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ABSTRACT

This dissertation contains two topics. The first topic focuses on how to use information
design to minimize costs of implementing a policy that guarantees 100% passing rate of all
participants by providing enough compensation for the their effort. The second topic explores an
auction setting which involves financially distressed business insider and deep-pocketed investor.

Chapter 1 studies the design of a feedback system that encourages a group of agents with
different ability levels to complete a task, given that they are sufficiently compensated for their
effort. The goal is to design the feedback system in such a way that guarantees all agents finish
the task regardless of their ability and at the same time minimizes the compensation required.
In the model, a group of agents faces a task that requires costly effort to complete. An agent’s
progress toward task-completion is determined by both his ability and effort. The agent does not
know his ability nor his progress toward task-completion, but the effort is his private informa-
tion. A principal can monitor each agent’s progress, but she has no information about an agent’s
ability nor effort. The principal’s job is to provide enough compensation for the agents so that
they all complete the task in the end. Meanwhile, the principal wants to keep the total compen-
sation to a minimum. An optimal feedback system balances the trade-off between revealing too
much information and letting the agents enjoy the information-rent from their privately known
effort, versus revealing too little information and resulting in some agents over-exerting effort.
The first-best outcome is one in which the principal’s expenditure exactly equals the aggregate
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amount of effort that is required so that all agents successfully finish the task. I first show un-
der what conditions a feedback system can be designed to achieve the first-best outcome, and
when the first-best outcome is not attainable, what the optimal feedback system should be. I
then demonstrate that once more flexibility is allowed in designing such system, the first-best
outcome is always attainable.

Chapter 2 studies an auctionmodel with potentially budget-constrained business insiders and
a deep-pocketed investor who is only constrained by his lack of insider knowledge but not his
budget. I show that the outsider status sometimes puts the deep-pocketed investor in danger of the
winner’s curse. As a result, when the probability of business insiders being budget-constrained
is low, the outsider bids more conservatively. Consequently, the auction’s allocation efficiency
is higher when insiders are less likely to be constrained by their budget. However, the seller
does not necessarily benefit from this increase in allocation efficiency, as the expected revenue
can decrease as a result of the deep-pocketed investor shading his bid. The presence of more
business insiders helps alleviate the winner’s curse and increase the seller’s expected revenue in
some situations. But in certain cases, for example, when the outsider’s valuation depends on the
average of the insiders’ valuations, having many insiders in the auction only makes the outsider
more cautious in his bidding. Therefore, aside from insiders’ budget, the relationship between
the outsider’s valuation and those of the insiders’ is equally if notmore important from the seller’s
perspective. In addition, I also demonstrate that a reservation price has different implications
for the allocation efficiency and the seller’s expected revenue. In particular, a reservation price
always hurt the former – the higher the reservation price, the lower the allocation efficiency.
However, a moderate reservation price can improve the seller’s revenue.
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CHAPTER 1

Task Completion with Minimum Compensation

1.1. Introduction

Self-assessment plays a crucial role in people’s decision making when they try to achieve
certain goals. A person sometimes takes on a task without knowing how well-suited his ability
is in accomplishing such tasks. Only by directly observing and/or by receiving feedback from
a relevant authority on the progress toward completing the task does the person learn about his
ability. The newly gained knowledge on his ability, in turn, influences the person’s decision
regarding whether he should quit or keep going. For example, although many youths dream of
the wealthy and glorious life of becoming professional athletes, only the few who are certain
about their extraordinary talent set out to pursue a career in sports. A prompt and accurate
feedback system is valuable to individuals – gifted or not – so that they can allocate their time
and effort efficiently in deciding if they want to play sports for a living. Similarly, many college
students choose their major not only based on their interests but also on how good they are in
a particular field, with the latter usually comes from the grades they get from relevant courses.
Again, an accurate feedback system can help the students make such decisions. In contrast,
the lack of an accurate feedback system can result in misallocation of human capital. The civil
service examination system in Imperial China is a good example. Candidates only got informed
of whether they had passed the exam. Those who failedmight end upwith false hope that success
was just around the corner. As a result, the civil service examination system absurdly produced
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a handful of “lifetime pupils” who kept dreaming of passing the exam even in their late nineties.
However, there are circumstances that the person who is in charge of providing feedback can
benefit from such vagueness in information disclosure. For example, a mother who teaches her
son how to ride a bike may choose not to reveal his true progress, for otherwise the child may
get discouraged and give up if his progress remains poor after putting in considerable amount
of effort.

It seems that in the examples mentioned above, the authority (referred to as the principal in
the remaining text, with the pronoun “she”) has a monopoly in information, in the sense that she
alone can observe the progress an individual (referred to as the agent in the remaining text, with
the pronoun “he”) makes toward task completion. This is true, but it is not the whole story. In
most real world situations, the agent also possesses private information that is not observable
by the principal – his effort. For example, if two students get the same grade for a class with
one studied day and night diligently for a whole semester while the other partied all the time
only until one day before the exam and began to study, it would be reasonable to assume that
these two students have different ability. That is why I used the term “self-assessment” at the
beginning of the introduction. The progress feedback by the principal is certainly useful, but
only when combined with an agent’s private information of his effort. In some settings, the
latter aspect of the information asymmetry is not important, as the whole point of the feedback
is to help the agent make rational decisions. Thus, the agent has no incentive to cheat. However,
in some other settings, the latter aspect of the information asymmetry cannot be overlooked.
For example, if the principal, aside from providing feedback on the agent’s progress, also has to
compensate the agent for his effort, then she cannot ignore the agent’s incentive to exaggerate
his effort. More often than not, there is nothing the principal can do to directly prevent the
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agent from lying about his effort. This type of situations can arise when the completion of the
task is not merely for the agent’s own benefit. For example, many countries want their citizens
to receive universal education to a certain level. If the government cannot force its people to
study until the desired education level is achieved, it has to provide enough reward so that even
the least talented individual would willingly put in as much effort as it takes. Given that the
government cannot distinguish who the least talented individuals are, those who do not need to
spend as much effort to obtain the required level of education thus can enjoy information rent
on their private knowledge of their ability. But note that an agent’s private knowledge of his
ability is known by him before hand. Rather, he acquires this knowledge through the principal’s
feedback Therefore, in order to economize on her expenditure, the principal has to monetize
her information on the agent’s progress. How to design such a compensation/feedback system
optimally is the focus of this paper.

In particular, I consider the setting in which there is a task to be completed by a group of
agents. Each agent completes the task individually, that is, the task is not a group project. An
agent’s progress toward task completion is determined by two factors: effort and ability. The
agents cannot observe their progress directly. Rather, they have to learn about their progress
through the feedback provided by a principal, who can observe each agent’s progress. However,
only the agent knows howmuch effort he has put into the task. Effort is costly. It is the principal’s
obligation to provide enough compensation for the agents’ effort so that all agents complete the
task in the end. Neither the principal nor an agent himself knows the agent’s ability beforehand,
but the distribution of the agents’ ability is common knowledge. Using the feedback provided
by the principal, an agent will rationally update his belief regarding his ability, given the effort
he has spent on the task. It is the agents who decide when to solicit feedback from the principal.
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However, the principal can charge the agents for the feedback that she provides. The principal
also decides how vague the feedback should be. I will explain the meaning of vagueness when
I present the model in more detail in coming sections. Upon completing the task, an agent get a
cash reward from the principal, the amount of which is set at the outset.

At the very beginning, the principal announces the cash reward for completing the task, the
feedback policy (the vagueness), and the fee that has to be paid in exchange for her feedback.
Upon seeing the principal’s announcement, an agent decides whether he wants to participate, and
if so, how much effort he will spend before he pays the fee and gets feedback on his progress. In
case that the agent has not completed the task already1, he decides whether he wants to continue
or to quit, and in case of continuing, how much more effort to spend before asking for feedback
once again. Aside from the initial announcement, the principal’s role is completely passive –
she is fully committed to the preset feedback policy and only provides feedback when asked by
an agent. In this paper, I assume that the feedback policy can be vague, but it is always truthful.
It will become clear later that this assumption is not essential, for as long as the principal is fully
committed to a feedback policy, any biased feedback policy has a truthful counterpart. For ease
of understanding, in the remaining text, I refer to the task as a test, the cash reward as the passing
reward, the fee paid for feedback as the test fee. The principal’s net expenditure is the difference
between the passing reward and test fee. Her goal is to minimize her net expenditure under the
premise that all agents pass the test in the end. It is worth pointing out that although an agent
only claims the passing reward once, he may choose to pay the test fee multiple times.

To get a brief idea of how the feedback policy, the passing reward, and the test fee relate
to each other, it is helpful to first understand how the principal and an agent’s interests both
1By assuming that an agent’s progress is only observable by the principal, I also assume that the agent can complete
the task without knowing it, unless the principal officially tells him so.
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contradict and align with each other. The contradiction in their interests should be relatively
easy to see. Suppose, in contrast to the assumption that an agent’s ability is neither known by
himself nor by the principal beforehand, an agent is fully aware of his own ability. Then every
agent would claim that he has the lowest ability and thus needs to spend the highest amount
of effort possible, which further translates into the highest compensation. There is nothing the
principal can do to extract the truth from the agents. Therefore, the principal has to set the
passing reward high enough to compensate for the effort spent by the least talented agent. When
an agent’s ability is not known by himself at the outset, however, he can only learn about his
ability (maybe gradually) from the feedback he gets from the principal, which gives the principal
a chance to lower her expenditure. Since the net expenditure is the passing reward, which the
principal has to hand out to everyone eventually, minus the test fee, which may be collected
multiple times, there are two means that the principal can explore. First, she can try to lower
the passing reward that she has to offer. This can be achieved by letting the agents spend some
effort before they acquire any information regarding their progress. Since the effort that has
already been spent is sunk, the passing reward only needs to be high enough to compensate for
any additional effort that is still required. Alternatively, the principal can try to collect more
test fee from the agents. She can do so either by letting them pay the test fee many times over,
or by charging a large amount directly. Intuitively, she cannot do both, because a large test fee
will make the agents more conservative in test-taking so that they can avoid paying the test fee
many times. In contrast, a moderate test fee will make the agents seek feedback more often. Up
until this point, the discussion has focused mainly on the contradiction between the principal’s
interest and that of an agent. To see the alignment in their interest, imagine that the principal sets
a test fee so large that an agent only takes the test when he is absolutely sure that he can pass, i.e.
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by assuming that he has the lowest possible ability outright. Although this scheme completely
deprives the agents of their information rent, the principal herself does not benefit from it. In
fact, her net expenditure is exactly the same as in a world in which the agents know their ability
at the outset. In essence, the principal does not want to withhold too much information from
the agents, as the more effort is wasted, the more baseline compensation has to be. By baseline
compensation, I mean the compensation needed were the principal able to extract full surplus
from the agents through the test fee. Based on the discussion above, the connection between
the feedback policy, the passing reward, and the test fee can be summarized as follows. The
feedback policy, in terms of its vagueness, determines how valuable feedback is to the agents.
The value of this information, together with the price to obtain such information, i.e. the test
fee, determines when an agent would seek such information. An accurate and early revelation
on the principal’s part means giving up some information rent to the agents. A vague or late
revelation may be helpful to reduce the agent’s information rent, as they can either reduce the
passing reward or increase the total test fee, but they also increase the baseline compensation.
Therefore, the key to the optimal design on the feedback policy, the passing reward, and the test
fee lies in balancing these two contradicting forces.

In Section 1.2, I present the formal model and use the details contained in the model to
further explain the contradicting and aligning aspects of the interests of the agents and that of
the principal. Special attention is paid to the ideal outcome from the principal’s perspective when
the first-best-minimum-expenditure (FBME) can be achieved. FBME refers to the situation in
which each agent spends just the right amount of effort to pass the test and the principal extracts
all surplus from the agents. It requires the same net expenditure as if the principal knew each
agent’s ability and thus could pay just enough to get them to pass the test. This is the absolute
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minimum net expenditure. In Section 1.3 to Section 1.5, I assume that the passing reward and
test fee are both independent of the number of tests an agent has taken. Under this assumption,
Section 1.3 explores the full-disclosing feedback policy that enables an agent to know his ability
right after a test is taken. I show that the feasibility of FBME depends on how large the test
fee can be set without making the agents become too conservative in test taking that leads to
the most talented agent over exerting effort, and at the same time, how small the passing reward
can be set so that it is enough to prevent the least talented agent from quitting once he learns
about his low ability. I show under what conditions is FBME can be achieved, and when it
is not achievable, how to find the optimal passing reward-test fee combination that minimizes
the principal’s net expenditure. I show that sometimes is may be optimal to let the top talent
over spend some effort, so that by the time the least talented finds out about his misfortune, not
too much additional effort is required from him to keep going and pass the test. I also find the
absolute upper bound on the principal’s expenditure and show that she is always better off than
she would have been were the agents know their ability beforehand. Section 1.4 explores the
opposite end of disclosing power: the minimal-disclosing feedback policy that reveals as little
information as possible to the agents after each test. Here, the principal only discloses whether
an agent has passed the test. I show that to achieve FBME, it is not always optimal for the
principal to try to set the test fee as large as possible, given that it is not too large to make the
agents over conservative in test taking. On the contrary, sometimes it may be best to waive the
test fee all together. Similar to its full-disclosing counterpart, a crucial aspect of the minimal-
feedback policy is to make sure that an agent does not quit after failing a test at any point. The
difference between the two types of feedback policies is that with full-disclosing, an agent does
not need to pay the test fee again and again to get a better estimate of his ability. Therefore,
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the test fee is no longer a factor that influences an agent’s decision once he has taken a test.
In contrast, a failing agent may have to retake the test for unknown number of times were he
choose to continue. As a result, a high test fee can become a limiting factor at any stage under
the minimal-disclosing feedback policy. I further show that comparing to the full-disclosing
feedback policy, FBME is easier to achieve with minimal-disclosing feedback policy when the
agents’ ability is widely distributed. When FBME is not feasible, I demonstrate the procedure
that the principal should follow to find the optimal passing reward-test fee combination that
minimizes her net expenditure. Section 1.5 explores feedback policies that have disclosing power
sitting between the two extremes discussed in the previous two sections. I first show that under
certain circumstances, this type of feedback policy can indeed produce FBME outcome when
the previous two feedback policies fail to do so. However, the optimal policy is too case-depend
and no meaningful general conclusion can be drawn. Therefore, my approach is to start from a
full-disclosing feedback policy and examine how to modify it into a partial-disclosing feedback
policy that results in less net expenditure. Finally, in Section 1.6, I relax the assumption that the
passing reward and test fee must both be independent of the number of tests an agent has taken. I
show that without this assumption, FBME can always be achieve – both with the full-disclosing
feedback policy and with the minimal-disclosing feedback policy. Since both are special cases
of the partial-disclosing feedback policy, the conclusion that FBME is feasible with a partial-
disclosing feedback policy is automatically true.
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1.1.1. Related Work

This paper is closely related to Ely and Szydlowski (2020 henceforth ES) [13]. In ES, an agent
works on a task of uncertain difficulty and the principal maximizes the agent’s effort by com-
mitting to a policy of disclosure of information about the task difficulty. The uncertain of the
task’s difficulty in ES and the uncertainty of an agent’s ability in this research share the same
nature, as both boil down to the uncertainty of required effort to complete the task. However, a
major difference is that in ES, the principal’s objective is to induce the agent to work as much
as possible, whereas in this paper, the principal does not benefit from any extra effort from the
agents beyond task-completion. Another key difference is that in ES, the principal only controls
the information disclosure but not the agent’s reward for completing the task, which is exoge-
nous. In this paper, the agent’s reward for completing the task is set by the principal to provide
proper incentive to prevent the agent from quitting. In addition, the agent decides when to ac-
quire information regarding his progress from the principal. Therefore, the agent trades off not
only between the reward from completing the task and the cost of effort as in ES, but also the
cost of acquiring information and the risk of over spending effort.

This paper is also related to research on career concerns. In his seminal paper, Holmström
(1998) [20] studies the incentive problem arising from a person taking unobserved actions to
affect performance and thus influences the wage process. Kovrijnykh (2007) [22] and Mar-
tinez (2009) [26] both analyze career concerns models with history-dependent effort and point
out that, in such environments,current effort influences the market’s beliefs about future effort.
However, neither analyzes how disclosing or withholding information from the worker about his
performance affects the worker’s behavior. In contrast, Dewatripont, Jewitt and Tirole (1999)
[11], Mukherjee (2008) [28], Koch and Peyrache (2001) [21], and Hansen (2012) [19] examine
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how varying the amount of information available to the labor market about worker performance
affects the incentives that underlie effort provision in career concerns models. A common theme
is that limiting the amount of performance information available to the labor market can be op-
timal.

Aside from the analysis of performance appraisal and career concerns,there is a growing lit-
erature that studies performance feedback within other contracting frameworks. Aoyagi (2011)
[2] and Ederer (2010) [12] analyze information disclosure in dynamic tournaments. Aoyagi
shows that when the principal controls the agents’ effort incentive through the use of a feed-
back policy, the optimal feedback policy that maximizes the agents’ expected effort is either the
no-feedback policy that reveals no information, or the full-feedback policy that reveals all his
information. There is no heterogeneity in worker ability in Aoyagi’s paper. In contrast, Ederer
shows that, when workers have unknown ability, and effort and ability are complements in pro-
duction, there is a trade-off of performance feedback between evaluation effect and motivation
effect.

I first consider a fixed pair of fee and reward, which is supposed to be independent of how
many times feedback has been provided to a particular agent. I discuss how to choose such pairs
under different feedback policies and what outcomes can be achieved. Then I look into more
flexible designs that allow the fee-reward schedules to be contingent on the number of times
feedback has been provided and show that with this type of flexibility, the first-best outcome is
always achievable.



21

1.2. Model

A unit mass of agents (he) each faces a common task. The amount of effort required to com-
plete the task depends on the agent’s ability, which is distributed according to {a1, p1; ...; aN , pN},
with a1 > a2 > ... > aN > 0 and ∑N

i=1 pi = 1. An agent’s progress toward task completion is
characterized by a score function S(a, e) that has ability as the first argument and effort as the
second. The task is completed if and only if S(a, e) ≥ x, with x exogenously given. Call this x
the passing score.

Assumption 1 (Score function). The score function is assumed to have the following prop-

erties:

(1) S(a, 0) = 0 and )S(a,e)
)e

> 0 for all a ∈ {a1, ..., aN};

(2) For any e > 0, S(a, e) > S(a′, e) if and only if a > a′;

(3) There exists e > 0 such that S(aN , e) ≥ x.

Property 1 says that an agent can always increase his score by exerting more effort; Property
2 implies that an agent with higher ability scores higher than his less talented peer who spends
the same amount of effort; Property 3 guarantees that even the least talented person can complete
the task as long as he spends enough effort. Given the assumptions on S(a, e), it is clear that
inverse of the score function in e exists for any a ∈ {a1, ..., aN}. Define the effort function

(a, s) to be this inverse. That is, S(a, (a, s)) = s for all a ∈ {a1, ..., aN} and s > 0. To
simplify notation, for each i ∈ {1, ..., N}, let "i = (ai, x), i.e., the effort required for an agent
with ability ai to complete the task.2

2When the distribution of ability has finite support, as in our model, one can define the type space using "i instead.However, without introducing ability, the connection between effort and progress becomes obscure.
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Effort is costly. All agents share the same cost function (e) with e being the effort. The
cost function is such that (0) = 0 and ′(e) > 0 for all e > 0. That is, cost only occurs when
effort is spent, and it strictly increases with the amount of effort. For simplicity, I assume that
the the cost of effort coincides with effort, i.e. C(e) = e. This assumption simplifies the notation
without compromising the generality of the analysis. Participation is voluntary, and the agents
are free to quit anytime.

There is a single principal (she) who has the obligation of letting everyone complete the task.
Ex-ante, neither the principal nor the agent knows about the agent’s ability – only its distribution
is common knowledge. The score function S(⋅, ⋅) and the passing grade x are also common
knowledge to both parties. An agent’s effort is his private information that cannot be observed
by the principal. Since participation is voluntary, the principal has to compensate the agents for
their efforts. I assume that the principal does not personally benefit from the agent’s efforts in
any way. Her sole purpose is to let everyone complete the task. The principal wants to keep her
overall expenditure as low as possible. One can think of the situation as a training requirement
being delegated to the principal, by her superior or by a third-party, for a fixed amount of up-
front payment. In this case, the principal wants to minimize her expenditure, given that the
training requirement is met. Alternatively, one can also think of the principal as a policy maker
who cares about some social outcome, say, a government that wants to eradicate illiteracy. As
a benevolent government, it hopes to achieve this goal not by force, but by providing rewards
to encourage people to get basic education. However, as all governments do, it has to keep its
budget in mind.

The principal administers tests to keep track of the agents’ progress and provide feedback to
the agents. Administrating tests is costless to the principal. The design of the tests involves two
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dimensions: monetary and non-monetary. The monetary dimension consists of passing reward
r and test fee b. The passing reward r is paid by the principal to the agent when the latter passes
the test. The test fee b, which is paid to the principal by the agent, only comes into effect when
an agents fails a test.3 I first discuss the optimal design of the monetary dimension by choosing
a fixed pair of (r, b) that does not depend on how many times an agent has taken the test. I then
explore whether taking a more flexible approach by choosing a sequence of {(ri, bi)}Mi=1 pairs that
are contingent on the number of tests that an agent has taken can improve the financial outcome
for the principal. For example, by setting {(r1, b1), (r2, b2)} = {(4, 3), (2, 1)}, the agent gets a
passing reward of 4 if he passes the test on the first attempt and pays a test fee of 3 if he fails.
In the latter case, if the agent chooses to re-take the test at some point in the future, he gets a
passing reward of 2 if he passes and pays a test fee of 1 if he fails again.

The non-monetary dimension of the test-design is the feedback policy that the principal is
committed to. First, I consider a full-disclosing feedback policy that, once combined with an
agent’s private information of the effort he has spent, enables him to learn about his ability
immediately after he receives the feedback. This can be achieved by revealing the test score
directly to the agent. The agent can then learn about his ability ã by searching for ã such that
S(ã, e) = s, where e and s are his effort and score, respectively. At the opposite extreme in terms
of disclosing power, I look into a minimal-disclosing feedback policy that only informs an agent
of whether he has passed the test or not. Under most circumstances, an agent would not be able
to learn precisely what his ability is only by knowing that he has failed the previous test. But this
information would still help him rule out certain possibilities, because if his ability is sufficiently
3Perhaps a more natural way to model the payment scheme is to make the test fee applicable for each test taken,
regardless of passing or not. However, by setting the passing reward equal to r + b, the two payment schemes
become equivalent. Yet as will become clear below, making the test fee only applicable in case of failure simplifies
the notation.
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high, he should have passed the test with the amount of effort he has already spent. At last, I move
on to consider other feedback policies with disclosing power sitting in between the two extremes
mentioned above. An example of this type of feedback policy is the letter grades: after failing a
test, the agent may not be able to know his ability exactly, but he can nevertheless narrow down
its possibilities more than he otherwise would with the minimal-disclosing feedback policy.

In terms of notation, I use ti to denote the effort level at which the ith test is taken. For
example, if an agent spends effort ẽ and takes the test for the first time, then t1 = ẽ. Conversely,
if another agent failed a test once and later re-take the test after spending a total effort of ẽ, then
t2 = ẽ for this agent. The timeline is as follows:

∙ The principal designs the tests, including both the monetary dimension (passing reward
r and test fee b) and the non-monetary dimension (feedback policy), and makes them
public to the agents;

∙ An agent decides whether to participate, and in case of participation, how much effort
to spend before taking the test (t1);

∙ The agent takes the test after the amount of effort reaches t1;
∙ The principal observes the agent’s score. If the agent has passed the test, the passing
reward r is paid to the agent by the principal, and there is no further interaction between
the agent and the principal; If the agent fails, the principal receives the test fee b from
the agent and provides him with feedback according to the feedback policy announced
at the beginning;

∙ Upon receiving the feedback, the agent updates his belief about his ability and decides
whether to continue. If the agent decides to continue, he further makes a decision
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on how much total effort (including the effort he has already spent before failing the
previous test) to spend before re-taking the test (t2);

∙ The agent re-takes the test after the total amount of effort reaches t2;
⋮

∙ This process goes on until the agent passes the test or decides not to continue.

Assuming that the principal’s obligation of letting everyone complete the task is fulfilled,
then ex-ante, an agent’s expected payoff is

r −
(

E[number of tests taken] − 1) ⋅ b − E[total cost of effort],

whereas the principal’s net expenditure is

r −
(

E[number of tests taken] − 1) ⋅ b.

Seemingly, the principal and the agents have a strong conflict of interest, as a lower expen-
diture for the principal means a lower expected payoff to the agents. However, when the test
system is designed properly, the principal may be able to decrease her net expenditure without
sacrificing the agents’ payoff – by limiting the amount of “unnecessary effort” wasted by the
agents. Since participation is voluntary, the agents’ ex-ante participation constraint must be re-
spected, which effectively sets the aggregate cost of effort as the lower bound for the principal’s
expenditure. Therefore, if much effort is expected to be “wasted”, in the sense that the agents
know, before hand, that some of them are going to spend more effort than needed, then the
principal’s expenditure may still be large, even if she is able to extract all the surplus from the
agents. One immediate observation is that the principal’s expenditure is always bounded below
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by∑N
j=1 pj"j , which is the least amount of aggregate effort required so that everyone completes

the task. For this reason, I call it the first-best minimum expenditure (FBME).
A natural question thatmay arise at this point is when, if ever, “wasted” effort can be desirable

for the principal. Intuitively, to avoid over-exerting effort, an agent needs to find out about his
ability as soon as possible, so that he can spend just the right amount of effort to pass the test.
From the principal’s perspective, however, letting an agent learn about his ability at an early
stage has the drawback that in case the agent finds out that his ability is so limited that it requires
a large amount of effort for him to pass the test, he will be reluctant to do so unless the passing
reward is set to be very large. This is a problem for the principal as she has to offer this large
passing reward to everyone. This point can be easily understood in a fictitious setting in which
all agents know their ability from the very beginning. Since the principal cannot observe the
agent’s effort, she has to offer r ≥ "N so that the least talented agents are willing to complete the
task. But this leaves considerable information rent for the more talented agents. For example,
those with ability a1 end upwith a surplus of "N−"1. Thus, in order to minimize her expenditure,
the principal has to balance the trade-off between:

(1) withholding information and letting effort go to waste;
(2) revealing information and giving up information rent.

In the subsequent sections, I start my analysis by assuming a fixed (r, b) pair. I discuss how
to choose (r, b) optimally under different feedback policies, and what outcome can be achieved.
Later, I allow for flexible {(ri, bi)}Mi=1 pairs that are contingent on the number of tests that an
agent has already taken. I show how to choose {(ri, bi)}Mi=1 optimally, and then demonstrate that
FBME is always feasible in this case.
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1.3. Full-Disclosing

When a full-disclosing feedback policy is adapted, an agent receives his test score after a
test is taken. Using the score function and how much effort he has spent, the agent is able to
calculate his ability. This further allows him to calculate the additional effort needed before
passing the test. If the passing reward is not enough to cover the extra cost of effort, the agent
quits immediately. Otherwise, he continues to spend just enough effort to pass the test. In the
discussion that follows, I make the additional assumption that “speculative” test taking is not
allowed, by requiring t1 ≥ "1. This can be done by imposing a huge penalty on those whose test
score is less than S(aN , "1). As will become clear by the end of this section, this assumption is
not essential, since such speculative behavior will not happen if (r, b) is chosen properly. The
details can be found in the Appendix.

Under the full-disclosing feedback policy, the agent’s problem boils down to choosing how
much effort to spend before taking the first test, i.e. choosing t1. Once the first test is taken,
the agent’s ability becomes clear, and his subsequent decision is straightforward. The following
proposition allows me to further simplify the agent’s problem:

Proposition 1. When the feedback policy is full-disclosing, it can only be optimal for an

agent to choose t1 = "i for some i ∈ {1, ..., N}.

PROOF. Suppose, on the contrary, that t1 ≠ "i for all i ∈ {1, ..., N}. Clearly, t1 > "N is
not optimal, since setting t1 = "N saves effort, and the agent can still pass the test for sure. The
case with t1 < "1, as discussed earlier, is ruled out by assumption. Assume that "k < t1 < "k+1
(k = 1, ..., N − 1), and compare it to the alternative of t̃1 = "k. Let an (n = 1, ..., N) be the
agent’s ability. If n ≤ k, then the agent passes the test at either t1 or t̃1, only with less effort in the
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latter case; If n > k, and r ≥ "n− t̃1(> "n− t1), then the agent’s final payoff is r− b− "n whether
he has chosen t1 or t̃1 in the first place, since he will proceed to pass the test anyway; If n > k,
and r < "n − t1(< "n − t̃1), then the agent quits in either case, but with t̃1, the sunk cost of effort
is less than that with t1. The only remaining case to consider is n > k and "n − t1 ≤ r < "n − t̃1.
That is, if the agent finds it worthwhile to continue to pass the test were he to take the test at
t1 but not so if the test is taken at t̃1. However, r < "n − t̃1 implies that r − b − "n < −b − "k,
the left-hand-side of which is the agent’s payoff with t1 while the right-hand-side is the agent’s
payoff with t̃1. Therefore, in all cases, t1 > "k is (weakly) dominated by t̃1 = "k. �

Proposition 1 implies that the agent’s problem can be simplified into choosing i ∈ {1, 2, ..., N}
so that the ex-ante expected utility Ufd(i; (r, b)) is maximized by setting t1 = "i:

max
i∈{1,...,N}

Ufd(i; (r, b)) ∶=
i

∑

j=1
pjr +

N
∑

j=i+1
pj
(

max{0, r − ("j − "i)} − b
)

− "i.

When an agent is indifferent between two effort levels to take the first test, I assume that the
lower one will be chosen. Clearly, achieving FBME requires t1 = "1, for otherwise those with
ability a1 would have already spent more effort than needed by the time they take the first test.
Furthermore, implementing t1 = "1 requires r ≥ "N − "1 so that those with ability aN still go
on to complete the task. Having such a high lower bound on r is apparently bad news for the
principal. However, she may nevertheless be able to reduce her net expenditure by choosing a
large test fee b. One disadvantage of choosing a large b is that the daunting test fee would make
the agents more avert of failure. As a result, they may choose t1 > "1 to increase the chance of
passing the test in one sitting, which makes FBME unattainable. In contrast, if the test fee is
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negligible, the agents would want to learn about their ability as early as possible to avoid over
exerting effort. Lemma 1 shows that when r is set high enough to guarantee 100% final passing
rate (for example, r ≥ "N − "1), the choice of t1 depends solely on b.

Lemma 1. Let k, l ∈ {1, ..., N} and k < l. If r ≥ "N − "k, an agent’s preference between

t1 = "k and t1 = "l is determined by b only. In particular, there exist a threshold test fee

(1.1) �fd(k, l) =

∑k
j=1 pj("l − "k) +

∑l
j=k+1 pj("l − "j)

∑l
j=k+1 pj

> 0,

such that the agent prefers t1 = "k to t1 = "l if and only if b ≤ �fd(k, l).

PROOF. With r ≥ "N − "k,

Ufd(k; (r, b)) − Ufd(l; (r, b)) =
k
∑

j=1
pj("l − "k) +

l
∑

j=k+1
pj("l − "j) −

(

l
∑

j=k+1
pj
)

⋅ b.

Therefore, Ufd(k; (ℎ, b)) ≥ Ufd(l; (ℎ, b)) if and only if

b ≤
∑k

j=1 pj("l − "k) +
∑l

j=k+1 pj("l − "j)
∑l

j=k+1 pj
= �fd(k, l).

The fact that �fd(k, l) > 0 is guaranteed by the assumption k < l. �

Lemma 1 is consistent with the intuition that an agent would prefer to take the test early
when test fee is small. Therefore, to implement t1 = "1, the principal faces an upper bound on
b. Beyond this upper bound, the agents will take the first test after spending more effort than
"1. Another restriction that the principal faces were she to implement t1 = "1 is that the passing
reward r has the lower bound of "N − "1, below which an agent whose ability is at the lower
end loses incentive to continue. In addition, the (r, b) combination has to respect the agent’s



30

participation constraint. Note that the restriction imposed by the participation constraint does
not create extra difficulty for the principal to achieve FBME, as it can be relaxed simply by
reducing the test fee b and/or increasing the passing reward r, neither of which compromises the
implementability of t1 = "1. In fact, it is the opposite that is problematic for the principal. That
is, if the participation constraint is slack when b is raised to its upper bound and r is reduced to its
lower bound. In that case, FBME is not achievable. According to this argument, the following
conclusion can be drawn:

Proposition 2 (Conditions for achieving FBME). When the feedback policy is full-disclosing,

FBME is achievable if and only if

Ufd(1; (Rfd(1), B̄fd(1))) = Rfd(1) −
N
∑

j=2
pjB̄

fd(1) −
N
∑

j=1
pj"j ≤ 0,

where Rfd(1) = "N − "1 and B̄fd(1) = mini∈{2,...,N} �fd(1, i).

PROOF. To implement t1 = "1, (r, b) has to meet the following conditions:
(1) r ≥ "N − "1;
(2) b ≤ mini∈{2,...,N} �fd(1, i);
(3) Ufd(1; (r, b)) = r −

∑N
j=2 pjb −

∑N
j=1 pj"j ≥ 0.

The first condition is needed so that everyone completes the task; The second condition builds
on Lemma1 and ensures that the agents choose t1 = "1; The third condition is the participa-
tion constraint. As mentioned earlier, neither increasing r nor decreasing b changes an agent’s
decision to choose t1 = "1 and subsequently keep working until he can pass the test. Therefore, if
Ufd(1; (Rfd(1), B̄fd(1))) < 0, the principal can increase r and/or decrease b untilUfd(1; (r, b)) =

0. In contrast, if Ufd(1; (Rfd(1), B̄fd(1))) > 0, there is nothing the principal can do to reduce
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her expenditure without changing the agent’s choice of t1 or whether to keep working until the
task is completed, as reducing expenditure necessarily requires decreasing r and/or increasing
b. �

Based on Proposition 2, the following corollary is immediate:

Corollary 2.1 (MinimumExpenditure to Implement t1 = "1). When the conditions in Propo-

sition 2 is not satisfied, the minimum expenditure required to implement t1 = "1 is

EXfd(1; (Rfd(1), B̄fd(1))) = Rfd(1) −
N
∑

j=2
pjB̄

fd(1)

with Rfd(1) and B̄fd(1) as defined in Proposition 2.

When the condition in Proposition 2 is not satisfied, FBME is not achievable. In this case, the
principal can either implement t1 = "1 and leave some surplus to the agents, or implement t1 = "i
for some i > 1 instead. However, unlike t1 = "1, some t1 = "i’s (i > 1) are not implementable.
Intuitively, this is because to implement any t1 = "i > "1, a test fee that is too low will make the
agents take the first test earlier than "i, while a test fee that is too high will make the agents take
the first test later than "i. Therefore, implementing any t1 = "i > "1 is restricted by both a lower
bound and an upper bound on b. When there does not exist any b that satisfies both the upper
bound and the lower bound at the same time, such t1 is not implementable.

Proposition 3 (Implementability under Full-Disclosing Feedback Policy). Under the full-

disclosing feedback policy, t1 = "1 and t1 = "N are always implementable. For i ∈ {2, ..., N −

1}, t1 = "i is implementable if and only if

max
k∈{1,...,i−1}

�fd(k, i) < min
l∈{i+1,...,N}

�fd(i, l).
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PROOF. The implementability of t1 = "1 is discussed earlier. To implement t1 = "N , we can
choose any b > maxj∈{1,...,N−1} �fd(j,N) and r ≥ "N . We now discuss the case of implementing
t1 = "i with i ∈ {2, ..., N − 1}.

(⇒) If t1 = "i is implementable, then there exist (r, b), r ≥ "N − "i, such that Ufd(i; (r, b)) ≥

Ufd(l; (r, b)) for all l ∈ {i+1, ..., N} and Ufd(i; (r, b)) > Ufd(k; (r, b)) for all k ∈ {1, ..., i−1}.
Since r ≥ "N − "i implies r > "N − "l, it follows from the definition of �fd(i, l) that b ≤

minl∈{i+1,...,N} �fd(i, l).
The case with �fd(k, i) is slightly more complicated, as r ≥ "N − "i does not necessarily

imply r ≥ "N − "k. LetM = max{j ∶ "j − "k ≤ r}. To put it plainly,M is defined in such a
way that an agent whose ability is lower than aM chooses to drop out after he fails the first test.
Clearly,M ≥ i, as otherwise t1 = "i cannot be optimal. Then

Ufd(i; (r, ℎ)) − Ufd(k; (r, ℎ))

=

(

r −
i

∑

j=1
pj"i −

N
∑

j=i+1
pj(b + "j)

)

−

(

M
∑

j=1
pjr −

k
∑

j=1
pj"k −

M
∑

j=k+1
pj(b + "j) −

N
∑

j=M+1
pj(b + "k)

)

.

Ufd(i; (r, b)) > Ufd(k; (r, b)) if and only if

b >

∑k
j=1 pj("i − "k) +

∑i
j=k+1 pj("i − "j) +

∑N
j=M+1 pj[("j − "k) − r]

∑i
j=k+1 pj

=�fd(k, i) +

∑N
j=M+1 pj[("j − "k) − r]

∑i
j=k+1 pj

≥ �fd(k, i),

with the last inequality following from "j − "k > r for all j ∈ {M + 1, ..., N}. The equality
holds ifM = N .



33

When t1 = "i is implemented by (r, b), b > �fd(k, i) +
∑N

j=M+1 pj[("j − "k) − r]
∑i

j=k+1 pj
must hold

for all k ∈ {1, ..., i − 1}, which certainly implies b > �fd(k, i) for all k ∈ {1, ..., i − 1}. Putting
things together, one concludes that b must satisfy

max
k∈{1,...,i−1}

�fd(k, i) < b ≤ min
l∈{i+1,...,N}

�fd(i, l),

and maxk∈{1,...,i−1} �fd(k, i) < minl∈{i+1,...,N} �fd(i, l) is thus required for such b to exist.
(⇐) Choose any (r, b) such that maxk∈{1,...,i−1} �fd(k, i) < b ≤ minl∈{i+1,...,N} �fd(i, l) and

r ≥ "N − "14. Then, by definition of �fd(k, i) and �fd(i, l), t1 = "i is preferred to all t1 = "l

(l > i) and t1 = "k (k < i), and r ≥ "N − "1 guarantees that all agents continue to spend enough
effort to complete the task. �

It is worth pointing out that Proposition 3 only says which t1 = "i’s are implementable using
certain (r, b) pairs, but in terms of expenditure minimization, this is only one side of the story. As
discussed earlier, the principal’s expenditure is determined by two factors: the aggregate effort,
which is determined by which t1 to implement, and howmuch surplus has to be left to the agents
when this t1 is implemented. Assume that t1 = "i satisfies the condition in Proposition 3 and thus
can be implemented. In the proof of Proposition 3, the passing reward is set to be r ≥ "N − "1.
In theory, when t1 = "i is chosen by the agents, a passing reward of r ≥ "N − "i < "N − "1

should be enough to encourage the least talented agents to keep going. However, if the principal
tries to decrease her expenditure by lowering r from "N − "1 to "N − "i, the lower bound on b

4Note that r ≥ "N − "i cannot guarantee t1 = "i is preferred to all t1 = "k (k < i), as the lower bound on b can
increase above �fd(k, i) ifM < N . With r ≥ "N − "1, one can be certain thatM = N .
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starts to increase as a result.5 If, at some point, the lower bound on b ceases to be smaller than
the upper bound, t1 = "i cannot be implemented anymore.

Proposition 2 explores when full-surplus-extraction is possible were t1 = "1 to be imple-
mented. Clearly, full-surplus-extraction is always possible when t1 = "N , as this can be done
simply by choosing any b > maxj∈{1,...,N−1} �fd(j,N) and r = "N . In this case, the test fee is
so high that the agents will not take the test unless they are a hundred percent sure that they can
pass, and they are willing to do so as long as the passing reward is large enough. Proposition 4,
in turn, deals with the remaining cases of t1 = "i, i ∈ {2, ..., N − 1}.

Proposition 4 (Condition for Full-Surplus-Extraction). Assume that t1 = "i (i ∈ {2, ..., N −

1}) is implementable. Then full-surplus-extraction is possible with t1 = "i if and only if

Ufd(i; (Rfd(i), B̄fd(i))) = Rfd(i) −
N
∑

j=i+1
pjB̄

fd(i) −
i

∑

j=1
pj"i −

N
∑

j=i+1
pj"j ≤ 0,

where B̄fd(i) = minl∈{i+1,...,N} �fd(i, l) and

Rfd(i) = max
{

"N − "i, inf
{

r ∶ Ufd(k, (r, B̄fd(i))) < Ufd(i, (r, B̄fd(i))) ∀ k = 1, ..., i − 1
}

}

.

PROOF. As before, the principal’s ability of surplus-extraction depends on how much she
can raise b and/or lower rwithout impacting the agents’ choice of t1 nor resulting in some agents
quit before the task is completed. To what extent can r be lowered is bounded by two factors.6
5Recall that

(1.2) b > �fd(k, i) +

∑N
j=M+1 pj[("j − "k) − r]

∑i
j=k+1 pj

has to be satisfied in order to have t1 = "i keep being optimal. The right-hand-side increases when r decreases.
6In fact, the extent to which r can be lowered is bounded by three factors, the first of which being the participation
constraint. However, in the discussion of surplus-extraction, this factor is not really relevant, since when this
constraint becomes binding, full-surplus-extraction is achieved.



35

The first factor is with regard to the least-talented agent’s interim incentive to continue to pass
the test, which is given by r ≥ "N−"i; The second factor deals with the agent’s ex-ante incentive
to choose t1 = "i in the first place. This last factor is irrelevant in the precious discussion of
implementing t1 = "1 for the reason that will become clear in the analysis that follows.

Take any k ∈ {1, ..., i − 1}, and letM again be such thatM = max{j ∶ "j − "k ≤ r}. Then

Ufd(i; (r, b)) − Ufd(k; (r, b)) =
N
∑

j=M+1
pj[r − ("j − "k)] +

i
∑

j=k+1
pj[b − ("i − "j)] −

k
∑

j=1
pj("i − "k).

To implement t1 = "i, we need Ufd(i; (r, b)) > Ufd(k; (r, b)) for all k < i. Note that
Ufd(i; (r, b)) − Ufd(k; (r, b)) is immune to changes in r for r ≥ "N − "k. It strictly decreases if
we further lower r from "N − "k to "N − "i. For t1 = "i to remain to be implemented, we need

(1.3) r ≥ inf
{

r ∶ Ufd(k, (r, b)) < Ufd(i, (r, b)) ∀ k = 1, ..., i − 1
}

,

taking b as given.7 Hence, although reducing r helps with surplus-extraction, it may also com-
promise the implementability of t1 = "i. In contrast, increasing b enlarges Ufd(i; (r, b)) −

Ufd(k; (r, b)), which, in turn, relaxes the restriction on r given by Equation 1.3. Given that
doing so is also beneficial for surplus-extraction, there is no downside in setting b as large as
possible, as long as it is not so large that agents find any t1 = "l > "i more attractive. There-
fore, the smallest r that the principal can choose without compromising the implementability of

7Alternatively, this lower bound on r can be explicitly expressed as

r ≥ max
k=1,...,i−1

−
∑i
j=k+1 pjb +

∑k
j=1 pj("i − "k) +

∑i
j=k+1 pj("i − "j) +

∑N
j=M+1 pj("j − "k)

∑N
j=M+1 pj

.
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t1 = "i is thus given by Rfd(i).8 At this point, it should be clear that when t1 = "1 is imple-
mented, there is no other choice of t1 that comes before "1, and as a result, the principal can
safely reduce r without worrying about doing so may make some t1 < "1 more attractive.

We have shown that (B̄fd(i), Rfd(i)
) is the combination of the largest test fee and smallest

passing reward that can be chosen to implement t1 = "i. Therefore, the principal is not able
to fully extract surplus if Ufd(i; (Rfd(i), B̄fd(i))) > 0. When Ufd(i; (Rfd(i), B̄fd(i))) < 0,
however, she can simply raise r so that Ufd(i; r, B̄fd(i))) = 09 �

In case that a certain t1 can be implemented and in addition, full-surplus-extraction is feasible
with this choice of t1, the principal’s expenditure would just be the aggregate effort from all the
agents. For example, suppose that t1 = "i is being implemented with full-surplus-extraction.
Then the corresponding net expenditure is∑i

j=1 pj"i+
∑N

j=i+1 pj"j . The specific combination of
the passing reward and the test fee does not influence the expenditure, as long as it satisfies all
the constraints.

As mentioned earlier, sometimes it is in the principal’s interest to let the agents take the test
at an early stage, as they would then be able to spend just the right amount of effort according
to their abilities. In this way, even if some information rent has to be given to the agents, the
principal might still be able to pay less than she otherwise would were she to let the agents take
the test at a later stage so that she can extract all the surplus from the agents. For this reason,
while seeking for the optimal passing reward and test fee combination, one cannot focus solely
on those t1’s under which full-surplus-extraction is possible. Instead, it is necessary to look at the
8See Appendix 3.1 for a related discussion.
9Note that lowering b until Ufd(i; (Rfd(i), b)) = 0 is not always a valid method, as any decrease in b from B̄fd(i)
may result in an increase in the lower bound for r to sustain the implementability of t1 = "i. This happens when
max

{

r ∶ Ufd(k, (r, B̄fd(i)) = Ufd(i, (r, B̄fd(i))), k = 1, ..., i−1
}

> "N−"i. However, lowering b and increasing
r collaboratively is also a viable approach to meet the participation constraint.
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minimum expenditure associated with each potential t1 that can be implemented and compare
all such expenditures to find the truly optimal one.

Corollary 4.1 (Minimum Expenditure to Implement t1 = "i). When the condition in Propo-

sition 4 is not met, the minimum expenditure required to implement t1 = "i is

EXfd(i; (Rfd(i), B̄fd(i))) = Rfd(i) −
N
∑

j=i+1
pjB̄

fd(i),

with Rfd(i) and B̄fd(i) as defined in Proposition 4.

With the results above, the principal’s expenditure minimization problem can be fully solved.
The procedure is summarized in the Theorem below:

Theorem 1 (Expenditure Minimization under Full-Disclosing Feedback Policy). When the

feedback policy is full-disclosing, the principal can minimize her expenditure in the following

steps:

(1) Starting from i = 1, list all the implementable t1 = "i’s in ascending order and index

them by {1,2, ...,K}. Proposition 3 indicates 1 = 1 and K = N .

(2) Starting from k = 1, check whether full-surplus-extraction is possible under t1 = "k .

If not, calculate the corresponding minimum expenditure using Corollary 2.1 in case

k = 1 or 4.1 in case k > 1 and move on to t1 = "k+1 . Stop checking as soon as

full-surplus-extraction becomes possible for the first time10.

10Recall that t1 = "i+1 requires more aggregate effort than t1 = "i., and thus requires more expenditure if full-
surplus-extraction is possible when t1 = "i is implemented.
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(3) Suppose the previous step stops at k∗. Compare the minimum expenditures associated

with each t1 = 1, ...,k∗ and choose the smallest. This is the minimum expenditure

that can be achieved with a full-disclosing feedback policy.

Remark. In Step 2 of Theorem 1, there is no need to check the rest of the list as soon as full-

surplus-extraction becomes feasible for the first time. This is because as one moves down the

list of implementable t1’s, the aggregate effort increases. Since aggregate effort acts as a lower

bound for the principal’s expenditure were the corresponding t1 to be implemented, the principal

cannot do any better by going further down the list if full-surplus-extraction has already become

possible. She does need to, however, compare all the previous t1’s, since they all involve smaller

aggregate effort. Sometimes it is cheaper to implement t1 = "k than to implement t̃1 = "l > "k

even if full-surplus-extraction is not feasible with t1 but feasible with t̃1. An example of this

situation is provided in Appendix 3.2. Appendix 3.3 gives an example in which t̃1 is indeed

cheaper to implement than t1, given that full-surplus-extraction is possible with the former but

not with the latter.

An interesting question to ask is whether the agents’ initial ignorance of their own ability
always benefits the principal. In other words, is the principal’s expenditure always strictly less
than "N , the minimum amount required if the agents have complete information about their
ability while the principal does not? The answer is yes. This result is formalized in Proposition
5.
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Proposition 5 (Expenditure Upper Bound under Full-Disclosing Feedback Policy). Under
the full-disclosing feedback policy, the principal’s expenditure is bounded above by

K−1
∑

j=1
pj"K−1 +

N
∑

j=K−1+1
pj"j ,

where K−1 is the second-largest element of the list in Step 1 of Theorem 1. Note that this upper

limit of the principal’s expenditure is strictly less than "N , the expenditure required when the

agents know their ability beforehand.

PROOF. With t1 = "K−1 , the aggregate effort is
∑K−1

j=1 pj"K−1 +
∑N

j=K−1+1
pj"j . Therefore,

proving Proposition 5 is equivalent to proving that full-surplus-extraction is always possible
when t1 = "K−1 is implemented. Set b̃ = �fd(K−1, N) and r̃ = "N . Apparently, t1 = "K−1

can be implemented by this pair of (r̃, b̃). By definition of �fd(K−1, N), the agent is indiffer-
ent between t1 = "K−1 and t1 = "N , with the passing reward being r̃ and the test fee being
b̃. As Ufd(N ; (r̃, b̃)) = r̃ −

∑N
j=1 pj"N = r̃ − "N = 0, it follows that Ufd(K−1; (r̃, b̃)) =

Ufd(N ; (r̃, b̃)) = 0. Therefore, full-surplus-extraction is possible when t1 = "K−1 . �

In this section, I have analysed the principal’s expenditure minimization problem with a
fixed pair of (r, b) and the full-disclosing feedback policy. I find hat FBME is achievable under
certain circumstances, but not always. The major limitations come from the lower bound on r
to guarantee 100% passing rate and the upper bound on b to guarantee that t1 = "1 is chosen by
the agents. When FBME is not feasible, I have explored the implementability of other choices
of t1 and the corresponding expenditure needed. It could be the case that letting some effort
go waste by inducing the agents to postpone their test taking can be beneficial to the principal,
if doing so enables the principal to extract more surplus from the agents. However, it could
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also be the case that the principal finds it more desirable to leave some surplus to the agents, if
extracting surplus results in too much effort being wasted. The trade-off between wasted effort
and information rent is at the heart of the issue.

Loosely speaking, the full-disclosing feedback policy can be very undesirable if there are
a small number of agents whose abilities are extremely low, as the passing reward is always
bounded below by the lowest ability, regardless of how many people actually have the lowest
ability. In these occasions, the minimal-disclosing feedback policy discussed in next section
can be more desirable, as it helps postpone an agent from realizing that his ability is among the
lowest.

1.4. Minimal-Disclosing

When the feedback policy is minimal-disclosing, the agent only learns whether he has passed
the test. In case of failure, the agent knows that his ability is not among those who would already
have passed the test with the effort he has exerted. However, he does not know exactly howmuch
more effort is required of him to pass the test. Consequently, in case he decides to continue and
retake the test at some point, he may fail again and be called upon to make a decision of a similar
nature. Therefore, unlike the full-disclosing case in which the agent’s decision can be simplified
into choosing how much effort to spend before taking the first test (t1 in the previous section),
the agent’s decision under the minimal-disclosing feedback policy must include a complete test-
taking-plan consisting of all the effort levels at which a test is to be taken, in case that he has
failed at all the previous attempts. I temporarily denote a test taking plan by {e1, e2, ..., eM},
meaning that an agent takes his first test after spending effort of e1, and if he fails, he re-take
the test when his total effort reaches e2, and so on. The final element eM is the last test that the
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agent is willing to take. If eM < "N , it means that the agent quits without completing the test,
in case that he has spent an effort of eM and still fails. If eM ≥ "N , the agent is sure to pass at
eM , and possibly earlier.

Given any test-taking-plan {e1, e2, ..., eM}, there is a continuation payoff, which I temporarily
denote by V (ei; (r, b)

), associated with each ei (i = 1, ...,M − 1), such that

V
(

ei; (r, b)
)

=P {ei+1 ≥ (a, x)|ei < (a, x)} ⋅ r

+P {ei+1 < (a, x)|ei < (a, x)} ⋅
[

V
(

ei+1; (r, b)
)

− b
]

−
(

ei+1 − ei
)

.
(1.4)

That is, if an agent fails the test after spending effort ei, his expected payoff moving forward
is V (ei; (r, b)

). The first component of V (ei; (r, b)
) builds on the possibility that the agent may

pass the test the next time he takes it. The second component comes from the possibility that
the agent may fail again at his next attempt. In that case, the agent pays the test fee and gets
the continuation payoff associated with the newly-failed test, V (ei+1; (r, b)

). Regardless of the
outcome of the next test, the agent has to spend an additional effort of ei+1 − ei so that he can
take the next test as planned, and thus the third component.

Similar to the case with full-disclosing, in which it is never optimal for an agent to take a test
with an effort level that does not equal to any of “just enough” amount of effort that makes the
agents with a specific ability pass the test, a test-taking-plan under the minimal-disclosing policy
should not include any test-taking that does not directly correspond to any ability levels. In other
words, an agent should never take a test with some effort that is “too much for a particular ability
but too little for any lower abilities”. If this is true, the analysis would become much easier, as
the choice set of potential test-taking-plans becomes finite. This intuition is formally addressed
and proved in the following Proposition:
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Proposition 6. Under theminimal-disclosing feedback policy, a test-taking-plan {e1, ..., eM}

cannot be optimal if there exist any i ∈ {1, ...,M} such that ei ≠ "j for some j ∈ {1, ..., N}.

PROOF. Suppose that the test-taking-plan {e1, e2, ..., eM} is optimal, but there exist ei ∈
{e1, e2, ..., eM} such that ei ≠ "j for all j ∈ {1, ..., N}. Apparently, ei > "N is not optimal,
since setting ei = "N instead does not hurt the probability of passing the test while saves effort.
Similarly, ei < "1 is not optimal, since all agents are sure to fail at this point – they pay the test fee
in exchange for nothing.11 All that remains to be shown is that "k < ei < "k+1 (k = 1, ..., N − 1)

cannot be optimal, either.
If i = M , that is, if there is no test scheduled after an agent fails at ei, then by taking this

test at ẽi = "k instead, the agent is able to save effort in the amount of ei− "k without sacrificing
his chance of passing. Thus, eM ∉ {"1, ..., "N} is not optimal. Similarly, if i < M , then by
taking this test at ẽi = "k instead, the agent’s chance of passing the test on the itℎ attempt does
not change, while he is able to save effort in the amount of ei − "k. If the agent fails the itℎ test,
he is scheduled to re-take the test once the total amount of effort he has spent reaches ei+1. His
continuation payoff at that time, V (ei+1; (r, b)

), is the same whether ei > "k or ẽi = "k, as the
continuation payoff is history-independent. What happened before ei+1 under the two scenarios
are also the same, in terms of the amount of total effort and the number of test fee payment.
Therefore, by moving the itℎ test from ei > "k to ẽi = "k, an agent is strictly better off in case his
ability is greater than ak and thus is able to pass the test on the itℎ attempt, while has the same
payoff otherwise. Thus, the original test schedule is not optimal. This concludes the proof. �

11Note that with full-disclosing, I make an additional assumption that t1 < "1 is not allowed, even though that
assumption is not necessary, as is shown in the Appendix. Here, with minimal disclosing, a similar assumption
is not needed for the apparent reason that nobody gains anything from taking a test with less effort than "1. Theywould be better off if they eliminate this test from their test-taking-plan or not participate at all.
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Proposition 6 implies that the agent’s problem can be simplified into choosing a subset of
{"1, ..., "N} as a test-taking-plan that maximizes the ex-ante expected utility. For ease of discus-
sion, I provide the following definitions:

Definition. A test schedule  = {t1, ..., t| |} (t1 < t2 < ... < t
| |) is the set of index

corresponding to the test-taking-plan {et1 , ..., et| |} ⊆ {"1, ..., "N}. For example, if an agent

plans to take tests at {"1, "2, "5}, then the corresponding test schedule is {1, 2, 5}, with t1 = 1,

t2 = 2 and t3 = 5.

A test schedule  is acceptable if t
| | = N . Apparently, only an acceptable test schedule

guarantees one hundred percent passing rate.

A test schedule ̂ is a sub-schedule of  if ̂ ⫋  . Furthermore, ̂ is a direct-sub-schedule

of  if ̂ =  ⧵ {ti} (ti ∈ {t1, ..., t| |−1}). For example, given the test schedule  = {1, 2, 3, 5},

{1, 3, 5} is both a sub-schedule and a direct-sub-schedule of  , whereas {3, 5} is a sub-schedule

but not a direct-sub-schedule.

An agent’s problem can thus be expressed as choosing a test schedule  = {t1, ..., t| |} with
which his ex-ante expected utility Umd( ; (r, b)) is maximized:1213

max
 ⊆{1,...,N}

Umd( ; (r, b)) ∶=
| |−1
∑

m=0

tm+1
∑

j=tm+1
pj(r − mb − "tm+1) −

N
∑

j=t
| |+1

pj(| | ⋅ b + "t
| |
).(1.5)

The principal’s expenditure associated with test schedule  = {t1, ..., t| |} is simply

(1.6) EXmd( ; (r, b)) =
| |−1
∑

m=0

tm+1
∑

j=tm+1
pj(r − mb) −

N
∑

j=t
| |+1

pj| |b.

12For ease of notation, let t0 = 0.13The tie-breaking rule in case two test schedules deliver the same expected utility will be stated later.
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Recall that under the full-disclosing feedback policy, there areN+1 possibilities of t1 that the
agent may choose from (including not participating). In contrast, under the minimal-disclosing
feedback policy, there are 2N possible test schedules that can arise (including not participat-
ing). Again, the first question needs to be answered is whether a specific test schedule is im-
plementable. And if so, how much surplus can be extracted from the agents. Just as before,
the relation between the agent’s expected utility (Equation 1.5) and the principal’s expenditure
(Equation 1.6) makes it clear that both the test schedule being implemented and the principal’s
surplus-extraction capacity under that test schedule influence the expenditure. The only test
schedule under which FBME can possibly be achieved is {1, ..., N}, as this is the only way
agents with all ability levels are able to spend just the right amount of effort to pass the test. Any
other test schedule will inevitably result in some agents spend more effort than necessary. For
example, assumeN = 5 and the test schedule {1, 2, 3, 5} is to be implemented. Then those with
ability a4 and a5 alike will pass the test after spending "5 in total effort. For its uniqueness, I use
the special notation  FB for the test schedule {1, 2, ..., N}.

My approach is to first assume that all agents will eventually pass the test (which can certainly
be achieved by setting r large enough) and focus solely on how agents choose among different test
schedules. Thereafter, I investigate when r is reduced to extract more surplus, what restrictions
should be taken into account to guarantee that all agents indeed pass the test in the end. As can
be expected, the choice of b should not be neglected during this process. In all that follows, I
focus solely on acceptable test schedules and thus omit the word “acceptable” in most cases for
succinctness.
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To begin with, notice that if  is an acceptable test schedule, then an agent’s ex-ante expected
utility associated with it simplifies into

(1.7) Umd( ; (r, b)) = r −
| |−1
∑

m=0

tm+1
∑

j=tm+1
pj(mb + "tm+1),

which immediately implies that an agent’s preference between any two acceptable test schedules
is determined by the test fee alone. If an agent is indifferent between two test schedules, I assume
that the tie is broken in the principal’s favor. That is, the agent chooses the test schedule that has
the greater expected test fee. To study the implementability of any test schedule, it is necessary
to first prove that an agent’s preference among test schedules remains consistent after each test
that he takes. That is, the test schedule that delivers the highest ex-ante expected payoff also
yields the highest interim expected payoff should the agent fails a test. Given a test schedule
 = {t1, ..., t| |} and i ∈ {1, ..., | |− 1}, denote the remaining test schedule after an agent fails
at "ti by ti , i.e., ti ∶= {j ∈  ∶ j > ti}. For example, if  = {t1, t2, t3, t4} = {1, 3, 4, 7}, then
t2 = 3 = {4, 7}. Note that ti , by definition, is necessarily a sub-schedule of  . Keeping the
assumption that all agents eventually pass the test, the continuation payoff at "ti is:14

V md(ti; (r, b)) = r −
| |−1
∑

m=i

tm+1
∑

j=tm+1
p̃j
[

(m − i)b + ("tm+1 − "ti)
]

,(1.8)

where p̃j =
pj

∑N
n=ti+1

pn
is the updated probability that the agent’s ability is aj (j > i), given that

the agent fails at "i. Using the continuation payoff, the agent’s ex-ante expected utility can be

14Although the expression of the continuation payoff here is slightly different from the one given by Equation 1.4,
they carry the same meaning.
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re-written as

(1.9) Umd( ; (r, b)) =
i−1
∑

m=0

tm+1
∑

j=tm+1
pj(r−mb−"tm+1)+

N
∑

ti+1
pj
[

V md(ti; (r, b))−ib−"ti
]

, ∀ ti ∈  .

I next demonstrate that an optimal test schedule stays optimal at each interim stage, so that
once an agent chooses a test schedule, he has no incentive to deviate from it.

Proposition 7 (Preference Consistency at Interim Stage). Suppose that the test schedule

 = {t1, ..., t| |} is ex-ante optimal, in the sense that Umd( ; (r, b)) ≥ Umd( ′; (r, b)) for any

acceptable test schedule  ′. Then for all i ∈ {1, ..., | | − 1}, V md(ti; (r, b)) ≥ V md
(

( ′ ∪

{ti})ti; (r, b)
)

.

PROOF. Suppose, on the contrary, that there exists  ′ = {t′1, ..., t
′
| ′|} and i ∈ {1, ..., | |−1},

such that V md(ti; (r, b)) < V md
(

( ′ ∪ {ti})ti; (r, b)
). Consider the alternative test schedule

̃ =
(

 ⧵ ti
)

∪ ( ′ ∪ {ti})ti which is made up of the “first half” of  prior to and including ti
and the “second half” of  ′ that is no less than ti. The agent’s ex-ante expected payoff under ̃
is then

Umd(̃ ; (r, b)) =
i−1
∑

m=0

tm+1
∑

j=tm+1
pj(r − mb − "tm+1) +

N
∑

ti+1
pj
[

V md(( ′ ∪ {ti})ti; (r, b)
)

− ib − "ti
]

>
i−1
∑

m=0

tm+1
∑

j=tm+1
pj(r − mb − "tm+1) +

N
∑

ti+1
pj
[

V md(ti; (r, b)) − ib − "ti
]

= Umd( ; (r, b)),

contradicting with Umd( ; (r, b)) being the largest among all acceptable test schedules. There-
fore, such  ′ does not exist. �

Proposition 7 implies that an ex-ante optimal test schedule is indeed interim optimal. Com-
bining with the previous observation that the agent’s preference between any two acceptable test
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schedules is determined by the test fee alone, it follows that a test schedule is implementable if
and only if it delivers the highest ex-ante expected payoff under some b. As in the full-disclosing
case, I use �md( , ̃ ) to denote the threshold test fee that determines an agent’s preference be-
tween  and ̃ , with the latter being preferred when b > �md( , ̃ ).

Clearly,  FB is implementable, as for any other test schedule  ≠  FB,

Umd( FB; (r, b)) ≥ Umd( ; (r, b)) ⇔ b ≤

∑

| |−1
m=0

∑tm+1
j=tm+1

pj("tm+1 − "j)
∑

| |−1
m=0

∑tm+1
j=tm+1

pj(j − m − 1)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

>0

.

That is, �md( FB,  ) > 0 for all  ≠  FB. As long as b is set to be small enough, say,
b = 0, agents choose  FB for sure. This is intuitive because if tests are free to take, there is no
reason for an agent to bare the risk of over-exerting efforts. However, the expression above, by
itself, is too complicated to provide any insight to the problem at hand. And it tells little about
the implementability of other test schedules, which may be cheaper to implement under certain
circumstances, as we have seen in the full-disclosing case. Intuitively, as the test fee increases,
agents may “skip” a test at some point. If the test fee were to be increased even more, the agents
would skip more tests. One implication of this intuition is that as b increases, the alternative
test schedules that are immediately competing with a given test schedule are those with only one
test in the original schedule being skipped, but not those with multiple tests being skipped. This
intuition is correct, but with one caveat . It is true that if a given test schedule is preferred to all
its direct-sub-schedules, then it is also preferred to all other sub-schedules. In other words, if an
agent considers whether he would be better off by skipping some tests from the test schedule that
he currently has, he only needs to consider if any of the direct-sub-schedules are more attractive.
If no direct-sub-schedule offers a higher ex-ante expected utility to the agent than the original
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test schedule does, then there is no need to look at any other sub-schedules. The caveat is that
the argument above only compares a test schedule to its sub-schedules, it may well be the case
that even though a certain test schedule is preferred to all its sub-schedules, there exists another
test schedule that is not a sub-schedule of the original test schedule, but nevertheless offers a
higher payoff to the agent. It is the existence of this caveat that considerably complicates the
analysis of the minimal-disclosing feedback policy. Before diving into this complexity, I first
formalize the intuition regarding the dominance of a test schedule to its sub-schedules.

Lemma 2. Let  = {t1, ..., t| |} be an acceptable test schedule. If  is preferred to all its

direct-sub-schedules, then it is also preferred to all other sub-schedules.

PROOF. It is straightforward to verify that ∀ i ∈ {1, ..., | | − 1},

Umd( ; (r, b)) ≥ Umd( ⧵ {ti}; (r, b)) ⇔ b ≤ �md( ,  ⧵ {ti}) =

∑ti
j=ti−1+1

pj("ti+1 − "ti)
∑N

j=ti+1
pj

.

Note that ∀ k ∈ {1, ..., | | − 1}, k ≠ i,
(1.10)

�md( ⧵ {ti},  ⧵ {ti, tk}) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

∑tk
j=tk−1+1

pj("tk+2 − "tk)
∑N

j=tk+1
pj

> �md( ,  ⧵ {tk}), if k = i − 1
∑tk

j=tk−2+1
pj("tk+1 − "tk)

∑N
j=tk+1

pj
> �md( ,  ⧵ {tk}), if k = i + 1

∑tk
j=tk−1+1

pj("tk+1 − "tk)
∑N

j=tk+1
pj

= �md( ,  ⧵ {tk}), if k ≠ i ± 1

.

Equation 1.10 shows that �md( ⧵ {ti},  ⧵ {ti, tk}) ≥ �md( ,  ⧵ {tk}) under all circum-
stances. Therefore, b ≤ �md( ,  ⧵ {tk}) implies that  ⧵ {ti} is preferred to  ⧵ {ti, tk}, which



49

further implies  is preferred to  ⧵ {ti, tk}. Using the argument above inductively leads to the
conclusion that  is preferred to all its acceptable sub-schedules. �

Since all acceptable test schedules other than  FB are sub-schedules of  FB, the following
conclusion is immediate:

Proposition 8 (Implementing  FB). Given that r is large enough so that 100% passing rate

is guaranteed,  FB is the most preferred test schedule if and only if

b ≤ B̄md( FB) ∶= min
i∈{1,...,N−1}

pi("i+1 − "i)
∑N

j=i+1 pj
.

PROOF. Simply notice that

�md( FB,  FB ⧵ {ti}) = �md( FB,  FB ⧵ {i}) =
pi("i+1 − "i)
∑N

j=i+1 pj
,

and the rest follows directly from Lemma 2.
�

As mentioned before, Lemma 2 provides the condition under which a given test schedule is
preferred to all its sub-schedules, but it says nothing about whether it is also preferred to those
that are not its sub-schedules. For example, suppose N = 4. Lemma 2 tells us when the test
schedule {1, 3, 4} is preferred to {3, 4}, {1, 4}, and {4}, but it offers no help in deciding whether
it is preferred to {2, 3, 4} or {2, 4}. Therefore, except for  FB, Lemma 2 alone does not suffice
to determine if a test schedule is implementable.

Before addressing this issue, I want to point out anothermajor difference between theminimal-
disclosing feedback policy and the full-disclosing feedback policy. As I have shown in the pre-
vious section, when the feedback policy is full-disclosing, the feasibility of FBME is limited by
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the lower bound on r and the upper bound on b. And B̄fd(1) weakly dominates any b < B̄fd(1).
I now demonstrate that the upper bound on b, as given by Proposition 8, may not be a limiting
force on the principal’s surplus-extraction ability under the minimal-disclosing rule. In fact, it
may not even be optimal to set b at the upper bound given by Proposition 8.

To see this, note that the continuation payoff at "n under  FB is

V md( FB
n ; (r, b)) = r −

∑N
j=n+1 pj

{

[j − (n + 1)]b + ("j − "n)
}

∑N
j=n+1 pj

, n = 1, ..., N − 1.

When b = 0, it simplifies into

V md( FB
n ; (r, 0)) = r −

∑N
j=n+1 pj("j − "n)
∑N

j=n+1 pj
.

The ex-ante participation constraint requires r ≥
∑N

j=1 pj"j . In addition, to satisfy all the
interim participation constraints, r has to satisfy

r ≥ max
n∈{1,...,N−1}

{
∑N

j=n+1 pj("j − "n)
∑N

j=n+1 pj

}

.

If∑N
j=1 pj"j ≥ maxn∈{1,...,N−1}

{
∑N

j=n+1 pj("j − "n)
∑N

j=n+1 pj

}

, i.e., if the ex-ante participation con-
straint is the binding constraint, full-surplus-extraction can be easily achieved by setting b = 0
and r = ∑N

j=1 pj"j . In contrast, if ∑N
j=1 pj"j < maxn∈{1,...,N−1}

{
∑N

j=n+1 pj("j − "n)
∑N

j=n+1 pj

}

, then by
setting b = 0, the principal has to leave at least a surplus of

max
n∈{1,...,N−1}

{
∑N

j=n+1 pj("j − "n)
∑N

j=n+1 pj

}

−
N
∑

j=1
pj"j
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to the agents. Unlike in the full-disclosing case, this surplus cannot be reduced merely by in-
creasing b, because as b increases, the continuation payoffs, except for V md( FB

N−1; (r, b)), all
decrease correspondingly. It thus requires raising r to keep the interim participation constraints
satisfied. Whether it is profitable for the principal to do so depends on how r and b are related
in the ex-ante participation constraint and in the interim ones. More specifically, when using
n = argmaxn∈{1,...,N−1}

{
∑N

j=n+1 pj("j − "n)
∑N

j=n+1 pj

}

to denote the interim stage that has the binding
participation constraint when b = 0, it follows that raising b helps reduce the net expenditure if
and only if

−
)Umd∕)b
)Umd∕)r

(

 FB; (r, 0)
)

> −
)V md∕)b
)V md∕)r

(

 FB
l ; (r, 0)

)

⇔
N
∑

j=1
pj(j − 1) >

∑N
j=l+1 pj[j − (l + 1)]

∑N
j=l+1 pj

.

In this case, the effect on surplus-extraction by increasing b is more than enough to com-
pensate for the necessary increase in r required to keep the interim participation constraint at "l
respected, and therefore the net effect is a reduction in the principal’s expenditure.

Another complication that may arise is that as b increases, the binding interim participation
constraint may change. In general, let

(1.11) Rmd( FB
n , b) =

∑N
j=n+1 pj

{

[j − (n + 1)]b + ("j − "n)
}

∑N
j=n+1 pj

(n ∈ {1, ..., N − 1}),

be the minimum passing reward required to satisfy the the interim participation constraint at "n
for a given test fee b under  FB, and

Rmd( FB
0 , b) =

N
∑

j=1
pj[(j − 1)b + "j]
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be the minimum passing reward required to satisfy the ex-ante participation constraint with the
same test fee b, then full surplus-extraction is possible under  FB if and only if Rmd( FB

0 , b) ≥

maxn∈{1,...,N−1}Rmd( FB
n , b) for some b ∈ [0, B̄md( FB)]. In other words, for FBME to be feasi-

ble, there must exist some test fee that implements  FB and at the same time requires the highest
passing reward from the ex-ante point of view. Proposition 9 formalizes this argument.

Proposition 9 (Conditions for Achieving FBME). Divide the set {1, ..., N − 1} into  and

, with

 =

{

n ∈ {1, ..., N − 1} ∶
dRmd( FB

n , b)
db

<
dRmd( FB

0 , b)
db

}

and

 =

{

n ∈ {1, ..., N − 1} ∶
dRmd( FB

n , b)
db

≥
dRmd( FB

0 , b)
db

}

.

For each n ∈ {1, ..., N − 1}, let bn be such that Rmd( FB
n , bn) = Rmd( FB

0 , bn).15

When , ≠ ∅, FBME is feasible if and only if

[

max
n∈

{bn},minn∈
{bn}

]

⋂

[

0, B̄md( FB)
]

≠ ∅;

When  = ∅, FBME is feasible if and only if minn∈{bn} ≥ 0;

When  = ∅, FBME is feasible if and only if maxn∈{bn} ≤ B̄md( FB).

PROOF. It is clear from Equation 1.11 that for n ∈ , Rmd( FB
0 , b) ≥ Rmd( FB

n , b) if b ≥

bn, whereas for n ∈ , Rmd( FB
0 , b) ≥ Rmd( FB

n , b) if b ≤ bn. For FBME to be feasible,
it is necessary and sufficient that there exists b∗ ∈ [0, B̄md( FB)] such that Rmd( FB

0 , b∗) ≥
15It is straightforward to calculate

(1.12) bn =

( N
∑

j=1
pj(j − 1) −

∑N
j=n+1 pj[j − (n + 1)]

∑N
j=n+1 pj

)−1(∑N
j=n+1 pj("j − "n)
∑N
j=n+1 pj

−
N
∑

j=1
pj"j

)

.
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Rmd( FB
n , b∗) for all n ∈ {1, ..., N −1}, which is equivalent to b∗ ≥ bn for all n ∈  and b∗ ≤ bn

for all n ∈ . The conditions stated in the proposition guarantee the existence of such b∗. �

Remark. A closer inspection of Equation 1.12 (see the footnote) reveals several interesting

facts. First, the denominator

N
∑

j=1
pj(j − 1) −

∑N
j=n+1 pj[j − (n + 1)]

∑N
j=n+1 pj

=
N
∑

j=1
pjj −

∑N−n
j=1 pn+jj

∑N−n
j=1 pn+j

,

has the first term as the weighted average of the set of integers {1, 2, ..., N} using the corre-

sponding set of probability {p1, ..., pN} and the second term as the weighted average of the set of

integers {1, 2, ..., N−n} using the corresponding set of probability {
pn+1

∑N−n
j=1 pn+j

, ...,
pN

∑N−n
j=1 pn+j

}.

When the agent’s ability is relatively evenly distributed, the first term is more likely to be greater

than the second term. For example, this certainly holds true in case of discrete uniform distri-

bution pj =
1
N

for all j. In such cases, the denominator of bn is positive.

Similarly, the nominator of bn can be re-written as

∑N
j=n+1 pj("j − "n)
∑N

j=n+1 pj
−

N
∑

j=1
pj"j =

(

E["j|n < j ≤ N] − "n
)

− E["j].

If the distribution of required effort16 is not too skewed (both in terms of value and proba-

bility), one should expect the nominator of bn to be negative. For example, it would be so if the

distribution of required effort is such that "j+1 − "j = � and pj =
1
N

for all j. When combined

with the previous observation on the denominator of bn, one can conclude that under certain

circumstances in which the distribution of effort is relatively even, bn would be negative. Given

the equivalency between the denominator of bn being positive and the set  being empty, one can
16Given the one-to-one correspondence between ability (ai) and required effort ("i), for any given probability dis-
tribution of ability, there is a corresponding probability distribution of required effort.
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further expect that the condition for full surplus-extraction under  FB stated in Proposition 9

to be satisfied. In such cases, the minimal-disclosing feedback policy can turn out to be quite

attractive, even though it seems to face more constraints than its full-disclosing counterpart from

the outset.

If full surplus-extraction is not feasible when  FB is implemented, the optimal test fee is
determined by the relative size of dR

md( FB
0 , b)

db
and that of the binding interim participation

constraint. Within the interval [0, B̄md( FB)] on which  FB can be implemented, whenever
dRmd( FB

0 , b)
db

is greater, the principal can decrease her expenditure by increasing b while in-
creasing r at the same time in order to keep the ex-ante participation constraint satisfied. This
observation is formalized in Proposition 10.

Proposition 10 (Minimum Expenditure to Implement  FB). For b ∈ [0, B̄md( FB)], let

n∗(b) ∶= argmaxn∈{1,...,N−1}
{

Rmd( FB
n , b)

}

be the index of the test that requires the highest passing reward to satisfy the corresponding

interim participation constraint for any given test fee b, and let

b∗ =

⎧

⎪

⎨

⎪

⎩

max
{

0,min{b ∶ n∗(b) ∈ }
}

if  ≠ ∅

B̄md( FB) if  = ∅
.

Then, the minimum expenditure to implement  FB can be achieved by choosing

⎧

⎪

⎨

⎪

⎩

b̃ = min
{

b∗, B̄md( FB)
}

r̃ = maxn∈{0,1,...,N−1}
{

Rmd( FB
n , b̃)

}

.
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PROOF. First, note that for all b ∈ [0, B̄md( FB)], the net passing reward required to meet
all the participation constraints are at leastmaxn∈{0,1,...,N−1}

{

Rmd( FB
n , b)

}, and there is no need
to increase it beyond this amount. Therefore, no matter what the optimal test fee b̃ is, the optimal
net passing reward is always given by r̃ = maxn∈{0,1,...,N−1}

{

Rmd( FB
n , b̃)

}.
As for the optimal test fee, when  = ∅, there is no harm by setting the test fee as high as

possible, given that it is inside the range that implements  FB. This is because if there exists
b′ ∈ [0, B̄md( FB)] such that n∗(b) = 0 for b ≥ b′, the principal’s expenditure is the same by
choosing any b̃ ∈ [b′, B̄md( FB)]. In such cases, FBME can be achieved. If such b′ does not
exist, as has been discussed above, it is beneficial for the principal to set the test fee as large as
possible, and therefore b̃ = B̄md( FB) is optimal. Hence, when  = ∅, b̃ = B̄md( FB) is always
optimal.

When  ≠ ∅, it is not profitable to increase the test fee whenever n∗(b) ∈ , as the additional
income brought in by increasing the test fee is not enough to compensate for the increase in the
net passing reward needed to keep the interim participation constraint satisfied. Also note that
if n∗(b′) ∈  for some b′, then n∗(b) ∈  for all b ≥ b′. Thus, the principal would never raise the
test fee above min{b ∶ n∗(b) ∈ }, unless it is too low to implement  FB. Hence, when  ≠ ∅,
it is optimal to set b̃ = max{0,min{b ∶ n∗(b) ∈ }

}, given that it does not exceed B̄md( FB).
If min{b ∶ n∗(b) ∈ } > B̄md( FB), however, it is optimal to set b̃ = B̄md( FB). �

Remark. The results presented in Proposition 9 and Proposition 10 apply to all possible dis-

crete distributions of the agent’s ability. Some interesting observations can be made when more

assumptions are imposed on the distribution. For example, by assuming that all the "i’s have the

same probability pi =
1
N

, it can be easily calculated from Equation 1.11 that
dRmd( FB

n , b)
db

=
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N − n − 1
2

. In this case, dR
md( FB, b)
db

>
dRmd( FB

n , b)
db

for all n = 1, ..., N−1, and thus  = ∅.

Proposition 10 then implies that it is optimal to set b̃ = B̄md( FB) = mini∈{1,...,N−1}
{"i+1 − "i
N − i

}

.

If one further assumes that "i+1 − "i = � for all i = 1, ..., N − 1, then the optimal test fee would

be b̃ = �
N − 1

. The minimal net passing reward required at each "n would then be

Rmd( FB
n , b̃) =

N2 − (n − 1)N − 2
2(N − 1)

⋅ �, n = 1, ..., N − 1,

whereas the minimal net passing reward required ex-ante is

Rmd( FB
0 , b̃) = N

2
⋅ � + "1.

In this case, FBME is feasible under  FB if and only ifRmd
0 (

FB, b̃) ≥ Rmd( FB
1 , b̃)⇔ "1 ≥

N − 2
2(N − 1)

�. Note that N − 2
2(N − 1)

is bounded above by 1
2
. One interpretation of this condition is

that as long as the most talented agents do not have ability significantly higher than others (i.e.

a very small "1 compared to �), full surplus-extraction would be feasible under  FB with the

minimal-disclosing feedback rule.

In contrast, with full-disclosing,

�fd(1, i) =
p1("i − "1) +

∑i
j=2 pj("i − "j)

∑i
j=2 pj

= i
2
⋅ � (i = 2, ..., N) ⇒ B̄fd(1) = �

and Rfd(1) = "N − "1 = (N − 1)�. According to Proposition 2, FBME is achievable if and

only if

Ufd(1; (Rfd(1), B̄fd(1))) =
(N − 1)(N − 2)

2N
� − "1 ≤ 0 ⇔ "1 ≥

(N − 1)(N − 2)
2N

�.
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Unlike the condition in the minimal-disclosing case, the condition above would be very hard

to satisfy whenN is big, which is intuitive, as the least talented agents demand very large com-

pensation in this case.

The method discussed above can be readily generalized to cases in which another test sched-
ule is implemented: For any test schedule that is implementable, the first step is to determine
the range of b that implements that test schedule. After that, one should investigate the net pass-
ing reward required, as a function of b, at each point in the test schedule. By comparing the
derivative of the binding interim participation constraint (if any) with respect to b and that of
the ex-ante participation constraint under this test schedule, one can then decide what the opti-
mal test fee should be, and thus the corresponding net passing reward required to satisfy all the
participation constraints.

I now discuss the implementability of other test schedules. As I have briefly mentioned
earlier, Lemma 2 alone is not sufficient to find all the implementable test schedules, as it offers
no comparison between two test schedules unless one is a sub-schedule of the other. But the
intuition it represents is valid – as the test fee is being raised from zero, more and more test will
be skipped. It seems natural to deduce that this process generates a series of test schedules, one
being a direct-sub-schedule of the preceding one, and therefore, Lemma 2 should indeed be able
to identify all test schedules that are implementable. All one has to do is to find the order by
which an agent skips his test, as a result of the increase in test fee. I now provide an example to
show that this may not be the case.
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Assume that N = 3 and {"1, p1; "2, p2; "3, p3} = {1, 0.3; 8, 0.4; 10, 0.3}.17 Figure 1.1 shows
the ex-ante utility, as a function of b, associated with each acceptable test schedules. The passing
reward r is set to be 20 in this example, although it has no impact on the ranking of acceptable
test schedules. According to Figure 1.1, test schedule {1, 2, 3} is optimal when the test fee is
small. As b grows, it is more profitable for an agent to skip the test at effort "2. If Lemma 2 alone
can be used to find all implementable test schedules, then the next test to be skipped should be
the test at effort level "1. However, Figure 1.1 demonstrates that this is not true – instead of
skipping the test at "1, it is optimal for the agents to switch from test schedule {1, 3} to {2, 3}
at a certain range of b. Of course, if b is to be raised even higher, test schedule {3} eventually
becomes the best choice.

Figure 1.1. Example that Lemma 2 alone cannot identify all implementable test schedules

However, a slight modification to the example above results in a different set of imple-
mentable test schedules. Assume thatN = 3 and {"1, p1; "2, p2; "3, p3} = {1, 0.3; 11, 0.4; 13, 0.3}.
As is shown in Figure 1.2, as b is raised from zero, the agents first choose test schedule {1, 2, 3},
and later change to test schedule {1, 3}. As b keeps increasing, they skip the test at "1 and
17For any given passing score x and the score function, there is clearly a one-to-one correspondence between an
agent’s ability ai and the effort required of him to pass the test, "i. Therefore, there is an equivalency between the
distribution of ai’s and "i’s.
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change their test schedule to {3} directly, without ever choosing {2, 3}. In this case, it seems
like Lemma 2 suffices to determine which test schedule is implementable. All one has to do is
to find the optimal direct-sub-schedule and repeat this process until only one test remains, i.e.
test schedule {N}.

Figure 1.2. Example that Lemma 2 alone can identify all implementable test schedules

If such complication can arise whenN = 3, it is almost impossible to find all implementable
test schedules if N is large. Fortunately, the example above is more of the exception than the
rule. To be more precise, assume thatN = 4. If as b increases from zero, agents first choose test
schedule {1, 2, 3, 4}. Assume that their next choice is {1, 2, 4}, then even though test schedule
{1, 3, 4} can become optimal at some point if b keeps increasing, test schedule {2, 3, 4} never
will. In contrast, if as b increases from zero, the agents first choose test schedule {1, 2, 3, 4}, then
change to {1, 3, 4}. In this case, test schedule {1, 2, 4} is never optimal, whereas {2, 3, 4} may
be at some point. The crucial factor to notice here is that when a test is skipped at a certain effort
level, complication only arises regarding the test at the effort level immediate before the skipped
one. In the previous example, if as b increases from zero, the agents first choose {1, 2, 3, 4} and
then {1, 2, 4}, one has to treat the test at "2 with special care, but not the one at "1. Similarly, if
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the optimal test schedule is {1, 3, 4} for some b, then special attention needs to be paid to test
schedule {2, 3, 4}.

Above is a concise exhibition of the complication that may arise as one tries to identify all
acceptable test schedules that can be implemented. In what follows, I tackle this complication
step by step. First, note that whenN gets very large, the problem stays manageable only if one
can focus “locally” without worrying that other parts of test schedule may also change as a result
of any local changes. For example, assume that for a given test fee, test schedule {1, 2, 5, 7, 9, 10}
is optimal, and an agent is considering if he wants to skip the test at "2. His decision would be
much more complicated if he had to simultaneously decide whether he should change his fourth
test from "7 to "8 to make skipping the test at "2 more attractive. The following lemma states
that the agent does not need to have such worries.

Lemma 3 (Irrelevance Beyond Local Level). Let  and  ′ be two acceptable test schedules.

Assume that there exist k, l ∈  ∩  ′ (k < l − 1) such that i ∉  ∪  ′ for all k < i < l. Then

for any b > 0 and i ∈ (k, l),  is preferred to  ∪ {i} if and only if  ′ is preferred to  ′ ∪ {i}.

PROOF. Note that18

V
(

( ∪ {i})k)
)

− V
(

k
)

=
i

∑

j=k+1
p̃j("l − "i) −

l
∑

j=i+1
p̃jb +

N
∑

j=l+1
p̃j
[

V
(

( ∪ {i})l)
)

− V
(

l
)

− b
]

=

(

i
∑

j=k+1
p̃j

)

⋅ ("l − "i) −

(

N
∑

j=i+1
p̃j

)

⋅ b,

where p̃j =
pj

∑N
j=k+1 pj

.

18I denote V (( ∪ {i})k); (r, b)
) and V (k; (r, b)

) by V (( ∪ {i})k)
) and V (k

) for conciseness.
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The second equality follows from ( ∪ {i})l = l. The same calculation applies to V (( ′ ∪

{i})k)
)

− V
(

 ′
k

):

V
(

( ′ ∪ {i})k)
)

− V
(

 ′
k

)

=
i

∑

j=k+1
p̃j("l − "i) −

l
∑

j=i+1
p̃jb +

N
∑

j=l+1
p̃j
[

V
(

( ′ ∪ {i})l)
)

− V
(

 ′
l

)

− b
]

=

(

i
∑

j=k+1
p̃j

)

⋅ ("l − "i) −

(

N
∑

j=i+1
p̃j

)

⋅ b.

Therefore, V (( ∪{i})k)
)

≥ V
(

k
) if and only if V (( ′ ∪{i})k)

)

≥ V
(

 ′
k

). What remains
to be shown is the equivalency between V (( ∪ {i})k)

)

≥ V
(

k
) and U(( ∪ {i}); (r, b)

)

≥

U
(

 ; (r, b)
). Ditto for V (( ′ ∪ {i})k)

)

≥ V
(

 ′
k

) and U(( ′ ∪ {i}); (r, b)
)

≥ U
(

 ′; (r, b)
). Let

k = tn = t′q, i.e. the ntℎ element in  and the qtℎ in  ′. Then

U
(

( ∪ {i}); (r, b)
)

=
n−1
∑

m=0

tm+1
∑

j=tm+1
pj[r − mb − "tm+1] +

N
∑

j=k+1
pj
[

V
(

( ∪ {i})k
)

− (n − 1)b − "k
]

and

U
(

 ; (r, b)
)

=
n−1
∑

m=0

tm+1
∑

j=tm+1
pj[r − mb − "tm+1] +

N
∑

j=k+1
pj
[

V
(

k
)

− (n − 1)b − "k
]

.

Hence,

U
(

( ∪ {i}); (r, b)
)

− U
(

 ; (r, b)
)

=

(

N
∑

j=k+1
pj

)

⋅
[

V
(

( ∪ {i})k
)

− V
(

k
)]

,

implying that U(( ∪ {i}); (r, b)
)

≥ U
(

 ; (r, b)
) if and only if V (( ∪ {i})k)

)

≥ V
(

k
). The

same argument leads to U(( ′ ∪ {i}); (r, b)
)

≥ U
(

 ′; (r, b)
) if and only if V (( ′ ∪ {i})k)

)

≥

V
(

 ′
k

). Therefore, U(( ∪ {i}); (r, b)
)

≥ U
(

 ; (r, b)
) if and only if U(( ′ ∪ {i}); (r, b)

)

≥

U
(

 ′; (r, b)
). �
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Essentially, Lemma 3 says that given any test fee b > 0, the decision of whether a test should
be taken at "i is determined solely by the “latest past” and the “immediate future” when another
test is taken. None of the other decisions is relevant. Indeed, whenever an agent takes a test and
fails, only this newest failure matters in shaping the agent’s belief. For instance, taking the first
test at "3 and fails does not make an agent any smarter than someone who fails at "1, "2, and
"3 consecutively. This explains why anything precedes the latest test does not matter. For the
same reason, all accumulated uncertainty is resolved by the immediate future that a test is taken,
anything lays beyond it is irrelevant. Using Lemma 3, the agent in the previous example does
not need to consider whether moving his test on "7 to "8 would make skipping at "2 a better deal.
Any part of the test schedule that is after "5 is irrelevant at this point. By the same token, if he
indeed wonders if moving the test on "7 to "8 is more ideal, he should not worry if he needs to
cancel the test at "2 at the same time.

The flip side of Lemma 3 is that if the decision of whether an agent should take a test at "i
changes, it can potentially influence not only the decisions about the latest preceding test and
the earliest subsequent test, but also everything in between. In the previous example where
test schedule {1, 2, 5, 7, 9, 10} is optimal for some given b, if the test fee inceases and the agent
considers whether he would like to skip the test at "2, he should not think about "2 in isolation –
his desicion regarding "1, "3, "4 and "5 may also require some adjustments in response.

Although the workload is greatly reduced by Lemma 3, it is still daunting. Thus, further
simplification of the problem is desirable. Again, let  be an acceptable test schedule. Let
k < i < l be such that k, l ∈  and j ∉  ∀ k < j < i and i < j < l. That is, the agent takes
tests at both "k and "l. Whether a test should be taken at "i is subject to further assumptions, but
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no other test is schedule between "k and "l. Using the result in Lemme 3, I denote the threshold
test fee associated with "i by Bi|k,l for clearness, as it only depends on k and l.

It is straightforward to verify that

(1.13) Bi|k,l =

∑i
j=k+1 pj("l − "i)
∑N

j=i+1 pj
.

According to Equation 1.13, it is clear that if k decreases, Bi|k,l becomes bigger. This occurs
if an agent decides to skip the test at "k, the net effect of which is equivalent to decrease k.
Hence, if a test is taken at "i, i.e. i ∈  , then it remains optimal to do so. In contrast, if "i ∉  ,
then the agent needs to check whether taking a test at "i would be a better option. Similarly,
according to Equation 1.13, if l increases, Bi|k,l becomes bigger as well. This happens when an
agent decides to skip the test at "l, and thus effectively makes l bigger. The rest of the argument
is exactly the same as before. That is, in case i ∈  , it remains optimal to do so. Otherwise, the
agent needs to check whether taking a test at "i would be a better option. Since this argument
applies to all k < i < l, a general observation can be reached as follows:

Observation 1. Given the optimal test schedule under a certain test fee, if the test fee is

raised to a level that the agent finds it more profitable to skip a test in the original test schedule,

he needs to check whether he should add another test between:

(1) the newly-skipped test and the test immediately before it in the original test schedule.

(2) the newly-skipped test and the test immediately after it in the original test schedule.

To make Observation 1 easier to understand, consider the following example. Assume that
for a given test fee b, the optimal test schedule is {1, 2, 5, 7, 9, 10}, and as a result of an increase
in b, the agent wants to skip the test at "5. To check if any further modification on the rest of the
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original test schedule is needed, the agent has to check whether he wants to take a test at "3, "4 or
"6. If not, then the optimal test schedule becomes {1, 2, 7, 9, 10}. Observation 1 is intuitive, as
in exchange for saving the test fee, skipping a test increases the risk of spending more effort than
needed. Therefore, when a test has been taken out of the test schedule, it sometimes makes sense
to consider adding another test to partially compensate for the increased risk of over-excerting
effort. However, since skipping a test is the agent’s response to an inflated test fee in the first
place, one should not expect him to add another test that results in him paying more test fee. To
put things more concretely, note that in Observation 1, case 1 is never optimal. That is, if the
test fee is large enough so that the agent finds it more profitable to skip a test, he does not have
to check if it makes more sense to add another test that precedes the one he wants to skip. In the
previous example, if the agent decides to skip the test at "5, he only needs to check if adding a
test at "6 makes him better-off. There is no need for him to contemplate whether a test should
be added at "3 or at "4.

This conclusion is not obvious at first sight – although adding a test before the newly-skipped
one results in more expected test fee being paid, which makes less sense given that it is the
high test fee that makes the agent wants to skip one more test in the first place, it nonetheless
prevents some agents from spending more effort than they have already over-spent, as their
chance of passing the newly-skipped test has just been eliminated. To see where this balance
lies, assume that the original test schedule that is being implemented is  , and ∃ k, i, l ∈  such
that k + 1 < i < l and j ∉  ∀ k < j < l (j ≠ i). Take any m ∈ (k, i) and note that

Bi|k,l =

∑i
j=k+1 pj("l − "i)
∑N

j=i+1 pj
and Bm|k,l =

∑m
j=k+1 pj("l − "m)
∑N

j=m+1 pj
.
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Putting the previous reasoning into mathematical terms, it is not obvious whether Bm|k,l <
Bi|k,l is true, for

∑m
j=k+1 pj

∑N
j=m+1 pj

<

∑i
j=k+1 pj

∑N
j=i+1 pj

but "l − "m > "l − "i. If it were not the case, then for b
in the range of (Bi|k,l, Bm|k,l

], adding back the test at "m would deliver higher utility to the agent.
As a result, the agent indeed has to check both cases mentioned in Observation 1. However,
notice that

�md
(

( ⧵ {i}) ∪ {m}, 
)

=

∑m
j=k+1 pj("l − "m) −

∑i
j=k+1 pj("l − "i)

∑i
j=m+1 pj

,

the nominator of which is the difference between the nominator of Bm|k,l and that of Bi|k,l. The
same is true for the denominator. As a general rule, consider A,B, C,D > 0 and A

B
> C
D
. It

follows that A
B
> A + C
B +D

> C
D
. This is because

A
B
− C
D
= AD − BC

BD
> 0 implies that A

B
− A + C
B +D

= AD − BC
B(B +D)

> 0

and similarly,
A + C
B +D

− C
D
= AD − BC
D(B +D)

> 0.

In the current context, it implies that either

Bi|k,l > Bm|k,l > �
md( ( ⧵ {i}) ∪ {m}, 

) or Bi|k,l < Bm|k,l < �
md( ( ⧵ {i}) ∪ {m}, 

)

.

If Bm|k,l > Bi|k,l, then �md
(

( ⧵ {i}) ∪ {m}, 
)

> Bi|k,l, meaning that test schedule 

is dominated by ( ⧵ {i}) ∪ {m} for b < Bi|k,l, which implies that  cannot be implemented
in the first place, contradicting the initial assumption. Therefore, if test schedule  is indeed
implementable, then it must be that Bm|k,l < Bi|k,l. Hence, Observation 1 can be revised into the
following:
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Lemma 4. Given the optimal test schedule, if the test fee is raised to a level that the agent

finds it more profitable to skip a test in the original test schedule, he only needs to check whether

he should add another test in response between the newly-skipped test and the test immediately

after it in the original test schedule.

Note that in case an increase in test fee results in removing a test and simultaneously adding
back another one at a higher effort level, the net effect is equivalent to “postponing” a test. Due to
this change of test schedule, the threshold test fees associated with the tests that were originally
scheduled right before and after the test being rescheduled (regardless of being skipped or post-
poned), as well as those in between, all need to be recalculated. Fortunately, all other threshold
test fees remain unchanged, according to Lemma 3. In addition, note that in case of “postponing”
a test, the resulting new test schedule is not a sub-schedule of the original test schedule before
the test fee increase. This is exactly the missing component of Lemma 2. Therefore, by starting
with a test fee of zero and gradually increasing it, one can find all implementable test schedules
by recording the change in the optimal test schedule along the way. The key to keep track of the
required changes in the optimal test schedule is to focus on the threshold test fees associated with
each effort level and make appropriate adjustments when necessary. This process is formalized
in the following theorem:

Theorem 2 (All Implementable Test Schedules under Minimal-Disclosing). When the feed-

back policy is minimal-disclosing, the principal can find all implementable test schedules and

the ranges of test fee that implement each of them by:

I. Initiation

(1) When b = 0, test schedule  FB is implemented. Let ̃ =  FB and B(̃ ) = 0.
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(2) Let O = ̃ ⧵ {N} = {1, ..., N − 1} and X = {1, ..., N − 1} ⧵ O = ∅ be the set

of effort levels at which a test is to be taken and the set of effort levels at which no

test is scheduled, correspondingly.

(3) Calculate19

Bi|i−1,i+1 =
pi("i+1 − "i)
∑N

j=i+1 pj
, ∀ i ∈ O.

(4) Let l = argmini∈{1,...,N−1}
{

Bi|i−1,i+1
}

and let B̄(̃ ) = Bl|l−1,l+1.

(5) Test schedule ̃ =  FB is implemented with b̃ ∈ [B(̃ ), B̄(̃ )].

(6) The test schedule that is implemented by b = B̄(̃ ) + � is ̃ ∖{l}.

(7) Update the threshold test fees associated with "l−1 and "l+1, if applicable,20 to:

Bl−1|l−2,l+1 =
pl−1("l+1 − "l−1)

∑N
j=l pj

and

Bl+1|l−1,l+2 =
(pl + pl+1)("l+2 − "l+1)

∑N
j=l+2 pj

.

Update the threshold test fee associated with "l to:

�md
((

̃ ⧵ {l}, ̃ ⧵ {l − 1}
)

=
pl−1("l − "l−1) − pl("l+1 − "l)

pl
.

19Recall that, in general, given test schedule  = {t1, ...t| |},

Bti|ti−1,ti+1 =

∑ti
j=ti−1+1

pj("ti+1 − "ti )
∑N
j=ti+1

pj
, i = 1, ..., N − 1.

20Only one of them is applicable if l = 1 or l = N − 1.
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(8) Update ̃ , B(̃ ), O and X to ̃ = ̃ ∖{l}, B(̃ ) = Bl|l−1,l+1, O = O ⧵ {l} and

X = X ∪ {l}.

II. Induction

(1) Let ̃ = {t̃1, ..., t̃|̃ |} be the test schedule that is implemented by b = B(̃ ) + �.

The corresponding O and X, as defined similarly as those in the Initialtion Steps,

are O = {t̃1, ..., t̃|̃ |−1} and X = {1, ..., N − 1} ⧵O, respectively.

(2) For each t̃i ∈ O, there is a threshold test fee21

Bt̃i|t̃i−1,t̃i+1 = �
md (̃ , ̃ ⧵ {t̃i}

)

=

∑t̃i
j=t̃i−1+1

pj("t̃i+1 − "t̃i)
∑N

j=t̃i+1
pj

above which it is better for the agent to skip the test at "t̃i when the other parts of

the test schedule remains unchanged.

For each m ∈ X, there exists k = 0, ..., |̃ | − 1 such that t̃k < m < t̃k+1. When

k ≠ 0, there is a threshold test fee

�md
(

̃ ,
(

̃ ⧵ {t̃k}
)

∪ {m}
)

=

∑t̃k
j=t̃k−1+1

pj("m − "t̃k) −
∑m

j=t̃k+1
pj("t̃k+1 − "m)

∑m
j=t̃k+1

pj
,

above which it is better for the agent to postpone the test from "t̃k to "m. Note that

for those m < t̃1, if exist, they will not reappear in an optimal test schedule once

they have been skipped at some point.

All the Bt̃i|t̃i−1,t̃i+1’s and �
md

(

̃ ,
(

̃ ⧵ {t̃k}
)

∪ {m}
)

’s mentioned above should al-

ready have been calculated in the previous steps.

21Again, let t̃0 = 0 for notational convenience.
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(3) Let

l = argmini=1,...,|̃ |−1
{

Bt̃i|t̃i−1,t̃i+1
}

and

n = argminm∈X, m>t̃1
{

�md
(

̃ ,
(

̃ ⧵ {t̃k}
)

∪ {m}
)

∶ t̃k < m < t̃k+1
}

.

(4) IfBt̃l|t̃l−1,t̃l+1 < �
md

(

̃ ,
(

̃ ⧵ {t̃k}
)

∪ {n}
) (

t̃k < n < t̃k+1, k ≥ 1
)

, then let B̄(̃ ) =

Bt̃l|t̃l−1,t̃l+1 .

(i) Test schedule ̃ is implemented with b̃ ∈
(

B(̃ ), B̄(̃ )
]

.

(ii) The test schedule that is implemented by b = B̄(̃ ) + � is ̃ ⧵ {t̃l}.

(iii) Update the threshold test fees associated with "t̃l−1 and "t̃l+1 , if applicable,
22

to:

Bt̃l−1|t̃l−2,t̃l+1 =

∑t̃l−1
j=t̃l−2+1

pj("t̃l+1 − "t̃l−1)
∑N

j=t̃l−1+1
pj

and

Bt̃l+1|t̃l−1,t̃l+2 =

∑t̃l+1
j=t̃l−1+1

pj("t̃l+2 − "t̃l+1)
∑N

j=t̃l+1+1
pj

.

For all m ∈ (t̃l−1, t̃l+1), update the threshold test fee associated with "m to:

�md
(

̃ ⧵ {t̃l},
(

̃ ⧵ {t̃l−1, t̃l}
)

∪ {m}
)

=

∑t̃l−1
j=t̃l−2+1

pj("t̃l+1 − "t̃l−1) −
∑m

j=t̃l−2+1
pj("t̃l+1 − "m)

∑m
j=t̃l−1+1

pj
.

22Only one of them is applicable if l = 1 or l = |̃ | − 1.
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(iv) Update ̃ , B(̃ ), O and X to ̃ = ̃ ∖{t̃l}, B(̃ ) = Bt̃l|t̃l−1,t̃l+1 , O = O ⧵ {t̃l}

and X = X ∪ {t̃l}.

(5) IfBt̃l|t̃l−1,t̃l+1 ≥ �md
(

̃ ,
(

̃ ⧵ {t̃k}
)

∪ {n}
) (

t̃k < n < t̃k+1, k ≥ 1
)

, then let B̄(̃ ) =

�md
(

̃ ,
(

̃ ⧵ {t̃k}
)

∪ {n}
)

.

(i) Test schedule ̃ is implemented with b̃ ∈
(

B(̃ ), B̄(̃ )
]

.

(ii) The test schedule that is implemented by b = B̄(̃ ) + � is
(

̃ ⧵ {t̃k}
)

∪ {n}.

(iii) Update the threshold test fees associated with "t̃k−1 and "t̃k+1 , if applicable,
23

to:

Bt̃k−1|t̃k−2,n =

∑t̃k−1
j=t̃k−2+1

pj("n − "t̃k−1)
∑N

j=t̃k−1+1
pj

and

Bt̃k+1|n,t̃k+2 =

∑t̃k+1
j=n+1 pj("t̃k+2 − "t̃k+1)

∑N
j=t̃k+1+1

pj
.

Update the threshold test fee associated with "n to:

Bn|t̃k−1,t̃k+1 =

∑n
j=t̃k−1+1

pj("t̃k+1 − "n)
∑N

j=n+1 pj
.

For all m ∈ (t̃k−1, n), update the threshold test fee associated with "m to:

�md
((

̃ ⧵ {t̃k}
)

∪ {n},
(

̃ ⧵ {t̃k−1, t̃k}
)

∪ {m, n}
)

=

∑t̃k−1
j=t̃k−2+1

pj("n − "t̃k−1) −
∑m

j=t̃k−2+1
pj("n − "m)

∑m
j=t̃k−1+1

pj
.

23Only one of them is applicable if k = 1 or k = |̃ | − 1.
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For all m ∈ (n, t̃k+1), update the threshold test fee associated with "m to:

�md
((

̃ ⧵ {t̃k}
)

∪ {n},
(

̃ ⧵ {t̃k}
)

∪ {m}
)

=

∑n
j=t̃k−1+1

pj("t̃l+1 − "n) −
∑m

j=t̃k−1+1
pj("t̃l+1 − "m)

∑m
j=n+1 pj

.

(iv) Update ̃ , B(̃ ), O and X to

̃ =
(

̃ ⧵ {t̃k}
)

∪ {n},

B(̃ ) = �md
(

̃ ,
(

̃ ⧵ {t̃k}
)

∪ {n}
)

,

O = O ⧵ {t̃k} ∪ {n}

and

X =
(

X ∪ {t̃k}
)

⧵ {n}.

III. Termination

Repeat Step II (Induction) until ̃ = {N}.

PROOF. Fixing the passing reward r at a level high enough to guarantee 100% passing rate,
the ex-ante utility associated with each acceptable test schedule is linear in b. The problem of
identifying all implementable test schedules is equivalent to finding the upper envelop of this
collection of linear functions: 2N−1 in total. A brute force method is provided in the remark
following this proof. The basic idea behind the method presented by Theorem 2 is to use the
threshold test fees associated with each test in the test schedule that is being implemented by
some b to divide the problem of finding implementable test schedules into sub-problems using
Lemma 3, and then focus on the sub-problems one at a time. More specifically, during the
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process of raising the test fee from zero, some threshold that triggers adjustments to the optimal
test schedule will be hit. According to Lemma 3, this adjustment is local, which means that one
does not need to recalculate all threshold test fees after the adjustment.

To identify the influence of a particular local adjustment, first note that according to Lemma
4, the outcome of an adjustment is either (1) the test at some "i is skipped, or (2) the test at "i is
postponed to "m, with "m being an effort level smaller than the next test scheduled directly after
"i according to the previous optimal test schedule before the adjustment occurs. In case (1), the
threshold test fee associated with the test immediately proceeds "i and that immediately follows
"i should be recalculated, as skipping "i makes the information provided by them more valuable
and thus makes them more costly to skip. For a similar reason, the threshold test fees associated
with each effort level between the two tests mentioned above should also be recalculated, as
adding them back to the test schedule can partially compensate for the information loss should
the test immediately proceeding "i be skipped in the future. Aside from these recalculations, all
the other threshold test fees are not influenced by skipping the test at "i. In case (2), postponing
the test from "i to "m makes the information provided by the test immediately proceeding "i more
valuable and less so for the test immediately follows "i. Therefore, the threshold test fees asso-
ciated with these two tests should be recalculated. In addition, the threshold test fees attached to
the formerly-skipped tests in between should also be recalculated, as the information gain from
adding them back should the test proceeding them be skipped in the future have changed.

Once the adjustment to the optimal test schedule, together with the recalculation of the set of
threshold test fees involved are complete, the test fee can be raised further without changing the
optimal test schedule, until the next threshold is reached. At that point, based on the nature of the
threshold, either case (1) – skipping a test, or case (2) – postponing a test, should be performed,
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thus complete the modification to the optimal test schedule. This modification in turn triggers
some recalculation of the relevant threshold test fees on a local level, and this process goes on
until the test fee gets so high that the optimal test schedule requires the agents not take any test
until they are absolutely certain that they can pass the test. At the end of this process, the whole
spectrum of implementable test schedules and the range of test fee that implements each of them
can be identified. This process is guaranteed to come to an end at some point, since after each
adjustment, a test is either taken out of the test schedule or postponed, both of which are one-way
processes. Another way to see that the adjustment process must end is by simply noticing that
if the test fee is extremely large, the optimal test schedule can only be {N}. �

Remark. As noted in the proof of Theorem 2, the problem of identifying all implementable

test schedules is equivalent to finding the upper envelop of the 2N−1 linear functions. A straight-

forward way of doing this is to start from the line with the smallest slope, i.e. U ( FB), and

find its intersection with all the other lines. The intersection with the smallest b value is the first

threshold test fee, below which test schedule  FB is implemented. The line associated with this

intersection is the next test schedule that is implementable. Next, find the intersection of this

line with the other 2N−1 − 2 lines. Among those intersections whose b value is above the first

threshold that has been identified earlier, take the one with the smallest b value, which offers the

second threshold test fee. Repeat the above process until test scheduleN is reached. This brute

force calculation guarantees a solution, but lacks economic intuition. And whenN is large, the

calculation required becomes astronomical.24

24Using the big O notion in computer science, the process described above of finding the upper envelop of n linear
functions is O(n2), with n = 2N−1. The fastest way of finding the upper envelop, to the best of my knowledge, is to
use the divide-and-conquer algorithm, which has a speed of O(n log(n)). The bottleneck is still n = 2N−1, which
grows exponentially by itself.
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Identifying all implementable test schedules is the first step to solve for the principal’s expen-
diture minimization problem. The next step is to calculate the minimum expenditure associated
with each of such test schedules. Similar to the previous discussion on implementing  FB, full-
surplus-extraction is possible for a given test schedule that can be implemented if and only if the
ex-ante participation constraint is the most demanding constraint as an agent carries out the test
schedule. Otherwise, the principal’s surplus-extraction capacity would be limited by one of the
interim participation constraints. Again, which constraint is most demanding depends both on
the test fee and on the relationship between the participation constraint at each stage and the test
fee.

More specifically, let ̃ = {t̃1, ..., t̃|̃ |} be the test schedule that is implemented by b ∈
(

Bmd(̃ ), B̄md(̃ )
], where Bmd(̃ ) and B̄md(̃ ) are the threshold test fees that trigger test sched-

ule adjustments described above – ̃ is the resulting test schedule as the test fee is increased
above Bmd(̃ ) whereas B̄md(̃ ) is the test fee beyond which the agents shift away from ̃ . Let

(1.14) Rmd(̃0, b) =
|̃ |−1
∑

m=0

t̃m+1
∑

j=t̃m+1

pj(mb + "t̃m+1)

be the passing reward required to satisfy the ex-anti participation constraint and

(1.15) Rmd(̃t̃i , b) =
|̃ |−1
∑

m=i

t̃m+1
∑

j=t̃m+1

pj
∑N

n=t̃i+1
pn

[

(m − i)b + ("t̃m+1 − "t̃i)
]

be the minimum passing reward required to satisfy the interim participation constraint after
an agent fails at "t̃i . Obviously, both Rmd(̃0, b) and Rmd(̃t̃i , b) depend on b. If there exists
b̃ ∈

(

Bmd(̃ ), B̄md(̃ )
] such that Rmd(̃0, b̃) ≥ maxi∈{1,...,|̃ |−1}Rmd(̃t̃i , b̃), then full-surplus-

extraction is possible under ̃ . It can be achieved by setting b = b̃ and r = Rmd(̃0, b̃). In
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contrast, if ∀ b̃ ∈ (

Bmd(̃ ), B̄md(̃ )
], ∃ i ∈ {1, ..., |̃ | − 1} such that Rmd(̃t̃i , b̃) > Rmd(̃0, b̃),

then full-surplus-extraction is not possible. In such cases, the principal may still want to see how
much surplus she has to leave to the agents. If not much, the test schedule may nonetheless be
worth implementing. Proposition 11 provides the condition under which full-surplus-extraction
is possible for a given implementable test schedule, whereas Proposition 12 calculates the min-
imum expenditure associated with each implementable test schedule.

Proposition 11 (Conditions for Full-Surplus-Extraction). Given an implementable test sched-
ule ̃ = {t̃1, ..., t̃|̃ |} and b ∈

(

Bmd(̃ ), B̄md(̃ )
]

that implements it, divide the set ̃ ⧵ {N} into

(̃ ) and (̃ ) such that

(̃ ) =

{

n ∈
(

̃ ⧵ {N}
)

∶
dRmd

(

̃n, b
)

db
<
dRmd

(

̃0, b
)

db

}

and

(̃ ) =

{

n ∈
(

̃ ⧵ {N}
)

∶
dRmd

(

̃n, b
)

db
≥
dRmd

(

̃0, b
)

db

}

.

For each n ∈
(

̃ ⧵ {N}
)

, let bn be such that Rmd
(

̃n, bn
)

= Rmd
(

̃0, bn
)

.

When (̃ ),(̃ ) ≠ ∅, full-surplus-extraction is feasible if and only if

[

max
n∈(̃ )

{bn}, min
n∈(̃ )

{bn}
]

⋂

(

Bmd(̃ ), B̄md(̃ )
]

≠ ∅;

When (̃ ) = ∅, full-surplus-extraction is feasible if and only if minn∈(̃ ){bn} ≥ Bmd(̃ );

When (̃ ) = ∅, full-surplus-extraction is feasible if and only if maxn∈(̃ ){bn} ≤ B̄md(̃ ).

PROOF. By the ways that (̃ ), (̃ ) and bn are defined, it is clear that for n ∈ (̃ ),
Rmd

(

̃0, bn
)

≥ Rmd
(

̃n, bn
) if b ≥ bn, whereas the reverse is true for n ∈ (̃ ). Thus, to realize
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full-surplus-extraction, it is necessary and sufficient that there exists b∗ ∈ (

Bmd(̃ ), B̄md(̃ )
]

such that Rmd
(

̃0, b∗
)

≥ Rmd
(

̃n, b∗
) for all n ∈ (

̃ ⧵ {N}
), which is equivalent to b∗ ≥ bn

for all n ∈ (̃ ) and b∗ ≤ bn for all n ∈ (̃ ). The conditions presented in the proposition
guarantee the existence of such b∗. �

Proposition 12 (Minimum Expenditure to Implement any Implementable Test Schedule).
Given an implementable test schedule ̃ = {t̃1, ..., t̃|̃ |} and b ∈

(

Bmd(̃ ), B̄md(̃ )
]

that imple-

ments it, let

n∗(b) = argmax
n∈
(

̃ ⧵{N}
)

{

Rmd(̃n, b
)}

be the index of the test that requires the highest passing reward to satisfy the corresponding

interim participation constraint for any given test fee b, and let

b∗ =

⎧

⎪

⎨

⎪

⎩

max
{

Bmd(̃ ) + �,min{b ∶ n∗(b) ∈ (̃ )}
}

if (̃ ) ≠ ∅

B̄md(̃ ) if (̃ ) = ∅
,

with � > 0 being infinitesimal. Then, the minimum expenditure to implement ̃ can be achieved

by choosing
⎧

⎪

⎪

⎨

⎪

⎪

⎩

b̃ = min
{

b∗, B̄md(̃ )
}

r̃ = max
n∈
(

{0}∪̃ ⧵{N}
)

{

Rmd
(

̃n, b
)}

.

PROOF. First, note that for all b ∈ (

Bmd(̃ ), B̄md(̃ )
], the net passing reward required to

meet all the participation constraints are at leastmax
n∈
(

{0}∪̃ ⧵{N}
)

{

Rmd
(

̃n, b
)}, and there is no

need to increase it beyond this amount. Therefore, no matter what the optimal test fee b̃ is, the
optimal net passing reward is always given by r̃ = max

n∈
(

{0}∪̃ ⧵{N}
)

{

Rmd
(

̃n, b
)}.
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As for the optimal test fee, when (̃ ) = ∅, there is no harm by setting the test fee as high
as possible, given that it is inside the range that implements ̃ . This is because if there exists
b′ ∈

(

Bmd(̃ ), B̄md(̃ )
] such that n∗(b) = 0 for b ≥ b′, the principal’s expenditure is the same

by choosing any b̃ ∈ [b′, B̄md(̃ )]. In such cases, full-surplus-extraction is feasible. If such b′
does not exist, as has been discussed above, it is beneficial for the principal to set the test fee as
large as possible, and therefore b̃ = B̄md(̃ ) is optimal. Hence, when (̃ ) = ∅, b̃ = B̄md( FB)

is always optimal.
When (̃ ) ≠ ∅, it is not profitable to increase the test fee as long as n∗(b) ∈ (̃ ), as the

additional income brought in by increasing test fee is not enough to compensate for the increase
in the net passing reward needed to keep the interim participation constraint satisfied. Also note
that if n∗(b′) ∈ (̃ ) for some b′, then n∗(b) ∈ (̃ ) for all b ≥ b′. Thus, the principal would
never raise the test fee above min{b ∶ n∗(b) ∈ (̃ )}, unless it is too low to implement ̃ .
Hence, when (̃ ) ≠ ∅, it is optimal to set b̃ = max

{

Bmd(̃ ) + �,min{b ∶ n∗(b) ∈ (̃ )}
},

given that it does not exceed B̄md(̃ ). If min{b ∶ n∗(b) ∈ (̃ )} > B̄md(̃ ), however, it is
optimal to set b̃ = B̄md(̃ ). �

Now that with all implementable test schedules and the minimum expenditure associated
with each of them at hand, the principal can simply choose the cheapest to implement.

1.5. Partial-Disclosing

In this section, I show how a partial-disclosing feedback system can be employed for the
principal’s benefit. However, as this kind of feedback system relies more heavily on model
parameters ({ai, pi}’s), universal conclusions are hard to drawn. Therefore, the discussion that
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follows is limited in scope, and focuses mainly on how to improve the outcome for the principal,
instead of identifying the optimal outcome itself.

When the feedback policy is partial-disclosing, a grade is assigned to the agent based on his
current progress, and the agent would use this grade to refine his belief about his ability based
on the amount of effort that he has spent, which remains to be the agent’s private information.
Here, no explicit distinction between a passing score and a failing score has to be made, as a
special grade can be created to indicate that an agent has passed the test. Just as in the minimal-
disclosing case, if an agent who has not passed the test yet decides to keep working and retake
the test in the future, he may fail again and face a similar decision of whether to go on, and if
so, how much more effort to spend before taking the next test. Hence, an agent’s decision under
the partial-disclosing feedback policy is a comprehensive test-taking-plan consisting of all the
effort levels at which a test is to be taken, all of which are history-contingent. Clearly, both
the full-disclosing feedback policy and the minimal-disclosing feedback policy are special cases
of the partial-disclosing policy: In the former case, the grade enables an agent to uniquely pin
down his ability, whereas in the latter case, the grade reveals no information in addition to the
fact that the agent has not passed the test yet.

To see how a partial-disclosing feedback policy works, assume that an agent’s ability is a,
and after exerting effort e, the agent scores s = S(a, e) according to the score function. Since the
principal cannot directly observe a or e, the grade (denoted by g) has to solely depend on s. Two
possibilities arise at this point: the grade can be either deterministic or random. In the former
case, any s only generates a unique g, whereas in the latter case, a single s induces a distribution
of possible g’s. It is worth pointing out that even in the former case, the disclosing power of
the feedback policy can still be partial instead of full. This is because there could be many s’s
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that generate the same g. In other words, even though a single s cannot generate multiple g’s,
the reverse is not true – a single g can be generated by multiple s’s. This is much like the letter
grade system: a student gets an A no matter his/her grade is 95 or 97. In contrast, if the grade is
random, not only a certain g can be generated by multiple s’s, any s can also generate multiple
g’s.

Regardless of the randomness of the grade-generating process, one thing is clear – the agent
is able to use the grade to update his belief about his ability using the Bayes rule. Using
P
{

ai|e, g
} to denote the probability that an agent’s ability is ai, given that the agent gets grade

g after spending effort e, it follows that:

(1.16) P
{

ai|e, g
}

=
P
{

g|S(ai, e)
}

⋅ pi
∑N

j=1 P
{

g|S(aj , e)
}

⋅ pj
,

where P {

g|S(ai, e)
} is the probability that grade g is generated by score s = S(ai, e). The

difference between deterministic and random grade-generating processes lies in P {

g|S(ai, e)
}.

Let G ≠ ∅ be the grade set. When the process is deterministic, for any given i ∈ {1, ..., N},
∃!g ∈ G so that P {

g|S(ai, e)
}

= 1. When the process is random, in contrast, for any given
i ∈ {1, ..., N}, P {

g|S(ai, e)
}

≥ 0 for all g ∈ G and∑g∈G P
{

g|S(ai, e)
}

= 1.
As mentioned above, an agent’s decision under the partial-disclosing feedback policy con-

sists of a complete test-taking-plan including all the effort levels at which a test is to be taken,
all of which are history-dependent. A representative test-taking-plan can be denoted by {e1(h0),
e2(h

1),..., eM (h
M−1)}, with each ei being the effort level at which the itℎ test should be taken

given that hk = {(e1, g1), ..., (ek, gk)} is the full history of the past test-and-grade combinations.
As a special case, h0 = ∅, as no history exists when an agent takes his first test.
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Similar to theminimal-disclosing case, if the test fee is zero, there is no downside for an agent
to take as many tests as he likes. In fact, he may be tempted to take a “speculative” test at e1 < "1,
knowing that even thought there is no chance that he would pass the test, he could nonetheless
get some information about his ability. Of course, this could cause trouble for the principal,
as this type of information leaking forces her to offer a lucrative passing reward for those who
are pessimistic about their abilities. From this aspect, the partial-disclosing feedback system is
similar to its full-disclosing counterpart. Also similar to the full-disclosing case, “speculative”
test-taking can be discouraged by imposing a huge fine on those whose score is below S(aN , "1).
Or it can be eliminated more elegantly by increasing the test fee so that the agents no longer have
any incentive to take a sure-to-fail test just to fish out some information. For simplicity, I adapt
the first approach to resolve the “speculative” test-taking issue. The second approach is discussed
in the Appendix.

Given a test-taking-plan {e1(h0), e2(h1), ..., eM (hM−1)}, there is a continuation payoff, which
I temporarily denote by V (hi),25 associated with history hi (i = 1, ...,M − 1), such that

V
(

hi
)

=
m
∑

j=l
p̃j ⋅ r +

N
∑

j=m+1
p̃j ⋅

(

∑

g∈G
P
{

g|S
(

aj , ei+1(h
i)
)}

⋅
[

V
(

hi ∪
{(

ei+1(h
i), g

)})

− b
]

)

−
(

ei+1(h
i) − ei

)

,

(1.17)

where l ∶= min{k ∶ "k > ei}, m ∶= max{k ∶ "k < ei+1(h
i)}, and p̃j ∶=

pj
∑N

k=l pk
. That

is, based on history hi and the test-taking-plan, the agent will choose to take the next test at
effort level ei+1(hi). If the agent passes the test with effort ei+1(hi), he receives r and leaves the

25Note that the continuation payoff also depends on r and b. They are omitted from the notation for conciseness.
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system. Otherwise, by the time the agent fails at ei+1(hi), he receives grade g with probability
P
{

g|S
(

a, ei+1(h
i)
)} and the updated history becomes hi+1 = hi ∪

{(

ei+1(h
i), g

)}, which has a
continuation payoff V (

hi+1
) associated with it.

From an agent’s perspective, taking tests serves two purposes. First, it offers him a chance to
pass the test and get the passing reward. Second, it provides information about the agent’s ability,
and thus how the agent should proceed in the future. Under a minimal-disclosing feedback
system, the second purpose does not exist, as no extra insight is to be gained other than the fact
that the agent has not passed the test yet. Therefore, the agents are extra sensitive to the test fee,
as in a sense, taking a test does not offer themmuch in return – even if the tests are free, they will
not take one other than at each of the "i’s. In contrast, under a full-disclosing feedback system,
the second purpose of test-taking prevails. When speculative test-taking is not prohibited (by
imposing a large fine for those who scores below S(aN , "1)) mentioned in the previous section
of this paper), the agents will take a test after having spend a tiny amount of effort just to learn
about their abilities, as long as the test fee is not too large.

Unlike a full-disclosing feedback system or a minimal-disclosing one, a partial-disclosing
feedback system offers the principal another dimension of disclosing flexibility. Perhaps the best
way to see this is to take a step back and re-consider the minimal-disclosing feedback policy. At
each "i, a test serves its two purposes, as mentioned above, simultaneously. By introducing a
grade system, as in the partial-disclosing case, the principal is able to separate the two purposes
of test-taking. As an example, consider a simple grade system in which two deterministic grades
are introduced. An agent gets “A” if s ≥ x

2
and “B” otherwise.26 Then by taking a test at 

(

a, x
2

)

,
an agent would be able to know whether his ability is above or below a. Or, the grade system

26Recall that x is the passing score.
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can be made slightly more complicated by introducing three grades, say, “A” if s ≥ 3x
5
, “B” if

x
3
≤ s < 3x

5
and “C” otherwise. Now, a test result reveals more information to an agent. From

this point of view, the full-disclosing feedback system can be seen as a grade system that has
infinite number of grades that are continuously distributed. This point can be better illustrated
using a graph:

Figure 1.3. Grade System Illustrated

In Figure 1.3, an agent has something to gain at each of e1, ..., e9. Among them, e4, e7 and
e9 are different from the others as they offer the additional benefit of passing the test. However,
in terms of information, e4, e7 and e9 are not among the most informative group. To see this,
consider effort level e3. In this simple example, e3 has full revealing power: If an agent takes a
test after spending effort e3 and gets “A”, he knows that his ability is a1; If he gets “B”, then his
ability is a2; If he gets “C”, then his ability is a3. In fact, this is true for all effort levels between
e3 and e4. This is reminiscent to the minimal-disclosing case in which it is never optimal for
an agent to take a test on an effort level that does not coincide with any of the "i’s. Here, even
though an agent that fails a test with an effort between e3 and e4 gains the same insight regarding
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his ability, intuitively, he should prefer to take the test at either e3 or e4, but no anywhere in
between. This intuition goes beyond this simple example – it also holds in a random grade
generating environment, as is formally stated in the following Proposition:

Proposition 13. Under a partial-disclosing feedback policy, if there exist two effort levels ê

and ê′ (ê < ê′), with P {g|S(ai, ê)} = P {g|S(ai, ê′)} for all g ∈ G and i ∈ {1, ...N}, then it is

never optimal for an agent to take a test at ê′.

PROOF. Assume that the test-taking-plan {e1(h0), e2(h1), ..., eM (hM−1)} is optimal, and ê′ =
em(h

m−1) (m ∈ {1, ...,M}). Also assume that there exists ê < ê′ such that P {g|S(ai, ê)} =
P {g|S(ai, ê′)} for all g ∈ G and i ∈ {1, ...N}.

First, note that the assumption P {g|S(ai, ê)} = P {g|S(ai, ê′)} for all g ∈ G and i ∈
{1, ...N} implies that taking a test at ê′ or at ê offer the same prospect of passing the test to
agents with all ability levels. In other words, even though ê < ê′, there does not exist any "i
(i = 1, ..., N) such that ê < "i ≤ ê′. Otherwise, P {g|S(ai, ê)} = P {g|S(ai, ê′)} for all g ∈ G

cannot hold for this particular i.
Now, consider an alternative test-taking-plan by replacing ê′ with ê while keeping the other

part unaltered. Indeed, since each test in a test-taking-plan is history dependent, many modi-
fications may be necessary to keep the other part unaltered. More specifically, if there exists
j ∈ {1, ...,M} such that ê < ej(h

j−1) < ê′, then hm−1 needs to be truncated accordingly so that
ê only depends on the test results that proceeds it. In this case, the test at ej(hj−1) should still
be taken, and its dependence on history does not incorporate the test result at ê. For all the tests
after ê′, the original schedule remains unchanged except that now the outcome of the test at ê
replaces that at ê′. If there does not exist j ∈ {1, ...,M} such that ê < ej(hj−1) < ê′, then simply
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replace ê′ with ê and keep the original schedule remains unchanged except that now the outcome
of the test at ê replaces that at ê′.

If m = M , that is, if there is no test scheduled after an agent fails at ê or every agent is
sure to pass at ê, then by switching to the modified test-taking-plan, the agents are able to save
both test fee and efforts without sacrificing their chance of passing the test. Thus, the original
test-taking-plan cannot be optimal. Similarly, if m < M , then by switching to the modified
test-taking-plan, the agent’s chance of passing the test at ê does not change, while he is able to
save effort in case he passes the test. If the agent is not able to pass the test at ê′, then by the way
the modified test-taking-plan is constructed, the agent’s expected payoff is the same under the
two alternatives. Therefore, the proposed modification to the original test-taking-plan makes an
agent strictly better off in case he is going to pass the test at ê′. Otherwise, the agent’s payoff
remains unchanged. Thus, the original test-taking-plan is not optimal. �

Proposition 13 implies that an agent’s problem can be simplified into choosing a set of effort
levels at which the test results would change his belief about his ability. This, in turn, implies
that the principal should design when these changes of beliefs should happen.

1.5.1. Letter Grade

In this subsection, I look at the letter grade system that is commonly used in the real world.
According to Proposition 13, the agents take their first test at t1 ∈ {"1, ..., "N}. Based on the test
score, an agent either pass or gets a letter grade. These letter grades then divide the agents into
sub-groups, each having a range of ability levels attached to it. The nature of letter grades implies
that there is no overlap of ability levels between the sub-groups. More specifically, assume that
G = {g1, ..., gL}. Let there be 0 < sL < sL−1 < ... < s1 ≤ x such that an agent, whose score is
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s, gets grade:

(1.18) g =

⎧

⎪

⎨

⎪

⎩

gl if sl+1 ≤ s < sl, l = 1, ...L − 1

gL if s < sL
.

The grade set G and the cutoff scores s1..., sL, along with b and r, are what the principal has
to decide under the letter grade setting. For ease of notation, let sL+1 = 0. Then Equation 1.18
simplifies into g = gl if sl+1 ≤ s < sl, l = 1, ..., L.

Just as before, t1 = "1 is required to achieve FBME. First, assume that for all l = 1, ..., L,
there exists at most one ai (i = 1, ..., N) such that sl+1 ≤ S(ai, "1) < sl. In other words, assume
that the letter grade system is so enriched that it has the same effect as a full-disclosing feedback
system. Recall that from previous discussion, FBME requires:

Ufd(1; (Rfd(1), B̄fd(1))) = Rfd(1) −
N
∑

j=2
pjB̄

fd(1) −
N
∑

j=1
pj"j ≤ 0,

where Rfd(1) = "N − "1 and B̄fd(1) = mini∈{2,...,N} �fd(1, i).
Consider truncating the grade set toG = {g1, ..., gL′} so thatS(aN−1, "1) < sL′ ≤ S(aN−2, "1).

Then after taking the first test at "1, agents with ability aN−1 and aN both get grade gL′ . Clearly,
if the principal wants to achieve FBME, these two types of agents have to be willing to (1) con-
tinue, and (2) take the next test at "N−1. The willingness to continue can be guaranteed as long
as:

(1.19) r ≥
pN−1

pN−1 + pN
("N−1 − "1) +

pN
pN−1 + pN

(b + "N − "1),
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while taking the next test at "N−1 can be guaranteed as long as:

(1.20) b ≤
pN−1
pN

("N − "N−1).

Note that Equation 1.19 and Equation 1.20, if combined, indicates that the lower bound on the
passing reward is relaxed under this regime. More specifically, given that b ≤ pN−1

pN
("N −"N−1),

the right-hand-side of Equation 1.19 is no greater than "N − "1, which is the passing reward
needed to prevent the agents with ability aN from quitting when a full-disclosing feedback policy
is used. At the first glance, this change should be welcomed by the principal, as under the full-
disclosing feedback policy, the obstacle for achieving FBME emerges when she cannot lower
the passing reward below "N − "1 while the test fee is set at the upper bound. However, similar
to the minimal-disclosing case discussed before, sometimes it may not be in the principal’s best
interest to raise the test fee even though it has not hit the upper bound yet. To see this, note that
Equation 1.19 makes clear that as b increases, r has to be increased correspondingly to prevent
the agents from quitting. This problem does not arise under the full-disclosing feedback policy
because at the interim stage, the test fee is not relevant anymore since all agents know exactly
how much more effort it takes for them to pass the test, and thus they do not risk paying the test
fee again in the future. Using the same logic as before, if27

pN
pN−1 + pN

>
N
∑

i=2
pi + pN ,

that is, if at the interim stage, the passing reward needs to be raised at a faster rate to compensate
for an increase in the test fee when compared to the ex-ante stage, then it is not beneficial for the
27Note that by bundling aN−1 and aN together, the ex-ante expected utility for the agents is r−

(

∑N
i=2 pi + pN

)

b−
∑N
i=1 pi"i.
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principal to raise the test fee beyond the point that demands the same passing reward from the
two stages. More concretely, solving for b∗ such that

(

N
∑

i=2
pi + pN

)

b∗ +
N
∑

i=1
pi"i =

pN−1
pN−1 + pN

("N−1 − "1) +
pN

pN−1 + pN
(b∗ + "N − "1),

then it is not optimal for the principal to increase b as long as b ≥ b∗, even if the upper bound on
b is not binding.28 The mathematical details can be found in the Appendix, as they are not too
important to understand the nature of the letter grade system.

There in no fundamental difference between bundling the aN−1 and aN agents together or
bundling any other types of agents instead, except that the former immediately relax the lower
bound on r. It is not hard to see that under a letter grade system, the lower bound on r at the
interim stage is always determined by the group of agents, be it single type of a bundle of types,
who get the worst grade.

Proposition 14. Given a grade set G = {g1, ..., gL} and 0 = sL+1 < sL < ... < s1 ≤ x in

which an agent with score s gets grade g = gl if sl+1 ≤ s < sl (l = 1, ..., L). Let gk ∈ G be such

that sk+1 ≤ S(am, "1) < ... < S(an, "1) < sk (n < N). Without loss of generality, assume that

S(aN , "1) < sL. Then V ({("1, gk)}) > V ({("1, gL)}).29 That is, all agents with grade better than

gL have higher continuation payoff than those who get gL.

PROOF. Suppose S(aq, "1) < sL ≤ S(aq−1, "1). Then V ({("1, gL)}) ≤ r − ("q − "1), as
aq is the highest possible ability among those who get grade gL. Meanwhile, V ({("1, gk)}) ≥

28It is straightforward to calculate that b∗ =
pN−1

pN−1 + pN
("N−1 − "1) +

pN
pN−1 + pN

("N − "1) −
∑N
i=1 pi"i

∑N
i=2 pi + pN −

pN
pN−1 + pN

.

29Again, 100% eventual passing rate is implicitly assume, as this can always be achieved by setting r large enough.
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r−("m−"1). This is because am is the lowest possible ability among those who get grade gk. For
this group of agents, although they may retake the test at an earlier effort level than "m, they will
only do so if this is more profitable than work until "m is reached so that they are sure to pass.
The above two observations, when combined together, yields V ({("1, gL)}) < V ({("1, gk)}),
since "q > "m ⇒ r − ("q − "1) < r − ("m − "1). �

Proposition 14 is crucial to understand the advantage of the letter grade system. Essentially,
it implies that bundling in some cases is almost as good as free lunch, if not better. To see
this, assume again that the feedback system is full-disclosing. The discussion above shows that
bundling aN−1 and aN may not always be beneficial, although it relaxes the lower bound on r.
Now, consider that the principal bundles ai and ai+1 (1 < i < N − 1) together while trying to
achieve FBME. Proposition 14 says that the continuation payoff is not going to be a problem,
which means the only constraint that the principal faces from this bundling arrangement is that
the agents are willing to retake the test at "i instead of "i+1, which requires b ≤ pi

pi+1
("i+1 − "i).

As long as this constraint on b is not binding, bundling ai and ai+1 contributes to the pursuit
of FBME in two ways.30 First, it generates extra income for the principal, as those with ability
ai+1 pays the test fee again when they fail at "i. Second, because of the possibility of paying
the test fee again, the agents’ ex-ante expected payoff deceases for any fixed (r, b). As has been
illustrated before, FBME is not feasible if all (r, b) pairs required to satisfy V ({("1, gL)}) ≥ 0

generate a positive ex-ante expected payoff for the agents. Since bundling ai and ai+1 has no
influence on V ({("1, gL)}), the fact that it can lower the ex-ante expected payoff is beneficial to
the principal.

30The assumption of b ≤ pi
pi+1

("i+1 − "i) not binding is crucial. I discuss this point in more details later.



89

A new complication that is unique to the letter-grade system is that when agents take the
first test at an effort level other than "1, aside from getting a higher probability of passing the
test in one sitting, they may get different information regarding their abilities based on the how
the letter grades are set. For example, assume that an agent’s ability is a5. If the agent takes the
first test at "1, the letter grade he gets enable him to deduce that his ability is either a5 or a6. In
contrast, if the agent were to take the first test at "2 instead, he is able to get a better letter grade,
which is the same grade that someone with ability a4 would get after spending the same amount
of effort. In this situation, the continuation problems that the agent faces are not the same, which
in turn, changes the ex-ante expected utility that the agent uses to make his decision of when to
take the first test.

In general, an agent’s ex-ante expected utility with t1 = "1 is (assuming 100% passing rate):

U lg(1) = r −
N
∑

j=1
pj
(

"j + njb
)

,

where nj is the number of failed attempts made by agents with ability aj . Similarly, an agent’s
ex-ante expected utility with t1 = "k is (assuming 100% passing rate):

U lg(k) = r −
k
∑

j=1
pj
(

"k + n′jb
)

−
N
∑

j=k+1
pj
(

"j + n′jb
)

,

where n′j is the number of failed attempts made by agents with ability aj given the grade system
and subsequent re-optimization once fail at "k. Then the threshold test fee above which t1 = "k
is preferred to t1 = "1 is:

(1.21) � lg(1, k) =

∑k
j=1 pj

(

"k − "j
)

∑N
j=2 pj

(

nj − n′j
) .
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Without any bundling, nj − n′j = 1 for all j = 2, ..., k, as these agents are able to pass the
test with effort "k. For all other j’s, nj − n′j = 0, since they either pass in both situations or fail

in both situations. Therefore, the RHS of Equation 1.21 becomes
∑k

j=1 pj
(

"k − "j
)

∑k
j=2 pj

, which is a
special case of Equation 1.1.

In a nutshell, achieving FBMEboils down to two aspects. First, make the cost of continuation
for the group of agents with the lowest grade as low as possible. This cost includes both the
expected effort and additional test fees to be paid. Second, extract as much test fee as possible
from those with higher grades, given that the high test fee does not make them over-exerting
effort. Another thing to keep in mind is the impact of the structure of letter grade system on the
agents’ choice of the first test. Under the letter grade system, postponing the first test does not
only serve to save test fee, rather, it may come with an alternative set of information of a failing
agent’s ability, which has further implication regarding the continuation payoff.

To see why the last point can be important, consider the example of N = 4. Assume that
the grade set contains two grades G = {g1, g2}. When the first test is taken with effort "1, g2
implies that the agent’s ability is a4, whereas g1 implies that the agent’s ability is either a2 or a3.
Apparently, V (

{("1, g2)}
)

≥ 0 requires r ≥ "4 − "1, which is the same as in the full-disclosing
feedback system. In both cases, all participation constraints at the interim stages are satisfied as
long as r ≥ "4 − "1. Therefore, the other constraints that the principal faces are regarding the
schedules of the tests, which depend solely on b. In particular, it is certain that

�fd(1, 2) =
p1("2 − "1)

p2
, �fd(1, 3) =

p1("3 − "1) + p2("3 − "2)
p2 + p3

,

and �fd(1, 4) =
p1("4 − "1) + p2("4 − "2) + p3("4 − "3)

p2 + p3 + p4
,
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while

� lg(1, 3) =
p1("3 − "1) + p2("3 − "2)

p2 + 2p3
and � lg(1, 4) =

p1("4 − "1) + p2("4 − "2) + p3("4 − "3)
p2 + 2p3 + p4

.

However, � lg(1, 2) depends on {pi, "i}’s and s1. More specifically, using Equation 1.21, if
t1 = "2 results in agents with a3 and a4 getting different grades (a3 gets g1 and a4 gets g2), then

� lg(1, 2) =
p1("2 − "1)
p2 + p3

.

Compare � lg(1, 2), � lg(1, 3) and � lg(1, 4) to �fd(1, 2), �fd(1, 3) and �fd(1, 4), all � lg(1, i)
and �fd(1, i) have the same numerator, while the difference in the denominator is always p3. An
immediate implication of this observation is that

(p2 + 2p3 + p4) ⋅ B̄lg(1) ≤ (p2 + p3 + p4) ⋅ B̄fd(1),

where B̄fd(1) = mini=2,3,4
{

�fd(1, i)
} and B̄lg(1) = min

{

mini=2,3,4
{

� lg(1, i)
}

,
p2("3 − "2)

p3
,

p3("4 − "3)
p4

}

. Given that Rfd(1) = Rlg(1), this further implies that FBME is achievable with
the letter-grade system only if it is achievable under full-disclosing, but not the other way around.
Intuitively, although the letter-grade system makes some agents (those with a3 in this example)
pay the test fee more than once, it does not bring in more revenue for the principal, as the
possibility of paying the test fee more than once results in a tighter upper bound on the test
fee itself.
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However, the situation changes if there exists s1 such that t1 = "2 results in agents with a3
and a4 both get g1. In this case,

� lg(1, 2) =
p1("2 − "1)
p2 + p3 − p4

,

as those with a4 must pay the test fee again when they fail at "3, given that b ≤
p3("4 − "3)

p4
.

The “−p4” term in the denominator helps relax the upper bound on b in certain situations, and it
becomes possible that FBME is indeed achievable with the letter-grade system while it is not so
with full-disclosing. A numerical example is provided in the Appendix. Note that such s1 may
not exist with certain {pi, "i}’s and some score function.

In the example ofN = 4 and bundling a2 and a3 together, it is obvious that having to impose
r ≥ "4− "1 is a major drawback. But even so, the extra flexibility in the information flow design
gives it some advantages over the full-disclosing feedback policy under certain circumstances.
This advantage becomes more clear when N is large. Loosely speaking, a letter grade system
cuts agents into bundles, and within each bundle, the least talented agents bear most of the test
fee payments (since they have to pay the test fee multiple times). In contrast, the agents who are
less talented but who are “lucky” enough to be the smarted type within the another bundle do
not have to pay the test fee many times over. If the FBME test schedule were to be achieve, these
agents would spend just the right amount of effort to pass the test in the end regardless of which
bundle they were initially put into. Therefore, the possibility of ending up in a bundle that is
designed for higher ability agents deters an agent from postponing his first test in the first place.
This is exactly the situations in which a letter grade system enables the principal to collect test
fee more times without making too much compromise in setting a lower ceiling on the test fee
itself.
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Another possible letter grade system in the N = 4 example is to bundle a3 and a4, instead
of a2 and a3. By doing so, aside from collecting the test fee for more times than under the full-
disclosing feedback policy, the previous lower bound r ≥ "4 − "1 can be relaxed. To see how
this grade system works, assume that the grade set contains two grades G = {g1, g2}. When the
first test is taken with effort "1, g1 implies that the agent’s ability is a2 while g2 implies that the
agent’s ability is either a3 or a4. As I have discussed earlier, V

({

"1, g1
})

≥ 0 is never binding.
In contrast, V ({

"1, g2
})

≥ 0 requires that r ≥ p3
p3 + p4

("3−"1)+
p4

p3 + p4
("4−"1+b). As I have

shown before, as long as b ≤ Blg(3, 4|{("1, g2)}) =
p3("4 − "3)

p4
is satisfied, this lower bound

on r is lower than that of r ≥ "4 − "1. Another complication that should be taken into account
is whether choosing t1 = "2 instead of t1 = "1 provides the agents with different information
about their abilities. There are two possibilities. The first possibility is that when t1 = "2 is
chosen, both a3 and a4 still get grade g2. In this case, � lg(1, 2) = p1("2 − "1)

p2
is the same as

in the full-disclosing setting. Another possibility is that when t1 = "2 is chosen, agents with
a3 is able to get grade g1 while agents with a4 still get g2. In this case, � lg(1, 2) decreases to
p1("2 − "1)
p2 + p4

, as this information bonus makes postponing the first test more attractive. Unlike
the previous case in which a2 and a3 are bundled together, this extra restriction on b does not
necessarily lead to the conclusion that under such circumstances, the letter-grade system has no
advantage over the full-disclosing feedback system. This is because the relaxation of the lower
bound on r is a unique advantage that is not present before. A numerical example is provided
in the Appendix, showing FBME can be achieve by the letter-grade system while both fulll-
disclosing and minimal-disclosing fail to do so. The fact that postponing t1 = "1 to t1 = "2 may
bring information bonus does not change this conclusion.

The analysis ofN = 4 can be generalized into the following:
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Proposition 15 (Improving a Full-Disclosing Feedback System into a Letter-Grade System).
Suppose that FBME is not feasible under the full-disclosing feedback system, then the principal

can modify the full-disclosing feedback system into a letter-grade system to improve her expen-

diture by:

(1) Starting from the full-disclosing feedback system

(a) Let the initial grade set be G = {g1, ...gN−1} with cutoff scores S(ai+1, "1) < si ≤

S(ai, "1) for i = 1, ..., N − 1. An agent whose score is s gets grade gi if si+1 ≤

s < si.31 Use G̃ to denote the letter-grade system, including both the grade set,

the cutoff scores, and how the grades in the grade sets are assigned based on the

cutoff scores.

(b) Let B̄lg = B̄fd(1) = mini=2,...,N
{

�fd(1, i)
}

and Rlg = Rfd(1) = "N − "1.

(2) Constructing the lowest grade group

(a) Let G̃temp be the modified version of G̃ so that the associated grade set is Gtemp =

{g1, ...gN−2}, with s
temp
i = si for i = 1, ..., N − 2 and stempN−1 = 0.

(b) (i) If

)V
(

{("1, gN−2)}; (r, b)
)

)b
=

pN
pN−1 + pN

≤
N
∑

i=2
pi + pN =

)U lg
(

1; (r, b)|G̃temp
)

)b
,

then let

B̄lg,temp = min
{

min
i=2,...,N

{

� lg(1, i|G̃temp)
}

, Blg(N − 1, N|{("1, gN−2)}
)

}

,

31Continue the convention of letting sN = 0.



95

where

(1.22) � lg(1, i|G̃temp) =

∑i−1
j=1 pj("i − "j)
∑i

j=2 pj
or � lg(1, i|G̃temp) =

∑i−1
j=1 pj("i − "j)
∑i

j=2 pj + pN

are the constraints on b at the ex-ante stage, depending on whether aN−1 and

aN get the same grade at t1 = "i, and

Blg(N − 1, N|{("1, gN−2)}
)

=
pN−1("N − "N−1)

pN

is the constraint on b at the interim stage. Let

Rlg,temp = max
{

−V
(

{("1, gN−2)}; (0, B̄lg,temp)
)

,−V
(

{("N−1, ∗)}; (0, B̄lg,temp)
)}

,

with

V
(

{("1, gN−2)}; (0, B̄lg,temp)
)

=
pN−1

pN−1 + pN
("N−1 − "1) +

pN
pN−1 + pN

("N − "1 + B̄lg,temp)

and

V
(

{("N−1, ∗)}; (0, B̄lg,temp)
)

= "N − "N−1

being the continuation payoff with r = 0 and b = B̄lg,temp (and thus effec-

tively the continuation cost) at t1 = "1 and t2 = "N−1, respectively. The

“∗” symbol in V
(

{("N−1, ∗)}; (0, B̄lg,temp)
)

means the specific grade is not

important, as all grades narrow down to the only possible ability aN at this

point.
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(ii) Otherwise, that is, if

)V
(

{("1, gN−2)}; (r, b)
)

)b
>
)U lg

(

1; (r, b)|G̃temp
)

)b
,

then calculate b∗("1, gN−2) such that32

V
(

{("1, gN−2)}; (0, b∗("1, gN−2))
)

= U lg(1; (0, b∗("1, gN−2))|G̃temp).

Let

B̄lg,temp = min
{

min
i=2,...,N

{

� lg(1, i|G̃temp)
}

, Blg(N − 1, N|{("1, gN−2)}
)

,max
{

b∗("1, gN−2), 0
}

}

and

Rlg,temp = max
{

−V
(

{("1, gN−2)}; (0, B̄lg,temp)
)

,−V
(

{("N−1, ∗)}; (0, B̄lg,temp)
)}

.

In either case, the minimum expenditure associated with this letter-grade sys-

tem is Rlg,temp −
∑N

i=1 pi"i −
(

∑N
i=2 pi + pN

)

B̄lg,temp.33 If Rlg,temp −
∑N

i=1 pi"i −
(

∑N
i=2 pi + pN

)

B̄lg,temp ≤ Rfd −
∑N

i=1 pi"i −
(

∑N
i=2 pi

)

B̄fd , then bundling aN−1

and aN is more profitable for the principal. Update G̃ = G̃temp, B̄lg = B̄lg,temp and

Rlg = Rlg,temp for subsequent analysis.

32In this case,

b∗("1, gN−2) =

pN−1
pN−1 + pN

("N−1 − "1) +
pN

pN−1 + pN
("N − "1) −

∑N
i=1 pi"i

∑N
i=2 pi + pN −

pN
pN−1 + pN

.

33If Rlg,temp −∑N
i=1 pi"i −

(

∑N
i=2 pi + pN

)

B̄lg,temp ≤ 0, then FBME is feasible. It can be implemented by b̃ =
B̄lg,temp and r̃ = ∑N

i=1 pi"i +
(

∑N
i=2 pi + pN

)

B̄lg,temp.
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Record B̄lg ∈ {� lg} if B̄lg = mini=2,...,N
{

� lg(1, i|G̃temp)
}

for some i, or B̄lg ∈

{Blg} if B̄lg = Blg
(

N − 1, N|{("1, gN−2)}
)

, or B̄lg ∈ {b∗} if B̄lg = b∗("1, gN−2).

Otherwise, if Rlg,temp −
∑N

i=1 pi"i −
(

∑N
i=2 pi + pN

)

B̄lg,temp > Rfd −
∑N

i=1 pi"i −
(

∑N
i=2 pi

)

B̄fd , do not bundle aN−1 with aN ; Keep G̃, B̄lg and Rlg unchanged.

(c) If bundling aN−1 and aN is indeedmore profitable for the principal, then she should

further explore whether to bundle aN−2 into the lowest grade group as well. The

steps are similar those described above. However, the specific analysis may differ

depending the model parameters. This is because even though a bundle of aN−1

and aN can more or less be treated similar to a minimal-disclosing feedback sys-

tem,34 this may not be true once aN−2 is included, for at t2 = "N−2, the agents’

abilities may be separated, depending on the cutoff scores and the score function.

The principal has limited control35 over the former and no control over the latter.

But the basic logic remains valid: find the relevant B̄lg and Rlg, then calculate

the minimum expenditure and see if there is any improvement over the minimum

expenditure before the bundling occurs. If so, then make the bundling happen and

consider whether the bundle should be enlarged to include the agents with ability

one level higher. Repeat this process until enlarging the bundle is not profitable

anymore. After each change to the letter-grade system, record which category of

constraints ({� lg}, {Blg} or {b∗}) that B̄lg belongs to.

(3) Constructing other grade groups

34“More or less” in the sense that the sub-collection of {a1, aN−1, aN} is indeed like a minimal-disclosing feedback
system, the analysis at the ex-ante stage differs between the two, as can be seen from �lg(1, i|G̃).
35Limited control in the sense that for an agent with ai and another with ai+1 to receive different grades upon takingthe first test at t1 = "1, the cutoff score has to lie between S(ai, "1) and S(ai+1, "1), but within this range, the
principal may be able to move the cutoff score to take some control over the information flow when agents take
their second test.
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(a) Suppose that the bundling process for the lowest grade group is completed with

ak+1 being the highest possible ability within this group of agents.36 Then the cur-

rent letter-grade system G̃ consists of the letter grade set G = {g1, ..., gk} with

cutoff scores S(ai+1, "1) < si ≤ S(ai, "1) for i = 1, ..., k and sk+1 = 0. Now con-

sider bundling ak with ak−1. Let G̃temp be the modified version of G̃ so that the

associated grade set is Gtemp = {g1, ...gk−1}, with s
temp
i = si for i = 1, ..., k − 2,

stempk−1 = sk and s
temp
k = 0.

(i) If B̄lg ∈ {� lg}, then calculate and see if

(1.23)
N
∑

j=2
pj
[

nlg(j; 1|G̃temp) − nlg(j; i|G̃temp)
]

−
N
∑

j=2
pj
[

nlg(j; 1|G̃) − nlg(j; i|G̃)
]

≥ pk,

where nlg(j; i|G̃) is the number of times the agent with ability aj would have

to pay the test fee under G̃ were he to take the first test at t1 = "i. If Equation

1.23 is true, then bundling ak with ak−1 is not profitable.

(ii) If B̄lg ∈ {� lg} but Equation 1.23 does not hold, then let

B̄lg,temp = min
{

min
i=2,...,N

{

� lg(1, i|G̃temp)
}

, Blg(k − 1, k|{("1, gk−2)}
)

}

and recalculate Rlg,temp if needed, by substituting b = B̄lg,temp in the contin-

uation costs at all stages within the lowest grade group.

(iii) If B̄lg ∈ {Blg}, let

B̄lg,temp = min
{

min
i=2,...,N

{

� lg(1, i|G̃temp)
}

, B̄lg, Blg(k − 1, k|{("1, gk−2)}
)

}

36In case bundling is not optimal, ak+1 = aN .
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and recalculate Rlg,temp if needed, by substituting b = B̄lg,temp in the contin-

uation costs at all stages within the lowest grade group.

(iv) If B̄lg ∈ {b∗}, let

B̄lg,temp = min
{

min
i=2,...,N

{

� lg(1, i|G̃temp)
}

,min
{

b∗|G̃temp} , Blg
min, B

lg(k − 1, k|{("1, gk−2)}
)

}

,

where
{

b∗|G̃temp
}

is the set of all the b∗’s in the lowest grade group if the

letter-grade system is G̃temp instead of G̃, and Blg
min is the smallest Blg’s in

the lowest grade group. Blg
min has been calculated earlier and does not need

to be recalculated at this point, since it does not change when G̃ is modified

into G̃temp. Recalculate Rlg,temp if needed, by substituting b = B̄lg,temp in the

continuation costs at all stages within the lowest grade group.

In case (ii)-(iv), calculate the minimum expenditure associated with G̃temp by sub-

stituting b = B̄lg,temp and r = Rlg,temp, and compare it with the minimum expendi-

ture obtained under G̃. If the former is smaller, then bundling ak with ak−1 is more

profitable for the principal. Update G̃ = G̃temp, B̄lg = B̄lg,temp and Rlg = Rlg,temp

for subsequent analysis.

As before, record B̄lg ∈ {� lg} if B̄lg = mini=2,...,N
{

� lg(1, i|G̃temp)
}

for some i,

or B̄lg ∈ {Blg} if B̄lg = Blg
(

N − 1, N|{("1, gN−2)}
)

, or B̄lg ∈ {b∗} if B̄lg =

b∗("1, gN−2). Otherwise, do not bundle ak with ak−1; Keep G̃, B̄lg and Rlg un-

changed.

(b) If bundling ak and ak−1 is not profitable for the principal, the next bundling can-

didates to consider is ak−1 and ak−2. Let G̃temp be the modified version of G̃ so that
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the associated grade set is Gtemp = {g1, ...gk−1}, with s
temp
i = si for i = 1, ..., k− 3,

stempk−2 = sk−1, s
temp
k−1 = sk and s

temp
k = 0. Repeat the steps above.

(c) If bundling ak and ak−1 is indeed more profitable for the principal, then she should

further explore whether to bundle ak−2 into this grade group as well. The steps

are similar those described above. Repeat until enlarging the grade group is no

longer optimal. Then move on to construct the next grade group using the same

procedure.

PROOF. In achieving FBME, it is necessary that a test-taking-plan that does not involve
any waste of effort is implemented. Such test-taking-plan can surely be implemented with an
appropriate upper bound on the test fee. Within a letter-grade framework, there are two types
of such constraints on the test fee that need to be taken into account. The first type is from the
ex-ante point of view – the first test has to be taken at t1 = "1, which can only be guaranteed
if b ≤ � lg(1, i|G̃) for all i = 2, ..., N . The second type of constraint is from the interim point
of view – after receiving his grade, an agent has to be willing to take the next test at the most
optimistic effort level. For example, suppose that an agent takes a test at "k and gets grade g.
Let {aj ∶ P {aj|"k, g} > 0

} be the collection of all possible abilities that the agent may have,
given "k and g. Let l = min

{

j ∶ P {aj|"k, g} > 0
}. Then the interim constraint on b can only

be satisfied if b ≤ Blg(l, m|{("k, g)}) for all m ∈
{

j ∶ P {aj|"k, g} > 0
}. While moving up to a

higher grade to construct the letter-grade system, the interim constraints on b within the already
constructed lower grade groups remain unchanged, the ex-ante constraint changes with G̃, and
thus should be recalculated each time.

Aside from the constraints on b, the passing reward r should be high enough to first make the
agents willing to participate then make themwilling to keep going after each failure. Proposition
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14 says to make sure that nobody will quit halfway, the principal only needs to focus on the group
of agents who get the lowest possible grade after the first test. It is the relative size of the passing
reward demanded by this group of agents at each interim stage and that demanded by all agents
at the ex-ante stage that ultimately determines the feasibility of FBME. Sometime the passing
reward demanded at an interim stage does not depend on b, such as r ≥ "N −"N−1. Sometimes it
does. In the latter case, there are two aspects to consider. First, as b increases, the lower bound
on r rises both at the ex-ante stage and at the interim stage in concern. When the latter rises more
rapidly than the former, it would not be optimal to do so as long as b > b∗, with b∗ being the test
fee that equalizes the two lower bounds on r. While moving up to a higher grade to construct the
letter-grade system, the interim constraints on r, as well as their relations with b, do not change
in the lower grade groups. But the relevant lower bound on r at the ex-ante stage does change,
so does its relation with b. That is why )U

lg(1|G̃)
)b

and b∗’s have to be recalculated each time a
modification to G̃ is to be considered.

Once the basic principles outlined above are clearly understood, most parts of the Proposi-
tion is straightforward and do not require further explanation. The only part that may need to
elaborate on is why Rlg can be ignored at all interim stages within the grade groups that do not
have the lowest grade, for Proposition 14 only deals with the continuation constraints at t1 = "1.
This is another major difference between the lowest grade group and other grade groups. Recall
that within the lowest grade group, each interim stage can potentially add additional constraint on
Rlg, for example, there is no guarantee that pN−1

pN−1 + pN
("N−1−"1)+

pN
pN−1 + pN

("N−"1+B̄lg) >

"N − "N−1 while deciding whether to bundle aN and aN−1. However, within other grade groups,
the interim continuation cost is always less that "i − "1, with i being such that ai is the lowest
possible ability in that grade group. If one uses ak to denote the highest possible ability in the
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lowest grade group, then "i−"1 < "k−"1 implies that no interim continuation constraints should
be binding. This further implies that Rlg is irrelevant in deciding whether bundling is desirable
for other grade groups. �

Remark. Regarding Step 3.(a).i in Proposition 15, the general observation, putting loosely,

is that it is not worthwhile to extract from some at the cost of loosing from all. For example, if

ak were to be bundled with ak−1, and if the interim constraint b < Blg(k − 1, k|{("1, gk−2)}) =
pk−1("k − "k−1)

pk
is not binding, then the principal can gain pk−1 ⋅ b in test fee. However, if at the

ex-ante stage, the competing t1 = "i,37 enables the agent with ak−1 to avoid paying this extra

test fee without resulting in others paying more than they otherwise would with t1 = "1, then the

principal should not try to extract this extra payment from those whose ability is ak−1, as it is not

enough to make up for the lost in income from having to decrease the test fee. In abstract terms,

x ⋅
y
z
> (x+w) ⋅

y
z +w

if and only if x > z. Applying this relation to our context by substituting

� lg(1, i|G̃) =
y
z
, w = pk−1 and x =

∑N
i=2 pini, it is clear that exploiting ak−1 only results in an

overall loss of income. This situation is interesting because it has resemblance of the monopoly

pricing policy – at some point, it is not profitable to try to sell to more people when one has to

lower the price for everyone.

Proposition 15 provides a systematic way of improving the outcome for the principal, given
that the FBME test schedule is to be implemented. In case no bundling is ever found to be
optimal, the principal should proceed with the full-disclosing feedback system. At the other
extreme, the principal may find it more profitable to bundle all agents from a2 to aN together.
In this case, the resulting minimal-disclosing feedback system is the best choice. Any bundling
between these two extremes is the gain from this more flexible partial-disclosing approach.
37In the sense that �lg(1, i|G̃) is the binding constraint.
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1.6. Flexible Passing Reward and Test Fee

In this section, I assume that the principal cannot observe the agent’s effort, but can keep
track of howmany tests he has taken. I explore the possibility of setting a flexible passing reward
or test fee structure that is contingent on the number of tests that an agent has already taken.

1.6.1. Flexible Passing Reward with Full-Disclosing

With full-disclosing, the maximum number of tests that an agent ever needs to take is two. We
construct a test system with passing reward (r1, r2) such that an agent gets r1 if he passes the test
at the first attempt and r2 if he passes the test at the second attempt. Once having passed the
test, an agent is not permitted to take the test again and re-claim the passing reward. In case of
failure, the agent pays the test fee b.38

Theorem 3. FBME is always feasible with ((r1, r2), b) and full-disclosing.

PROOF. The agent’s expected payoff by choosing t1 = "i is

Ufd(i; (r1, r2, b)) =
i

∑

j=1
pjr1 +

N
∑

j=i+1
pj
{

I{r2 ≥ "j − "i} ⋅ [r2 − ("j − "i)] − b
}

− "i.

Set r2 ≥ "N − "1 so that 100% passing rate is guaranteed. Let r1 = r̃ and b = r2 + b̃− r̃. The
right-hand-side of the equation above becomes

i
∑

j=1
pj r̃ +

N
∑

j=i+1
pj
{

[b + r̃ − b̃ − ("j − "i)] − b
}

− "i = r̃ −
N
∑

j=i+1
pj b̃ −

i
∑

j=1
pj"i −

N
∑

j=i+1
pj"j ,

38A single test fee is sufficient, as no one will pay it twice.
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which is the same as if the test fee is b̃ and passing reward is r̃.39 Therefore, our previous results
in Section 1.3 remain valid. In particular, t1 = "1 can certainly be implemented by letting b̃ = 0.
Full surplus-extraction can thus be achieved by letting r1 = r̃ = ∑N

j=1 pj"j . As for r2 and b, we
can simply set r2 = "N , which implies b = "N −∑N

j=1 pj"j . To sum up, by setting

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

r1 =
∑N

j=1 pj"j

r2 = "N

b = "N −
∑N

j=1 pj"j

,

t1 = "1 can be implemented and FBME can be achieved. �

1.6.2. Flexible Test Fee with Minimal-Disclosing

I construct a test system with passing reward r and test fee sequence (b1, ..., bN−1) such that an
agents pays bi if he fails a test for the itℎ time.

Theorem 4. FBME is always feasible with (r, (b1, ..., bN−1)) and minimal-disclosing.

PROOF. I prove by construction. Adapting previous method, I first assume 100% passing
rate, then make sure it is indeed so with our choice of the passing reward and test fee. Under
 FB, an agent’s continuation payoff at "n is

V ( FB
n ; (r, (b1, ..., bN−1))) = r −

1
∑N

j=n+1 pj

(

N
∑

j=n+1
pj("j − "n) +

N
∑

j=n+2
pj

j−1
∑

k=n+1
bk

)

.

39Note that we do not need r̃ = r1 ≥ "N − �i to maintain our previous conclusions. In Section ??, such condition
is required only because otherwise the expected utility would take another form (since some low ability agents will
quit). For this reason, in the current construction, the relevant condition that guarantees the expected utility taking
this particular form is r2 ≥ "N − �i, which is already assumed by setting r2 ≥ "N − "1.
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Participation constraints require V ( FB
n ; (r, (b1, ..., bN−1))) ≥ 0 for all n = 0, ..., N − 140

Parallel to Equation 1.11, define

Rn((b1, ..., bN−1)) =
1

∑N
j=n+1 pj

(

N
∑

j=n+1
pj("j − "n) +

N
∑

j=n+2
pj

j−1
∑

k=n+1
bk

)

as the minimal passing reward required to satisfy the participation constraint at "n for a given
test fee sequence (b1, ..., bN−1). Note that only bn+1, ..., bN−1 effectively enter the function V (⋅)
and Rn(⋅).

(1) Step 1
Let41

n1 = argmaxn∈{0,1,...,N−1}Rn(( 0, ..., 0⏟⏟⏟
all 0’s

)).

If n1 = 0, FBME is achievable by setting bn = 0 for all n and r = R0(( 0, ..., 0⏟⏟⏟
all 0’s

)) =

∑N
j=1 pj"j . Otherwise, set bn = 0 for all n = n1+1, ..., N −1, and set r1 = Rn1(0, ..., 0).

In this way, we have V ( FB
n1
; (r1, (0, ..., 0))) = 0 and V ( FB

n ; (r1, (0, ..., 0))) ≥ 0 for all
n > n1. I next show that bn1 can be chosen to make V ( FB

n1−1
; (r1, (0, ..., 0, bn1 , 0, ..., 0))) =

0 without causing agents to skip the test at "n1 .
At "n1−1, with test fee bn1 , not skipping the test at "n1 yields a continuation payoff of

pn1
∑N

j=n1
pj
r1 +

∑N
j=n1+1

pj
∑N

j=n1
pj

V ( FB
n1
; (r1, (0, ..., 0, bn1 , 0, ..., 0)))

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=V ( FB

n1
;(r,(0,...,0)))=0

−

∑N
j=n1+1

pj
∑N

j=n1
pj

bn1 − ("n1 − "n1−1),

40Let "0 = 0.41In case of tie, chooseN(b1, ..., bN−1) to be the smallest.
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while skipping the test at "n1 yields a continuation payoff of

pn1 + pn1+1
∑N

j=n1
pj

r1 +

∑N
j=n1+2

pj
∑N

j=n1
pj

V ( FB
n1+1

; (r1, (0, ..., 0, bn1 , 0, ..., 0))) −

∑N
j=n1+2

pj
∑N

j=n1
pj

bn1 − ("n1+1 − "n1−1).

Hence, not skipping the test at "n1 requires

(1.24) pn1+1
∑N

j=n1
pj
bn1 ≤ ("n1+1−"n1)−

pn1+1
∑N

j=n1
pj
r1−

∑N
j=n1+2

pj
∑N

j=n1
pj

V ( FB
n1+1

; (r1, (0, ..., 0, bn1 , 0, ..., 0))).

Moreover, note that V ( FB
n1
; (r1, (0, ..., 0, bn1 , 0, ..., 0))) = 0 implies

pn1+1
∑N

j=n1+1
pj
r1 +

∑N
j=n1+2

pj
∑N

j=n1+1
pj
V ( FB

n1+1
; (r1, (0, ..., 0, bn1 , 0, ..., 0))) − ("n1+1 − "n1) = 0.

Using

V ( FB
n1+1

; (r1, (0, ..., 0, bn1 , 0, ..., 0))) =

∑N
j=n1+1

pj
∑N

j=n1+2
pj

[

("n1+1 − "n1) −
pn1+1

∑N
j=n1+1

pj
r1

]

,

Equation 1.24 simplifies into

bn1 ≤
pn1
pn1+1

("n1+1 − "n1).

The condition above sets the upper bound on the choice of bn1 . I now demonstrate
that we can always make V ( FB

n1−1
; (r1, (0, ..., 0, bn1 , 0, ..., 0))) = 0 without violating this
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upper bound. First, note that Rn1((0, ..., 0)) ≥ Rn1+1((0, ..., 0)) implies
∑N

j=n1+1
pj("n1+1 − "n1)

pn1+1
≥

∑N
j=n1+1

pj("j − "n1)
∑N

j=n1+1
pj

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=Rn1 ((0,...,0))

≥

∑N
j=n1+2

pj("j − "n1+1)
∑N

j=n1+2
pj

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=Rn1+1((0,...,0))

,

as
N
∑

j=n1+1
pj("j − "n1) =

N
∑

j=n1+1
pj("n1+1 − "n1) +

N
∑

j=n1+1
pj("j − "n1+1)

and
N
∑

j=n1+1
pj = pn1+1 +

N
∑

j=n1+2
pj .

Therefore, if we set bn1 =
pn1
pn1+1

("n1+1 − "n1), then

V ( FB
n1−1

; (r1, (0, ..., 0, bn1 , 0, ..., 0)))

=
pn1

∑N
j=n1

pj
⋅ Rn1((0, ..., 0)) −

∑N
j=n1+1

pj
∑N

j=n1
pj

bn1 − ("n1 − "n1−1)

=
pn1

∑N
j=n1

pj
⋅

∑N
j=n1+1

pj("j − "n1)
∑N

j=n1+1
pj

−

∑N
j=n1+1

pj
∑N

j=n1
pj

⋅
pn1
pn1+1

("n1+1 − "n1) − ("n1 − "n1−1)

≤
pn1

∑N
j=n1

pj
⋅

∑N
j=n1+1

pj("n1+1 − "n1)

pn1+1
−

∑N
j=n1+1

pj
∑N

j=n1
pj

⋅
pn1
pn1+1

("n1+1 − "n1) − ("n1 − "n1−1)

= − ("n1 − "n1−1) < 0.

Therefore, the test fee b that is needed to make V ( FB
n1−1

; (r1, (0, ..., 0, b, 0, ..., 0))) = 0

is less than pn1
pn1+1

("n1+1− "n1). In other words, we can make the participation constraint
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at "n1−1 binding without setting bn1 too high so that agents would rather skip the test at
"n1 . Now, let b∗n1 be implicitly defined by V ( FB

n1−1
; (r1, (0, ..., 0, b∗n1 , 0, ..., 0))) = 0.

(2) Step 2
For n ∈ {0, 1, ..., n1 − 1}, let

n2 = argmaxn∈{0,1,...,n1−1}Rn((0, ..., 0, b∗n1
⏟⏟⏟
the ntℎ1

, 0, ..., 0)).

If n2 = 0, FBME is achievable by setting bn1 = b∗n1 , bn = 0 for all n ≠ n1 and
r = R0((0, ..., 0, b∗n1 , 0, ..., 0)) =

∑N
j=1 pj�j +

∑N
j=n1+1

pjb∗n1 . Otherwise, set bn = 0 for
all n = n2 + 1, ..., n1 − 1, and set r2 = Rn2((0, ..., 0, b

∗
n1
, 0, ..., 0)).42 In this way, we

have V ( FB
n2
; (r2, (0, ..., 0, b∗n1 , 0, ..., 0))) = 0 and V ( FB

n ; (r2, (0, ..., 0, b∗n1 , 0, ..., 0))) ≥ 0

for all n > n2. Following the same procedure as in Step 1, it can be shown that we
can choose bn2 = b∗n2 to make V ( FB

n2−1
; (r2, (0, ..., 0, b∗n2 , 0, b

∗
n1
, 0, ..., 0))) = 0 without

worrying about bn2 being so high that agents want to skip the test at "n2 .
(3) Step 3 Repeat the process above and move backward, until

0 = argmaxn∈{0,...,n∗i −1}Rn((0, ..., 0, bn∗i , ..., bn∗i−1 , ..., bn∗i−2 , ...
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

optimal test fees constructed before

))

for some i. Then FBME can be achieved by choosing the sequence of test fees (0, ...,
0, bn∗i , ..., bn∗i−1 , ..., bn∗i−2 , ...) and r̃ = R0((0, ..., 0, bn∗i , ..., bn∗i−1 , ..., bn∗i−2 , ...)).

Note that whenever the sequence of test fees we have constructed does not make
the ex-ante participation constraint the binding constraint, we add another non-zero test

42To remove any confusion, our design only involves one passing reward. r1 and r2 are the adjustments we make
along the way to our choice of the passing reward. They should be viewed as temporary. Once we choose r2, itreplaces r1, and the latter becomes obsolete.
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fee to the sequence and at the same time shrink the set of participation constraints we
need to consider. The process ends if and only if the ex-ante participation constraint
becomes the binding constraint at some point. Therefore, FBME is always feasible.

�

1.7. Conclusion

In this paper I study the design of a feedback system that encourages a group of agents with
different ability levels to willingly complete a task on the premise that they are sufficiently com-
pensated for their effort. Although the principal and the agents both process private information
– the former the progress each agent has made and the latter the effort they have spent – the
characteristics of these two types of private information is inherently different. From the princi-
pal’s perspective, her private information can be traded for a price, which serves to decrease her
net expenditure. The quality of the information, i.e. whether it is precise or opaque, determines
how much the agents are willing to pay for it. In contrast, an agent’s information on the effort
he has spent always remains private. Therefore, although both parties’ private information are
necessary to get a complete picture of the situation, the flow of information is one-way. The
dilemma that the principal faces is that if her private information fails to be delivered to the
agents on time, the resulting wasted effort does not only hurt the agents but also the principal
herself. Therefore, the design of an optimal feedback system lies in controlling the information
flow by properly balancing its disclosing power and price. This paper provides a systematic way
to find the optimal feedback system that minimizes the principal’s net expenditure with either
full-disclosing or minimal-disclosing. I also demonstrate how partial-disclosing can be more
optimal under certain circumstances. More importantly, the first-best outcome can always be
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achieve – either with full-disclosing or minimal-discoing – if the price for acquiring information
from the principal can be made to be contingent on how many times an agent has already done
so. One thing unique about this setting is the principal and the agents have aligned interest on
one hand – no one benefit from an agent’s over-spending effort – but contradicting interests on
the other: an agent always try to gain more surplus whereas the principal always try not to leave
surplus to the agent. The contradicting side of the incentives causes a coordination failure. In
fact, as long as the principal is not permitted to “discriminate” the agents by offering different
passing rewards to different agents depending on their ability, the principal’s problem remains
the same even if he knows all agents’ ability outright. In a sense, the root of the inefficiency is
not the principal’s lack of knowledge, but the perceived fairness. This is very similar to a situa-
tion in which even if a monopoly knows each consumer’s willingness to pay yet only a common
price is allowed, the best the monopoly can do is to find the single price that maximized its profit
in the meanwhile let go of some consumer and let go of some profit from the rest.
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CHAPTER 2

Auction with Budget-Constrained Business Insiders and Deep-Pocketed

Investor

2.1. Introduction

People have long realized that in many auctions, bidders’ willingness to pay may not coin-
cide with their ability to pay. Budget constrains arise under various circumstances due to credit
limits and imperfect capital markets. Research on standard auctions with budget constrained
bidders concentrates on broader symmetric settings in which all bidders face budget constraints
and have similar type of valuations. This type of models, though appealing, fails to describe an-
other important situation, in which the asset for sale in an auction attracts deep-pocket investors
(and/or speculators) with an intention to take advantage of business insiders’ potentially tempo-
rary budget constraints by winning the auction and reselling the asset later at a higher price once
the business insiders’ budget constraints are relaxed. For example, it has long been noted that in
the cases of forced bankruptcy liquidations, credit constraints of industry buyers may result in
the liquidated assets being sold at deep discount to industry outsiders. The following example
provides a vivid picture of this situation. In the mid-1980s, cash flows from the oil shipping
business temporarily plummeted and many tankers were forced to be sold for scrap value. As-
tute investors outside the oil shipping industry bought some tankers and mothballed them. These
investors made a seven-fold return on their tanker investments over a five-year period.
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To model this type of situations, it is necessary to make a clear distinction between the two
types of potential bidders, namely, the business insiders and the outside investors. As an illustra-
tive example, consider a heavily indebted farmer who is forced to liquidate his farm. A business
insider could be a neighborhood farmer who would farm the land himself, or a big agricultural
company who would like to expand its operation. One advantage that the business insiders have
is that their expertise in farming allows them to put the farmland into its best use. This advan-
tage becomes especially relevant when the liquidated asset is highly specialized. (The previous
oil-tanker example falls into this category.) It also has significant implications in terms of allo-
cation efficiency of the auction outcome. In addition, the business insiders are able to estimate
the value that the farmland can generate for them fairly accurately. It is worth pointing out that
these values do not necessarily coincide with each other – in fact, they usually do not: differ-
ent business insiders may have different strengths in farming a specific type of farmland, face
different costs, or even possess different market power, all of which contribute to their valua-
tion for the farmland being private. Hence, the standard independent private value model (IPV)
provides a reasonable characterization of the business insiders’ valuations. However, in many
circumstances, a business insider’s valuation for the liquidated asset may surpass his or her abil-
ity to pay for the asset. In fact, if the factors that drove the farmer into bankruptcy are industry or
economy wide, every business insider will be financially constrained with positive probability.
In the farming industry example, such factors could be persistent bad weather, widespread plant
diseases, or accelerating import competition – situations in which even big agricultural compa-
nies can be temporarily financially constrained. Outside investors, on the contrary, are firms or
individuals who are not constrained by their budgets at the time of the auction. In the farmland
example, these investors, upon winning the auction, could hire the current owner or some other
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farmer to farm the land, at least until they could resell it at a more attractive price in the future.
These investors’ lack of expertise in the farming industry makes the common value model more
suitable for characterizing their valuations: on one hand, they might not be able to estimate the
value of the farmland very accurately, and their own valuation could well be influenced by that
of others (including the business insiders); on the other hand, at what price the deep-pocket
investors could resell the farmland in the future might not depend on their identities, rather, it
relies more heavily on the prospect of the macro economy or the farming industry. In general,
these two factors also make a deep-pocket investor’s valuation for the asset be less than that of
a business insider, due to the embedded uncertainty of this investment, as well as the associated
storage, management, and transaction costs.

Section 2.2 presents the model in its most general form. Section 2.3 looks into a special case
of the model in which there is one business insider and one deep-pocket outsider participating
in the auction. I first solve for the equilibrium bidding strategy for both parties and then discuss
about the allocation efficiency and expected revenue of the auction. I show that when the busi-
ness insider is less likely to be budget-constrained, the outsider bids less aggressively holding
all other factors constant. This is the winner’s curse associated with this type of auction, which
is rooted in the fact that the less likely the insider is constrained by her budget, the less likely the
outsider can successfully catch a true bargain. It supports the idea that the sole reason that the
outsider participates in the auction is to take advantage of the insider’s financial difficulty. As
can be expected, the allocation efficiency is higher when the insider is less likely to be budget-
constrained. Interestingly, when the probability that the insider is constrained by her budget
is high, the seller’s expected revenue increases if this probability gets lower. However, when
this probability is low, the expected revenue decreases if the probability that the insider faces
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budget-constraint decreases even further. In Section 2.4, I extend the model to include multiple
business insiders. Again, I first solve for the equilibrium bidding strategy and then look at the be-
havior of the allocation efficiency and expected revenue. Depending on the institutional details
at the post-auction stage, I look at three types of formulation of the outsider’s valuation. In one
case, the outsider’s valuation is determined by the highest private valuation among the insiders;
In another case, the outsider’s valuation is determined by the second highest private valuation
among the insiders; In the final case, the outsider’s valuation is determined by the average val-
uation of all the insiders. I show that in all three cases, the winner’s curse (from the outsider’s
perspective) discussed in the previous section persists. However, it is alleviated to some extant
by the presence of multiple insiders. As the number of insiders increases, the outsider does not
shade his bid as much as he otherwise would. In terms of allocation efficiency, the probability
of the insider with the highest valuation winning the auction decreases as the number of insider
increases. However, when one views all the insiders as a single group, the probability that one of
themwins the auction increases with the number of insiders. As for expected revenue, consistent
with the previous conclusion, the outsider’s contribution to the expected revenue decreases if the
insiders become less likely to be budget-constrained. An increase in the number of insiders also
makes the expected payment from the outsider become less important. However, the insiders’
expected payments increase significantly as the number of insiders increases, with the overall
effect being that the the seller benefits from a wider participation of insiders.

2.1.1. Related Work

The seminal paper in auction with financially constrained bidders traces back to Che and Gale
(1998) [10], in which they analyze the revenue and efficiency performance of standard auctions
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when buyers have private information about both their willingness to pay and their ability to pay.
They find that first-price auctions yield higher expected revenue and social surplus than second-
price auctions. Another paper by Che and Gale (1996) [9] show that all-pay auctions dominate
first-price sealed-bid auctions when bidders face budget constraints. Pai and Vohra (2014) [? ]
demonstrate that the symmetric revenue maximizing and constrained efficient auctions in this
setting can be implemented via a modified all-pay auction in which the highest bidder need not
win the good outright, or, stated differently, the auction has “pooling”. Under the same assump-
tion that buyers with private value may be budget- or liquidity-constrained, Maskin (2000) [27]
focuses on allocation efficiency and gives the characteristics of an efficient non-standard auction.

In Laffont (1996) [23] and Boulatov and Severinov (2021) [5], the buys’ budgets are com-
monly known before the auction whereas their valuations remain private. They then character-
ize the revenue-maximizing mechanism for allocating the good. Under the same assumptions,
Gavious, Moldovanu and Sela (2002) [1] compare the revenues to be realized from the standard
auction forms. In contrast, Bobkova (2020) [4] solves the first-price auction for two bidders with
asymmetric budget distributions and known valuations for one object.

Ghosh (2021) [15] studies the sale of two units of a good through simultaneous sealed bid
first-price auctions to bidders who are differentiated based on their valuations and budgets and
have multi-unit demand. He finds that bidders with higher valuations (lower budgets) prefer
more unequal splits of their budgets than bidders with lower valuations (higher budgets) and
the same budget (valuation). Brusco and Lopomo (2009) [7] studies a similar setting, with the
modification that the two objects are identical but bidders valuations exhibit complementarities.
They find that bidders with higher budgets are more reluctant to bid, because opponents with
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lower budgets may end up pursuing a single object, thus preventing the realization of comple-
mentarities. In another work, Brusco and Lopomo (2008) [6] show that the possibility of binding
budget constraints in simultaneous ascending bid auctions induces strategic demand reduction
and generates significant inefficiencies. In Malakhov and Vohra (2008) [25]

Rhodes-Kropf and Viswanathan (2005) [31] takes a different approach by explicitly model-
ing multiple forms of financing and different levels of financial market competition and shows
that most often, competitive financing is not efficient when bidders have different cash posi-
tions. In Zheng (2001) [32], budget-constrained bidders have access to financing as well as the
option to declare bankruptcy. When the borrowing rate is above a threshold, high-budget bid-
ders win, and the likelihood of bankruptcy is low. In contrast, when the borrowing rate is below
the threshold, the winner is the most budget-constrained bidder and is most likely to declare
bankruptcy.

The above literature assumes that budgets are exogenously determined. Others look into
auctions with endogenous budget constraints. In Baisa and Rabinovich (2016) [3], budgets are
determined endogenously to reflect either the financing cost of obtaining funding from a bank or
opportunity cost of funds from diverting resources away from alternative profitable investments.
In their paper, a bidder incurs borrowing costs regardless of whether she wins the auction or not.
In contrast, Burkett (2015) [8] develops a model where the bidder’s budget constraint is the en-
dogenous result of an agency problem between the bidder and a principal responsible for funding
the bidder’s bid. Ausubel, Burkett and Filiz-Ozbay (2017) [24] performs laboratory experiments
comparing auctions with endogenous budget constraints arising from a principal-agent problem
and confirms the prediction that tighter constraints will be imposed in first-price auctions than
in second-price auctions. Consequently, the second-price auction with an endogenous budget
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constraint generates exactly the same theoretical allocation as the first-price auction with an
endogenous budget constraint—a restoration of the revenue equivalence theorem.

Another strand of literature that this paper is closely related to is auctions with resale. Some
work on standard auctions with resale considers environments where resale is required to achieve
an efficient allocation. For example, Haile (2000, 2003) [17] [18] evaluates standard auctions
in symmetric environments where precise information about use values becomes available only
after the initial auction. Gupta and Lebrun (1999) [16], in contrast, examine an asymmetric set-
ting in which two private-value bidders observe each other’s use value after the auction. Zheng
(2002) [33] investigates the design of seller–optimal auctions when winning bidders can attempt
to resell the good. Garratt, Tröger and Zheng (2009) [30] shows that when post-auction interbid-
der resale is allowed, the English auction is susceptible to tacit collusion where one bidder wins
the auction without any competition and divides the spoils by optimally reselling the good to
the other bidders. Similarly, Pagnozzi (2007) [29] shows that with post-auction resale, a strong
bidder may prefer to lose the auction on purpose and acquire the object in the aftermarket, as
allowing her rival to win at a relatively low price puts the strong bidder in a better bargaining
position in the aftermarket. Finally, the closest work to this paper is done by Garratt and Tröger
(2006) [14] where they consider an environment with symmetric independent private-value bid-
ders and a speculator, who is commonly known to have no use value for the good on sale. They
show that if an inter-bidder resale opportunity exists, the speculator can play an active role in
any standard auction format, and, as a result, the final allocation is not efficient and revenue
equivalence across standard auctions is no longer guaranteed.

To the best of my knowledge, there is no previous research on the auction setting presented
in this paper, in which the prevalence of budget-constraints among business insiders may attract
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deep-pocketed outside investors to participate in the auction whose aim is to take advantage of
the insiders financial difficulty and win the auction at a bargain price.

2.2. Model

A general description of the model is as follows. There is one single object for sale under the
second-price sealed bid auction (SPSB), and ties are broken randomly. There are two groups
of bidders – business insiders (group ) and outside investors (group ). Group  bidders
are likely to be financially constrained. A group  bidder’s ‘type’ is thus two-dimensional,
with one dimension on her valuation for the object and the other on her budget. Formally, a
group  bidder, say, bidder i, can be characterized by a 2-tuple (Xi,Wi) = (xi, wi), with xi
being bidder i’s private valuation for the object, and wi her bidding budget. I carry through
my analysis the assumption that all bidders’ budget constraints are “hard”, in the sense that a
bidder would never be able to pay above her budget.1 It is easy to see that with a hard budget
constraint, a bidder will not bid above her budget. One can think of this situation as in the
case that when a bidder bids above her budget and happens to win, she is forced to forfeit the
object due to her inability to pay, and in addition pay a fine to compensate the auctioneer for
the trouble she has caused. I also assume that although the particular realization of (Xi,Wi) is
bidder i’s private information, the joint distribution of (Xi,Wi), F (⋅, ⋅), is common knowledge
to both groups of bidders. To focus on the difference between the two groups of bidders, I
abstract away from the asymmetry among bidders of the same group. Therefore, there is no
subscript i in the joint distribution function F (⋅, ⋅) of the valuation-budget pair. Furthermore, as
in most auction literature, I assume that the corresponding joint density function f (⋅, ⋅) exists,
and is greater than zero almost everywhere on the domain of (Xi,Wi), which is assumed to be
1When a bidder can use outside financing to relax her bidding budget, the budget constraint is said to be “soft”.
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[0, x̄] × [0, w̄] with x̄, w̄ > 0. Whether x̄ ≥ w̄ or x̄ < w̄ is not crucial for the general analysis,
but it is important for comparative statics analysis in what follows. Under this distributional
assumption, bidders in group  are likely, but not necessarily, constrained by their budgets. It is
worth pointing out that although this specification of the joint distribution allows for correlation
between Xi and Wi, for the purpose of this paper, allowing Xi and Wi to be correlated brings
much complication in the analysis without a comparable benefit of additional insight. Therefore,
I further assume that Xi and Wi are independently distributed. Let FX ∶ [0, x̄] → [0, 1] and
FW ∶ [0, w̄] → [0, 1] be the cumulative distribution functions of Xi and Wi, respectively,
with corresponding density functions denoted by fX(⋅) and fW (⋅). Unlike group  bidders,
group  bidders are assumed to have pure common valuation for the object. This assumption
serves to capture the investing/speculating nature of this group of bidders. In other words, as
business outsiders, the group  bidders are less likely to have particular use of the object per se
– their valuation for it purely comes from the expected future return from reselling. Moreover,
I assume that the business outsiders are not constrained by any bidding budget. Formally, a
group  bidder, say, bidder j, can be characterized by a single random variable Sj , which can
be viewed as a signal bidder j receives that is informative of the profitability of this speculation
opportunity. Denote the distribution function of the signal Sj’s as K(⋅), with k(⋅) being the
corresponding density function that exists and is greater than zero almost everywhere on the
domain of Sj . Again, I assume away from any asymmetry among the group  bidders. The
object’s common value for all group  bidders is given by v(X1, ..., XN , S1, ..., SM ), where N
is the number of group  bidders, andM is the number of group  bidders. Thus, the common
value to group  bidders depends on each business insider’s own valuation, as well as each
outside investor’s signal. I assume that the function v is non-decreasing in each argument.
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2.3. Two Bidder Case (N = 1,M = 1)

To get a crude idea of certain aspects of the auction outcome, it is useful to first study a
highly simplified version of the model. Assume that there are only two bidders – one from each
group. Call the bidder of group  bidder 1, and the bidder of group bidder 2. Both bidders are
risk-neutral. Also, assume that bidder 1’s valuation-budget pair, (X,W ), has uniform density on
[0, x̄]×[0, w̄]with x̄ > 0 and w̄ > 0. Assume the signal that bidder 2 receives, S, is independent
of (X,W ), and has uniform distribution on [0, 1]. The value of the object to bidder 2 is given
by V = v(X,S) = X ⋅ S. The signal S in this value function intends to fully summarize the
investment risk (such as the possibility that bidder 1 never recovers from her financial difficulty),
together with the storage, management, and transaction costs associated with this investment. In
addition, this value function illustrates the potential efficiency loss resulting from the business
insider’s budget constraint – those who could make best use of the object might fail to win the
auction due to liquidity issues.

2.3.1. Equilibrium

In the case with only one bidder in each group, there exists a trivial equilibrium in which bidder 2
always bids above w̄ and bidder 1 always bids zero. This equilibrium does not emerge in models
with more bidders, and can be eliminated in the two bidders case by simply imposing an entry
fee. Hence, I will focus my analysis on other more interesting bidding equilibria.

Theorem 5. It is a (weakly) dominant strategy for bidder 1 to bid Z ≡ min{X,W }.

PROOF. Let b1 and b2 be bidder 1 and bidder 2’s bids, respectively.



121

(1) IfX ≤ W , then the budget constraint is not binding, and the argument is similar to that
in the standard SPSB auctions without budget constraints.
(a) Any bid b1 < X = min{X,W } = Z is not optimal: if b2 < b1, bidder 1 gets the

same payoff either by bidding b1 or by bidding X; if b2 = b1, given that ties are
broken randomly, bidder 1 makes a sure profit ofX − b2 by biddingX, in contrast
to make the same profit with only 1

2
chance by bidding b1; if b1 < b2 < X, bidder

1 makes profit of X − b2 by bidding X, whereas he loses the auction by bidding
b1; if b2 ≥ X, bidder 1 makes zero profit either by bidding b1 or by biddingX. To
summarize, bidding X instead of b1 < X makes bidder 1 weakly better-off.

(b) Any bid b1 > X = min{X,W } = Z is not optimal: if b2 < X, bidder 1 makes a
profit of X − b2 either by bidding X or b1; if b2 = X, bidder 1 makes zero profit
either by bidding X or b1; if X < b2 < b1, bidder 1 makes zero profit by bidding
X but makes a loss of b2 −X by bidding b1; if b2 = b1, bidder 1 makes zero profit
by bidding X but makes a loss of b2 − X with a probability of 1

2
by bidding b1;

if b2 > b1, bidder 1 loses the auction by either bidding b1 or X. To summarize,
bidding X instead of b1 < X makes bidder 1 weakly better-off.

(2) IfX > W , the budget constraint is binding, which requires b1 ≤ W . However, b1 < W
cannot be optimal: if b2 < b1, bidder 1 makes a profit of X − b1 either by bidding b1
or by bidding W ; if b2 = b1, bidder 1 makes a sure profit of X − b2 in case she bids
W , in contrast to make the same profit with only 1

2
probability when she bids b1; if

b1 < b2 < W , bidder 1 makes profit ofX − b2 in case she bidsW but zero profit when
she bids b1; if b2 = W , bidder 1 makes profit of X − b2 with 1

2
probability in case she
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bidsW but zero profit when she bids b1. To summarize, biddingW instead of b1 < W
makes bidder 1 weakly better-off.

�

Denote the cumulative distribution function of Z by FZ(⋅), with the corresponding density
function fZ(⋅). Then

(2.1) FZ(z) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0 z < 0

FX(z) + FW (z) − FX(z) ⋅ FW (z) 0 ≤ z < min{x̄, w̄}

1 z ≥ min{x̄, w̄}

,

and

(2.2) fZ(z) =

⎧

⎪

⎨

⎪

⎩

(

1 − FW (z)
)

⋅ fX(z) +
(

1 − FX(z)
)

⋅ fW (z) 0 ≤ z < min{x̄, w̄}

0 otherwise
.

Given bidder 1’s strategy, and the assumption that X andW are independently distributed,
the expected net profit for bidder 2 with signal S = s and bid b is thus23

Π(b, s) =FZ(b) ⋅ (E[X|Z < b] ⋅ s − E[Z|Z < b])

=
(

∫

b

0
xfX(x)dx + FW (b)∫

x̄

b
xfX(x)dx

)

⋅ s

− ∫

b

0
z ⋅

[(

1 − FW (z)
)

⋅ fX(z) +
(

1 − FX(z)
)

⋅ fW (z)
]

dz.

(2.3)

2Since in the SPSB environment, bidding b > min{x̄, w̄} always delivers the same result as bidding b = min{x̄, w̄}
to bidder 2, I assume that bidder 2 will never bid strictly above min{x̄, w̄}.
3Details of the derivation can be found in Appendix 4.1
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For any given s, the first order necessary condition (FONC) requires that the optimal bid b∗
satisfies )Π

)b
(b∗, s) = 0. Using Equation 2.3 and taking derivative with respect to b yields4

)Π
)b
(b, s) =

(

bfX(b)
(

1 − FW (b)
)

+ fW (b)∫

x̄

b
xfX(x)dx

)

s

− b
[(

1 − FW (b)
)

fX(b) +
(

1 − FX(b)
)

fW (b)
]

,

(2.4)

which has the standard interpretation of the first term being the marginal gain and the second
term being the marginal cost.

With the assumption that (X,W ) has uniform density on (0, x̄) × (0, w̄), the FONC then
becomes:

(2.5) )Π
)b
(b∗, s) =

sx̄2 − 2[(1 − s)w̄ + x̄]b∗ + (4 − 3s)(b∗)2

2x̄w̄
= 0.

For Equation 2.5 to have solution, it is necessary that

(

− 2[(1 − s)w̄ + x̄]
)2 − 4(4 − 3s)sx̄2 = 4(1 − s)

[

(w̄ + x̄)2 − (w̄2 + 3x̄2) ⋅ s
]

≥ 0,

i.e.

(2.6) s ≤ (w̄ + x̄)2

w̄2 + 3x̄2
.

For now, I simply assume the expression above is true, and solve for b∗. I will then show that
the expression above is indeed satisfied, given the optimal bidding strategy that is to be derived
later. Assuming that the condition in Equation 2.6 holds, there are two solutions to Equation
4With the assumption that (X,W ) has uniform density on [0, x̄] × [0, w̄], one has

)Π
)b
(b, s) = 4 − 3s

2w̄x̄
⋅ b2 −

(1 − s)w̄ + x̄
w̄x̄

⋅ b + sx̄
2w̄

.
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2.5:
b1 =

(1 − s)w̄ + x̄ +
√

[(1 − s)w̄ + x̄]2 − (4 − 3s)sx̄2

4 − 3s

and
b2 =

(1 − s)w̄ + x̄ −
√

[(1 − s)w̄ + x̄]2 − (4 − 3s)sx̄2

4 − 3s
.

The second order condition (SOC) requires that

)2

)b2
Π(b∗, s) =

−[(1 − s)w̄ + x̄] + (4 − 3s)b∗

x̄w̄
< 0 ⇒ b∗ <

(1 − s)w̄ + x̄
4 − 3s

,

which helps pin down the unique optimal bid as

(2.7) b∗ =
(1 − s)w̄ + x̄ −

√

[(1 − s)w̄ + x̄]2 − (4 − 3s)sx̄2

4 − 3s
.

Another caveat at this point is that b∗ in Equation 2.7 may not satisfy 0 ≤ b∗ ≤ min{x̄, w̄}

for all s ∈ [0, 1]. Theoretically, nothing prevents bidder 2 to submit a bid that is greater than
min{x̄, w̄}. Nonetheless, I assume that bidder 2 would never bid more than min{x̄, w̄}, as
anything above min{x̄, w̄} is a sure-to-win bid and thus delivers the same outcome as bidding
min{x̄, w̄}. Before formally stating bidder 2’s optimal bidding strategy �(s, x̄, w̄), it is useful to
get a brief summary of what properties �(s, x̄, w̄) should have on an intuitive level.

Property 1. �(s, x̄, w̄) increases with s.

This is very intuitive, since for any s ∈ [0, 1], �(s) is the bid that makes the marginal gain
equal to the marginal cost. Given that S and (X,W ) are independent, an increment in S has no
effect on the marginal cost (holding fixed the bid), but increases the marginal gain .5 Therefore, it
5See Equation 2.4.
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is optimal for bidder 2 to increase his bid correspondingly. □

Property 2. lims→1 �(s, x̄, w̄) = min{x̄, w̄}. That is, as s → 1, bidder 2 should submit

sure-to-win bid.

As s → 1, V (x, s) → x for all x. That is, bidder 2’s valuation gets arbitrarily close to
bidder 1’s valuation. To see that it is always optimal for bidder 2 to lock up his profit by sub-
mitting a guaranteed winning bid, suppose that bidder 2 bids b < min{x̄, w̄}. If z ≤ b, then
bidder 2 wins the auction with the same payment as if he bids min{x̄, w̄}. Therefore, bidding
b < min{x̄, w̄} is not a profitable deviation in this case. If z > b, then bidder 2 loses the auction
with zero profit. However, note that z = min{x,w} ≤ x = V (x, s), with strict inequality when
w < x. This implies that bidder 2 could have won the auction with a possibly positive profit if he
bids min{x̄, w̄} instead. Therefore, bidding b < min{x̄, w̄} is not a profitable deviation in this
case, either. By the previous assumption that bidder 2 never submits any bid strictly greater than
min{x̄, w̄}, one can conclude that biddingmin{x̄, w̄} is optimal in the limit situation of s = 1. □

Property 3. lims→0 �(s, x̄, w̄) = 0. That is, as s → 0, bidder 2 should submit sure-to-lose

bid.

As s→ 0, V (x, s)→ 0 for all x. Namely, the object becomes (almost) worthless to bidder 2.
In the limit of s = 0, any positive bidwill result in a negative profit for bidder 2whenever hewins.
□
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Property 4. Fix any s ∈ [0, 1] and w̄ > 0, bidder 2’s optimal bid is non-decreasing in x̄.6

This observation follows the intuition that as bidder 1’s valuation for the object becomes
more likely to be high7, bidder 2 bids more aggressively for any realization of his private sig-
nal S since it becomes more likely that his opponent loses the auction due to budget constraint
rather than having low valuation. The same intuition can also be confirmed by investigating how
bidder 2’s optimal bid changes with w̄ when x̄ is held fixed, which is given by Property 5. □

Property 5. Fix any s ∈ [0, 1] and x̄ > 0, bidder 2’s optimal bid is non-increasing in w̄.8

In words, Property 5 states that as bidder 1 becomes less likely to be budget constrained9,
bidder 2 bids less aggressively. This could seem counter-intuitive at first, since one might expect
a deep-pocket investor to raise his bid in order to match his opponent’s increased ability to submit
higher bid. However, this argument fails to take into account that as bidder 1 becomes less likely
to be financially constrained, it becomes more likely that bidder 2 only wins when bidder 1 does
not value the object highly. Essentially, the fact that bidder 2 bids more cautiously when his
opponent becomes less likely to be financially constrained, is simply a result from bidder 2’s
effort to avoid the winner’s curse in this context. It is worth emphasizing that the winner’s curse
can play a role in this auction model even without incorporating the common value ingredient.
□

Property 1 – 5 together provide a qualitative description of bidder 2’s optimal bid as a func-
tion of his private signal: starting from �(0) = 0, �(s) increases with s. Depending on the
6The formal proof can be found in the Appendix.
7For example, in the first-order stochastic dominance sense.
8The formal proof can be found in the Appendix.
9For example, in the first-order stochastic dominance sense.
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relative sizes of x̄ and w̄, �(s) either keeps increasing until s = 1 with �(1) = min{x̄, w̄}, or it
reaches �(s∗) = min{x̄, w̄} at some level s∗ < 1, and stays constant at min{x̄, w̄} afterwards.

Theorem 6. Bidder 2’s optimal bidding function is

(2.8) �(s, x̄, w̄) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(1 − s)w̄ + x̄ −
√

[(1 − s)w̄ + x̄]2 − (4 − 3s)sx̄2

4 − 3s
0 ≤ s < s∗(x̄, w̄)

min{x̄, w̄} s∗(x̄, w̄) ≤ s ≤ 1
,

where

(2.9) s∗(x̄, w̄) =

⎧

⎪

⎨

⎪

⎩

1 x̄ ≤ w̄

2w̄
x̄ + w̄

w̄ < x̄
.

PROOF. As has been shown above, when the condition in Equation 2.6 is satisfied, �(s, x̄, w̄) =
(1 − s)w̄ + x̄ −

√

[(1 − s)w̄ + x̄]2 − (4 − 3s)sx̄2

4 − 3s
is the optimal bidding function for bidder 2, as

long as �(s, x̄, w̄) ≤ min{x̄, w̄}.
When x̄ ≤ w̄, (w̄ + x̄)

2

w̄2 + 3x̄2
≥ 1, and thus the condition in Equation 2.6 holds. All that remains

to be shown is (1 − s)w̄ + x̄ −
√

[(1 − s)w̄ + x̄]2 − (4 − 3s)sx̄2

4 − 3s
< x̄. An intuitive explanation

for why �(s) should increase with s is presented together with Property 1, now I provide a formal
proof for this conclusion. Note that neither the conclusion nor the proof relies on the assumption
of x̄ ≤ w̄.

Lemma 5. b∗ as given by Equation 2.7 increases with s for s ∈ [0, 1].

PROOF. (of Lemma 5)
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First, rewrite

b∗ =
(1 − s)w̄ + x̄
4 − 3s

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
A

−

√

[(1 − s)w̄ + x̄]2 − (4 − 3s)sx̄2

4 − 3s
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

B

.

Then
A
B
=

(1 − s)w̄ + x̄
√

[(1 − s)w̄ + x̄]2 − (4 − 3s)sx̄2
= 1

√

√

√

√

√

√

1 −
(4 − 3s)sx̄2

[(1 − s)w̄ + x̄]2
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

C

and
)C
)s

=
2[(1 − s)w̄ + x̄][(2 − 3s)x̄3 + (2 − s)x̄2w̄]

[(1 − s)w̄ + x̄]4
.

When x̄ ≤ w̄,
(2 − 3s)x̄3 + (2 − s)x̄2w̄ ≥ 4(1 − s)x̄3 ≥ 0.

Similarly, when x̄ > w̄,

(2 − 3s)x̄3 + (2 − s)x̄2w̄ > 4(1 − s)w̄3 ≥ 0.

Therefore, )C
)s

≥ 0. This implies that )
)s

(A
B

)

≥ 0, which further implies that )b∗
)s

> 0.
The last part of the induction, i.e. )

)s

(A
B

)

≥ 0 ⇒
)b∗

)s
> 0 is based on the fact that

0 ≤ )
)s

(A
B

)

=
)A
)s
⋅ B − )B

)s
⋅ A

B2
(since A>B>0)

<
)A
)s
⋅ A − )B

)s
⋅ A

B2
=
()A
)s

− )B
)s

) A
B2
.

Therefore, )b∗
)s

= )A
)s

− )B
)s

> 0. �
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According to Lemma 5,

(1 − s)w̄ + x̄ −
√

[(1 − s)w̄ + x̄]2 − (4 − 3s)sx̄2

4 − 3s

<

(

(1 − s)w̄ + x̄ −
√

[(1 − s)w̄ + x̄]2 − (4 − 3s)sx̄2

4 − 3s

)

|

|

|

|

|

|s=1
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=x̄

.

Hence, when x̄ ≤ w̄, �(s, x̄, w̄) = (1 − s)w̄ + x̄ −
√

[(1 − s)w̄ + x̄]2 − (4 − 3s)sx̄2

4 − 3s
is bidder

2’s optimal bidding function for all s ∈ [0, 1].
When x̄ > w̄,

(

(1 − s)w̄ + x̄ −
√

[(1 − s)w̄ + x̄]2 − (4 − 3s)sx̄2

4 − 3s

)

|

|

|

|

|

|s= 2w̄
x̄+w̄

= w̄.

According to Lemma 5, (1 − s)w̄ + x̄ −
√

[(1 − s)w̄ + x̄]2 − (4 − 3s)sx̄2

4 − 3s
≤ min{x̄, w̄} is

thus satisfied for all s ∈ [0, s∗(x̄, w̄)]. It remains to be shown that the condition in Equation 2.6
is also valid. This is guaranteed by the fact that

s∗(x̄, w̄) −
(w̄ + x̄)2

w̄2 + 3x̄2
=

(w̄ − x̄)3

(w̄ + x̄)(w̄2 + 3x̄2)
< 0,

under the assumption that x̄ > w̄. Therefore, the condition in Equation 2.6 holds for s ∈
[0, s∗(x̄, w̄)].

To sum up, both the condition in Equation 2.6 and the requirement of

(1 − s)w̄ + x̄ −
√

[(1 − s)w̄ + x̄]2 − (4 − 3s)sx̄2

4 − 3s
≤ min{x̄, w̄}
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are satisfied for all s ∈ [0, s∗(x̄, w̄)], no matter x̄ ≤ w̄ or x̄ > w̄. In either case,

(1 − s∗(x̄, w̄))w̄ + x̄ −
√

[(1 − s∗(x̄, w̄))w̄ + x̄]2 − (4 − 3s∗(x̄, w̄))s∗(x̄, w̄)x̄2

4 − 3s∗(x̄, w̄)
= min{x̄, w̄}.

Therefore, bidder 2’s optimal bidding strategy is as stated in Theorem 6. �

Corollary 15.1. Bidder 2’s optimal bidding function given by Theorem 6 satisfies Property

1-5.

The proof of Corollary 15.1 is in Appendix 4.2.
Figure 2.1 shows bidder 2’s optimal bid as a function of his private signal. Since the optimal

bidding function given by Equation 2.8 is homogeneous of degree one in (x̄, w̄), one can without
loss of generality set x̄ = 1. Therefore, Figure 2.1 also shows how the relative sizes of x̄ and
w̄ influence bidder 2’s equilibrium bidding behavior. As the graph shows, bidder 2’s optimal
bid is indeed an increasing function of his private signal, and it strictly increases until it reaches
min{x̄, w̄}, and remains constant afterwards. Figure 2.1 also illustrates that to avoid thewinner’s
curse, bidder 2 bids less aggressively as his opponent becomes less likely to be constrained by her
budget (the optimal bidding curve shifts downward as w̄ increases). In what follows, I routinely
fix x̄ and vary w̄ to see how various aspects of the auction depend on the probability of bidder 1
being budget-constrained. The justification of this approach is the equivalency between the two
measures. More concretely, notice that

ℙ{w < x} = ∫

x̄

0
FW (x) ⋅ fX(x)dx =

x̄
2w̄

,
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implying that the probability of bidder 1’s budget being less than her valuation is proportional
to x̄
w̄
. Therefore, keeping x̄ fixed at x̄ = 1 and varying w̄ is a legitimate way to model the

likelihood of bidder 1 being budget-constrained.

Figure 2.1. Bidder 2’s Equilibrium Bidding Strategy as a Function of His Private Signal

Figure 2.2 further illustrates how the likelihood of bidder 1 being budget-constrained influ-
ences bidder 2’s bidding strategy. When S = 1, bidder’2 has the same valuation of the object
as bidder 1 does, which makes the winner’s curse obsolete. Therefore, bidder 2 is not deterred
by the potential improvement in bidder 1’s financial standing. However, when S < 1, bidder 2
is willing to make sure-to-win bid only when w̄ is small. When w̄ is big, bidder 2 bids less for
the same signal as he otherwise would were w̄ smaller.

2.3.2. Efficiency

To learn about the efficiency of this auction, denoted by E(s, x̄, w̄), one can simply calculate the
probability that bidder 1 wins the auction, since her valuation is always (weakly) greater than
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Figure 2.2. Influence of Bidder 1’s Budget-Constrained Probability on Bidder 2’s Equilibrium
Bidding Strategy

that of bidder 2:

(2.10) E(x̄, w̄) = ∫

s∗(x̄,w̄)

0
[1 − FZ(�(s, x̄, w̄))]ds = s∗(x̄, w̄) − ∫

s∗(x̄,w̄)

0
FZ(�(s, x̄, w̄))ds.

Intuitively, if bidder 1 is less likely to be budget constrained, she should be more likely to
win the auction, which turns out to be exactly the case.

Theorem 7. For any given x̄, the auction efficiency increases with w̄.

PROOF. (1) If x̄ < w̄, then according to Equation 2.9, s∗(x̄, w̄) = 1. Equation 2.10
becomes

E(x̄, w̄) = 1 − ∫

1

0
FZ(�(s, x̄, w̄))ds.
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Hence,

)E
)w̄
(x̄, w̄) = − ∫

1

0
fZ(�(s, x̄, w̄))

)�(s, x̄, w̄)
)w̄

ds > 0,

as
fZ(�(s, x̄, w̄)) > 0

and

)�(s, x̄, w̄)
)w̄

= 1 − s
4 − 3s

⎡

⎢

⎢

⎢

⎣

1 −
(1 − s)w̄ + x̄

√

[(1 − s)w̄ + x̄]2 − (4 − 3s)sx̄2

⎤

⎥

⎥

⎥

⎦

< 0.

(2) If x̄ ≥ w̄, then according to Equation 2.9, s∗(x̄, w̄) = 2w̄
x̄ + w̄

. Equation 2.10 becomes

E(x̄, w̄) = 2w̄
x̄ + w̄

− ∫

2w̄
x̄+w̄

0
FZ(�(s, x̄, w̄))ds

and

)E
)w̄
(x̄, w̄) = 2x̄

(x̄ + w̄)2
[

1 − FZ(�(s, x̄, w̄))
]

− ∫

2w̄
x̄+w̄

0
fZ(�(s, x̄, w̄))

)�(s, x̄, w̄)
)w̄

ds > 0.

Therefore, )E
)w̄
(x̄, w̄) > 0 and the auction efficiency increases with w̄. �

Figure 2.3 shows the efficiency of this auction measured by the probability that bidder 1
wins. Again, I fix x̄ = 1 and vary w̄ to learn how the allocation efficiency changes with the
relative sizes of x̄ and w̄. It is clear from the graph that bidder 1’s probability of winning strictly
increases with w̄.
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Based on the previous analysis, two factors contribute to this result. One factor is that as w̄
increases, bidder 1 becomes less likely to be constrained by her budget, and thus more capable
of making higher bids in a SPSB. The other factor is that as w̄ increases, bidder 2 further shades
his bid to avoid the winner’s curse, which also helps enhance the allocation efficiency.

Figure 2.3. Allocation Efficiency Measured as Bidder 1’s Winning Probability

2.3.3. Revenue

Although the allocation efficiency is an important attribute of an auction, the seller often cares
more about the expected revenue. The seller’s expected revenue can be derived using both bid-
ders’ equilibrium bidding strategies derived above. In the ex-ante sense, the seller’s expected
revenue is the sum of each bidder’s expected payment. With any realized (X,W ) = (x,w), let
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z ≡ min{x,w}. Bidder 1’s interim expected payment is1011

EP interim
1 (z) = ℙ{�(S) < z} ⋅ E[�(S)|�(S) < z]

= ℙ{S < �−1(z)} ⋅ E[�(S)|S < �−1(z)]

= ∫

�−1(z)

0
�(s)ds.

�−1(z) can be obtained from Equation 2.8 as

�−1(z) =
2(x̄ + w̄ − 2z)z
x̄2 + 2w̄z − 3z2

, z ∈ [0,min{x̄, w̄}].

The ex ante expected payment made by bidder 1 is therefore

EP ex−ante
1 (x̄, w̄) = ∫

min{x̄,w̄}

0

(

∫

�−1(z)

0
�(s)ds

)

dFZ(z)(2.11)

10In all subsequent sections, except for doing comparative statics analysis, I suppress x̄ and w̄ from the expression
of �(s, x̄, w̄) for conciseness, as there is no randomness in x̄ or w̄ during the auction.
11Although bidder 2’s bidding function is not invertible in the region s ∈ [s∗(x̄, w̄), 1], given that bidder 1 cannot
win if S is in that region, rewriting ℙ{�(S) < z} as ℙ{S < �−1(z)} is without loss of generality.
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It can be calculated that when x̄ ≤ w̄, Equation 2.11 yields to12

EP ex−ante
1 (x̄, w̄)|x̄≤w̄ =

(

w̄2 − 3w̄x̄ + 6x̄2
)

(

w̄ + 3x̄ +
√

w̄2 + 3x̄2
)

81w̄x̄
ln

(

3x̄ − w̄ +
√

w̄2 + 3x̄2

−w̄ +
√

w̄2 + 3x̄2

)

+

(

w̄2 − 3w̄x̄ + 6x̄2
)

(

w̄ + 3x̄ −
√

w̄2 + 3x̄2
)

81w̄x̄
ln

(

−3x̄ + w̄ +
√

w̄2 + 3x̄2

w̄ +
√

w̄2 + 3x̄2

)

+
2
(

w̄4 − 9w̄2x̄2 + 18w̄x̄3 − 90x̄4
)

81w̄x̄
√

w̄2 + 3x̄2

[

arctan

(

w̄ − 3x̄
√

w̄2 + 3x̄2

)

− arctan

(

w̄
√

w̄2 + 3x̄2

)]

−
(w̄ − 3x̄)

(

w̄2 + 15x̄2
)

81w̄x̄
ln
(

2 (w̄ − x̄)
x̄

)

+
x̄ (w̄ − 15x̄)

9w̄

(2.12)

When w̄ < x̄, Equation 2.11 yields to13

EP ex−ante
1 (x̄, w̄)|x̄>w̄ =

(

w̄2 − 3w̄x̄ + 6x̄2
)

(

w̄ + 3x̄ +
√

w̄2 + 3x̄2
)

81w̄x̄
ln

(

2w̄ +
√

w̄2 + 3x̄2

−w̄ +
√

w̄2 + 3x̄2

)

+

(

w̄2 − 3w̄x̄ + 6x̄2
)

(

w̄ + 3x̄ −
√

w̄2 + 3x̄2
)

81w̄x̄
ln

(

−2w̄ +
√

w̄2 + 3x̄2

w̄ +
√

w̄2 + 3x̄2

)

−
2
(

w̄4 − 9w̄2x̄2 + 18w̄x̄3 − 90x̄4
)

81w̄x̄
√

w̄2 + 3x̄2

[

arctan

(

2w̄
√

w̄2 + 3x̄2

)

+ arctan

(

w̄
√

w̄2 + 3x̄2

)]

−
(w̄ − 3x̄)

(

w̄2 + 15x̄2
)

81w̄x̄
ln
(

x̄2 − w̄2

x̄2

)

− 3w̄
2 − 13w̄x̄ + 24x̄2

9x̄

(2.13)

12See Appendix 4.3 for details.
13See Appendix 4.3 for details.
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To see how changes in the likelihood of bidder 1 being budget-constrained influence her
expected payment, simply take derivative of EP ex−ante

1 (x̄, w̄) with respect to w̄ and obtain:

)EP ex−ante
1

)w̄
(x̄, w̄)|x̄≤w̄ =

2w̄4 − 3w̄3x̄ + 3w̄2x̄2 − 18x̄4 + 2
(

w̄3 − 9x̄3
)

√

w̄2 + 3x̄2

81w̄2x̄
√

w̄2 + 3x̄2

⋅ ln

(

3x̄ − w̄ +
√

w̄2 + 3x̄2

−w̄ +
√

w̄2 + 3x̄2

)

−
2w̄4 − 3w̄3x̄ + 3w̄2x̄2 − 18x̄4 − 2

(

w̄3 − 9x̄3
)

√

w̄2 + 3x̄2

81w̄2x̄
√

w̄2 + 3x̄2

⋅ ln

(

−3x̄ + w̄ +
√

w̄2 + 3x̄2

w̄ +
√

w̄2 + 3x̄2

)

+
2
(

2w̄6 + 9w̄4x̄2 − 18w̄3x̄3 + 153w̄2x̄4 + 270x̄6
)

81w̄2x̄
(

w̄2 + 3x̄2
)
3
2

⋅

[

arctan

(

w̄ − 3x̄
√

w̄2 + 3x̄2

)

− arctan

(

w̄
√

w̄2 + 3x̄2

)]

−2w̄
3 − 3w̄2x̄ + 45x̄3

81w̄2x̄
ln
(

2 (w̄ − x̄)
x̄

)

+
x̄
(

w̄3 + 15w̄2x̄ + 15w̄x̄2 + 45x̄3
)

9w̄2
(

w̄2 + 3x̄2
) ,
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while

)EP ex−ante
1

)w̄
(x̄, w̄)|x̄>w̄ =

2w̄4 − 3w̄3x̄ + 3w̄2x̄2 − 18x̄4 + 2
(

w̄3 − 9x̄3
)

√

w̄2 + 3x̄2

81w̄2x̄
√

w̄2 + 3x̄2

⋅ ln

(

2w̄ +
√

w̄2 + 3x̄2

−w̄ +
√

w̄2 + 3x̄2

)

−
2w̄4 − 3w̄3x̄ + 3w̄2x̄2 − 18x̄4 − 2

(

w̄3 − 9x̄3
)

√

w̄2 + 3x̄2

81w̄2x̄
√

w̄2 + 3x̄2

⋅ ln

(

−2w̄ +
√

w̄2 + 3x̄2

w̄ +
√

w̄2 + 3x̄2

)

−
2
(

2w̄6 + 9w̄4x̄2 − 18w̄3x̄3 + 153w̄2x̄4 + 270x̄6
)

81w̄2x̄
(

w̄2 + 3x̄2
)
3
2

⋅

[

arctan

(

2w̄
√

w̄2 + 3x̄2

)

+ arctan

(

w̄
√

w̄2 + 3x̄2

)]

−2w̄
3 − 3w̄2x̄ + 45x̄3

81w̄2x̄
ln
(

x̄2 − w̄2

x̄2

)

− 6w̄
5 − 7w̄4x̄ + 5w̄3x̄2 − 33w̄2x̄3 − 51w̄x̄4 − 72x̄5

9w̄x̄ (w̄ + x̄)
(

w̄2 + 3x̄2
)

It can be shown that )EP
ex−ante
1

)w̄
(x̄, w̄) > 0 for all w̄ ∈ [0, x̄), meaning that when bidder 1 is

very likely to be budget-constrained, her expected payment increases as she becomes less prone
to be constrained by her budget. However, with w̄ ≥ x̄, )EP

ex−ante
1

)w̄
(x̄, w̄) remains positive as

long as w̄ < 1.9x̄ and then turns negative as w̄ keeps increasing. In other words, when bidder
1 is very likely to be budget-constrained (in the sense that w̄ is not too large in comparison to
x̄), her expected payment increases as she becomes less prone to be constrained by her budget.
However, when bidder 1 is not likely to be budge-constrained (in the sense that w̄ is considerably
larger than x̄), her expected payment decreases with the probability that she would be constrained
by her budget.
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This conclusion makes intuitive sense, since bidder 1’s expected payment equals bidder 2’s
bid, given that bidder 1 wins the auction. When bidder 1 is very likely to be budget-constrained,
her winning probability is low, due to the fact that she is less likely to afford to make high bids.
Furthermore, in case that she wins the auction with a low bid, it implies that bidder 2’s bid is
even lower, which results in bidder 1 not paying much for her win. Therefore, as bidder 1’s
financial condition improves, her expected payment increases correspondingly. However, based
on Theorem 6, bidder 2 shades his bid as the likelihood of bidder 1 being budget-constrained
decreases in fear of the winner’s curse. Consistent with the previous analysis on the auction’s
allocation efficiency, bidder 1’s increased ability to make higher bids and bidder 2’s bid-shading
tendency both contribute to the increase in bidder 1’s probability of winning. However, since
in case of winning, bidder 1’s payment equals bidder 2’s bid, the latter’s bid-shading behavior
as w̄ becomes large relative to x̄ results in bidder 1 paying less. Thus, the overall effect is that
as the probability of bidder 1 being constrained by her budget decreases, her expected payment
first rises and then declines.

Bidder 2’s interim expected payment with any realized signal S = s is

EP interim
2 (s) = ℙ{Z < �(s)} ⋅ E[Z|Z < �(s)] = ∫

�(s)

0
zdFZ(z),
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and his ex-ante expected payment is thus

EP ex−ante
2 (x̄, w̄) =∫

1

0

(

∫

�(s)

0
zdFZ(z)

)

ds

=∫

s∗(x̄,w̄)

0

⎛

⎜

⎜

⎝

∫

(1−s)w̄+x̄−
√

[(1−s)w̄+x̄]2−(4−3s)sx̄2

4−3s

0
zdFZ(z)

⎞

⎟

⎟

⎠

ds

+ ∫

1

s∗(x̄,w̄)

(

∫

min{x̄,w̄}

0
zdFZ(z)

)

ds.

It can be calculated that

∫

(1−s)w̄+x̄−
√

[(1−s)w̄+x̄]2−(4−3s)sx̄2

4−3s

0
zdFZ(z)

= 1
6w̄x̄ (4 − 3s)3

⋅
[

(1 − s)w̄ + x̄ −
√

(1 − s)
[

(1 − s)w̄2 + 2w̄x̄ + x̄2(1 − 3s)
]

]2

⋅
[

8w̄ + 8x̄ − (5w̄ + 9x̄) s + 4
√

(1 − s)
[

(1 − s)w̄2 + 2w̄x̄ + x̄2(1 − 3s)
]

]

.

(2.14)

When x̄ ≤ w̄, s∗(x̄, w̄) = 1, and therefore

EP ex−ante
2 (x̄, w̄)|x̄≤w̄ = ∫

1

0 ∫

(1−s)w̄+x̄−
√

[(1−s)w̄+x̄]2−(4−3s)sx̄2

4−3s

0
zdFZ(z)ds.

Substituting 2.14 for the integrand, it can be calculated that when w̄ ≥ 3x̄,

EP ex−ante
2 (x̄, w̄)|w̄≥3x̄

= 1
162w̄x̄

[

3x̄
(

4w̄2 − 21w̄x̄ + 51x̄2
)

+ 4
(

w̄3 − 6w̄2x̄ + 15w̄x̄2 − 18x̄3
)

⋅ ln
(

2 (w̄ − x̄)
x̄

)

−
2
(

2w̄4 − 12w̄3x̄ + 33w̄2x̄2 − 54w̄x̄3 + 63x̄4
)

√

w̄2 + 3x̄2
⋅ arctan

(

(w̄ + x̄)
√

w̄2 + 3x̄2

w̄2 + w̄x̄ + 2x̄2

)]

(2.15)
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and when x̄ ≤ w̄ < 3x̄,

EP ex−ante
2 (x̄, w̄)|x̄≤w̄<3x̄

= 1
162w̄x̄

[

3x̄
(

4w̄2 − 21w̄x̄ + 51x̄2
)

+ 4
(

w̄3 − 6w̄2x̄ + 15w̄x̄2 − 18x̄3
)

⋅ ln(2)

+ 4
(

w̄3 + 56w̄x̄2 − 18x̄3
)

ln
(w̄ − x̄

x̄

)

− 8w̄x̄ (6w̄ + 41x̄) arctan
(w̄ − 2x̄

w̄

)

−
2
(

2w̄4 − 12w̄3x̄ + 33w̄2x̄2 − 54w̄x̄3 + 63x̄4
)

√

w̄2 + 3x̄2
⋅ arctan

(

(w̄ + x̄)
√

w̄2 + 3x̄2

w̄2 + w̄x̄ + 2x̄2

)]

.

(2.16)

It can be further shown that when w̄ ≥ 3x̄,
)
)w̄

EP ex−ante
2 (x̄, w̄)|w̄≥3x̄

= 1
162w̄2x̄

(

w̄2 + 3x̄2
)

[

3x̄
(

8w̄4 − 18w̄3x̄ − 3w̄2x̄2 − 54w̄x̄3 − 153x̄4
)

+ 8
(

w̄5 − 3w̄4x̄ + 3w̄3x̄2 + 27x̄5
)

⋅ ln
(

2 (w̄ − x̄)
x̄

)

−
2
(

4w̄6 − 12w̄5x̄ + 18w̄4x̄2 − 18w̄3x̄3 − 27w̄2x̄4 − 189x̄6
)

√

w̄2 + 3x̄2

⋅ arctan

(

(w̄ + x̄)
√

w̄2 + 3x̄2

w̄2 + w̄x̄ + 2x̄2

)]
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and when x̄ ≤ w̄ < 3x̄,
)
)w̄

EP ex−ante
2 (x̄, w̄)|x̄≤w̄<3x̄

= 1
162w̄2x̄

(

w̄2 + 3x̄2
)

[

3x̄

(

8w̄4 − 18w̄3x̄ − 3w̄2x̄2 − 54w̄x̄3 − 153x̄4
)

+ 8
(

w̄3 + 9x̄3
) (

w̄2 + 3x̄2
)

⋅ ln
(w̄ − x̄

x̄

)

− 48w̄2 (w̄2x̄ + 3x̄3
)

arctan
(w̄ − 2x̄

w̄

)

+ 8
(

w̄5 − 3w̄4x̄ + 3w̄3x̄2 + 27x̄5
)

ln(2)

−
2
(

4w̄6 − 12w̄5x̄ + 18w̄4x̄2 − 18w̄3x̄3 − 27w̄2x̄4 − 189x̄6
)

√

w̄2 + 3x̄2

⋅ arctan

(

(w̄ + x̄)
√

w̄2 + 3x̄2

w̄2 + w̄x̄ + 2x̄2

)]

When x̄ > w̄, s∗(x̄, w̄) = 2w̄
w̄ + x̄

, and therefore

EP ex−ante
2 (x̄, w̄)|x̄>w̄

=∫

2w̄
w̄+x̄

0

⎛

⎜

⎜

⎝

∫

(1−s)w̄+x̄−
√

[(1−s)w̄+x̄]2−(4−3s)sx̄2

4−3s

0
zdFZ(z)

⎞

⎟

⎟

⎠

ds + ∫

1

2w̄
w̄+x̄

(

∫

w̄

0
zdFZ(z)

)

ds

= 1
162w̄x̄

[

3w̄
(

19w̄2 − 69w̄x̄ + 84x̄2
)

+ 4 (w̄ − 3x̄)
(

w̄2 − 3w̄x̄ + 6x̄2
)

ln
(

x̄2 − w̄2

x̄2

)

+ 2w̄4 − 12w̄3x̄ + 33w̄2x̄2 − 54w̄x̄3 + 63x̄4
√

w̄2 + 3x̄2

⋅ ln

(

2w̄4 + 5w̄2x̄2 + x̄4 − 2w̄3
√

w̄2 + 3x̄2 − 2w̄x̄2
√

w̄2 + 3x̄2

2w̄4 + 5w̄2x̄2 + x̄4 + 2w̄3
√

w̄2 + 3x̄2 + 2w̄x̄2
√

w̄2 + 3x̄2

)]

,

(2.17)
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with
)
)w̄

EP ex−ante
2 (x̄, w̄)|x̄>w̄ =

1
162w̄2x̄

[

8
(

w̄3 − 3w̄2x̄ + 9x̄3
)

ln
(

x̄2 − w̄2

x̄2

)

+3w̄
(

−74w̄2 + 51w̄x̄ − 84x̄2 + 108w̄
3

w̄ + x̄
+
4w̄3 (w̄ − 3x̄)
w̄2 + 3x̄2

)

+ 4w̄6 − 12w̄5x̄ + 18w̄4x̄2 − 18w̄3x̄3 − 27w̄2x̄4 − 189x̄6
(

w̄2 + 3x̄2
)
3
2

⋅ ln

(

2w̄4 + 5w̄2x̄2 + x̄4 − 2w̄3
√

w̄2 + 3x̄2 − 2w̄x̄2
√

w̄2 + 3x̄2

2w̄4 + 5w̄2x̄2 + x̄4 + 2w̄3
√

w̄2 + 3x̄2 + 2w̄x̄2
√

w̄2 + 3x̄2

)]

.

It can be shown that )EP
ex−ante
2

)w̄
(x̄, w̄) > 0 when w̄ < 0.54x̄ and )EP

ex−ante
2

)w̄
(x̄, w̄) < 0

otherwise. That is, as bidder 1 becomes less likely to be budget-constrained, bidder 2’s ex-ante
expected payment only increases when the probability that bidder 1 faces budget-constraint is
very high. This is intuitive, as when bidder 1 is extremely likely to be constrained by her budget,
her ability to make competitive bids is low. This contributes to bidder 2’s expected payment in
two ways. First, knowing that bidder 1’s bid is most likely a reflection of her budget instead of
her valuation, bidder 2 worries less about the winner’s curse. Therefore, he is more prone to
make higher bids that result in him winning the auction, and thus paying for his winning. Since
bidder 2’s payment in case of win equals to bidder 1’s bid, which in turn is most likely equals to
the latter’s budget, any increase in the budget results in bidder 1 paying more. Thus, in the region
of low w̄ values relative to that of x̄, )EP

ex−ante
2

)w̄
(x̄, w̄) > 0. However, as w̄ gets bigger, bidder

2’s fear of the winner’s curse takes effect and his bid-shading behavior leads him to make lower
bids. At the same time, bidder 1’s ability to make higher bids increases. Both factors result in
bidder 2 winning less often, which is shown in the discussion of the auction efficiency. And in
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case bidder 2 indeed wins, bidder 1’s bid must be very low, which leads to a small payment from
bidder 2. Hence, as w̄ grows larger relative to x̄, )EP

ex−ante
2

)w̄
(x̄, w̄) < 0.

The seller’s ex-ante expected revenue is the sum of the the ex ante expected payments from
the two bidders:

Revex−ante (x̄, w̄) = EP ex−ante
1 (x̄, w̄) + EP ex−ante

2 (x̄, w̄) ,

with EP ex−ante
1 (x̄, w̄) given by Equation 2.12 or Equation 2.13, and EP ex−ante

2 (x̄, w̄) given by
Equation 2.15, Equation 2.16, or Equation 2.17, depending on the relation between w̄ and x̄.

Taking derivative of Revex−ante (x̄, w̄) with respect to w̄ reveals that )Revex−ante
)w̄

(x̄, w̄) > 0

when w̄ < 0.97x̄ and )Revex−ante
)w̄

(x̄, w̄) < 0 otherwise. This is the combined effect of both
bidder 1 and bidder 2’s expected payments rise with w̄ when it is relatively small compared to
x̄ and then decline as w̄ gets bigger. This results provides an interesting insight from the seller’s
point of view. To maximize the revenue of the auction, it is most desirable to have the business
insider (bidder 1) budget-constrained to a certain degree, for if the insider is too constrained, the
outsider can acquire the object at a very low price. On the contrary, if the insider is unlikely
to be budget-constrained, the outsider would be concerned about the winner’s curse and bid
more conservatively. As a result, either the outsider wins or loses, the seller’s revenue would
be small. Therefore, it is optimal for the seller when the two forces balance each other – the
insider can afford to make bids of reasonable sizes and the outsider is not too concerned about
suffering from the winner’s curse to shade his bid considerably. In some forced bankruptcy
auctions14, it has been observed that the major creditor of an insolvent firm sometimes choose
to sponsor another firm in the same industry to compete in the auction, in the hope of increasing
14For example, ‘Chapter 7’ in the USA and Liquidation in the UK.
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the auction revenue, and therefore the amount of debt that can be recovered. The prediction
of this model indicates that this strategy can be effective, but only when the correct balance is
found. When overdone, too much financial backup to an insider firm can be counterproductive
as it discourages competition.

Figure 2.4. Bidders’ Ex Ante Expected Payments and Seller’s Expected Revenue

2.4. Multiple Bidder Case (N > 1,M = 1)

The previous analysis of the case with one bidder in each group provides some interesting
observations. However, to further understand how the existence of competitors, not only from
the other group but also from his or her own group, changes a bidder’s behavior as well as
the auction outcome, it is necessary to extend the analysis to multiple bidders situation. In
this section, I examine the case where there are multiple bidders in group . I maintain the
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assumption that there is only 1 bidder from group  in order to isolate the effects of increasing
group  bidders.

Formally, suppose that there are N > 1 bidders from group , and M = 1 bidder from
group . All bidders are risk-neutral. Assume that for i = 1, ..., N , (Xi,Wi) is independent
and identically distributed, with a uniform density on [0, x̄] × [0, w̄]. The private signal S that
the group  bidder receives is independent of the (Xi,Wi)’s, and is uniformly distributed on
[0, 1]. Again, S serves to fully capture the risks and costs associated with the group O bidder’s
investment. Both the distribution of (Xi,Wi)’s and that of S are common knowledge to all
bidders. Group  bidder’s valuation for the object is given by V = v(X1, ...XN ) ⋅ S, where
v(X1, ...XN ) is non-decreasing in all arguments.

For a group  bidder, say, bidder i, let Zi ≡ min{Xi,Wi} and Y ≡ maxi=1,...,N{Zi}. The
cumulative distribution function of Y , FY (⋅), can easily be derived as

FY (y) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0 y < 0

[FZ(y)]N 0 ≤ y < min{x̄, w̄}

1 y ≥ min{x̄, w̄}

,

with the corresponding density function

fY (y) =

⎧

⎪

⎨

⎪

⎩

N ⋅ [FZ(y)]N−1 ⋅ fZ(y) 0 < y ≤ min{x̄, w̄}

0 otherwise
,

where FZ(y) and fZ(y) are given by Equation 2.1 and Equation 2.2.



147

2.4.1. Equilibrium

Theorem8. It is a (weakly) dominant strategy for each group bidder to bidZi ≡ min{Xi,Wi}.

PROOF. Let i be a group  bidder, and let bi be this bidder’s bid. Let B be the highest bid
among all other bidders, group  and group  included.

(1) If Xi ≤ Wi, then the budget constraint is not binding, and the argument is similar to
that in the standard SPSB auctions without budget constraints.
(a) Any bid bi < Xi = min{Xi,Wi} = Zi is not optimal: if B < bi, bidder i gets the

same payoff either by bidding bi or by bidding Xi; if B = bi, given that ties are
broken randomly, bidder imakes a sure profit ofXi−B by biddingXi, in contrast
to make the same profit with some probability by bidding bi; if bi < B < Xi,
bidder i makes profit of Xi − B by bidding Xi, whereas he loses the auction by
bidding bi; if B ≥ Xi, bidder imakes zero profit either by bidding bi or by bidding
Xi. To summarize, biddingX instead of bi < X makes bidder i weakly better-off.

(b) Any bid bi > Xi = min{Xi,Wi} = Zi is not optimal: if B < Xi, bidder i makes a
profit of Xi − B either by bidding Xi or bi; if B = Xi, bidder i makes zero profit
either by bidding Xi or bi; if Xi < B < bi, bidder i makes zero profit by bidding
Xi but makes a loss of B −Xi by bidding bi; if B = bi, bidder i makes zero profit
by bidding Xi but makes a loss of B −Xi with positive probability by bidding bi;
if B > bi, bidder i loses the auction by either bidding bi or Xi. To summarize,
bidding Xi instead of bi < Xi makes bidder i weakly better-off.

(2) IfXi > Wi, the budget constraint is binding, which requires bi ≤ Wi. However, bi < Wi

cannot be optimal: if B < bi, bidder i makes a profit of Xi − bi either by bidding bi or
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by biddingWi; if B = bi, bidder i makes a sure profit of Xi −B in case she bidsW , in
contrast tomake the same profit with some probability when she bids bi; if bi < B < Wi,
bidder i makes profit of Xi − B in case she bidsWi but zero profit when she bids bi; if
B = Wi, bidder i makes profit of Xi − B with positive probability in case she bidsWi

but zero profit when she bids bi. To summarize, biddingWi instead of bi < Wi makes
bidder i weakly better-off.

�

With a private signal S = s, the expected payoff of the group  bidder when he bids 0 ≤

b ≤ min{x̄, w̄} is15

Π(b, s) = FY (b) ⋅
(

E[v(X1, ...XN ) ⋅ s|Y < b] − E[Y |Y < b]
)

= FY (b) ⋅
(

E[v(X1, ...XN )|Y < b] ⋅ s − E[Y |Y < b]
)

.
(2.18)

The term E[Y |Y < b] in Equation 2.18 can be calculated straightforwardly as

E[Y |Y < b] = 1
FY (b) ∫

b

0
ydFY (y) =

1
FY (b) ∫

b

0
y ⋅N ⋅ [FZ(y)]N−1fZ(y)dy.

15Again, I assume that the group  bidder never bothers to bid above min{x̄, w̄}, since any bid above min{x̄, w̄}
delivers the same payoff as bidding min{x̄, w̄}.
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Let fX1,...,XN |Y <b(x1, ..., xN ) be the joint density function of (X1, ..., XN ) conditional on Y <

b. Then

fX1,...,XN |Y <b(x1, ..., xN ) =

N
∏

i=1

(

ℙ
{

Zi < b ∣ Xi = xi
}

⋅ fX(xi)
)

FY (b)

=

N
∏

i=1

(

I
{

xi < b
}

⋅ fX(xi) + I
{

xi ≥ b
}

⋅ fX(xi) ⋅ FW (b)
)

FY (b)
,

which leads to

E[v(X1, ...XN )|Y < b] = ∫

x̄

0
...∫

x̄

0
v(x1, ...xN )fX1,...,XN |Y <b(x1, ..., xN )dx1...dxN

= 1
FY (b) ∫

x̄

0
...∫

x̄

0
v(x1, ...xN )

N
∏

i=1

[

I
{

xi < b
}

fX(xi) + I
{

xi ≥ b
}

fX(xi)FW (b)
]

dx1...dxN .

Depending on institutional details in the post-auction stage, three special forms of v(X1, ...XN )

are of particular interest. They are:

vI (X1, ...XN ) ≡ X(1),

vII (X1, ..., XN ) ≡ X(2)

and
vM (X1, ..., XN ) ≡

1
N

N
∑

i=1
Xi,

whereX(1) andX(2) are the highest-order statistic and second-highest-order statistic, respectively.
The underlining assumption of using V = X(1) ⋅S as the group  bidder’s valuation is that once
the insiders’ budget constraints are relaxed in the future, the asset can be allocated to the group
 bidder who values it most. The formulation of V = X(2) ⋅ S is most appropriate when the
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group  bidder relies on standard auctions to resell the asset in the future. When the group
 bidder is not certain about the post-auction stage, his valuation can roughly be assumed to
depend on the average of all group  bidders’ valuations, and in this case, V = 1

N

N
∑

i=1
Xi ⋅ S is

most appropriate. It is worth pointing out that although the uncertainty about the post-auction
stage can be summarized in S,16 I choose to use S simply for the asset-specific aspects of the
investment, and let different formulations of V to further capture different institutional details.
2.4.1.1. V = X(1) ⋅ S. In this case,

E[vI (X1, ...XN )|Y < b] = E[X(1)|Y < b] ⋅ s.

Plugging E[vI (X1, ...XN )|Y < b] and E[Y |Y < b] back into Equation 2.18 yields17

ΠI (b, s)

=FY (b) ⋅
(

E[X(1)|Y < b] ⋅ s − E[Y |Y < b]
)

=N
(

s∫

b

0
xfX(x)[FX(x)]N−1dx + s∫

x̄

b
xfX(x)FW (b)[FX(b) + (FX(x) − FX(b))FW (b)]N−1dx

−∫

b

0
z
[

FX(z) + FW (z) − FX(z)FW (z)
]N−1 [(1 − FW (z)

)

fX(z) +
(

1 − FX(z)
)

fW (z)
]

dz
)

.

(2.19)

16For example, if an investor is very uncertain about the resell stage, he is likely to have a very low realization of
S.
17See Appendix 4.4 for details.
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Taking derivative with respect to b in Equation 2.19 yields
)
)b
ΠI (b, s)

=sNfX(b)
[

FX(b)
]N−1 [1 − FW (b)

]

b

+ sN ∫

x̄

b

{

x
[

(N − 1)fX(x)FW (b)
[

FX(b) + (FX(x) − FX(b))FW (b)
]N−2

⋅
(

fX(b) + (FW (x) − FX(b))fW (b) − fX(b)FW (b)
)

+ fX(x)fW (b)
[

FX(b) + (FX(x) − FX(b))FW (b)
]N−1

]}

dx

−N
[(

1 − FW (b)
)

fX(b) +
(

1 − FX(b)
)

fW (b)
] [

FX(b) + FW (b) − FX(b)FW (b)
]N−1 b.

Reorganizing the derivative above delivers the economic interpretation of each term:
)
)b
ΠI (b, s)

=s

⎛

⎜

⎜

⎜

⎜

⎜

⎝

NfX(b)
[

FX(b)
]N−1 [1 − FW (b)

]

b
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Marginal gain if X(1) = Y = b

+∫

x̄

b
x
)fX(1)|Y <b(x)

)b
dx

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Marginal gain if X(1) > Y = b

⎞

⎟

⎟

⎟

⎟

⎟

⎠

−N
[

FZ(b)
]N−1 fZ(b)b

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Marginal cost

.

For any given s, the FONC requires that the optimal bid b∗ satisfies )
)b
ΠI (b∗, s) = 0. With

the assumption that (Xi,Wi)’s have uniform density on (0, x̄) × (0, w̄), the FONC simplifies into

Nsw̄N+1 − (N + 1)sw̄Nb∗ +N (x̄ + w̄ − b∗)N−1
[

(N − s + 1)b∗ + s(w̄ −Nx̄)
]

b∗

− (x̄ + w̄ − b∗)N
[

(N + 1)(N − s)b∗ +Ns(w̄ −Nx̄)
]

= 0.
(2.20)

According to Equation 2.20, if the group  bidder were to submit a sure-to-win bid based
on his signal s, his bid would be w̄ if w̄ < x̄ and x̄ if x̄ ≤ w̄. Plugging b∗ = w̄ or b∗ = x̄ back
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into Equation 2.20, one gets:

(2.21) s∗(x̄, w̄,N) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 x̄ ≤ w̄

N(N + 1)w̄x̄N−1 (x̄ − w̄)
w̄ (x̄N − w̄N ) +N2x̄N (x̄ − w̄)

w̄ < x̄
.

The case that s∗(x̄, w̄,N) = 1 when x̄ ≤ w̄ is the same as before – when the probability
of that the insiders are constrained by their budgets is low, the outsider will not submit a bid
that guarantees a win unless his valuation exactly equals to that of the insider who values the
object the highest. As for the case with w̄ < x̄, it is not obvious from Equation 2.21 whether
s∗(x̄, w̄,N) < 1. To make sure this is indeed the case, note that )s

∗(x̄, w̄,N)
)w̄

> 0 for w̄ ∈

[0, x̄)18 and limw̄→x̄
N(N + 1)w̄x̄N−1 (x̄ − w̄)

w̄ (x̄N − w̄N ) +N2x̄N (x̄ − w̄)
= 1. Thus, s∗(x̄, w̄,N) < 1 for all w̄ < x̄.

Theorem 9. (Group  bidder’s Optimal Bidding Strategy with Valuation V = X(1) ⋅ S)

When w̄ < x̄ and s >
N(N + 1)w̄x̄N−1 (x̄ − w̄)

w̄ (x̄N − w̄N ) +N2x̄N (x̄ − w̄)
, the group  bidder’s optimal bid is

�(I) (s) = w̄.

Otherwise, �(I) (s) is defined implicitly by:

Nsw̄N+1 − (N + 1)sw̄N ⋅ �(I) (s)

+N
(

x̄ + w̄ − �(I) (s)
)N−1 [(N − s + 1) ⋅ �(I) (s) + s(w̄ −Nx̄)

]

⋅ �(I) (s)

−
(

x̄ + w̄ − �(I) (s)
)N [

(N + 1)(N − s) ⋅ �(I) (s) +Ns(w̄ −Nx̄)
]

= 0.

(2.22)

A general solution to Equation 2.22 for all N ≥ 2 is not obtainable. Figure 2.5a and 2.5b
present the results obtained by solving Equation 2.22 implicitly for specific parameters. In Figure

18To be more precise, )s
∗(x̄, w̄,N)
)w̄

> 0 for w̄ ∈
[

0, Nx̄
N − 1

]

.



153

2.5a, w̄ is fixed as the same value as x̄. It shows that as the number of group  bidders increases,
the group  bidder bids more aggressively for the same signal S. This can be expected, as the
winner’s curse is alleviated by the assumption that he can resell the object to whoever values it the
most. Figure 2.5b demonstrates the same effect. It shows how the group bidder’s optimal bid,
holding his private signal fixed at S = 0.8, changes with w̄ and the number of group  bidders.
For any fixed number of group  bidders, the group  bidder bids more conservatively as w̄
increases relative to x̄ (after w̄ surpasses a certain threshold). Again, this directly results from the
group bidder’s effort to avoid thewinner’s curse. For any fixed w̄, however, the group bidder
bids more aggressively as the number of group  bidders increases. Intuitively,maxi=1,...,N

{

Xi
}

increases with N faster than maxi=1,...N
{

min{Xi,Wi}
} does. As a result, when more group 

bidders are present, by increasing his bid by a small amount, the group  bidder would get a
higher expected valuation upon winning while the expected payment does not increase as much.
Thus, it is optimal for the group  bidder to bid more aggressively to enhance his probability of
winning, as the number of group  bidders increases. Another related observation is that, as w̄
increases, the group  bidder does not shade his bid as much as he otherwise would when the
number of group  bidders is large. In Figure 2.5b, the degree that the group  bidder shades
his bid, as w̄ increases, is to a lesser extend when N = 10 than when N = 2. Figure 2.5b also
shows the influence ofN on s∗ – the threshold signal above which the group  bidder is willing
to submit sure-to-win bids. As can be seen from Equation 2.21, when w̄ < x̄, the group bidder
bids w̄, which secures a win, when s < s∗. This corresponds to the linear portion of the graph.
As can be seen from the graph, the turning points gets larger, in terms of w̄, asN increases. In
other words, when there are more group  bidders, the outsider is willing to stick to sure-to-win
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bids for higher w̄. All the observations above support the intuition that the presence of more
group  bidders help alleviate the winner’s curse to the group  bidder.

(a) Group  Bidder’s Optimal Bid
(with x̄ = 1 and w̄ = 1)

(b) Group  Bidder’s Optimal Bid
(with S = 0.8 and x̄ = 1)

2.4.1.2. V = X(2) ⋅ S. In this case,

E[vII (X1, ...XN )|Y < b] = E[X(2)|Y < b].

Plugging E[vII (X1, ...XN )|Y < b] and E[Y |Y < b] back into Equation 2.18 yields19

ΠII (b, s) =FY (b) ⋅
(

E[X(2)|Y < b] ⋅ s − E[Y |Y < b]
)

=N(N − 1)s
{

∫

b

0
x
[

FX(x)
]N−2 (FX(b) − FX(x) + FW (b)

[

1 − FX(b)
] )

fX(x)dx

+ ∫

x̄

b
x
[

FX(b) + FW (b)
(

FX(x) − FX(b)
)]N−2 [FW (b)

]2 [1 − FX(x)
]

fX(x)dx
}

−N ∫

b

0
z
[

FZ(z)
]N−1 fZ(z)dz

(2.23)

19See Appendix 4.5 for details.
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Taking derivative with respect to b of Equation 2.23 delivers the economic interpretation of
each term.

)
)b
ΠII (b, s)|N=2

=2s
{

[

1 − FX(b)
]

FW (b)
[

1 − FW (b)
]

fX(b)b
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Marginal gain if X(2) = Y = b

+2FW (b)fW (b)∫

x̄

b
x
[

1 − FX(x)
]

fX(x)dx
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Marginal gain if X(2) > Y = b

+
[(

1 − FW (b)
)

fX(b) +
(

1 − FX(b)
)

fW (b)
]

∫

b

0
xfX(x)dx
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Marginal gain if X(2) < Y = b

}

− 2FZ(b)fZ(b)b
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

Marginal cost

and
)
)b
ΠII (b, s)|N≥3 = sN(N − 1)

{

[

1 − FX(b)
]

FW (b)
[

1 − FW (b)
] [

FX(b)
]N−2 fX(b)b
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Marginal gain if X(2) = Y = b

+
[(

1 − FW (b)
)

fX(b) +
(

1 − FX(b)
)

fW (b)
]

∫

b

0
x
[

FX(x)
]N−2 fX(x)dx
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Marginal gain if X(2) < Y = b

+2FW (b)fW (b)∫

x̄

b
x
[

FX(b) + FW (b)
(

FX(x) − FX(b)
)]N−2 [1 − FX(x)

]

fX(x)dx
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Marginal gain if X(2) > Y = b

+ (N − 2)
[

FW (b)
]2

∫

x̄

b
x
[

FX(b) + FW (b)
(

FX(x) − FX(b)
)]N−3 [fW (b)

(

FX(x) − FX(b)
)
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Marginal gain if X(2) > Y = b

+ fX(b)
(

1 − FW (b)
)] [

1 − FX(x)
]

fX(x)dx
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Marginal gain if X(2) > Y = b

}

−N
[

FZ(b)
]N−1 fZ(b)b

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Marginal cost

.
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For any given s, the FONC requires that the optimal bid b∗ satisfies )
)b
ΠII (b∗, s) = 0. With

the assumption that (Xi,Wi)’s have uniform density on (0, x̄)×(0, w̄), the FONC simplifies into20

(x̄ + w̄ − b∗)N−1
[

N2(x̄ + w̄ − 2 (b∗))(x̄s − (b∗)) + 2s(x̄ + w̄ − (b∗)) (b∗)

−N
[

(1 − 2s) (b∗) + (2w̄ + x̄)s
]

(x̄ + w̄ − 2 (b∗))
]

+ sw̄N−1
[

(N + 1)(N + 2) (b∗)2

−(N + 1)
[

(N + 1)x̄ + (N + 3)w̄
]

(b∗) +N
[

(N + 1)x̄ + 2w̄
]

w̄
]

= 0.

(2.24)

According to Equation 2.24, if the group bidder were to submit a sure-to-win bid based on
his signal s, his bid would be w̄ if w̄ < x̄ and x̄ if x̄ ≤ w̄. Recall that in case the group bidder’s
valuation is V = X(1) ⋅S, which is discussed in the previous section, the threshold signal is quite
similar to that in the single group  bidder case. Namely, when x̄ ≤ w̄, the group  bidder
only submits a sure-to-win bid when S = 1, whereas when w̄ < x̄, there is a threshold signal
s∗(x̄, w̄,N) ∈ (0, 1) above which a sure-to-win bid is optimal. Moreover, limw̄→x̄ s∗ (x̄, w̄,N) =

1. With V = X(2) ⋅ S, the results are different. First, note that when x̄ ≤ w̄, a sure-to-win
bid requires b = x̄. Using Equation 2.24, b = x̄ requires s∗(x̄, w̄,N) = N

N − 1
> 121, which

contradicts with the assumption of s ∈ [0, 1]. Therefore, when V = X(2) ⋅S, the group bidder
never submits a bid large enough to guarantee a win when x̄ ≤ w̄. When w̄ < x̄, a sure-to-win
bid requires b = w̄. Recall that previously with V = X(1) ⋅ S, when the group  bidders are
more likely to be budget-constrained, as in the case with w̄ < x̄, there exists s∗(x̄, w̄,N) < 1

such that the group  bidder bids b = w̄ as long as S ≥ s∗(x̄, w̄,N). Here, plug b = w̄ into

20The case withN = 2 also fits this equation.
21Obtained by plugging b = x̄ into Equation 2.24 and simplify.
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Equation 2.24 and one gets:

(2.25) s∗(x̄, w̄,N) =
N(N + 1)w̄ (w̄ − x̄) x̄N−1

(N + 1)
[

w̄N x̄ + (N − 2)w̄x̄N
]

− (N − 1)
(

w̄N+1 +Nx̄N+1
) .

It can be shown that s∗(x̄, w̄,N) decreases asN increases, and s∗(x̄, w̄,N)→ w̄
x̄
asN →∞.

Furthermore, when comparing s∗ (x̄, w̄,N)
|V =X(1)⋅S given by Equation 2.21 to s∗ (x̄, w̄,N)|V =X(2)⋅S

given by Equation 2.25, it can be shown that s∗ (x̄, w̄,N)
|V =X(2)⋅S − s

∗ (x̄, w̄,N)
|V =X(1)⋅S > 0 for

w̄ < x̄ and limN→∞

(

s∗ (x̄, w̄,N)
|V =X(2)⋅S − s

∗ (x̄, w̄,N)
|V =X(1)⋅S

)

= 0. All are intuitive, since
V = X(1) ⋅ S promises higher valuation for the group  bidder than V = X(2) ⋅ S, which leads
to the group  bidder more willing to submit a sure-to-win bid. This difference vanishes as
N →∞.

Theorem 10. (Group  bidder’s Optimal Bidding Strategy with Valuation V = X(2) ⋅ S)

When w̄ < x̄ and s > (N + 1)N(x̄ − w̄)x̄N−1w̄
(N − 1)w̄N+1 − (N + 1)x̄w̄N +N(N − 1)(x̄ − w̄)x̄N + 2x̄Nw̄

,22 the

group  bidder’s optimal bid is �(II) (s) = w̄.

Otherwise, �(II) (s) is defined implicitly by:

(x̄ + w̄ − �(II) (s))N−1
[

N2(x̄ + w̄ − 2 ⋅ �(II) (s))(x̄s − �(II) (s)) + 2s(x̄ + w̄ − �(II) (s)) ⋅ �(II) (s)

−N
[

(1 − 2s) ⋅ �(II) (s) + (2w̄ + x̄)s
]

(x̄ + w̄ − 2 ⋅ �(II) (s))
]

+ sw̄N−1
[

(N + 1)(N + 2)
[

�(II) (s)
]2

− (N + 1)
[

(N + 1)x̄ + (N + 3)w̄
]

⋅ �(II) (s) +N
[

(N + 1)x̄ + 2w̄
]

w̄
]

= 0.

(2.26)

22Note that (N + 1)N(x̄ − w̄)x̄N−1w̄
(N − 1)w̄N+1 − (N + 1)x̄w̄N +N(N − 1)(x̄ − w̄)x̄N + 2x̄N w̄

< 1 does not always hold.
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A general solution to Equation 2.26 for all N ≥ 2 is not obtainable. Figure 2.6a and 2.6b
present the results obtained by solving Equation 2.26 implicitly for specific parameters. In Figure
2.6a, w̄ is fixed as the same value as x̄. It shows that as the number of group  bidders increases,
the group  bidder bids more aggressively for the same signal S. Similar to the previous case,
this can be expected, as the second-highest valuation among the group  bidders increases with
the number of such bidders. Figure 2.6b demonstrates the same effect. It shows how the group
bidder’s optimal bid, holding his private signal fixed at S = 0.8, changes with w̄ and the number
of group  bidders. For any fixed number of group  bidders, the group  bidder bids more
conservatively as w̄ increases relative to x̄ (after w̄ surpasses a certain threshold). Again, this
directly results from the group  bidder’s effort to avoid the winner’s curse. For any fixed w̄,
however, the group bidder bids more aggressively as the number of group  bidders increases.
This trend is more significant than the setting where V = X(1) ⋅S. This reflects the fact that when
the group  bidder relies on future auction to resell the asset, an adequate level of competition
in that future auction is crucial for the group bidder’s willingness to bid in the current auction.
Another related observation is that, as w̄ increases, the group  bidder does not shade his bid as
much as he otherwise would when the number of group  bidders is large. In Figure 2.6b, the
degree that the group bidder shades his bid, as w̄ increases, is to a lesser extend whenN = 10

than whenN = 2. Figure 2.6a also shows the influence ofN on s∗ – the threshold signal above
which the group  bidder is willing to submit sure-to-win bids. As can be seen from the graph,
the turning points gets larger, in terms of w̄, asN increases. In other words, when there are more
group  bidders, the outsider is willing to stick to sure-to-win bids for higher w̄. All conclusions
are similar to those from the previous case of V = X(1) ⋅ S, as the natural of the two cases are
the same, especially whenN is large.
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(a) Group  Bidder’s Optimal Bid
(with x̄ = 1 and w̄ = 1)

(b) Group  Bidder’s Optimal Bid
(with S = 0.8 and x̄ = 1)

2.4.1.3. V = 1
N

N
∑

i=1
Xi ⋅ S. In this case,

E[vIII (X1, ...XN )|Y < b] = E[ 1
N

N
∑

i=1
Xi|Y < b] = 1

N

N
∑

i=1
E[Xi|Y < b] = E[X1|Y < b].

Plugging E[vIII (X1, ...XN )|Y < b] and E[Y |Y < b] back into Equation 2.18 yields

ΠIII (b, s) =FY (b) ⋅

(

E[ 1
N

N
∑

i=1
Xi|Y < b] ⋅ s − E[Y |Y < b]

)

=s
[

FZ(b)
]N−1

∫

b

0
xfX(x)dx + sFW (b)

[

FZ(b)
]N−1

∫

x̄

b
xfX(x)dx

−N ∫

b

0
z
[

FZ(z)
]N−1 fZ(z)dz.

(2.27)
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Taking derivative with respect to b of Equation 2.27:

)
)b
ΠIII (b, s) = s

[

1 − FW (b)
] [

FZ(b)
]N−1 fX(b)b

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Marginal gain if X1 = Y = b

+ (N − 1)s
[

FZ(b)
]N−2 fZ(b)∫

b

0
xfX(x)dx

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Marginal gain if X1 < Y = b

+ (N − 1)sFW (b)
[

FZ(b)
]N−2 fZ(b)∫

x̄

b
xfX(x)dx + sfW (b)

[

FZ(b)
]N−1

∫

x̄

b
xfX(x)dx
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Marginal gain if X1 > Y = b

−N
[

FZ(b)
]N−1 fZ(b)b

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Marginal cost

.

For any given s, the FONC requires that the optimal bid b∗ satisfies )
)b
ΠIII (b∗, s) = 0. With

the assumption that (Xi,Wi)’s have uniform density on (0, x̄)×(0, w̄), the FONC simplifies into:23

[

2N(s − 2) + s
]

(b∗)3 +
[

N
[

6x̄ + 6w̄ − (x̄ + 3w̄)s
]

− 2(x̄ + w̄)s
]

(b∗)2

+
{

N
[

(2x̄ + w̄)(w̄ − x̄)s − 2(x̄ + w̄)2
]

+ (x̄2 + x̄w̄ + w̄2)s
}

b∗ +N(x̄ + w̄)x̄2s = 0.
(2.28)

The same as before, when x̄ ≤ w̄, a sure-to-win bid from the group  bidder is x̄, whereas
w̄ < x̄ implies a sure-to-win bid of w̄. Using Equation 2.28, b∗ = x̄ can only result from
s∗ (x̄, w̄,N) = 2N

N + 1
. Since 2N

N + 1
> 1 for N ≥ 2, the group  bidder never submits a bid

that guarantees a win in case x̄ ≤ w̄. When w̄ < x̄, setting b∗ = w̄ in Equation 2.28 leads to
s∗ (x̄, w̄,N) = 2Nw̄

Nx̄ + w̄
. Unlike the previous two cases in which s∗ (x̄, w̄,N) decreases as N

increases, here, s∗ (x̄, w̄,N) = 2Nw̄
Nx̄ + w̄

increases withN . In other words, when more group 
bidders are present, the group  bidder needs a higher private signal to be willing to secure a
win in the auction. This is because when the group  bidder’s valuation depends on the average
of those of the group  bidders, the group bidder’s valuation does not benefit from an increase
23See Appendix 4.6 for details.
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in the number group  bidders, since limN→∞
1
N

N
∑

i=1
Xi = E[X] is constant. However, the group

 bidder’s expected payment E [

maxi=1,...,N
{

min
(

Xi,Wi
)}] does increase asN gets bigger.

Theorem 11. (Group  bidder’s Optimal Bidding Strategy with Valuation V = 1
N

N
∑

i=1
Xi ⋅

S)

When w̄ < x̄ and s > 2Nw̄
Nx̄ + w̄

,24 the group  bidder’s optimal bid is �(III) (s) = w̄.

Otherwise, �(III) (s) is defined implicitly by:

[

2N(s − 2) + s
] [

�(III) (s)
]3 +

[

N
[

6x̄ + 6w̄ − (x̄ + 3w̄)s
]

− 2(x̄ + w̄)s
] [

�(III) (s)
]2

+
{

N
[

(2x̄ + w̄)(w̄ − x̄)s − 2(x̄ + w̄)2
]

+ (x̄2 + x̄w̄ + w̄2)s
}

�(III) (s) +N(x̄ + w̄)x̄2s = 0.

(2.29)

Unlike the previous two cases, Equation 2.29 can be solved explicitly, as the highest order on
�(III) (s) does not depend onN . However, the solution to Equation 2.29, by itself, is of no extra
help in providing additional insight. Therefore, I choose to use graphs for better illustration.
Figure 2.7a and 2.7b present the results obtained by solving Equation 2.29 implicitly for specific
parameters. In Figure 2.7a, w̄ is fixed as the same value as x̄. In contrast to the previous two
cases in which the group  bidder bids more aggressively when the number of group  bidders
increases, the group bidder actually becomes more conservative with his bid in this case. This
is because with V = 1

N

N
∑

i=1
Xi ⋅S, the group bidder’s expected valuation does not increase with

the number of group  bidders, while his expected payment does. Therefore, a large number
of group  bidders participating in the auction is not good news for the group  bidder. This
point if further illustrated in Figure 2.7b. Figure 2.7b demonstrates how the group  bidder’s
24Note that 2Nw̄

Nx̄ + w̄
< 1 does not always hold.
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optimal bid, holding his private signal fixed at S = 0.8, changes with w̄ and the number of
group I bidders. Again, for any fixed number of group  bidders, the group  bidder bids
more conservatively as w̄ increases relative to x̄ (after w̄ surpasses a certain threshold), which
directly results from the group  bidder’s effort to avoid the winner’s curse. Unlike the other
two settings with V = X(1) ⋅S or V = X(2) ⋅S, for any fixed w̄, the group  bidder does not bid
more aggressively as the number of group I bidders increases.

(a) Group  Bidder’s Optimal Bid
(with x̄ = 1 and w̄ = 1)

(b) Group  Bidder’s Optimal Bid
(with S = 0.8 and x̄ = 1)

Figure 2.8. Group  Bidder’s Optimal Bid (with x̄ = 1 and w̄ = 1)

Figure 2.8 further demonstrates how different assumptions regarding the group  bidder’s
valuation influence his equilibrium bidding strategies (with w̄ = x̄ = 1). Not surprisingly,
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for any given N and S, the group  bidder always bids higher when his valuation is given by
V = X(1) ⋅ S. For any fixed S, his bid increases dramatically with N when his valuation is
given by V = X(2) ⋅ S. Although this is also true for the case of V = X(1) ⋅ S, the difference
in the magnitudes of this trend is quite notable. One possible explanation is as follows: when
V = X(1) ⋅S, the group bidder engages in negotiation with the group  bidder with the highest
valuation. When V = X(2) ⋅S, the resell stage can be viewed as another auction. The number of
group  bidders has a much larger impact in the later case, via increased competition. But the
situation in V = 1

N

N
∑

i=1
Xi ⋅S is just the opposite – an increase in the number of group  bidders

does not contribute to the expected average valuation, while it does increase the expected highest
bid. Therefore, the different behavior of the outsider under different valuation assumptions re-
flects the fact that even thought the increase inN has the same effect on the outsider’s expected
payment in case of winning, it has very different effect on the outsider’s valuation.

2.4.2. Efficiency

Let m ≡ argmaxi=1,...,N{Xi}, and define efficiency as the probability that bidder m wins the
auction. In other words, define the auction efficiency as the probability that the object is allocated
to the bidder who holds the highest valuation for it. For bidder m to win, two conditions must
be satisfies.

First, all other group I bidders must bid less thanZm ≡ min{Xm,Wm}, that is,Zi < Zm ∀ i ∈

{1, ..., N} ⧵ {m}. When Wm ≥ Xm, it follows that Zm = Xm. Since by definition, Xm is the
largest among all the Xi’s, and Zi = min{Xi,Wi} ≤ Xi < Xm, the condition Zi < Zm ∀ i ≠ m

is automatically satisfied. WhenWm < Xm, it follows that Zm = Wm. Bidder i (i ≠ m) bids less
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thanWm either because Xi < Wm or becauseWm ≤ Xi < Xm butWi < Wm. Therefore,

ℙ{(Zi < Zm) ∩ (Xi < Xm) ∀ i ≠ m}

=I{Wm ≥ Xm} ⋅

⎛

⎜

⎜

⎜

⎝

ℙ{Zi < Zm ∣ Xi < Xm}
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=1

⋅ℙ{Xi < Xm}
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

=FX (Xm)

⎞

⎟

⎟

⎟

⎠

N−1

+ I{Wm < Xm} ⋅

⎛

⎜

⎜

⎜

⎜

⎜

⎝

ℙ{Zi < Zm ∣ Xi < Xm}
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
= FX (Wm)+[FW (Xm)−FX (Wm)]⋅FW (Wm)

FX (Xm)

⋅ℙ{Xi < Xm}
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

=FX (Xm)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

N−1

=I{Wm ≥ Xm} ⋅
[

FX(Xm)
]N−1

+ I{Wm < Xm} ⋅
{

FX(Wm) + [FW (Xm) − FX(Wm)] ⋅ FW (Wm)
}N−1 .

The other condition necessary for the allocation to be efficient is that the group bidder must
also bid less than Zm. Denote the group  bidder’s equilibrium bidding function as �(s), with
S = s being the realization of his private signal. Note that although when w̄ is small, the group
 bidder would submit “sure to win” bid as long as his signal is above a threshold s∗(x̄, w̄,N),
which makes the bidding function not invertible on the region s ∈ [s∗(x̄, w̄,N), 1], it does not
matter for the bidding efficiency analysis, since bidder m loses for sure in this case. Therefore,
one can simply focus on the domain of S on which �(⋅) is invertible. Denote its inverse function
by �−1(⋅). Note that optimality in the relevant domain requires

)
)b
Π(b, s) ∣s=�−1(b)= 0.
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The probability that the group  bidder bids less than Zm is simply

ℙ{�(S) < Zm} = ℙ{S < �−1(Zm)} = �−1(Zm),

where the second equality builds on the assumption that S ∼ U [0, 1].
Combining the above analysis together, the ex ante expected allocation efficiency is thus

Efficientyex ante =I{x̄ ≥ w̄} ⋅
(

N ∫

w̄

0

{

∫

w

0

[

FX(x)
]N−1 �−1(x)dFX(x)

+ ∫

x̄

w

{

FX(w) +
[

FX(x) − FX(w)
]

FW (w)
}N−1 �−1(w)dFX(x)

}

dFW (w)
)

+ I{x̄ < w̄} ⋅
(

N ∫

x̄

0

{

∫

w̄

x

[

FX(x)
]N−1 �−1(x)dFW (w)

+ ∫

x

0

{

FX(w) +
[

FX(x) − FX(w)
]

FW (w)
}N−1 �−1(w)dFW (w)

}

dFX(x)
)

.

(2.30)

Next, I discuss the allocation efficiency case-by-case, based on the different assumptions on
the group  bidder’s valuation.
2.4.2.1. V = X(1) ⋅S. Substituting s = �−1(I)(b) into Equation 2.20 and solving for �−1(I)(b) yields:

�−1(I)(b) =
(

N(N + 1)(x̄ + w̄ − 2b)(x̄ + w̄ − b)N−1b
)

⋅
(

[(N + 1)b +N2x̄ −Nw̄](x̄ + w̄ − b)N − (N + 1)w̄Nb

+Nw̄N+1 −N(Nx̄ − w̄ + b)(x̄ + w̄ − b)N−1b
)−1.

Substituting �−1(I)(⋅) for �−1(⋅) in Equation 2.30 gives the ex ante allocation efficiency when
the group  bidder’s value function is V = X(1) ⋅ S.
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Figure 2.9 illustrates how the allocation efficiency changes with w̄ and N (with x̄ = 1).
Similar to the N = 1 case discussed in the previous section, the allocation efficiency increases
with w̄ for any fixed N . However, for any given w̄, it becomes less likely for the highest-
valuation bidder to win when the number of group  competitors increases. Expectedly, when
w̄ is large relative to x̄, the probability that the highest valuation bidder wins the auction does
not decrease much asN increases. This is intuitive because in this case, the auction is similar to
a standard SPSB auction without budget constraint, which is always allocation the object most
efficiently.

Figure 2.9. Highest Valuation Bidder’s Winning Probability (When V = X(1) ⋅ S)

2.4.2.2. V = X(2)⋅S. Substituting s = �−1(II)(b) into Equation 2.24 and solving for �−1(II)(b) yields:

�−1(II)(b) =
A
B
,

with

A = N(N + 1) (w̄ + x̄ − 2b) (w̄ + x̄ − b)N b
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and

B =(N + 2)(N + 1)w̄Nb3

+
{

2(2N + 1)w̄ (w̄ + x̄ − b)N − (N + 1)w̄ [(2N + 5)w̄ + (2N + 3)x̄]
}

b2

+ w̄N [

(N2 + 6N + 3)w̄2 + (3N + 4)(N + 1)w̄x̄ + (N + 1)2x̄2
]

b

+Nw̄ (w̄ + x̄)
{

(w̄ + x̄ − b)N [2w̄ − (N − 1)x̄] − w̄N [2w̄ + (N + 1)x̄]
}

.

Substituting �−1(II)(⋅) for �−1(⋅) in Equation 2.30 gives the ex ante allocation efficiency when
the group  bidder’s value function is V = X(2) ⋅ S.

Figure 2.10 illustrates how the allocation efficiency changes with w̄ and N (with x̄ = 1).
Similar to the case of V = X(1) ⋅ S, the allocation efficiency increases with w̄ for any fixed N .
And, for any given w̄, it becomes less likely for the highest-valuation bidder to win when the
number of group  competitors increases.

Figure 2.10. Highest Valuation Bidder’s Winning Probability (When V = X(2) ⋅ S)



168

2.4.2.3. V = 1
N

N
∑

i=1
Xi ⋅S. Substituting s = �−1(III)(b) into Equation 2.28 and solving for �−1(III)(b)

yields:

�−1(III)(b) =

2N(x̄ + w̄ − b)(x̄ + w̄ − 2b)b
(2N + 1)b3 − [N(x̄ + 3w̄) + 2x̄ + 2w̄]b2 + [N(2x̄ + w̄)(w̄ − x̄) + w̄2 + x̄w̄ + x̄2]b +Nx̄2(x̄ + w̄)

.

Substituting �−1(III)(⋅) for �−1(⋅) in Equation 2.30 gives the ex ante allocation efficiency when
the group  bidder’s value function is V = 1

N

N
∑

i=1
Xi ⋅ S.

Figure 2.11 illustrates how the allocation efficiency changes with w̄ and N (with x̄ = 1).
Similar to the other two cases, the allocation efficiency increases with w̄ for any fixedN . And,
for any given w̄, it becomes less likely for the highest-valuation bidder to win when the number
of group  competitors increases.

Figure 2.11. Highest Valuation Bidder’s Winning Probability (When V = 1
N

N
∑

i=1
Xi ⋅ S)

Figure 2.12 illustrates how the highest-valuation bidder’s probability of winning in the pres-
ence of one speculator compares to that without speculators.25 Consistent with the analysis
25The efficiency calculation without the group  bidder can be found in Appendix 4.7.
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above, when N and w̄ are both large, the presence of the group  bidder barely influences the
allocation efficiency.

Figure 2.12. Efficiency Comparison With and Without the Group  Bidder (x̄ = 1)

A natural question to ask at this point is how does the probability that ANY group  bidder
wins the object changes with N . On one hand, it seems intuitive that the probability that the
object is allocated to a group  bidder should increase when more group  bidder participate
in the auction. On the other hand, however, the group  bidder gets less concerned about the
winner’s curse and thus bids more aggressively as the number of group  bidder increases, when
his valuation is given by V = X(1) ⋅S or V = X(2) ⋅S. The following analysis shows that the first
effect outweighs the second, and the probability that the object is allocated to a group I bidder
increases withN .

Consider the scenario that the group  bidder submits a bid b > 0. For him to win, all
the group  bidders must bid less than b, that is, Zi = min{Xi,Wi} < b ∀ i ∈ {1, ..., N}.
Mathematically,

ℙ{group  bidder wins by bidding b > 0} = ℙ{Zi < b ∀ i ∈ {1, ..., N}} =
[

FZ(b)
]N .
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In the ex ante sense, the group  bidder’s probability of winning is

ℙ{group  bidder wins} = ∫

1

0

[

FZ(�(s))
]N ds.

Consequently, the probability that the object is allocated to a group  bidder is simply

ℙ{group  bidder wins} = 1 − ℙ{group  bidder wins} = 1 − ∫

1

0

[

FZ(�(s))
]N ds.

Figure 2.13. Group  Bidder’s Winning Probability

Figure 2.13 illustrates how the probability that the object is allocated to a group  bidder
varies with w̄ and N while holding x̄ = 1 fixed. In general, the probability that ANY group
 bidder wins the auction indeed increases with the number of group  bidders. However,
this effect is much less significant compared with that caused by an increase in w̄. Intuitively,
this is because the effect of increasing w̄ has two folds that work in the same direction – one
being that a group  bidder’s ability to compete is higher, and the other being that the group
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 bidder increasingly shades his bid to avoid the winner’s curse. On the contrary, the effect
of increasing N also has two folds, but they work in opposite direction. On one hand, as N
increases, it becomes more likely that there exists a group  bidder that is able to make high bid,
which contributes to enhancing the group ’s probability of winning as a whole. On the other
hand, the group  bidder bids more aggressively as N increases, which diminishes the group
’s probability of winning as a whole. Consistent with the previous observation that the group
 bidder systematically bids higher when his valuation is V = X(1) ⋅ S, the probability that any
group  bidder wins the auction is systematically lower in this case.

2.4.3. Revenue

Again, in the ex ante sense, the seller’s expected revenue is the sum of the expected payment
made by each group I bidder and that made by the group  bidder.

For any bidder i (i ∈ {1, ..., N}) with realized valuation-budget pair (Xi,Wi) = (xi, wi),
her expected payment can be calculated as the probability that she wins the auction, times the
expected payment she faces when she indeed wins. Using a similar argument as before, in order
for bidder i to win, two conditions must be met. First, all other group I bidders must bid less
than zi = min{xi, wi}. Second, the group  bidder must bid less than zi as well.

The probability that all other group  bidder bid less than zi is

ℙ{Zj < zi ∀j ∈ {1, ..., N} ⧵ {i}} =
[

FZ(zi)
]N−1 .
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The probability that the group  bidder bids less than zi is26

ℙ{�(S) < zi} = ℙ{S < �−1(zi)} = �−1(zi).

Therefore, bidder i’s probability of winning is

ℙ{bidder i with (xi, wi) wins} = �−1(zi) ⋅
[

FZ(zi)
]N−1 .

Define H ≡ max{Z1, ..., Zi−1, Zi+1, ...ZN , �(S)}. That is, let H be the highest bid among
all of bidder i’s competitors – group  and group  alike. Then the cumulative distribution
function ofH conditional on bidder i wins the auction, FH (⋅ ∣ H < zi), is

FH (ℎ|H < zi) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0 ℎ < 0

�−1(ℎ) ⋅
[

FZ(ℎ)
]N−1

�−1(zi) ⋅
[

FZ(zi)
]N−1

ℎ ∈ [0, zi]

1 ℎ > zi

.

Therefore, with realized valuation-budget pair (xi, wi), bidder i’s expected payment in case
of winning is

EP interim
i (xi, wi) = ℙ{H < zi} ⋅ E

[

H ∣ H < zi
]

= ∫

zi

0
ℎdFH (ℎ),

with FH (ℎ) = �−1(ℎ)
[

FZ(ℎ)
]N−1.

26Again, since only when s falls in the domain in which �(s) is invertible, can the group  bidder lose the auc-
tion, one can thus take the inverse of the bidding function �(⋅) for the relevant analysis without compromising
rigorousness.
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The ex ante expected payment made by any bidder i is therefore

EP ex ante
i = ∫

min{x̄,w̄}

0

(

∫

z

0
ℎdFH (ℎ)

)

dFZ(z).

Analogously, the group  bidder’s ex ante expected payment is the probability that he wins
the auction, times his expected payment in case of winning. For a group  bidder with realized
signal S = s, he wins the auction when all group  bidders bid less than �(s). Hence,

ℙ{group  bidder with s wins} = ℙ{Zi < �(s) ∀i ∈ {1, ..., N}} =
[

FZ (�(s))
]N .

As before, define Y to be the highest bid among all group bidders, i.e., Y ≡ maxi=1,...,N{Zi}.
Then the group  bidder’s expected payment when he wins the auction is

EP interim
O (s) = ℙ{Y < �(s)} ⋅ E [Y ∣ Y < �(s)] = ∫

�(s)

0
ydFY (y).

The ex ante expected payment made by the group  bidder is therefore

EP ex ante
O = ∫

1

0

(

∫

�(s)

0
ydFY (y)

)

ds.
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The seller’s expected revenue as the sum of all bidders’ ex ante expected payments is there-
fore

Revex ante

=N ⋅ EP ex ante
i + EP ex ante

O

=N ⋅ ∫

min{x̄,w̄}

0 ∫

z

0
ℎ ⋅ dFH (ℎ) ⋅ dFZ(z) + ∫

1

0 ∫

�(s)

0
y ⋅ dFY (y) ⋅ ds

=N ⋅ ∫

min{x̄,w̄}

0

[

∫

z

0
ℎ

(
[

FZ(ℎ)
]N−1

�′
(

�−1(ℎ)
) + (N − 1)�−1(ℎ)

[

FZ(ℎ)
]N−2 fZ(ℎ)

)

dℎ

]

fZ(z)dz

+ ∫

1

0

(

∫

�(s)

0
Ny

[

FZ(y)
]N−1 fZ(y)dy

)

ds

(2.31)

2.4.3.1. V = X(1) ⋅ S. Figure 2.14 shows how the seller’s expected revenue changes with w̄
and N . Again, I perform this analysis with x̄ = 1. Similar to the previous N = 1 case, for any
givenN , the seller’s expected revenue increases with w̄, but at a decreasing rate. However, this
decrease in rate is not very significant whenN is relatively large. Two factors contribute to this
result. First, the magnitude that the group  bidder shades his bid is much smaller when N is
large, which benefits the seller. Second, the competition among the group  bidders also gets
more severe as N increases. These two factors can also be seen when one investigates how the
seller’s revenue changes with N for any given w̄. Again, holding w̄ fixed, the group  bidder
bids more aggressively as N increases, which contributes to an increase in seller’s expected
revenue. At the same time, the highest bid from group I bidders also increase asN gets larger.
Following this logic, it is not hard to perceive that the effects of both factors are stronger when w̄
is large – otherwise, the seller’s expected revenue is bounded by w̄. It is worth noting that when
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N = 2, if w̄ is considerably larger than x̄, at some point the seller’s expected revenue starts to
decline slightly as w̄ gets larger. This is because in this case, the group  bidder shades his bid
dramatically while the lack of competition among the group  bidders due to the small group
size negatively affects the seller’s income. This problem does not arise when N is large, as the
group  bidder is less relevant when compared to the group  bidders. The implication of these
results is that the seller cannot effectively increase his expected revenue by relaxing the group 
bidders’ budgets when the number of group  bidder is low (for example, by offering financing
to the business insiders), nor can he effectively increase his expected revenue by encouraging
more group  bidders to participate in the auction when they are all severely constrained by their
budgets. The most effective way to increase expected revenue is to offer some financing to the
group  bidders if they are severely budget-constrained and at the same time make sure there
are enough group  bidders coming to the auction.

Figure 2.14. Seller’s Expected Revenue (when V = X(1) ⋅ S)
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Figure 2.15 illustrates how the seller’s expected revenue in the presence of the  bidder
compares to that without the  bidder. Consistent with the previous analysis, the group  bid-
der contributes more to the expected revenue when w̄ is in an moderately low range, and his
contribution decreases asN increases.

Figure 2.15. Expected Revenue with and Without the Group  Bidder

Figure 2.16 further breaks down the seller’s expected revenue into the group  bidder’s ex
ante expected payment and the group  bidders’ aggregated ex ante expected payment. The
group  bidders’ aggregated expected payment increases with w̄ and N . The pattern of this
increase is very similar to that of the seller’s expected revenue in Figure 2.14 – the increase in
competition (larger N) and the increase in financial strength (larger w̄), only when combined
together, cause the group  bidder’s aggregated expected payment to increase dramatically.

The pattern of the group  bidder’s expected payment is similar to that in the N = 1 case.
Holding N fixed, the group  bidder’s expected payment increases with w̄ when w̄ is below a
certain threshold, and then starts to decrease as w̄ gets bigger. Again, the increase in the group
 bidder’s expected payment in the lower region of w̄ is mainly due to the increase in group 
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bidders’ ability to pay. This increase in group  bidders’ ability to pay, however, is not significant
enough to lower the group  bidder’s probability of winning by much. The overall effect is thus
an increase in the group bidder’s ex ante expected payment. The fact that the group bidder’s
ex ante expected payment eventually starts to decrease as w̄ further increases, is again due to the
group  bidder shading his bid to alleviate the winner’s curse as the group  bidders get less
likely to be financially constrained. As discussed in the previous sections, this shading behavior
is minor when N is large. This explains why the group  bidder’s ex ante expected payment
increase with N in a moderate range of w̄. When w̄ is large enough, however, the group 

bidders’ abilities to compete in the auction is so high that the group  bidder’s probability of
winning decreases significantly when N gets large enough, despite the fact that the group 

bidder himself also bids more aggressively. Therefore, for the high range of w̄, the group 

bidder’s ex ante expected payment decreases asN gets large.

Figure 2.16. Ex Ante Expected Payments by both Types

2.4.3.2. V = X(2) ⋅S. Figure 2.17 shows how the seller’s expected revenue changes with w̄ and
N when x̄ = 1 is fixed. The general pattern and the reasons behind this pattern are similar to the
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previous case with V = X(1) ⋅ S. However, one thing worth noting is that under the assumption
of V = X(2) ⋅ S, the group  bidder’s valuation is less favorable, which makes him bidding
more conservatively. As a result, his bid, and thus the expected payment from him, decreases
dramatically as w̄ gets even a little bit higher than zero. This effect is so large in magnitude that
the increased expected payments from the group  bidders fail to keep up, which leads to the
kink on the graph.

Figure 2.17. Seller’s Expected Revenue (when V = X(2) ⋅ S)

Figure 2.18 illustrates how the seller’s expected revenue in the presence of the  bidder
compares to that without the  bidder. The kink mentioned in the previous paragraph is more
obvious in Figure 2.18.

Figure 2.19 further breaks down the seller’s expected revenue into the group  bidder’s ex
ante expected payment and the group  bidders’ aggregated ex ante expected payment. The
pattern is similar to the previous case with V = X(1) ⋅ S. The difference is that under the
assumption of V = X(2) ⋅ S, the group  bidder’s expected payment drops more quickly as w̄
gets larger, and is more so whenN is small.
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Figure 2.18. Expected Revenue with and Without the Group  Bidder

Figure 2.19. Ex Ante Expected Payments by both Types

2.4.3.3. V = 1
N

N
∑

i=1
Xi ⋅S. Figure 2.21 shows how the seller’s expected revenue changes with w̄

and N when x̄ = 1 is fixed. The general pattern is similar to the previous two cases. However,
as has been discussed above, when V = 1

N

N
∑

i=1
Xi ⋅ S, the group  bidder does not respond to

the increase in the number of group  bidders in the same way as he does in the other two cases.
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Therefore, any changes in the seller’s expected revenue resulting from an increase in the number
of group  bidders mainly comes from the competition among the group  bidders. This point if
further illustrated in Figure 2.21 – the difference between the expected revenue with and without
the group  bidder barely respond to a change in the number of group  bidders.

Figure 2.20. Seller’s Expected Revenue (when V = 1
N

N
∑

i=1
Xi ⋅ S)

Figure 2.21. Expected Revenue with and Without the Group  Bidder
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Similar as the other two cases, the group  bidder’s expected payment first rises with w̄ and
then plummets if w̄ increases even further. The major difference, again, is that increasing the
number of  bidder does not help alleviate the group  bidder’s concern. In fact, it only makes
him more cautious.

Figure 2.22. Ex Ante Expected Payments by both Types

2.5. Reserve Price

2.5.1. Equilibrium

In this section, I explore whether the seller will benefit from a reserve price. For simplicity, I
only consider the case with one group  bidder (bidder 1) and one group  bidder (bidder 2).
Assume that the reserve price is 0 < r < min{x̄, w̄},27 it is straightforward to verify that bidder
1’s dominant strategy is to bidZ ≡ min{X,W } ifZ ≥ r and drop out otherwise. In case bidder
1 drops out, bidder 2 wins the auction at the reserve price only if his bid is above the reservation
27If r > min{x̄, w̄}, then bidder 1 is sure to be excluded from the auction, and the problem turns into a take it
or leave it offer for bidder 2, which completely deviates from the main purpose of this paper. Therefore, I only
consider 0 < r < min{x̄, w̄}.
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price. In case neither bidder bids above the reservation price, the seller fails to sell the asset.
No further interaction between the seller and the bidders is allowed to happen in the future, so
that during the auction, the bidders do not take the post-auction stage into account to form their
optimal bidding strategy.

Under this setting, the expected profit for bidder 2 with signal S = s and bid b ≥ r is:

Π(b, s) =FZ(r) ⋅ (E[X|Z < r] ⋅ s − r)

+
(

FZ(b) − FZ(r)
)

⋅ (E[X|r ≤ Z < b] ⋅ s − E[Z|r ≤ Z < b])

=
(

∫

b

0
xfX(x)dx + FW (b)∫

x̄

b
xfX(x)dx

)

⋅ s − FZ(r) ⋅ r − ∫

b

r
z ⋅ fZ(z)dz

=
(4 − 3s)b3 − 3 [(1 − s)w̄ + x̄] b2 + 3x̄2sb − (3x̄ + 3w̄ − 2r) r2

6x̄w̄
.

(2.32)

For any given s, the FONC requires that the optimal bid b∗ satisfies )Π
)b
(b∗, s) = 0. Using

Equation 2.32 and taking derivative with respect to b yields:

)Π
)b
(b, s) =

(

bfX(b)
(

1 − FW (b)
)

+ fW (b)∫

x̄

b
xfX(x)dx

)

s

− b
[(

1 − FW (b)
)

fX(b) +
(

1 − FX(b)
)

fW (b)
]

,

which is exactly the same as Equation 2.4. This is because the existence of a reserve price does
not change either the marginal gain or the marginal cost of winning for bidder 2. However, since
any bid below the reserve price is not allowed, bidder 2’s private signal needs to be large enough
for him to participate in the auction. This lower bound s (x̄, w̄, r) can be calculated by solving
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b∗ = r, i.e.

(1 − s)w̄ + x̄ −
√

[(1 − s)w̄ + x̄]2 − (4 − 3s)sx̄2

4 − 3s
= r

⇒ s (x̄, w̄, r) =
2r (x̄ + w̄ − 2r)
x̄2 + 2w̄r − 3r2

.

(2.33)

It seems, then, bidder 2’s optimal bidding function given by Equation 2.8 should be modified
into:
(2.34)

�(s, x̄, w̄) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0 0 ≤ s < s (x̄, w̄, r)

(1 − s)w̄ + x̄ −
√

[(1 − s)w̄ + x̄]2 − (4 − 3s)sx̄2

4 − 3s
s (x̄, w̄, r) ≤ s < s∗(x̄, w̄)

min{x̄, w̄} s∗(x̄, w̄) ≤ s ≤ 1

,

with s∗(x̄, w̄) and s (x̄, w̄, r) being defined in Equation 2.9 and Equation 2.33, respectively.
However, this optimal bidding function does not guarantee that bidder 2’s expected profit

is positive. For example, assume that x̄ = 1, w̄ = 1 and r = 0.5. Then s = 0.8. According
to Equation 2.34, if s = 0.9, then it would be optimal for bidder 2 to bid b∗ = 0.69, which, by
Equation 2.32, results in Π = −0.089. Thus, a profit-maximizing bid gives bidder 2 a negative
expected payoff.

In fact, this is not coincidence. To see this, suppose that s = s (x̄, w̄, r), that is, suppose
bidder 2’s signal is just large enough so that he is willing to participate in the auction. Then, by
definition of s (x̄, w̄, r), the optimal bid for bidder 2 is b∗ = r. Substituting in Equation 2.32,
one gets Π = −

[

r2 − 2 (x̄ + w̄) r + x̄2 + x̄w̄ + w̄2
]

r3

x̄w̄
(

x̄2 + 2w̄r − 3r3
) . It becomes apparent that when r = 0, the
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previous expression yields Π = 0. Hence, since dΠ
dr

< 0, bidder 2’s expected payoff is negative
for all r > 0.

Therefore, Equation 2.8 cannot be bidder 2’s optimal bidding function, for it fails to incorpo-
rate the extra constraint of non-negative expected payoff. The root of this issue is that s (x̄, w̄, r)
defined by Equation 2.33 is the threshold signal that makes b = r the bid that maximizes bidder
2’s expected payoff, but in and of itself, is not large enough so that this maximized expected
payoff is non-negative. The real threshold signal, call it s̃, should be the solution of:

(2.35) (4 − 3s̃)�̃3 − 3 [(1 − s̃)w̄ + x̄] �̃2 + 3x̄2s̃�̃ − (3x̄ + 3w̄ − 2r) r2

6x̄w̄
= 0,

where
�̃ =

(1 − s̃)w̄ + x̄ −
√

[(1 − s̃)w̄ + x̄]2 − (4 − 3s̃)s̃x̄2

4 − 3s̃
.

Unfortunately, a general solution of s̃ is not feasible. However, it is certain that s̃ > s, as
dΠ
ds

> 0 and Π (

�(s, x̄, w̄), s
)

< 0 for r > 0, as shown above. But as the profit maximizing bid
for any s̃ ≤ s < s∗(x̄, w̄) is always given by the FONC, it can be concluded that �̃ > r. This
interesting observation is summarized below:

Lemma 6. When a reserve price 0 < r < min{x̄, w̄} is imposed, bidder 2 either not take

part in the auction or submit a bid that is higher than r. Stated differently, bidder 2 will never

bid the reserve price.

To illustrate, consider a numerical example with x̄ = w̄ = 1 and r = 0.2. The optimal bid
corresponding to s̃ is thus �̃ = s̃

4 − 3s̃
. Substitute �̃ = s̃

4 − 3s̃
into Equation 2.35 and solve for s̃

gives s̃ = 0.6. Compared to s (x̄, w̄, r) = 2r (x̄ + w̄ − 2r)
x̄2 + 2w̄r − 3r2

= 0.5, it is indeed that bidder 2 needs
a higher signal to break even with the presence of a reserve price. Note that in this example,
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�̃ = s̃
4 − 3s̃

= 0.27 > r – bidder 2 bids above the reserve price even if his signal is just large
enough to make him indifferent between participating or not.

Another point to note is that if the reserve price is too large, bidder 2 will never participate
in the auction no matter how large his signal is, as his expected payoff is always negative. To
see this, consider the earlier example in which x̄ = w̄ = 1 and r = 0.5. Again, the optimal bid
corresponding to s̃ is �̃ = s̃

4 − 3s̃
since it does not depend on r. When �̃ = s̃

4 − 3s̃
is substituted

into Equation 2.35, it turns out that there does not exist any s̃ ∈ [0, 1] that satisfies Equation 2.35.
In fact, even with s = 1 – the highest signal possible – bidder 2’s expected profit is −0.04 < 0.

Theorem 12. For any given (x̄, w̄), there exists an upper bound on the reserve priceR (x̄, w̄),

above which bidder 2 will not participate in the auction, no matter how large his private signal

is.

When x̄ ≤ w̄, R (x̄, w̄) is given by one of:

rk =
1
2
(x̄ + w̄)

[

2 cos
(� + 2k�

3

)

+ 1
]

, k = 0, 1, 2,

where

� = arctan
⎛

⎜

⎜

⎝

2x̄
3
2 w̄

1
2
(

3x̄2 + 3x̄w̄ + w̄2
)
1
2

w̄3 + 3x̄2w̄ + 3x̄w̄2 − x̄3

⎞

⎟

⎟

⎠

.

When x̄ > w̄, R (x̄, w̄) is given by one of:

rk =
1
2
(x̄ + w̄)

[

2 cos
(� + 2k�

3

)

+ 1
]

, k = 0, 1, 2,

where

� = arctan
⎛

⎜

⎜

⎝

2x̄
1
2 w̄

1
2
(

3x̄2 − 3x̄w̄ + w̄2
)
1
2
(

x̄2 + 6w̄2
)
1
2

x̄3 − 3x̄2w̄ + 9x̄w̄2 − w̄3

⎞

⎟

⎟

⎠

.



186

PROOF. By Equation 2.32, it is clear that bidder’2 expected payoff is decreasing in r but
increasing in s. Therefore, if r is so large that even getting the highest possible signal s = 1

cannot generate a non-negative expected payoff to bidder 2, he would forfeit his bidding right.
Hence, R (x̄, w̄) is such that:

Π(min{x̄, w̄}, 1) =

⎧

⎪

⎨

⎪

⎩

x̄3 − [3x̄ + 3w̄ − 2R (x̄, w̄)] [R (x̄, w̄)]2

6x̄w̄
(x̄ ≤ w̄)

w̄3 − 3x̄w̄2 + 3x̄2w̄ − [3x̄ + 3w̄ − 2R (x̄, w̄)] [R (x̄, w̄)]2

6x̄w̄
(x̄ > w̄)

= 0

Solving the third degree polynomials leads to the conclusions presented in the theorem
above. �

Bidder 2’s equilibrium bidding strategy can thus summarized as follows:

Theorem 13. Given (x̄, w̄), if r > R (x̄, w̄), whereR (x̄, w̄) is as defined in Theorem 12, then

bidder 2 does not participate in the auction. Otherwise, bidder 2’s equilibrium bidding function

is:

(2.36)

�(s, x̄, w̄) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0 0 ≤ s < s̃ (x̄, w̄, r)

(1 − s)w̄ + x̄ −
√

[(1 − s)w̄ + x̄]2 − (4 − 3s)sx̄2

4 − 3s
s̃ (x̄, w̄, r) ≤ s < s∗(x̄, w̄)

min{x̄, w̄} s∗(x̄, w̄) ≤ s ≤ 1

,

where s̃ (x̄, w̄, r) is defined explicitly as the solution to Equation 2.35 and s∗(x̄, w̄) is given by

Equation 2.9.

Figure 2.23 shows how s (x̄, w̄, r) and s̃ (x̄, w̄, r) change with r.
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Figure 2.23. Changes in s̃ and s against r (with x̄ = 1 and w̄ = 1)

2.5.2. Efficiency

When r < R (x̄, w̄), there are two ways that bidder 1 wins the auction. The first way is bidder 2
does not have a signal large enough to convince him to submit a positive bid, i.e. s < s̃ (x̄, w̄, r),
while bidder 1 is able to bid above the reserve price, i.e. min{x̄, w̄} ≥ r. The second way is
both bidders submit a positive bid and bidder 1 outbid bidder 2. Hence, the auction efficiency
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in this case is:2829

E(x̄, w̄)

=∫

s̃(r)

0
[1 − FZ(r)]ds

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
bidder 2 not bid

+∫

s∗

s̃(r)
[1 − FZ(�(s, x̄, w̄))]ds

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
bidder 1 bids higher than bidder 2

=∫

s∗

0
[1 − FZ(�(s, x̄, w̄))]ds

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Efficiency without reserve price

+∫

s̃(r)

0
[1 − FZ(r)]ds − ∫

s̃(r)

0
[1 − FZ(�(s, x̄, w̄))]ds

=∫

s∗

0
[1 − FZ(�(s, x̄, w̄))]ds

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Efficiency without reserve price

+∫

s(r)

0

[

FZ(�(s, x̄, w̄)) − FZ(r)
]

ds
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

<0

+ ∫

s̃(r)

s(r)

[

FZ(�(s, x̄, w̄)) − FZ(r)
]

ds

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
>0

.

(2.37)

By imposing a reserve price, there are two forces that work in opposite direction. On the one
hand, the reserve price has a deterrence effect on bidder 2 so that he does not bid unless s > s̃,
which increases the chance that the asset is allocated to bidder 1. On the other hand, the reserve
price also negatively affects bidder 1 since she is likely to drop out herself, whereas without the
reserve price, she still has some winning probability no matter how small Z turns out to be.
Therefore, whether imposing a reserve price increases the allocation efficiency depends which
of these two forces dominates. Putting in another way, when s < s̃ (x̄, w̄, r), without a reserve
price, bidder 1 fights against bidder 2; with a reserve price, bidder 1 fights against the reserve
28For simplicity, I denote s̃ (x̄, w̄, r) by s̃(r), s (x̄, w̄, r) by s(r) and s∗ (x̄, w̄) by s∗.
29One may argue that now with a reserve price, it is possible that neither of the two bidders submit a bid above the
reserve price and the asset ends up unsold. Without the reserve price, however, at least someone ends up with the
asset. I nonetheless keep defining the efficiency as the probability that the asset is sold to the party that can make
the best use of it – bidder 1 in this case.
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Figure 2.24. Change in Efficiency Compared to Without Reserve Price (with x̄ = 1 and w̄ = 1)

price. For s < s (x̄, w̄, r), the reserve price is harder to fight than bidder 2, while the reverse is
true for s (x̄, w̄, r) < s < s̃ (x̄, w̄, r). Figure 2.24 shows that the combined effect is negative on
allocation efficiency. The higher the reserve price, the larger this negative effect. This can be
further understood by looking back at Figure 2.23. In Figure 2.23, it is clear that as r increases,
s (x̄, w̄, r) growsmuch faster than the difference between s̃ (x̄, w̄, r) and s (x̄, w̄, r). This results in
bidder 1 having to ”fight against the reservation price” more often, which dominates the benefit
she gets from avoiding to fight against bidder 2 in case s (x̄, w̄, r) < s < s̃ (x̄, w̄, r). Figure 2.25
shows how the allocation efficiency changes with r.

When r ≥ R (x̄, w̄), as shown previously, the reserve price is too large for bidder 2 to bid.
Therefore, bidder 1 wins the auction as long as she is able to bid above the reserve price:

E(x̄, w̄) = 1 − FZ(r).(2.38)

Clearly, the above expression reaches its maximum when r = R (x̄, w̄). Setting such a high
reserve price can be viewed as a defense mechanism to prevent outsiders from getting the asset
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Figure 2.25. Allocation Efficiency as r Changes (with x̄ = 1 and w̄ = 1)

when no rules can be imposed directly to exclude the outsider outright. For comparison, when
x̄ = 1 and w̄ = 1, as is in Figure 2.25, the efficiency at r ≥ R (x̄, w̄) is 0.311, worse than not to
exclude bidder 2, and much worse than not having a reservation price in the first place.

2.5.3. Revenue

Bidder 1’s ex-ante expected payment is:

EP ex−ante
1 = ∫

�(s̃(r))

r

(

∫

s̃(r)

0
rds

)

dFZ(z) + ∫

min{x̄,w̄}

�(s̃(r))

(

∫

s̃(r)

0
rds + ∫

�−1(z)

s̃(r)
�(s)ds

)

dFZ(z).

(2.39)

Bidder 2’s ex-ante expected payment is:

(2.40) EP ex−ante
2 = ∫

1

s̃(r)

(

FZ(r) ⋅ r + ∫

�(s̃(r))

r
zdFZ(z)

)

ds.

Figure 2.26 shows how the seller’s expected revenue and the bidders’ expected payments
change with the reserve price. Unlike allocation efficiency, which decreases as the reserve price
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increases, the seller can actually benefit from imposing a moderate reserve price if he cares more
about revenue than efficiency. The primary contributor is bidder 1. As the graph shows, bidder
1’s expected payment rises with r30. As r increases from zero, there is some probability that
bidder 1 has to drop out, which decreases her expected payment. However, this decrease in
expected payment cannot be too large, as the very reason that bidder 1 drops out is she is not
able to bid much. Therefore, even if she wins, her payment would be very small. However,
as r increases, its deterrence effect on bidder 2 makes the chance of winning more favorable to
bidder 1. As long as bidder 2 does not bid, bidder 1 pays the reserve price. As the reserve price
increases, both the probability of bidder 2 not bidding and the payment from bidder 1 in case
she does not drop out increase, which increases bidder 1’s expected payment. Although there
are situations in which bidder 1 wins at a bargain, in the sense that were bidder 2 not deterred
by the reservation price, bidder 1 would have to pay a higher price in case of winning (this
happens when s ∈ [s(r), s̃(r)]), this potential decrease in bidder 1’s expected payment is not
large enough to redirect the general trend. According to Figure 2.26, having a reserve price does
not have much of an impact on bidder 2’s expected payment when the reserve price is small.
This is because the deterrence effect is relatively small, and in case bidder 2 wins, there is some
chance that he has to paymore than he otherwise would when bidder 1 drops out. The two factors
roughly cancel out and thus bidder 2’s expected payment stays relatively stable. However, if the
reserve price is not too small, the deterrence effect dominates and bidder 2’s expected payment
decreases dramatically. As r getting closer to R(x̄, w̄), the revenue contribution from bidder 2
30Obviously this observation is only valid for a certain range of r. When r gets large, the probability of bidder 1
dropping out increases. As a crude approximation, one can view this case as setting a monopoly price for bidder 1.
This approximation makes sense when r is not to small, since in this situation there is a great chance that bidder 2
does not bid, which results in bidder 1 paying the reserve price. The approximated revenue is then (1 − FZ (r)

)

⋅ r.
With x̄ = 1 and w̄ = 1, (1 − FZ (r)

)

⋅ r is an decreasing function in r for r > 1
3
.
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is close to zero. Since the seller’s expected revenue is the sum of the expected payments from
both bidders, it first increases with r then decreases.

One thing worth noting is the contrast between allocation efficiency and expected revenue.
As is shown previously, the allocation efficiency strictly decreases with r, while the expected
revenue increase with r when r is not too large. This seems to be a contradiction, as the main
reason that the expected revenue increases with r is from bidder 1’s increasing contribution.
But as the allocation efficiency is the measure of bidder 1’s winning probability, it is natural
to assume her expected payment would decrease when she is less likely to win. This can be
understood by viewing the expected payment as a form of weighted average of the probability
of winning. The reason that bidder 1 wins less often when r increases is there are situations in
which she has to drop out. But in those situations, the weighting factor – her payment – is small.
Therefore, an increase in r has very asymmetric impacts on allocation efficiency and bidder 1’s
expected payment.

Figure 2.26. Expected Revenue and Payments as r Changes (with x̄ = 1 and w̄ = 1)
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2.6. Conclusion

This paper studies a second price auctionwith a group of potentially budget-constrained busi-
ness insiders and a deep-pocketed investor whose limited knowledge has a negative impact on his
valuation. I find that the when the business insiders are very likely to be financially constrained,
the deep-pocketed investor is more eager to compete. Consequently, the expected revenue rises
as the insiders’ budgets slightly improve. However, if the insiders’ budgets improve significantly
and thus the insiders become less likely to be financially constrained, the deep-pocketed investor
bids more conservatively in fear of the winner’s curse. This is beneficial to the allocation ef-
ficiency but detrimental to the seller’s expected revenue. The latter is extremely severe when
the number of business insiders is small, as the existence of more business insiders can alleviate
the winner’s curse to some extend. One exception is when the outsider’s valuation depends on
the average of those of the insiders’. In this case, the presence of more insider only makes the
outsider bid more cautiously. This implies that aside from insiders’ budget, how the outsider’s
valuation is determined by the insiders’ is equally if not more important. The conclusions above
apply to the auction setting without a reserve price. If a reserve price is imposed, the allocation
efficiency decreases – the higher the reserve price, the lower the allocation efficiency. However,
the seller can expect an improvement in revenue by requiring a moderate reserve price. The
reason is that a reserve price has a deterrence effect on the deep-pocketed investor so that he
would not bid in the auction even if his optimal bid is equal to or slightly above the reserve price
level were the reserve price not exist. As a result, the reserve price has two contradicting effects
on the business insider. On the one hand, it is probable that she has to drop out because she is
not able to meet the reserve price. On the other hand, her chance of winning is improved in case
she can bid above the reserve price, as her opponent is deterred.
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CHAPTER 3

Appendix for Chapter One

3.1. Lifting restriction on “speculative” test taking.

In this section, we drop the assumption of t1 ≥ "1. Although it may be hard to justify any
possibility of learning about one’s ability by exerting only an infinitesimal amount of effort, this
discussion is nonetheless relevant, as it is common for people to try out their ability before full
committing themselves to a task. This type of “speculative” test taking need not to be discour-
aged in many settings in which the completion of the task is voluntary by nature. For example,
no country desires all its citizens to be NBA-qualified in their basketball skills. However, when
the completion of the task by everyone is essential, “speculative” test taking can be problematic
to the principal.

With r ≥ "N − "1,

Ufd(1; (r, b)) − Ufd(0; (r, b)) = p1b +
N
∑

j=M+1
pj(r − "j)

whereM = max{i ∶ "i ≤ r}. Hence, Ufd(1; (r, b)) > Ufd(0; (r, b)) if and only if

b >

∑N
j=M+1 pj("j − r)

p1

First, note that if r ≥ "N , the right-hand-side of the inequality above becomes 0, meaning
that any b > 0 will deter the “speculative” test taking. This is intuitive because the passing



197

reward in this case is large enough so that everyone will choose to pass the test anyway even if
they take the first test with infinitesimal amount of effort. They lose nothing by choosing t1 = "1
instead – only with the potential gain of saving the test fee if their ability is a1. Therefore, it is
tempting to modify the conditions in Proposition 2 and state that FBME is achievable if

(3.1) Ufd(1; ("N , B̄fd(1))) = "N −
N
∑

j=2
pjB̄

fd(1) −
N
∑

j=1
pj"j ≤ 0,

with B̄fd(1) = mini∈{2,...,N} �fd(1, i) just as before. Notice that the condition above is suffi-
cient but not necessary for FBME to be achievable, since to implement t1 = "1, we do not really
need r ≥ "N . Instead, obverse that for r ∈ ["N − "1, "N ), the smaller r is, the bigger b is needed
to deter speculative test taking. But this is exactly the same situation that we face when we try to
implement t1 = "i > "1. Increasing b to the largest extent without altering agents’ choice of t1 is
both beneficial for decreasing expenditure directly and for leaving more flexibility to the choice
of r. Therefore, b = B̄fd(1) is the (weakly) dominating choice of test fee for the principal. With
b = B̄fd(1), the passing reward has to satisfy

r ≥ R̂
fd
(1) ∶= max

{

"N − "1,max{r ∶ Ufd(1; (r, B̄fd(1))) = Ufd(0; (r, B̄fd(1)))}
}

.

With these observations, the following conclusion is immediate:

Proposition 16. With full-disclosing feedback policy and without restriction of t1 ≥ "1,

FBME is achievable if and only if

Ufd(1; (R̂
fd
(1), B̄fd(1))) = R̂

fd
(1) −

N
∑

j=2
pjB̄

fd(1) −
N
∑

j=1
pj"j ≤ 0.



198

Remark. Note that the condition stated in Proposition 16 is both necessary and sufficient.

In fact, R̂fd
(1) < "N for sure. That is, the principal never has to set the passing reward so large

that agents find it pointless to take a speculative test with infinitesimal amount of effort. To see

this, note that as long as r ≤ "N ,M < N for sure, and we need r >
∑N

j=M+1 pj"j − p1b
∑N

j=M+1 pj
to make

Ufd(1; (r, b)) > Ufd(0; (r, b)). Notice that

∑N
j=M+1 pj"j − p1b
∑N

j=M+1 pj
=

∑N
j=M+1 pj"j
∑N

j=M+1 pj
−

p1
∑N

j=M+1 pj
b < "N −

p1
∑N

j=M+1 pj
b < "N ,

which implies R̂fd
(1) = max

{

"N−"1,max{r ∶ Ufd(1; (r, B̄fd(1))) = Ufd(0; (r, B̄fd(1)))}
}

<

"N . Thus, the condition we find earlier (Equation 3.1), is indeed not necessary.

3.2. Example of t1 = "1 cheaper to implement than t1 = "2 even though

full-surplus-extraction is not possible with the former but possible with the latter.

LetN = 3 and

(a, x) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1 w.p. 0.3

9 w.p. 0.4

14 w.p. 0.3

.

Then

�fd(1, 2) =
p1("2 − "1)

p2
= 6,

�fd(1, 3) =
p1("3 − "1) + p2("3 − "2)

p2 + p3
= 59
7
,

�fd(2, 3) =
(p1 + p2)("3 − "2)

p3
= 35
3
.
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Then B̄fd(1) = 6, Rfd(1) = 13, and FBME is not feasible, since

Ufd(1; (Rfd(1), B̄fd(1))) = Rfd(1) − (p2 + p3)B̄fd(1) −
3
∑

j=1
pj"j = 0.7 > 0.

The minimum expenditure associated with t1 = "1 is EX(1; (Rfd(1), B̄fd(1))) = 8.8.
According to Proposition 3, t1 = "2 is implementable, as �fd(1, 2) < �fd(2, 3). Proposition

1.6 implies that full-surplus-extraction is possible with t1 = "2, which means the minimum
expenditure associated with t1 = "2 equals to (p1+p2)"2+p3"3 = 10.5, which is larger than that
is required when t1 = "1 is implemented.

3.3. Example of t1 = "2 cheaper to implement than t1 = "1.

LetN = 3 and

(a, x) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1 w.p. 0.4

6 w.p. 0.4

14 w.p. 0.2

.

Then

�fd(1, 2) =
p1("2 − "1)

p2
= 5,

�fd(1, 3) =
p1("3 − "1) + p2("3 − "2)

p2 + p3
= 14,

�fd(2, 3) =
(p1 + p2)("3 − "2)

p3
= 32.
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Then B̄fd(1) = 5, Rfd(1) = 13, and FBME is not feasible, since

Ufd(1; (Rfd(1), B̄fd(1))) = Rfd(1) − (p2 + p3)B̄fd(1) −
3
∑

j=1
pj"j = 4.4 > 0.

The minimum expenditure associated with t1 = "1 is EX(1; (Rfd(1), B̄fd(1))) = 10.
According to Proposition 3, t1 = "2 is implementable, as �fd(1, 2) < �fd(2, 3). Proposition

1.6 implies that full-surplus-extraction is possible with t1 = "2, which means the minimum
expenditure associated with t1 = "2 equals to (p1 + p2)"2 + p3"3 = 7.6, which is smaller than
that is required when t1 = "1 is implemented.

3.4. Finding all implementable test schedules

LetN = 5 and

(a, x) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1 w.p. 0.1

3 w.p. 0.25

5 w.p. 0.3

8 w.p. 0.25

9 w.p. 0.1

.
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(1) Calculate which test is to be skipped first, as b increases from zero.

B1|0,2 = 0.22;

B2|1,3 = 0.77;

B3|2,4 = 2.57;

B4|3,5 = 2.50.

When 0 ≤ b ≤ 0.22, {1, 2, 3, 4, 5} is implemented.
(2) SinceB1|0,2 is the smallest, the next test schedule that can be implemented is {2, 3, 4, 5}.

As b keeps increasing from 0.22, another test should be skipped. According to Lemma
3, having skipped "1 has no influence on the test on "3 or the test on "4, as they are not
adjacent to the skipped test. Therefore, one only needs to calculate

B2|0,3 = 1.08.

When 0.22 < b ≤ 1.08, {2, 3, 4, 5} is implemented.
(3) Since B2|0,3 is the smallest among B2|0,3, �md3|2,4 and B4|3,5, as b increases above 1.08, the

next test to be skipped is "2. However, based on Proposition ??, the agent has to check
whether he wants to take a test on "1, as a result of skipping the one on "2. However, as

B1|0,3 = 0.44 < 1.08,

it is not profitable to add back the test at "1. Therefore, the next test that can be
implemented is {3, 4, 5}. As b increases from 1.08, to find the test that is to be skipped
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next, in combination of Lemma 3, one only needs to calculate:

B3|0,4 = 5.57,

and compare it with B4|3,5. As B4|3,5 < B3|0,4, the next test to be skipped is "4, and test
schedule {3, 4, 5} is implemented by 1.08 < b ≤ 2.50.

(4) As b raises above 2.50, the test at "4 is skipped. To see what happens next, calculate:

B3|0,5 = 7.43.

Note that when "3 is skipped, the following calculations are required, according to
Proposition ??:

B1|0,5 = 0.89;

B2|0,5 = 3.23;

B4|0,5 = 9.00.

Since B4|0,5 > B3|0,5 = 7.43, the agent needs to solve for the test fee that makes him
indifferent between test schedule {3, 5} and test schedule {4, 5}:

�md({3, 5}, {4, 5}) = 6.80.

Hence, test schedule {3, 5} is implemented for 2.50 < b ≤ 6.80, while test schedule
{4, 5} is implemented for 6.80 < b ≤ 9.00. When b > 9.00, test schedule {5} becomes
optimal.
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The whole set of implementable test schedules is summarized below:

 ∗ =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

{1, 2, 3, 4, 5} 0 ≤ b ≤ 0.22

{2, 3, 4, 5} 0.22 < b ≤ 1.08

{3, 4, 5} 1.08 < b ≤ 2.50

{3, 5} 2.50 < b ≤ 6.80

{4, 5} 6.80 < b ≤ 9.00

{5} b > 9

.

This conclusion can be confirmed by graphing the ex-ante utility associated with each possi-
ble test schedule as a function of the test fee. The upper envelop consists of all the test schedules
that can be implemented.

Figure 3.1. Illustration of Implementable Test Schedules



204

3.5. Mathematical Details of Bundling aN−1 and aN .

Ex-ante expected utility of taking the first test at "i, and retake the test at "N−1 in case the
grade is gL′ is

U0(t1 = "i, t2|gL′ = "N−1) = r −

(

N−1
∑

j=i+1
pj + 2pN

)

b −

(

i
∑

j=1
pj

)

"i −
N
∑

j=i+1
pj"j .

Ex-ante expected utility of taking the first test at "i, and the agents with ability aN−1 and
those with aN get different grades at that point, assuming that the letter grade system is fine
enough so that no other agents get bundled together, is

U0(t1 = "i, no bundling) = r −
(

i
∑

j=1
pj

)

"i −
N
∑

j=i+1
pj
(

b + "j
)

.

The threshold test fee above which t1 = "i is preferred to t1 = "1 is

�
(

1, i|t2|gL′="N−1
)

=

∑i
j=1 pj

(

"i − "j
)

∑i
j=2 pj

in case that t2|gL′ = "N−1, or

�
(

1, i|no bundling
)

=

∑i
j=1 pj

(

"i − "j
)

∑i
j=2 pj + pN

in case that no failing agents are bundled with others.
As for the feasibility of FBME,

(1) If∑N−1
j=2 pj + 2pN ≥

pN
pN−1 + pN

, FBME is feasible when

(

N−1
∑

j=2
pj + 2pN

)

b̃ + p1"1 +
N
∑

j=2
pj"j ≥

pN−1
pN−1 + pN

("N−1 − "1) +
pN

pN−1 + pN
(b̃ + "N − "1),
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where b̃ = mini=2,...,N � (1, i).1

(2) If∑N−1
j=2 pj + 2pN <

pN
pN−1 + pN

, FBME is feasible when

p1"1 +
N
∑

j=2
pj"j ≥

pN−1
pN−1 + pN

("N−1 − "1) +
pN

pN−1 + pN
("N − "1),

or there exist b̃ ∈
[

0,min
{

b∗,mini=2,...,N � (1, i)
}

)

such that
(

N−1
∑

j=2
pj + 2pN

)

b̃ + p1"1 +
N
∑

j=2
pj"j ≥

pN−1
pN−1 + pN

("N−1 − "1) +
pN

pN−1 + pN
(b̃ + "N − "1),

where b∗ =
pN−1

pN−1 + pN
"N−1 +

pN
pN−1 + pN

"N − "1 −
∑N

i=1 pi"i

∑N−1
i=2 pi + 2pN −

pN
pN−1 + pN

.

3.6. Example of FBME Being Feasible with Letter-Grade but Not Feasible with

Full-Disclosing (N = 4, a2&a3 Bundle)

LetN = 4 and

(a, x) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

2 w.p. 0.3

3 w.p. 0.25

4 w.p. 0.15

7 w.p. 0.3

.

1Whether � (1, i) = �
(

1, i|t2|gL′="N−1
)

or � (1, i) = � (1, i|no bundling
) depends on i.
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Then

�fd(1, 2) =
p1("2 − "1)

p2
= 1.2,

�fd(1, 3) =
p1("3 − "1) + p2("3 − "2)

p2 + p3
= 2.125,

�fd(1, 4) =
p1("4 − "1) + p2("4 − "2) + p3("4 − "3)

p2 + p3 + p4
= 4.214,

B̄fd(1) = min{�fd(1, 2), �fd(1, 3), �fd(1, 4)} = 1.2,

Rfd(1) = "4 − "1 = 5,

Ufd (1; (Rfd(1), B̄fd(1))
)

= Rfd(1) −
4
∑

i=1
pi"i − (p2 + p3 + p4) ⋅ B̄fd(1) = 0.11 > 0,
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while

� lg(1, 2) =
p1("2 − "1)
p2 + p3 − p4

= 3,

� lg(1, 3) =
p1("3 − "1) + p2("3 − "2)

p2 + 2p3
= 1.545,

� lg(1, 4) =
p1("4 − "1) + p2("4 − "2) + p3("4 − "3)

p2 + 2p3 + p4
= 3.4706,

� lg(2, 3|{"1, g1}) =
p2("3 − "2)

p3
= 1.667

� lg(3, 4|{"2, g1}) =
p3("4 − "3)

p4
= 1.5

)U lg (1; (r, b))
)b

= p2 + 2p3 + p4 = 0.85

)V lg
(

{"1, g1}
)

)b
=

p3
p2 + p3

= 0.375 < 0.85

B̄lg(1) = min{� lg(1, 2), � lg(1, 3), � lg(1, 4), � lg(2, 3|{"1, g1}), � lg(3, 4|{"2, g1})} = 1.5,

Rlg(1) = "4 − "1 = 5,

U lg (1; (Rlg(1), B̄lg(1))
)

= Rlg(1) −
4
∑

i=1
pi"i − (p2 + 2p3 + p4) ⋅ B̄lg(1) = −0.325 < 0.

Thus, FBME is possible with a letter-grade system but not possible with full-disclosing.
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3.7. Example of FBME Being Feasible with Letter-Grade but Not Feasible with

Full-Disclosing nor Minimal-Disclosing (N = 4, a3&a4 Bundle)

LetN = 4 and

(a, x) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

1.5 w.p. 0.2

2 w.p. 0.3

3 w.p. 0.3

6.25 w.p. 0.2

.

Then

�fd(1, 2) =
p1("2 − "1)

p2
= 0.333,

�fd(1, 3) =
p1("3 − "1) + p2("3 − "2)

p2 + p3
= 1,

�fd(1, 4) =
p1("4 − "1) + p2("4 − "2) + p3("4 − "3)

p2 + p3 + p4
= 4,

B̄fd(1) = min{�fd(1, 2), �fd(1, 3), �fd(1, 4)} = 0.333,

Rfd(1) = "4 − "1 = 4.75,

Ufd (1; (Rfd(1), B̄fd(1))
)

= Rfd(1) −
4
∑

i=1
pi"i − (p2 + p3 + p4) ⋅ B̄fd(1) = 1.433 > 0,
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and

�md({1, 2, 3, 4}, {2, 3, 4}) =
p1("2 − "1)
p2 + p3 + p4

= 0.125,

�md({1, 2, 3, 4}, {1, 3, 4}) =
p2("3 − "2)
p3 + p4

= 0.6,

�md({1, 2, 3, 4}, {1, 2, 4}) =
p3("4 − "3)

p4
= 4.875,

)Umd ({1, 2, 3, 4}; (r, b))
)b

= p2 + 2p3 + 3p4 = 1.5

)V md ({2, 3, 4}; (r, b))
)b

=
p3

p2 + p3 + p4
+

2p4
p2 + p3 + p4

= 0.875 < 1.5

)V md ({3, 4}; (r, b))
)b

=
p4

p3 + p4
= 0.4 < 1.5

B̄md(1) = min{�md(1, 2), �md(1, 3), �md(1, 4)} = 0.125,

Rmd(1) = 3.25

Umd (1; (Rmd(1), B̄md(1))
)

= Rmd(1) −
4
∑

i=1
pi"i − (p2 + 2p3 + 3p4) ⋅ B̄md(1) = 0.0125 > 0.
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Assuming that for all s1 such that S(a3, "1) < s1 ≤ S(a2, "1), one has S(a4, "2) < s1 ≤

S(a3, "2), then

� lg(1, 2) =
p1("2 − "1)
p2 + p4

= 0.2,

� lg(1, 3) =
p1("3 − "1) + p2("3 − "2)

p2 + p3 + p4
= 0.75,

� lg(1, 4) =
p1("4 − "1) + p2("4 − "2) + p3("4 − "3)

p2 + p3 + 2p4
= 3.2,

� lg(3, 4|{"1, g2}) =
p3("4 − "3)

p4
= 4.875

)U lg (1; (r, b))
)b

= p2 + p3 + 2p4 = 1

)V lg
(

{"1, g2}; (r, b)
)

)b
=

p4
p3 + p4

= 0.4 < 1

B̄lg(1) = min{� lg(1, 2), � lg(1, 3), � lg(1, 4), � lg(3, 4|{"1, g2})} = 0.2,

Rlg(1) = 3.25,

U lg (1; (Rlg(1), B̄lg(1))
)

= Rlg(1) −
4
∑

i=1
pi"i − (p2 + p3 + 2p4) ⋅ B̄lg(1) = 0.

If there exists s1 such that S(a3, "2) < s1 ≤ S(a2, "1), then

� lg(1, 2) =
p1("2 − "1)

p2
= 0.333,

B̄lg(1) = 0.333,

Rlg(1) = 3.25,

U lg (1; (Rlg(1), B̄lg(1))
)

= Rlg(1) −
4
∑

i=1
pi"i − (p2 + p3 + 2p4) ⋅ B̄lg(1) = −0.133 < 0.

In both cases, FBME is feasible under a letter-grade system.
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3.8. Brief Discussion on Random Grade Generating System.

As has been shown in Proposition 13, any effort level that triggers a belief-updating once a
test is taken is a candidate for the agent’s test taking agenda. This inevitably introduces extra
constraints on the test fee that are hard to keep track of. However, these constrains only emerge
when the principal tries to raise the test fee. If the test fee is set to be zero, then there is no down-
side for an agent to take as many tests as he wants. The principal’s job transforms into designing
the grade generating system that induces the agents to keep working by simply reshaping their
beliefs along the way.
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CHAPTER 4

Appendix for Chapter Two

4.1. Derivation of Equation 2.3

The expected net profit for bidder 2 with signal S = s and bid b is

Π(b, s) =FZ(b) ⋅ (E[v(X,S)|Z < b, S = s] − E[Z|Z < b])

=FZ(b) ⋅ (E[XS|Z < b, S = s] − E[Z|Z < b])

=FZ(b) ⋅ (E[X|Z < b] ⋅ s − E[Z|Z < b])

(4.1)

with FZ(b) being bidder 2’s probability of winning with bid b, E[v(X,S)|Z < b, S = s]

being his expected valuation for the object conditional on winning, andE[Z|Z < b] his expected
payment when he wins. The last equality of Equation 2.3 uses the assumption thatS and (X,W )

are independently distributed.
To derive FX(x|Z < b), the cumulative distribution function of X conditional on Z < b,

note that if 0 ≤ x < b, the condition Z < b is automatically satisfied for all w ∈ [0, w̄]. Hence,
for 0 ≤ x < b,

FX(x|Z < b) = 1
FZ(b) ∫

w̄

0 ∫

x

0
f (x,w)dx, dw =

FX(x)
FZ(b)

.
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If b ≤ x < x̄, the condition of Z < b is equivalent toW < b. Hence, for b ≤ x < x̄,

FX(x|Z < b) =FX(b|Z < b) + 1
FZ(b) ∫

x

b ∫

b

0
f (x,w)dwdx

=
FX(b) +

[

FX(x) − FX(b)
]

FW (b)
FZ(b)

.

The cases with x < 0 and x > x̄ are trivial. Therefore,

FX(x|Z < b) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

0 x < 0

FX(x)
FZ(b)

0 ≤ x < b

FX(b) +
[

FX(x) − FX(b)
]

FW (b)
FZ(b)

b ≤ x < x̄

1 x ≥ x̄

.

E[X|Z < b] can then be calculated as

E[X|Z < b] = ∫

x̄

0
xdFX(x|Z < b) = 1

FZ(b)

(

∫

b

0
xfX(x)dx + FW (b)∫

x̄

b
xfX(x)dx

)

.

The term E[Z|Z < b] in Equation 4.1 can be easily computed as

E[Z|Z < b] = 1
FZ(b) ∫

b

0
zdFZ(z)

= 1
FZ(b) ∫

b

0
z ⋅

[(

1 − FW (z)
)

⋅ fX(z) +
(

1 − FX(z)
)

⋅ fW (z)
]

dz.
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Using the results above, bidder 2’s expected net profit can be written as1

Π(b, s) =FZ(b) ⋅
{

1
FZ(b)

(

∫

b

0
xfX(x)dx + FW (b)∫

x̄

b
xfX(x)dx

)

⋅ s

− 1
FZ(b) ∫

b

0
z ⋅

[(

1 − FW (z)
)

⋅ fX(z) +
(

1 − FX(z)
)

⋅ fW (z)
]

dz
}

=
(

∫

b

0
xfX(x)dx + FW (b)∫

x̄

b
xfX(x)dx

)

⋅ s

− ∫

b

0
z ⋅

[(

1 − FW (z)
)

⋅ fX(z) +
(

1 − FX(z)
)

⋅ fW (z)
]

dz.

(4.2)

4.2. Proof of Corollary 15.1

Property 1. See Lemma 5.

Property 2. When w̄ < x̄, �(s, x̄, w̄) = min{x̄, w̄} for all s ∈
[ 2w̄
x̄ + w̄

, 1
]

, and therefore the

property holds. When w̄ ≥ x̄,

lim
s→1

�(s, x̄, w̄) = lim
s→1

(1 − s)w̄ + x̄ −
√

[(1 − s)w̄ + x̄]2 − (4 − 3s)sx̄2

4 − 3s
= x̄ = min{x̄, w̄}.

Property 3.

lim
s→0

�(s, x̄, w̄) = lim
s→0

(1 − s)w̄ + x̄ −
√

[(1 − s)w̄ + x̄]2 − (4 − 3s)sx̄2

4 − 3s
= 0.

Property 4. When x̄ ≤ w̄,

�(s, x̄, w̄) =
(1 − s)w̄ + x̄ −

√

[(1 − s)w̄ + x̄]2 − (4 − 3s)sx̄2

4 − 3s
= x̄ = min{x̄, w̄} for s ∈ [0, 1].

1With the assumption that (X,W ) has uniform density on [0, x̄] × [0, w̄], one has
Π(b, s) = 4 − 3s

6w̄x̄
⋅ b3 −

(1 − s)w̄ + x̄
2w̄x̄

⋅ b2 + sx̄
2w̄

⋅ b.
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And

)�(s, x̄, w̄)
)x̄

= 1
4 − 3s

(

1 −
[(1 − s)w̄ + x̄] − (4 − 3s)sx̄

√

[(1 − s)w̄ + x̄]2 − (4 − 3s)sx̄2

)

= 1
4 − 3s

(

1 − 1
(1 − s)w̄ + x̄

⋅
[(1 − s)w̄ + x̄]2 − (4 − 3s)sx̄2 − (4 − 3s)(1 − s)sx̄w̄

√

[(1 − s)w̄ + x̄]2 − (4 − 3s)sx̄2

)

> 1
4 − 3s

(

1 − 1
(1 − s)w̄ + x̄

⋅
[(1 − s)w̄ + x̄]2 − (4 − 3s)sx̄2
√

[(1 − s)w̄ + x̄]2 − (4 − 3s)sx̄2

)

= 1
4 − 3s

⎛

⎜

⎜

⎜

⎜

⎝

1 −

√

[(1 − s)w̄ + x̄]2 − (4 − 3s)sx̄2

(1 − s)w̄ + x̄
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

<1

⎞

⎟

⎟

⎟

⎟

⎠

> 0.

When x̄ > w̄,
)�(s, x̄, w̄)

)x̄
> 0 for s ∈

[

0, 2w̄
x̄ + w̄

)

using the same calculation as above, and

�(s, x̄, w̄) = min{x̄, w̄} remains the same for s ∈
[ 2w̄
x̄ + w̄

, 1
]

as x̄ increases.

Property 5. When w̄ < x̄, �(s, x̄, w̄) = min{x̄, w̄} remains the same for s ∈
[ 2w̄
x̄ + w̄

, 1
]

as

w̄ increases (note that s∗(x̄, w̄) = 2w̄
x̄ + w̄

changes with w̄.), whereas for s ∈
[

0, 2w̄
x̄ + w̄

)

,

)�(s, x̄, w̄)
)w̄

= 1 − s
4 − 3s

[

1 −
(1 − s)w̄ + x̄

√

[(1 − s)w̄ + x̄]2 − (4 − 3s)sx̄2

]

< 0.

When w̄ ≥ x̄,
)�(s, x̄, w̄)

)w̄
< 0 based on the same calculation as above, for all s ∈ [0, 1].

In fact, it is easy to verify that limw̄→∞ �(s, x̄, w̄) = 0, which is intuitive, as w̄ → ∞ while

maintaining the assumption of w has uniform distribution on [0, w̄] implies that the probability

that the group  is budget-constrained is zero. Any winning by the group brings a loss to him.
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4.3. Derivation of Equation 2.12 and Equation 2.13

Plugging �(s) into Equation 2.11 directly yields:

EP ex ante
1

= ∫

min{x̄,w̄}

0

(

∫

�−1(z)

0
�(s)ds

)

dFZ(z)

= ∫

min{x̄,w̄}

0

(

∫

2(x̄+w̄−2z)z
x̄2+2w̄z−3z2

0

(1 − s)w̄ + x̄ −
√

[(1 − s)w̄ + x̄]2 − (4 − 3s)sx̄2

4 − 3s
ds

)

x̄ + w̄ − 2z
x̄w̄

dz.

However, the integration above is hard to solve. Fortunately, the special relation between
the integrand and the upper limit enables one to transform the integral into a workable form:

EP ex ante
1 = ∫

min{x̄,w̄}

0

(

∫

�−1(z)

0
�(s)ds

)

dFZ(z)

= ∫

min{x̄,w̄}

0

(

∫

z

0

[

�−1(z) − �−1(y)
]

dy
)

dFZ(z)

= ∫

min{x̄,w̄}

0

[

∫

z

0

(

2(x̄ + w̄ − 2z)z
x̄2 + 2w̄z − 3z2

−
2(x̄ + w̄ − 2y)y
x̄2 + 2w̄y − 3y2

)

dy
]

x̄ + w̄ − 2z
x̄w̄

dz

It can be calculated that:

∫

z

0

(

2(x̄ + w̄ − 2z)z
x̄2 + 2w̄z − 3z2

−
2(x̄ + w̄ − 2y)y
x̄2 + 2w̄y − 3y2

)

dy

=
2z2 (w̄ + x̄ − 2z)
x̄2 + 2w̄z − 3z2

− 4z
3
+ 1
9
(w̄ − 3x̄) log

(

x̄2

x̄2 + 2w̄z − 3z2

)

+
2
(

w̄2 − 3w̄x̄ + 6x̄2
)

9
√

w̄2 + 3x̄2

[

arctan

(

w̄
√

w̄2 + 3x̄2

)

− arctan

(

w̄ − 3z
√

w̄2 + 3x̄2

)]

.
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Further calculation shows that if x̄ ≤ w̄,

∫

min{x̄,w̄}

0 ∫

z

0

(

2(x̄ + w̄ − 2z)z
x̄2 + 2w̄z − 3z2

−
2(x̄ + w̄ − 2y)y
x̄2 + 2w̄y − 3y2

)

dyfZ(z)dz

=

(

w̄2 − 3w̄x̄ + 6x̄2
)

(

w̄ + 3x̄ +
√

w̄2 + 3x̄2
)

81w̄x̄
ln

(

3x̄ − w̄ +
√

w̄2 + 3x̄2

−w̄ +
√

w̄2 + 3x̄2

)

+

(

w̄2 − 3w̄x̄ + 6x̄2
)

(

w̄ + 3x̄ −
√

w̄2 + 3x̄2
)

81w̄x̄
ln

(

−3x̄ + w̄ +
√

w̄2 + 3x̄2

w̄ +
√

w̄2 + 3x̄2

)

+
2
(

w̄4 − 9w̄2x̄2 + 18w̄x̄3 − 90x̄4
)

81w̄x̄
√

w̄2 + 3x̄2

[

arctan

(

w̄ − 3x̄
√

w̄2 + 3x̄2

)

− arctan

(

w̄
√

w̄2 + 3x̄2

)]

−
(w̄ − 3x̄)

(

w̄2 + 15x̄2
)

81w̄x̄
ln
(

2 (w̄ − x̄)
x̄

)

+
x̄ (w̄ − 15x̄)

9w̄
.

If w̄ < x̄, then

∫

min{x̄,w̄}

0 ∫

z

0

(

2(x̄ + w̄ − 2z)z
x̄2 + 2w̄z − 3z2

−
2(x̄ + w̄ − 2y)y
x̄2 + 2w̄y − 3y2

)

dyfZ(z)dz

=

(

w̄2 − 3w̄x̄ + 6x̄2
)

(

w̄ + 3x̄ +
√

w̄2 + 3x̄2
)

81w̄x̄
ln

(

2w̄ +
√

w̄2 + 3x̄2

−w̄ +
√

w̄2 + 3x̄2

)

+

(

w̄2 − 3w̄x̄ + 6x̄2
)

(

w̄ + 3x̄ −
√

w̄2 + 3x̄2
)

81w̄x̄
ln

(

−2w̄ +
√

w̄2 + 3x̄2

w̄ +
√

w̄2 + 3x̄2

)

−
2
(

w̄4 − 9w̄2x̄2 + 18w̄x̄3 − 90x̄4
)

81w̄x̄
√

w̄2 + 3x̄2

[

arctan

(

2w̄
√

w̄2 + 3x̄2

)

+ arctan

(

w̄
√

w̄2 + 3x̄2

)]

−
(w̄ − 3x̄)

(

w̄2 + 15x̄2
)

81w̄x̄
ln
(

x̄2 − w̄2

x̄2

)

− 3w̄
2 − 13w̄x̄ + 24x̄2

9x̄
.
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4.4. Derivation of Equation 2.19 and 2.20

E[vI (X1, ...XN )|Y < b]

=E[X(1)|Y < b]

= N
FY (b) ∫

x̄

0 ∫

x1

0
...∫

x1

0
x1

[

N
∏

i=1

(

I
{

xi < b
}

⋅ fX(xi) + I
{

xi ≥ b
}

⋅ fX(xi) ⋅ FW (b)
)

]

dx2...dxN ⋅ dx1

= N
FY (b)

{

∫

b

0
x1

[

N
∏

i=2

(

∫

x1

0
fX(xi)dxi

)

]

fX(x1)dx1

+∫

x̄

b
x1

[

N
∏

i=2

(

∫

b

0
fX(xi)dxi + ∫

x1

b
fX(xi)FW (b)dxi

)

]

fX(x1)FW (b)dx1

}

= N
FY (b)

{

∫

b

0
x1

[

FX(x1)
]N−1 fX(x1)dx1

+∫

x̄

b
x1

[

FX(b) +
(

FX(x1) − FX(b)
)

FW (b)
]N−1 fX(x1)FW (b)dx1

}

.

Therefore,

ΠI (b, s)

=FY (b) ⋅
(

E[X(1)|Y < b] ⋅ s − E[Y |Y < b]
)

=N
(

s∫

b

0
xfX(x)[FX(x)]N−1dx + s∫

x̄

b
xfX(x)FW (b)[FX(b) + (FX(x) − FX(b))FW (b)]N−1dx

−∫

b

0
z[FZ(z)]N−1fZ(z)dz

)

,
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and
)
)b
ΠI (b, s)

=sNbfX(b)
[

FX(b)
]N−1 [1 − FW (b)

]

+ sN ∫

x̄

b
x
(

(N − 1)fX(x)FW (b)
[

FX(b) + (FX(x) − FX(b))FW (b)
]N−2

⋅
[

fX(b) + (FW (x) − FX(b))fW (b) − fX(b)FW (b)
]

+ fX(b)fW (b)
[

FX(b) + (FX(x) − FX(b))FW (b)
]N−1

)

dx −Nb
[

FZ(b)
]N−1 fZ(b)

=s

⎛

⎜

⎜

⎜

⎜

⎜

⎝

NbfX(b)
[

FX(b)
]N−1 [1 − FW (b)

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Marginal gain if X(1) = Y = b

+∫

x̄

b
x
)fX(1)|Y <b(x)

)b
dx

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Marginal gain if X(1) > Y = b

⎞

⎟

⎟

⎟

⎟

⎟

⎠

−Nb
[

FZ(b)
]N−1 fZ(b)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Marginal cost

=
Nsw̄N+1bN−1 − (N + 1)sw̄NbN + (x̄ + w̄ − b)N−1

[

N(N − s + 1)bN+1 +Ns(w̄ −Nx̄)bN
]

(N + 1)x̄Nw̄N

−
(x̄ + w̄ − b)N

[

(N + 1)(N − s)bN +Ns(w̄ −Nx̄)bN−1
]

(N + 1)x̄Nw̄N .
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4.5. Derivation of Equation 2.23 and 2.24

E[vII (X1, ...XN )|Y < b]

=E[X(2)|Y < b]

= N
FY (b) ∫

x̄

0
(N − 1)

{

∫

x̄

x1

[

∫

x1

0
...∫

x1

0
x1

(

N
∏

i=1

(

I
{

xi < b
}

⋅ fX(xi)

+ I
{

xi ≥ b
}

⋅ fX(xi) ⋅ FW (b)

)

⋅ dx3...dxN

]

⋅ dx2

}

dx1

=
N(N − 1)
FY (b)

{

∫

b

0
x1

[

∫

b

x1

N
∏

i=3

(

∫

x1

0
fX(xi)dxi

)

fX(x2)dx2

+∫

x̄

b

N
∏

i=3

(

∫

x1

0
fX(xi)dxi

)

fX(x2)FW (b)dx2

]

fX(x1)dx1

+ ∫

x̄

b
x1 ∫

x̄

x1

N
∏

i=3

(

∫

b

0
fX(xi)dxi + ∫

x1

b
FW (b)fX(xi)dxi

)

fX(x2)FW (b)dx2fX(x1)FW (b)dx1

= N
FY (b) ∫

x̄

0 ∫

x1

0
...∫

x1

0
x1

[

N
∏

i=1

(

I
{

xi < b
}

⋅ fX(xi) + I
{

xi ≥ b
}

⋅ fX(xi) ⋅ FW (b)
)

]

dx2...dxN ⋅ dx1

=
N(N − 1)
FY (b)

{

∫

b

0
x
[

FX(x)
]N−2 (FX(b) − FX(x) + FW (b)

[

1 − FX(b)
] )

fX(x)dx

+ ∫

x̄

b
x
[

FX(b) + FW (b)
(

FX(x) − FX(b)
)]N−2 [FW (b)

]2 [1 − FX(x)
]

fX(x)dx
}

.
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Therefore,

ΠII (b, s) = FY (b) ⋅
(

E[X(2)|Y < b] ⋅ s − E[Y |Y < b]
)

= N(N − 1)s
{

∫

b

0
x
[

FX(x)
]N−2 (FX(b) − FX(x) + FW (b)

[

1 − FX(b)
] )

fX(x)dx

+ ∫

x̄

b
x
[

FX(b) + FW (b)
(

FX(x) − FX(b)
)]N−2 [FW (b)

]2 [1 − FX(x)
]

fX(x)dx
}

−N ∫

b

0
z
[

FZ(z)
]N−1 fZ(z)dz

WhenN = 2,
)
)b
ΠII (b, s) ∣N=2

= 2s
{

[

1 − FX(b)
]

FW (b)
[

1 − FW (b)
]

fX(b)b
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Marginal gain if X(2) = Y = b

+2FW (b)fW (b)∫

x̄

b
x
[

1 − FX(x)
]

fX(x)dx
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Marginal gain if X(2) > Y = b

+
[(

1 − FW (b)
)

fX(b) +
(

1 − FX(b)
)

fW (b)
]

∫

b

0
xfX(x)dx

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Marginal gain if X(2) < Y = b

}

− 2FZ(b)fZ(b)b
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

Marginal cost

= b
x̄2w̄2

[

4(x̄ + w̄)
(3
2
− s

)

b2 −
(

4 − 10
3
s
)

b3 −
[

w̄2(2 − s) + x̄w̄(4 − 3s) + 2x̄2
]

b + 2
3
x̄3s

]

.
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WhenN ≥ 3,
)
)b
ΠII (b, s) ∣N≥3

= sN(N − 1)
{

[

1 − FX(b)
]

FW (b)
[

1 − FW (b)
] [

FX(b)
]N−2 fX(b)b

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Marginal gain if X(2) = Y = b

+
[(

1 − FW (b)
)

fX(b) +
(

1 − FX(b)
)

fW (b)
]

∫

b

0
x
[

FX(x)
]N−2 fX(x)dx

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Marginal gain if X(2) < Y = b

+ 2FW (b)fW (b)∫

x̄

b
x
[

FX(b) + FW (b)
(

FX(x) − FX(b)
)]N−2 [1 − FX(x)

]

fX(x)dx
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Marginal gain if X(2) > Y = b

+ (N − 2)
[

FW (b)
]2

∫

x̄

b
x
[

FX(b) + FW (b)
(

FX(x) − FX(b)
)]N−3 [fW (b)

(

FX(x) − FX(b)
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Marginal gain if X(2) > Y = b

+ fX(b)
(

1 − FW (b)
)] [

1 − FX(x)
]

fX(x)dx
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Marginal gain if X(2) > Y = b

}

−N
[

FZ(b)
]N−1 fZ(b)b

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Marginal cost

=
(x̄ + w̄ − b)N−1bN−1

(N + 1)x̄Nw̄N

[

N2(x̄ + w̄ − 2b)(x̄s − b) + 2s(x̄ + w̄ − b)b

−N
[

(1 − 2s)b + (2w̄ + x̄)s
]

(x̄ + w̄ − 2b)
]

+ sbN−1

(N + 1)x̄Nw̄

[

(N + 1)(N + 2)b2

− (N + 1)
[

(N + 1)x̄ + (N + 3)w̄
]

b +N
[

(N + 1)x̄ + 2w̄
]

w̄
]
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4.6. Derivation of Equation 2.27 and 2.28

E[vIII (X1, ...XN )|Y < b]

=E[ 1
N

N
∑

i=1
Xi|Y < b]

=E[X1|Y < b]

=∫

b

0
x ⋅

fX(x)
FZ(b)

dx + ∫

x̄

b
x ⋅

FW (b)fX(x)
FZ(b)

dx.

Therefore,

ΠIII (b, s) =FY (b) ⋅

(

E[ 1
N

N
∑

i=1
Xi|Y < b] ⋅ s − E[Y |Y < b]

)

=s
[

FZ(b)
]N−1

∫

b

0
xfX(x)dx + sFW (b)

[

FZ(b)
]N−1

∫

x̄

b
xfX(x)dx

−N ∫

b

0
z
[

FZ(z)
]N−1 fZ(z)dz,
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and
)
)b
ΠIII (b, s)

= s
[

1 − FW (b)
] [

FZ(b)
]N−1 fX(b)b

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Marginal gain if X1 = Y = b

+ (N − 1)sFW (b)
[

FZ(b)
]N−2 fZ(b)∫

x̄

b
xfX(x)dx + sfW (b)

[

FZ(b)
]N−1

∫

x̄

b
xfX(x)dx

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Marginal gain if X1 > Y = b

+ (N − 1)s
[

FZ(b)
]N−2 fZ(b)∫

b

0
xfX(x)dx

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Marginal gain if X1 < Y = b

−N
[

FZ(b)
]N−1 fZ(b)b

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Marginal cost

=
(x̄ + w̄ − b)N−2bN−1

2x̄Nw̄N

{

[

2N(s − 2) + s
]

b3 +
[

N
[

6x̄ + 6w̄ − (x̄ + 3w̄)s
]

− 2(x̄ + w̄)s
]

b2

+
[

N
[

(2x̄ + w̄)(w̄ − x̄)s − 2(x̄ + w̄)2
]

+ (x̄2 + x̄w̄ + w̄2)s
]

b +N(x̄ + w̄)x̄2s
}

.
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4.7. Efficiency without the Group O Bidder

ℙ{(Zi < Zm) ∩ (Xi < Xm) ∀ i ≠ m}

=I{Wm ≥ Xm} ⋅

⎛

⎜

⎜

⎜

⎝

ℙ{Zi < Zm ∣ Xi < Xm}
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=1

⋅ℙ{Xi < Xm}
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

=FX (Xm)

⎞

⎟

⎟

⎟

⎠

N−1

+ I{Wm < Xm} ⋅

⎛

⎜

⎜

⎜

⎜

⎜

⎝

ℙ{Zi < Zm ∣ Xi < Xm}
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
= FX (Wm)+[FW (Xm)−FX (Wm)]⋅FW (Wm)

FX (Xm)

⋅ℙ{Xi < Xm}
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

=FX (Xm)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

N−1

=I{Wm ≥ Xm} ⋅
[

FX(Xm)
]N−1

+ I{Wm < Xm} ⋅
{

FX(Wm) + [FW (Xm) − FX(Wm)] ⋅ FW (Wm)
}N−1 .

The ex ante expected allocation efficiency is thus

Efficientyex ante

=I{x̄ ≥ w̄} ⋅
(

N ∫

w̄

0

{

∫

w

0

[

FX(x)
]N−1 dFX(x)

+ ∫

x̄

w

{

FX(w) +
[

FX(x) − FX(w)
]

FW (w)
}N−1 dFX(x)

}

dFW (w)
)

+ I{x̄ < w̄} ⋅
(

N ∫

x̄

0

{

∫

w̄

x

[

FX(x)
]N−1 dFW (w)

+ ∫

x

0

{

FX(w) +
[

FX(x) − FX(w)
]

FW (w)
}N−1 dFW (w)

}

dFX(x)
)

.
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