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ABSTRACT

Supply Chain Operations with Partial Demand Information and Customer Behavior

Pol Boada-Collado

This dissertation is motivated by the decision process of the supply chain team of a

major furniture retailer that delivers its products at the customer’s home. In retail supply

chains for companies offering home delivery services, demand surges are observed at the

store level, which translate to a high volume of orders that need to be delivered. Ordered

products are distributed through middle mile lanes that connect hubs to spokes, from

where the last-mile delivery routes depart. This dissertation studies novel strategies to

reduce distribution costs by adapting middle and last mile operations to changes in the

market place such as demand surges and consumers’ buying trends.

Chapters 2 and 3 of this dissertation focus on the middle mile transportation procure-

ment of hub-to-spoke lanes when signing transportation capacity contracts with short

temporal commitment. With new technological innovations, short temporal commitment

contracts are found in dynamic environments like distribution, processing, and manufac-

turing; a trend likely to grow in the future. In contrast to classic procurement, where
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commitments are long, short temporal commitments lead to new dynamics in which de-

mand visibility at the spoke level (resulting from in-store orders and deliverable windows)

fundamentally changes contracting policies. By studying first a single dedicated hub-to-

spoke lane, and then extending the results to a distribution network with multiple lanes,

we show that dynamically incorporating demand visibility in procurement decisions allows

companies to counteract demand uncertainty more effectively, better respond to seasonal

demand surges, and use transportation capacity more efficiently.

The settings studied in these chapters assume that delivery dates to customer homes

are fixed. The last part of this dissertation, Chapter 4, introduces flexibility in delivery

dates and focuses on scheduling policies for last mile distribution, i.e.; from spokes to the

customer’s home, to mitigate demand surges at the spokes level. When planning middle

and last mile transportation capacity, understanding customers’ sensibility to delivery

lead time allows retailers to balance customer satisfaction and shipping costs. In attended

home delivery, where customers need to be present at the time of delivery, as in the case

of the furniture company, we study the importance of speed of delivery relative to other

priorities when customers choose their preferred home delivery date. We find that speed

of delivery is not only the factor that matters to customers, and it is of limited importance

relative to customer availability and day of the week preferences. For the retailers, this

is an opportunity to slightly extend delivery windows and more efficiently utilize middle

and last mile distribution capacity.

Taken together, the chapters in this dissertation show how companies can adapt op-

erations to reduce distribution costs while meeting the expectations of their customers.
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CHAPTER 1

Introduction

Motivated by a collaboration with the supply chain team of a major furniture com-

pany, this dissertation studies novel strategies to improve middle and last mile operations

of retail companies that deliver their products to the customer’s home. Home delivery has

grown rapidly with the emergence of e-commerce [94], and increasing customers’ expec-

tations and the competing pressure of big retailer companies such as Amazon, Alibaba, or

Walmart has pushed retailers to assume the entire cost of transportation [98, 70]. Hence,

reducing the cost of distribution across the supply chain has become crucial for all retailer

companies aiming to stay competitive.

With the growth of flexible technologies in supply chains, many traditional static sup-

ply models have become obsolete. As industry moves to more dynamic environments and

market places become more competitive, supply chains are evolving accordingly by adapt-

ing to market changes, such as demand surges or consumers’ buying trends. The need for

more agile supply networks is even more evident during pandemic times. This dissertation

studies how middle mile and last mile distribution, two of the most expensive and com-

plex operations of the supply chain, can become more efficient and nimble by adapting

transportation procurement policies to demand surges and customers’ expectations.

The furniture company that motivates this dissertation, which operates with more

than 550 locations across the United States, delivers its made-to-order products to the
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customer’s home. As sketched in Figure 1.1, this operation, which represents a main lo-

gistic challenge for the supply chain team, requires the distribution of products from hubs

to distribution centers, from where the last mile delivery routes depart. To distribute the

products from the hubs to the distribution centers, the company outsources its middle

mile transportation capacity by signing transportation procurement contracts. Chapters

2 and 3 focus on the middle mile operations of the furniture company, and show how trans-

portation procurement policies for middle mile lanes can adapt to demand fluctuations

observed at the distribution centers.

Once products arrive at the distribution centers, delivery teams that work for the

company carry out the lat mile distribution to the customer’s home. In contrast to the

middle mile transportation capacity, the last mile transportation capacity is owned by

the company. Chapter 4 focuses on the last mile distribution, and, using transactional

data from the furniture company, shows that customers’ priorities when choosing home

delivery dates can be leveraged to use more efficiently the last mile delivery capacity.

Hub
Distribution center 

(spoke)

Customer's 

home

Middle mile

(by outsourcing 

transportation capacity)

Last mile

(by delivery teams 

owned by the company)

Chapters 2 and 3 Chaper  4

Figure 1.1. Structure of the dissertation.
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1.1. Middle Mile Operations: Demand Visibility in Procurement with

Temporal Commitment

Chapters 2 and 3 focus on adapting middle mile operations to demand visibility, a

scenario motivated by the decision process faced by the supply chain of the furniture

company. Due to delivery time windows (typically one or two weeks), line-haul trans-

portation needs from hub to spokes are visible one week in advance, which can be sup-

plied by signing transportation procurement contracts at a chosen capacity with relatively

short commitment (one month). In these two chapters, we study how information from

one week of demand visibility can be leveraged when signing procurement contracts with

relatively short temporal commitment.

In traditional procurement, commitments are typically long, spanning several months

or years, because deployment of capacity is expensive and cannot be changed regularly. In

contrast, in transportation procurement, capacity is more easily modified by changing the

number of trucks assigned to a lane, allowing for shorter commitments. Demand visibility

for a few weeks becomes valuable with short commitment contracts. With technological

innovations, our focus on short term commitments extends to dynamic environments in

logistics and manufacturing with easily re-deployable capacity [45]. For instance, Flexe

is a company that provides on-demand warehousing and allows commitments as short as

a few weeks. Similarly, in manufacturing, 3D printing provides firms with a production

capacity that is easy to redeploy.

Chapter 2, which is based on [19], provides foundational insights into the use of de-

mand visibility for signing procurement contracts with temporal commitment. In a single

hub-to-spoke lane, we model the decision process of the furniture company as a Markov
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Decision Process and show demand visibility fundamentally changes the contracting poli-

cies, increasing the decision-makers’ willingness to commit to transportation procurement

contracts. When committing to a contract, the optimal capacity balances the trade-off

between adapting to the observed demand and remaining cost-efficient for future periods,

for which demand is not visible. Using data containing sales transactions of the furniture

company, we show that, with seasonal demand, decision-makers leverage demand visibil-

ity by coordinating the contracting epochs with expected demand shocks (such as Black

Friday or Labor Day holidays sales).

Chapter 3, which is based on [20], extends the analysis of the first chapter to a network

with multiple distribution centers (or nodes). In a network, flexible transportation capac-

ity that can supply multiple nodes offers an additional hedging mechanism against demand

uncertainty (in addition to demand visibility) when signing contracts with temporal com-

mitment. In contrast to node-dedicated transportation contracts, flexible contracts allow

companies to pool transportation capacity between nearby distribution centers. With

demand visibility and commitment, flexible capacity is most effective when observed de-

mand of the nodes have a large difference with high observed demand at one node and low

observed demand at the other node. Adapting to observed demand can lead to an increase

of the average commitment to flexible capacity due to demand visibility, even in situations

in which flexible capacity would be disregarded without visibility. Previous studies show

that, without temporal commitment, the two mechanisms are substitutes. In this chapter

we investigate and show how commitment imposed across periods leads to new dynamics

in which the two hedging mechanisms act as both substitutes and complements.
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1.2. Last Mile Operations: Adapting to customers’ choice for attended

home delivery

The first two projects assume that delivery lead time (which translates to demand vis-

ibility) is fixed exogenously. The next chapter explores the company’s scheduling process

of last mile delivery, and studies the impact of increasing or decreasing delivery lead time

on customer satisfaction.

Once a sale is closed at the retail outlets, the company commits to deliver the pur-

chased products at the customer’s home on a date chosen by the customer. Once an order

is entered into the system, products are prepared and distributed from a hub to the distri-

bution centers, from where the last mile delivery routes depart. Chapter 4, which is based

on [18], focuses on adapting last mile delivery scheduling policies to customer behavior

patterns observed by the supply chain team of the furniture company. A large body of

the literature, and a trend followed by practitioners, has focused on shortening delivery

lead times as much as possible to increase customer service level [70]. Such an effort

usually comes at high costs for companies and the environment [42, 104]. In attended

home delivery, where customers must be present at the time of delivery, retailers need to

quantify customers’ sensibility to delivery lead time to balance customer satisfaction and

shipping costs.

Using transactional data from the furniture company that motivates this dissertation,

we model how customers choose attended home delivery dates from among the set of

alternative dates offered by the company. The model allows us to estimate the customers’

priorities that drive their choice and the relative impact of speed of delivery. The empirical

results show that customers do not usually schedule attended home delivery for the days
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immediately after the purchase date. Speed of delivery is of limited importance relative

to other priorities, such as day of week preferences or availability, when customers choose

their preferred delivery date. For companies committed to deliver their products, this is an

opportunity to slightly extend delivery windows and more efficiently utilize transportation

capacity. Also, the empirical results show that customers have strong day of the week

preferences in attended home delivery, which can potentially be leveraged to decrease

delivery lead times while reducing transportation capacity.

Our results show that companies committed to deliver their products at the cus-

tomer’s home can increase utilization of costly delivery capacity while adapting last mile

operations to meet customer’s expectations.

The last chapter, Chapter 5, presents open questions and future research directions

on the exploration of novel strategies to reduce distribution costs in middle and last mile

operations.
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CHAPTER 2

Partial Demand Information and Commitment in Dynamic

Transportation Procurement

We investigate the value of short-term demand visibility in the decision process of

selecting the optimal transportation procurement in single-leg distribution lanes. Our work

considers procurement contracts with temporal commitment horizon that is much shorter

than the planning horizon, a scenario motivated by the supply chain team of the furniture

retailer. We show that having this demand information essentially changes contracting

policies by adding more dynamism and, with seasonal demand, information is leveraged

by properly coordinating with expected demand shocks (e.g. Black Friday) using tailored

strategies.

2.1. Introduction

Selecting committed contracts or more expensive spot market options to meet trans-

portation needs is a critical trade-off often faced in industry. Given the significance and

prevalence of this decision, it has been well studied by the operations research community

(see the review of [115] on multimodal transportation and the work of [79] and [102] on

modal rate estimation). In this chapter, we study how the availability of partial future

demand information impacts this decision, motivated by the transportation needs of a

major furniture manufacturer.
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As sales are registered at retail outlets and future delivery dates are finalized, the

transportation group of the furniture manufacturer typically has visibility into scheduled

delivery needs over the next week. Accordingly, the demand for transportation along

lanes is known one week in advance. On any lane, the company has the option to fulfill

transportation needs for the coming week using the spot market through services such as

XPO, UPS, or USPS. The company also has the option of signing a longer term contract

(typically three to four weeks) for a committed capacity. The contract has a lower unit

price than the spot market. With one week of demand visibility, the company must decide

whether or not to sign a contract, and, if so, at what capacity. The company asked the

following question: How can the limited visibility regarding future demand be used when

making transportation decisions in the presence of commitment?

This decision problem has two key features that, when combined, distinguish this study

from the literature. The first feature is the availability of partial demand information,

providing demand information for the early part of the planning horizon. In other words,

the partial demand information setting implies demand visibility of a few periods in the

future (one week for the case of the furniture company). A large body of literature

has focused on the full information case where demand for the entire planning horizon

is known (see for instance [25] and [36] for two reviews on lot sizing models) or the

null information case where decisions are made before observing future demand in the

planning horizon but a demand distribution is known (e.g. [12]). The second feature

is that the commitment contract length in our setting has a horizon that is limited and

shorter than the planning horizon. Existing literature has largely focused on commitment
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contracts where the commitment horizon equals the entire planning horizon, which is well

characterized in [8] with full information model and in [93] with null information.

We show that these two features, when studied together, result in an optimal behavior

that differs from the full and null information cases. When full information is available

about demand in the planning horizon, mixed integer programming models determine

the optimal use of commitment contracts and the spot market over the entire planning

horizon [8]. In contrast, when no future demand information is known, supply contracts

can be determined based on the expected performance over the planning horizon [93]. In

both cases, contract selection can be fully determined at the beginning of the planning

horizon (in the case of full information this includes periods of no commitment and changes

in capacity levels with new contracts), even though the quantities shipped are dynamic

based on actual demand. The availability of partial demand information and a limited

commitment horizon results in commitment decisions that change over time as new partial

demand information becomes available, giving additional dynamism to the contracting

policies.

This chapter provides foundational insights in the analysis of the role of partial infor-

mation in the presence of short commitment. We begin with a scenario with a single lane

that faces stochastic demand with a known distribution when dynamically selecting the

best transportation modes. The decision maker must select the best choice among two

options: signing a capacity contract that will remain in effect over the commitment hori-

zon or going to the spot market for the entire demand for the coming period, which allows

the decision to be revisited at the end of the next period. Once the decision is made, costs

are incurred and the decision process resets to its initial state (either in the next period if
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no contract is signed or at the end of the commitment horizon if the contract is signed).

Under stationary demand, the null and full information settings have simple policies that

can be determined at the beginning of the horizon. When partial information is available

and commitment length is short relative to the planning horizon, more complex policies

emerge. If the contract has only one choice of capacity, the availability of partial demand

information can lead to the signing of contracts that would not be signed under the null

information scenario. When a decision maker can select among a wide range of capacities,

the availability of partial information impacts both the decision of whether to sign the

contract and the capacity level at which the contract is signed. The optimal capacity bal-

ances the trade-off between adapting to the observed demand and remaining cost-efficient

for future periods for which demand information is not available. We extend our model

to the case of seasonal demand along a lane, which is the scenario faced by the furniture

company. We find that in the presence of seasonality, partial demand visibility can be

leveraged by properly coordinating the contracting policy. Depending on the nature of

the seasonality, the coordination should follow one of two strategies that we identify as

Wait-and-See or Now-or-Never.

The chapter is structured as follows: Section 2.2 reviews the related literature. We

describe the problem and the main results in Section 2.3. We summarize the conclusions

in Section 2.4.
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2.2. Literature review

There is an extensive body of literature that studies transportation mode choice in

freight distribution (see [138] and [115] for two reviews of multi-modal freight transporta-

tion). There also exists a significant stream of literature that considers the valuation of

transportation contracts, bidding mechanisms and financial aspects of the spot market

(see for example [126], [56], [4] and [113]). In contrast to the cited articles, our work

focuses on the cost of commitment and the value of information when the decision maker

is faced with selecting the most cost-efficient contracts to meet their transportation needs.

[97] qualitatively reviews the role of flexibility in logistic multi-modal transportation and

provides a taxonomy that identifies different sources of flexibility. Our analysis adds a

new dimension by considering how policies change when decision makers have limited

demand visibility in the presence of commitment.

If one views the transportation contracts studied in this chapter more broadly as

supply contracts, our work is related to the supply procurement contract and inventory

management literature. We refer to [6] for a detailed description of the general framework

of supply contracts. Close to our analysis, [12] develops a dynamic model that allows ca-

pacity commitments to be updated after demand is realized. Their problem setting differs

from ours in two main dimensions: (1) decisions are made without observing demand of

future periods and (2) the length of the contract is equal to the planning horizon but ca-

pacity levels can be updated. [127] studies the cost of commitment as a penalty incurred

every time the decision maker uses less than the committed quantity. In our case, the

spot market provides flexibility at higher prices, that can be used if demand exceeds the

committed capacity or if the decision maker chooses to forgo a commitment contract. [66]
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provides a comprehensive review of supply contracting models that incorporate the spot

market and analyze a model of supply procurement contracts that allows abandonment,

which is conceptually close to having a planning horizon longer than contract duration,

yet their setting lacks the periodic nature of repeated contract decisions.

Information in supply chain contracting has been modelled in various contexts (see

[111] for a review). In this chapter, we distinguish three levels of information: Full in-

formation, null information and partial information. Under the full information scenario,

demand is known for all periods in the planning horizon. Capacity decisions are studied

using deterministic models where commitments are signed at the beginning of the plan-

ning horizon. Full information over the planning horizon is studied in [8]. The authors

characterize the optimal solutions for capacity acquisition and subcontracting problems

for the case where capacity is continuous with general concave cost functions. The authors

formulate the problems with linear programs and develop algorithms that find the optimal

in polynomial time. Other formulations related to capacity planning in manufacturing are

reviewed in [92]. Some articles study complexity and polyhedral properties of lot sizing

problems under full information as in [9]. Another example with full information is [110],

where the authors analyze subcontracting policies when capacities are fixed and demand

is known at each period. The work focuses on the complexity of the algorithms and

provides solutions using dynamic programming. Our approach is different in considering

a dynamic decision process where, at each decision epoch, demand is visible for a short

horizon (information horizon). Beyond that horizon, only the probability distribution of

the demand is known. In this scenario, commitments are dynamically adjusted depending

on what is observed for the periods where demand is visible. If the information horizon
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is very long (approaching the length of the planning horizon), the decision maker may

sign all commitments at the beginning of the planning horizon and our model would be

equivalent to a special case of the model studied in [8], where capacities and commitments

are deterministically fixed. The focus in this chapter, however, is on instances in which

the information horizon is not long (a week or two), a situation that often arises in prac-

tice, distinguishing our work from full information variants. In the next paragraph, we

discuss how the combined presence of short commitments and partial demand visibility

distinguish our setting from related stochastic variants (null and partial information).

There is significant work on the null information case where no demand informa-

tion (other than the distribution) is known over the planning horizon. In [11] an initial

commitment, which fixes a total minimum inventory purchased periodically during the

planning horizon, must be defined before observing the demand. [119] provides another

example where decisions are made before observing the demand. In that case, the buyer

commits to buy a total amount along the planning horizon. The authors in [93] propose

an approach that mixes different contracts when demand and spot market prices are sto-

chastic. In their setting, the contracts and commitment levels are chosen when demand

is not known but order quantities are decided periodically after demand and spot market

price realizations. Once the capacity decision is made, this cannot be changed or traded

in later periods. In contrast, in our model contracts and commitment levels are chosen

with partial demand visibility and can be altered at the end of each commitment horizon.

[73] also finds solutions with random demand and spot market prices. In contrast to

our model, demand is not realized at the time of ordering, only spot market price, and

capacity reservation is decided at the beginning of the time horizon.
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The models cited above assume very long commitments where capacity and costs

of procurement contracts are negotiated long before the beginning of the season. This

framework is suitable for industries where capacity installation is expensive and cannot

be easily adjusted. In contrast, in the context of transportation procurement, capacity

can be increased or decreased by changing the assignment of trucks dedicated to a lane.

While this cannot be performed daily, it is possible to alter the capacities selected over

a slightly longer commitment horizon (four weeks in the case of the furniture company).

With relatively short commitments, we show that demand visibility is valuable. In our

setting, the capacity of the contract is chosen each time a new commitment is made and,

with demand visibility, the committed capacity may differ every time the decision maker

signs a new commitment. In contrast to the models cited above, contracts are revisited

periodically during the planning horizon. Note that when commitments are very long,

demand visibility is not as valuable and our problem can be formulated as a single capacity

decision that is made at the beginning of the commitment horizon. In this case, our model

becomes a special case of the models cited above where contract features are set for the

entire planning horizon (e.g. vector of capacities defined by [93]).

Partial demand information is modelled differently depending on the context, see

[132] for a review of the value of information in supply chain decisions. They classify

the literature that study the value of information in supply chains from 2006 to 2017. In

the context of logistics and transportation, [120], [145] and [146] analyze the benefit of

advanced load information for truckload carriers. The authors model a dynamic pick up

and delivery truckload model in which orders are sequentially revealed. The orders are

known some periods in advance, the authors call this visibility the “knowledge window”.
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They show that increased demand visibility can significatively increase profits. Our work

is different in considering the value of information under committing decisions. [147] uses

a stylized single-period single-lane model to study the value of information of container

release times on determining volume and departure time in maritime container transport.

While addressing similar questions, our model provides a different approach (dynamic

decision process) in a different context (contracting transportation procurement under

commitment). Linking the information of the demand to the temporal dimension allows

to study its value in a (quasi-)continuous fashion.

In a more general context, [78] and [77] review inventory management models across

different information scenarios. In their work, capacity commitment is not included in the

decision and the spot market does not play the role of adding flexility. In a similar context,

[49] and [50] study the impact of asymmetric demand information on the interaction

between a seller and buyer. [106] models partial demand information as receiving a

fraction of early purchases that will be supplied after the capacity and pricing decisions

are made. Our work is different in considering information as demand realizations that

are revealed some periods before the decision is to be made in a multiperiod setting. [135]

develops a dynamic inventory management model with advance demand information and

flexible fulfillment: Demand realizations are known some periods in advance and known

demand realization can be fulfilled at any time. [15] studies the impact of advance

demand information in a multiproduct system, where information can be either about

the aggregate demand or about the market share of the individual products. In contrast,

our work considers a multiperiod setting where demand realizations of early periods are

known in advance. Finally, there is growing literature on the use of advance demand
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information (perfect or imperfect) for updating forecasts: Recent work in this area include

the work in [5], where the authors study when advance demand information is most

valuable in large scale assembly lines. [103] shows that advance demand information,

when released sequentially, can improve gross profit more than 5%, and [123] studies the

value of imperfect information with a dynamic inventory model. Our approach adds to

this work by showing the value of information in contract decisions for shorter commitment

durations.

2.3. Transportation Procurement: Partial Information Model

We consider the following setting faced by a major furniture manufacturer with a

workforce of over 5000 employees and over 600 locations across the United States. The

transportation needs of the company require regular movement of products from hubs to

spokes. The periodic demand of products to be moved for each hub-spoke pair (a lane)

is random and subject to change from one week to another, although historic demand

is available to characterize the demand distribution for each lane. The system used for

processing orders allows the company to schedule final delivery four or five days, or even

a week, after the order is entered into the system, providing supply chain managers with

demand visibility over the coming week. This time period is referred as the information

horizon. Managers can potentially take advantage of this demand visibility by going to

the spot market and obtaining the exact capacity needed to meet the upcoming demand.

However, there are cost and complexity advantages to signing a longer term transportation

contract. When signing such a contract, managers commit to a capacity level for a period

of four weeks. This period is referred as the commitment horizon. Hence, the commitment
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horizon requires that each time a contract is signed, managers must account for the

expected cost over the part of the commitment horizon when demand is not visible. When

signing a contract, transportation needs in each period up to the committed capacity are

served with the less expensive committed capacity, and transportation needs in excess of

the committed capacity are obtained from the spot market at a higher cost.

We begin with a single lane that faces a random demand that is stationary, independent

and identically distributed (iid), and extend the results to seasonal demand.

The decision process, sketched in Figure 2.1-(a) for an information horizon of one

period, is as follows: at the end of each period t, decision makers encounter one of two

situations. (1) There is a previously signed contract in place whose commitment horizon

includes the upcoming period or (2) there is no active contract for the upcoming period

and, hence, transportation procurement must be determined. Decision makers have an

information horizon of γ periods and available long term contracts have a commitment

horizon of τ periods. Thus, the exact demand of periods t + 1, t + 2, t + 3, . . . , t + γ

is observed (denoted dt in Figure 2.1-(a)). We assume that the demand for consecutive

periods is iid with a known stationary distribution (denoted Dw
t in Figure 2.1-(a)). The

decision maker chooses one of two options:

• Contract Mode: Sign a commitment contract with a chosen per-period capacity

k at cost c per unit (total contract cost of ck per period). The contract has a

commitment horizon of τ periods. Hence, for each of the next consecutive periods

t+ 1, t+ 2, . . . , t+ τ , a fixed cost of ck is incurred even when demand is less than

k. If the demand in any period exceeds the contracted capacity, the decision

maker uses the spot market to supply the excess demand at cost of c′ per unit of
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demand. At the end of period t+τ the decision process is reset. When this option

is chosen, we say that the system is using a contract mode (denoted m = 1) that

remains active from periods t+ 1 to t+ τ .

• Spot Market Mode: Use the spot market at cost c′ per unit to meet the

demand for period t + 1. At end of period t + 1, the decision process resets.

Thus, the spot market option allows the decision maker to delay the decision of

signing the contract by one period. When this option is chosen we say that the

system is using the spot market mode (we denote m = 0) that remains active

only for period t+ 1.

Figure 2.1. (a): Decision sequence for periods t, . . . , t + 5. (b): Cost per
period of each mode with k = 0.7, c = 2/3 and c′ = 1

The cost in a period with demand d is referred as C0(d) if the spot market mode

(m = 0) is selected and C1(k, d) if the commitment mode (m = 1) at capacity k is

selected. We thus obtain the following:
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(2.1)
C0(d) = c′d

C1(k, d) = ck + c′[d− k]+,

where the operator [x]+ = max{0, x}. Figure 2.1-(b) presents an example of per-period

cost as a function of demand and mode choice. The cost C1(k, d) depends explicitly on

the capacity k of the contract. We assume that the spot market price is larger than the

contract price, i.e. c′ > c. Otherwise, the problem is trivial as the contract mode would

never be cost-efficient.

Under stationary demand, when the horizon of available information is more than the

commitment period (γ >> τ), the problem approaches the full information setting. On

the other hand, if the information horizon is significantly smaller than the commitment

horizon (γ << τ), the problem can be modeled as in the null information case. This chap-

ter considers the scenario where γ < τ but both are of similar magnitude, representative

of the scenario faced by the furniture company where γ = 1 week and τ = 4 weeks.

Table 2.1 presents three settings for the decision process. Given a set of feasible

capacities, the decision maker decides whether to sign a commitment contract (and the

capacity at which to sign the contract) or use the spot market for the entire next period

demand. In Section 2.3.2 we study the setting in which the decision maker has only

one choice of capacity with value k̄. In Section 2.3.3 we extend the analysis to the case

where the capacity can be chosen from a continuum. In the appendix A.3, we briefly

discuss the case where capacity can be chosen from a discrete set of capacities. When

the decision maker chooses a capacity, we assume he/she chooses the most cost-efficient
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Type of Contract

Decision Single Capacity
Continuum

Set of Capacities
Discrete

Set of Capacities*
Contract mode option m = 0 or m = 1 m = 0 or m = 1 m = 0 or m = 1

Capacity Level (if contract is signed) Fixed k̄ (no decision)
Choose from
k ∈ [0,∞)

Choose from
k ∈ {k0, k1, ..., kM}

Table 2.1. Contract decision settings.*discussed in the appendix A.3

capacity among the set of capacities available. This decision depends on the costs c and

c′ as well as the distribution of the unobserved demand. More importantly, the decision

also depends on the demand visibility available at the moment of signing the contract.

2.3.1 Preliminaries

We consider the decision process faced by the furniture company where managers have

demand visibility for the next period; i.e. γ = 1, but the demand of the remaining periods

in the planning horizon is stochastic with a stationary distribution F . We denote as Dw

the demand when it is a random variable and d when it is a specific realization of the

demand.

Assuming that no contract is signed at the end of period t, the decision making

sequence is as follows: at the end of period t the decision maker sees demand d for period

t + 1 and must then decide whether to sign the commitment contract (m = 1) or not

(m = 0). With m = 0, the same sequence is repeated at the end of time t + 1. With

m = 1, there is no decision to be made until the end of time t+ τ when the system resets.

The evolution of the system can be formulated as a discounted infinite time horizon

Markov Decision Process (MDP). Consider the decision process in a certain period when

the observed demand for the next period is d, given a discount factor δ. The value function
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V (d) can be obtained as the minimum between the cost of serving all the next period

demand with the spot market and the cost of signing the contract.

When the spot market is used to meet the entire transportation demand d for the next

period, the total cost is the sum of the spot market cost to serve the next period demand

and the discounted expected cost when facing the same decision in the following period

(V = EDw [V (Dw)]):

(2.2) Total Costm=0 = C0(d) + δV .

When a contract is signed, the capacity level k must also be chosen (unless the set of

capacity consists of a single capacity option). If capacity level can be chosen, the decision

maker can select capacity based on the demand observed d. We make this dependence of

the capacity on the observed demand explicit by denoting the selected capacity by k(d).

The total cost, when m = 1, is the sum of three components:

1. The cost incurred in the following period using the contract with the observed

demand d, C1(k(d), d).

2. The discounted expected cost of the following τ − 1 periods in the commitment

horizon

(
∑τ−1

i=1 δ
i EDw [C1(k(d), Dw)]).

As the demand distribution is stationary, the expected cost is the same in

all periods. Additionally, note that
∑τ−1

i=1 δ
i = δ 1−δτ−1

1−δ . We denote this term

as the discounted commitment horizon ∆(τ) = δ 1−δτ−1

1−δ , which is always bounded

between 0 (when δ = 0) and τ (when δ = 1). Hence, we can write this component
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as follows:

∑τ−1
i=1 δ

i EDw [C1(k(d), Dw)] = ∆(τ)EDw [C1(k(d), Dw)]

3. The discounted expected cost of the decision to be made after the commitment

contract expires in τ periods (δτ V)

The sum of the first and the second components is the total cost incurred during the com-

mitment horizon and is denoted as C1,τ (k(d), d) = C1(k(d), d)+δ 1−δτ−1

1−δ EDw [C1(k(d), Dw)].

Combining the three terms, we can write the total cost when m = 1 as follows:

(2.3) Total Costm=1 = C1,τ (k(d), d) + δτ V .

The value function (i.e. the cost of the decision) can be expressed by the Bellman

Equation (using Equations (2.2) and (2.3)) as follows:

(2.4)
V (d) = min{Total Costm=0,Total Costm=1}

= min{C0(d) + δV, C1,τ (k(d), d) + δτ V}.

At each decision epoch, the decision maker considers the observed demand in the

next period, d, and commits to a capacity level k(d) from the choice set. We next show

that under certain conditions we can restrict attention to functions k(d) that make the

decision monotonically increasing with the demand observed; i.e., if for some observed

demand it is optimal to commit, then it is also optimal to commit for larger demand.

Similarly, if for some observed next period demand it is optimal to entirely use the spot



42

market without commitment, then this option is also optimal for lower values of observed

demand. The following lemma characterizes conditions under which the policy obtained

is monotonically increasing.

Lemma 1. Consider the cost incurred over the commitment horizon: C1,τ (k(d), d).

There exists a monotonically increasing policy for V (d) that is optimal if the contract

option is such that:

(2.5) d(C1,τ (k(x),x)
dx

≤ c′ ∀x ∈ {x|C1,τ (k(x), x) is differentiable }.

In such case, we say that the contract and the selection of the capacity are Efficient.

We prove the results in the appendix A.1. The condition in Lemma 1 states that a

contract and the selection of the capacity are Efficient when the cost per unit of observed

demand is at most the spot market cost c′. Lemma 1 allows us to explore the structure

of the solution and obtain intuition on the role of partial information and the trade-off

between matching costs to observed demand and factoring costs throughout the commit-

ment horizon. The condition specified in Lemma 1 is found to naturally hold when c′ > c

as shown in the following Theorem.

Theorem 1 (Generalization of Lemma 1). If c′ > c, there exists a monotonically

increasing policy for V (d) that is optimal.

Therefore, the condition of being Efficient in Lemma 1 is a direct consequence of c′ > c.
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2.3.2 Commitment to a Contract with a Single Capacity Option

Consider the case where the decision maker commits to a contract with a single capacity

option k̄. At time t, the decision maker observes demand d for period t + 1 and must

decide the best of two options: sign a committed contract with capacity k̄ for the next

τ periods; or serve all demand for period t + 1 with the spot market at cost c′d. This

decision is impacted by the demand observed for period t + 1. If the demand observed

for period t + 1 is sufficiently low (say close to 0), the decision maker may be better off

by meeting the needs of period t + 1 with the spot market and delaying the decision of

signing a contract as committing to capacity k̄ will result in most of the capacity being

wasted for period t+ 1.

We show that the availability of partial demand information results in outcomes that

are fundamentally different than the null information case. Under the case of null in-

formation, the commitment time τ is irrelevant and the contract is signed only if the

expected single period cost from committing to capacity k̄ (EDw [C1(k̄, Dw)]) is no larger

than the expected cost of the spot market (EDw [C0(Dw)]). Thus, when information is not

available, a commitment contract is never signed if :

(2.6) EDw [C1(k̄, Dw)]− EDw [C0(Dw)] > 0,

However, in the partial information case a commitment contract can be signed even if

the condition in equation (2.6) is true. We next provide a condition when the commitment

contract is not signed, regardless of visible demand.
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Proposition 1. Assume that the decision maker can see the next period demand. It

is never optimal to sign the commitment contract if:

(2.7) EDw [C1(k̄, Dw)]− EDw [C0(Dw)] >
k̄(c′ − c)

∆(τ)
.

Definition 1. If:

EDw [C1(k̄, Dw)]− EDw [C0(Dw)] ≤ k̄(c′ − c)
∆(τ)

,

we say that a Cost Commitment Balance Condition (CCBC) holds.

We use the term Cost Commitment Balance Condition to highlight the relationship

between the one-period cost difference of the two modes and the cost of commitment. The

left hand side of the CCBC can be interpreted as the difference in expected per period

cost of the two modes when the available partial information is ignored. The right hand

side represents the maximum benefit that commitment can provide in a period, prorated

by the discounted commitment horizon.

The right hand side of the CCBC shows that if the left hand side is positive (condition

in eq. (2.6) true) when the commitment horizon τ is large enough (and δ close enough

to 1) the CCBC will not hold and, therefore, the commitment contract should never be

signed. As expected, as the commitment horizon increases, the commitment contract

becomes less attractive.

From Proposition 1 and a comparison of equations (2.6) and (2.7), one can see that the

availability of partial information reduces the instances where no commitment contract is

signed because k̄(c′−c)
∆(τ)

> 0. If a decision maker knows that the demand in the next period
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is high, he/she may be willing to commit to a contract that would not be signed in the

absence of information. Thus, commitment contracts that would not be cost effective in

the null information case can become cost effective when partial information is available.

Proposition 2 identifies the optimal policy for the decision maker when the CCBC

holds:

Proposition 2. Assume that the decision maker can see the next period demand d. If

the CCBC holds, there exists a unique threshold policy with threshold d̂ < k̄ such that: If

the next period demand is d > d̂, it is optimal to sign the commitment contract. If d ≤ d̂,

it is optimal not to sign the contract and use the spot market for all the demand in the

next period, delaying the commitment decision for one more period. The threshold d̂ is

the unique solution of the following equation:

C0(x)− C1(k̄, x) + (1− F (x) + 1
∆(τ)

)(C0(x)− C1(k̄, x)) = 0,

where:

(2.8)
C0(x) =

∫
d≤xC

0(d)dF (d)

C1(x) =
∫
d≤xC

1(c, d)dF (d).

The equation in Proposition (2) is obtained by assuming that both modes are equally

efficient when d = d̂ and using the information to solve the Bellman Equation.

Proposition 2 shows that under CCBC, the decision to commit to a contract explicitly

depends on the value of the observed demand in the next period. If the observed demand

is sufficiently high, the decision maker is willing to commit, but not otherwise. It is this
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partial visibility that results in the decision maker accepting contracts that would have

been rejected in the null information case.

The availability of partial information also results in instances where the decision

maker does not commit to a contract under conditions where he/she would have commit-

ted in the absence of information. This happens when the visible demand for the next

period is low (d < d̂). In such a situation, the decision maker is better off by meeting

all transportation needs for the next period from the spot market (m = 0). Thus, the

availability of partial information may result in fundamentally different decisions from the

null information case.

In Figure 2.2 we use a numerical example to compare the policies in the null informa-

tion and partial information cases. Due to its generality, we use the gamma distribution

for the demand. The parameters scale (θ) and shape (a) accordingly to set the expected

value and the variance as described in the legends. The demand follows gamma distri-

bution with expected value 0.66 and standard deviation 0.66. We increase the cost of

contracted capacity from 0 to 1 and hold the remaining parameters constant: τ = 4,

c′ = 1, k̄ = 1 and δ = 0.9. Experiments with other distributions can be found in the

appendix (e.g. Figure A.3-Figure A.7 in appendix A.5), which show that, qualitatively,

results hold for other distributions.

Figure 2.2-(a) presents the optimal policy for the null information case as a function

of the ratio of c and c′. Given the fixed parameters, if c/c′ < 0.51, the contract is always

signed. It is never signed otherwise.

In Figure 2.2-(b) we consider the partial information case and illustrate how the thresh-

old d̂ changes with c. The y-axis represents the demand observed for the next period. The
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Figure 2.2. Contract policies as a function of contract and spot market
costs (c/c′). (a): Null information policy. (b): Partial information policy
(c): Expected cost of partial and null information policies.

dashed line separates the region into CCBC (left) and no-CCBC (right) (at c/c′ = 0.66).

When c/c′ > 0.66, the contract is never signed regardless of the value of the observed
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next period demand. Note that for the same demand distribution and capacity level, this

cut-off point is higher than the commitment cut-off point (0.51) in the null information

case. When c/c′ < 0.66 (CCBC holds), the threshold (solid line) separates the regions

where the decision maker commits or does not commit based on the observed next period

demand. When the demand observed is above the solid line, the commitment contract is

signed. Otherwise, the spot market is used for all the transportation needs for the next

period.

We compare the expected value function (the total expected cost incurred) of the par-

tial and null information scenarios in Figure 2.2-(c). When CCBC is satisfied (c/c′ < 0.66),

the expected cost of the partial information case is always lower. When c/c′ reaches the

region where the CCBC does not hold, the decision maker never commits and, therefore,

both the null information and the partial information have the same costs. The partial

information is most valuable around the c/c′ threshold for the null information case (c/c′

= 0.5 in our numerical example).

The Value of Information with a Single Capacity Option. We study the effect

of demand volume on the value of information (Figure 2.3). For this purpose, we keep

the Coefficient of Variance (CV) constant while changing the expectation of the demand

(E[D]). Additional experiments (Figure A.3 in appendix A.5) confirm that these insights

hold for other distributions and with varying CV.

We first consider the length of the information horizon relative to the commitment

horizon. If the commitment horizon τ is much longer than γ = 1, the information provided

by the next period demand is small compared to the uncertain demand that is not visible.

In this case, partial information does not add significant value as the cost incurred under
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partial information is nearly the cost of having no information. On the other hand, if the

commitment horizon is close to the information horizon (τ approaches 1), the visibility

of next period demand is likely to be quite valuable. This observation is validated by

our numerical experiments shown in Figure 2.3, where we show the evolution of the

relative difference of the expected costs of the partial information and the null information

scenarios. When the information of the next period demand is valuable, the cost incurred

under the partial information is significantly smaller than the cost incurred under null

information. In all experiments, we fix k̄ = 1, c/c′ = 0.5 and δ = 0.9. Demand follows a

gamma distribution with an expected value that ranges from 0.1 to 1.5 and a fixed CV of

0.7. In Figure 2.3-(a) and 2.3-(b) we increase the ratio 1/τ , that represents the fraction of

commitment horizon that is visible when the decision is made. We show the change of the

relative difference of costs for different expectations of the demand ranging from 0.1 to 1.5.

In Figure 2.3-(a) we show the results for different expectations ranging from 0.1 to 0.7 in

(a) and in Figure 2.3-(b) we show the results for expectations ranging from 0.7 to 1.5. The

higher is the color intensity of each curve, the higher is the demand expectation. Observe

that the value of partial information increases as 1/τ increases (this happens when the

commitment horizon τ decreases). As expected, the value of partial information increases

as the information horizon represents a greater fraction of the commitment horizon.

If the expected value of demand is much lower than the capacity of the commitment

contract, commitment is unlikely because the observed demand for the next period is

likely to be lower than the threshold d̂. In such a situation, partial information is unlikely

to be useful because it will not change the commitment decision. When the expected value

of demand is much larger than the commitment capacity, the decision maker will almost
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Results of 

Figure 3-(a)

Figure 2.3. (a): The value of one period demand visibility with low ex-
pected demand, E[D]. (b): The value of one period demand visibility with
high expected demand (c): The value of one period demand visibility as a
function of expected demand.

certainly commit because the observed demand is likely to be larger than the threshold d̂.

In this case, partial information is again unlikely to be useful. Thus, partial information

is most useful when the expected value of demand per period is close to the commitment

capacity k̄. This observation is validated in Figure 2.3-(c), where we fix 1/τ = 0.33 and

we change the expectation of demand from 0.1 to 3. The value of partial information

diminishes when expected demand is much lower or much higher than k̄ = 1. For very

small or very large values of expected demand, the ratio of expected cost in the partial and

null information cases converges to 1. It is for intermediate values of expected demand



51

where partial information provides the highest benefits, allowing 15% of cost reduction

when the expected demand is 50% percent of the commitment capacity.

The Impact of Commitment and Size of the Lane on the Threshold Policy. We

explore the effect of the commitment horizon and the expected demand on the threshold

policy in Figure 2.4 where we show the threshold when the ratio 1/τ and the expected

demand change while the CV is constant at 0.71.

The threshold decreases as the expected demand increases. Intuitively, when the

expected demand is low relative to capacity, using the spot market is likely to be more

cost effective than commitment. Thus, the threshold is high because observed demand in

the next period must be quite high to make the contract cost-efficient over the entirety of

the commitment horizon. On the other hand, when the expected demand is large relative

to capacity, using the spot market is more cost-efficient only if the next period demand

is very small, and the threshold is low.
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Figure 2.4. Shape of the threshold d̂ as a function of expected demand and 1
τ
.

1See Figure A.4 in appendix A.5 for further experiments varying CV.
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Furthermore, observe that the threshold decreases as 1/τ increases (as the commitment

horizon decreases). When the commitment horizon τ is long, the commitment contract

is less attractive and is signed only if the next period demand is sufficiently large. Inter-

estingly, for the light curves, representing high expected demand, there exists a positive

value of the threshold even if τ → ∞. When τ is large, the optimal policy becomes a

stopping rule policy: The contract is not signed until the next period demand is larger

than the threshold and, after this event the contract is used for a long time period. Of

course, for such long time commitments, the savings from following this policy become

negligible compared to the total cost of the commitment time. Hence, as shown in Figure

2.3, the costs of the null and full information are close when τ is very large.

Returning to the furniture company, partial information is likely to be valuable because

the information horizon of one week represents a meaningful portion of the commitment

horizon of four weeks. The partial information is likely to be most valuable along lanes

where the quantity transported is within a reasonable range of the available capacity (e.g.

a truckload).

2.3.3 Commitment to a Contract from Among a Continuum Set of Capacities

We extend the analysis in Section 2.3.2 to the case where the decision maker has a

continuum of capacity choices available, each time he/she decides to commit. The capacity

kv selected is a decision variable that can be changed each time the decision maker signs

a new commitment contract. After selecting kv, the contract has capacity kv for the next

τ periods. Once the commitment expires, a new value of kv can be selected for the next

commitment contract. We call C1(kv, d) the per-period cost of the contract option as a
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function of the demand (d) and the capacity chosen (kv). Equation (2.9) shows the cost

structure of each mode.

(2.9)
C0(d) = c′d for m = 0

C1(kv, d) = ckv + c′[d− kv]+ for m = 1.

Using EDw [C1(kv, D
w)] and ∆(τ) as defined in equations (2.2) and (2.3), the expected

cost of committing to a capacity kv is denoted by C1,τ (kv, d):

(2.10) C1,τ (kv, d) = C1(kv, d) + ∆(τ)EDw [C1(kv, D
w)].

We denote by k∗(d) the optimal capacity at which the decision maker signs the com-

mitment contract when the next period demand is known to be d.

We now show that partial information results in fundamentally different policies by the

decision maker relative to the null information scenario. When no information is available,

the commitment horizon is irrelevant: the decision maker always signs a commitment

contract at a capacity level k∗null, where the selected capacity is obtained by solving a

simple newsvendor problem as follows: k∗null = F−1( c
′−c
c′

). We show that in the partial

information scenario, the decision maker may select different levels of capacity each time

he/she commits, based on the observed demand.

Proposition 3. Assume that the decision maker sees the next period demand d.

If the decision maker signs a commitment contract, the optimal capacity signed, k∗(d),

is completely determined by d as follows: Define k∗l := F−1( c
′−c
c′
− c

c′∆(τ)
) and k∗u :=
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F−1( c
′−c
c′
− c

c′∆(τ)
+ 1

∆(τ)
). Then,

k∗(d) =



k∗l if d < k∗l

d if k∗u ≥ d ≥ k∗l

k∗u if d > k∗u.

We remark on some interesting properties of the selected capacity k∗(d):

(1) In contrast to the null information case where the same level of capacity is selected

for each commitment horizon, under partial information the selected capacity

may vary with the observed demand for the next period. The structure of k∗(d),

shown in Proposition 3, is such that if the observed demand d is in the set

UC = [k∗l , k
∗
u] then the signed capacity is exactly equal to the demand, i.e.

k∗(d) = d. If the observed next period demand d is larger than k∗u (hence d /∈ UC)

the signed capacity is k∗u. Similarly, if the observed next period demand d is

lower than k∗l (hence d /∈ UC) the signed capacity is k∗l . Hence, under partial

information, the chosen capacity explicitly depends on the demand observed.

(2) The visibility of next period demand d allows the decision maker to select a

capacity level between d (a myopic choice to minimize cost for the next period)

and k∗null (an expected-cost choice to minimize cost for the rest of the commitment

horizon). Observe that k∗null is always in UC: k∗l < k∗null < k∗u. The band of

UC can be interpreted as the range of adaptation the decision maker has when

selecting the contracted capacity.
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(3) As shown in Figure 2.5-(a), the width of UC depends only on the distribution of

the demand (F ) and the discounted commitment horizon (∆(τ)). As the length

of the commitment horizon increases, the width of UC shrinks. When τ >> γ,

the UC consists of a single element UC = {k∗null}, and we move from the myopic

choice to the expected-cost choice.

We now show that the partial visibility of demand also impacts whether the decision

maker should commit or not. Whereas the decision maker always commits in the null

information scenario when a continuum of capacities is available, the decision maker may

choose not to commit under certain values of observed demand and delay a capacity choice

until demand increases. We first compare the costs of committing and not committing

when next period demand d is visible. By substituting the expression of k∗(d) in the

second equation of (2.9) we obtain that the first period cost if we commit at capacity

k∗(d) (C1(k∗(d), d)) is a piece-wise linear convex function that depends on the observed

demand d as shown in equation (2.11) and Figure 2.5-(b)).

(2.11) C1(k∗(d), d) = ck∗(d) + c′[d− k∗(d)]+ =



ck∗l if d < k∗l

cd if k∗u ≥ d ≥ k∗l

c′d− (c′ − c)k∗u if d > k∗u.

Similar to equation (2.4), let V (d) be the value function after seeing next period

demand d and βf (d) the expected value of C1(k∗(d), Dw) over Dw. We formulate the

evolution of the system as follows:
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(2.12) V (d) = min{C0(d) + δV, C1(k∗(d), d) + ∆(τ)βf (d) + δτ V}.

Next we show that the flexibility for the decision maker to select different levels of

capacity for each commitment contract ensures that the CCBC condition always holds at

the optimal capacity level. This is in contrast to the previous section where the CCBC

condition did not always hold when the decision maker could only commit to a single

capacity.
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Figure 2.5. (a): Range of Useful Capacities (argument of F−1). (b): Cost
of the first period: C1(k∗(d), d).

Lemma 2. Assume that the decision maker can see next period demand. Under

commitment to a contract from among a continuum set of capacities, the following is

always true:

(2.13) EDw [Cf (k∗u, D
w)]− EDw [C0(Dw)] <

k∗u(c
′ − c)

∆(τ)
.
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As a result the Continuous Cost Commitment Balance Condition (C-CCBC) always

holds at the optimal level of signed capacity.

Note that the left hand side of the C-CCBC depends on k∗u which depends on the

discounted commitment horizon and the distribution of the demand.

The expected one period cost of using the spot market is equal to the expected one

period cost of committing at capacity kv = 0. Also, k∗null minimizes the expected one

period cost of the contract option. Therefore, EDw [Cf (k∗null, D
w)] − EDw [C0(Dw)] < 0.

Consequently, for the case of null information, where the commitment horizon becomes

irrelevant and the capacity chosen is always k∗null, a contract with capacity k∗null is always

signed. In contrast, when partial information is available the next result shows that the

decision maker may or may not commit depending on the value of the observed next

period demand d.

Proposition 4. Assume that the decision maker sees the next period demand d. There

always exists a threshold policy with threshold d̂ < k∗u such that: If the next period demand

is d ≥ d̂, it is optimal to sign the committing contract with capacity k∗(d) (eq. 2.11). If

d ≤ d̂, it is optimal to use the spot market for all the demand in the next period, delaying

the commitment decision for one more period. The threshold d̂ is the unique solution of

the following equation:

(2.14)
0= C0(x) +

∞∫
x

C1(k∗(d), d)dF (d) + ∆(τ)
∞∫
x

βf (d)dF (d)+

+(1− F (x) + 1
∆(τ)

)(C0(x)− C1(k∗(x), x)−∆(τ)βf (x)).

The result above shows that under partial information, a contract is signed if the

demand of the next period is sufficiently high. When the observed next period demand is
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low, the optimal decision is to use the spot market for all the observed demand. Such a

policy is fundamentally different from the null information scenario where a commitment

contract is always signed. The availability of the spot market at cost c′ allows the decision

maker to delay the commitment decision. The decision maker is willing to spend a higher

cost of c′ per unit for the low next period demand and wait for a period with higher

demand before committing. Thus, the availability of partial information allows the spot

market to be used as an option to acquire more information (wait a period) if the currently

available information does not favor commitment (visible demand is low).

To summarize, when the decision maker is allowed to choose the capacity from a

continuum, the decision of signing the contract and its level of capacity depends on the

information available. When he/she has no demand information, the contract is always

signed at a fixed capacity level. In contrast, when the demand information is available for

the next period, the contract is signed only when the demand is known to be sufficiently

high. Not only does the decision of signing the contract explicitly depend on the demand

observed, but the level of capacity at which the decision maker commits is itself a function

of the visible next period demand.
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Figure 2.6. Value of information when decision maker chooses the capacity level.
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The Value of Information with a Continuum Set of Capacity Options. We

present numerical experiments to illustrate the value of information as expected demand

changes (Figure 2.6). In the experiments, we use δ = 0.9 and assume that demand follows

a gamma distribution with a constant CV of 0.72 and an expected value increasing from 2

to 10 represented in dark and light curves, respectively. We observe in Figure 2.6 that the

relative difference of the expected cost incurred under partial and no information remains

the same when the expected value of the demand is changed (the dark solid line is the

result of the 5 overlapped identical lines). Our observation indicates that if the CV is

kept constant the problem scales with the expected demand and, therefore, the threshold

should increase with expected demand.

The Impact of Commitment, Costs and Size of the Lane on the Threshold

Policy. To understand why the value of information is the same for any size of the

demand we focus on how the threshold depends on the demand. In Figure 2.7-(a) we

fix the cost ratio to c/c′ = 0.5 and show the threshold for different values of 1/τ and

expected demand (gray scale: the lighter the line the higher is the expected demand)

while the CV is kept constant to 0.73. The threshold increases with the expected value of

demand unlike the results obtained with a single capacity set (Section 2.3.2 and Figure

2.4), where the threshold decreases with the expected demand. When the decision maker

can choose the capacity, the chosen capacity level increases with the expected demand (i.e.

in Proposition 3, k∗l depends on the inverse of the distribution F ). Thus, the contract

is signed only when the observed demand is sufficiently high to make the contract, at

capacity level higher or equal than k∗l , cost-efficient.

2See Figure A.6 in appendix A.5 for further experiments varying CV.
3See Figure A.7 in appendix A.5 for further experiments varying CV.
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As noted earlier, when the commitment horizon is large (τ → ∞), the threshold is

positive and, hence, the optimal policy becomes a stopping rule: as shown in Figure

2.7-(a) the threshold is high and the spot market is used until the observed next period

demand is higher than the threshold. At that point, the decision maker commits with a

capacity level k∗(d) = knull.
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Figure 2.7. Numerical results for the continuum set of capacities case. (a):
Threshold curves changing with commitment horizon. (b): Threshold curve
changing with the ratio c/c′.

We also examine how the spot market and contract costs change the optimal policy.

The contract cost c determines how the modes are used: When the cost c is low relative

to c′, the decision maker has low commitment risk and always signs the contract with

high capacity. When the cost c is high (close to the spot market c′), the decision maker

commits to a low capacity to serve the baseline demand, and generously uses the spot

market to serve high demand fluctuations. When the cost is between these two extremes,

the spot market and contract are both used to serve fluctuations and baseline demand.

We validate these observations numerically in Figure 2.7-(b). In the experiments we fix

the commitment horizon to τ = 4 (1/τ = 0.25). We show how the threshold changes



61

when we modify the fraction c/c′ and expected demand (gray scale). When the fraction

c/c′ is close to 0 or 1, the optimal threshold is low. When c/c′ is between 0.2 and 0.7 the

optimal threshold is higher, hence only when the next period demand is sufficiently high,

the contract is signed. Interestingly, the contract is signed with high probability (threshold

set low) in both extremes values of the cost fraction c/c′. This result contrasts with the

conclusions in Section 2.3.2, where only one capacity is available and the threshold is

always increasing with relative cost c/c′.

In the case of the furniture company, there is clear value from partial information

when a range of capacity levels exist for contracts. Any such flexibility from the carriers

would allow the furniture company to properly choose capacity levels based on observed

demands.

2.3.4 Seasonal Demand

Often, demand on transportation lanes exhibits seasonality, as observed by the furniture

company studied in this work. Figure 2.8 shows average daily transportation needs of

the company in three lanes for the 2016-2017 fiscal year. These lanes correspond to three

hub-spoke pairs with the largest demand volume of a region that contains a total of 20

lanes used by the company. Demand units are scaled for confidentiality but proportional

across periods and lanes. The most pronounced peaks in the season occur in the weeks

during and after special dates (Black Friday, President’s Day and Labor Day) where the

volume of orders is known to be high. These peaks are present on the same dates in all

lanes and the same pattern repeats from one year to another. Transportation procurement

decisions are made in the framework of this seasonal demand.
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Figure 2.8. Transportation needs for three lanes (units scaled) for the year
2016-2017. Dots show daily transportation needs. Shade shows the esti-
mated mean ± estimated standard deviation.

We model the case with stationary but seasonal demand, when capacity of the contract

option can be chosen from a continuum as in Section 2.3.3. We consider a year that consists

of 0, . . . , T − 1 periods. The distribution of the demand of all periods is known, denoted

by Ft with t = 0, . . . , T − 1, and we assume that Ft+T = Ft for all t = 0, 1, 2, . . . .

First, we focus on the capacity decision assuming a contract is signed. With capacity

kv, the cost over the commitment horizon can be calculated as the sum of the cost of

the period where the demand realization is known and the expected cost of the following

τ − 1 periods. Let C1
t′(kv) =

∫
(ckv + c′[d′ − kv]+)dFt′(d

′) be the expected cost of period

t′. When a contract is signed at the end of period t − 1 and the next period demand

realization is known to be dt, the cost during the commitment horizon is:
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(2.15) C1,τ
t (kv, dt) = ckv + c′[dt − kv]+ +

∑τ−1
i=1 δ

iC1
t+i(kv).

Equation (2.15) has the same structure as Equation (2.10) and it is easy to see that the

capacity that minimizes C1,τ
t (kv, dt) has the same structure as the solution in Proposition

3 with upper and lower thresholds that depend on the period, denoted k∗u,t and k∗l,t for

t = 0, 1, . . . , T .

Proposition 5. Assume that demand is seasonal over T periods and the decision

maker observes next period demand dt. If the optimal decision at period t is to sign the

contract, the capacity signed at time t, k∗t (dt), is completely determined by the next period

demand as follows:

k∗t (dt) =



k∗l,t if dt < k∗l,t

dt if k∗u,t ≥ d ≥ k∗l,t

k∗u,t if dt > k∗u,t

,

where k∗l,t and k∗l,t are period-dependent upper and lower thresholds determined as:

k∗u,t = arg min
kv

ckv +
∑τ−1

i=1 δ
iC1

t+i(kv)

k∗l,t = arg min
kv

−(c′ − c)kv + c′d+
∑τ−1

i=1 δ
iC1

t+i(kv) .

As in Proposition 3, if the observed demand is dt ≥ k∗u,t, the optimal capacity signed at

time t is k∗t = k∗u,t. If dt ≤ k∗l,t, the optimal capacity signed at time t is k∗t = k∗l,t. If k∗u,t ≥
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dt ≥ k∗l,t the optimal capacity is k∗t = dt. The capacity signed under null information,

k∗null,t always falls between k∗u,t and k∗l,t. When signing capacity, the same intuition and

results presented for stationary demand hold for seasonal demand (see remarks (1)-(3) in

Section 2.3.3).

We now focus on the decision of signing or not signing the contract at period t. Let

Vt(dt) be the value function at period t and Vt its expected value. With seasonal demand,

the expected value function at time t and at time t+T is the same (Vt = Vt+T ). We have

T value functions, each corresponding to making a decision at time t ∈ {0, 1, 2, . . . , T−1}.

At each period, the value function consists of the minimum of two: (1) the cost of not

signing the contract at time t and revisiting the decision at t + 1; and (2) the cost of

signing the contract with the optimal capacity, committing for τ periods. The optimality

equations that link all the periods can be written as follows for each period:

(2.16)

Vt(dt) = min{C0(dt) + δVt+1, ck
∗
t (dt) + c′[dt − k∗t (dt)]+ +

∑τ−1
i=1 δ

iC1
t+i(k

∗
t (dt)) + δτVt+τ}.

It is easy to see that there exists an optimal policy that is monotonic non-decreasing

with the same structure as described in Proposition 4 with period dependent thresholds:

At each period t, if the demand is larger than a threshold d̂t, it is optimal to sign a

contract with capacity k∗t (dt). If next period demand is lower than d̂t, it is optimal not

to sign any contract. We formalize this statement in Proposition 6.

Proposition 6. Assume that demand is seasonal over T periods and the decision

maker sees the next period demand dt. The decision of whether to sign the contract or
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not is completely determined by the next period demand as in Proposition 4 with a period-

dependent threshold policy characterized by d̂t for t = 0, 1, . . . , T .

The thresholds d̂t uniquely solve the following system of 2|T | non-linear equations with

2|T | variables.

(2.17)

C0(d̂t) + δVt+1 = ck∗t (d̂t) + c′[dt − k∗t (d̂t)]+ +
∑τ−1

i=1 δ
iC1

t+i(k
∗
t (d̂t)) + δτVt+τ t = 1, . . . , T

(2.18)

Vt =
∫
d′<d̂t)

{
C0(d′) + δVt+1

}
dFt(d

′)+∫
d′≥d̂t)

{
ck∗t (d

′) + c′[d′ − k∗t (d′)]+ +
∑τ−1

i=1 δ
iC1

t+i(k
∗
t (d
′)) + δτVt+τ

}
dFt(d

′) t = 1, . . . , T.

Comparing this result with those in Section 2.3.3, the only difference is that, under

seasonal demand, the threshold depends on the period. All insights and conclusions still

apply.

Solving the system for general demand distributions F0, . . . , FT−1 can be computa-

tionally intensive because a single evaluation of Equation (2.18) requires computing a

double integral that is moderately sensitive to the approximation error. Instead of di-

rectly solving the system of equations, we propose using a sampling framework with the

value iteration algorithm, which, for this particular case, can be easily parallelized across

periods.

In following sections, we show that when demand is seasonal, partial information can

be leveraged by properly coordinating the periods where the lanes are free of commitment

with the periods where demand changes sharply.
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Wait-and-See vs. Now-or-Never : Contracting with Seasonal Surges and

Drops. We study how a company can leverage demand information to manage demand

surges similar to those in Figure 2.8. For simplicity of exposition, assume that there exists

a single demand surge. If the surge is visible, the company can sign a customized capacity

contract that adapts to the higher observed demand. The company greatly benefits from

demand visibility, the incentives for signing a contract are high and the threshold for

committing is low as a result. However, in periods prior to the visibility of the surge, the

company is inclined to delay commitment until the demand surge is visible. We confirm

this observation in Figure 2.9-(a). (Appendix A.4 includes details about the numerical

experiments.) Observe that when τ = 3 the threshold is high in periods 8 and 9 before

the surge is revealed in period 10. Signing a contract in either period 8 or 9 would put an

established contract in place when the surge is revealed, removing the company’s ability

to set a customized contract for the surge. As we move farther back from the surge, we

observe an oscillating pattern in threshold levels that dampens over time. In period 7, the

threshold drops: a contract signed in this period would expire before the surge demand

is revealed in period 10 (with τ = 3). The threshold rises again in period 6 as a contract

signed in this period removes the ability to sign a contract in period 7, which we just

observed is a desirable time to sign a contract since it is offset by τ periods from the

revelation of the surge demand.

We refer to the strategy of coordinating contract commitment in the periods leading

up to the reveal of the surge demand as a wait-and-see strategy. The oscillating pattern

of wait and see is determined such that it is unlikely to have a contract in place when
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demand for the surge is revealed, allowing the decision maker to make the appropriate

capacity choice at that time.

Expected Demand

Commitment Threshold(a) (b)
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Figure 2.9. Threshold policy with seasonal surge (a) and drop (b) with τ = 3.

We show that a different strategy is optimal when, instead of a surge, a demand drop

is expected, as shown in Figure 2.9-(b). It is unlikely that observing demand for the drop

would result in signing a contract since demand is likely to be low and the spot market

will be more cost-efficient. In periods prior to the visibility of the drop, the company is

more likely to take advantage of demand visibility by signing a contract that adapts well

to the observed demand in the periods with moderate expected demand. We confirm this

observation in Figure 2.9-(b). Observe that when τ = 3 the threshold is low in periods

8 and 9 (higher incentives to sign a contract) because signing a contract implies entering

the drop with an established contract. Therefore, the company can leverage the low

costs of the contract by signing the capacity contracts such that a commitment contract

is already in place when demand during the drop is observed. We call this contracting

strategy Now-or-Never and it is efficient when demand drops are expected.
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How Seasonal Modes Affect the Commitment Strategies. Seasonal demand may

manifest not as a surge or drop but rather with different seasonal modes, which is a

typical setting for companies selling strongly seasonal products such as winter/summer

sport equipment, holidays merchandise, etc. For simplicity of exposition, we assume that

we have two modes: During the first half of the year, the distribution of the demand is

expected to be low and during the second half, demand is expected to be larger.

Period

Wait-and-See Now-or-Never

2.0

1.0

0.0

1.5

0.5

0 5 10 15 20 25 30 35

Expected Demand

Commitment Threshold

Figure 2.10. Threshold policy with seasonal modes with sharp change.

Similar to the results for seasonal demand surges and drops, the information is most

valuable when contracts are coordinated with demand distribution changes. The demand

visibility is leveraged if a capacity contract is signed when the surge period is observed

for the first time. In other words, the company benefits from approaching the surge with

no commitment in place. We numerically show this observation in Figure 2.10. For the

periods prior to entering the surge (13-14), the threshold is high. This increases the like-

lihood of approaching the surge without a commitment in place. Hence, we observe that

the Wait-and-See strategy is preferred when demand changes from low to high seasonal
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mode. On the other hand, the company desires to exit the surge with a commitment al-

ready in place. The company takes advantage of demand observation by signing a contract

while demand is still high. We observe in periods (30-33) that the Now-or-Never strategy

is preferred when the high demand mode ends. Observe that with seasonal modes, the

dampening of oscillation prior to the first and the last period of the high mode occurs

more slowly.

2.4. Conclusions and Further Research

Motivated by a collaboration with a major furniture company, we demonstrate how

limited demand visibility can be used to efficiently select transportation procurement con-

tracts in the presence of commitment. Our work is novel in its study of the combined effect

of information and short commitment requirements in this environment. Particularly, we

show that the availability of partial information fundamentally changes the policies com-

pared to the case where only the demand distribution is known or the case where all the

realizations of the demand are known in advance. Information regarding future demands

can be used by the decision maker to determine whether or not a contract should be

signed through a threshold policy. When a contract is signed, demand visibility allows

the decision maker to choose customized contracts that adapt to the observations. In

addition, when facing seasonal demand, the partial information is leveraged by properly

coordinating the contracting epochs using tailored strategies. Applying these insights to

the highest demand lanes of the furniture company, we find that considering demand in-

formation in contracting policies can reduce costs by 3-4% consistently across these lanes

(see Appendix A.2).
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The transportation procurement selection studied in this chapter describes a decision

process faced in many business settings where companies have visibility of demand for

the near future. For example, in addition to furniture enterprises, brick and mortar and

e-commerce companies offering delivery services operate in a partial information setting

as transportation needs are known within their delivery time window. Not only are

these decisions quite common, they are also crucial to business success. According to

the National Retail Federation, 60% of the online transaction included free shipping [98].

Hence, the competition in costs in this industry has resulted in a paradigm where the

company typically assumes the shipping costs, increasing the cost of moving the products.

For instance, as stated in CNN, Amazon’s shipping costs reached $1.5B in Q1 of 2016

while net profits reached $513M [58]. Hence, consistently reducing 3-4% of shipping

operations costs can have a significant impact on profitability. With the emergence of

e-commerce and home delivery, the companies requiring highly efficient distribution of

their products has increased in the past twenty years, which makes the study of the role

of partial information and commitment grow in relevance.

This work opens multiple directions of future research. More general results can be

found if one considers other forms of the costs c and c′ (e.g. convex functions of capacity

signed or commitment horizon, stochastic costs). From the transportation network per-

spective, we believe there is much work to be done in analysis of multiple lanes. Under

that scenario, the capacity of the contract can be shared by different destinations. In the

next chapter of this dissertation, Chapter 3, we study the impact of demand visibility on

the capacity decisions in a network of transportation lanes, where multiple destinations
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can share transportation capacity (by means of multi-stop routes or flexible transportation

contracts).

Another natural extension considers longer periods of demand visibility (i.e. γ > 1).

In the transportation literature, expanded delivery windows (a form of expanding the

information horizon) have been studied in terms of increased delivery density [22], and

future research here could complement those studies. Wider delivery windows provide the

company with more information, but it might come at a cost of decreased customer service.

In Chapter 4, we explore the transactional data from the furniture company to study the

impact of increasing delivery time windows on customers’ behavior. A more detailed

analysis of the value of additional information can be particularly useful in settings in

which it is costly to gain additional demand visibility, or when visibility can be gained

through increasing delivery windows.
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CHAPTER 3

The Value of Information and Flexibility with Temporal

Commitments

This chapter extends the results of Chapter 2 to a network with dedicated transportation

contracts (single-leg lanes) and flexible contracts (two-leg lanes). In a network, demand

visibility and flexible capacity are two hedging mechanisms against demand uncertainty

for signing capacity contracts. With new technological innovations, temporal commitment

of such contracts is shortening. Previous studies show that, with long temporal commit-

ment, the two mechanisms are substitutes. We show that commitment imposed across few

periods leads to new dynamics in which the two mechanisms act as both substitutes and

complements.

3.1. Introduction

In this chapter we study how partial demand visibility can help a firm improve its use

of flexible capacity when the firm can choose to commit to capacity for a few periods. Our

work is motivated by a furniture company that periodically signs contracts of relatively

short temporal commitment duration (a few weeks) with transportation providers. In

these contracts, the company commits to levels of dedicated and flexible transportation

capacity that will be available for use for the duration of the commitment horizon.

While short term temporal commitments of few weeks are common in transportation

where capacity (i.e. trucks) can be reassigned relatively easily, this has typically not
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been the case when sourcing traditional production capacity. In traditional procurement,

temporal commitments are typically made for a year or longer because capacity cannot

easily be adjusted. As a result, most sourcing literature has considered very long com-

mitments. Our focus on relatively short commitment horizons is likely to become more

relevant in the future as technological innovations make capacity easily redeployable (see

[45] for contexts and literature). For example, Flexe, Stord, and Flow are companies that

provide on-demand warehousing to their clients and allow commitments as short as a few

weeks. In processing and manufacturing, there is a growing interest in mobile production

capacity that is easily reconfigurable (e.g. [14] and [88]). Likewise, 3-D printing provides

firms with production capacity that is easy to redeploy across clients. In these settings,

the increased flexibility of the supply process (whether for warehousing or production)

facilitates short term commitments. With shorter commitment horizon, demand visibility

due to advance scheduling in services, make-to-order manufacturing (e.g. [125], [78], [77],

[15]) and logistics (e.g. [146]) is likely to become more valuable.

There is an extensive literature that considers the use of flexible capacity when faced

with demand uncertainty to improve performance (e.g. [51], [128] and [60]). There

is also literature (see [15] and [19]) that shows how partial demand visibility can be

leveraged to improve performance. This chapter combines these two streams and focuses

on how partial demand visibility can allow a firm to suitably commit to and deploy flexible

capacity given short term commitments.

To understand how demand visibility and flexible capacity may work together to

address demand uncertainty, consider the middle mile of a transportation network con-

necting a hub to two spokes. A firm serves stochastic demand at two spoke locations by
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periodically distributing products from a central hub. The spoke cities can be served using

dedicated truckload routes that only visit one spoke. When signing dedicated transporta-

tion contracts, the company must commit to a capacity level and to an origin-destination

route, as shown in 3.1-(a). For flexible transportation contracts, the company commits to

a capacity level, but has flexibility in the route destinations, including the more expensive

option of multi-stop routes, as shown in 3.1-(a). The addition of multi-stop routes and

the ability to change destinations based on realized demand leads to the higher cost of

flexible contracts. If demand for the following week is visible, a flexible contract allows

the company to load the flexible route based on observed demand at the spoke cities.

Thus, the furniture company faces a trade-off between the higher cost of flexibility and its

ability to use the flexible capacity as needed. Figure 3.1-(b) shows the decision sequence

of the firm. At each decision point, the firm has demand visibility over the next period

and must commit to contracts for a commitment duration of four periods. In each period,

demand is first served using the committed capacity, with any unmet demand served using

the spot market. The firm makes a new commitment decision after the four periods of

commitment. Partial demand visibility along with short term commitment allows a firm

to change its decision after each commitment horizon based on the new demand observed.

As a result, short term commitment leads to findings that are different from the existing

literature where commitment is either non-existent or very long.

Using a newsvendor network model we show that it is optimal to adapt (within bounds)

the committed capacity for each commitment horizon based on the visible demand. Com-

mitment to flexible capacity strongly depends on the visible demand at the two nodes. If

visible demand at one node is high and visible demand at the other is low, it is optimal
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to commit to more flexible capacity and less dedicated capacity. Using demand visibility

to adapt capacity commitments increases the average marginal value of flexible capacity

by changing the commitment to flexible capacity based on visible demand.

Figure 3.1. (a) Contracts available to supply nodes 1 and 2. (b) Time line
of capacity decisions.

When a firm utilizes demand visibility and flexible capacity to hedge against uncer-

tainty when committing to capacity, a natural question arises: Does the value of demand

visibility increase or decrease in the presence of flexible capacity? In other words, are de-

mand visibility and flexible capacity substitutes or complements? We find that demand

visibility and flexible capacity can be either substitutes or complements depending on

the cost of flexible capacity (see Figure 3.2). While demand visibility is always valuable,

its value changes with the optimal commitment to flexible capacity. When the cost of

flexible capacity is very high (far right white area of Figure 3.2), it is optimal to commit

only to dedicated capacity. Clearly, demand visibility is valuable in this situation. At

the other extreme, when the cost of flexible capacity is very low (far left striped area in

Figure 3.2), it is optimal to commit to a high level of flexible capacity. The high level of

flexible capacity reduces the value of demand visibility. In this situation, flexible capacity
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and demand visibility behave like substitutes, confirming the intuition found in previous

studies. Demand visibility is most valuable between the two extremes (shaded area in

Figure 3.2) where it is optimal to commit to both dedicated and flexible capacity. In this

range of the cost of flexible capacity, flexible capacity and demand visibility behave like

complements.

Our sensitivity analysis shows that the range over which partial demand visibility

and flexible capacity are complements changes with the commitment horizon and the

correlation of demand at the two spoke nodes. An increase in the commitment duration,

or an increase in positive correlation of demand at the spokes, expands the range over

which flexible capacity and demand visibility complement each other.
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Figure 3.2. Value of demand visibility as a function the cost of flexible capacity.

Sections 3.2 and 3.3 introduce the basic model assumptions and related literature.

Section 3.4 we describe our model and find basic insights regarding the optimal decisions

with partial demand visibility and flexible capacity with commitment. We analyze and

discuss the interplay between flexible capacity and partial demand information in Section
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3.5. Sensitivity analysis with respect to key model parameters is presented in Section 3.6.

3.2. Context and Basic Model Assumptions

In this section we introduce the decision process faced by the company that motivates

our study. We then discuss the assumptions used in our model.

3.2.1 Managerial Context

This chapter is motivated by a furniture company (as in [19]) with hundreds of showrooms

across the United States that produces its furniture to order for delivery to customers’

homes. At the point of purchase, customers choose a delivery date, typically, within one

or two weeks. Once an order is scheduled, products are distributed from the hubs to

the spokes, and from the spokes to the customers’ home. Given that most orders are

scheduled for delivery a week or more after purchase, the transportation group of the

furniture manufacturer typically has visibility into scheduled delivery needs over the next

week. Thus, the demand for transportation needs is visible one week into the future.

The company supplies most of its transportation needs with spot market options

provided by companies such as XPO, UPS or U.S. Postal Service (USPS). The company

also signs transportation procurement contracts of about four weeks at a lower cost than

the spot market. By signing a longer term contract, the company commits to pay for a

chosen weekly capacity level over the next four weeks while having demand visibility only

a week into the future. The company faces the key decision of committing to capacity

over the commitment horizon of four weeks.
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In this situation, the firm has partial information in the form of demand visibility for

a week, but must make commitments for four weeks. As a result, the firm has multiple

commitment opportunities over the planning horizon of a quarter or a year. In relation

to Chapter 2, we study the decision process of choosing committed dedicated and flexible

capacity when the company decides to supply the transportation needs by committing to

transportation contracts.

Figure 3.1-(a) depicts a region where the company serves two spokes (circles) from a

single hub (triangle). When signing transportation contracts, the company must commit

to a capacity level for each route. In Figure 3.1-(a), the spokes can be served by dedi-

cated transportation capacity (a truck route that visits only one spoke node) and flexible

transportation capacity (a truck route that visits both spoke nodes , either independently

or with multi-stop routes). A dedicated capacity commitment can only be used to meet

demand at a specific spoke node. In contrast, the flexible capacity commitment can be

allocated in any amount up to the committed capacity to meet demand at either of the

two spoke nodes visited. This ability to adjust route destinations and use multi-stop

routes if necessary leads results in a higher cost for flexible capacity contracts. When

making its capacity commitments, the company must trade off the higher cost of flexible

capacity against the benefit of pooling offered by the flexible capacity.

Our work focuses on how flexible capacity and demand visibility, two mechanisms

to hedge against demand uncertainty, interact in the presence of temporal commitment.

In the following sections, we describe our basic assumptions and then discuss previous

literature that explores the use of demand visibility (both in the presence and absence
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of commitment) and flexible capacity (prior literature has ignored commitment) to hedge

against demand uncertainty.

3.2.2 The Basic Assumptions of the Model

Our notation is based on the nomenclature used in [128] and [19]. We use bold letters

to denote vectors (e.g. ki). Element j of ki is ki,j. v � (≺)u is element-wise comparison.

Capital letters are reserved for random variables and lower case letters for their realiza-

tions. ED is the expectation with respect to D. Rn is the n-dimensional real vector space

and Rn
+ is {v ∈ Rn|v � 0}. [x]+ is the positive part of x.

We consider a firm that uses a hub to supply the demand at two spokes, n1 and n2,

as shown in Figure 3.1. In each period t, nodes n1 and n2 have demand realizations that

we model as continuous random vectors Dt = (Dt
1, D

t
2)′. We first assume that demands

of different periods are independent and identically distributed (IID) and follow a known

distribution F (x, y). We allow the demand Dt
1 to be correlated with Dt

2, but not across

time. Given that the value of information will increase with correlation across time,

assuming independence across time is reasonable.

At the beginning of each commitment horizon, the firm decides the capacity level of

three network contracts (see Figure 3.1-(a)). Dedicated-Contract-1 (contract 1): capacity

commitment on truck traveling to node n1. Dedicated-Contract-2 (contract 2): capacity

commitment on truck traveling to node n2. Flexible Contract (contract 3): capacity

commitment on truck traveling to both nodes n1 and n2. The commitment decision is

made for the commitment horizon τ . The costs per unit per period of each contract are

c1, c2, c3, respectively. To avoid trivial solutions, we assume without loss of generality
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c1 ≤ c2 < c3 ≤ c1 + c2. Any portion of realized demand in a period that is in excess of

the committed capacity is supplied using the spot market at a cost cs > c3.

As shown in Figure 3.1-(b), the decision maker observes the demand realizations for

the next γ periods (the information horizon) before making any commitment. In the null

information scenario (γ = 0), no demand is visible. In the partial demand information

scenario (γ ≥ 1), demand is visible for the next γ periods. In this case, we say that partial

demand information is of the form of partial demand visibility. With this information,

the decision maker commits to capacity for each contract for a duration of τ periods

(commitment horizon).

Our stylized model has three assumptions that simplify the analysis and exposition.

Each assumption, however, can be relaxed while maintaining the core insights. Our first

assumption is to focus on a simple network with two demand nodes where the spot market

cost of serving each node is the same. Our results (Theorems 2-8) can easily be translated

to the case when spot market costs for the two nodes are different. Our insights also

extend to networks with more than two nodes that share flexible capacity. Second, we

assume that the demand in each period has known, stationary and identical distribution.

This assumption allows us to easily compare the solution of the partial information case

with the null information case. In Section 3.7, we generalize this assumption and extend

our results to the case where demand is not stationary and the case where distribution

is unknown. Our third assumption is to fix the information horizon to a single period

(γ = 1). The intuition developed when the information horizon is a single period holds

when this assumption is relaxed.



81

We support our analytical findings with numerical experiments where the model pa-

rameters are calibrated with realistic values based on data from the furniture company.

The ratio between per unit dedicated capacity costs and spot market costs is ci/cs ≈ 0.3

(the ratio of ci/cs ranged between 0.2 and 0.4 for the company). We use a coefficient of

variation of demand of 0.6 which is within the range 0.5-0.7 for the company. Our com-

mitment horizon τ = 4 weeks and information horizon γ = 1 week are close to the scenario

faced by the company. Demand between nearby nodes also showed positive demand cor-

relation ranging from ρ = 0.1 to 0.3. We explore the impact of key model parameters on

our results in Section 3.6.

3.2.3 Base Case: The Null Information Model With Flexible Capacity (γ = 0)

In this section we set up the null information model, i.e., the case without demand visibility

(γ = 0). We build on the model given in [128] to obtain optimal capacities for dedicated

and flexible contracts when the distribution of demand is known but there is no demand

visibility. Since demand is stationary, all periods are identical and we can focus on the

case τ = 1.

We model the capacity decisions with a set of ex-ante decisions at the start of each

commitment horizon and a set of ex-post decisions for each period after demand is ob-

served. The ex-ante decision minimizes total expected cost by identifying the desired

committed capacity k1, k2 and k3 for each of the three contracts at unit costs per period

c1, c2 and c3, respectively. Once demand is realized in each period, the ex-post decision

optimally uses the committed capacities and the spot market to supply the demand at

both nodes. We denote by y1 (y2) the amount demand at node 1 (2) supplied using the
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dedicated contract 1 (2). We denote by y3 (y4) the quantity supplied to node 1 (2) using

the flexible contract. These quantities can be interpreted as the units flowing through

each edge of Figure 3.3-(a). The quantities shipped using the spot market are obtained

as [d1 − (y1 + y3)] and [d2 − (y2 + y4)] for nodes n1 and n2 respectively. We denote

y = (y1, y2, y3, y4)′ ∈ R4
+.

For a committed capacity vector k = (k1, k2, k3)′ ∈ R3
+ and demand realization d =

(d1, d2)′ ∈ R2
+, the ex-post problem is to find a flow vector y that minimizes the spot

market cost to meet demand (because the cost of committed capacity is a sunk cost for

each period). The ex-post problem of minimizing the spot market costs given demand

realizations (d1, d2) is formulated as follows:

(3.1)
π(k,d) = min

y∈R4
+

cs(d1 − y1 − y3) + cs(d2 − y2 − y4)

subject to:

(3.2)
y1 + y3 ≤ d1

y2 + y4 ≤ d2

(3.3)

y1 ≤ k1

y2 ≤ k2

y3 + y4 ≤ k3.

The optimal solution of π(k,d), the ex-post problem, partitions the sample space of

demand d ∈ R2 into four disjoint regions such that the dual variables are constant in each
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region and the solution of π(k,d) is fully characterized. These regions are defined below

and shown in Figure 3.3-(b).

Definition 2. We define the set of regions Ωi(k) (i = 0, I, II, III) as a function of

the vector of capacity vector k as follows:

• Ω0(k) = {d ∈ Rn
+|d1 + d2 ≤ k1 + k2 + k3, d1 ≤ k1 + k3, d2 ≤ k2 + k3}

• ΩI(k) = {d ∈ Rn
+|d1 ≤ k1, d2 ≥ k2 + k3}

• ΩII(k) = {d ∈ Rn
+|d2 ≤ k2, d1 ≥ k1 + k3}

• ΩIII(k) = {d ∈ Rn
+|d1 + d2 ≥ k1 + k2 + k3, d1 ≥ k1 + k3, d2 ≥ k2 + k3}.
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Figure 3.3. (a) Basic contracts in a newsvendor network. (b) Adaptation
of Figure 1 of [128]: The four regions where the solution of π(k,d) is fully
characterized and the shadow prices are constant.

Consider the ex-ante problem of determining the contract capacities k1, k2 and k3.

Let D = (D1, D2)′ be the random vector of demands and c = (c1, c2, c3)′ the vector of

contract costs. The optimal committed capacity minimizes the cost of committing to the

contracts and the expected cost incurred from the spot market in Eq. (3.4).

(3.4) V (k) = ED π(k,D) + c′k
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We refer to the minimization of Eq. (3.4) as the null information problem and denote its

solution by k∗null. While there is no closed form solution to k∗null, Proposition 1 in [128]

provides First Order Conditions (FOC), which are necessary and sufficient for optimality

because the minimization problem defined in Eq. (3.4) is convex and differentiable. The

rest of the chapter studies how partial demand visibility changes capacity commitments

relative to the null information model.

3.3. Related Literature

In this section we review literature related to flexible capacity and partial demand

visibility.

3.3.1 Capacity Pooling in the Literature

Procurement and capacity management within a network under null information (no

demand visibility) has been studied by several authors including [51], [76], [62] and [69].

[51] provides necessary and sufficient conditions for investments in flexible capacity to be

optimal. Our work focuses on the decision of selecting capacity contracts in a network

when demand is uncertain over a commitment horizon, and we model the procurement

decision as a newsvendor network. We adapt the results in [128] to describe the null

information scenario and focus on understanding how partial demand visibility changes

the structure of the optimal policy. [130] and [129] study the newsvendor network model

under dynamic environments and risk considerations. The value of flexible capacity in

conjunction with other mechanisms or business models is also studied in the literature.

For instance, [32] studies the impact of pricing decisions on the value of flexibility with
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responsive demand. [121] shows that the value of flexible capacity is reduced when the

decision maker is risk averse and suppliers are not reliable. In multimarket network design,

[85] describes how demand uncertainty increases the value of centralized procurement

strategies due to flexible capacity. The authors also show that demand volatility and

price differentiation change the optimal configuration of the centralized network. [59]

and [46] show how incentives for choosing flexibility change with demand competition in

a single and a multi market duopoly, respectively. The studies of [33] and [34] consider

the interaction of flexible capacity and financial hedging. The former shows that flexible

contracts and financial hedging are complements when demand is positively correlated

and are substitutes when the correlation is negative. The latter considers how willingness

to invest in flexibility changes when financial debt to raise capital is incorporated into the

model.

Our major contribution to this literature is to show how the availability of partial

information in the presence of commitment impacts the optimal utilization of flexible

capacity.

3.3.2 Demand Visibility in the Literature

Many papers have considered the scenario where the decision maker knows the demand

distribution but has no demand visibility when capacity decisions are made at the be-

ginning of the planning horizon (e.g. [6] and [93]). [19] considers the impact of partial

demand visibility when the commitment horizon is not too long and shows that partial

information is an effective hedge against demand uncertainty in the presence of commit-

ment.
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Several papers have studied the value of partial information in supply chains (see

[132] for a review). In transportation systems, [145] and [146] numerically show that

demand information can increase profits for pick up and delivery with trucks by improving

schedules and route planning. [147] studies the value of information in maritime container

operations and [106] studies the effect of advance demand information and pricing in a

newsvendor model. [78] considers the value of knowing orders in advance in a single-stage

make-to-stock queue. [135] develops a dynamic stochastic inventory model with fulfilment

date flexibility, and numerically quantifies the cost reduction when demand information is

used to alleviate the impact of demand uncertainty. [49] and [50] study how availability of

information changes the interaction between a seller and a buyer when demand forecasts

updates are allowed. Among others, [5], [103] and [123] study the value of information

when it is used to improve demand forecasts.

Most of the literature focuses on a single location without a commitment horizon. In

contrast, our work considers a network with two locations (that can also be interpreted

as products) and focuses on how demand visibility impacts the optimal use of flexible

capacity in the presence of commitment.

3.3.3 Combining Pooling and Demand Visibility Without Commitment

We highlight three studies that combine demand information and flexible capacity in

the absence of commitment. [100] considers Advanced Demand Information (ADI) in a

system with multiple retailers supplied by a central warehouse. The author finds structural

results of a lower bound relaxation and numerically shows that the availability of demand

information increases the value of postponement (by moving the central warehouse closer
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to the retailers). In a similar vein we show that demand visibility can increase the value

of flexible capacity in the presence of commitment. [77] studies the value of ADI for N

independent locations versus N locations supplied by a single flexible resource. According

to the authors: “ADI is more valuable when there is a lot of demand variability that can be

removed using ADI. Resource sharing seems to make ADI relatively less valuable precisely

for this reason”. In contrast, in the presence of commitment, we show that the availability

of shared flexible capacity makes demand visibility more valuable. [15] studies the impact

of ADI in a multiproduct system. The authors show that when the flexible capacity is

shared by all products, information about the total demand increases the decision maker’s

willingness to invest in flexible capacity but information about individual product shares

decreases the decision maker’s willingness to invest in flexible capacity. In contrast, we

show that in the presence of commitment, knowledge of individual product demand can

increase the decision maker’s willingness to invest in flexible capacity.

Our findings match with some previous studies where visibility and flexibility are

shown to behave like complements in other contexts. [31] studies how flexible resources

help decision makers improve the estimation of demand distributions by reducing the

probability of demand censoring occurrences. Hence, flexible contracts complement the

learning capabilities. We show that even without censoring demand, flexible contracts can

still complement demand visibility in the presence of commitment. [75] studies sourcing

from an unreliable supplier with a random lead time and a reliable but more expensive

supplier with a deterministic and shorter lead time. The author numerically finds that

lead time visibility of the unreliable source adds value by allowing better use of the

reliable source. The empirical work in [114] shows that organizational flexibility increases
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the value obtained from analytic capability coupled with visibility. In the context of

procurement with commitment, we show demand visibility adds value by allowing better

use of flexible capacity.

3.4. The Partial Demand Information Model in a Network

In this section we model the interaction between flexible capacity and partial demand

information under commitment. We first formulate the general model where both ded-

icated and flexible capacity are available along with partial demand information under

commitment. We then analyze a special case where only dedicated capacity is used. We

then extend the analysis to the general case where both dedicated and flexible capacity

are available.

3.4.1 The Cost Function Under Partial Demand Information

Recall that the base model of Section 3.2.3 considers the problem where there is no

demand visibility (the null case) but both dedicated and flexible capacity are available

under commitment. We build on the base model by including partial demand visibility.

We consider the decision sequence outlined in Figure 3.1-(b). For information horizon

γ = 1, the decision maker observes the next period demand d = (d1, d2)′ at the two nodes

and then commits to a capacity vector k = (k1, k2, k3)′ for the commitment horizon. The

expected cost incurred over the commitment horizon consists of two parts:

(1) Visible cost. The cost over the period with visible demand: Costvisible(k,d) =

π(k,d) + c′k.
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(2) Expected cost. The expected cost incurred over the remaining τ − 1 periods in

the commitment horizon where V (k) of Equation (3.4) is the expected per-period

cost: Costexpected(k) = (τ − 1)V (k).

Therefore, the total expected cost over the commitment horizon τ is obtained as follows:

(3.5) Costtotal(k,d) = Costvisible(k,d) + Costexpected(k) = π(k,d) + c′k + (τ − 1)V (k).

The total expected cost function in Equation (3.5) is non-smooth, continuous and

convex with respect to k. Let k∗(d) be the capacity vector that minimizes total expected

cost.

Observe that the term (τ −1)V (k) dominates in (3.5) when the commitment duration

τ is very long. In this case, the optimal solution is very close to that of the null information

scenario, as in Section 3.2.3. In the limit, as τ →∞, k∗(d)→ k∗null. Thus, the base case

without demand visibility is a limiting case of our model as the commitment horizon τ

becomes longer.

When commitment duration is very short (τ → 1), the problem is similar to a de-

terministic single period decision with the visible cost being the dominant component of

total expected cost. In this case, the decision maker should behave myopically by not

investing in flexible capacity (because it is more expensive) and setting the committed

dedicated capacity exactly equal to the demand that is observed at each node.

When commitment duration is between these two extremes (1 < τ <∞), the decision

maker faces the trade off between myopically adapting to the demand observed, while still

considering expected cost in the remaining τ −1 periods where demand is not visible. We

first study the special case where the network has only dedicated contracts (no flexible
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capacity), and provide a closed form solution. We then consider the general case where

the decision maker can use a combination of dedicated and flexible capacity.

3.4.2 A Special Case: A Network with Dedicated Contracts

In this section we analyze the case where each node can only be served using dedicated

capacity. This allows each node ni to be considered independently.

Assume that demand in each period is IID with known marginal distribution F (x).

Under null information, the optimal committed dedicated capacity for node ni (denoted

by k∗null,i) is given by the newsvendor fractile: k∗null,i = F−1( cs−ci
cs

). Under null information,

it is optimal to commit to the same capacity level at the beginning of each commitment

horizon.

Under partial demand information, [19] shows that optimal committed capacity adapts

(within bounds) to the visible demand (d1, d2). For example, if visible demand at node i, di

is quite low, the optimal committed dedicated capacity is smaller than the capacity under

null information (k∗null,i). Proposition 7 formalizes this result to the case of a dedicated

network in the absence of flexible capacity.

Proposition 7. In the absence of flexible capacity, the optimal dedicated capacity to

supply node ni (i = 1, 2) is determined by the observed demand di as follows: Define

ψli := F−1

Ç
cs−(ci+

ci
(τ−1)

)

cs

å
, and ψui := F−1

Ç
cs−(ci−

cs−ci
(τ−1)

)

cs

å
. Then,
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(3.6) k∗i (di) =



ψli if di < ψli

di if ψui ≥ di ≥ ψli

ψui if di > ψui .

When visible demand is between the lower and upper thresholds (ψli and ψui re-

spectively), the optimal committed dedicated capacity (k∗i (di)) equals observed demand.

When the observed demand is higher (lower) than the threshold ψui (ψli), the committed

capacity equals ψui (ψli). In other words, the optimal committed capacity adapts to the

visible demand within bounds. Observe from Equation (3.6) that as the duration of the

commitment horizon τ increases, ψli and ψui converge to k∗null,i = F−1( cs−ci
cs

), reducing the

decision maker’s willingness to adapt to observed demand.

ΩI

Figure 3.4. (a) Sample space with null information and no flexible capac-
ity. (b) Sample space of observed demand with partial information and no

flexible capacity. The striped region shows Ω̂adapt.
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In Figure 3.4 we plot the optimal dedicated capacity for both the null and partial infor-

mation cases. Figure 3.4-(a) shows the optimal policy for the null information case where

the sample space is divided into four regions, Ω0,ΩI ,ΩII and ΩIII based on whether the

realized demand is higher or lower than the committed dedicated capacity (k∗null,1, k
∗
null,2).

Figure 3.4-(b) shows the optimal policy with partial demand visibility. In this case, the

sample space of observed demand is divided into five regions, Ω̂adapt, Ω̂0, Ω̂I , Ω̂II and Ω̂III ,

that determine the capacity committed for each node depending upon visible demand.

We show in parenthesis the optimal committed capacity vector (k∗1(d1), k∗2(d2)) in each

region as determined by Proposition 7. When observed demand is within region Ω̂adapt

(the striped region in Figure 7-b), the optimal committed capacity equals visible demand:

k∗i (di) = di, i.e., the optimal committed capacity changes with observed demand in region

Ω̂adapt.

If observed demand is outside Ω̂adapt, the decision maker bounds the adaptation by

choosing the optimal committed capacity of each contract to be the lower threshold ψli

for i = 1, 2 if demand is below ψli, or to be the upper threshold ψui for i = 1, 2 if

demand is above ψui . The region with demand below ψli (above ψui ) for both nodes is

denoted by Ω̂0 (Ω̂III). If the demand observed at node 1 (2) is above ψu1 (ψu2 ) and at

node 2 (1) is below ψl2 (ψl1), committed capacity at node 1 (2) is ψl1 (ψl2) and at node 2

(1) is ψu2 (ψu1 ). This corresponds to region Ω̂I (Ω̂II). Note that the regions Ω̂0, ..., Ω̂III

define the boundary of Ω̂adapt. Each region limits the extent to which the decision maker

adapts optimal committed capacities to observed demand. As the commitment horizon τ

increases, Ω̂adapt shrinks and the regions in Figure 3.4-(b) approach the regions in Figure

3.4-(a). In the limit, as τ approaches to infinity, they are identical.
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In a dedicated network without flexible capacity, the decisions for the two nodes are

independent and observed demand of one node does not impact the dedicated capacity

commitment at the other node. In contrast, as we will show in the following section, in

a network with both dedicated and flexible capacity, not only does the optimal flexible

commitment depend on d1 and d2 but also the optimal dedicated commitment of each

node depends on the demand observed at both nodes.

3.4.3 The Partial Demand Information Model with Dedicated and Flexible

Commitments

Our goal is to understand how optimal capacity decisions with partial demand visibility

deviate from the null information solution in the presence of dedicated and flexible ca-

pacity. In what follows, we assume that c � cs
τ

. (In Appendix B.3, we analyze the cases

where this assumption does not hold.) We start with two technical definitions:

Definition 3 (Boundary Capacities). Define the boundary capacities ψi for i =

{0, I, II, III} as follows:

(3.7) ψi = {k ∈ R3
+ |∃ν ∈ R3

+ s.t. 0 = c− ν − csvi + (τ − 1)∇k̃=kV (k̃) and ν ′k = 0}

where v0 = (0, 0, 0)′, vI = (0, 1, 1)′, vII = (1, 0, 1)′ and vIII = (1, 1, 1)′.

Definition 4 (Bounding and Adaptation Regions). For i = {0, I, II, III}, define

the bounding regions as Ω̂i = Ωi(ψ
i), where Ωi(k) is as in Definition 2. Define the

total bounding region as Ω̂bound =
⋃

i={0,I,II,III}
Ω̂i; and the adaptation region as Ω̂adapt =

R2
+/Ω̂bound.
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Theorem 2 shows that there always exists an adaptation region Ω̂adapt with a boundary

defined by Ω̂0, Ω̂I , Ω̂II , and Ω̂III , as shown in Figure 3.5. Theorem 2 generalizes Propo-

sition 7 to include flexible capacity and also generalizes the results of [128] to include

partial demand visibility. The proof is provided in Appendix B.1.

Theorem 2. [Characterizing the Adaptation Region] Assume the availability

of both dedicated and flexible capacity, demand visibility over the next period, and a com-

mitment horizon of τ . Let c � cs
τ

. Then, for i = {0, I, II, III}:

(1) Ω̂i ⊂ Ωi(k
∗
null). Thus, there exists a non-empty adaptation region, Ω̂adapt.

(2) The optimal capacity vector k∗(d) = ψi is constant for all points d ∈ Ω̂i. Ca-

pacity decisions are constant for all demand observations within each bounding

region Ω̂i.

Figure 3.5 shows the partition of demand space D into the regions Ω̂0, Ω̂I , Ω̂II , Ω̂III

and Ω̂adapt according to Theorem 2. Observe that Figure 3.5 generalizes Figure 3.3 to

include partial demand visibility and Figure 3.4-(b) to include flexible capacity.

As a result of partial demand visibility, the first part of Theorem 2 guarantees the

existence of Ω̂adapt (striped region in Figure 3.5) where optimal committed capacity varies

with observed demand. The adaptation is bounded by the optimal committed capacity

in the bounding regions Ω̂0, Ω̂I , Ω̂II , Ω̂III (Ω̂bound), which are strict subsets of the regions

Ωi(k
∗
null) (defined in Figure 3.3) for the null case. The second part of Theorem 2 states

that for i ∈ {0, I, II, III}, the optimal committed capacity is constant at ψi as long as

observed demand (d1, d2) is within the bounding region Ω̂i.
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Figure 3.5. Sample space of demand partitioned into Ω̂0, Ω̂I , Ω̂II , Ω̂III and Ω̂adapt.
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Figure 3.6. Numerical example of optimal capacity vector. (a) Demand
samples. (b) The optimal capacity of the dedicated contract 1. (c) The
dedicated contract 2. (d) The flexible contract.
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Figure 3.6 numerically shows the change in capacity commitments with observed de-

mand. Figure 3.6-(a) shows 250 randomly sampled demand vectors from binomial gamma

distributions with means µ = (10, 10)′ and Σ =

Ö
62, 0

0, 62

è
. In this experiment, we use

capacity costs c = (0.3, 0.3, 0.45)′, spot market cost cs = 1 and commitment horizon

τ = 4. Figures 3.6-(b),(c) and (d) respectively illustrate how the optimal committed

capacities k∗1(d), k∗2(d) and k∗3(d), change with observed demand. Our computational

experiments first replicate a version of Figure 3.5 to ensure the existence of all regions

and then show how optimal commitments to dedicated and flexible capacity change with

observed demand.

In Figure 3.6-(b), (c) and (d), observe the existence of region Ω̂III for d1 and d2 high

enough (roughly d1 ≥ 20 and d2 ≥ 22) where the optimal capacity commitment remains

constant at ψIII = (15.1, 13.3, 0.0)′. Similarly, observe the existence of region Ω̂0 for low

values of d1 and d2 (roughly d1 ≤ 10 and d2 ≤ 10) where the optimal capacity commitment

stays constant at ψ0 = (9.2, 9.2, 1.7)′. We also observe the existence of region Ω̂I for low

values of d1 and high values of d2 (roughly d1 ≤ 2 and d2 ≥ 25) where the optimal capacity

commitment stays constant at ψI = (0.0, 10.9, 12.3)′. We also observe the existence of

region Ω̂II for high values of d1 and low values of d2 (roughly d1 ≥ 25 and d2 ≤ 2) where

the optimal capacity commitment stays constant at ψII = (12.5, 0.0, 11.8)′.

The bounding regions define the adaptation region within which the optimal commit-

ted capacity adapts to observed demand. For example, the optimal committed capacity

when d1 = 22 and d2 = 5 is very different from the optimal committed capacity when

d1 = 22 and d2 = 22. In Theorem 3 we show that the optimal committed capacity in the
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adaptation region is always in the convex hull of the optimal capacities in the bounding

regions.

Theorem 3. [The Optimal policy] Assume the conditions of Theorem 2. Let d ∈

R2
+ be the vector of the observed next period demand. Then for i ∈ {0, I, II, III}:

• If d ∈ Ω̂i ⊂ Ωbound, the optimal committed capacity is ψi (k∗(d) = ψi).

• If d ∈ Ωadapt, the optimal committed capacity k∗(d) can be obtained as a convex

combination of the boundary capacities, i.e.,

k∗(d) =
∑

i∈{0,I,II,III}
αi(d)ψi

with:

αi(d) ≥ 0, ∀i∈{0,I,II,III} and
∑

i∈{0,I,II,III}
αi(d) = 1.
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Figure 3.7. Convex hull delimited by the boundary capacities.

Theorem 3 generalizes the result in Proposition 7 to include flexible capacity. Figure

3.7 shows the convex hull generated by the boundary capacities for different commitment

horizons τ for the numerical experiment described in Figure 3.6. Observe that it is optimal

to expand the adaptation of committed capacities to observed demand as the commitment
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horizon τ shortens because partial demand visibility for a period is more valuable over

shorter commitment horizons.

Proposition 8 describes the change in optimal committed capacities in the bounding

regions relative to the null information solution k∗null when partial demand visibility is

included.

Proposition 8. Let ψij be the element j of the boundary capacity ψi for i ∈ {0, I, II, III}

(Definition 2) and k∗null;j the j component of the null information solution k∗null. If c � cs
τ

the following inequalities hold:

• If observed demands at both nodes are low or both are high:

(1) In region Ω̂0 (where both d1 and d2 are low) with partial demand visibility, it

is optimal to commit to less total capacity (dedicated plus flexible capacity)

relative to k∗null. This also holds for total capacity that can be used for each

node.

ψ0
1 + ψ0

2 + ψ0
3 < k∗null;1 + k∗null;2 + k∗null;3 and

ψ0
1 + ψ0

3 < k∗null;1 + k∗null;3 and ψ0
2 + ψ0

3 < k∗null;2 + k∗null;3.

(2) In region Ω̂III (where both d1 and d2 are high) with partial demand visibility,

it is optimal to commit to more total capacity (dedicated plus flexible capac-

ity) relative to k∗null. This also holds for total capacity that can be used for

each node.

ψIII1 + ψIII2 + ψIII3 > k∗null;1 + k∗null;2 + k∗null;3 and

ψIII1 + ψIII3 > k∗null;1 + k∗null;3 and ψIII2 + ψIII3 > k∗null;2 + k∗null;3.
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• If observed demand at one node is low while at the other is high:

(3) In region Ω̂I (where d1 is low and d2 is high) with partial demand visibility,

it is optimal to commit to less dedicated capacity for node 1 relative to k∗null

and commit to more total capacity (dedicated plus flexible) that can be used

for node 2.

ψI1 < k∗null;1 and ψI2 + ψI3 > k∗null;2 + k∗null;3.

(4) In region Ω̂II (where d1 is high and d2 is low) with partial demand visibility,

it is optimal to commit to less dedicated capacity for node 2 relative to k∗null

and commit to more total capacity (dedicated plus flexible) that can be used

for node 1.

ψII2 < k∗null;2 and ψII1 + ψII3 > k∗null;1 + k∗null;3.

Figure 3.8 confirms that results (1) - (4) of Proposition 8 hold in the adaptation region.

In Figure 3.8-(a), the difference in total committed capacity is negative (positive) and

decreases (increases) as observed demands d1 and d2 decrease (increase) in the adaptation

region. In Figure 3.8-(b) and (c), the same pattern is observed in the adaptation region

for the difference in total capacity to be used by nodes 1 and 2, respectively. Thus,

when observed demands at the two nodes are high (low) in the adaptation region, the

decision maker decreases (increases) total capacity (dedicated + flexible) and the capacity

available at each node.

In summary, we have shown that optimal capacity commitments in a network with

partial demand visibility and flexible capacity are different from the null information
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Figure 3.8. (a) Difference in total committed capacity relative to the null
information solution. (b) Difference in total committed capacity to be used
by node 1 relative to the null information solution. (c) Difference in total
committed capacity to be used by node 2 relative to the null information
solution.

scenario because partial demand visibility makes it optimal to adapt to observed demand

within bounds. Within the adaptation region, when observed demand at one node (say

d1) is low and at the other node d2 is high or vice versa, commitment to dedicated capacity

decreases and commitment to flexible capacity increases.

3.5. Flexible Capacity Can Increase the Value of Demand Visibility

Our goal in this section is to understand how the availability of flexible capacity im-

pacts the value of partial demand visibility in the presence of temporal commitment.

Whereas past literature has generally found flexibility and partial demand visibility to

be substitutes, we show that the two mechanisms can act both as substitutes and com-

plements in the presence of commitment, leading to the insights first presented in Figure

3.2.
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3.5.1 Demand Visibility Can Increase the Commitment to Flexible Capacity

In this section we show how the optimal commitment to flexible capacity changes with

visible demand. (In Appendix B.2 we discuss how the optimal commitments to dedicated

capacity change with visible demand.) We first show that if flexible capacity is not too

expensive and the observed demand at one node is high while that at the other is low

with a large difference between the two observed demands (we refer to this scenario as

demands with large difference), the optimal committed flexible capacity is higher with

demand visibility than in the null information case.

Theorem 4. [The Impact of Demand Visibility on Flexible Commitments]

Assume that the cost of committed flexible capacity is sufficiently small (c3 − c1 > 0 is

small enough). If observed demand d1 is low (high) enough and d2 is high (low) enough,

the optimal commitment to flexible capacity is larger than the optimal commitment under

null information, i.e., ψI3 > k∗null;3 and ψII3 > k∗null;3.

Theorem 4 shows that partial demand visibility increases the commitment to flexible

capacity when the visible demand at one node is low and the other is high. Without

demand visibility, flexible capacity is exclusively used to pool demand (e.g., [51] and

[128]). With partial demand visibility, when the observed demand of one node is high

and that of the other node is low, flexible capacity both adapts to visible demand and

pools future demand that is not visible.

Figure 3.9 numerically validates the results of Theorem 4. The lines in Figure 3.9-

(a) represent levels of constant total demand (i.e., d1 + d2 = θ ≡ constant). As we

move away from the center (d1 = d2) along each line, the difference in observed demand
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|d1 − d2| increases. We represent this direction of change in Figure 3.9-(b) using the

difference d1 − d2. Figure 3.9-(b) shows that it is optimal to commit to higher levels of

flexible capacity as the difference in observed demand increases. For a large difference

in observed demand, committing to flexible capacity is more attractive because it can be

used to serve the current high demand node while still providing the flexibility to react

to future demand fluctuations during the commitment horizon by serving either node.

d1+d2 = �
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Figure 3.9. Flexible capacity under demand visibility. (a) Lines of fixed
total demand (d1+d2 = θ ≡ constant). (b) Commitment to flexible capacity
as a function of d1 − d2.

Adapting the committed flexible capacity for each commitment horizon to observed

demand impacts the average optimal commitment to flexible capacity. Figure 3.10-(a)

shows the average optimal committed flexible capacity as the cost of flexible capacity

changes for both the partial demand information and null information cases. When the

cost of flexible capacity is very expensive, i.e., c3 ≥ c1 + c2 (Region V in Figure 3.10), the

average optimal commitment to flexible capacity is 0 in both the partial information and
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null information cases. As the cost of flexible capacity decreases, the average commitment

to flexible capacity increases for both the partial information and null information cases.

For costs of flexible capacity between about 0.47 and 0.6 (highlighted in grey in Figure

3.10-(a)), observe that the average commitment to flexible capacity under partial visibility

is larger than under null information. In other words, in this region, demand visibility

increases the average commitment to flexible capacity. We formalize this observation in

Theorem 5 and show that this region always exists.

Theorem 5. [Average Commitment to Flexible Capacity] There always exist

flexible capacity costs c3 ∈ [c∗3, c1+c2] where average commitment to flexible capacity under

partial demand visibility is at least as large as the commitment to flexible capacity under

null information, ED[k∗3(D)] ≥ k∗null;3. Under mild conditions, the inequality holds strictly.

The following section quantifies the benefit of partial demand visibility and flexible

capacity using the value of information.

3.5.2 The Value of Partial Visibility in the Presence of Flexible Capacity

In this section we quantify the benefits of demand visibility when signing commitment

contracts in the presence of flexible capacity by comparing the reduction in costs with

respect to the null information scenario to obtain the Value of Information (see Defini-

tion 5) similar to [30]. We use the Value of Information without Flexible Capacity as

a benchmark to quantify the value of information when the system is analyzed as two

independent single-node networks in the absence of flexible capacity (as in Section 3.4.2).

Definition 5.
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• We define Absolute Value of Information as the per-period expected cost reduction

from partial information: AV oI = V (knull)− 1
τ
ED[CostTotal(k

∗(D),D)].

• We define Relative Value of Information as the expected cost reduction with partial

information relative to the null information case: RV oI = 100× AV oI
V (knull)

).

• We define the (Absolute) Value of Information of a Dedicated Network, V oID

(AV oID), as the V oI (AV oI) when only dedicated capacities are used.

We use AVoI as the objective when proving our analytical results. However, to make

the figures scale free, the results of our computational experiments are shown using RVoI.

Following [34], we evaluate the impact of flexibility on the value of partial demand

visibility by changing the cost of flexible capacity from high to low. Figure 3.10 shows the

average commitment to flexible capacity and RVoI for the null and the partial information

solutions as the cost of the flexible capacity changes.

Figure 3.10-(a) shows that it is optimal to commit to no flexible capacity (for both

the null and partial information cases) when the cost of flexible capacity is very high

(Region V). Figure 3.10-(b) shows the RVoI from partial demand visibility with only a

dedicated network (no flexible capacity used). As the cost of flexible capacity decreases

below a threshold (0.6 in Figure 3.10), the average commitment to flexible commitment

in the partial information case is greater than the commitment to flexible capacity in the

null case (see the shaded portion in Region C in Figure 3.10-(a)). As the cost of flexible

capacity decreases, the average commitment to flexible capacity increases for both the

partial information and null cases. Observe the cost of flexible capacity (roughly 0.47)

where the average commitment to flexible capacity in the partial information case equals

the average commitment to flexible capacity in the null information case. This is also the
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Figure 3.10. VoI as a function of flexible capacity cost c3. (a) The average
commitment to flexible capacity with null and partial information. (b)
RVoI.

point where the RVoI is maximized. As the cost of flexible capacity decreases below 0.47,

the average commitment to flexible capacity in the partial information case drops below

the average commitment to flexible capacity in the null case, and RVoI decreases.

We define Region F as the range of costs of flexible capacity where AV oI < AV oID.

In region F, the commitment to flexible capacity is large enough to hedge against almost

all future demand uncertainty, thus decreasing the value of partial demand visibility. In

Region F, flexibility and partial demand visibility behave like substitutes as observed in

[77] and [15].
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Observe that in Region C, between Regions F and V, it is optimal to commit to both

flexible and dedicated capacity, and the value of information is the highest. We formally

define Region C below.

Definition 6. Region C is the set of flexible capacity costs where AV oI ≥ AV oID.

Region C corresponds to the flexibility cost interval [ĉ3, c1 + c2), where ĉ3 = min
AV oI≥AV oID

c3.

Flexible capacity and demand visibility complement each other in Region C where the

optimal commitment to flexible capacity changes with observed demand, thus increasing

the value of partial demand visibility compared to Region V, where no flexible capacity is

used. In Figure 3.10 observe that the value of information is the highest when the average

commitment to flexible capacity with partial demand visibility equals the commitment

to flexible capacity in the null information case. To show that this is true in general,

we first show that the gradient of the value of information curve relative to the cost of

flexible capacity equals the difference in average commitment to flexible capacity with null

information and with partial demand visibility (the distance between the solid orange and

dashed blue lines in 3.10-(a)).

Theorem 6. [Marginal Difference] The gradient of AVoI with respect to c3, the

cost of flexible capacity, is equal to the difference of the expected commitment to flexible ca-

pacity under null information and under partial visibility, i.e., ∂AV oI
∂c3

= k∗null;3−ED[k∗3(D)].

From Theorem 5, at the transition from Region V to Region C, the average commit-

ment to flexible capacity with partial information is greater than the zero commitment

under null information. From Theorem 6 it thus follows that the gradient of AVoI is neg-

ative at the transition from region V to region C. In other words, at the transition from
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region V to region C, the value of information increases as the cost of flexible capacity

decreases.

In contrast, we transition from Region C to Region F when the cost of flexible capacity

is very low. As a result, it is optimal to commit to a large amount of flexible capacity in

the null scenario. At the transition from region C to region F the expected commitment

to flexible capacity under partial information is smaller than the null case. This is because

the visible demand is unlikely to have a large enough difference in demand between the

two nodes to require a higher level of flexible capacity than the null case. In contrast, it is

more likely to observe demands at the two nodes that are not different enough to justify

committing as much flexible capacity as the null case. In other words, there is a higher

probability that demand visibility will result in a lower level of commitment to flexible

capacity than the null scenario. By Theorem 5, AVoI thus increases as the cost of flexible

capacity increases at the transition from region F to region C. Given that the gradient of

AVoI is positive at the transition from region F to region C and negative at the transition

from region C to region V, there must be an intermediate point where the gradient is zero.

This point maximizes the AVoI and occurs where the average commitment to flexibility

under partial information equals the commitment to flexibility in the null scenario, as

shown in Figure 3.10. The AVoI is higher with partial information because the decision

maker either commits to more or less flexibility than the null scenario based on visible

demand.

We show in Theorem 7 that Region C always exists and that under mild conditions, the

VoI in Region C is strictly greater than the V oID in Region V. Therefore, the maximum

AVoI is achieved in Region C.
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Theorem 7. [The Value of Information and Flexible Capacity] There always

exists a band of flexible capacity costs [c̃3, c1 + c2] (Region C), where the value of infor-

mation with flexibility is at least as large as the value of information without flexibility,

AV oI ≥ AV oID. Under mild conditions, the inequality holds strictly. Hence, there always

exists a band where flexible capacity and partial demand visibility complement each other.

As shown in Theorems 2, 4, 5, demand visibility creates value in Region C by allowing

the decision maker to adapt the commitment to flexible capacity based on the observed

demand. In Region C, using demand visibility to adapt to observed demand increases the

marginal value of flexible capacity, and vice versa. Therefore, partial demand visibility

and flexible capacity behave like complements in Region C.

To conclude, we find that there is a range of flexible capacity cost where the value of

partial demand visibility is higher than in the absence of flexible capacity, i.e., flexibility

and partial demand visibility behave as complements. In the next section, we evaluate

the impact of commitment duration, correlation and uncertainty on the complementary

behavior of flexibility and partial demand visibility.

3.6. Sensitivity Analysis

In this section we explore analytically and numerically how the complementarity of

demand visibility and flexible capacity changes with key parameters of the model such as

demand uncertainty, demand correlation and commitment duration. To obtain analytical

insights, we set up a simplified model that preserves the key features of our general model.

We then conduct numerical experiments to confirm that the analytical insights from the

simplified model hold in the general case as well.
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3.6.1 A Simplified Low-High Model

To obtain sensitivity analysis insights analytically, we consider a simplified version of our

model where demand at each node has only two possible realizations: Low (dl = d̄− δ) or

high (dh = d̄+ δ). Hence, demand at both nodes D can have one of four possible realiza-

tions: d ∈ {(dl, dl)′, (dl, dh)
′, (dh, dl)

′, (dh, dh)
′}, which occur with probability pll, plh, phl

and phh, respectively. For simplicity, we assume that the two nodes are symmetric (i.e.,

plh = phl and c1 = c2). It is easy to see that there are only five possible commitment

vectors for such a model: ka = (dl, dl, 0)′, kb = (dh, dl, 0)′, kc = (dl, dh, 0)′, kd = (dh, dh, 0)′,

ke = (dl, dl, dh − dl)′. We denote this model as the L-H Model.

Theorem 8 uses the L-H model to obtain analytical results that we subsequently use

to study the impact of commitment duration, uncertainty and correlation on the value of

information in the presence of flexible capacity. We assume that the commitment duration

is sufficiently large, i.e. τ is not close to 1.

Theorem 8 (L-H Model). Under the L-H Model, where the commitment duration

is sufficiently large (not too close to 1):

(1) There exists a region where partial visibility and flexible capacity behave like com-

plements (A strict version of Theorem 7).

(2) The maximum absolute value of information is obtained as AV oI∗(δ, τ) = δAp(τ),

where Ap(τ) is a function independent of δ and decreasing in τ .

(3) The width of Region C, where the two mechanisms behave like complements, is

an increasing function in τ and independent of δ.
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(4) The maximum value of information is obtained at c3 = min{c1 +c2−csphh, cs(1−

pll)}, where the marginal value of using flexible capacity under null information

is 0.

We use the results of Theorem 8 to understand the impact of commitment duration,

demand uncertainty and demand correlation on the value of information.

3.6.2 The Impact of Commitment Duration on Value of Information

Consistent with the general model, Theorem 8-(2) shows that the maximum value of

information decreases as the commitment duration τ increases. Theorem 8-(3) shows

that as τ increases, demand visibility and flexible capacity behave like complements for a

wider range of flexibility cost, i.e., region C expands.

Figure 3.11 validates these results numerically for the general model where demand

follows a continuous gamma distribution. Observe that the maximum value of informa-

tion decreases as the commitment duration τ increases. Consistent with Theorem 8-(3),

the width of region C, where flexible capacity and partial information are complements,

expands as τ increases.

3.6.3 The Impact of Demand Variability on Value of Information

Consistent with previous literature (e.g. [19]), in this section we show that the maximum

value of information increases with demand variability.

For the LH-Model, increasing the value of δ increases the variance of demand at both

nodes. Theorem 8-(2) shows that the AVoI increases linearly with the demand variability
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Figure 3.11. VoI for different commitment duration, τ , with bivariate
Gamma distribution and c = (0.3, 0.3, c3). Asterisks highlight that the
y-axis scale is different in (a).

parameter, δ. Theorem 8-(1), (2), (4) show that the existence of Region C and the position

of the maximum AVoI is independent of the demand variability parameter δ.

Figure 3.12 shows the RVoI for the general model using a gamma distribution when

the coefficient of variation of demand increases from 0.3 to 0.7. Observe that the value

of information increases with the coefficient of variation. The shape and width of Region

C, however, remains unchanged, consistent with the prediction of the L-H model.
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3.6.4 The Impact of Correlation on the Value of Information

In this section we show that the cost of flexibility at which the value of information is

maximized decreases as the correlation of demand between the two nodes increases.

We have shown in Theorem 6 that the value of information achieves its maximum

when the marginal value of flexibility is 0. For the LH-model, that point is given by

c∗3 = min{c1 +c2−csphh, cs(1−pll)}. As correlation of demand at the two nodes increases,

pll and phh increase, and c∗3 decreases.

We validate this finding numerically for the general model in Figure 3.13. Observe that

when correlation of demand at the two nodes increases, the maximum value of information

is achieved for lower cost of flexibility. Also observe that increasing demand correlation

expands the range of cost of flexible capacity where flexibility and demand visibility are

complements.

Figure 3.13. VoI for different correlation coefficient with bivariate Gamma
distribution and c = (0.3, 0.3, c3). Region C (shaded region) increases with
correlation.
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3.7. The Impact of Seasonal Demand Surges

In this section, we relax the IID assumption on demand and study the impact of

seasonality and prediction uncertainty. In Section 3.7, we show that combining flexible

capacity and demand visibility is particularly valuable under demand surges. In Section

3.7, we show that, under seasonal surges with prediction uncertainty, the two hedging

mechanisms further complement each other, amplifying the results in the previous sec-

tions.

The Impact of Demand Seasonality

Demand for the furniture manufacturer (see [19]) shows seasonal demand fluctuations

(e.g. a surge in demand for the President’s Day sale). We extend the previous results to

the case where demand in the commitment horizon follows seasonal trends.

In Figure 3.14, we numerically explore the impact of seasonality on the interaction

between flexible capacity and demand visibility with commitment. We fix the commitment

horizon τ = 4 and compare how the VoI changes with the cost of flexible capacity under

three representative situations: Observed demand in the visible period is an expected

seasonal surge with E[Di] = 20 that decreases linearly to E[Di] = 10 in the commitment

horizon; IID where expected demand is stable at E[Di] = 15 across the commitment

horizon; and drop where the observed demand in the visible period is expected to be low

with E[Di] = 10 increasing linearly to E[Di] = 20 over the commitment horizon.

Observe that the V oI is highest and Region C (where flexible capacity and demand

visibility behave like complements) is the widest when demand in the information horizon

corresponds to a seasonal surge. Demand visibility is most valuable when the visible
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period includes a surge. As a result, the findings in Section 5 are amplified when a

demand surge is visible over the commitment horizon.

Prediction Uncertainty in Seasonal Surges

Demand at the furniture company displays seasonality given the periods when the product

is discounted (such as Labor Day). While the furniture company expects demand to surge

during the sale period, predicting the extent of the surge is quite challenging. As a result,

they recalibrate their prediction model as demand is observed. There is plenty of literature

(e.g. [103] and [5]) indicating that the value of demand visibility increases with prediction

uncertainty. In this section we explore the interaction between partial demand visibility

and flexible capacity under prediction uncertainty during seasonal surges.
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We use a stylized Bayesian model in which demand at both nodes could either come

from a distribution fh with high expected demand µh (high surge) or a distribution fl with

low expected demand µl (low surge) with µh � µl. Starting with a prior, the decision

maker updates her beliefs based on observed demand as follows:

•: Prior to observing the next period demand in period t, the decision maker has a prior

probability p that demand D follows distribution fh with high expected demand.

The prior probability p captures the amount of prediction uncertainty. If p = 1

(p = 0), the decision maker is certain that demand follows a high (low) demand

surge with distribution fh (fl). If p = 1/2, demand is equally likely to follow high

or low demand distributions and, therefore, prediction uncertainty is the highest.

•: After observing the next period demand d the decision maker updates the posterior

probability p′(d) according to Bayes’ rule: p′(d) = P(D ∼ fh|d) = pfh(d)
pfh(d)+(1−p)fl(d)

.

•: After obtaining the posterior probability, the decision maker commits to capacities k1,

k2 and k3 for a commitment horizon of τ periods.

In Figures 3.15 - 3.17 we numerically study the impact of prediction uncertainty on

capacity commitments and the value of demand visibility. While results hold in more

general cases, we assume that, conditioning on the distribution being known, demand at

the two nodes is identically distributed and independent. In our numerical experiments,

fh and fl are multivariate Gamma distributions with µh = (14, 14)′ and µl = (8, 8)′ and

the same variance σ = 52. The prior probability that the distribution is fh is p = 0.75.

Figure 3.15-(a) shows samples of observed demand d of fh and fl. Figure 3.15-(b) shows

the posterior update p′ after the next period demand is observed.
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Figure 3.15. (a) Samples of fh and fl and (b) posterior.

Our goal in this section is primarily to study the impact of prediction uncertainty.

While duration of demand surges is typically short (few weeks), for the purpose of il-

lustration, in Figure 3.16 we begin with isolating the effect of prediction uncertainty by

using a long commitment horizon (τ → ∞) and equally long demand surge duration, a

situation for which adaption is less valuable.

Figures 3.16-(a) and (b) show how commitment to dedicated capacity changes with

observed demand. The red and blue arrows in the legend show the capacity commitment

when the distribution is known with probability 1 to be fh or fl respectively. When

observed demand at both nodes is high, e.g. d1 = d2 = 14, the decision maker obtains

a high posterior probability close to 1 (see Figure 3.15-(b)) and is certain that demand

during the surge is high. As a result, commitment to dedicated capacity is high (around

12.5). The converse occurs (posterior probability close to 0) when observed next period

demand is low, e.g. d1 = d2 = 4. Observe that there exist a region around d1 = d2 = 7,

with observed demand not too high or low, where the posterior is around p′ = 1/2,

i.e., prediction uncertainty is the highest. In that case, the decision maker commits

to moderate levels of dedicated capacity (roughly k1 = k2 = 9.5) that is between the
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commitment made when demand follows fh (red arrows at k1 = k2 = 12.5) or fl (blue

arrows at k1 = k2 = 6.5).
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Figure 3.16. Capacity commitment with prediction uncertainty for the sea-
sonal surge (commitment horizon τ → ∞). Capacity costs are c =
(0.3, 0.3, 0.4)′.

Figure 3.16-(c) shows the corresponding commitment to flexible capacity. When ob-

served demand at both nodes is high (d1 = d2 = 14) or low (d1 = d2 = 4), the posterior is

close to p′ = 1 or p′ = 0. In either case the decision maker commits to a flexible capacity

level similar to the commitment under fh or fl (roughly k3 is between 4.6− 4.9), because

fh and fl have the same variance.

Now consider the case when observed demand is around d1 = d2 = 7, which gives a

posterior around 0.5 and has the highest prediction uncertainty. In this case, commit-

ment to flexible capacity is significantly lower (around k3 = 2.8) than the flexible capacity

committed under fh or fl. For this value of observed demand, dedicated capacity com-

mitment is k1 = k2 = 9.5. Given the high prediction uncertainty, the decision maker is

unsure whether demand follows a low or high surge. If demand in future periods follows

a low demand surge, fl, the committed dedicated capacity fully satisfies demand at both

nodes making further commitment to flexible capacity less valuable. In other words, with
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high prediction uncertainty, flexible capacity is valuable only if future demand follows

a high demand surge, an event occurring with probability 1/2. Consequently, when the

posterior prediction uncertainty is high, the decision maker decreases commitment to flex-

ible capacity. Committing to flexible capacity is less valuable when the observed demand

increases prediction uncertainty and the posterior is close to 1/2.
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Figure 3.17. VoI with prediction uncertainty for the seasonal surge. (a) De-
mand surge duration is equal to commitment horizon. (b) Demand surge
duration is two periods. After two periods, demand follows fl with proba-
bility 1.

In Figure 3.17, we plot the value of information as the cost of flexible capacity changes.

Figure 3.17-(a) shows results when the demand surge lasts for the entire commitment

horizon. To isolate the impact of prediction uncertainty, we focus on the solid line corre-

sponding to a long commitment horizon (τ →∞). Unlike Figure 3.10, where there exists

Region F (where partial demand visibility and flexible capacity are substitutes), there is

no such region under prediction uncertainty for surges in Figure 3.17. Observe that the

equivalent of Region C of Figure 3.10 in Section 3.5, where flexible capacity and demand
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visibility behave like complements, extends to the whole range c1 < c3 < c1 + c2. Similar

results are obtained when commitment horizon is shorter (dashed lines). VOI is higher

in the presence of prediction uncertainty because the decision maker uses demand visi-

bility to counteract prediction uncertainty and adapt capacity commitments to observed

demand as described in Section 3.5. Figure 3.17-(b) shows similar results when duration

of the demand surge is shorter than the commitment horizon.

In demand surges with prediction uncertainty, the availability of flexible capacity in-

creases the decision makers willingness to acquire demand visibility. In other words,

flexible capacity and partial demand visibility behave even more like complements in the

presence of prediction uncertainty for seasonal surges. Thus, companies facing prediction

uncertainty for seasonal surges that have access to flexible capacity can benefit consider-

ably by being able to acquire partial demand visibility.
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3.8. Final Remarks

Our work shows that the presence of short term commitment introduces more nuance

to the relationship between partial demand visibility and flexible capacity when dealing

with demand uncertainty. Whereas the two behave like substitutes when the cost of

flexible capacity is very low, they are complements when the cost of flexible capacity is

somewhat higher without being too large. As technology creates flexibility and allows

short term commitments in a variety of settings such as warehousing, manufacturing and

processing, companies will increasingly find it valuable to obtain partial demand visibility.
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CHAPTER 4

Estimation of Customer Availability for Attended Home

Delivery

Chapters 2 and 3 assume that delivery dates to customers’ homes are fixed. This

chapter explores flexibility in delivery dates and focuses on scheduling policies for last

mile distribution, i.e. from spokes to the customer’s home. Understanding customers’

sensibility to delivery lead time can allow retailers to balance customer satisfaction and

shipping costs in attended home-delivery. Using transactional data from the furniture

company, we find that, when customers choose their preferred delivery date, speed of

delivery is of limited importance relative to other priorities and customers can be easily

segmented based on day of week preferences.

4.1. Introduction

Last mile distribution is one of the most challenging and expensive operations of the

retail supply chain [10]. It is estimated that 53% of the total cost of transportation of

home delivery is attributed to the last mile delivery distribution [44]. The importance of

the last mile delivery challenge has rapidly increased in the last decade with the emergence

of e-commerce [94]. More recently, the COVID-19 outbreak has accelerated the demand

for home delivery services [10]. In addition to the operational challenges, increasing cus-

tomers’ expectations and the competing pressure of companies such as Amazon, Alibaba

or Walmart have pushed retailers to assume the entire cost of transportation [98, 70],
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including the expensive last mile delivery portion, as well as to enhance the customer

experience by increasing speed of delivery. Such an effort usually comes at high costs

for companies and the environment [42, 104, 37]. Hence, reducing the cost of last mile

distribution while meeting customer expectations has become crucial.

In this chapter we focus on attended home delivery, where customers must be present

at the time of delivery, a type of delivery that is commonly adopted in several sectors

such as e-groceries [2], delivery of health care services [84], telecommunications services

(such as AT&T and Xfinity) [23], delivery of medical drugs and office supplies [28], or

furniture [19]. Companies engaged with attended home delivery face a trade off between

customer satisfaction and shipping costs. Offering a cost-efficient but limited menu of

available dates can negatively impact customer experience. On the other hand, letting

customers choose any date regardless the transportation capacity can be quite costly for

the companies’ home delivery teams. It is in the companies’ interest to quantify and

understand customer preferences for home delivery to balance customer satisfaction and

delivery costs.

To that end, we explore the transactional data from 271 retail outlets owned by the

furniture company that motivated our work in Chapters 2 and 3. When sales are final-

ized at the retail outlets, customers choose a delivery date among an offered menu of

alternatives. Dates are offered based on the remaining capacity of delivery routes of each

region. The sequence of each route and the final delivery time are determined later, two

days before the actual delivery date, and customers are then notified of the delivery time

window (e.g. from 9 a.m. to 11 a.m.). Our data set contains information about the sales

transactions and the last mile delivery operations during the season 2016-2017, which
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we use to derive customer priorities when choosing attended home delivery dates, and

identify managerial insights to balance customer satisfaction and shipping costs.

We use a behavioral model that captures the interaction between customers and the

retail company when customers choose attended home delivery dates. When choosing

attended home delivery, customer’s availability to be at home at the time of delivery

plays a fundamental role. To the best of our knowledge, ours is one of the first studies

that propose a sequential logistic approach to model customer choice. Our model allows

us to identify the key factors driving customer choice, and to estimate how likely it is that

a customer chooses a specific day available for attended home delivery (i.e. probability

that staying at home on a specific day is convenient for a customer).

The data validate insights from the company that the days immediately after the

purchase date are usually not available for the customer. For the home delivery team,

there may be an opportunity to slightly extend fulfillment lead times beyond the first four

to five days, and more efficiently utilize last mile capacity. One week after the in-store

purchase date, customer availability significantly increases at a rate of 1.5(±0.1) % per

each additional day since the in-store purchase date.

We find that the day of week has a strong impact on customers’ availability. While

this result is not surprising, our approach allows us to explore, quantify and model how

the effect of day of week varies across different customer segments. Our model, which is

built around this intuition, provides simple ways to segment customers when they visit

the store to make a purchase. We observe that customers that visited the store and made

a purchase on Tuesdays, Wednesdays, and Thursdays have high availability during week-

days. Customers that visited the store and made a purchase on Saturdays and Sundays,
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have, on average, low availability during weekdays from Tuesdays to Thursdays, and more

frequently schedule the attended home delivery the first available Friday or Saturday. For

the furniture company, saving some delivery capacity, particularly on Fridays and Sat-

urdays, can significantly decrease waiting times of customers that make a purchase on

Saturdays and Sundays, while minimally affecting customer segments with higher avail-

ability. In general, we find that the day of week that customers visited the store and

made a purchase is a strong predictor of the customers’ availability. Our results show

that the day of week of purchase is an intuitive and simple way to segment customers.

This result suggests that, with easy-to-implement customization of delivery options, the

company can potentially meet customer’s needs while more efficiently deploy last mile

transportation capacity.

Several studies have shown that incorporating customer behavior in scheduling oper-

ations can be highly valuable (e.g., [65], [48]). For the furniture company, our model

can be used to estimate how potential adjustments of delivery capacity might ultimately

impact customer experience.

This chapter is organized as follows. Section 4.2 describes the managerial context that

motivates our work, states the research questions, and reviews the related literature. Sec-

tion 4.3 describes the data and the behavioral model that we use to understand customer

choice of attended home delivery. In Section 4.4, we discuss the methods and the tools

that we use in our study. Section 4.5 presents our key empirical findings. We discuss

our results and describe managerial insights in Section 4.6. We provide final remarks in

Section 4.7.
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4.2. Context, Related Literature and Hypotheses

In Sections 4.2.1 and 4.2.3 we describe the decision process faced by a retail company

and state the research questions that motivate our work. In Section 4.2.2, we discuss the

literature that is related to our work.

4.2.1 Context

Our work is motivated by the home delivery scheduling operations of a major furniture

retail company. The company’s most popular products are high-quality pieces of furniture

with prices ranging from $1,000-$5,000, sold in more than 500 outlets owned by the retail

company. The principal role of the retail outlets is to display the popular products

in showrooms where customers can have a first-hand experience before committing to

purchase. The retail company operates with a make-to-order model: once a sale is closed

at the retail outlets, the retail company commits to deliver the purchased products at the

customer’s home on a date chosen by the customer. Once an order is entered into the

system, products are prepared and distributed from a central warehouse to the distribution

centers, from where the last mile delivery routes depart.

The last mile distribution and product installation are some of the most challenging

and costly operations for the supply chain team of the retail company. Due to the large size

of the deliveries, and since most products need to be installed by technicians, customers

are asked to be present at the time of delivery, an operation known as Attended Home

Delivery (AHD). The last mile delivery is operated by home delivery teams of drivers and

technicians that are employed by the furniture company. Two days before a scheduled

delivery, the home delivery team calls the customer receiving the delivery to agree upon
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a time window, i.e., the estimated time arrival at the customer’s home. Therefore, when

customers choose a candidate day for delivery, they need to evaluate whether such a date

is available or convenient in their personal schedule.

Customer satisfaction is highly considered by the retail company, which targets cus-

tomer segments that value its luxury products and, therefore, expect a customer experi-

ence of equal quality. To that aim, the retail company assumes the cost of transportation

(free shipping) and, to ensure that delivery lead times are met, delivery capacity is allo-

cated in advance (i.e., number of delivery teams). When planning delivery capacity, the

retail company faces a trade-off between customer satisfaction and the cost of transporta-

tion. Ample delivery capacity shortens delivery lead times and allows the retail company

to offer a wide range of candidate dates for delivery. However, excess delivery capacity

results in idle delivery teams and unutilized costly resources. On the other hand, tight

capacity increases resource utilization at the cost of offering more limited menus of can-

didate days that usually have longer delivery lead times, which might, potentially, harm

customer experience.

Our work focuses on the customer decision process of choosing a date for AHD. When

a sale is closed, a sales representative and the customer interact to agree upon an available

date among the dates with remaining delivery capacity. It is customary for sales repre-

sentatives to suggest the earliest day available for delivery, and ask for the customer’s

availability. If the first available date suggested is not convenient for the customer, future

dates are offered until a date is found to be convenient. Therefore, dates are usually

sequentially offered from earlier to later dates.
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Note that because of the way dates are typically offered to the customer, the scheduled

date tends to be the first that is available for the customer among the dates that are

available for the retail company. The final dates chosen by the customers result from

the interaction of two parties with different availability: First, the retail company, whose

delivery teams have limited capacity and, therefore, only dates that are available for

delivery are offered; and, second, the customer, who must be present at the time of

delivery and will only choose a delivery date provided that such date is convenient in

his/her personal schedule.

A big body of the literature has focused on shortening the delivery lead time to offer

very fast deliveries [1, 70, 104]. However, in the context of AHD, only those dates that

are available in the customers’ schedule may be chosen for delivery. In this context, speed

of delivery is relegated to a secondary role below customer convenience. In this case, it

is not clear that the same intuition on the value of speed of delivery (short delivery lead

times) applies.

With the objective of gaining insight into the relative importance of speed of delivery,

the supply chain team of the retail company asked the following questions: “What are the

benefits of decreasing or increasing delivery lead time? What is more relevant for the cus-

tomers, day popularity or speed of delivery (i.e. availability of short lead times)?” “Can

the company reduce costs by decreasing delivery capacity without impacting customer

satisfaction?”

To answer these questions, we use a transactional data set from the company, and we

model the customers’ decision process when scheduling AHD. Our work is related to the
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retail and delivery literature, as well as to the behavioral scheduling literature. In the

following section we review the related literature.

4.2.2 Related Literature

With increasing competition and customers’ expectations in the retail sector, retailers

are looking for ways to improve delivery, introducing functionalities such as ship-to-store

(STS) [55] and redesigning their distribution networks to get closer to the customers

[57]. Accordingly, a large body of the literature has focused on improving customer

experience by increasing speed of delivery and offering services such as same-day or two-

day home delivery (e.g., [104], [1], and [70]). Several empirical studies have pointed

out the benefits of decreasing delivery lead times. [52] studies the impact of reducing

delivery lead times for a large portion of customers by opening new (closer to customers)

distribution centers. The authors find that reducing delivery lead time led to a significant

increase of revenues and profits. Studying a natural experiment, [38] shows that removing

the option of express delivery significantly reduced sales by 14.56% of the Chinese online

retailer Alibaba. [39] shows that promising one day faster delivery increased profits by

2%. In the omni-channel retail setting, [82] shows that the positive impact of increasing

delivery lead time is stronger on consumers using online and catalog channels than on

consumers using showroom channels.

We extend this work by considering factors that may limit the benefits of delivery

speed. Specifically, we focus on AHD, where the customer must be present at the time of

delivery. This element of co-creation makes delivery a service that can only be provided

when both the company and the customer are available.
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Building on research on behavioral scheduling (e.g., [71] and [72]), we posit that cus-

tomers may have preferences or availability constraints that affect their choice regarding

attended delivery speed. Accordingly, faster delivery may be infeasible or undesirable,

which has implications for retailers scheduling transportation capacity. To the best of our

knowledge, we are among the first to investigate how and why slower delivery may be

preferable under certain conditions in the retail literature.

Outside retail and delivery, there is some research suggesting that increasing speed

of service provides little benefits, or can even negatively impact customer experience. In

health care scheduling, some papers have focused on the relative importance of speed of

service (or speed of access) over other factors that may be ranked as more important for

the patients. [109] finds that for General Practitioner (GP) scheduling, increasing the

proportion of capacity dedicated to same-day appointments decreases patient satisfaction.

For most patients, the benefits of speed of access provided by same-day appointments

do not compensate the added difficulties in booking appointments in advance. [108]

designs a discrete choice experiment to study patients accessing primary care. The authors

conclude: “Speed of access is of limited importance to patients accessing their GP, and for

many is outweighed by choice of GP or convenience of appointment.” [83] studies patient

choice behavior in scheduling medical appointments. The authors design a discrete choice

experiment and analyze the answers with a Mixed Logit. They quantify the impact of

several factors such as appointment delays (days until the appointment date), in-clinic

waiting times, changing doctor assignments, and risk attitudes. Results suggest that

health care provides would benefit more from improving all quality measures than just

focusing on reducing the appointment delay to zero. These results are along the lines of



130

other findings raising concerns on the relative value of speed of access, e.g.; [13, 105, 43].

Our work contributes to the literature by exploring the customers’ tradeoffs between speed

of service (or delivery), availability, and day preferences. We focus on investigating the

reasons by which individual customers might prefer later days over earlier days, and the

conflicting priorities of both the customers and the service providers when scheduling

services. Our behavioral model reveals that speed of delivery is of limited importance

relative to other priorities such as availability and day of the week preferences. As a

result, AHD is rarely scheduled on dates immediately after the purchase, even when these

dates are offered by the retailer. Customers have strong preference of day of the week, as

one can expect. Our analysis quantifies and models these preferences and that the day

of the week on which customers physically visit the stores to make a purchase reveals

customers’ day of the week preferences for AHD. This suggests an easy-to-implement

customer segmentation by day of week of purchase that can be leveraged to customize

delivery options to customer needs and use more efficiently delivery capacity.

Scheduling AHD and health care appointments share an important similarity: Cus-

tomers (or users) must schedule and commit in advance, and they must be present at the

time the service is delivered. The AHD literature has focused on algorithms and routing

policies that incorporate customer behavior in order to offer fast delivery services in the

most profitable way [2, 7, 81, 86, 143, 142]. Similarly, the incorporation of patient

preferences in health care scheduling policies has gained attention in the recent years.

[99] estimates the impact of waiting time in no-show behavior and find how strategically

using waiting time can increase capacity utilization and reduce no shows. [65] and [136]

study scheduling policies for intra-day appointments in which customers have time and
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practitioner preferences. For inter-day appointments, the authors in [48] model customer

preferences with a multinomial logit choice model, and study the performance of online

and offline scheduling policies. To mitigate the impact of no-shows due to appointments

scheduled too far in the future, their results suggest offering all consecutive dates earlier

than a threshold date. Our empirical results contributes to this literature by showing

that customer availability plays a fundamental role in AHD. We show that customer

availability impacts customer choice, it strongly depends on the day of week, and it can

be predicted. We find that the company can potentially reduce the cost of the last mile

distribution by tailoring delivery capacity and scheduling policies to customer preferences

and availability.

In the context of AHD, the following section states a set of hypotheses that we aim

to test using the company’s data.

4.2.3 Theoretical Framework: Hypotheses

We focus on the importance of speed of delivery, or Order-to-Delivery Lead Time (OD-

Lead-Time), which is the time in days passed between the day a customer made a purchase

and an offered candidate day for AHD. We also study the effect of the day of week on

customer choice. In Section 4.6 we show how information about customer priorities can

help retailers to deploy costly delivery capacity more efficiently. In this section, we describe

preliminary hypothesis we aim to test.

In our analysis we use the following nomenclature: We say that day di and dj are such

that di < dj if day di occurs earlier than dj. Also, we define the sum dj + 3 to be three

days after day dj. Similarly dj − 3 three days earlier than day dj. We use bold letters to
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denote vectors (e.g. ki). Element j of ki is ki,j. Capital letters are reserved for random

variables and lower case letters for their realizations. ED is the expectation with respect

to D.

The Impact of Lead Time.

In the context of home delivery operations, several studies have pointed out the benefits

of decreasing shipping times and delivery time windows to increase revenues and customer

engagement (e.g. [52], [39], and [82]). Waiting time is usually compared to price such

that longer lead times are associated with a lower valuation of the delivery service, and

it is usually assumed that demand sensitivity to OD-Lead-Time is negative. Hence, it

is often argued that if all delivery alternatives have the same price, customers tend to

choose delivery alternatives with short OD-Lead-Time. While the argument applies to

meal delivery, or non-attended home delivery, where customers do not need to be present

at the time of delivery and shippers can leave parcels in lockers, mail rooms or sometimes

near the mail box, it is not clear it applies to other delivery services.

We hypothesize that, in AHD, where customers commit to be present on a chosen

day, customers might have priorities that conflict with the preference for earlier days. In

a different context, we find that patients scheduling non-urgent health care share a similar

decision process and trade-offs to customers scheduling AHD. Note that, in health care

appointments, patients obviously commit to be present at the time of service delivery. In

this context, it is observed that speed of delivery is of limited importance compared to

other priorities. Consequently, some studies have found that efforts for increasing speed

of service beyond a critical point can be of limited value compared to other needs (e.g.,
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[109], [108], and [83]). Our first hypothesis explores whether similar findings apply to

AHD.

Hypothesis 1: There is a lower bound on OD-Lead-Time such that days offered for

delivery too close to the day of purchase are less likely to be chosen. There exist a threshold

d such that if delivery lead time (in days) is shorter than d, the odds that a day is chosen

decreases as delivery lead time decreases.

The Impact of the Day of Week of the Candidate Day.

Several studies have explored the impact of the day of week on people’s activities in a

variety of context; from recreational activities [16, 17] to transportation preferences [141],

they show how people behave differently on weekends than on weekdays. In our context,

we hypothesise that convenience for being at home at the time of delivery changes de-

pending on the day of week. We expect Saturday to be more likely to be chosen compared

to the rest of days because weekends are more likely to be freer of work commitments.

Additionally, conversations with the supply chain team of the furniture company revealed

a popular opinion among the delivery teams that Tuesdays are busier than the rest of the

days. The reasoning behind this belief is that the company does not deliver on the previ-

ous two days, Sunday and Monday, which makes Tuesday the first day of week available

for delivery, which might be more attractive for some customer segments. Based on these

arguments, we state our second hypothesis.

Hypothesis 2: Tuesdays and Saturdays are more likely to be chosen when they are

offered for delivery compared to Mondays, Wednesdays, Thursdays, and Fridays.

The Impact of the Day of Week of Purchase.
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The main channel used by the customers of the furniture company are the retail outlets.

The impact of the day of week on customer behavior has been studied in the literature, for

instance, when shopping [47], or dining out[41]. We argue that several factors influence

day availability for visiting the stores and making a purchase, such as family commitments,

office or working schedules or school’s timetable, and that these impact the customer

choice of AHD. Many of these factors have a periodic structure that is repeated every

week. For instance, working hours typically span from 8:30 a.m. to 4:30 p.m., from

Monday to Friday. We hypothesise that the day customers made a purchase provides

information about how flexible customers are to choose delivery dates. In particular, we

hypothesise that customers that made a purchase on Saturdays or Sundays are more likely

to have lower availability (less flexible) and tend to choose later dates and, therefore, they

are more likely to reject dates when dates are sequentially offered.

Hypothesis 3.1: Customers that made a purchase on weekends have, on average,

lower availability than customers that made a purchase on weekdays. When a day is

offered for AHD, customers that made a purchase on Saturdays or Sundays are more

likely to reject it.

As a finer version of the previous hypothesis, we hypothesize that the day of week

customers made a purchase correlates to the customer’s likelihood to accept or reject an

offered candidate day based on the day of week it occurs. The hypothesis is based on the

fact that customer’s need to be available to visit the store, as well as to be present at the

time of delivery. Customers that are usually unavailable on Tuesdays, are not likely to

visit the store on Tuesdays, nor to schedule AHD for Tuesdays.
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Hypothesis 3.2: When a day is offered for AHD, customers that made a purchase

on Saturdays or Sundays are more likely to reject a candidate day occurring on a weekday

than a candidate day occurring on a weekend.

Understanding customers’ sensibility to fast delivery compared to other priorities such

as day of week can allow retailers to balance customer satisfaction and last mile delivery

costs.

We find that the day of week that customers visited the store and made a purchase is a

strong predictor of the customers’ availability. Therefore, the day of week of purchase is a

simple and intuitive way to segment customers. Our study provides a method to quantify

the effect of day of week on customer availability and its interaction with OD-Lead-Time.

Our results also suggest intuitive and easy-to-implement strategies to customize delivery

capacity to these customer segments.

4.3. Data, Basic Assumptions and Model Description

In Section 4.3.1, we describe the data available by the retail company that we use

in our study. In Section 4.3.2 we state the basic assumptions of our model, which we

support with empirical results in the appendix. Section 4.3.3 provides more details about

the interaction between the customer and the retail company, which we call the customer-

retailer interaction, and describes our modelling approach.

4.3.1 Data Description

To understand how customers chose delivery dates, we analyze a data set from the re-

tail company containing the scheduling transaction from July 2016 to July 2017 in the
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Southern US. The area is comprised by nine regions that are supplied by region-specific

distribution centers, from where the last mile home delivery routes depart. The total

number of transactions in our data set is 30,572. Each transaction entry includes region

and store identifiers, open date and time (i.e. day of purchase), date scheduled for delivery

and delivery team assignment.

There exist three main holidays sales periods for which the retail company expects a

demand surge in all regions simultaneously: Labor Day, Black Friday and Presidents’ Day.

These expected demand surges impact the subsequent deliveries for the weeks following.

Accordingly, the retail company increases the delivery capacity for the periods after these

holidays. In Figure 4.1, we show weekly sales and weekly deliveries for the three regions

(out of nine included in our data) with the largest sales volume. We excluded the week

before and the four weeks after the holidays in our analysis, as both demand and capacity

are atypical during these periods. The resulting number of transactions is 19,721.

The focus of our work is to understand how customers choose dates for AHD. Figure

4.2 shows the empirical distribution of the OD-Lead-Time (the days passed between the

day of purchase and the AHD) chosen by the customers for the first 28 days. Observe

that most customers choose a delivery date within the first four weeks. The distribution

for those customers is bimodal and skewed towards the left, showing that dates within

the first two weeks tend to be chosen when offered and available. Observe that most

customers chose a delivery date within 28 days (four weeks), which represent 91% of our

data.

The empirical proportions observed by the retail company are the result of the inter-

action of two agents: (1) The retail company, who only offers days for delivery that have
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Figure 4.1. (a) Weekly sales for three regions of the retail company. (b)
Weekly deliveries for three regions of the retail company.

remaining delivery capacity (those days that are not available due to capacity constraints

are not offered to the customer), and (2) the customer, who may choose a delivery date

only if such a date is available in the customer’s personal schedule. Since the customer

must present at the time of delivery, several factors play a role in the customer’s decision.

Examples of these factors might be speed of delivery, day of week of a candidate date and

work or family related commitments.

Since customers are only offered the dates available for the retail company, the em-

pirical proportions observed by the retail company in Figure 4.2-(a) do not fully reveal

customers’ preferences and availability. Our model aims to provide a framework to infer

customer’s preferences and availability from observed data, and understand the different

factors that lead the customer’s choice.
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We exclude those customers that scheduled the delivery date beyond 28 days1. Our

model considers customers that chose as the date of delivery the earliest day available

based on the interaction with the retail company, where availability for both parties plays

a fundamental role. We observe in our data that beyond the first two weeks, all days

have nearly full delivery capacity. It is unlikely that customers that scheduled beyond

four weeks chose the earliest available delivery date based on the interaction with the

retailer. That would imply that none of the first 28 days were available for the customer.

Instead, it is reasonable that the factors driving the choice beyond 28 days are other

than availability. For example, as revealed in conversations with the supply chain team

of the furniture manufacturer, some customers purchase pieces of furniture for residences

under construction or remodelling. For those customers, day of delivery is not driven by

customer availability or the interaction with the capacity constraints of the retailer. In

that case, a particular date in the calendar is predetermined based on external factors

such as construction time. In addition, since days beyond four weeks have full delivery

capacity, the proportion of customers choosing late delivery dates beyond the first 28 days

can be estimated from the observed empirical proportions, without building a behavioral

model.

In contrast, several factors come into a play in the decision of those customers who

choose a delivery date within the first two or three weeks. For instance, only a subset of

days are available for delivery due to capacity constraints of the retail company. Also,

due to the nature of AHD and customer availability, only few of the offered days may be

chosen for the customer. In addition, the left-skewed distribution in Figure 4.2 seems to

1in Appendix C.1 we show that our analysis can easily incorporate those customers without changing our
key insights, which has not been included in the main text to ease the presentation of our results.
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Figure 4.2. Empirical proportions of customer choices for the first 28 days
in the schedule.

reveal a preference for earlier dates. Additional factors such as day of week effects may

play a role that explains the bimodal shape of the empirical proportions. Understanding

these factors is critical to answer the questions on the impact of delivery capacity on

customer satisfaction posed by the retail company.

4.3.2 Basic Assumptions

Before introducing our model, we first state three key assumptions, which we support

using the company’s data in appendix C.2, C.3 and C.4.

Assumption 1: Home Delivery Teams Have Fixed Delivery Capacity. Our con-

versations with the supply chain team of the furniture company revealed that home de-

livery capacity for each day is planned in advance by dedicating delivery teams to regions

(a team consists of a van owned by the company, a driver, and technicians). Our data set

reports, for each day, the number of delivery teams dedicated to each region. We estimate

the delivery capacity of each day by assuming that, for each region, delivery teams have,
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on average, a fixed delivery capacity. In other words, the average delivery capacity of day

d in region r is equal to the per-team delivery capacity, kr, multiplied by the number of

delivery teams dedicated to region r. Per-team delivery capacity, kr, is a parameter that

we estimate using the transactional data (see Appendix C.2) that depends on the region.

On average, per-team delivery capacity kr is about five deliveries per team and seems to

vary little across days.

Assumption 2: The Impact of Lost Sales Is Negligible. Our model assumes that

the immediate impact of delivery lead time and day availability on customer choice of

purchasing the product is negligible. In other words, when a customer decides make a

purchase and proceeds to closing the sale with the retailer, it is unlikely that the customer

withdraws without purchasing (translating into a lost sale) because they are unsatisfied

with the home delivery dates offered.

The assumption of negligible lost sales is supported by the nature of the products

sold by the furniture company, and the customer experience in-store. The most popular

pieces of furniture that require home delivery services are high-quality mattresses and bed

frames with retail prices around $1000-$5000, a product that customers do not purchase

frequently. Before deciding the home delivery date, customers are assisted by sales repre-

sentatives who show and describe a variety of products and features. This process takes

many minutes, sometimes an hour, and is intended to provide customers with an oppor-

tunity to try and have a first-hand experience with the products offered by the company

before making a final decision. If a customer decides to purchase a product, they choose

features such as color, style, and bedding, and the sales representative starts processing
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the order into the system. At the final stage, the retailer asks for customer’s preferred

date to schedule the delivery, a scheduling process that we describe in the next section.

Note that our context is very different from that in fast fashion retailing, flash sales,

and similar settings where assortments are constantly changed to increase sales frequency,

customers purchase products on the spur of the moment, and lost sales are common

(e.g., [117] and [29]). In contrast, customers of the furniture company carefully test the

products and the features that satisfy their needs, because products are expected to be

used for years. We assume it is very unlikely that a transaction would translate to a lost

sale in the final step because a customer finds unacceptable that the time for delivery is

beyond one or two weeks.

To support this assumption, we check whether the number of days with remaining

delivery capacity significantly impact sales volume. We find no evidence supporting that

lack of delivery capacity increases lost sales. We provide more details in appendix C.3.

Assumption 3: From among all offered dates, customers choose the earliest

available date. Customers greatly value speed of delivery [3, 39, 82], and without avail-

ability constraints or pricing differentiation, customers have little incentives for delaying

the delivery. Given a customer that chooses between two different days, one day comes

earlier than the other, we assume that, if both days are available for the customer, ceteris

paribus, the customer will more likely choose the earlier date.

In AHD customers need to be present at the time of delivery. Hence, customers must

choose an available date from among the offered dates. We assume that, while customers

find earlier dates more attractive than later delivery dates, customers choose the date
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for home delivery based on their availability in AHD. In other words, we assume that

customers choose the earliest day offered that is available for them.

Our assumption is also supported by the way dates are typically offered to the cus-

tomer. Sales representatives usually suggest the earliest with remaining delivery capacity,

and ask for the customer’s availability. If the first date suggested is not convenient for

the customer, future dates are offered sequentially until a date is found to be convenient.

Due to this interaction, the scheduled date tends to be the first that is available for the

customer among the dates that are available for the retail company.

In Appendix C.4, we show that the data supports this third assumption.

4.3.3 The Customer-Retailer Interaction Model

The observed proportions in Figure 4.2 are the result of the interaction between the

customer and the retailer that takes place when the customer chooses a date for AHD

when finalizing the sale at the company’s outlets. We call this interaction the Customer-

Retailer Interaction.

Once a sale is finalized at the retail outlets, the Sales Representative (SR) opens a

transaction in the system that is filled out with information about the customer (Zipcode,

phone number, etc.) and the product. The SR can see the availability of the retail

company through the system, i.e.; the days with remaining delivery capacity. With this

information, the SR and the customer interact until a delivery date is found to be available

for the customer among the proposed dates shown in the system. The interaction typically

starts with the SR offering the earliest available date for delivery. If the date proposed

is unavailable for the customer, the SR proceeds with the next available day. Such a



143

communication continues until the SR and the customer find an available delivery date.

The customer may also start the interaction by proposing a delivery date. The resulting

choice is identical in either case.

All dates (     ): {d1, d2, d3, d4, d5, d6, d7, d8, d9, d10, ...}

Retailer Availability Filter (     ):

Final Choice:

Figure 4.3. Example of customer choice. Days crossed represent non-
available days.

Note that because of the way the SR and the customer interact to find a date for AHD,

the scheduled date tends to be the first that is available for the customer among the dates

that are available for the retail company. We model the interaction between the SR and

the customer as follows, and we use the example in Figure 4.3 to illustrate our model. We

let a customer, ct, and the SR start interacting at time t of day d (i.e.; customer makes a

purchase at time t). We define the day dj as the day that is j days after the purchase date

(dj = d + j). We denote the set of all candidate days at time t as Dt = {d1, d2, . . . , d28},

shown in the first row in Figure 4.3. The SR sees in the system the subset of available

dates of Dt, which we denote as Retailer Availability Filter Drt ⊆ Dt, shown in the second

row. With Drt , the customer and the SR interact until they find the first day in Drt that is

available for the customer. More specifically, from all days Dt, only a subset are available

for the customer, which we denote as Customer Availability Filter Dct ⊆ Dt, shown in the

third row. The final choice after the customer-retailer interaction, d∗t , is the first day in

the intersection of the two filters Drt ∩Dct , which are the dates that are available for both
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the retail company and the customer (d∗t = mindj∈Drt∩Dct j), corresponding to the eighth

day d8 in our example.

With these two filters, the customer-retailer communication during the interaction

could have been as follows: The SR offers the first day available for the retail company,

d3(∈ Drt ), shown in the system. However, such a date is not available for the customer

(d3 /∈ Dct ) and, therefore, the customer rejects the offer. The next date offered to the

customer is d5, which, again, is not available for the customer (d5 /∈ Dct ) and is rejected.

In a third attempt, the SR offers day d8. Since d8 is available for the customer (d8 ∈ Dct ),

the date is accepted for delivery. The final choice would have been the same, had the

customer started the interaction asking for the retailer availability of the first day available

d2 ∈ Dct .

Unfortunately, the exact communication during the interaction is not registered in the

system and, therefore, it is not visible in the transactional data from the retail company.

Transactional data only reveals the final choice of the customer d∗t . The retailer availability

Drt , used in combination with the final choice, d∗t , only reveals that the previous days

available for the retail company, d3 and d5 in the example of Figure 4.3, were not available

for the customer, i.e.; d3 /∈ Drt and d5 /∈ Drt . For example, had d3 been offered, the

customer would have chosen it for delivery.

Therefore, from the transactional data and the home delivery capacity, the Retailer

Availability filter in any transaction, Drt , is fully observed. In contrast, only a small piece

of information about the Customer Availability Filter Dct is revealed from the customer

choice. In the next section we show that the retail company can combine and use the
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information provided by each individual transaction to infer on the customer availability

filter and better understand the customers’ choices empirically observed.

4.4. Research Methods

In this section we first show how the data from the company can be used to infer

on the customer availability filter, we then contextualize our estimation framework, and

describe how results and parameters can be interpreted from our model.

4.4.1 Estimation of Customer Availability Filter

In AHD, customers must be present at the time of delivery and, when considering a

candidate delivery date, customers evaluate if such a day is available in their personal

schedule. The subset of days for which the customer can be at home determines the Cus-

tomer Availability Filter Dct . Unfortunately, this subset of days cannot be fully observed

from our transaction data. In this section we propose a model to estimate the probability

that a candidate day is available for the customer, i.e.; the probability that a candidate

day belongs to the Customer Availability Filter Dct .

For a candidate day dj in the set of all days Dt, the probability that such a day

is available for a customer depends on several factors. For instance, it may depend on

customer features, such as employment characteristics, family structure or type of house.

It may also depend on features of the candidate day dj, such as OD-Lead-Time (i.e.,

difference in days between date of purchase and dj, which is the integer j) or candidate

day of week. Availability of a candidate day can also depend on interactions between the

two sets of features. For instance, customers with a rigid work schedule (customer feature)
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may have lower availability on Tuesdays (candidate day feature) than those customers with

more flexible work schedules.

We model the probability of availability as follows. We let ct be the customer that

makes a purchase at time t with a SR. The probability that candidate day dj belongs to

the Customer Availability Filter Dct of customer ct is P [dj ∈ Dct |dj, ct]. In Equation (4.1)

we model this probability with a function, π(•), that depends on features of the candidate

date and the customer, Xj,t, and a set of parameters β. In our study, we use a logistic

function that depends on the product β′Xj,t.

(4.1) P [dj ∈ Dct |dj, ct] ∼ π(Xj,t|β) =
exp(β′Xj,t)

1+exp(β′Xj,t)

We aim to estimate the parameters β that best explain the data observed from the

retail company. To have a finite set of alternatives, the last day, d28 includes customers

that scheduled a delivery on the 28th day and beyond. This is equivalent to including an

“outside option” in the choice literature2.

A candidate day dj needs to meet three conditions to become the final choice of the

customer after the interaction with the retailer:

• Available for the customer (dj ∈ Dct ).

• Available for the retail company (dj ∈ Drt ).

• Offered by the SR: Assuming that from all available dates, the earliest is chosen

(third assumption in Section 4.3.2), a day is offered only if none of the previous

2Alternatively we could include an outside option as Day 29 representing the option that no day has been
chosen within the first 4 weeks. The analysis and results obtained would be equivalent.
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dates are chosen. In other words, the candidate day dj may be offered only if the

previous dates are not available for delivery either for the customer, the retailer

or both (di /∈ Drt ∩ Dct for all i < j).

The first two conditions imply that the candidate day dj belongs to the intersection

of Dct and Drt . The third condition implies that, for day dj to be considered, all the

previous candidate days must not belong to the intersection of Dct and Drt . Therefore, the

probability that candidate day is chosen depends on the availability of the previous days

(Assumption 3).

Assuming that the probability of availability of a candidate day dj is independent of

the previous dates (condition on the customer cj), the probability that a candidate day

is chosen can be easily computed. We remark that, even though the probability of avail-

ability (condition on the customer cj) is independent of the previous days, the probability

that a candidate is chosen still depends on the availability of previous dates. By denoting

D∗ the final choice of the customer, in Equation (4.2), we show that the probability of the

candidate day dj being chosen, P [D∗ = dj|Xj,t], is a sequence of conditional probabilities.

(4.2)
P [D∗ = dj|Xj,t] = π(Xj,t|β)P [D∗ 6= dj−1|Xj−1,t] if dj ∈ Drt ,

P [D∗ = dj|Xj,t] = 0 if dj /∈ Drt .

With initial conditions,

P [D∗ = d1|X1,t] = π(X1,t|β) if d1 ∈ Drt ,

P [D∗ = d1|X1,t] = 0 if d1 /∈ Drt .
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In Equation (4.2), the probability that day dj is chosen is the product of the probability

that the day is available for the customer and the probability that the previous dates are

not chosen. By construction,
∑28

j=1 P [D∗ = dj|Xj,t] = 1 for any vector of parameters

β. Hence, our model provides well defined choice probabilities without adding additional

constraints often required in non-parametric estimation approaches (e.g.; [131] and [99]).

To estimate the model parameters β, we maximize the likelihood function of the

transactional data from the retail company. Let Nr be the total number of transactions

of region r ∈ {1, . . . , 9}, and do,t be the observed customer’s choice of transaction t ∈

{1, . . . , Nr}. We write in Equation (4.3) the expression of the likelihood function.

(4.3) L(β) =
9∏
r=1

Nr∏
t=1

P [D∗ = do,t|Xj,t].

It can be shown that the function L(β) is concave in the parameters β and, therefore,

it is easily maximized using standard methods and packages. The maximizer β∗ provides

asymptotically optimal estimates of the true parameters [68]. [53], [80] and [63] show

how robust and cluster-robust standard errors can be obtained for maximum likelihood

estimators with this structure.

The following section describes the set of variables Xj,t that are included in the avail-

ability model P [D∗ = dj|Xj,t].
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4.4.2 Customer and Candidate Day Features

Our data contains 17,751 transactions, which we index by t. The probability model of a

candidate day dj being available for customer ct, π(Xj,t|β), depends on features of the

customer and the candidate day, Xj,t, which we briefly describe below.

Customer Features. We summarize the customer features in Table 4.1 and we describe

each feature below.

• Region: There are a total of 9 regions. For each region r, we incorporate a

dummy variable Regr,t , such that Regr,t = 1 if transaction t was opened in

region r, and 0 otherwise.

• Seasonality: Our data spans from July 2016 to July 2017, with sales periods

removed. We split the season in 22 biweek windows. We incorporate a dummy

variable Seasons,t for each biweek window s, such that Seasons,t = 1 if transac-

tion t was opened in the window s, and 0 otherwise.

• Time of the day: We split the day in three time windows indexed with q: (1)

Earlier than 12 p.m. (2) 12 p.m.-4 p.m. (3) later than 4 p.m. We incorporate

a dummy variable Timeq,t for each time window q, such that Timeq,t = 1 if

transaction t was opened during time window q, and 0 otherwise.

• Day of Week of Purchase: We incorporate a dummy variable DoWPw,t for

each day of week w, such that DoWPw,t = 1 if transaction t was opened during

time window w, and 0 otherwise (w = {Mon, Tue, . . . , Sun}).

Candidate Day Features. We focus our attention on those customers that scheduled

the delivery within 28 days from the day of purchase. Each candidate day d1, . . . , d28 has

features that impact customer availability. We describe the features below.
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Variable Name Num. of Variables Av # of obs. sd. # of obs Min # of obs. Max # of obs

Seasons,t 21 845 308 338 1613
Timeq,t 3 5917 883 4898 6433
Regr,t 9 1972 1902 571 5943
DoWPw,t 7 2536 820 1983 4254

Table 4.1. Summary of customer features variables.

• OD-Lead Time: To capture the effect of OD-Lead Time of the candidate days

(i.e.; the days passed since the time of purchase), we incorporate the logarithm of

OD-Lead Time as a continuous variable. For day dj, the logarithm of OD-Lead

Time is logODLTj = log(j).

• Candidate Day of Week: We incorporate a dummy variable DoWCDv,j for

each day of week v, such that DoWCDv,j = 1 if the candidate day of week dj is

v, and 0 otherwise. Sunday and Monday are not included in the set of variables

because the delivery teams of the retail company did not deliver on Sundays or

Mondays (v = {Tue,Wed, Thu, Fri, Sat}).

For each set of binary variables, we drop the first index to indicate its vector form,

e.g.; Seasont = (Season1,t, Season2,t, . . . ).

In our analysis, we use the marginal effects of the customer and candidate day features

to gain insight onto the drivers of customer choice. As we describe in the next section,

marginal effects cannot be directly evaluated from β∗ because we model the decision as a

sequence of conditional probabilities (see Eq. 4.2). This sequential model belongs to the

family of sequential logistic models, which have been largely used in the literature. In the

next section we discuss how this model can be used to interpret the impact of customer

and candidate day features, Xj,t.
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4.4.3 Logistic Sequential Models: Context and Interpretation

Sequential logistic models have been used in the literature to model situations or processes

in which agents make decisions of continuing or leaving the system in an ordered sequence.

In our context, the customer sequentially accepts or rejects the candidate days offered by

the SR. If a candidate day offered is available for the customer, the day is accepted for

home delivery and the customer “leaves” the system; otherwise, the customer-retailer

interaction continues.

Similar models have been widely used in the education literature to model how students

progress across school grades, and to measure the impact of student characteristics (i.e.,

economic or family background) on the decision of continuing to the next grade or leaving

the school (e.g., [89], [90], [137], and [107]). In this context, after completing an academic

grade, students may decide to stop their education (“leave the system”) or to continue to

the next grade. This model approach for education attainment became popular and the

literature termed it the “Mare Model” after [89]. In a different context, more recently,

[116] uses similar models to estimate innovation success. The authors measure the impact

of personal treats on the success rate in three ordered stages leading to product innovation:

idea generation, prototyping and diffusion. In this context, individuals engaged in new

product development at a given stage may decide to stop the process and drop the product

idea, or continue to the next stage.

[27] shows that due to heterogeneity, selection bias and omitted variables, the es-

timated parameters (β in our model) of sequential logit models cannot be directly in-

terpreted as the marginal effects of the features. More specifically in our model, the

magnitude of the parameters is linked with the choice heterogeneity of the customers
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[124]. Therefore, the comparison of parameters between groups of customers (e.g. cus-

tomers that purchased the product on Saturday vs. on Tuesday) is challenging because

different groups may have different heterogeneity. In addition, the impact of parameters

for late candidate days is particularly challenging to interpret because only customers with

very low availability are observed, introducing selection bias. Therefore, only a subset of

customers is observed for those dates. Finally, [27] and [24] show that omitted variables

can also bias the magnitude of the parameters.

To overcome these challenges, [27] shows that marginal effects can be reliably esti-

mated by considering changes in probability terms, also known as Partial Effects (see also

[63], [95] and [96]). Following this approach, we measure the impact of customer and can-

didate features on customer availability as follows: Let xj,t,k be a feature k of the feature

vector x̂j,t. If xj,t,k is a continuous feature, we evaluate the marginal effects of xj,t,i with the

partial effect calculated as
∂π(x̂j,t|β)

∂xj,t,k
. If xj,t,k is a binary feature, we evaluate the marginal

effects of xj,t,i with the partial effect calculated as π(x̂j,t|xj,t,k = 1)−π(x̂j,t|xj,t,k = 0). [63]

shows how cluster robust standard errors for the partial effects can be calculated from

the previous expressions. The partial effects depend on the point they are evaluated, x̂j,t,

therefore, each time we show partial effects, we specify the point, x̂j,t, on which the partial

effects are evaluated.

There are several factors that may influence customers’ availability for home delivery.

Partial effects allow us to evaluate how probability of availability changes for different

factors such as day of week of a candidate day or OD-Lead-Time. We can also evaluate

how probability of availability changes for different customer groups, such as customers

that made a purchase on weekdays versus those that made a purchase on weekends.
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In Section 4.5, we follow the approach presented in this section to estimate the impact

of these factors on the customer availability filter Dct , which, along with the retailer

availability filter Drt , leads to the final choice.

4.5. Findings

In this section we describe the results of several specifications of customer availability.

The insights and implications of our findings are discussed in Section 4.6

4.5.1 The Impact of OD-Lead-Time and Day of Week

We first explore the effect of OD-Lead-Time of the candidate day and the day of week

(DoW). To test the significance of our variables of interest, OD-Lead-Time and DoW, in

increasing the maximum likelihood, we use a base model, Model-0, which only incorpo-

rates control variables for time, seasonality and region (the first three rows of Table 4.1).

Therefore, for Model-0, the term β′Xj,t can be expressed as in Equation (4.4).

(4.4) Model 0: β′Xj,t = β′SSeasont + β′T imeT imet + β′RegRegt ≡ β′cControlt.

It is well known that waiting time can have an impact on customer choice (e.g., [83]

and [64]). To test hypothesis 1 we include in our model the impact of time passed between

the day of purchase and a candidate day, the OD-Lead-Time. Incorporating this variable

allows availability of early candidate days to be different than late candidate days. Also,

to capture the day of week heterogeneity and to test hypothesis 2 and 3.1, we incorporate

the effect of the candidate DoW and DoW of purchase in the model. Model LD-DoW
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in Equation (4.5) incorporates the control variables of Model 0 along with the effect of

OD-Lead-Time as well as DoW.

(4.5)
Model LD-DoW: β′Xj,t =βLT logODLT j + β′DoWCDDoWCDj+

β′DoWPDoWPt + β′cControlt,

where, β′CControlj,t is the set of controls of Model 0 in Equation (4.4). We show a

summary of Model 0 and Model LD-DoW in Table 4.2.

We analyze the marginal effect of the variables of our model in probability terms

following [27] and [63]. To that aim, we evaluate the change of the variables of interest

(OD-Lead-Time and DoW) while averaging the impact of the rest. For instance, if r is

the total number of region-specific binary variables (Regr,t) and βReg,r is the element r of

the vector of parameters βReg, the averaged effect of region is calculated as 1
r

∑r
r=1 βReg,r.

In Figure 4.4-(a), we show how probability of availability changes in the first 14 days

(two weeks) with OD-Lead-Time, when the rest of the effects are averaged. Observe that

probability of availability increases with OD-Lead-Time from, approximately, 0.06(±0.02)

to 0.23(±0.01) after two weeks, an increase of about 450%. In Figure 4.4-(b), we show

the partial effects of the OD-Lead-Time, which can be interpreted as the increment of

probability for each unit of OD-Lead-Time, i.e.; the derivative of the curve in Figure

4.4-(a). The effect of time is particularly strong in early dates, where probability of

availability increases, on average, by 0.018(±0.001) for each extra day of OD-Lead-Time.

For later dates, OD-Lead-Time is lower in magnitude but still significant 0.013(±0.004).
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Figure 4.4. Example of customer choice. Days crossed represent non-
available days. Shaded region shows cluster robust standard errors, clus-
tered by group, candidate DoW, and purchase DoW.

We evaluate the effect of DoW by comparing the results of Model LD-DoW with Model

DoW and Model LD, in Table 4.2. Model DoW is identical to Model 0 but includes the

effect of DoW of purchase and candidate day. Similarly, Model LD is identical to Model

0 but includes the effect of OD-Lead-Time. Observe that, while significant, including the

set of variables of DoW of purchase and candidate day has small impact on the likelihood

with respect to Model 0. Most of the improvement of Model LD-DoW can be attributed

to the single variable that captures the effect of OD-Lead-Time. This is confirmed by the

increase in likelihood obtained in Model LD.

We further analyse the effect of DoW in Model LD-DoW by means of the partial

effects. Figure 4.5-(a) and (b) show how probability of availability changes when we

single out the effect by candidate DoW. Observe that the partial effects are overlapped,

indicating that there are small differences in availability by DoW.
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Var. name Model 0 Model DoW Model LD Model LD-DoW

Intercept X X X X
Season Seasont X X X X
Region Regt X X X X
Time Visit T imet X X X X
DoW purchase DoWPt X* (Table 4.3)*

DoW Candidate day DoWCDj X* (Table 4.3)*

OD-Lead-Time logODLTj 0.016 (0.003)* 0.016 (0.003)*

N obs. 17751 17751 17751 17751
N pars. 31 41(a) 32 42(a)

LogLikelihood -48182 -48119 -45867 -45829
Pseudo R-Squared 0.004 0.005 0.052 0.053
χ2(b) 4984.73 4861.13 1611.85 1557.41
* The incorporation of the variables provides significant reduction (p < 10−3) of the likelihood based on the likelihood

ratio test.
(a) It includes 10 DoW-related variables: 6 DoWPt (7 - 1 due to the intercept) and 4 DoWCDj (5 - 1 due to the

intercept).
(b) In reference to Figure 4.6.

Table 4.2. Comparison and results of Model 0, Model DoW, Model LD and
Model LD-DoW.

In Figure 4.5-(c) we show the averaged partial effects of different candidate DoW when

OD-Lead-Time is 7. Table 4.3 show the results in terms of average probability and the

partial effects. A positive (negative) partial effect indicates an increase in the average

availability of a candidate day. The impact of DoW of the candidate day is small, close

to zero in most cases. In Figure 4.5-(d), similar results are obtained when we single out

the effects by day of purchase.

To better understand the contribution of the variables to explaining customer behavior,

we simulate customer choice according to our model, using the specifications in Table

4.2. In Figure 4.6-(a) and (b), we compare the results obtained from our model with

the empirical proportions observed in our data. The last row of Table 4.2 reports the

χ2 statistic. The models that incorporate the impact of OD-Lead-Time provide more
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DoW Probability PE(a) t-stat PE(a)

DoW visit

Monday 0.129 (0.013) 0.008 (0.011) 0.712
Tuesday 0.128 (0.014) 0.006 (0.012) 0.544
Wednesday 0.129 (0.015) 0.008 (0.012) 0.623
Thursday 0.123 (0.012) 0.002 (0.009) 0.225
Friday 0.125 (0.012) - -
Saturday 0.117 (0.014) -0.004 (0.011) -0.377
Sunday 0.130 (0.014) 0.008 (0.012) 0.716

DoW alternative

Tuesday 0.124 (0.015) -0.010 (0.012) -0.841
Wednesday 0.115 (0.011) -0.019 (0.011) -1.700
Thursday 0.122 (0.011) -0.012 (0.011) -1.096
Friday 0.132 (0.012) -0.002 (0.011) -0.202
Saturday 0.125 (0.012) - -

(a) Note that since DoW variables are binary, partial effects are always expressed as
a change relative to an arbitrary reference case, which corresponds to the variables
with missing PE. Without loss of generality, they are Saturday (for the candidate
DoW variables) and Friday (for the DoW of purchase variables).

Table 4.3. Partial effects by candidate DoW and DoW of purchase of Model
LD-DoW. OD-LD is taken at the value of 7 and the rest of variables are
averaged. Parentheses show cluster robust standard errors.

accurate predictions of the choice proportions of each candidate day, compared to the

empirical data.

The empirical proportions in Figure 4.6 display a bimodal shape that is not captured

by our models. The first mode occurs on days 6 and 7 after purchase, and the second

mode occurs on days 12 and 13. This seems to indicate that there exists a periodicity in

our data, driven by the DoW, that is not captured by the models presented in Table 4.2.

The models in Table 4.2 assume that the impact of DoW is homogeneous. That

is, DoWCDj, which captures heterogeneity in availability of the candidate DoW, has

the same effect for all customers. Similarly, DoWP t, which captures heterogeneity in

availability by DoW of purchase, has the same effect on the availability of all candidate
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Figure 4.6. Predicted proportions. Results report the mean ± standard
deviation of the proportions obtained of 5 simulations.

days. This limitation explains the small contribution of DoW variables to predicting the

empirical proportions.

In the next step of our analysis we incorporate customer-specific candidate day avail-

ability variables, which allows different customer segments to have different candidate day

availability.

4.5.2 The Impact of Crossed Day of Week Terms

To explore hypothesis 3.2 and capture the heterogeneity due to day-specific availability

by DoW of purchase, we introduce a set of interaction (or “crossed”) variables of DoW,

XDoWj,t. For each pair w, v of DoW of purchase and candidate day DoW, we introduce

a binary variable XDoWw,v,j,t such that, XDoWw,v,j,t = 1 if customer j made a purchase

on the DoW w and if candidate day dt is on the DoW v, and 0 otherwise. The total

number of variables is 35.
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Var. name Model XDoW Model LD-XDoW

Intercept X X
Season Seasont X X
Region Regt X X
Time Visit T imet X X
Cross-DoW XDoWj,t X* (Table 4.5) *

OD-Lead-Time logODLTj 0.015 (0.001)*

N obs. 17751 17751
N pars. 65 66
LogLikelihood -46996 -45122
Pseudo R-Squared 0.025 0.063
χ2(a) 3444.25 492.41
* The incorporation of the variables provides significant reduction (p < 10−3) of the likeli-

hood based on the likelihood ratio test.
(a) In reference to Figure 4.9.

Table 4.4. Comparison and results of Model XDoW and Model LD-XDoW.
Partial effects shown in table (OD-LD is taken at the value of 7 and the
rest of variables are averaged). Parentheses show cluster robust standard
errors.

In Table 4.4 we show the results of two models that incorporate the crossed variables.

Model XDoW incorporates the crossed variables XDoWj,t but it does not include the

effect of OD-Lead-Time. Model LD-XDoW incorporates both the crossed variables and

OD-Lead-Time.

Compared to Model DoW (Table 4.2), Model XDoW significatively increases the like-

lihood by capturing the heterogeneity of day-specific availability by DoW of purchase. In

Model LD-XDoW, OD-Lead-Time has a significant impact compared to Model XDoW.

We analyze the average impact of OD-Lead-Time on availability of Model LD-XDoW

in Figure 4.7-(a) and -(b), which shows the average probability of availability and the

partial effects. The impact of OD-Lead-Time of Model LD-XDoW is similar to Model

LD-DoW: The effect of OD-Lead-Time is strong, particularly in early dates, in which
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averaged probability of availability increases from 0.06 (± 0.01) to 0.22 (± 0.22) in two

weeks.
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Figure 4.7. The impact of OD-Lead-Time in Model LD-XDoW. Shadow
shows cluster robust standard errors.

We detail the effect of the crossed DoW in Figure 4.8 and Table 4.5. Figure 4.8-(b)

shows the results for customers that visit the store to make a purchase on Tuesdays.

Probability of availability of a candidate day changes depending on the DoW. Customers

that made a purchase on Tuesdays have particularly high availability on Tuesdays and

Wednesdays (partial effect is high). In contrast, Figure 4.8-(f) shows that, for customers

that made a purchase on Saturdays, availability for Fridays and Saturdays is particularly

high. Customers that purchased the products in different DoW have different DoW

availability.

In Figure 4.9, we show how the day of week interaction variables contribute to explain-

ing the empirical proportions observed in our data. Observe in Model XDoW that the

crossed DoW partially captures the two modes of the distribution occurring in OD-Lead-

Time 6-7 and 13-14. However, the predicted proportions of people choosing earlier dates
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DoW Visit Candidate DoW Probability PE(a) t-stat PE(a)

Monday

Tuesday 0.166 (0.013) 0.079 (0.015) 5.24
Wednesday 0.126 (0.010) 0.039 (0.013) 2.95
Thursday 0.084 (0.005) -0.004 (0.014) -0.26
Friday 0.110 (0.004) 0.022 (0.014) 1.60
Saturday 0.181 (0.012) 0.094 (0.017) 5.66

Tuesday

Tuesday 0.143 (0.012) 0.056 (0.015) 3.80
Wednesday 0.115 (0.012) 0.027 (0.015) 1.84
Thursday 0.096 (0.006) 0.008 (0.015) 0.54
Friday 0.116 (0.008) 0.028 (0.015) 1.94
Saturday 0.181 (0.015) 0.094 (0.017) 5.65

Wednesday

Tuesday 0.132 (0.010) 0.044 (0.014) 3.13
Wednesday 0.115 (0.009) 0.027 (0.013) 2.11
Thursday 0.081 (0.004) -0.006 (0.014) -0.45
Friday 0.183 (0.013) 0.096 (0.016) 6.07
Saturday 0.143 (0.017) 0.055 (0.019) 2.84

Thurday

Tuesday 0.124 (0.013) 0.037 (0.016) 2.28
Wednesday 0.117 (0.009) 0.030 (0.013) 2.28
Thursday 0.118 (0.008) 0.031 (0.014) 2.24
Friday 0.154 (0.007) 0.066 (0.013) 5.15
Saturday 0.124 (0.010) 0.036 (0.014) 2.51

Friday

Tuesday 0.070 (0.005) -0.018 (0.014) -1.29
Wednesday 0.118 (0.008) 0.031 (0.014) 2.16
Thursday 0.152 (0.011) 0.065 (0.015) 4.27
Friday 0.154 (0.016) 0.066 (0.019) 3.54
Saturday 0.124 (0.006) - -

Saturday

Tuesday 0.075 (0.007) -0.013 (0.015) -0.87
Wednesday 0.082 (0.006) -0.005 (0.014) -0.38
Thursday 0.132 (0.008) 0.044 (0.014) 3.17
Friday 0.151 (0.008) 0.063 (0.013) 4.69
Saturday 0.173 (0.016) 0.086 (0.017) 4.89

Sunday

Tuesday 0.144 (0.023) 0.056 (0.024) 2.37
Wednesday 0.081 (0.008) -0.007 (0.015) -0.44
Thursday 0.101 (0.008) 0.013 (0.015) 0.89
Friday 0.153 (0.013) 0.065 (0.017) 3.79
Saturday 0.197 (0.012) 0.109 (0.016) 7.00

(a) Note that since DoW variables are binary, partial effects are always expressed as
a change relative to an arbitrary reference case, which corresponds to the variable
with missing PE.

Table 4.5. Partial effects by candidate DoW and DoW of purchase of Model
LD-XDoW. OD-LD is taken at the value of 7 and the rest of variables are
averaged. Parentheses show cluster robust standard errors.
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Figure 4.8. Partial effects by candidate DoW and DoW of purchase of Model
LD-XDoW. OD-LD is taken at the value of 7 and the rest of variables are
averaged. Error bars show cluster robust standard errors.

is notably higher than the empirical proportions observed. In contrast, in Model LD-

XDoW, which incorporates the effect of OD-Lead-Time and crossed DoW, the predicted

proportions become closer to the observed proportions. The two peaks are explained by

the model and are the result of the combination of OD-Lead-Time and DoW effects. We

further discuss this insight in Section 4.6.
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Figure 4.9. Predicted proportions. Results report the mean ± standard
deviation of the proportions obtained of 5 simulations.

With a fairly simple behavioral model (the customer-retailer interaction model in Sec-

tion 4.3.3) we have been able to understand the main features of the empirical proportions

observed by the retail company. More importantly, we have been able to better under-

stand the main drivers of customer choice when scheduling AHD. Our model and analysis

provides several insights that can be used to more efficiently plan AHD operations. In

the next section we discuss our empirical findings, and the managerial insights from our

results.

4.6. Discussion and Operational Levers

In this section we discuss the results of Section 4.5. We divide our discussion in four

subsections, each one focusing on a main insight obtained from our analysis.
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4.6.1 Early Days are Not Usually Available for the Customers

In Figures 4.4 and 4.7 we show there is a significant and strong effect of OD-Lead-Time

on customer availability. Availability is notably low for early candidate days that are

close to the day of purchase, which supports Hypothesis 1. We attribute this effect to

the fact that customers find the immediate future days unavailable due to family, work

commitments or other. Another plausible explanation is that customers are more willing

to reschedule commitments in later future periods to fit the AHD than to reschedule

commitments in earlier periods. In other words, availability increases when the candidate

day is later in the schedule because later days are not yet planned, or because plans are

more easily rescheduled. Note that in Figures 4.4-(b) and 4.7-(b) the impact of time

is stronger for early dates than for later dates. Thus, earlier candidate days are more

sensitive to OD-Lead-Time than later days 3.

To test how customer choice changes with and without capacity constraints, in Figure

4.10, we show the simulated predicted proportions when all days are available for the retail

company and are potentially offered, i.e., when there are no capacity constraints. When

OD-Lead-Time of candidate days is taken into account in Model XDoW-LD, delivery

dates earlier than one week are rarely chosen by customers even when they are offered.

To feasibly deliver the products at the customer’s home, companies need to plan

delivery capacity, such as delivery teams and vehicles, in advance [2]. Ample delivery

capacity allows companies to reduce the minimum delivery lead time and to offer days with

short OD-Lead-Time. However, this might come at high operational overage costs and

3A decreasing slope can be a attributed to using a logarithm function for OD-Lead-Time. When we used
a linear function we found that likelihood significantly decreased, showing that a logarithm specification
better captured customer behavior.
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underutilized capacity when not planned accordingly with market demand and customer’s

expectations (see, for example, [112], [26], and [40]). We show that, in AHD, speed of

delivery is of relative importance because availability plays a fundamental role in the

final choice of the customers. This is particularly important for very early dates, in

which customer availability is significantly low for most customers. Expensive operational

efforts made by companies to achieve very-fast delivery are likely to have a tiny impact

on customer experience because such dates are unlikely to be picked by customers when

offered. Our results contrast with other studies that analyze short delivery lead-time

operations and focus on the negative impact of increasing delivery lead times (e.g. [3],

[91], [133], and [38]). In a different context, our results support other studies showing

the relative importance of speed of access in non-urgent health care service systems (e.g.

[109], [108], and [83]).

4.6.2 Day of Week of Purchase Reveals Day of Week Availability

When we incorporate the impact of candidate DoW and DoW of purchase we observe

that, while there is a slight increase of likelihood (Table 4.2, 10th row, Model DoW and

Model LD-DoW), in Figure 4.5-(c) and (d), the partial effects are roughly the same across

all DoWs. We do not observe enough evidence to support that the candidate DoW nor

the DoW of purchase has an impact on customer choice, (hypotheses 2 and 3.1).

In Figure 4.8, when we incorporate the crossed terms of DoW, we observe signifi-

cant differences of candidate DoW availability depending on the DoW of purchase. For

instance, availability when the candidate is Tuesday (Figure 4.8-(a)) is higher for cus-

tomers that purchased the product on Mondays, Tuesdays or Wednesdays than those
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Figure 4.10. Predicted proportions without capacity constraints, i.e.; re-
tailer filter contains all days in the schedule. Results report the mean ±
standard deviation of the proportions obtained of 5 simulations.

that purchased the products on Fridays or Saturdays. Therefore, on top of the impact of

OD-Lead-Time described in the previous section, DoW has a strong effect that depends

on customer features, which we capture by incorporating the DoW crossed terms.

In Figure 4.9, the second peak in the observed and predicted proportions reveals that

the impact of crossed DoW terms is strong even 10 days after purchase. We observe

that a big portion of customers that made a purchase on a Saturday and were not able

to schedule the delivery for the immediate weekend after purchase (first peak occurring

around OD-Lead-Time 6-7) seem to be willing to wait one more week to schedule the

delivery the following weekend (second peak occurring around OD-Lead-Time 12-13).

Customers are selective about the DoW even if they have to wait more than one week.



168

Our results show that the DoW of purchase is a good indicator of the candidate DoW

availability, supporting hypothesis 3.2. We attribute this result to the impact of weekly

commitments such as work or school schedules. For instance, a customer who is not able

to visit the retail outlet on a weekday due to work-related weekly availability is unlikely to

schedule AHD for a weekday. This result supports previous studies focusing on the impact

of DoW on customer choices in a variety of contexts such as travel mode, recreational

activities and shopping trends (e.g. [16], [141], [47] , and [144]).

For the furniture retail company, the impact of DoW availability provides the supply

chain team with information that can be used to more accurately forecast transportation

needs and adjust delivery capacity in advance. For instance, our results show that Tuesday

is likely to be available for customers purchasing on Tuesday, Wednesday and Thursday.

In contrast, availability for Tuesdays of customers purchasing on Friday, Saturday or

Sunday drops. Hence, by the end of Thursday, the retailer has an accurate estimate of

the total amount of deliveries for the following Tuesday. A potential research direction

can explore leveraging this information, as well as the sequential nature of DoW, by

incorporating customer choice into capacity planning. The use of information to update

demand forecasts is highly valuable and well studied in the literature (e.g. [135], [54],

[100], and [78]).

4.6.3 Understanding the Observed Proportions

Our model allows us to understand the bi-modal shape of the empirical proportions. To

this aim, we compare the results in Figure 4.9 and Figure 4.10, where we simulate the

customer choice when all days have delivery capacity.
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The occurrence of the two modes is a consequence of several effects taking place

simultaneously:

The first peak occurs as a consequence of three factors: (1) Due to capacity constraints,

very early dates (OD-Lead-Time 3-5) are often not offered (retailer availability filter). (2)

Due to the impact of OD-Lead-Time, early dates are rarely chosen by customers due to

availability even if they are offered (see Model XDoW-LD in Figure 4.10). (3) Due to

DoW effects, the first day available for the customers is likely to be 5-6 days after purchase

(see Model XDoW in Figure 4.10).

The second peak occurs as a consequence of a spill-over effect combined with the

impact of DoW. Customers whose availability is strongly dominated by DoW can only

visit the stores and schedule their delivery on certain days of week. For the sake of

exposition, let customers who visit the store on weekends only schedule their delivery on

weekends. For those customers, when the immediate next Saturday cannot be chosen,

either due to capacity constraints or due to the impact of OD-Lead-Time, those customers

need to wait until the following weekend, 13-14 days after purchase, around the occurrence

of the second peak. The same can be argued, for example, for customers that visit the

store and have availability only on Mondays, Tuesdays or Wednesdays.

Our numerical results in Figure 4.10 confirm our intuition about the second peak.

When there are no capacity constraints and the OD-Lead-Time is not incorporated (Model

XDoW), the second peak is barely noticeable. This is because most of the customers are

able to schedule their delivery within the first week. When we incorporate OD-Lead-

Time with no capacity constraints (Figure 4.10, Model XDoW-LD), the second peak

significatively increases. In the presence of capacity constraints but no OD-Lead-Time
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effect (Figure 4.9, Model XDoW), the second peak is also noticeable. The second peak

the highest with the combined effect OD-Lead-Time and capacity constraints (Figure 4.9

XDoW-LD).

To sum up, the bimodal shape of the empirical proportions observed by the furniture

retail company is a consequence of a combined effect of capacity constraints, the impact

of OD-Lead-Time, the crossed DoW and spill overs.

Understanding the drivers of customer choice that shape the empirical proportions

can help the supply chain team of the retail company to plan efficiently AHD operations.

While out of the scope of this chapter, our simple but insightful model can be used to

easily simulate “what-ifs” scenarios to test delivery capacity allocation and scheduling

policies. A research direction can consider embedding the customer-retailer interaction

in a decision support system that plan delivery capacity by taking into account customer

availability. Capacity planning with customer preferences has been shown to be valuable

(see for example [87] and [122]), but few studies have focused on models that incorporate

a customer availability.

4.6.4 Customer Availability Can be Predicted

One of the main concerns of the supply chain team of the furniture retail company is

to use delivery capacity efficiently while improving customer satisfaction. Our framework

shows how availability drives customer choice, and that the customer availability filter can

be inferred from transactional data. This information can be used to increase customer

satisfaction by strategically offering delivery dates.
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For the sake of illustration, let us consider first an idealized scenario, in which the

retail company knows in advance the availability of all customers. With that information,

the retail company can offer delivery days such that all customers are maximally satisfied

given the capacity constraints. This could be achieved, for example, by ensuring that

customers wait the minimum possible time. For example, consider a customer that makes

a purchase on a Saturday and only has availability on Saturdays. If the retailer has no

delivery capacity for the first Saturday after purchase, the customer has no option but

to wait two weeks for delivery. Had the retail company saved a spot on Saturday, the

customer would have waited significantly less.

While the ideal scenario is impossible to implement because customer availability is

not known in advance, our work shows that the retail company can infer customer avail-

ability. For instance, our results show that customers that make a purchase on Saturdays

are likely to have lower availability on some weekdays. For the furniture retail company,

saving a little delivery capacity on Fridays and Saturdays for customers that make a pur-

chase on Saturdays can significantly increase customer satisfaction for those customers,

while minimally affecting customer segments with higher availability. Therefore, not sur-

prisingly, customers have strong DoW preferences, and our analysis shows that customers

can be intuitively and easily segmented by DoW of purchase. This segmentation can be

leveraged by the furniture company to customize delivery options with easy-to-implement

policies and more efficiently use delivery capacity.

Several studies have shown that incorporating customer behavior in scheduling oper-

ations can be highly valuable (e.g., [65] and [48]). Our study constitutes a first step in

showing how customer availability can be incorporated in AHD scheduling.
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4.7. Conclusions

We focus on the last mile delivery scheduling operations of the furniture company that

motivates our work in Chapters 2 and 3. We study customer choice of AHD date with a

simple behavioral model that assumes that customers choose the earliest available date

(available for the customer and available for the retailer). Our results suggest that in AHD,

speed of delivery is of limited importance relative to customer availability. Customers of

the furniture company rarely choose to schedule AHD on the dates immediately after

the day of purchase, even if those dates are offered by the company. We show that

customer availability increases with time, and it can be predicted based on the day of

week the customers visited the store to make a purchase. Not surprisingly, our analysis

reveals that customers have strong day of week preferences. Our study provides a method

to quantify the effect of day of week on customer availability and its interaction with

the effect of the order-to-delivery lead time (or speed of delivery). Our results suggest

intuitive customer segmentation by day of the week of purchase, and easy-to-implement

strategies to customize delivery capacity to these customer segments. The retail company

can potentially improve its delivery operations by predicting and taking into account

customer availability when planning delivery capacity.
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CHAPTER 5

Final Remarks

Motivated by the decision process of a major furniture manufacturer, this dissertation

explores novel strategies to adapt middle mile and last mile operations of companies that

commit to deliver their products to the customer’s home. I show that the nature of

home delivery and middle mile operations provides new opportunities for flexibility and

adaptation that can reduce distribution costs across the retail supply chain.

The first part of this dissertation focuses on the impact of demand visibility, resulting

from in-store orders and deliverable windows of made-to-order products, on policies for

signing transportation procurement contracts with short temporal commitment. The sec-

ond part of this dissertation incorporates network effects and shows, in contrast to existing

studies of substitution effects, that companies can enhance the value of demand visibility

if flexible transportation capacity is also available as an option. Finally, focusing on the

last mile distribution, the third part of this dissertation studies customers’ sensibility to

delivery time windows in order to balance costly transportation capacity and customer

satisfaction. The three parts reveal that in some cases order information at the store level

can be used to more efficiently plan product distribution across the supply chain.

To conclude this dissertation, in the following sections I pose and discuss open ques-

tions related to the use of demand visibility with short term contracts, and questions on

including customer behavior in last mile operations.
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5.1. The Impact of Short Term Commitment Contracts Across the Supply

Chain

New technological innovations are transforming the sourcing strategies across the sup-

ply chain. For example, in warehousing, Flexe, Stord, and Flow are companies that

offer flexible on-demand warehousing capacity with short-term commitment contracts.

In manufacturing, companies such as HP, Protolabs and Materialize use 3D printing to

offer short-term flexible production capacity. In processing and manufacturing, there is a

growing interest in mobile production capacity that is easily reconfigurable (e.g. [14] and

[88]). [45] studies additional sources of flexibility across the supply chain.

As operations become more nimble, companies change their interaction with other

actors in the supply chain. For example, in Chapter 2 and 3, we show that managers

are more willing to commit to short-term contracts when they can use partial demand

information. As a result, new questions emerge from a carrier perspective: Is there any

benefit for a carrier in offering short-term commitment contracts? If so, when should

carriers offer short commitment versus long commitment contracts and, at what cost? In

dynamic environments where demand information is valuable, carriers can facilitate flexi-

bility to adapt to such information through short-term contracts. Strategically managing

and pricing information and flexibility can be valuable for both, carriers and shippers.

5.2. Leveraging Customer Availability and Preferences

The results in Chapter 4 identify managerial insights to plan more efficiently last mile

distribution. The analysis of the transactional data from the furniture company reveals

that speed of delivery is of relative importance because availability plays a fundamental
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role in the final choice of the customers. We also show that customer availability can be

inferred from the data.

More work is needed to show how the company can leverage customer availability

in attended home delivery. By predicting customer availability and strategically offering

delivery dates, we suggest that the company can decrease last mile costs while decreasing

customer waiting time. An interesting question arises: What is the minimum delivery

capacity needed to ensure that customers wait at most one week on average? An interest-

ing research direction can formally study this question with an assortment or a capacity

planning model to find the minimum capacity needed to achieve a target service level (av-

erage customer waiting time) when customer choice is driven by availability. The study of

scheduling policies with customer choice has gained attention in the past years (e.g. [65]

and [48]). However, to the best of our knowledge, ours is the first model that considers

customer availability as the main driver of customer choice.

Our results also show that the day of week of purchase is a good indicator of customer’s

availability. We suggest this information can be used as a form of advanced demand

information when planning delivery capacity. For instance, by the end of Thursday,

the company has a good estimate of the capacity needed for Tuesday of the following

week. An interesting question emerges: How should the furniture company leverage such

information? How can next week’s estimates of last mile transportation needs be updated?

And, how should delivery capacity be adjusted accordingly? Some studies have focused on

integrating capacity planning with demand forecast updates (e.g. [54], [101] and [134]).

Applying such models in attended home delivery scheduling can shed some light on these

questions.
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5.3. Sustainability of Home Delivery Services

In general terms, a big body of the literature has focused on increasing customer

satisfaction by reducing delivery lead time as much as possible (e.g. [70], [52], [104], [1],

[38] and [39]). However, questions about the sustainability of such supply chains remain

unclear. For instance, some studies have found that home delivery is costly for companies

and the environment (e.g., [42], [104], and [37]). Chapter 4 of this dissertation is one of

the first studies highlighting that, in some situations, reducing delivery lead times below

a threshold (offering, for example, options such as same-day delivery, or two-day delivery)

translates to little benefits, if any. On the contrary, Chapters 2 and 3 show that the

furniture company can benefit from using demand visibility resulting from longer delivery

time windows of one or even two weeks.

As home delivery becomes a more and more popular option in retail, we should ask

questions about how customers and retailers should manage delivery expectations. Should

a company always offer indiscriminately same-day, next-day, or two-day delivery for all

products to all customers? Do all customers have the same sensibility to delivery lead

time? Can a company reduce transportation costs and carbon footprint impact by of-

fering strategically options with shorter or longer delivery lead time? Answering these

questions can provide insights to make retail supply chains more sustainable while meeting

customer’s expectations for home delivery of goods and services.

My Last Remarks

In this dissertation, I borrowed tools and models from the transportation/logistics

and the operations management literature. In Chapters 2 and 3, I applied results from
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inventory management to model distribution networks, and to unveil managerial insights

hidden behind the complexity faced by the supply chain team of the furniture company. In

Chapter 4, I applied ideas from the health care operations literature and school attainment

models to study last mile operations of the furniture company. My research focuses on

building intuition and managerial insights to identify novel strategies to deal with the

complexity naturally present in the distribution networks. To do that I have merged two

streams of the literature, transportation and operations management, which has allowed

me to ask questions and tackle challenges from a different perspective. I am grateful that

my advisors, my committee, and many other researchers from the transportation and the

operations community have appreciated such a perspective. I am thankful for the help

and support from these great communities.
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APPENDIX A

Appendix from Chapter 2

A.1. Proofs

Proof of Lemma 1. Both arguments of the min{•, •} function of V are increasing

with d. Assume that for some d′ the contract option is optimal. Then: C0(d′) + δV ≥

C1(d′) + ∆(τ)EDw [C1(k(d), Dw)] + δτ V. Now consider d′′ = d′ + θ for θ ≥ 0. Then,

C0(d′′) + δV = c′d′ + c′θ + δV = C0(d′) + δV+c′θ ≥ C1(d′) + ∆(τ)EDw [C1(k(d), Dw)] +

δτ V+c′θ ≥ C1(d′′) + ∆(τ)EDw [C1(k(d), Dw)] + δτ V.

The last inequality is true because the contract is Efficient. Similar argument can be

followed to show that if for d′ the outsourcing option is optimal, then it is also optimal

for d′′ = d′ − θ.

�

Proof of Proposition 1. We prove by contradiction: Let the inequality be true

and assume that, for some demand, it is optimal to sign the contract. By monotonicity

proven in lemma (1) and the fact that C1(0) > 0 and C0(0) = 0, there exists an optimal

threshold policy with threshold d̂. When the demand assumes the value of the threshold,

the two options are equally cost-efficient:

(A.1) C0(d̂) + δV = C1(k̄, d̂) + ∆(τ)EDw [C1(k̄, Dw)] + δτ V .
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We take the expectations of equation (2.4) with respect to Dw:

(A.2)

V = EDw [V (Dw)] =
d̂∫
0

(C0(d) + δV)dF +
∞∫̂
d

(C1(k̄, d) + ∆(τ)EDw [C1(c,Dw)] + δτ V)dF =

= C0(d̂) + δVF (d̂) + EDw [C1(k̄, Dw)]− C1(k̄, d̂) + (∆(τ)EDw [C1(k̄, Dw)] + δτ V)(1− F (d̂)) =

= C0(d̂) + δVF (d̂) + EDw [C1(k̄, Dw)]− C1(k̄, d̂) + (C0(d̂)− C1(k̄, d̂) + δV)(1− F (d̂)),

where the last equality is obtained by using equation (A.1). Therefore, if there exist a

threshold, then it is such that it must solve the system of equations (A.2) and (A.1).

We now show that the system has only one solution for d̂. First, divide the first

equation of (2) by ∆(τ) and substitute V in the second equation. By rearranging terms,

we obtain the equation shown in Proposition 2:

TF (d̂) = 0,

where TF (x) is the ’Threshold Function’:

TF (x) = C0(x)− C1(k̄, x) + (1− F (x) + 1
∆(τ)

)(C0(x)− C1(k̄, x)).

We split the analysis of TF into two cases:

If d̂ < k̄, by taking the first and second derivative we can see that TF is increasing

and concave:

d(TF (x))
dx
|x<k̄ = (1− F (x) + 1

∆(τ
)c′ > 0,

d2(TF (x))
dx2

|x<k̄ = −f(x)c′ ≤ 0.
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If d̂ ≥ k̄, the TF (x) is constant:

TF (x)|x≥k̄ = c′
k̄∫
0

ddF + kc′(F (x)− F (k̄))− ck̄F (x) + (1− F (x) + 1
∆(τ)

)(k̄(c− c′)) =

= c′
k̄∫
0

ddF − k̄c′F (k̄) + k̄(c− c′) + k̄(c−c′)
∆(τ)

= EDw [C0(Dw)]− EDw [C1(k̄, Dw)] + k̄(c′−c)
∆(τ)

.

where the last equality is obtained by adding and subtracting
∞∫̄
k

ddF and rearranging

terms.

Note that the threshold is obtained at the point x where TF (x) = 0. Because TF

is constant when x ≥ k̄, if such a point is not reached in the range of x < k̄, then

it is not reached in all the domain of x. Thus, there exists a solution if and only if

EDw [C0(Dw)] − EDw [C1(k̄, Dw)] + k̄(c′−c)
∆(τ)

< 0 (i.e. when the CCBC is held), as stated in

the proposition. Hence, if the condition of the lemma holds, the system (2) is not feasible

and, therefore, an optimal threshold policy does not exist. Therefore, it contradicts our

assumption.

Finally, as the condition implies that the expected cost of the contract mode is larger

than outsourcing and by Lemma 1 the policy has to be monotonic, it is always optimal

to outsource the whole demand. �

Proof of Proposition 2. The result is a direct consequence of Lemma 1 and

Proposition 1. �

Proof of Proposition 3. The cost of the contract option C1(kv, d) today and after

τ periods is convex and can be formulated as follows:
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C1,τ (kv, d) =


fl(kv, d) := ckv + c′(d− kv) + ∆(τ)(ckv − c′kv(1− F (kv)) + c′

∞∫
kv

ddF ) if d < kv

fu(kv, d) := ckv + ∆(τ)(ckv − c′kv(1− F (kv)) + c′
∞∫
kv

ddF ) if d ≥ kv.

Note that fl(kv, d) and fu(kv, d) have their unique minimizers at k∗l = F−1(( c
′−c
c′ −

c
c′∆(τ))

and k∗u = F−1( c
′−c
c′ −

c
c′∆(τ) + 1

∆(τ)) respectively and k∗l < k∗u. If d < k∗l (d > k∗u), fl(kv, d)

(fl(kv, d)) has its minimizer active k∗l . On the other hand, when k∗l ≤ d < k∗u, the minimizer is

the intersection of the two functions, k∗ = d. �

Proof of Lemma 2.

EDw [C1(k∗u, D
w)]− EDw [C0(Dw)] = k∗uc+ c′

∞∫
k∗u

ddF − c′k∗u(1− F (k∗u))− c′
∞∫
0

ddF =

= k∗u(c− c′) + k∗uc
′F (k∗u)− c′

k∗u∫
0

ddF = k∗u(c′−c)
∆(τ)

− c′
k∗u∫
0

ddF < k∗u(c′−c)
∆(τ)

,

where the last equality is obtained by using F (k∗u) = c′−c
c′
− c

c′∆(τ)
+ 1

∆(τ)
and canceling

terms.

�

Proof of Proposition 4. The proof follows the same steps of Proposition 1 but

with a capacity that depends on the demand seen during the first period. First we show

that the contract mode is Efficient:

Lemma 3. The contract mode when a single capacity contract is chosen from among

a continuum set of capacities is Efficient.



195

Proof. We show the result for the three different cases. If x ≥ k∗l , k
∗(x) = k∗l , which

is constant:

d(C1,τ (k(x),x)
dx

= d
dx

(ck∗l + ∆(τ))EDw [C1(k∗l , D
w)]) = 0.

If x ≥ k∗u, k
∗(x) = k∗u, which is constant:

d(C1,τ (k(x),x)
dx

= d
dx

(ck∗u + c′[x− k∗u]+ + ∆(τ))EDw [C1(k∗u, D
w)]) = c′.

If k∗l ≤ x ≤ k∗u, k
∗(x) = x:

(A.3)

d(C1,τ (k(x),x)
dx

= d
dx

(cx+ ∆(τ))EDw [C1(x,Dw)]) = c+ ∆(τ)(c− c′(1− F (x))) ≤ c′.

The last inequality in equation (A.3) follows from the fact that the derivative is always

increasing and the maximum is reached at the point x = k∗u with a value of c′. �

Hence, from lemma (3) the optimal policy is monotonic. In contrast with Proposition

1, the contract option is C(k(d), d), which is a piece-wise linear function, and β(d) is a

function that depends explicitly on the next period demand, which complicates slightly

the algebra. The proof uses the results in Lemma 1, Lemma 2, Lemma 3 and Proposition

3 .

We skip the rest of the proof. �

Proof of Theorem 1. The results found in sections (2.3.2) and (2.3.3) (and the

section in the appendix A.3 about Commitment under discrete set of capacities) show

that for any set of real values that form contract capacities (one element, discrete or a

continuous set), there exist a compact subset of Useful Capacities that will be used if the
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decision is optimal. We have shown that in all possible cases the choice of the optimal

capacity implied that the contract mode was Efficient if c′ > c. Therefore, by lemma 1

the policy is monotonic. �

Proof of Proposition 5. The cost of the contract option C1
t (1, dt) today and after

τ periods at time t is convex and can be formulated as follows:

C1,τ
t (kv, dt) =


fl,t(kv, dt) := −(c′ − c)kv + c′dt +

∑τ−1
i=1 δ

iC1
t+i(kv) if dt < kv

fu,t(kv, dt) := ckv +
∑τ−1

i=1 δ
iC1

t+i(kv) if dt ≥ kv.

Note that fl,t(kv, dt) and fu,t(kv, dt) have their unique minimizers at k∗l,t and k∗u,t by defi-

nition. Also, it is easy to see that k∗l,t < k∗u,t. If dt < k∗l,t (dt > k∗u,t), fl,t(kv, dt) (fu,t(kv, dt))

has its minimizer active k∗l,t. On the other hand, when k∗l,t ≤ dt < k∗u,t, the minimizer is

the intersection of the two functions, k∗t = dt. �

Proof of Proposition 6. The system of equations in Proposition 6 is obtained by

taking expectations of Equation (2.16) and using the fact that, at each period, when

dt = d̂t we are indifferent signing or not signing the contract. �
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A.2. Case Study: The Value of Partial Demand Information

In this section we analyze the value of incorporating partial demand visibility in the

contracting decisions when the demand profile is similar to the demand faced by the

furniture company. For this purpose, we used a Gamma distribution with periodic shape

and scale parameters such that, at each period, its mean and variance equal the empirical

mean and variance faced by the company at that specific period. We analyze the five

main lanes. The parameters used for the simulation are: c/c′ = 0.3 (the cost of the spot

market with respect to the contract option for the company ranges from 0.25-0.35), γ = 1,

τ = 4 and δ = 0.95. Appendix A4 includes more details about the numerical experiments.

First, we note that qualitatively the threshold change from one period to another so the

free of commitment periods coordinate with the demand surges.

For each lane, we calculate the value function at each period when the contracting

decisions take into account the demand visibility (Vpartial,t) and the value function when

such information is ignored (Vnull,t). Denoting the sum of the value functions across the

season as Vnull =
∑

t∈T Vnull,t and Vpartial =
∑

t∈T Vpartial,t, we measure the improvement

as Impro = 100x(1 − Vpartial
Vnull

). We show the results in Figure A.1-(a). We see that, in

general, considering demand visibility can reduce costs by 3-4% when the commitment

horizon is four periods and the company has one period of demand visibility. We also show

in Figure A.1-(b) the average seasonal transportation needs of each lane (in normalized

units). Note that Lane 1 has the largest volume of transportation needs. It is also the

lane that has the lowest Coefficient of Variance, which translates to lower improvement

when demand visibility is incorporated. Similarly, Lanes 5-10 have the largest Coefficient

of Variance and, therefore, partial demand visibility provides larger cost improvements.



198

(a)

(b)

0

1

2

3

4
Im

p
ro

v
em

en
t 

(%
)

5

1 2 3 4 5 6 8 97

Lane

10

A
v

er
ag

e 
S

ea
so

n
al

 

T
ra

n
sp

o
rt

at
io

n
 N

ee
d

s 
(a

.u
.)

0.0

(0.45)

(0.47)
(0.47)

(0.50)
(0.60)

(0.64) (0.64) (0.64) (0.64) (0.65)

1 2 3 4 5 6 8 97

Lane

10

Figure A.1. Results for the 10 main lanes of the furniture company. (a)
Cost Reduction when partial demand information is used. (b) Volume of
the demand needs of each lane (in arbitrary units). Weekly CV shown in
parenthesis.

A.3. Commitment to a Contract from Among a Discrete set of Capacities

It is straightforward to extend the analysis of single capacity choices to a discrete

choice of M capacities M = {ki, i = 1, 2, ...,M}. We assume that ki > kj if i > j. Let

Ci(d) be the cost of serving d units of demand if the decision maker commits to capacity

ki. Thus, Ci(d) = cki + c′[d− ki]+. C0(d) is the cost of serving the entire demand d from

the spot market. Figure A.2-(a) shows how cost changes for different levels of capacity

commitment. The lighter is the line, the larger is the capacity of the contract.
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Figure A.2. (a): Cost of four different contracts. (b): Discrete set of ca-
pacities vs. set of useful capacities.

Let V (d) be the value function when the next period demand is d and let V be its

the expected value. We denote the expected one period cost when capacity ki is used

as βi = EDw [Ci(Dw)]. The value function can be expressed as the minimum of: (0)

Not signing any contract, (1) signing contract with capacity k1, (2) signing contract with

capacity k2, etc. It can be formulated as follows:

(A.4)

V (d) = min{C0(d) + δV, C1(d) + ∆(τ)β1 + δτ V, . . . , CM(d) + ∆(τ)βM + δτ V)} =

= min{C0(d) + δV, CM,τ (d) + δτ V)},

where CM,τ (d) is the total cost incurred during the commitment horizon τ when the

most cost-efficient capacity is selected over the setM given observed next period demand

d:

CM,τ (d) = min
i∈M

(Ci(d) + ∆(τ)βi)).
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The reformulation in the second equality can be interpreted as a trade-off between

serving the next period demand entirely from the spot market and committing to a con-

tract.

Assume that it is known that the decision maker will commit to one of the capacities

in the set UC. In that case, the structure of the solution is simple as all the contract

options have the same commitment horizon. The results of analyzing this scenario is close

to the continuum set of contracts discussed in Section 2.3.3. It can be shown that the

decision maker will commit to one of the capacities in the set UC where: UC = {k ∈

M|k ∈ [kl, ku]} ∪ {min
k∈M
k>ku

k} ∪ {max
k∈M
k<kl

k}. We show in Figure A.2-(b) an example of the UC

obtained with a discrete set of capacities. Once this set UC is defined, it is easy to see

that the capacity selected will either be the largest capacity in UC that is smaller than

visible next period demand d or the smallest capacity in UC that is larger than d. One can

show that there exists a Discrete-Cost Commitment Balance Condition that determines

whether one must ever commit to a capacity contract.

A.4. Details of the Numerical Experiments in Sections 2.3.4 and the Case

of Study (appendix A.2).

The values computed in the numerical experiments of Section 2.3.4 and the case of

study are obtained by sampling 75 realizations from the demand distribution and com-

puting the numerical threshold and value function using the value iteration algorithm.

We stopped the value function iteration when the difference in the value function and

the thresholds where less than 1E-05 from iteration to the other. Each experiment is

replicated 10 times. The threshold lines and improvement bars shown are the expected
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value of the 10 replications and the error bars show the standard error of the computed

expectations.

The distribution used for the experiments is Gamma1 with shape parameter a and

scale parameter θ. In order to set an experiment with mean µ and variance σ, we set

θ = σ2

µ
and a = µ

θ
. We chose to use Gamma distribution in our experiments because of its

flexibility and because, in our assumption, demand is a continuous non-negative random

variable. Alternatively, we could have used the Normal distribution for the cases where

the Coefficient of Variance is relatively low (e.g. < 33). However, from our observation

of the empirical data, we see that the Coefficient of Variance of the demand faced by the

company at each lane is 0.4 − 0.7, which makes the probability of negative demand too

high. In the next section of the appendix, we repeat the experiments using the absolute

Normal distribution. We see that the results do not change.

1See Figure A.8-A.10 in appendix A5 for further experiments with an absolute Normal distribution.
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A.5. Selected Supplementary Experiments

We additionally investigated how demand variance and distribution specification affect

the results found in Sections 2.3.2 - 2.3.4. We present the results below. The captions

summarize the information and analysis of each Figure.
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Figure A.3. The value of information when the CV is changed.

Figure A.3 shows the value of information when the CV is changed for a capacity

fixed to 1 with both low demand expectation (top) and moderate demand expectation

(bottom). Figures on the left show the range of moderate CV and those on the right

show high CV. In general terms, as CV increases, the value of information increases as
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well. When CV reaches extreme values, vale of information decreases. This is because

the demand is so variable that using or not using the single capacity does not make a

difference.
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Figure A.4. The threshold with a single capacity when the CV is changed.

Figure A.4 shows the threshold with a single capacity when the CV is changed, for

a capacity fixed to 1 with both low demand expectation (left) and moderate demand

expectation (right). When the expectation is fixed but the CV increases, demand is

with high probability low (or moderate). However, the probability of extremely high

occurrences is not negligible (due to the heavy tail). Only when we observe any these

large deviation the contract is signed.

Figure A.5 shows the shape of the threshold d̂ as a function of expected demand and

1/τ , when variance is fixed. For these experiments, we fixed the variance of the demand

to 8 and the parameters k = 80, δ = 0.9 and c/c′ = 0.5. Similar shape is obtained in

Figure 2.4.

In Figure A.6 we show the value of information when capacity is a decision variable.

In these experiments we use a Gamma distribution θ = σ2 and k = 1/θ. Hence, we
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Figure A.6. Value of information when capacity is a decision variable.

fixed mean to 1 and we changed the CV. For these experiments we use the value function

iteration algorithm. Demand of each experiment is sampled 50 times. We replicate the

experiments 10 times and report the expectation and the standard error. Costs are set

c/c′ = 0.3. The value of partial demand visibility increases with CV.

Figure A.7 we show the threshold when capacity is a decision variable. In these

experiments we use a Gamma distribution θ = σ2 and k = 1/θ. Hence, we fix mean

to 1 and we change the CV. For these experiments we use the value function iteration

algorithm. Demand of each experiment is sampled 50 times. We replicate the experiments
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Figure A.7. Threshold when capacity is a decision variable.

10 times and report the expectation and the standard error. Costs are set c/c′ = 0.3. (a)

CV ranges from 1.0-0.5. (b) CV ranges from 0.45-0.25. The threshold is low when the

commitment horizon is long as obtained in Figure 2.7.
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Figure A.8. Same as Figure 2.9 but using an absolute Normal distribution.
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Figure A.9. Same as Figure 2.9 but using an absolute Normal distribution.

Period

0 5 10 15 20 25 30 35

Period

0 5 10 15 20 25 30 35

2.0

1.0

0.0

1.5

0.5

2.5

2.0

1.0

0.0

1.5

0.5

2.5

Expected Demand

Commitment Threshold

Wait-and-See Now-or-Never(a) (b)
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APPENDIX B

Appendix from Chapter 3

B.1. Proofs

Proof of Proposition 7. It is a particular case of Theorem 2. �

Proof of Theorem 2. We first consider the null information case. By assumption

k∗null � 0, the FOCs of the null information problem imply that ν = 0. Hence, k∗null is

such that it solves:

(B.1)

à
0

cs

cs

í
P (ΩI(k)) +

à
cs

cs

cs

í
P (ΩIII(k)) +

à
cs

0

cs

í
P (ΩII(k))− c = 0.

Now, consider the partial information problem of minimizing CostTotal(k,d) (eq. (B.5))

with respect to k. First we explain the key idea of the proof and then we formally prove

the theorem. When the observed demand d is low enough, the demand is entirely satisfied

and the spot market is not used in the first period: CostTotal(k,d) = c′k + (τ − 1)V (k).

This problem is continuous and differentiable and can be solved as a regular newsvendor

network with costs ĉ = c(1 + 1
τ−1

). The solution of this problem is ψ0. With this, we can

characterize Ω0(ψ0). Following this idea, we formalize the proof of Theorem 2.
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Define v0 = (0, 0, 0)′, vI = (0, 1, 1), vII = (1, 0, 1) and vIII = (1, 1, 1) and the ψi

boundary capacities for i ∈ {0, I, II, III}:

(B.2)

ψi = {k ∈ R3
+ |∃ν ∈ R3

+ s.t. 0 = c− ν − csvi + (τ − 1)∇k̃=kV (k̃) and ν ′k = 0}.

We prove Theorem 2 using the following Lemma.

Lemma 4. If di is an interior point of Ωi(ψ
i) (i = {0, I, II, III}), then:

(a) There exist a neighbourhood around ψi such that CostTotal(k,d
i) is smooth.

(b) ψi is a global minimizer.

Proof. Consider the function of the total costs when demand is an interior point of

Ωi(ψ
i) evaluated at ψi ( i.e. CostTotal(ψ

i,di)).

(a) The non-smooth component of the function is the minimization problem of the

visible costs (π(k,d)). Let us consider only this component and fix ψi: This

defines a set of regions Ωj(ψ
i) for j = {0, I, II, III} described in Section 3.4.3.

Also, as di is an interior point Ωi(ψ
i), the dual variables of the minimization

are constant [128]. Because di is an interior point, there exist a ball around

ψi such that the set of active constraints does not change and, hence, the dual

variables remain constant, which equals the gradient of π(k,di) with respect to k.

Therefore, in this neighbourhood, CostTotal(k,d
i) is a sum of smooth functions.

(b) As the function is smooth (within a neighbourhood of ψi), we can evaluate the

gradient of the function at that point:
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(B.3)

∇k̃=kCostTotal(k̃,d
i)) = c− csvi + (τ − 1)∇k̃=kV (k̃) = (τ − 1)(∇k̃=kED π(k̃,D) + ĉi).

with ĉi = τc−csvi
τ−1

� 0. Now, consider the one-period null-information newsvendor network

problem identical to the one defined in Section 3.1 but with capacity prices ĉi instead of

c. We call the total cost of this problem V̂ (k) = ED π(k,D) + ĉi
′
k. As ĉi � 0, V̂ (k)

is smooth and the gradient exists. Note that ∇k̃=ψiCostTotal(k̃,di) = (τ − 1)∇k̃=ψiV̂ (k̃).

Also, we know that there exist a unique optimal investment vector that minimizes V̂ (k).

By definition in Eq. (B.2), this vector is ψi. As di is an interior point of Ωi(ψ
i), it

implies that ψi � 0 (otherwise, any ball around ψi would include points outside Ωi(ψ
i)).

Therefore, the Lagrangian multipliers of the KKT for the null information problem defined

by V̂ (k) are all 0. Hence, 0 = ∇k̃=ψiV̂ (k̃) = ∇k̃=ψiCostTotal(k̃,d
i). Also, let H be the

Hessian operator, there exist a sufficiently small ε > 0 such that for all v ∈ R3 and

0 ≤ ξ ≤ ε:

CostTotal(ψ
i + εv,di) = CostTotal(ψ

i,di) + 1
2
v′Hk=ψi+ξvCostTotal(k,d

i)v =

CostTotal(ψ
i,di) + (τ−1)

2
v′Hk=ψi+ξvV̂ (k)v > CostTotal(ψ

i,di).

The first equality uses the Taylor theorem, the second uses equation (B.3) and the second

inequality uses the fact that the null information problem is strictly convex.

Therefore, ψi is a local minimizer of CostTotal(k,d
i). Because the function CostTotal(k,d

i)

is convex, it is a global minimizer. �
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Then, whenever d is an interior point of Ωi(ψ
i), the optimal investment vector is ψi.

We now show that Ω∗i ≡ Ωi(ψ
i) ⊂ Ωi(k

∗
null) with the following lemma.

Lemma 5. Ω∗i ≡ Ωi(ψ
i) ⊂ Ωi(k

∗
null).

Proof. We analyze how the each component of k∗null changes along the path connecting

k∗null and ψi. From Proposition 3 in [128] we have that the sensitivity on the costs of the

optimal investment vector under the null information is:

(B.4) ∇ck
∗
null =

à
−(α1 + α2 + α4) −α1 α1 + α2

−α1 −(α1 + α3 + α5) α1 + α3

α1 + α2 α1 + α3 −(α1 + α2 + α3 + α6)

í
,

where αj’s are functions of k∗null. In addition, under conditions of Theorem 2, αj > 0 for

all j = 1, . . . , 6.

Consider the capacity contracted for the flexible contract under null information as a

function of the contract costs k∗null;3(c). Now, consider the path in R3 connecting k∗null(c)

and ψi:

p(λ) = c + λ(ĉi − c).

Note that k∗null(p(0)) = k∗null and k∗null(p(1)) = ψi. Now, we analyze the change of the

invested capacity component k∗null,j along the path p at the point λ = 0 (i.e. the direction

derivative with respect to path p):
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∇p|λ=0k
∗
null,j = lim

λ→0

k∗null,j(c+λ(ĉi−c))−k∗null,j(c)

λ
=

∂k∗null,j
∂p1

dp1
dλ

+
∂k∗null,j
∂p2

dp2
dλ

+
∂k∗null,j
∂p3

dp3
dλ
,

where

dpj
dλ

= 1
τ−1

(cj − csvij).

We now separate the analysis for each region:

Ω̂0: As argued above, by construction, ψ0 is such that it is the minimizer of a null

information single period problem with ĉ0 = c + 1
τ−1

c � c. Because the new

newsvendor network has increased all three costs, intuitively the total investment

in capacity is reduced. We show this intuition formally as similar steps will be

used to prove Theorem 4.

First, we build the path p(λ) = c+λ(ĉ0−c) connecting ψ0 and k∗null. Define

A(p(λ)) = k∗null,1(p(λ)) + k∗null,2(p(λ)) + k∗null,3(p(λ)), i.e. the total investment

in capacity. Note that in Ω∗0 we have that
dpj
dλ

=
cj
τ−1

. Then, we can compute the

derivative of A along the path:

∇p|λ=0A =
∑

i=1,2,3

∇p|λ=0k
∗
null,j = −(α1 + α4)dp1

dλ
− (α1 + α5)dp2

dλ
+ (α1 − α6)dp3

dλ
=

−1
τ−1

(α4c1 + α5c2 + α6c3 + α1(c1 + c2 − c3)) < 0.
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The last inequality is true since c1+c2 > c3. Now, defineB(p(λ)) = k∗null,1(p(λ))+

k∗null,3(p(λ)). We evaluate how this change along the path:

∇p|λ=0B = −α4
dp1
dλ
− (α3 + α6)dp3

dλ
< 0.

Finally, we obtain that for C(p(λ)) = k∗null,2(p(λ))+k∗null,3(p(λ)) that∇p|λ=0C <

0.

Hence, we have obtained that ψ0
1 +ψ0

2 +ψ0
3 < k∗null;1 +k∗null;2 +k∗null;3, ψ0

1 +ψ0
3 <

k∗null;1 + k∗null;3 and ψ0
2 + ψ0

3 < k∗null;2 + k∗null;3. Therefore, Ω̂0 ⊂ Ω0(k∗null).

Ω̂I : ψ
I is such that it is the minimizer of a null information single period problem

with:

ĉI = c + 1
τ−1

(c− csvI) =

à
c1(1 + 1

τ−1
)

c2 − 1
τ−1

(cs − c2)

c3 − 1
τ−1

(cs − c3)

í
.

Building the path connecting ψI and k∗null and following the same steps as for

Ω0: Consider A = k∗null,1(p(λ)).

∇p|λ=0A = −(α1 + α2 + α4)( c1
τ−1

) + α1( cs−c2
τ−1

)− (α1 + α2)( cs−c3
τ−1

) < 0.

Now, B = k∗null,2(p(λ)) + k∗null,3(p(λ)):

∇p|λ=0B = +α2( c1
τ−1

) + α5( cs−c2
τ−1

) + (α2 + α6)( cs−c3
τ−1

) > 0
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The last inequality is a consequence of the assumption c � cs
τ

. Hence, the

optimal investment vector of this problem is such that ψI1 ≥ k∗null,1, ψI2 + ψI3 ≥

k∗null,2 + k∗null,3. (capacity cost of contract 1 is larger and cost of contract 2 and 3

are lower.) Therefore, Ω̂I ⊂ ΩI(k
∗
null).

Ω̂III : ψ
III is such that it is the minimizer of a null information single period problem

with:

ĉIII = c + 1
τ−1

(c− csvIII) =

à
c1 − 1

τ−1
(cs − c1)

c2 − 1
τ−1

(cs − c2)

c3 − 1
τ−1

(cs − c3)

í
.

Therefore, Ω̂III ⊂ ΩIII(k
∗
null)

Ω̂II : With the same arguments we obtain that Ω̂II ⊂ ΩII(k
∗
null)

�

Finally, because the regions Ωi(k
∗
null) are disjoint, the regions Ω̂i are disjoint. Also,

because Ωi(k) are convex for any k, in particular they are convex for Ωi(ψ
i). �

Proof of Theorem 3. The first bullet is a direct consequence of Theorem 2. For

proving the second bullet, we need to show that the contracted capacity is always a convex

combination of the ψi’s.
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For a given observed demand vector d, the total costs can be written as follows:

min
k∈R3

+

CostTotal(k,d) = min
k∈R3

+

π(k,d) + c′k + (τ − 1)V (k) =

= min
k∈R3

+

min
y∈R4

+
y1+y3≤d1
y2+y4≤d2
y1≤k1
y2≤k2

y3+y4≤k3

cs(d1 − y1 − y3) + cs(d2 − y2 − y4) + c′k + (τ − 1)V (k)

min
k∈R3

+

max
i∈{0,I,II,III}

{(µ∗i )′d + (λ∗i + c)′k + (τ − 1)V (k)} = min
k∈R3

+

max
i∈{0,I,II,III}

{φi(k,d))}.

Where µ∗i and λ∗i are the set of extreme points of the feasible set of the dual variables of

constraints (2) and (3) respectively. Note that each φi(k,d)(= (µ∗i )
′d + (λ∗i + c)′k + (τ −

1)V (k)) is a strongly convex function whose minimizer is ψi. The following two Lemmas

prove the Theorem.

Lemma 6. Let x∗i for i ∈ I = 1, 2, . . . , I a countable and finite set of points in Rn.

Then, if x /∈ CH({x∗i |i ∈ I}) (Convex Hull), there exist a direction v such that for a

small enough ε > 0, ||x + εv − xi||2 < ||x− xi||2 for all i ∈ I.

Proof. Consider the closest facet of the convex hull with respect to x. Now, consider

the hyperplane h(x, {x∗i |i ∈ I}) containing this facet, we simply call it h. Now, let xp ∈ h

be the orthogonal projection of x on h. Any point in the segment s(λ) = λxp + (1− λ)x

(0 < λ ≤ 1) is closer to all the points in h than x, including all points in the facet.

Similarly, it is closer than any point in the CH({x∗i |i ∈ I}), including the extreme points.

Let ε = ||xp − x|| and v = xp−x
||xp−x|| . �
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Lemma 7. Let φi(x) for i ∈ I be a countable and finite set of strongly convex functions

Rn → R with minimizers x∗i . Then, the minimizer of Φ(x) = max
i∈I

φi(x) exists and can be

expressed as a convex combination of x∗i .

Proof. We prove the lemma by showing that for any point that is not in the convex

hull, there exist a direction that decreases Φ(x) (by getting closer to all the minimizers of

i ∈ I). Let x /∈ CH(x∗i |i ∈ I). Then from Lemma 6, we know that there exist a direction

such that for small enough ε > 0 the point x′ = x + εv is closer to all the extreme points

x∗i . Because the functions φi(x) are all strictly convex, φi(x
′) < φi(x) for all i ∈ I and

small enough ε. Hence, Φ(x′) < Φ(x) and, therefore x cannot be a minimizer. �

The total costs is a particular case of the Lemma above. �

Proof of Proposition 9. The results are obtained by comparing ĉi and consid-

ering the sensitivity of the optimal capacity vector with respect to the costs (Equation

B.4). �

Proof of Proposition 10. If c1 <
cs
τ

, then (τ − 1)c1 < cs − c1. Therefore, the

marginal cost of not fulfilling a unit of the next period demand is larger than the cost

of carrying a unit of capacity for the rest of the commitment horizon. Hence, it is never

optimal to have unsatisfied demand. Therefore, the larger is demand 1 the larger is the

investment in capacity 1. By definition there is no bounding region ΩI or ΩIII . The same

line of reasoning can be applied for the case c2 <
cs
τ

. �

Proof of Proposition 8. The inequalities are a direct consequence of Theorem

2. �
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Proof of Theorem 4. We show that under certain conditions, we can guarantee

that the capacity of the flexible contract in ΩI and ΩII is higher than the capacity of the

flexible contract of the null information scenario. We follow the same steps as in Theorem

2.

For Ω̂I : We analyze how k∗null,3 change along the path p connecting k∗null and ψI .

∇p|λ=0k
∗
null,3 =

∑
i=1,2,3

∂k∗null,3(p)

∂pi

dpi
dλ

= (α1 + α2) c1
τ−1
− (α1 + α3) cs−c2

τ−1
+ (α1 + α2 + α3 + α6) cs−c3

τ−1
.

Assume that c3 = c2(≥ c1). We then obtain that ∇p|λ=0k
∗
null,3 > 0. Therefore, for small

enough c3 (but strictly greater than c2) we obtain that ψI3 > k∗null,3.

For Ω̂II : We analyze how k∗null,3 change along the path p connecting k∗null and ψII .

∇p|λ=0k
∗
null,3 = −(α1 + α2) cs−c1

τ−1
+ (α1 + α3) c2

τ−1
+ (α1 + α2 + α3 + α6) cs−c3

τ−1
.

If c3 = c1, ∇p|λ=0k
∗
null,3 > 0. Therefore, for close enough c1 and c3, ψII3 > k∗null,3.

�

Proof of Theorem 5. From Proposition 2 in [128], if c3 > c̄3 ≡ c1+c2−csP(ΩIII(k̄)),

then the flexible contract of the null contract is 0 (k̄ is the solution when only dedi-

cated contracts are used). By optimality we have that the expected costs under partial

information scenario in the network (ED[CostTotal(k
∗(D),D)|c3 < c1 + c2]) are lower

than the expected costs under the partial information scenario without the network

(ED[CostTotal(k
∗(D),D)|c3 ≥ c1 + c2]). By fixing the cost of the contract at c̄3 we obtain

that the V oI is greater or equal than the V oID. (In both cases the cost of the null scenario

is exactly the same as knull,3 = 0 without the network or with the network with c3 ≥ c̄3.)
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It is easy to see that if there exist observations for which k∗3(d) > 0 at the point c3 = c̄3,

then the inequality holds strictly. While it is a mild condition, in Lemma 8 we provide

two sufficient conditions showing that strict inequality can hold. Finally, in Lemma 9 we

show that independence is a sufficient condition.

Lemma 8. [Two Sufficient Conditions for Strict Inequality] Assume that

f(d1, d2) > 0 for all d1, d2 ≥ 0. There always exists a flexible contract cost c̃3 < c1 + c2

such that V oI > V oI−F , any of the conditions below hold:

(a) (1 + 1
τ−1

)P(D1 > k̄1, D2 > k̄2) ≥ P(D1 > ψu1 , D2 > ψl2),

(b) (1 + 1
τ−1

)P(D1 > k̄1, D2 > k̄2) ≥ P(D1 > ψl1, D2 > ψu2 ).

(Where: k̄i = F−1
i ( cs−ci

cs
), ψli = F−1

i ( cs−ci
cs
− ci

(τ−1)cs
) and ψui = F−1

i ( cs−ci
cs

+ cs−ci
cs(τ−1)

). )

Proof. Assume that the first condition holds. Also, assume that the cost of the

flexible contract is c̄3 = c1 + c2− csP(ΩIII(k̄)) and, hence, k∗3,null = 0. As similarly argued

in the proof of Theorem 2, for large enough d1 and low enough d2, the total costs can be

written as follows:

CostTotal(k,d) = cs(d2 − k1 − k3) + c′k + (τ − 1)V (k).

We show that when such a demand realization, d, is observed, k∗(d)3 > 0, and, therefore,

V oI > V oI−F . The minimizer of the above equation also minimizes a single-period null

information newsvendor network problem with costs ĉ = (c1 − cs−c1
τ−1

, c2 + c2
τ−1

, c̄3 − cs−c̄3
τ−1

).

We show that for this problem, the threshold of the flexible contract cost ¯̂c3 = ĉ1 + ĉ2 −

csP(ΩIII(
¯̂
k)) is such that ¯̂c3 > ĉ3 = c̄3 − cs−c̄3

τ−1
, where

¯̂
k is the optimal capacity with costs
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ĉ when only the dedicated contracts are used.

¯̂c3 = ĉ1 + ĉ2 − csP(ΩIII(
¯̂
k)) =

= c1 − cs−c1
τ−1

+ c2 + c2
τ−1
− csP(ΩIII(

¯̂
k)) + csP(ΩIII(k̄))− csP(ΩIII(k̄)) =

= c̄3 + c1+c2−cs
τ−1

+ cs(P(ΩIII(k̄))− P(ΩIII(
¯̂
k))) =

= ĉ3 + c1+c2−c̄3
τ−1

+ cs(P(ΩIII(k̄))− P(ΩIII(
¯̂
k))) =

= ĉ3 + cs((1 + 1
τ−1

)P(ΩIII(k̄))− P(ΩIII(
¯̂
k))).

Note that k̄ = (F−1
1 ( cs−c1

cs
), F−1

2 ( cs−c2
cs

), 0) and
¯̂
k = (F−1

1 ( cs−c1
cs
− cs−c1

cs(τ−1)
), F−1

2 ( cs−c2
cs

+

c2
cs(τ−1)

), 0) and P(ΩIII(k)) = P(D1 > k1, D2 > k2). Hence, by the assumption in (a) the

last term of the last equality is positive. Hence, ¯̂c3 > ĉ3 and, therefore, there exists a

region in the sample space such that k∗3 > 0, which implies that V oI > V oI−F . The same

argument can be used to proof the Lemma for condition (b). Finally, note that these two

conditions depend only on the demand distribution and costs c1, c2 and cs. �

Lemma 9. [Independence is a Sufficient Condition] If D1 and D2 are inde-

pendent, condition (a) and (b) of Lemma 8 always hold.

Proof. Assume thatD1 andD2 are independent, hence P(ΩIII(k)) = P(D1 > k1)P(D2 >

k2). Let
¯̂
k = (F−1

1 ( cs−c1
cs
− cs−c1
cs(τ−1)

), F−1
2 (( cs−c2

cs
+ c2
cs(τ−1)

), 0). With simple algebra we obtain:

cs((1 + 1
τ−1

)P(ΩIII(k̄))− P(ΩIII(
¯̂
k))) > 0 ⇐⇒ cs > c2.

The last is always true by assumption. The same can be shown to prove condition (b). �

�
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Proof of Theorem 6. Note that the first term of the AVoI is V (knull), which a

single period newsvendor network with null information. [128] shows that ∂V (knull)
∂c3

=

k∗3,null.

Using similar arguments, the derivative of the second term of AVoI, ED[CostTotal(k
∗(D),D)],

is ED[CostTotal(k
∗(D),D)]

∂c3
= ED[k∗3(D)]. Note that CostTotal(k,d) is concave with respect to

c for all k in the convex set R3
+. In this case, convexity is preserved under minimiza-

tion, and, therefore, min
k∈R3

+

CostTotal(k,d) is concave with respect to c. In addition, since

D is continuous and min
k∈R3

+

CostTotal(k,d) is concave in c, the partial derivative and the

expectation can be interchanged [67]. �

Proof of Theorem 7. Theorem 7 is a consequence of Theorem 6 and Theorem

5. �

Proof of Theorem 8. Note that it is optimal to always commit to at least dl units

of dedicated capacity at each node. To ease the formulation, we shift the demand at each

node by dl units. In other words, we consider the case where demand at each node can

take two realizations: dl = 0 and dh = 2δ. The only impact of that is a shift of the costs

equal to c1dl + c2dl.

We first describe the costs for each capacity vector and demand realization. Under

the null information scenario, the cost for each possible commitment vector is:

ka = (0, 0, 0)′: Cost ≡ Costn,a = 2δτcs(phl + plh + 2phh).

kb = (0, 2δ, 0)′: Cost ≡ Costn,b = 2δτ(c1 + cs(plh + phh)).

kc = (2δ, 0, 0)′: Cost ≡ Costn,c = 2δτ(c2 + cs(plh + phh)).

kd = (2δ, 2δ, 0)′: Cost ≡ Costn,d = 2δτ(c1 + c2).

ke = (0, 0, 2δ)′: Cost ≡ Costn,e = 2δτ(c3 + csphh).
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From the previous expression, we can obtain that when c3 ≥ c̄3 = min{c1 + c2 −

csphh, c1 + csplh, cs(1−pll)}, the decision maker never uses flexible capacity under the null

information scenario. Note that for c̄3 to be c̄3 = c1 + csplh, it needs two conditions that

never meet simultaneously.

(a) c1 + csplh < c1 + c2 − csphh. When c1 = c2, this occurs if and only if c1 >

cs(phh + plh).

(b) c1 + csplh < cs(1 − pll) = cs(phl + plh + phh). When phl = plh, this occurs if and

only if c1 < cs(phh + plh).

Therefore, c̄3 = min{c1+c2−csphh, cs(1−pll)}. With partial demand visibility scenario,

there exist 4 possible demand realizations in the first period. We below we show the cost

for each possible scenario:

• d = (0, 0):

ka = (0, 0, 0)′: Costll,a = 2δ(τ − 1)cs(phl + plh + 2phh).

kb = (0, 2δ, 0)′: Costll,a = 2δ{(τ − 1)(c1 + cs(plh + phh)) + c1}.

kc = (2δ, 0, 0)′: Costll,a = 2δ{(τ − 1)(c2 + cs(plh + phh)) + c2}.

kd = (2δ, 2δ, 0)′: Costll,a = 2δ{(τ − 1)(c1 + c2) + (c1 + c2)}.

ke = (0, 0, 2δ)′: Costll,a = 2δ{(τ − 1)(c3 + csphh) + c3}.

• d = (0, 2δ):

ka = (0, 0, 0)′: Costlh,a = 2δ{(τ − 1)cs(phl + plh + 2phh) + cs}.

kb = (0, 2δ, 0)′: Costlh,b = 2δ{(τ − 1)(c2 + cs(plh + phh)) + c2}.

kc = (2δ, 0, 0)′: Costlh,c = 2δ{(τ − 1)(c1 + cs(plh + phh)) + c1 + cs}.

kd = (2δ, 2δ, 0)′: Costlh,d = 2δ{(τ − 1)(c1 + c2) + (c1 + c2)}.

ke = (0, 0, 2δ)′: Costlh,e = 2δ{(τ − 1)(c3 + csphh) + c3}.
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• d = (2δ, 0):

ka = (0, 0, 0)′: Costhl,a = 2δ{(τ − 1)cs(phl + plh + 2phh) + cs}.

kb = (0, 2δ, 0)′: Costhl,b = 2δ{(τ − 1)(c1 + cs(plh + phh)) + c1 + cs}.

kc = (2δ, 0, 0)′: Costhl,c = 2δ{(τ − 1)(c2 + cs(plh + phh)) + c2}.

kd = (2δ, 2δ, 0)′: Costhh,d = 2δ{(τ − 1)(c1 + c2) + (c1 + c2)}.

ke = (0, 0, 2δ)′: Costhl,e = 2δ{(τ − 1)(c3 + csphh) + c3}.

• d = (2δ, 2δ)

ka = (0, 0, 0)′: Costhh,a = 2δ{(τ − 1)cs(phl + plh + 2phh) + cs + cs}.

kb = (0, 2δ, 0)′: Costhh,b = 2δ{(τ − 1)(c1 + cs(plh + phh)) + c1 + cs}.

kc = (2δ, 0, 0)′: Costhh,c = 2δ{(τ − 1)(c2 + cs(plh + phh)) + c2 + cs}.

kd = (2δ, 2δ, 0)′: Costhh,d = 2δ{(τ − 1)(c1 + c2) + (c1 + c2)}.

ke = (0, 0, 2δ)′: Costhh,e = 2δ{(τ − 1)(c3 + csphh) + c3 + cs}.

The AVoI can be expressed as a piecewise linear function with respect to c3:

AV oI = 1
τ

∑
i∈{ll,lh,hl,hh}

pi( min
j∈{a,b,c,d,e}

Costn,j − min
j∈{a,b,c,d,e}

Costi,j).

When c3 < c̄3 = min{c1 + c2 − csphh, cs(1 − pll)}, the decision maker uses flexible

capacity under null information. Therefore, AV oI can be expressed as

AV oI = 1
τ

∑
i∈{ll,lh,hl,hh}

pi max
j∈{a,b,c,d,e}

(Costn,e − Costi,j), which is an increasing piecewise

linear convex function with respect to c3.

When c3 > c̄3 = min{c1 + c2 − csphh, cs(1 − pll)}, the decision maker does not use

flexible capacity under null information. Therefore, AV oI can be expressed as AV oI =

1
τ

∑
i∈{ll,lh,hl,hh}

pi max
j∈{a,b,c,d,e}

(B −Costi,j), where B is constant respect to c3. Hence, AV oI is

a non-increasing piecewise linear convex function with respect to c3.
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• Proof of (1) and (3): We prove the first and third bullet of the Theorem by

showing that AV oI is in fact a decreasing function for some c3 > c̄3. Let us consider the

cost c̄3 = min{c1+c2−csphh, cs(1−pll)}, where the marginal value of flexible capacity under

the null information scenario is exactly 0. With partial demand visibility, we consider the

case in which the decision maker observes a high low scenario (d = (0, 2δ)). With this

observation, the decision maker commits to flexible capacity if the following conditions

are met:

(a): Costhl,e < Costhl,d. This occurs if and only if c3 < c1 + c2− (τ−1)
τ
csphh. This is always

true when c3 = c̄3:

c3 = c̄3 = min{c1 + c2 − csphh, cs(1− pll) ≤ c1 + c2 − csphh < c1 + c2 − (τ−1)
τ
csphh.

(b): Costhl,e < Costhl,c. This occurs if and only if τc3 < cs + (τ − 1)cs(phl + plh + phh) =

cs + (τ − 1)cs(1− pll). This is always true when c3 = c̄3:

τc3 = τ c̄3 = τ min{c1 + c2 − csphh, cs(1− pll) ≤ τcs(1− pll) =

(τ − 1)cs(1− pll) + cs(1− pll) < (τ − 1)cs(1− pll) + cs.

(c): Costhl,e < Costhl,c. This occurs if and only if c3 < c2 + (τ−1)
τ
csplh. Note that if τ → 1,

this is never true. In this case, when τ is very short, Region C does not exist. This occurs

because visibility removes most part of uncertainty for very short commitments, and the

decision maker does not use flexible capacity. Indeed, when commitment is 1, the decision

maker only uses dedicated capacity to supply the visible single period. However, since

c̄3 < c2+csplh (strict inequality), there exist a large enough τ for which c̄3 < c2+ (τ−1)
τ
csplh.

The case with Costhl,e < Costhl,c is symmetric.
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Therefore, when c3 = c̄3, the marginal value of flexible capacity is 0 under null infor-

mation and strictly greater than 0 with demand visibility (for large enough τ). Hence,

AV oI =
∑

i∈{ll,lh,hl,hh}
pi min

j∈{a,b,c,d,e}
(B−Costi,j) is a strictly decreasing function in the neigh-

borhood (c̄3, c̄3 + ε] (for some ε > 0). Hence, the maximum occurs exactly at c̄3.

• Proof of (2): It is straightforward to show the second bullet by looking at AV oI

when c3 = c̄3.

• Proof of (4). We note that from the third bullet, AVoI is unimodal. To prove

bullet (4), we show that the cost where AV oI = AV oID (in the range of c3 < c̄3) is

unique (if there is any) and this cost of flexibility decreases with τ . When AV oID = 0,

it is easy to see that Region C is the largest [c1, 2c1] (note that c1 = c2) and the result is

straightforward. Hence, we shall focus on the case where AV oID > 0.

We first find the expression of AV oID, a symmetric dedicated network (c1 = c2,

phl = plh). First, the null information cost is V (knull) = 4δmin{cs(plh + phh), c1}. The

cost with partial information can be found as two independent symmetric nodes. Since

AV oID > 0, commitment at each node when observed demand is high must be different

from when observed demand is low. Hence, for node i if demand is low, k = 0, if demand

is high k = 2δ. Therefore, EDCostTotal(k
∗(D),D|c3 ≥ 2c1) = 2δ(pll(τ−1)(cs(2phl+2phh)+

2plh(τc1 + (τ − 1)cs(plh + phh)) + 2phhc1τ), and AV oID can be expressed as:

AV oID = V (knull|c3 ≥ 2c1)− 1
τ
EDCostTotal(k

∗(D),D|c3 ≥ c1 + c2) =

4δmin{cs(plh + phh), c1}−
4δ
τ

(pll(τ − 1)(cs(phl + phh) + plh(τc1 + (τ − 1)cs(plh + phh)) + phhc1τ).
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We now find the expression of AV oI when c3 < c̄3. Again, we focus on the case

AV oI > 0, hence commitment under partial demand information must be different than

under null information. Under null information: V (knull) = 2δ(c3 + csphh). Under partial

information we have that k3 > 0 when d = (dl, dh) and d = (dh, dl) (due to the condition

c3 < c̄3 and that τ is large enough, as shown in the proof of the first and third bullet

above). We only need to consider three cases:

(a): EDCostTotal(k
∗(D),D) = 2δpll(τ − 1)cs(2phl + 2phh)+

4δplh{(τ − 1)(c3 + csphh) + c3}+

4δphhτc1.

(b): EDCostTotal(k
∗(D),D) = 2δpll{(τ − 1)(c3 + csphh) + c3}+

4δplh{(τ − 1)(c3 + csphh) + c3}+

4δphhτc1.

(c): EDCostTotal(k
∗(D),D) = 2δpll(τ − 1)cs(2phl + 2phh)+

4δplh{(τ − 1)(c3 + csphh) + c3}+

2δphh{(τ − 1)(c3 + csphh) + c3 + cs}.

We show that in any of these cases, the cost c3 where AV oID−AV oI = 0 is decreasing

in τ . Note that by dividing the entire equation by 2δ, we cancel out the impact of

variability.
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For case (a):

0 = 1
2δ

(AV oID − AV oI) = 2 min{cs(plh + phh), c1}+

−pll τ−1
τ
cs(2phl + 2phh)− 2plh(c1 + τ−1

τ
cs(plh + phh))− 2phhc1+

−(c3 + csphh)+

+pll
τ−1
τ
cs(2phl + 2phh) + 2plh{ τ−1

τ
(csphh) + c3}+ 2phhc1.

We can obtain an expression for c3 that solves the previous equation, which is decreasing

with τ and independent of δ:

c3 = 2
1−2plh

(min{cs(plh + phh), c1} − 1
2
csphh − plhc1 − csp2

lh
τ−1
τ

).

For case (b):

0 = 1
2δ

(AV oID − AV oI) = 2 min{cs(plh + phh), c1}+

−pll τ−1
τ
cs(2phl + 2phh)− 2plh(c1 + τ−1

τ
cs(plh + phh))− 2phhc1+

−(c3 + csphh)+

+pll(
τ−1
τ
csphh + c3) + 2plh{ τ−1

τ
csphh + c3}+ 2phhc1.

We can obtain an expression for c3 that solves the previous equation, which is decreasing

with τ and independent of δ:

c3 = 2
1−2plh−pll

(min{cs(plh + phh), c1} − 1
2
csphh − plhc1 − csp2

lh
τ−1
τ
− pll τ−1

τ
cs(phl + 1

2
phh)).

For case (c): The result is similarly obtained.

�
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B.2. The Impact of Demand Visibility on Dedicated Commitments

Recall from Section 3.4.3 that committed dedicated capacity for node 1 k∗1(d) depends

on demand d2 observed at the other node. In Proposition 9, we compare the bounding

regions to show that the commitment to dedicated capacity of a node decreases when

observed demand of the two nodes is largely different with high observed demand at one

node and low observed demand at the other node.

Proposition 9. [The Impact of Demand Visibility on Dedicated Commit-

ments] If the observed demand of one node is high (enough) and that of the other node is

low (enough), as their difference grows, the decision maker reduces the dedicated capacity

of both nodes. Specifically:

(a) If observed demand at node 1 (2) is high enough, committed dedicated capacity

for node 1 (2) is lower when observed demand at node 2 (1) is low than when

observed demand at node 2 (1) it is high. (ψI2 < ψIII2 and ψII1 < ψIII1 .)

(b) If observed demand at node 1 (2) is low enough, committed dedicated capacity

for node 1 (2) is lower when observed demand at node 2 (1) is high than when

observed demand at node 2 (1) it is low. (ψI1 < ψ0
1 and ψII2 < ψ0

2.)

Proposition 9 contrasts with the results without flexible capacity in Section 3.2, where

committed dedicated capacity at node 1 is independent of the demand observed at node

2; i.e., it does not depend on whether d2 is low or high. The simultaneous availability

of flexible capacity and demand visibility changes the contracting policies for dedicated

contracts with commitment.
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B.3. The case with c ≺ cs
τ

The value of ψi depends on the costs, the commitment horizon and the demand

distribution. When the commitment horizon is very short or the cost of committed

capacity is very inexpensive (or, conversely, spot market costs very expensive), the decision

maker has an incentive to fulfill all the observed demand using committed capacity. Under

these conditions, the range of adaptation is unbounded and, therefore, the higher is the

demand observed, the higher is the committed capacity. Proposition 10 shows that when

c ≺ cs
τ

, the cost of the contract is so low (or commitment is so short) that the optimal

committed capacity always fully satisfies the observed demand.

Proposition 10. A.3

• If c1 <
cs
τ

, then Ω̂I = Ω̂III = ∅ and all the observed next period demand of node

1 is fully satisfied using committed capacity k1 or flexible capacity k3.

• If c2 <
cs
τ

, then Ω̂II = Ω̂III = ∅ and all the observed next period demand of node

2 is fully satisfied using committed capacity k2 or flexible capacity k3.

Under the scenario where c1 ≤ c2 <
cs
τ

, from Proposition 10, we none of the bounding

regions Ω̂I , Ω̂II or Ω̂III to exist. In that case, k∗1(d) and k∗2(d) are unbounded. Hence,

dedicated capacities monotonically increase as observed demand (d1, d2) increases. Note

that, while Proposition 10 shows conditions for which the bounding regions Ω̂I , Ω̂II and

Ω̂III vanish, the region Ω0 is never empty. Therefore, the committed capacities are never

arbitrarily small.
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B.4. Additional Numerical Experiments

Definition 7.

• We define Value of Pooling (V oP ) as the expected cost reduction of using the

flexible contract relative to the no network case:

(B.5) V oP = 100(1− ED[CostTotal(k
∗(D),D)|(c1,c2,c3)]

ED[CostTotal(k∗(D),D)|(c1,c2,∞)])
).

• We define Value of Pooling with No Information (V oPNull) as the V oI when

τ →∞.
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Figure B.1. VoP for different commitment horizons and correlation coeffi-
cient with bivariate Gamma distribution and c = (0.3, 0.3, 0.45).

Similarly to VoI, there always exists a region where the value of flexible capacity with

partial visibility is higher than without partial visibility.
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APPENDIX C

Appendix from Chapter 4

C.1. Including All Customers

To ease our exposition, we have only considered the customers that scheduled the

home delivery within 28 days. We can easily incorporate the rest of the customer by

adding an additional layer in our sequential model. We consider two different customer

segments: (1) Customers that choose a delivery date within 28 days as described in the

main text. (2) Customers that planned to choose a date beyond the 28th day after pur-

chase. The modified version of the model incorporates additional parameters to estimate

the probability that a customer belongs to either segment. Hence, the sequential probabil-

ity equations 4.2 would have modified initial conditions that incorporate the probability

that customers choose a delivery date within 28 days.

C.2. Assumption 1: Home Delivery Teams have fixed delivery capacity

In this section we use the data from the furniture company to support the assumption

that the average capacity per team is constant.

In Figure C.1-(a) we show, for each day and region, the total number of orders de-

livered, and the number of delivery teams assigned. The redline shows the regression

between Orders Delivered (OD) and Number of Teams (NT). Looking at the increase of

OD per each unit of NT allows us to estimate the delivery capacity. On average, each

additional team increased OD by 4.99. We relate this number to the per-team capacity
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because it is the amount of orders each team can contribute to the total OD. We note that

the slope of the regression approximately coincides the 66th percentile of the distribution

of Orders Delivered per Delivery Team (OD
NT

), as shown in Figure C.1-(b).
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Figure C.1. Estimation of average capacity per team. Figure (a) shows the
numbers of orders delivered and the number of teams dedicated to each
region in all days in the season 2016-2017. Figure (b) shows the histogram
of the orders per team delivered each day. The regression and the histogram
in (b) do not incorporate the data points with only one team.

We allow a different team capacity for each region. We denote ODr,d and NTr,d the

Orders Delivered and the Number of Teams in region r on day d, respectively. We then

regress the model in Equation C.1 and report the results in Table C.1. Observe that

our model, which assumes a constant per-team delivery capacity, explains 92% of the

variability in OD.
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Variables Coefficient

Intercept -1.42 (0.48)∗∗∗

Region 1 x OD 4.93 (0.09)∗∗∗

Region 2 x OD 4.71 (0.1)∗∗∗

Region 3 x OD 4.93 (0.17)∗∗∗

Region 4 x OD 5.06 (0.19)∗∗∗

Region 5 x OD 4.28 (0.24)∗∗∗

Region 6 x OD 4.41 (0.31)∗∗∗

Region 7 x OD 3.68 (0.35)∗∗∗

Region 8 x OD 3.65 (0.29)∗∗∗

Region 9 x OD 3.71 (0.29)∗∗∗

N Obs. 1053
N Pars. 10

R2 0.9266

Table C.1. Results of regression of Equation C.1. Parenthesis show cluster
robust standard errors (***p<0.001.)

Region 1 Region 2 Region 3 Region 4 Region 5 Region 6 Region 7 Region 8 Region 9

5.00 4.66 4.72 5.00 4.00 4.00 3.50 3.50 3.50

Table C.2. 66th percentile of the ratio OD
NT

for each region.

(C.1) ODr,d = β0 + βrNTr,d + εr,d.

The values of the coefficients βr approximately coincide with the 66th percentile of

the observed ratio OD
NT

of each region, shown in Table C.2. In our study of Chapter 4

we use the values in Table C.2 as the per-team capacity in each region. As a robustness

check, we also replicate the analysis of Chapter 4 with percentiles 50th, 60th, 80th and

85th. In all cases, we obtain very similar results, showing that our results are robust to

the per-team capacity estimate.
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C.3. Assumption 2: The Impact of Lost Sales Is Negligible

In this section we study the impact of day availability on lost sales. Instead of con-

sidering sales at the individual order level, we consider order volume, i.e.; the aggregated

total of orders entered in the system in a given time period (similarly to [74, 82]). The

variable that we use to capture the impact of day availability is the number of days with

no remaining delivery capacity within the first 28 days, we call this variable Day Occu-

pancy (DO). We study whether instances with large DO are linked with lower number of

orders (higher lost sales).

The DO changes within a day because delivery capacity is depleted as new orders are

scheduled for delivery. Customers that arrive later in the store observe higher DO than

customer that arrive earlier. To control for changes in DO and sales within a day, we

split each day in three time buckets: From store opening time to 12pm, from 12pm to

4pm, and from 4pm to store closing time. In Table C.3 we show the average change of

DO within a time bucket for the four largest regions. Observe that within a time bucket,

DO change on average less than 5%. In other words, if region r on day d at time bucket

t has an average DO DOr,d,t, customers purchasing in that same region, day and time

bucket observe a DO within the range (1± 0.05)DOr,d,t. In Table C.4 we show summary

statistics of the total number of orders and DO of each region and time bucket. Note that,

the Coefficient of Variation across days and regions (sixth column of Table C.3), which is

around 0.54, is large compared to the change of DO within a time bucket (third column

of Table C.3).

To study the impact of DO on volume of orders we use a logarithmic regression model

as in [61] , [74] and [82]. We denote V olr,d,t and DOr,d,t as the volume of orders and the
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Region Time bucket Av. change in DO

Region 1
Opening - 12pm 3.3%

12pm - 4pm 2.5%
4m - Closing 2.5%

Region 2
Opening - 12pm 1.1%

12pm-4pm 4.1%
4m - Closing 2.6%

Region 3
Opening - 12pm 1.9%

12pm-4pm 3.8%
4m - Closing 4.9%

Region4
Opening - 12pm 2.5%

12pm-4pm 5.1%
4m - Closing 1.6%

Table C.3. Average change within each grade bucket.

Region Time bucket Mean volume orders ∗ CV volume orders Mean DO CV DO

Region 1
Opening - 12pm 0.69 0.73 2.06 0.56

12pm - 4pm 0.97 0.77 2.11 0.55
4m - Closing 1.00 0.83 2.20 0.57

Region 2
Opening - 12pm 0.51 0.77 2.02 0.55

12pm - 4pm 0.66 0.77 2.05 0.56
4m - Closing 0.72 0.85 2.12 0.56

Region 3
Opening - 12pm 0.25 0.86 2.28 0.53

12pm - 4pm 0.34 0.85 2.35 0.52
4m - Closing 0.35 0.96 2.43 0.52

Region 4
Opening - 12pm 0.24 0.83 1.95 0.54

12pm - 4pm 0.32 0.81 2.00 0.55
4m - Closing 0.32 0.94 2.08 0.55

Table C.4. Summary statistics of regions and time buckets.(*Normalized by

the maximum value in the column.)

average number of days without remaining capacity in region r, day d and time bucket

t, respectively. In our regression we also include categorial variables to control for region

(Regionr), time bucket (Timet), day of week (DOWd) and a biweekly seasonality term

(Seasond) as in Equation 4.4. In Equation C.2 we specify our model.
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(C.2)

Model DO1−28: log(1 + V olr,d,t) =β0 + βDOr,d,t + αRr Regionr + αSdSeasond+

αDOWd DOWd + αDOWXT
d,t DOWdxTimet + εr,d,t.

We additionally consider two more specifications. The second specification in Equation

C.3 only consider the DO within the first week after purchase, we denote this variable

DO1−6. The third specification in Equation C.4 consider the DO within the second week

after purchase, we denote this variable DO7−13.

(C.3)

Model DO1−6: log(1 + V olr,d,t) =β0 + βDO1−6
r,d,t + αRr Regionr + αSdSeasond+

αDOWd DOWd + αDOWXT
d,t DOWdxTimet + εr,d,t.

(C.4)

Model DO7−13: log(1 + V olr,d,t) =β0 + βDO7−13
r,d,t + αRr Regionr + αSdSeasond+

αDOWd DOWd + αDOWXT
d,t DOWdxTimet + εr,d,t.

We focus our analysis on the impact of DOr,d,t through β. To that aim, in Table C.5

we present the regression results of Equations C.2-C.4.

We find that the impact of DO is not significant in models Model DO1−28, and Model

DO6−7. There is a significant positive effect of DO7−13, suggesting that the higher is

DO, the larger is the volume of orders entered in the system. However, the regressions

in Table C.5 suffer from endogeneity due to simultaneity bias: Observations with high

volume of orders registered tend to have more DO because delivery capacity is depleted.

To deal with the endogenous relation we use a two-step linear regression approach with
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Variables Model DO1−28 Model DO1−6 Model DO7−13

Intercept 1.181 (0.050)∗∗∗ 1.216 (0.052)∗∗∗ 1.199 (0.048)∗∗∗

DO 0.0075 (0.006)
DO1−6 -0.006 (0.008)
DO7−13 0.027 (0.0011)∗∗

Region yes yes yes
Season yes yes yes
DOW yes yes yes
DOW x Time yes yes yes

NoPars 68 68 68
No Obs 7074 7074 7074
R2 0.6018 0.6018 0.6022

Table C.5. Results of regression of Equations C.2-C.4. Parenthesis show
cluster robust standard errors (**p<0.01 ***p<0.001.)

instrumental variables [140]. Similarly to the procedure followed by [139], [118], [35],

[21], we use lagged versions of the endogenous variables. Following the arguments of [21],

lagged versions of the DO variables are valid instruments: First, customers in time bucket

t are not impacted by the DO of the previous time bucket at t − 1 (if the time bucket t

is the first of day d, we define time bucket t − 1 as the last time bucket of day d − 1).

Second, a Durbin-Watson test for serial correlation showed that volume of orders is not

autocorrelated. Third, DO of time bucket t− 1 is highly positively correlated with time

bucket t as shown below.

In Table C.6 we show the results of the first step, which regresses the model in Equation

C.5 for DO7−13.

(C.5)
Model 1-step: DO7−13

r,d,t =νRr Regionr + νSd Seasond+

νDOWd DOWd + νDOWXT
d,t DOWdxTimet + ur,d,t.
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Variables Model 1-Step

Intercept 0.041 (0.018)
Lagged DO7−13 0.918 (0.007)∗∗∗

Region yes
Season yes
DOW yes
DOW x Time yes

NoPars 68
No Obs 7074
R2 0.8901

Table C.6. Results of regression of Equations C.5. Parenthesis show cluster
robust standard errors (**p<0.01 ***p<0.001.)

We then use the fitted values of the model of Equation C.5, D̂O
7−13

r,d,t , in substitution

of DO7−13
r,d,t in Equation C.4. We show the results in Table C.7. Observe that once we deal

with simultaneity bias, the impact of DO on volume of orders vanishes. Replicating the

same steps for the specification in Equations C.2 and C.3 we obtain there is no statically

significant impact of DO on volume orders. These results support our intuition that the

impact of day availability on order volume due to lost sales is negligible, i.e.; the second

assumption in Section 4.3.2.

C.4. Assumption 3: From among all offered dates, customers choose the

earliest available date.

In this section we present results that support the third assumption in Section 4.3.2:

From among all offered dates, customers choose the earliest available date.

If the assumption is true the next logic follows: consider that from among all the dates

offered to a customer, the customer chooses day dj. If dj is chosen because it is the earliest

day offered that is available to the customer, offering later dates would not impact the
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Variables Model 2-Step

Intercept 1.200 (0.047)∗∗∗

Fitted Values (D̂O
7−13

r,d,t ) 0.004 (0.010)
Region yes
Season yes
DOW yes
DOW x Time yes

NoPars 68
No Obs 7074
R2 0.6018

Table C.7. Results of regression of the model in Equation C.4 using fit-
ted variables. Parenthesis show cluster robust standard errors (**p<0.01

***p<0.001.)

customer choice. On the other hand, offering additional earlier dates than dj can make

the customer choose an earlier date, if that date is available for the customer. Therefore,

offering day de that comes earlier than dj decreases the probability that dj is chosen. On

the other hand, offering day dl that comes later that dj does not impact the customer

decision. Hence, if our assumption holds, offering day d̃ impacts more strongly customers

that were to choose later dates (later than d̃) than customer that were to choose earlier

dates (earlier than d̃).

We aim to know if availability of earlier dates reduces the odds that customers choose

later dates. In particular we aim to show that if a day d̃ in the schedule is offered, the

odds that customer chooses a later day dl (i.e., dl > d̃) against an earlier date de (i.e.,

de < d̃) decreases.

To support the third assumption in Section 4.3.2 we first describe an idealized exper-

iment (not feasible to be performed) that would allow us to test whether the assumption
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holds. We then show how we can use natural experiments in our data to replicate the

experiment.

Idealized Experiment

In an ideal setting we could perform two identical experiments in which we offer the

same customer two different set of dates for home delivery. By repeating the experiment

with several customers, we would be able to study how customers’ choice differed when

choosing from among one set versus the other.

We define the schedule profile as the set of days with remaining delivery capacity that

can be potentially offered to a customer. Focusing on the first 28 days, a schedule profile

can be represented as a 28-length binary vector where each element j is 0 or 1 depending

on whether day dj has remaining delivery capacity (1 if the day can be offered and 0

otherwise).

To study whether offering or not offering dk has an impact on customer choice, we

would consider two different sets v0 and v1 that are identical but only differ on element k,

which is 0 in v0, and 1 in v1. In our ideal setting, we would like to test the same customer

in two different scenarios: A scenario S0 where days are offered according to schedule

profile v0, and a scenario S1 where days are offered according to schedule profile v1. In

this idealized experiment, we would study whether the odds that a customer chooses later

days dl such that dl > dk, against earlier dates de such that de < dk, is lower in S1 than

in scenario S0. In other words, if customer chooses day dJ
1 we would like to test whether

Equation C.6 is true.

1Note dJ has capital index J because the choice of the customer is a random variable whose realizations
are the days with remaining delivery capacity offered.
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(C.6) Odds S1 :=
P [dJ > dk|S1]

P [dJ < dk|S1]
<
P [dJ > dk|S0]

P [dJ < dk|S0]
=: Odds S0.

By repeating the experiment with several different customers, we could test if Equation

C.6 holds. If Equation C.6 holds, the experiment would support the assumption that

availability of day k has attracted more customers that were to chose later dates than

customers that were to chose earlier dates, reducing the odds P [dJ>dk|S1]
P [dJ<dk|S1]

with respect to

scenario S0. Then, if we find that Equation C.6 holds for all k, the set of experiments

would support the logic that follows from our third assumption in Section 4.3.2.

Unfortunately, such an experiment is impossible to perform. However, in our data, the

days offered to customers are subject to delivery capacity constraints and, consequently,

customers arriving in different time and region are likely to be offered different sets of

delivery dates. We explore the transactional data from the furniture company to find

natural experiments similar to our idealized setting.

Natural Experiments

To replicate the idealized experiment, we find in our data instances where two different

customers where offered “similar” sets of delivery dates.

Before presenting our results we first describe how we can compare two different sched-

ule profiles, i.e.; we define what two “similar” sets are. We say that two schedule profiles

vi and vj are k-comparable if: (1) they only differ in the kth element, (2) there is at least

a day offered earlier than dk, and (3) there is at least a day offered later than dk. The

second and third conditions make sure that there are alternative days earlier and later
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than dk, otherwise, probabilities P [dJ > dk|S1] = 0 or P [dJ < dk|S1] = 0. In Figure C.2,

we show examples of schedule profiles that are k-comparable and examples that are not

k-comparable. For a k-comparable pair, we denote v0 (v1) as the schedule profile with a

0 (1) in element k.

[0, 1, 0, 0, 0, 0, 0]

[0, 1, 1, 0, 0, 0, 0]

[0, 1, 1, 0, 1, 0, 0]

[1, 1, 1, 0, 1, 0, 0]

[0, 1, 0, 1, 1, 0, 0]

[0, 1, 1, 1, 1, 0, 0]

[0, 1, 1, 0, 1, 1, 1]

[0, 1, 1, 0, 1, 0, 1]

3-Comparable

6-Comparable

[0, 0, 0, 1, 1, 0, 1]

[0, 0, 1, 1, 1, 0, 1]

[0, 1, 0, 1, 1, 0, 1]

[0, 1, 1, 1, 1, 1, 1]

No Comparable

No Comparable No Comparable

No Comparable

Figure C.2. Examples of K-comparable vectors and non comparable vectors
of length 7.

To remove the effect of day of week, we only compare schedule profiles of customers

that made a purchase on the same day of week. We look at pairs of comparable profiles

that have at least 50 observations each. In other words, given that two schedule profiles

vi and vj are k-comparable, we consider the experiment valid only if vi and vj have been

offered at least to 50 customers, respectively. We define the empirical ratios similarly

as in Equation C.6 using the empirical proportions:P̂ [dJ > dk|S1] (P̂ [dJ < dk|S1]) is the

proportion of customers that were offered v1 and chose a delivery date later (earlier) than

dk; similarly, P̂ [dJ > dk|S0] (P̂ [dJ < dk|S0]) is the proportion of customers that were

offered v0 and chose a delivery date later (earlier) than dk.

In our data there are 28 cases that satisfy the experimental conditions, which we

summarize in Table C.8. The first column shows the schedule profile of each experiment,

where the ’X’ shows the position from where v0 and v1 differ (i.e.; the kth position). In 27

experiments out of the 28 we find that the odds ratio when v1 is offered, P̂ [dJ>dk|S1]

P̂ [dJ<dk|S1]
(10th
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column), is lower than the odds ratio when v0 is offered, P̂ [dJ>dk|S0]

P̂ [dJ<dk|S0]
(11th column). In

other words, in 27 out of 28 cases, offering day d̃ has more strongly impacted customers

that were to choose later dates than customer that were to choose earlier dates.

While more rigourous analysis is needed to formally conclude that availability of earlier

dates reduces the odds that customers choose later dates, the aim of this section is to

present a set preliminary results that suggest that our third assumption is reasonable.

While statistical analysis must be performed, 27 out of 28 natural experiments found in

our data seem to confirm the intuition of the third assumption. To formalize this section

we suggest testing the hypothesis behind the assumption using formal econometric tools

such as regression and/or matching.
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Sch. Profile k DoW N1 N0 P̂e,1 P̂e,0 P̂l,1 P̂l,0 ’Odds S1
’Odds S0

’Odds S1 <’Odds S0

001X100111 4 Mon 1120 208 0.04 0.01 0.85 0.94 19.14 97.50 X
0011X00111 5 Mon 1120 219 0.15 0.11 0.76 0.81 5.23 7.08 X
0011100X11 8 Mon 1120 77 0.24 0.18 0.62 0.82 2.60 4.50 X
0010100X11 8 Mon 208 71 0.21 0.06 0.66 0.92 3.11 16.25 X
001X100011 4 Mon 77 71 0.03 0.01 0.90 0.96 34.50 68.00 X
001100X111 7 Tue 991 107 0.12 0.12 0.71 0.87 5.87 7.15 X
000100X111 7 Tue 192 50 0.05 0.04 0.82 0.94 17.44 23.50 X
001X000111 4 Tue 107 59 0.04 0.02 0.88 0.97 23.50 57.00 X
001000X111 7 Tue 249 59 0.16 0.03 0.71 0.81 4.56 24.00 X
001X001111 4 Tue 991 249 0.06 0.10 0.88 0.85 15.63 8.12 X
001001X111 7 Wed 981 69 0.19 0.04 0.68 0.91 3.68 21.00 X
00100X1111 6 Wed 981 156 0.01 0.00 0.81 0.98 159.80 Inf X
00001X1110 6 Thu 1261 139 0.07 0.03 0.80 0.93 12.02 32.25 X
0001X11100 5 Fri 1577 179 0.01 0.01 0.92 0.98 161.78 175.00 X
00011X1100 6 Fri 1577 87 0.08 0.07 0.77 0.90 10.04 13.00 X
0001X11001 5 Sat 454 75 0.04 0.04 0.83 0.91 19.89 22.67 X
000111X001 7 Sat 454 124 0.31 0.23 0.56 0.69 1.79 2.93 X
00111X1001 6 Sat 2085 119 0.17 0.07 0.69 0.89 4.08 13.25 X
0011X11001 5 Sat 2085 334 0.06 0.01 0.83 0.96 14.79 80.50 X
00101X1001 6 Sat 252 72 0.19 0.17 0.68 0.93 3.49 5.00 X
0010X11001 5 Sat 252 93 0.01 0.00 0.81 0.91 101.50 Inf X
001X110011 4 Sun 1000 228 0.03 0.01 0.87 0.97 33.42 73.67 X
0011X10011 5 Sun 1000 66 0.13 0.06 0.76 0.88 5.81 14.50 X
00111X0011 6 Sun 1000 68 0.24 0.16 0.66 0.79 2.76 4.91 X
00111100X1 9 Sun 1000 63 0.35 0.16 0.55 0.79 1.58 5.00 X
0010X10011 5 Sun 228 58 0.03 0.00 0.85 0.95 27.57 Inf X
001X010011 4 Sun 66 58 0.02 0.00 0.94 1.00 62.00 Inf X
0001X10011 5 Sun 211 89 0.09 0.06 0.77 0.90 9.06 16.00 X

Table C.8. Summary of the natural experiments. Abbreviations: Sch. Profile

= Schedule profile, DoW = Day of week, N1 (N0) = Number of customers that were

offered v1 (v0), P̂e,1 = P̂ [dJ < dk|S1], P̂e,0 = P̂ [dJ < dk|S0], P̂l,1 = P̂ [dJ > dk|S1],

P̂l,0 = P̂ [dJ > dk|S0].
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