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ABSTRACT

Human-Machine Communication in Assistive and Rehabilitation Robotics

Aleksandra Ola Kalinowska

Assistive robots have the potential to support motor recovery after an injury as well as

to alleviate the burden of physical tasks for both impaired and able-bodied individuals. Over

the last few decades assistive robots have become increasingly more capable. Many can now

provide task-specific assistance and can be safe enough to physically interact with people, but

they are still incapable of versatile collaboration.

While effective assistance requires robots to adapt to and infer intent from their human

partners, adaptation and intent inference are particularly challenging when the tasks are novel

and/or dynamic. As a result, existing robots have difficulty engaging in activities that involve

dynamic motion, such as catching a falling object, as well as tasks that are unfamiliar to the

robot. One of the main contributing factors are the limited communication capabilities available

to the human-robot pair. Unlike a pair of people, the human-robot pair does not have the ability

to communicate flexibly to coordinate interaction, so the robot often relies on passively inferring

intent from human movement or interpreting inputs from a joystick-like interface. There is a

need for flexible and comprehensive languages for human-machine communication.
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In this thesis, I present mathematical formulations and algorithmic tools that enable the ro-

bot to interpret dynamic motion as a communication signal in the context of a task. I begin

by characterizing metrics of dynamic performance and show how they can be used to study

post-stroke impairments. I then introduce methods that enable human-robot teams to co-create

communication protocols from interaction. Lastly, I design algorithms that parse demonstra-

tions of dynamic tasks to learn task definitions that enable the robot to recreate a new dynamic

skill. In each case, I show how the algorithmic tools can improve robotic assistance by testing

them on robots interacting with people. I conclude this thesis with a discussion of future re-

search directions that will help facilitate flexible human-machine communication for versatile

assistance and rehabilitation.
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CHAPTER 1

Introduction

Assistive robots hold promise of being versatile collaborative companions—helping with

daily tasks, with manually intensive chores or with learning and re-learning motor skills after

an injury. Many existing robots are already capable of task-specific collaboration. To provide

assistance, these robots are designed to interpret and anticipate their human partners’ actions in

the context of a pre-specified task, and to coordinate their behaviors based on the inferred intent

of the human partner. This works well for known quasistatic tasks, but is particularly difficult

to do during dynamic tasks that are sensitive to the timing of coordinated motion, or novel tasks

that had previously not been encountered by the human-robot pair. Dynamic tasks necessitate

the robot to be able to interpret dynamic motion and anticipate motion dynamics. Novel tasks

rely on the human-robot pair’s ability to quickly and efficiently coordinate joint action and learn

from new experiences.

During most tasks, people move quasistatically—they use overdamped motion making their

movement trajectories reasonably predictable in the context of a task. Reaching for an object or

sitting down onto a chair are examples of a quasistatic activity. However, time pressure in a task

or the task dynamics can lead to underdamped, dynamic motion that is much more difficult to

predict. As an example, a person might compensate for tripping on a curb to maintain balance,

or they might reach to catch a moving object to prevent it from falling. Dynamic response

is an inevitable component of everyday activities and, consequently, of versatile human-robot

interaction. It is therefore necessary for an assistive robot to reason about dynamic motion and
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to be able to flexibly communicate with a person about a coordinated dynamic response of the

human-robot system.

At present, collaborative robots—even those designed for working with people—have lim-

ited capabilities to communicate with their human partners. In many assistive applications,

robots rely on teleoperation, where the robot is directly guided by the commands of a human

user, possibly with some autonomous capabilities. Examples include powered wheelchairs or

surgical robot arms. Teleoperated robots can be designed to provide feedback to the human

operator, e.g., through a screen-based display or through haptics that mimic touch sensations at

the robot’s end-effector. These communication channels improve performance of the human-

robot team. However, existing collaborative robots still lack the capability to flexibly engage in

bidirectional communication with a human partner, limiting their collaborative potential.

Being a versatile collaborative companion requires a robot to safely and effectively inter-

act with people across an assortment of daily activities. While recently there has been a lot of

progress in creating large language models, such as chatGPT, capable of versatile verbal dia-

logue, such communication is often too slow and too cognitively taxing for coordinating joint

action during physical human-robot interaction (pHRI). There is a need for human-robot pairs

to be able to develop flexible, nonverbal communication protocols. In this thesis, I design al-

gorithmic approaches for human-machine communication that enable robotic assistance during

tasks that are dynamic and/or novel.

1.1. Main Contributions

This thesis develops algorithmic approaches for human-robot communication that anticipate

dynamic responses during task-oriented pHRI. Specifically, it explores three facets of pHRI. In
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Chapters 2 and 3, I develop mathematical specifications of dynamic motion and evaluate their

ability to characterize dynamic deficit due to a neuromotor disorder, such as stroke. In Chap-

ter 4, I create robot policies capable of co-creating communicative conventions with people

from pHRI—enabling flexibility in coordinating joint actions. In Chapters 5 and 6, I define task

representations that can be learned from task demonstrations and used to provide robotic assis-

tance during dynamic tasks. Throughout this thesis, I introduce novel algorithmic formulations,

implement them in simulation and/or hardware, and validate them experimentally in studies

with human participants. The goal of the thesis is to design and validate control methods for

pHRI that enable the robot to reason about a person’s task-oriented dynamic response and to

reliably adapt its behavior during tasks involving dynamic motion.

1.1.1. Robot-assisted assessment of dynamic motion

Robots that provide physical assistance for rehabilitation or during daily tasks depend on their

ability to quantitatively assess movement. While many activities of daily living (ADLs) require

dynamic motion—fast, controlled, and timing-sensitive movements where the continuous mod-

ulation of motor activity is required to respond to real-time stimuli—existing assessments focus

on quantifying static and quasi-static characteristics of motion, such as strength and reaching

range. As a result, existing metrics of motion often do not capture the functional limitations that

manifest themselves during ADLs, hindering progress in robotic assistance and rehabilitation.

There is an unmet need for a mathematical specification of dynamic motion which would enable

human-robot communication about the timing and level of required assistance during dynamic

tasks.
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In this work, I develop virtual dynamic tasks and design frequency-based metrics of motion

that quantify motion bandwidth. I show that the frequency-based metrics can be used to assess

dynamic performance with different types of feedback in unimpaired individuals as well as to

detect impairment across a range of tasks in chronic survivors of stroke.

The contributions of this research effort are as follows:

(1) I design robot-assisted virtual tasks (i.e., the ball-in-bowl task and the nail-and-hammer

task) that require dynamic motion in the upper limb. I develop metrics that assess dy-

namic capabilities by quantifying the frequency content of movement during these

tasks. I refer to this approach as QADR—Quantitative Assessment of Dynamic Re-

sponse.

(2) I validate QADR in a study with able-bodied individuals (n=6). Results show that the

ball-in-bowl task (a virtual task with a resonant frequency) can be used to quantify a

person’s motion bandwidth. Haptic feedback improves the robot’s ability to elicit a

dynamic response at a specific frequency compared to visual-only feedback.

(3) I employ QADR to characterize dynamic performance in chronic survivors of hemi-

paretic stroke (n=13+48). I show that a frequency-based metric of motion generalizes

across three dynamic tasks, in many aspects similar to activities of daily living: the

ball-in-bowl task, the nail-and-hammer task, as well as an object hit task from prior

work [183].

(4) I find that stroke causes a significant decline in dynamic response at frequencies above

1.5Hz in the paretic upper limb, with the degree of functional loss dependent on the

clinically assessed severity of impairment. Results suggest that one of the underlying
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mechanistic changes that cause a reduction in motion bandwidth is a shift in reliance

from corticospinal and corticobulbar pathways to corticoreticulospinal pathways.

In this work, I led the conceptualization and experimental validation of a novel approach to

quantify and interpret dynamic motion. I would like to acknowledge Millicent Schalfly (MS),

Kyra Rudy (KR), and Michael Doody (MD) for their contributions to this work. MS designed

and ran experiments, conducted data analysis, visualized and interpreted results, and supported

the writing of the final manuscripts. KR implemented the initial version of the ball-in-bowl task,

as well as helped with designing and running experiments, interpreting results, and writing the

final manuscripts. MD created an engaging visualization for the ball-in-bowl task that was used

in the final study with post-stroke individuals. This work was published in [98] and [101]. A

final publication is in preparation for the Journal of NeuroEngineering and Rehabilitation [100].

1.1.2. Emergence of communicative conventions

The vocabulary and communicative conventions necessary for human-machine communication

are most often defined and encoded in the robot prior to use. Sometimes the algorithmic setup al-

lows for initial customization of the user-generated vocabulary, e.g., tailoring movement-based

commands to the physical capabilities and limb size of the person. Even so, the burden falls on

the human operator to learn to generate and interpret the communicative signals prior to human-

robot interaction. As an example, a person might learn joystick inputs (i.e., forward, back, left,

right tilt of the joystick) to command a powered wheelchair to move in the corresponding di-

rections. In the case of a directly controlled powered wheelchair, there is an intuitive way to

specify the mapping of a continuous 2D control space onto the analogous 2D action space of

the robot, making the language easy to learn. However, if a person has to use shoulder shrugs



31

to control movements of a robot arm or sips and puffs to maneuver a wheelchair because of

limb loss or paralysis, the mapping is no longer as intuitive. Enabling the communicative con-

ventions to emerge from interaction, similar to how verbal languages have emerged between

people, can help to make the symbols both more functionally optimal and easier to learn.

Communication emergence is studied extensively in people and, more recently, in artificial

agents. It is often investigated using the Lewis signaling game, where a speaker and a listener

rely on communication to solve an object identification task. In this task, the communication is

usually free and guaranteed to the agents. As a result, artificial agents who learn to exchange

information in this environment are not incentivized to do so in a concise and efficient manner.

In contrast, people try to be as informative as possible, and give only as much information as is

needed. If artificial agents are to communicate with people, they should be able to learn concise

communication protocols.

In this work, I design artificial agents that can use reinforcement learning (RL) to learn how

to communicate with other agents in a concise manner. I implement agents, similar to a collabo-

rative mobile robot, that learn to navigate a simulated maze-like environment. I test the agents’

behavior during task-oriented interaction with other agents, and with people (n=2). My findings

serve as a proof-of-concept that robots can be designed to co-create communicative conventions

during interaction with people. Deep RL is a potential algorithmic approach that enables com-

munication emergence, and—with an appropriate reward design and training structure—can

enable emergence of concise communication and on a timescale feasible for people.

The contributions of this research effort are as follows:
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(1) I create artificial agents, modelled using neural networks and RL, that learn how to

communicate during task-oriented collaboration. I develop a simulated cooperative

navigation task that serves as a testbed for communication emergence.

(2) I introduce situated communication in deep RL. I design agents to develop a policy that

reasons about taking both communicative and noncommunicative actions, in contrast

to agents reasoning over communicative and noncommunicative actions separately.

I find that situated communication enables concise communication, in line with the

Gricean maxim of quantity.

(3) I compare situated communication against other forms of incentivizing conciseness

and find that, with situated communication, agents converge on a shared communica-

tion protocol more quickly, while learning to exchange information most sparingly.

(4) I show that an agent designed using neural networks and supervised learning can learn

symbolic vocabulary from physical interfaces, such as a sip-n-puff, operated by a per-

son. I find that with just a handful of demonstrations per symbol, the agent can learn

to recognize symbols from continuous signal, even if the symbols are temporally dis-

torted compared to the original demonstrations.

In this work, I conceptualized and experimentally validated a collaborative artificial agent

that can learn to communicate concisely through task-oriented interaction. I tested a similar

artificial agent to learn vocabulary from a human-operated interface, i.e., the sip-n-puff, to nav-

igate a simulated wheelchair. I would like to acknowledge Elnaz Davoodi (ED), Florian Strub

(FS), Kory Mathewson (KW), Ivana Kajic (IK), Michael Bowling (MB), and Marshall Johnson

(MJ) for their contributions to the project. ED supported the conceptualization of the project, its

implementation, the interpretation of results, and the writing of the final manuscripts. FS, KW,
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IK, and MB provided feedback on the experimental setup, interpretation of results, and final

writing of the manuscript. MJ implemented the wheelchair simulation with human input and

ran initial tests (n=2). This work was published in [93]. A final publication is under revision at

the Journal of Artificial Intelligence Research [94].

1.1.3. Learning of task representations

Most of human-robot communication and assistance takes place in the context of a task. As

such, it is beneficial for the robot to be able to flexibly build and grow a library of tasks during

use. Learning from demonstrations (LfD), or imitation learning, are categories of algorithms

that enable users to teach robots new tasks by providing task demonstrations. In these methods,

robots learn a task representation—in the form of a task trajectory, reward function, or task

policy—by extracting salient information from demonstrated task executions.

It is often challenging for the users to provide high-quality task demonstrations, because the

task itself could be challenging to perform (e.g., cart-pole inversion due to unintuitive dynamics)

or because the low-dimensional control interface may be limiting for the users (e.g., joysticks or

planar keyboard controllers for 7-DoF robot arms). These challenges only grow when the user

suffers from a neuromotor impairment, because the individual is limited in the modalities they

can use for communication and the generated signal is often more noisy. Similarly, dynamic

tasks are often difficult to demonstrate, because the person has to account for robot dynamics

as well as the timing of a robot’s actions when providing demonstrations—these characteristics

of robot motion tend to be unintuitive and difficult to control, especially for novice users.

In this work, I propose two methods for learning task representations from human demon-

strations. The first method enables learning subtasks from continuous demonstrations of a
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complex task. The second method enables learning subtask definitions from imperfect and

failed demonstrations. Importantly, both approaches avoid defining tasks in terms of optimal

movement trajectories, but rather focus on capturing movement dynamics and task statistics,

respectively.

The contributions of this research effort are as follows:

(1) I develop a dynamics-based clustering algorithm for creating symbolic representations

of sequential tasks from continuous task demonstrations.

(2) I validate the segmentation approach for the task of walking and show that the learned

symbolic representation can be used in real-time to provide task-based assistance.

(3) I create an algorithm, called ergodic imitation, for learning robust task definitions

without the need for near-optimal demonstrations. In this framework, I represent

tasks as feature-embedded distributions and show that negative demonstrations—–

demonstrations of what not to do—–can be incorporated into creating a task definition.

(4) I demonstrate the efficacy of ergodic imitation in a human subject study (n=24), where

novice participants are asked to define the task of inverting a cart-pendulum. Ergodic

imitation helps novices create effective task definitions; negative demonstrations im-

prove task learning. With data from one expert participant, I show that ergodic imita-

tion works with simulated tasks of target reaching and table cleaning with a 7-degree-

of-freedom robot arm.

In this work, I conceptualized and experimentally validated algorithmic approaches for

learning task representations from human demonstrations. I would like to acknowledge Thomas

Berrueta (TB), Ahalya Prabhakar (AP), Adam Zoss (AZ), and Kathleen Fitzsimons (KF) for
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their contributions. TB implemented the algorithm for segmenting continuous motion trajecto-

ries, and contributed to writing the final manuscript. AP conducted robot-arm experiments to

validate ergodic imitation, analyzed the experimental data, and contributed to writing the final

manuscript. KF provided feedback on the design of ergodic imitation and edited the final man-

uscript. AZ helped with the conceptualization of the project and collected walking data using

the Ekso Bionics exoskeleton. This work was published in [92] and [97].

1.1.4. Embodied Communication

Early research on physical human-robot interaction (pHRI) had necessarily focused on device

design—the creation of compliant and sensorized hardware, such as exoskeletons, prostheses,

and robot arms, that enabled people to safely come in contact with robotic systems and to com-

municate about their collaborative intent. As hardware capabilities have become sufficient for

many applications, and as computing has become more powerful, algorithms that support fluent

and expressive use of pHRI systems have begun to play a more prominent role in determining

the systems’ usefulness. In a recent review article [96], I summarize the field of algorithms

for human-machine communication. I lay out current state-of-the-art algorithmic approaches

and existing application domains, as well as discuss unmet needs and future directions for the

field. In the review, I describe a selection of representative algorithmic approaches that regu-

late and interpret communication in pHRI. I discuss the progression from algorithms based on

physical analogies, such as admittance control, to computational methods based on higher-level

reasoning, which take advantage of multimodal communication channels.
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Throughout the review, I emphasize the need for new algorithms that will facilitate versatile

human-machine communication. I describe the need for research on communication emer-

gence, such as the work in Chapter 4. I also note a need for quantitative metrics that assess and

interpret task-oriented motion trajectories, particularly when the motion is dynamic. Much of

my thesis work aims to address this gap. While existing algorithmic approaches largely enable

task-specific pHRI, they do not generalize to versatile human–robot collaboration. In the review

and in my discussion of next steps in Chapter 7, I therefore propose focusing research efforts on

facilitating emergent embodied dialogue—–bidirectional, multimodal communication that can

be learned through continuous human-robot interaction.

1.2. Thesis Outline

Chapter 2 will introduce a quantitative assessment method of dynamic response (QADR).

It will present results from a human subject study with able-bodied individuals, measuring the

interaction bandwidth of a human-machine system. Chapter 3 will discuss using QADR to as-

sess motion bandwidth in chronic survivors of hemiparetic stroke. It will present a quantitative

analysis of post-stroke dynamic deficit as well as empirical evidence for its potential causes.

Chapter 4 will present a method for learning communicative conventions through task-oriented

interactions. It will discuss results from a simulation study between two artificial agents as

well as show preliminary evidence that the approach would be feasible for human-machine

interaction. Lastly, Chapters 5 and 6 will discuss learning task representations from human

demonstrations of tasks, such as walking in a lower-limb exoskeleton or cleaning a table with

a robot arm. Chapter 5 will describe an approach that facilitates contrastive learning based on

task statistics. Chapter 6 will introduce an algorithm for learning substasks from continuous
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task demonstrations without supervision or a priori assumptions about the task structure. In

Chapter 7, I summarize my contributions and propose future research directions.
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CHAPTER 2

Measuring motion bandwidth using pHRI

An assistive robot can augment human performance by providing physical assistance or

motion guidance. In human-robot collaboration, it is important to know the bandwidth of an

individual’s ability to generate motion in response to external stimuli, such as visual or haptic

cuing. This becomes particularly relevant in timing-sensitive tasks, such as walking or catching

a falling object. In this work, we propose a frequency-based assessment of motion that enables

us to measure the bandwidth of physical human-robot interaction (pHRI)—quantifying how

fast individuals can respond to stimuli on a continuous basis. We introduce a robot-assisted

virtual dynamic task with a tunable resonant frequency. A human subject study with seven

participants shows that our task can elicit a dynamic response in a participant at frequencies

of 0.5Hz, 1Hz, 1.5Hz and 2.5Hz at the arm. Using the virtual task, we test whether haptic

cues improve motion timing. At all tested frequencies, we find that haptic stimuli help guide

timing of dynamic movement and improve performance compared to visual-only cuing. By

quantifying the interaction bandwidth for other pHRI systems—particularly when the human

collaborators have neuromotor impairments—our method can help assistive robots adapt to an

individual. Moreover, our results highlight the importance of incorporating haptic feedback

into pHRI for dynamic tasks—haptics can provide guidance around motion timing, such as in

assistive robots used for assessment and physical rehabilitation.



39

2.1. Introduction

Physically interacting robots, such as an exoskeleton, can be useful in a number of ways:

they can alleviate physical burden during manual tasks, help with learning or re-learning mo-

tor skills, or provide precise assessment of physical abilities. Although many relevant motor

skills and daily tasks are highly dynamic, assistive robots largely operate in a static or quasi-

static regime. As an example, robot-assisted assessment of motor skills typically uses tasks

such as defining reachable workspace [64,178] or tracking a pre-defined trajectory [187]. How-

ever, recent work shows interest in assessing motor coordination through dynamic tasks, e.g.,

a timing-sensitive hitting task with moving objects [183], because ability to generate dynamic

movements plays an important role in one’s ability to complete activities of daily living.

When the human-robot interaction involves dynamic movements, the human-robot pair ben-

efits from continuous communication [166, 167]. Processing times of communicative cues and

the ability to generate a motor response may vary between populations: younger vs. older in-

dividuals [53], able-bodied vs. physically impaired [40]. To increase collaborative success, it

would be beneficial to understand the bandwidth of an individual to react to stimuli and generate

motion as a response. Our prior work attempted to assess motor coordination during dynamic

tasks post-stroke [98]. Here, we build on this work and propose a method for measuring inter-

action bandwidth during physical human-robot interaction (pHRI).

To measure interaction bandwidth, we use a virtual ball-in-bowl task, inspired by the real-

world task of quickly moving a cup of water without spilling. The ball-in-bowl task has a

specified resonant frequency (dependent on the size of the bowl), which defines the default

movement frequency that is needed to succeed at the task. Because of this property, we can

learn about an individual’s bandwidth from the frequency content in their motion. Unlike in
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existing assessments, we do not assess motion quality through jerk [8, 155], error [187] or time

to motion initiation [40], but rather we look at the frequency decomposition of motion. In

particular, we quantify the energy exerted by an individual during task completion around task

resonance. Evaluating frequency content in motion during the ball-in-bowl task (a dynamic

task with a resonant frequency) while a person is physically coupled with a robot allows us to

quantify the individual’s interaction bandwidth with the robotic system.

Prior work shows that real-time perception and processing of sensory information is crucial

for effective motor coordination [73]. While motor coordination is controlled by both visual

and proprioceptive feedback loops [186], precise movements can overwhelm the visual sensory

channel—motor tasks that demand a high degree of accuracy are consequently more dependent

on kinesthetic information [199]. Thus, robot-mediated haptic feedback should be expected to

improve human performance, particularly in highly dynamic tasks that require accuracy with

respect to motion timing. We use our approach to study one’s ability to generate dynamic

motion when relying on two different modalities for sensory feedback: visual and haptic cuing.

There are a number of studies that show the value of haptic feedback in human-robot interac-

tion. It is well-established that haptic feedback is beneficial for teleoperation in quasistatic/non-

dynamic settings, such as robotic surgery [147, 186], a peg-in-hole insertion task [141] or a

pick-and-place task [165], particularly in a cluttered environment [14]. Moreover, there is re-

cent research that explicitly studies robotic assistance with haptic feedback during dynamic

tasks. Ozen et al. found that training with haptic feedback enhances motor learning for the task

of inverting a virtual pendulum [140]. Other work has shown positive impact of vibrotactile

feedback on task performance during balancing an inverted pendulum [184] or while using a

teleoperated robot to balance an object on a tray [166]. While prior work shows that haptic
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feedback is helpful in improving joint human-robot performance, no study to date has shown

why haptic feedback improves performance. In this work, we show that haptic stimuli improve

people’s timing accuracy across a range of motion frequencies. Improved motion timing is

likely a significant contributor to an increase in overall task performance during human-robot

collaborative tasks.

In summary, we contribute a frequency-based method for assessing interaction bandwidth—

individuals’ ability to continuously generate a dynamic response (controlled and timing-sensitive

movements in response to real-time stimuli). In a robot-assisted virtual environment, we assess

dynamic response under two feedback conditions: visual and combined visuo-haptic cuing. We

test the task on a group of able-bodied individuals (n=7). Through our experiments, we show

that:

• Using the ball-in-bowl task—a virtual task with resonance—we can elicit motion at a

specific frequency.

• Frequency content in motion during this dynamic task can quantify interaction band-

width.

• Haptic feedback improves motion timing.

Given the validation study presented here, our method can be used to assess motion bandwidth

in individuals with neuromotor impairments as well as to inform the design of physically cou-

pled human-robot systems.

2.2. Experimental setup

We have developed a virtual task that elicits controlled, timing-sensitive movements. In our

experimental setup, we couple the virtual environment with a stationary upper-limb exoskeleton,
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capable of rendering haptic feedback and translating forearm motion into activity in the virtual

task (see Fig. 2.1). Using this setup, we conduct a human subject study with seven able-bodied

individuals.

2.2.1. The physical environment

A haptic environment is created using the Arm Coordination Training 3-degree-of-freedom

device (ACT-3D) [98]. The ACT-3D is the combination of an admittance controlled Haptic-

MASTER robot, a 6-degree-of-freedom load cell (JR3 load cell, Woodland, CA) at the robot’s

end-effector, and a Biodex chair. The participant’s forearm is attached to the load cell using a

forearm-wrist-hand orthosis. This setup, as shown in Fig. 2.1, allows the participant to directly

control the location of the end-effector with movements of their arm. Active movements are

captured as force readings on the load cell and, using the robot’s internal controller, translated

into movements of the end-effector in 3D space.

The robot is able to provide partial or full support of the arm against gravity by modulating

abduction loading at the shoulder. It is also able to render haptic objects and forces in the upper-

limb workspace of the individual. The forces can be updated in real-time. Given that people

can process haptic feedback at a temporal resolution up to 20Hz [26], we chose 20Hz as our

update rate.

2.2.2. The virtual environment

A virtual task is visualized on a screen in front of the participant. We use a ball-in-bowl task,

loosely inspired by the real-world activity of moving a cup of water without spilling. The

task was introduced in our prior work [98] and modified for this study to incentivize dynamic
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Figure 2.1. Experimental setup and ball-in-bowl task. In the top left, we illustrate the real-
world task of carrying a cup of water without spilling that served as inspiration for the ball-in-
bowl task. In the bottom right, we visualize the experimental setup with the robot.

motion. The current version of the task has been open-sourced and is available online under the

MIT license [99].

In the ball-in-bowl task, the location of the robot end-effector is mapped to the location

of a bowl on a virtual table. There is a virtual ball rolling around inside the virtual bowl and

the participant experiences haptic feedback corresponding to the interaction force between the

bowl and the ball. There is no friction in the simulated ball-in-bowl system—consequently only

normal forces are rendered haptically to the user. While participants exert forces in a range

of values throughout a trial (rarely exceeding 10N), the haptic force feedback is scaled and

consistently rendered as a 0.5N vector in the xy-plane.
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The motion of the ball is simulated using a modified dynamics model of a 3D pendulum,

where the pendulum’s acceleration θ̈ is calculated using independent components θ̈x and θ̈y

defined as

θ̈i = (
g
h

sin(θ̇i)−uicos(θ̇i)).

The variable g = 9.81 m
s2 represents the gravity constant, h is the pendulum length, and i indexes

the coordinate (either x or y). The variable ui represents the individual’s input to the system—

in our experimental setup, it is the acceleration of the end-effector in the x and y directions, as

calculated from load cell measurements of force. When the participant moves in synchrony with

the ball, they amplify the ball’s oscillations and allow it to gain energy. When the participant

counteracts the ball’s movements, they dampen out its energy and prevent it from falling out

of the bowl. There is no damping or friction in the simulated ball-in-bowl system. This design

choice disincentivizes the individual from waiting for the ball to lose energy and settle on its

own. Only active movements of the end-effector can affect the ball’s oscillations. Unlike in a

real-world 3D pendulum, θ̈i is only influenced by ui—this simplification of the system dynamics

was a design choice meant to improve explainability and participants’ agency over the ball’s

movements.

Participants can move in 3 dimensions. Their xy-motion is mapped directly onto the location

of the virtual bowl. In the z direction, participants start from a home position z = 0, resting on

a haptic table. During task attempts, they are asked to keep their arm lifted anywhere above

the haptic table to avoid imposing dynamic constraints on the ball-in-bowl system. In turn, to

prevent fatigue, their arm weight is fully supported against gravity—the load cell readout in the

z direction is near zero, making the arm feel buoyant in space. Movement in the z direction

does not affect the simulation.
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Figure 2.2. Example trajectories across workspace (xy-plane) of a participant for 13 dif-
ferent trials. Each line represents one 30-second trial. Note that when the ball is stationary,
participants traverse the workspace frequently to collect targets. When the ball is moving, par-
ticipants alternate between moving quickly between targets and trying to settle the ball.

2.2.3. The virtual task

The goal of the virtual task is to collect as many targets as possible within a 30-second window.

There are three conditions that have to be met for an individual to be able to collect a target: (1)

The individual’s arm must be lifted above the haptic table, indicated to the participant by the

bowl turning blue. (2) The virtual ball’s total energy must be low enough to be oscillating no

higher than one third of the bowl’s height, indicated to the participant by the ball turning green.

(3) The center of the virtual bowl must be aligned with the target location.

At any given moment there are 5 target mushrooms spread out randomly on the virtual table

within the participant’s reachable workspace. During each attempt at the task, participants are

instructed to manipulate the location of the virtual bowl to collect as many targets as possible in
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Figure 2.3. Five seconds of time-series data of a participant’s acceleration during 13 dif-
ferent trials of the ball-in-bowl task. Note that the time-series data is difficult to evaluate for
success and comparison between trials. As we describe in this work, frequency content in motion
can be used as a more informative, time-independent quantity to assess motion quality.

30 seconds. Every time an individual collects a target, three things happen: (1) the participant

receives a point, (2) a new target appears in a different location, so that 5 targets are visible at

any given time, and (3) the ball is injected with a bit of energy, so that again the participant must

generate movement to counteract the ball’s oscillations and reduce its energy before collecting

another target. The score and remaining time are visualized on the left and right side of the

screen, respectively.

The simulated ball-in-bowl task has a software-defined natural frequency. We modulate

the resonant frequency by changing the length of the modelled pendulum. There is an inverse
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correlation between the length of the pendulum h and task resonance ftask:

ftask =
1

2π

√
g
h
.

Modulating task resonance enables us to assess ability to generate motion at a specific fre-

quency. In our experiment, we use pendulum lengths h = [0.995,0.249,0.111,0.04] that corre-

spond to natural frequencies ftask = [0.5Hz,1Hz,1.5Hz,2.5Hz]. We chose 2.5Hz as our maxi-

mum frequency, so that it would be achievable for all study participants [26]. Because we no-

ticed that changes in frequency were not perceived by participants linearly—namely, a change

from 0.5Hz to 1Hz was more perceptible than a change from 2Hz to 2.5Hz—we tested more

frequencies near the lower bound of the range.

2.2.4. Study participants

We recruited seven able-bodied individuals to complete the study. All participants expressed

verbal and written consent to participate. The study protocol was approved by the Northwestern

University Review Board under IRB STU00021840. Participating individuals were screened for

physical disabilities and known abnormalities in motor control—none were reported. The group

of tested individuals was 22-28 years of age (with an average of 26). There were 4 males and 3

females; all were right-hand dominant. We randomly assigned the arm with which individuals

performed our experimental tasks—4 of our participants used their right arm while 3 used their

left arm during the experiment.
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2.2.5. Experimental Procedure

An experimental session starts with measuring arm weight, so that during the task we can sup-

port the arm against gravity. We then define the individual’s reachable workspace by asking

each participant to “clean” the virtual table. Participants are instructed to cover the biggest area

on the table that they can reach without allowing their shoulder to leave the back of the Biodex

chair. During later task attempts, targets are placed only within this reachable area.

We then proceed to a training period, when we explain the ball-in-bowl task. We allow

numerous attempts at the task until the participant feels comfortable with the experimental setup

and they seem to understand the task objective. We offer tips and guidance as well as encourage

the participant to ask questions. The training period usually takes 15-20 minutes with at least

10 task attempts.

All individuals complete the ball-in-bowl task at four frequencies (0.5Hz, 1Hz, 1.5Hz, and

2.5Hz) and under four task conditions (with/without the ball moving, with/without haptic feed-

back). During trials without the ball moving, the ball rests at the bottom of the bowl, while the

participant is asked to collect targets without needing to consider the ball’s movements. The

goal of the no-ball trials is two-fold: (1) without haptic feedback, to evaluate the baseline fre-

quency spectrum of movement during the ball-in-bowl task, and (2) with haptic feedback, to

confirm that the haptic forces themselves, without active participant movement, do not result

in peaks at resonance. Each experimental set of conditions is attempted by the participant 24

times: 6 times at each task frequency in 2 sets of 3 in random order to control for potential

effects of learning and/or fatigue. There is one exception: when the ball is stationary and no

haptic feedback is provided, there is no notion of task frequency—participants attempt this ex-

perimental condition 6 times. Each study volunteer performs a total of 78 task attempts. We take
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Figure 2.4. Upper bound of motion bandwidth during open-loop movements (grey) in com-
parison to baseline closed-loop motion during the ball-in-bowl task (green). All tested par-
ticipants are able to generate open-loop motion up to 2.5Hz—their maximum open-loop motion
frequency ranges from 3 to 5Hz. During the ball-in-bowl task, when collecting targets without a
moving ball, most of participants’ motion is exerted around 1Hz.

two 5-minute breaks after 27 and 54 trials, as well as shorter breaks throughout the experiment

as needed.

We end the experiment with a test of open-loop motion—motion that relies on internal pro-

prioception without incorporating external stimuli. While coupled with the robot, participants

are asked to move back and forth in the transverse plane as fast as they can, using small ampli-

tude motion. Unlike during closed-loop motion in the ball-in-bowl task, they are not generating

motion in response to any task-specific stimuli. We collect three 10-second efforts.

2.2.6. Motion metrics

We assess motion by looking at the spectral properties of the forces introduced into the system

by the participant. While the load cell measures forces in the x-direction and y-direction in the

transverse plane, a discrete fast Fourier transform (FFT) is performed on each trial to obtain
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the amplitude of the signal for a range of frequencies up to 4Hz. In a frequency spectrum, the

relative amplitude of a signal at a certain frequency provides us with insight about participants’

ability to switch movement direction at that frequency. The signal in the frequency domain is

normalized by the energy introduced into the ball-in-bowl system by a participant throughout

a task attempt. We use the following standard definition of a signal’s energy: E = ∑A(ω)2dω

where ω and A are the frequency and amplitude, respectively. After normalization by E, the

total energy introduced into the system during each task attempt is equal to one, allowing us to

do trial-to-trial and subject-to-subject comparisons. To obtain a single estimate of the frequency

content of movement in the 2D plane, we add the x and y frequency spectra. The resultant

spectrum is re-normalized and visualized throughout this chapter.

The primary frequency metric presented in this chapter is energy@resonance. It refers to

the energy exerted by the participant at the task frequency ±0.2Hz (equivalent to a window

size of w f = 0.4Hz). We compute the energy@resonance measure for each trial with a mov-

ing ball. Additionally, regardless of the task frequency, we compute an energy@frequency

metric—the energy at 0.5± 0.2Hz, 1± 0.2Hz, 1.5± 0.2Hz, and 2.5± 0.2Hz—to validate that

the game elicits movement at task resonance. For the last analysis, we compute the percentage

difference in energy@resonance between trials with haptic forces and without haptic forces,

i.e., (ehaptic f eedback− eno haptics)/eno haptics, where e is the energy at resonance.

Aggregate frequency spectra presented in this chapter are averaged across participants, re-

normalized, and filtered with a low-pass Butterworth filter (and a cutoff frequency of 5Hz) for

visual clarity. In creating the boxplot figures, we average across trials of a participant under the

same trial conditions so that each boxplot demonstrates the spread in performance across the
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seven participants. All statistical analyses, except the window size analyses, are performed on

unaggregated and unfiltered frequency spectra and metrics.

2.2.7. Study design and statistical analyses

Our experiment aims to test two hypotheses: (H1) the ball-in-bowl game encourages partici-

pants to move at the task’s resonant frequency, and (H2) haptic feedback further encourages

movement at task resonance.

To assess H1, we perform two statistical analyses. First, we perform a set of one-way

repeated measures ANOVAs (rm-ANOVAs) and post-hoc t-tests with Bonferroni corrections

to determine whether the ball’s resonant frequency affects the energy exerted by participants

around specific frequencies when completing the task without haptic feedback. This determines

whether, for example, participants completing trials using a ball with a resonant frequency

of 0.5Hz exert more energy around 0.5Hz than while completing trials using a ball with a

resonant frequency of 1Hz, 1.5Hz, or 2.5Hz. We repeat the same analysis using trials with

haptic feedback. For the second statistical analysis, we compare energy@resonance during

trials with a moving ball to trials with a still ball (and hence, no incentive to move at the resonant

frequency). We use a two-way rm-ANOVA with within-subject factors for the trial condition

(moving vs. stationary ball) and ball frequency, followed by one-way rm-ANOVAs at each

frequency with trial condition (still vs. moving ball) as the within-subject factor.

To assess H2, we perform two statistical analyses. First, we perform a two-way rm-ANOVA

with within-subject factors for ball frequency and trial condition (with vs. without haptic feed-

back) across trials with a moving ball, followed by one-way rm-ANOVAs at each frequency

with trial condition (with vs. without haptic feedback) as the within-subject factor. Secondly,
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Figure 2.5. Game elicits movement at task resonance. Energy@resonance (red boxes) is
higher than energy@frequency (grey boxes) for all 4 tested task frequencies, denoted by the
4 shades of blue. Aggregate results (n=7). Boxes in the bottom plot represent the area under the
curve of sections in the top plot (highlighted in blue) across all participants.
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we look at the percentage difference in energy@resonance between aggregated trials with haptic

forces and without haptic forces. We perform a two-way rm-ANOVA with within-subject fac-

tors for task frequency and window size, followed by one-way rm-ANOVAs at each frequency

with window size as the within-subject factor.

For each statistical test, we evaluate the assumptions using the Shapiro-Wilk test for nor-

mality and Mauchly’s test for sphericity. If the sphericity assumption is violated, we report the

Greenhouse–Geisser correction, indicated by pGG.

2.3. Results

Using the ball-in-bowl task, we show that frequency decomposition of motion during a

dynamic task can be used to assess motion quality, revealing information not easily obtained

from the typically studied time-series data. In a small human subject study with able-bodied

individuals (n=7), we validate that the ball-in-bowl game is able to elicit active movement at

specific frequencies. We show that haptic cues improve motion timing and increase frequency

content in motion at task resonance.

2.3.1. Quantifying motion bandwidth during open-loop movements

As a baseline, we evaluate open-loop motion. As visible in Fig. 2.4, participants generate open-

loop motion at frequencies ranging from 3 to 5Hz depending on the individual. Consequently,

we conclude that all participants are physically able to generate open-loop motion up to 2.5Hz—

the highest frequency in our experimental protocol. Given this result, the dynamic response we

are measuring during the ball-in-bowl task is limited mainly by the capabilities of participants’

reasoning about motion timing rather than a physical inability to move at the tested frequencies.
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Figure 2.6. Haptic feedback encourages movement at task resonance. The peaks at reso-
nance (indicated with a blue color) are higher when haptic feedback is rendered to participants
than when only visual cuing is provided. Aggregate results (n=7).

In Fig. 2.2 and Fig. 2.3, we illustrate the motion of one of our study participants during an

example task attempt under each of the four experimental conditions. In Fig. 2.2, we visual-

ize participant trajectories as a function of x and y. Note that when the ball is stationary, the

participant moves quickly through their workspace, solely focused on collecting targets. This

baseline motion has a characteristic frequency decomposition (green curve in Fig. 2.4)—if no

other incentives are provided, the motion focused on collecting targets during the ball-in-bowl

task largely centers around 1Hz. When the ball is active, participants alternate between generat-

ing high-frequency movement to settle the ball and traversing the workspace to collect targets.
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Figure 2.7. Game is measuring active movement. Energy@resonance is lower when partici-
pants are not actively trying to balance the ball.

The motion focused on settling the active ball introduces peaks around various frequencies, cor-

responding to the task’s resonance, allowing us to assess an individual’s interaction bandwidth

in the physical human-robot system.

In Fig. 2.3, we illustrate participant movement as a function of time. Note that qualitatively

it is difficult to compare participant’s performance between experimental conditions and task

frequencies. In contrast, by looking at the frequency content in motion, we can more easily

reason about a participant’s performance both quantitatively and qualitatively.

2.3.2. Measuring interaction bandwidth during a dynamic task

By using a task with a resonant frequency, we can quantify an individual’s ability to generate a

dynamic response at a specific frequency (see Fig. 2.5 for aggregate results). The energy exerted
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Figure 2.8. Haptic forces improve movement timing compared to no forces. En-
ergy@resonance is higher for trials with visuo-haptic feedback than with only visual cuing.

at the task’s resonant frequency is consistently higher than energy exerted at that frequency dur-

ing tasks with a different resonant frequency. Repeated measures ANOVAs reveal that, when

only visual feedback is provided, task frequency significantly affects energy exerted at 0.5Hz

(p < 0.001, F = 18.94), 1Hz (p < 0.001, F = 15.28), 1.5Hz (p = 0.009, F = 5.23), and 2.5Hz

(p < 0.001, F = 11.23), respectively. The ANOVA is performed for the energy@frequency

metric, delineated by different shades of blue in Fig. 2.5. Moreover, post-hoc t-tests with Bon-

ferroni corrections reveal that for each task frequency, the energy@resonance metrics (red boxes

in Fig. 2.5) are significantly higher than the energy@frequency metrics for the same frequency

(grey boxes in Fig. 2.5) with all p-values less than 0.004.

The same analysis is performed for trials with a moving ball and haptic feedback. Again, we

observe that individuals exert significantly more energy at task resonance (0.5Hz (p < 0.001,
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F = 72.10), 1Hz (p < 0.001, F = 57.85), 1.5Hz (p < 0.001, F = 8.57), and 2.5Hz (p < 0.001,

F = 15.19)) than they would if the task did not encourage movement at this frequency. More-

over, post-hoc t-tests with Bonferroni corrections reveal that energy@resonance (energy under

the blue curves in Fig. 2.6) is significantly higher than energy@frequency for trials with a dif-

ference resonant frequency, with all p-values less than 0.001.

When the ball is stationary, participants are no longer incentivized to generate movement

at a specific frequency to settle the ball. Thus, we observe that participants produce signifi-

cantly less movement at the ball’s resonant frequency (see Fig. 2.7) when the ball is still. The

repeated measures ANOVA shows that trial condition (still vs. moving ball) significantly affects

energy@resonance (p < 0.001, F = 78.92) across frequencies and at each frequency—0.5Hz

(p = 0.003, F = 22.59), 1Hz (p = 0.001, F = 48.53), 1.5Hz (p = 0.030, F = 8.05), and 2.5Hz

(p = 0.045, F = 6.41). Since haptic forces are present in both experimental conditions, this

analysis confirms that a peak in the energy exerted at the task’s resonant frequency cannot be

fully attributed to an artifact of the haptic feedback. Instead, these results suggest participants

are actively moving at the task’s resonant frequency in order to settle the ball and succeed at the

task.

Using the ball-in-bowl task, we are able to elicit a dynamic response at specific frequen-

cies and quantitatively assess individuals’ ability to perform movements at a chosen frequency.

Results confirm that the game elicits active movement at the tested frequency.
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Figure 2.9. Haptic forces guide precise timing of movement. Haptic forces improve en-
ergy@resonance more the smaller the window size w f . The effect might only be true up to a
certain frequency. At 2.5Hz, we no longer observe this trend.

2.3.3. Impact of haptic feedback on motion timing

The haptic feedback we provide during experiments makes the task more interactive and per-

ceptually real. Moreover, in our results we find that haptic feedback improves the timing of in-

dividuals’ motion—when completing the ball-in-bowl task, participants exert more effort near

task resonance than during trials without haptic feedback.

When participants are provided both visual and haptic feedback, we observe that the fre-

quency spectrum peaks (blue curves in Fig. 2.6) become more pronounced than when partic-

ipants are provided only visual feedback (red peaks in Fig. 2.5). Accordingly, the statistical

analysis reveals that participants exert more energy@resonance with haptic feedback compared

to without haptic feedback (refer to Fig. 2.8). The repeated measures ANOVA shows that trial

condition (haptic vs. no haptic feedback) significantly affects energy@resonance (p = 0.002,

F = 29.72) across frequencies and at most frequencies individually—0.5Hz (p = 0.002, F =
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26.43), 1Hz (p= 0.012, F = 12.82), 1.5Hz (p= 0.031, F = 7.85)—with the energy@resonance

at 2.5Hz being marginally significant (p = 0.067, F = 5.01). There is also an interaction effect

between ball frequency and trial condition (p = 0.003, F = 3.81), which may reflect a stronger

impact of haptic feedback at lower frequencies compared to higher frequencies.

Lastly, we find that haptic feedback enables the participant to more closely match the task’s

resonant frequency with their motion. A repeated measures ANOVA reveals that window size

(w f ∈ [0.2Hz, 0.4Hz, 0.6Hz]) significantly impacts how much haptic feedback improves the

energy exerted around resonance (p < 0.001, F = 15.83) across frequencies (see Fig 2.9).

Additionally, there is a significant interaction effect between window size and ball frequency

(p < 0.001, F = 9.71), reflecting a stronger trend at 0.5Hz (pGG = 0.003, F = 20.75), 1Hz

(pGG = 0.107, F = 3.51), and 1.5Hz (pGG = 0.026, F = 7.93) compared to a weaker trend at

2.5Hz (pGG = 0.315, F = 1.23). These results could indicate that people have a limited percep-

tion bandwidth for haptic feedback, meaning that the temporal resolution of haptic perception is

not high enough to allow us to internalize haptic feedback above a certain frequency (between

1.5Hz and 2.5Hz). However, the results are not conclusive, because the within-frequency trends

are statistically significant (with a p-value < 0.05) only at 0.5Hz and 1.5Hz. Moreover, visual

feedback has been show to dominate proprioceptive feedback [68]—it would be interesting to

do a follow-up experiment with haptic but no visual feedback.

2.4. Discussion & Future Work

For effective human-robot collaboration, it is beneficial to understand people’s bandwidth

for motion and physical interaction. The scientific community outside of robotics has inves-

tigated these questions before. As an example, studies report that able-bodied individuals can
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generate a hand grasp with a delay of 200ms in response to a sound. If these upper-limb re-

actions are generated repeatedly, a delay of 200ms suggests an interaction bandwidth of 5Hz.

However, continuous interaction is mechanistically different from a one-off reaction in that it

includes motion planning and re-planning in the motor cortices, cerebellum, and basal ganglia

as well as motion termination and re-initiation at the level of the muscle. These processes may

slow down interaction bandwidth in a complex, dynamic task.

Thus far, most research has investigated one-off reaction times [107, 134, 168, 185] rather

than continuous interaction bandwidth. Using frequency analysis in a dynamic task, such as

the ball-in-bowl task, we can evaluate the bandwidth of repeated interaction available to an

individual in a specific context. In our experiments, we evaluate upper-limb movements in

response to visual and haptic stimuli. By adjusting the feedback provided to the participant,

we could further study interaction bandwidth under different modalities of sensory inputs. By

using a different type of robot, we could study movements of other body parts, such as hands or

legs.

In many neuromotor impairments, such as stroke, reaction times are delayed [168]. Our

method can be used for quantitative assessment of motion and/or interaction bandwidth for

individuals with neuromotor impairments. We can use it to examine deficits in receiving and

interpreting sensory feedback due to a neuromotor disorder and determine how these deficits

affect dynamic performance. Given this information, robotic systems focused on assistance

or rehabilitation can tailor the interaction to the capabilities of that particular individual. In

our ongoing work, we are looking at the impact of hemiparetic stroke on motion bandwidth

post-injury.
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While dynamic motion is part of many daily activities, such as walking, carrying a bag

of groceries, or catching a falling object, current clinical assessments largely focus on static

and quasi-static movements, because we do not have well-established methods for quantifying

dynamic performance. A reliable, quantitative assessment of dynamic motion can have signif-

icant positive implications for translational research and clinical practice. In research, it can

improve our ability to study the underlying causes of dynamic deficit. In clinical practice, it can

be used for (1) precise tracking of disease progression, (2) studying therapeutic efficacy, and

(3) early diagnosis of deficits in movement coordination and motion bandwidth. Long-term,

our method can become the foundation of robot-assisted rehabilitation focused on re-training

dynamic movements.

2.5. Conclusions

In this work, we propose a method for measuring interaction bandwidth during pHRI. To

validate the method, we run a human subject study (n=7) and test frequencies 0.5-2.5Hz—

all within the normal range of a dynamic response for an able-bodied individual. We show

that our game successfully elicits dynamic motion at the tested frequencies. Secondly, we

show that haptic feedback helps guide the timing of participants’ motion compared to only

visual cuing. The method can be further used to analyze interaction bandwidth of human-robot

systems, particularly to tailor interaction parameters to the individual capabilities of people with

neuromotor impairments. Our ongoing work is applying the method to quantify deficiencies in

dynamic motion after a hemiparetic stroke.
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CHAPTER 3

Robotic assessment of motion bandwidth and dynamic deficit

The lack of sensitive tools to quantify dysfunction hinders our ability to study the underly-

ing causes of impairment and makes it difficult to demonstrate the effectiveness of therapeutic

approaches. Consequently, it slows down progress on developing novel treatment protocols, in-

cluding personalized disease-targeted interventions. While there exist well-established metrics

of static and quasi-static motion, such as reaching range, little emphasis has been placed on

quantifying dynamic response—controlled and timing-sensitive movements where the continu-

ous modulation of motor activity is required to respond to real-time stimuli. In this study, we

employ robot-assisted virtual tasks that require dynamic motion in the upper limb, and develop

metrics that assess dynamic capabilities by quantifying the frequency spectra of movement

during these tasks. We assess chronic survivors of hemiparetic stroke (n=13+48) across three

dynamic tasks. We find that stroke causes a significant decline in dynamic response at frequen-

cies above 1.5Hz in the paretic upper limb, with the degree of functional loss dependent on the

clinically assessed severity of motor impairment. Frequency-based metrics of dynamic motion

could be used to assess performance during everyday activities, such as brushing teeth, cook-

ing, or cleaning. Versatile quantitative assessment of dynamic motion can accelerate progress

in understanding and rehabilitating functional dynamic motion in individuals with neuromotor

disorders.
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Figure 3.1. Tasks with resonant frequencies enable assessment of an individual’s ability to
generate dynamic motion. Dynamic motion that requires fast but controlled actions plays a
key role in activities of daily living, such as brushing teeth, catching a falling object, or mov-
ing a cup of water without spilling. The ball-in-bowl task can be set to test for a dynamic
response at any frequency. In our experiments, we assess motion at frequencies between 0.5Hz
and 2.5Hz—encompassing the range that able-bodied individuals are capable of and use in their
daily activities.

3.1. Introduction

Many activities of daily living (ADLs), such as self-feeding or self-cleaning, involve dy-

namic motion—fast, controlled, and timing-sensitive movements where the continuous modu-

lation of motor activity is required to respond to real-time stimuli. For fast coordinated motion,

able-bodied individuals rely on an intact lateral corticospinal tract—the fastest and most direct

pathway from the brain to distal limbs. During neuromotor disorders, fibres in the corticospinal

tract can be significantly severed. Moreover, individuals might experience damage to other parts

of the nervous systems that control motor activity, such as the motor cortices, the cerebellum or

the internal capsule. While the effect of a neuromotor disorder on dynamic motion can vary de-

pending on how and where the damage occurs, the underlying changes can significantly impede

patients’ ability to perform routine ADLs [115].
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To better understand the changes in dynamic performance in impaired individuals, both clin-

icians and researchers rely on established assessments of impairment, such as the Fugl-Meyer

Assessment (FMA) or the Unified Parkinson Disease Rating Scale (UPDRS). Of note, clinical

assessments primarily assess static and quasi-static movements—quantifying movement range

or independent joint control—and devoting little focus to functional dynamic motion. For ex-

ample, during the Fugl-Meyer Assessment for the Upper Extremity (UE-FMA)—a clinical as-

sessment of upper-limb performance after a stroke—only 6 out of 66 points are allocated to

assess speed and coordination—qualities of motion that explicitly affect the patient’s ability to

generate dynamic motion [76]. Moreover, similar to other observer-based clinical assessments,

the FMA is known to be subjective and relatively coarse, making it difficult to reliably quantify

subtle but clinically important functional changes [164]. Due to the lack of reliable metrics to

assess dynamic movement, the impact of neuromotor impairments on dynamic performance is

not well understood. There is a need for improved assessment methods for the evaluation of

dynamic motion in neuromotor disorders.

With the development of wearable sensors and robotic technology, there has been significant

progress in designing and validating assessment methods [21, 101, 135, 183], as we describe in

more detail in Section 3.2. With sensing technology becoming more affordable and more wide-

spread (many individuals already wear a motion tracker on their wrist), there is potential for

continuous, quantitative tracking of motion quality. Robotic technology has already made a

profound impact on our understanding of sensorimotor function as well as motor learning and

re-learning [66, 75, 195]. Using quantitative metrics of motion, wearable sensors and robotic
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devices can help address the limitations of current clinical measures, providing a reliable, quan-

titative approach for measuring losses of dynamic function associated with sensorimotor im-

pairments.

In this work, we employ a novel methodology for assessing dynamic performance called

QADR—Quantitative Assessment of Dynamic Response, and use it to assess a decrease in

motion bandwidth due to hemiparetic stroke. We assess dynamic performance by evaluating the

frequency response in motion during completion of three virtual tasks. Our first task is loosely

based on the real-world activity of carrying a cup of water without spilling, similar to the virtual

tasks used in prior studies [135,173,177]. It can assess an individual’s ability to generate motion

at a prescribed frequency [101], offering an estimate of motion bandwidth—the body’s ability

to execute motor commands in response to a desired change in speed and/or direction of motion.

The other two tasks give the individual freedom to move and change direction at frequencies

at the upper bound of their motion bandwidth. The second task involves virtual hammering of

nails into a wall, while the third task requires an individual to hit objects that randomly appear

in their virtual environment at an increasing pace. The tasks are meant to be representative

of other dynamic activities that we perform in our daily lives, such as cooking, cleaning or

tooth-brushing, as illustrated in Fig. 3.1. In our experiments, the virtual task environment is

paired with an assistive robot that is able to provide (1) task-specific haptic feedback as well

as (2) variable support for the arm against gravity. In future studies, the assessment could be

performed using a wearable sensor, e.g., a bracelet with an inertial measurement unit (IMU) for

at-home monitoring [124].

While stroke is a leading cause of disability in developing countries [32], post-stroke changes

in dynamic performance are not well-understood. Due to the prevalence of stroke [13] and the



66

nervous system’s capacity for neuroplasticity [50], stroke survivors are well-positioned to ben-

efit from a better understanding of a post-stroke loss in dynamic motion capabilities. Using

quantitative assessments, it has been shown that stroke affects static and quasi-static metrics of

motion—stroke survivors experience a decrease in reachable workspace [65], increased error in

precision of motion [47], as well as delays in initiation and termination of movement [40, 168].

At the same time, they experience a less-studied difficulty with dynamic motion. As an ex-

ample, they have lower ability to adapt when moving inside a force field, where an internal

model of motion dynamics is required to compensate for the external forces [180]. They also

experience difficulty when asked to tap in rhythm with auditory cues at 1.25Hz—a task that

requires continuous modulation of muscle activity to succeed [30]. Here, we aim to quantify

changes in motion bandwidth within reachable workspace of the upper limb due to a hemi-

paretic stroke. We propose a versatile, quantitative evaluation of dynamic motion that could

offer a task-independent approximation of the functional challenges that individuals with stroke

experience in everyday life. The proposed results can begin to give insight into the scientific

causes of impaired dynamic movement, and pave the way for novel rehabilitation protocols

focused on recovering functional dynamic capabilities.

As our first contribution, we show that a post-stroke impairment can be identified and

quantified by evaluating the frequency spectra of movement during dynamic tasks. We

show that frequency-based metrics can detect post-stroke impairment and that the assessment

generalizes across three dynamic tasks. Moreover, we show that there is a significant moderate

correlation between clinically determined levels of impairment (via UE-FMA) and a reduction

in motion bandwidth (measured using frequency-based metrics).
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As our second contribution, we show that stroke decreases motion bandwidth, affect-

ing motion above 1.5Hz. Across tasks, we find that moderate-severe stroke hinders dynamic

response at higher frequencies (> 1.5Hz) without affecting dynamic response at lower frequen-

cies (< 1.5Hz). Moreover, stroke lowers patients’ default frequency of fast directional move-

ment in free-form dynamic tasks—stroke survivors exert more energy at lower frequencies with

their paretic arm than their nonparetic arm in the tested tasks.

As our third contribution, we show that a shift in reliance on descending pathways for

motor control might be contributing to the decrease in dynamic function. While shoulder

abduction loading has been correlated with an increased reliance on indirect pathways for motor

control [60, 129], we observe that loading impacts participants’ performance around 1.5Hz—a

range of motion frequencies where stroke survivors’ motion begins to be affected by stroke.

3.2. Background: Quantitative Metrics of Neuromotor Disorders

Clinical assessments of impairment act as the gold standard in clinical practice and in trans-

lational research. For stroke, these assessments include: the FMA [76], Chedoke-McMaster As-

sessment (CMSA) [77], MRC Scale of Muscle Power, the Wolf Motor Function Test (WMFT),

or the Action Arm Research Test (ARAT). While clinical assessments focus on evaluating static

and quasi-static movement characteristics (e.g. movement range or grip strength), many include

a small component that evaluates dynamic motion, e.g., finger/toe/heel tapping in Parkinson’s

Disease [139,146] or the nose-to-knee test in the FMA for stroke [76]. For example, in the knee-

to-nose test, individuals are asked to use their index finger to move between their knee and nose

5 times as fast as they can while seated in a chair. Some tests are specifically designed to assess

functional abilities that combine many aspects of movement. Examples include the WMFT or
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the ARAT. While useful in providing an approximate rating of impairment level, clinical tests

require a highly trained clinician to administer and their execution is time-consuming; they pro-

vide a subjective coarse-grained measurement with a bias in the scores from floor/ceiling effects

and inter-rater variability [164].

To provide more consistent and objective measures of impairment, significant research ef-

forts have been made to introduce reproducible, quantitative metrics. Established quantitative

assessments evaluate reaches towards a stationary target, characterizing parameters, such as

error from target, movement speed, and reaction time [157]. Other evaluations measure reach-

able workspace—the area that an individual can reach with their hand without movement of the

trunk [66,116]. Although quantitative and reproducible, the tests often analyze movements that

isolate individual degrees of freedom, overlooking functional motion. They put little empha-

sis on understanding the effect of impairment on an individual’s ability to perform functional

dynamic tasks. As a result, the scores do not adequately reflect a patient’s ability to engage in

ADLs, such as self-cleaning or eating and drinking.

More recently, research efforts have been made to assess dynamic-movement capabilities.

A large body of work studies post-stroke changes in the speed of motor reflexes [36, 86]. An-

other body of work investigates how people with neurological impairments generate corrective

movements—in reaction to perturbations of applied forces. As an example, Takahashi et al.

study adaptation when moving inside a force field [180]. Lowrey et al. characterize delays in

the initiation of corrective movements when a perturbation is applied to the hand during reach-

ing [121]. However, both reflexive and corrective movements are known to rely on different

mechanisms than conscious, voluntary motion [48].
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To investigate dynamic deficits in volitional motion, researchers have developed robot-

assisted dynamic tasks that require coordinated, timing-sensitive movements. Calautti et al.

assess how well stroke survivors generate movements in synchrony with a repeating auditory

cue [30]. Tyryshkin et al. introduce the object hit task [183], which we describe in more detail

in Section 3.3.1. Using the same KINARM platform, Bourke et al. proposes and validates the

object hit-and-avoid task [21], increasing task complexity. Our prior work [101] has validated a

virtual ball-in-bowl task, enabling the characterization of interaction bandwidth in able-bodied

individuals. Similarly, Nayeem et al. have proposed a physical ball-in-bowl platform for assess-

ing functional object interactions after stroke during reaches between two targets [135]. Using

these types of tasks, researchers can begin to quantitatively assess functional dynamic motion.

As a baseline, researchers can evaluate task success, similarly to how it is done during task-

based clinical assessments, e.g., the WMFT or ARAT. Additionally, by sensorizing the patient

during these tasks, researchers can record movement trajectories and characterize an individ-

ual’s motion qualities. Continuous measures of dynamic movement can help assess functional

deficits beyond relying on task success. While multiple metrics of motion have been proposed

in prior work [96], to date no metric has gathered enough evidence to warrant wide adoption.

Researchers have proposed metrics that quantify jerk or motion smoothness [135], assuming

that smooth motion is desirable. Others have built predictive models of motion that enable real-

time quantification of motion predictability [81, 122]. In robot-assisted rehabilitation, human

movement is often evaluated based on the error of an individual’s position and/or velocity from

an optimal solution over time [22, 149]. Of note, it is not always straightforward to identify

the optimal, or even adequate, time-based trajectory for comparison [71]; any theoretically op-

timal control policy cannot a priori account for the unique physical and cognitive limitations
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experienced by an individual with neuromotor impairments. In contrast, QADR evaluates mo-

tion in the frequency domain, providing a quantitative assessment of motion bandwidth. Unlike

existing methods, QADR allows for flexibility in performance over time and does not make a

priori assumptions about the task solution. It allows for multi-joint, multi-degree-of-freedom

assessment with or without support of the limb against gravity. Given encouraging results from

the current study, which characterizes frequency-based assessments across three dynamic tasks

(two without a resonant frequency), QADR shows promise as a an assessment tool for quanti-

fying dynamic motion capabilities during daily activities.

3.3. Quantitative Assessment of Dynamic Response (QADR)

We assess post-stroke deficits using frequency-based metrics across three dynamic tasks, as

illustrated in Fig. 3.2. We design and collect data for two tasks as part of our study, i.e., the

ball-in-bowl task and the nail-and-hammer task. Additionally we analyze data from another

dynamic task, i.e., the object hit task, designed and validated by Tyryshkin et al. during prior

work [183].

3.3.1. Dynamic tasks

The ball-in-bowl task. The ball-in-bowl task is loosely inspired by the real-world activity of

moving a cup of water without spilling. In the task, the location of the robot end-effector is

mapped to the location of a bowl on a virtual table. There is a virtual ball rolling around inside

the virtual bowl and the participant experiences haptic feedback corresponding to the interaction

force between the bowl and the ball. The goal of the task is to collect as many targets as possible

within a 30-second window. There are three conditions that have to be met for an individual
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Figure 3.2. Frequency-based assessment is a versatile metric, relevant to quantifying im-
pairment during functional tasks. During tasks with resonance (e.g., the ball-in-bowl task),
interactive haptic probing enables measuring one’s dynamic response at specific frequencies.
During other dynamic tasks without a natural frequency (e.g., the object hit or nail-and-hammer
tasks), frequency assessment quantifies an overall shift in motion bandwidth.

to be able to collect a target: (1) The individual’s arm must be lifted above the haptic table,

indicated to the participant by the bowl turning blue. (2) The virtual ball’s total energy must

be low enough to be oscillating no higher than one third of the bowl’s height, indicated to the

participant by the ball turning green. (3) The center of the virtual bowl must be aligned with the

target location.

The main challenge of the task is to dampen out the ball’s energy and prevent it from falling

out of the bowl. The ball starts oscillating inside the bowl and is injected with a small amount

of energy every time that a target is collected. When the participant moves in synchrony with

the ball, they amplify the ball’s oscillations and allow it to gain energy. When the participant

counteracts the ball’s movements, they dampen out its energy and prevent it from falling out of

the bowl. To succeed, the participant must generate timely movements that counteract the ball’s

oscillations. The simulated ball-in-bowl task has a software-defined natural frequency, which

we modulate by changing the length of the modelled pendulum. Modulating task resonance
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enables us to assess ability to generate motion at a specific frequency. In our experiment, we

test four natural frequencies ftask = [0.5Hz,1Hz,1.5Hz,2.5Hz]. The task was introduced in

our prior work [98, 101]. The current version of the task has been validated with able-bodied

individuals [101] and is available online under the MIT license [99].

The nail-and-hammer task. The nail-and-hammer task is very similar to the real-world

activity of hammering nails into a wall. In the task, the nails are located at one of 11 angles

between−50 degrees and +50 degrees from center, as visualized in Fig. 3.5. Each nail requires

7 hits to be fully completed. For a nail to move into a wall, the participant’s motion has to be

aligned parallel to the nail ±20 degrees. At any given moment one nail is “active”, indicated

with bright colors on the screen and haptically rendered in the participant’s workspace. Once

fully hammered, the nail becomes “inactive” and a new nail appears. We instruct participants to

hammer nails as fast as they can during each 30-second trial. The game requires fast coordinated

motion.

The object hit task. The object hit task requires participants to hit away virtual balls moving

towards them in their workspace using virtual paddles attached to each hand. The objective of

the task is to hit away as many balls as possible. The balls appear at random from 10 equally-

spaced bins at the top of the workspace, with a total of 30 balls released from each bin during a

2-minute trial. The number of balls that appear on the screen at a given moment and their speed

increase throughout the task such that one single, slow-moving (∼10 cm/s) ball is visible on

the screen at the beginning of the task and a maximum of 16 fast-moving (∼50 cm/s) balls are

present towards the end of the task. To simulate feedback of object contact, the robot generates

a 50 ms force pulse, based on the ball’s acceleration, following contact with the paddle. The

task is described in more detail by Tyryshkin et al. in a previously published article [183].
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Figure 3.3. Experiment 1 setup. Participants are seated in a Biodex chair with their arm
strapped into a forearm orthosis and connected to a robot end-effector via a load cell. A vir-
tual game is visualized on a screen in front. The robot provides haptic feedback about the virtual
game environment and can be used to support the arm against gravity.

3.3.2. Frequency-based metrics

We assess motion by looking at the spectral properties of forces exerted by a participant during

each task. In this study, we analyze forces exerted by the upper limb in the x- and y-direction in

the transverse plane. A discrete fast Fourier transform (FFT) is performed on each task trial to

obtain the amplitude of the signal for a range of frequencies up to 4Hz. In a frequency spectrum,

the relative amplitude of a signal at a certain frequency provides us with insight about partic-

ipants’ ability to switch movement direction at that frequency. The signal in the frequency

domain is normalized by the energy exerted by a participant throughout a task attempt. We

use the following standard definition of a signal’s energy: E = ∑A(ω)2dω where ω and A are

the frequency and amplitude, respectively. After normalization by E, the total energy intro-

duced into the system during each task attempt is equal to one, allowing us to do trial-to-trial
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and subject-to-subject comparisons. To obtain a single estimate of the frequency content of

movement in the 2D plane, we add the x and y frequency spectra. The resultant spectrum is

re-normalized and visualized throughout this chapter.

Energy near resonance. In the ball-in-bowl task, the primary frequency metric is en-

ergy@resonance [101]. This metric quantifies the energy exerted by the participant at the

task frequency ±0.3Hz (equivalent to a window size of w f = 0.6Hz). We compute the en-

ergy@resonance measure for each ball-in-bowl trial, at four task frequencies: 0.5Hz, 1Hz,

1.5Hz, 2.5Hz. Timesteps, where the participant is resting their arm on the haptic table or

when the ball is “green” (has little oscillations), are not counted towards the energy@resonance

metric. The metric is designed for tasks with resonance that require movement at a specific

frequency that is known a priori.

Percent loss in function. As a secondary metric in the ball-in-bowl task, we use the per-

centage decrease in energy@resonance. This metric quantifies the loss in function in the paretic

arm compared to the nonparetic arm, and is defined as follows:

E@Rnonparetic−E@Rparetic

E@Rnonparetic
×100%,

where E@R is the energy@resonance. A positive percentage indicates worse performance on

the paretic side, while a negative percentage indicates better performance on the paretic side.

The frequency spectra for each participant’s movement with and without loading are additively

combined and renormalized prior to computing the percent loss in function at each task fre-

quency.

Median frequency. For the other two tasks that do not have a natural frequency, we use a

primary metric based on the median frequency of motion. Specifically, we find the frequency
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value that defines the median frequency of movement generated by a participant in the range

0Hz to 4Hz. This is a versatile metric that could be used to assess motion in a range of dynamic

tasks beyond those included in this study.

Average frequency amplitude. As a secondary metric for the nail-and-hammer and ob-

ject hit tasks, we introduce average amplitude. This metric, similar to the energy@resonance,

quantifies the energy exerted by the participant at a specific frequency ±0.5Hz (equivalent to

a window size of w f = 1Hz). We calculate an average frequency amplitude for the motion

range 0Hz to 3.25Hz in increments of 0.25Hz (with overlapping windows) to find bands in mo-

tion bandwidth that are affected by stroke during free-form dynamic tasks without a resonant

frequency.

3.3.3. Clinical metrics

We use the Fugl-Meyer Assessmenet for the Upper Extremity (UE-FMA) as the main clinical

metric of stroke severity. Th UE-FMA offers a score in the range 0 to 66, with higher scores

indicating better performance. Two versions of the UE-FMA score are used: (1) full UE-

FMA, and (2) UE-FMA (arm only), where only shoulder/arm components of the assessment

are considered. The UE-FMA (arm only) score excludes explicit assessment of the hand and

wrist, offering a score in the range 0 to 42. Moreover, we separately consider the knee-to-

nose component of the UE-FMA, defined as the time required to move one’s index finger from

knee to nose 5 times using the paretic arm. In our analysis, two versions are considered: (1)

knee-to-nose (paretic) and (2) knee-to-nose (normalized difference), calculated as

timeparetic− timenonparetic

timeparetic
.
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Table 3.1. Participant demographics for experiment 1.

Ball-in-Bowl Nail-and-Hammer Age Stroke
Side

Hand
Dominance UE-FMA knee-to-nose

Y Y 68 left right 51 4.77
Y Y 64 right right 49 5.1
N Y 63 right right 31 13.86
Y Y 55 left right 30 6.87
Y Y 65 right left 52 5.87
N Y 57 right right 58 3.84
Y N 54 left right 17 –
Y Y 72 right right 13 –
Y Y 51 left right 32 29.4
N Y 61 right right 26 11.94
Y N 63 right right 7 –
Y Y 75 right left 9 –
Y Y 66 left right 21 12.9

The knee-to-nose test is one of the few components of the UE-FMA that assesses speed and

coordination, necessary for dynamic motion.

3.4. Experimental methods

We analyze data from two experimental studies. In experiment 1, we recruit chronic sur-

vivors of stroke and have them complete the ball-in-bowl and nail-and-hammer tasks (n=13). In

experiment 2, we analyze data from a prior study [183]. This study assesses survivors of stroke

in the acute inpatient setting (<100 days since stroke) in the object hit task (n=48).

3.4.1. Experiment 1: Participants

We recruited thirteen individuals to complete the study. All participants expressed verbal and

written consent to participate. The study protocol was approved by the Northwestern University

Review Board under IRB STU00021840. The group of tested individuals was 51-75 years of
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age (with an average of 63). There were 4 females and 9 males; 11 were right-hand dominant,

2 were left-hand dominant.

All individuals were chronic survivors of hemiparetic stroke. The time from their stroke

ranged from 4 to 27 years (with an average of 15 years). We recruited participants with varying

levels of impairment, as assessed by the UE-FMA. The group of study participants included

4 individuals with mild impairment (UE-FMA > 45) and 9 individuals with moderate-severe

impairment (UE-FMA ≤ 45).

All participants completed the same amount of trials on each side. To avoid a bias from

fatigue and/or task learning, we randomly assigned the arm with which individuals began per-

forming our experimental tasks. Due to time constraints, two participants did not complete the

nail-and-hammer task, as noted in Table 3.1. Due to an inability to understand the task, three

participants were not included in the ball-in-bowl analysis, as noted in Table 3.1 and explained

in more detail in the Appendix.

3.4.2. Experiment 1: Setup

A haptic environment is created using the Arm Coordination Training 3-degree-of-freedom

device (ACT-3D) [101]. The ACT-3D is the combination of an admittance controlled Haptic-

MASTER robot, a 6-degree-of-freedom load cell (JR3 load cell, Woodland, CA) at the robot’s

end-effector, and a Biodex chair. The participant’s forearm is attached to the load cell using a

forearm-wrist-hand orthosis. This setup, as shown in Fig. 3.3, allows the participant to directly

control the location of the end-effector with movements of their arm. Active movements are

captured as force readings on the load cell and, using the robot’s internal controller, translated

into movements of the end-effector in 3D space.
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The robot is able to provide partial or full support of the arm against gravity by modulating

abduction loading at the shoulder. It is also able to render haptic objects and forces in the

upper-limb workspace of the individual. A virtual task is visualized on a screen in front of the

participant. Forces exerted by study participants are recorded at 20Hz for the ball-in-bowl task

and 50Hz for the nail-and-hammer task.

Participants can move in 3 dimensions. Their xy-motion is mapped directly onto the location

of the virtual bowl or virtual hammer. In the z direction, participants start from a home position

z = 0, resting on a haptic table, rendered by the robot. During task attempts, participants are

asked to keep their arm lifted anywhere above the haptic table to avoid imposing dynamic con-

straints on the ball-in-bowl system. Their arm weight is either fully supported against gravity—

the load cell readout in the z direction is near zero, making the arm feel buoyant in space—or

they experience a force equivalent to 35% of their maximum shoulder abduction—on average

for a stroke survivor this loading is equivalent to supporting arm weight. Movement in the z

direction does not affect the simulation.

3.4.3. Experiment 1: Procedure

Each participant comes in for two sessions. During one of the sessions, a licensed physical

therapist conducts a Fugl-Meyer Assessment for the Upper Extremity. We work with the same

therapist for the whole study to limit variability in the clinical scores from inter-rater variability.

An experimental session starts with measuring arm weight and shoulder strength using the

robot. We position the participant with their shoulder resting on the backrest, shoulder abduction

at 80 degrees, horizonal shoulder abduction at 40 degrees, and elbow flexion at 90 degrees. We

ask the participant to attempt to lift their forearm as hard as they can, while we set the robot
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to emulate a very stiff spring (k=1000). We repeat this measurement 3 times and record the

highest measured force in the Z-direction. We then define the individual’s reachable workspace

by asking each participant to “clean” the virtual table. Participants are instructed to cover the

biggest area on the table that they can reach without allowing their shoulder to leave the back of

the Biodex chair. During later task attempts, targets are placed only within this reachable area.

We then proceed to a training period, when we explain the tasks. We allow numerous

attempts at the tasks until the participant feels comfortable with the experimental setup and they

seem to understand the task objective. We offer tips and guidance as well as encourage the

participant to ask questions. The training period usually takes 15-20 minutes with at least 10

task attempts.

All individuals complete the ball-in-bowl task at four frequencies (0.5Hz, 1Hz, 1.5Hz, and

2.5Hz) and under two task conditions (with/without loading). Each experimental set of condi-

tions is attempted by the participant 9 times: in 1 set of 5 during the first session and 1 set of

4 during the second session. Task frequency and loading level are selected in random order to

control for potential effects of learning and/or fatigue. Each study volunteer performs a total of

154 task attempts with each attempt lasting 30 seconds. We end the second experimental ses-

sion with the nail-and-hammer task. Each participant performs 24 attempts at the task (6 with

each arm at each loading level); one attempt lasts 20 seconds. We take at least two 5-minute

breaks during each session, as well as shorter breaks throughout the experiment as needed.

3.4.4. Experiment 2: Participants

A total of 48 subjects were analyzed for the object hit task. All participants were individuals

with acute hemiparetic stroke within the first 100 days of the incident and an average of two
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weeks from the incident. Participants included patients recruited from Providence Care (St.

Mary’s of the Lake Hospital, Kingston, ON). The study was approved by the Queen’s Univer-

sity Health Sciences and Affiliated Teaching Hospitals Research Ethics Board (#ANAT-024-05)

and subjects provided informed consent. More information about subject recruitment and de-

mographic data can be found in prior work [183].

3.4.5. Experiment 2: Setup & Procedure

The behavioural task was performed using a bimanual exoskeleton robot which measures limb

motion (KINARM, BKIN Technologies Ltd, Kingston, ON, Canada). Participants sat in a modi-

fied wheelchair base, and their arms were fitted in supports permitting movement in the horizon-

tal plane. Arm supports were adjusted such that the robot’s linkages aligned with the subject’s

elbows and shoulders. Subjects received visual feedback from a virtual reality system which

displayed fingertip position and virtual objects in the same plane as arm motion via a two-way

mirror. Direct vision of the hands and arms was occluded. The experimental setup is visualized

in Fig. 3.6. Functionally, the setup was similar to the setup in experiment 1 while allowing for

bimanual motion. Positions and velocities of the hands and balls were recorded with a sampling

frequency of 200 Hz.

3.4.6. Data analysis

Aggregate frequency spectra presented in this chapter are averaged across participants and re-

normalized. In creating the boxplot figures, we average across trials of a participant under

the same trial conditions so that each boxplot demonstrates the spread in performance across
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Figure 3.4. Example trajectories and frequency spectra for individual trials during the
ball-in-bowl task. While individuals with a more severe impairment (blue curves) have a
visibly smaller workspace, their movement within the workspace looks qualitatively similar.
Frequency-based metrics can help assess motion within the workspace by characterizing move-
ment dynamics—note that there are visible peaks in energy exerted near resonance for each trial.
All trials were completed in the fully supported condition; for the frequency spectra, resonant
frequencies for a given trial are indicated with a dotted line. Performance during trials with the
nonparetic arm is used to confirm that a participant understands the task, as explained in more
detail in Appendix B.1.

participants. All statistical analyses are performed on unaggregated and unfiltered frequency

spectra and metrics.

Our experiment aims to test four hypotheses: (H1) frequency-based metrics capture a re-

duction in motion bandwidth due to a stroke across a range of dynamic tasks, (H2) there is

a relationship between clinically determined levels of impairment (as characterized using ex-

isting clinical assessments) and a reduction in motion bandwidth (measured using QADR),
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(H3) stroke affects motion bandwidth, reducing ability to generate motion at higher frequencies

(above 1.5Hz), and (H4) loading exacerbates loss in dynamic function after a stroke.

To assess H1, we perform two statistical analyses. We use a one-way rm-ANOVA for the

median frequency metric for the nail-and-hammer task and a one-way ANOVA for the object

hit task with arm (paretic/nonparetic) as a factor.

To assess H2, we perform three statistical analyses. We repeat the rm-ANOVA for the me-

dian frequency metric for the nail-and-hammer task with stroke severity (mild/moderate-severe)

as a factor, in addition to arm (paretic/nonparetic) and loading level. We run a post-hoc t-test

with a Bonferroni correction for multiple comparisons to compare the median frequency on

the paretic side for mild and moderate-severe participants. Secondly, we calculate the Pear-

son R and Spearman rank correlation coefficients for the nail-and-hammer task—we test the

correlations between clinical assessment scores and frequency-based task metrics.

To assess H3, in the ball-in-bowl task we compare energy@resonance during trials com-

pleted using moderate-severe participants’ paretic arm to trials completed with their nonparetic

arm. For each task frequency, we fit a linear mixed model using the lmer function [11] in

R [150] following Winter’s guidance [194] for handling repeated measures experiments. The

linear mixed model provides the flexibility to exclude 19 trials with less than 1.25s where the

ball is unsafe and the arm is lifted. We use the following expression:

E@R~Arm*Loading+(1+Arm*Loading Participant),

with fixed effects for arm, loading, and the interaction between arm and loading as well as

random intercepts and slopes within each participant and experimental condition. We use Wald
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Chi-squared tests to evaluate for statistical significance; similar to an ANOVA, the Wald Chi-

squared test evaluates whether a given factor explains some of the variation in an outcome

measure. Secondly, we perform a one-way rm-ANOVA for the effect of task frequency on

the percent loss in function measure in the ball-in-bowl task, followed by paired post-hoc t-

tests with a Bonferroni correction for multiple comparisons. In the other two tasks, we use

paired t-tests on the average amplitude metric comparing performance on the nonparetic side to

performance on the paretic side across frequencies between 0.5Hz and 2.75Hz. For the nail-and-

hammer task, we run separate t-tests for participants with mild and moderate-severe stroke. For

the object hit task, we run an ANOVA with arm (paretic/nonparetic) and trial half (first/second)

as factors.

To assess H4, we look at participants with severe stroke and the 1.5Hz task. For each arm,

we fit a linear mixed model using the expression,

E@R~Loading+(1+Loading Participant),

with a fixed effect for loading as well as random intercepts and slopes within each participant

and loading condition. We use Wald Chi-squared tests to evaluate for statistical significance.

For each statistical test, we evaluate the assumptions using the Shapiro-Wilk test for nor-

mality and Mauchly’s test for sphericity.

3.5. Results

3.5.1. Frequency-Based Metrics Capture Post-Stroke Reduction in Motion Bandwidth

We use QADR to quantify changes in motion bandwidth due to a hemiparetic stroke. As part

of experiment 1, participants with chronic stroke (n=10) perform the ball-in-bowl task under
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three task frequencies: 1Hz, 1.5Hz, and 2.5Hz. Example task trajectories are shown in Fig. 3.4.

While individuals with a more severe impairment have a visibly smaller workspace in the plots

in Fig. 3.4, their movement within the workspace looks qualitatively similar. As described

throughout this article, frequency-based metrics can help assess motion within the participant’s

reachable workspace. The frequency spectra for the ball-in-bowl trials are easier to interpret

than time-series trajectories—we see discernible peaks near resonance when visualizing task

trajectories in the frequency domain (refer to Fig. 3.4). By quantifying the magnitude of the

peaks near resonance in the ball-in-bowl task, we observe that a moderate-severe motor impair-

ment following a stroke impacts participants’ ability to generate motion within their reachable

workspace at frequencies above 1Hz. This change in motion bandwidth is visible in the aggre-

gate frequency spectra visible in Fig. 3.7 and is discussed in more detail in later subsections.

Secondly, we ask stroke survivors to complete the nail-and-hammer task. In Fig. 3.5, we

illustrate the aggregate frequency spectra of all participants (n=11). Moderate-to-severe stroke

(indicated with the color blue in Fig. 3.5) causes participants to exert less energy in the 2-4Hz

bandwidth and more in the 0.5-2Hz bandwidth. For participants with mild stroke (plotted in red

in Fig. 3.5), motion frequency is less affected, particularly for frequencies above 2Hz.

For each trial, we calculate the median frequency of motion during that trial. We observe

that in this free-form task, the median hammering frequency decreases from values around 2Hz

for the nonparetic arm to values around 1.7Hz for the paretic arm, as illustrated in the boxplot

on the right side of Fig. 3.5. In a rm-ANOVA, we observe that the median frequency of motion

is significantly reduced following stroke (F = 11.86, p = 0.007). These results suggest that

a frequency-based metric during a dynamic task, i.e., median frequency of motion during nail

hammering, can capture motion impairment due to a hemiparetic stroke.



85

Figure 3.5. Stroke lowers the default frequency of fast directional movement. (A) Ex-
perimental setup for the nail-and-hammer task. (B) Stroke survivors, particularly those with
moderate-severe stroke (blue curve), exert more high-frequency motion (above 2Hz) and less
low-frequency motion (below 1Hz) with their nonparetic arm, when completing the nail-and-
hammer task. Individuals with mild stroke (red curve) are less affected. P indicates paretic;
NP indicates nonparetic. (C) We observe that stroke significantly reduces the median frequency
of motion (p < 0.001) during a simulated nail-hammering task. Mild stroke survivors are less
affected than moderate-severe individuals post-stroke (p < 0.001).

Figure 3.6. Even in a task that was not designed for frequency analysis of movement,
frequency-based metrics capture dynamic loss due to a stroke. (A) Experimental setup for the
object hit task. (B) Stroke survivors exert more high-frequency motion (above 2Hz) and less low-
frequency motion (below 1Hz) with their nonparetic arm, when completing the object hit task.
(C) We observe that stroke significantly reduces the median frequency of motion (p < 0.001)
during the object hit task (introduced by Tyryshkin et al. [183]). Stroke affects movement dif-
ferently during the first half of the task, when targets appear slowly starting at 0.5Hz, than the
second half of the task, when targets appear at a higher rate up to 3.5Hz (p = 0.01).

As part of experiment 2, we analyze motion from the object hit task from a prior study [183].

Aggregate frequency spectra are visualized in Fig. 3.6. Again, note that study participants

exert less energy below 2Hz and more energy above 2Hz with their paretic arm than with their

nonparetic arm. For each trial, we calculate the median frequency of the forces exerted by

the participants (n=48). In a rm-ANOVA, arm (paretic/nonparetic) is a significant factor for
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Figure 3.7. Stroke affects dynamic response at higher frequencies (≥1.5Hz). (A) All partic-
ipants are able to generate motion at the resonant frequency of the task with their nonparetic arm
(purple curve). Participants with mild stroke achieve similar performance at moving at the task’s
resonant frequency using their paretic arm (red curve) as their nonparetic arm (purple curve).
Participants with moderate-severe stroke (blue curve) have difficulty generating motion above
1Hz. Even when the task frequency increases, moderate-severe participants continue exerting
a significant proportion of their energy around 1Hz. (B) The energy@resonance metric quanti-
fies the decline in motion bandwidth. At 2.5Hz, arm significantly affects energy at resonance for
moderate-severe participants (p< 0.001). Error bars represent standard error across participants.

the object hit task (F = 9.19,p = 0.004). These results suggest that a frequency-based metric

can be used to quantify impairment even during a dynamic task that was not designed for a

frequency-based analysis of motion.

Across all three dynamic tasks, frequency-based metrics are sensitive to loss of func-

tion due to a stroke.

3.5.2. Frequency-based metrics correlate nonlinearly with clinical assessments

As another validation of a frequency-based metric, we test for its sensitivity to clinically di-

agnosed levels of impairment. At a gross level, we observe that the primary outcome metrics
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Table 3.2. Correlations between frequency-based metrics in the nail-and-hammer task and
clinical assessments. The table includes Spearman and Pearson correlation coefficients; p-
values are listed in brackets.

paretic δ (nonparetic-paretic)

Pearson Spearman Pearson Spearman

UE-FMA -0.58 (0.05) -0.74 (0.008) 0.6 (0.04) 0.65 (0.02)

UE-FMA
(arm only) -0.54 (0.07) -0.63 (0.03) 0.62 (0.04) 0.71 (0.01)

knee-to-nose
(normalized difference) 0.47 (0.12) 0.59 (0.04) -0.57 (0.05) -0.64 (0.02)

knee-to-nose
(paretic) -0.37 (0.32) 0.1 (0.8) -0.26 (0.5) -0.14 (0.7)

in the nail-and-hammer task (median frequency) are significantly lower for individuals with

moderate-severe stroke than for individuals with mild stroke (t = −7.2,p < 0.001). In a rm-

ANOVA, severity (mild/moderate-severe) and arm (paretic/nonparetic) have an interaction ef-

fect (F = 3.58,p = 0.07). These results suggest that the frequency-based metrics are sensitive

to clinical levels of impairment.

Secondly, we compare the median frequency in the nail-and-hammer task to participants’

UE-FMA scores. Four versions of the UE-FMA score are considered: (1) full UE-FMA, (2)

UE-FMA (arm only), (3) knee-to-nose (paretic), and (4) knee-to-nose (normalized difference).

Two versions of the median frequency are considered: (1) paretic and (2) normalized difference

between nonparetic and paretic. We do not calculate correlations for the object hit task, because

UE-FMA scores were not available. We also do not calculate correlations for the ball-in-bowl

task, because unlike the UE-FMA it does not offer a holistic assessment of motion bandwidth

but rather a quantification of performance at a specific frequency.
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Both frequency-based task metrics display significant moderate Pearson and Spearman cor-

relations with the full UE-FMA (see Table 3.2). Many task metrics significantly correlate with

the partial UE-FMA and knee-to-nose assessment. Our initial hypothesis was that there would

be a higher correlation of task metrics with the dynamic knee-to-nose metric compared to the

full UE-FMA. This is not the case. One plausible explanation is that some participants’ impair-

ment was so significant that they were not able to complete the knee-to-nose movement. Hence,

we have less statistical power for the knee-to-nose correlation analysis. Overall, these results

offer promising validation for frequency-based metrics, suggesting their adequacy for assessing

changes in motion quality due to a neuromotor disorder.

Of note, loss in dynamic function seems to correlate nonlinearly with clinical measures.

Across the board, the Spearman coefficients (which test for a monotonic relationship between

two variables) are higher than Pearson correlations (which test for a linear relationship between

two variables). While we observe higher levels of clinically diagnosed impairment to correlate

with lower levels in dynamic performance, we do not observe frequency-based metrics to have

an equally strong linear dependence on the UE-FMA score. This trend could be suggestive

of the fact that there are aspects of dynamic movement that are not captured by the clinical

assessment and that loss of dynamic function does not directly correlate to loss of static motion

capabilities.

A similar trend is observable in the ball-in-bowl and nail-and-hammer analyses. We find

that for individuals with mild stroke, in contrast to moderate-severe stroke, none of the primary

metrics are significantly different for the paretic vs. nonparetic arm. As an example, we see

in Fig. 3.7 that the energy@resonance metric overlaps for the mild paretic and nonparetic arms

across all three tested task frequencies. Similarly, we find that the median frequency of nail
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Loss in Function in Paretic Arm Compared to Nonparetic Arm
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Figure 3.8. Stroke survivors experience an increasing loss in function in their paretic upper
limb with increasing frequency. The whiskers on the box plots illustrate inter-subject variabil-
ity. Note that with increasing frequency, functional loss increases. [TBD] Report statistics here.
Maybe a paired t-test for 1Hz, 1.5Hz, 2.5Hz?

Figure 3.9. In a task without resonance, we observe a decrease in movement at frequencies
above 1Hz. In the nail-and-hammer task, individuals with moderate-severe stroke exert less
energy above 2Hz on their paretic side than their nonparetic side (blue vs. purple boxes), and
more energy below 1Hz. Motion bandwidth is mostly preserved for individuals with mild stroke
(red vs. purple boxes).

hammering is near 2Hz for both paretic and nonparetic arms for individuals with mild stroke,

in contrast to individuals with moderate-severe stroke (refer to Fig. 3.5).

Impairment severity correlates moderately with loss in dynamic function. The corre-

lation appears to be nonlinear.
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Figure 3.10. In a task not designed for frequency analysis, we observe a decrease in move-
ment at frequencies above 1.5Hz. In the object-hit task, individuals with stroke exert less
energy above 2.25Hz on their paretic side than their nonparetic side (blue vs. purple boxes), and
more energy below 1.5Hz.

3.5.3. QADR Reveals a Post-Stroke Effect on High-Frequency Motion

We calculate energy@resonance for each participant during individual trials for three task fre-

quencies in the ball-in-bowl task (see Fig. 3.7). Arm has a significant effect on the energy at

resonance for the 2.5Hz task (χ2 = 12.4, p < 0.001), while it does not result in a significant ef-

fect on the lower frequency tasks (1Hz (χ2 = 0.0, p = 0.970) and 1.5Hz (χ2 = 0.2, p = 0.645)).

As visible in Fig. 3.7C, individuals with moderate-severe stroke exhibit a peak to the left of

2.5Hz, suggesting they are experiencing difficulty moving fast enough to match the 2.5Hz res-

onant frequency. Similar behavior is exhibited by individuals with moderate-severe stroke for

the 1.5Hz task (see Fig. 3.7B), even though there is not yet a statistically significant decrease for

energy@resonance. Lastly, there is an interaction effect between arm (paretic/nonparetic) and

task frequency (χ2 = 15.9, p = 0.001), suggesting that a unilateral brain injury due to a stroke

affects performance differently at different frequencies.

As a secondary metric for the ball-in-bowl task, we analyze the percentage decrease in en-

ergy@resonance in the paretic arm compared to the nonparetic arm. Fig. 3.8 visualizes the
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metric for participants with moderate-severe stroke. Overall, we find that the percent loss in-

creases with increasing task frequency. While there is some variability among participants, the

median loss in function is around 0% at 1Hz, around 10% at 1.5Hz and around 40% at 2.5Hz, as

illustrated in Fig. 3.8. An ANOVA confirms that the resonant frequency of the ball has a statis-

tically significant effect on the percent loss in function (F = 16.9, p < 0.001). The percent loss

in function is significantly higher at 2.5Hz than it is at 1Hz (p = 0.017) or at 1.5Hz (p = 0.003).

In the nail-and-hammer task, we calculate an average amplitude metric at ten task frequen-

cies: 0.5Hz, 0.75Hz, 1Hz, 1.25Hz, 1.5Hz, 1.75Hz, 2Hz, 2.25Hz, 2.5Hz, 2.75Hz (see Fig. 3.9).

In a series of paired t-tests (reported in Table 3.3), we observe similar trends in performance as

in the ball-in-bowl task. At frequencies up to 1Hz, participants with moderate-severe stroke ex-

ert more energy on their paretic side. At 2Hz, the trend flips—participants with moderate-severe

stroke exert more energy with their nonparetic arm compared to their paretic arm at frequencies

above 2Hz.

The trend is again confirmed using data from experiment 2. The object hit task starts out

as a low-frequency task (with targets appearing at a rate of 0.5Hz) and gradually becomes a

high-frequency task (with objects appearing at a rate of 3.5Hz). In our analysis, we separately

calculate metrics for the first half of a trial and for the second half of a trial. As expected, in

a rm-ANOVA, arm (paretic/nonparetic) is a significant factor (F = 9.19,p = 0.004), as is trial

half (first/second) (F = 42.0,p < 0.001). Interestingly, there is an interaction effect between

arm and half of trial (F = 3.72,p = 0.06), suggesting that stroke affects performance in the first

half (low-frequency) differently than in the second half (high-frequency).

In the object hit task, again we calculate an average amplitude metric at ten task frequencies:

0.5Hz, 0.75Hz, 1Hz, 1.25Hz, 1.5Hz, 1.75Hz, 2Hz, 2.25Hz, 2.5Hz, 2.75Hz (see Fig. 3.10). In a
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Table 3.3. Paired t-tests for average amplitude metrics in the nail-and-hammer and object
hit tasks. We list the difference in means between the nonparetic and paretic arm; p-values are
listed in brackets.

0.5Hz 0.75Hz
nail-and-hammer task (mild) -0.06 (0.01) -0.1 (<0.001)

nail-and-hammer task (mod-sev) -0.18 (<0.001) -0.15 (<0.001)
object hit task -0.02 (0.02) -0.05 (<0.001)

1Hz 1.25Hz 1.5Hz 1.75Hz
-0.06 (0.01) -0.003 (0.92) 0.06 (0.06) 0.05 (0.06)
-0.04 (0.06) 0.01 (0.57) -0.02 (0.35) -0.008 (0.59)

-0.07 (<0.001) -0.04 (0.002) -0.02 (0.02) -0.007 (0.49)

2Hz 2.25Hz 2.5Hz 2.75Hz
0.006 (0.72) -0.015 (0.23) -0.02 (0.16) 0.002 (0.86)

0.05 (<0.001) 0.1 (<0.001) 0.12 (<0.001) 0.12 (<0.001)
0.1 (0.16) 0.02 (0.02) 0.3 (0.006) 0.04 (<0.001)

series of paired t-tests (reported in Table 3.3), we observe similar trends in performance as in

the other two tasks. At frequencies up to 1.5Hz, participants with moderate-severe stroke, exert

more energy on their paretic side. At 2.25Hz, the trend flips—participants with moderate-severe

stroke exert more energy with their nonparetic arm compared to their paretic arm at frequencies

above 2.25Hz.

Across all three dynamic tasks, we observe that individuals with moderate-severe stroke

are able to generate motion up to 1Hz; they begin to experience difficulty with motions in

the range 1.25-2Hz, while motion above 2Hz is significantly impacted.
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Loading May Exacerbate Loss in Motion Bandwidth at 1.5Hz for Severely Impaired
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Figure 3.11. Shoulder abduction loading—previously shown to cause an increased recruit-
ment of indirect pathways—may be contributing to a decrease in motion bandwidth. Here,
we plot the aggregate frequency spectra for the 1.5Hz ball-in-bowl task, separated by loading
condition; we choose 1.5Hz because it is the only tested frequency in the ball-in-bowl task where
stroke affects performance but participants are still able to complete the task. Note that while the
peak for the paretic side without loading (dark blue curve) overlaps with the nonparetic peaks
(purple and pink curves), the paretic peak with loading (light blue curve) is less pronounced with
a secondary peak below resonance. Energy@resonance on the paretic side with loading is on
average lower than energy@resonance on the paretic side without loading (p=0.2). These results
suggest that an increased use of indirect pathways might be contributing to a reduction in motion
bandwidth. P indicates paretic; NP indicates nonparetic.

3.5.4. An Increased Reliance on Indirect Pathways Could Be Contributing to a Decrease

in Motion Bandwidth

Lastly, we analyze the impact of loading on dynamic performance. To study the impact of

loading, we study participants with severe stroke (n=5) in the ball-in-bowl task with a reso-

nant frequency of 1.5Hz. In the prior analyses, we observed that at this frequency, moderate-

severe stroke survivors start to experience loss of function in their paretic limb but they are

still able to generate some motion at resonance. In contrast, at 1Hz all stroke survivors are

able to complete the task—there is no difference in energy@resonance for the paretic or non-

paretic arm (p = 0.97). Conversely, at 2.5Hz, stroke survivors are unable to complete the

task—energy@resonance is significantly lower for the paretic arm than the nonparetic arm

(p < 0.001). The 1.5Hz task is the only experimental condition in which moderate-severe
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participants can reliably complete the task with their paretic upper limb but are beginning to

experience the impact of stroke. We assume that this trend is even stronger for severe-only

participants, increasing sensitivity to the loading condition.

In our analysis of the 1.5Hz task, we observe that loading may exacerbate loss in mo-

tion bandwidth due to a hemiparetic stroke. The impact of loading is qualitatively visible in

Fig. 3.11. Note that while the peak for the paretic side without loading (dark blue curve) over-

laps with the nonparetic peaks (purple and pink curves), the paretic peak with loading (light

blue curve) is less pronounced with a secondary peak visible at a frequency lower than the res-

onant frequency. The statistical analysis confirms this trend. In the 1.5Hz task, we observe that

loading does not impact energy@resonance on the nonparetic side (χ2 = 0.02, p = 0.914); on

the paretic side, the effect of loading on energy@resonance is stronger (χ2 = 1.65, p = 0.199),

although not statistically significant.

These results suggest that an increased use of indirect pathways contributes to a re-

duction in motion bandwidth, in line with our initial findings in a prior study [98]. Fu-

ture work will investigate this further. In prior work, we tested six severely impaired stroke

survivors in the ball-in-bowl task with a task frequency of 1.88Hz and loading equivalent

to over 50% of maximum shoulder abduction, finding statistical differences in dynamic per-

formance [98]. In a follow-up study, the task design and experimental procedure were im-

proved and experimentally validated with a group of unimpaired individuals [101]. Future

experiments—that aim to evaluate the impact of loading on dynamic performance—should fo-

cus on assessing severely impaired participants at frequencies between 1.5-2Hz with loading

levels at ~30-50%. It is likely that mild participants would benefit from being evaluated at

higher frequencies above 2.5Hz at loading levels at ~50%.
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3.5.5. Discussion

The functional loss in motion bandwidth that we quantify using QADR is a manifestation of

an underlying change in motor control due to a stroke. There exist at least three well-studied

mechanistic changes post-stroke that could be contributing to a reduction in motion bandwidth.

After a stroke, the cortico-reticulospinal tract becomes more active due to cortical reorga-

nization [45]. Prior work suggests that stroke survivors recruit indirect cortico-reticulospinal

pathways for control of voluntary motion as a way to compensate for the severed lateral cor-

ticospinal and corticobulbar projections [129]. Unlike lateral corticospinal projections, ipsi-

lateral cortico-reticulospinal projections pass through the reticular formation in the brainstem

and spinal cord, which consists of an interconnected network of synapses [190]. Due to this

difference in structure of the motor pathways, the lag time between a cortical signal to initiate

movement and muscle contraction is longer for reticulospinal pathways than for corticospinal

projections [123].

Moreover, after initial engagement of muscle fibres, closed-loop dynamic tasks require fast

repeated relaxation and re-engagement of the motor units. Prior work has found that motor

unit firing rate modulation [132] and presynaptic inhibition [112] differs in individuals with

stroke compared to able-bodied individuals, making it harder for stroke survivors to execute

fast changes in motion direction where rapid muscle relaxation and re-activation are necessary.

In parallel, individuals with brain injury experience losses of cerebellar input to the cor-

tex [160] due to lesions of cerebello-thalamo-cortical projections and cortical reorganization.

This can impact dynamic performance, because the cerebellum plays an important role in deter-

mining timing of motion and overseeing motor coordination [24, 125]. The cerebellum might
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also be involved in learning an inverse model of inter-joint dynamics [12], making it difficult

for stroke survivors to incorporate limb dynamics into motion planning.

While multiple factors likely contribute to the observed changes in motion bandwidth post-

stroke, further studies are necessary to examine the relative impact and establish a causal re-

lationship with an observed functional decrease in dynamic performance. QADR and the

frequency-based metrics introduced in this study can help with future research on the mech-

anistic causes of a decreased motion bandwidth after a unilateral stroke.

3.6. Future Work: Implications for Neuromotor Disorders

3.6.1. QADR and ADLs

While in this study we use QADR in a laboratory setting, frequency-based metrics of motion

show promise of translating between clinical assessments and functional tasks. For one, the fre-

quencies required to complete the ball-in-bowl task directly correlate with frequencies required

to balance a cup of coffee during walking [128], carry a bag of groceries, or brush one’s teeth.

Based on a quantitative assessment of motion bandwidth, QADR can help predict which func-

tional tasks will cause difficulty, as illustrated in Fig. 3.1. With existing clinical assessments,

clinicians have limited insight about a patient’s capacity for dynamic tasks. Secondly, a versa-

tile metric of motion can equip clinicians with a continuous assessment tool for everyday tasks.

As an example, the frequency-based metrics could be calculated using data from a wearable

sensor for at-home monitoring during ADLs [124]. A quantitative, objective, and continuous

measure for dynamic task performance that generalizes to in-clinic assessments and everyday

tasks could support progress in the development of strategies for rehabilitation and assistance.
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3.6.2. Understanding causes of dynamic deficit

Although many neuromotor conditions manifest themselves in similar functional deficits, in-

cluding a decrease in motion bandwidth, they often have differing underlying causes that are

not fully understood. We can use QADR in combination with other noninvasive diagnostic

techniques to characterize abnormal processes occurring during motor control and correlate

them with changes in dynamic performance. As an example, we can measure electromyo-

graphic (EMG) or electroencephalographic (EEG) signals during task completion. Similar to

how clinical assessments, such as the FMA, allow us to correlate the degree of impairment with

physiological changes, we can use QADR to study factors contributing to a decrease in motion

bandwidth, enhancing our understanding of the mechanistic causes of neuromotor disorders.

The proposed approach can also be used to better understand dynamic response and motion

bandwidth in able-bodied individuals. We know that real-time perception and processing of

sensory information is crucial for effective motor coordination [73]. As such, we can study the

speed of neural circuitry used to generate dynamic motion when relying on different modalities

for sensory feedback. By adjusting the feedback provided to the participant—currently visual

and haptic, we can compare the motion bandwidth available to able-bodied individuals under

different modalities of sensory inputs. In impaired individuals, we can examine deficits in

receiving and interpreting sensory feedback and determine how these deficits affect dynamic

performance. Lastly, prior work suggests that each hemisphere contributes differently to motor

control [158]. Motor lateralization causes differences in post-stroke deficits and might have

implications for effective rehabilitation. Our platform enables us to further test the effect of the

lesioned hemisphere on motor deficits and how it relates to limb dominance.
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Figure 3.12. A frequency-based metric could be used in real-time to adjust assistance.
While assist-as-needed paradigms have been shown to increase patient engagement during robot-
assisted therapy, we lack real-time metrics of motion that could be used to adjust assistance dur-
ing dynamic tasks. Frequency-based metrics are a promising candidate, because (a) they are
feasible to compute in real-time, and (b) they do not constrain the task solution in time, com-
pared to metrics such as error that assume an optimal solution trajectory.

By quantitatively assessing motion bandwidth, the QADR platform can improve our under-

standing of the underlying causes of impairment. In clinical practice, it can be used for (1)

precise tracking of disease progression, (2) studying therapeutic efficacy, as well as (3) early

diagnosis of deficits in movement coordination and motion bandwidth.
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3.6.3. Therapeutic intervention

Stroke is the second highest cause of death globally and a leading cause of disability in devel-

oping countries [32]. Despite the development of various training protocols for motor recovery

after stroke, rehabilitation treatments are still minimally effective, especially in more impaired

individuals [130, 148]. When used as an intervention, the QADR platform can become the

foundation of therapeutic paradigms that are targeted to the impairment based on its underlying

cause and assist-as-needed based on individual performance. The virtual environment can make

therapy cognitively engaging for the patient and translational to real-world functional tasks.

QADR can quantify one’s ability to generate dynamic movement in real time, making it

suitable for assist-as-needed rehabilitation paradigms (as visualized in Fig. 3.12). For one,

it is strategy-agnostic, making it possible to assist with movement without over-constraining

it. Imagine a stirring task: one individual may prefer to stir clockwise while another may

prefer to stir counterclockwise; both strategies are correct but present themselves differently in

time. Secondly, frequency-based metrics are high-resolution—they can quantify one’s ability

to generate dynamic movement at a specific frequency or position in the workspace. Real-

time, quantitative metrics make possible therapeutic strategies that target each patient’s unique

deficits, focusing on movements that are most affected by the disorder.

Adaptive assistance paradigms have been used to increase active engagement during ther-

apy in many neuromotor disorders, such as stroke, spinal muscular atrophy (SMA) or cerebral

palsy (CP). Providing targeted assistance while maintaining individuals’ active engagement in

movement is key to exploiting neuroplasticity and facilitating a successful recovery using re-

maining neural resources [75, 191]. Because QADR is coupled with an assistive robot, we can

modulate shoulder abduction loading. By providing partial or full support against gravity, our
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platform expands an individual’s workspace and enables dynamic movements that are inacces-

sible in the unsupported condition [178]. In prior work on stroke, therapeutic interventions that

rely on adaptive robotic assistance have led to improved rehabilitation outcomes compared to

conventional therapy [18, 151].

Finally, by centering physical therapy around functional tasks and employing a virtual envi-

ronment, we can make therapy cognitively engaging for the patient [34] and directly relevant to

daily activities. Frequency-based assessments naturally extend to a range of dynamic tasks—

by employing virtual tasks with resonant frequencies (e.g. the ball-in-bowl task), we exercise

dynamic response at specific frequencies; during free-form tasks without resonance (e.g. the

nail-and-hammer or object hit task), we exercise maximum motion bandwidth for controlled

directional motion. The proposed measure of dynamic performance is task-agnostic and easy

to compute, supporting the creation of other real-world tasks for therapeutic settings. Most

importantly, the measure is representative of functional motion—if an individual is unable to

move at 2.5Hz to perform the virtual tasks presented in this chapter, they will not be capable of

scrubbing a dirty dish or clapping in sync with a large crowd [181]. Therapies centered around

dynamic tasks have the potential to improve quality of life for individuals with neuromotor

impairments [161], particularly for survivors of stroke or traumatic brain injuries where the

spinal cord and brainstem are still intact. Using the QADR platform as part of an intervention

protocol, we can increase access to therapy, improve patient engagement, and enable targeted

interventions—ultimately improving rehabilitation efficacy.
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3.7. Conclusions

In this work, we contribute a methodology for quantifying an individual’s ability to gen-

erate a dynamic response—controlled and timing-sensitive movements where the continuous

modulation of motor activity is required to respond to real-time stimuli. We employ the method

with post-stroke individuals and evaluate how unilateral brain injury due to a stroke impacts

motion bandwidth within reachable workspace. We find that it causes a significant decrease at

frequencies above 1.5Hz.

Our method provides a platform to evaluate how neuromotor impairments affect motion

bandwidth more broadly, enabling the study of the underlying causes of a decrease in dynamic

performance. QADR could also be used strictly as an assessment tool to diagnose delays in

motor development in childhood [171] and to track disease progress or therapeutic efficacy in

neuromotor disorders [164]. Long-term, it can form the basis for personalized robot-assisted

interventions.
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CHAPTER 4

Emergence of communicative conventions

While it is known that communication facilitates cooperation in multi-agent settings, it is

unclear how to design artificial agents that can learn to effectively and efficiently communicate

with each other. Much research on communication emergence uses reinforcement learning (RL)

and explores unsituated communication in one-step referential tasks—the tasks are not tempo-

rally interactive and lack time pressures typically present in natural communication. In these

settings, agents may successfully learn to communicate, but they do not learn to exchange infor-

mation concisely—they tend towards over-communication and an inefficient encoding. Here,

we explore situated communication in a multi-step task, where the acting agent has to forgo an

environmental action to communicate. Thus, we impose an opportunity cost on communication

and mimic the real-world pressure of passing time. We compare communication emergence

under this pressure against learning to communicate with a cost on articulation effort, imple-

mented as a per-message penalty (fixed and progressively increasing). We find that while all

tested pressures can disincentivise over-communication, situated communication does it most

effectively and, unlike the cost on effort, does not negatively impact emergence. Implementing

an opportunity cost on communication in a temporally extended environment is a step towards

embodiment, and might be a pre-condition for incentivising efficient, human-like communica-

tion.
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4.1. Introduction

Effective communication is a key skill for collaboration in a multi-agent setting [44]. As

humans, we share communication protocols and cooperative conventions that have evolved over

thousands of generations to optimize communication efficiency. As an example, we communi-

cate in accordance with cooperative principles, such as Grice’s maxims of conversation [78]. In

line with the maxim of quantity, we are known to try to be as informative as possible, giving only

as much information as is needed [78]. If future artificial systems are to cooperate with humans,

it will be beneficial for their communication protocols to follow these patterns [51, 175]. As a

result, understanding the process of communication emergence and the pressures that shape the

emergent communication protocols is of interest to the scientific community.

With a recent increase in available computational power, the field has seen a lot of progress

with communication successfully emerging between reinforcement learning (RL) agents in a

range of learning environments [113, 189]. However, prior work shows that the emerged com-

munication protocols often do not share properties of natural languages [108] and that artificial

agents tend towards an anti-efficient encoding [38]. This likely happens because in many of the

studied environments, communication is not situated—the action space of the agent does not

include both communicative and environmental actions [52,189]. Agents do not learn to reason

about whether to communicate; instead, communication is guaranteed and free to the agents.

When free, excessive use of communication does not negatively affect the outcome of the game

(or cause agent frustration), as it might in a real-world situation [176]. As a possible solution,

we explore situated communication and show it is possible to obtain concise communication

protocols by providing the agent with an action-communication trade-off.
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In this work, we compare pressures that can incentivise conciseness during communica-

tion emergence. As our testbed, we use a cooperative multi-step navigation task with two RL

agents. In the task, a speaker provides navigation hints to help a listener reach a goal within a

gridworld maze. We explore three training regimes: (i) unsituated communication (cheap talk);

the speaker sends a message to the listener at each timestep without any cost, similar to the

communication paradigm in existing work [38, 114, 119], (ii) unsituated communication with

a per-message penalty; the speaker experiences a cost on communication effort (either fixed or

progressively increasing), similar to prior work [153] when fixed, (iii) situated communication

as introduced by Wagner et al. (2003); the listener has to forgo an action to solicit information

from the advising agent, experiencing an opportunity cost on communication. Using the collab-

orative navigation task, we evaluate how the different pressures in the three training regimes can

incentivise sparse information sharing during communication emergence. We find that situated

communication (regime iii) outperforms an internal cost on communication effort (regime ii)

in terms of both conciseness of the emerged communication protocol and overall task perfor-

mance.

4.2. Background

Initially, emergent communication between RL agents was largely studied in one-step refer-

ential games, such as the Lewis task [38,43,90,114,119]. The Lewis task [118] is a cooperative

game, where the speaker sees an artifact (e.g., an image) and communicates a message from

a fixed vocabulary (e.g., a symbol) to the listener, who then interprets the message to select

a target item from among a set of distractors. This type of learning environment is known to

successfully enable language development [103]. However, this setting does not recreate the
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temporal aspects of a real-world environment, which may influence the structure of the emer-

gent languages.

Recent work increasingly explores multi-step tasks that enable temporally extended dia-

logue, more similar to real-world environments [20, 35, 55, 62, 69, 88, 131]. Cao et al. (2018)

investigate multi-step negotiation. Jaques et al. (2019) test communication emergence dur-

ing Sequential Social Dilemmas in environments, such as Harvest or Cleanup. Evtimova et

al. (2018) propose a multi-modal, multi-step referential task (a modified version of the Lewis

task). Bouchacourt and Baroni (2019) introduce a fruit-tool matching game, similar to a multi-

step Lewis task but with a preference-based reward. Here, we build on this body of work by

introducing a multi-step navigation task in a gridworld environment. In Appendix C.2, we

elaborate on how our task compares to existing work and on the direct impact of introducing

multi-step communication in this task.

The literature predominantly considers two types of communication: (i) communication

through a cheap talk channel [52,70] and (2) communication through environmental actions [170].

In cheap talk, agents have a designated communication channel where they share messages at

every timestep—the messages are free to the agents and agents do not reason about whether

to communicate. Many authors find that selfish agents do not learn to effectively use an un-

grounded cheap talk communication channel [35, 43]. However, one can incentivise communi-

cation in a cheap talk channel by rewarding an intrinsic motivation to influence others [88] or

by introducing a pro-social reward [74, 114], as we do in our work. On the other hand, when

communicating through actions, agents’ environmental actions are made visible to other agents,

enabling the environmental actions to be used for communication. Note that environmental ac-

tions are binding—they impact the state of the environment and the resulting reward, so agents
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do not have an inconsequential way to exchange information as with a cheap talk channel. In

these scenarios, cooperation has a high success rate [35, 37, 138], but the communication is

inflexible and directly connected with the task—there is mixed opinion whether agents are ac-

tually communicating [120]. In this work, we evaluate a third type of communication that we

refer to as situated communication as introduced by Wagner et al. (2003) and used e.g. by

Lowe et al. (2019) in matrix games, such as the Prisoner’s Dilemma. When using situated

communication, the listener has to actively choose between communicative and environmental

actions. While only environmental actions directly affect the environment and allow the agent

to obtain a reward, the agent can choose to forgo an environmental action to communicate.

In most studies, the emerged language structures are analyzed for shared commonalities

with natural languages, such as compositionality or encoding efficiency. Although desired, it is

nontrivial for such properties to emerge spontaneously [108]. As a result, researchers introduce

pressures during training and/or structure the learning process to incentivise specific language

properties. To encourage compositionality in the emergent communication protocol, one can in-

troduce populations of agents [39, 154] or the need for a language to be easily teachable [119].

Efficient communication can be incentivised by modifying the agents’ reward structure, e.g.,

by adding an internal cost of articulation [153] or by prioritizing messages based on a metric

of confidence [198]. Sparse communication has also been shown to emerge in mixed and com-

petitive settings, where communicating too much might harm agent performance, e.g., in the

case of prey coordinating an escape from predators [172]. In parallel, researchers have studied

communication patterns during competitive games—e.g., auctions—where the capacity of the
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Figure 4.1. Experimental setup. (left) Gridworld environment & navigation task, (right) exper-
imental conditions.

communication channel is externally bounded [19]. Here, we propose situating the communica-

tion in a multi-step task as a mechanism to shape the properties of the emergent communication

protocol.

In our experiments, we study the emergence of communication in a cooperative multi-step

navigation task. Like humans or robots that can only observe a small part of the world in their

proximity, the listener has a limited view of its environment and has to rely on the speaker for

guidance [59]. The task is an abstraction of a real-world task [56] where a person receives

guidance from an oracle while navigating towards a goal. As our primary testbed, we consider

a maze with T-junctions (i.e. junctions with a left/right turn) [57]. The well-defined decision

points enable us to more easily quantify the amount of information exchanged by the agents.

4.3. Environment

We define a cooperative navigation task as a Markov Decision Process (MDP) with two

RL agents. We test three environments: T-maze, dead ends, and four rooms, as shown in

Fig. 4.1. The T-maze serves as our primary testbed. All three environments are set up as

a pixel-based gridworld with a maze inside. Features of the world are encoded with binary
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Figure 4.2. Step-by-step walk-through of an example episode with situated communication.
The listener learns to solve the task optimally, deciding to stay and ask for information when
at a junction (twice during the episode). At each of the 11 timesteps, we visualize (left) the
speaker’s view of the board with an overlaid green box indicating the listener’s view, and (right)
the speaker’s message and listener’s action at that step. The gridworld colors correspond to the
color encoding included in the agents’ observation vectors during the task.

vectors and represented with colors: walls are black ([1,1,1]), the maze is white ([0,0,0]), the

agent is green ([0,1,0]), and the target is blue ([0,0,1]), as shown in Fig. 4.2 in the Appendix.

The full environmental representation is defined as a 9×9×3 matrix (height by width by RGB).

The agents. There are two independent RL agents, a speaker and a listener (i.e. acting

agent). The speaker does not reside within the gridworld and cannot take environmental actions

(i.e. navigate the maze) but instead can communicate information to the listener. The speaker’s

action (i.e. message) space spans 5 symbols [0,1, ...,4]. We refer to the message mt = 0 as

a null message, and mt ∈ [1,2,3,4] as non-zero messages. At each timestep, the speaker can

see the entire gridworld, including the location of the agent and the location of the goal. The

speaker’s view of the world map is rotated to align with the direction that the listener is facing.

The listener is embedded in the gridworld and can take actions to move through the maze. The

action space of the listener spans 5 actions [move up, move down, move right, move left, stay in

place]. The listener’s observation consists of the environmental view (if any) concatenated with
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the message from the speaker. We test the listener under two conditions: (1) with no visibility,

where the listener’s observation consists solely of the speaker’s message, and (2) with partial

visibility, where the listener can see the 3 pixels directly in front of them. The second variant

gives the listener some environmental context to take actions without needing to rely solely on

communication. We test agents with and without memory. Agents without memory have to

rely only on their current observations to take an action. Agents with memory have an internal

representation of the history of an episode—they can use accumulated knowledge from prior

timesteps to make decisions in the current timestep.

The task. The goal of the agents is to cooperate so that the listener reaches the target. In

each experimental episode, both agents receive a reward R = 1 if the listener reaches the target

before the episode terminates. Episode timeout is set to 100 steps with a gamma discount factor

of γ = 0.99. In all three environments, the goal locations are randomly assigned to one of the

pixels indicated with a star in Fig. 4.1. There are 4, 5, and 32 possible goal locations in the T-

maze, dead ends, and four rooms environments, respectively. In each episode, the listener agent

starts from the ‘START’ cell indicated in Fig. 4.1. In the T-maze, the agent always starts from

the bottom middle cell and the goal locations are randomly assigned to one of the 4 corners of

the maze.

4.4. Situated vs. Unsituated Communication

Wagner et al. (2003) classify simulated environments for communication emergence based

on the action space of the simulated agents. They define two types of actions: (1) communica-

tive (i.e. sending or receiving signals)—actions that do not affect the state of the world or other

agents, and (2) non-communicative (i.e. environmental)—actions that affect the environment
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and/or modify the agent’s own internal state. Depending on the actions available to the agents,

they define situated and unsituated simulations of communication emergence:

(1) unsituated: an agent’s actions are only communicative (or only non-communicative)

(2) situated: an agent’s actions include both communicative and non-communicative ac-

tions.

Given these definitions, we define two modes of communication based on the actions available

to the listener. During unsituated communication in our task, the speaker generates a 1-token

message at every timestep and the message is broadcasted to the listener before they choose

an action. We refer to the listener using this mode of communication as a passive listener,

because it passively receives the speaker’s message at every timestep. When messages are free,

this communication mode is equivalent to cheap talk. In situated communication, the listener

can actively choose between (i) taking an environmental action and (ii) soliciting a message.

The message is only broadcasted to the listener after they ask for information—we refer to this

listener as active. The active listener can solicit to receive information in a following timestep

by choosing a stay in place action at the current timestep. The active listener experiences an

opportunity cost to communication—they have to forego an environmental move (that could

bring them closer to the target) to obtain information and make an informed decision. As a

result, they have to learn whether to communicate at all.

Similar to much of the existing work in the field [113], the communication in our experi-

ments is asymmetrical (i.e. the action space of the speaker and listener are different). During

unsituated communication, we simulate a passive listener that can take environmental actions

and receive signals from a speaker but cannot send signals itself. If the agents’ action spaces
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were symmetrical (the scenario considered by Wagner et al., 2003), this would be a some-

what degenerate case—communication would never emerge between two agents who can only

receive signals and take environmental actions. As a result, our definition of unsituated com-

munication deviates slightly from the definition introduced by Wagner et al. (2003).

4.5. Experimental Setup

Agent architectures. The speaker and the listener are designed as two independent RL

agents. Both agents have the same architecture without sharing weights or gradient values.

They both have a 2-layer Convolutional Neural Network (CNN) that generates an 8− 32 bit

representation s of the environment. In the case of the listener, this representation of the en-

vironment gets concatenated with the message received from the speaker. In both cases, the

vector gets passed into a fully connected layer that generates the agent’s action. Agents with

memory, have an additional single-layer LSTM [85] after their fully connected layer.

We train the agents using neural fitted Q learning [152], with an Adam optimizer [102] and

Qt(λ ) where λ = 0.9. The Q values are updated using temporal difference (TD) error where

the bootstrapped Qt(λ ) is defined as follows:

Qt(λ ) = (1−λ )
∞

∑
n=1

λ
n−1Q(n)

t

During training, agents use an ε-greedy policy with the exploration rate set as ε = 0.01.

Hyperparameters. For each experiment, we run a hyperparameter sweep over learning

rates of the speaker and listener α ∈ {10−5,10−6} and over the size of the environmental rep-

resentation s ∈ {8,16}, which denotes the size of the output vector of the convolutional layers

of the agents’ networks. We run the simulation with each hyperparameter setting 10 times with
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different random seeds. For each experiment, we present the best mean over the 10 replicas.

The best mean is selected based on the metric of solution optimality (the normalized reward per

step). When we plot metric means, we include the standard error of the mean.

Message penalties. In unsituated communication, we test the consequences of introducing

a cost of articulation for the speaker. In the baseline scenario (i.e. cheap talk), all messages

are free to the agent. With a cost of articulation, each non-zero message incurs a penalty, while

a null message (the symbol 0) remains free to the agent. We test two penalty mechanisms: a

fixed per-message penalty and a progressive per-message penalty. When fixed, the per-message

penalty remains constant throughout the entire duration of training. We test fixed penalties with

values mp ∈ {0.01,0.05,0.1}.

As the second mechanism, we introduce a penalty curriculum with a scheduler that pro-

gressively increases the penalty between stages. The penalty scheduler is a mapping from

the curriculum stage to the penalty in that stage. We test two curriculum implementations

with the following mappings mp1 = {0 : 0,1 : 0.01,2 : 0.02,3 : 0.03,4 : 0.04,5 : 0.05, ...} and

mp1 = {0 : 0,1 : 0.01,2 : 0.05,3 : 0.1,4 : 0.2,5 : 0.3}. Both curricula start with no per-message

penalty in stage 0, allowing cost-less exploration of a successful communication protocol. In

the next stage, both curricula impose a small penalty that progressively increases over the time

of training. Intuitively, the first curriculum is more gradual, enabling a more stable solution;

the second curriculum is more rapid, possibly speeding up the learning process. The agents

can progress to the next stage of the curriculum after 2M or 5M training steps if they achieve a

performance threshold or if they spend 15M steps in their current stage. We test 3 progression

thresholds based on the agents’ success rate in reaching the target: 92%, 95%, and 97%.
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Evaluation metrics. We evaluate agent performance according to three criteria: (i) task

success (via the mean return per episode), (ii) solution optimality (via the normalized reward

per step), and (iii) communication efficiency (via communication sparsity). The metric of task

success is calculated after each episode as

(4.1) Mt(n) = (
n

∑
i=1

Ri)/n,

where n is the number of episodes thus far and Ri is the reward for the ith episode. The metric

represents the likelihood of the agents succeeding at reaching the target before episode timeout.

When it converges to 1, agents are reliably reaching the target in each episode. The normalized

reward per step quantifies the optimality of the path taken to solve the task. If the task is solved

in the optimal number of steps (sopt = 9), agents obtain a per-step reward of 1. Formally, it is

calculated as

(4.2) Mo(n) = sopt

n

∑
i=1

Ri/si,

where si is the number of steps the agent took in episode i. Finally, the metric of communication

sparsity quantifies the efficiency of information exchanged between the collaborating agents.

We define it as the average negative logarithm of the number of non-zero messages generated

by the speaker per episode, such that

(4.3) Ms(n) = (
n

∑
i=1
− logmi)/n,

where mi is the number of non-zero messages in episode i. Agent pairs that converge to a

higher value form a more efficient communication protocol—they exchange fewer messages per
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episode. If agents were able to solve the task using a single message, their sparsity metric would

equal 0. As an example, in the T-maze, depending on the listener’s characteristics: partial or

no visibility, the optimal number of messages is equal to two (Ms =−0.7) or nine (Ms =−2.2)

messages per episode for agents without memory, and one (Ms = 0) message per episode for

agents with memory.

4.6. Results

We experimentally compare two pressures that can incentivise a concise exchange of infor-

mation during communication emergence. Specifically, we consider two types of pressure:

• A per-message penalty: similar to a cost of articulation. During unsituated commu-

nication, we impose a cost on effort through a penalty on non-zero messages. We

test (a) a fixed penalty, and (b) a penalty curriculum with a progressively increasing

per-message penalty.

• An opportunity cost on communication: mimicking the pressure of time in a real-

world situation. We study agents using situated communication, where at each step

the listener faces an action-communication trade-off.

In our experiments, we train agent pairs communicating (1) using cheap talk (baseline), (2)

using unsituated communication with a fixed penalty or a penalty curriculum, and (3) using sit-

uated communication. In all experiments, we train agents under two visibility and two memory

conditions (see Sections 4.3 & 4.5 for more details). Without visibility or memory, the acting

agent relies solely on the speaker’s most recent message to take an action. With visibility and

memory, the acting agent has increasingly more contextual information, allowing for sparser

and more efficient communication.
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Figure 4.3. Comparison of pressures for avoiding over-communication (mean over 10
seeds) in the T-maze. Top row illustrates an average metric of success—under almost all con-
ditions agents are able to find a solution to the task. Middle row illustrates an average metric of
optimality—with context (i.e., visibility and/or memory) agents require fewer steps to reach the
target. Bottom row illustrates communication conciseness—situated agents are able to commu-
nicate most sparingly.

4.6.1. Cheap talk (baseline)

Without pressures to be concise, agents successfully learn to solve the task. We start by

analyzing the learning pattern and behavior of agents without communication constraints—we

use their performance as a reference in our subsequent analysis. When allowed to communicate,

all agents in the T-maze environment (grey lines in Fig. 4.3) learn to solve the task—their mean

return per episode converges to 1. Best agent pairs find an optimal solution—their normalized

reward per step converges to 1. With both memory and partial visibility for context, even the

average performance is close to optimal (refer to Fig 4.3 column D, row 2). Moreover, we an-

alyze the sparsity of the established communication protocol. With unsituated communication

and no pressures (cheap talk), agents have no incentive to be sparse. As a result, for all tested

conditions, their sparsity metric is equal to the number of steps needed to solve the task, and

lowest compared to agents with added pressures (refer to the grey lines in Fig. 4.3 row 3).
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For the best-performing agent pairs, we analyze the communication protocol qualitatively

as illustrated in Fig. 4.4. Best-performing agent pairs agree on unambiguous meanings of mes-

sages and, in some cases, learn synonyms to signal the same environmental action. Under partial

visibility (refer to the bottom middle heatmap in Fig. 4.4), the meaning of messages depends

on the environmental context (e.g. message 1 at the corridor might be consistently interpreted

by the listener as ‘move up’ but at the junction as ‘move right’). All else equal, successful

agents without memory converge to a just-in-time protocol, where at each time step the listener

can unambiguously interpret the speaker’s message. Interestingly, memory influences timing

in the established communication protocols. The best-performing agents with memory learn a

look-ahead communication protocol. As an example, a speaker with memory might broadcast

the same message for the first 4 steps of a T-maze episode, alerting the listener to make a left or

right turn at the junction (see the bottom right heatmap in Fig. 4.4).

Lastly, we analyze agent performance in two other environments. The learning curves are

illustrated in Fig. 4.6. In four rooms, baseline agents achieve similar performance to the T-maze

environment. The dead ends maze is more difficult—not all agents are able to solve the task.

Importantly, compared to the T-maze, both dead ends and four rooms are significantly different

from the listener perspective. In dead ends, when the listener sees a corridor (i.e. wall-path-wall

alternating pixels), it can no longer learn to always go straight—4 out of 5 times it has to turn

when seeing a corridor at the first junction. As a result, it has to rely more on the messages from

the speaker. Similarly, in four rooms, there are many possible goal locations (32 compared to 4

in the T-maze) and the environmental context is ambiguous—visibility does not help the listener

with decision-making as much as it does in the T-maze. Again, the listener has to rely more on

the messages. Because the dead ends and four rooms environments are more ambiguous than
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Figure 4.4. Communication protocols for successful agent pairs in a T-maze environment.
Communication protocols are analogous when the listener has no context (left-most column).
With context, agents with situated communication learn to exchange information sparsely, com-
municating mostly at the junctions.

the T-maze environment from the listener perspective, we only consider listeners with context

(i.e. memory and partial visibility). With added pressures, this allows the agent pair to learn to

communicate more sparingly and still succeed at the task.

4.6.2. Unsituated communication with a penalty (fixed and progressive)

A fixed penalty improves communication sparsity but makes communication emergence

more difficult. We test four fixed penalty values to evaluate the impact of a fixed penalty on

communication emergence. In Fig. 4.5, we illustrate the learning curves for agents training with

a fixed penalty. Note that very few agent pairs learn to reliably solve the task. Only a few agent

pairs find a quasi-optimal solution. Secondly, note in the bottom plots in Fig. 4.5 that when

a cost of articulation is introduced, speakers send few non-zero messages at the beginning of

training. The decrease in early exploration of a common language likely makes it harder for
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agents to establish a successful communication protocol and consequently causes difficulty in

collaborating to reach the target.

In summary, when agents converge to a successful communication protocol, the per-message

penalty incentivises sparse communication. However, overall convergence rates are low. Out

of the three tested penalty values, a fixed penalty = 0.05 seems to perform best. In Fig. 4.3

and Fig. 4.6 for comparison with other pressures, we include agents trained with a fixed penalty

= 0.05.

A penalty curriculum does not negatively impact performance but it does not as strongly

incentivise conciseness. To mitigate the issue of stifled early exploration, we implement penalty

curricula, in which agents start training with no per-message penalty. Only after they reach a

performance threshold (as described in Section 4.5), the speaker begins to experience a penalty

for every non-zero message. As visible in Fig. 4.3, this strategy significantly improves con-

vergence rates—agents reliably learn to communicate on par with baseline agents. However,

communication is not sparse. The agents exchange only slightly fewer messages than baseline

agents (refer to the green vs. grey lines in Fig. 4.3 row 3). Once they find a communication pro-

tocol that works, they seem unlikely to change it even with an increasing penalty—the sparsity

metric remains relatively constant throughout training. The trend is very similar in the other

two mazes (see Fig. 4.6).

All in all, introducing a penalty (fixed or progressive) makes the communication sparser

compared to baseline. However, the sparsity of communication is still suboptimal.
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Figure 4.5. Communication emergence with a cost on communication effort in the T-maze.
Agents without memory. (top) The additional pressure makes learning more difficult—task per-
formance for blue lines is lower than for the grey lines (agents using cheap talk). (bottom) The
immediate cost of non-zero messages stifles early exploration.

4.6.3. Situated communication

The pressure of time in a multi-step interaction can incentivise sparse communication

without compromising communication emergence. In the last set of experiments, we evalu-

ate the impact of situated communication on language emergence. We find that situated com-

munication incentivises conciseness without stifling early exploration. Active listeners learn

over time that communication comes at a cost, adjusting when and whether they solicit infor-

mation, rather than avoiding communication early on (refer to the orange lines in Fig. 4.3 row
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3). After training, agents using situated communication achieve highest communication spar-

sity. Importantly, the sparsity does not result in a loss in task performance—agents with an

active listener follow learning patterns similar to baseline agents (refer to Fig. 4.3 row 1 & 2).

In a T-maze environment, the active listener can learn to near optimally solicit information,

asking ~2.06 and ~9.76 times per episode given partial and no visibility, respectively. In order

to be theoretically optimal under the no visibility condition, an active listener without memory

requires 9 messages per episode (1 message per step) and, under partial visibility, 2 messages

per episode (1 at each junction). The heatmaps in Fig. 4.4 illustrate example communication

protocols of successful agent pairs. Under the no memory and no visibility condition, the lis-

tener queries the speaker at each timestep, in line with the optimal strategy. Under the partial

visibility condition, information solicitation takes place mostly at the junctions, where the act-

ing agent has a choice between two viable environmental actions.

Interestingly, when we test situated communication between agents with memory, agents

continue to ask for information at the junctions when it is immediately actionable, as visible in

the top right heatmap in Fig. 4.4. This is non-obvious—given memory, the active listener could

ask for information at any point in the maze. This result suggests that it is easier for agents to

succeed at the task when they exchange information when it is immediately actionable. There

might be benefit to allowing agents to reason about the timing of communication in multi-step

interactions. We show more results that support this thesis in Appendix C.2.

Lastly, we test the robustness of situated communication across two other environments:

dead ends and four rooms. As visible in Fig. 4.6, across all three environments, active listeners

learn to reliably solve the task—they achieve a mean return per episode equal to 1—while

requiring the least amount of communication—their sparsity metric is closest to 0. In some
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Figure 4.6. Comparison of pressures for avoiding over-communication (mean over 10
seeds) in the 3 environments. All agents have memory; listener has partial visibility. Across
all 3 environments, situated agents agree on the most concise communication protocols without
sacrificing their ability to solve the task.

mazes, active listeners converge to solutions that are slightly suboptimal compared to agents

using other modes of communication, meaning that on average they take more steps to reach

the target. Future work will investigate further how agents using situated communication can

learn to solve the task optimally. A symmetrical implementation of situated communication,

where both agents can act in the environment, might offer a robust solution.

4.7. Conclusions & Discussion

We find that giving the listener agency to choose whether to communicate enables agents to

learn how to concisely exchange task-relevant information. By situating the communication in

the task, we allow the functional pressure of time to shape the emergent communication protocol

to be sparse, in line with the Gricean maxim of quantity. A cost of articulation, implemented in

the form of a per-message penalty, is not as effective.
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As common in related work and described in Section 4.4, the current implementation of

communication is asymmetrical—only the speaker has privileged information and only the lis-

tener can take non-communicative actions in the environment. Ongoing work will expand this

implementation and situate both the speaker and listener in the environment, enabling both

agents to communicate and take non-communicative actions in the maze-bazed world. More-

over, we would like to explore more complex cooperative tasks, such as those in the Overcooked

game environment [37, 104]. One of the objectives of achieving concise communication proto-

cols is to design RL agents that can effectively communicate with people.

4.8. Future Work: Communication Emergence during pHRI

In this work, we designed and tested situated RL agents that are capable of establishing com-

municative conventions through task-oriented interaction. Moreover, we showed that they can

use these communication protocols to cooperatively complete a task while remaining concise

in how they exchange information. The goal of this work is to deploy these agents with people

in the loop to enable robot users to co-create symbolic languages with their collaborative robot

companions. In the current implementation, agents learn to communicate using a pre-defined

set of discrete tokens, and the learning cycle is relatively long—it takes thousands of interac-

tions for agents to converge on a communication protocol. These two limitations are a potential

challenge for human-in-the-loop deployment. As such, we run a follow-up, proof-of-concept

experiment to test whether agents with a similar architecture can learn non-discrete symbols

from smaller amounts of data. For these experiments, we simplify the learning setup—we re-

place learning using reinforcement from free-form interaction with supervised learning during

a structured curriculum.
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Figure 4.7. Experimental setup. The person sees a simulated mobile robot inside a maze,
including a first-person view (top) and a top-down view (bottom middle). The person is using a
SNP device to generate communicative symbols by controlling the air pressure in the SNP straw.
An example symbol is plotted on the bottom left.

4.8.1. Experimental Setup

We create a simulated environment, where a person can use a sip-n-puff (SNP) device to com-

municate with a simulated mobile robot to navigate a virtual environment (see Fig. 4.7. The

SNP device is a sensorized straw that a user can sip and puff into—it then outputs a 1D contin-

uous signal, based on the recorded pressure inside the straw. For the simulated environment, we

design a set of mazes that can be viewed through RViz and/or Gazebo, as visible in Fig. 4.8. The

mazes are categorized by levels of difficulty, depending on the anticipated complexity of maze

navigation. For example, easy mazes only include right-angle turns and straight movements,

whereas mazes with a medium level of difficulty introduce diagonal movements. The starting

point is indicated by a green circle, while the end is marked by a blue circle.
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Figure 4.8. Example mazes at three levels of difficulty. Mazes are randomly generated and cat-
egorized by difficulty level. For example, easy mazes only include right-angle turns and straight
movements, whereas mazes with a medium level of difficulty introduce diagonal movements.
The starting point is indicated by a green circle, while the end is marked by a blue circle.

4.8.2. Learning Symbolic Vocabulary

We collect data using a simulated maze curriculum. The mobile robot is programmed with a

pre-defined control sequence to navigate the maze at a constant velocity. During training, the

user is asked to generate signals through the SNP interface to label the movement of the robot.

Though the user is providing control inputs, the robot action sequence is pre-defined based on

the generated maze. The SNP data is auto-labelled based on tags applied to the maze during the

maze-generation process.

We augment the collected data to enable learning from fewer interactions. For each SNP

symbol created by the user, we first smooth the signal to reduce noise. We also center the signal

in time to normalize variability from the timing of the symbol relative to the movement of the

robot. We then apply one of three distortions: (1) we compress/expand the signal in time and

add noise, (2) we increase/decrease the signal’s amplitude and add noise, or (3) we shift the

signal left/right in time and add noise. We start from 20 samples per user (5 per symbol) and

we apply 1000 transformations to obtain 20000 samples per user.
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Figure 4.9. Example sets of symbolic vocabulary. Sets of symbolic vocabulary were generated
by two people: users 1-4 were generated by a person very familiar with the setup; user 5 was
generated by a person unfamiliar with the setup or using a SNP device. All user profiles led
to successful robot control at test time, with a symbol classification accuracy between 83% and
95%.

The augmented dataset is used to train a 1-dimensional Convolutional Neural Network

(CNN). The CNN is trained to classify SNP inputs into four discrete actions: forward, left,

right, stop. We train a seperate model for each user. Using the trained network, the user can

communicate with the simulated mobile robot and use the SNP device to navigate mazes in the

virtual environment.

4.8.3. Experimental Results

A graphical representation of five sets of symbols is shown in Fig. 4.9. Users 1 through 4 were

profiles created by a collaborator; user 5 was not familiar with the setup prior to use and was
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given no instructions other than to use the SNP device to guide the robot through the simulated

maze.

During testing, the user was asked to navigate a number of randomly generated mazes,

similar to the mazes used for data collection. This time, however, their input was continuously

processed by the trained CNN and classified as one of the four movement actions (stop, start,

left turn, right turn). In every trial, the trained model was able to successfully predict movement

actions from SNP signal; the user was able to navigate a maze using their custom set of symbols.

All 5 profiles, visualized in Fig. 4.9, enabled the user to successfully navigate a test maze

with minimal error. During testing, the model predicted correct movement actions with 91%

accuracy for user 1, 83% accuracy for user 2, 87% accuracy for user 3, 95% accuracy for user 4,

and 87% accuracy for user 5. Profile 4 led to to best performance. The most common error was

caused by the symbol for stop being misclassified as a symbol for turning left. Interestingly,

the system performance was comparable for user 5 who was unfamiliar with the setup to the

average performance of the other four profiles.

4.8.4. Conclusions and Next Steps

In this work, we showed that it is possible to use deep learning to learn symbols from a human-

operated physical interface, such as an SNP device, with just five demonstrations per symbol.

Future work will aim to extend this approach to incorporate reinforcement learning and enable

learning from task-oriented interaction.

One possible implementation includes directly combining the RL approach presented in this

chapter with the data augmentation technique used in our SNP setup. While the RL approach

was slow to converge when agents were initialized with random weights, we noticed that if the
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‘oracle’ agent is pre-trained, two simulated agents can converge to a communication protocol

in tens of interactions (orders of magnitude less than when the agents are randomly initialized).

To explain, currently the ‘oracle’ agent observes a map of the maze along with a target target

location color-coded in RGB pixels. During pre-training, the agent can learn to interpret an

RGB map as well as identify a policy for navigating the maze. A pre-trained agent can then

provide more informative communication tokens during a cooperative task attempt with another

agent, speeding up the convergence process. During human-agent interaction, we can assume

that the person would be more similar to a pre-trained agent rather than a randomly initialized

one, and that they would provide at least somewhat informative commands from the beginning

of the task-oriented interaction.

Secondly, we would need to transition from discrete tokens to continuous communication

symbols. To do so, we could expand the agent architecture with an additional CNN that inter-

prets continuous signals and outputs discrete tokens which are then considered as input to the

action policy. We could take advantage of the data augmentation process introduced above. For

one, we could pre-train the acting agent with a handful of commands for basic action primitives

as we did in our current example. Moreover, we could learn from each interaction multiple

times by distorting the human-generated signals during task-oriented interaction like we did

during supervised training in our SNP setup.

Lastly, we can further adapt the human-in-loop training process of the RL agent to fur-

ther optimize learning efficiency. As an example, we can create a dynamically adapting maze

curriculum. The objective function for autonomously generating subsequent mazes could max-

imize information gathering around symbol boundaries. This would help users to refine their

symbol definitions to make them increasingly unique and differentiated as well as to generate
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new symbols while avoiding excessive repetition of established ones. The ultimate goal is to en-

able the human-robot pair to continually expand their shared library of communicative symbols

during task-oriented interaction.
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CHAPTER 5

Defining task representations using contrastive learning

With growing access to versatile robotics, it is beneficial for end users to be able to teach

robots tasks without needing to code a control policy. One possibility is to teach the robot

through successful task executions. However, near-optimal demonstrations of a task can be

difficult to provide and even successful demonstrations can fail to capture task aspects key to

robust skill replication. Here, we propose a learning from demonstration (LfD) approach that

enables learning of robust task definitions without the need for near-optimal demonstrations. We

present a novel algorithmic framework for learning tasks based on the ergodic metric—a mea-

sure of information content in motion. Moreover, we make use of negative demonstrations—

demonstrations of what not to do—and show that they can help compensate for imperfect

demonstrations, reduce the number of demonstrations needed, and highlight crucial task ele-

ments improving robot performance. In a proof-of-concept example of cart-pole inversion, we

show that negative demonstrations alone can be sufficient to successfully learn and recreate a

skill. Through a human subject study with 24 participants, we show that consistently more

information about a task can be captured from combined positive and negative (posneg) demon-

strations than from the same amount of just positive demonstrations. Finally, we demonstrate

our learning approach on simulated tasks of target reaching and table cleaning with a 7-DoF

Franka arm. Our results point towards a future with robust, data-efficient LfD for novice users.
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5.1. Introduction

Many assistive robots being deployed in people’s homes or on factory floors are capable of

performing a variety of tasks. As such, it is beneficial for end users to be able to customize these

robots by teaching them tasks specific to their needs. However, it is often not possible to provide

high-quality task demonstrations. This could be because the task is challenging for a person to

perform, e.g., cart-pole inversion due to its unintuitive dynamics, or the person is limited by a

low-dimensional control interface, such as a joystick, for providing demonstrations to a 7-DoF

robotic arm. Although successful approaches exist for imitation learning, including Dynamic

Motion Primitives (DMPs) [87], inverse reinforcement learning (IRL) [1], and others—as we

describe in more detail in Section 5.2—few of the LfD frameworks allow for reliable learning

from novice task demonstrations.

Our approach stems from the idea of evaluating how much information about a task is en-

coded in motion—quantifying this using a measure of ergodicity. We propose ergodic imitation

for robust learning from imperfect demonstrations. We define tasks through spatial distribu-

tions in state-based feature space. Through successive demonstrations, we learn the underlying

distribution corresponding to a task and generate robot behavior via ergodic control [127] with

respect to the learned distributions. This learning framework allows us to combine multiple

novice demonstrations into a successful objective and use model predictive control (MPC) to

recreate trajectories for new, previously unencountered scenarios. It is worth noting that ergodic

imitation does not focus on imitating trajectories directly—instead it emphasizes imitating tra-

jectory statistics. As a result, the method learns well from imperfect demonstrations and is

robust to noise in individual demonstrations (e.g., corrective motions or perturbations).
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Moreover, we propose imitation learning using negative demonstrations. In some cases, it

might be easier for a person to demonstrate what not to do rather than to provide an exemplary

task execution. Demonstrating things to avoid is something that people already intuitively do

when teaching new skills to others. Robotic LfD can also largely benefit from incorporating

negative demonstrations into the learning process. Ergodic imitation is a particularly suitable

algorithmic framework, because it enables combining positive and negative demonstrations into

a well-posed task objective.

As part of this study, we validate our learning approach on two test beds: a virtual 2-D

cart-pole system and a simulated 7-DoF robotic arm. We find that ergodic imitation (1) enables

robust skill reconstruction that outperforms the provided demonstrations and (2) generalizes

to different robot tasks. Additionally, we test the utility of negative demonstrations in an ex-

periment with 24 participants. Our results show that there is consistent benefit to soliciting

combined posneg demonstrations compared to only positive demonstrations.
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Figure 5.1. An overview of the learning process using ergodic imitation on the example of the
cart-pole inversion task. Positive and negative demonstrations are combined to form posonly,
negonly, or posneg task definitions.
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5.2. Related Work

Most inverse reinforcement learning (IRL) and inverse optimal control (IOC) methods as-

sume that the demonstrations representing the task are generated by an expert demonstrator

providing optimal (or near-optimal) strategies for the task in order to generate feasible solu-

tions [1, 84, 117]. Other approaches—such as those that use probabilistic methods to learn a

task [31, 89, 111, 145, 159]—also rely on highly skilled demonstrators, accounting for imper-

fections with relatively small-scale noise in the probabilistic representation. To enable task

learning that more closely captures human preferences and accounts for imperfect or incom-

plete demonstrations, active learning methods have been developed [9, 10, 17, 133, 174]. In

these approaches, the human is treated as an oracle that the autonomy can query, improving

learning quality. Alternatively in [196], the person provides ratings (or confidence scores) to a

subset of demonstrations, quantifying the demonstrations’ quality and increasing learning reli-

ability. However, there is an inherent cost of time and effort to querying the user for input and

so the user-in-the-loop learning process can be prohibitively frustrating [5, 29]. The user tends

to have a preference towards online learning approaches (e.g., [174]) that do not require post-

hoc corrections to the learned robot policies. Therefore, in this work, we improve task learning

during run-time by soliciting different types of demonstrations from the human teacher.

Suboptimal and failed demonstrations have been used in LfD before and have been shown

to improve the learning process [49, 169]. In [169], the proposed approach learns faster and

generalizes better than the original IRL method, because it is able to learn from failure. In [49],

authors demonstrate that accommodating failed demonstrations improves learning particularly
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for multimodal tasks (a result we also observe in our experiments). In [79,80], researchers pro-

pose a method that can learn solely from failed demonstrations, acknowledging that combin-

ing successful and failed demonstrations would likely deliver highest quality results. Building

on this prior work, we demonstrate the value of soliciting negative demonstrations—explicit

demonstrations of what not to do. We present an LfD algorithm that allows for combining

positive (successful but possibly suboptimal) demonstrations to be combined with negative (un-

successful and/or explicitly suboptimal) demonstrations together in the learning process.

While the above mentioned methods can successfully learn various skills, many cannot

generate safety guarantees for the learned policy nor guarantee the dynamic feasibility of the

generated trajectories [49, 80, 169]. In contrast, IOC methods, such as [54, 67], which use op-

timal control to generate actions, can have provable guarantees on feasibility and performance.

Similarily, the proposed algorithm inherits formal properties from ergodic control and standard

MPC methods. (1) The ergodic cost is globally convex w.r.t. distributions so long as the metric

used is on a Sobolev space. Here, we use the spectral approach as in [126]. (2) Ergodic imita-

tion inherits asymptotic convergence from ergodic control [127]. In the cart-pole example, this

implies that when the goal distribution is defined as a delta function at the unstable equilibrium,

the statistics of the trajectory will asymptotically approach the delta function—the pole could

occasionally fall, but the amount of time spent at the inverted equilibrium will approach 100%

as t→ ∞. (3) Safety sets can be specified through the use of barrier functions.

In this chapter, we propose and validate ergodic imitation as one possible approach that al-

lows for learning from both suboptimal and negative demonstrations by allowing demonstration-

based distributions to be simply added together, and it maintains desired properties of existing
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IOC methods. We obtain these properties by defining objectives as state distributions and em-

ploying ergodic control for closed-loop trajectory generation. While other methods, such as

IRL, could be adapted to learn an objective function over distributions, the nominal complexity

of IRL is already exponential (O(n2log(nk))) [105]. If one were to perform IRL over the set of

distributions, the algorithm would further increase in computational complexity likely becom-

ing intractable. In ergodic imitation, the learning step (in Eq. (5.3)) has linear time complexity,

allowing us to avoid the computational complexity of IRL. As documented in prior work, er-

godic control scales well to relatively high-dimensional spaces—it has been implemented on

the half cheetah example with 26 observables and continuous actions [3].
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Figure 5.2. Example task definition (left) and skill reconstruction (right) learned from 3 expert
trajectories. An optimal controller is used to recreate the task given the learned goal distribution.
Green indicates success—time when the cart-pole is inverted. The controller-generated trajec-
tory is plotted on the right and overlayed on the task distribution on the left with black dots—note
that the trajectory closely represents the underlying distribution subject to constraints imposed
by system dynamics.
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Figure 5.3. (left) Example task definition and skill reconstruction learned from 3 novice trajec-
tories from Subject 6. Note that the controller just barely succeeds (for less than 5 seconds),
exhibiting comparable performance to the original demonstrations, which had an average suc-
cess time of 5.6 seconds. (center) Example task definition and skill reconstruction learned from
3 negative demonstrations. Note that a negative demonstration includes only failed task attempts
and—with this low-dimensional task—suffices for learning a sub-optimal, yet successful task
definition. (right) Example task definition and skill reconstruction learned from positive and
negative demonstrations from Subject 6. Note that while the posonly controller exhibits per-
formance similar to the original demonstrations, the posneg controller significantly outperforms
them. Although Subject 6 is still a novice at this task, we can learn a task representation com-
parable to the one learned from an expert trajectory (see Fig. 5.2) by soliciting both positive and
negative demonstrations.

5.3. Methods

5.3.1. Ergodic Task Definitions and Control

In ergodic imitation, we generate a representation of an unknown task using spatial statistics.

Since we avoid specifying temporal dependencies, we synthesize robotic controls that success-

fully achieve a task without necessarily replicating the demonstration’s time-evolving trajec-

tory. We define a single demonstration, represented as di, as the distribution of points in the

state space making up the the state trajectory x(t) for a given set of time t ∈ [t0, t f ], and the set
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of demonstrations as D = d1, ...,dm. This set may contain both positive and negative demonstra-

tions, so we also store a label array E = e1, ...,em corresponding in length to D.

Learning from positive demonstrations. A positive demonstration is defined to be a per-

son’s attempt at a task that is at least somewhat successful. Oftentimes user-provided positive

demonstrations are incomplete or highly sub-optimal with multiple attempts at the task and

corrective actions within the demonstration. This was the case in the user studies used in this

work.

During the task learning process, we use the demonstration trajectories to generate a task

definition φ(x) by representing the spatial statistics of each demonstration trajectory d with

the Fourier decomposition φk, as described in Eq. 5.2. We then average the φk values of the

demonstrations to represent the collective spatial statistics of all the demonstrations. Regions

of the state space where more time is spent in the trajectories have a higher density in the

distribution than regions where less time is spent. Examples of the cart-pole inversion task

learned from positive demonstrations—of an expert and a novice—are showed in Fig. 5.2 and

Fig. 5.3, respectively.

To generate the distribution φ(x) from the demonstration trajectories x(t), we calculate spa-

tial Fourier coefficients of x(t) using Fourier basis functions of the form

(5.1) Fk(x) =
1
hk

n

∏
i=1

cos
(

kiπ

Li
xi

)
,

where k is a multi-index over n dimensions, hk is a normalizing factor [126], and Li is a measure

of the length of the dimension. We then compute the coefficients of a time-averaged trajectory
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using Eq. 5.2.

(5.2) ck =
1
T

∫ T

0
Fk(x(t))dt

The coefficients of the demonstration trajectories are combined to form the coefficients that

describe the task definition. We use a weighted average

(5.3) φk =
m

∑
j=1

w jck, j,

where the weighting factor w j normalizes each demonstrations based on either the length of

the trajectory or the relative quality of the demonstration. In the examples in this chapter, we

normalize by the length. Note that other representations of a distribution could be used instead

of Fourier coefficients, including wavelets or Gaussian Mixtures, as long as a comparison metric

of two distributions can be defined and meets the conditions for global convexity.

Learning from negative demonstrations. In this work, we employ negative demonstra-

tions, defined as both unsuccessful task attempts and explicit demonstrations of what not to

do. Negative demonstrations can include good-faith attempts at a task where the demonstra-

tor performs poorly, or explicit examples of actions that are far from the desired behavior. In

the case of reaching a target with object avoidance, a negative demonstration might repeatedly

circle the area of the object without reaching the target. Negative demonstrations add most

complementary information to the positive (successful) demonstrations.

As with positive demonstrations, the demonstrated trajectories are represented by the Fourier

decomposition ck calculated using Eq. 5.2. However, they are combined through subtraction—

w j < 0 in Eq. 5.3—such that regions of the state space where more time is spent in the tra-

jectories have a lower density in the distribution than regions where less time is spent. When
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only negative demonstrations (negonly) are used, a uniform distribution is introduced into the

demonstration set D and given a positive weight, w j > 0.

Algorithm 1 Ergodic Control Algorithm for LfD

Input: initial time t0, initial state x0, set of demonstrations D = {d1, ...,dm} with posi-
tive/negative labels {e1, ...,em}, final time t f

Output: ergodic trajectory x(t)→ X
Define: ergodic cost weight Q, highest order of coefficients K, control weight R, search
domain bounds {L1, ...Ln}, sampling time ts, time horizon T
Initialize: nominal control unom, i = 0
Generate distribution D(s) from demonstration set D.
Calculate φk from distribution D(s)
while ti < t f do

Compute u∗i using MPC
Apply u∗i for t ∈ [ti, ti + ts] to get x∀t ∈ [ti, ti + ts].
Define ti+1 = ti + ts,xi+1 = x(ti+1)
i← i+1

end while

Ergodic Control. Once the task is learned—by combining demonstrations using Eq. (5.3)—

we use a model predictive controller (MPC) to synthesize controls that generate a trajectory to

match the spatial statistics of the distribution representing the demonstration set. In defining the

task objective, we use ergodicity, which relates the temporal behavior of a signal to a pre-defined

distribution. Ergodicity can be measured by several metrics [162,163]; here we use the spectral

approach [126], which characterizes ergodicity by comparing spatial Fourier coefficients of x(t)

to coefficients of φ(x). Assume we have an autonomous agent whose movements are governed

by a dynamic model that is either known a priori or learned from data and is of the form

(5.4) ẋ = f (x,u) = g(x)+h(x)u

where x ∈ Rn is the state of the agent and u ∈ Rm is the control input or “actions” the robot can

take. A trajectory x(t) is ergodic with respect to a distribution φ(x) if, for every neighborhood
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N ⊂X , the amount of time x(t) spends in N is proportional to the measure of N provided

by φ(x). On a long enough time horizon, measuring a perfectly ergodic x(t) gives a complete

description of φ(x). Here, we ask that x(t) be maximally ergodic, by introducing a metric on

the distance from ergodicity into the objective function, so that when x(t) captures the statistics

of φ(x) in a specified time horizon T , the metric is lower. Ergodicity can be quantified as the

sum of the weighed square distance between Fourier coefficients of the distribution φk and the

coefficients representing the trajectory ck:

(5.5) ε =
K

∑
k1=0

...
K

∑
kn=0

Λk|ck−φk|2,

where there are n dimensions and K +1 coefficients along each dimension, and the coefficients

ck can be calculated using Eq. 5.2. The coefficient Λk =
1

(1+||k||2)s , where s = n+1
2 , places larger

weights on lower frequency information.

We define the task objective as

(5.6) J = qε +
∫ T

0

1
2

u(t)Ru(t)dt

with a cost to minimize the ergodic metric and a cost on the control effort used over time.

Now, using the ergodic objective function defined above, we frame the control problem as

an MPC problem, following work in [127]. The full algorithm is outlined in Algorithm 1.

5.3.2. Experimental platforms

We use two simulated experimental platforms and three benchmark tasks for algorithm vali-

dation. Similar to [27, 182, 197], we employ a cart-pole system for initial validation with end

users. Inverting and balancing the cart-pole is a great example of a task that is reliably difficult
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Figure 5.4. Comparison of best task executions from 24 novice participants and skill recon-
structions based on learned objectives, using only positive demonstrations (posonly, orange) and
using both positive and negative demonstrations (posneg, yellow). We employ two performance
metrics for the comparison: task success time (left) and the ergodic metric [71] (right), which
measures information captured about the task in the learned distributions by comparing it to the
true task definition. For both metrics, posonly skill reconstructions achieve performance compa-
rable to or better than the novice demonstrations. Posneg trajectories significantly outperform the
provided novice demonstrations in both metrics: 1 (F=9.07, p=5.7e-10) and 2 (F=1.2, p=3.8e-
5)—in fact they provide skill reconstructions comparable to expert task executions.

for people, particularly novices, to accomplish. We also test two household tasks on a robot

arm. These include reaching with object avoidance (similar to [16, 143]) as well as cleaning or

wiping a surface (similar to [4, 63]). These are good examples of real-world assistive tasks that

encounter high variability in task execution during demonstrations.

Cart-pole System. A simulated cart-pole with state vector x = [θ , θ̇ ,xc, ẋc] and input ẍc was

used in a previous study of 24 participants. Participants were each given 3 sets of 30 30-second

attempts to invert the pole from its resting state to the unstable equilibrium. The data from

this experiment—details of which can be found in [95] and [72]—are used as the novice task

demonstrations in this work.

For cart-pole inversion, a demonstration is defined as successful when during the 30-second

attempt the participant reaches a state near the unstable equilibrium, specifically |θ | < 0.4 rad

and |θ̇ | < 0.75 rad/s. We take the best demonstrations each user provided in set 3 (on average
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the best set) as positive demonstrations and take unsuccessful demonstrations from set 1 (on

average the worst set) as negative demonstrations. Finally, we also test our approach on expert

demonstrations—the positive expert demonstrations are generated using an optimal controller,

whereas the negative expert demonstrations are generated by one of the authors. The true task

definition for cart-pole inversion is defined as a Dirac delta function around [θ , θ̇ ] = [0,0].

Robot Arm Simulator. We develop a pybullet simulation of the Franka Emika Panda Robot

Arm to evaluate ergodic imitation on basic table-top tasks, specifically target reaching and table

cleaning. In the simulation, we generate demonstrations for robot motion using a keyboard

control interface. Keyboard keys control the desired end-effector position of the robot in the

[x,y] dimensions at a fixed end-effector height zd . Demonstrations consist of the end-effector

trajectories, from which we learn a task distribution. After that task definition is learned, we

use ergodic MPC as a motion planner for the end-effector by generating desired end-effector

trajectories [x,y,zd]. For the ergodic controller, we model the system as a double-integrator with

state X = [x,y, ẋ, ẏ] and U = [ẍ, ÿ]. We use the an IK solver to generate joint states corresponding

to the target trajectory and employ a low-level joint controller to execute the trajectory on the

robot arm.

For the target-reaching task, we define success as reaching a target location without colliding

with an obstacle. For the cleaning task, success m is evaluated as a continuous variable based

on both workspace coverage and object avoidance. If the controller-generated trajectory comes

too near the object, the trial is considered a failure (m = 0). Otherwise, the cleaning is assessed

by calculating the workspace visited by the end-effector, as approximated on a 5×5 grid.
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5.4. Experimental Results

5.4.1. Ergodic imitation enables learning from imperfect demos

We show that ergodic imitation can be used to infer the cart-pole inversion task from imperfect

novice demonstrations and that it can recreate the skill on average better than presented during

demonstrations. More specifically, a t-test comparison shows that trajectories generated using

ergodic imitation have higher success times (F=0.24, p=0.06) and are more ergodic w.r.t. the

true task definition (F=0.68, p=0.002) than the provided demonstrations (see Fig. 5.4). This

means that when learning from only positive demonstrations, our trained controller will on

average perform comparably or outperform the provided task demonstrations.

5.4.2. Negative demos consistently improve learning

Furthermore, we show that negative demonstrations add more value than numerous positive

demonstrations, allowing data-efficient learning. For each of the 24 participants, we learn a task

definition from 3 positive and 3 negative demonstrations. Again, we compare the controller-

generated trajectories with the provided trajectories, using success time and the ergodic met-

ric. Results of a t-test show that trajectories generated using ergodic imitation have higher

success times (F=9.07, p=5.7e-10) and are more ergodic with respect to the true task defini-

tion (F=1.2, p=3.8e-5) than the provided demonstrations. They also have higher success times

(F=1.4, p=4.9e-7) and are more ergodic (F=0.79, p=0.003) than the trajectories generated using

posonly demonstrations. Finally, note that the effect sizes are significantly larger than in the

earlier comparison as visible in Fig. 5.4.
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In the event that an end-user cannot generate any successful demonstrations, we also demon-

strate the ability to define a successful task specification from just negative demonstrations. This

is visible in Fig. 5.3, where we note that the skill reconstruction achieves inversion quite late

around t = 20s. Although it is likely impractical for most tasks to learn from only negative

demonstrations, this interesting result illustrates that valuable information about a task can be

conveyed through negative demonstrations.

5.4.3. Ergodic imitation with negative demonstrations works for multimodal and multi-

objective tasks

Ergodic imitation with posneg demonstrations extends to a variety of tasks. It is particularly

useful for open-ended tasks, such as cleaning, where multiple successful task executions exist,

or for multi-objective tasks, such as reaching a target while avoiding an object, where an added

safety constraint is present. Negative demonstrations can be helpful, particularly when trying

to represent constraints in the environment.

We use ergodic imitation to learn to reach a target while avoiding an object. In Fig. 5.5, we

present an example trajectory generated from random initial conditions based on a task defini-

tion learned from 13 positive demonstrations and combined posneg demonstrations (13 positive

+ 3 negative), all between 10-15 seconds in length. Note that with positive demonstrations, the

goal location is successfully reflected, but the region of obstacle avoidance is only starting to

appear. When we add negative demonstrations, the region of avoidance is more clearly defined.

We use ergodic imitation to clean a surface around an object. We compare the results for

10 controller-generated trajectories from random initial states for each type of task definition
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(posonly, negonly, and posneg)—generated from 5 positive, 2 negative, and 3+2 combined pos-

neg demonstrations, respectively. The positive demonstrations were 40-50 seconds in length

whereas the negative ones—18-25 seconds. As visible in Fig. 5.6, the combination of positive

and negative demonstrations offers best performance, highlighting the region to avoid while still

representing the rest of the cleaning task. The posonly controller-generated trajectories some-

times result in collisions. The negonly skill reconstructions result in very few object collisions

but the overall workspace coverage is low. The posneg task definition significantly outperforms

both other task specifications, resulting in no failures and a median 100% success rate.

5.5. Conclusions & Discussion

This chapter introduces ergodic imitation for learning from novice robot users and illus-

trates the value of negative demonstrations—reflecting what not to do—in imitation learning.

While positive-only demonstrations can result in successful skill reproduction, the combination

of positive and negative demonstrations can help to efficiently generate task definitions for dif-

ficult tasks. Ergodic imitation is particularly well suited for multi-objective and open-ended

tasks, where either multiple goals are equally important (e.g., moving a cup without spilling) or

different motion trajectories can accomplish the same task.

There is potential to extend the approach to applications with a focus on safety constraints

and user preferences, such as assisted driving—similarly to [156] but without the need for pref-

erence querying. Moreover, in future work, the ergodic learning framework could be further

automated by combining it with feature selection algorithms, such as [110, 137, 142]. Overall,



146

the presented results are promising—the proposed algorithmic framework and negative demon-

strations have potential to enable demonstration-efficient LfD from imperfect demonstrations

for a range of robotic applications.
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CHAPTER 6

Learning task representations of sequential tasks

Hybrid systems, such as bipedal walkers, are challenging to control because of discontinu-

ities in their nonlinear dynamics. Little can be predicted about the systems’ evolution without

modeling the guard conditions that govern transitions between hybrid modes, so even systems

with reliable state sensing can be difficult to control. We propose an algorithm that allows for

determining the hybrid mode of a system in real-time using data-driven analysis. The algorithm

is used in conjunction with data-driven dynamics identification to enable model predictive con-

trol based entirely on data. Two examples—a simulated hopper and experimental data from a

bipedal walker—are used. In the context of the first example, we are able to closely approximate

the dynamics of a hybrid SLIP model and then successfully use them for control in simulation.

In the second example, we demonstrate gait partitioning of human walking data, accurately

differentiating between stance and swing, as well as selected subphases of swing. We identify

contact events, such as heel strike and toe-off, without a contact sensor using only kinemat-

ics data from the knee and hip joints, which could be particularly useful in providing online

assistance during walking. Our algorithm does not assume a predefined gait structure or gait

phase transitions, lending itself to segmentation of both healthy and pathological gaits. With

this flexibility, impairment-specific rehabilitation strategies or assistance could be designed.
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6.1. Introduction

In order to implement predictive control on an autonomous system or to provide robotic

assistance to a human, we require the ability to identify system dynamics. Lots of work has

been done in this area, allowing one to learn the dynamics of an autonomous robot [2, 58, 136,

144, 192] or a joint human-machine system [25] from collected state data.

Hybrid systems are more challenging. Even if we have reliable sensors to real-time detect

the switching times of the system dynamics, we require a closed-form mapping from states to

hybrid mode to implement any form of predictive control. And, oftentimes, one would prefer

to avoid installing supplementary sensors altogether because of the cost, unreliability or incon-

venience of additional hardware.

A lot of work in this domain has been done in the context of gait analysis and gait phase

identification. Real-time, closed-form expressions for distinguishing between hybrid dynamic

modes can be obtained using supervised machine learning techniques, such as neural net-

works [42,188], Hidden Markov Models [179], or Gaussian Mixture Models [46] from selected

sensory information, such as ground contact forces, joint positions, inertial data, or muscle sig-

nals. Most of these studies rely heavily on ankle data for phase identification, which is often

not present in lower-limb assistive devices, such as the one used in this study. Moreover, work

in this area often requires assumptions to be made about the number of dynamic modes, phase

transition times, or phase durations, limiting the algorithms’ ability to adequately partition ab-

normal gait. Finally, to the authors’ best knowledge, no gait partitioning strategies have been

shown to have the potential to generate control for assistance in real-time.

Here, we propose a novel algorithm that synthesizes a closed-form expression for hybrid

mode switching conditions, allowing for real-time switching time predictions. For a simple
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system—a simulated one-legged hopper—we show that the data-derived guard conditions can

be employed for control. For a bipedal walker (a human in an Ekso Bionics® exoskeleton), we

demonstrate accurate gait segmentation using data only from knee and hip joints. We validate

our gait partitioning by comparing it to pressure data from heel and toe contact sensors and

demonstrate the ability to reliably predict heel strike and toe-off events without use of impact

sensors. We do not pre-label transitions in our training data or pre-define the expected number

of phases, which allows us to identify a range of recurring movement patterns in the gait cycle

and shows promise for meaningful partitioning of abnormal walking.

This chapter lays the groundwork for applications of real-time assistance. In Section 6.2,

we give a detailed description of our algorithmic approach and methods used. In Sections 6.3

and 6.4, we validate our methodology through two examples:

• control of a simulated hopper without any a priori knowledge of its dynamics or guard

conditions

• gait partitioning of experimental data from a bipedal walker.

Finally, we conclude with a discussion of the results and opportunities for future work.

6.2. Methods

Our procedure for approximating the dynamics of a hybrid system for control is split up into

two parts: synthesizing switching conditions between dynamically distinct modes, and estimat-

ing the continuous dynamics of each mode from data. For the first part, we use Nonparametric

Clustering of Dynamics (NCD), where we locally approximate system dynamics at each several

points in time, apply a nonparametric clustering algorithm onto those dynamical models, and

train a classifier to obtain a mapping from system states to dynamically distinct modes. We
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later use this mapping to identify a system’s hybrid mode in real-time. For the second part, we

use Koopman operators [2], which allow us to generate an approximation of the within-mode

continuous dynamics. Both of these approaches are described in more detail in the subsections

below.

6.2.1. Nonparametric Clustering of Dynamics

Hybrid dynamical systems evolve according to distinct dynamics in different regions of the

state-space manifold and as a result are often represented as finite automata with discrete

nodes [83]. Here we propose NCD—a system identification algorithm that allows us to syn-

thesize finite representations of dynamical systems from data. Since hybrid systems express

distinct dynamics based on state-space dependencies, local estimates of the dynamics differ

about the boundaries specified by the system’s guard equations. NCD generates partitions in

the state-space manifold, where local estimates of the system dynamics differ. It numerically

approximates boundaries on the manifold that delineate which mode governs the system at a

given point and, as a result, identifies transitions between modes in hybrid systems, otherwise

defined by guard equations.

Given a dataset representative of all dynamic modes in a hybrid system, NCD first seg-

ments the dataset into subsets and then generates local estimates of the system dynamics from

each subset. Subsets can have various temporal lengths, they can be independent or over-

lap; however, they should always be continuous in time and have the same dimensionality.

While any function approximation technique that produces a numerical closed-form model

of the system dynamics can be used, we use generalized linear regression to generate Koop-

man operators (see Section 6.2.2), because their representation makes them easy to use in
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control settings [193]. In Koopman operators, states x ∈ Rn are lifted into a higher dimen-

sional space through a nonlinear transformation of the original state-space by basis functions

Ψ(x) = [ψ1(x), ...,ψN(x)]T ∈ RN s.t. ψi(x) ∈ R.

The collection of local dynamic models is then made into a list, where we apply unsuper-

vised learning techniques to divide the list into classes of distinct dynamic models based on a

distance metric. For models generated by generalized regression, the list contains the weight

matrices from each local model, L = [W0, ..,WS−1] from S subsets of data. For other kinds of

parametrized models, the list may consist of parameter vectors. If the number of hybrid modes

is known ahead of time, one can apply parametric clustering techniques and prespecify the ex-

pected number of clusters to form. Nonparametric clustering techniques are useful for analyz-

ing systems where the partitions are not as well-defined. We apply Hierarchical Density-Based

Clustering for Applications with Noise (HDBSCAN) to perform nonparametric clustering [33].

Once all dynamic models in the list have been assigned a class label by the clustering al-

gorithm, one can extend the class labels to each model’s corresponding subset of data. To map

the class labels onto the state-space, we train a Support Vector Machine (SVM) on the labeled

data to generate an indicator function Φ(x) [15]. In particular, we generate an indicator function

based on nonlinear transformations of the data, Φ(Ψ(x)) = i, where i ∈ {0, ...,B−1} of B dis-

cerned dynamic modes. The indicator function specifies what mode the system is currently in,

similar to the guard equations in hybrid systems. Algorithm 1 summarizes the NCD procedure

for generating data-driven hybrid mode transition boundaries generally.
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Algorithm 2 Nonparametric Clustering of Dynamics (NCD)

Input: Dataset X = [x0, ...,xM], function approximation technique with closed-form model.

Here, we use generalized linear regression to generate Koopman operators, described in

Section 6.2.2.

Procedure:

1: Split X into S subsets

2: Estimate system dynamics locally for each subset of the dataset Xa:b = {X [a], ...,X [b]}

using W = FunctionApprox(Xa:b)

3: Construct list of dynamic models L = [W0, ...,WS−1]

4: Apply nonparametric clustering to L and label all Wi’s with one of B discerned classes

{C0, ...,CB−1}

5: Label all points in X with the label l ∈ {0, ...,B−1} of the subset they were applied to

6: Train an SVM, Φ(x), to project class labels directly onto the state-space

Return: Trained SVM indicator function Φ(x)

The indicator function gives a closed-form estimate of the regions drawn by the guard equa-

tion boundaries, which allows one to predict switching times in hybrid systems via model

predictive control. If the hybrid mode dynamics are not known a priori, one can generate

data-driven models of each hybrid mode by segmenting the dataset according to the partitions

designated by NCD and learning a model for each dynamic subsystem.

6.2.2. Koopman Operators

Koopman operators have been shown to be effective in modeling observable dynamical sys-

tems [2]. Formally, Koopman operators describe the time-evolution of dynamical systems in an
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infinite-dimensional function space [28,106]. While the infinite-dimensional Koopman operator

is valuable as a theoretical construct, it is impractical for numerical applications. Through gen-

eralized linear regression, one can synthesize finite-dimensional approximations of the Koop-

man operator by considering nonlinear basis functions of state Ψ(x) = [ψ1(x), ...,ψN(x)]T and

their evolution in time [193]. The regression generates an operator K that minimizes the residual

r(xk) in Ψ(xk+1) = KΨ(xk)+ r(xk) through the least-squares optimization

(6.1) min
K

1
2

M−1

∑
k=1

||Ψ(xk+1)−KΨ(xk)||2.

The optimization has closed-form solution K = AG†, where † denotes the Moore-Penrose

pseudoinverse, and the matrix components A and G are

G =
1
M

M−1

∑
k=1

Ψ(xk)Ψ(xk)
T

A =
1
M

M−1

∑
k=1

Ψ(xk+1)Ψ(xk)
T .(6.2)

We can apply NCD in conjunction with finite-dimensional Koopman operators to generate

data-driven estimates of the state-space boundaries designated by the guard equations and to

synthesize the dynamical models of each hybrid mode.
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6.3. Example 1: Control of a Simulated SLIP

The spring-loaded inverted pendulum (SLIP), often used as a simplified model of human

running, is an example of a hybrid system with known dynamics. Although governed by rel-

atively simple equations, it is unstable if left unassisted. Here, we use a simulated SLIP to

demonstrate the joint capabilities of NCD and Koopman operators for predicting hybrid mode

switching and identifying bimodal dynamics for control. In simulation, we successfully use the

data-derived approximation of the SLIP’s hybrid dynamics to generate forward motion using

model predictive control.

6.3.1. Switching Time and Dynamics Identification

For all simulations, we use a 2D SLIP model described by a state vector x = [xm, ẋm,zm, żm,xt ],

where xm and zm are the coordinates of the mass, and xt is the coordinate of the toe, and a

control vector u = [ustance,u f light ], where ustance is the leg thrust applied during stance and

u f light is the toe velocity control applied during flight. SLIP dynamics as described in [95] are

used. We begin by generating 30 seconds of training data using a simulation of the SLIP hopper

controlled by a model predictive controller with knowledge of the correct SLIP dynamics.

We proceed with system identification by employing NCD, described in Section 6.2.1. The

algorithm generates an indicator function that maps from states to SLIP hybrid modes. We ver-

ify the mapping by directly comparing against the solution of the analytical guard equation [95]

and find that the data-driven indicator function is able to detect hybrid modes with near perfect

accuracy for two tested trajectories—it is 100% accurate for constant-velocity forward hopping

and 99.5% accurate for varying-velocity hopping with directional changes. A fragment of the
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Figure 6.1. SLIP trajectory segmented according to an NCD-generated mapping. The data-
driven indicator function is able to detect the SLIP’s hybrid mode with near perfect accuracy for
hopping on flat ground.

constant-velocity trajectory color-coded according to the SLIP’s current hybrid mode is shown

in Fig. 6.1.

Finally, using the NCD-generated mapping, we synthesize two separate Koopman operators

for the SLIP’s flight and stance modes. This obtained, entirely data-derived representation of

the SLIP dynamics is then used for control.

6.3.2. Model Predictive Control

A model predictive controller (MPC) similar to [6] is used. Note that, although we make that

choice, any model predictive controller that is capable of completing the task can be used. For
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Figure 6.2. State trajectories and control history from a SLIP model simulation—the guard equa-
tion and system dynamics used in the simulation were learned solely from data. Note that the
controller is able to keep the SLIP upright and moving forward at an average speed of 0.37m/s,
close to the desired 0.4m/s.

the MPC, we define an objective function of the form

(6.3) J =
1
2

∫ t f

to
∥x(t)− xd(t)∥2

Q +∥u(t)∥2
Rδ t,

with Q≥ 0 and R≥ 0 being cost metrics on state error and control effort, respectively, and xd(t)

being the desired trajectory.

For an example trial, we run the simulation with a desired trajectory xd(t) = [0,0.4,1.6,0,0],

and a diagonal Q matrix with Qdiag = [0,50,100,0,0]. As such, the controller tries to maintain

the SLIP center of mass at a height of 1.6m and a forward velocity of 0.4m/s. In this trial, the

SLIP starts at a height zm = 2m and no forward velocity (ẋm = 0m/s). As shown in Fig. 6.2, the
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controller is able to keep the SLIP upright and moving forward at a velocity of 0.37m/s, close

to the desired 0.4m/s, while having knowledge solely of the data-driven dynamics.

6.4. Example 2: Gait Partitioning for a Biped

Gait partitioning is an area of interest due to its promising applications in improving con-

trol of lower-limb assistive devices as well as in generating individually tailored physical ther-

apies. Here, we segment the gait cycle into phases using the NCD algorithm, described in

Section 6.2.1, and interpret obtained mode transitions based on established gait events. With

control generation in mind, we are particularly interested in determining impact events, such

as heel strike and toe-off, because they mark transitions between dynamically distinct modes.

We validate the accuracy and latency of our predictions against external pressure sensors. Our

results demonstrate successful gait partitioning for healthy flat-ground walking.

6.4.1. Walking Data Acquisition

Data was collected using EksoGT™—a robotic exoskeleton from Ekso Bionics, Richmond,

CA, USA, visible in Fig. 6.3. When not actively in assistance mode, the device offers freedom

to move in the sagittal plane, and to a limited extent in the frontal plane. It provides assistance

solely in the sagittal plane. Both knee and hip joints can be used for assistance, where angular

position and angular velocity can be measured at 500Hz by encoders in all four joints. The

ankle joints are passive and no sensory data is available.
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Figure 6.3. Ekso Bionics exoskeleton, EksoGT™, used for data collection. We use two sets of
its sensors in this study: hip and knee encoders to generate kinematics-based dynamical models
using the NCD algorithm, and foot-mounted pressure sensors at the heel and toe to validate our
models against ground-contact events after partitioning.

For the purposes of this study, two minutes of data were collected of straight flat-ground

walking from one healthy subject with previous experience walking in the exoskeleton. No as-

sistance or resistance was provided to the wearer through motor activity; any perceptible resis-

tance was passive from the mechanical structure of the device. A total of sixteen variables were

recorded. Twelve of them (right/left knee angles, right/left knee angular velocities, right/left

hip angles, right/left hip angular velocities, right/left knee motor currents, and right/left hip mo-

tor currents) were used for analysis. The additional four variables (right/left toe sensors and



159

Figure 6.4. Example signals from two foot-mounted pressure sensors of the exoskeleton in
Fig. 6.3. The top plot shows raw signals from the left heel and left toe sensors for several gait
cyclces. These raw signals are thresholded to generate binary digital signals, visible underneath,
which allow us to detect gait events such as heel strikes and toe-offs on rising edges of the heel
signal and falling edges of the toe signal, respectively.

right/left heel sensors) were excluded from analysis and used solely for validation and verifica-

tion of NCD-generated gait partitions.

6.4.2. Ground Truth for Gait Partitions

Gait cycles are generally defined from one foot strike to the subsequent foot strike on the same

side. Clinically, they are often partitioned separately for each leg based on functionally critical

events for that leg [41]. For this study, we are interested in generating gait partitions that capture

critical changes in the behavior of both legs. We do not impose symmetry, but we choose states

and basis functions symmetrically for right and left legs to allow the algorithm to remain equally
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Table 6.1. Gait Decompositions

2-mode
decomposition

4-mode
decomposition

6-mode
decomposition

Phases right/left step right/left pre-swing
+ swing and stance

right/left initial swing,
terminal swing, and stance

Events heel strike heel strike and onset
of knee buckling

heel strike, toe-off, and
foot clearance at peak swing

Classification
rate* 100% 100% 100%

Average
offset* 11ms±8.5ms 22ms±10.2ms 36ms±9.7ms

*Classification rate and average offsets were calculated only for predictions of impact events, specifically heel strikes
and toe-offs. These events were verified against signal from external pressure sensors not used in generating the data-
driven gait partitions.

sensitive to recurring patterns on both sides. Moreover, we look for gait events representing

contact with the ground, specifically heel strike and toe-off, because these impact events indicate

transitions between dynamically distinct modes that are important for generating control in

a robotic assistive device. As a tertiary objective, we are interested in sub-dividing swing,

because the majority of active assistance during walking takes place during the swing phase. To

generate data-driven approximations for transitions between the described dynamically distinct

gait phases, we use the proposed algorithm—NCD.

In order to validate NCD-generated gait partitions, we utilize foot-mounted pressure sensors

at the heel and toe. We collect analog signals from the pressure sensors and threshold them

to obtain binary readings of whether the heel and toe are in contact with the ground. These

processed sensor readings allow us to directly record heel strikes and toe-offs, establishing a

notion of ground truth for transitions between stance and swing phases, as demonstrated in

Fig. 6.4. As a result, for each gait decomposition, we can find mode transitions that correspond

to these ground-contact events, and measure the offset between the prediction of the event and
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Figure 6.5. Two-phase segmentation of the gait cycle plotted against heel pressure sensors. Dot-
ted gray lines depict NCD predictions of heel strikes, while bold black segments show ground
truth. Identified phases are superimposed onto knee trajectories depicting their relationship
to the gait cycle. We detect heel strikes without misclassifications and an average offset of
11ms±8.5ms. Note that pressure signals are not used in training for any decomposition.

the ground truth from the pressure sensors. The offset measurement is dependent on NCD

reliably recognizing specific mode transitions and thus conveys both the precision and accuracy

of event detection. We report the offset, or latency, as our validation statistic for each of the

obtained gait decompositions.

6.4.3. Multi-Phase Gait Partitions Using NCD

Using NCD, we can segment gait into a range of decompositions from kinematic information,

where each decomposition is determined by a set of distinct transition conditions that are re-

current throughout the gait cycle. In this subsection, we report gait partitions obtained from
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Figure 6.6. Four-phase segmentation of the gait cycle plotted against under-the-heel pressure
sensors. Here, we are able to detect heel strike and the onset of knee buckling. We identify heel
strikes with no misclassifications and an average offset of 22ms±10.2ms.

the same data using NCD with different basis functions. Specifically, we use 30-second frag-

ments of the collected walking data (refer to Section 6.4.1 for details). For each partitioning, we

expand the state space through quadratic, cubic, and/or trigonometric functions of the original

12 states. Depending on the choice of basis functions, and consequently the recognized transi-

tion events, we segment gaits into 2, 4, and 6 phases, where in each case the phase transitions

correspond to easily interpretable gait events. We summarize our findings in Table 6.1.

In the 2-phase segmentation, we identify transitions that correspond to heel strikes. The gait

cycle gets split into a right and left step, as shown in Fig. 6.5. We verify the accuracy of heel

strike against pressure sensor signal and observe no misclassifications with ∼ 11ms latency.
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Figure 6.7. Six-phase segmentation of the gait cycle against foot-mounted pressure sensors.
Dotted gray lines indicate NDC predictions of heel strikes and toe-offs, while the bold black
segments indicate ground truth measurements. NCD generated reliably accurate predictions of
phase-transition events with no misclassified transitions, and an average absolute prediction off-
set of 36ms with standard deviation of 9.7ms.

In the 4-phase partitioning, we identify transitions that correspond to heel strike and the

onset of knee buckling, when the knee is ready to start bending but toe-off has not yet occurred.

This decomposition, visible in Fig. 6.6, combines pre-swing and swing into one mode with a

shortened stance as the second mode. Interestingly, this decomposition could be particularly

relevant for control, because transition out of stance and into pre-swing can be interpreted as

the cue for assistance, while heel strike (transition out of swing into stance) can be a signal for

assistance to pause. Again, we verify the accuracy of heel strike predictions against heel strikes

recorded via pressure sensors and observe no misclassifications with ∼ 22ms latency.

The 6-phase partitioning is the most complex of the ones reported here; we visualize it

in Fig. 6.7. This partitioning allows us to identify both heel strikes and toe-offs, splitting the

gait into right/left swing and stance. In addition, it divides swing into two segments of initial

and terminal swing. Transition from initial into terminal swing corresponds to the clinically

recognized foot clearance—when the swing leg passes the stance leg—and near maximal knee

flexion. This segmentation could also be extremely useful for assistance, because it allows us
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to detect the start of swing. In situations when we want the subject to independently initiate a

step, we might want them to complete pre-swing without assistance and wait for toe-off to apply

control. As before, we verify the toe-offs and heel strikes against pressure sensors, detecting no

misclassifications and an average offset of 36ms.

The list of possible gait partitions presented here is not exhaustive and is meant to illustrate

the capabilities of the algorithm. Additional gait segmentations can be obtained, depending on

what gait phase transitions are important in a particular application.

6.5. Discussion and future work

We demonstrate that NCD in combination with a data-driven dynamics identification tech-

nique, such as the Koopman operator, can be used to infer mode transitions and hybrid dynamics

of a system. We learn a data-driven model of a SLIP hopper and successfully use it in simulation

to generate control. We further show the ability to complete gait partitioning for normal walk-

ing, where switching times for gait phases correspond to gait events measured independently

through ground-reaction forces.

What’s worth noting is that our method could be particularly well-suited for modeling abnor-

mal gaits. For one, we do not parametrize the gait partitioning prior to application of NCD—we

do not make assumptions about either the number of dynamic modes or phase durations. Using

an unsupervised learning technique, we have the flexibility to identify any recurrent movement

pattern and, as a result, partition gaits with varying granularity. We can identify motion pat-

terns in individuals, even when the movements are not part of the “correct” mode sequence in a

specified task. Secondly, we do not require pre-labeling of phase transitions in the training data,

which much prior work has relied on [42, 61], and are able to train our segmentation algorithm
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on small amounts of data (experiments in this study used 30-second sets of walking data sam-

pled at 500Hz). This means that gait partitions could be generated for individual patients and

updated continually as their impairment changes over time. Personalized gait partitions from

impaired individuals could then be used to generate tailored therapies or to create personalized

control patterns for assistive devices.

Finally, the algorithm could further be used to identify higher level behaviors, such as stair

climbing, marching, or walking down an incline. Through real-time identification of a person’s

activities based on kinematic data, NCD could facilitate providing task-relevant assistance with-

out the need for manual task specification. Future work will seek experimental validation of our

algorithms for generating assistance in lower-limb exoskeletons—both for flat-ground walking

and for task-varying movement.

6.6. Conclusion

The presented data-driven methods are a step towards generating real-time model predictive

controllers for hybrid systems, such as lower-limb assistive exoskeletons. We show the ability

to model and control a hybrid system with no a piori knowledge of the transition conditions

or mode dynamics. We further show the ability to generate control-consistent gait partitions in

a healthy individual. Long-term, our approach can lead to developing personalized models of

gait dynamics for targeted assistance and/or rehabilitation in individuals with a range of walking

impairments.
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CHAPTER 7

Conclusions and Future Directions

In this thesis, I present algorithmic approaches for improving the efficacy and functionality

of assistive and rehabilitation robots by improving human-machine communication. I test the

algorithms in simulation as well as in hardware with able-bodied and impaired individuals. In

a recent review article in Annual Reviews, I describe the current state-of-the-art algorithms and

open challenges in the field of human-machine communication [96]. Below, I summarize this

thesis’s contributions in the context of the field and outline directions for future work.

7.1. Emergence of Multimodal Dialogue

Modern collaborative robots often have some capability to interpret human intent. They can

infer intent from biological signals, such as movement, EEG, or EMG, or from a direct human-

generated input, such as joystick signal. These setups successfully facilitate one-directional

communication from the person to the robot and enable task-specific interactions. However,

they often enable little feedback to be provided back to the person and they do not facilitate

bi-directional dialogue during pHRI. Flexible bi-directional communication protocols would

enable more versatile human-robot collaboration.

In Chapter 4, I propose algorithms that enable multiple agents to create and agree on com-

municative conventions from task-oriented interaction. In this work, I use neural networks and

reinforcement learning to facilitate the emergence of concise and effective dialogue between

two artificial agents. As an extension of the project, I test the feasibility of neural networks to
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learn symbolic vocabulary from physical interfaces, such as a sip-n-puff, operated by a person.

I find that with just a handful of demonstrations per symbol, the algorithm can learn to recog-

nize the symbol from a continuous human-generated signal, even if the symbol is temporally

distorted compared to the original demonstration.

The methods presented in Chapter 4 are a departure from conventional algorithms for per-

sonalizing human-machine communication paradigms. Using RL, I enable communicative con-

ventions to emerge during task-oriented collaborative interaction. In contrast, existing methods

either provide no adaptation or they adapt the mapping of command inputs onto robot actions

during an initial calibration period. As described at the end of the chapter, follow-on work

should accommodate learning temporally extended symbols. This could improve the person’s

ability to use a low-dimensional control interface to control a higher-dimensional action space

of a robot. Future work should also expand the experimental work to accommodate multi-modal

and bi-directional communication, e.g., through haptics, gestures, or bioelectrical activity, with

both the person and robot actively generating and receiving communicative signals.

7.2. Learning New Tasks

Because robotic communication and assistance often take place in the context of a task, task

teachability is an important feature for a collaborative robot. In Chapters 5 and 6, I propose

two methods for learning task representations from human demonstrations. Method 1 enables

learning subtasks from continuous demonstrations, method 2 enables learning from negative

demonstrations—presentations of what not to do. Importantly, both approaches avoid defin-

ing tasks in terms of optimal movement trajectories, but rather focus on capturing movement

dynamics and task statistics, respectively.
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Both of the methods presented in this thesis rely on a well-defined set of features that can

capture task success. Features can include the xyz-position of a robot end-effector, the velocity

of a robot’s joints, locations of objects in the robot’s workspace, or any nonlinear transforma-

tions of the observed states. The proposed methods would be more generalizable if the relevant

features could also be learned from demonstration. Extensions of this work could enable neg-

ative demonstrations to be employed to select task-relevant features. As an example, we can

quantify the variability of each feature among positive demonstrations as well as between pos-

itive and negative demonstrations. If the feature varies largely among positive demonstrations,

it is likely irrelevant to the task. Contrarily, if it varies between positive and negative demon-

strations, it is likely key to task success. Contrastive learning could help determine a set of

task-relevant features.

Lastly, follow-on work should combine learning task definitions with the process of com-

munication emergence. This research should include investigating how to enable continual

learning of new task definitions, so that new skills can continue to be added to the robot’s task

library throughout use. It could also explore how to accelerate the emergence of communicative

conventions given familiar tasks and task-oriented coordinated behaviors. Robust human-robot

communication could in turn help the robot learn representations of new tasks.

7.3. Human-Machine Communication for Neurorehabilitation

As described by John Krakauer and David Reinkensmeyer in a recent publication [109],

there is ongoing debate about the value of robotic movement training devices in clinical reha-

bilitation practice. In spite of decades of research, there are few studies that show improved

patient outcomes as a result of robot-assisted therapy compared to conventional training. That



169

said, the evidence is clear that robots can be useful scientific tools in the study of neuromotor

disorders and in the development of novel rehabilitation protocols [109]. My doctoral work

focuses on two aspects of human-machine communication for rehabilitation:

• I create measures of dynamic motion to quantitatively assess dynamic motion capabil-

ities and to study their variation under conditions of reproducible, titrated assistance;

• I evaluate how to provide adaptive feedback and assistance to accelerate learning and

relearning of dynamic motor skills.

7.3.1. Robot-Assisted Assessment of Movement

In Chapters 2 and 3, I propose and validate a novel methodology, called QADR, for assessing

an individual’s motion bandwidth and their ability to generate a dynamic response. I use the

proposed approach to quantify dynamic deficit after hemiparetic stroke and begin to identify

the mechanistic causes of loss in dynamic function due to a stroke. My results show that stroke

survivors experience a reduced motion bandwidth within their reachable workspace. The loss

in function is likely due to, among others, a shift in reliance from direct to indirect pathways for

voluntary motor control.

While most quantitative assessment techniques measure quasistatic motion capabilities,

such as strength or reaching range, QADR aims to quantify dynamic performance. A reli-

able and accurate measure of dynamic motion enables novel investigation of motion bandwidth

in both able-bodied and impaired individuals. QADR can help characterize the neural circuitry

responsible for high-bandwidth motion—it can quantify the bandwidth for incorporating dif-

ferent types of sensory inputs during voluntary motion or help to evaluate the role of motor

lateralization during dynamic motion.
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In its current setup, QADR can provide titrated support of the arm against gravity, which I

have used to study the pathways responsible for motor control after a stroke. Future work should

use QADR to further our understanding of the mechanistic causes of post-stroke dynamic deficit

as well as to explore dynamic deficit across a wider range of neuromotor disorders.

7.3.2. Robot-Assisted Motor Learning

A number of independent studies show that traditional robot-assisted training—focused on

repetitive, assisted execution of motion trajectories—does not significantly improve the effi-

cacy of physical therapy regimens [109]. However, there is significant promise in task-oriented,

adaptive therapy that is specifically targeted towards neural mechanisms underpinning impair-

ment.

The assessment tools presented in Chapters 2 and 3 offer a quantitative measure of dynamic

capabilities that can be used to continuously adapt assistance during task-based training. A

frequency-based metric can be calculated in real time and used in closed loop to update robotic

assistance as needed based on dynamic performance. In my master’s thesis [91], I show that

forceful interaction—adjusted in real-time based on task performance—can accelerate learning

of a dynamic task in unimpaired individuals [72, 95]. Future work should evaluate the efficacy

of adaptive interventions designed using the tasks and quantitative measures presented in this

thesis.

Moreover, I show that frequency-based metrics generalize across 3 tasks for quantifying

dynamic deficit. Future work could adapt the proposed assessment methods to assess dynamic

capabilities using wearable sensors during everyday tasks. Ideally, robots would enable active
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rehabilitation and therapeutic benefits while also assisting with the completion of everyday

tasks—combining assistance with active rehabilitation [7].
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APPENDIX A

Measuring motion bandwidth using pHRI

Figure A.1. Frequency decomposition of motion during ball-in-bowl task. Aggregate spectra for
all subjects across four tasks and four experimental conditions.

Fig. A.1 includes aggregate frequency spectra for all subjects across four experimental con-

ditions and four tasks. The comparisons relevant to our study hypotheses are included in the

main text of the thesis (Chapter 2). We include the aggregate data here to allow the curious

reader to refer to it for context.
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APPENDIX B

Robotic assessment of motion bandwidth and dynamic deficit

B.1. Participant inclusion/exclusion from aggregate analysis

We recruited and consented a total of 20 stroke survivors during the study described in

experiment 1. However, data from only 13 participants was included in the final analyses (10

participants for the ball-in-bowl task, 12 participants for the nail-and-hammer task). There are

two reasons why participants were excluded from the final analyses:

• Participants did not complete the entire experimental protocol due to unforeseen cir-

cumstances, e.g., the robot malfunctioning during the experiment, or a participant’s

unwillingness to come back for a second session.

• Participants were unable to complete the ball-in-bowl task with their nonparetic arm. If

in the frequency spectra for the nonparetic arm, we did not observe a peak at resonance

Figure B.1. Aggregate frequency spectra for the ball-in-bowl task at 2.5Hz for 2 partici-
pants excluded from the analysis. Note that the nonparetic peaks do not match the resonant
frequency. The peaks are visibly offset from 2.5Hz.
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and/or the peak was consistently shifted, we cannot be certain that the participant un-

derstood the task. Three example plots are included in Figure B.1. This happened a

few times for individuals with severe impairment, likely due to cognitive dysfunction

that can accompany physical symptoms in hemiparetic stroke.

B.2. Exclusion of the 0.5Hz ball-in-bowl task

As discussed earlier in the article, the ball-in-bowl task has been validated with unimpaired

individuals in a prior study [101]. During validation, as one of the experimental conditions,

Figure B.2. Aggregate frequency spectra for the ball-in-bowl task for all participants in-
cluded in the analyses (n=10). Note that the nonparetic peaks match resonance for tasks for
all resonant frequencies except 0.5Hz. As a result, the 0.5Hz task is not included in the current
analyses.
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Figure B.3. (left) Aggregate frequency spectra for the nail-and-hammer task for all partic-
ipants included in the analyses (n=13). (right) Aggregate frequency spectra for the object
hit task for all participants (n=48).

participants were asked to complete trials without a moving ball—and hence without an asso-

ciated resonant frequency. When participants’ sole goal was to collect targets without needing

to counteract the oscillations of a ball, they exhibited a default movement frequency between 1

and 1.5Hz. This result suggests that the ball-in-bowl tasks with different resonant frequencies

require strategically different approaches from the participant. For the 0.5Hz task, participants

need to move slower than their default frequency range to succeed at the task. For the 1Hz,

1.5Hz, and 2.5Hz tasks, they need to move within or faster than their default frequency range.

In our validation study, we find that unimpaired individuals are able to make the switch

in strategy—we see statistically significant peaks near resonance for all four tested frequen-

cies [101]. In contrast, the data from the current study with impaired individuals shows a

different trend. We visualize the aggregate frequency spectra for all four frequencies of the

ball-in-bowl task in Fig. B.2. While we see distinct peaks for the nonparetic arm near resonance

for 1Hz, 1.5Hz, and 2.5Hz, we do not see a peak at resonance for the 0.5Hz task. As a result,

we make the decision to not include the 0.5Hz task in our analysis.
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Figure B.4. Frequency spectra for the ball-in-bowl task at 1Hz for all participants (n=10).
Each plot is labeled with the participant’s FMA score and affected side (right/left arm).

Like mentioned in the previous section, one of the inclusion criteria for a participant in this

study was their ability to understand and successfully complete the task, as measured by their

performance at the task with their nonparetic arm. Almost all impaired participants did not exert

enough energy near resonance during the 0.5Hz task to generate a visible peak near resonance,

even with their nonparetic arm, as visible in Fig. B.2 (top left), to warrant inclusion. While we

exclude the 0.5Hz task from the current analysis, a future study could investigate this change in

behavior compared to unimpaired individuals.
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Figure B.5. Frequency spectra for the ball-in-bowl task at 1.5Hz for all participants (n=10).
Each plot is labeled with the participant’s FMA score and affected side (right/left arm).

B.3. Aggregate results for all tasks

For the reader’s reference, we visualize aggregate frequency spectra for all tasks. Fig. B.2

includes the aggregate frequency spectrum for the ball-in-bowl task (n=10). Fig. B.3 includes

the aggregate frequency spectrum for the nail-and-hammer task (n=12) and the object hit task

(n=48). The frequency spectra for the ball-in-bowl task are filtered with a low-pass Butterworth

filter (and a cutoff frequency of 7Hz) for visual clarity.
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Figure B.6. Frequency spectra for the ball-in-bowl task at 2.5Hz for all participants (n=10).
Each plot is labeled with the participant’s FMA score and affected side (right/left arm).

B.4. Individual participant data for the ball-in-bowl task

The study includes 10 participants’ data for the ball-in-bowl task. For the reader’s reference,

frequency spectra for individual participants are visualized in Fig. B.4, Fig. B.5, and Fig. B.6 for

tasks with resonant frequencies at 1Hz, 1.5Hz, and 2.5Hz, respectively. Individual frequency

spectra are filtered with a low-pass Butterworth filter (and a cutoff frequency of 7Hz) for visual

clarity.
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APPENDIX C

Emergence of communicate conventions

C.1. Implementation details

Agent architecture is visualized in Fig. C.1. All models were implemented in Python using

JAX [23] and Haiku [82]. For training, we used GPUs V100 and P100.

Figure C.1. Agents’ architecture and mechanism of communication.

C.2. Experimental comparison of upfront vs. real-time messaging

Real-time communication improves language emergence compared to upfront messag-

ing. As an additional experiment, we compare real-time communication (multi-step cheap talk)
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Figure C.2. Comparison of upfront and real-time messaging. Agents have memory. Real-
time messaging improves convergence on a successful communication protocol. With upfront
messaging, agents learn to solve the task before episode timeout when the listener has partial
visibility. However, convergence is slow and agents are unlikely to solve the task in the optimal
number of steps.

with upfront messaging. In upfront messaging, the speaker generates a 1-, 2-, or 3-token mes-

sage at the beginning of each episode and that message gets broadcasted to the listener at each

timestep throughout the episode. It is a form of unsituated communication, where the speaker

can only generate one message at the beginning of an episode. In both scenarios, the theoret-

ical capacity of the communication channel allows the agents to communicate the necessary

information, whether the agents choose to communicate directions, e.g., ‘turn right’, or a goal

address, e.g., ‘top left corner’. With upfront messages of length 1, 2, and 3, the speaker has 5,

25, or 125 unique messages available for communication, respectively.

In Fig. C.2, we plot the best agent pairs as well as the mean over replicas with the same hy-

perparameters as the best agent pair. With both real-time and upfront messaging, agents succeed

in establishing a successful communication protocol when the listener has partial visibility—

they converge to a mean return of 1 per episode. With no visibility for the acting agent, agent
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Figure C.3. Communication emergence with a cost on communication effort. Agents with
memory; speaker experiences a per-message penalty. With memory, overall performance
improves—more agent pairs converge to an optimal solution. However, relative to baseline,
agents with a message penalty have more difficulty learning to jointly solve the task. In the
heatmaps on the right, we illustrate the communication protocol of the best agent pairs. Note
that the penalty is largely ineffective—the agents send many non-zero messages per episode.

pairs with upfront messaging do not succeed at solving the task. Moreover, the real-time agents

are more likely to converge to an optimal solution, being able to solve the T-maze task in 9

moves. With 1 upfront token, even the best agents learn to at-best solve the task in 12 steps.

These agents seem to reliably learn unique messages to encode the action required at the first

turn or the right/left part of the address, but they do not establish a unique encoding for the

top/bottom portion of the address, as visible in the top heatmap in Fig. C.2. With 3 upfront



182

Figure C.4. Best agent pairs training with a penalty curriculum. (top) Curriculum with map-
ping mp1 (bottom) curriculum with mapping mp2.

Figure C.5. Comparison of pressures for avoiding over-communication (best agent pairs)
in the T-maze.

tokens, the best agent pair agrees on 4 distinct symbols to encode the 4 possible goal locations.

However, convergence is slow and on average agent pairs perform less optimally than under the
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Figure C.6. Agents in 3 environments (top) using situated communication compared to cheap
talk, (bottom) using unsituated communication with a fixed penalty and penalty curriculum.

real-time communication paradigm. We hypothesize that there are benefits to allowing commu-

nication to emerge from multi-step interactions. Our findings suggest that it is easier for agents

to learn to communicate if they can exchange information when it is immediately actionable.
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C.3. Additional results for agents with a per-message penalty

In the main part of the thesis, we present results for experiments on agents without memory.

In Fig. C.3, we present the same experiment on agents with memory. Overall, agents with

memory perform better than agents without memory. However, the trends remain the same—

the penalty negatively impacts convergence and the best-performing agents that find optimal

task solutions do not exhibit sparse communication protocols.

In Fig. C.4, we visualize the learning curves for the two curricula in parallel with the agents’

progression through the curriculum stages. The curriculum with mapping mp1 achieves bet-

ter overall performance and is included in the comparison plots in the main part of the thesis

(Fig. 4.3 and Fig. 4.6).

C.4. Additional results on the impact of pressures on communication conciseness

In the main text, we plot mean learning curves selected based on the highest mean nor-

malized reward per step for a given set of hyperparameters. Here, we include results from the

same experiments as in the main text, but instead we plot learning curves for the best agent

pair. Fig. C.5 includes the same comparison as Fig. 4.3 in the main text; Fig. C.6 includes the

same comparison as Fig. 4.6. In Fig. C.6, we present the best performing agent pairs from our

hyperparameter sweep as well as the mean over the 10 replicas with the same hyperparameters

as the best performing pair. The best performing agent pairs are selected based on the metric of

solution optimality (the normalized reward per step). Overall, the trends of the best performing

agent pairs are consistent with the mean trends described in Chapter 4.
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