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ABSTRACT

Clustering is a fundamental task in unsupervised learning, which aims to partition the data set

into several clusters. It is widely used for data mining, image segmentation, and natural language

processing. One of the most popular clustering methods is centroid-based clustering, including

k-medians and k-means clustering. k-medians and k-means clustering choose k centers and assign

each data point to its closest center. Thus, this clustering forms a Voronoi partition of the space

based on k centers. Each cluster corresponds to a Voronoi cell, which usually has a complicated

boundary. Hence, it is not necessarily easy for humans to understand these clusters. In real-world

applications, many important decisions are made for different clusters created by clustering algo-

rithms. To make these decisions more interpretable, we want to find more explainable clustering.

In this thesis, we study approximation algorithms for explainable k-medians and k-means clus-

tering. The problem of explainable k-medians and k-means was recently introduced by Dasgupta,

Frost, Moshkovitz, and Rashtchian (ICML 2020). For this problem, our goal is to find a threshold

decision tree that partitions data into k clusters and minimizes the k-medians or k-means objective.

The obtained clustering is easy to interpret because every decision node of a threshold tree splits

the node into two groups with a threshold cut on a single feature. The price of explainability is

defined as the ratio of its cost and the optimal unconstrained cost. We provide an efficient algo-

rithm that achieves the optimal and near-optimal upper bounds on the price of explainability for

k-medians in ℓ1 and k-means, respectively. We also provide a competitive algorithm and lower

bound for explainable k-medians in ℓ2. Finally, we provide a bi-criteria competitive algorithm that

creates a k clustering by using a threshold tree with slightly more than k leaves. We show an ex-

ponential improvement in the price of explainability for k-means by adding a constant fraction of

extra leaves. This captures the tradeoff between accuracy and explainability.
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CHAPTER 1

INTRODUCTION

Clustering is a fundamental task in data analysis. The goal of clustering is to partition a data set

into several clusters such that similar data points are in the same cluster. Clustering is used in

many fields, including bioinformatics, medicine, engineering, and business. They use clustering

algorithms to discover the hidden pattern inside the data. Many important decisions are then made

based on the hidden pattern learned by the clustering algorithm. Different decisions can be picked

for clusters partitioned by the clustering algorithm. To make these decisions more interpretable,

we want to find an explainable clustering – clustering which can be easily understood by a human

being.

One commonly used clustering method is centroid-based clustering, which includes popu-

lar k-means and k-medians clustering. Given a set of data points X in Rd, for k-means or k-

medians clustering, we need to find k centers and then assign each data point to its closest center.

Specifically, k-means or k-medians clustering forms a d-dimensional Voronoi diagram for centers

c1, c2, . . . , ck, in which, the i-th cluster Pi contains those points inX that are closer to ci than to any

other center cj . The k-medians and k-means problems are to find a set C of k centers c1, c2, · · · , ck

to minimize the corresponding costs: k-medians in ℓ1 cost (1.1), k-medians in ℓ2 cost (1.2), and

k-means cost (1.3).

costℓ1(X,C) =
d∑

i=1

∑
x∈Pi

∥x− ci∥1, (1.1)

costℓ2(X,C) =
d∑

i=1

∑
x∈Pi

∥x− ci∥2. (1.2)
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costℓ22(X,C) =
d∑

i=1

∑
x∈Pi

∥x− ci∥22. (1.3)

where Pi is the i-th cluster.

Although every cluster in a k-means and k-medians clustering has a simple mathematical de-

scription, this description is not necessarily easy to interpret for a human. In order to determine to

which cluster a particular point belongs, we need to compute distances from point x to all centers

cj . Each distance depends on all coordinates of the points. Hence, for a human, it is not even easy

to figure out to which cluster in k-means or k-medians clustering a particular point belongs to; let

alone interpret the entire clustering.

In everyday life, we are surrounded by different types of classifications. Consider the following

examples from Wikipedia: (1) Performance cars are capable of going from 0 to 60 mph in under

5 seconds; (2) Modern sources currently define skyscrapers as being at least 100 meters or 150

meters in height; (3) Very-low-calorie diets are diets of 800 kcal or less energy intake per day,

whereas low-calorie diets are between 1000-1200 kcal per day. Note that all these definitions

depend on a single feature which makes them easy to understand.

In a recent ICML paper, Dasgupta, Frost, Moshkovitz, and Rashtchian (2020) proposed to use

a threshold decision tree to create a clustering with concise explanations of clusters. A threshold

tree is a binary classification tree with k leaves. Every internal node u of the tree splits the data

into two sets by comparing a single feature iu of each data point with a threshold θu. The first set

is the set of points with xiu ≤ θu; the second set is the set of points with xiu > θu. These two sets

are then recursively partitioned by the left and right children of u. Thus, each point x in the data

set is eventually assigned to one of k leaves of the threshold tree T . This gives us a partitioning

of the data set X into clusters P = (P1, . . . , Pk). We note that threshold decision trees are special

cases of binary space partitioning (BSP) trees and similar to k-d trees (Bentley, 1975).
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y ≤ 8.93

1 x ≤ −1.01

2 3

Figure 1.1: Explainable and non-explainable k-means. The left diagram shows the optimal Voronoi
partition of the plane. The middle diagram shows an explainable partition. The right diagram
shows the corresponding decision tree for explainable clustering.

Dasgupta et al. (2020) suggested that we measure the quality of a threshold tree using the

standard k-means and k-medians objectives. Specifically, the k-medians in ℓ1 cost of the threshold

tree T equals (1.4), the k-medians in ℓ2 cost equals (1.5) and k-means cost equals (1.6):

costℓ1(X, T ) =
k∑

i=1

∑
x∈Pi

∥x− ci∥1, (1.4)

costℓ2(X, T ) =
k∑

i=1

∑
x∈Pi

∥x− ci∥2, (1.5)

costℓ22(X, T ) =
k∑

i=1

∑
x∈Pi

∥x− ci∥22, (1.6)

where ci is the ℓ1-median of cluster Pi in (1.4), the ℓ2-median of cluster Pi in (1.5), and the mean

of cluster Pi in (1.6).

This definition raises obvious questions: Can we actually find a good explainable cluster-

ing? Moreover, how good can it be comparing to an unconstrained k-medians and k-means clus-

tering? Let OPTℓ1(X), OPTℓ2(X), and OPTℓ22
(X) be the optimal solutions to unconstrained

k-medians in ℓ1, k-medians in ℓ2, and k-means, respectively. Dasgupta et al. (2020) defined
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the price of explainability for an explainable clustering given by decision tree T as the ratio

costℓ1(X, T )/OPTℓ1(X) for k-medians in ℓ1 and costℓ22(X,T )/OPTℓ22
(X) for k-means. The

price of explainability shows by how much the optimal unconstrained solution is better than the

explainable solution for the same data set.

In their paper, Dasgupta et al. (2020) gave upper and lower bounds on the price of explain-

ability. They proved that the price of explainability is upper bounded by O(k) and O(k2) for

k-medians in ℓ1 and k-means, respectively. The cost of explainability for k-medians in ℓ1 and

k-means (somewhat surprisingly) does not depend on the number of points in the data set X and

only depends on the number of centers k. Specifically, they provided a greedy algorithm that given

k reference centers c1, c2, · · · , ck of any unconstrained k-medians in ℓ1 clustering as input, outputs

a threshold decision tree of cost at most O(k) times the cost of original unconstrained k-medians

clustering with centers c1, c2, · · · , ck. We call such an algorithm O(k) competitive. To get an

explainable k-medians in ℓ1 clustering, we first obtain reference centers c1, c2, · · · , ck using an off-

the-shelf approximation algorithm for k-medians in ℓ1 and then run an α-competitive algorithm

for explainable k-medians with centers c1, c2, · · · , ck given as input. This algorithm produces the

desired threshold decision tree. Dasgupta et al. (2020) also showed that this greedy algorithm is

O(k2) competitive for explainable k-means and showed Ω(log k) lower bounds on the price of

explainability for both k-medians in ℓ1 and k-means.

1.1 Our Results

In this thesis, we provide approximation algorithms for explainable clustering with k-medians in

ℓ1, k-medians in ℓ2, and k-means objectives.

We give a tight upper bound on the price of explainability for k-medians in ℓ1. Specifically,

we provide an efficient algorithm that transforms any clustering to an explainable clustering with
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k-medians in ℓ1 k-medians in ℓ2 k-means
Upper Bound O(log k) O(log

3/2 k) O(k log k)†

Lower Bound Ω(log k)(∗) Ω(log k) Ω(k/ log k)§

Table 1.1: Summary of our results. The table shows known upper and lower bounds on the price of
explainability for k-medians in ℓ1 and ℓ2, and for k-means. (∗): This lower bound for explainable
k-medians is given by Dasgupta et al. (2020). (†): The upper bound for explainable k-means is
improved to O(k log log k) by Gupta et al. (2023). (§): The lower bound for explainable k-means
is improved to Ω(k) by Esfandiari et al. (2022).

expected k-medians in ℓ1 cost at most 2 ln k + 2 times the original k-medians in ℓ1 cost. Note

that we get an exponential improvement over the upper bound for the k-medians in ℓ1 objective

by Dasgupta et al. (2020). By adding a preprocessing step that embeds ℓ22 into ℓ1, we show that

this algorithm also achieves an almost tight O(k log k) competitive ratio for explainable k-means.

Furthermore, we present an algorithm for explainable k-medians in ℓ2 with the competitive ra-

tio bounded by O(log3/2 k). We complement these results with an almost tight lower bound of

Ω(k/ log k) on the price of explainability for k-means and an Ω(log k) lower bound on the price of

explainability for k-medians in ℓ2 objective. We summarise our results in Table 1.1.

Note that we improved the competitive ratio for explainable k-means to a near-optimal1 bound

of Õ(k). This guarantee does not depend on the size and dimension of the data set. However,

it is large for large data sets. For comparison, the competitive ratio for explainable k-medians is

exponentially better than Õ(k). It equals O(log k). Nevertheless, Dasgupta et al. (2020) and then

Frost, Moshkovitz, and Rashtchian (2020) empirically demonstrated that, in practice, the price of

explainability for k-means clustering is fairly small. In this work, we provide a theoretical justifi-

cation for this observation. Specifically, we show a bi-criteria approximation algorithm which finds

a threshold decision tree with (1+ δ)k leaves and has a competitive ratio of O(1/δ log2 k log log k),

where δ is a parameter between 0 and 1.

1It is possible to get a better competitive ratio for low dimensional data. For details, see Section 1.2
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Figure 1.2: Performance of k-means++ on BioTest data set. The left diagram shows the cost of
k-means++ for k = 5, 10, 15, . . . , 200. The clustering cost is divided by the cost of k-means with
1000 clusters. The right diagram shows the ratio between the clustering cost with k centers and
the cost with (1 + δ)k centers for k = 5, 10, . . . , 150 and δ = 0.2.

We note that in practice the cost of the optimal k-means clustering is approximately the same

for k and (1+δ)k clusters (here δ ∈ (0, 1) is a small constant). In other words, for many data setsX ,

we have OPTk(X) ≈ OPT(1+δ)k(X), where OPTk(X) is the cost of the optimal unconstrained

k-means clustering of X with k clusters2. The plot in Figure 1.2 shows that the cost of k-means++

clustering for BioTest data set from KDD Cup (Elber, 2004) is about the same for k and (1 + δ)k

centers when k is between 50 and 200. If OPTk(X) ≈ OPT(1+δ)k(X), then our algorithm gives a

true Õ(log2 k) approximation, because

costℓ22(X, T ) ≤ Õ(log2 k)OPTk(X) ≈ Õ(log2 k)OPT(1+δ)k(X).

We now formally state our results. We provide a randomized algorithm for finding bi-criteria

explainable k-means. Similarly to the algorithm by Frost et al. (2020), our algorithm takes k

centers c1, c2, . . . , ck and a parameter δ > 0 and returns a threshold decision tree T with (1 + δ)k

2In the worst case, we may have OPT(1+δ)k(X) ≪ OPTk(X). For example, if X contains exactly (1 + δ)k
points, then OPT(1+δ)k(X) = 0 but OPTk(X) > 0.
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leaves. Each leaf of the tree is labeled with one of the centers c1, c2, . . . , ck. Let us denote the

center returned by the decision tree T for point x by T (x). Then, the cost of explainable clustering

defined by T equals

costℓ22(X, T ) ≡
∑
x∈X

∥x− T (x)∥22. (1.7)

We show that there exists a polynomial-time randomized algorithm that given a data set X , a

set of k centers C = {c1, c2, . . . , ck}, and parameter δ ∈ (0, 1), creates a threshold decision tree T

whose leaves are labeled with centers from C. The expected number of leaves in T is (1 + δ)k,

and the expected cost of explainable clustering defined by T is

E[costℓ22(X, T )] ≤ O(1/δ · log2 k log log k) · cost(X,C).

Observe that our algorithm constructs a tree with (1 + δ)k leaves and only k centers. Thus, we

can use this algorithm to partition X into k clusters. In this case, one cluster may be assigned to

several different leaves. Alternatively, we can assign its own cluster to every leaf. Then, we will

have a proper threshold decision tree with (1+ δ)k clusters. In either case, we can further improve

the clustering by replacing the original center ci assigned to each leaf u with the optimal center for

the cluster assigned to u (the optimal center is the centroid of that cluster).

If C is the optimal set of centers for k means, then the explainable clustering provided by

our algorithm has an expected cost of at most O(1/δ · log2 k log log k)OPTk(X). Furthermore,

if C is obtained by a constant factor bi-criteria approximation algorithm such as k-means++ (in

which case, |C| = (1 + δ)k and cost(X,C) ≤ O(1) · OPTk(X)), then the expected cost of the

explainable clustering is also at most O(1/δ · log2 k log log k)OPTk(X) and the number of leaves

in the threshold decision tree is at most (1 + 3δ)k in expectation.

As we noted above, our work is influenced by the paper of Frost et al. (2020), who showed
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a bi-criteria algorithm for explainable k-means. However, our algorithm for this problem is very

different from theirs. It uses the approach from our previous paper (Makarychev and Shan (2021)).

In that paper, we gave an algorithm for finding explainable k-medians with ℓ2 norm. Our new

algorithm has an additional crucial step: It duplicates some centers when the algorithm splits nodes.

This step gives an exponential improvement to the competitive ratio for k-means. The analysis of

our algorithm is considerably more involved than the analysis of the previous algorithm.

We complement our algorithmic results with an almost matching lower bound of Ω(1/δ · log2 k)

for all threshold trees with at most (1 + δ)k leaves. In Section B.1.4, we provide a family of k-

means instances for which the greedy bi-criteria algorithm in Frost et al. (2020) finds a threshold

tree T with 5k/4 leaves of cost costℓ22(X, T ) ≥ Ω̃(k2)OPTk(X) for k → ∞.

1.2 Related Work

Decision trees have been widely used for classification and clustering due to their simplicity. Ex-

amples of decision tree algorithms for supervised classification include CART by Breiman, Fried-

man, Olshen, and Stone (2017), ID3 by Quinlan (1986), and C4.5 by Quinlan (1993). Examples

of decision tree algorithms for unsupervised clustering include algorithms by Liu, Xia, and Yu

(2005), Fraiman, Ghattas, and Svarc (2013), Bertsimas, Orfanoudaki, and Wiberg (2018), and

Saisubramanian, Galhotra, and Zilberstein (2020).

Dasgupta et al. (2020) proposed the problems of explainable k-medians in ℓ1 and k-means.

They defined these problems and offered algorithms for explainable k-means and k-medians with

the competitive ratios of O(k2) and O(k), respectively. Laber and Murtinho (2021), Makarychev

and Shan (2021), Charikar and Hu (2022), Esfandiari, Mirrokni, and Narayanan (2022), and Gam-

lath, Jia, Polak, and Svensson (2021) provided improved upper and lower bounds on the price of

explainability for k-means and k-medians. Particularly, Makarychev and Shan (2021), Esfandiari
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et al. (2022), and Gamlath et al. (2021) gave an Õ(k) competitive ratio for explainable k-means;

and Makarychev and Shan (2021) and Esfandiari et al. (2022) gave an Õ(log k) competitive ratio

for k-medians.

Laber and Murtinho (2021) gave O(d log k) and O(dk log k) competitive algorithms for ex-

plainable k-medians and k-means, respectively. They also provided O(
√
dk1−1/d) upper bound

and Ω̃(
√
dk1−1/d) lower bound for explainable k-center. They showed that the price of explain-

ability for maximum-spacing clustering is Θ(n − k). Makarychev and Shan (2021) improved the

competitive ratio to O(log k log log k) for explainable k-medians and O(k log k log log k) for ex-

plainable k-means. We also showed an Ω(k/ log k) lower bound on the price of explainability for

k-means. Additionally, we gave an Õ(log3/2 n) competitive algorithm for explainable k-medians

in ℓ2 and an Ω(log k) lower bound on the price of explainability for k-medians in ℓ2. (The cost of

a point x is costℓ2(x, c) = ∥x − c∥2.) Gamlath, Jia, Polak, and Svensson (2021) gave O(log2 k)

and O(k log2 k) competitive algorithms for k-medians and k-means, respectively. They also pro-

vided an O(kp−1 log2 k) competitive algorithm for explainable clustering with ℓp-norm objective

for any p ≥ 1. (The cost of a point x is costℓpp(x, c) = ∥x− c∥pp.) Esfandiari et al. (2022) provided

an O(log k log log k) competitive algorithm for explainable k-medians and an O(k log k) competi-

tive algorithm for explainable k-means. They gave an Ω(k) lower bound for explainable k-means,

which is slightly better than ours. They also gave an upper bound ofO(d log2 d) on the competitive

ratio for explainable k-medians. This bound is better than O(log k) for small d≪ log k/ log log k.

Charikar and Hu (2022) provided an algorithm that achieves k1−2/d ·poly(d log k) competitive ratio

for explainable k-means (this algorithm gives stronger approximation guarantees when the dimen-

sion of the space, d, is small. For small d ≪ log k/ log log k, their bound is better than O(k).)

They showed an almost matching Ω(k1−2/d/ploy log k) lower bound for explainable k-means.
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Boutsidis, Mahoney, and Drineas (2009), Boutsidis, Zouzias, Mahoney, and Drineas (2014),

Cohen, Elder, Musco, Musco, and Persu (2015), Makarychev, Makarychev, and Razenshteyn

(2019) and Becchetti, Bury, Cohen-Addad, Grandoni, and Schwiegelshohn (2019) showed how

to reduce the dimensionality of a data set for k-means clustering. Particularly, Makarychev et al.

(2019) proved that we can use the Johnson–Lindenstrauss transform to reduce the dimensionality

of k-means to d′ = O(log k). Note, however, that the Johnson–Lindenstrauss transform cannot

be used for the explainable k-means, because this transform does not preserve the set of features.

Instead, one can use a feature selection algorithm by Boutsidis et al. (2014) or Cohen et al. (2015)

to reduce the dimensionality to d′ = Õ(k).

The algorithms for explainable k-medians by Makarychev and Shan (2021); Esfandiari, Mir-

rokni, and Narayanan (2022); Gamlath, Jia, Polak, and Svensson (2021) are variants of the same

simple algorithm, which we call RANDOMCOORDINATECUT. Recently, Makarychev and Shan

(2023) showed that the RANDOMCOORDINATECUT algorithm achieves O(log k) competitive ra-

tio for k-medians, which matches the Ω(log k) lower bound given by Dasgupta et al. (2020). In-

dependently and concurrently with our work, Gupta, Pittu, Svensson, and Yuan (2023) proved a

O(log k) upper bound on the price of explainability for k-medians. They showed that the com-

petitive ratio of RANDOMCOORDINATECUT is 1 +Hk−1, where Hk is the k-th harmonic number.

Their work answers the open question raised by Gamlath, Jia, Polak, and Svensson (2021). They

also proved a hardness of approximation result for explainable k-medians clustering and improved

the competitive ratio for explainable k-means from O(k log k) to O(k log log k).

Frost, Moshkovitz, and Rashtchian (2020) first considered the explainable clustering described

by a threshold tree with more than k leaves. They provided some empirical evidence that bi-criteria

algorithms for explainable k-means (that partition the data set into (1 + δ)k clusters) can give a

much better competitive ratio than O(k). Then, Makarychev and Shan (2022) gave a Õ(1
δ
log2 k)
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competitive bi-criteria algorithm for explainable k-means by using a threshold tree with (1 + δ)k

leaves. We also provided an Ω(1
δ
log2 k) lower bound on competitive ratio for explainable k-means

with (1 + δ)k leaves.

Bandyapadhyay, Fomin, Golovach, Lochet, Purohit, and Simonov (2022) provided an algo-

rithm that computes the optimal explainable k-medians and k-means clustering in time n2d+O(1)

and (4nd)k+O(1), respectively. They also showed that it is NP-hard to find the optimal explainable

k-medians and k-means clustering. Laber (2022) showed that it is NP-hard to approximate the

optimal explainable clustering within (1 + ε) for some constant ε. Gupta et al. (2023) showed that

the explainable k-medians and k-means can not be approximated within a factor ofO(log k) unless

P=NP.

Laber, Murtinho, and Oliveira (2023) proposed to use shallow decision trees for explainable

clustering. They provided a heuristic algorithm that achieves comparable clustering costs with

shallower threshold trees to previous algorithms by Dasgupta et al. (2020); Frost et al. (2020);

Laber and Murtinho (2021) in experiments. Deng, Gavva, Patel, Karthik C. S., and Srinivasan

(2023) showed the impossibility of depth reduction for explainable k-medians and k-means clus-

tering. They found an instance in two-dimensional space R2 for which a threshold tree with depth

k−1 has the same cost as the optimal unconstrained clustering, while any threshold tree with depth

k − 2 has an unbounded cost. Papanikolaou (2023) considered the explainable clustering on well-

clusterable instances. He showed that if the instance is a-separated for some a ≥ 12kd1/p, then the

greedy algorithm by Dasgupta et al. (2020) achieves a constant competitive ratio for explainable

clustering with ℓp-norm. (The cost is costℓpp(x, c) = ∥x − c∥pp.) He also showed that the greedy

algorithm achieves a constant competitive ratio for explainable k-medians in ℓ1 if the instance is

Ω(d)-separated or the instance is Ω(
√
d)- perturbation stable.

The classic k-means and k-medians clustering has been extensively studied by researchers in
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machine learning and theoretical computer science. Lloyd’s algorithm (Lloyd (1982)) is the most

popular heuristic for k-means clustering. Arthur and Vassilvitskii (2007) proposed a randomized

seeding algorithm called k-means++, which achieves an expectedO(log k) approximation. Ahma-

dian, Norouzi-Fard, Svensson, and Ward (2019) designed a primal-dual algorithm with an approx-

imation factor of 6.357. It was improved to 6.12903 by Grandoni, Ostrovsky, Rabani, Schulman,

and Venkat (2022). Recently, Cohen-Addad, Esfandiari, Mirrokni, and Narayanan (2022) im-

proved the approximation factor to 5.912. Dasgupta (2008) and Aloise, Deshpande, Hansen, and

Popat (2009) showed that k-means problem is NP-hard. Awasthi et al. (2015) showed that it is also

NP-hard to approximate the k-means objective within a factor of (1 + ε) for some positive con-

stant ε (see also Lee, Schmidt, and Wright (2017)). The bi-criteria approximation for k-means has

also been studied before. Aggarwal, Deshpande, and Kannan (2009) proved that k-means++ that

picks (1 + δ)k centers gives a constant factor bi-criteria approximation for some constant δ > 0.

Later, Wei (2016) and Makarychev, Reddy, and Shan (2020) gave improved bi-criteria approxima-

tion guarantees for k-means++. Makarychev, Makarychev, Sviridenko, and Ward (2016) designed

local search and LP-based algorithms with better bi-criteria approximation guarantees.

Charikar, Guha, Tardos, and Shmoys (1999) gave the first constant factor approximation algo-

rithm for the unconstrained k-medians clustering in general metric spaces. Li and Svensson (2013)

provided a 1 +
√
3 + ε approximation algorithm. Byrka, Pensyl, Rybicki, Srinivasan, and Trinh

(2017) improved the approximation factor to 2.675 + ε. Cohen-Addad et al. (2022) recently im-

proved the approximation factor to 2.406 for Euclidean k-medians. Megiddo and Supowit (1984)

showed that the k-medians in ℓ1 problem is NP-hard. Cohen-Addad and Lee (2022) showed that it

is also NP-hard to approximate k-medians in ℓ1 within a factor of 1.06.
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CHAPTER 2

k-MEANS CLUSTERING

k-means clustering is one of the most commonly encountered unsupervised learning problems.

Given a set of n data points X = {x1, x2, . . . , xn} in Euclidean space Rd, our goal is to partition

them into k clusters (each characterized by a center), such that the sum of squared distances of data

points to their nearest center is minimized. Specifically, we want to find a set C of k centers in Rd

to minimize the total cost of clustering

costℓ22(X,C) :=
∑
x∈X

min
c∈C

∥x− c∥22.

The most popular heuristic for solving this problem is Lloyd’s algorithm Lloyd (1982), often

referred to simply as “the k-means algorithm”. Lloyd’s algorithm uses iterative improvements to

find a locally optimal k-means clustering. The performance of Lloyd’s algorithm crucially depends

on the quality of the initial clustering, which is defined by the initial set of centers, called a seed.

Arthur and Vassilvitskii (2007) and Ostrovsky, Rabani, Schulman, and Swamy (2006) developed an

elegant randomized seeding algorithm, known as the k-means++ algorithm. It works by choosing

the first center uniformly at random from the data set and then choosing the subsequent k − 1

centers by randomly sampling a single point in each round with the sampling probability of every

point proportional to its current cost. That is, the probability of choosing any data point x is

proportional to the squared distance to its closest already chosen center. This squared distance is

often denoted by D2(x). Arthur and Vassilvitskii (2007) proved that the expected cost of the initial

clustering obtained by k-means++ is at most 8(ln k + 2) times the cost of the optimal clustering
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Figure 2.1: Performance of k-means++, k-means∥, and Bi-Criteria k-means++ with pruning on the
BioTest and COVTYPE datasets. For k = 10, 15, · · · , 50, we ran these algorithms for 50 iterations
and took their average. We normalized the clustering costs. For each iteration, we divided the
clustering costs by the cost given by k-means++ with 1000 centers.

i.e., k-means++ gives an 8(ln k + 2)-approximation for the k-means problem. They also provided

a family of k-means instances for which the approximation factor of k-means++ is 2 ln k and thus

showed that their analysis of k-means++ is almost tight.

Due to its speed, simplicity, and good empirical performance, k-means++ is the most widely

used algorithm for k-means clustering. It is employed by machine learning libraries such as

Apache Spark MLlib, Google BigQuery, IBM SPSS, Intel DAAL, and Microsoft ML.NET. In

addition to k-means++, these libraries implement a scalable variant of k-means++ called k-means∥

(read “k-means parallel”) designed by Bahmani, Moseley, Vattani, Kumar, and Vassilvitskii (2012).

Somewhat surprisingly, k-means∥ not only works better in parallel than k-means++ but also slightly

outperforms k-means++ in practice in the single machine setting (see Bahmani et al. (2012) and

Figure 2.1 below). However, theoretical guarantees for k-means∥ are substantially weaker than for

k-means++.

The k-means∥ algorithm makes T passes over the data set (usually T = 5). In every round,
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it independently draws approximately ℓ = Θ(k) random centers according to the D2 distribution.

After each round, it recomputes the distances to the closest chosen centers and updates D2(x) for

all data points in the data set. Thus, after T rounds, k-means∥ chooses approximately Tℓ centers.

It then selects k centers among Tℓ centers using k-means++ on a weighted instance.

Our Contributions: In this section, we provide novel analyses of these two popular algorithms

and show improved approximation and bi-criteria approximation guarantees for k-means++ and k-

means∥. For any dataset X ⊆ Rd and any integer k ≥ 1, we define the cost of the optimal solution

for k-means problem to be

OPTk(X) := min
C,|C|=k

cost(X,C) = min
C,|C|=k

∑
x∈X

min
c∈C

∥x− c∥22.

We use costk(X) := cost(X,Ck) to denote the cost of clustering given by k centers Ck sampled

by k-means++. We use costT (X) := cost(X,CT ) to denote the cost of clustering for centers CT

sampled by k-means∥ after T rounds.

We show that the expected cost of the solution output by k-means++ is at most 5(ln k + 2)

times the cost of the optimal solution,

E[costk(X)] ≤ 5(ln k + 2) ·OPTk(X).

This improves upon the bound of 8(ln k+2) shown by Arthur and Vassilvitskii (2007) and directly

improves the approximation factors for several algorithms which use k-means++ as a subroutine

like Local Search k-means++ (Lattanzi and Sohler, 2019).

Then, we address the question of why the observed performance of k-means∥ is better than the

performance of k-means++. There are two possible explanations for this fact. (1) This may be the

case because k-means∥ picks k centers in two stages. At the first stage, it samples ℓT ≥ k centers.
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At the second stage, it prunes centers and chooses k centers among ℓT centers using k-means++.

(2) This may also be the case because k-means∥ updates the distribution function D2(x) once

in every round. That is, it recomputes D2(x) once for every ℓ chosen centers, while k-means++

recomputes D2(x) every time it chooses a center. In this paper, we empirically demonstrate that

the first explanation is correct. First, we noticed that k-means∥ for ℓ · T = k is almost identical

with k-means++ (see Appendix A.1). Second, we compare k-means∥ with another algorithm

called Bi-Criteria k-means++ with Pruning. This algorithm also works in two stages: At the

Bi-Criteria k-means++ stage, it chooses k + ∆ centers in the data set using k-means++. Then, at

the Pruning stage, it picks k centers among the k+∆ centers selected at the first stage again using

k-means++. Our experiments on the standard datasets BioTest from KDD-Cup 2004 Elber (2004)

and COVTYPE from the UCI ML repository Dua and Graff (2017) show that the performance of

k-means∥ and Bi-Criteria k-means++ with Pruning are essentially identical (see Figures 2.1 and

Appendix A.1).

These results lead to another interesting question: How good are k-means++ and k-means∥

algorithms that sample k+∆ instead of k centers? The idea of oversampling using k-means++ was

studied earlier in the literature under the name of bi-criteria approximation. Aggarwal, Deshpande,

and Kannan (2009) showed that with constant probability, sampling k +∆ centers by k-means++

provides a constant-factor approximation if ∆ ≥ δk for some constant δ > 0. Wei (2016) improved

on this result by showing an expected approximation ratio of 8(1 + 1.618 · k/∆). Note that for

bi-criteria approximation, we compare the expected cost of the clustering with k +∆ centers they

produce and the cost of the optimal clustering with exactly k centers OPTk(X).

In this paper, we show that the expected bi-criteria approximation ratio for k-means++ with ∆
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additional centers is at most the minimum of two bounds:

(A) 5
(
2 +

1

2e
+ ln

2k

∆

)
for 1 ≤ ∆ ≤ 2k; and (B) 5

(
1 +

k

e(∆− 1)

)
for ∆ ≥ 1.

Both bounds are better than the bound by Wei (2016). The improvement is especially noticeable

for small values of ∆. More specifically, when the number of additional centers is ∆ = k/ log k,

our approximation guarantee is O(log log k) while Wei (2016) gives an O(log k) approximation.

We believe that our results for small values of ∆ provide an additional explanation for why

k-means++ works so well in practice. Consider a data scientist who wants to cluster a data set X

with k∗ true clusters (i.e. k∗ latent groups). Since she does not know the actual value of k∗, she

uses the elbow method (Boehmke and Greenwell, 2019) or some other heuristic to find k. Our

results indicate that if she chooses slightly more number of clusters (for instance, 1.05k∗), then she

will get a constant bi-criteria approximation to the optimal clustering.

We also note that our bounds on the approximation factor smoothly transition from the regular

(∆ = 0) to bi-criteria (∆ > 0) regime. We complement our analysis with an almost matching lower

bound of Θ(log(k/∆)) on the approximation factor of k-means for ∆ ≤ k (see Appendix A.2).

We then analyze Bi-Criteria k-means∥ algorithm, the variant of k-means∥ that does not prune

centers at the second stage. In their original paper, Bahmani, Moseley, Vattani, Kumar, and Vas-

silvitskii (2012) showed that the expected cost of the solution for k-means∥ with T rounds and

oversampling parameter ℓ is at most:

16

1− α
OPTk(X) +

(1 + α

2

)T
OPT1(X),

where α = exp(−(1 − e−ℓ/(2k))); OPTk(X) is the cost of the optimal k-means clustering of X;

OPT1(X) is the cost of the optimal clustering of X with one center. We note that OPT1(X) ≫
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OPTk(X). For ℓ = k, this result gives a bound of ≈ 49OPTk(X) + 0.83TOPT1(X). Bachem,

Lucic, and Krause (2017) improved the approximation guarantee for ℓ ≥ k to

26OPTk(X) + 2
( k
eℓ

)T
OPT1(X).

In this work, we improve this bound for ℓ ≥ k and also obtain a better bound for ℓ < k. For ℓ ≥ k,

we show that the cost of k-means∥ without pruning is at most

8OPTk(X) + 2
( k
eℓ

)T
OPT1(X).

For ℓ < k, we give a bound of

5

1− e−
ℓ
k

OPTk(X) + 2
(
e−

ℓ
k

)T
OPT1(X)

Organization: We first describe a general framework for analyzing k-means++ and k-means∥

algorithms in section 2.1. Then, we show an improved 5(ln k + 2) approximation for k-means++

in section 2.2. In section 2.3, we provide better guarantees for bi-criteria k-means++. Finally, in

section 2.4, we give a better analysis for k-means∥.

2.1 General framework

In this section, we describe a general framework we use to analyze k-means++ and k-means∥.

First, we formally describe k-means++ and k-means∥ algorithms. We also introduce a different

implementation of k-means∥, called k-means∥Pois.

k-means++ seeding: The k-means++ algorithm samples the first center uniformly at random

from the given points and then samples k − 1 centers sequentially from the given points with the
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probability of each point being sampled proportional to its cost i.e. cost(x,C)/cost(X,C). See

Algorithm 1.

Algorithm 1 k-means++ seeding

1: Sample a point c uniformly at random from X and set C1 = {c}.
2: for t = 2 to k do
3: Sample x ∈ X w.p. cost(x,Ct−1)/cost(X,Ct−1).
4: Ct = Ct−1 ∪ {x}.
5: end for
6: Return Ck

k-means∥ and k-means∥Pois seeding: In the k-means∥ algorithm, the first center is chosen

uniformly at random from X . But after that, at each round, the algorithm samples each point

independently with probability min{ℓ · cost(x,C)/cost(X,C), 1} where ℓ is the oversampling

parameter chosen by the user and it usually lies between 0.1k and 10k. The algorithm runs for T

rounds (where T is also a parameter chosen by the user) and samples around ℓT points, which is

usually strictly larger than k. This oversampled set is then weighted using the original data set X

and a weighted version of k-means++ is run on this set to get the final k-centers. We only focus on

the stage in which we get the oversampled set because the guarantees for the second stage come

directly from k-means++. The k-means∥ seeding is shown in Algorithm 2.

For the sake of analysis, we also consider a different implementation of k-means∥, which

we call k-means∥Pois (Algorithm 3). This algorithm differs from k-means∥ in that each point is

sampled independently with probability 1− exp(−ℓ · cost(x,C)/cost(X,C)) rather than min{ℓ ·

cost(x,C)/cost(X,C), 1}. In practice, there is essentially no difference between k-means∥ and k-

means∥Pois, since ℓ · cost(x,C)/cost(X,C) is a very small number for all x and thus the sampling

probabilities for k-means∥ and k-means∥Pois are almost equal.

We then give a general framework for analyzing k-means++ and k-means∥Pois algorithm. Let

Ct be the set of centers chosen by this algorithm after step t. For the sake of analysis, we assume
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Algorithm 2 k-means∥ seeding

1: Sample a point c uniformly from X and set C1 = {c}.
2: for t = 1 to T do
3: Sample each point x into C ′ independently w.p. min{1, λt(x)} where

λt(x) = ℓ · cost(x,Ct)/cost(X,Ct).
4: Let Ct+1 = Ct ∪ C ′.
5: end for

Algorithm 3 k-means∥Pois seeding

1: Sample a point c uniformly from X and set C1 = {c}
2: for t = 1 to T do
3: Sample each point x into C ′ independently w.p. 1− e−λt(x) where

λt(x) = ℓ · cost(x,Ct)/cost(X,Ct)
4: Let Ct+1 = Ct ∪ C ′.
5: end for

that Ct is an ordered set or list of centers and the order of centers in Ct is the same as the order

in which our algorithm chooses these centers. We explain how to order centers in k-means∥Pois

algorithm in Section 2.4. We denote by T the stopping time of the algorithm. Observe that after

step t of the algorithm, the probabilities of choosing a new center in k-means++ or a batch of

new centers in k-means∥Pois are defined by the current costs of points in X which, in turn, are

completely determined by the current set of centers Ct. Thus, the states of the algorithm form a

Markov chain.

In our analysis, we fix the optimal clustering P = {P1, . . . , Pk} (if this clustering is not unique,

we pick an arbitrary optimal clustering). The optimal cost of each cluster Pi is OPT1(Pi) and the

optimal cost of the entire clustering is OPTk(X) =
∑k

i=1OPT1(Pi).

Following the k-means++ paper by Arthur and Vassilvitskii (2007), we say that a cluster Pi is

hit or covered by a set of centers C if C∩Pi ̸= ∅; otherwise, we say that Pi is not hit or uncovered.

We split the cost of each cluster Pi into two components which we call the covered and uncovered
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costs of Pi. For a given set of centers C,

The covered or hit cost of Pi, H(Pi, C) :=


cost(Pi, C), if Pi is covered by C

0, otherwise.

The uncovered cost of Pi, U(Pi, C) :=


0, if Pi is covered by C

cost(Pi, C), otherwise.

Let H(X,C) =
∑k

i=1H(Pi, C) and U(X,C) =
∑k

i=1 U(Pi, C). Then, the total cost of clus-

tering is the sum of covered cost and uncovered cost,

cost(X,C) = H(X,C) + U(X,C).

For brevity, denote costt(Y ) = cost(Y,Ct) for any Y ⊆ X ,Ht(Pi) = H(Pi, Ct), and Ut(Pi) =

U(Pi, Ct). In Section 2.2, we show that for any t, we have E[Ht(X)] ≤ 5OPTk(X), which is an

improvement over the bound of 8OPTk(X) given by Arthur and Vassilvitskii (2007). Then, in

Sections 2.3 and 2.4, we analyze the expected uncovered cost U(X,CT ) for k-means++ and k-

means∥Pois algorithms.

Consider a center c in C. We say that c is a miss if another center c′ covers the same cluster

Pi ∈ P as c, and c′ appears before c in the ordered set C. We denote the number of misses in C by

M(C) and the number of clusters in P not covered by centers in C by K(C).

Observe that the stochastic processes Ut(Pi) with discrete time t are non-increasing since the

algorithm never removes centers from the set Ct and therefore the distance from any point x ∈ X

to Ct never increases. Similarly, the processes Ht(Pi) are non-increasing after step ti when Pi is

covered for the first time. In this paper, we sometimes use a proxy H̃t(Pi) for Ht(Pi), which we
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define as follows. If Pi is covered by Ct, then H̃t(Pi) = Hti(Pi), where ti ≤ t is the first time

when Pi is covered by Ct. If Pi is not covered by Ct, then H̃t(Pi) = 5OPT1(Pi). It is easy to see

that Ht(Pi) ≤ H̃t′(Pi) for all t ≤ t′. In Section 2.2, we also show that H̃t(Pi) is a supermartingale

i.e., E[H̃t′(Pi) | Ct] ≤ H̃t(Pi) for all t ≤ t′.

2.2 Analysis of k-means++

We first analyze the popular k-means++ algorithm. We show that the expected cost of the solution

output by k-means++ is at most 5(ln k + 2) times the cost of the optimal solution. This improves

upon the bound of 8(ln k + 2) shown by Arthur and Vassilvitskii (2007).

Theorem 2.1. The approximation factor of k-means++ is at most 5(ln k + 2).

The k-means++ algorithm samples the first center uniformly at random from the given points

and then samples k − 1 centers sequentially from the given points with probability of each point

being sampled proportional to its cost i.e. cost(x,C)/cost(X,C).

We improve the bound by Arthur and Vassilvitskii (2007) on the expected cost of a covered

cluster in k-means++. Pick an arbitrary cluster Pi in the optimal solution P = {P1, . . . , Pk} and

consider an arbitrary state Ct = {c1, . . . , ct} of the k-means++ algorithm. Let ct+1 be the new

center which the algorithm adds to Ct at step t + 1. Suppose now that the new center ct+1 cover

Pi i.e. ct+1 ∈ Pi. We show that the expected cost of cluster Pi after step t + 1 conditioned on the

event {ct+1 ∈ Pi} and the current state of the algorithm Ct is upper bounded by 5OPT1(Pi) i.e.

E[cost(Pi, Ct+1) | Ct, ct+1 ∈ Pi] ≤ 5OPT1(Pi). (2.1)

We now prove the main lemma.
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Lemma 2.2. Consider an arbitrary set of centers C = {c1, . . . , ct} ⊆ Rd and an arbitrary set

P ⊆ X . Pick a random point c in P with probability Pr{c = x} = cost(x,C)/cost(P,C). Let

C ′ = C ∪ {c}. Then, Ec[cost(P,C
′)] ≤ 5OPT1(P ).

Remarks: Lemma 2.2 in the paper by Arthur and Vassilvitskii (2007) gives a bound of 8OPT1(P ).

Proof. The cost of any point y after picking center c equals the squared distance from y to the

set of centers C ′ = C ∪ {c}, which in turn equals min{cost(y, C), ∥y − c∥22}. Thus, if a point

x ∈ P is chosen as a center, then the cost of point y equals min{cost(y, C), ∥x − y∥22}. Since

Pr{c = x} = cost(x,C)/cost(P,C), we have

Ec[cost(P,C
′)] =

∑
x∈P
y∈P

cost(x,C)

cost(P,C)
·min{cost(y, C), ∥x− y∥22}.

We write the right hand side in a symmetric form with respect to x and y. To this end, we define a

function f as follows:

f(x, y) = cost(x,C) ·min{∥x− y∥22, cost(y, C)}+ cost(y, C) ·min{∥x− y∥22, cost(x,C)}.

Note that f(x, y) = f(y, x). Then,

Ec[cost(P,C
′)] =

1

2cost(P,C)

∑
(x,y)∈P×P

f(x, y).

We now give an upper bound on f(x, y) and then use this bound to finish the proof of Lemma 2.2.

Lemma 2.3. For any x, y ∈ P , we have f(x, y) ≤ 5 ·min{cost(x,C), cost(y, C)} · ∥x− y∥22.

Proof. Since f(x, y) is a symmetric function with respect to x and y, we may assume without loss
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of generality that cost(x,C) ≤ cost(y, C). Then, we need to show that f(x, y) ≤ 5cost(x,C) ·

∥x− y∥22. Consider the following three cases.

Case 1: If cost(x,C) ≤ cost(y, C) ≤ ∥x− y∥22, then

f(x, y) = 2cost(x,C) · cost(y, C) ≤ 2cost(x,C) · ∥x− y∥22.

Case 2: If cost(x,C) ≤ ∥x− y∥22 ≤ cost(y, C), then

f(x, y) = cost(x,C) · ∥x− y∥22 + cost(y, C) · cost(x,C).

By the triangle inequality, we have

cost(y, C) ≤ {
√

cost(x,C) + ∥x− y∥2}2 ≤ 4∥x− y∥22.

Thus, f(x, y) ≤ 5cost(x,C) · ∥x− y∥22.

Case 3: If ∥x− y∥22 ≤ cost(x,C) ≤ cost(y, C), then

f(x, y) = (cost(x,C) + cost(y, C))∥x− y∥22.

By the triangle inequality,

cost(y, C) ≤ {
√

cost(x,C) + ∥x− y∥2}2 ≤ 4cost(x,C).

Thus, we have f(x, y) ≤ 5cost(x,C) · ∥x− y∥22.

In all cases, the desired inequality holds. This concludes the proof of Lemma 2.3.
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We use Lemma 2.3 to bound the expected cost of P . Let ϕ∗ be a vector in RP with ϕ∗
x =

cost(x,C) for any x ∈ P . Then, by Lemma 2.3, f(x, y) ≤ 5min{ϕ∗
x, ϕ

∗
y}∥x − y∥22. Since

cost(P,C) =
∑

z∈P ϕ
∗
z, we have

Ec[cost(P,C
′)] ≤

5
∑

(x,y)∈P×P min{ϕ∗
x, ϕ

∗
y}∥x− y∥22

2
∑

z∈P ϕ
∗
z︸ ︷︷ ︸

5F (ϕ∗)

.

For arbitrary vector ϕ ∈ RP
≥0, define the following function:

F (ϕ) =

∑
(x,y)∈P×P min{ϕx, ϕy}∥x− y∥22

2
∑

z∈P ϕz

. (2.2)

We have Ec[cost(P,C
′)] ≤ 5F (ϕ∗). Thus, to finish the proof of Lemma 2.2, it suffices to show that

F (ϕ) ≤ OPT1(P ) for every ϕ ≥ 0 and particularly for ϕ = ϕ∗. By Lemma 2.4 (which we state

and prove below), the function F (ϕ) is maximized when ϕ ∈ {0, 1}P . Let ϕ∗∗ be a maximizer of

F (ϕ) in {0, 1}P and P ′ = {x ∈ P : ϕ∗∗
x = 1}. Observe that

F (ϕ∗∗) =

∑
(x,y)∈P ′×P ′ ∥x− y∥22

2|P ′|
= OPT1(P

′).

Here we used the closed form expression for the optimal cost of cluster P ′

OPT1(P
′) =

∑
x∈P ′

∥x− µ(P ′)∥2 =
∑

(x,y)∈P ′×P ′∥x− y∥2

2|P ′|
,

where µ(P ′) is the mean of all points in P ′. Since P ′ ⊂ P , we have OPT1(P
′) ≤ OPT1(P ).

Thus, F (ϕ∗) ≤ F (ϕ∗∗) ≤ OPT1(P ).

Lemma 2.4. There exists a maximizer ϕ∗∗ of F (ϕ) in the region {ϕ ≥ 0} such that ϕ ∈ {0, 1}P .
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Proof. Let m = |P | be the size of the cluster P and Π be the set of all bisections or permutations

π : {1, . . . ,m} → P . Partition the set {ϕ ≥ 0} into m! regions (“cones over order polytopes”):

{ϕ : ϕ ≥ 0} = ∪π∈ΠOπ,

where Oπ = {ϕ : 0 ≤ ϕπ(1) ≤ ϕπ(2) ≤ · · · ≤ ϕπ(m)}. We show that for every π ∈ Π, there exists a

maximizer ϕ∗∗ of F (ϕ) in the region Oπ, such that ϕ∗∗ ∈ {0, 1}P . Therefore, there exists a global

maximizer ϕ∗∗ that belongs {0, 1}P

Fix a π ∈ Π. Denote by V the hyperplane {ϕ :
∑

x∈P ϕx = 1}. Observe that F is a scale

invariant function i.e., F (ϕ) = F (λϕ) for every λ > 0. Thus, for every ϕ ∈ Oπ, there exists a

ϕ′ ∈ Oπ ∩ V (namely, ϕ′ = ϕ/(
∑

x∈P ϕx)) such that F (ϕ′) = F (ϕ). Hence, max{F (ϕ) : ϕ ∈

Oπ} = max{F (ϕ) : ϕ ∈ Oπ ∩ V }. Note that for ϕ ∈ V , the denominator of (2.2) equals 2, and

for ϕ ∈ Oπ, the numerator of (2.2) is a linear function of ϕ. Therefore, F (ϕ) is a linear function

in the convex set Oπ ∩ V . Consequently, one of the maximizers of F must be an extreme point of

Oπ ∩ V .

The polytope Oπ ∩ V is defined by m inequalities and one equality. Thus, for every extreme

point ϕ of this polytope, all inequalities ϕπ(i) ≤ ϕπ(i+1) but one must be tight. In other words, for

some j < m, we have

0 = ϕπ(1) = · · · = ϕπ(j) < ϕπ(j+1) = · · · = ϕπ(m). (2.3)

Therefore, there exists a maximizer ϕ of F (ϕ) inOπ∩V satisfying (2.3) for some j. After rescaling

ϕ – multiplying all coordinates of ϕ by (m− j) – we obtain a vector ϕ∗∗ whose first j coordinates

ϕ∗∗
π(1), . . . , ϕ

∗∗
π(j) are zeroes and the last m− j coordinates ϕ∗∗

π(j+1), . . . , ϕ
∗∗
π(m) are ones. Thus, ϕ∗∗ ∈

{0, 1}P . Since F is rescaling invariant, F (ϕ∗∗) = F (ϕ). This concludes the proof.
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Replacing the bound in Lemma 3.2 from the analysis of Arthur and Vassilvitskii (2007) by our

bound from Lemma 2.2 gives Theorem 2.1.

We now state an important corollary of Lemma 2.2.

Corollary 2.5. For every P ∈ P , the process H̃t(P ) for k-means++ is a supermartingale i.e.,

E[H̃t+1(X) | Ct] ≤ H̃t(X).

Proof. The value of H̃t(X) changes only if at step t, we cover a yet uncovered cluster P . In this

case, the value of H̃t+1(P ) changes by the new cost of P minus 5OPT(P ). By Lemma 2.2 this

quantity is non-positive in expectation.

Since the process H̃t(P ) is a supermartingale, we have E[H̃t(P )] ≤ H̃0(P ) = 5OPT1(P ).

Hence, E[Ht(P )] ≤ E[H̃t(P )] = 5OPT1(P ). Thus, E[Ht(X)] ≤ 5OPTk(X). Since costt(X) =

Ht(X) + Ut(X) and we have a bound on the expectation of the covered cost, Ht(X), in the

remaining sections, we shall only analyze the uncovered cost Ut(X).

2.3 Bi-criteria Approximation of k-means++

In this section, we give a bi-criteria approximation guarantee for k-means++.

Theorem 2.6. Let costk+∆{X} be the cost of the clustering with k + ∆ centers sampled by the

k-means++ algorithm. Then, for ∆ ≥ 1, the expected cost E{costk+∆(X)} is upper bounded by

(below (a)+ denotes max(a, 0)).

min
{
2 +

1

2e
+
(
ln

2k

∆

)+
, 1 +

k

e(∆− 1)

}
5OPTk(X).
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Note that the above approximation guarantee is the minimum of two bounds: (1) 2+ 1
2e
+ln 2k

∆

for 1 ≤ ∆ ≤ 2k; and (2) 1 + k
e(∆−1)

for ∆ ≥ 1. The second bound is stronger than the first bound

when ∆/k ⪆ 0.085.

We now present a high-level overview of the proof and then give a formal proof. Our proof

consists of three steps.

First, we prove bound (2) on the expected cost of the clustering returned by k-means++ after

k +∆ rounds. We argue that the expected cost of the covered clusters is bounded by 5OPTk(X)

and thus it is sufficient to bound the expected cost of uncovered clusters. Consider an optimal

cluster P ∈ P . We need to estimate the probability that it is not covered after k + ∆ rounds. We

upper bound this probability by the probability that the algorithm does not cover P before it makes

∆ misses (note: after k +∆ rounds k-means++ must make at least ∆ misses).

In this overview, we make the following simplifying assumptions (which turn out to be satisfied

in the worst case for bi-criteria k-means++): Suppose that the uncovered cost of cluster P does not

decrease before it is covered and equals U(P ) and, moreover, the total cost of all covered clusters

almost does not change and equals H(X) (this may be the case if one large cluster contributes

most of the covered cost, and that cluster is covered at the first step of k-means++). Under these

assumptions, the probability that k-means++ chooses ∆ centers in the already covered clusters and

does not choose a single center in P equals (H(X)/(U(P ) + H(X)))∆. If k-means++ does not

choose a center in P , the uncovered cost of cluster P is U(P ); otherwise, the uncovered cost of

cluster P is 0. Thus, the expected uncovered cost of P is (H(X)/(U(P ) + H(X)))∆U(P ). It

is easy to show that (H(X)/(U(P ) + H(X)))∆U(P ) ≤ H(X)/(e(∆ − 1)). Thus, the expected

uncovered cost of all clusters is at most

k

(e(∆− 1))
E[H(X)] ≤ k

(e(∆− 1))
5OPTk(X).
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Then, we use ideas from Arthur and Vassilvitskii (2007), Dasgupta (2013) to prove the follow-

ing statement: Let us count the cost of uncovered clusters only when the number of misses after k

rounds of k-means++ is greater than ∆/2. Then the expected cost of uncovered clusters is at most

O(log(k/∆)) ·OPTk(X). That is, E[H(Uk(X) ·1{M(Ck) ≥ ∆/2}] ≤ O(log(k/∆)) ·OPTk(X).

Finally, we combine the previous two steps to get bound (1). We argue that if the number of

misses after k rounds of k-means++ is less than ∆/2, then almost all clusters are covered. Hence,

we can apply bound (2) to k′ ≤ ∆/2 uncovered clusters and ∆ remaining rounds of k-means++

and get a 5(1+1/(2e)) approximation. If the number of misses is greater than ∆/2, then the result

from the previous step yields an O(log(k/∆)) approximation.

In this section, we analyze the bi-criteria k-means++ algorithm and prove Theorem 2.6. To

this end, we establish the first and second bounds from Theorem 2.6 on the expected cost of the

clustering after k +∆ rounds of k-means. We will start with the second bound.

2.3.1 Large Number of Extra Centers

Lemma 2.7. The following bi-criteria bound holds

E[costk+∆(X)] ≤ 5

(
1 +

k

e(∆− 1)

)
OPTk(X).

Consider the discrete time Markov chain Ct associated with k-means++ algorithm (see Sec-

tion 2.1). Let P ∈ P be an arbitrary cluster in the optimal solution. Partition all states of the

Markov chain into k + ∆ disjoint groups M0,M1, · · · ,Mk+∆−1 and H. Each set Mi contains

all states C with i misses that do not cover P : Mi = {C : M(C) = i, P ∩ C = ∅}, where

M(C) is the number of misses for centers C. The set H contains all states C that cover P :

H = {C : P ∩ C ̸= ∅}.
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We now define a new Markov chain St. To this end, we first expand the set of states {C}. For

every state C of the process Ct, we create two additional “virtual” states Ca and Cb. Then, we let

S2t = Ct for every even step 2t, and

S2t+1 =


Ca

t , if Ct, Ct+1 ∈ Mi

Cb
t , if Ct ∈ Mi, Ct+1 ∈ Mi+1 ∪H.

for every odd step 2t + 1. We stop St when Ct stops or when Ct hits the set H (i.e., Ct ∈ H).

Loosely speaking, St follows Markov chain Ct but makes additional intermediate stops. When Ct

moves from one state in Mi to another state in Mi, S2t+1 stops in Ca
t ; and when Ct moves from a

state in Mi to a state in Mi+1 or H, S2t+1 stops in Cb
t .

Write transition probabilities for St:

Pr(S2t+1 = Ca | S2t = C) =
U(X,C)− U(P,C)

cost(X,C)
,

Pr(S2t+1 = Cb | S2t = C) =
U(P,C) +H(X,C)

cost(X,C)
,

and for all C ∈ Mi and C ′ = C ∪ {x} ∈ Mi,

Pr(S2t+2 = C ′ | S2t+1 = Ca) =
cost(x,C)

U(X,C)− U(P,C)
,

for all C ∈ Mi and C ′ = C ∪ {x} ∈ Mi+1 ∪H,

Pr(S2t+2 = C ′ | S2t+1 = Cb) =
cost(x,C)

U(P,C) +H(X,C)
.

Above, U(X,C)−U(P,C) is the cost of points in all uncovered clusters except for cluster P . If we
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pick a center from these clusters, we will necessarily cover a new cluster, and therefore S2t+2 will

stay in Mi. Similarly, U(P,C) + H(X,C) is the cost of all covered clusters plus the uncovered

cost of P . If we pick a center from these clusters, then S2t+2 will move to Mi+1 (if the center hits

a covered cluster) or H (if the center hits cluster P ).

Define another Markov chain Yt. The transition probabilities of Yt are the same as the transition

probabilities of St except Yt never visits states in H and therefore for C ∈ Mi and C ′ = C∪{x} ∈

Mi+1, we have

Pr(Y2t+2 = C ′ | Y2t+1 = Cb) =
cost(x,C)

H(X,C)
.

We now prove a lemma that relates probabilities of visiting states by St and Yt.

Lemma 2.8. For every t ≤ k +∆ and states C ′ ∈ Mi, C ′′ ∈ M∆, we have

Pr(C ′′ ∈ {Sj} | S2t = C ′)

Pr(C ′′ ∈ {Yj} | Y2t = C ′)
≤

(
H̃(X,C ′′)

H̃(X,C ′′) + U(P,C ′′)

)∆−i

where {C ′′ ∈ {Sj}} and {C ′′ ∈ {Yj}} denote the events that Markov chain St visits C ′′ and

Markov chain Yt visits C ′′, respectively.

Proof. Consider the unique path p from C ′ to C ′′ in the state space of S (note that the transition

graphs for S and Y are directed trees). The probability of transitioning from C ′ to C ′′ for S and

Y equals the product of respective transition probabilities for every edge on the path. Recall that

transition probabilities for S and Y are the same for all states but Cb, where C ∈ ∪jMj . The

number of such states on the path p is equal to the number transitions from Mj to Mj+1, since S

and Y can get from Mj to Mj+1 only through a state Cb on the boundary of Mj and Mj+1. The

number of transitions from Mj to Mj+1 equals ∆ − i. For each state Cb on the path, the ratio of
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transition probabilities from Cb to the next state C ∪ {x} for Markov chains S and Y equals

H(X,C)

U(P,C) +H(X,C)
≤ H̃(X,C ′′)

U(P,C ′′) + H̃(X,C ′′)
,

here we used that (a) U(P,C) ≥ U(P,C ′′) since Ut(P ) is a non-increasing process; and (b)

H(P,C) ≤ H̃(P,C ′′) since Ht(P ) ≤ H̃t′(P ) if t ≤ t′ (see Section 2.1).

We now prove an analog of Corollary 2.5 for H̃(X, Yj).

Lemma 2.9. H̃(X, Yt) is a supermartingale.

Proof. If Yj = C, then Yj+1 can only be in {Ca, Cb}. Since H̃(X,Ca) = H̃(X,Cb) = H̃(X,C),

we have E[H̃(X, Yj+1) | Yj = C] = H̃(X, Yj).

If Yj = Ca, then Yj+1 = C ′ = C ∪ {c} where the new center c should be in uncovered clusters

with respect to Ct. We have

E[H(P ′, Yj+1) | Yj = Ca, c ∈ P ′] ≤ 5OPT1(P
′),

which implies

E[H̃(P ′, Yj+1) | Yj = Ca, c ∈ P ′] ≤ H̃(P ′, Yj).

Therefore, we have

E[H̃(X, Yj+1) | Yj = Ca] ≤ H̃(X, Yj).

If Yj = Cb, then for any possible state C ′ of Yj+1, the new center should be in covered clusters

with respect to C. By definition, we must have H̃(X,C ′) = H̃(X,C) = H̃(X,Cb). Thus, it holds

that E[H̃(X, Yj+1) | Yj = Cb] = H̃(X, Yj).

Combining all these cases, we get H̃(X, Yj) is a supermartingale.
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We now use Lemma 2.8 and Lemma 2.9 to bound the expected uncovered cost of P after k+∆

rounds of k-means++.

Lemma 2.10. For any cluster P ∈ P and t ≤ k +∆, we have

E[Uk+∆(P ) | Ct] ≤
H̃t(X)

e(∆−M(Ct)− 1)
.

Proof. Since k-means++ samples k + ∆ centers and the total number of clusters in the optimal

solution P is k, k-means++ must make ∆ misses. Hence, the processXt which follows k-means++

must either visit a state in M≥∆ or stop in H (recall that we stop process Xt if it reaches H).

If Xt stops in group H, then the cluster P is covered which means that Uk+∆(P ) = 0. Let

∂M∆ be the frontier of M∆ i.e., the states that Xt visits first when it reaches M∆ (recall that

the transition graph of Xt is a tree). The expected cost E[Uk+∆(P ) | Ct] is upper bounded by the

expected uncovered cost of P at time when Ct reaches M∆. Thus,

E[Uk+∆(P ) | Ct] ≤
∑

C∈M∆

Pr(C ∈ {Xj} | Ct)U(P,C).

Observe that by Lemma 2.8, for any C ∈ M∆, we have

Pr(C ∈ {Xj} | Ct)U(P,C) ≤ Pr(C ∈ {Yj} | Ct) ·

(
H̃(X,C)

H̃(X,C) + U(P,C)

)∆′

· U(P,C).

Let f(x) = x(1/(1 + x))∆
′ . Then, f(x) is maximized at x = 1/(∆′ − 1) and the maximum
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value f(1/(∆′ − 1)) = 1/(e(∆′ − 1)). Therefore, for every C ∈ M∆, we have

Pr(C ∈ {Xj} | Ct)U(P,C) ≤ Pr(C ∈ {Yj} | Ct)f

(
U(P,C)

H̃(X,C)

)
H̃(X,C)

≤ Pr(C ∈ {Yj} | Ct)
H̃(X,C)

e(∆′ − 1)
.

Let τ = min{j : Yj ∈ M∆} be the stopping time when Yj first visits M∆. We get

∑
C∈M∆

Pr(C ∈ {Yj} | Ct)H̃(X,C) = E[H̃(X, Yτ ) | Ct].

By Lemma 2.9, H̃(X, Yj) is a supermartingale. Thus, by the optional stopping theorem,

E[H̃(X, Yτ ) | Ct] ≤ H̃(X,Ct).

Therefore, we have

E[Uk+∆(P ) | Ct] ≤
H̃t(X)

e(∆−M(Ct)− 1)
,

This concludes the proof.

We now add up bounds from Lemma 2.10 with t = 0 for all clusters P ∈ P and obtain

Lemma 2.7.

2.3.2 Small Number of Extra Centers

In this section, we give another bi-criteria approximation guarantee for k-means++.

Lemma 2.11. Let costk+∆(X) be the cost of the the clustering resulting from sampling k + ∆
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centers according to the k-means++ algorithm (for ∆ ∈ {1, . . . , 2k}). Then,

E[costk+∆(X)] ≤ 5

(
2 +

1

2e
+ ln

2k

∆

)
OPTk(X).

Proof. Consider k-means++ clustering algorithm and the corresponding random process Ct. Fix a

κ ∈ {1, . . . , k}. Let τ be the first iteration1 (stopping time) when K(Cτ ) ≤ κ if K(Ck) ≤ κ; and

τ = k, otherwise. We refer the reader to Section 2.1 for definitions of M(Ct), Ut(X) = U(X,Ct),

and K(Ct).

We separately analyze the cost of uncovered clusters after the first τ steps and the last k′ − τ

steps, where k′ = k +∆ is the total number of centers chosen by k-means++.

The first step of our proof follows the analysis of k-means++ by Dasgupta (2013), and by

Arthur and Vassilvitskii (2007). Define a potential function Ψ (see Dasgupta 2013):

Ψt :=
M(Ct)U(X,Ct)

K(Ct)
.

If K(Ct) = 0, then M(Ct) and U(X,Ct) must be 0 and we let Ψt = 0

We use the following result by Dasgupta (2013) to estimate E[Ψτ (X)] in Lemma 2.13.

Lemma 2.12 (Dasgupta (2013)). For any 0 ≤ t ≤ k, we have

E[Ψt+1 −Ψt | Ct] ≤
H(X,Ct)

K(Ct)
.

Lemma 2.13. Then, the following bound holds:

E[Ψτ (X)] ≤ 5

(
1 + ln

k

κ+ 1

)
OPTk(X).

1Recall, that K(Ct) is a non-increasing stochastic process with K(C0) = k.
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Proof. Note that Ψ1 = 0 as M(C1) = 0. Thus,

E[Ψτ ] ≤
τ−1∑
t=1

E
[
Ψt+1 −Ψt

]
≤ E

[ τ−1∑
t=1

H(X,Ct)

K(Ct)

]
.

Using the inequality H(X,Ct) ≤ H̃k(X) (see Section 2.1), we get:

E[Ψτ ] ≤ E
[ τ−1∑

t=1

H̃k(X)

K(Ct)

]
≤ E

[
H̃k(X) ·

τ−1∑
t=1

1

K(Ct)

]
.

Observe that K(C1), . . . , K(Cτ−1) is a non-increasing sequence in which two consecutive terms

are either equal or K(Ci+1) = K(Ci) − 1. Moreover, K(C1) = k and K(Cτ−1) > κ. Therefore,

by Lemma 2.14 (see below), for every realization C0, C1, . . . , Cτ , we have:

τ−1∑
t=1

1

K(Ct)
≤ 1 + log k/(κ+1).

Thus,

E[Ψτ ] ≤ (1 + log k/(κ+1))E[H̃k(X)] ≤ 5(1 + log k/(κ+1)) OPTk(X).

This concludes the proof.

Let κ = ⌊(∆− 1)/2⌋. By Lemma 2.13, we have

E
[M(Cτ )Uτ (X)

K(Cτ )

]
≤ 5

(
1 + ln

2k

∆

)
OPTk(X).

Since Ut(X) is a non-increasing stochastic process, we have E[Uk+∆(X)] ≤ E[Uτ (X)]. Thus,

E
[M(Cτ )

K(Cτ )
· Uk+∆(X)

]
≤ 5

(
1 + ln

2k

∆

)
OPTk(X).
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Our goal is to bound E[Uk′(X)]. Write,

E[Uk′(X)] = E
[M(Cτ )

K(Cτ )
· Uk′(X)

]
+ E

[K(Cτ )−M(Cτ )

K(Cτ )
· Uk′(X)

]
.

The first term on the right hand side is upper bounded by 5
(
1+ ln 2k

∆

)
OPTk(X). We now estimate

the second term, which we denote by (∗).

Note that K(Ct) −M(Ct) = k − t, since the number of uncovered clusters after t steps of k-

means++ equals the number of misses plus the number of steps remaining. Particularly, if τ = k,

we have K(Cτ ) − M(Cτ ) = K(Ck) − M(Ck) = 0. Consequently, if τ = k, then the second

term (∗) equals 0. Thus, we only need to consider the case, when τ < k. Note that in this case

K(Cτ ) = κ. By Lemma 2.7 (applied to all uncovered clusters), we have

E[Uk′(X) | Cτ , τ ] ≤
K(Cτ )

e(∆′ − 1)
H̃τ (X),

where ∆′ = ∆−M(Cτ ).

Thus,

E
[K(Cτ )−M(Cτ )

K(Cτ )
· Uk′(X) | Cτ , τ

]
≤
K(Cτ )−M(Cτ )

K(Cτ )
· K(Cτ )

e(∆′ − 1)
· H̃τ (X) = (∗∗).

Plugging in K(Cτ ) = κ and the expression for ∆′ (see above), and using that κ ≤ (∆− 1)/2, we

get

(∗∗) =
κ−M(Cτ )

e(∆−M(Cτ )− 1)
. · H̃τ (X) ≤ 1

2e
H̃τ (X).
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Finally, taking the expectation over all Cτ , we obtain the bound

E
[K(Cτ )−M(Cτ )

K(Cτ )
· Uk′(X)

]
≤ 5OPT1(X)

2e
.

Thus, E[Uk′(X)] ≤ 5(1 + 1/2e + ln 2k/∆)OPTk(X). Therefore,

E[costk′(X)] = E[Hk′(X)] + Uk′(X) ≤ 5
(
2 +

1

2e
+ ln

2k

∆

)
OPTk(X).

We now prove Lemma 2.14.

Lemma 2.14. For any t ≤ k integers a1 ≥ a2 ≥ · · · ≥ at such that a1 = k, at > κ and

ai − ai+1 ∈ {0, 1} for all 1 ≤ i < t, the following inequality holds

t∑
i=1

1

ai
≤ 1 + ln

(
k

κ+ 1

)
.

Proof. It is easy to see that the sum is maximized when t = k, and the sequence a1, . . . , ak is as

follows:
1

k
,

1

k − 1
, . . . ,

1

κ+ 2︸ ︷︷ ︸
(k−(κ+1)) terms

,
1

κ+ 1
, . . . ,

1

κ+ 1︸ ︷︷ ︸
(κ+1) terms

.

The sum of the first (k − (κ+ 1)) terms is upper bounded by

∫ 1/k

1/(κ+1)

1

x
dx = ln

k

κ+ 1
.

The sum of the last (κ+ 1) terms is 1.
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2.4 Analysis of k-means∥

In this section, we give the analysis for the k-means∥ algorithm. Specifically, we show upper

bounds on the expected cost of the solution after T rounds of k-means∥.

Theorem 2.15. The expected cost of the clustering returned by k-means∥ algorithm after T rounds

are upper bounded as follows:

for ℓ < k, E[costT+1(X)] ≤
(
e−

ℓ
k

)T
E[cost1(X)] +

5OPTk(X)

1− e−
ℓ
k

;

for ℓ ≥ k, E[costT+1(X)] ≤
(
k

eℓ

)T

E[cost1(X)] +
5OPTk(X)

1− k/eℓ
.

Remark: For the second bound (ℓ ≥ k), the additive term 5OPTk(X)/(1−k/(eℓ)) ≤ 8OPTk(X).

The probability that a point is sampled by k-means∥ is strictly greater than the probability that

it is sampled by k-means∥Pois since 1 − e−λ < λ for all λ > 0. Thus, for every round, we can

couple k-means∥Pois and k-means∥ so that each point sampled by k-means∥Pois is also sampled

by k-means∥. Thus, the expected cost returned by k-means∥ is at most the expected cost returned

by k-means∥Pois. In the following analysis, we show an upper bound for the expected cost of the

solution returned by k-means∥Pois.

As a thought experiment, consider a modified k-means∥Pois algorithm. This algorithm is given

the set X , parameter k, and additionally the optimal solution P = {P1, . . . , Pk}. Although this

modified algorithm is useless in practice as we do not know the optimal solution in advance, it will

be helpful for our analysis.

In every round t, the modified algorithm first draws independent Poisson random variables

Zt(Pi) ∼ Pois(λt(Pi)) for every cluster i ∈ {1, . . . , k} with rate λt(Pi) =
∑

x∈Pi
λt(x). Then, for

each i ∈ {1, . . . , k}, it samples Zt(Pi) points x ∈ Pi with repetitions from Pi, picking every point
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x with probability λt(x)/λt(Pi) and adds them to the set of centers Ct. We assume that points in

every set Ct are ordered in the same way as they were chosen by this algorithm.

We claim that the distribution of the output sets CT of this algorithm is exactly the same as in

the original k-means∥Pois algorithm. Therefore, we can analyze the modified algorithm instead of

k-means∥Pois, using the framework described in Sections 2.1.

Lemma 2.16. The sets Ct in the original and modified k-means∥Pois algorithms are identically

distributed.

Proof. Consider |Pi| independent Poisson point processes Nx(a) with rates λt(x), where x ∈

Pi (here, we use variable a for time). Suppose we add a center x at step t of the algorithm if

Nx(t) ≥ 1. On the one hand, the probability that we choose x is equal to 1 − e−λt(x) which is

exactly the probability that k-means∥Pois picks x as a center at step t. On the other hand, the sum

NPi
=
∑

x∈Pi
Nx is a Poisson point process with rate λt(Pi). Thus, the total number of jumps in

the interval [0, 1] of processes Nx with x ∈ Pi is distributed as Zt(Pi). Moreover, the probability

that Nx jumps at time a conditioned on the event that NPi
jumps at time a is λt(x)/λt(Pi). Thus,

for every jump of NPi
, we choose one random center x with probability λt(x)/λt(Pi).

Lemma 2.17. For k-means∥ algorithm with parameter ℓ, the following bounds hold:

for ℓ < k, E[costt+1(X)] ≤ e−
ℓ
k · E[costt(X)] + 5OPTk(X);

for ℓ ≥ k, E[costt+1(X)] ≤ k

eℓ
· E[costt(X)] + 5OPTk(X).

Proof. Since the expected cost returned by k-means∥ is at most the expected cost returned by

k-means∥Pois, we analyze the expected cost of the clustering after one step of k-means∥Pois.

If the algorithm covers cluster Pi at round t, then at the next round, its uncovered cost equals

0. The number of centers chosen in Pi is determined by the Poisson random variable Zt+1(Pi).
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Hence, Pi is uncovered at round t + 1 only if Zt+1(Pi) = 0. Since Ut(Pi) is non-increasing in t

and Ut(Pi) ≤ costt(Pi), we have

E[Ut+1(Pi) | Ct] ≤ Pr(Zt+1(Pi) = 0)Ut(Pi) ≤ exp

(
−ℓ costt(Pi)

costt(X)

)
costt(Pi).

Define two function: f(x) = e−x ·x; and g(x) = f(x) for x ∈ [0, 1] and g(x) = e−1 for x ∈ [1,∞).

Then,

E[Ut+1(X) | Ct] ≤
kcostt(X)

ℓ
· 1
k

k∑
i=1

f

(
ℓcostt(Pi)

costt(X)

)
.

Since g(x) ≤ f(x), and g(x) is concave for x ≥ 0, we have

E[Ut+1(X) | Ct] ≤
kcostt(X)

ℓ
· 1
k

k∑
i=1

g

(
ℓ costt(Pi)

costt(X)

)
≤ g

(
ℓ

k

)
kcostt(X)

ℓ
.

Here, we use that
∑

i costt(Pi) = costt(X).

Therefore, for ℓ ≤ k, we have

E[Ut+1(X) | Ct] ≤ e−
ℓ
k · costt(X);

and for ℓ ≥ k, we have

E[Ut+1(X) | Ct] ≤
k

eℓ
· costt(X).

Similar to Corollary 2.5, the process H̃t(P ) for k-means∥Pois is also a supermartingale, which

implies E[Ht+1(X)] ≤ 5OPTk(X). This concludes the proof.

Proof of Theorem 2.15. Applying the bound from Lemma 2.17 for t times, we get the following
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results. For ℓ ≤ k,

E[costt+1(X)] ≤
(
e−

ℓ
k

)t
E[cost1(X)] + 5OPTk(X)ηt,

where ηt =
∑t

j=1

(
e−

ℓ
k

)j−1

< 1

1−e−
ℓ
k
.

For ℓ ≥ k,

E[costt+1(X)] ≤
(
k

eℓ

)t

E[cost1(X)] + 5OPTk(X)ηt,

where ηt =
∑t

j=1

(
k
eℓ

)j−1 ≤ 1
1− k

eℓ

.

Corollary 2.18. Consider a data set X with more than k distinct points. Let

T = lnE
[

cost1(X)

OPTk(X))

]

and ℓ > k. Then, after T rounds of k-means∥, the expected cost of clustering E[costT (X)] is at

most 9OPTk(X).
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CHAPTER 3

EXPLAINABLE CLUSTERING

In this chapter, we investigate the problem of explainable k-means and k-medians clustering which

was recently introduced by Dasgupta, Frost, Moshkovitz, and Rashtchian (2020). Suppose, we

have a data set which we need to partition into k clusters. How can we do it? Of course, we

could use one of many standard algorithms for k-means or k-medians clustering. However, the

k-means and k-medians clustering form a Voronoi diagram based on k centers, which usually

have complicated boundaries. In many real-world applications, we want to find an explainable

clustering – clustering which can be easily understood by a human being.

Dasgupta, Frost, Moshkovitz, and Rashtchian (2020) proposed to use a threshold decision tree

to create an explainable clustering. A threshold decision tree is a binary space partitioning tree

with k leaves. Each internal node of the threshold decision tree splits the data into two groups

using a threshold cut (j, θ): on the one side of the cut, we have points x with xj ≤ θ and on the

other side points x with xj > θ. Thus, every node of the tree corresponds to a rectangular region

of the space. A decision tree with k leaves partitions data set X into k clusters, P1, . . . , Pk. See

Figure 3.1 for an example. Dasgupta, Frost, Moshkovitz, and Rashtchian (2020) suggested that we

use the standard k-medians and k-means objectives to measure the cost of the threshold decision

tree. For k-medians in ℓ1, the cost of a threshold decision tree T equals

costℓ1(X, T ) =
k∑

i=1

∑
x∈Pi

∥x− ĉi∥1,
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y ≤ 8.6

1 x ≤ −1.9

2 3

Figure 3.1: The unconstrained k-medians clustering and explainable k-medians clustering. The left
diagram shows the Voronoi partition of the plane w.r.t. three centers in ℓ1 distance. The Voronoi
cell for each center consists of all points that are closer (in ℓ1 distance) to this center than to any
other center (the boundaries between cells are not straight lines because we use the ℓ1 distance).
The middle diagram shows an explainable partition. The right diagram shows the corresponding
decision tree for explainable clustering.

where P1, . . . , Pk is the partitioning ofX produced by T ; and ĉ1, . . . , ĉk are the medians of clusters

P1, . . . , Pk. We denote the ℓ1-norm by ∥ · ∥1. Similarly, the k-means cost of a threshold tree T is

costℓ22(X, T ) =
k∑

i=1

∑
x∈Pi

∥x− ĉi∥22,

where ĉ1, . . . , ĉk are the means of clusters P1, . . . , Pk given by tree T . Note that each Pi is a

rectangular region of the space. Thus, generally speaking, every x is not assigned to the closest

center ĉ1, . . . , ĉk like in unconstrained k-medians or k-means. Since the threshold decision tree

only uses the axis-parallel cuts, the clustering given by the threshold tree is easier to understand by

humans.

Dasgupta, Frost, Moshkovitz, and Rashtchian (2020) defined the price of explainability as the

ratio of the k-medians cost of explainable clustering to the optimal cost of unconstrained k-medians

clustering. They showed that the cost of explainability for k-means and k-medians (somewhat

surprisingly) does not depend on the number of points in the data set X and only depends on
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k. Specifically, they provided a greedy algorithm that given k reference centers c1, c2, · · · , ck

of any unconstrained k-medians as input, outputs a threshold decision tree of cost at most O(k)

times the cost of original unconstrained k-medians with centers c1, c2, · · · , ck. We call such an

algorithm O(k) competitive. To get an explainable k-medians clustering, we first obtain reference

centers c1, c2, · · · , ck using an off-the-shelf approximation algorithm for k-medians and then run

an α-competitive algorithm for explainable k-medians with centers c1, c2, · · · , ck given as input.

This algorithm produces the desired threshold decision tree. Dasgupta, Frost, Moshkovitz, and

Rashtchian (2020) also gave an O(k2) competitive algorithm for k-means and showed Ω(log k)

lower bounds on the price of explainability for both k-medians and k-means.

Our Contribution: In this chapter, we provide an algorithm RANDOMCOORDINATECUT for

explainable k-medians and k-means. We show that indeed the competitive ratio of RANDOMCO-

ORDINATECUT is at most 2 ln k + 2, and, therefore, this algorithm has the optimal competitive

ratio which matches the lower bound of Dasgupta, Frost, Moshkovitz, and Rashtchian (2020). Our

analysis is not only tight but also fairly simple. To get our result we define a game, the Set Elim-

ination Game, which was also implicitly analyzed in previous works on this topic. We show that

the cost of this game is at most 2 ln k + 2.

We show that this algorithm combined with a terminal embedding from ℓ22 to ℓ1 achieves a

O(k log k) competitive ratio for k-means. This upper bound of the price of explainability for k-

means almost matches the lower bound of Ω(k/ log k) we show in Appendix B.1. We also provide

an algorithm for explainable k-medians in ℓ2, which has an O(log3/2 k) competitive ratio. We

complement this result with an Ω(log k) lower bound of the price of explainability for k-medians

in ℓ2.

Organization: We first provide the algorithm for explainable k-medians in ℓ1 and the its ap-

proximation factor in Section 3.1. Then, we provide the terminal embedding and the upper bound
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Input: a data set X ⊂ Rd and set of centers C = {c1, c2, . . . , ck} ⊂ Rd

Output: a threshold tree T

Create tree T0 containing a root node r. Assign Cr = {c1, c2, · · · , ck} to the root. Let t = 0.
Let M = maxij |cij|.

while Tn contains a leaf with at least two distinct centers do
Pick a random coordinate j and random θ ∈ (−M,M). Let ωn = (j, θ).
For every leaf node u in Tn, split the set Cu into two sets:

Left = {c ∈ Cu : cj ≤ θ} and Right = {c ∈ Cu : cj > θ}.

If both sets are not empty, then create two children of u in tree Tt. The left child corre-
sponds to the subregion of uwith xj ≤ θ, and the right child corresponds to the subregion
of u with xj > θ. Assign sets Left and Right to the left and right child, respectively.

Denote the updated tree by Tt+1.
Update t = t+ 1.

end while

Figure 3.2: RANDOMCOORDINATECUT algorithm

for explainable k-means in Section 3.2. Finally, in Section 3.3, we give the algorithm for explain-

able k-medians in ℓ2 and its approximation factor.

3.1 Explainable k-medians in ℓ1

In this section, we consider the explainable clustering with k-medians in ℓ1 objective. Dasgupta

et al. (2020) introduced this problem and provided a greedy algorithm that achieves an O(k) com-

petitive ratio for k-medians in ℓ1. The notion of explainable clustering immediately got a lot of

attention in the field (Laber and Murtinho (2021); Makarychev and Shan (2021); Gamlath et al.

(2021); Charikar and Hu (2022); Esfandiari et al. (2022)). Particularly, Makarychev and Shan

(2021); Esfandiari, Mirrokni, and Narayanan (2022) provided almost optimal algorithms for ex-
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plainable k-medians in ℓ1, and Makarychev and Shan (2021); Esfandiari, Mirrokni, and Narayanan

(2022); Gamlath, Jia, Polak, and Svensson (2021) provided almost optimal algorithms for k-means.

The competitive ratios of these algorithms are Õ(log k) for k-medians and Õ(k) for k-means.

The algorithms for explainable k-medians by Makarychev and Shan (2021); Esfandiari, Mir-

rokni, and Narayanan (2022); Gamlath, Jia, Polak, and Svensson (2021) are variants of the same

simple algorithm, which we call RANDOMCOORDINATECUT. This algorithm receives a set of

k reference centers c1, . . . , ck as input and then builds a threshold decision tree with k leaves. It

works as follows. It recursively partitions d-dimensional space until every cell contains exactly one

reference center ci. The algorithm starts with a tree consisting of one node, the root. Initially, all k

reference centers are assigned to that root. At every step, the algorithm picks a random threshold

cut (j, θ) and splits centers in every cell using this cut. If this cut does not separate any centers in

a cell u (i.e., all centers in u are located on one side of the cut), then the algorithm does not split u

into two regions at this step. Finally, for every leaf u of the constructed tree, the unique center that

belongs to the cell corresponding to u is assigned to u. We provide pseudo-code for this algorithm

in Figure 3.2.

Makarychev and Shan (2021); Esfandiari et al. (2022) showed that the competitive ratio of

RANDOMCOORDINATECUT is at most O(log k log log k). That is, for every data set X and set of

centers C = {c1, . . . , ck},

E[costℓ1(X, T )] ≤ O(log k log log k) · costℓ1(X,C).

Note that the running time of this algorithm is Õ(kd). Gamlath, Jia, Polak, and Svensson (2021)

provided a slightly worse bound of O(log2 k) on the competitive ratio of this algorithm. They also

conjectured that this algorithm is optimal and its competitive ratio is O(log k), more specifically,
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Hk−1 + 1, where Hk is the k-th harmonic number. They provided some justification for their

conjecture by proving this bound for a very special set of centers and data points (corresponding

to the case of completely disjoint sets in our Set Elimination Game).

In this section, we show that the RANDOMCOORDINATECUT is optimal and achieves an

O(log k) competitive ratio for k-medians in ℓ1.

Theorem 3.1. There exists a polynomial-time randomized algorithm that given a data set X and

a set of centers C = {c1, . . . , ck}, finds a threshold tree T with expected k-medians in ℓ1 cost at

most

E[costℓ1(X, T )] ≤ (2 ln k + 2) · costℓ1(X,C).

To prove this theorem, we introduce the set elimination game in Section 3.1.1. In Section 3.1.2,

we discuss the connection between explainable k-medians and set elimination games. We define

a set elimination game in a set system I ⊂ {S1, . . . , Sk} in Section 3.1.3. Then, we define the

hitting and elimination time in Section 3.1.4. In Section 3.1.5, we first illustrate our proof strategy

by showing Theorem 3.2 for the case when the smallest set S1 does not overlap with S2, . . . , Sk. An

important ingredient of our proof is the notion of surprise sets, which we discuss in Section 3.1.6.

Finally, we complete the proof of Theorem 3.2 in Section 3.1.7.

3.1.1 Set Elimination Game

In this section, we define the set elimination game. Consider a finite measure space (Ω, µ) and k

distinct sets S1, S2, . . . , Sk ⊂ Ω. These sets S1, S2, . . . , Sk may overlap with each other. The set

elimination game proceeds in a series of rounds. Initially, all sets S1, . . . , Sk enter the competition.

Formally, they belong to the set of remaining sets R0 = {S1, . . . , Sk}. At every round n, the host

picks a random ωn ∈ Ω with probability Pr(ωn = ω) = µ(ω)/µ(Ω). Then, all sets Si that contain
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ωn are eliminated from the game unless all remaining sets contain ωn, in which case, no set gets

eliminated. That is, for n ≥ 1,

Rn =


Rn−1 \ {Si ∈ Rn−1 : ωn ∈ Si}, if for some Si ∈ Rn−1, ωn /∈ Si;

Rn−1, otherwise.
(3.1)

The last remaining set is declared the winner. We denote that winner by winner. We say that the

cost of the game is the measure of the winning set, µ(winner).

We remark that Rn cannot get empty (in which case, the winner would not be defined) because

of the “otherwise” clause in the definition (3.1). We shall always assume that all sets S1, . . . , Sk

are not only distinct and non-empty but also (a) for every i, µ(Si) > 0, and (b) for all i and j,

µ(Si△Sj) > 0 (here, Si△Sj denotes the symmetric difference of sets Si and Sj). Then, in every

game, there is a unique winner with probability 1.

Our main result is the following theorem, which, as we discuss later in Section 3.1.2, implies

that the competitive ratio of the explainable clustering algorithm is 2 ln k + 2.

Theorem 3.2. Consider a set elimination game with the finite measure space (Ω, µ) and k distinct

sets S1, S2, . . . , Sk (as above). The expected cost of the game is at most

E
[
µ(winner)

]
≤ (2 ln k + 2) ·min

i∈[k]
µ(Si).

To simplify the exposition, we will prove this theorem for discrete finite measure sets. If Ω is

not a discrete measure space, we first replace it with a quotient space: We say that ω′ ∈ Ω and

ω′′ ∈ Ω are equivalent (ω′ ∼ ω′′) if they are contained in exactly the same set of sets S1, . . . , Sk.

This equivalence relation partitions Ω into at most 2k different equivalence classes. We replace

Ω with the quotient space Ω/∼ whose elements are equivalence classes. In other words, we merge
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all equivalent ω’s. The measure of a new element ω̃ equals to the measure of the corresponding

equivalence class.

3.1.2 Explainable k-Medians via Set Elimination Game

In this section, we show how to use Theorem 3.2 to obtain a bound of 2 ln k+2 on the competitive

ratio of the RANDOMCOORDINATECUT algorithm.

Theorem 3.3. The competitive ratio of the RANDOMCOORDINATECUT algorithm for Explainable

k-Medians is at most 2 ln k + 2. That is, for every set of centers C = {c1, . . . , ck} and data set X ,

the algorithm finds a random decision tree T such that

E[cost(X, T )] ≤ (2 ln k + 2) ·
∑
x∈X

min
c∈{c1,...,ck}

∥x− c∥1.

The pseudo-code for the RANDOMCOORDINATECUT algorithm is provided in Figure 3.2.

Proof. Consider an arbitrary data set X ⊂ Rd and set of k centers C ⊂ Rd. We assume that all

points in X and all centers in C are in the cube [−M,M ]d. The threshold decision tree obtained

by the RANDOMCOORDINATECUT algorithm partitions the space into k cells. Each cell contains

a single reference center ci. The center ci is not necessarily optimal for cluster Pi (cluster Pi is the

intersection of the data set X and i-th cell). However, we will use it as a proxy for the optimal

center. In other words, we will upper bound the cost of the threshold decision tree as follows:

cost(X, T ) ≡ min
ĉ1,...,ĉk

k∑
i=1

∑
x∈Pi

∥x− ĉi∥1 ≤
k∑

i=1

∑
x∈Pi

∥x− ci∥1.

Let Ω be the set of all coordinate cuts: Ω = {(j, θ) : j ∈ [d], θ ∈ [−M,M ]}. We define a
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measure µ on Ω as follows. For every subset S ⊂ Ω, we set

µ(S) =
d∑

i=1

µL({θ : (j, θ) ∈ S}),

where µL is the Lebesgue measure on R. Thus, we have µ(Ω) = 2dM , which implies (Ω, µ) is a

finite measure space.

Consider any data point x ∈ X . Define k sets S1, S2, . . . , Sk for the set elimination game. For

every i ∈ {1, . . . , k}, let Si be the set of all threshold cuts that separate x and center ci, i.e.,

Si = {(j, θ) ∈ Ω : sign(xj − θ) ̸= sign(cij − θ)}.

Note that the ℓ1 distance from x to center ci equals the measure of Si: ∥x− ci∥1 = µ(Si). We now

examine the set elimination game with sets S1, . . . , Sk, measure space (Ω, µ), and random sequence

of draws ω1, ω2, . . . (each ωn ∈ Ω is the threshold cut chosen by the RANDOMCOORDINATECUT

algorithm at step n). We claim that Si belongs to Rn if and only if center ci lies in the same cell

as point x after step n of the algorithm. This is the case for n = 0, since R0 contains all sets

S1, . . . , Sk and the root of the threshold tree contains all centers c1, . . . , ck. Then, whenever we

pick cut ωn, all centers separated from x by ωn are removed from the cell of x. The only exception

from this rule occurs when all centers in that cell lie on the same side of the cut ωn. That is exactly

the same rule as we have for the set elimination game (note that center ci is separated from x by

ωn if and only if ωn ∈ Si). Therefore, the same sets Si remain in the game as center ci in the cell

of x (namely, sets Si and centers ci have the same indices).

The RANDOMCOORDINATECUT algorithm stops when all leaves of the decision tree contain

exactly one center. At this step, the set elimination game contains one set, Si. This set corresponds

to the center ci assigned to point x. The cost of the game µ(Si) equals the distance from x to ci.
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By Theorem 3.2, we have

E[cost(x, T )] = E[µ(winner)] ≤ (2 ln k + 2) ·min
i
µ(Si) = (2 ln k + 2) ·min

i
∥x− ci∥1.

We sum this bound over all data points x in X and get the desired result.

3.1.3 Local Competitions

We now revisit the definition of the set elimination game and define competitions in subsets of

{S1, . . . , Sk}. We remind the reader that every set elimination game is determined by an infinite

sequence of i.i.d. random variables ω1, ω2, . . . . For each round n and element ω ∈ Ω, Pr
(
ωn =

ω
)
= µ(ω)/µ(Ω).

Definition 3.1.1. Consider a finite measure space (Ω, µ). Let I be a set of subsets of Ω. We

say that I is a valid set system if (a) for every S ∈ I , µ(S) > 0, and (b) for every S ′, S ′′ ∈ I ,

µ(S ′△S ′′) > 0.

The reader may assume that (Ω, µ) is a discrete finite measure space and µ(ω) > 0 for all ω in

Ω. Then, the definition above says that in a valid set system I , all sets are non-empty and disjoint.

Definition 3.1.2. Consider a finite measure space (Ω, µ). Let ω1, ω2, . . . be i.i.d. random variables

as described above and I be a valid set system. We define a set elimination game in I . Initially,

R0(I) = I . Then, for every n ≥ 1,

Rn(I) =


Rn−1(I) \ {S ∈ Rn−1(I) : ωn ∈ S}, if for some S ′ ∈ Rn−1(I), ωn /∈ S ′;

Rn−1(I), otherwise.
(3.2)

The winner of the game in I , denoted by winner(I), is the only element remaining, or, formally,
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the unique element in ∩n≥0Rn(I). If ∩n≥0Rn(I) contains more than one element, then the winner

is not defined. The cost of the game is the measure of the winner, µ(winner(I)).

We remark that ∩n≥0Rn(I) contains exactly one element with probability 1. Thus, the winner

and cost of the game are defined with probability 1.

Consider sets S1, . . . , Sk from Theorem 3.2. Denote K = {S1, . . . , Sk}. The definition of the

competition among sets S1, . . . , Sk (given in the beginning of Section 3.1.1) is exactly the same

as the definition of competition in K. Our goal is to show that E[µ(winner(K))] ≤ 2(ln k + 1) ·

minSi∈K µ(Si). In the proof of Theorem 3.2, we will consider competitions in different set systems

I ⊆ K. We show the following key lemma.

Lemma 3.4. Consider a partitioning of the set system K = {S1, . . . , Sk} into m sets I1, . . . , Im.

Then, winner(K) ∈
{
winner(I1), . . . ,winner(Im)

}
.

The proof of Lemma 3.4 relies on the following observarion.

Lemma 3.5. Let X and Y be two subsets of K. If X ⊂ Y , then for every n, we always have

Rn(Y ) ∩X = Rn(X) or Rn(Y ) ∩X = ∅. (3.3)

Proof. We prove that (3.3) holds by induction on n. Initially, when n = 0, we have R0(X) = X

and R0(Y ) = Y . Therefore, R0(Y )∩X = X ∩ Y = X = R0(X). Suppose (3.3) holds for n, we

prove that (3.3) also holds for n′ = n + 1. If Rn(Y ) ∩X = ∅, then Rn(Y ) ∩X remains empty

for all n′ ≥ n. Therefore, (3.3) holds for n + 1. So, let us assume that Rn(Y ) ∩ X = Rn(X).

Consider three cases:

• If ωn+1 belongs to all sets in Rn(Y ), then it also belongs to all sets in Rn(X) = Rn(Y ) ∩

X . Thus, in this case, no set is eliminated in X or Y . That is, Rn+1(X) = Rn(X) and

Rn+1(Y ) = Rn(Y ).
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• If ωn+1 belongs to all sets in Rn(X), but not all sets in Rn(Y ), then, at step n+1, we remove

all sets that contain ωn+1 and, particularly, all sets in Rn(X), from Rn(Y ). Consequently,

Rn+1(Y ) ∩X = ∅ .

• If not all sets in Rn(X) and not all sets in Rn(Y ) contain ωn+1, then we remove exactly the

same sets from both Rn(X) and Rn(Y ) ∩ X . Namely, we remove sets Si ∈ Rn(Y ) that

contain ωn+1.

We conclude that (3.3) holds for n′ = n+ 1.

Proof of Lemma 3.4. Consider an arbitrary realization of the game ω1, ω2, . . . . Let n be the round

when all sets but the winner are eliminated from the competition i.e., Rn contains only one set, the

winner. SinceK is the union of I1, . . . , Ik, the winner must belong to some Ij . Now, by Lemma 3.5

for X = Ij and Y = K, we have Rn(K) ∩ Ij = Rn(Ij) or Rn(K) ∩ Ij = ∅. We know that

Rn(K) = {winner(K)} and winner(K) ∈ Ij . Thus, Rn(K) ∩ Ij = {winner(K)} ≠ ∅, and

Rn(Ij) = Rn(K) ∩ Ij = {winner(K)}.

We conclude that at round n, Rn(Ij) contains only one set – the winner in K. Consequently, it is

also the winner in Ij i.e., winner(Ij) = winner(K). This finishes the proof.

3.1.4 Set Elimination with Exponential Clock

Consider a set elimination game on sets S1, . . . , Sk. It is determined by the sequence of random

i.i.d. draws ω1, ω2, . . . . Random variable ωn is chosen in round n. We assign every round a

random time τn. Let the time between two consecutive rounds be an exponential random variable

with parameter µ(Ω). Specifically, let ∆τ1,∆τ2, . . . be a sequence of i.i.d. exponential random
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variables with parameter µ(Ω) and each τn = τn−1 +∆τn = ∆τ1 + · · · +∆τn. Note that all ∆τn

are positive and τ1, τ2, . . . is an increasing sequence with probability 1. The number of draws that

occur by time t (i.e., Nt(Ω) = |{n : τn ≤ t}|) is a Poisson process with parameter µ(Ω). We now

can think of the set elimination game as follows: The host of the game observes a Poisson process

with parameter µ(Ω). Whenever the process jumps (at time τn), the host picks an element ωn in

Ω with probability Pr(ωn = ω) = µ(ω)/µ(Ω) and eliminates some sets according to the rules of

the game discussed above. Note that by assigning every round some time τn, we do not change

the game, the winner, and the cost of the game (because the sequence of random draws ω1, ω2, . . .

remains the same as before). This interpretation of the game allows us to introduce a hitting

time h(S) of every subset S ⊂ Ω with the following properties: (a) each h(S) is an exponential

random variable with rate µ(S); (b) hitting times of disjoint sets are mutually independent random

variables.

Definition 3.1.3. For every subset X ⊂ Ω, the hitting time h(X) is the time τn when the first ωn is

drawn from X: h(X) = min{τn : ωn ∈ X}. When the set contains one element ω, we will write

h(ω) instead of h({ω}).

We also define the elimination time of each set Si.

Definition 3.1.4. Consider any set elimination game with the measure space (Ω, µ) and k sets

S1, S2, . . . , Sk in Ω. The elimination time e(Si) of set Si is the time when set Si is eliminated from

the game, i.e., e(Si) = min{τn : Si /∈ Rn(K)}. If Si is the winner, then we let e(Si) = ∞ (because

the winner is never eliminated).

Note that e(Si) ≥ h(Si). Sometimes, e(Si) may be equal to h(Si), but e(Si) and h(Si) are not

always the same. We now prove that hitting times for disjoint sets are independent. To this end,

we split the Poisson process Nt(Ω) = |{n : τn ≤ t}|. Let Nt(ω) = |{n : τn ≤ t and ωn = ω}|.
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It is easy to see that Nt(Ω) =
∑

ω∈ΩNt(ω) for every t. It is also true that each Nt(ω) is a Poisson

process with parameter µ(ω) and allNt(ω) (for ω ∈ Ω) are mutually independent. This fact follows

from the Coloring Theorem (see e.g., Kingman (1992), Coloring Theorem, page 53).

Theorem 3.6 (Coloring Theorem). Let Πt be a Poisson process on the real line with rate λ. We

color each event of the Poisson process randomly with one of M colors: The probability that a

point receives the i-th color is pi. The colors of different points are independent. Let Πt(i) be the

number of events of color i in the interval (0, t]. Then, Πt(1), . . . ,Πt(M) are independent Poisson

processes. The rate of process Πt(i) is λpi.

Lemma 3.7. For every ω ∈ Ω, h(ω) is an exponential random variable with parameter µ(ω), and

all random variables h(ω) (for ω ∈ Ω) are mutually independent.

Proof. Observe that h(ω) = min{t : Nt(ω) ≥ 1}. Thus, h(ω) is an exponential random variable

(the time of the first jump of a Poisson process) with rate µ(ω). Also, since all Nt(ω) (for ω ∈ Ω)

are mutually independent, all h(ω) are also mutually independent.

Note that the set elimination game depends only on the hitting times for elements ω in Ω. This

is the case because it matters only when every ω is drawn the first time. At that time – the hitting

time of ω – all sets that contain ω are eliminated unless all remaining sets contain this ω. When the

same ω is drawn again, it does not eliminate any new sets. Also, note that for any set S ⊂ Ω, the

hitting time h(S) = minω∈S h(ω). Thus, h(S) is an exponential random variable with parameter

µ(S) =
∑

ω∈S µ(ω).

3.1.5 Approximation Factor

We now present the proof of our main result, Theorem 3.2. We assume without loss of generality

that S1 is the smallest set i.e., µ(S1) ≤ µ(Si) for all i. Then, the expected cost of the game is at
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most:

µ(S1) +
k∑

i=2

Pr
(
Si = winner(K)

)
µ(Si). (3.4)

We first provide some intuition for the proof by considering the case when S1 does not intersect

with sets S2, . . . , Sk, i.e. sets S1 and Si are disjoint for all i = 2, 3, . . . , k. We split all sets into two

groups S1 and the rest of the sets S2, . . . , Sk. We know from Lemma 3.4 that the winner among

all sets S1, . . . , Sk is either S1 or winner
(
{S2, . . . , Sk}

)
. Denote I− = {S2, . . . , Sk}. Each set Si

is eliminated at time e(Si). The set S1 is eliminated at its hitting time h(S1) unless it is the only

remaining set at time h(S1) (because we are considering the case when S1 does not overlap with

other sets). Thus,

winner(K) =


S1, if h(S1) > e(winner(I−));

winner(I−), if e(winner(I−)) > h(S1).

(3.5)

When the winner among S1, . . . , Sk is not S1, we consider two cases of the winner Si: (1) Si is a

surprise set; (2) Si is a non-surprise set.

Definition 3.1.5. We say that Si is a surprise set if e(Si) ≥ h(S1) ≥ L/µ(Si), where L = ln k.

Let us examine bound (3.4). Let Surprise be the set of all surprise sets. Note that Surprise is

a random set. Then,

k∑
i=2

Pr
(
Si = winner(K)

)
µ(Si) ≤

k∑
i=2

Pr
(
Si = winner(K), Si /∈ Surprise

)
· µ(Si) (3.6)

+
k∑

i=2

Pr
(
Si ∈ Surprise

)
· µ(Si).

We show in the next section (Lemma 3.9) that the second sum is upper bounded by µ(S1). We
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now bound the first sum. For every winner Si which is not a surprise set, we have e(Si) ≥ h(S1)

(because Si is the winner) and h(S1) ≤ L/µ(Si) (because Si is not a surprise set). We also have

Si = winner(I−), thus

Pr
(
Si = winner(K), Si /∈ Surprise

)
≤ Pr

(
h(S1) ≤ L/µ(Si) and Si = winner(I−)

)
.

By Lemma 3.7, all hitting times h(Si) = minω∈Si
h(ω) for i ≥ 2 are independent from h(S1).

Thus, winner(I−) is also independent of h(S1) (winner(I−) depends only on the hitting times for

sets Si ∈ I−). Therefore,

Pr
(
Si = winner(K), Si /∈ Surprise

)
≤ Pr

(
h(S1) ≤ L/µ(Si)

)
· Pr

(
Si = winner(I−)

)
=
(
1− e−Lµ(S1)/µ(Si)

)
· Pr

(
Si = winner(I−)

)
≤ Pr

(
Si = winner(I−)

)
· L · µ(S1)/µ(Si).

We combine all bounds on terms of (3.6) and get the following bound on the expected cost of the

game:

µ(S1) +
k∑

i=2

Pr
(
Si = winner(I−)

)
· L · µ(S1) + µ(S1) = (L+ 2) · µ(S1) = (ln k + 2) · µ(S1).

This concludes the proof of the theorem for the case when S1 does not overlap with S2, . . . , Sk.

We now analyze surprise sets.

3.1.6 Surprise Sets

In this section, we prove a bound on the probability that a set Si is a surprise set. We no longer

assume that S1 does not intersect with other sets Si. We first show a lemma about exponential

random variables.
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Lemma 3.8. Let X and Y be two independent exponential random variables with positive param-

eters λX and λY , respectively. Then, for every T ≥ 0, we have

Pr
(
Y ≥ X ≥ T

)
=

λX
λX + λY

· e−(λX+λY )T . (3.7)

Proof. The desired probability can be easily found by computing
∫∞
T
(FX(t) − FX(T ))fY (t)dt,

where FX(t) = 1− e−λX t is the cumulative distribution function of X , and fY (t) = λY · e−λY t is

the probability density function of Y . Here, we give an alternative proof. Write,

Pr
(
Y ≥ X ≥ T

)
= Pr

(
Y ≥ X & min(X, Y ) ≥ T

)
= Pr

(
X ≤ Y | min(X, Y ) ≥ T ) · Pr

(
min(X, Y ) ≥ T

)
.

We have Pr
(
min(X, Y ) ≥ T

)
= e−(λX+λY )T , because the minimum of two independent ex-

ponential random variables with parameters λX and λY is an exponential random variable with

parameter λX + λY . Then, Pr
(
X ≤ Y | min(X, Y ) ≥ T ) = Pr

(
X ≤ Y ) because the exponen-

tial distribution is memoryless; and Pr
(
X ≤ Y ) = λX/(λX + λY ).

Lemma 3.9. For every set Si, we have Pr(Si is surprise set) ≤ 1
k
· µ(S1)
µ(Si)

.

Proof. First, we show that min(e(Si), h(S1)) ≤ h(Si \ S1).

Claim 3.10. We always have min(e(Si), h(S1)) ≤ h(Si \ S1).

Proof. Consider an arbitrary realization of the game and the time t = h(Si \ S1) when Si \ S1 is

hit. If by this time, S1 has already been hit then h(S1) < t. Similarly, if by this time, Si has already

been eliminated then e(Si) < t. Otherwise, both S1 and Si are still remaining in the game at time t.

Therefore, when we pick ω ∈ Si \ S1 at time t, set Si gets eliminated (since ω ∈ Si; ω /∈ S1; both

S1 and Si are remaining in the game). Thus, in this case, e(Si) = t. This concludes the proof.
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If Si is a surprise set, then min(e(Si), h(S1)) = h(S1) ≥ L/µ(Si). By Claim 3.10, we have

h(Si \ S1) ≥ min
(
e(Si), h(S1)

)
= h(S1) ≥ L/µ(Si).

Thus, Pr(Si is surprise set) ≤ Pr
(
h(Si \S1) ≥ h(S1) ≥ L/µ(Si)

)
. By Lemma 3.8 applied to the

independent exponential random variables h(S1), h(Si \ S1), and time T = L/µ(Si), we have

Pr(Si is surprise set) ≤ µ(S1)

µ(Si \ S1) + µ(S1)
· e−

L(µ(Si\S1)+µ(S1))

µ(Si) ≤ 1

k
· µ(S1)

µ(Si)
.

3.1.7 General Case

Proof of Theorem 3.2. We upper bound the expected cost of the game for arbitrary sets S1, . . . , Sk.

As before, we assume that S1 is the smallest set. We remind the reader that each hitting time h(Si)

is an exponential random variable with parameter µ(Si). In the proof, we will use the definitions

of surprise sets (see Definitions 3.1.5). We also set L = ln k.

We separately upper bound the cost of the winner depending on whether the winner is (a) set

S1, (b) surprise set, (c) non-surprise set. Write

E
[
µ(winner(K))

]
= E

[
µ(winner(K)) · 1{winner(K) = S1}

]
(a)

+ E
[
µ(winner(K)) · 1{winner is surprise set}

]
(b)

+ E
[
µ(winner(K)) · 1{winner is non-surprise set}

]
. (c)

Term (a) is upper bounded by µ(S1). We bound term (b) using Lemma 3.9: The probability that a

set is a surprise set is at most 1/k · µ(S1)/µ(Si). Thus, the expected total measure of all sets (not
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only the surprise winner) is upper bounded by 1
k

∑k
i=2

µ(S1)
µ(Si)

µ(Si) < µ(S1).

We now bound term (c). Define a new random variable: Let cost(ω) be the cost of the winner

(i.e., µ(Si), where Si is the winner) if (1) the winner is a non-surprise set, and (2) ω is the first

element that was chosen in S1. We let cost(ω) = 0, otherwise. If ω is the first element that was

chosen in S1, then h(S1) = h(ω). So, the definition of cost(ω) can be written as follows:

cost(ω) = µ(winner(K)) · 1{h(S1) = h(ω)} · 1{winner(K) ̸∈ Surprise}.

Since the hitting time h(S1) is finite with probability 1, the term (c) equals

(c) =
∑
ω∈S1

E[cost(ω)].

Lemma 3.11, which we prove below, gives a bound of 2Lµ(S1) on the expression above. Combin-

ing upper bounds on terms (a), (b), and (c), we get

E
[
µ(winner(K))

]
≤ (1 + 2L+ 1)µ(S1) = (2 ln k + 2) · µ(S1).

Lemma 3.11. For every ω ∈ S1, we have E[cost(ω)] ≤ 2Lµ(ω).

Proof. We have

E[cost(ω)] = E
[
µ(winner(K)) · 1{h(S1) = h(ω)} · 1{winner(K) ̸∈ Surprise}

]
. (3.8)

If Si is a non-surprise set, then h(S1) < L/µ(Si) or e(Si) < h(S1). If Si is the winner, then

e(Si) ≥ h(S1). Thus, if Si is a non-surprise winner, then h(S1) < L/µ(Si). This observations
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gives us the following upper bound on (3.8):

E
[
cost(ω)

]
≤

k∑
i=2

µ(Si) · Pr
(
Si = winner(K) and h(ω) = h(S1) < L/µ(Si)

)
. (3.9)

Define two set systems I−ω and I+ω of sets Si containing and not containing ω:

I−ω = {Si : ω /∈ Si and i ≥ 2};

I+ω = {Si : ω ∈ Si and i ≥ 2}.

Note that K ≡ {S1, . . . , Sk} = {S1} ∪ I−ω ∪ I+ω . By Lemma 3.4,

winner(K) ∈
{
S1,winner(I

−
ω ),winner(I

+
ω )
}
.

Observe that if Si with i ≥ 2 is the winner, then Si = winner(I−ω ) or Si = winner(I+ω ). We replace

the condition Si = winner(K) with Si ∈ {winner(I−ω ),winner(I+ω )} in (3.9) and get bound:

E
[
cost(ω)

]
≤

k∑
i=2

µ(Si) · Pr
(
Si ∈ {winner(I−ω ),winner(I+ω )} and h(ω) <

L

µ(Si)

)
.

The key observation now is that sets winner(I−ω ) and winner(I+ω ) are independent of h(ω). This

is the case, because sets remaining in the competitions Rn(I
−
ω ) and Rn(I

+
ω ) do not change when

we select ω. The set Rn(I
−
ω ) does not change in the round n when ω is chosen because all sets Si

in Rn(I
−
ω ) ⊂ I−ω do not contain ω. The set Rn(I

+
ω ) does not change in this round because all sets

Si in Rn(I
+
ω ) ⊂ I+ω contain ω and consequently when ω is chosen, none of these sets is removed
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from Rn(I
+
ω ) (otherwise, Rn(I

+
ω ) would become empty). Thus,

E
[
cost(ω)

]
≤

k∑
i=2

µ(Si) · Pr
(
Si ∈ {winner(I−ω ),winner(I+ω )}

)
· Pr

(
h(ω) <

L

µ(Si)

)
.

Using that h(ω) is an exponential random variable with parameter µ(ω), we get (for every i)

µ(Si) · Pr
(
h(ω) ≤ L

µ(Si)

)
= µ(Si) ·

(
1− e

−L
µ(ω)
µ(Si)

)
≤ µ(Si) · L

µ(ω)

µ(Si)
= µ(ω)L.

Hence,

E
[
cost(ω)

]
≤ µ(ω)L ·

k∑
i=2

Pr
(
Si ∈ {winner(I−ω ),winner(I+ω )}

)
.

The sum on the right hand side is at most 2. Thus, E[cost(ω)] ≤ 2Lµ(ω).

3.2 Explainable k-means

In this section, we consider the explainable k-means. We show that the RANDOMCOORDINATE-

CUT algorithm with terminal embedding achieves an O(k log k) competitive ratio. This competi-

tive ratio almost matches the Ω(k/ log k) lower bound we show in Appendix.

Theorem 3.12. Given a set of points X in Rd and a set of centers C in Rd, the RANDOMCOORDI-

NATECUT algorithm in Figure 3.2 with terminal embedding finds a threshold tree T with expected

k-means cost at most

E[costℓ22(X, T )] ≤ O(k log k) · costℓ22(X,C).

To prove this theorem, we show how to construct a coordinate cut preserving terminal embed-

ding of ℓ22 (squared Euclidean distances) into ℓ1 with distortion O(k) for every set of terminals

K ⊂ Rd of size k.
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Let K be a finite subset of points in Rd. We say that φ : x 7→ φ(x) is a terminal embedding of

ℓ22 into ℓ1 with a set of terminals K and distortion α if for every terminal y in K and every point x

in Rd, we have

∥φ(x)− φ(y)∥1 ≤ ∥x− y∥22 ≤ α · ∥φ(x)− φ(y)∥1.

Lemma 3.13. For every finite set of terminals K in Rd, there exists a coordinate cut preserving

terminal embedding of ℓ22 into ℓ1 with distortion 8|K|.

Proof. We first prove a one dimensional analog of this theorem (which corresponds to the case

when all points and centers are in one dimensional space).

Lemma 3.14. For every finite set of real numbers K, there exists a cut preserving embedding

ψK : R → R such that for every x ∈ R and y ∈ K, we have

|ψK(x)− ψK(y)| ≤ |x− y|2 ≤ 8|K| · |ψK(x)− ψK(y)|. (3.10)

Proof. Let k be the size of K and y1, . . . , yk be the elements of K sorted in increasing order. We

first define ψK on points in K and then extend this map to the entire real line R. We map each yi

to zi defined as follows: z1 = 0 and for i = 2, . . . , k,

zi =
1

2

i−1∑
j=1

(yj+1 − yj)
2.

Now consider an arbitrary number x in R. Let yi be the closest point to x in K. Let εx =

sign(x − yi). Then, x = yi + εx|x − yi|. Note that εx = 1 if x is on the right to yi, and εx = −1,

otherwise. Let the function ψK be

ψK(x) = zi + εx(x− yi)
2.
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For x = (yi + yi+1)/2, both yi and yi+1 are the closest points to x in K. In this case, we have

zi + εx(x− yi)
2 = zi+1 + εx(x− yi+1)

2,

which means ψK(x) is well-defined.

An example of the terminal embedding function ψK(x) is shown in Figure 3.3. Then, we show

that this function ψK is a cut preserving embedding satisfying inequality (3.10).

We first show that this function ψK is continuous and differentiable in R. Consider 2k open

intervals on the real line divided by points in K and points (yi + yi+1)/2 for i ∈ {1, 2, · · · , k− 1}.

In every such open interval, the function ψK is a quadratic function, which is continuous and

differentiable. Since ψK is also continuous and differentiable at the endpoints of these intervals, the

function ψK is continuous and differentiable in . For any x ∈ R, we have ψ′
K(x) = 2|x− y∗| ≥ 0

where y∗ is the closest point in K to x. Thus, the function ψK is increasing in R, which implies

ψK is cut preserving.

We now prove that ψK satisfies two inequalities. We first show that for every x ∈ R and y ∈ K,

|ψK(x)− ψK(y)| ≤ |x− y|2. Suppose that x ≥ y (The case x ≤ y is handled similarly.) If x = y,

then this inequality clearly holds. Thus, to prove |ψK(x) − ψK(y)| ≤ |x − y|2, it is sufficient to

prove the following inequality on derivatives

(ψK(x)− ψK(y))
′
x ≤

(
(x− y)2

)′
x
.

Let y∗ be the closest point in K to x. Then,

(ψK(x)− ψK(y))
′
x = (ψK(x))

′
x = (ψK(y

∗) + εx(x− y∗)2)′x = 2|x− y∗|.
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Since y∗ is the closest point in K to x, we have |x− y∗| ≤ |x− y| =
(
(x− y)2

)′
x
/2. This finishes

the proof of the first inequality.

We now verify the second inequality. First, consider two points yi and yj (yi < yj). Write,

ψK(yj)− ψK(yi) = zj − zi =
1

2

j−1∑
m=i

(ym+1 − ym)
2.

By the arithmetic mean–quadratic mean inequality, we have

(j − i) ·
j−1∑
m=i

(ym+1 − ym)
2 ≥

( j−1∑
m=i

ym+1 − ym

)2
= (yj − yi)

2.

Thus,

ψK(yj)− ψK(yi) ≥
(yj − yi)

2

2(j − i)
≥ (yj − yi)

2

2(k − 1)
.

Now we consider the case when x is an arbitrary real number in R and y ∈ K. Let y∗ be the

closest point in K to x. Then,

|x− y|2 ≤ 2|x− y∗|2 + 2|y∗ − y|2.

The first term on the right hand side equals 4|ψK(x) − ψK(y
∗)|; the second term is upper

bounded by 4(k − 1)|ψK(y)− ψK(y
∗)|. Thus,

|x− y|2 ≤ 4|ψK(x)− ψK(y
∗)|+ 4(k − 1)|ψK(y

∗)− ψK(y)|.

Note that |ψK(x)− ψK(y
∗)| ≤ |ψK(x)− ψK(y)| since y∗ is the closest point in K to x. Also, we
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Figure 3.3: Terminal embedding function ψK(x) for K = {1, 3, 5}.

have

|ψK(y
∗)− ψK(y)| ≤ |ψK(x)− ψK(y

∗)|+ |ψK(x)− ψK(y)| ≤ 2|ψK(x)− ψK(y)|.

Hence,

|x− y|2 ≤ 8k|ψK(x)− ψK(y)|.

This completes the proof.

Using the above lemma, we can construct a terminal embedding ψ from d-dimensional ℓ22 into

d-dimensional ℓ1 as follows. For each coordinate i ∈ {1, 2, · · · , d}, let Ki be the set of the i-

th coordinates for all terminals in K. Define one dimensional terminal embeddings ψi for all

coordinates i. Then, ψ maps every point x ∈ ℓ22 to ψ(x) = (ψ1(x), · · · , ψd(x)).

We show that this terminal embedding ψ is coordinate cut preserving. By the construction of

φ, we have for any threshold cut (i, θ)

{x ∈ Rd : ψ(x)i ≤ θ} = {x ∈ Rd : ψi(xi) ≤ θ}.
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Since ψi is a cut preserving terminal embedding by Lemma 3.14, there exists a threshold θ′ ∈ R

such that

{x ∈ Rd : xi ≤ θ′} = {x ∈ Rd : ψi(xi) ≤ θ},

which implies ψ is coordinate cut preserving.

For explainable k-means clustering, we first use the terminal embedding of ℓ22 into ℓ1. Then,

we apply the RANDOMCOORDINATECUT algorithm to the instance after the embedding. By using

this terminal embedding and Theorem 3.1, we can prove the following upper bound for explainable

k-means.

Proof of Theorem 3.12. Let φ be the terminal embedding of ℓ22 into ℓ1 with terminals C. Let T ′

be the threshold tree returned by the RANDOMCOORDINATECUT algorithm on the instance after

embedding. Since the terminal embedding φ is coordinate cut preserving, the threshold tree T ′

also provides a threshold tree T on the original k-means instance. Let φ(C) be the set of centers

after embedding. For any point x ∈ X , the expected cost of x is at most

E[costℓ22(x, T )] ≤ 8k · E[costℓ1(φ(x), T ′)]

≤ O(k log k) · costℓ1(φ(x), φ(C))

≤ O(k log k) · costℓ22(x,C),

where the first and third inequality is from the terminal embedding in Lemma 3.13 and the second

inequality is due to Theorem 3.1.
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3.3 Explainable k-medians in ℓ2

In this section, we present an algorithm for explainable k-medians in ℓ2. We show that it takes a

set C of k centers as input and outputs an explainable clustering with the cost at most O(log3/2 k)

times the k-medians in ℓ2 cost given by centers C.

Theorem 3.15. There exists a polynomial-time randomized algorithm that given a data set X and

a set of centers C = {c1, . . . , ck}, finds a threshold tree T with expected k-medians in ℓ2 cost at

most

E[costℓ2(X, T )] ≤ O(log
3/2 k) · costℓ2(X,C).

3.3.1 Algorithm

Our algorithm builds a binary threshold tree T using a top-down approach, as shown in Algo-

rithm 3.4. It starts with a tree containing only the root node r. The root r is assigned the set of

points Xr that contains all points in the data set X and all reference centers ci. Then, the algo-

rithm calls function BUILD TREE(r). Function BUILD TREE(u) partitions centers in u in several

groups Xv using function PARTITION LEAF(u) and then recursively calls itself (BUILD TREE(v))

for every new group Xv that contains more than one reference center ci.

Most work is done in the function PARTITION LEAF(u). The argument of the function is

a leaf node u of the tree. We denote the set of data points and centers assigned to u by Xu.

Function PARTITION LEAF(u) partitions the set of centers assigned to node u into several groups.

Each group contains at most half of all centers ci from the set Xu. When PARTITION LEAF(u)

is called, the algorithm finds the ℓ1-median of all reference centers in node u. Denote this point

by mu. We remind the reader that the i-th coordinate of the median mu (which we denote by

mu
i ) is a median for i-th coordinates of centers in Xu. That is, for each coordinate i, both sets
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Input: a data set X ⊂ Rd, centers C = {c1, c2, . . . , ck} ⊂ Rd

Output: a threshold tree T

function MAIN(X,C)
Create a root r of the threshold tree T containing Xr = X ∪ C.
BUILD TREE(r).

end function

function BUILD TREE(u)
Call PARTITION LEAF(u).
Call BUILD TREE(v) for each leaf v in the subtree of u containing more than one center.

end function

Figure 3.4: Threshold tree construction for Explainable k-medians in ℓ2

{c ∈ Xu ∩ C : ci < mu
i } and {c ∈ Xu ∩ C : ci > mu

i } contain at most half of all centers

in Xu. Then, function PARTITION LEAF(u) iteratively partitions Xu into pieces until each piece

contains at most half of all centers from Xu. We call the piece that contains the median mu the

main part (note that we find the median mu when PARTITION LEAF(u) is called and do not update

mu afterwards).

At every iteration t, the algorithm finds the maximum distance Ru
t from centers in the main

part to the point mu. The algorithm picks a random coordinate iut ∈ {1, 2, · · · , d}, random number

θut ∈ [0, (Ru
t )

2], and random sign σu
t ∈ {±1} uniformly. Then, it splits the main part using the

threshold cut (iut ,m
u
i + σu

t

√
θut ) if this cut separates at least two centers in the main part. Function

PARTITION LEAF(u) stops, when the main part contain at most half of all centers in Xu. Note that

all pieces separated from mu during the execution of PARTITION LEAF(u) contain at most half of

all centers in Xu because mu is the median of all centers in Xu.



82

Input: a data set X ⊂ Rd, centers C = {c1, c2, . . . , ck} ⊂ Rd

Output: a threshold tree T

function PARTITION LEAF(u)
Compute the ℓ1 median mu of all centers in Xu.
Set the main part u0 = u and set t = 0.
while node u0 contains more than 1/2 of centers in Xu do

Update t = t+ 1.
Let Ru

t = maxc∈Xu0
∥c∥2.

Sample iut ∈ {1, 2, · · · , d}, θut ∈ [0, (Ru
t )

2], and σu
t ∈ {±1} uniformly at random.

if two centers in Xu0 are separated by (iut ,m
u
i + σu

t

√
θut ) then

Assign to u0 two children u≤ = {x ∈ Xu0 : xi ≤ ϑ} and u> = {x ∈ Xu0 : xi >
ϑ} where i = iut , ϑ = mu

i + σu
t θ

u
t .

Update the main part u0 be u≤ if σu
t = 1, and be u> otherwise (thus, the main

part always contains mu).
end if

end while
end function

Figure 3.5: Partition-Leaf Function

3.3.2 Approximation Factor

In this section, we show that our algorithm for explainable k-medians in ℓ2 achieves an O(log3/2 k)

competitive ratio.

Proof of Theorem 3.15. Let Tt(u) be the threshold tree at the beginning of iteration t in func-

tion PARTITION LEAF(u). For every point x ∈ Xu, define its cost at step t of function PARTI-

TION LEAF(u) to be the distance from x to the closest center in the same leaf of Tt(u) as x. That

is, if x belongs to a leaf node v in the threshold tree Tt(u), then

costℓ2(x, Tt(u)) = min{∥x− c∥2 : c ∈ Xv ∩ C}.
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If the point x is separated from its original center in C by the cut generated at time step t, then

x will be eventually assigned to some other center in the main part of Tt(u). By the triangle

inequality, the new cost of x at the end of the algorithm will be at most costℓ2(x,C) + 2Ru
t , where

Ru
t is the maximum radius of the main part in Tt(u) i.e., Ru

t is the distance from the median mu to

the farthest center ci in the main part. Define a penalty function ϕu
t (x) as follows: ϕu

t (x) = 2Ru
t

if x is separated from its original center c at time t; ϕu
t (x) = 0, otherwise. Let Ux be the set of all

nodes u for which the algorithm calls BUILD TREE(u) and x ∈ Xu. Note that some nodes v of

the threshold tree with x ∈ Xv do not belong to Ux. Such nodes v are created and split into two

groups in the same call of PARTITION LEAF(u). Observe that ϕu
t (x) ̸= 0 for at most one step t in

the call of PARTITION LEAF(u) for some node u ∈ Ux, and

costℓ2(x, T ) ≤ costℓ2(x,C) +
∑
u∈Ux

∑
t

ϕu
t (x). (3.11)

The sum in the right hand side is over all iterations t in all calls of function PARTITION LEAF(u)

with u ∈ Ux. Since each piece in the partition returned by function PARTITION LEAF(u) con-

tains at most half of all centers from Xu, the depth of the recursion tree is at most O(log k) (note

that the depth of the threshold tree can be as large as k − 1). This means that the size of Ux is

at most O(log k). In Lemma 3.17, we show that the expected total penalty in the call of PARTI-

TION LEAF(u) for every u ∈ Ux is at most O(
√
log k) times the original cost. Before that, we

upper bound the expected penalty ϕu
t (x) for each step t in the call of PARTITION LEAF(u) for

every node u ∈ Ux.

Lemma 3.16. The expected penalty ϕu
t (x) is upper bounded as follows:

E[ϕu
t (x)] ≤ E

[
2∥x− c∥2 ·

∥c−mu∥2 + ∥x−mu∥2
d ·Ru

t

]
,
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where c is the closest center to the point x in C.

Proof. We first bound the probability that point x is separated from its original center c at iteration

t. For any coordinate i ∈ {1, 2, · · · , d}, let xi and ci be the i-th coordinates of point x and center

c respectively. For any point x ∈ Rd, we define the indicator function δx(i, θ) = 0 if xi ≤ θ, and

δx(i, θ) = 1 otherwise. To determine whether the threshold cut sampled at iteration t separates x

and c, we consider the following two cases: (1) x and c are on the same side of the median mu in

coordinate i (i.e. (xi −mu
i )(ci −mu

i ) ≥ 0), and (2) x and c are on the opposite sides of the median

mu in coordinate i (i.e. (xi −mu
i )(ci −mu

i ) < 0).

If x and c are on the same side of the medianmu in coordinate i, then the threshold cut (i,mu
i +

σu
t

√
θut ) separates x and c if and only if σu

t has the same sign as xi − mu
i and θut is between

(xi −mu
i )

2 and (ci −mu
i )

2. Thus,

Pr (δx(i, ϑ
u
t ) ̸= δc(i, ϑ

u
t ) | Tt(u)) =

|(ci −mu
i )

2 − (xi −mu
i )

2|
2(Ru

t )
2

≤ |ci − xi|(|ci −mu
i |+ |xi −mu

i |)
2(Ru

t )
2

,

where ϑu
t = mu

i + σu
t

√
θut .

Now, suppose x and c are on the opposite sides of the median mu in coordinate i, i.e. (xi −

mu
i )(ci −mu

i ) < 0. The threshold cut (i,mu
i + σu

t

√
θut ) separates x and c if and only if σu

t (xi −

mu
i ) ≥ 0, θut ≤ (xi − mu

i )
2 or σu

t (ci − mu
i ) ≥ 0, θut ≤ (ci − mu

i )
2. Thus, we have for every

coordinate i with (xi −mu
i )(ci −mu

i ) < 0,

Pr (δx(i, ϑ
u
t ) ̸= δc(i, ϑ

u
t ) | Tt(u)) =

(ci −mu
i )

2 + (xi −mu
i )

2

2(Ru
t )

2

≤ |ci − xi|(|ci −mu
i |+ |xi −mu

i |)
2(Ru

t )
2

,
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where the last inequality follows from |ci − xi| ≥ max{|ci −mu
i |, |xi −mu

i |}, since ci, xi are on

the different sides of mu
i .

Since the coordinate iut is chosen randomly and uniformly from {1, · · · d}, the probability that

x and c are separated at iteration t is

Pr(δx(i
u
t , ϑ

u
t ) ̸= δc(i

u
t , ϑ

u
t ) | Tt(u)) ≤

d∑
i=1

|ci − xi|(|ci −mu
i |+ |xi −mu

i |)
2d · (Ru

t )
2

≤ ∥c− x∥2(∥x−mu∥2 + ∥c−mu∥2)
d · (Ru

t )
2

,

where the last inequality follows from the Cauchy-Schwarz inequality and (|ci|+|xi|)2 ≤ 2c2i+2x2i .

Then, the expected penalty is

E[ϕu
t (x)] ≤ E

[
Pr (δx(i

u
t , ϑ

u
t ) ̸= δc(i

u
t , ϑ

u
t ) | Tt(u)) · 2Ru

t

]
≤ E

[
2∥c− x∥2 ·

∥c−mu∥2 + ∥x−mu∥2
d ·Ru

t

]
.

To bound the expected penalty for point x, we consider two types of cuts based on three param-

eters: the maximum radius Ru
t and distances ∥x−mu∥2, ∥c−mu∥2 between x, c and the median

mu . If x is separated from its original center c at iteration t with

Ru
t ≤

√
log2 k ·max{∥x−mu∥2, ∥c−mu∥2},

then we call this cut a light cut. Otherwise, we call it a heavy cut.

Lemma 3.17. In every call of PARTITION LEAF(u) (see Algorithm 3.4), the expected penalty for
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a point x ∈ X is upper bounded as follows:

E
[∑

t

ϕu
t (x)

]
≤ O(

√
log k) · costℓ2(x,C).

Proof. If point x is not separated from its original center c in PARTITION LEAF(u), then the total

penalty is 0. If x is separated from its center c in this call, then there are two cases: (1) the point

x is separated by a light cut; (2) the point x is separated by a heavy cut. We first show that the

expected penalty due to a heavy cut is at most O(
√
log k)costℓ2(x,C).

Denote the set of all heavy cuts at iteration t in PARTITION LEAF(u) by Hu
t :

Hu
t = {x : max{∥x−mu∥2, ∥c−mu∥2} < Ru

t /
√
log2 k}.

Then, by Lemma 3.16, the expected penalty x incurs due to a heavy cut is at most

E

[ ∑
t:x∈Hu

t

ϕu
t (x)

]
≤ 2∥x− c∥2 · E

[ ∑
t:x∈Hu

t

∥x−mu∥2 + ∥c−mu∥2
d ·Ru

t

]
.

Since the maximum radius Ru
t is a non-increasing function of t, we split all steps of this call

of PARTITION LEAF into phases with exponentially decreasing values of Ru
t . At phase s, the

maximum radius Ru
t is in the range (Ru

1/2
s+1, Ru

1/2
s], where Ru

1 is the maximum radius at the

beginning of PARTITION LEAF(u).

Consider an arbitrary phase s and step t in that phase. Let R = Ru
1/2

s. For every center c′ with

∥c′ −mu∥2 ∈ (R/2, R], the probability that this center c′ is separated from the main part at step t

in phase s is at least

Pr (δc′(i
u
t , ϑ

u
t ) ̸= δmu(iut , ϑ

u
t ) | Tt(u)) =

d∑
j=1

1

d
·
(c′j −mu

j )
2

2(Ru
t )

2
=

∥c′ −mu∥22
2d · (Ru

t )
2

≥ 1

4d
,
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where the last inequality is due to ∥c′ − mu∥2 > R/2 ≥ Ru
t /2 for step t in the phase s. Since

there are at most k centers, all centers with norm in (R/2, R] are separated from the main part in

at most 4d ln k steps in expectation. Thus, the expected length of each phase is O(d log k) steps,

and hence, the expected penalty x incurred during phase s is at most

2∥x− c∥2 · E
[ ∑

t:x∈Hu
t

Ru
t ∈(R/2,R]

∥x−mu∥2 + ∥c−mu∥2
d ·Ru

t

]

≤ 2∥x− c∥2 · E
[ ∑

t:x∈Hu
t

Ru
t ∈(R/2,R]

∥x−mu∥2 + ∥c−mu∥2
d ·R/2

]

≤ O(log k) · ∥x− c∥2 ·
∥x−mu∥2 + ∥c−mu∥2

R
.

Let s′ be the last phase for which

Ru
1/2

s′ ≥
√

log2 k ·max{∥x−mu∥2, ∥c−mu∥2}. (3.12)

Then, in every phase s > s′, all cuts separating x from its original center c are light. Hence, the

total expected penalty due to a heavy cut is upper bounded by

O(log k) · ∥x− c∥2 · (∥x−mu∥2 + ∥c−mu∥2) ·
s′∑

s=0

2s

Ru
1

=

= O(log k) · ∥x− c∥2 · (∥x−mu∥2 + ∥c−mu∥2) ·
2s

′+1

Ru
1

.

Using the definition (3.12) of s′, we write

(∥x−mu∥2 + ∥c−mu∥2) ·
2s

′+1

Ru
1

≤ 2
∥x−mu∥2 + ∥c−mu∥2

Ru
1/2

s′
≤ 4√

log2 k
.
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Thus, the expected penalty due to a heavy cut is at most O(
√
log k)costℓ2(x,C).

We now analyze the expected penalty due to a light cut. Consider an iteration t in PARTI-

TION LEAF(u) with x ̸∈ Hu
t . By the analysis in Lemma 3.16, the probability that x and c are

separated at iteration t is at most

∥c− x∥2(∥x−mu∥2 + ∥c−mu∥2)
d · (Ru

t )
2

.

The probability that x or c is separated from the main part at iteration t is at least

max{∥x−mu∥22, ∥c−mu∥22}
d(Ru

t )
2

.

If x or c is separated from the main part, then the point x will not incur penalty at any step after t.

Thus, the probability that x and c are separated by a light cut in the end of PARTITION LEAF(u) is

at most
∥c− x∥2(∥x−mu∥2 + ∥c−mu∥2)

max{∥x−mu∥22, ∥c−mu∥22}
≤ 2∥c− x∥2

max{∥x−mu∥2, ∥c−mu∥2}
.

Since the penalty of a light cut is at most Ru
t ≤

√
log2 k · max{∥x −mu∥2, ∥c −mu∥2}, the

expected penalty due to a light cut is at most O(
√
log k) · costℓ2(x,C).

This concludes the proof of Lemma 3.17.

For every node u, the main part contains the median mu, which is also the ℓ1-median of all

centers inXu. Thus, each cut sampled in the call PARTITION LEAF(u) separates at most half of all

centers inXu from the origin. The main part contains at most half of centers inXu at the end of the

call PARTITION LEAF(u). Therefore, each leaf node generated in the end of PARTITION LEAF(u)

contains at most half of centers in Xu. Thus, the depth of the recursion tree is at most O(log k).

By Lemma 3.17 and Equation (3.11), we get the conclusion.
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CHAPTER 4

BI-CRITERIA APPROXIMATION FOR EXPLAINABLE k-MEANS

Explainable clustering proposed by Dasgupta et al. (2020) uses a threshold decision tree with k

leaves to describe clusters. We assign a cluster to each leaf of the threshold decision tree, which

corresponds to a rectangular region in the space Rd. Recall that in the unconstrained k-means and

k-medians clustering, we need to pick k centers in Rd. The clustering forms a Voronoi partition of

the space. From an information theoretical perspective, the unconstrained k-means clustering uses

(k − 1) hyperplanes in Rd to describe the boundary of a cluster, which in the worst case requires

(k − 1)d numbers. While a threshold decision tree with k leaves only uses at most 2(k − 1)

numbers to determine the boundary of each cluster. This also explains why the clustering given by

a threshold decision tree is easy to understand by humans.

In Chapter 3, we provide the RANDOMCOORDINATECUT algorithm for explainable k-medians

in ℓ1 and k-means. We show that this algorithm achieves the optimal O(log k) competitive ratio

for k-medians in ℓ1 and near-optimal O(k log k) competitive ratio for k-means. However, in many

real-world applications, like topic modeling or feature learning, we may use hundreds or thousands

of clusters. In this case, we want to get better than Õ(k) approximation on clustering cost for

explainable k-means.

If we allow to expand the threshold decision tree to more than k leaves and reassign these

leaves into k clusters, then we can improve the clustering cost. Frost, Moshkovitz, and Rashtchian

(2020) proposed to build a threshold decision tree with more than k leaves to partition a dataset

into k clusters. Each leaf in this threshold decision tree is assigned to one of the k clusters. They

provided a greedy algorithm to expand a threshold decision tree and observed good experimental
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results for this algorithm. However, in Section B.1.4, we provide a family of k-means instances

for which the greedy bi-criteria algorithm in Frost et al. (2020) finds a threshold tree T with 5k/4

leaves of cost costℓ22(X, T ) ≥ Ω̃(k2)OPTk(X) for k → ∞.

Our Contribution: We provide a new bi-criteria algorithm for explainable k-means. Specifi-

cally, for any parameter δ ∈ (0, 1), our algorithm constructs a threshold decision tree with (1+ δ)k

leaves that achieves an O(1/δ · log2 k log log k) approximation. We also provided an Ω(1/δ · log2 k)

lower bound on the price of explainability for any threshold tree with at most (1+δ)k leaves, which

means our algorithm is near-optimal. Our results characterized the trade-off between explainability

and accuracy for the explainable k-means problem.

We now formally state our results. We provide a randomized algorithm for finding bi-criteria

explainable k-means. Similarly to the algorithm by Frost et al. (2020), our algorithm takes k

centers {c1, c2, . . . , ck} and a parameter δ > 0 and returns a threshold decision tree with (1 + δ)k

leaves. Each leaf of the tree is labeled with one of the centers c1, c2, . . . , ck. Let us denote the

center returned by the decision tree T for point x by T (x). Then, the cost of explainable clustering

defined by T equals

cost(X, T ) ≡
∑
x∈X

∥x− T (x)∥22. (4.1)

Theorem 4.1. There exists a polynomial-time randomized algorithm that given a data set X , a set

of k centers C = {c1, c2, . . . , ck}, and parameter δ ∈ (0, 1), creates a threshold decision tree T

whose leaves are labeled with centers from C. The expected number of leaves in T is (1 + δ)k,

and the expected cost of explainable clustering defined by T is

E[cost(X, T )] ≤ O(1/δ · log2 k log log k) · cost(X,C).

We complement our algorithmic results with an almost matching lower bound of Ω(1/δ · log2 k)
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for all threshold trees with at most (1 + δ)k leaves.

Theorem 4.2. For every k > 500 and ln3 k/
√
k < δ < 1/100, there exists an instance X with k

clusters such that the k-means cost for every threshold tree T with (1 + δ)k leaves is at least

cost(X, T ) ≥ Ω

(
log2 k

δ

)
OPTk(X).

4.1 Algorithm

In this section, we present an algorithm for explainable k-means clustering. The input of the

algorithm is a set of centers C = {c1, . . . , ck} and a parameter δ ∈ (0, 1). The output is a threshold

decision tree T in which every leaf node is labeled with one of the centers ci. In Sections 4.3

and 4.4, we will show that the expected number of leaves in the decision tree is (1 + δ)k and the

approximation factor of the obtained clustering is O(1/δ · log2 k · log log k).

Algorithm. Our algorithm builds a binary threshold tree using a top-down approach. The algo-

rithm assigns every node u in the tree a subset of centers c1, . . . , ck. We denote this subset Cu.

First, the algorithm creates a tree T1 with a root vertex r and assigns all centers c1, c2, . . . , ck to

it. Then, the algorithm recursively splits leaf nodes in the threshold tree until each leaf is assigned

exactly one center. At each step t, the algorithm chooses a coordinate it ∈ {1, 2, . . . , d}, a positive

threshold θt ∈ (0, 1), and number σt in {±1} uniformly at random. For each leaf u with more than

one center, it calls function Divide-and-Share to split node u into two parts.

Function Divide-and-Share first finds a median1 of all centers assigned to u, which we denote

by mu. Let Ru be the maximum distance from centers in node u to the median mu. The algorithm

1Median mu satisfies the following property: For ever coordinate i, each of the sets {c ∈ Cu : ci < mu
i } and

{c ∈ Cu : ci > mu
i } contains at most half of all points from Cu.
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Input: a data set X ⊂ Rd, a set of centers C = {c1, c2, . . . , ck} ⊂ Rd, and a parameter
δ ∈ (0, 1)
Output: a threshold tree T

Create a tree T1 containing a root r. Let Cr = C.

while Tt contains a leaf with at least two distinct centers do
Sample it ∈ {1, 2, . . . , d}, θt ∈ (0, 1), and σt ∈ {±1} uniformly at random.

For each leaf u in the tree Tt containing more than one center, split node u using Divide-
and-Share with parameters u, it, θt, σt, and ε = min{δ/15 ln k, 1/384}.

Update t = t+ 1.
end while

Figure 4.1: Threshold Tree Construction algorithm

creates two child nodes for u using cut ωt = (it, ξt) with ξt = mu
i + σt

√
θtRu. Then, Divide-

and-Share assigns two sets of centers, Left and Right, defined in Figure 4.2 to the left and right

children of u, respectively. Note that these sets share centers in the strip of width 2ε
√
θtRu:

Left ∩Right = {c ∈ Cu : (mu
i + σt

√
θtRu)− ε

√
θtRu ≤ ci ≤ (mu

i + σt
√
θtRu) + ε

√
θtRu}.

If one of the sets, Left or Right, is empty, then Divide-and-Share discards both newly created

children of u.

We show that the bi-criteria approximation factor of the algorithm is O(1/δ log2 k log log k) and

the expected number of leaves is (1 + δ)k. In the next section, we give a proof overview. Then,

we prove the upper bounds on the expected number of leaves and approximation factor of the

algorithm in Sections 4.3 and 4.4, respectively.
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Input: a node u, a coordinate i ∈ {1, . . . , d}, a positive threshold θ, a number σ ∈ {±1},
and a parameter ε
Output: if successful, the function splits u into two parts

Find the median of all centers assigned to node u. Denote it by mu.

Let Ru = max{∥c − mu∥2 : c ∈ Cu} be the maximum distance from mu to one of the
centers in Cu.

Let

Left = {c ∈ Cu : ci ≤ mu
i + σ

√
θRu + ε

√
θRu};

Right = {c ∈ Cu : ci ≥ mu
i + σ

√
θRu − ε

√
θRu}.

if both sets – Left and Right – are nonempty then

Split u into two parts using cut (i,mu + σ
√
θRu).

Assign the set of centers Left to the left child uleft and the set of centers Right to the
right child, uright.

end if

Otherwise, return the unmodified tree (in this case, we say that Divide-and-Share fails).

Figure 4.2: Function Divide-and-Share

4.2 Proof Overview

In this section, we provide an overview of the analysis of our algorithm, give definitions, and

discuss the motivation for the proofs. In Sections 4.3 and 4.4, we present detailed proofs.



94

4.2.1 Cost of Clustering

We first analyze approximation guarantees for our algorithm. We show that the expected approx-

imation factor is O(1/δ log2 k log log k) = O(1/ε log k log log k), particularly for constant δ (e.g.,

δ = 0.05), the expected approximation factor is O(log2 k log log k). We denote the final tree re-

turned by the algorithm by T . Let T (x) be the center assigned by the threshold tree T to point

x.

Theorem 4.3. For every set of centers c1, . . . , ck in Rd, every δ ∈ (0, 1), and every x ∈ Rd, we

have

E
[
∥x− T (x)∥22

]
≤ O(1/δ log2 k log log k) min

c∈{c1,...,ck}
∥x− c∥22. (4.2)

This theorem guarantees that the expected approximation factor for every point x is at most

O(1/δ log2 k log log k). Consequently, the expected approximation factor for any data set X is also

bounded by O(1/δ log2 k log log k).

Fix an arbitrary point x for the entire proof of Theorem 4.3. If x equals one of the centers ci,

then T (x) also always equals ci. Hence, ∥x − T (x)∥22 = 0 and bound (4.2) trivially holds. So,

from now on, we will assume that x is not one of the centers.

Denote by Tt the tree built by the algorithm in the first (t− 1) steps. Tree T1 contains only one

node – the root. The root corresponds to the entire space Rd and all centers c1, . . . , ck are assigned

to it. Since point x is fixed, we will only consider nodes u in T that contain x. Let ut be the leaf

node of the tree Tt that contains x. That is, ut is the leaf node that contains x at the beginning of

iteration t. Nodes u1, u2, . . . form a path in the tree T from the root to the unique leaf of T that

contains x. To simplify notation, we denote

Ct = Cut , Rt = Rut , mt = mut .
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Also, let Dt be the diameter of set Ct:

Dt = max{∥c′ − c′′∥2 : c′, c′′ ∈ Ct}.

Finally, let Tt(x) be the closest center from the set Ct to point x. We call this center the tentative

center for point x at step t. The tentative cost of x at step t is ∥x− Tt(x)∥22.

Initially, at step 1, the tentative center for point x is the closest center c ∈ {c1, . . . , ck} to x.

If the tentative center for x does not change, then the eventual cost of x, ∥x − T (x)∥22 exactly

equals the optimal cost ∥x − c∥22. However, at some step t, point x may be separated from its

tentative center c (see below for a formal definition), in which case another tentative center Tt+1(x)

is assigned to x. At this step, the tentative cost of x may significantly increase. Moreover, the

tentative cost of x may further increase if x is separated from the new tentative center. Our goal is

to give an upper bound on the expected total cost increase.

Definition 4.2.1. We say that x is separated from its tentative center c = Tt(x) at step t, if c /∈ Ct+1.

Note that x is separated from its tentative center c = Tt(x) at step t if and only if c is no longer

the tentative center for x at step t + 1 ( Tt+1(x) ̸= Tt(x)). We now define Ak. Loosely, speaking

Ak is the approximation factor of the algorithm for the given set of centers c1, . . . , ck and point x.

For technical reasons, the formal definition is more involved.

Definition 4.2.2. Let Ak be the smallest number such that the following inequality holds with

probability 1 for every partially built tree Tt:

E
[
∥x− T (x)∥22 | Tt

]
≤ Ak ∥x− Tt(x)∥22. (4.3)

In this definition, E
[
∥x− T (x)∥22 | Tt

]
is the conditional expectation of the eventual cost of x
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given that at step t the partially built tree is Tt. Thus, if at some step t, the tentative center for x is

c, then the expected final cost E[∥x − T (x)∥22 | Tt] is upper bounded by Ak ∥x − c∥22. Observe,

that Ak is well defined and finite, because T (x) and Tt(x) take at most k different values (namely,

values in {c1, . . . , ck}).

We show an upper bound of O(1/ε log k log log k) on Ak (note: ε = min{δ/15 ln k,1/384}). To

illustrate the proof, we make a number of simplifying assumptions in this section. The actual

proof is considerably more involved. We give it in Section 4.4.

Informal Proof of the Upper Bound on Ak. Suppose c∗ is the tentative center for x at step t∗. If

at some step t ≥ t∗, center c∗ is separated from x, then we assign a new tentative center to x. We

call this center a fallback center for x. This fallback center depends on the tree Tt and cut (i, ξ) that

separates x and c∗. However, to illustrate the idea behind the proof, let us assume that the distance

from the fallback center to x does not depend on the cut (i, ξ). Specifically, we suppose that the

distance from x to the fallback center is Mt at step t for every cut (i, ξ).

We consider four possibilities:

A. Point x and c∗ are never separated.

B. Point x is separated from c∗ at step t and D2
t ≤ ∥x− c∗∥22.

C. Point x is separated from c∗ at step t and ∥x− c∗∥22 < D2
t ≤ AkM

2
t /2.

D. Point x is separated from c∗ at step t and D2
t > AkM

2
t /2.

In case (A), the cost of x in the resulting tree T equals ∥x − c∗∥22. In cases (B) and (C),

the eventual cost of x is upper bounded by (Dt + ∥x − c∗∥2)2 ≤ 2D2
t + 2∥x − c∗∥22 because

no matter which center c∗∗ in Ct is assigned to x in T , the distance from c∗∗ to x is at most

∥x − c∗∥2 + ∥c∗ − c∗∗∥2 ≤ ∥x − c∗∥2 + Dt (note: Dt is the maximum distance between centers
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in Ct). Furthermore, in case (B), 2D2
t + 2∥x − c∗∥2 ≤ 4∥x − c∗∥2. In case (D), after step

t, the distance from x to the new tentative center is Mt. Hence, by the definition of Ak (see

Definition 4.2.2), the expected cost of x in T is bounded by AkM
2
t . To summarize, in case (A) or

(B), the final cost of x is at most 4∥x − c∗∥22. In case (C) and (D), the final cost is upper bounded

by 2∥x− c∗∥22 +min
{
2D2

t , AkM
2
t

}
, where t is the step when x and c∗ are separated.

Let t∗∗ be the first step t of the algorithm, when Dt ≤ ∥x− c∗∥2 or c∗ is no longer the tentative

center for x. Note that for some step t, Ct contains only one center and Dt = 0. Hence, the

stopping time t∗∗ is well defined. Then,

E[∥x− T (x)∥22 | Tt∗ ] ≤ 4∥x− c∗∥22+

+ E
[ t∗∗−1∑

t=t∗

Pr{x & c∗ are separated at step t | Tt}min
{
2D2

t , AkM
2
t

}
| Tt∗

]
.

We need to estimate the probability that x and c∗ are separated at step t. Observe that if x and c∗

are separated, then xi −mt
i ≤ σt

√
θtRt and c∗i −mt

i ≥ (σt + ε)
√
θRt or xi −mt

i ≥ σt
√
θRt and

c∗i − mt
i ≤ (σt − ε)

√
θRt, where i = it is the coordinate chosen by the algorithm. We consider

the case when xi and c∗i are on the same side of mt
i, i.e. (xi −mt

i)(c
∗
i −mt

i) ≥ 0. The case when

xi and c∗i are on the opposite sides of mt
i is handled similarly. Since θt is uniformly distributed in

[0, 1] and coordinate it is chosen randomly from {1, . . . , d}, we have

Pr{x & c∗ are separated at step t | Tt} ≤

≤ 1

dR2
t

d∑
i=1

max

{
|c∗i −mt

i|2

(1 + ε)2
− |xi −mi|2, |xi −mi|2 −

|c∗i −mt
i|2

(1− ε)2
, 0

}
.

Remark: In the formula above, we divide |c∗i −mt
i|2 by (1+ ε)2 and |c∗i −mt

i|2 by (1− ε)2. These

factors – 1/(1+ε)2 and 1/(1−ε)2 – are essential for the analysis. If we did not have them, we would get
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Θ̃(k) instead of O(1/ε log k log log k) approximation!

We now use the following inequality: For all positive numbers a, b and ε ∈ (0, 1), we have

max

{
b2

(1 + ε)2
− a2, b2 − a2

(1− ε)2

}
≤ (b− a)2

2ε− ε2
≤ (b− a)2

ε
. (4.4)

This inequality can be verified by dividing the left and right hand sides by a2 and solving the

obtained quadratic equation for λ = b/a. We have

Pr{x & c∗ are separated at step t | Tt} ≤ 1

dR2
t

d∑
i=1

(xi − c∗i )
2

ε
=

∥x− c∗∥22
εdR2

t

.

Note that the separation probability is proportional to the squared distance between x and its ten-

tative center c∗ (i.e., ∥x− c∗∥22) rather than the distance ∥x− c∗∥2 itself.

In Section 4.4, we are going to use a slightly different version of inequality (4.4) to bound the

probability that x and c∗ are separated using a particular cut (i, ξ) (see Claim 4.14).

We use the upper bound on the separation probability to obtain a convenient bound on the

expected final cost of x:

E[∥x− T (x)∥22 | Tt∗ ] ≤ 4∥x− c∗∥22 + E
[ t∗∗−1∑

t=t∗

∥x− c∗∥22
εdR2

t

·min
{
2D2

t , AkM
2
t

}
| Tt∗

]

= ∥x− c∗∥22 ·

(
4 + E

[
1

εd

t∗∗−1∑
t=t∗

min
{
2D2

t , AkM
2
t

}
R2

t

| Tt∗

])
.

Thus,

E
[
∥x− T (x)∥22
∥x− c∗∥22

| Tt∗

]
≤ 4 + E

[
1

εd

t∗∗−1∑
t=t∗

min
{
2D2

t , AkM
2
t

}
R2

t

| Tt∗

]
. (4.5)

Our goal is to bound the right hand side of this inequality by O(1/ε log k log log k).

In Lemma 4.6, we show thatRt ≈ Dt. Specifically, 1/√2Rt ≤ Dt ≤ 2Rt. This inequality would
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be trivial if mt was one of the centers cj . However, generally speaking, this is not the case. In fact,

mt does not have to belong to the convex hull of centers in Ct. Nevertheless, Dt ∈ [1/
√
2Rt, 2Rt]

because mt is the median of Ct (see Lemma 4.6).

It is easy to see that the diameter Dt is a non-increasing function of t (since Ct+1 ⊂ Ct) and Mt

is a non-decreasing function of t. In Lemma 4.7, we show that, in fact, Dt decreases by a factor of

2 every L = Θ(d ln k) steps with high probability. That is, Dt+L ≤ Dt/2. This happens because

for every step t, each pair of centers c′ and c′′ with ∥c′ − c′′∥2 ≥ Dt/2 assigned to ut is separated

with probability at least Ω(1/d) (see Corollary 4.9). So, in L = Θ(d ln k) steps all pairs of centers

in Ct at distance at least Dt/2 are separated with high probability.

We upper bound the right hand side of (4.5). Write

1

εd

t∗∗−1∑
t=t∗

min
{
2D2

t , AkM
2
t

}
R2

t

≤
∑

t∈{t∗,··· ,t∗∗−1}
AkM

2
t ≤2D2

t

AkM
2
t

εdR2
t

+
∑

t∈{t∗,··· ,t∗∗−1}
2D2

t<AkM
2
t

2D2
t

εdR2
t

≤
∑

t∈{t∗,··· ,t∗∗−1}
2D2

t≥AkM
2
t

4AkM
2
t

εdD2
t︸ ︷︷ ︸

ΣI

+
∑

t∈{t∗,··· ,t∗∗−1}
2D2

t<AkM
2
t

8

εd

︸ ︷︷ ︸
ΣII

. (4.6)

Consider the first sum, ΣI on the right hand side of (4.6). It is upper bounded by 2L times the

maximum term in that sum, because Dt halves every L steps and therefore (Mt/Dt)
2 increases by

4 times every L steps. The maximum term in ΣI is, in turn, upper bounded by 8/(εd) (because

2D2
t ≥ AkM

2
t for all terms in ΣI).

Now consider the second sum, ΣII on the right hand side of (4.6). Let t′ be the first step t

for which 2D2
t < AkM

2
t . Using that Dt+L ≤ Dt/2, we obtain the following upper bound on the
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number of steps t < t∗∗ in ΣII :

t∗∗ − t′ ≤ L+ L · log2
Dt′

Dt∗∗−1

≤ L+ L · log2

√
Ak/2Mt′

Dt∗∗−1

≤ L+ L · log2

√
Ak/2Mt∗∗−1

Dt∗∗−1

.

The last inequality holds because Mt is a non-decreasing function of t. Recall, that the distance to

the fallback center, Mt is upper bounded by ∥x − c∗∥2 +Dt for every step t ∈ {t∗, · · · , t∗∗ − 1}.

Also, by the definition of stopping time t∗∗, for every t < t∗∗, we have Dt > ∥x− c∗∥2. Thus,

Mt∗∗−1

Dt∗∗−1

≤ ∥x− c∗∥2 +Dt∗∗−1

Dt∗∗−1

≤ 2.

Therefore, t∗∗−t′ ≤ L·(1+log2
√
2Ak). Consequently, the second sum, ΣI as well as ΣI+ΣII are

upper bounded by O((L logAk)/(εd)) = O(1/ε log k logAk). We obtained the following bound:

E
[
∥x− T (x)∥22
∥x− c∗∥22

| Tt∗

]
≤ O(1/ε log k logAk).

Therefore, Ak ≤ O(1/ε log k logAk). This recurrence relation gives us an upper bound of

O(1/ε log k log log k) on Ak. This concludes the proof overview of Theorem 4.2.

4.2.2 Expected Number of Leaves

We show that the expected number of leaves in the threshold tree given by our algorithm is at most

eδ/2k. Particularly, for δ ∈ (0, 1), the expected number of leaves is at most (1 + δ)k. We now give

an overview of the analysis. We provide a complete proof in Section 4.3.

In this section, we consider the case when the space is 1-dimensional. That is, all centers and

data points lie on the real line. Consider a fixed center c. Let Nc(T ) be the number of leaves in

tree T containing c. We show that E[Nc(T )] is at most eδ/2.
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Suppose c is assigned to node u at step t (note that c may be assigned to several nodes). Denote

the total number of centers assigned to u by k′ = |Cu|. We prove by induction on k′ that the

expected number of leaves to which u is assigned in the subtree rooted at u is at most (1+5ε)log2 k
′ .

If k′ = 1, then the claim trivially holds, since u is a leaf. Assume k′ > 1.

Our algorithm divides u into two parts uleft and uright. One of them contains the median mu.

We call that part the main child and denote it by u′. In turn, the main child u′ is also divided

into two parts, one of them – denoted by u′′ – is the main child of u′. We call the sequence of

nodes u, u′, u′′, . . . the main branch rooted at u. Note that the main child always contains at least

half of all centers assigned to its parent. This is the case, because mu is the median of all centers

assigned to u. Thus, the part containing mu contains at least half of all centers in Cu, and the other

(secondary) child contains at most half of all centers in Cu.

Suppose that center c is assigned to a node v in the main branch u, u′, u′′, . . . . When v is

divided into two parts, one of the following three events may occur: (1) c is assigned only to the

main child of v; (2) c is assigned to both the main and secondary children of v; (3) c is assigned

only to the secondary child of v. Denote these events by E1, E2, and E3, respectively. We estimate

the number of nodesw such that c is assigned tow, andw is a secondary child of a node in the main

branch. This number equals to the number of events E2 that occur in the main branch before the

first event E3 occurs plus 1. If the probabilities of events E1, E2, and E3 were the same for all nodes

in the main branch containing c, the expected number above would be equal to 1/Pr(E3 | E2∪E3).

Without loss of generality assume that mu = 0, then for ε ≤ 1/10, we have

1

Pr(E3 | E2 ∪ E3)
=

Pr(E2 ∪ E3)
Pr(E3)

=
c2

(1− ε)2R2
t

/
c2

(1 + ε)2R2
t

=
(1 + ε)2

(1− ε)2
≤ 1 + 5ε.

Every secondary child w contains at most k′/2 centers. So, by the inductive hypothesis, the ex-
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pected number of leaves containing c in the subtree rooted at w is at most (1+5ε)⌊log2 k
′/2⌋. There-

fore, the expected number of leaves containing c in the subree rooted at u is at most

(1 + 5ε) · (1 + 5ε)⌊log2 k
′/2⌋ ≤ (1 + 5ε)⌊log2 k

′⌋.

This concludes the proof of the inductive claim. We now observe that

E[Nc(T )] ≤ (1 + 5ε)⌊log2 k⌋ ≤ eδ/2

for ε ≤ δ
15 ln k

.

4.3 Expected Number of Leaves

In this section, we prove a bound the expected number of leaves in the threshold tree constructed

by our algorithm. Our algorithm assigns all centers c1, . . . , ck to the root r of the threshold tree

T . Then, it recursively divides centers assigned to every node u between its children. However,

centers in a narrow strip Left ∩ Right are shared by the both children of node u. Thus, the total

number of leaves in the threshold tree T may be larger than k. Let N(T ) be the number of leaves

in T . We show an upper bound of eδ/2k on the expected number of leaves E[N(T )], where the

expectation is over the randomness of our algorithm.

Theorem 4.4. For every set of centers c1, c2, . . . , ck in Rd and every δ ∈ (0, ln k/32), the expected

number of leaves in the threshold tree T given by our algorithm is at most

ET [N(T )] ≤ eδ/2k.
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In particular, for δ ∈ (0, 1),

ET [N(T )] ≤ (1 + δ)k.

Proof. For every center c, we bound the expected number of leaves containing c by eδ/2. Consider

a fixed center c. For a node u in the threshold tree T , let Nu
c (T ) denote the number of leaves in

the subtree of T rooted at node u to which center c is assigned to.

Definition 4.3.1. For every integer k′ ∈ {1, 2, . . . , k}, let Bk′ be the minimum number such that

the following inequality holds for every partially built tree Tt and every leaf u with |Cu| ≤ k′ in Tt

to which center c is assigned,

E[Nu
c (T ) | Tt] ≤ Bk′ .

That is, Bk′ is an upper bound on the expected number of leaves in the subtree rooted at u that

contain c if at most k′ centers are assigned to u. To prove Theorem 4.4, it is sufficient to show that

Bk is at most 1 + δ. We derive the following recurrence relation on Bk′ .

Lemma 4.5. The upper bound on the expected number of leaves Bk′ satisfies the following recur-

rence relation:

B1 = 1, (4.7)

Bk′ ≤ (1 + 5ε)B⌊k′/2⌋, (4.8)

where ε = min{δ/15 ln k, 1/384}.

Proof. It is easy to see that B1 = 1, because if c is the only center assigned to node u, then u is

a leaf and Nu
c (T ) = 1. We now prove (4.8). Consider a partially built tree Tt, node u in Tt, and

center c in Xu for which inequality (4.3.1) is tight i.e., Bk′ = E[Nu
c (T ) | Tt].
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Examine the call of function Divide-and-Share that splits node u. Let it be the coordinate

randomly chosen for this call of function Divide-and-Share. Without loss of generality, we assume

that ci ≥ mu
i . If σt is negative, then center c is assigned only to the right child of u. In this case,

the expected number of leaves containing c in the subtree rooted at u is at most Bk′ .

We now consider the case when σt = 1. Define three disjoint events: (1) center c is assigned

only to the left child of u and σt = 1; (2) center c is assigned to both children of u and σt = 1; (3)

center c is assigned only to the right child of u and σt = 1. Denote these events by E1, E2, and E3,

respectively.

The number of centers assigned to node u is k′. Thus, the number of centers assigned to each

child of u is at most k′. Moreover, if σt = 1, the number of centers assigned to the right child uright

of u is at most ⌊k′/2⌋, because mu is the median of all centers in Cu and for all centers c′ assigned

to uright, c′i > mu
i . Hence, if event E1 occurs, then the expected number of leaves containing c in

the subtree rooted at u is bounded by Bk′ . If event E2 occurs, then the expected number of leaves

containing c in the subtree rooted at u is bounded by Bk′ +B⌊k′/2⌋. Finally, if event E3 occurs, then

the expected number of leaves containing c in the subtree rooted at u is bounded by B⌊k′/2⌋. Thus,

E[Nu
c (T ) | Tt] ≤ 1/2Bk′ +Bk′ Pr(E1 | Tt) +

(
Bk′ +B⌊k′/2⌋

)
Pr(E2 | Tt) +B⌊k′/2⌋ Pr(E3 | Tt)

=
(
(1/2 + Pr(E1 | Tt) + Pr(E2 | Tt)

)
Bk′ +

(
Pr(E2 | Tt) + Pr(E3 | Tt)

)
B⌊k′/2⌋.

Since 1/2 + Pr(E1 | Tt) + Pr(E2 | Tt) + Pr(E3 | Tt) = 1, we have

Bk′ = E[Nu
c (T ) | Tt] ≤

(
(1− Pr(E3 | Tt)

)
Bk′ +

(
Pr(E2 | Tt) + Pr(E3 | Tt)

)
B⌊k′/2⌋.
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Thus,

Bk′ ≤
Pr(E2 ∪ E3 | Tt)

Pr(E3 | Tt)
B⌊k′/2⌋.

Compute Pr(E2 ∪ E3 | Tt) and Pr(E3 | Tt):

Pr(E2 ∪ E3 | Tt) =
1

2d

d∑
i=1

Pr
(
|ci −mt

i| ≥ (1− ε)
√
θtRt

)
=

1

2d

d∑
i=1

(ci −mt
i)

2

(1− ε)2R2
t

;

Pr(E3 | Tt) =
1

2d

d∑
i=1

Pr
(
|ci −mt

i| ≥ (1 + ε)
√
θtRt

)
=

1

2d

d∑
i=1

(ci −mt
i)

2

(1 + ε)2R2
t

.

Therefore, we have

Bk′ ≤ B⌊k′/2⌋ ·
d∑

i=1

(ci −mt
i)

2

(1− ε)2R2
t

/
d∑

i=1

(ci −mt
i)

2

(1 + ε)2R2
t

=
(1 + ε)2

(1− ε)2
B⌊k′/2⌋ ≤ (1 + 5ε)B⌊k′/2⌋.

where the last inequality holds because ε ≤ 1/10.

We now bound the expected number of leaves in the threshold tree T . By Lemma 4.5, the

expected number of leaves containing center c in the threshold tree T is at most

E[N r
c (T )] ≤ Bk ≤ (1 + 5ε)⌊log2 k⌋ ·B1 ≤

(
1 +

δ

3 ln k

)log2 k
≤
(
e

δ
3 ln k

)log2 k < eδ/2.

Since eδ/2 < 1 + δ for δ ∈ (0, 1), we have for δ ∈ (0, 1)

E[N r
c (T )] ≤ eδ/2 ≤ 1 + δ.



106

4.4 Approximation Factor

We now prove Theorem 4.3. Our proof follows the outline given in Section 4.2. We fix a point x,

step t∗, and estimate E[∥x− T (x)∥22 | Tt∗ ]. Let c∗ = Tt∗(x) be the tentative center assigned to x at

step t∗. As in Section 4.2, let ut be the leaf node of Tt that contains x, Ct = Cut , Rt = Rut , and

mt = mut . We denote the diameter of Ct by Dt.

4.4.1 Bounds on the Diameter

We prove several facts about the diameter Dt. First, we show that Dt ≈ Rt.

Lemma 4.6. For every leaf node u in a partially built tree Tt, we have

1/
√
2Ru ≤ Du ≤ 2Ru.

Proof. The second bound easily follows from the triangle inequality: for every c′ and c′′ in Cu,

∥c′ − c′′∥2 ≤ ∥c′ −mu∥2 + ∥mu − c′′∥2 ≤ 2Ru.

We now show the first bound. Let c be the farthest center in Cu from mu. Then, Ru = ∥c−mu∥2.

Consider a center c′ in Cu. The distance between c and c′ is upper bounded by Du because Du is

the diameter of Cu. Hence, for each c′ in Cu, we have ∥c− c′∥22 ≤ D2
u. Thus,

D2
u ≥ Avgc′∈Cu

∥c− c′∥22 = Avgc′∈Cu

d∑
i=1

|ci − c′i|2 =
d∑

i=1

Avgc′∈Cu
|ci − c′i|2,
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where Avgc′∈Cu
f(c′) denotes the average of f over c′ in Cu. Observe that

Avgc′∈Cu
|ci − c′i|2 ≥ 1/2|ci −mu

i |2.

This is because mu is the median point in Cu, consequently, at least a half of all points c′ ∈ Cu are

on the other side of the hyperplane {x : xi = mu
i } from c (including centers c′ on the hyperplane).

For these centers c′, we have |ci − c′i| ≥ |ci −mu
i |. Therefore,

D2
u ≥

d∑
i=1

Avgc′∈Cu
|ci − c′i|2 ≥ 1/2

d∑
i=1

|ci −mu
i |2 = 1/2R2

u.

We prove that the diameter Dt is exponentially decaying with t. To this end, we estimate the

probability that two centers c′ and c′′ with ∥c′ − c′′∥2 ≥ Dt/2 are separated at step t. We say that

two centers c′, c′′ ∈ Ct are separated at step t if c′ /∈ Ct or c′′ /∈ Ct.

Lemma 4.7. For every two centers c′, c′′ ∈ Ct at distance at least Dt/2,

Pr
{
c′ /∈ Ct+1 or c′′ /∈ Ct+1 | Tt

}
≥ 1/128d.

Proof. Suppose, at step t, the algorithm picks coordinate it = i. For every two centers c′, c′′ ∈ Ct,

we consider the following two cases: (1) c′ and c′′ are on the same side of the median mt in

coordinate i (i.e. sign(c′i −mt
i) = sign(c′′i −mt

i)), and (2) c′ and c′′ are on the opposite sides of the

median mt in coordinate i (i.e. sign(c′i −mt
i) = − sign(c′′i −mt

i)).

Consider the first case, when c′ and c′′ are on the same side of the median mt in coordinate

i. Without loss of generality, assume that c′′i ≥ c′i ≥ mt
i. Observe that if σt = 1, c′′i − mt

i >

(1 + ε)Rt

√
θt, and c′i − mt

i ≤ (1 − ε)Rt

√
θt, then centers c′ and c′′ are separated at step t. Let
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Et,i,c′ = {it = i, σt = 1} be the event that the threshold cut at step t is in coordinate i and σt = 1.

Then, the conditional probability that c′ and c′′ are separated given Et,i,c′ is

Pr
[
c′i −mt

i ≤ (1− ε)Rt

√
θt & c′′i −mt

i > (1 + ε)Rt

√
θt | Tt, Et,i,c′

]
= Pr

{
θt ∈

[ (c′i −mt
i)

2

(1− ε)2R2
t

,
(c′′i −mt

i)
2

(1 + ε)2R2
t

]}
=

(
(c′′i −mt

i)
2

(1 + ε)2R2
t

− (c′i −mt
i)

2

(1− ε)2R2
t

)+

,

where (x)+ denotes max{x, 0}.

Now, consider the second case, when c′ and c′′ are on the opposite sides of the median mu in

coordinate i. Assume without loss of generality that c′′i ≥ mt
i ≥ c′i and |c′′i −mt

i| ≥ |c′i −mt
i|. If

c′′i −mu
i ≥ (1+ε)Rt

√
θt and σt = 1, then c′ and c′′ are separated at this step. Thus, the conditional

probability that c′ and c′′ are separated given it = i and parameter σt = 1 is at least

Pr
(
c′′i −mt

i ≥ (1 + ε)Rt

√
θt | Tt, it = i, σt = 1

)
=

(c′′i −mt
i)

2

(1 + ε)2R2
t

.

Define

ai = min
{
|c′i −mt

i|, |c′′i −mt
i|
}

and bi = max
{
|c′i −mt

i|, |c′′i −mt
i|
}
.

Let I1, I2 ⊂ {1, 2, . . . , d} be the set of indices i for which c′i and c′′i lie on the same side and
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opposite sides of mt, respectively. Then,

Pr
{
c′ /∈ Ct+1 or c′′ /∈ Ct+1 | Tt

}
≥

≥ 1

2d

∑
i∈I1

( b2i
(1 + ε)2R2

t

− a2i
(1− ε)2R2

t

)+
+

1

2d

∑
i∈I2

b2i
(1 + ε)2R2

t

.

Now observe that

1

2d

∑
i∈I1

( b2i
(1 + ε)2R2

t

− a2i
(1− ε)2R2

t

)+
≥

≥ 1

2dR2
t

∑
i∈I1

b2i
(1 + ε)2

− a2i
(1− ε)2

≥ 1

2dR2
t

∑
i∈I1

b2i − a2i − (2εb2i + 3εa2i ).

Similarly, we have
1

2d

∑
i∈I2

b2i
(1 + ε)2R2

t

≥
∑

i∈I2 b
2
i − 2εb2i

2R2
td

.

When c′ and c′′ are on the same side of mt in coordinate i, we have

b2i − a2i = (bi − ai)(bi + ai) ≥ (bi − ai)
2 = (c′i − c′′i )

2.

When c′ and c′′ are on the opposite side of mt in coordinate i, we have

4b2i ≥ (bi + ai)
2 = (c′i − c′′i )

2.

Note that
∑d

i=1 b
2
i + a2i =

∑d
i=1(c

′
i −mt

i)
2 + (c′′i −mt

i)
2 = ∥c′ −mt∥22 + ∥c′′ −mt∥22. Therefore,
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the probability that c′ and c′′ are separated at step t is at least

Pr (c′ /∈ Ct+1 or c′′ /∈ Ct+1 | Tt) ≥
d∑

i=1

(c′i − c′′i )
2

8dR2
t

− 2εb2i + 3εa2i
2dR2

t

≥ ∥c′ − c′′∥22
8R2

td
− 6ε

2d
.

where the second inequality is due to
∑d

i=1 2εb
2
i + 3εa2i ≤

∑d
i=1 3εb

2
i + 3εa2i ≤ 3ε∥c′ −mt∥22 +

3ε∥c′′ −mt∥22 ≤ 6εR2
t . We conclude that for centers c′ and c′′ with ∥c′ − c′′∥22 ≥ D2

t /4, we have

Pr (c′ /∈ Ct+1 or c′′ /∈ Ct+1 | Tt) ≥
1

2d
·
( D2

t

16R2
t

− 5ε
)

≥ 1

2d
·
( 1

32
− 5ε

)
≥ 1

128d
.

Here, we used that Dt ≥ 1/
√
2Rt and ε ≤ 1/384.

We obtain the following corollary from Lemma 4.6.

Lemma 4.8. Let L = ⌈640d ln k⌉. Then, for every t, we have

Pr (Dt+L ≥ Dt/2 | Tt) ≤
1

k3
.

Proof. Consider a fixed time step t. Suppose the distance between centers c′ and c′′ is at least

Dt/2. Since the diameter Dt is non-increasing as t increases, the distance between c′ and c′′ is

greater than Dt′/2 for any step t′ ≥ t. By Lemma 4.7, the probability that these centers c′ and c′′

are separated at step t′ is at least 1/128d.

Thus, these two centers c′ and c′′ are not separated in ⌈640d ln k⌉ steps from step t with proba-

bility at most (
1− 1

128d

)640d ln k

≤ e−5 ln k.
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Since there are at most
(
k
2

)
pairs of centers with distance greater than Dt/2, by the union bound

over all such pairs, we have for L = ⌈640d ln k⌉

Pr (Dt+L ≥ Dt/2 | Tt) ≤
(
k

2

)
· e−5 ln k ≤ 1

k3
.

To simplify the exposition, we define a stopping time t∗∗. Let t∗∗ be the first step t > t∗ of the

algorithm when one of the following happens: (A) Dt ≤ ∥x − c∗∥2 (note: if c∗ is the only center

remaining in Ct, then Dt = 0); (B) x and c∗ are separated before step t (i.e., c∗ /∈ Ct); or (C)

Dt > Dt−L′/2 and t ≥ t∗+L′ for L′ = ⌈1280d ln k⌉. For some step t, Ct contains only one center

and Dt = 0. Thus, the stopping time t∗∗ is well-defined. We show that it is very unlikely that the

case (C) happens, i.e. Dt∗∗ > Dt∗∗−L′/2 and t∗∗ ≥ t∗ + L′.

Corollary 4.9. Let L′ = ⌈1280d ln k⌉ be twice as large as L in Lemma 4.8. Then,

Pr (Dt∗∗ > Dt∗∗−L′/2 & t∗∗ ≥ t∗ + L′ | Tt∗) ≤
1

k
.

Proof. Let L = ⌈640d ln k⌉ be as in Lemma 4.8. We consider the set of steps

SL = {t ≤ t∗∗ : t = t∗ + Lz, z ≥ 1}.

By Lemma 4.8, we have for each step t = t∗ + Lz in this set SL

Pr (Dt > Dt−L/2 | Tt−L) ≤
1

k3
.

We consider every step t = t∗ + L′z for z ≥ 1. If Dt > Dt−L′/2, then we have t∗∗ ≤ t. If
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Dt ≤ Dt−L′/2, then we must separate at least one center from Ct−L′ in L′ steps, which means

|Ct| < |Ct−L′|. Since there are at most k centers in Ct∗ , we have at most k such steps t with

Dt ≤ Dt−L′/2. Thus, we have t∗∗ ≤ t∗ + L′k = t∗ + 2kL. Then, the set of steps SL contains

at most 2k steps. By the union bound over all steps t ∈ SL, we have Dt ≤ Dt−L/2 for all steps

t ∈ SL with probability at least 1 − 1/k. Suppose that Dt ≤ Dt−L/2 holds for all steps t ∈ SL.

For every t∗ + L′ ≤ t ≤ t∗∗, there exists a t′ ∈ SL such that t− L′ ≤ t′ − L < t′ ≤ t. Since Dt is

a non-increasing sequence, we have for every t∗ + L′ ≤ t ≤ t∗∗

Dt ≤ Dt′ ≤ Dt′−L/2 ≤ Dt−L′/2.

Therefore, we have Dt∗∗ > Dt∗∗−L′/2 and t∗∗ ≥ t∗ + L′ with probability at most 1/k.

4.4.2 Cost of Separation

In this section, we complete the proof of Theorem 4.3. The proof is similar to the overview we

gave in Section 4.2. The key difference is that we no longer assume that the distance from x to the

nearest fallback center does not depend on the cut that separates x and c∗.

To simplify the exposition, from now on, we shall assume that c∗i ≥ xi for all i. We make this

assumption without loss of generality, because if c∗i < xi for some i, we can mirror all centers c in

C and point x across the hyperplane {yi = 0}, or, in other words, we can change the sign of the

i-th coordinate for all centers c in C and point x. This transformation does not affect the algorithm

but makes c∗i ≥ xi.

For every (i, η) with xi ≤ η < ci, define Mt(i, η) as follows: Mt(i, η) equals the distance from

x to the closest center c′ in Ct with c′i ≤ η. If there are no centers c′ in Ct with c′i ≤ η, then we let
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Mt(i, η) = ∞. Observe that if x and c∗ are separated at step t, then

xi ≤ mt
i + σt

√
θtRt < mt

i + σt
√
θtRt + ε

√
θtRt︸ ︷︷ ︸

ηt

< c∗i ,

where i is the coordinate chosen at step t. Thus, if x and c∗ are separated at step t, the distance

from x to the fallback center is Mt(i, ηt), where ηt = mt
i + σt

√
θtRt + ε

√
θtRt.

At each step t, our algorithm calls function Divide-and-Share with parameters (it, σt, θt) to split

node ut. Let ωt = (it, ξt) be the cut chosen by the algorithm for node ut where ξt = mt
i+σt

√
θtRt;

ωt is undefined (ωt =⊥), if the algorithm does not make any cut at step t. Note that the cut ωt is

determined by the tuple (it, σt, θt). Then, x and c∗ are separated at step t by the tuple (i, σ, θ) if

c∗ ∈ Ct, ωt = (i,mt
i + σ

√
θRt) and xi ≤ ξt < ηt < c∗i .

We define a penalty function Zt(i, σ, θ) for every tuple (i, σ, θ) with i ∈ {1, 2 . . . , d}, σ ∈

{±1}, θ ∈ (0, 1) as follows:

Zt(i, σ, θ) =


E
[
∥x− T (x)∥22 | Tt, ωt = (i,mt

i + σ
√
θRt)

]
, if (i, σ, θ) separates x & c∗ at step t;

0, otherwise.

In other words, Zt(i, σ, θ) equals 0 if the tuple (i, σ, θ) does not separate x and c∗ at step t. Other-

wise, it is equal to the expected cost of x in the final tree T assuming that the algorithm chooses

the tuple (i, σ, θ) at step t. Note that if x and c∗ are already separated at step t, then Zt(i, σ, θ) = 0.

Claim 4.10. For every step t and every tuple (i, σ, θ), we have

Zt(i, σ, θ) ≤ min
{
2∥x− c∗∥22 + 2D2

t , Ak M
2
t (i, η)

}
,

where η = mt
i + (σ + ε)

√
θRt.
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Proof. If x and c∗ are not separated by the tuple (i, σ, θ) at step t or x and c∗ are already separated

at step t, then we have Zt(i, σ, θ) = 0. Thus, we only need to consider the case when x and c∗ are

separated by the tuple (i, σ, θ) at step t. By the triangle inequality, we have

∥x− T (x)∥22 ≤ (∥x− c∗∥2 + ∥c∗ − T (x)∥2)2 ≤ (∥x− c∗∥2 +Dt)
2 ≤ 2∥x− c∗∥2 + 2D2

t .

By Definition 4.2.2 of the approximation factor Ak, we have

Zt(i, σ, θ) = E
[
∥x− T (x)∥22 | Tt, ωt = (i,mt

i + σ
√
θRt)

]
≤ Ak∥x− Tt+1(x)∥22 = AkM

2
t (i, η).

Combining these two bounds, we get the conclusion.

Our goal is to show thatAk ≤ O(1/ε log k log log k). We prove Lemma 4.11, which provides the

following recurrence relation on Ak: Ak ≤ max{4, Ak/k}+ α/ε log k logAk. Using this recurrence

relation, we get the desired bound on Ak.

Lemma 4.11. For some absolute constant α, we have

E
[
∥x− T (x)∥22
∥x− c∗∥22

| Tt∗

]
≤ max{4, Ak/k}+ α/ε log k logAk. (4.9)

Proof. Let t∗∗ be the stopping time from Corollary 4.9: t∗∗ is the first step t when (A) Dt ≤

∥x− c∗∥2 (note: if c∗ is the only center remaining in Ct, then Dt = 0); (B) x and c∗ are separated

before step t (i.e., c∗ /∈ Ct); or (C) Dt > Dt−L′/2 (where L′ = O(d ln k) as in Corollary 4.9;

t ≥ t∗ + L′). Let EA, EB, and EC be events corresponding to the the stopping rules (A), (B), and
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(C):

EA =
{
Dt∗∗ ≤ ∥x− c∗∥2 & c∗ ∈ Ct∗∗

}
;

EB =
{
x & c∗ are separated at step t∗∗ − 1

}
;

EC =
{
Dt∗∗ > Dt∗∗−L′/2 & t∗∗ ≥ t∗ + L′} \ (EA ∪ EB).

Note that EA, EB, and EC are disjoint collectively exhaustive events (one of them must always

occur) and by Corollary 4.9, Pr(EC | Tt∗) ≤ 1/k. We further partition EB into disjoint events

EB,t = {x & c∗ are separated at step t}.

If event EA occurs, then the eventual cost of x is at most (∥x − c∗∥2 + Dt∗∗)
2 ≤ 4∥x − c∗∥22

because every center in Ct∗∗ is at distance at most ∥x − c∗∥2 +Dt∗∗ from x. If event EB,t occurs,

then the expected cost of x is upper bounded by Z(it, σt, θt). Finally, if event EC occurs, then the

expected cost of x in T is upper bounded by Ak∥x− c∗∥22 (because c∗ is the tentative center for x

at step t∗∗). We have

E
[
∥x− T (x)∥22 | Tt∗

]
≤ 4∥x− c∗∥22 · Pr(EA | Tt∗) + Ak∥x− c∗∥22 · Pr(EC | Tt∗)

+
∞∑

t=t∗

E
[
Zt(it, σt, θt) | EB,t, Tt∗

]
Pr(EB,t | Tt∗)

≤ max{4, Ak/k} · ∥x− c∗∥22 +
∞∑

t=t∗

E
[
(Zt(it, σt, θt)− 4∥x− c∗∥22) · 1(EB,t) | Tt∗

]
.

Let Z̃t(it, σt, θt) = max{Zt(it, σt, θt)− 4∥x− c∗∥22, 0}. Then,

E
[
∥x− T (x)∥22
∥x− c∗∥22

| Tt∗

]
≤ max{4, Ak/k}+

∞∑
t=t∗

E
[
Z̃t(it, σt, θt)

∥x− c∗∥22
· 1(EB,t) | Tt∗

]
.
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Our goal is to upper bound the second term by α/ε log k logAk. Write,

E
[
Z̃t(it, σt, θt) · 1(EB,t) | Tt∗

]
=

d∑
i=1

E

[∫ 1

0

Z̃t(i,−1, θ) + Z̃t(i, 1, θ)

2d
dθ · 1{t < t∗∗} | Tt∗

]
.

(4.10)

Here, we used that parameters it, σt, and θt are randomly chosen from {1, . . . , d}, {±1}, and [0, 1],

respectively. We need the following lemma, which we prove in Section 4.4.3.

Lemma 4.12. For every i, we have

∫ 1

0

Z̃t(i,−1, θ) + Z̃t(i, 1, θ)

2
dθ ≤ c∗i − xi

ε(1− ε)

∫ c∗i

xi

min{2D2
t , AkM

2
t (i, η)}

R2
t

dη.

Using Lemma 4.12, we can upper bound (4.10) as follows

E
[
Z̃t(it, σt, θt) · 1(EB,t) | Tt∗

]
≤ 1

d

d∑
i=1

c∗i − xi
ε(1− ε)

E
[ t∗∗−1∑

t=t∗

∫ c∗i

xi

min{2D2
t , AkM

2
t (i, η)}

R2
t

dη | Tt∗

]

=
1

d

d∑
i=1

c∗i − xi
ε(1− ε)

∫ c∗i

xi

E
[ t∗∗−1∑

t=t∗

min{2D2
t , AkM

2
t (i, η)}

R2
t

| Tt∗

]
dη

≤ 1

d

d∑
i=1

2(c∗i − xi)
2

ε
max

η∈[xi,c∗i ]
E
[ t∗∗−1∑

t=t∗

min{2D2
t , AkM

2
t (i, η)}

R2
t

| Tt∗

]
.

We now show that for every η ∈ [xi, c
∗
i ] the following bound holds with probability 1:

t∗∗−1∑
t=t∗

min{2D2
t , AkM

2
t (i, η)}

R2
t

≤ O(d log k logAk). (4.11)

This will conclude the proof of Lemma 4.11 because (4.11) implies that

E
[
Z̃t(it, σt, θt)·1(EB,t) | Tt∗

]
≤ 1

d

d∑
i=1

2(c∗i − xi)
2

ε
·O(d log k logAk) =

2∥c∗ − x∥22
ε

·O(log k logAk).
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Lemma 4.13. Inequality (4.11) holds with probability 1.

Proof. By Lemma 4.6, Rt ≥ Dt/2. Thus,

t∗∗−1∑
t=t∗

min{2D2
t , AkM

2
t (i, η)}

R2
t

≤ 8
t∗∗−1∑
t=t∗

min{D2
t , AkM

2
t (i, η)}

D2
t

= 8
t∗∗−1∑
t=t∗

min
{
1,
AkM

2
t (i, η)

D2
t

}
.

Let

ft(i, η) =
AkM

2
t (i, η)

D2
t

.

Observe that Mt(i, η) is a non-decreasing sequence and Dt is a non-increasing sequence for fixed

i, η and t ∈ {t∗, . . . , t∗∗ − 1}. Moreover, by the definition of stopping time t∗∗, Dt ≤ Dt−L′/2

for t ∈ {t∗ + L′, . . . , t∗∗ − 1}, where L′ = O(d log k) (see stopping rule (C)). Hence, ft(i, η) is

a non-decreasing sequence, and ft(i, η) ≥ 4ft−L′(i, η) for t ∈ {t∗ + L′, · · · , t∗∗ − 1}. Let t′ be

the first step t in [t∗, t∗∗ − 1] when ft′(i, η) ≥ 1. If ft(i, η) < 1 for all t ∈ {t∗, · · · , t∗∗ − 1}, then

t′ = t∗∗. We have

1

8

t∗∗−1∑
t=t∗

min{2D2
t , AkM

2
t (i, η)}

R2
t

≤
t∗∗−1∑
t=t∗

min{1, ft(i, η)} =
t′−1∑
t=t∗

ft(i, η)︸ ︷︷ ︸
ΣI

+
t∗∗−1∑
t=t′

1︸ ︷︷ ︸
ΣII

.

The first sum (ΣI) on the right hand side is upper bounded by 2L′ · ft′(i, η), because ft(i, η) ≥

4ft−L′(i, η) for t < t∗∗. In turn, 2L′ · ft′(i, η) ≤ 2L′ = O(d log k), because ft(i, η) ≤ 1 for t < t′.

The second sum (ΣII) equals t∗∗ − t′. Since ft(i, η) ≥ 4ft−L′(i, η) for every t ∈ [t∗ + L′, t∗∗ − 1],

we have

⌊
(t∗∗ − 1)− t′

L′

⌋
≤ log4

ft∗∗−1(i, η)

ft′(i, η)
≤ log4 ft∗∗−1(i, η) = log4

(
AkM

2
t∗∗−1(i, η)

D2
t∗∗−1

)
.
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It remains to show that Mt∗∗−1(i, η) = O(Dt∗∗−1) and thus

t∗∗ − t′ = O(L′ logAk) = O(d log k logAk).

We have, Mt∗∗−1(i, η) ≤ ∥x − c∗∥2 + Dt ≤ 2Dt, where we used that for every t < t∗∗, Dt >

∥x− c∗∥2 (see stopping rule (C)). This finishes the proof of Lemma 4.13.

4.4.3 Proof of Lemma 4.12

We first make the following simple but crucial observation.

Claim 4.14. If Z̃t(i, σ, θ) > 0, then for η = mt
i + (σ + ε)

√
θRt, we have

|η −mt
i| ≡ |(σ + ε)

√
θRt| ≤

c∗i − xi
ε

.

Proof of Claim 4.14. If Z̃t(i, σ, θ) > 0, then the cut with parameters i, σ, θ separates x and c∗

(otherwise, Zt(i, σ, θ) and Z̃t(i, σ, θ) would be equal to 0). That is, xi ≤ mt
i + σ

√
θRt and c∗i >

mt
i + (σ + ε)

√
θRt. Write,

c∗i − xi = (c∗i −mt
i)− (xi −mt

i) > (σ + ε)
√
θRt − σ

√
θRt = ε

√
θRt.

Hence,

|(σ + ε)
√
θRt| =

|σ + ε|
ε

· ε
√
θRt <

|σ + ε|
ε

(c∗i − xi).
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Proof of Lemma 4.12. We have

∫ 1

0

Z̃t(i,−1, θ) + Z̃t(i, 1, θ)

2
dθ =

1

2

∑
σ∈{±1}

∫ 1

0

Z̃t(i, σ, θ) dθ.

Make the substitutions ησ = mt
i + (σ + ε)Rt

√
θ. Then, dθ = 2(ησ−mt

i)

(σ+ε)2R2
t
dησ and

∫ 1

0

Z̃t(i,−1, θ) + Z̃t(i, 1, θ)

2
dθ =

∑
σ∈{±1}

∫ mt
i+(σ+ε)Rt

mt
i

Z̃t(i, σ, θ)

(σ + ε)2R2
t

· (ησ −mt
i) dησ.

By Claim 4.12, |ησ − mt
i| ≤ |σ + ε|/ε · (c∗i − xi). Since Z(i, σ, θ) ≥ 0, we have Z̃(i, σ, θ) =

max{Zt(it, σt, θt)−4∥x−c∗∥22, 0} ≤ Z(i, σ, θ). As we discuss in the previous section, Z̃(i, σ, θ) ≤

Z(i, σ, θ) ≤ min{2D2
t , AkM

2
t (i, ησ)} (see Claim 4.10). Also, if ησ /∈ [xi, c

∗
i ], then x and c∗ are not

separated by the tuple (i, σ, θ), which implies Z̃(i, σ, θ) = 0. Thus,

∫ 1

0

Z̃t(i,−1, θ) + Z̃t(i, 1, θ)

2
dθ ≤ c∗i − xi

ε(1− ε)

∫ c∗i

xi

min{2D2
t , AkM

2
t (i, η)}

R2
t

dη.

This concludes the proof of Lemma 4.12.
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CHAPTER 5

CONCLUSION AND OPEN PROBLEMS

5.1 Conclusion

Clustering, as a fundamental task in data analysis, is widely used in business, engineering, and

science. In practice, centroid-based clustering is one of the most popular clustering methods,

including k-means and k-medians. Efficient algorithms like k-means++ and k-means∥ achieve

good approximations for these clustering. However, the k-means and k-medians clustering form a

Voronoi partition of the entire space, which usually has complicated boundaries. Thus, the regular

k-means and k-medians clustering is not necessarily easy to understand by humans. This thesis

focus on explainable clustering with k-means and k-medians objective proposed by Dasgupta et al.

(2020). We design new approximation algorithms for these explainable clustering problems. We

give a bi-criteria approximation algorithm for explainable k-means, which captures the tradeoff

between accuracy and explainability. We hope our work will help further studies in explainable

artificial intelligence(XAI), which creates comprehensible and trustworthy results and output by

using machine learning algorithms.

5.2 Open Problems

We list below several interesting open problems.

Better Bounds on the Price of Explainability: For explainable k-medians in ℓ1, we show that

the RANDOMCOORDINATECUT algorithm achieves the tight competitive ratio. An open problem

is whether we can improve the bounds on the Price of Explainability for k-means and k-medians



121

in ℓ2 and also the bounds for bi-criteria explainable k-means. Gupta et al. (2023) improved the

competitive ratio for explainable k-means from O(k log k) to O(k log log k). The lower bound of

the price of explainability for k-means is Ω(k). The upper bound and lower bound of the price of

explainability for k-medians in ℓ2 are O(log3/2 k) and Ω(k) respectively.

Approximation of the Optimal Explainable Clustering: Recently, Bandyapadhyay et al.

(2022) and Laber (2022) proposed the following problem: Can we get better approximation ratios

compared to the cost of the optimal explainable clustering instead of the unconstrained clustering?

Gupta et al. (2023) showed that the explainable k-medians and k-means are hard to approximate

better thanO(log k) unless P=NP. An open problem is whether we can approximate the explainable

k-means better than Õ(k), which is the upper bound of the price of explainability for k-means.

Hierarchical Explainable Clustering: An interesting observation is that the threshold tree

naturally creates hierarchical clustering. Hierarchical clustering can describe the data at many

levels of granularity. It is known that there exists a hierarchical clustering for k-centers Dasgupta

and Long (2005) and k-medians Plaxton (2006) such that for every k, the induced k clustering is

a constant approximation to the optimal k clustering. However, the hierarchical clustering given

by these algorithms is not necessarily explainable in terms of the boundaries of clusters. Thus, an

open problem is to find a threshold tree to provide a good hierarchical clustering for k-medians

and k-means.

Shallow Threshold Tree: The threshold decision tree is easy to understand by humans because

it uses only k threshold cuts to partition the space. However, the depth of this decision tree can be

k − 1 in the worst case. The clusters corresponding to the leaves with smaller depths are easier to

understand since it depends on fewer threshold cuts. Thus, Laber et al. (2023) proposed to create a

shallow decision tree to describe clusters. They provided a heuristic algorithm that achieves lower

or equivalent costs with considerably shallower trees compared to previous explainable clustering
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algorithms by Dasgupta et al. (2020); Frost et al. (2020); Laber and Murtinho (2021). Recently,

Deng et al. (2023) found an instance in R2, for which there exists a decision tree with depth k − 1

achieves the same cost as the optimal unconstrained clustering, while any decision tree with k − 2

depth has an unbound cost. An interesting problem is whether we can get a good approximation

with a bi-criteria shallow threshold tree.

Well-Clusterable Instance: On real-world datasets, we observe that the greedy algorithm

by Dasgupta et al. (2020) usually achieves better performance than our algorithms. The heuristic

algorithm by Laber et al. (2023) finds a shallow decision tree with a shallower decision tree in

practice. A natural question is whether there exist some common properties in real-world datasets

such that we can achieve better approximation. Papanikolaou (2023) showed that the greedy al-

gorithm achieves a constant competitive ratio for k-means if the instance is a-separated for some

a ≥ 12k
√
d. However, the hard instance used in the lower bound for explainable k-means is also

k
√
d-separated. An open problem is whether there exist some other natural properties of real-world

instance or other explainable notion for clustering.
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Moses Charikar, Sudipto Guha, Éva Tardos, and David B Shmoys. A constant-factor approx-
imation algorithm for the k-median problem. In Proceedings of the thirty-first annual ACM
symposium on Theory of computing, pages 1–10, 1999.

Michael B Cohen, Sam Elder, Cameron Musco, Christopher Musco, and Madalina Persu. Dimen-
sionality reduction for k-means clustering and low rank approximation. In Proceedings of the
forty-seventh annual ACM symposium on Theory of computing, pages 163–172, 2015.

Vincent Cohen-Addad and Euiwoong Lee. Johnson coverage hypothesis: Inapproximability of k-
means and k-median in lp-metrics. In Proceedings of the 2022 Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 1493–1530. SIAM, 2022.

Vincent Cohen-Addad, Hossein Esfandiari, Vahab Mirrokni, and Shyam Narayanan. Improved
approximations for euclidean k-means and k-median, via nested quasi-independent sets. In Pro-
ceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing, pages 1621–
1628, 2022.

Sanjoy Dasgupta. The hardness of k-means clustering. Department of Computer Science and
Engineering, University of California, San Diego, 2008.



125

Sanjoy Dasgupta. UCSD CSE 291, Lecture Notes: Geometric Algorithms, 2013. URL:
https://cseweb.ucsd.edu/˜dasgupta/291-geom/kmeans.pdf. Last visited on
2020/06/01.

Sanjoy Dasgupta and Philip M Long. Performance guarantees for hierarchical clustering. Journal
of Computer and System Sciences, 70(4):555–569, 2005.

Sanjoy Dasgupta, Nave Frost, Michal Moshkovitz, and Cyrus Rashtchian. Explainable k-means
and k-medians clustering. In International Conference on Machine Learning, pages 7055–7065.
PMLR, 2020.

Chengyuan Deng, Surya Teja Gavva, Parth Patel, Karthik C. S., and Adarsh Srinivasan. Impossi-
bility of depth reduction in explainable clustering. arXiv preprint arXiv:2305.02850, 2023.

Dheeru Dua and Casey Graff. UCI ML repository, 2017. URL http://archive.ics.uci.
edu/ml.

Ron Elber. Kdd-Cup, 2004. URL http://osmot.cs.cornell.edu/kddcup/.

Hossein Esfandiari, Vahab Mirrokni, and Shyam Narayanan. Almost tight approximation algo-
rithms for explainable clustering. In Proceedings of the 2022 Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 2641–2663. SIAM, 2022.

Ricardo Fraiman, Badih Ghattas, and Marcela Svarc. Interpretable clustering using unsupervised
binary trees. Advances in Data Analysis and Classification, 7(2):125–145, 2013.

Nave Frost, Michal Moshkovitz, and Cyrus Rashtchian. Exkmc: Expanding explainable k-means
clustering. arXiv preprint arXiv:2006.02399, 2020.

Buddhima Gamlath, Xinrui Jia, Adam Polak, and Ola Svensson. Nearly-tight and oblivious al-
gorithms for explainable clustering. Advances in Neural Information Processing Systems, 34:
28929–28939, 2021.

Fabrizio Grandoni, Rafail Ostrovsky, Yuval Rabani, Leonard J. Schulman, and Rakesh Venkat.
A refined approximation for euclidean k-means. Information Processing Letters, 176:106251,
2022. ISSN 0020-0190.

Anupam Gupta, Madhusudhan Reddy Pittu, Ola Svensson, and Rachel Yuan. The price of explain-
ability for clustering. arXiv preprint arXiv:2304.09743, 2023.

John Frank Charles Kingman. Poisson processes, volume 3. Clarendon Press, 1992.

Eduardo Laber and Lucas Murtinho. On the price of explainability for some clustering problems.
In International Conference on Machine Learning. PMLR, 2021.

https://cseweb.ucsd.edu/~dasgupta/291-geom/kmeans.pdf
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://osmot.cs.cornell.edu/kddcup/


126

Eduardo Laber, Lucas Murtinho, and Felipe Oliveira. Shallow decision trees for explainable k-
means clustering. Pattern Recognition, 137:109239, 2023.

Eduardo Sany Laber. The computational complexity of some explainable clustering problems.
arXiv preprint arXiv:2208.09643, 2022.

Silvio Lattanzi and Christian Sohler. A better k-means++ algorithm via local search. In Interna-
tional Conference on Machine Learning, pages 3662–3671, 2019.

Euiwoong Lee, Melanie Schmidt, and John Wright. Improved and simplified inapproximability
for k-means. Information Processing Letters, 120:40–43, 2017.

Shi Li and Ola Svensson. Approximating k-median via pseudo-approximation. In proceedings of
the forty-fifth annual ACM symposium on theory of computing, pages 901–910, 2013.

Bing Liu, Yiyuan Xia, and Philip S Yu. Clustering via decision tree construction. In Foundations
and advances in data mining, pages 97–124. Springer, 2005.

Stuart Lloyd. Least squares quantization in pcm. IEEE Transactions on Information Theory, 28
(2):129–137, 1982.

Konstantin Makarychev and Liren Shan. Near-optimal algorithms for explainable k-medians and
k-means. In International Conference on Machine Learning, pages 7358–7367. PMLR, 2021.

Konstantin Makarychev and Liren Shan. Explainable k-means: don’t be greedy, plant bigger trees!
In Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing, pages
1629–1642, 2022.

Konstantin Makarychev and Liren Shan. Random cuts are optimal for explainable k-medians.
arXiv preprint arXiv:2304.09113, 2023.

Konstantin Makarychev, Yury Makarychev, Maxim Sviridenko, and Justin Ward. A bi-criteria
approximation algorithm for k-means. Approximation, Randomization, and Combinatorial Op-
timization. Algorithms and Techniques, 2016.

Konstantin Makarychev, Yury Makarychev, and Ilya Razenshteyn. Performance of johnson-
lindenstrauss transform for k-means and k-medians clustering. In Proceedings of the 51st Annual
ACM SIGACT Symposium on Theory of Computing, pages 1027–1038, 2019.

Konstantin Makarychev, Aravind Reddy, and Liren Shan. Improved guarantees for k-means++ and
k-means++ parallel. Advances in Neural Information Processing Systems, 33, 2020.

Nimrod Megiddo and Kenneth J Supowit. On the complexity of some common geometric location
problems. SIAM journal on computing, 13(1):182–196, 1984.



127

Rafail Ostrovsky, Yuval Rabani, Leonard J Schulman, and Chaitanya Swamy. The effectiveness of
lloyd-type methods for the k-means problem. In IEEE Symposium on Foundations of Computer
Science, pages 165–176, 2006.
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APPENDIX A

APPENDIX TO CHAPTER 2

A.1 Experiments of k-means++

In this section, we present plots that show that the performance of k-means∥ and “k-means++

with oversampling and pruning” algorithms are very similar in practice. Below, we compare the

following algorithms on the datasets BioTest from KDD Cup 2004 Elber (2004) and COVTYPE

from the UCI ML repository Dua and Graff (2017):

• Regular k-means++. The performance of this algorithm is shown with a solid black line on

the plots below.

• k-means∥ without pruning. This algorithm samples k centers using k-means∥ with T = 5

rounds and ℓ = k/T .

• k-means∥. This algorithm first samples 5k centers using k-means∥ and then subsamples k

centers using k-means++. The performance of this algorithm is shown with a dashed blue

line on the plots below.

• k-means++ with oversampling and pruning. This algorithm first samples 5k centers using

k-means++ and then subsamples k centers using k-means++. The performance of this algo-

rithm is shown with a thin red line on the plots below.

For each k = 5, 10, · · · , 200, we ran these algorithms for 50 iterations and took their average.

We normalized all costs by dividing them by the cost of k-means++ with k = 1000 centers.
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A.2 Lower Bounds for k-means++

A.2.1 Lower Bound on the Cost of Covered Clusters

We show the following lower bound on the expected cost of a covered cluster in k-means++.

Therefore, the 5-approximation in Lemma 2.2 is tight.

Theorem A.1. For any ε > 0, there exists an instance of k-means such that for a set P ∈ X

and a set of centers C ∈d, if a new center c is sampled from P with probability Pr(c = x) =
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cost(x,C)/cost(P,C), then

Ec [cost(P,C ∪ {c})] ≥ (5− ε)OPT1(P ).

Proof. Consider the following one dimensional example, where P contains t points at 0 and one

point at 1, and the closest center already chosen in C to P is at −1.

−1 0

t

1

1
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The new center c will be chosen at 0 with probability t
t+4

, and at 1 with probability 4
t+4

. Then,

the expected cost of P is

Ec [cost(P,C ∪ {c})] = 1 · t

t+ 4
+ t · 4

t+ 4
=

5t

t+ 4
;

and the optimal cost of P is OPT1(P ) ≤ 1. Thus, by choosing t ≥ 4(5− ε)/ε, we have

Ec [cost(P,C ∪ {c})] ≥ (5− ε)OPT1(P ).

A.2.2 Lower Bound on the Bi-Criteria Approximation

In this section, we show that the bi-criteria approximation bound of O(ln k
∆
) is tight up to constant

factor. Our proof follows the approach by Brunsch and Röglin (2013). We show the following

theorem.

Theorem A.2. For every k > 1 and ∆ ≤ k, there exists an instance X of k-means such that the

bi-criteria k-means++ algorithm with k +∆ centers returns a solution of cost greater than

1

8
log

k

∆
·OPTk(X)

with probability at least 1− e−
√
k/2.

Remark: This implies that the expected cost of bi-criteria k-means with k + ∆ centers is at

least
1− e−

√
k/2

8
· log k

∆
·OPTk(X).
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Proof. For every k and ∆ ≥
√
k, we consider the following instance. The first cluster is a scaled

version of the standard simplex with N ≫ k vertices centered at the origin, which is called the

heavy cluster. The length of the edges in this simplex is 1/
√
N − 1. Each of the remaining k − 1

clusters contains a single point on k − 1 axes, which are called light clusters. These clusters

are located at distance
√
α from the center of the heavy cluster and

√
2α from each other, where

α = ln(k/∆)
4∆

.

For the sake of analysis, let us run k-means++ till we cover all clusters. At the first step, the

k-means++ algorithm almost certainly selects a center from the heavy cluster since N ≫ k. Then,

at each step, the algorithm can select a center either from one of uncovered light clusters or from

the heavy cluster. In the former case, we say that the algorithm hits a light cluster, and in the latter

case we say that the algorithm misses a light cluster. Below, we show that with high probability

the algorithm makes at least 2∆ misses before it covers all but ∆ light clusters.

Lemma A.3. Let ∆ ≥
√
k. By the time the k-means++ algorithm covers all but ∆ light clusters,

it makes greater than 2∆ misses with probability at least 1− e−
√
k/2.

Proof sketch. Let ε = 1/
√
N . Observe that k-means++ almost certainly covers all clusters in εN

steps (since N ≫ k). So in the rest of this proof sketch, we assume that the number chosen centers

is at most εN and, consequently, at least (1 − ε)N points in the heavy cluster are not selected as

centers. Hence, the cost of the heavy cluster is at least 1− ε.

Consider a step of the algorithm when exactly u light clusters remain uncovered. At this step,

the total cost of all light clusters is αu (we assume for simplicity that distance between the light

clusters and the closest chosen center in the heavy cluster is the same as the distance to the origin).

The cost of the heavy cluster is at least 1 − ε. The probability that the algorithm chooses a center

from the heavy cluster and thus misses a light cluster is at least (1− ε)/(1 + αu).
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Define random variables {Xu} as follows. Let Xu = 1 if the algorithm misses a cluster at least

once when the number of uncovered light clusters is u; and let Xu = 0, otherwise. Then, {Xu} are

independent Bernoulli random variables. For each u, we have Pr{Xu = 1} ≥ (1− ε)/(1 + αu).

Observe that the total number of misses is lower bounded by
∑k−1

u=∆Xu. Then, we have

E

[
k−1∑
u=∆

Xu

]
≥ (1− ε)

k−1∑
u=∆

1

1 + αu
≥ (1− ε)

∫ k

∆

du

1 + αu

= (1− ε)α−1 ln
1 + αk

1 + α∆

≥ (1− ε)α−1 ln
k

∆
= 4(1− ε)∆.

Let µ = E
[∑k−1

u=∆Xu

]
≥ 4(1− ε)∆. By the Chernoff bound for Bernoulli random variables, we

have

Pr

{
k∑

u=∆

Xu ≤ 2∆

}
≤ e−µ

( eµ
2∆

)2∆
.

Since f(x) = e−x( ex
2∆

)2∆ is a monotone decreasing function for x ≥ 2∆, we have

Pr

{
k∑

u=∆

Xu ≤ 2∆

}
≤ e−(2−4ε)∆ · 22∆ ≤ e−∆/2.

Hence, with probability as least 1− e−
√
k/2, the number of misses is greater than 2∆.

For every k and ∆ ≥
√
k, consider the instance we constructed. By Lemma A.3, the algorithm

chooses more than k+∆ centers to cover all but ∆ light clusters with probability at least 1−e−
√
k/2.

Thus, at the time when the algorithm chose k +∆ centers, the number of uncovered light clusters

was greater than ∆. Hence, in the clustering with k +∆ centers sampled by k-means++, the total

cost is at least 1
4
ln(k/∆), while the cost of the optimal solution with k clusters is 1. For every k

and ∆ <
√
k, the total cost is at least 1

4
ln(k/∆′) with ∆′ =

√
k extra centers, which concludes the
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proof.
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APPENDIX B

APPENDIX TO CHAPTER 3 AND CHAPTER 4

B.1 Lower Bound for Threshold Tree

B.1.1 Lower Bound for k-means

In this section, we show a lower bound on the price of explainability for k-means.

Theorem B.1. For any k, there exists an instance X with k clusters such that the cost of explain-

able k-means clustering for every tree T is at least

costℓ22(X,T ) ≥ Ω

(
k

log k

)
OPTℓ22

(X).

To prove this lower bound, we construct an instance as follows. We uniformly sample k centers

C = {c1, c2, · · · , ck} from the d-dimensional unit cube [0, 1]d where the dimension d = 300 ln k.

For each center ci, we add two points ci ± (ε, ε, · · · , ε) with ε = 300 ln k/k. We also add many

points at each center such that the optimal centers for any threshold tree remain almost the same.

Specially, we can add k2 points co-located with each center ci. Then, if one center ci is shifted

by a distance of ε in the threshold tree clustering, the cost of the co-located points at ci is at least

k2ε2. Since the optimal regular cost for this instance is kdε2, the total cost of the threshold tree

is lower bounded by Ω(k/ log k)OPTℓ22
(X). Consequently, we consider the threshold tree with

optimal centers shifted by at most ε.

First, we show that any two centers defined above are far apart with high probability.
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Lemma B.2. With probability at least 1−1/k2 the following holds: The squared distance between

every two distinct centers c and c′ in C is at least d/12.

Proof. Consider any fixed two centers c, c′ ∈ C. Since c, c′ are uniformly sampled from [0, 1]d,

each coordinate of c, c′ is sampled from [0, 1]; and centers c, c′ are sampled independently. Thus,

we have

Ec,c′ [∥c− c′∥2] =
d∑

i=1

Eci,c′i
[(ci − c′i)

2] =
d

6
.

We use a random variable Xi to denote (ci−c′i)2 for each coordinate i ∈ {1, . . . , d}. Since random

variables {Xi}di=1 are independent, by Hoeffding’s inequality, we have

Pr

{
d∑

i=1

Xi − E
[ d∑

i=1

Xi

]
≤ −

√
2d ln k

}
≤ e−4 ln k =

1

k4
,

where we used that d = 300 ln k. This implies that the squared distance between c and c′ is less

than d/12 with probability at most 1/k4. Using the union bound over all pairs of centers in C, we

conclude that the squared distance between all pairs in C is at least d/12 with probability at least

1− 1/k2.

If any two centers are far apart, then a point x separated from its original center will incur a

large penalty. Thus, we can get a lower bound if there exists an instance which satisfies: (1) any

two centers are separated by a large distance; (2) every threshold tree separates a relatively large

portion of points from their original centers. In particular, we prove that with probability 1− o(1),

every threshold cut separates a relatively large portion of points from their original centers in the

random instance we constructed.

Lemma B.3. With probability at least 1−1/k2, the following holds: every threshold cut (i, θ) with

i ∈ {1, 2, · · · , d} and θ ∈ [0, 1) separates at least εk/4 points from their original centers.
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Proof. Consider a fixed coordinate i ∈ {1, . . . , d}. We project each center and its rectangular

neighborhood onto this coordinate. For each center cj ∈ C, we define an interval Iji as the inter-

section of [0, 1] and the ε-neighborhood of its projection cji , i.e. Iji = (cji − ε, cji + ε)∩ [0, 1]. Each

interval Iji has length at least ε. If we pick a threshold cut inside any interval Iji , then we separate

at least one points from center cj . In this case, the interval Iji is called covered by this threshold

cut. Then, we give the lower bound on the minimum number of intervals covered by a threshold

cut.

For a fixed set of centers C, we consider at most 2k special positions for the threshold cut at

coordinate i as follows. Let Ei be the set containing two end points of intervals Iji for all centers

cj . For any threshold cut at coordinate i, the closest position in set Ei covers exactly the same set

of intervals as this threshold cut. Thus, we only need to consider threshold cuts at positions in Ei.

For centers chosen uniformly from [0, 1]d, the set Ei contains 2k random variables. Suppose

we pick a threshold cut at a position θ in Ei related to interval Iji . Conditioned on the position θ,

the other k− 1 centers cj for j ̸= j∗ are uniformly distributed in [0, 1]d since all centers are chosen

independently. For j ∈ {1, 2, · · · , k} \ {j∗}, let Y j
i be the indicator random variable that the

interval Iji contains this position θ. For each variable Y j
i , we have ε ≤ Pr{Y j

i = 1} ≤ 2ε. Since

random variables Y j
i are independent, by the Chernoff bound for Bernoulli random variables, we

have

Pr

{∑
j

Y j
i − E

[∑
j

Y j
i

]
≤ −

√
18εk ln k | θ

}
≤ e−4 ln k =

1

k4
.

Thus, we have the number of intervals containing this position θ is at least εk/4 with probability

at least 1− 1/k4.

Since we have 2k positions Ei for each coordinate i ∈ {1, 2, · · · , d}, there are total 2dk posi-

tions for threshold cuts. Using the union bound over all positions, we have the minimum number

of intervals covered by a threshold cut is at least εk/4 with probability at least 1− 1/k2. Since the
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threshold cut separates one point from its original center for each covered interval, we have every

threshold cut separates at least εk/4 points from their original centers in this case.

Proof of Theorem B.1. By Lemma B.2, we can only consider the instance where any two centers

are separated with the squared distance at least d/12. Note that the optimal centers for any thresh-

old tree remain almost the same as centers C. Thus, we analyze the k-means cost given by any

threshold tree with respect to center C. If a point in X is separated from its original center, this

point will finally be assigned to another center in C. By the triangle inequality, the k-means cost

of this point is at least d/20. By Lemma B.3, there exists an instance such that any threshold cut

separates at least εk/4 points from their original centers. Thus, there exists an instance X such

that any threshold tree T has the k-means cost at least

costℓ22(X,T ) ≥
εk

4
· d
20

=
εkd

80
.

Note that the optimal regular k-means cost for this instance X is

OPTℓ22
(X) = 2k · ε2d.

Therefore, the k-means cost for this instance X given by any threshold tree T is at least

costℓ22(X,T ) ≥
1

160ε
·OPTℓ22

(X) = Ω

(
k

log k

)
·OPTℓ22

(X).

B.1.2 Lower Bound for k-medians in ℓ2

In this section, we show a lower bound on the price of explainability for k-medians in ℓ2.
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Theorem B.4. For every k ≥ 1, there exists an instance X with k clusters such that the k-medians

with ℓ2 objective cost of every threshold tree T is at least

costℓ2(X,T ) ≥ Ω(log k)OPTℓ2(X).

To prove this lower bound, we use the construction similar to that used in Theorem B.1. We

discretize the d-dimensional unit cube [0, 1]d into grid with length ε = 1/⌈ln k⌉, where the di-

mension d = 300 ln k. We uniformly sample k centers C = {c1, c2, · · · , ck} from the above grid

{0, ε, 2ε, · · · , 1}d. For each center ci, we add 2 points ci ± (ε, ε, · · · , ε) to this center. Similar

to Theorem B.1, we also add many points at each center such that the optimal centers for any

threshold tree remain almost the same.

Similar to Lemma B.2, we show that any two centers defined above are far apart with high

probability.

Lemma B.5. With probability at least 1 − 1/k2 the following holds: The distance between every

two distinct centers c and c′ in C is at least
√
d/4.

Proof. To sample a center from the grid uniformly, we can first sample a candidate center uni-

formly from the cube [−ε/2, 1 + ε/2]d and then move it to the closest grid point. Note that the

ℓ2-distance from every point in this cube to its closest grid point is at most ε
√
d = o(1). By

Lemma B.2, the ℓ2 distance between every pairs of candidate centers is at least
√
d/12 with prob-

ability at least 1 − 1/k2. Thus, the distance between every two distinct centers is at least
√
d/4

with probability at least 1− 1/k2.

For every node in the threshold tree, we can specify it by threshold cuts in the path from the

root to this node. Thus, we define a path π as an ordered set of tuples (ij, θj, σj), where (ij, θj)

denotes the j-th threshold cut in this path and σj ∈ {±1} denotes the direction with respect to
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this cut. We use u(π) be the node specified by the path π. We define a center is damaged if one

of its two points are separated by this cut, otherwise a center is undamaged. Let Fu be the set of

undamaged centers in node u.

Lemma B.6. With probability at least 1− 1/k, the following holds: For every path π with length

less than log2 k/4, we have (a) the node u(π) contains at most
√
k undamaged centers; or (b)

every cut in node u(π) damages at least ε|Fu(π)|/2 centers in Fu(π).

Proof. Consider any fixed path π with length less than log2 k/4. We upper bound the probability

that both events (a) and (b) do not happen conditioned on Fu(π). If |Fu(π)| ≤
√
k, then the event

(a) happens. For the case Fu(π) contains more than
√
k centers, we pick an arbitrary threshold cut

(i, θ) in the node u(π). For every center c in Fu(π), the probability we damage this center c is at

least ε. Let Xj be the indicator random variable that the j-th center in Fu(π) is damaged by the

threshold cut (i, θ). Then, we have the expected number of centers in Fu(π) damaged by this cut

(i, θ) is

E
[∑

j

Xj

]
≥ ε|Fu(π)|.

Let µ = E[
∑

j Xj]. By the Chernoff bound for Bernoulli random variables, we have

Pr

{∑
j

Xj ≤ ε|Fu(π)|/2

}
≤ Pr

{∑
j

Xj ≤ µ/2

}
≤ e−µ/8 ≤ e−ε

√
k/8.

Using the union bound over all threshold cuts in u(π), the failure probability that both event (a)

and (b) do not happen is at most e−ε
√
k/16. The number of paths with length less than log2 k/4 is at

most m(2d/ε)m ≤ e− log2 k. Thus, by the union bound over all paths with length less than log2 k/4,

we get the conclusion.

Proof of Theorem B.4. By Lemma B.5 and Lemma B.6, we can find an instance X such that both
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two properties hold. We first show that the threshold tree must separate all centers. Suppose there

is a leaf contains more than one center. Since the distance between every two centers is at least
√
d/4 and there are many points at each center, the cost for this leaf can be arbitrary large. To

separate all centers, the depth of the threshold tree is at least ⌈log2 k⌉.

We now lower bound the cost for every threshold tree that separates all centers. Consider any

threshold tree T that separates all centers. We consider the following two cases. If the number of

damaged centers at level ⌊log2 k⌋/4 of threshold tree T is more than k/2, then the cost given by T

is at least

costℓ2(X,T ) ≥
k

2
·
√
d

8
=
k
√
d

16
.

If the number of damaged centers at level ⌊log2 k⌋/4 of threshold tree T is less than k/2, then

the number of undamaged centers at every level i = 1, 2, . . . , ⌊log2 k⌋/4 is at least k/2. We

call a node u a small node if it contains at most
√
k undamaged centers, otherwise we call it a

large node. Then, we lower bound the number of damaged centers generated at any fixed level

i ∈ {1, 2, · · · , ⌊log2 k⌋/4}. Since the number of nodes at level i is at most k1/4, the number of

undamaged centers in small nodes at level i is at most k3/4. Thus, the number of undamaged

centers in large nodes at level i is at least k/4. By Lemma B.6, the number of damaged centers

generated at level i is at least εk/8. Therefore, the cost given by this threshold tree T is at least

costℓ2(X,T ) ≥
⌊log2 k⌋

4

εk

8

√
d

8
= Ω(k

√
dε log k).

Note that the optimal cost for this instance is at most kε
√
d and ε = 1/⌈log k⌉. Combining the two

cases above, we have the cost given by threshold tree T is at least

costℓ2(X,T ) = Ω(k
√
dε log k) = Ω(log k)OPTℓ2(X).
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B.1.3 Lower Bound on the Bi-criteria Approximation for k-means

In this section, we prove Theorem 4.2. We show a lower bound on the price of explainability for

k-means in the bi-criteria setting. Our proof follows the general approach by Makarychev and

Shan (2021).

Theorem 4.2. For every k > 500 and ln3 k/
√
k < δ < 1/100, there exists an instance X with k

clusters such that the k-means cost for every threshold tree T with (1 + δ)k leaves is at least

cost(X, T ) ≥ Ω

(
log2 k

δ

)
OPTk(X).

Proof of Theorem 4.2. We construct a hard instance for explainable clustering as follows. Let d =

300⌈ln k⌉. Consider the grid {0, ε, 2ε, . . . , 1}d with step size ε = 50δ/⌈ln k⌉ in the d-dimensional

unit cube [0, 1]d. We uniformly sample k centers C = {c1, c2, . . . , ck} from the nodes of the

grid. Then, we create a data set X . For every center ci in C, data set X contains many (namely,

k2⌈ln3 k⌉) points co-located with ci and two special points ci ± (ε, ε, . . . , ε). Hence, the total

number of points in X is k3⌈ln3 k⌉ + 2k. Note that all centers and all points in X lie in the nodes

of the grid.

The cost of the k-means clustering with centers C = {c1, c2, . . . , ck} equals 2kdε2, since the

distance from the special points ci ± (ε, ε, . . . , ε) to ci is ε
√
d. Hence, the cost of the optimal

k-means clustering is at most 2kdε2. We now show that there exists an instance such that the

cost of every explainable k-means clustering with (1 + δ)k centers is at least 2kdε2 ·Ω(1/δ log2 k).

In this instance, every explainable k-means clustering with (1 + δ)k centers separates at least

δk = Ω(εk ln k) special points ci ± (ε, ε, . . . , ε) from ci. The cost of each special point separated
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from its original center is at least Ω(d). Thus, the total cost of every explainable k-means clustering

is at least Ω(dεk ln k) = 2kdε2 ·Ω(1/δ log2 k). First, we prove that with high probability every two

centers in C are far apart.

Lemma B.7. With probability at least 1 − 1/k2 the following statement holds: The distance be-

tween every two distinct centers c′ and c′′ in C is at least
√
d/5.

Proof. We can select a random center in the grid {0, ε, 2ε, . . . , 1}d using the following procedure:

First, pick a candidate center uniformly from the cube [−ε/2, 1 + ε/2]d and then move the chosen

point to the closest grid point. Note that the ℓ2-distance from every point in this cube to the closest

grid point is at most
√
d ε/2 ≤

√
d/36 since ε ≤ 1/18.

Consider two distinct centers c′, c′′ ∈ C. Let c∗ and c∗∗ be the candidate centers corresponding

to c′ and c′′. If ∥c∗ − c∗∗∥2 ≥
√
d/12, then by the triangle inequality, we have

∥c′ − c′′∥2 ≥ ∥c∗ − c∗∗∥2 − ∥c′ − c∗∥2 − ∥c′′ − c∗∗∥2 ≥
√
d√
12

−
√
d

18
≥

√
d

5
.

Thus, we need to show that with probability at least 1−1/k2, the ℓ2-distance between every two

candidate centers uniformly sampled from the cube [−ε/2, 1 + ε/2]d is at least
√
d/12. Consider

two candidate centers c∗, c∗∗. Since c∗, c∗∗ are chosen uniformly from [−ε/2, 1 + ε/2]d, each

coordinate of c∗, c∗∗ is drawn from [−ε/2, 1 + ε/2]. Hence, we have

Ec∗,c∗∗ [∥c∗ − c∗∗∥22] =
d∑

i=1

Ec∗i ,c
∗∗
i
[(c∗i − c∗∗i )2] = d · (1 + ε)2

6
.

Let Xi = (c∗i − c∗∗i )2/(1 + ε)2 for i ∈ {1, . . . , d}. Random variables {Xi}di=1 are independent and
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each Xi lies in [0, 1]. Thus, by Hoeffding’s inequality, we have

Pr

{
d∑

i=1

Xi − E
[ d∑

i=1

Xi

]
≤ −

√
2d ln k

}
≤ e−4 ln k =

1

k4
.

Since d = 300⌈ln k⌉, the squared distance between c∗ and c∗∗ is less than d/12 with probability at

most 1/k4. Using the union bound over all pairs of candidate centers, we conclude that the squared

distance between every two candidate centers is at least d/12 with probability at least 1−1/k2.

All data points in X are in the grid {−ε, 0, ε, 2ε, . . . , 1, 1 + ε}d. Every internal node u in the

threshold tree should contain a threshold cut that separates at least two data points in that node u.

Otherwise, we can ignore this threshold cut since one side of this cut contains no data points. If two

threshold cuts have the same coordinate and thresholds within the same grid interval (jε, jε + ε),

then these two threshold cuts create the same partition of data points contained in the internal node.

Since there are at most 1/ε + 2 different grid intervals for each coordinate, the number of distinct

threshold cuts for each internal node is at most d(1/ε + 2) ≤ 2d/ε. Every node in the threshold

tree corresponds to a cell in Rd. This cell is determined by the threshold cuts on the path from the

root to that node. Let π be an ordered set of tuples (ij, ξj, λj), where (ij, ξj) is the j-th threshold

cut on the path from the root to the node, and λj ∈ {±1} specifies one of the sides of the cut.

Then, every ordered set π corresponds to a path in the threshold tree starting in the root.

Let u(π) be the intersection of the cuts in π. We say that a center ci in u(π) is damaged if one

of the special points ci ± (ε, . . . , ε) is separated from ci by one of the threshold cuts in π. In other

words, ci is damaged if ci ∈ u(π), but ci − (ε, . . . , ε) /∈ u(π) or ci + (ε, . . . , ε) /∈ u(π). Otherwise,

we say that ci is not damaged. Similarly, we say that a node of the grid x ∈ u(π) is not damaged

if x± (ε, . . . , ε) ∈ u(π). Let Fu(π) be the set of all centers that are not damaged in node u(π). We

show that with high probability, if a node u(π) contains more than
√
k centers, every threshold cut
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that splits node u(π) damages at least ε|Fu(π)|/2 centers in Fu(π).

Lemma B.8. With probability at least 1 − 1/k, the following holds: For every path (ordered set

of cuts) π of length at most log2 k/4, we have (a) |Fu(π)| ≤
√
k; or (b) every threshold cut that

separates at least two data points in u(π) damages at least ε|Fu(π)|/2 centers in Fu(π).

Proof. Consider a fixed ordered set of cuts π of size at most log2 k/4. We upper bound the prob-

ability that both events (a) and (b) do not occur for this fixed path π on the random instance X .

If |Fu(π)| ≤
√
k, then the event (a) happens. So, we assume that Fu(π) contains more than

√
k

centers. We then bound the probability that event (b) happens conditioned on the size of Fu(π).

Observe that all centers in Fu(π) are distributed uniformly and independently among the grid nodes

in u(π) that are not damaged by the cuts in π conditioned on |Fu(π)|. Pick an arbitrary threshold cut

(i, ξ) in u(π) that separates at least two nodes of the grid in u(π). For every center c in Fu(π), the

probability that the threshold cut (i, ξ) damages this center c is at least ε. Let Xj be the indicator

random variable that the j-th center in Fu(π) is damaged by (i, ξ). The expected number of centers

in Fu(π) damaged by cut (i, ξ) conditioned on |Fu(π)| = l equals

E
[ l∑

j=1

Xj

∣∣∣ |Fu(π)| = l

]
≥ εl.

Let µ = E[
∑

j Xj | |Fu(π)| = l]. By the Chernoff bound for Bernoulli random variables, we have

Pr

{ l∑
j=1

Xj ≤ ε|Fu(π)|/2
∣∣∣ |Fu(π)| = l

}
≤ Pr

{ l∑
j=1

Xj ≤ µ/2
∣∣∣ |Fu(π)| = l

}
≤ e−µ/8 ≤ e−ε

√
k/8.

Combining all conditional probabilities for |Fu(π)| >
√
k, the probability that the event (b) doesn’t

happen is at most e−ε
√
k/8. Since all data points are in the grid {−ε, 0, ε, 2ε, . . . , 1, 1 + ε}d, there

are at most 2d/ε different threshold cuts that separates at least two data points in node u(π). By the
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union bound, the probability that both events (a) and (b) do not happen is at most e−ε
√
k/8 · 2d/ε ≤

e−2 ln2 k. Since there are at most 4d/ε different choices for each tuple (ij, ξj, λj) in π, the number

of paths with length less than m = log2 k/4 is at most m(4d/ε)m ≤ eln
2 k. Thus, by the union

bound over all paths with length less than log2 k/4, we get that (a) or (b) holds with probability at

least

1−m(4d/ε)m · e−ε
√
k/8 · 2d/ε ≥ 1− eln

2 k · e−2 ln2 k ≥ 1− 1

k
.

since d/ε ≤ 15000
√
k ln3 k for d = 300⌈ln k⌉ and ε = 50δ/⌈ln k⌉ ≥ 50

√
k ln2 k.

By Lemma B.7 and Lemma B.8, we can find an instance X such that the following conditions

hold:

• The distance between every two distinct centers c′ and c′′ in C is at least
√
d/5.

• For every path (ordered set of cuts) π of length at most log2 k/4, we have (a) |Fu(π)| ≤
√
k;

or (b) every threshold cut that separates at least two data points in u(π) damages at least

ε|Fu(π)|/2 centers in Fu(π).

We first show that the threshold tree must separate all centers. Suppose there is a leaf contains

more than one center. Since the distance between every two centers is at least
√
d/5, there exists

at least one center in this leaf with distance greater than
√
d/10 to the optimal center of this leaf.

Since we add k2⌈ln3 k⌉ points co-located with each center, the cost for the leaf that contains more

than one center is greater than k2⌈ln3 k⌉ · d/100 = 2kdε2 · Ω(1/δ log2 k). Thus, the lower bound

holds for any threshold tree that does not separate all centers. To separate all centers, the depth of

the threshold tree must be at least ⌈log2 k⌉. We show the following lower bound on the number of

damaged centers for every threshold tree that separates all centers.
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Lemma B.9. Consider any instance X with k centers satisfies two conditions in Lemma B.7 and

Lemma B.8. For every threshold tree that separates all centers inC, there are at least 2δk damaged

centers.

Proof. Consider any threshold tree T that separates all centers. We consider the following two

cases. If the number of damaged centers at level ⌊log2 k⌋/4 of threshold tree T is more than k/2,

then the total number of damaged centers generated by this threshold tree is more than 2δk.

If the number of damaged centers at level ⌊log2 k⌋/4 of threshold tree T is less than k/2, then

the number of centers that are not damaged at each level i = 1, 2, . . . , ⌊log2 k⌋/4 is at least k/2.

We call a node u a small node if it contains at most
√
k centers which are not damaged, otherwise

we call it a large node. We now lower bound the number of centers damaged at a fixed level

i ∈ {1, 2, · · · , ⌊log2 k⌋/4}. For every level i ∈ {1, 2, · · · , ⌊log2 k⌋/4}, the number of nodes at

level i is at most k1/4. Since each small node contains at most
√
k centers that are not damaged,

the total number of centers that are not damaged in small nodes at level i is at most k3/4. Since

the total number of centers that are not damaged at level i is at least k/2, the number of centers

that are not damaged in large nodes at level i is at least k/4. By Lemma B.8, the number of

damaged centers generated at level i is at least εk/8. Therefore, the total number of damaged

centers generated by this threshold tree T is at least

⌊log2 k⌋
4

· εk
8

≥ 50⌊log2 k⌋δk
32 ln k

≥ 2δk,

which completes the proof.

We now lower bound the cost for every threshold tree with (1 + δ)k leaves that separates all

centers. Consider any threshold tree T with (1 + δ)k leaves that separates all centers in C. By

Lemma B.9, we have more than 2δk data points separated from their original centers by T . For
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each point x separated from its original center c, one and only one of the following may occur: (1)

the data point x is assigned to a leaf containing a center c′ ̸= c; (2) the data point x is assigned to

a leaf containing no center. Among these 2δk data points, we show that there are at least δk data

points that have distances to their new centers greater than
√
d/20.

For each leaf containing a center c′, the optimal center for this leaf is shifted from c′ by at most

ε
√
d. Otherwise, the cost of this leaf is at least k2⌈ln3 k⌉ · ε2d = 2kdε2 · Ω(1/δ log2 k) since there

are k2⌈ln3 k⌉ data points co-located at each center. Suppose a point x separated from its original

center c is assigned to a leaf containing a center c′ ̸= c. By Lemma B.7 and the triangle inequality,

the distance from the point x to the optimal center for this leaf is at least
√
d/10.

For each leaf containing no center, it may contain several points from distinct clusters. Among

these points, there is at most one point within
√
d/20 distance of the optimal center for this leaf.

Suppose two points x′ and x′′ from distinct clusters are within
√
d/20 distance of the optimal

center for this leaf. Then, the distance between x′ and x′′ is at most
√
d/10. Let c′ and c′′ be

the original centers for points x′ and x′′ respectively. The distance between c′ and c′′ is at most
√
d/10 + 2ε

√
d ≤

√
d/5, which contradicts the distance between every two centers is at least

√
d/5.

Since the threshold tree T has (1 + δ)k leaves, there are δk leaves that do not contain a center.

Thus, among points separated from their original centers, there are at most δk points with distance

less than
√
d/20 to their new centers. Since there are more than 2δk points separated from their

original centers, we have at least δk points with cost greater than d/400. Therefore, the cost given

by this threshold tree T is at least

cost(X, T ) ≥ δk · d

400
= Ω(δdk).
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Recall that the optimal k-means cost for this instance is at most 2kε2d and ε = 50δ/⌈ln k⌉. Thus,

the cost given of this explainable clustering is at least

cost(X, T ) = Ω(δdk) ≥ Ω

(
log2 k

δ

)
OPTk(X).

B.1.4 Lower Bound for the ExKMC Algorithm

In this section, we show the lower bound for the ExKMC algorithm. The ExKMC algorithm is

an expanding explainable k-means algorithm proposed by Frost et al. (2020). Given a parameter

k′ > k as the number of leaves, the ExKMC outputs a threshold tree T with k′ leaves. We consider

the ExKMC algorithm that starts from the base tree given by the IMM algorithm in Dasgupta et al.

(2020). The IMM algorithm iteratively chooses the threshold cut that minimizes the number of

mistakes, where a mistake means a point is separated from its original center. For any threshold

tree with more than k leaves, the ExKMC algorithm considers the surrogate cost, which is the cost

by assigning each leaf to its best center in C. Then, the ExKMC algorithm iteratively chooses

the threshold cut that minimizes the surrogate cost. Our proof is inspired by the constructions

in Esfandiari et al. (2022), Laber and Murtinho (2021) and Charikar and Hu (2022).

Theorem B.10. For every k > 10, and δ ∈ (0, 1/4), there exists an instance X with k clusters

such that the k-means cost for the threshold tree T returned by the ExKMC algorithm with an IMM

base tree and k′ = (1 + δ)k leaves is at least

cost(X, T ) ≥ Ω

(
(1− 4δ) · k2

log k

)
OPTk(X).

Remark: This provides a Ω̃(k2) lower bound for the ExKMC algorithm when δ ∈ (0, 1) is a
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constant and k → ∞.

Proof. We first construct k centers for the instance. Without loss of generality, we assume k =

2k̃ + 1 is an odd number. Let p = 3 log2 k and d = k̃ + p − 1. Then, we choose k centers

C = {c1, c2, · · · , ck} in the d-dimensional space Rd. Let the first k̃ − 1 coordinates of c1 be all

zeros (0, 0, · · · , 0). For each i ∈ {2, · · · , k̃ + 1}, let the first k̃ − 1 coordinates of center ci be

the same as those of ei−1 the identity vector on the (i − 1)-th coordinate. For every coordinate

j ∈ {k̃, k̃ + 1, · · · , k̃ + p − 1}, we pick a random permutation σ of {0, 1, · · · , k̃} and assign the

j-th coordinate of centers c1, c2, . . . , ck̃+1 be this random permutation, i.e. cij = σ(j). For each

i ∈ {k̃ + 2, · · · , 2k̃ + 1}, the first k̃ − 1 coordinates of ci are all zero, and the rest p coordinates of

center ci are identical to those of the center ci−k̃.

We now construct the instance X as follows. For the center c1 and every coordinate j ∈

{1, 2, · · · , k̃ − 1}, we add one data point at ej . For every center ci, and every coordinate j ∈

{k̃, k̃ + 1, · · · , k̃ + p − 1}, we add two data points at ci + ej and two data points at ci − ej . For

every center ci, we also add many data points co-located with ci.

For this instanceX , the cost of the k-means clustering with centersC = {c1, c2, · · · , ck} equals

(k̃− 1)+ 4pk̃. Thus, the optimal k-means cost of X is at most (k̃− 1)+ 4pk̃ = O(k̃ log k). Let T

be the threshold tree returned by the ExKMC algorithm with the IMM base tree and k′ = (1+ δ)k

leaves. We show that the cost of the threshold tree T is at least Ω((1 − δ)k3). We first show that

with high probability every two centers in {c1, c2, · · · , ck̃+1} are far apart.

Lemma B.11. With probability at least 1 − 1/k the following statement holds: The distance be-

tween every two distinct centers c′ and c′′ in {c1, c2, · · · , ck̃+1} is at least k/5.

Proof. Consider two distinct centers c′, c′′ in {c1, c2, · · · , ck̃+1}. For every coordinate j ∈ {k̃, k̃ +

1, · · · , k̃ + p− 1}, the j-th coordinate of centers {c1, c2, · · · , ck̃+1} form a random permutation of
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{0, 1, · · · , k̃}. Thus, we have for every j ∈ {k̃, k̃ + 1, · · · , k̃ + p− 1}

Pr(|c′j − c′′j | ≥
k̃

2
) =

1

2
.

The distance between c′ and c′′ is at least k̃/2 with probability 1 − (1/2)p = 1 − 1/k3. By the union

bound over all pairs of centers in {c1, c2, · · · , ck̃+1}, the distance between two distinct centers in

{c1, c2, · · · , ck̃+1} is at least k/5 with probability at least 1− 1/k.

By Lemma B.11, we can find an instance X such that the distance between every two distinct

centers c′ and c′′ in {c1, c2, · · · , ck̃+1} is at least k/5. Then, we show that there are at least (1 −

4δ)k̃ data points which are separated from their original centers in the threshold tree T given

by the ExKMC algorithm with the IMM base tree. The algorithm first uses the IMM algorithm

in Dasgupta et al. (2020) to generate a threshold tree with k leaves. The IMM algorithm iteratively

chooses the threshold cut that minimizes the number of mistakes to separate centers, where a

mistake means a data point is separated from its original center.

For this instance X , we show that the first k̃ − 1 cuts chosen by the IMM algorithm are at the

first k̃ − 1 coordinates. At any iteration t ≤ k̃ − 1, suppose the first t − 1 cuts are at the first

k̃ − 1 coordinates. If any center ci for i ∈ {2, · · · , k̃} is not separated from center c1, then the

threshold cut at coordinate i− 1 will separate center ci from other centers and split one data point

at ej from its center c1. Note that centers c1 and ck̃+2, ck̃+3, . . . , ck are not separated at iteration

t. For every coordinate j ∈ {k̃, · · · , d}, the j-th coordinate of these centers form a permutation

of {0, 1, · · · , k̃}. Therefore, every threshold cut at coordinate j ∈ {k̃, k̃ + 1, · · · , d} will split at

least two data points from their centers. Thus, the IMM algorithm will choose a threshold cut at

coordinate i− 1 ≤ k̃ − 1 at iteration t.

We now bound the number of mistakes in the tree T given by the ExKMC algorithm. Since
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the IMM algorithm chooses the first k̃ − 1 threshold cuts at the first k̃ − 1 coordinates, the IMM

algorithm splits k̃ − 1 data points at e1, e2, . . . , ek̃−1 from their original center c1. Since all these

k̃−1 data points are separated in k̃−1 leaves of the IMM tree, the ExKMC algorithm with (1+δ)k

leaves can rearrange at most δk data points among these k̃− 1 data points to their original centers.

Therefore, there are at least k̃−1−δk ≥ (1−4δ)k̃ data points separated from their original centers

in the threshold tree T given by the ExKMC algorithm with the IMM base tree.

By Lemma B.11, the cost of each data point separated from its original center is at least Ω(k2).

Since OPTk(X) = O(k̃ log k), the cost of the threshold tree T is at least

cost(X, T ) ≥ Ω((1− 4δ)k̃ · k2) ≥ Ω((1− 4δ)k2/ log k)OPTk(X).
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