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ABSTRACT

Nuclear magnetic resonance studies of under-doped HgBa2CuO4+δ single crystals

Ingrid Stolt

The cuprate superconductor HgBa2CuO4+δ (Hg1201) has one of the simplest physical

structures of the cuprates making it an ideal candidate for nuclear magnetic resonance

(NMR) measurements. Here we discuss our NMR experiments aimed at studying the

mixed state of two under-doped single crystal Hg1201 samples at high magnetic fields.
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CHAPTER 1

Introduction

Superconductivity was first discovered in 1911 by the Dutch physicist, Kamerlingh

Onnes [16]. Onnes was testing the resistivity of elemental mercury at cryogenic temper-

atures and found that the resistivity consistently vanished below a certain temperature.

This property of current flow with zero resistance is now known as the defining electronic

characteristic of superconductivity. After Onnes’ initial discovery many elemental metals

were also found to exhibit this transition to a zero resistance state at low temperature, T

(T ∼ 1 K). The temperature at which the resistance disappeared became known as the

critical temperature, Tc, which is the temperature below which a system is superconduct-

ing.

About 20 years after Onnes’ discovery physicists Meissner and Ochsenfeld discovered

a second characteristic property of superconducting materials, perfect diamagnetism [17].

The two found that, in addition to having zero electrical resistance superconductors (SCs)

will also expel magnetic fields from their bulk such that the bulk magnetization is exactly

opposite to the applied field. This causes the induction, B, in the bulk of the material

go to zero. This is now commonly known as the Meissner effect or (less commonly) the

Meissner-Ochsenfeld effect.
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Early theories of superconductivity soon followed with the London brothers [18] de-

veloping a theory centred on minimizing an electromagnetic free energy of the super-

conducting charge carriers. Ginzburg and Landau [19] later produced a theory in which

the superconducting transition was characterized by the appearance of a complex or-

der parameter, ψ, which describes the superconducting current. Abrikosov [20, 21] used

the Ginzburg-Landau (GL) theory to predict the existence of a second class of SCs that

should exhibit only a partial Meissner state for certain applied fields. Specifically, this

state would allow an external field to penetrate the bulk of the SC in fixed areas each

carrying one quantum of magnetic flux. These regions of penetrating flux were called

“vortices” and Abrikosov showed that at low enough temperatures the vortices would

arrange in a periodically ordered structure known as the “vortex lattice.”

Around the same time physicists Bardeen, Cooper and Schrieffer published their now-

famous BCS theory which describes the mechanism of superconductivity in terms of a

macroscopic ground state of superconducting carriers, so-called “Cooper pairs.” These

pairs consist of electrons of opposite spin forming a spin-singlet state which acts as a

boson allowing multiple Cooper pairs to exist in the same ground state. This results in

an opening of an energy gap at the Fermi surface between the Fermi energy, EF , and

the new, lower energy BCS ground state. The gap energy, ∆BCS, is isotropic and can be

observed experimentally, e.g. by a “coherence peak” in the nuclear relaxation rate below

a certain temperature [22].
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The BCS theory was remarkably successful in explaining superconductivity in elemen-

tal metals. However, a new class of superconductors was later discovered whose behaviors

could not be described by the BCS theory. This new class of materials became known

as the cuprates and they were the first known examples of high-temperature or high-

Tc superconductors, so called because their recorded Tc’s were very large compared to

the elemental SCs. The first cuprate superconductor, La2−xBaxCuO4−y (LBCO), was

discovered in 1986 [23] with a reported Tc of 35 K, the highest critical tempereature to be

reported at the time. Several months later, Cava et al. [24] discovered that the same com-

pound could be superconducting if the Ba was replaced with Sr. The resulting compound,

La2−xSrxCuO4 (LSCO), was reported to have a Tc of 36 K. It was not long after that Wu et

al. [25] reported superconductivity in the now ubiquitous YBa2Cu3O7 (YBCO) at a record

high Tc of 93 K. In the few years following the initial discovery, researchers quickly began

synthesizing and realizing superconductivity at comparably high Tc’s in compounds like

Bi2Sr2Can−1CunO2n+4+x (BSCCO) [26], TlmBa2Can−1CunO2n+m+2 (TBCCO) [27] and

HgBa2Can−1CunO2n+2+δ (HBCCO) [28].

Researchers quickly realized that this new class of materials could not be adequately

described by the BCS theory that worked so well for metallic SCs. The cuprates exhibited

high anisotropy due to their layered structures as well as prominent thermal fluctuation

effects and smaller pair correlation lengths, ξ, associated with their high Tc’s. Moreover,

although the mechanism of electron pair formation remained valid, there was a growing

body of experimental evidence to suggest that the superconducting energy gap contained

nodes that could not be attributed to sample defects [29]. Additionally, the cuprates
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exhibited the magnetic phase predicted by Abrikosov in 1957 in which the Meissner state

could be penetrated by quantized regions of magnetic flux without destroying the super-

conductivity. All of these factors led researchers to create modified GL and BCS theories,

such as anisotropic GL theory. These theories provided good models to describe the prop-

erties of the high-Tc systems listed above. However, there are many other features of the

cuprates which cannot be explained by simple modifications to the GL and BCS theories,

as we shall see in Chapter 4.

Two popular experimental methods of studying superconductivity and high-Tc super-

conductivity are nuclear magnetic resonance (NMR) and nuclear quadrupole resonance

(NQR). An NMR experiment makes use of strong magnetic fields to measure the magnetic

response of a system of spinful nuclei in the high-field limit where the Zeeman effect is

dominant. On the other hand, NQR measurements are performed at zero or near-zero

field where quadrupole interactions are dominant. The former method is our experimental

probe of choice here. In particular we aim to study the nuclear magnetic response of a

cuprate when the system is in the magnetic mixed state described by Abrikosov.

The purpose of this project is not only to study the Abrikosov vortex lattice with

NMR, but to test the limits of the NMR probe in studying this mixed state in a cuprate

system. We consider how much information we can reliably extract from an NMR spec-

trum and how much information we would need to obtain using alternative probes. This

is particularly relevant to the study of vortex lattice geometry as we touch on in Chapter 6.
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Our main focus is the vortex lattice, which should form at low temperatures in the

mixed state. We have measured the NMR spectrum of an under-doped HgBa2CuO4+δ

(Hg1201) sample and found no evidence for the formation of a vortex lattice even down to

the lowest temperatures for fields between 14 T and 30 T and temperatures as low as 5 K.

Our findings indicate that this phase of the mixed state does not exist in the under-doped

Hg1201 system at these high fields and temperatures. These findings are described and

discussed in the last few chapters.

1.1. Organization of this thesis

This dissertation is organized as follows. Chapters 2 and 3 present a review of the

nuclear magnetic resonance (NMR) method as an experimental probe. In Chapter 2 we

focus on the theoretical aspects of NMR in the semi-classical (vector) and quantum pic-

ture. In Chapter 3 we present experimental details such as how we produce magnetic

fields, record measurements and analyze data. In Chapter 4 we review the characteristic

features of cuprate SCs such as their general crystal structure and phase diagram. This

chapter is also where we present our sample characterization for our single-crystal Hg1201

samples and discuss our isotope exchange and annealing procedure.

The majority of our data is presented in Chapters 5-7. In Chapter 5 we review some

of the physics of the superconducting copper-oxide plane using the Mila-Rice-Shastry

Hamiltonian as a way of understanding the influence of the nuclei on one another. We

also present our 63Cu and 17O NMR relaxation results and discuss how they might be

interpreted. We put the 17O spin-spin relaxation results in the context of other similar
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NMR results for YBCO samples.

Chapter 6 presents a review of the mixed state of type II SCs and the so-called vortex

lattice that should occur in these systems at low temperatures. In this chapter we also

present the details of how we can calculate the local field of a type II SC in an applied

magnetic field using GL theory. We will discuss previous NMR studies of this vortex state

on two other cuprates and how these results have been interpreted.

We present our own low-temperature data in the mixed state in Chapter 7. Here we

also review some non-NMR data on this cuprate to compare these results to our own.

Our particular focus is on a SANS study as well as magnetization creep measurements,

both of which show evidence for a lack of long-range ordering in the vortex lattice across

the layers of Hg1201 single crystals. In the final chapter, Chapter 8, we summarize our

results and discuss what measurements are needed to draw stronger conclusions.



28

CHAPTER 2

Background: NMR Theory

Nuclear magnetic resonance (NMR) experiments allow us to probe a material’s local

electromagnetic environment through its interaction with the surrounding nuclear spins.

Nuclear magnetic resonance measurements began in 1938 when Isidor Rabi et al.[30]

measured the intensity of a beam of LiCl molecules after sending it through a series of

magnetic fields. The experiment was similar to a Stern-Gerlach apparatus; the beam of

neutral LiCl molecules was initially brought out of focus by an inhomogeneous field and

subsequently refocused onto a detector by a small region of homogeneous field in which

a hairpin loop also produced an oscillating field perpendicular to the homogeneous field.

When the frequency of the oscillating field approached a certain characteristic frequency

of either the Li or Cl the beam would no longer be refocused by the homogeneous field

and the intensity observed at the detector dropped. This characteristic frequency will

later be defined as the Larmor frequency.

The methods of modern NMR experiments were later developed independently by

groups led by Bloch[31, 32] and Purcell [33] in 1946. These two groups implemented an

inductive radio-frequency (rf) cavity in a homogeneous magnetic field to detect the reso-

nant absorption of rf energy by the protons in a sample of liquid water (Bloch) and solid

paraffin (Purcell). These methods were refined over the years to develop the NMR that
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we use today.

The general set-up of a solid-state NMR experiment is as follows; a (in this case solid)

sample containing a nuclear species with nuclear spin I 6= 0 is placed in a uniform magnetic

field, Ho. Once the system magnetization has reached equilibrium in this external field we

apply a rf field, H1, which is perpendicular to Ho. This rf field knocks the nuclear spin

system out of equilibrium and creates a decaying magnetization in the perependicular

plane which leads to an induced emf in the probe circuit (see 3.1.2) which produces a

signal in the NMR spectrum. In this chapter we will discuss the information contained

in such a signal. Specifically, we are interested in the relative frequency of the signal and

how rapidly the signal decays. Here we present a brief overview of the NMR theory that

is relevant to understanding the experimental results that we show in later chapters. We

will discuss measurement equipment and experimental procedures in Chapter 3. For a

more in-depth overview of NMR theory see references [34, 35, 22, 36].

2.1. Vector picture

In the classical picture an NMR signal arises from the alternating current produced

in a coil that surrounds the system of nuclear spins which collectively precess about an

axis at a frequency that we will denote by ωL. In this picture the magnetic moment, µ,

of a nucleus with spin, I, is a vector with magnitude, µ = ~γI, where γ is the nuclear

gyromagnetic ratio, the ratio of the nuclear magentic moment to it’s angular momentum,

and ~ is the reduced Planck’s constant. In a sample with N nuclei, each with magnetic

moment, µi, where i = 1, 2, . . . , N , the total magnetization, M , is the average of all
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magnetic moments,

M =

∑N
i=1µi
N

= 〈µ〉.

In an NMR experiment we place the system of spins with magnetization M in a constant

magnetic field, Ho = Hoẑ, where ẑ is the unit vector along the z axis. The field will

produce a torque τ on the net magnetization given by,

τ = M ×Ho.(2.1)

Recall that by definition γ is the ratio of the nuclear magnetic moment to its angular

momentum. This means that the total angular momentum, J , of the system with mag-

netization M is given by J = M/γ. Noting that the torque is the rate of change of the

angular momentum we can re-write Eq. (2.1) as,

dM

dt
= M × γHo.(2.2)

We now move to a reference frame that rotates with frequency ω. In this frame the

equation of motion, Eq. (2.2), becomes,

dM

dt
= M × γHo +M × ω

= M × (γHo + ω).(2.3)

If the frame rotates with angular velocity, ω = −γHo, the angular momentum becomes

stationary in the rotating frame. In this case the only torque on the system of nuclei

must come from additional magnetic disturbances. This rotation frequency, known as the
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Larmor frequency, is defined as ωL ≡ γHo.

In order to study properties of the nuclear magnetization we must exert an additional

torque on M using a pulsed field H1 which we apply for a time t. We choose H1 to be

along the x axis of the rotating frame such that Eq. (2.3) with ω = −ωL becomes,

dM

dt
= M × (γH1x̂),(2.4)

to which solutions for M are sinusoidal functions of γH1t = ω1t and the torque is in the

y direction of the rotating frame. If the H1 pulse is applied for a time t = tπ/2, such that

ω1tπ/2 = π/2, the magnetization will be flipped into the plane perpendicular toHo. When

the rf field is turned off the nuclear magnetization will precess about the perpendicular

axis indefinitely unless it is allowed to dissipate energy and return to its equilibrium state.

This process is known as spin-lattice relaxation and we will discuss it in detail in 2.4.1.

2.2. The quantum mechanical picture

The vector model of NMR does a reasonable job of describing systems with nuclear

spin I = 1/2 and cubic structural symmetry. However, for non-cubic solid state systems

and systems with I > 1/2 there will also be a nuclear quadrupole moment which cou-

ples to the electric field gradient (EFG) produced by a system of atoms with non-cubic

symmetry. In this case the quantum mechanical description becomes necessary to fully

understand the mechanisms responsible for an NMR signal.
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The Hamiltonian, ĤNMR, that describes a system of nuclei in an NMR experiment

can generally be written as the sum of a Zeeman contribution, ĤZ , and a quadrupole

contribution, ĤQ,

ĤNMR = ĤZ + ĤQ + Ĥadd(t).

Here Ĥadd(t) represents additional contributions to the NMR Hamiltonian arising from

fluctuation fields, hyperfine coupling, dipolar coupling, etc. Below we discuss the contri-

butions from the Zeeman and quadrupole terms as well of a few examples of the additional

contributions which are most relevant to the systems of interest in this dissertation.

2.2.1. The Zeeman Hamiltonian

When a nuclear magnetic moment, µ, is placed in the constant field, Ho, the energy

levels of the system are described by the Zeeman Hamiltonian, ĤZ , where,

ĤZ = −~γÎ ·Ho.(2.5)

This splits the nuclear energy levels into (2I + 1) equally spaced energies, Em, where m

is the quantum number that indexes the eigenvalues of Îz, the component of the nuclear

spin parallel to Ho. The Zeeman energy levels are given by,

Em = −γ~Hom,(2.6)

where m = −I, (−I + 1), · · · , (I − 1), I. Clearly, the energy difference betwen adjacent

Zeeman levels, i.e. the energy needed to transition from a level with quantum number m
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to one with quantum number m± 1 is,

∆Em,m±1 = ~γHo = ~ωL,(2.7)

where ωL is the Larmor frequency defined in Section 2.1.

The Zeeman Hamiltonian as written in Eq. (2.5) applies to a bare nuclear spin in a

magnetic field. In a solid state system the nuclei are surrounded by other nuclei in various

configurations. This creates, among other things, charge distributions and hyperfine fields

that will couple to the nuclear spin and thereby alter the energy of transition. This will

cause the NMR signal in the frequency domain (the precession frequency of M in the

vector picture) to differ from the Larmor frequency. This shift is taken into account by the

so-called Knight Shift, K̂, which is a seecond-rank tensor [37]. The Zeeman contribution

to the NMR Hamiltonian becomes,

ĤZ = −~γÎ · (1̂ + K̂) ·Ho.(2.8)

The NMR signal (still considering only Zeeman contributions) will then appear at a

frequency that is shifted from ωL by some amount. The total Knight shift – or “NMR

shift” – is measured with respect to the frequency, ωref, of the nucleus in a paramagnetic

salt [34]. The total shift is then given as the following percentage,

K =
ω − ωref

ωref

× 100%.(2.9)
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The shift value, K, is generally anisotropic and has many components, as we discuss

in Section 2.3. We now turn to the other static (assuming the nuclei are stationary)

contribution to ĤNMR, the quadrupole interaction.

2.2.2. The Quadrupole Hamiltonian

When a solid-state system, e.g. a crystal, has a non-cubic symmetry the charge dis-

tribution of this arrangement of atoms will create a electric field gradient (EFG). The

EFG at the nuclear sites is a tensor with elements given by, Vµν = ∂2V
∂µ∂ν

, where V is the

electric potential and µ and ν index the principal axes, µ, ν = X, Y, Z, of the EFG ten-

sor1. The principal EFG components are defined such that, |VZZ | ≥ |VY Y | ≥ |VXX | and

VXX + VY Y + VZZ = 0 according to Laplace’s equation. The latter condition also entails

that the EFG tensor is traceless.

If the nuclei of interest have spins I > 1/2 the system will have a nuclear quadrupole

moment which couples to the EFG. This coupling cuases the Zeeman eigenstates to split

such that the levels are no longer equally separated by the ∆Em,m±1 in (2.7). The

quadrupole moment coupling to the EFG is described by the quadrupole Hamiltonian,

ĤQ, which is given by2,

ĤQ =
e2Q

2I(I + 1)

∑
α

VααÎ
2
α,(2.10)

1Note that we denote the principal EFG axes with capital X,Y, Z to avoid confusion with the laboratory
frame where z is the direction of the uniform field, Ho.
2Using the convention of reference [22].



35

where Q is the magnitude of the nuclear quadrupole moment, e is the electron charge and

α = X, Y, Z. This form of Eq. (2.10) assumes that Ho is parallel to one of the principal

EFG axes. If we take the field to be parallel to VZZ the Hamiltonian becomes,

ĤQ =
eqQ

4I(2I − 1)

[
3Î2
z − Î(Î + 1) +

η

2
(Î2

+ + Î2
−)

]
,(2.11)

where q = eVZZ , η = (VXX − VY Y )/VZZ is the asymmetry parameter and Î± = Îx ± iÎy

are nuclear spin ladder operators.

Figure 2.1. A cartoon energy diagram of the splitting (to first order) of the
NMR spectrum of a I = 3/2 nucleus coupled to an external field Ho and
an EFG. The quadrupole frequency is defined as νQ = 3eqQ/[h2I(2I − 1)].

In NMR we work with fields that are strong enough that m is considered a good

quantum number and the quadrupolar splitting can be taken into account by considering

ĤQ to be a perturbation to ĤZ . The new energy eigenstates can then be found using
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perturbation theory. Figure 2.1 depicts the energy levels of a nuclear species with spin

I = 3/2. The ground state energy level of the nucleus is split by the coupling between

the nuclear spin and the field, Ho, into (2I + 1) = 4 equally spaced energy levels. The

presence of an EFG coupled to Q further splits the energy levels such that the transitions

between the (±3/2↔ ±1/2) levels are shifted by a factor of νQ, the quadrupole frequency.

The bottom half of the cartoon shows a sketch of the NMR spectrum in the frequency

domain that one would expect for such a system. Note that this model takes only the

Zeeman Hamiltonian and first order quadrupolar corrections into account.

2.3. Knight shift

We return now to the Knight shift, the shift in the NMR frequency from ωL. The

Knight shift is a consequence of the hyperfine (HF) coupling betwen the nuclear spin and

the electronic spin system. It can be described by its own Hamiltonian, ĤHF . We will

define ĤHF as the component of Eq. (2.8) containing K̂,

ĤHF = −~γÎ · K̂(T ) ·Ho,(2.12)

where T is the temperature. Here we will discuss only some of the common contributions

to ĤHF that cause a shift in the NMR spectrum. A more detailed discussion of addi-

tional contributions to K̂ can be found in references [2, 3] as well as the NMR literature

mentioned at the start of this chapter.

2.3.0.1. Orbital shifts. The total Knight shift consists of a temperature-dependent

component and a temperature-independent component. The temperature-independent
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component arises from the coupling betwen the nuclear spin and the orbital angular

momentum of the electronic system surrounding the nuclei. This term is known as the

orbital shift, Ko. It’s contribution to the hyperfine Hamiltonian is given by,

Ĥ(o)
HF = −~2γeγn

(
Î · L̂
r3

)
,(2.13)

where L̂ is the orbital angular momentum operator for an electron at a distance r from

the nucleus and γn, γe are the gyromagnetic ratios of the nuclear spin and the electron

spin, respectively. The orbital shift is present down to the lowest temperatures and can

usually be extracted by cooling the system down to near absolute zero. In a supercon-

ducting system Ko will be the only significant contribution to K at these temperatures

as we explain below.

2.3.0.2. Hyperfine shifts. One of the most important temperature-dependent contri-

butions to the total Knight shift in the study of superconductors is due to the electronic

spin coupling to the nuclear spin. This is known as the spin shift, Ks. Although Ks is

sometimes referred to as the Knight shift we will refer to it here as the spin shift to avoid

confusion with the total shift.

The Hamiltonian describing this spin-spin interaction is also known as the magnetic

hyperfine Hamiltonian because it arises from the coupling betwen the nuclear magnetic

moment to the electron spin magnetic moment when both the nuclear spin, I, and electron
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spin, S, are coupled to the external magnetic field Ho. This Hamiltonian is given by,

Ĥmag
HF = −~2γnγeÎ ·

[
Ŝ − 3r̂ · (Ŝ · r̂)

r3
− 8π

3
δ(r)Ŝ

]
,(2.14)

where δ(r) is a delta function. The last term in (2.14) is the hyperfine contact interaction

which is relevant when the position of the electron is at the nucleus, i.e. the interaction

with the electron spin s-orbital.

The spin shift is one of the most important parameters in NMR because it is directly

related to the spin susceptibility, χs, of the electronic system surrounding the nuclear

spins. In general, the spin shift is related to the electronic susceptibility by the hyperfine

field, A, as follows,

Ks = Aχs.(2.15)

This relation to χs is what makes Ks such an important parameter in the study of super-

conductivity where the spin susceptibility is a measure of the number of electronic spins

coupled to the nuclear spin. At temperatures below the superconducting critical tem-

perature, Tc, the conduction electrons begin to form spin-singlet pairs which have S = 0

and therefore no longer couple to I via the hyperfine interaction. The behavior of Ks at

T < Tc can give insight into the pairing symmetry of an electronic system (e.g. s-wave or

d-wave). In fact, the d-wave interpretation of NMR shift and relaxation data of 63Cu and

89Y in YBCO [38, 39] played a large role in the acceptance of d-wave pairing theory in

cuprates [22].
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One of the simplest yet most illustrative examples of the significance of Ks is that of

simple metals. In pure metals in which free electrons can be described by Bloch wavefunc-

tions, ψk(r) = uk(r)eik·r, the contact hyperfine term in (2.14) is the only contributing

term [22]. In this case, A = 8π
3
〈|uk(0)|2〉, where the brakets denote an average over the

Fermi surface, and the susceptibility, χs = 1
2
γ2
en(EF ), is the spin susceptibility of the

metallic sp-band. Here n(EF ) is the density of states at the Fermi eneergy, EF . This was

the shift originally reported by W. D. Knight [37] in copper metal. Note that this shift is

temperature-independent. This is a characteristic feature of metals which we will discuss

further in Section 2.4.1.1.

2.3.0.3. Core polarization. High-Tc superconductors and d-band metals will have sig-

nificant d-spin hyperfine coupling contributions to Ks through the first two terms of (2.14).

However, electrons in these d-bands (as well as p- and f - bands) can also contribute to the

hyperfine contact term through a process known as core polarization. This mechanism is

a result of the Pauli exclusion principle which causes s-electrons of a certain spin band

to have a higher energy than that of the opposite spin [22]. This results in a change in

the hyperfine contact terms despite the fact that non-s-band electrons are not localized

at the nucleus and thereby do not directly contribute.

2.3.0.4. Diagmagnetic shifts. In Section 2.3.0.1 we briefly discussed orbital shifts as

arising from the coupling betwen the nuclear spin and the electron angular momentum.

This shift will contain both paramagnetic and diamagnetic contributions. In supercon-

ductors, the diamagnetic contribution to K becomes appreciable at T < Tc from the onset
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of diamagnetic surface currents. This is known as the diamagnetic shift, Kdia. In practice

this contribution to K can be calculated using the demagnetization factor, D, which is

dependent on sample geometry3. The diamagnetic contribution to K is often very weak

in high-Tc superconductors, such as the cuprates.

2.3.0.5. Nuclear dipole-dipole shift. All the interactions that we have discussed so

far have been betwen the electronic system and the nuclear spin of one species. However,

the nuclear spins will also interact with their neighboring nuclear spins. The Hamiltonian

describing the interaction betwen a nuclear spin of species a and one of species b is [2],

Ĥdip−dip = −aγbnγn~2

[
Î(ri) · Î(rj)

|ri − rj|3
− 3

(ri · Î(ri))(rj · Î(rj))

|ri − rj|5

]
,(2.16)

where ri,j are the positions of nucleus i, j and a,bγn is the gyromagnetic ratio of nuclear

species a, b. The nuclear dipole-dipole interaction will affect not only the shift of the NMR

spectrum, but also the width of the frequency band of the transition. We will discuss this

further in 2.4.2.

The interactions described above will lead to additional terms in the total NMR Hamil-

tonian. We have just seen how these additional contributions manifest in the frequency

shift of an NMR spectrum. The other important measurement type in our experiments

are measurements of the nuclear spin relaxation rates. We now turn to a brief overview

of the theory of nuclear relaxation.

3Reference [40] provides calculations of D in rectangular prisms which can be used to extract Kdia.
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2.4. Nuclear Relaxation

If an isolated nuclear spin in a uniform field Ho is brought out of equilibrium by an

oscillating perpendicular field H1(t) the spin will remain in the new unstable state after

the rf field is turned off unless the system is allowed to dissipate the additional energy to

return to equilibrium. In the classical picture this can be thought of as the magnetization

vector returning to the Ho axis after being knocked into the plane perpendicular to ẑ by

the field H1. In the quantum mechanical picture, where the equilibrium state is one in

which the population of states is described by the Boltzmann distribution, this process

can be described as a non-equilibrium distribution of spins exchanging energy with a

reservoir to return to its equilibrium population distribution. The time scale on which

the process just described occurs is known as the spin-lattice relaxation time, T1. This

is one of two relaxation mechanisms of great interest in NMR. In this section we will

describe the relaxation processes of interest in NMR and what information they give us

about our sample.

2.4.1. Spin-lattice relaxation

As previously described, the spin-lattice relaxation time, also known as the longitudi-

nal relaxation time, T1, is the time scale over which the population of the energy levels of

a spin system return to a equilibrium distribution where the population is proportional

to exp[−Em/kBT ], where kB is Boltzmann’s constant, T is the system temperature and

the Em are the eigenvalues of ĤZ . As we previously noted, in order for this relaxation

to occur the nuclear spins must dissipate the energy that was added by the rf field by

exchanging energy with some reservoir. This reservoir is the so-called “lattice” of the
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surrounding nuclear and electronic spins. It is because of this interaction between the

nuclear spin and its surroundings that T1 is such an important parameter; it gives us

information about the local electromagnetic environment of the sample on a length scale

of the rf penetration depth below the sample’s surface.

We can get a general idea of T1 relaxation processes using a simplified model of a

nuclear spin system with I = 1/2. In this case the system is a simple two-level system

where the nuclear spin state can be either spin-up (m = +1/2) or spin-down (m = −1/2).

Each individual spin in the system is taken to be in contact with a thermal reservoir of

spins (the lattice) so that level transitions should be possible even in the absence of an

external force (e.g. an rf field) driving transitions [34]4.

If the total number of spins in the system is N the populations of each state can then

be denoted as N+ and N− and we can write a differential equation for the change in the

population of the spin levels,

dN±
dt

= ±(N−W↓ −N+W↑),(2.17)

where W↑ is the rate of a transition from the m = +1/2 level to the m = −1/2 level5 and

vice versa for W↓. We can find the relationship betwen the two rates by noting that at

4The following derivation of the simplified expression for T1 in a spin-1/2 system was adapted from [34]
Chapter 1.
5Recall that the spin-down state will have a higher energy than the spin-up state.
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equilibrium the rate of population change is zero. This gives,

W↓
W↑

=
N0

+

N0
−
,(2.18)

= e−β∆E,

where ∆E = E+ − E− is the difference betwen the two energy levels, β ≡ 1/(kBT ) and

the superscript 0 denotes the equilibrium state in which the level population is given by

the Bolzmann distribution. If the spin system is split by the uniform field Ho then ∆E

is the Zeeman energy, −~γnHo. This means that the rate of down transitions in terms of

the rate of up transitions is,

W↓ = W↑e
β~γnHo .(2.19)

In keeping with the tradition of statistical mechanics problem solving we then write the

population differences in terms of n = (N+ −N−) and N = (N+ +N−) as,

N+ =
1

2
(N + n),(2.20)

N− =
1

2
(N − n),(2.21)

and write the transition rates, dN+/dt, dN−/dt in terms of n and N . This gives,

dn

dt
= N(W↓ −W↑)− n(W↓ +W↑).(2.22)

If we then define T−1
1 ≡ W↑(e

β~γnHo + 1) = W↑ + W↓, as the relaxation rate of n, the

population difference betwen the two spin levels. We get the following relations for the
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rates,

W↑ =
T−1

1

(eβ~γnHo + 1)
,(2.23)

W↓ =
(T−1

1 )eβ~γnHo

(eβ~γnHo + 1)
.(2.24)

The rate of population change is now,

dn

dt
= − 1

T1

[
n−N (eβ~γnHo − 1)

(eβ~γnHo + 1)

]
= −(n− n0)

T1

,(2.25)

where n0 is the equilibrium population difference which can be found by rearranging (2.18)

and using (2.20) and (2.21) substituting n = n0.

In deriving (2.25) we considered only the effects of a system in a static magnetic field,

i.e. a system undergoing magnetization due to a constant field. The solution of (2.25) is,

n(t) = n0(1− e−t/T1).(2.26)

Clearly, in this case of a spin-1/2 system in a constant field, T1 is the time constant that

describes the time it takes for a sample to become magnetized, or for n to change from

its equilibrium value.

The above example can be expanded to describe the case of a nuclear spin system

with I > 1/2 as well. To do this we return to (2.22) and add the index j to indicate
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the transition. Here we work with difference variables nj = Nm − N(m+1) [35]. We can

approximate the level population as only being affected by the adjacent (∆m = ±1)

energy levels. The difference equation describing the population difference, nj is,

d(nj)

dt
= W(m+1)→mn(j+1) − 2Wm→(m−1)nj +W(m−1)→mn(j−1).(2.27)

In writing (2.27) we have assumed that both transitions out of the m state are equal,

which is true in the high-temperature limit in which β � ∆E, which is usually the case

in an NMR experiment. A more illustrative form of (2.27) is as the matrix equation,

dn

dt
= D̂n,(2.28)

where D̂ is a matrix of relaxation rates and the components of n are the nj defined above.

The eigenvalues of D̂ are λi and the eigenvectors are Ei [2]. If we form a matrix Ê out of

these eigenvectors such that (Ê−1D̂Ê)ij = δijλj then,

dn

dt
= Ê(Ê−1D̂Ê)Ê−1n,

= ÊλÊ−1n.(2.29)

The above equation has solutions,

n(t) = ÊΛ̂Ê−1n(0),(2.30)

where Λ̂ is a diagonal matrix with elements given by exponentials, Λ̂ii = eλit and n(0)

are the initial population differences. The elements of n(t) are then composed of a sum

of exponentials. The magnetization profile for the jth transition is proportional to the
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corresponding nj(t). Therefore, for a nucleus of spin I in a spin system the matrix D̂

will give a functional form of Mj(t) ∝ −nj(t). In an NMR experiment we extract T1 by

measuring Mj(t) over a certain range of time. Therefore, we can use the form of Mj(t)

for a specific I to extract T1 from our experimental data. We will discuss how we perform

these measurements in the next chapter.

We have just described a simplified picture that allows us to find T1 in a system of

nuclear spins with I > 1/2. A more complete description of the effect of spin-lattice

interaction can be found by using the density matrix formulation. In this case the nuclear

spin ensemble is represented by the density matrix, ρ̂(t), and T1 can be found by using

time-dependent perturbation theory to calculate the rate of transition between two spin

levels, m and m ± 1, in the presence of a perturbation Ĥ1(t). This rate is given by the

average expectation value of the rate of change of the density matrix. This rate of change

is (to second order)[34],

dρ̂∗(t)

dt
=
i

~
[
ρ̂∗(0), Ĥ∗1(t)

]
− 1

~2

∫ t

0

dt′
[
[ρ̂∗(0), Ĥ∗1(t′)], Ĥ∗1(t)]

]
,(2.31)

where the ∗ indicates that the operators are in the interaction representation, ρ̂∗(t) =

e(i/~)ĤNMRtρ̂(t)e−(i/~)ĤNMRt; here ĤNMR is the Zeeman Hamiltonian and all other sta-

tionary contributions to the NMR system. Another advantage of the density matrix

formulation is that, assuming we keep the off-diagonal elements of ρ̂, it can also be used

to calculate the spin-spin relaxation time, which we will discuss in 2.4.2. For a detailed

derivation and example of the use of the density matrix formulation see Appendix B or
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Chapter 5 of [34].

Note that if Ĥ1 is constant in time T1 can be calculated using Fermi’s golden rule for

the transition rate between two states which differ by ∆m = ±1. An example of such a

case is that of a simple metal.

2.4.1.1. The Korringa relation. In Section 2.3.0.2 we saw that the spin shift of a

sp-band metal was independent of temperature and given by,

Ks =
4π

3
~2〈|uk(0)|2〉γ2

en(EF ).(2.32)

We can now use the results of the previous section to find the corresponding T1 for

such a metallic system. Here, Ĥ1(t) = Ĥmag
HF from (2.14). We consider only the contact

interaction because in the system we are considering (a metal with cubic symmetry) the

higher order orbital couplings are negligible [22]. The golden rule for the rate of transition

betwen a state 1 and state 2 is,

W2,1 =
2π

~
∣∣〈2|Ĥ1|1〉

∣∣2δ(E1 − E2),(2.33)

where E1,2 is the energy of state 1 and 2, respectively. Here Ĥ1 = (8π/3)~2γnγeδ(r)Î · Ŝ

and we want to find the rate for the transition from a state indexed by nuclear spin

quantum numberm and electron wavefunction ψk = uke
ik·r to a state indexed bym+1 and

electronic wavefuntion ψk′ = uk′eik
′·r. Additionally, because Î ·Ŝ = ÎzŜz+

1
2
(Î+Ŝ−+Î−Ŝ+)

any ∆m = +1 transition must also be accompanied by a transition from the electronic

spin-down state to the spin-up state. Therefore, our initial electron state must be the
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spin-down and the final state will be spin-up. Our golden rule expression is then,

W(k↓m)→(k′
↑m+1) =

2π

~

(
4π~2γnγe

3

)2∣∣〈k′↑(m+ 1)|δ(r)Î+Ŝ−|k↓m〉
∣∣2δ(Ek − Ek′).(2.34)

The delta function will pull out the r = 0 terms of the electron wavefunctions -the

components of the wavefunctions at the nucleus- only and the Î+Ŝ− products will give

us a factor of (I −m)(I + m + 1). The spin-lattice relaxation rate will be given by the

coefficient of the (I −m)(I + m + 1) term [22]. The sum over k,k′ can be replaced by

energy integrals using the density of states, n(E), and the Fermi function, f(E). This

final relaxation rate is,

1

T1

=
4πkBT

~

[
4π

3
γnγe~2〈|uk(0)|2〉n(EF )

]2

(2.35)

=
4πkBTγ

2
n

~γ2
e

K2
s .

This leads to the famous Korringa relation,

1

T1T
=

(
4πkBγ

2
n

~γ2
e

)
K2
s ,(2.36)

which is independent of temperature. This calculation by Korringa [41] agrees remarkably

well with the relaxation behavior of simple metals with cubic crystal structures. Even

in more complex structures there are often ranges of temperature over which 1/(T1T ) is

constant. This behavior is referred to as “Korringa-like.” A notable example of Korringa-

like (T1T )−1 behavior is that of 89Y in the high-Tc cuprate superconductor YBa2Cu3O7 at

high temperatures (T > Tc) [42].
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We have seen that T1 is an important time scale, reflecting the energetics of the

magnetization relaxation which allows us to probe physical properties through NMR.

However, there is a second crucial time scale in NMR that we have yet to address fully

which is the time over which a system of precessing nuclear spins can be considered as a

single coherent magnetization. While T1 gives us information about energy transfer and

population differences it does not give us information about fluctuating longitudinal fields

which will affect our ability to measure an NMR spectrum in the first place. In order to

get the full picture we need a second relaxation time, T2, which we describe below.

2.4.2. Spin-spin relaxation

The other key timescale in an NMR experiment is the so-called spin-spin relaxation

time, T2. In the vector model this is the timescale over which the perturbed magnetiza-

tion vector “spreads out” (see Fig. 2.2) in the perpendicular plane due to the individual

spin vectors precessing at different rates. In the quantum picture T2 is also known as the

“de-coherence time” because it is the timescale over which the individual nuclear spin

states lose coherence after an H1 pulse. Unlike the spin-lattice relaxation process, the

Figure 2.2. A cartoon visualization of (a) the spin-lattice relaxation time,
T1, and (b) the spin-spin relaxation time, T2, in the classical picture.
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spin-spin relaxation mechanism does not involve any actual transfer of energy because it

is only the phase of the individual spin states that is changing, not their energies. The

length of T2 will be influenced by the variation in the z- component of the field, Hz, across

all nuclear spins. This effect can by amplified by inhomogeneity in in the applied field

which will increase the spread of Hz. Additionally, if a nucleus changes position by a

mechanism such as diffusion the magnetic moment will gain an additional phase due to

this translation. The accumulated phase of nuclei at various positions in the sample leads

to a shorter observed T2.

2.4.2.1. The rigid-lattice limit. If the nuclei in a sample are completely stationary one

can calculate the effect of nuclear dipole-dipole interactions (see 2.3.0.2) on the observed

T2 using the method of moments6 to compute the broadening of the Zeeman states due

to this interaction. We will refer only to the so-called “second moment,” 〈∆ω2〉, which

is on the order of the square of the measured linewidth (the width of the frequency of a

transition). The second moment describing the local field in a system of N nuclear spins

is,

〈∆ω2〉 =
3

4
γ4~2I(I + 1)

1

N

∑
j,k

(1− 3 cos2 θjk)
2

r6
jk

,(2.37)

where γ is the nuclear gyromagnetic ratio, θjk is the angle betwen the vector connecting

nucleus j and k and the field Ho and rjk is the distance betwen nucleus j and nucleus k.

Eq. (2.37) describes the seecond moment for the spin-spin coupling between nuclei of the

same species. If we are observing the resonance of spin species 1 which couples to spin

6Reference [34] Chapter 3.
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species 2 the second moment is given by,

〈∆ω2〉1,2 =
1

3
γ2

1γ
2
2~2I2(I2 + 1)

1

N

∑
j,k

(1− 3 cos2 θjk)
2

r6
jk

.(2.38)

The T2 corresponding to the second moment in the rigid latice limit is the inverse square

of 〈∆ω2〉,

T−1
2 = 〈∆ω2〉1/2.

The rigid lattice T2 calculation is useful for determining the source of spin-spin relaxation

in a solid sample e.g. a single crystal. This can be useful, for example, if one wishes to

isolate the contributions to T2 that are not caused by internuclear dipole coupling7.

2.5. Conclusions

In this chapter we reviewed the basic concepts of NMR in both classical and quantum

mechanical pictures. We saw that the Hamiltonian that describes the NMR spectrum

is the Zeeman Hamiltonian for an ensemble of nuclear spins in a field Ho. We have

seen that additional contributions from quadrupole coupling, nuclear dipole coupling, as

well as hyperfine coupling will shift the frequency of the NMR signal as well as alter the

characteristic magnetization time, T1. Additionally, we have seen the example of how the

spin shift and T1 behave in a simple metal. In the following chapter we will see how one

measures the relaxation rates in practice as well as how we set up an NMR measurement

in the laboratory.

7See, for example, Recchia et al. [43].
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CHAPTER 3

Experimental NMR

In the previous chapter we briefly touched on the setup of an NMR experiment. In

order to perform a measurement of nuclear magnetization one requires a sample, a uniform

magnetic field Ho, an inductive cavity and a signal detection system. In this chapter we

will discuss the technical details of the NMR experiments reported herein beginning with

our equipment and the signal processing software and hardware that allows us to run our

pulse sequences, which we will describe in detail in the later sections.

3.1. Hardware

In order to generate a Ho that is suitable for an NMR experiment we need a strong

magnet with reasonable (less than 10 ppm at the center field) field homogeneity as well

as an inductive coil to provide our rf field, H1. The coil also serves as a detector in that

it is the change of inductance of the coil due to a decaying sample magnetization which

produces the induced emf in the NMR circuit which leads to a signal in our measured

spectrum [36]. Additionally, we require a spectrometer and computer to send and receive

rf signals, convert analog signal to digital information and store the data for analysis.

The majority of the experiments reported herein were performed at Northwestern

University in an Oxford 600/51 warm-bore superconducting magnet with a near constant

field of 14 T. The center field of the magnet is about 14.103 T when fully energized and



53

H1

Figure 3.1. The sample stage and coil used in our high-field experiments at
NHMFL. The direction of the H1 field is indicated by the arrow and the
label. The Ho field is perpendicular to H1 and runs parallel to the axis of
the of the probe.

has a field drift of approximately 0.2 ppm per day [44]. The majority of our coils were

made using copper wire1 with a diameter of 28 AWG for 63Cu and 199Hg NMR and 32

AWG for 17O NMR. The inductance of the coil must allow for the resonant frequency of

the probe circuit (see 3.1.2) to be tuned to the desired frequency and impedance matched

to 50 Ω at that frequency. The 63Cu in the coil can also be used as a benchmark nucleus

to characterize the exact field strength prior to an NMR measurement.

1For 63Cu NMR we make our coils with Ag wire to avoid contaminating the sample signal with that of
pure metallic Cu.
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Our Hg1201 single crystal samples are very fragile and must be kept in an external

sample holder to avoid excessive handling and exposure to impact. We make the majority

of our sample holders using borosilicate glass NMR tubes which we cut to a length of about

1 cm with a diamond blade and mold using a torch and a pair of pliers to fit closely to

our sample dimensions. The sample holder and coil should be as close to the sample size

as possible in order to maximize the filling fraction, i.e. the fraction of the space inside

the coil that is filled by the sample.

Figure 3.2. The picture shows a Cu coil encasing the sample holder used
for high-field measurements. The inset shows an image of the sample inside
the sample holder. The crystal c-axis of the sample is perpendicular to the
surface shown.
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Our high-field (Ho > 14 T) and low-temperature (T < 20 K) NMR experiments were

performed at the National High Magnetic Field Laboratory (NHMFL) in Tallahassee,

Florida. These measurements utilized an all-superconducting cold-bore magnet with a

maximum field of 32 T [45]. Temperature control was achieved using a variable tem-

perature insert (VTI) with a range from 1.4 - 300 K. The sample holder used in these

experiments consists of several layers of 0.0025 inch thick Kapton polyimide masking tape

(see the inset of Fig. 3.2) and a few pieces of Teflon tape to restrict the motion of the

sample.

3.1.1. Spectrometer

All of our measurements, including those at the NHMFL, are performed with a MA-

GRes2000 spectrometer designed by A. P. Reyes. For more details on the spectrom-

eter hardware and software, a technical user’s manual can be found in reference [1].

The spectrometer hardware consists of a pulse programmer, which controls digital in-

put/output (I/O) operation through an external PC timing card; an analog-to-digital

converter (ADC), which is also a PC card; and a home-built rf-module which transmits

and receives pulses to and from the NMR probe, respectively.

The experiments performed at Northwestern University in a 14 T field utilize a GT50-

DIO PC I/O card from GeoTest R© Inc. to control the timing of the pulses in the NMR

experiment. The timing card also interfaces with a PTS500 frequency synthesizer for re-

mote pulse programming and phase control. The phase sensitivity of the PTS500 allows

us to perform all experiments with quadrature detection, which we discuss below. The
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ADC card used for signal acquisition is a GaGe R© Compuscope CS1250 PCI card with

12-bit digitization and 4 MB of memory.

3.1.1.1. Quadrature detection. All of our NMR experiments are performed with a

quadrature detection sequence, meaning that the phase of the transmitted signal as well

as the receiver phase, is rotated through multiples of four permutations of relative phases

in order to average out any spurious signal contributions that can accumulate if the signal

detection-acquisition is performed at only one phase. Quadrature detection is also a

way of avoiding accumulating errors in the measured signal due to electronic drift [36].

The table below shows the 16 phase combinations in our standard Hahn echo (see 3.2.2)

measurements where the phase of the first (π/2) and second (π) pulses as well as the

receiver are denoted by the symbols ±x (0◦ and 180◦) and ±y (90◦ and 270◦).

π/2 y −x −y x y −x −y x y −x −y x y −x −y x

π x x x x y y y y −x −x −x −x −y −y −y −y

receiver −y −x y x y x −y −x −y −x y x y x −y −x

3.1.1.2. RF module. The rf module consists of an integrated signal transmitter and

receiver unit. The transmitter generates quadrature gated rf signals by passing the sig-

nal generated by the PTS500 frequency synthesizer through an equal power splitter and

using this split signal as the reference for both transmitter and receiver section. On the

transmitter side the reference is sent to a gated phase shifter which sets the correct phase

of the signal before it enters a series of attenuators (the attenuation can be set by the

user) followed by an rf power amplifier and finally the NMR probe circuit. The receiver
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section consists of an additional variable attenuator and two wideband, double-balanced

rf mixers, which multiply the output signal from the probe circuit with the reference sig-

nal from the PTS500 and sends the resulting intermediate frequency (IF) signal to the

computer for digitization and analysis. Fig 3.3 shows a block diagram of the rf module.

Gated 
phase 

shifter

LO
RF

IF

LO
RF

IF

0o

90o

𝜆/4 
cable

crossed 
diodes

Probe 
circuit

rf 
mixers

blnk

pre-
amp

power 
splitters

Bandpass 
filters

Channel A

Channel B

Duplexer

PTS500

Computer

Figure 3.3. A block diagram of the MagRes rf module adapted from refer-
ences [1, 2, 3, 4].

The transmitted and received signals also pass through a duplexer section upon enter-

ing and leaving the probe circuit. The duplexer section isolates the high-power rf input

signal from the transmitter circuit and the low-power output signal from the induced emf

of the NMR circuit. In this sense the duplexer can be thought of as the border between

the transmitter and the receiver section of the rf module; it divides the two sections and

prevents the signals from one contaminating the other. For our experiments at NU this
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signal isolation is accomplished using crossed diodes and a so-called “λ/4 cable.” On the

transmitter side a pair of crossed diodes prevents the low-power rf signal from re-entering

the transmitter section by providing a high impedance in this direction. Similarly, the

λ/4 cable and shunted crossed diodes on the receiver side reflect high-power rf signals and

prevent them from entering the pre-amplifier.

Figure 3.4. A block representation of the quadrature hybrid duplexer cir-
cuit used at the NHMFL. The quadrature hybrid coupler ports are labeled
assuming the input signal enters from the port labeled “IN.”

The duplexer used for our high-field experiments at the NHMFL utilizes a pair of

quadrature hybrid couplers rather than a λ/4 cable. These hybrid couplers are Anaren

four-port, 3 dB directional couplers with a 90◦ phase difference between the two output

ports and an isolation rating of 21 dB. The quadrature hybrid circuit is shown in Fig. 3.4.

Note that the port labels in the circuit diagram assume only an input signal from one port.

In general, if a signal enters one port that port becomes the “IN” port from which the sig-

nal is split with equal power to the two output ports on opposite sides of the coupler with

a relative phase shift of 90◦ between each output port [46]. The couplers isolate the rf port

from the pre-amplifier by ensuring that the phase shifts of the recombining signals from
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this port cancel at the port connected to the receiver. The same is true for the receiver

and rf input section. The quadrature hybrid duplexer has a wider frequency bandwidth

than the λ/4 cable but has more loss on the transmission side of the rf module [2].

3.1.2. Probe circuit

The NMR probe circuit consists of two variable capacitors and an inductive coil with

inductance L. The capacitors are placed in series and parallel with the inductor such that

one capacitor, CM, is used to match the impedance of the probe circuit and the other,

CT, is used to tune the resonance frequency of the circuit. The two ways to arrange

the capacitors and inductor are known as PTSM (Parallel-Tuned Series-Matched) and

STPM (Series-Tuned Parallel-Matched); the experiments reported in later chapters were

performed using the latter. Most of the data reported in this thesis was measured using a

Figure 3.5. A circuit diagram depiction of the (a) STPM and (b) PTSM
probe circuits.

high-field probe designed by Reyes et al. as detailed in reference [47]. We used a home-built

continuous flow cryostat designed and build by Lee with inspiration from reference [48]

to achieve temperatures between 285 K and 20 K.
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3.2. Pulse sequences

We now move on to discuss how we program our transmitted signals to measure

certain nuclear relaxation properties. These sequences are set using the MAGRes pulse

programming module described in detail in [1].

3.2.1. FID

The most basic NMR pulse sequence is the so-called “Free Induction Decay” (FID).

In an FID the H1 field is turned on for a time, t = tπ/2, such that γH1tπ/2 = π/2. In

the semi-classical picture this “π/2 pulse” rotates the nuclear magnetization vector, M ,

into the plane perpendicular to Ho such that the magnetization induced in the coil is

maximized at a time t = τ and subsequently decays to zero. This pulse sequence is

often repeated many times at a repetition time, TR > 5T1, in order to allow the system

to reach its equilibrium spin population distribution before each repetition. The signals

from each repetition are added together to increase the signal-to-noise (S-N) ratio of the

NMR spectrum.

There are several problems that arise with the FID measurements in practice. Since

the magnet used to produce the external field will have some inhomogeneity, ∆Ho, the

individual nuclear spins that make up the net magnetization will precess at diferent rates

in different regions of the sample. In quantum mehanical terms, the nuclear spins will lose

coherence on a time scale faster than T2. This decoherence time due to field inhomogeneity

is known as T ∗2 where T ∗2 ≤ T2 [36]. In many cases this additional decoherence due to field

inhomogeneity causes the FID signal to decay so rapidly that the spectrometer cannot
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H1
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M
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(1)

(2)
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Figure 3.6. A cartoon of the free-induction-decay (FID) process in terms
of the magnetization vector (right) and the pulse timing diagram (left).
The first step (1) involves applying a field H1 for a time tπ/2 such that the
magnetization is knocked into the plane perpendicular to Ho; step (2) is to
record the magnetization induced in the coil while the nuclear magnetization
relaxes back to equilibrium. In the timing diagram the horizontal axis
depicts the elapsed time in an experiment and the vertical axis depicts the
sample magnetization (purple) as well as the H1 pulse (rectangle) which is
applied for a time such that γH1t = π/2.

record the full signal and valuable information is lost. Experimentalists can mitigate this

loss of coherence by using the Hahn echo technique.

3.2.2. Hahn Echo

In 1950 E. L. Hahn published his work [49] detailing a revolutionary pulse sequence,

the so-called “Hahn Echo.” This pulse sequence removes the effect of field inhomogeneity

by applying a second “re-focusing” pulse at a time t = τ after the initial π/2 pulse. The

refocusing pulse is applied for a length of time such that γH1t = π (a “π-pulse”). The

effect of this refocusing pulse is to rotate the individual nuclear spins in the perpendicular
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plane such that the magnetization refocuses along one axis at a time t = 2τ , creating a

maximum magnetization signal at this time.

As with the FID, this sequence is often repeated and the signal averaged until the desired

t

𝜏

𝜋𝜋/2+Mo

M(2𝜏)

TR

Ho

→

y
x

z

H1
→

Ho

→

y
x

(3)

(4)

(3)

(4)

Figure 3.7. The Hahn echo sequence begins as an FID (see Fig. 3.6 for
steps (1) and (2)) but at time t = τ after the π/2 pulse we apply a second
rephasing pulse (3) such that we see a maximum signal at time t = 2τ (4).

S-N ratio is achieved.

3.2.3. CPMG

The Hahn echo method is very useful for measuring NMR spectra and variations of it

can be used to measure relaxation rates, as we will describe later in this section. How-

ever, when a nuclear spin system has a very long relaxation time the repetition time

needed2 between each Hahn echo to obtain a spectrum with an acceptable S-N ratio can

be prohibitively expensive. One way to improve the S-N in less time is to use the Carr-

Purcell-Meiboom-Gill (CPMG) method.

2Recall that TR should be set to at least 5T1 in an NMR measurement.
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A CPMG experiment begins the same way as a Hahn echo, with a π/2 pulse to saturate

Figure 3.8. A cartoon depiction of the Carr-Purcell-Meiboom-Gill (CPMG)
method. The sequence begins with a π/2 pulse followed by a train of N π
pulses which gives N echoes. The magnitude of the echoes decay over time
such that their decay rate can be used to measure T2. The N echoes can
also be summed to improve the S-N of a measurement in less time than it
takes to run N Hahn echo sequences.

the spin levels and a subsequent π pulse at time t = τ to refocus the magnetization.

However, instead of waiting for a time TR for the magnetization to return to equilibrium

before repeating the sequence one will apply another π pulse at t = 2τ which will refocus

the magnetization again in the perpendicular plane. This process continues with a train

of π pulses being applied in time intervals of ∆t = τ with spin echoes appearing after

each π pulse. One can improve the S-N by summing all the echoes in a CPMG spectrum

similar to how one would add spectra together in standard signal averaging.

The FID and Hahn echo are the most basic NMR pulse sequences used to obtain

a spectrum. However, if one wants to measure T1 or T2 one will need to measure the

spectrum multiple times with different pulse conditions in order to see the effect on the

magnetization. Below we discuss some common methods of measuring the spin-lattice

and spin-spin relaxation rates.
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3.2.4. Measuring T2

The two most common sequences used to measure T2 are the Hahn echo and CPMG.

3.2.4.1. CPMG for T2 measurements. As we just saw, a CPMG spectrum that uses

N π pulses will contain N spin echoes each separated by time intervals of ∆t = τ . The

amplitude of these echoes should decay with a time constant of T2. Thereby, one can

extract the T2 from a CPMG spectrum by fitting the signal decay as a function of time

to an exponential function.

The sequence described in section 3.2.3 is actually referred to as the Carr-Purcell (CP)

sequence and was developed by Carr and Purcell in 1954 [50]. This was later modified

by Meiboom and Gill in 1958 [51] to correct for errors due to the π pulses not being

perfectly 180◦ and the effects of H1 inhomogeneity [36] which resulted in measured T2’s

that were too small. The modified sequence, the CPMG sequence, improved the accuracy

of the T2 measurement by alternating the phase of the π pulse to be phase shifted by 90◦

with respect to the initial π/2 pulse. This is to avoid accumulating errors due to these

imperfect experimental conditions.

3.2.4.2. Hahn echo T2 measurement. We previously described the Hahn echo exper-

imental setup as a pulse sequence of π/2−τ−π− acquire; however, if we want to measure

T2 we need to change the time, τ , at which we apply the π pulse and acquire the signal

and subsequently observe the effect on the magnitude of the magnetization. In a Hahn

echo T2 measurement one repeats the Hahn echo sequence at increasing τ values until the

signal is no longer detectable. One can extract T2 by fitting the decaying magnetization
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amplitude, M(t), as a function of t = 2τ to the following expression,

M(2τ) = Mo exp

[
− 2τ

T2e

−
(

2τ

T2g

)2]
,(3.1)

where T2e is the Lorentzian (exponential) decay contribution and T2g is the Gaussian

contribution. Often times the decay profile of M(2τ) will be dominated by either the

Gaussian or the Lorentzian component and can be modelled as a single function rather

as a product of two functions. Other systems, such as a cuprate superconductor in the

so-called “mixed state” (see chapter 6), will have both an exponential and a Gaussian

contribution present in M(2τ).

3.2.5. Measuring T1

The methods of measuring the spin-lattice relaxation time, T1, fall into two categories,

full recovery pulse sequences and progressive saturation techniques. We will begin with

the former.

3.2.5.1. Full-recovery T1 measurements. There are two main pulse sequences that

fall into the full-recovery measurement category, the inversion recovery and the saturation

recovery. Both the inversion recovery and the saturation recovery make use of the same

key idea; one begins with a preparation pulse, either a π pulse or a π/2 pulse, and at a

time t = τ1 later perform a measurement pulse sequence, either a Hahn echo with pulse

spacing τ or an FID3. In these experiments the value of τ1 is varied while τ remains fixed

and the magnetization amplitude is recorded as a function of τ1. Figure 3.9 shows a visual

representation of these two pulse sequences as a function of elapsed time.

3These are not the only options for measurement pulse sequences but they are the only two which we
have used for the experiments which we discuss in this dissertation.
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Figure 3.9. A cartoon representation of the full recovery sequences. The
inversion recovery is shown in the top figure (a) and the saturation recovery
sequence is shown in the bottom figure (b). Each sequence is repeated with
a repitition time of t = TR between each to allow the magnetization to
return to equilibrium between each measurement.

In an inversion recovery experiment the above process is conducted with a π prepa-

ration pulse that rotates the initial magnetization by 180◦ such that the initial condition

for the magnetization becomes (assuming the magnitude of M is Mo when aligned with

Ho) M(t = 0) = −Mo. As we increase τ1 the magnetization will go through zero and at

sufficiently long τ1 the signal amplitude will be identical to that of a regular Hahn echo.

One advantage of the inversion recovery sequence is that it has a range of magnetization

that is 2Mo as opposed to Mo.
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The saturation recovery begins with a preparatory π/2 pulse such that at the shortest

τ1 there will be no detectable signal because the initial condition (the magnetization at

the time of the initial π/2 measurement pulse) is M(t = 0) = 0. One of the benefits of

using the saturation recovery rather than the inversion recovery is that the preparation

pulse in a saturation recovery is half as long which means that the frequency range in

the power spectrum, the range of frequencies that can be excited by the pulse, is twice

as wide [36]. Additionally, the repetition time needed for a saturation recovery is much

shorter than that needed for an inversion recovery because the time needed for the system

to reach its equilibrium spin population following a measurement sequence will be shorter

if the preparation pulse is half as long.

As we alluded to in 2.4.1, when we perform a T1 measurement we are measuring the

magnetization recovery, Mj(t = τ1), corresponding to the transition j which we excite

with our rf pulse. To extract T1 we fit our recovery profiles to a sum of exponentials. For

a full recovery experiment we fit the magnetization data to the following,

Mj(τ1) = C1

[
1− C2

(
nj(τ1)/no

)]
,(3.2)

where C1 and C2 are constants that reflect the spin population and the tip angle of the rf

pulse, respectively. Our full recovery profiles -the nj(t) in (3.2)- can be found in Appendix

A of Reference [2] along with the saturation recovery profiles, which will have a different

form due to the fact that their initial conditions, and hence the n(0) in (2.30), will differ

as we discuss below. We include these recovery profiles in Appendix A for easy reference.
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Figure 3.10. A cartoon representation of the PST pulse sequence. In this
case, the preparation pulse and measurement pulse sequences are Hahn
echoes; however, one could use other sequences such as the FID or a π/2−
τ − π/2 pulse as well.

3.2.5.2. Progressive Saturation T1 measurements. In a full-recovery measurement

one waits for the spin populations to reach equilibrium before repeating the preparation

and measurement sequences. This requires waiting for repetition times, TR � T1, between

each sequence. When T1 is less than 1 second the full recovery method is the best way to

get an accurate measurement of the relaxation time; however, when T1 is longer than 1

s, as is often the case in superconducting systems at low temperatures, the full recovery

measurements can become impractically time consuming. Therefore, for sufficiently long

T1 it can be preferable to use a so-called progressive saturation technique (PST) to measure

spin-lattice relaxation.

The key difference between the full recovery method and PST is that in a PST ex-

periment the initial conditions of the spin system are non-equilibrium and generally not

known. The initial preparation sequence in PST is a train of 4-16 Hahn echoes or FIDs

separated by a delay time, TD. This preparation sequence will prepare the system in a

non-equilibrium steady state which is then measured by a sequence of N Hahn echoes or

FIDs also separated by TD (see Fig. 3.10). The signal after each measurement sequence
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is recorded and averaged with the others such that each TD value produces one signal

(unlike in a CPMG where the measurement appears as a train of echoes). This process

is repeated for many TD values. The longest delay time should be set to no more than

0.5-0.7 T1 to avoid the experiment becoming too time-consuming. For a detailed overview

of PST and its uses for I > 1/2 systems see Chapter 4 of reference [2].

The relaxation data that we present in later chapters were measured using the Hahn

echo method for T2 in all nuclei. Our T1 measurements on the 63Cu nuclei are performed

using inversion or satuarion recovery at all temperatures because the relaxation at this

site occurs very rapidly even at low temperatures (T1 ∼ 1 ms at T = 20 K). The 17O

T1 measurements, on the other hand, are preformed using a full recovery sequence at

temperatures above the superconducting transition and PST at the lowest temperatures

where T1 > 1 s. The fit function for a PST experiment is,

Mj(TD) = C1

[
1 + 2

√
A(1− A)

(
nj(TD)/no

)]
,(3.3)

where C1 and A are constants which we leave as fit parameters.

Although all the pulse sequences we have presented above show the signal in the

time domain, all of our analysis is carried out in the frequency domain. We use either

MATLAB or MAGRes to transform our time-domain data into frequency data using a

discrete Fourier transform (FT). When fitting the magnetization decay to find T1 or T2 we

use the area under the appropriate peak in the frequency domain to represent Mj(t), which
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is given by (3.1) for T2 and by (3.2) and (3.3) for full-recovery and PST, respectively, for

T1.

3.3. Conclusions

In this chapter we presented an overview of the equipment used in the NMR experi-

ments of interest to us here. We have also seen how one can program a NMR spectrometer

to measure the nuclear relaxation times T1 and T2. This overview will help the reader un-

derstand the results we present in later chapters. In the next chapter we begin discussing

the materials of interest and how our samples are fabricated and characterized.
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CHAPTER 4

Samples and characterization

As we mentioned in the introduction, the cuprate high-temperature superconduc-

tors (HTSCs) were initially discovered in the mid 1980s in La-[23, 24] and Y-[25] based

samples. This initial breakthrough quickly led researchers to discover high-Tc supercon-

ductivity in similar ceramic materials such as Bi2Sr2Can−1CunO2n+4+x (BSCCO) [26],

TlmBa2Can−1CunO2n+m+2 (TBCCO) [27] and HgBa2Can−1CunO2n+2+δ (HBCCO) [28].

Despite the fact that certain cuprate samples have been readily obtained and investigated

for nearly four decades the scientific community has not yet found a theory that accurately

describes the many unusual electronic and magnetic properties of these materials with the

success that the BCS theory had with conventional superconductors (SCs). Nonetheless,

decades of experimentation has left us with an abundance of phenomenological properties

that arise in these highly anisotropic layered compounds.

In this chapter we will look at some of the phenomenological properties that make

the cuprates so elusive. In the later sections we will present the reader with the charac-

terization of our underdoped, single-crystal cuprate samples. We also discuss our isotope

exchange and annealing procedure which is essential for performing 17O NMR.
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4.1. Cuprates

The materials we refer to as “cuprates” are ceramic structures with non-stoichiometric

components (e.g. excess oxygen or strontium atoms). The parent compounds of these

systems are antiferromagnetically ordered Mott insulators, materials with partially filled

conduction bands that do not conduct due to on-site Coulomb repulsion between elec-

trons [52, 53]. In order to discuss how the physical properties of the cuprates can be

altered from this Mott insulating ground state we will first look at the structural features

that define this class of materials.

4.1.1. Structures and phases

The unit cell of a cuprate contains one or more planar, or near planar CuO2, layers

separated by planes of non-conducting atoms. These CuO2 layers are the defining struc-

tural feature of the cuprates and host the wide selection of electronic phases discussed

here. Some of the non-conducting layers provide the CuO2 plane with charge carriers [54]

which aid in conductivity, however, in order for the parent compounds to become conduct-

ing and superconducting one must provide additional charge carriers to the CuO2 plane

via hole or electron doping. As the dopant concentration, and consequenty the carrier

density, increases the charge carriers in the CuO2 plane become itinerant which leads to

conductivity and superconductivity in the CuO2 layer. The fact that superconductivity

occurs in just one plane makes these systems highly anisotropic and gives them properties

that closely resemble those of two-dimensional SCs [29]. The cuprates discussed herein are

hole-doped with oxygen being the dopant. We denote the oxygen dopant concentration

as δ, which is approximately equivalent to the hole concentration in our systems. Fig. 4.1
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shows the unit cell of the ubiquitous YBCO (Y123) and the less studied Hg1201.

O(2)

O(1)

c

b
a

Figure 4.1. The above figure, taken from reference [5], shows the crystal
structure of HgBa2CuO4+δ (Hg1201, left) and YBa2Cu3O7 (YBCO, right).
The two stoichiometric oxygen sites in Hg1201 are the planar, O(1), and
apical, O(2), sites which are labeled accordingly. The dopant oxygen atom
(labeled as O) in Hg1201 lies in the midpoint of the Hg plane. The crystal
a, b and c axes and CuO2 plane are also indicated.

In addition to superconductivity, the cuprates have a plethora of electronic phases

which can be tuned with doping as can be seen in the temperature vs. hole doping

(T -δ) phase diagram. The phase diagram for the cuprate HgBa2CuO4+δ is shown in

Fig. 4.2. Although each material will have slightly different temperature boundaries for

the various phases, the general form of this phase diagram is common to all hole-doped

cuprates. At low δ the cuprates remain in the anti-ferromagnetic (AFM) Mott insulating

phase. Upon further addition of holes the system begins to form a superconducting

“dome” bounded by Tc. This dome has its maximum at a so-called “optimal” doping



74

concentration, δop, where the system has the highest Tc. Our research has focused mainly

on the superconducting region of the phase diagram, but we describe the other phases

briefly below for completeness.

T*

Tc

Figure 4.2. The T vs. δ phase diagram for Hg1201 adapted from refer-
ence [6]. The pseudogap temperature, T ∗, is shown as a dashed line and
the superconducting dome lies below the transition temperature, Tc.

For δ ≤ δop and T > Tc the system exibits the so-called pseudogap (PG) phase. This

is characterized by the opening of an energy gap below a temperature, T ∗, where T ∗ > Tc.

In NMR the PG manifests as a drop in the Knight shift as well as in (T1T )−1, both of

which are also manifestations of the opening of the superconducting energy gap. The PG
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phase was initially discovered through NQR and NMR measurements of 63,65Cu and 89Y,

respectively, in underdoped YBa2Cu3O7−δ samples [55, 56]. The existence of a PG has

also been confirmed by other experimental methods, e.g. angle-resolved photoemission

spectroscopy (ARPES) [57]. Although the PG phase has been thoroughly experimentally

verified its origin and relation to superconductivity remains an open question.

At higher temperatures and doping the cuprates exhibit various conducting phases

including a so-called “strange metal” phase and Fermi-liquid behavior. These phases

are not relevant to the research presented in this dissertation and therefore we will not

discuss them in depth here. The interested reader can see reference [6] and the literature

cited therein for details on studies of the Fermi-liquid behavior of YBa2Cu3O7−δ and

HgBa2CuO4+δ over a wide range of doping.

4.2. HgBa2CuO4+δ

The compound HgBa2CuO4+δ (Hg1201) has the simplest structure of any of the

cuprates. Its unit cell contains one CuO2 plane and has a simple tetragonal crystal

structure free from buckling and distortion. At optimal doping Hg1201 has the highest

Tc (≈ 97 K) of any of the single-layer cuprates [6]. The Hg1201 unit cell contains two

inequivalent stoichiometric oxygen sites, the planar oxygen, O(1), and the apical oxygen,

O(2), which are labeled in Fig 4.1. The non-stoichiometric dopant oxygen, Oδ, lies in the

middle of the four Hg atoms. This is relatively far from the superconducting CuO2 plane
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meaning that in underdoped samples the Oδ site does not provide a high density of pin-

ning centers for vortices in the mixed state [58].

The simple structure of Hg1201 makes it an ideal candidate for NMR because it

yields a relatively simple NMR spectrum. The NMR active nuclei which we study are

199Hg (199I = 1/2), 63,65Cu (63,65I = 3/2) and 17O (17I = 5/2). When the external field

is parallel to the crystal c-axis (see Fig. 4.1 for axis labels) the system contains only two

inequivalent oxygen sites and only one copper and one mercury site. This in contrast to,

e.g. YBCO which has four inequivalent oxygen sites and two copper sites each of which

must be distinguished in order to perform reliable measurements. The greater the number

of inequivalent stoichiometric sites of a particular nucleus, the more likely it is that there

will be overlap in the NMR spectrum. When overlap occurs it can be difficult to separate

the contributions between the two sites which results in greater margins of error when

extracting physical properties such as Knight shift an relaxation rates.

In Hg1201 the 17O frequency spectrum is well separated with the exception of the

central m = (±1/2↔ ∓1/2) transtion, which begins to overlap at low temperatures due

to the difference in the temperature dependence of K(T ) between the two sites. Namely,

the O(1) shifts to lower frequencies while the O(2) peak does not have an appreciable

frequency shift above Tc. Each 17O site has 2I = 5 transitions because 17O is a spin-5/2

nucleus and the EFG is non-zero. The O(2) site in particular is attractive for studying

local fields because it’s coupling to the hyperfine field of the CuO2 plane is negligible,

as has been shown by hyperfine field analysis using the Knight shift [4]. This negligible
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hyperfine coupling is the reason for the negligible frequency shift of the O(2) central

transition with temperature. Even at T < Tc the O(2) central transition does not shift

appreciably in frequency because the main contribution to it’s Knight shift, KO(2), is the

diamagnetic component, which is small compared to the hyperfine contributions.

Figure 4.3. A NMR frequency-domain spectrum of a single crystal Hg1201
sample in Ho = 14 T with Ho ‖ c at T = 90 K. The upercase labels
indicate the peaks corresponding to the O(2) sites and the lowercase labels
correspond to the O(1). The corresponding transitions are (−1/2↔ +1/2)
for A/a, (±3/2↔ ±1/2) for B/b and (±5/2↔ ±3/2) for C/c.

Figure 4.3 shows the Hg1201 17O spectrum at a temperature of 90 K, which is above

this sample’s critical temperature of 81 K. The letters above each peak denote whether the

peak corresponds to the O(2) (uppercase) or the O(1) (lowercase) site. Notice that, while

the O(1) and O(2) peaks overlap at the central transition the quadrupolar satellites are

well isolated in frequency. This allows us to accurately measure Mj(t), where j indexes
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the transition, as discussed in the previous two chapters. This results in reliable T1 and

T2 values which will be the topic of discussion in the following two chapters.

We also use NMR for characterization. Specifically, we use 199Hg NMR to characterize

the sample dopant concentration. This method agrees well with the results of iodometric

titration [59] for underdoped samples, which is appropriate for the materials we have

studied. Below we describe our sample preparation and characterization procedures in

detail.

4.2.1. Sample characterization and isotope exchange

Our single-crystal Hg1201 samples were synthesized by M. Chan at Los Alamos Na-

tional Laboratory and by M. Greven et al. at the University of Minnesota by methods

previously described in reference [60]. The doping concentration, δ, of the as-grown sam-

ples was initially characterized through 199Hg NMR with Ho parallel to the crystal c-axis.

The superconducting transition temperature, Tc, was identified through a magnetiza-

tion, M , versus temperature, T , measurement performed with a SQUID magnetometer at

Northwestern University (NU). The crystal c-axis was identified using Laue x-ray diffrac-

tion (XRD). We will explain each characterization step and results in detail in the later

subsections. A table of the three samples which we present data on in this work is shown

below in table 4.2.1.

In order to perform NMR at the oxygen sites we must use an isotope exchange method

to replace some of the spin-zero 16O in the as-grown samples with the spin-5/2 17O isotope.
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Sample Tc (K) ∆Tc (K) Source Ref. mass (mg)
UD81 81 4 Stolt This work 20
UD79 79 1.5 Lee [4, 58] 13.6
UD74 74 4.5 Mounce [3] 20

Table 4.1. A table of the samples references in this work.

This process is described in the next subsection as well as in Chapter 4 of References [3, 4]

and in Reference [7]. The characterization steps mentioned in the previous paragraph were

repeated following each isotope exchange.

4.2.1.1. Oxygen isotope exchange and annealing procedure. The 17O isotope has

a natural abundance of less than 0.04 % [61]. Therefore, in order to obtain a reasonable

signal-to-noise ratio in our 17O NMR experiments we must anneal the as-grown Hg1201

samples in a 17O rich environment for several days to several weeks in order to increase

the concentration of Oδ of this isotope and distribute the dopant uniformly. Fig. 4.4 is a

block diagram depicting the setup of the oxygen isotope exchange system used at NU.

The general procedure for performing our isotope exchange and annealing is as follows.

The first step is to place the Hg1201 sample in a quartz crucible, which has the shape

of a boat with a bottom curvature that matches that of the quartz tube that houses the

sample during the process. Once the sample(s) is inside the quartz tube the crucible is

locked in by two quartz filler tubes to minimize the dead space. This area is illustrated

in Fig. 4.4 as the region labeled “sample space.” The quartz tube sits inside a furnace

and is sealed at both ends. We use a turbomolecular pump to evacuate the sample space

until the pressure is ≤ 10−5 mbar and the leak rate of the entire system shown in Fig. 4.4
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Figure 4.4. Block diagram depicting the gas exchange system used for iso-
tope exchange. The figure was adapted from [3] in reference [7] to account
for changes made to the setup. The pumping station used to evacuate the
system in the initial step is connected to the upper KF-25 connection at
the top right. The blank box in the top right corner can be used for a
high-pressure extension which is described in [7].

is ≤ 10−9 Torr·L/sec.

Once the system has been thoroughly pumped out to avoid contamination by other

gas molecules the gas exchange procedure can begin. The flow of gas into and out of

the quartz tube is regulated using a charcoal dipstick. Additionally, all components are

isolated from the others via high pressure valves and 1/4 inch stainless steel (ss) piping

with swagelock connections from High Pressure Eqiupment Co. (HiP) [7].

To begin the isotope exchange we close off the pumping port and close the valves

connecting the pump to the quartz tube section. We then open one of the gas cylinders

(often the one labeled “pure 17O source tank”) until the gauge at this valve displays our
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desired pressure. Once the desired pressure is reached we close the source tank1. In or-

der to absorb the pure 17O gas into the dipstick we place the dipstick in a vat of liquid

nitrogen to decrease the dipstick pressure; once the pressure had stabilized we open the

valve connecting the gas from the source tank (which is now closed) to the dipstick. Once

the pressure at the dipstick is stable we close the valves between the source tank and

the dipstick. In order to release the 17O gas into the sample space we remove the vat of

nitrogen and heat up the dipstick with a heat gun allowing the gas to fill the ss capillary

tube that connects to all the system components. Once the dipstick pressure is stable

or once the desired pressure is reached we close the dipstick valve and open the upper ss

tube to the sample space until the sample space pressure equilibrates. If the pressure in

the sample space is lower than desired we close the sample space valve and repeat the

process of transferring 17O gas from the source tank to the sample space until the desired

pressure (< 1 bar) is reached.

One the system is at the correct pressure we close off the sample space and turn the

furnace on to begin annealing the sample in the 17O rich environment. During the anneal-

ing process we use a peristaltic pump to circulate the oxygen gas inside the quartz tube.

The annealing temperatures range from 350◦C to 550◦C and typical annealing times range

from 12-24 hours to several (up to three) weeks. The two samples which we have studied

are both underdoped single crystals of Hg1202 with Tc values of about 81 K and 79 K;

the latter sample has been thoroughly studied in Refs. [4, 58] by Lee et al. whereas the

former has not previously been studied. We refer to these samples as UD81 (20 mg) and

1Never open the source tank directly to the dipstick or any other component of the system.
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UD79 (13.1 mg), respectively, according to their doping levels and Tc. The UD81 sample

was annealed twice for three weeks at a time in a quartz tube at a partial pressure of ≈

0.5 atm 17O gas at a temperature of 400◦ C. The UD79 sample was annealed for exactly

one week at a 17O partial pressure of 0.7 atm at a temperature of 550◦ C. For a table

of annealing temperatures and times and resulting Tc and ∆Tc values see the tables in

Chapter 4 of [3] (Bi2212) and [4] (Hg1201).

The final step of the exchange/annealing process is to quench cool the sample space

and to store the gas mixture in the quartz tube in the cylinder labeled “dirty” in Fig. 4.4

for future use. The quench cooling step involves abruptly removing the sample space

from the heat of the furnace by opening the furnace (the quartz tube is still sealed off

from the atmosphere) and blasting the tube with room temperature air. Once the sample

space is sufficiently cool we use the dipstick to absorb the gas mixture in the quartz tube

and transfer it to the brown cylinder before opening the sample space to atmosphere and

removing the sample.

4.2.1.2. Magnetization vs Temperature. Upon receiving the single crystals our first

step is to determine the as-grown sample Tc using a M vs. T measurement. This is

performed in a SQUID magnetometer. The Tc is characterized by the onset of diamag-

netism by fitting the linear portion of the M−T slope at the transition and extrapolating

this slope to meet the flat, M ≈ 0 portion of the curve. This measurement is also done

following any annealing step, as the annealing may change the dopant distribution and
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concentration and therefore Tc.

All M−T measurements are performed with a field of H = 10 - 20 Oe with H ‖ c. The

measurements reported here are performed with zero field cooling (ZFC), which means

that no field is applied to the sample as it is cooled to the lowest temperature (5 K). The

field, H, is then turned on and the sample is slowly heated in temperature steps of 0.5 -

2 K/min (with higher resolution in the 70 K ≤ T ≤ 100 K where we expect to see Tc) as

the magnetization is recorded until the system reaches 300 K.

The ZFC method produces a larger magnetization signal than the field cooled (FC)

method, where the sample is initially cooled in the presence of an applied field and subse-

quently warmed to room temperature as M is recorded. In type II SCs (e.g. the cuprates)

the FC method leads to flux pinning which reduces the magnetization signal by trapping

magnetic flux that opposes the diamagnetism [62].

The normalized magnetization of the Hg1201 samples is shown in Fig. 4.5. The width

of the transitions, ∆Tc, is relatively narrow, around 4 K (UD81) and ≤ 2 K (UD79). A

narrow transition indicates that the dopant oxygen is spread uniformly through the Hg

plane creating a relatively homogeneous local field distribution. Additionally, the con-

stant near-zero slope at T > Tc is a good indicator that the sample does not contain any

magnetic impurities that might complicate the interpretation of our NMR spectra.
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Figure 4.5. Magnetization (normalized) of our under-doped Hg1201 crys-
tals. Measurements were taken with the field parallel to the crystal c-axis.
The applied field strength is 10 Oe. The majority of our measurements
reported herein were on the UD81 sample.

4.2.1.3. Hg NMR. The presence and location of the dopant oxygen in the Hg plane

has been confirmed by neutron scattering experiments [63, 64]; this oxygen, Oδ, alters the

electromagnetic environment at the adjacent Hg sites. Therefore, the 199Hg spectrum of

a Hg1201 sample will have multiple distinct peaks at different frequencies corresponding

to the distinct electromagnetic environments that exist at the various Hg sites. The dif-

ferent peak frequencies correspond to Hg sites with a certain number of nearest neighbor

Oδ atoms.

The magnitude of the area under each peak in the 199Hg NMR spectrum corresponds

to the number of Hg atoms with n nearest neighbor Oδ atoms. If one considers each

peak to be a Gaussian and normalizes the sum of the areas of all peaks, each area can be

thought of as the probability of any Hg site in the sample having n nearest neighbor Oδ
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Figure 4.6. 199Hg NMR spectrum for UD81 at 285 K (black line) the red,
blue, and green dashed lines are Gaussian fits corresponding to the n = 0, 1
and 2 nearest neighbor Oδ atoms, respectively.

atoms. In Reference [7] we report that the spectral weights of the 199Hg NMR spectra of

many different single crystal samples of Hg1201 can be modeled as a binomial distribution

in the dopant concentration, δ, as follows,

(4.1) Pn,k=4(δ) =
4!

n!(4− n)!
δn(1− δ)4−n.

Here, Pn,k(δ) is the spectral weight under each peak normalized by the sum such that
n=4∑
n=1

Pn,k(δ) = 1, n is the number of near neighbor Oδ atoms and k = 4 is the largest

possible n value corresponding to a 199Hg surrounded by four Oδ atoms. Fig. 3 from

reference [7] (included below) shows the fit results for several Hg1201 samples (measured

at NU) as well as fits to data on powder samples of Hg1223 from Stern et al. [8]. The

fit appears to be the best for under-doped samples and deviates more from the binomial
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model as δ increases.
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Figure 4.7. Fig. 3 from reference [7] shows the spectral weights of each peak
in a collection of 199Hg spectra (open circles) plotted as a function of dop-
ing. The peaks are matched with corresponding probability distributions of
different Hg environments calculated from Eq. (4.1) (solid lines). Results
from a similar analysis on powder samples of Hg1223 (inverted triangles)
from Stern et al. [8] are also included.

From the 199Hg NMR spectrum (Figure 4.6) we can conclude that the UD81 sample

is under-doped from the large spectral weight of the lowest frequency peak, which cor-

responds to n = 0 nearest neighbor Oδ atoms. Additionally, we can use the transition

temperature of ≈ 81 K found in our magnetization measurements (Figure 4.5) to check

that our binomial fit agrees with the phase diagram. If we draw a horizontal line on the

Hg1201 phase diagram (Figure 4.2) from T = 81 K we see that the line meets the super-

conducting dome on the under-doped side at a point corresponding to hole concentration,

δ ≈ 0.11. This is in good agreement with the δ value of 0.112 found using the binomial
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distribution model.

4.2.1.4. Laue XRD. In order to align the sample c-axis with the external field we must

be sure of the crystal c-axis location. To do this we use Laue x-ray diffraction (XRD)

with a diffractometer at the J. B. Cohen x-ray facility at NU. Fig. 4.8 shows the XRD

Figure 4.8. A Laue XRD image of the UD81 sample (left) and the same
diffraction pattern with the corresponding image of the sample superposed
on top of it (right).

image of the [001] surface of the UD81 sample with an image of the sample overlayed

to show the correspondence to real-space. This shows that the crystal c-axis can easily

be identified because it is perpendicular to the relatively large flat sample surface. The

diffracted image was measured using an incident beam acceleration potential of 25 kV

and a 10 mA current. The exposure time was 15 minutes.

4.3. Conclusions

The cuprates are a class of high-Tc SCs with an abundance of unique electronic phases

which can be tuned by varying the doping concentration. The Hg-based cuprate Hg1201

is a promising candidate for NMR experiments due to its simple structure which yields
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a straightforward NMR spectrum. We have characterized two under-doped samples of

Hg1201. The flat magnetization at high temperatures as well as the narrow ∆Tc indicate

that these samples do not contain appreciable defects and that the distribution of dopant

oxygens in the Hg-plane is reasonably homogeneous. Additionally, we have seen how

199Hg NMR can be used to characterize the dopant concentration in Hg1201 single crystals

by comparing the distribution of spectral weights the binomial distribution model.
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CHAPTER 5

NMR in the CuO2 plane in Hg1201

We previously noted that superconductivity in the cuprates occurs in the CuO2 plane.

It is therefore not surprising that we are interested in the NMR spectra of the planar

Cu and O sites. Here we discuss some of the history of 17O and 63,65Cu NMR/NQR in

other cuprates and the theories arising from it before presenting our own measurements.

Although our compounds of interest are Hg1201 single crystals, we will frequently compare

our results to those of YBCO because the NMR data on Hg1201 is still scarce due to

lack of sample availability. Since we will be discussing YBCO NMR/NQR results and

theories we will begin this chapter with a brief overview of this compound and its notable

magnetic properties. We will then describe the often quoted Mila-Rice-Shastry (MRS)

model to illustrate the coupling between nuclei in the spin system through the Cu2+ spin

susceptibility.

5.1. NMR studies of YBCO

One of most ubiquitous cuprates in the study of solid-state NMR is YBa2Cu3O7−δ

(YBCO). The predominance of this compound stems from the fact that it was one of the

first cuprates to be identified and structurally refined [25] following the initial discovery

of HTSCs. High quality YBCO samples could be synthesized and characterized relatively

easily making them readily available for NMR studies early on and to this day.
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The ease of synthesis along with a rapid development of alignment methods for im-

proved signal acquisition led experimenters to quickly produce large quantities of data

for YBCO which required theoretical explanation. Specifically, once they were able to

measure NMR/NQR spectra with the field along a specific axis, researchers were able to

observe an anisotropy in the Cu relaxation rate, 63T−1
1 , for the planar Cu site, Cu(2), at

temperatures above Tc. Additionally, the Knight shift, 63Kc, measured at Cu(2) along

the c-axis showed negligible temperature (T ) dependence even at T < Tc. On the other

hand, the shift, 63Kab, measured with the field along the ab plane, behaved as expected

with Korringa-like behavior above Tc and decaying to zero below Tc. This available data

on optimally-doped YBCO raised many questions and inspired many of the early theories

for cuprate superconductivity. One of the most famous of these theories is that of Mila

Rice and Shastry.

5.2. The Mila-Rice-Shastry Hamiltonian

The NMR/NQR results described above were initially interpreted [65] following the

assumption that all hyperfine coupling of the Cu2+ spin to mobile dopant holes was local-

ized at the Cu(2) site. However, this theory failed to account for the observed anisotropy

in the relaxation rate, 63T−1
1 . Also, the lack of temperature dependence of 63Kc indicated

that this component of K was an orbital shift rather than a spin shift, meaning that it

could not be involved in the formation of electronic spin pairs [22].

In order to resolve these experimental results Mila and Rice used a quantum chemistry

interpretation to posit that the total hyperfine spin Hamiltonian for YBCO must contain
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at least two hyperfine field terms. In addition to the local, anisotropic hyperfine field,

Aα, due to nuclear spin coupling to the Cu2+ 3d hole spin, Mila and Rice proposed an

isotropic transferred hyperfine field, B, which originated from hybridization of the Cu

3dx2−y2 orbitals with unfilled 4s orbitals from neighboring Cu atoms. The pair suggested

that this hybridization would occur through the 2p orbitals on the O sites between each

set of nearest neighbor Cu atoms [66].

The Mila-Rice Hamiltonian was later extended by Alloul et al. [67] to include the Y3+

ions and famously by Shastry [68] to include transferred hyperfine coupling to the planar

O sites. The final Hamiltonian, known as the Mila-Rice-Shastry (MRS) Hamiltonian is

given by (for YBCO),

(5.1) ĤHF =
∑
i,α

Î
(1)
iα

(
A(1)
α Ŝiα +B(1)

∑
j(nn)

Ŝjα

)
+
∑
i,α

Î
(2)
iα

(
A(2)
α Ŝiα +B(2)

∑
j(nn)

Ŝjα

)

+
∑
i,α

17Îiα
∑
j(nn)

CαŜjα +
∑
i,α

89Îiα
∑
j(nn)

DαŜjα.

Here the A
(1,2)
α are the local hyperfine fields at the Cu(1)1 and Cu(2) sites and the B(1,2)

are the isotropic transferred hyperfine fields from coupling to the Cu 4s orbital at the

Cu(1) and Cu(2) site, respectively. Similarly the Cα and Dα are the transferred hyperfine

fields that arise from Cu 3d-orbital hybridization with the 2p-orbitals of the O neighbors

and with the Y3+ 4d orbitals, respectively. The sum index nn refers to the nearest neigh-

bor Cu(2) atoms, meaning that there are eight terms in the 89Y nn sum, two terms in

1The Cu(1) site corresponds to the CuO chain, which is labeled in Fig. 4.1.
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the O sum, and four in each Cu sum.

The MRS Hamiltonian was developed for YBCO, which has two inequivalent Cu sites

and four inequivalent oxygen sites. The Hamiltonian for Hg1201 is significantly more

simple [3],

(5.2) ĤHF =
∑
i,α

ÎCu
iα

(
ACu
α Ŝiα +B

∑
j(nn)

Ŝjα

)

+
∑
i,α

∑
j(nn)

(
17Î

(1)
iα C

(1)
α + 17Î

(2)
iα C

(2)
α

)
Ŝjα +

∑
i,α

199Îiα
∑
j(nn)

DαŜjα.

Here Aα is still the on-site hyperfine field at the Cu site and B is the isotropic transferred

hyperfine field as in the YBCO case. The C
(1,2)
α and Dα are transferred hyperfine fields

at the O(1), O(2) and Hg sites, respectively.

The MRS Hamiltonian is one of the most famous theoretical development in the field

of high-Tc superconductivity to come out of NMR/NQR data. One key property of the

MRS Hamiltonian is that it treats the entire system of nuclei as if the only susceptibility

involved in hyperfine coupling is that of the Cu2+ hole spins, whose spin operators are

denoted Ŝkα (k = i, j) in (5.1) and (5.2). This one-susceptibility model has its roots in the

Zhang-Rice singlet picture [69] in which all superconducting properties arise from mobile

holes forming singlet complexes with the itinerant holes introduced by doping. This

assumes that the Cu2+ susceptibility accounts for all normal state hyperfine coupling and

pair formation in the superconducting state. Other arguments have been made for the
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necessity of an additional susceptibility originating from a so-called “oxygen-hole band,”

as we address below.

5.2.1. The two-susceptibility model

The MRS Hamiltonian marks a substantial breakthrough in the development of the

theory of cuprate superconductivity. However, the model has several flaws including the

fact that the hyperfine Hamiltonian does not account for changes in the Knight shift that

occur upon changing the hole doping concentration [22]. Monien, Pines and Slichter [39]

proposed that the Cu NQR data should be accounted for with an additional hyperfine

coupling to a susceptibility from the planar oxygen sites. This picture accounts for the

doping dependence of the Knight shift and has been utilized for analysis of NMR experi-

ments on Hg1201 [70]. Mila and Rice have argued [71] that (in their quantum chemistry

framework) a oxygen hole band would couple more strongly to the Y3+ 4d orbitals than

experimental observations indicate.

Both Mounce [62] and Lee [4] have performed Knight shift analyses for several under-

doped single crystal Hg1201 samples in which the groups plotted the spin shift of one

nuclear spin to another and found the one-susceptibility model agreed well with their

data for all isotope-exchanged samples. This result contradicts those of Haase et al. [70]

in which the group found the two-component susceptibility necessary for describing the

Knight shift in their optimally-doped and under-doped Hg1201 single crystal samples.

It is interesting to note that the group led by Lee was able to reproduce Haase et al.’s
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results, which indicate a need for a second susceptibility component, in their non-isotope-

exchanged, optimally-doped single crystal sample. Lee suggested that the discrepancy

could indicate the presence of an isotope effect.

Although the MRS picture of cuprate superconductivity has provided theorists and

experimenters with excellent starting points for data analysis, the origin of 63T−1
1 in par-

ticular remains an open question [22]. In their original paper, Mila and Rice [66] showed

that their model could account for the observed anisotropy in the Cu T1
−1 by taking the

MRS Hamiltonian corresponding to the Cu site of interest to be the perturbation, Ĥ1(t),

in (2.31) and showing that the resulting ratio of 63T1c/
63T1a agreed reasonably well with

existing experimental data. However, the MRS Hamiltonian cannot be used to accurately

predict absolute values of these relaxation rates.

Other theoretical methods based on the MRS model have been proposed, e.g. by

Uldry and Meier [72], to analyze Cu relaxation data more precisely. However, despite

decades of theoretical scrutiny and development, the temperature dependence of 63T−1
1 is

still mainly phenomenological. In the next section we show the high-field relaxation data

for 63Cu and transverse relaxation data for the in-plane 17O in our two Hg1201 single

crystal samples. We will discuss what we can conclude from these measurements and

what measurements should be performed in the future to get a more complete picture of

the superconducting system.
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5.3. 63Cu shift and relaxation

Here we present our 63Cu relaxation data on UD81 as well as that of Lee et al. on

UD79. All of our measurements were performed at the central 63Cu transition in a field

of Ho = 14 T with Ho ‖ c. Spin-spin relaxation rate measurements were performed using

the Hahn echo method with a π/2 pulse length of around 4 - 5 µs. Spin-lattice relaxation

was measured using the saturation recovery method with a Hahn echo detection sequence.

A Ag coil was used to avoid contamination from the metallic Cu resonance, however, due

Figure 5.1. The total NMR shift of 63Cu in our UD81 sample at 14 T and
in the UD79 sample at 6.4 T with Ho ‖ c. The UD79 data was measured by
Lee [4]. Note that the shift of metallic Cu is 0.2394 % at room temperature
which is over 1 MHz from our peak in the frequency spectrum at a field of
14 T.

to the large shift (1-2 %, see Fig. 5.1) of 63Cu in Hg1201, the resonance from the sample

Cu sites were sufficiently far away from metallic Cu (KCu ≈ 0.24%) in frequency that a
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Cu coil could also have been used without added difficulty.

The full NMR shift for Ho ‖ c (63Kc) of our two under-doped samples is shown in

Fig. 5.1. Note that the shifts were measured at different fields. Both plots show a decrease

of Kc with temperature with a change in slope around Tc. This decrease arises from a

combination of the orbital diamagnetism shift, Kdia, and the spin shift, Ks, as discussed

in Chapter 2. The remaining contribution to Kc is the constant orbital shift, Ko, which

is large in 63Cu. This is why the 63Kc in Fig. 5.1 appear to be decaying towards 1-1.3%

rather than to zero at the lowest temperatures.

5.3.1. 63Cu T1
−1

H || cHo || c

Figure 5.2. The temperature dependence of the 63T−1
1 for the UD81 and

UD79 samples at Ho = 14 T and 6.4 T, respectively. The inset shows the
low temperature dependence of 63T−1

1 with the data point at 20 K excluded
for reasons discussed in the text.
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Figure 5.3. The temperature dependence of the UD81 sample 1/(63T1T )
at Ho = 14 T as well as that of the UD79 sample at 6.4 T. Again, both
measurements were performed with Ho parallel to the crystal c-axis. The
large error bars at higher temperatures reflect a poor signal-to-noise at
temperatures above ≈ 100 K.

Our 63T−1
1 measurements are shown in Fig. 5.2. The UD79 data was measured by

Lee et al. and re-analyzed for this dissertation. The inset shows the linear T -dependence

of the low temperature 63T−1
1 in UD81. The 20 K data point is excluded from the inset

because this point was measured at a temperature which fluctuates by > 1 K about 20

K due to technical difficulties with the cryostat at T < 22 K. The 20 K data point is

included in the main plot. An exponential T -dependence in 63T−1
1 at high fields agrees

with the results reported by Martindale et al. for YBCO aligned powders, although the

authors suggest that this temperature dependence may not be physically meaningful [73].
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The 1/(63T1T ) behavior of UD81 and UD79 is shown in Fig. 5.3. The peak at T ≈

120 K in the UD81 data is a manifestation of the pseudogap (PG) behavior discussed in

Chapter 4. The PG temperature, T ∗, for UD79 was found by Lee [4] to be 300 K, which

is why the UD79 1/(63T1T ) does not show any appreciable maximum in the temperature

range 0 ≤ T ≤ 200 K.

Although all of the measurements we report were taken with Ho ‖ c, it would be inter-

esting to measure the relaxation rate for Ho ‖ a, b as well to compare the anisotropy ratio,

R ≡ 63T−1
1a /

63T−1
1c as a function of temperature. Martindale et al. [74, 73, 75] measured

R in YBCO aligned powders and showed that it was constant above Tc but below Tc the

plot exhibited a sort of “coherence peak” similar to what is seen in the T−1
1 vs. T plots for

conventional (BCS) SCs. The group used theories proposed by Bulut and Scalapino [76]

as well as collaborations with Lu et al. [77] to show that their T < Tc data corresponds

to a BCS singlet pairing with nodes in the gap energy.

In order to get a sense of what the relaxation anisotropy ratio, R, might look like in

Hg1201 we extracted 63T−1
1 data from plots reported by Lee [4] and took the ratio of the

63T−1
1a to 63T−1

1c that were measured at the same temperature. The results are shown in

Fig. 5.4 for an under-doped sample with a Tc of 87 K (UD87) and an optimally-doped

sample with a Tc of 94 K (OP94) at a field of Ho = 6.4 T. Both samples are single crystals

with characterization reported in [4].
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Figure 5.4. A plot of the ratio R (see text) for two single crystal Hg1201
samples. These data were calculated using data points extracted from plots
in reference [4]. The dahsed line indicates the location of Tc measured at
10 Oe. The size of the error bars are unknown.

In looking at the plots in Fig. 5.4 we can see that R is constant with a value of R ≈ 1.8

for OP94 and R ≈ 2.0 for UD87 at high temperatures. In both cases the anisotropy ratio
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begins to deviate from its high-temperature value just above Tc although it is not clear if

this deviation is within error bars because these are not included in the plots. It is clear,

however, that the anisotropy follows a similar temperature dependence to that reported in

YBCO. It should be noted, however, that at high fields (Ho > Hc1) the 63T−1
1c is thought

to be dominated by vortex cores [74] so one should measure R with NQR in order to

extract information about the superconductivity of the system.

5.3.2. 63Cu T2
−1

The measured 63Cu spin-spin relaxation rates, 63T−1
2 , were extracted from fitting a set

of Hahn echo T2 spectra to the decay function,

M(2τ) = Moe
−(2τ)/T2 ,

i.e. a single exponential. The magnetization, M(2τ), is taken to be the value of the area

under the NMR spectrum in the frequency domain for the pulse spacing τ . We use a

Levenberg-Marquardt non-linear least-squares fit algorithm provided by Matlab for all of

our fitting.

Although previous work by Lee [4] reported a combined exponential and Gaussian

M(2τ) dependence in Hg1201 we did not observe any Gaussian decay behavior in our

analysis of our own data on UD81. Our re-analysis of Hahn echo T2 experiments on other

single crystal Hg1201 samples also indicated a better fit to a single decay function at all

temperatures. Therefore, we have proceeded to use our single exponential function fit to

extract all 63T−1
2 values reported here. We note that Lovellete [48] also reported single
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exponential T2 behavior in his measurements on a YBCO aligned powder.

The rate 63T−1
2 can be described in terms of its deviation from the rigid lattice limit

discussed in 2.4.2.1. The spin-spin relaxation in this limit is given by the expressions for

the Van Vleck second moment in the case of like and unlike spin coupling, Eq. (2.37) and

(2.38). In calculating 63T−1
2 in the rigid lattice limit we account for the spin-spin coupling

between 63Cu and 63Cu, 63Cu and 65Cu, and 63Cu and 17O. We consider only the nearest

neighbor interactions in our sums. We must also include the natural abundances of the

63Cu and 65Cu isotopes which are 69% and 31%, respectively. The measured 63T−1
2 are

shown in Fig. 5.5 along with the rigid lattice limit, which is T2RLL ≈ 0.5 ms.

From the plot shown in Fig. 5.5 it is clear that the transverse relaxation in 63Cu is

dominated by contributions other than nuclear spin-spin coupling at all temperatures.

The relaxation rate does decrease with decreasing T below Tc for both samples. However,

this decrease is very modest, only slightly outside the range of the 95% confidence intervals

(error bars) of our fit. This relatively small T -dependence indicates that the mechanism

responsible for the transverse relaxation is not heavily dependent on the electronic spin

system; however, to verify this we would need to continue these measurements for T <

20 K.

5.3.3. Redfield

Another comparison that we make is with the Redfield expression. In Chapter 3

we mentioned that the measured T2 would be influenced by local field distributions and
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Figure 5.5. The transverse relaxation rate of 63Cu in UD81 at 14 T (ma-
genta) as well as that of UD79 at 6.4 T (cyan). The rigid lattice limit is
shown as a dashed line for comparison. The bottom plot is identical to the
top but with a smaller 63T−1

2 scale to show the variation in T2
−1 for UD81.

inhomogeneties, which are contained in the variable T ∗2 . The full expression for T−1
2 (T )
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is,

1

T2(T )
=

1

T ∗2 (T )
+

CR
T1(T )

,

where CR is the so-called “Redfield coefficient.” The derivation of the above expression

is included in Appendix B. One can extract CR by plotting the relaxation rates T−1
2 (T )

vs T−1
1 (T ) with T as an implicit parameter and extracting the slope. An example of such

a plot is seen in Fig. 5.6.

Recalling the MRS picture in which the Cu2+ spin susceptibility is responsible for all

nuclear relaxation behavior, we expect the planar 17O relaxation to be influenced by the

63Cu spin-lattice relaxation. We plot the 17T−1
2 as a function of 63T−1

1 in Fig. 5.6. The

Figure 5.6. A plot of 17T−1
2 vs. 63T−1

1 with T as an implicit parameter.
The change in slope at the ≈ (0.1, 0.8) ms−1 mark which corresponds to a
temperature between 60 and 70 K.
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dependence of 17T−1
2 on 63T−1

1 appears to be approximately linear for all temperatures at

which 17T−1
2 is finite, however, the slope of this dependence appears to change at T ≈ 60

K. This change in slope suggests that around 60 K there is a change in the environment

that influences the relaxation mechanism.

5.4. 17O shift and planar 17T−1
2

We turn now to a discussion of our 17O NMR at the planar oxygen, O(1), site. In

Fig. 5.7 we show the total shift, 17Kc, for Ho ‖ c in the O(1) site of our two under-doped

Hg1201 crystals at 14 T. The smaller overall magnitude of this shift tells us that the O(1)

orbital shift is much smaller than that of 63Cu (Fig. 5.1). This means that the majority

of 17Kc comes from the hyperfine coupling to the electronic spin system.

The magnitudes of the shift shown in Fig. 5.7 are in good agreement with those

measured by Mounce et al. presented in [62] for an under-doped single crystal of Hg1201

at Ho = 6.4 T. The percentage value of the spin shift for this same sample is shown in

Chapter 5 of Mounce’s Ph.D thesis [3]. As we see in our data, the shift is approximately

linearly proportional to temperature in our measured range of 20 K to 150 K. If we fit

our shift data to a linear slope and extrapolate to 300 K we get a shift of 17Kc = 0.139

%, which is around what Mounce measured at room temperature. We also note that

the error bars shown in our 17Kc plots only represent the 95% confidence intervals of the

Gaussian fits used to extract the peak frequencies and does not account for the error in our

estimation of Ho. The Ho value was estimated by considering the 0.2 ppm/day field drift

and adding or subtracting the calculated drift from the measured value of Ho measured
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Figure 5.7. The total NMR shift for Ho ‖ c measured at the first high-
frequency O(1) (±3/2 ↔ ±1/2) satellite. Both UD79 (cyan) and UD81
(magenta) data points were measured at 14 T. The peak frequencies were
extracted by fitting to a Gaussian and the error bars are the 95% confidence
intervals of the fit.

with 63Cu FID.

For additional comparison with previous NMR data on Hg1201 single crystals we in-

clude the total shift measured at the O(2) site of our UD81 sample. This also agrees with

data measured by Mounce as well as that presented by Lee [4]. In Fig. 5.8 we show our

total shift data for Ho ‖ c at both 17O sites in our UD81 sample measured at 14 T in the

top panel. Note that the O(2) shift was measured at the central transition for T ≥ 85

K since this is the lowest temperature at which the O(1) and O(2) satellites are distin-

guishable at the (−1/2 ↔ +1/2) transition at this field. The low temperature shift was

measured by subtracting νQ = 1.2218 MHz, the O(2) quadrupole shift measured at room
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Figure 5.8. The total shift (top) for both apical and planar 17O in our UD81
sample for Ho ‖ c. The inset shows the low-temperature behavior of the
O(2) shift. The total shift (bottom) presented by Lee in reference [4].

temperature, from the peak frequency of the high-frequency (±3/2 ↔ ±1/2) satellite.

This procedure likely adds about ∼ ±0.005% of error to the T ≤ 80 K shifts. The shift
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data for three under-doped single crystal Hg1201 samples adapted from [4] are shown in

the bottom panel.

The data shown in Fig. 5.8 for UD81 are more sparse than those for the other three

under-doped samples, but we can see that the magnitudes of the shifts are approxi-

mately the same for all samples. Additionally, each sample has a near constant O(2)

shift above Tc that begins to decrease with decreasing temperature below Tc while the

O(1) shift decreases with temperature at all temperatures. The fact that the magnitude

and temperature dependence of the shifts are approximately equal shows that 17Kc does

not depend strongly on field (note that these measurements were performed at 6.4 T,

14 T and 16.5 T) nor on doping in the under-doped compounds. It also shows that the

UD81 sample is comparable in quality and has similar properties to other similar samples.

The similarity of the 17O shift in all samples at fields from 6.4 T to 16.5 T is in con-

trast to the measured 63Cu shift which varied in magnitude and slightly in temperature

dependence between compounds and fields. Lee [4] attributes this to a field-dependence

in the 63Cu shift that is not present in 17K as well as a stronger coupling at the Cu sites

to the electronic susceptibility.

We return now to our discussion of transverse relaxation. As we saw in Fig. 5.6

the 17T−1
2 is influenced by the spin-lattice relaxation of the surrounding 63Cu sites. The

17T−1
2 behavior is also significant because it is influenced by the dynamics of the so-

called “mixed state” of cuprate superconductivity. Specifically, the 17O recovery profile
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contains valuable information about the motion of magnetic flux lines (vortices) within

the CuO2 planes. These flux lines will be the main focus of the next two chapters. Here

we will discuss the theoretical manifestation of the change in vortex dynamics through

17O relaxation and how this compares with our results on Hg1201 single crystals.

5.4.1. 17T−1
2 in YBCO

In the early 17O NMR studies of YBa2Cu3O7 in the mixed state several groups [78, 43]

noticed that the spin-spin relaxation rate, T−1
2 , exhibited a peak in it’s temperature

dependence which happened to coincide with the vortex lattice melting temperature, Tm.

It was later discovered [9] that this peak was an artifact of extracting T−1
2 by fitting the

magnetization decay, M(2τ) vs 2τ , to a single Gaussian form, M(2τ) ∝ exp[−(2τ/T2)2].

Upon fitting the decay to a two-function form, M(2τ) ∝ exp[−(2τ)/T2e − (2τ/T2g)
2],

it became clear that the 17O transverse relaxation is dominated by a Gaussian T2, T2g,

above a certain temperature, Tp, whereas below this temperature the decay begins to

develop and exponential component, T2e, which increases with decreasing temperature.

This increase in T−1
2e is accompanied by a decrease in T−1

2g , which is approximately zero at

the lowest temperatures where all vortices are quasi-static on the time scale of an NMR

experiment. Fig. 5.9 shows the T2 results at four different fields.

Bachmann et al. refer to the temperature Tp as the vortex pinning temperature, below

which vortices are pinned but not necessarily forming an Abrikosov lattice. There is a

region below Tp where the vortex liquid and vortex solid regimes overlap, i.e. a region
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Figure 5.9. Figure 3 from [9] showing the exponential (T−1
2e ) and Gaussian

(T−1
2g ) contributions to the spin-spin relaxation rate at the planar oxygen

site in an aligned powder sample of YBa2Cu3O7.

where both T−1
2e and T−1

2g contribute to the decay. The group notes that their aligned

powder samples likely have a much greater density of pinning centers than the clean,

untwinned YBCO single crystals for which Tm is well defined [9]. Nevertheless the data

in Fig. 5.9 gives strong evidence for the claim that the exponential decay is associated

with pinned vortices, which have a Lorentzian spectral density.
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5.4.2. 17T−1
2 in Hg1201

We have performed T2 measurements on two under-doped Hg1201 single crystal sam-

ples and found that the Gaussian spin-spin relaxation rate decayed with decreasing tem-

perature at low temperatures much like in the case of the near-optimally doped YBCO

aligned powder samples in reference [9]. However, we do not find any appreciable increase

in the measured T−1
2e value at any temperature (see Fig. 5.10).

For a clearer picture of the changing relaxation as a function of temperature we fitted

the data to the product of a Gaussian and an exponential with constant exponential decay

time, T2C ,

M(2τ) = Mo exp

[
−
(

(2τ)

T2g

)2

− (2τ)

T2C

]
.(5.3)

The resulting 17T−1
2 (T ) behavior is shown in Fig. 5.12. In Fig. 5.11 we show the magne-

tization decay profiles of the UD81 and UD79 samples at two different temperatures, T

= 20 K, where the Gaussian relaxation rate is negligible, and T = 80 - 85 K, where the

decay has some Gaussian contribution. The dashed line shows the exponential compo-

nent only. Note that at low temperatures (cornflower blue) the decay fits very well to the

pure exponential whereas at high temperatures (magenta) the magnetization appears to

contain an additional Gaussian component.

From our plots of 17T−1
2 at 14 T we can see that the Gaussian decay rate is negligibly

small below a temperature of around 30 K for both underdoped samples. Lee et al. [4, 58]

proposed that the onset temperature for the vortex liquid-to-solid transition in Hg1201
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Figure 5.10. Spin-spin relaxation 17O NMR measurements for two under-
doped Hg1201 single crystal samples with Tc = 81 K (top) and Tc = 79 K
(bottom). The relaxation was measured at the first high-frequency satellite
of the planar oxygen, O(1), site.

single crystal samples could be deduced by the location of a discontinuity in the T2
−1(T )

when fitting the decay to a single Gaussian function. This was interpreted to take place

around 40 K for all under-doped samples investigated. However, the lack of any detectable
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Figure 5.11. Magnetization vs time profiles measured via a Hahn echo se-
quence of π/2-τ -π-acquire with varying τ . The dashed line shows the pure
exponential with decay constant T2C , where T2C = 1.735 ms (UD81, top)
and 1.492 ms (UD79, bottom). These T2C values were obtained by taking
the average T2e from the plots seen in Fig. 5.10.

change in the exponential component of T2 in our 14 T data indicates that vortices in
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Figure 5.12. Plots of the Gaussian decay rate, T2g, fit to Eq. (5.3) with the
T2C values given in the caption of Fig. 5.11.

these compounds may not be in a solid state at T ≥ 20 K.

To investigate this 17T−1
2 temperature dependence further we looked at the tempera-

ture dependence of 17T−1
2e and 17T−1

2g at the O(1) (±3/2↔ ±1/2) high-frequency transition
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at Ho = 19 T at temperatures down to 5 K in our UD81 sample. At this field we see an

onset of an increase of 17T−1
2e starting at around 10 K. However, unlike the 14 T data we

do not see a 17T−1
2g contribution to the transverse relaxation rate at temperatures up to

50 K. There is a small increase in 17T−1
2g at 60 K, but further measurements at this field

at higher temperatures are needed to confirm that this is the case. It is also possible that

the mechanism for 17T−1
2g relaxation is suppressed at higher fields, which is also worth

investigating by repeating our 17T−1
2 measurements at various Ho. Our 19 T results are

shown in Fig. 5.13.

The observed increase in 17T−1
2e at low temperatures for Ho = 19 T could indicate

that vortices in this sample transition to a quasistatic “solid” state at a temperature of

about 10 K at this field. It is also possible that a vortex solid has formed at a higher

temperature, but that vortex pinning onsets below a temperature of about 10 K. We must

also account for the possibility that this increase in 17T−1
2 is unrelated to vortices and is

indicative of the quasiparticle behavior rather than field fluctuations. We discuss some

examples of this interpretation as it relates to previous NMR measurements in greater

detail in Chapters 6 and 7.

We note that all of our 17T−1
2 measurements below 20 K were performed at the first

high-frequency O(1) satellite. More data is needed to determine if the origin of the

low-temperature increase in 17T−1
2 is caused by field fluctuations, such as those cited

by Bachmann et al., or by hyperfine coupling to the nodal quasiparticles. It would be

interesting to repeat our T2 measurements at the O(2) site where the hyperfine coupling to
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Figure 5.13. Our 17T−1
2 data for Ho ≈ 19 T at low temperatures with Ho ‖ c.

The top plot shows the measured relaxation rates as a function of tempera-
ture while the bottom plot shows the decay profiles, M(2τ) vs. 2τ measured
at 20 K (cornflower blue) and 5 K (violet). The dashed lines are fits to an
exponential decay with decay constant T2 (see legend).

the CuO2 plane is much weaker as evidenced by Knight shift analysis. If the temperature

dependence of 17T−1
2 is similar at both sites then the 17T−1

2e increase is likely be caused
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by a change in the vortex dynamics leading to a change in the local fields. This could

also be confirmed by measuring T2 as a function of temperature at the 199Hg site which

will see the same VL field as the other nuclei. If the O(2) site shows a weaker or different

temperature dependence of the relaxation than the O(1) site then the low-temperature

behavior of 17T−1
2 is likely related to the physics coupled to the hyperfine field of the

CuO2 plane.

5.5. Conclusions

We have seen how we can probe the physics in the superconducting plane with NMR

at the planar 63Cu and 17O sites. The MRS Hamiltonian shows that the hyperfine fields

of the CuO2 plane control the shifts and influences the nuclei in the unit cell. We have

also seen how the spin-spin relaxation rate of the nuclei in a system can be affected by the

relaxation of the surrounding nuclei. Most notably, we see that the 17T−1
2 relaxation rate

at 14 T does not have a temperature-dependent exponential contribution at temperatures

down to 20 K, which is in contrast to the data from Bachmann et al. [9] on YBCO. We do

see an increase in 17T−1
2e at 19 T for temperatures below 10 K, but further measurements

at this field at higher temperatures are needed to confirm that the relaxation behavior

is consistent with the YBCO picture. Additional 17T−1
2 measurements at the O(2) and

199Hg sites would also aid in our understanding of the origin of the relaxation behavior.
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CHAPTER 6

Vortex physics and Brandt’s algorithm

As we mentioned in the introduction, the cuprate superconductors are unconventional,

meaning they cannot be described by BCS theory, in which the energy gap, ∆BCS, is

isotropic. In 1987 it was first suggested [79] that the superconducting gap may have a

d-wave structure rather than the s-wave structure of the BCS gap. This notion was fueled

by growing evidence that quasiparticle excitations were present in cuprate superconduc-

tors down to the lowest temperatures even in the cleanest, most defect-free samples. It

is now generally accepted that the electron pairs that yield superconductivity in cuprates

are spin-singlets with a d-wave gap structure. This implies that quasiparticles (unpaired

electrons/holes) are present and contribute to the density of states (DOS) even at the

lowest temperatures. Later in this chapter we will show how we can use NMR to study

these low-temperature quasiparticle excitations at the nodes of the superconducting gap

in the so-called mixed state.

In addition to being unconventional the cuprates are type II SCs, meaning that

they exhibit a magnetic state in which superconducting regions are penetrated by non-

superconducting regions carrying magnetic flux. In this chapter we focus on the physics

of this “mixed state,” how to calculate its properties, and how we can use NMR to probe

it. We begin by reviewing the classification of SCs as type I or type II.
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6.1. Type I and Type II superconductivity

In the years following the discovery of superconductivity in elemental mercury many

elemental metals were found to be superconducting, exhibiting zero resistance when cooled

down to very low temperatures (several Kelvin or lower), and perfect diamagnetism in

a magnetic field, H. As well as having a characteristic transition temperature, Tc, these

SCs also have a characteristic critical field, Hc. That is, these materials will expel their

internal magnetic fields as long as H < Hc. If the field is increased to H > Hc the sample

will return to a non-superconducting (normal) state where the field can penetrate the

bulk of the material.

I II

Figure 6.1. The H vs. T phase diagram of a type I (left) and type II (right) SC.

What we have just described is known as a type I SC. When placed in a field, H, these

materials will either exhibit a Meissner state or a normal state depending on whether H

is stronger than or weaker than Hc. The H vs T phase diagram for this class of materials

is shown in Fig. 6.1 (left).
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The class of SCs known as type II SCs, however, have two characteristic critical fields,

a lower critical field, Hc1, and an upper critical field, Hc2, where Hc1 < Hc2. For H <

Hc1 a type II SC will exist is a Meissner state of perfect diamagnetism. When the field is

increased such that Hc1 < H < Hc2 the system will form a mixed state of superconduct-

ing and non-superconducting regions. The non-superconducting regions allow the field to

penetrate in fixed areas such that the magnetic flux passing through the area is limited

to one magnetic flux quantum, Φo = hc
e

, where h is Planck’s constant, c is the speed of

light and e is the magnitude of the electron charge. This normal region is surrounded by

circulating superconducting currents which decay on a radial length scale of λ, the super-

conducting penetration depth. This region of penetrating field surrounded by circulating

supercurrents is know as a vortex. The non-superconducting region is the vortex core,

which has a radius on the order of the superconducting coherence length, ξ.

The mixed state of a type II SC was first theoretically described by Ginzburg and

Landau in 1950 [19]. The pair showed that the criteria for a SC to display type II

superconductivity was that the material have a Ginzburg-Landau (GL) parameter, κ ≡

λ/ξ > 1/
√

2. The GL theory begins by assuming a complex order parameter, ψ(r),

where |ψ(r)|2 is proportional to the density of superconducting charge carriers. The

theory assumes that the free energy density of the system can be expanded in powers of

|ψ(r)|2 and |∇ψ(r)|2 [29] as follows,

f = fn0 + α|ψ|2 +
β

2
|ψ|4 +

1

2m∗

∣∣∣∣(~
i
∇− e∗

c
A

)
ψ

∣∣∣∣2 +
h2
a

8π
.(6.1)
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Here fn0 is the free energy density in the normal state where |ψ(r)| = 0, ~ is the reduced

Planck’s constant, m∗ is the effective mass of the superconducting charge carrier, e∗ is the

effective charge of such a carrier, c is the speed of light and ha is the applied magnetic

field. The coefficients α and β are phenomenological parameters.

By minimizing the GL free energy density, f , with respect to ψ∗ and A, the magnetic

vector potential, one arrives at the GL equations for ψ(r) and A(r). In practice the GL

theory proves to be valid only at temperatures very close to Tc. However, the theory can

be extended to lower temperatures in certain cases where the behavior of the system can

be approximated by its T ≈ Tc behavior.

6.1.1. The Abrikosov vortex lattice

In 1957 Abrikosov [20, 21] built on the theories developed by Ginzburg and Landau,

as well as theories proposed by Onsager [80] and Feynman [81] for vortices in helium II,

to calculate and predict that vortices in a type II SC should form a periodic structure in

the absence of thermal fluctuations. Abrikosov did this by solving the GL equations for ψ

and A in the vicinity of H ∼ Hc2. Abrikosov’s periodic system of vortices became known

as the vortex lattice (VL) and it was first experimentally demonstrated in an indium-lead

alloy by scanning electron microscopy in 1967 by U. Essmann and H. Träuble [82]. Since

then many experimental methods of observing the VL in type II SCs have been developed.

One popular method of studying the VL is to use Small-Angle Neutron Scattering

(SANS) to image the VL by scattering neutrons off the vortex cores. Other methods
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of imaging the VL include scanning tunneling microscopy (STM), magnetic decoration

and scanning Hall probe microscopy [83]. These methods produce a visual map of the

locations of the vortex cores, which makes them useful for studying geometric properties

of the VL. However, these methods cannot probe the behavior of quasiparticles in spe-

cific regions of the VL. That is, these methods cannot distinguish between excitations of

quasiparticles localized in the vortex core and those of quasiparticles outside the core.

Additionally, methods such as STM only measure the surface states and involve using an

external probe that interacts with vortices thereby potentially changing the properties of

the systems as they are observed [9].

One advantage of using NMR is that it is a bulk probe, meaning that we study the

bulk of a material within an rf penetration depth below the sample surface. The NMR

probe is also relatively non-invasive which lowers the risk of us altering the properties we

wish to observe. Additionally, NMR experiments can be performed at higher fields than

other imaging methods. Perhaps most importantly, through NMR we are able to study

local behavior of quasiparticles through their interactions with the nuclear spin.

We are able to study the VL with the NMR probe because the vortices in the VL state

are static on the timescale of an NMR measurement. This static arrangement of normal

cores surrounded by circulating supercurrents creates a distinct local magnetic field profile

which in turn results in a distinct NMR spectrum. The NMR spectrum is essentially

a probability distribution of local fields with certain points in the frequency spectrum

corresponding to specific points in real space. Fig. 6.2 shows the correspondence between
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the field distribution (the NMR spectrum) and the regions of the VL in real space. The 3D

plot at the top right shows vortices represented as peaks in the field B(x, y) as a function

of the x and y positions, given in units of the (vortex) lattice spacing, x1. The apex of

each peak is the vortex core (yellow), which is the point of maximum magnetic field; the

region of circulating supercurrents (blue) occupies that larges area and therefore has the

highest probability; the saddle point (purple) is the region of supercurrent overlap between

adjacent vortices and is the region where the field is the smallest. The corresponding

regions of the NMR spectrum, P (Hint), are shaded accordingly in the plot on the left.

Figure 6.2. The field distribution calculated using GL theory of a VL at 13
T with parameters from YBCO found in reference [2]. The coloring of the
area under the P (Hint) curve corresponds to the region of the VL, whose
3D field plot is represented in the inset at the top right. The spectrum was
calculated using Brandt’s algorithm.
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This direct correspondence between the NMR spectrum and points on the VL allows

us to study local quasiparticle excitations through their interaction with nuclei in specific

regions of the VL. We will return to this interpretation later in the chapter. First we will

show how we can calculate the local magnetic field profile that we expect to see in an

NMR spectrum using GL theory.

Although the calculation methods we describe below assume the system is two-dimensional

they can be valid for a cuprate system due to the fact that the superconductivity occurs

only in the CuO2 planes. Therefore, as long as the vortices in each layer remain weakly

coupled to those in adjacent CuO2 layers, the system should behave as a 2D supercon-

ducting film which is well described by this 2D model.

6.2. Geometry of the vortex lattice

As with a regular lattice structure, a VL consists of a periodically ordered arrangement

of vortices, which we assume to carry one magnetic flux quantum each. We can describe

the VL geometry by defining lattice vectors and reciprocal lattice vectors which give the

positions of the vortices in real and reciprocal space, respectively. The principal lattice

vectors are defined as, Rmn = (mx1 + nx2)x̂+ ny2ŷ, where

x1 = a0,(6.2)

y2 = ηx1 sinα,(6.3)

x2 = ηx1 cosα.(6.4)
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Here a0 is the distance between adjacent vortex cores, η is the lattice anisotropy and α

is the lattice angle. The corresponding reciprocal lattice vectors are given by Kmn =

(2π/S)my2x̂ + (nx1 + mx2)ŷ, where S is the VL unit cell area, S = x1y2 = Φo/Bavg.

The field Bavg is the spatial average of the field over the VL unit cell. Fig. 6.3 shows

the contour plot of the local field for an orthorhombic VL in real space calculated using

Ginzburg-Landau (GL) theory.

Figure 6.3. A countour plot of the VL field profile shown in Fig. 6.2. The
yellow regions correspond to vortex cores and the green-purple lines indicate
circulating supercurrents. The opening angle, α, is 80◦.

The lattice spacing is dependent on the external field as, a0 = ξ
√

(2π)Hc2/(Hoη sinα)

and the anisotropy is defined as, η = Φo/(Hoa
2
0 sinα), which is the ratio of the magnitude

of the two vectors shown in Fig. 6.3. If we note that the upper critical field is defined as
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Hc2 = Φo/(2πξ
2) we see that the VL geometry is defined by the intrinsic length scales

of the SC, λ and ξ, and the applied field, Ho. In the next section we will discuss how

we can calculate the local properties of a VL using only these parameters as inputs. It

is useful to be able to calculate local properties of the VL such as local field distribution

because the NMR spectrum is essentially a histogram of local fields at the nuclei. By this

reasoning, the NMR spectrum should be a convolution of the calculated field distribution

and the normal state spectrum.

6.2.1. Resolving VL geometry with NMR

We touch briefly on the claim made by Lee et al. [58] that the NMR spectrum of the

O(2) satellite in Hg1201 can be used to detect the geometry of the VL. This study relied

on a de-convolution technique to isolate the contribution of the VL to the NMR spectrum

of the high-frequency O(2) (±3/2 ↔ ±1/2) satellite by dividing out the normal-state

time domain spectrum measured at 90 K from the low temperature spectrum and taking

the Fourier transform of the resulting spectrum to be the isolated VL field distribution.

We have avoided using this de-convolution technique due to concerns that this method

might complicate the spatial resolution interpretation of the resulting spectrum. As we

will discuss in detail in the next chapter, we do not see any evidence for a change in the

lineshape with field nor do we see any evidence that the spectrum can be used to resolve

the underlying VL geometry. For this reason, we propose that NMR is not suitable for

studying VL geometry and have chosen not to pursue this question further.
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6.3. Brandt’s VL calculation

Following Abrikosov’s prediction of the VL and his famous Hc2 solution of the GL

equations, theorists began looking for ways to expand the solution to all fields between

Hc1 and Hc2 [84]. Early attempts by Ihle [85], Clem [86] and later extensions by Clem

and Hao [87] yielded accurate magnetization curves and Hc2 values using various approx-

imation methods. Although these theories yielded very good approximations to the exact

GL result, they were also limited in that they could not distinguish between the energies

of various lattice geometries.

In 1972 E. H. Brandt proposed a variational method of solving the GL equations for an

ideal 2D VL to any desired accuracy. He did this by writing the GL free energy in terms

of real periodic functions B(x, y) and ω(x, y) = |ψ(x, y)|2, where ψ(x, y) is the complex

order parameter and B(x, y) is the induction, and minimizing the free energy with respect

to a fixed number of Fourier coefficients [88]. While this method would in principle give

exact results, the limited computational efficiency at the time restricted calculations to a

small number of variational parameters, which limited the field range that could be used.

In 1997 Brandt was able to refine his computational method using an iterative technique

that allowed one to calculate up to 1000 Fourier coefficients of B and ω to high precision

even on a standard personal computer [84].

Brandt’s algorithm is valid at all fields between Hc1 and Hc2 and all κ ≥ 1/
√

2. It is

also valid for arbitrary lattice geometries and can be used to compute the shear modulus,
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the free energy difference between a triangular and square VL geometry. Here we will dis-

cuss how we use Brandt’s method to compute the field distribution of a VL. Another good

approximation would be to use the London model, which gives a good approximation of

local fields for systems with large κ at low fields, Hc1 < H0 � Hc2. For a detailed discus-

sion of calculating the field distribution using the London method see references [2, 3, 4].

The GL free energy is given by Eq. (6.1) for a system with order parameter ψ(x, y).

We first re-write the GL free energy density, f in units of B2
c/µo, where Bc = Φo/(

√
8πλξ)

is the thermodynamic critical field. The free energy density then becomes,

f =

〈
−|ψ(x, y)|2 +

1

2
|ψ(x, y)|4 +

∣∣∣∣(∇iκ −A
)
ψ(x, y)

∣∣∣∣2 +B2

〉
,(6.5)

where the brackets 〈· · · 〉 denote the spatial average. To simplify the expression we write

ψ(x, y) in terms of it’s amplitude and phase as follows, ψ(x, y) =
√
ω(x, y)e−iφ(x,y). We

also introduce the supervelocity, Q = A − ∇φ(x, y)/κ, where A is the magnetic vector

potential defined such that B = ∇×A. This gives the free energy density as,

f =

〈
−ω +

ω2

2
+

(∇ω)2

4κ2ω
+ ωQ2 + (∇×Q)2

〉
.(6.6)

In these units all lengths are measured in terms of λ and all fields in terms of
√

2Bc.

These units allow all quantities to be defined in terms of κ and b ≡ Ho/Hc2.
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Using the inversion symmetry of the lattice and assuming one magnetic flux quantum,

Φo, per vortex we may express the variables ω, B and Q as Fourier series:

ω(r) =
∑
K

aK
(
1− cos(K · r)

)
,(6.7)

B(r) = Bavg +
∑
K

bK cos(K · r),(6.8)

Q(r) = QA(r) +
∑
K

bK
ẑ ×K
K2

sin(K · r).(6.9)

Here r = (x, y) is the real space position and the sums are over all reciprocal VL vectors

for which Kmn 6= 0. The subscript A denotes the Abrikosov solution for B ∼ Hc2.

To solve for the Fourier coefficients, aK and bK , we first solve the two GL equations,

δf/δω = 0 and δf/δQ = 0, which gives the following iterative expressions,

aK =
4κ2
〈
(ω2 − 2ω + ωQ2 + (∇ω)2

4κ2ω
) cos(K · r)

〉
K2 + 2κ2

,(6.10)

aK = aK ·
〈
ω − ωQ2 − (∇ω)2

4κ2ω

〉
/
〈
ω2
〉
,(6.11)

bK =
−2
〈[
ωB + 〈ω〉(B −Bavg) + p

]
cos(K · r)

K2 + 〈ω〉
,(6.12)

where p = |(∇ω) × Q|ẑ. The initial values are aK = aAK , the Abrikosov solution, and

bK = 0. For the first six iterations bK is kept at zero while Eqs. (6.10) and (6.11) are

iterated to allow ω to relax. After the sixth iteration Eq. (6.12) is added to the sequence

and Eqs. (6.10)-(6.12) are iterated until the free energy solution, Eq. (6.6), is constant to

within (1− b)× 10−13 between successive iterations.
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Once we have calculated the local field at each point in our Nx × Ny grid1 we can

determine the probability distribution as a function of field, H, using the integral,

P (H) =

(
Φ0

H0

)∫
dr
[
δ(H −HV L(r))

]
,(6.13)

where HV L(r) is the calculated local field due to vortices. In practice we approximate this

integral with the sum,

P (H) =

(
Φ0

H0

)∑
H

Ny∑
ny=1

Nx∑
nx=1

exp

[
−2

(
H −HV L(nx, ny)

dh

)2
]
,(6.14)

where dh gives the width of each Gaussian contributing to the sum and is taken to be

between 0.5 - 5 Gauss.

Fig. 6.4 shows the field distribution calculated using Brandt’s algorithm for parameters

used by [10] for a near optimally-doped YBCO aligned powder sample. Our distributions

have a slightly more abrupt high-field cutoff than those of Mitrović et al., however our

lineshapes and widths are in agreement with theirs. We attribute the slight difference in

our calculated spectra to a different programming methods and software2.

6.4. Spatially resolved NMR in the cuprates

We now return to our discussion of how we can use NMR to study local quasiparticle

behavior using the correspondence between the field profile and locations in the VL. The

key variable which we would like to measure is the quasiparticle density of states (DOS)

1For smaller fields and κ, a Nx(y) value of around 20 is sufficient. However, for the high fields and κ that
we work with, a large Nx(y) ≥ 100 is needed for good resolution.
2Mitrović utilized an IGOR Pro program, which she wrote herself, for VL calculations whereas we have
used a Matlab program written by Brandt which we have modified to accommodate our systems.
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Figure 6.4. The probability distribution calculated using Brandt’s algo-
rithm for YBCO parameters at an applied field of 13 T (dashed line) and
37 T (solid line). The input parameters used are ξ = 16 Å, λ = 1500 Å and
α = 80◦.

at the Fermi surface. We can measure the DOS at the Fermi energy, EF , across an NMR

spectrum through the spin-lattice relaxation rate. If we consider a quasiparticle scattering

between two gap nodes of wavevector k and k′, T−1
1 is proportional to the angular average

of the product of the initial and final DOS at the Fermi level. If we index the initial and

final quasiparticle energy states as α = i, f , we can write the following phenomenological

expression for T−1
1 [10],

T−1
1 ∼ 〈|ε− Z +Di| · |ε+ Z +Df |〉ε.(6.15)

Here ε =
√
ε2k + ∆2

k is of the order of the thermal energy3 kBT , Z = −1
2
γe~Ho is the

Zeeman energy, and Dα is the Doppler term which is proportional to the product vF,α ·ps,
3kB is Boltzmann’s constant.
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where vF,α is the Fermi velocity in the initial/ final scattering state, α, and ps is the

momentum of the supercurrents that circulate around each vortex core. The brackets

〈· · · 〉ε now denote integration over the quasiparticle energy ε in the range kBT of the

Fermi energy.

In 1993 Volovik [89] proposed that the main contribution to the DOS at EF in the

VL of a layered SC should come from quasiparticles delocalized outside the vortex core.

He also predicted that the contribution of these quasiparticles at the gap nodes should

be proportional to the square root of the applied field, N(0) ∝
√

(Ho/Hc2). Later theo-

retical work determined that the contributions of quasiparticle excitations to the DOS at

EF will have two regimes [90, 91]. In the limit of high fields and low temperatures the

DOS contributions will be dominated by the Doppler shifting of quasiparticles, as Volovik

originally suggested, and in this case the DOS will be proportional to
√
Ho. In the limit

of low field and high temperature, however, the dominant contributions to the DOS will

come from thermally excited quasiparticles and the Doppler term will only be appreciable

near the vortex cores. In the latter case the DOS will be proportional to the applied field,

N(0) ∝ Ho.

Researchers initially tried to test Volovik’s predictions using specific heat measure-

ments of YBCO single crystals [92, 93, 94]. However, it is difficult to discriminate the con-

tributions to the specific heat due to electronic excitations from those of e.g. phonons [93].

Additionally, the conditions of the specific heat measurements fall in the intermediate re-

gion between the high-field, low temperature and low-field, high temperature [2]. The
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advantages of using spatially resolved NMR to test Volovik’s theory are that, provided

the resources are available, it can be done in the high-field low-temperature limit and can

resolve contributions to T−1
1 from quasiparticles inside and outside the vortex cores.

We make note of two previous spatially resolved cuprate NMR studies performed by

Mitrović [10] and Mounce [11] on YBCO powders and BSCCO single-crystals, respectively.

We will leave our own results for the next chapter. Both Mitrović and Mounce used

the Progressive Saturation Technique (PST), described in Chapter 3, to measure 17T−1
1 ,

inside and outside the vortex core in the mixed state of their cuprate samples at low-

temperatures. Both used Brandt’s algorithm to calculate the VL distribution as well

as the expected 17T−1
1 to compare with their experimental data. The results of their

experiments are as follows.

6.4.1. YBCO NMR

Mitrović used the model described by Eq. (6.15) to analyze the planar 17O NMR

spectrum of an aligned powder sample of YBCO near optimal doping. She performed

PST measurements at fields from 13 T to 37 T and at temperatures from 7 K to 25 K to

test the field and temperature dependence of 17T−1
1 , and thereby the DOS at EF , N(0).

These measurements revealed a monotonic increase in 17T−1
1 and (17T1T )−1 across the

frequency spectrum on approaching the vortex core region. They also showed a Curie-

Weiss temperature dependence of (17T1T )−1, i.e. decreasing with increasing temperature

in the highest frequency (vortex core) region. Mitrović also observed an unexpectedly large

broadening of the spectral peaks at the lowest temperatures compared to the normal state
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Figure 6.5. A plot of the 17T−1
1 measured across the planar (-3/2 ↔ -1/2)

transition of a YBCO aligned powder sample by Mitrović et al. [10]. The
shaded region of the spectrum is the region occupied by the vortex core for
Ho = 37 T.

(100 K) spectrum.

Mitrović interpreted the above results as evidence for the presence of antiferromagnetic

(AFM) correlations between quasiparticles localized in the vortex cores. This conclusion

was partly based on the fact that the Curie-Weiss behavior, 1/(T1T ) ∼ C/(T + TN) for

some characteristic temperature TN , which the group observed in the planar 17O spec-

trum, is a property of AFM materials. Additionally, because the spectral broadening at

low temperatures was too large to be accounted for by random VL disorder, as calculated
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by Brandt [95], Mitrović proposed that the extra broadening could be due to the addi-

tional magnetic field contribution arising from AFM moments in vortex cores.

There are a few caveats with the YBCO data and conclusions drawn from them.

Firstly, the planar 17O satellite, at which the NMR measurements were performed, over-

laps with the (±5/2↔ ±3/2) 17O satellite on the low-frequency side at low temperatures

which adds an extra source of error in the 17T−1
1 data. The overlap also invalidates any

17T−1
1 measured at the low-frequency of the spectrum, so the low-field relaxation behavior

is unknown. Additionally, the samples were aligned powders which are inherently dis-

ordered and have a higher density of pinning centers which can affect the physics being

measured with NMR. Therefore, we wish to repeat Mitrović’s methods to study other

cuprates under the assumption that some of the physics revealed by YBCO will be uni-

versal to all of these compounds. Mounce attempted to do this with the highly anisotropic

cuprate, Bi2SrCa2Cu2O8+δ (BSCCO).

6.4.2. BSCCO NMR

Mounce [11, 12] found that the 17O NMR spectrum of over-doped BSCCO single crys-

tals in the VL state (Fig. 6.6) behaved differently from that of near optimally-doped YBCO

aligned powders. Mounce’s spatially resolved PST experiments revealed a 17T−1
1 which

varied as a non-monotonic function of the field across the NMR spectra, increasing at

the lowest and highest fields and decreasing at the peak of the spectrum. This led to

a dip in the 17T−1
1 at the part of the spectrum corresponding to the VL saddle point.

This behavior could not be attributed to the physics (field fluctuations and quasiparticle
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dynamics) of the VL alone.

Figure 6.6. The 17T−1
1 behavior reported by Mounce et al. in [11] for a

single-crystal sample of BSCCO. The spectrum and 17T−1
1 calculated from

the SDW + VL model are shown in red and the experimental results are
shown in black for four different fields.

To resolve this issue, Mounce proposed that the NMR spectrum was influenced by a

second field arising due to a spin density wave (SDW) with its center at the vortex core.

This notion was based on the results of several STM experiments [96, 97, 98] showing that

vortices induce a “checkerboard” pattern in the local DOS with a spatial period of about

four times the VL spacing. The BSCCO spectra were fit to a field distribution that was

modeled as the sum of the VL field calculated from GL theory and a SDW contribution

which produced a good fit to the experimental data. At low fields (Ho < 4 T), Mounce

found that the NMR spectrum and 17T−1
1 were dominated by the field fluctuations of the

VL. At fields above 5 T the SDW field contributions become comparable to those of the
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VL and at high fields (Ho ≥ 15 T) the SDW contribution to the field dominated the local

field distribution.

In addition to the contribution of the SDW to the local magnetic field, Mounce et

al. also observed a field-induced narrowing of the 17O linewidth at high fields followed by

a slight broadening as the field was increased further [12]. The group was able to account

for this apparent field-induced instability by considering the vortex cores of BSCCO to

carry a charge of ∼ 2×10−3e, where e is the magnitude of the electron charge. The exact

value of the effective charge per vortex depends on doping. The fact that vortices should

carry charge had been theoretically predicted [99, 100] but the experimental evidence

for vortex charging was not universally accepted. Mounce et al. used a model system of

charged Abrikosov vortices and calculated the energy cost of displacing a stack of vortex

pancakes in the ab-plane relative to the Abrikosov lattice. The group used Clem’s [101]

model to calculate the magnetic energy cost of the displacement and used a periodic lat-

tice of charges to calculate the electrostatic energy cost via the Coulomb potential of the

system.

In general, the magnetic interaction between vortices in the same plane is repulsive and

the interaction between vortices in adjacent planes is attractive. The latter interaction,

known as Josephson coupling, is very weak at high fields and is therefore ignored in the

calculations discussed here. In contrast to the magnetic interaction, the electrostatic

interaction between charges on different planes increases at short range [12]. Mounce

found that there is a field for which the electrostatic and magnetic interactions between
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vortices balance, leading to a structural instability of the VL, assuming an effective charge

per vortex of 2.1 and 2.5 ×10−3e for each over-doped single crystal sample.

Figure 6.7. From reference [12]. The calculated r.m.s. energy cost for vortex
displacements (left axis) along with the normalized second moment (right
axis) for three over-doped single crystal BSCCO samples. The sample Tc’s
are given in the legend.

The plot of the calculated root-mean-squared (r.m.s.) energy cost for vortex displace-

ments, assuming a certain charge per vortex, as a function of magnetic field is shown in

Fig. 6.7 (dashed lines). The markers show the second moment (essentially the square of

the 17O NMR linewidth) measured for three over-doped single crystal samples of BSCCO.

Note that the markers fit well to the dashed lines, indicating that the minimum linewidth

corresponds to the r.m.s. energy difference at which the electrostatic and magnetic vortex



138

interactions are equal. This minimum is where the VL is unstable.

Mounce suggested that, because of the prevalence of the SDW and charge/field-

induced instability in BSCCO at high fields as well as its high anisotropy and short

coherence length, this compound may not be ideal for studying vortices with NMR. He

suggested that Hg1201 may be better suited for such studies due to its longer coherence

length (smaller Hc2), simpler crystal structure and smaller anisotropy. From our spatially

resolved NMR results on Hg1201 single crystals in the mixed state, which we discuss in

the following chapter, we find that this may not be the case.

6.5. Conclusions

The vortex lattice (VL) forms in a type II SC when the thermal fluctuations are

overpowered by the electromagnetic interactions between circulating vortex supercurrents,

i.e. at low temperatures. The VL creates a distinct local magnetic field which can be

detected with NMR. The well-defined relationship between points in the field profile and

points on the VL makes it possible to study the physics of quasiparticle excitations in

specific regions of the VL. Previous attempts to measure 17T−1
1 across the NMR spectra

of YBCO and BSCCO have revealed possible AFM correlations in the nodal quasiparticle

excitations in YBCO, but not in BSCCO, where a SDW field is dominant at fields greater

than 4 T and vortex charging effects create a field-induced structural VL instability. In

the next chapter we will discuss our own NMR results and compare them with the theory

as well as previous data.
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CHAPTER 7

Vortices in Hg1201

Whereas there have been a plethora of investigations of the VL state of cuprates such

as YBCO and BSCCO, the data for Hg1201 is scarce. One key reason for the lack of

available data on Hg1201 single crystals in particular is that until as recently as 2006

researchers were unable to grow the sizeable single crystals of the cuprate needed for

experiments such as SANS [102]. Recent breakthroughs in crystal growth techniques [60]

have led to a slight increase in the available data on Hg1201 single crystals, but the data

is still scarce compared to those available for other cuprates. Here we will present some of

the available data from the literature as well as from our own findings on the observation,

or lack thereof, of the VL in Hg1201 single crystals.

7.1. SANS results and the 2D limit

Of the avaiable data there is a notable SANS study by Li et al. [103] on two near

optimally-doped single crystals of Hg1201 with a Tc of 94 K and a ∆Tc of less than 2 K as

measured by magnetometry in reference [102]. The two crystals (60 mg and 90 mg) were

co-aligned on a Si wafer and their c-axes were within 1◦ of the incident neutron beam.

The sample was field-cooled from room temperature to 2 K and the SANS signal was

measured from 2 K to room temperature. This procedure was repeated for fields of B =

0.10, 0.15, 0.20, 0.25, 0.30 and 0.35 T.
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Li et al. used the azimuthal intensity distribution of the momentum transfer, q, to

determine that the VL at 0.10 T ≤ B ≤ 0.35 T was undistrorted and triangular [103]

with an opening angle of α = 60◦. The low-field triangular VL geometry has also been

observed in YBCO [104, 105], which has been shown to undergo a structural transition

from a triangular VL at B < 6.7 T to a square VL at higher fields. In Hg1201, however, Li

et al. found that the scattered neutron intensity diminished rapidly with increasing field

and was completely undetectable for B > 0.35 T. The group attempted measurements at

fields up to 4.0 T to see if the VL signal re-appeared as the field strength was increased

but did not observe such a re-emergence at higher fields. Therefore, the structure of the

VL in Hg1201 at high fields has yet to be imaged directly.

The authors of reference [103] proposed that the reason for their loss of signal at

B ≥ 0.4 T was that the vortices in Hg1201 become disordered along the c-axis, causing

the VL in each CuO2 layer to become decoupled thereby reducing the characteristic spa-

tial variation of the local magnetic field detected by SANS. These 2D ordered vortices

are know as “vortex pancakes” and the limit in which this de-coupling along the c-axis

occurs is known as the “2D limit.” Prior to the study by Li et al., this disappearance of

the SANS signal had been seen by Cubitt et al. [106] in the highly anisotropic cuprate,

Bi2.15Sr1.95CaCu2O8+x (BSCCO). In the case of BSCCO the group found that the signal

disappeared at a field of 0.1 T.

One widely quoted phase diagram used to describe this 2D melting transition in

highly anisotropic superconductors such as BSCCO is that described by Glazman and
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Figure 7.1. The B vs T VL phase diagram from reference [13] showing
the field dependence of the VL melting temperature, represented by the
solid line. The dashed line represents the 2D melting temperature, T 2D

m ,
the melting temperature in the limit that the VL in each CuO2 layer is
completely de-coupled from those in adjacent layers.

Koshelev in reference [13]. This B vs T phase diagram (shown in Fig. 7.1) shows the

field-dependence of the VL melting temperature as asymptotically approaching its so-

called “2D limit,” at a temperature, T 2D
m , which is given by,

T 2D
m =

(
A

8π
√

3

)
dΦ2

o

kB(4πλab)2
.(7.1)

In the above expression d is the distance between CuO2 layers, Φo is the magnetic flux

quantum, kB is Boltzmann’s constant and λab is the penetration depth in the ab-plane.

In Hg1201 d = 9.6 Å, which is also the c-axis lattice constant and λab has been mea-

sured [107] to be 1620 ± 50 Å in under-doped crystals with a Tc of 96 K. The constant A

has been calculated to be ∼ 0.61 from the Lindemann criterion [108, 15, 109]. Interest-

ingly, plugging these values –choosing λab = 1620 Å– into expression (7.1) gives a T 2D
m of

approximately 10 K (T 2D
m = 10.06 K), which is the temperature at which we see an onset
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of the exponential relaxation, 17T−1
2e (see Fig. 5.13). It is unclear from our data whether

this is physically meaningful or coincidental.

The crossover field, Bcr, separates the regions of the phase diagram of 2D and 3D

melting. Glazman and Koshelev’s calculations center around a phenomenological param-

eter, γ, the mass anisotropy, defined as, γ ≡ λc/λab, where λc is the penetration depth

measured along the crystal c-axis. In performing their calculations the authors assume

that the anisotropy is large, γ � 1. Glazman and Koshelev estimate the crossover field

to be,

Bcr ≈ 2π

(
Φo

γ2d2

)
ln(γkmaxd),(7.2)

where kmax is given by,

kmax ∼
1

ξab

(
1 +

T (4π)2λ2
cd

2Φ2
oξ

2
ab

)−1/2

,

where ξab is the in-plane coherence length and T is the temperature. Note that the expres-

sion for Bcr (7.2) is estimated under the assumption that the Josephson coupling between

layers dominates over the line tension of a single vortex, i.e. γ < λab/d [13]. Li et al. es-

timated this crossover field as Bcr ∼ Φo/(dγ)2 ≈ 1.4 T for their measured1 γ = 40. These

authors also posited that the 2D vortices in the same layer should be pinned together by

a small density of pinning centers. This is in contrast to vortices being pinned individually.

1Other groups have reported measured values of γ ∼ 27− 30 [107, 14], which puts Bcr closer to 3 T.
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In a recent study by Eley et al. [14] on a high-quality single crystal of Hg1201 the

authors used magnetization measurements to show that the vortex dynamics in Hg1201

would be 2D at all fields and temperatures in the mixed state. The group used mea-

surements of the rate of thermally activated vortex motion (creep) to extract the vortex

dynamics over a range of temperatures and fields from 0 to 7 T. They found behavior

consistent with a low-field and low-temperature vortex glass state characterized by col-

lective creep of large bundles of vortex pancakes. As the field increased the vortex state

remains glassy and the size of the 2D vortex bundles involved in creep decreases. Their

results are summarized in their proposed vortex phase diagram, which we include here

for reference.

Figure 7.2. The proposed vortex dynamics phase diagram for Hg1201
from [14]. If the boundaries are extrapolated to high fields this would put
our sample at 5 K and 14 T in the “vortex liquid” state.
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This study provides further evidence that the vortices in Hg1201 will be decoupled

along the c-axis such that the VL has a 2D character at all fields that we use in NMR.

This is also in agreement with what we see in one of our under-doped Hg1201 single

crystals, UD81, as we show later in this chapter. This under-doped crystal also happen to

be provided by one of the authors of reference [14]. We also note that the proposed phase

diagram shown in Fig. 7.2 is based on low-field data which the authors have extrapolated

to 10 T. If the vortex liquid-to-solid boundary is extrapolated to higher fields it would

indicate that our Hg1201 sample is in the “vortex liquid” state at fields of 14 T and above

at a temperature of 5 K. While this is a possibility, we also consider that the boundaries

may deviate from the low-field behavior at higher fields. We also note that the absence of

vortex pinning, which is indicated by a lack of irreversibility, does not necessarily imply

the system is a vortex liquid.

7.2. Low-temperature 17O NMR lineshape

If we recall the relation, ω = γH, between the frequency that appears in an NMR

spectrum and the magnetic field, H, surrounding the nuclei, it is clear that the frequency-

domain NMR spectrum can be easily converted to a field-domain spectrum using the nu-

clear gyromagnetic ratio. This means that when a system forms a VL and the nuclei are

only affected by the local field produced by the quasi-static vortices, the NMR spectrum

will essentially be a histogram of local magnetic fields produced by the VL. Of course,

as we noted in Chapter 2, the frequency of an NMR signal will be affected by hyperfine

interactions as well as local fields which will complicate the interpretation of an NMR



145

spectrum as a field distribution in the VL state.

Fortunately, in Hg1201 the Knight shift at the O(2) site has been shown to be negligibly

affected by the hyperfine field of the CuO2 plane [62, 4]. A Knight shift analysis shows

that the only appreciable contribution to 17K at the O(2) site is Kdia, which is small and

onsets below Tc. This makes the O(2) site a perfect candidate for studying the VL state

through NMR because its NMR spectrum should directly correspond to the local field

distribution at the nucleus. Additionally, if we recall the 90 K 17O NMR spectrum shown

in Fig. 4.3 we see that the O(2) satellites (B and C) are well separated in frequency (field)

space so we will not have any contributions to our O(2) spectrum from overlapping peaks

corresponding to other sites in the Hg1201 unit cell.

In principle the location of the O(2) site in the NMR spectrum as well as its lack of

coupling to the electronic structure of the CuO2 plane makes this site an ideal candidate

for spatially-resolved NMR of the VL. However, our ability to study the VL with NMR

also depends on the ordering of the VL between the stacked CuO2 layers. If the system is

in the 2D limit, as Li et al. and Eley et al. predicted, and the VL is not sufficiently ordered

along the c-axis, the VL will not produce a distinct field profile and the NMR spectrum

will appear no different from that of the vortex liquid state. Fig. 7.3 shows the O(2)

high-frequency (±3/2 ↔ ±1/2) satellite at 20 K (black) and 85 K (blue) of the UD81

and UD79 samples at 14 T. Neither of the spectra show the significant broadening at low

temperature that we expect for a VL spectrum compared to the normal state spectrum
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UD81

Figure 7.3. The O(2) high-frequency (±3/2↔ ±1/2) satellite at T = 20 K
(black) and T = 85 K (blue). Both UD81 (top) and UD79 (bottom) spectra
were measured with Ho‖ c in a field of 14 T.

(85 K).

It is possible that the absence of broadening at 20 K under these conditions is due to

the fact that the VL melting temperature, Tm, is lower than 20 K at 14 T. Fig. 7.4 shows
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Figure 7.4. The NMR spectrum of the UD79 sample in Ho = 16.5 T, Ho ‖ c
at three different temperatures.

a spectrum measured by Lee of the UD79 sample in an applied field of 16.5 T at T =

80 K, 40 K and 15 K. The 15 K spectrum (black) is significantly broadened compared

to that measured at 40 K (magenta) and 80 K (blue) which indicates that the system

has formed a VL at this field and temperature. On the other hand, the 40 K and 80 K

spectra do not appear to be significantly different despite 40 K being below Tc and 80 K

being just above Tc.

One might note that there appears to be a bit more broadening in the 20 K spectrum

of the UD79 sample compared to the 85 K spectrum than we see in the UD81 sample.

However, if we compare the UD79 spectra at 16.5 T (Fig. 7.4) to those at 14 T (Fig. 7.3)

we see that the modest difference between linewidths at 20 K and 85 K in 14 T is much

smaller than we expect for a low-temperature VL spectrum compared to a vortex liquid
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or normal state spectrum. From this data it appears that there is a VL that forms at a

higher temperature in the UD79 sample than in the UD81 sample.

7.2.1. Field and temperature independence of linewidth

In order to further investigate the absence of the broadening of the spectrum in our

UD81 sample we have performed high-field and low temperature measurements at the

NHMFL using the setup discussed in Chapter 3. We measured the spectrum of the

high-frequency O(2) (±3/2 ↔ ±1/2) satellite at various fields from 14 T to 29 T. For

fields below 20 T the exact Ho value was measured using an 27Al reference signal from

an Al powder set in epoxy inside the sample holder. For Ho > 20 T the field value was

estimated from the 17O central transition. The temperature fluctuations were less than

0.1 K throughout all our measurements at the NHMFL and less than 0.2 K for our mea-

surements at NU2.

Figure 7.5 shows the temperature dependence of the full-width at half-maximum

(FWHM) of a Lorentzian fit to the O(2) satellite (top) at fields of about 14 T. We

also show (bottom) the normalized FWHM of the corresponding O(1) satellite at 19 T

where the fit is to a Gaussian. The open markers represent data points measured at the

NHMFL and the solid markers are data measured at NU. The linewidths are normalized

by the applied field. Clearly, there is a negligible change in the linewidth of both the

O(1) and O(2) spectra upon decreasing temperature. In the case of a 3D ordered vortex

lattice we expect a broadening on decreasing the temperature through the VL melting

2This is excluding the 20 K data points measured at NU where the temperature fluctuations were about
1 K.
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Figure 7.5. The top plot shows the full-width at half-maximum (FWHM) of
a Lorentzian fit to the O(2) satellite spectra as a function of temperature at
14 T normalized by the applied field. The bottom plot shows the Gaussian
FWHM temperature dependence of the corresponding O(1) satellite at 19
T.

temperature. As an example, we show (Fig. 7.6) the measured linewidth (normalized by

Ho) recorded by Chen et al. [15] for an over-doped BSCCO single crystal. Note that the
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Figure 7.6. From reference [15], the linewidth (divided by Ho) of the mea-
sured 17O spectra as a function of temperature of a BSCCO over-doped sin-
gle crystal sample. The curve is a theoretical dependence of the linewidth
on background magnetic contributions, applied field and Knight shift.

low-temperature broadening is much greater than what we see (Fig. 7.5) for UD81.

In order to compare our data to that of another under-doped sample we have re-

analyzed data measured by Lee on the UD79 sample at Ho = 16.5 T. The results are

displayed in Fig. 7.7. Both satellites correspond to the first high-frequency (±3/2 ↔

±1/2) transition. The plot shows a negligible change in the O(1) linewidth upon changing

the temperature whereas the O(2) linewidth does appear to increase below ∼40 K. This is

the same O(2) data set whose spectra are displayed in Fig. 7.4. Although there is slightly

more broadening in the O(2) spectrum in the UD79 sample compared to the UD81 sample,

the difference is fairly modest and neither sample shows a temperature dependence in the

O(1) linewidth or shape.
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Figure 7.7. Data measured by Lee for the UD79 sample at 16.5 T with Ho ‖ c.

Figure 7.8. A plot of the O(2) (±3/2 ↔ ±1/2) high-frequency satellite
spectra measured at 13.9 T at various temperatures. The peak frequencies
have been normalized to 13.905 T according to the exact field values mea-
sured by 27Al NMR such that any difference in peak frequency must be due
to a Knight shift.
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In the case that a VL is formed on decreasing the temperature below a melting tem-

perature, Tm, the spectrum should also develop an asymmetric shape like the calculated

VL field distribution shown in Fig 6.4. In Fig. 7.8 we show the O(2) spectra to which

we performed the Lorentzian fit in Fig. 7.5. We can see that, for our UD81 sample, in

addition to there not being an increased broadening upon lowering the temperature we

also do not see any evidence of a change in the lineshape to indicate the formation of

a VL. The same can be argued of the UD79 results shown in Fig. 7.4. Although in the

UD79 case the spectrum does appear slightly broader at the lowest temperature, it does

not appear to have changed shape appreciably.

In addition to to lack of observable temperature dependent broadening, we also do

not see any field-induced broadening or narrowing of the O(2) satellite. In Fig. 7.9 we

show the field dependence of the linewidth of the O(2) (±3/2↔ ±1/2) satellite at fields

from 14 T to 29 T. Note that there is no discernible change at any field. We also show

the lineshape for three different fields in Fig. 7.10 to illustrate the negligible change in

the shape of the spectra at different fields. The peak of each spectrum in Fig. 7.10 were

normalized by subtracting the measured νQ = 1.227 MHz as well as the measured Larmor

frequency, ωL =17 γHo, from the peak frequency.

The lack of field-induced broadening is an interesting result because if the spectrum

were a perfect VL field distribution (see Fig. 6.4) the linewidth would narrow upon in-

creasing the field since the increase in vortex density would create a larger region of

overlapping supercurrents that would cancel and result in a smaller spatial variation in
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Figure 7.9. The FWHM of the Gaussian fit to the O(2) spectrum of the
UD81 sample at T = 5 K.

the local fields. On the other hand, even in the absence of a VL one would expect there to

be a spectral broadening upon increasing the field due to an increase in the field variations

on a local scale due to structural defects or impurities.

The fact that we do not see any change in the width or lineshape of our O(2) spectra

in our UD81 sample for any field or temperature is further evidence that this sample is

very clean, i.e. free of any defects to which vortices could be pinned or that would cause

an amplified field gradient to appear at high fields. It is also further evidence that if there

is a VL formed in the CuO2 planes it must be highly disordered along the c-axis such

that the vortices are 2D pancakes and are completely uncorrelated along the c-axis. Such

disorder would make the local field profile of the VL less well resolved since it will be

that of many 2D vortex pancakes superposed on one another without being aligned by
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Figure 7.10. The O(2) satellite transition at three different fields. The ex-
act field values were measured to be Ho = 13.905 T and 21.416 T, using the
27Al signal and Ho ≈ 28.95 T using the central 17O transition. The hori-
zontal axis, ∆f , represents the shift in frequency from ωL+νQ as described
in the text.

Josephson coupling.

While we have not measured the field-dependent broadening at the O(1) site of the

UD81 sample directly, we have measured the central transition which is an overlap of the

O(1) and O(2) sites. At temperatures below 50 K the two peaks are indistinguishable

and form a single peak. In Fig. 7.11 we show our data for the FWHM of a Gaussian

fit to the central transition at T = 5 K for our own UD81 sample (top) as well as the

UD74 sample at T = 4 K (bottom). The data on the UD74 sample was measured by

Mounce and re-analyzed for this work. Note the broadening of this peak at high fields for

both samples. This broadening must originate in the O(1) site since we have shown that

the O(2) spectrum does not broaden with increasing field. This field-induced spectral
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Figure 7.11. The (Gaussian) FWHM of the central 17O transition measured
at 5 K (UD81, top) and 4 K (UD74, bottom). The dashed lines are linear
fits to the data in the region of linear behavior.

broadening at O(1) is evidence that there is a contribution to the field in the CuO2 plane

originating from a source other than a VL.
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It is possible, of course, that the lack of broadening and static lineshape that we ob-

serve in the O(2) spectra are manifestations of the system remaining in the vortex liquid

state even at temperatures as low as 5 K. If this is the case our observation of 17T−1
2e (see

Fig. 5.13) increasing below 10 K must be due to some other mechanism than the increased

presence of stationary vortices. It may be the case that the VL is present but that there

is some additional field that dominates the spectrum as was the case with the SDW in

BSCCO as discussed in 6.4.2. As we mentioned in Chapter 5, more data is needed to

confirm the source of this additional relaxation mechanism at low temperatures. It is

also possible that a VL is present, but that the force applied by an rf pulse is enough

to overcome the pinning forces and destroy the order. In this case, NMR is not a good

method for studying the VL in the under-doped Hg1201 system.

7.2.1.1. Vortex charge. Another possibility is that a charge-induced instability is af-

fecting the linewidths of our 17O spectra as was also the case with BSCCO [12]. This

instability is due to the vortices carrying a charge trapped in the vortex core creating a

Coulomb interaction that competes with the magnetic interaction between vortices. This

vortex charge is a result of the difference in chemical potential between the superconduct-

ing and normal state at the vortex core [110, 99] as well as the presence of particle-hole

asymmetry [100].

The theory of vortex charging is relatively well established and has been discussed in

the context of Hall effect experiments [111, 112] in which researchers observed a change

in the sign of the Hall coefficient in high-temperature SCs below Tc. Blatter et al. [100]
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used BCS theory to calculate the charge, Q, trapped in the core of a type II SC in the

presence of metallic screening. They found that the accumulated charge in the vortex

core per layer is,

Q =
2ekFd

π3

(
λTF

ξ

)2
d lnTc
d lnµ

,(7.3)

where e is the magnitude of the electron charge, kF is the Fermi wavenumber, d is the

interlayer distance, µ is the chemical potential and λTF is the Thomas-Fermi screening

length.

In further theoretical work [113, 114, 115] researchers began incorporating antiferro-

magnetic (AFM) order, d-wave superconducting order, doping concentration and Coulomb

interactions into their models of vortices in cuprate SCs. Chen et al. [113] found that the

vortex charge had a strong doping dependence. Their model revealed that the vortices

in over-doped systems carried a net positive charge and displayed no antiferromagnetism

whereas the vortices in under-doped carried a negative charge and displayed AFM order.

This result is in disagreement with the experimental NMR results of Kumagai et al. [116]

in which they found the opposite sign of the vortex charge in one under-doped and one

over-doped YBCO aligned powder sample.

It should be noted that Mounce’s BSCCO samples, in which he observed a field-

induced instability manifested in a minimum spectral linewidth (see Fig. 6.7) at a certain

field, were over-doped. If the theory is correct in that under-doped cuprates will have

AFM ordered cores in addition to carrying a vortex charge, the manifestation of vortex
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charge in these systems may be different from that seen in over-doped crystals. It should

also be noted that Mounce did observe [11] the low-temperature broadening signature of

VL formation in his BSCCO crystals whereas we did not observe such a broadening in

our UD81 sample, as discussed above. Therefore, more data is needed at low fields and

low temperatures to determine if the vortex core charge in under-doped Hg1201 crystals

creates a field-induced VL instability.

7.2.2. Spatially-resolved NMR in Hg1201

As we touched on in the previous chapter, the regions of the NMR spectrum can cor-

respond to regions in real space when the system is a vortex solid ordered along the c-axis

or a 2D (film) type II superconductor with Ho ‖ c. In this case the highest frequency

(field) portion of the NMR spectrum will correspond nuclear spins within the vortex core,

which is an area of interest in condensed matter physics. In particular, because quasi-

particles are present in a d-wave SC down to the lowest temperatures at the nodes of the

superconducting gap their excitations will contribute to the density of states (DOS) at

the Fermi level at all temperatures [29]. We wish to study how the contributions to the

DOS from the excitations of quasiparticles localized in the vortex cores differs from those

of quasiparticles that are delocalized outside the core.

We have performed 17T−1
1 measurements on both UD81 and UD79 samples at 20 K and

25 K, respectively. The results are shown in Fig. 7.12 along with the same measurement

performed at 34 K for comparison. The measurement does not show any appreciable

variation in 17T−1
1 across the frequency spectrum at either temperature. The modest
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increase in the T−1
1 at the edges of the spectrum are unlikely to be meaningful due to the

lower signal-to-noise in these regions which creates larger calculation error.

In order to further investigate the possible variation in 17T−1
1 across the frequency

spectrum in the UD81 sample we used PST to measure T−1
1 at a temperature of 5 K

at a field of ≈ 19 T. The results, shown in Fig. 7.13, also do not show any appreciable

variation of 17T−1
1 across the frequency spectrum. In fact, the 17T−1

1 at 19 T arguably

shows less frequency (field) dependence than that measured at 14 T and 20 K. Note that

the 17T−1
1 measured at 5 K is an order of magnitude smaller than those measured at

20 and 34 K (Fig. 7.12). This shows that the O(2) spins are coupled to the electronic

susceptibility of the remaining quasiparticles. Therefore, the lack of variation across the

spectrum is further evidence for the system being in the vortex liquid state where the field

fluctuations would be averaged out across the spectrum. In this case we would not expect

any variation in 17T−1
1 across the spectra since the correspondence between frequency and

field no longer has a well-defined spatial correspondence.

We have also measured 17T−1
1 in the same sample across the spectrum of the O(1)

(±5/2 ↔ ±3/2) high-frequency satellite at 5 K at a field of about 30 T. The results

(Fig. 7.14) also do not show any appreciable difference in the T−1
1 across the spectrum.

This absence of observed frequency (field) dependence of 17T−1
1 could be an additional

indication that the VL is absent in this system under the given conditions. Even if we

consider the possibility that there is another source of local field fluctuations, such as a

spin-density wave (SDW), that dominates the local field profile as well as the relaxation
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Figure 7.12. A spatially-resolved 17T−1
1 measurement of the UD81 (top) and

UD79 (bottom) samples with Ho ‖ c at 20 K and 25 K (green squares) and
34 K (blue squares). The size of the frequency bins used was 1.8 kHz.

mechanism at high fields it does not explain the absence of the spatial dependence of

17T−1
1 . Recall that Mounce [11] was able to spatially resolve the 17T−1

1 in his over-doped
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≈ 19 T at a temperature of 5 K.
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162

BSCCO samples even with the presence of the SDW field. It is likely that the vortices

in our UD81 sample are not quasi-static on the timescale of our NMR measurements at

high fields in the temperature range we have probed.

The 17T−1
1 measurements reported in this section have all been performed on the same

under-doped sample of Hg1201 at high fields of ≥ 13.9 T and temperatures down to 5 K.

It would be valuable to repeat these measurements at fields below 14 T in this sample.

It will also be necessary to repeat these measurements on other single crystal Hg1201

samples of various doping concentrations in the under-doped region of the phase diagram

in order to draw conclusions about the under-doped Hg1201 system in general.

7.3. Conclusions

From these data we conclude that we have not observed enough evidence to claim that

we see a formation of a VL in our UD81 sample using NMR. From the data we do have

it is clear that if a VL is formed at some melting temperature, that temperature is likely

much lower than the previously reported value of 40 K [58]. It is also clear that if such

a vortex solid state exists in the UD81 sample the vortices in the CuO2 layers must be

de-coupled along the c-axis to explain the absence of a change in the spectral linewidth.

These results would put our data in agreement with those of Li [103] and Eley [14].

We propose that further NMR measurements at both O(1) and O(2) sites are needed

at low fields (Ho < 14 T) and temperatures (T < 80 K) to determine whether or not a
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VL is formed in our under-doped Hg1201 single crystal sample and whether this system

can be studied with NMR.
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CHAPTER 8

Conclusions

We have presented our NMR data on two single-crystal samples of the cuprate super-

conductor Hg1201. Our zero-field cooled magnetization measurements and 199Hg NMR

spectra show that both samples are under-doped with the dopant oxygen distributed rela-

tively homogeneously in the 199Hg plane. The lack of spectral broadening in our high-field

NMR data on UD81 also indicates that this sample is free of structural defects that would

act as pinning centers or cause an amplified field inhomogeneity at higher fields.

Our 17O spin-spin relaxation rate measurements at 14 T indicate that pinned vortices

are not present at a temperature of 20 K in either of our under-doped samples. The

19 T 17T−1
2 data shows evidence for an onset of vortex pinning/freezing in UD81 at a

temperature of around 10 K, but further measurements are required at this field at tem-

peratures above 60 K to confirm the validity of this interpretation. We also note that

the 63Cu spin-spin relaxation data does not show a change from Gaussian to Lorentzian

magnetization decay at any temperature between 20 K and room temperature for either

UD81 or UD79 sample.

Other than the increase in the Lorentzian contribution to 17T−1
2 at temperatures below

10 K in UD81 we do not see any evidence for the formation of a vortex lattice in Hg1201
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in our 17O NMR spectra for this sample. We do not observe the formation of the char-

acteristic lineshape of a vortex lattice field in the O(2) (±3/2↔ ±1/2) spectrum at any

field from 14 T to 30 T or temperature from 5 K to room temperature. We also do not

observe any field or temperature induced broadening/ narrowing in these O(2) spectra

for this sample. The lack of broadening/ narrowing could either indicate that the system

remains in the vortex liquid state down to 5 K or that the vortex lattice that forms below

10 K consists of 2D vortex pancakes, which are correlated in the CuO2 planes but not

along the c-axis.

We have attempted spatially resolved 17T−1
1 measurements at the O(2) satellite of

UD81 to detect the contribution of nodal quasiparticle excitations to the density of states

at the Fermi level inside and outside the vortex cores. Unlike previous measurements on

YBCO [10] and BSCCO [11, 12] we find no evidence for any physically meaningful spatial

variation in 17T−1
1 across the spectrum. It is possible that this is due to a weak hyperfine

coupling to the quasiparticles at the O(2) site and that the O(1) site would be optimal

for this type of investigation. However, our only spatially-resolved 17T−1
1 measurement

at the O(1) satellite are at the high field of Ho ≈ 30 T and more measurements at low

temperatures (≤ 5 K) are needed to confirm or deny that any new vortex physics would

result from such measurements. Our 30 T data do not appear to show any spatial varia-

tion in 17T−1
1 across the spectrum.

In Chapter 7 we noted that data recorded by Lee (Fig. 7.4) shows a modest tem-

perature induced broadening of the O(2) (±3/2 ↔ ±1/2) at a field of 16.5 T in our
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other under-doped sample, UD79. One possible explanation for this difference in results

between the samples is that the UD79 sample contains defects not present in the UD81

sample and that these defects act as pinning centers at temperatures below 15 K. How-

ever, this interpretation is incongruent with the fact that the UD79 sample has a narrower

∆Tc transition as measured by magnetometry (Fig. 4.5). This discrepancy between the

results for two different single-crystal Hg1201 samples of similar doping concentrations

highlights the fact that more measurements are needed on other Hg1201 samples at low

temperatures and various fields in order to draw strong conclusions about the Hg1201

system.

Overall, our results indicate that a vortex lattice does not form in the under-doped

Hg1201 single crystal samples at the previously reported temperature of 40 K, but rather

at a much lower temperature below 20 K if at all. The observed lack of characteristic

lineshape or increase in linewidth at low temperatures and high fields suggest that NMR

is not an appropriate method of studying vortex lattice geometry. Our results also suggest

that the O(2) site may not be appropriate for studying the density of states contribution by

quasiparticle scattering between nodes of the energy gap due to the absence of hyperfine

coupling at this nuclear site. If this is the case then further 17T−1
1 measurements are

needed at the O(1) site to draw any conclusions about nodal quasiparticle excitations

from the NMR data.
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APPENDIX A

Recovery profiles

In Chapter 2 we saw that the recovery profile for the jth transition was proportional

to the population difference, nj(t), which was described by the differential equation,

dn(t)

dt
= D̂n(t),

where the D̂ matrix contained the relaxation rates. We repeat the information obtained

from reference [2] here for convenience.

For I = 1/2,

D̂1/2 = 1/T1(A.1a)

For I = 3/2,

D̂3/2 =
1

T1


−3 2 0

3/2 −4 3/2

0 2 −3

(A.1b)
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For I = 5/2,

D̂5/2 =
1

T1



−5 4 0 0 0

5/2 −8 9/2 0 0

0 4 −9 4 0

0 0 9/2 −8 5/2

0 0 0 4 −5


(A.1c)

The full-recovery and PST profiles are as follows.

A.1. Full-recovery

Below are the nj/no values used in our fitting procedures. We have omitted the higher

order transitions for compactness although these are also included in [2].

I = 1/2

For a spin-1/2 nucleus there is only one transition for which the population difference

is,

n

no
= −e−t/T1 .(A.2)

I = 3/2

For an excitation of the central (−1/2↔ 1/2) transition the population difference is,

n

no
= − 1

10
e−t/T1 − 9

10
e−6t/T1 .(A.3)
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This is the fit we have used in our 63Cu NMR measurements, all of which have been

performed at the central transition.

I = 5/2

For an excitation of the central transition the population difference is,

n

no
= − 2

35
e−t/T1 − 4

15
e−6t/T1 − 100

63
e−15t/T1 .(A.4)

For an excitation of the first satellite, (±3/2↔ ±1/2), we have,

n

no
= − 2

35
e−t/T1 − 3

28
e−3t/T1 − 1

20
e−6t/T1 − 25

28
e−10t/T1 − 100

63
e−15t/T1 .(A.5)

The majority of our T1 data in Hg1201 for I = 5/2 nuclei are at the 17O (±3/2↔ ±1/2)

satellite. This is because the central transitions of the two inequivalent stoichiometric

oxygen sites overlap at low temperatures due to their difference in temperature dependence

of their Knight shifts.

A.2. Progressive saturation recovery fits

In this project we have performed progressive saturation T1 measurements at the

(±3/2 ↔ ±1/2) and the (±5/2 ↔ ±3/2) transitions of the 17O nucleus only. Therefore,

we omit the PST profiles for I = 1/2, 3/2 and for other transitions and show only the

population difference corresponding to this satellite. This population difference is,

n

no
= −Ae−t/T1F (t)

L(t)
,(A.6)

where A is a fit parameter related to the tip angle of the magnetization.
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(±3/2↔ ±1/2).

F (t) = 280e−21t/T1 − 272e−20t/T1 + 280e−19t/T1 + 23e−18t/T1 − 7e−17t/T1 + 303e−16t/T1

− 242e−15t/T1 + 266e−14t/T1 + 53e−13t/T1 + 16e−12t/T1 + 141e−11t/T1 − 72e−10t/T1

+ 141e−9t/T1 + 16e−8t/T1 + 53e−7t/T1 − 14e−6t/T1 + 38e−5t/T1 + 23e−4t/T1 − 7e−3t/T1

+ 23e−2t/T1 + 8,

L(t) = 140(1− e−t/T1 + e−2t/T1 + e−5t/T1 − e−6t/T1 + e−7t/T1 − e−15t/T1 + e−16t/T1

− e−17t/T1 − e−20t/T1 + e−21t/T1 − e−22t/T1) + A(280e−22t/T1 − 272e−21t/T1 + 280e−20t/T1

+ 23e−19t/T1 − 7e−18t/T1 + 303e−17t/T1 − 242e−16t/T1 + 266e−15t/T1 + 53e−14t/T1

+ 16e−13t/T1 + 141e−12t/T1 − 72e−11t/T1 + 141e−10t/T1 + 16e−9t/T1 + 53e−8t/T1

− 14e−7t/T1 + 38e−6t/T1 + 23e−5t/T1 − 7e−4t/T1 + 23e−3t/T1 + 8e−t/T1).

(±5/2↔ ±3/2).

F (t) = 70e−21t/T1 − 68e−20t/T1 + 70e−19t/T1 + 17e−18t/T1 − 13e−17t/T1 + 87e−16t/T1

−23e−15t/T1+29e−14t/T1+62e−13t/T1+4e−12t/T1+24e−11t/T1+42e−10t/T1+24e−9t/T1+4e−8t/T1

+ 62e−7t/T1 − 41e−6t/T1 + 47e−5t/T1 + 17e−4t/T1 − 13e−3t/T1 + 17e−2t/T1 + 2),
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L(t) = 35(1− et/T1 + e−2t/T1 + e−5t/T1 − e−6t/T1 + e−7t/T1 − e−15t/T1

+ e−16t/T1 − e−17t/T1 − e−20t/T1 + e21t/T1 − e−22t/T1) + A(70e−22t/T1 − 68e−21t/T1

+ 70e−20t/T1 + 17e−19t/T1 − 13e−18t/T1 + 87e−17t/T1 − 23e−16t/T1 + 29e−15t/T1 + 62e−14t/T1

+ 4e−13t/T1 + 24e−12t/T1 + 42e−11t/T1 + 24e−10t/T1 + 4e−9t/T1 + 62e−8t/T1 − 41e−7t/T1

+ 47e−6t/T1 + 17e−5t/T1 − 13e−3t/T1 + 17e−3t/T1 + 2e−t/T1).
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APPENDIX B

The density matrix formulation and Redfield theory

We can describe both T1 and T2 processes using the density matrix formulation, where

a system of nuclear spins interacting with the “lattice” can be described using the den-

sity matrix and statistical mechanics1. This description utilizes Boltzmann statistics to

describe the spin system at thermal equilibrium as well as time-dependent perturbation

theory to describe time-dependent fluctuating fields that contribute to transitions between

energy levels.

We begin by assuming the spin states can be described by the wavefunctions, Ψ, where,

Ψ =
∑
n

cnun,(B.1)

where the un’s are a complete set of orthonormal functions which are time-independent

eigenstates of the Zeeman Hamiltonian. Thus, the cn’s carry all the time dependence.

Writing the un in bra-ket notation we can express the expectation value of an operator,

such as the x-component of the magnetization, M̂x, as,

〈M̂x〉 =
∑
n,m

c∗mcn〈m|M̂x|n〉.(B.2)

1The following explanation was adapted from Ref. [34] as well as notes from J. A. Sauls’ Graduate
Quantum Mechanics III Lectures in 2016.
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The matrix formed by the coefficient products cnc
∗
m can be written as the matrix elements

of a Hermitian operator, Ô,

〈n|Ô|m〉 = cnc
∗
m.(B.3)

We have defined Ψ as the wavefunction of a single spin, but in an NMR system we will

have an ensemble of spins, each described by their own Ψ. It is then useful to talk about

expectation value in terms of an ensemble average, denoted by bar, 〈 〉. The expectation

value of M̂x in an ensemble is then expressed as the ensemble average,

〈M̂x〉 =
∑
n,m

cnc∗m〈m|M̂x|n〉,(B.4)

where the matrix element, 〈m|M̂x|n〉, remains the same for all systems. We define the

ensemble average, cnc∗m, as the density matrix, ρ̂. Thereby, the elements of the density

matrix are,

〈n|ρ̂|m〉 = cnc∗m = 〈n|Ô|m〉.(B.5)

Then, by definition, the ensemble-averaged expectation value of the M̂x operator is defined

as,

〈M̂x〉 =
∑
n,m

〈n|ρ̂|m〉〈m|M̂x|n〉,(B.6)

= Tr{ρ̂M̂x} = Tr{M̂xρ̂},
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where Tr{} denotes the trace.

We can solve for the time dependence of ρ̂ by setting up the time-dependent Schrödinger

equation for one spin system, Ψ, and take the ensemble average of the solution. This gives

us the differential equation,

d

dt
ρ̂ =

i

~
[
ρ̂, Ĥ

]
,(B.7)

where Ĥ is the Hamiltonian for all systems in the ensemble. The solution for ρ̂ in the

case of a time-independent Hamiltonian is,

ρ̂(t) = e−(i/~)Ĥtρ̂(0)e(i/~)Ĥt.(B.8)

Now we apply the density matrix formulation to an NMR systems, i.e. a system of

nuclear spins in thermal equilibrium with a reservoir (spin lattice) at temperature T . The

basis states are the eigenstates of the Zeeman Hamiltonian, ĤZ = −γ~HoÎz, where γ

is the nuclear gyromagnetic ratio, Ho is the static applied field and Îz is the operator

corresponding to the z-component of the nuclear spin. In this case the diagonal elements

of ρ̂ are the populations of the eigenstates given by the Boltzmann distribution,

cmc∗m = Z−1e−βEm ,(B.9)
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where β = kBT , kB is the Boltzmann factor and Z is the partition function, defined as,

Z =
∑
n

e−βEn ,(B.10)

and En is the energy of the Zeeman eigenstate n.

In the case of spin-lattice relaxation we have the additional contribution to the NMR

Hamiltonian from the spin-lattice interaction. We can consider this contribution to the

Hamiltonian, Ĥ1(t), to be a time-dependent perturbation to ĤZ . We can then treat the

problem of finding relaxation rates using time-dependent perturbation theory. We do all

calculations in the interaction picture where the operators are transformed as,

ρ̂∗(t) = e(i/~)ĤZtρ̂(t)e−(i/~)ĤZt,(B.11)

Ĥ∗1(t) = e(i/~)ĤZtĤ1(t)e−(i/~)ĤZt,(B.12)

where the asterisk indicates that the operator has been transformed to the interaction

basis and not that the operator is a complex conjugate. In the interaction picture we

extract the time dependence that would result if Ĥ1(t) = 0, i.e. (B.8). This causes the

wavefunctions in (B.1) to be replaced by,

Ψ =
∑
n

ane
−(i/~)Entun,(B.13)

where the coefficients have redefined as cn = ane
−(i/~)Ent where the En are the eigenvalues

of ĤZ and ana∗m = 〈n|ρ̂∗|m〉.
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Recall that the solutions for a time-dependent perturbation Ĥ1(t) is to first order,

ρ̂∗(t) = ρ̂∗(0) +
i

~

∫ t

0

dt′
[
ρ̂∗(0), Ĥ∗1(t′)

]
,(B.14)

which is obtained by substituting ρ̂∗(t′) = ρ̂∗(0) into the expression,

ρ̂∗(t) = ρ̂∗(0) +
i

~

∫ t

0

dt′
[
ρ̂∗(t′), Ĥ∗1(t′)

]
.(B.15)

Also recall that we obtain the nth order corrections to (B.15) by plugging the n− 1 order

solution for ρ̂∗(t) so that to second order we have,

ρ̂∗(t) = ρ̂∗(0) +
i

~

∫ t

0

dt′
[(
ρ̂∗(0) +

i

~

∫ t′

0

dt′′[ρ̂∗(0), Ĥ∗1(t′′)]

)
, Ĥ∗1(t′)

]
.(B.16)

Then, to second order, the evolution of ρ̂∗(t) is described by,

dρ̂∗(t)

dt
=
i

~
[
ρ̂∗(0), Ĥ∗1(t)

]
−
(

1

~

)2 ∫ t

0

dt′
[
[ρ̂∗(0), Ĥ∗1(t′)], Ĥ∗1(t)

]
.(B.17)

Here we can define the frequency ωn ≡ En/~, and note that, 〈m|Ĥ∗1(t)|n〉 = ei(ωm−ωn)t〈m|Ĥ1(t)|n〉.

This latter relation is useful because we must find the expectation value of (B.17) in order

to find the relaxation rates.

Reference [34] gives a useful example of the use of the density matrix in an ensemble

of nuclear spins where the perturbation Ĥ1(t) varies randomly in time and is different

from ensemble to ensemble. If we want to find the rate of the probability of a transition

from a state with energy Ek to one with energy Em we take the expectation value and
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ensemble average of (B.17) in the state |m〉 and define the correlation function Gmk(τ),

Gmk(τ) = 〈m|Ĥ1(t− τ)|k〉〈k|Ĥ1(t)|m〉,(B.18)

where τ ≡ t− t′; this function is a measure of how the perturbation is correlated in time.

The correlation function has the property that,

Gmk(τ) = Gkm(−τ),(B.19)

in the region where the change in the perturbation Ĥ1(t) is negligible. The timescale over

which this holds is the correlation time, τc, which describes the timescale of the motion

of each ensemble. Note that Gmk(τ) is a function of τ only and is independent of time, t.

B.1. Redfield theory

The Redfield theory is a general formulation of the density matrix to describe a nu-

clear spin system. The formulation is named after physicist A. G. Redfield who published

his work [117] based on previous work by Wangsness and Bloch [118] and Bloch [119].

Redfield also drew inspiration from the mean-field treatment used by Bloembergen, Pur-

cell and Pound [120] to describe the effect of the nuclear spin coupling to a thermal

bath. Redfield expanded on these previous theories by considering a system of nuclear

spins relaxed by a randomly fluctuating perturbation and considering both diagonal and

off-diagonal elements of the density matrix. Previous theories had considered only the

diagonal elements of the density matrix, which are those that give spin-lattice relaxation
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rates, to be significant.

Redfield [117] considers the density matrix as consisting of two independent compo-

nents, the spin system density matrix, σ̂, and that which describes the thermal reservoir

(the lattice), ρ̂L. He considers the spin system to be an ensemble of ensembles and the

time-dependent perturbation, Ĥ1(t), to vary randomly between spin ensembles and to

be statistically static for each ensemble. The length scale of this variation is the same

correlation time, τc, which we saw in the previous section. This perturbation is also the

interaction that couples the spins to the lattice. We also assume that the density matrix

of all ensembles coincides at t = 0.

We will adopt the indexing convention of [117] and index the spin (Zeeman) eigenstates

by α, β, γ, rather than by n, m, and k. We also define,

σ̂αα′ ≡ 〈α|σ̂|α′〉,

for compactness. The Redfield equation of motion is,

d

dt
σ̂∗αα′ =

∑
β,β′

Rαα′,ββ′ei(ωα−ωα′−ωβ+ωβ′ )σ̂∗ββ′ ,(B.20)

where ωα ≡ Eα
~ . This is an equation only for the spin component of the density matrix,

ρ̂ = σ̂ρ̂L because the latice is assumed to remain in thermal equilibrium even in the

presence of the spin relaxation processes. The coefficient Rαα′,ββ′ is time-independent [34]
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and defined in Redfield’s paper as,

Rαα′,ββ′ =
1

~2

[
Jαβα′β′(ωα′ − ωβ′) + Jαβα′β′(ωα′ − ωβ′)

− δα′β′

∑
γ

Jγβγα(ωγ − ωβ)− δαβ
∑
γ

Jγβ′γα′(ωγ − ωβ′)
]
,(B.21)

where,

Jαβα′β′(ω) =
1

2

∫ ∞
−∞

dτe−iωτGαβα′β′(τ),(B.22)

is a spectral density of the interaction described by correlation function, Gαβα′β′(τ).

The complex exponential in (B.20) ensures that the only terms contributing to the

sum will be those for which ωα − ωα′ = ωβ − ωβ′ . If we include only these terms in the

sum we can simplify (B.20) to,

d

dt
σ̂∗αα′ =

∑
β,β′

′
Rαα′,ββ′σ̂∗ββ′ ,(B.23)

where the prime on the sum indicates that the sum is only over the states which satisfy

ωα − ωα′ = ωβ − ωβ′ .

The above equations of motion for the spin density matrix are valid over a time

interval, ∆t, under the conditions,

∆t� τc,(B.24a)

1

Rαα′,ββ′
� ∆t.(B.24b)
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Condition (B.24a) says that our time interval is greater than that over which the corre-

lation function, Gαβ,α′β′(τ), is non-zero. We take the correlation of the interaction to be

non-zero only in the range |τ | < τc and to drop rapidly to zero for all |τ | > τc such that

for our time interval, ∆t, we can extend our integration limits to ±∞. The second condi-

tion, (B.24b), ensures that our density matrix does not vary rapidly over time interval ∆t.

In the general example of Redfield theory we consider a Ĥ1(t) which consists of ran-

domly fluctuating fields in the x, y and z directions,

Ĥ1(t) =
∑
q

Hq(t)K̂
q.(B.25)

Here, Hq(t) is the q = x, y, z component of the fluctuating magnetic field and is inde-

pendent of spin and K̂q = −γ~Îq where the Îq are the q components of the nuclear spin

operators. We take the Hq(t) to be uncorrelated so that the time average of the fluctuat-

ing fields is zero. This condition mandates that the relaxation of this spin system will be

due only to the spin and lattice coupling and not to an external driving field such as the

H1 discussed in Chapter 2.

We re-write our correlation function, (B.18), using (B.25) as,

Gαβ,α′β′(τ) = 〈α|Ĥ1(t)|β〉〈β′|Ĥ1(t+ τ)|α′〉,

=
∑
q,q′

〈α|Kq|β〉〈β′|Kq′|α′〉Hq(t)Hq′(t+ τ).(B.26)
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The spectral density of this interaction is,

Lqq′(ω) =

∫ ∞
0

dτHq(t)Hq′(t+ τ)e−iωt,(B.27)

where the Hq(t) are real functions of time and their correlation function is an even function

of τ . If we divide (B.27) into real and imaginary parts and note that the real component

gives us the relaxation behavior we define a function kqq′(ω) as,

Re{Lqq′(ω)} =
1

2

∫ ∞
−∞

dτHq(t)Hq′(t+ τ) cosωτ ≡ kqq′(ω).(B.28)

With this in mind we can re-write (B.22) as,

Jαβα′β′(ω) =
∑
q,q′

Kq
αβK

q′

α′β′kqq′(ω).(B.29)

One might notice that in our current system we would have an equal rate of probability of

transition in both directions, i.e. Rαα′,ββ′ = Rββ′,αα′ . If we work in the high temperature

limit, which is often the case in NMR, we can remedy this by replacing the density matrix

by the difference, σ̂ → σ̂−σ̂(T ), where,

σ̂ββ′(T ) = δββ′e−~ωβ/kBT
(∑

β′′

e−~ωβ′′/kBT
)−1

,(B.30)

is the thermal equilibrium value of σ̂.

Recall that we assumed that the fluctuations in the field in each direction were inde-

pendent. This means that the correlation function, Hq(t)Hq′(t+ τ) = 0 unless q = q′.
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Therefore, the only terms contributing to our spectral density will be kqq(ω).

We can now find the effects of relaxation on the x, y, z components of the spins by

using (B.23) to find the differential equation for the expectation values of the Îr operators.

First we re-write (B.23) by noting,

σ̂∗αα′ = ei(ωα−ωα′ )tσ̂αα′ ,(B.31)

and taking the time derivative,

d

dt
σ̂∗αα′ = i(ωα − ωα′)σ̂∗αα′ + ei(ωα−ωα′ )t

d

dt
σ̂αα′ .(B.32)

Rearranging (B.32) to get dσ̂αα′/dt in terms of σ̂∗ we get the expression,

d

dt
σ̂αα′ = i(ωα′ − ωα)σ̂αα′ +

∑
β,β′

Rαα′,ββ′σ̂ββ′ ,

=
i

~
[
σ̂, ĤZ

]
αα′ +

∑
β,β′

Rαα′,ββ′σ̂ββ′ .(B.33)

We can also write the expression for Jαβα′β′(ω) with the Kq given in terms of the spin

operators,

Jαβα′β′(ω) = γ2~2
∑
q

〈α|Îq|β〉〈β′|Îq|α′〉kqq(ω).(B.34)

Our goal is to calculate the effects of relaxation on the x, y, z components of the nuclear

spins. To do this, we can set up the equation of motion for the expectation value of the
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Îr operators, where r = x, y, z. This differential equation is,

d

dt
〈Îr〉 =

∑
α,α′

[(
i

~

)[
σ̂, ĤZ

]
αα′〈α′|Îr|α〉+

∑
β,β′

Rαα′,ββ′σ̂ββ′〈α′|Îr|α〉
]
.(B.35)

We can evaluate the first and second term in (B.35) separately. The first term can be

evaluated by noting the identity,
∑

n|n〉〈n| = 1̂, where 1̂ is the identity matrix and that

the trace of an operator is the sum of its diagonal elements. Thus, the first term becomes,

(
i

~

)∑
α,α′

[
σ̂, ĤZ

]
αα′〈α′|Îr|α〉 = −iγnHoTr{σ̂[Îq, Îr]}.(B.36)

The second term in (B.35) requires a lot more algebra and the use of orthogonality and

completeness relations. For each term in (B.21) we can use the sums over the indices not

included in the argument of the kqq(ω) to collapse the wavefunctions. For example, the

second term can be evaluated as,

1

~2

∑
α,α′

∑
β,β′

Jαβ,α′β′(ωα − ωβ)σ̂ββ′〈α′|Îr|α〉

= γ2
n

∑
q

∑
α,α′

∑
β,β′

〈α|Îq|β〉〈β′|Îq|α′〉〈β|σ̂|β′〉〈α′|Îr|α〉kqq(ωα − ωβ)

= γ2
n

∑
q

∑
α,β

〈α|Îq|β〉〈β|σ̂Îq Îr|α〉kqq(ωα − ωβ),(B.37)

where we have taken the sum over the primed indices because the unprimed α, β contribute

to the integral in kqq(ωα − ωβ). We can repeat this process for the other three terms and
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end up with,

∑
α,α′

∑
β,β′

Rαα′,ββ′σ̂ββ′〈α′|Îr|α〉

= γ2
n

∑
q

∑
α,β

〈α|Îq|β〉〈α|
[
[Îr, Îq], σ̂

]
|β〉kqq(ωβ − ωα).(B.38)

We can find the relaxation rate, 1/T1 by using σ̂ − σ̂(T ) rather than σ̂ in (B.35) and

solving for r = z. The result is,

d

dt
〈Îz〉 = γn

[
〈Î〉 ×Ho

]
z
− γ2

n[kxx(ωL) + k + yy(ωL)](〈Îz〉 − Io),(B.39)

where ωL is the Larmor frequency, which appears because in Îx and Îy the only non-

vanishing terms will be those that differ by ∆m = ±1 which correspond to the energy,

~ωL = γn~Ho. Therefore, the only contributing frequency differeence is ωβ − ωα = ωL.

The spin-lattice relaxation rate is the coefficient of the (〈Îz〉 − Io) (Io is the equilibrium

nuclear spin) term,

1

T1

= γ2
n[kxx(ωL) + kyy(ωL)].(B.40)

The procedure for finding 1/T2 is similar in that we are looking for the expectation

value of the transverse spin components, Îx, Îy, which are relaxed by both fluctuations in

the opposite transverse field components and the longitudinal field, Hz. The x and y spin

expectation values should have an equilibrium value of zero so we do not need to subtract

σ̂(T ) from σ̂ to get a physically reasonable solution for (B.35). The resulting equation of
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motion for the x component is,

d

dt
〈Îx〉 = γn

[
〈Î〉 ×Ho

]
x
− γ2

n[kyy(ωL) + kzz(0)]〈Îx〉.(B.41)

Here we see that the contribution of the spectral density of the fluctuating z field enters

at zero frequency. The spin-spin relaxation rate is then the coefficient,

1

T2

= γ2
n[kyy(ωL) + kzz(0)].(B.42)

These results were derived for the specific example of Ĥ1(t) being given by three indepen-

dent fluctuating fields in the x, y, z directions. Nonetheless, this example illustrates that

the experimental relaxation rates give us information about the physics involved in each

relaxation mechanism.

Note that the spin-lattice relaxation rate (B.40) depends on the spectral densities of

the transverse fluctuating fields at the Larmor frequency. This is an intuitive result that

can be thought of in relation to the semi-classical model where the extra terms in the

torque on M was due to the frame rotating at ωL. The physics [34] behind the spin-

spin relaxation result is more interesting. Notice that (B.42) has one term in common

with (B.40) and one term that depends on the fluctuating z field at zero frequency. The

latter term can also be thought of in analogy to the rotating frame in that it is due to

the x spin component being relaxed by the stationary field component Hz, which is also

stationary in the rotating frame2.

2The z-axis is a common axis between the laboratory and rotating frames.
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The first term in (B.42) is shared with the expression for T1
−1 because this term is

a result of the finite lifetime of and energy eigenstate due to the spin-lattice relaxation.

This is an important result of Redfield’s theory and can be expressed by the following

statement,

1

T2

=
1

T ∗2
+
CR
T1

,(B.43)

where T ∗2 is discussed in Chapter 2 and CR is the Redfield coefficient.
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“Synchrotron x-ray scattering study of charge-density-wave order in HgBa2CuO4+δ,”

Physical Review B, vol. 96, 10 2017.



188

[7] I. Stolt, J. A. Lee, A. Mounce, Y. Xin, and W. Halperin, “Location of the oxygen

dopant in the high temperature superconductor HgBa2CuO4+δ from 199Hg NMR,”

Physica C: Superconductivity and its Applications, vol. 555, pp. 24 – 27, 2018.

[8] R. Stern, I. Heinmaa, D. Pavlov, and I. Bryntse, “Exploring the oxygen order in Hg-

1223 and Hg-1201 by (199)Hg MAS NMR,” in New Challenges in Superconductivity:

Experimental Advances and Emerging Theories (J. Ashkenazi, M. Eremin, J. Cohn,

E. Ilya, D. Manske, D. Pavuna, and F. Zou, eds.), vol. 183 of NATO Science Series

II-Mathematics Physics and Chemistry, pp. 69–72, 2005.

[9] H. N. Bachman, A. P. Reyes, V. F. Mitrovic, and W. P. Halperin, “High-Field Vortex

Dynamics in YBa2Cu3O7 from 17O Nuclear Magnetic Resonance,” Phys. Rev. Lett.,

vol. 80, pp. 1726–1729, February 1998.
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S. Strässle, A. B. Abrahamsen, M. Laver, C. D. Dewhurst, J. Kohlbrecher, J. L.

Gavilano, J. Mesot, B. Keimer, and A. Erb, “Fermi surface and order parameter

driven vortex lattice structure transitions in twin-free YBa2Cu3O7,” Phys. Rev.

Lett., vol. 102, p. 097001, Mar 2009.

[106] R. Cubitt, E. M. Forgan, G. Yang, S. L. Lee, D. M. Paul, H. A. Mook, M. Yethi-

raj, P. H. Kes, T. W. Li, A. A. Menovsky, Z. Tarnawski, and K. Mortensen, “Direct

observation of magnetic flux lattice melting and decomposition in the high-Tc super-

conductor Bi2.15Sr1.95CaCu2O8+x,” Nature, vol. 365, pp. 407–411, September 1993.

[107] G. Villard, A. Daignere, D. Pelloquin, and A. Maignan, “Effect of underdoping

on the superconductivity of (Hg,Cu)Ba2CuO4+δ ‘1201’ single crystals,” Physica C:

Superconductivity, vol. 314, no. 3, pp. 196–204, 1999.

[108] E. H. Brandt, “Thermal fluctuation and melting of the vortex lattice in oxide su-

perconductors,” Phys. Rev. Lett., vol. 63, pp. 1106–1109, Sep 1989.



200

[109] V. Vinokur, B. Khaykovich, E. Zeldov, M. Konczykowski, R. Doyle, and P. Kes,

“Lindemann criterion and vortex-matter phase transitions in high-temperature su-

perconductors,” Physica C: Superconductivity, vol. 295, no. 3, pp. 209–217, 1998.

[110] D. I. Khomskii and F. V. Kusmartsev, “Charge redistribution and properties of

high-temperature superconductors,” Phys. Rev. B, vol. 46, pp. 14245–14248, Dec

1992.

[111] S. J. Hagen, A. W. Smith, M. Rajeswari, J. L. Peng, Z. Y. Li, R. L. Greene, S. N.

Mao, X. X. Xi, S. Bhattacharya, Q. Li, and C. J. Lobb, “Anomalous flux-flow hall

effect: Nd1.85Ce0.15CuO4−y and evidence for vortex dynamics,” Phys. Rev. B, vol. 47,

pp. 1064–1068, Jan 1993.

[112] A. van Otterlo, M. Feigel’man, V. Geshkenbein, and G. Blatter, “Vortex dynamics

and the hall anomaly: A microscopic analysis,” Phys. Rev. Lett., vol. 75, pp. 3736–

3739, Nov 1995.

[113] Y. Chen, Z. D. Wang, J.-X. Zhu, and C. S. Ting, “Vortex charges in high-

temperature superconductors,” Phys. Rev. Lett., vol. 89, p. 217001, Nov 2002.

[114] D. Knapp, C. Kallin, A. Ghosal, and S. Mansour, “Antiferromagnetism and charged

vortices in high-Tc superconductors,” Phys. Rev. B, vol. 71, p. 064504, 2005.

[115] H.-W. Zhao, G.-Q. Zha, S.-P. Zhou, and F. M. Peeters, “Long-range Coulomb repul-

sion effect on a charged vortex in high-temperature superconductors with competing

d -wave and antiferromagnetic orders,” Phys. Rev. B., vol. 78, p. 064505, 2008.

[116] K.-i. Kumagai, K. Nozaki, and Y. Matsuda, “Charged vortices in high-temperature

superconductors probed by NMR,” Phys. Rev. B, vol. 63, p. 144502, Mar 2001.



201

[117] A. G. Redfield, “On the theory of relaxation processes,” IBM Journal of Research

and Development, vol. 1, no. 1, pp. 19–31, 1957.

[118] R. K. Wangsness and F. Bloch, “The dynamical theory of nuclear induction,” Phys.

Rev., vol. 89, pp. 728–739, Feb 1953.

[119] F. Bloch, “Dynamical theory of nuclear induction. II,” Phys. Rev., vol. 102, pp. 104–

135, Apr 1956.

[120] N. Bloembergen, E. M. Purcell, and R. V. Pound, “Relaxation effects in nuclear

magnetic resonance absorption,” Phys. Rev., vol. 73, pp. 679–712, Apr 1948.


	ABSTRACT
	Acknowledgements
	List of Figures
	List of Tables
	Chapter 1. Introduction
	1.1. Organization of this thesis
	Chapter 2. Background: NMR Theory
	2.1. Vector picture
	2.2. The quantum mechanical picture
	2.3. Knight shift
	2.4. Nuclear Relaxation
	2.5. Conclusions
	Chapter 3. Experimental NMR
	3.1. Hardware
	3.2. Pulse sequences
	3.3. Conclusions


	Chapter 4. Samples and characterization
	4.1. Cuprates
	4.2. HgBa2CuO4+
	4.3. Conclusions


	Chapter 5. NMR in the CuO2 plane in Hg1201
	5.1. NMR studies of YBCO
	5.2. The Mila-Rice-Shastry Hamiltonian
	5.3. 63Cu shift and relaxation
	5.4. 17O shift and planar 17T2-1
	5.5. Conclusions

	Chapter 6. Vortex physics and Brandt's algorithm
	6.1. Type I and Type II superconductivity
	6.2. Geometry of the vortex lattice
	6.3. Brandt's VL calculation
	6.4. Spatially resolved NMR in the cuprates
	6.5. Conclusions

	Chapter 7. Vortices in Hg1201
	7.1. SANS results and the 2D limit
	7.2. Low-temperature 17O NMR lineshape
	7.3. Conclusions

	Chapter 8. Conclusions
	Appendix A. Recovery profiles
	A.1. Full-recovery
	A.2. Progressive saturation recovery fits
	Appendix B. The density matrix formulation and Redfield theory
	B.1. Redfield theory
	References



