the Fifth ACM Conference on Recommender

Systems, RecSys ’11, page 109–116, New York, NY, USA, 2011. Association for Computing

Machinery. ISBN 9781450306836. doi: 10.1145/2043932.2043955. URL https://doi.

org/10.1145/2043932.2043955.

Saúl Vargas and Pablo Castells. Improving sales diversity by recommending users to items.

In Proceedings of the 8th ACM Conference on Recommender systems, pages 145–152, 2014.

https://doi.org/10.1145/2043932.2043957
https://doi.org/10.1145/3240323.3240372
https://doi.org/10.1145/3240323.3240350
https://doi.org/10.1145/3240323.3240350
https://doi.org/10.1145/2043932.2043955
https://doi.org/10.1145/2043932.2043955

133

Mengting Wan, Di Wang, Jie Liu, Paul Bennett, and Julian McAuley. Representing and

recommending shopping baskets with complementarity, compatibility and loyalty. In

Proceedings of the 27th ACM International Conference on Information and Knowledge

Management, CIKM ’18, page 1133–1142, New York, NY, USA, 2018. Association for

Computing Machinery. ISBN 9781450360142. doi: 10.1145/3269206.3271786. URL

https://doi.org/10.1145/3269206.3271786.

Lequn Wang and Thorsten Joachims. User fairness, item fairness, and diversity for rankings

in two-sided markets. In Proceedings of the 2021 ACM SIGIR International Conference

on Theory of Information Retrieval. ACM, jul 2021. doi: 10.1145/3471158.3472260.

Yifan Wang, Weizhi Ma, Min Zhang, Yiqun Liu, and Shaoping Ma. A survey on the fairness

of recommender systems. ACM Trans. Inf. Syst., 41(3), feb 2023. ISSN 1046-8188. doi:

10.1145/3547333. URL https://doi.org/10.1145/3547333.

Christopher Wilt and Wheeler Ruml. Effective heuristics for suboptimal best-first search.

J. Artif. Int. Res., 57(1):273–306, sep 2016. ISSN 1076-9757.

Yang Zhang, Fuli Feng, Xiangnan He, Tianxin Wei, Chonggang Song, Guohui Ling, and

Yongdong Zhang. Causal intervention for leveraging popularity bias in recommendation.

In Proceedings of the 44th International ACM SIGIR Conference on Research and Devel-

opment in Information Retrieval, SIGIR ’21, page 11–20, New York, NY, USA, 2021. As-

sociation for Computing Machinery. ISBN 9781450380379. doi: 10.1145/3404835.3462875.

URL https://doi.org/10.1145/3404835.3462875.

Tao Zhou, Jie Ren, Matús Medo, and Yi-Cheng Zhang. Bipartite network projection and

personal recommendation. Phys. Rev. E, 76:046115, Oct 2007. doi: 10.1103/PhysRevE.

76.046115. URL https://link.aps.org/doi/10.1103/PhysRevE.76.046115.

https://doi.org/10.1145/3269206.3271786
https://doi.org/10.1145/3547333
https://doi.org/10.1145/3404835.3462875
https://link.aps.org/doi/10.1103/PhysRevE.76.046115

134

Tao Zhou, Zoltán Kuscsik, Jian-Guo Liu, Matúš Medo, Joseph Rushton Wakeling, and Yi-

Cheng Zhang. Solving the apparent diversity-accuracy dilemma of recommender systems.

Proceedings of the National Academy of Sciences, 107(10):4511–4515, 2010.

Cai-Nicolas Ziegler, Sean M. McNee, Joseph A. Konstan, and Georg Lausen. Improving

recommendation lists through topic diversification. In Proceedings of the 14th International

Conference on World Wide Web, WWW ’05, page 22–32, New York, NY, USA, 2005.

Association for Computing Machinery. ISBN 1595930469. doi: 10.1145/1060745.1060754.

URL https://doi.org/10.1145/1060745.1060754.

Sarah Zimmerman. 10 disruptions that rocked supply chains in 2021. Sup-

ply Chain Dive, 2021. URL https://www.supplychaindive.com/news/

top-supply-chain-disruptions-2021/611513/.

https://doi.org/10.1145/1060745.1060754
https://www.supplychaindive.com/news/top-supply-chain-disruptions-2021/611513/
https://www.supplychaindive.com/news/top-supply-chain-disruptions-2021/611513/

	ABSTRACT
	Acknowledgments
	List of Tables
	List of Figures
	Chapter 1. Introduction
	1.1. Overview
	1.2. Motivation

	Chapter 2. Constrained Optimization Models Applied to Recommender System Problems
	2.1. A Unified Optimization Toolbox for Solving Popularity Bias, Fairness, and Diversity in Recommender Systems
	2.2. A Constrained Optimization Approach for Calibrated Recommendations

	Chapter 3. Making Smart Recommendations for Perishable and Stockout Products
	3.1. Introduction
	3.2. Related Works
	3.3. Problem Definition and Formulation
	3.4. Computational Study
	3.5. Future Research & Conclusion

	Chapter 4. A Large-scale Constrained Optimization Model for Multi-Objective Recommender Systems
	4.1. Introduction
	4.2. Literature Review
	4.3. Methodology
	4.4. Benchmarks
	4.5. Computational Study
	4.6. Discussion & Future Direction

	Chapter 5. Future Work
	5.1. Publications

	References

