
NORTHWESTERN UNIVERSITY

Investigating student self-perceptions during the programming process

A DISSERTATION

SUBMITTED TO THE GRADUATE SCHOOL
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

for the degree

DOCTOR OF PHILOSOPHY

Field of Computer Science and Learning Sciences

By
Jamie Sarah Gorson

EVANSTON, IL

August 2022

2

©Copyright by Jamie Sarah Gorson

2022 All Rights Reserved

3

ABSTRACT

While there is high demand for university computer science (CS) courses, students often strug-

gle when learning to program. Prior work has identified that student perceptions of their program-

ming ability may contribute to these challenges. For example, studies show that students often

perceive that they do not belong, are not capable of succeeding, or are performing poorly in CS.

In this dissertation, I investigated the student experience working on programming problems and

how these experiences influenced student perceptions of their programming ability. While prior

studies have investigated the application of mindset and self-efficacy theories in CS, we do not

currently know much about how students make self-evaluations while working on programming

problems and how their perceptions of programming intelligence impacts their programming ex-

periences. To address this gap, I first explored how students talk about programming intelligence.

In doing so, I identified the criteria that students used to evaluate their programming ability. Since

many of these criteria relate to particular moments in the programming session, I next investi-

gated if students feel like they are performing poorly when they encounter those moments. Thus,

I identified a list of moments during a programming session where some students make negative

self-assessments. I then conducted follow-up analyses to investigate two potential explanations

for why students feel poorly during those moments. To build a tool for automatically identifying

the moments that cause students to feel like they are performing poorly, I developed a method-

ology for creating automated detection systems based on student perceptions. Finally, I explored

the events that trigger students to have emotional reactions while programming in order to better

understand how students experience working on programming problems. From my dissertation

research, we have a better understanding of how students experience the programming process

and how students develop their perceptions of programming ability, particularly while working on

programming problems. From this work, I make four types of contributions: practical, concep-

tual, methodological, and technological. Specifically, I contribute the start to a new framework for

understanding how students evaluate themselves while programming, providing new insights and

4

tools to understand the student programming experience. I provide a list of moments when stu-

dents negatively self-assess during programming and show that students who report to negatively

self-assess at more of these moments tend to have lower self-efficacy. In addition, I contribute new

methods that can be used to further our understanding of student perceptions of their programming

experiences. Finally, I further our understanding of events that cause novices to experience emo-

tions while programming and demonstrate that patterns from physiological data sources can help

to represent student experience. These contributions help instructors of CS programs, CS educa-

tion researchers, and designers of interventions to better support university students’ self-efficacy,

persistence, and performance as they learn to program.

5

ACKNOWLEDGEMENTS

In the process of reflecting on my six-year graduate school journey, there are many people who

played important roles that I wish to acknowledge and thank.

First, my adviser, Dr. Nell O’Rourke. The passion and care that you put into mentoring students

comes through on a daily basis. Throughout my graduate school journey, you have taught me about

more than just research. Particularly, I appreciate all of you mentorship on my writing, whether

it was feedback on many practice papers or co-writing conference submissions, you have taught

me to be a much more eloquent and articulate writer. Thank you for being the model, mentor and

friend that I have looked up to for the past 5 years and I only hope that we can stay close for many

years to follow.

Thank you to my committee members, Dr. Michael Horn, Dr. Marcelo Worsely, and Dr.

Mark Guzdial. You each deeply inspire me with your work and the innovation that you bring

to the research community. Thank you for supporting my research with feedback, insights, and

encouragement.

Thank you to the other innovative leaders of the Delta Lab: Dr. Matt Easterday, Dr. Haoqi

Zhang, and Dr. Liz Gerber. Your mentorship, feedback, and leadership pushes me to be a better

researcher and community member.

Thank you for all of the feedback, encouragement and collaboration from my colleagues in

Nell’s SIG: Garrett Hedman, Harrison Kwik, Gobi Dasu, Nick LaGrassa, and Dr. Katie Cunning-

ham, Thank you to my supportive and thoughtful peers in the Delta Lab: Dr, Emily Harburg, Dr.

Dan Rees Lewis, Dr. Julie Hui, Dr. Eureka Foong, Dr. Yongsung Kim, Dr. Spencer Carlson,

Ryan Louie, Kristine Lu, Kapil Garg, Gus Umbelino, and Evey Huang. I want to especially thank

Leesha Maliakal Shah for being with me from day 1 of graduate school all the way until the end.

I looked forward to our weekly meetings and am grateful for your encouragement, feedback, and

friendship. Thank you to the undergraduate students who have worked with me in the past few

years, Cindy Hsinyu Hu, Elise Lee, Ava Marie Robinson, and Yaurie Hwang. Your contributions

6

to my work have helped me to do great research.

Thank you to the Northwestern Staff, both in the Computer Science and Learning Science

departments who have cared about me throughout my time in graduate school. Thank you to Dr.

Uri Wilensky and Dr. Mike Horn for creating and leading the CS+LS program. I could not imagine

a program that better fit my interests. I appreciate your efforts in putting the program together and

creating such a fantastic community around it.

Thank you to the welcoming community in EngEDU at Google, including Dr. Phil Nova,

Diana Gage, Maia Deutsch, my Grasshopper teammates, Nicole Le, Darla Sharp, and many more.

I especially want to thank Dr. Kyle Jennings and Dr. Chris Stephenson for advocating for me to

join Google. I am grateful for your faith in me and support in achieving my goals. I look forward

to returning and continuing to apply my research skills and experiences with such an impactful

group.

Thank you the Chicago communities that I have joined over the last six years. From the fitness

world to the Jewish community, the friendships and encouragement that I have found from being a

part of these communities have kept me going.

Thank you to the National Science Foundation Graduate Research Program Fellowship for

funding my research and believing in me as a rising researcher.

Most importantly thanks to my family. To my siblings, Michelle and Eric, thank you for being

my biggest cheerleaders, friends, support system, and adventure buddies in the last few years.

While the pandemic turned our world upside down, I will forever be grateful for the opportunity

that we had to live together as adults and that we continue to be as close as always. Kaylee - thank

you for seamlessly joining our family and being with us through the ups and downs of the last few

years. To my in-laws and brother-in-law, Julie, Howard and Steven. Thank you for welcoming

me into your family with open arms. Your excitement for me finishing the PhD is unrivaled and

I have loved getting to share my journey with you each step of the way. To my Mom, Phyllis,

thank you for supporting my decisions and choices throughout my whole life, no matter which

direction they went. Your work ethic and drive has inspired me to be who I am. Thank you for

7

reading every one of my papers, no matter how confusing they were or late it was at night. Finally,

my husband Paul. I never expected to meet someone while intensely preparing for my qualifying

exams, but there you were. You push me to be a better person, writer, friend, scholar and wife.

Thank you for dealing with my stress that comes from paper deadlines, my defensiveness when

getting presentation feedback, and the crazy lifestyle a PhD student lives. I could not imagine

going through this journey without you by my side. I love you all.

8

In loving memory of my dad, Murray Gorson. Thank you for inspiring my drive to explore new

technologies and my passion for improving education. You were the biggest supporter and

advocate of my education, from elementary school projects to integrated middle school programs

and college capstones. Your excitement for interdisciplinary and hands-on learning is the origin

of my now lifelong goals and aspirations. You are the reason that I followed this path; I would not

be here today without your love and inspiration.

9

TABLE OF CONTENTS

Acknowledgments . 5

Dedication . 8

List of Tables . 14

List of Figures . 15

Chapter 1: Introduction . 17

1.1 Problem description . 17

1.2 Research approach . 19

1.3 Research objectives of the studies in my dissertation 22

1.4 Contributions of the research . 24

Chapter 2: Background . 27

2.1 Mindset theory . 28

2.2 Self-efficacy theory . 29

2.3 Self-assessments . 32

2.4 Gap in literature . 33

Chapter 3: Study 1: How do students talk about programming intelligence? 34

3.1 Problem and background . 34

10

3.2 Interview study . 35

3.2.1 Methods . 35

3.2.2 Data analysis . 37

3.2.3 Mindset findings . 38

3.2.4 Self-assessment criteria findings . 42

3.2.5 Discussion . 44

3.3 Survey study . 45

3.3.1 Participants and setting . 46

3.3.2 Open-ended survey question . 46

3.3.3 Likert scale survey questions . 48

3.4 Conclusion . 51

Chapter 4: Study 2: Why do CS1 students think they’re bad at programming? Inves-
tigating self-efficacy and self-assessments at three universities 53

4.1 Problem and background . 53

4.2 Methods . 54

4.2.1 Survey design . 55

4.2.2 Participants . 59

4.2.3 Survey procedure . 60

4.2.4 Follow-up interview procedure . 61

4.2.5 Findings . 61

4.2.6 Students from all three universities reported negative self-assessments . . . 62

4.2.7 Students understood and related to the vignettes 63

4.2.8 Students who self-assess more frequently have lower self-efficacy 67

11

4.2.9 Perceptions of professional programmers may influence self-assessment
moments . 69

4.2.10 Students evaluate themselves more critically than they evaluate others . . . 72

4.2.11 Self-critical bias is stronger when the student or the vignette character is
female . 74

4.3 Conclusion . 75

Chapter 5: Study 3: An approach for detecting student perceptions of the program-
ming experience from interaction log data 78

5.1 Problem and background . 78

5.2 Use of interaction log data in CS Education . 79

5.3 Retrospective-enabled perception recognition . 81

5.3.1 Data collection tools . 81

5.3.2 Phase 1: Retrospective interviews . 81

5.3.3 Phase 2: Qualitative analysis . 83

5.3.4 Phase 3: Codebook verification . 84

5.3.5 Phase 4: Implementation of the detection system 84

5.4 Evaluation of the system . 86

5.4.1 Methods . 86

5.4.2 Findings . 87

5.5 Conclusion . 89

Chapter 6: Study 4: Using electrodermal activity measurements to understand novice
programmer emotions . 91

6.1 Problem . 91

6.2 Background . 93

12

6.2.1 Emotions . 93

6.2.2 Existing methodologies for identifying triggers of emotions during novice
programming . 94

6.2.3 Physiological data analytics - electrodermal activity 95

6.3 Method . 98

6.3.1 Participants & setting . 98

6.3.2 Study procedure . 98

6.3.3 SCR detection . 100

6.3.4 Identification of triggers of emotions . 101

6.3.5 Analysis of EDA data with respect to student experiences 101

6.4 Findings . 102

6.4.1 Events that trigger student emotions . 102

6.4.2 Emotional experiences reflected in EDA data 112

6.5 Discussion . 119

6.6 Limitations . 121

6.7 Conclusion . 122

Chapter 7: Dissertation Conclusion . 124

7.1 Future work . 128

References . 142

Chapter A: Qualitative Codebook for Researchers to Identify Moments of Potential
Self-Assessment . 143

A.1 Guide for labeling using resources moments . 143

13

A.1.1 Definitions of terms and concepts . 144

A.1.2 Using resource for syntax . 148

A.1.3 Using resource for approach . 153

A.1.4 Using resources in general . 157

A.2 Getting simple errors . 159

A.3 Getting Java error . 161

A.4 Struggling with error . 162

A.5 Writing a plan . 165

A.6 Stopping to think after starting implementation 168

A.7 Changing approach . 171

A.8 Unexpected runtime behavior . 174

A.9 Glossary of terms and instructions . 177

A.9.1 Term: Main Function . 177

A.9.2 Term: Implementation . 177

A.9.3 Term: Error Cycle . 177

A.9.4 Term: Meaningful Code . 178

14

LIST OF TABLES

3.1 Qualitative codebook for analysis in Study 1 . 38

3.2 Self-assessment criteria codebook . 43

4.1 The thirteen self-assessment moments and the vignettes that we included on the
survey. 56

4.2 Demographic data from survey participants for each university in percentages . . . 60

4.3 Results of the statistical analysis of the self-assessment moment vignette-style sur-
vey questions . 64

5.1 Negative self-assessment moments detected by the expert system 82

5.2 Results from the evaluation of the detection system 88

6.1 Events that triggered positive emotions during the programming session. 103

6.2 Events that triggered negative emotions during the programming session. 104

15

LIST OF FIGURES

3.1 Graph of participant mindset talk relative to associated behaviors 39

3.2 Variation of participant responses to self-assessment criteria survey questions . . . 47

3.3 Histogram of responses to the survey question: Being able to explain your program
is an indication of programming intelligence . 49

3.4 Histogram of responses to the survey question: Someone is more intelligent at
programming if they do an assignment on their own, rather than getting help to
solve it . 50

4.1 Histograms of the responses to each of the self-assessment vignette-style survey
questions . 62

4.2 Graph showing the self-assessment compound score versus the self-efficacy com-
pound score by university . 69

4.3 Graph showing the participant self-critical biases for each moment 73

5.1 Timeline graph demonstrating the self-assessment moments that occurred in a par-
ticipant interview . 83

6.1 Phasic and tonic activity of EDA signal . 95

6.2 The Empatica E4 wristband [140]. 96

6.3 Results from skin conductance response (SCR) detection for P12. SCRs are marked
by dotted vertical lines. EDA level is displayed in blue. 100

6.4 EDA graphs of participants demonstrating the ”Cruise Control” pattern, which be-
gins on each graph at the Marker X. 113

6.5 EDA graphs demonstrating high emotion sections, indicated by the shading. 115

16

6.6 EDA graphs demonstrating participants who experienced few negative emotions
while working on the programming problem. 118

17

CHAPTER 1

INTRODUCTION

1.1 Problem description

University computer science (CS) departments are experiencing high demand for CS courses as

college students increasingly desire programming skills. This growth coincides with an increased

need for technology talent in industry as software development jobs are growing much faster than

the average occupation [1] and employees with programming skills tend to receive higher wages

[2, 3]. Programming is being introduced at younger ages and has been established as a necessary

literacy for all learners, driving more people to the field [4]. However, many students in intro-

ductory computer sciences courses (CS1) at the university level struggle to learn to program [5,

6].

While there are many possible sources causing students to struggle, prior studies indicate that

student perceptions of their programming ability strongly contribute to this issue. Specifically,

studies show that students often perceive that they do not belong [7, 8, 9], are not capable of suc-

ceeding [10, 11, 12], or are performing poorly in CS [6, 13, 14, 15]. For example, Kinnunen and

Simon found that, at times, students perceived that they performed poorly even when they success-

fully completed a programming problem. This misalignment often occurred when the students’

programming process did not match their expectations or perceptions of good programming per-

formance [14]. These perceptions may also factor into the emotions that arise while programming,

as students experience a roller-coaster of emotions while working on programming problems [6].

In addition to impacting student experiences, these perceptions of the programming process

influence student assessments of their programming ability, which factor into their decisions to

persist in CS [15]. Self-efficacy is the belief in one’s ability to accomplish a task or achieve

mastery in a specific domain [16, 17, 18]. Studies have shown that self-efficacy has a direct impact

18

on student learning outcomes [19] and often correlates with student performance in CS courses

[20, 21, 22], thus suggesting the need for further research into student perceptions. Prior work

indicates that student perceptions of their programming experiences may correlate with students’

self-efficacy [23, 24, 14, 7], aligning with self-efficacy theory [23]. For example, one study found

a direct relationship between student sense of belonging in programming with their self-efficacy

[7]. However, few studies have investigated how students perceive their programming sessions

and how these perspectives influence student self-efficacy. Additionally, studies have shown that

through an introductory programming course students increasingly believe that their programming

intelligence is fixed and cannot be changed. We do not currently know what causes this belief and

how it impacts student programming sessions.

The history of computing education may contribute to the origins of why students have nega-

tive perceptions of their programming ability. Prior to the existence of CS courses at universities,

businesses trained their programmers in-house. Since there was a high failure rate amongst those

in these roles, businesses needed a way to determine if potential employees would succeed in

programming-related jobs [25]. Almost 80% of businesses implemented aptitude tests for evaluat-

ing employee’s potential to succeed in CS [26]. Despite their widespread implementation, aptitude

tests did not work as well as expected; there was only a modest correlation between an individual’s

score on the test and their assessed programming skill [27]. Unfortunately, even if the tests were

unsuccessful, by using an aptitude test as an evaluation of success in programming, the tests pro-

mote the belief that an innate trait or aptitude is necessary to succeed in CS. Thus, these historic

tests may contribute to why many programming students today see programming skills as innate.

We do not have a strong understanding of student perceptions of the programming process and

how those perceptions influence broader constructs like motivation and self-efficacy. For example,

while performance on tasks is one of the main information sources to self-efficacy [23], we do

not know much about how student experiences working on programming problems influences

these evaluations. The goal of my dissertation is to deepen our understanding of how student

programming experiences influence their perceptions of their programming ability, focusing on

19

how and when students make self-judgements during programming. My work prioritizes student

perceptions, ensuring that I study the programming process from their point of view and not from

expert-defined or theory driven concepts. I take this angle because I want to encourage the design

of interventions that account for student experiences when addressing the challenges of novice

programmers.

1.2 Research approach

As understanding student perspectives is complex, there are a number of challenges to conducting

studies with this research goal. First, the constructs are nebulous. Emotions, student reactions,

and criteria for defining ability are not concrete as they exist in students’ minds. Emotions blend

together, student reactions do not always fit into categories, and students do not have an explicit

internal rubric for evaluating themselves. Thus, the topics that we are studying are hard to define

and differentiate. Second, students often have a hard time expressing themselves and talking about

their experiences. These constructs are personal and talking about them is uncomfortable; also

students may not have thought about these concepts in the past, so they do not know how to respond

when the questions are asked. Finally, these moments of interest happen throughout students’

experiences working on their programming problems, which can occur at different times during a

programming session. This makes it challenging to capture data specifically when these moments

occur.

Surveys and qualitative interviews are two of the established methodologies used to investigate

student perceptions. While we can learn a lot about student experiences using these methods, ad-

ditional considerations and strategies may be necessary to address the challenges described above.

For examples, surveys are restricted to what students self-report and force rigid categories. Quali-

tative interviews address some of those concerns by allowing a discussion between the interviewer

and the student, but they are restricted by what students can recall and are willing to share during

the interview. In my dissertation studies, I address some of these challenges and limitations in my

research approach. Through designing the methods of the four studies, a set of guiding principles

20

emerged. These principles aim to improve our ability to collect precise and descriptive data. As I

progress through the dissertation, I move away from the more traditional research approaches and

more strongly incorporate these guiding principles into the study design. In the last two studies,

I make methodological contributions, documenting new methods for understanding the student

programming experience that follow this set of principles.

The guiding principles are:

• Mix qualitative approaches with sensor or logged data sources. By mixing data logged from

programming episodes with qualitative methods, we can use the precise details captured

from the concrete sources, like keystrokes or electrodermal activity (EDA) data, in combina-

tion with detailed perspectives from students. Additionally, sensor and logged data sources

are measured and do not rely on student reports. Thus, they provide an objective data source

to ground the more descriptive and subjective details gathered from students’ reports. By

combining the data sources, we benefit from the advantages of both approaches, incorporat-

ing the nuances and details that arise from qualitative data with the precision in the timing

and specificity of information from quantitative data sources.

• Design studies that enhance student ability to recall relevant data. When the main data

source for a study relies on students to describe their experiences, it is necessary to design

methods that aid students in providing accurate recollections. This is especially important

when asking students to recall sub-cognitive events, like emotions and self-evaluations, as

they are less present in students’ minds. Without this consideration, students may not know

what to report or may make something up in order to answer the researchers’ question [28,

29]. Thus, I design study methods to increase the precision of student recall. For example,

I situate programming episodes as closely as possible to interviews and provide information

sources to probe students’ memories.

• Consider participant state of mind. When designing study protocols, whether it is an inter-

view or survey, I consider students’ state of mind when they are answering questions. There

21

are a few different factors that contribute to the participant state of mind. First, it is im-

portant to consider how the experiences and emotions that arise for students directly before

the research session may impact their responses and behaviors. For example, to accurately

investigate if students have a growth or fixed mindset, it is important that they recently en-

countered a difficult task in order to reveal their reaction to challenge and viewpoint on the

malleability of intelligence. Thus we ask all students to work on a challenging problem be-

fore the interview and survey. Second, when taking a survey, it is important that students are

in an environment where they can give their full attention. Finally, the context and environ-

ment that surround the student may also impact how they respond to questions.

• Create authentic programming episodes. Since my research is done using lab studies, I

emphasize increasing the authenticity of the programming environment. When students par-

ticipate in programming sessions during a study, I design the environment to create as natural

of a programming experience as possible. This increases the likelihood that students expe-

rience the same emotions, make the same self-evaluations, and use the same programming

strategies that they would outside of the laboratory. The strategies that I use for creating

authentic programming environments include: I do not interrupt them throughout a session,

they program using their own computers, and I provide similar programming problems to

their assignments in their coursework.

With these guiding principles, I designed four studies that helped us to learn about, identify, and

detect the moments that students make negative self-assessments through a programming episode

and identify the events throughout a programming session that cause students to experience emo-

tions. The studies were able to produce accurate and precise insight into student experiences, sug-

gesting the success of using these principles. The methods for each chapter are different, but they

all follow this overall approach. By using different methods in each chapter, I demonstrate how

each method can provide new insights and perspectives to understanding the student programming

experience. Additionally, in two of the chapters I make methodological contributions; I designed a

method for developing detection systems based on student perceptions, and I developed a method-

22

ology for utilizing physiological data to enhance student recall during retrospective interviews of

programming sessions. These two chapters provide example methods that future researchers can

follow to incorporate this approach into their future studies.

Due to the qualitative nature and human elements to this research, I, as the researcher, am an in-

strument in the data collection and the analysis. It important to recognize that despite any effort to

be unbiased, my background, personality and viewpoint will influence both the data collection and

analysis. For example, during interviews, I develop rapport with the participants to help them feel

comfortable sharing, and while I follow interview protocols, the follow-up questions and phrasings

are decided during the interview. Similarly in the analysis, it is possible that my viewpoints influ-

ence the outcomes, as I see the data through my perspective of the world. To address this bias, I

utilize strict protocols and test the reliability of qualitative analysis with other researchers through

inter-rater reliability. No matter the method for addressing the bias, since I as a researcher am an

instrument, I am likely to make an impact on the outcomes.

1.3 Research objectives of the studies in my dissertation

There are four studies that comprise my dissertation work. They are:

• Study 1: My collaborator and I began this line of research by exploring how students per-

ceive and evaluate their programming intelligence, which I detail in Chapter 3 [13]. Building

on mindset theory, we were specifically interested in student perspectives on if programming

intelligence can change or if it is innate. We interviewed introductory CS students about the

nature of programming intelligence directly after they worked on a challenging programming

problem. From the interview data, we investigated the application of growth mindset theory

in CS. In doing so, we noticed that students evaluated their programming ability frequently,

using surprising criteria. Thus, we conducted a survey study to identify a list of criteria

that students use to evaluate programming intelligence, which we call self-assessment crite-

ria. Many of these criteria were surprising because they did not align with how professional

programmers and instructors would evaluate programming ability.

23

• Study 2: Since many of the self-assessment criteria referenced particular moments in the

programming process, we next investigated if students self-assess when those moments arise.

We conducted a survey study with students from three universities, reaching a large num-

ber of students, which we present in Chapter 4 [30, 31]. Our results showed that some

students negatively self-assess when they encounter these moments and students who more

frequently make negative self-assessments tend to have lower self-efficacy. Additionally, we

explored three potential explanations as to why students self-assess in these moments. These

explanations were related to their: self-critical bias (evaluating one-self more harshly than

others), gender, and perceptions of professional programmers. We found that some students

are more likely to negatively self-assess at moments that they believe professional program-

mers do not encounter and some students have a self-critical bias, evaluating themselves

more harshly than others. We additionally investigated the relationship between self-critical

bias, gender and sense of belonging.

• Study 3: While we now have identified moments of interest during a programming session,

in order to further study them in context or intervene when they arise, we need to be able

to automatically identify when they occur. To address this, we developed a new methodol-

ogy which we call retrospective-enabled perception recognition to build a detection system,

presented in Chapter 5 [32]. To build the detection system, we gathered student-labels of

moments of programming sessions and analyzed the patterns from student interaction be-

haviors to identify indicators of the self-assessment moments. This allowed us to develop

a codebook and an automated tool to identify the self-assessment moments in student pro-

gramming sessions. In an evaluation comparing our tool to researcher-identified moments,

our tool showed promising results, with F1 scores ranging from 66% to 98%, suggesting this

approach as a valid method for future studies.

• Study 4: While in our first three studies we learned that students report to negatively self-

assess in moments during the programming process, and prior work indicates that students

24

have strong emotions during their programming sessions, we do not know how students ex-

perience those self-assessment moments. Additionally, few studies have been able to identify

the specific events that cause emotions during the programming process. To address this gap,

we investigated the moments that cause students to experience emotions, which I present in

Chapter 6 [33]. We asked novice programmers to wear electrodermal activity (EDA) sensors

during a programming session, which we used in a retrospective interview to cue their recall

of the events that caused them to experience emotions. Additionally, we visually analyzed

their EDA data across the programming session to find patterns in the EDA data that relate

to student experiences. We identified 23 events that prompt students to experience emotional

reactions while programming (9 positive and 14 negative). Additionally, we found 3 patterns

in the EDA data that relate to student perspectives on their programming experience.

1.4 Contributions of the research

In Study 1, we contribute empirical findings on the complexity of student perceptions of program-

ming intelligence. We show that students do not always have a clear mindset towards the mal-

leability of programming intelligence and students do not necessarily behave as expected based on

mindset theory. We also identified that students assess their programming ability frequently. We

contribute a novel list of criteria that students use to evaluate their programming ability. Our find-

ings from this study suggest that student mindsets towards their programming intelligence may

interact with their other perceptions of ability and thus mindsets can not be the only theory of

intelligence that we use in designing curricular and technological interventions for CS1 students.

In Study 2, we contribute evidence that many students negatively self-assess when they en-

counter particular moments in the programming process, even though those moments are natural

parts of professional practice. These moments are particularly influential because we found that

students who negatively self-assess more frequently at these moments tend to have lower self-

efficacy. We also contribute two explanations for why students negatively self-assess when these

moments occur. We found that many students have inaccurate perceptions of professional pro-

25

grammers and we found a correlation between students’ perceptions of professional programmers

and if they negatively self-assess for some of the moments. We also found that many students

have a self-critical bias, evaluating themselves more harshly than others. Female students tended

to have a stronger self-critical bias than males, and students in general tended to be more self-

critical when evaluating themselves relative to their evaluations of female students compared to

male students. From these studies, we contribute a deeper understanding of the explanations of the

self-assessment moments.

In Study 3, we contribute a new method for designing tools to automatically identify mo-

ments based on student perceptions. Our tool for identifying the self-assessment moments from

interaction-log data of a programming session demonstrates that student perceptions can be identi-

fied based on interactions with the computer. While prior studies have used log data for tasks like

predicting student performance and identifying the progress in student solution states, none have

been successful in identifying moments based on student perceptions. Thus this novel method-

ological approach enables researchers to develop detection tools that can identify moments based

on student perceptions of the programming process.

In Study 4, we contribute a list of 23 moments that cause novice programmers to experi-

ence either a positive or a negative emotional reaction while working on a programming problem.

Through visual inspection of EDA data, we identified patterns across the programming session that

coordinated with students’ programming experiences, suggesting the usefulness of EDA data for

computing education researchers who have the goal of understanding programming student emo-

tions. We contribute the methodology for incorporating EDA data with retrospective interviews.

Our findings suggest that this approach can support researchers in understanding student emotional

reactions during many types of coding activities, in comparing student experiences on program-

ming problems, and in isolating particularly interesting segments of a programming session.

Across my dissertation research, I make practical, conceptual, methodological, and technolog-

ical contributions. Specifically, with the self-assessment criteria, my colleague and I contribute a

completely new perspective from which to understand the student programming experience and

26

how students perceive and assess programming ability. We are the first to explore how students

evaluate their programming intelligence and lay out the specific criteria that students use to evalu-

ate themselves. With this new framework, we were then able to study these moments as they arise.

These findings help us to build a stronger conceptual model of the student programming experience

and additionally provide practical directions for instructors of programming courses. Practically,

our results inform instructors on how students interpret their experiences during the programming

process, which could help instructors provide feedback to students that increases their motivation.

I also contribute tools and methodologies to aid further research of student programming experi-

ences and the design of technological interventions. This includes a tool for detecting moments

of self-assessment and a method for studying moments when students experience emotions while

programming. These contributions pave the way for researchers to design studies to better un-

derstand how students experience programming problems and build technological interventions to

improve these experiences.

One important consideration for this type of research is that these findings may be different

if we conducted this research in a different socio-cultural context. While some of the work does

compare students from different types of universities, these studies all work with a specific group

of people, mostly introductory computer science students in University contexts. Thus, when gen-

eralizing these contributions to other contexts, for example K-12, vocational schools, or corporate

training, there may be differences in how these students experience programming episodes and

consider their programming intelligence.

Moving forward as a field, computing education researchers should continue to study student

experiences while programming, as it is crucial to student learning and important to support the

cognitive aspects of computing education. In order to continue to address the challenges in under-

standing student perspectives of themselves while programming, I suggest that future researchers

follow, and continue to build upon, the guiding principles presented in the research approach as

well as the methodological approaches when designing studies that investigate student program-

ming experiences.

27

CHAPTER 2

BACKGROUND

The CS learning environment is a very complex space, with many potential factors contributing to

the student experience. First, as enrollment in CS programs continues to rise, class sizes are often

very large; high student to faculty ratios result in little direct interactions with faculty. Thus, large

classes tend to have higher failure rates [34]. Second, students often enter CS1 with a variety of

prior programming experiences, which can be problematic because students who are new to pro-

gramming often struggle when grouped in classes with more experienced peers [35]. Additionally,

CS1 students feel pressure to decide if they should major in the domain [15], as many university

CS students are trying computing for the first time and are in the process of choosing their college

trajectory. Also, computer science development environments are inundated with negative perfor-

mance feedback, for example error messages and failed test cases. Negative performance feedback

often promotes the fixed mindset and lowers student self-efficacy, both of which I will discuss

shortly [36, 23, 37]. These challenges are often amplified for women and students of color, who

are underrepresented in computer science. These students faced strong stereotypes of who belongs

as a computer scientist [38] and often drop out of the major at higher rates [39, 40]. Thus, while

programming skills are increasingly important for 21st century learners, many students struggle in

introductory computer science (CS) courses [5, 6].

Recent studies suggest that these challenges may be exacerbated by students’ self-perceptions;

students often believe that they do not belong [7, 8, 9], are not capable of succeeding [10, 11, 12],

or are performing poorly in CS [13, 14, 15, 6]. In my dissertation, I study how these perceptions

interact with student experiences working on programming problems. In the following sections,

I both review related theories, mostly derived from psychology literature, and discuss how those

theories are currently understood in CS.

28

2.1 Mindset theory

Student mindset towards the malleability of intelligence is a widely studied subject. Specifically,

research has established that students with a growth mindset believe that intelligence is malleable

and can grow through effort and practice, while students with a fixed mindset believe that intelli-

gence is an unchangeable attribute and there is a limit to each person’s potential growth [41, 42,

43]. Psychology studies have demonstrated that student beliefs about the malleability of intelli-

gence can have a strong impact on their motivation, reaction to challenge, and academic perfor-

mance [44, 45]. Students with the growth mindset tend to value learning over performance, and

are more likely to persist when challenged, while students with the fixed mindset view challenges

as tests of their intelligence, and see mistakes as evidence of low ability [44, 36]. These studies

indicate that students with a growth mindset tend to show greater improvements in course per-

formance in comparison to students with a fixed mindset. Specifically, a study analyzing student

grade changes over two years in middle school found that students with a growth mindset tended

to have increasing grades across the two years while students with a fixed mindset tended to have

static or a downward trajectory in their grades [44].

Studies exploring mindset theory in CS have found that the fixed mindset is particularly preva-

lent across the domain. Specifically, multiple studies have recorded that student mindsets become

significantly more fixed through their first programming course [12, 11, 10], indicating that the

increase in fixed mindset may stem from CS1 learning environments.

Fortunately, psychologists have designed a number of interventions that demonstrate that stu-

dent mindset towards intelligence can be influenced [44, 46, 47]. One type of intervention involves

directly teaching about the malleability of intelligence. For example, in Aronson et al.’s interven-

tion, students learned about the growth mindset and then taught younger students about it, which

they found had a significant positive impact on participant mindset and GPA [46]. Another in-

tervention type involves providing feedback to students at opportune moments. For example, a

study showed that students who receive feedback about their process instead of their performance

29

through an online learning game are more likely to persist through challenges [48]. This type of

intervention has been shown to be effective in mediating student perceptions [48, 49] and can scale

to large student populations.

A number of CS education researchers have attempted mindset interventions in CS, and have

had varied success in impacting student persistence and performance behaviors compared to other

domains [12, 50]. For example, Cutts et al. designed a direct teaching intervention in which

tutors gave mindset lessons and messages to CS students [12]. While the intervention successfully

changed student mindsets on surveys, it did not change course performance. Similarly, Simon et

al. replicated Aronson et al.’s successful intervention [46], in which they taught students about

mindset theory through a ‘saying is believing’ exercise, but found no significant effect on students’

mindsets in the domain of programming [50]. The mixed intervention results demonstrate that

there is a gap in our understanding of how to apply mindset theory in the CS education domain and

how a students’ mindset may impact their experiences and behaviors in a programming session.

However, mindset is not the only theory that can help provide insight into student perspectives

on their intelligence. Thus, we next discuss other theories that may help us interpret how student

perceptions of programming intelligence may impact their behavior and motivations in CS.

2.2 Self-efficacy theory

While we do not yet fully understand the relationship between self-efficacy and mindset, both

theories provide lenses for understanding student perspectives on programming intelligence that

may help address the gap in our understanding of how students perceive their experiences pro-

gramming. Self-efficacy is a widely used construct to represent an individual’s judgment of their

ability to execute tasks or achieve mastery in a particular domain [16]. Self-efficacy is specific to

a domain as students can have a different self-efficacy in different domains. Self-efficacy is based

on four principal sources of information: (1) enactive attainments, or the results of performing

tasks related to mastering a subject, like passing a test, (2) vicarious experiences observing others

perform subject-related tasks, (3) verbal persuasion from others, like words of encouragement, and

30

(4) physiological states, like stress [23]. Enactive attainments, or the results of performing tasks

related to subject mastery, are the most influential of these sources because the information comes

from the performance of tasks that contribute to mastering the domain. Self-assessments, which

are how people interpret their performance on a task, determine their enactive attainments and thus

inform their self-efficacy evaluations. I discuss self-assessments specifically in the next section.

Students with higher self-efficacy are more likely to persist through challenges and be resilient

through their long-term goals [16, 51]. Studies have shown that self-efficacy can impact career

choice and persistence through college majors [52, 53, 54, 55]. For example, Betz & Hackett

found that college students with higher self-efficacy in math are more likely to select a science-

related major [52]. Additionally, studies show that students with higher self-efficacy tend to have

greater learning outcomes from their courses [19, 54].

Studies in CS education have also found that self-efficacy is an important factor in determining

student persistence and performance in the CS major [15, 56, 57]. For example, Lewis et al. con-

ducted an interview study and found that perception of CS ability is one of the factors that students

consider in their decision to major in CS [15]. Historically, studies used traditional self-efficacy

surveys to examine the relationship between self-efficacy and persistence [56]. For example, Miura

found that students who report higher general self-efficacy on surveys are more likely to take a CS

course in college [56, 57]. Studies have also found a significant relationship between programming

self-efficacy with both learning outcomes and performance in CS courses [34, 21, 22].

Fortunately, research suggests that a students’ self-efficacy can be influenced through both

teaching and technological interventions that change one of the four principle sources of self-

efficacy discussed above: enactive attainments, modeling of others, social support, and physiolog-

ical states [23]. For example, increased awareness of mastery of a task can increase self-efficacy as

prior studies show that students can better gauge their progress if they are encouraged to reflect on

performance mastery and goal accomplishment [23]. Feedback can also influence self-efficacy, as

Relich et al. found that students who received attributional feedback on effort and ability showed

an increase in self-efficacy and performance compared to other students who followed the same

31

lessons without the feedback [19]. HCI researchers have found that they can improve student

self-efficacy using interventions in both online and in-person environments [58, 59]. For example,

online communities offer a unique, public space to showcase progress on task performance [60].

Similarly, studies have shown that sharing work on an online crowdfunding platform can help to

build self-efficacy [58, 59].

Interestingly, there are few research studies that attempt to increase student self-efficacy in

the CS domain with interventions. There are a number of studies that use self-efficacy measures

to evaluate interventions, as self-efficacy is deeply tied to outcomes like engagement [61], per-

sistence [61] and mindset [50, 12, 21]. However, I have not been able to identify any research

studies on interventions with the specific goal of improving CS student self-efficacy. Instead,

many studies have investigated the internal factors that correlate with self-efficacy. Studies found

that self-efficacy correlates with previous programming experiences [62, 22], gender [63, 21, 56],

computer literacy [63, 62], metacognitive strategies [21], understanding of programming concepts

[64, 22], and sense of belonging in CS [7]. For example, Rammaligan used a survey to measure

students’ comprehension of software programs and found that students with better mental mod-

els of programming concepts were more likely to report a higher programming self-efficacy [22].

Similarly, Askar and Davenport found that students with more years of computer experience had

higher programming self-efficacy, and that males on average had higher programming self-efficacy

than females [63]. In order to design learning environments and technology that promote positive

self-efficacy, then we need to understand how student experiences working on programming prob-

lems influence their self-efficacy. There is a gap in the literature as we do not know how students

interpret the events that occur in programming with relation to their programming intelligence.

Since self-assessments strongly inform self-efficacy, I next discuss existing research on how and

when students make self-assessments about their programming ability.

32

2.3 Self-assessments

In order to realistically inform self-efficacy, self-assessments need to be accurate. Self-assessments

are a students’ evaluation of their own performance on a task. Self-assessments directly inform a

students’ enactive attainments, which is the strongest information source to self-efficacy [16]. Gen-

erally, when students evaluate their performances as successful, their self-efficacy increases, and

when a student views their performances as a failure, their self-efficacy decreases. Accurate self-

assessments are also very important for students to be able to self-regulate their learning process

[65, 66, 67].

Students do not always have accurate perceptions of their ability. Studies have found that

students generally have a self-enhancement bias, evaluating themselves more favorably than others

[68, 69, 70]. This was demonstrated when Alicke asked college students to rate the degree to

which a set of trait adjectives characterize themselves and characterize the average college student,

finding that students rated themselves significantly higher than others for desirable traits [68].

Studies show that this overestimation arises in part due to a lack of metacognitive awareness of

one’s own weaknesses [71], as well as a natural tendency for humans to be overly optimistic about

their abilities [72]. However, not all students have the same positive bias. Self-enhancement biases

are often not as strong for students who experience stereotype threat [38], the belief that you are

a member of a group that is not fairly represented and stereotypically does not perform well in

the domain. For example, Ehrlinger and Dunning gave college students a pop quiz on scientific

reasoning and found that female students rated themselves more negatively than male students on

scientific skills and estimated performance on the quiz, even though there were no differences in

performance based on gender [73].

In researching the student programming experience, studies have found that CS students self-

assess their ability frequently [14]. This may be because many CS1 students are new to the field

[51] and feel pressure to choose a college major [15]. While evaluating knowledge and moni-

toring progress are a necessary part of the self-regulated learning process [65, 66, 67], frequent

33

self-assessing may be problematic to student self-efficacy. One study showed that CS1 students

sometimes self-assess negatively even when they are succeeding on a programming problem [14].

Kinnunen and Simon suggest that these negative evaluations may occur when a programming ex-

perience does not match the student’s expectations. For example, students may believe they have

performed poorly if they take longer to solve a problem than expected, even if they complete

it successfully. These findings suggest that CS1 students may have unnecessarily high or inac-

curate expectations of the programming process, which could negatively influence the frequent

self-assessments. A few studies have identified some initial criteria that students may use in these

self-assessments, including speed, success of their program, social comparisons, prior experience

and grades [15, 14], but we do not know much about the other criteria that students use and how

they determine these criteria. We currently do not have a full understanding of how students eval-

uate their programming ability, particularly throughout the programming session. I address this

gap in this dissertation. It is necessary to understand how students evaluate programming intelli-

gence because if students assess themselves using irrelevant or inaccurate metrics, they could have

unnecessarily low views of their programming performance and self-efficacy.

2.4 Gap in literature

Each of these theoretical perspectives suggest that students’ perceptions of their programming

intelligence are influential to their motivation, persistence and experiences in CS, particularly at the

introductory level. Researchers that have explored these topics have demonstrated their complexity

in their application to the CS education domain. However, we have little insight into how students

perceptions of their programming intelligence arises during the programming process itself or how

a programming episode influences their self-assessment of programming ability. Thus, we further

this research by investigating student experiences in programming episodes through the lens of

these three theoretical perspectives.

34

CHAPTER 3

STUDY 1: HOW DO STUDENTS TALK ABOUT PROGRAMMING INTELLIGENCE?

3.1 Problem and background

Psychology researchers have found that students can have one of two mindsets towards the mal-

leability of intelligence: a fixed mindset or a growth mindset [41, 42, 43]. Students with a fixed

mindset believe that intelligence is an inborn trait, and thus value proving their intelligence over

learning. These students tend to give up when challenged to avoid failure. In contrast, students with

a growth mindset believe that intelligence is malleable, and thus value learning over performance.

Students with a growth mindset tend to persist in the face of challenges. In computer science, the

fixed mindset is particularly prevalent. Multiple studies have shown that student mindsets become

significantly more fixed during their first programming course [12, 11, 10].

Fortunately, interventions that promote the growth mindset have shown to improve student per-

sistence and performance in many domains [44, 46, 47]. These interventions can also reduce the

negative impacts of stereotype threat for women and underrepresented minorities [46, 45], which

is a known issue in CS1 courses [39]. Unfortunately, we have a limited understanding of how

mindsets are enacted in CS, and how to design interventions that improve student perceptions of

their intelligence in this context. Multiple studies have attempted traditional mindset interventions

in the CS domain with little success [12, 50]. The studies that were able to impact student mind-

sets were not able to demonstrate improvements in persistence and performance, which were the

desired outcomes. In order to design more effective interventions, we need to better understand

how CS students think about intelligence, and how these perceptions relate to their persistence and

motivation on programming problems.

Within this chapter, we contribute two studies that explore how novice university students

define and measure intelligence in CS, and how this affects their perception of programming.

35

In the first study, we interviewed 9 students about programming intelligence after working on a

challenging programming problem. Based on these interviews, we found that only one of our

participant’s talk aligned with mindset theory; the other eight participants’ talk either included

both fixed and growth attributes or their talk demonstrated a misalignment between mindset and

behaviors. We also noticed that students frequently assessed their programming ability, using

surprising criteria like typing speed and ease of debugging. Our second study explored these self-

assessment criteria in more depth through a survey of 103 introductory CS students. We found

significant variation in the criteria, showing that students define programming intelligence in very

different ways. This variation in criteria may explain the limited success of mindset interventions

in CS. These findings suggest a need for more research to understand the relationship between

self-efficacy and mindsets in CS.

3.2 Interview study

3.2.1 Methods

We designed the first study to explore how novice undergraduate students talk about intelligence in

CS. Our goal was to study how this talk reflected students’ (1) mindsets, (2) behaviors associated

with mindset, like persistence and reaction to challenge, and (3) other motivational factors. We

used a qualitative, interview-based approach to address this goal.

Participants and setting

From a mid-sized, private university we recruited nine undergraduate students who were enrolled

in CS 1.5, a course designed for students who finished CS1 but did not feel ready to move on to

the second course in the CS sequence. We chose this demographic because these students were

exposed to programming, but still consider themselves to be novices. Additionally, many students

in this course are still deciding whether or not to major in CS, and thus were at a critical junction

point in their CS path. Five (55%) of our participants were female, which is representative of the

61% in the course, and two (22%) of our participants had declared CS majors, which is representa-

36

tive of the 26% of students in the course who had declared. All students provided informed consent

to participate and were compensated at a rate of $30 per hour.

Procedure

Our study procedure included three key tasks: a challenging programming problem, the mindset

survey, and a clinical interview [74]. First, we asked participants to work on a challenging program-

ming problem for twenty-five minutes. The goal of the programming task was to elicit thoughts

and feelings about intelligence that occur only when a student feels challenged, since studies show

that mindsets only impact behaviors when students experience a challenge [43]. Additionally, we

wanted all participants to encounter a similar experience before the survey and clinical interview

so they would be in a comparable emotional state.

Next, we asked participants to complete a mindset survey so that we could compare our qual-

itative evaluation of their mindset to the canonical mindset measure. We adapted the traditional

survey [41] to ask about programming aptitude instead of general intelligence because studies

show that domain-specific mindset surveys are more accurate then the original generic intelligence

mindset survey [75]. We administered the survey after the programming problem, but before the

interview, so that the conversation with the researcher would not impact the survey responses.

Finally, we conducted a clinical interview [74] to elicit a qualitative evaluation of student mind-

set and associated behaviors in CS indirectly. During the interview, the researcher asked a prepared

set of questions and added follow-up questions as relevant topics arose. I started with questions

about the programming task (”how well do you think you did on that problem?”) to develop rap-

port. Then I asked questions about their programming experiences (”tell me about a time when

you struggled on a programming problem”) and opinions on programming intelligence (”what do

you think it takes to succeed in CS?”) to dive deeply into their viewpoints. At the very end of

the interview, I asked about their mindset in CS directly to see if they self-identify with one of the

mindsets. I asked about mindset directly at the end of the interview to avoid biasing their responses

to the earlier questions.

37

3.2.2 Data analysis

We analyzed the interview data using a combination of deductive and inductive qualitative coding

to create a theoretically informed codebook [76, 77, 78]. We identified the initial deductive codes

using research that outlines the relationship between mindsets and behaviors. For example, we

created an effort attribution code because studies show that students who have a growth mindset

are more likely to attribute their success to effort [51, 42]. We then used open coding to identify

emergent themes that we were not expecting based on the mindset literature. From the data, we

identified inductive codes for other types of talk that related to mindset, intelligence, and persis-

tence. We iterated on our codes until their definitions were clear. Then, my collaborator and I

independently coded all of the data and discussed any discrepancies.

There are 14 codes in the final codebook. Four pairs of codes capture cases where participants’

talk exposes their beliefs about the malleability of programming intelligence, which we call mind-

set talk. For example, when a participant states that there is a limit to their potential growth in

CS, we would label this as fixed mindset talk. Three additional pairs of codes capture cases where

a participant either behaves or talks about behaving in a way that literature shows is associated

with a mindset, which we call associated behaviors. For example, if a participant says that ’strug-

gling while programming is good because it results in learning’, we would label it as an associated

behavior of the growth mindset. The final codebook is shown in Table 3.1. One limitation in

our approach to qualitative coding interviews to study mindsets is that we must interpret students’

statements and make judgements about their meaning. While prior research shows that people with

certain mindsets tend to say certain things and behave in certain ways, we cannot definitively know

an individual’s mindset from their talk alone. However, this type of qualitative analysis allows us

to gain a deeper understanding of how student beliefs are enacted in real contexts than we can

achieve through Likert-scale surveys. We therefore believe this approach will provide important

new insights into student mindsets about intelligence in CS.

38

Growth Mindset Talk Codes Fixed Mindset Talk Codes
Attributes an outcome to effort or learning Attributes an outcome to their ability
States that growth in CS is possible with effort States that there is a limit to their ability or po-

tential for success in CS
States that peers are different based on control-
lable reasons

States that peers are different based on innate
reasons

Self-identifies as growth mindset Self-identifies as fixed mindset
Growth Mindset Associated Behavior
Codes

Fixed Mindset Associated Behavior Codes

States that struggle, practice, or challenge is
good

Does not value effort, struggle, practice, or
challenge

Asks researcher for help on programming task Asks researcher about performance on the pro-
gramming task

Is motivated, persists, or seeks out a learning
opportunity

Avoids a learning opportunity or programming
activity

Table 3.1: Qualitative codes used to analyze our interviews, including codes that indicate either a
fixed or growth mindset, and codes that indicate behaviors that are associated with either a fixed or
growth mindset.

3.2.3 Mindset findings

To analyze how our participants’ mindsets are enacted through their talk, we counted the number

of statements that were labeled with either mindset talk codes or associated behavior codes for each

participant. Then, we calculated the percentage of mindset talk that was coded as growth and the

percentage of associated behavior talk that was coded as growth. Based on the literature, we would

expect that most students would have one consistent mindset and the corresponding associated

behaviors. For example, if the majority of a student’s mindset talk was growth, we would also

expect most of their associated behavior talk to be growth.

We used the percentages of growth mindset talk and associated behavior talk to classify and

cluster the participants. We classified participants as having a growth mindset if at least 75% of

their mindset talk was labeled with growth codes, and fixed if 75% of their mindset talk was labeled

fixed. We classified participants as having growth mindset associated behaviors if at least 75% of

their associated behavior talk was labeled with growth codes, and fixed if 75% of their associated

behavior talk was labeled fixed. To confirm that we agreed with the classifications, we read all

39

Figure 3.1: Graph showing the percentage of mindset talk that was coded as growth (left) and the
percentage of associated behaviors that were coded as growth (right). Participants are grouped into
three clusters: the first includes the participant whose talk aligned with mindset theory; the second
includes participants with misaligned mindset talk and associated behaviors; the third includes
mixed mindset participants.

of the statements coded as mindset talk or associated behaviors for each participant. Finally, we

compared our classifications with the participants’ self-identified mindsets and responses to the

mindset survey.

Next, we identified clusters of participants by analyzing the relationship between their mindset

talk and associated behavior classifications, as shown in Figure 3.1. The three clusters that we

identified are: aligned with mindset theory, misaligned mindset and associated behaviors, and

mixed mindset. We define each cluster in more detail in the sections that follow, and present one

participant from each cluster as a case study.

40

Aligned with mindset theory

This cluster represents participants whose mindset talk is consistent and corresponds with their

associated behaviors. We only had one participant in this cluster, P8, a female, first-year student

who is not a CS major. P8 talked with a very strong and consistent growth mindset; 100% of her

mindset talk was labeled with growth codes. For example, she expressed her belief that effort leads

to improvement, saying ”I think I can become better, but I don’t think that I am there just yet. . . I put

in more hours, so it made me smarter at programming”. Additionally, all but one of her associated

behaviors were labeled with growth codes. For example, she expressed that she seeks out learning

opportunities by frequently going to office hours: ”it’s very interesting to see how [the TAs] think,

because they’re so much more experienced, to see how they look through a problem. . . my TAs are

really good, they’re really cool, they’re pretty motivated, and it kinda motivates me to do well”.

Dweck notes that people with a fixed mindset tend to avoid more experienced people because

they fear being compared to them and exposed as having lesser ability, while those with a growth

mindset actively seek out opportunities to learn from people with more experience [43]. P8’s

growth mindset talk also aligns with her response to the survey and her self-identified mindset,

which were both strongly growth mindset.

Misaligned mindset and associated behaviors

This cluster describes participants whose associated behaviors are misaligned with their mindset

talk. Participants in this cluster have a consistent mindset (at least 75% of mindset talk was labeled

with one mindset) but their associated behavior talk does not match (less than 75% of associated

behaviors were labeled with this mindset). The four participants in this cluster all presented growth

mindsets through their talk, but over half of their associated behaviors were fixed.

As a representative example, consider P3, a female, first-year student who is a CS major. 100%

of her mindset talk was labeled with growth codes. For example, she saw programming as some-

thing that requires learning rather than as an innate skill: ”[Programming is] more about learning

the different structure, and the different strategies. I don’t think everyone is just born with intuition

41

for that. It’s a lot of learning.” She also believes that if she works hard she can improve: ”If I

studied really hard over the summer, I think I would be a lot better. Or at least I’d be more familiar

with certain things than my peers.”

However, over half of her associated behaviors were labeled with fixed mindset codes. For

example, when asked to share a time when she was proud of something she programmed, P3 talked

about a time when she finished an assignment with ease: ”I’m proud of the regular expressions

programming assignment, that one wasn’t too challenging. There wasn’t much programming, but

I got it done pretty quickly without that many errors, so I was pretty happy with myself.” Studies

show that people with fixed mindsets are more likely to talk about being proud of moments that

demonstrate their ability, rather than their effort or learning [79]. In this case, P3 talked about

being proud of a moment when she demonstrated her ability instead of one when she learned or

overcame a challenge. Some of P3’s associated behaviors were also labeled as growth mindset.

For example, when describing a programming experience, she saw challenge as an opportunity to

grow rather than as a negative reflection of ability when she said: ”I kept getting the error, and

I would try and fix it, and then I would get more errors because of fixing that, well, trying to fix

that error. And it was just really frustrating, but it was good practice”. P3 filled out the mindset

survey as growth and self-identified as growth. So the mindset survey and the self-report question

captured her mindset but did not align with her associated behaviors.

Mixed mindset

The last cluster describes participants whose mindset talk is a mixture of the growth and fixed

mindsets; between 25% and 75% of their mindset talk was coded as growth mindset. We catego-

rized four participants as mixed mindset. Their associated behavior talk varied widely, suggesting

that the mixed mindset does not correlate with a specific associated behavior profile.

An exemplary case study for this group is P2, a female, third-year student who is not a CS

major. She frequently used both growth and fixed mindset talk, making seven and eight statements

of each, respectively. She exhibited her mixed beliefs in her response to the question ”Can anyone

42

succeed in CS?”, by saying ”I think there are people that are born for this and then there are

people that need to try, but then if you try, if you really like it, I think you can. I think there is

some advantage to those that their brains are wired in a way”. In this quote, she demonstrated

both growth and fixed mindset ideology as a growth mindset person would believe that if you

practice, you can get better and a fixed mindset person would believe that there are people with

innate talent in a domain. Similar to her mixed beliefs, her associated behaviors were also mixed.

She demonstrated motivation to continue working on the challenging programming task even after

the clinical interview, saying ”No. I just want to figure this out”. On the other hand, we noted

five instances of avoidance behavior. For example, she said: ”before I get to other courses that

are more fun, I have to go through the theory part of it, and since I’m not dedicated to CS, I don’t

want to put myself through the unnecessary hard work”. Studies show that when asked to choose

a type of problem to work on, fixed mindset people tend to choose problems that will demonstrate

their ability, while growth mindset people pick challenging problems that will foster learning [79].

Unlike her mixed or relatively fixed talk, P2 responded to the survey slightly growth mindset.

However, when asked she self-identified as having both mindsets, saying: ”It’s like, fixed, in a

sense that I think there are people that are meant for it, and then not meant for it. But then, growth

at the same time, because even if you’re not meant for it, if you try hard enough and if you like it

enough, you can always succeed in it. So fixed and growth.”

3.2.4 Self-assessment criteria findings

Beyond classify students’ mindsets, we were interested in identifying additional themes from the

interview data related to the ways that novice programmers talk about their intelligence. When

analyzing the interviews, we noticed that students frequently assessed their programming ability

using a wide variety of criteria, which we call self-assessment criteria. For example, P9 mentioned

the importance of memorizing syntax when he assessed his programming ability, saying ”I feel

like I should remember the syntax for basic things, such as lists, and both C++ and Python, more

closely than I currently do”. P8 used the criteria that it is better to do work on your own when she

43

Code Example Quote Count
Id

en
tifi

ed
in

In
te

rv
ie

w
St

ud
y

Better if you do it yourself ”If I go to a. . . TA and I get a lot of
help from them, then I feel kind of
bad, because I didn’t do the whole
program by myself”

1

Better if you memorize syntax ”They know various functions like the
back of their hand”

4

Faster is better ”If they can complete an assignment
relatively quickly”

19

Code quality is important ”Clean, understandable and short
code”

32

Computer skills are important ”By how fast they type” 7
Getting errors is bad ”If it runs the first time they type it

out”
3

Thinking and planning is not
progress

”If they keep typing and don’t have
to sit there and think”

6

Id
en

tifi
ed

in

Su
rv

ey
St

ud
y

Correct solution ”[Their] program works” 5
Decomposing problems is bad ”If they can type out a whole long

idea and tweak it as opposed to hav-
ing to do each part piece by piece
slowly”

6

Decomposing problems is good ”If they do it in steps, check-
ing/running their code as [they] go”

7

Thinking and planning is good ”They are able to plan out and struc-
ture their thoughts on how to ap-
proach the code before writing it”

13

Good debugging skills ”They are able to identify
bugs. . . write test cases to check
that their code is correct”

12

Good articulation skills ”If they are able to stop and explain
to you. . . what they are doing”

11

Ease of debugging ”They understand how to debug a
program quickly based off of first
glance”

15

Table 3.2: Codebook for the self-assessment criteria. The top set of codes were identified during
the interview study. The bottom set of codes were identified in the survey study. Both sets of codes
were used to code the open-ended survey question. The number in the right column represents the
number of times each criterion was identified in the open-ended survey question.

said: ”I’m particularly proud of that [assignment] because I was able to figure out most of that on

my own, and I didn’t need as much TA help as I had anticipated”. We identified seven different

criteria that the participants used to evaluate programming ability. Table 3.2 describes the seven

44

criteria codes and provides example quotes.

3.2.5 Discussion

In our interview study, we found that only one of our participant’s talk aligned with our expec-

tations based on mindset research. The other eight participants fell into two categories: those

whose behavior talk did not align with their mindset talk and those who expressed both growth

and fixed mindsets. These findings may explain some of the surprising and unexpected results of

prior mindset research in computer science. Specifically, our results show that some students have

mixed mindsets and provide new evidence that these students behave in a range of fixed and growth

ways. Additionally, we show that the canonical mindset survey cannot capture mixed mindsets,

as there is no response that indicates mixed beliefs. Our mixed mindset participants responded

to the survey as growth mindset, fixed mindset, and in between. However, we found that when

asked to self-identify with a mindset, all of the mixed mindset participants identified as both fixed

and growth, suggesting that self-identification could be a more accurate measure of mindset than

the survey. We also found that some students’ behaviors were misaligned with their mindset talk,

which may help to explain why Cutts et al.’s intervention successfully changed students’ responses

to mindset surveys but did not impact their associated behaviors. If students’ behaviors are not al-

ways aligned with their mindset, we would not necessarily expect an intervention that successfully

changes student mindsets to have an impact on their behaviors.

These findings are surprising because mindset theory is robust, and has been proven in many

different domains and contexts. As a result, we suspect that other motivational factors may be inter-

acting with mindset to produce these inconsistencies. We believe that the frequent self-assessments

using surprising self-assessment criteria identified in the interviews could be one factor that in-

teracts with student mindsets. While researchers have mentioned the relationship between self-

assessments and motivation in CS in previous work [14, 15], our study revealed specific self-

assessment criteria that characterize the ways students evaluate programming-specific behaviors,

like being able to memorize syntax or fix bugs quickly. These criteria emerged when students

45

made assessments of their intelligence in the context of a programming experience. Such assess-

ments, which are often called self-efficacy appraisals in the psychology literature, are particularly

common when students are new to a field [23], like our participants. Additionally, university stu-

dents feel extra pressure because they have to choose a major, which may encourage more frequent

self-efficacy appraisals as students consider their programming ability in their decision [15, 80].

We hypothesize that these self-efficacy appraisals may be one factor that interacts with student

mindsets in CS. If students feel pressure to assess their own ability, they may choose to behave in

ways that allow them to make self-assessments, rather than in ways that align with their mindsets

about intelligence. Furthermore, these behaviors may depend on the criteria they use to evaluate

programming ability. For example, a student who thinks that people who are smart at programming

can solve problems on their own may try to assess their own ability by not asking for help or

avoiding using resources even if they have a growth mindset. Thus, behaviours driven by these

self-assessment criteria could conflict with mindset associated behaviors and produce effects that

do not align with mindset theory.

In the interview study, we found that participants used a wide variety of criteria to assess their

ability. However, we only interviewed nine students, and therefore do not know whether these

findings generalize to a larger population, or whether students disagree about how to define and

assess programming ability. We designed a survey study to develop a deeper understanding of the

self-assessment criteria, independent of mindset or programming behaviors.

3.3 Survey study

In this second study, we further explored the self-assessment criteria to understand (1) whether

the same criteria exist in a larger sample of students, (2) whether other self-assessment criteria

arise that we did not find in the interview study and (3) whether there is consistency or variation

in the criteria that students use to measure intelligence in CS. Note that we do not aim to study the

relationship between self-assessment criteria, mindsets, and programming behaviors in this study.

To answer our questions, we designed a survey with three parts: an open-ended question about how

46

students assess programming intelligence, 36 forced-choice Likert-scale questions about specific

self-assessment criteria, and a mindset survey. We collected data from 103 CS1 students through

two iterative rounds. In the first iteration, students answered the open-ended question and the

mindset survey questions. In the second iteration, students also responded to Likert-scale questions

about the specific self-assessment criteria that arose during the first iteration. This iterative design

allowed us to explore the prevalence of a wide set of self-assessment criteria and better understand

how students describe the criteria.

3.3.1 Participants and setting

We recruited participants from the CS1 course at a mid-sized private university through the course

discussion board and department email list. We conducted the study during the final week of the

quarter. On the first iteration of the survey, we received 50 responses. On the second iteration

of the survey, we received 56 responses, but discarded three who answered incorrectly to a check

question, resulting in 53 usable responses. Of the participants we kept in our sample, 44% were

female and 25% were CS majors. This closely represents the demographics of the class, which

was 40% female and 18% CS majors. Participants who completed the survey were entered into a

raffle for one of five $20 gift cards in each iteration.

3.3.2 Open-ended survey question

We used an open-ended survey question to elicit additional self-assessment criteria from students.

We asked students to respond to the following question: ”When watching someone program, how

do you know if they are good at programming?” To design this question, we informally tested

a few options, including ones that directly asked how students evaluate themselves, but found

that participants elaborated on assessment criteria most when asked about a specific instance of

another person programming. Since students often compare themselves to peers when making self-

assessments, we believe this question effectively elicits the criteria that our participants think are

important for determining programming ability. The open-ended structure allows for free response

47

Figure 3.2: Variation in participant responses to self-assessment criteria Likert-scale survey ques-
tions, averaged across the three survey questions for each criterion. The variation is calculated by
splitting the responses into two groups, agree and disagree, and then computing the inverse of the
percent difference of the number of agrees and disagrees: (1− abs(agree− disagree)/(agree +
disagree)).

and elaboration, without biasing responses by suggesting particular criteria.

Analysis

We qualitatively coded the responses to the open-ended question for all 103 participants using a

combination of inductive and deductive methods [76, 77, 78]. First, we deductively coded the

responses using the self-assessment criteria codes identified in the interview study. Then, we

inductively coded the responses to identify new emerging themes. My collaborator and I iteratively

discussed and refined the codebook, and then each independently coded 10 survey responses (20%

of the data). To check inter-rater reliability, we calculated a pooled, prevalence-adjusted kappa,

which was 97.5%, signifying excellent agreement [81, 82, 83]. I then coded the remaining data.

Findings

Our analysis of the open-ended survey question revealed instances of participants using all seven

of the self-assessment criteria identified in the interview study. Seven new criteria also emerged.

The full codebook of criteria can be found in Table 3.2, along with example quotes from students’

responses.

48

Interestingly, two of the new criteria are opposites of ones identified in the interview study,

suggesting that participants disagree about these criteria. For example, some participants expressed

that decomposing problems is good (”if they do it in steps, checking/running their code as [they]

go”), while others expressed that decomposing problems is bad (”they. . . think about it quickly and

write it all in one sequence after thinking”). However, the converses of the other criteria rarely or

never came up. For example, only one participant indicated that using resources is an important

part of coding, which could be considered a converse of the code better if you do it yourself. These

findings suggest that our participants may agree about some self-assessment criteria, but disagree

about others. Given the nature of open-ended questions, we can not know if participants agree or

disagree with a criterion unless they explicitly mention it, since the absence of a criterion does not

necessarily imply disagreement. To test for disagreement in the criteria, we conducted a second

iteration of the survey, in which we added Likert-scale questions that directly ask participants about

their perspectives on the criteria.

3.3.3 Likert scale survey questions

We designed a set of forced-choice Likert-scale questions to measure whether our participants

agreed with statements related to the 14 self-assessment criteria that we identified through the

interview study and first iteration of the survey study (see Table 3.2). We designed three questions

for each criterion; two that expressed the criterion and one that expressed the converse of the

criterion, by building on the quotes and code definitions collected in the first parts of this chapter.

The two pairs of criteria that were opposites of each other were expressed through three questions

rather than six, resulting in a total of 36 questions. We also included one check item that instructed

students to answer ’disagree’ to confirm that they carefully read the questions. We conducted think-

alouds with students to test if the questions were clear and elicited the desired constructs [84, 28].

An example question for the criterion faster is better is: ”If you are faster at solving programming

problems, then you are more intelligent at programming”. An example of a question for ease of

debugging is: ”Being able to fix a bug easily is an indication of programming intelligence”. The

49

Figure 3.3: Histogram of responses to the Likert-scale survey question: Being able to explain your
program is an indication of programming intelligence. All participants agreed.

Likert-scale questions were given to the 53 participants in our second round of testing.

Analysis

To clean the Likert-scale data, we flipped the responses to the converse questions, so that all nu-

merical responses represented agreement with the criteria. Then, we analyzed the distribution

of responses to each question using bar graphs similar to the one shown in Figure 3.3. To un-

derstand the variation in participant responses, we split the responses into two groups, agree and

disagree. Then, we calculated the inverse of the percent difference in number of agrees and dis-

agrees to capture the amount of variation in responses. For example, given 20 survey responses

in which 10 participants disagree with an item and 10 agree with an item, we would calculate

1 − abs(10 − 10)/20 = 1, representing the maximum possible variation. However, given 20 par-

ticipants who agree with an item and 0 who disagree, we would calculate 1− abs(20− 0)/20 = 0,

representing the minimum possible variation.

Findings

We found that participants consistently agreed with some self-assessment criteria, but expressed

disagreement in response to other criteria. Figure 3.2, shows the average variation in student

50

Figure 3.4: Histogram of responses to the Likert-scale survey question: Someone is more intelli-
gent at programming if they do an assignment on their own, rather than getting help to solve it.
Participants’ responses are bimodally distributed, ranging from strongly disagree to strongly agree.

responses to the three forced-choice Likert scale questions for each criterion. Most of our partic-

ipants agreed with three of the self-assessment criteria; good articulation skills, good debugging

skills, and code quality is important. They each had less than 10 percent variation in responses on

average, showing that the majority of our participants thought that those skills demonstrate pro-

gramming ability. Figure 3.3 shows the histogram of responses to one of the good articulation

skills survey questions, demonstrating that all of the students agreed with the statement. On the

other hand, six of the self-assessment criteria had over 50 percent variation in responses, indicating

that students have differing perspectives on if those criteria should be used to measure program-

ming intelligence. Figure 3.4 shows the histogram of responses to one of the better if you do it on

your own survey questions, demonstrating participants’ wide range of beliefs.

While this study was not designed to uncover the relationship between self-assessment criteria

and mindsets, we were interested in measuring whether any criteria correlated with a particular

mindset. However less than 5% of participants reported fixed mindsets on the survey, so we did

not have enough data to explore this question. Given the variation in student responses, it is clear

that growth mindset students do not all agree with the same self-assessment criteria, so the criteria

students use could be one factor that interacts with mindsets to influence programming behaviors.

51

3.4 Conclusion

In this chapter, we present the results of two studies. In the first study, we interviewed students

after they worked on a challenging programming problem and discussed their beliefs about pro-

gramming intelligence. In the second study, we conducted a survey that asked about the criteria

that students use to evaluate programming intelligence. In the interviews, we found that only one

participant’s talk aligned with mindset theory; the other eight participants’ talk either included both

fixed and growth attributes or misaligned with their associated behaviors. This is surprising given

the robustness of mindset research, indicating there may be an additional factor influencing the

enactment of mindsets and persistence behaviors in the domain of CS. During the interviews, we

also found that students frequently made self-efficacy appraisals using a variety of criteria. Our

findings in the survey study confirm that students define and measure programming intelligence in

different ways. We suggest that these criteria may interact with students’ mindsets and influence

their behaviors. These self-assessment criteria could have a particularly strong impact on univer-

sity CS students because they frequently make self-efficacy appraisals while deciding whether to

pursue a major or career in CS.

While these initial results provide valuable insights about mindsets in CS, there are a number of

limitations. First, our interview study had a small number of participants, so we do not know how

the mindset clusters that we identified will generalize. Additionally, our analysis depends on qual-

itatively coding students’ talk rather than directly analyzing their behavior during programming,

and it is possible that students’ talk does not always reflect their behavior in practice. Finally,

we recruited participants from the same institution, so we do not know if there are environmental

factors influencing the results.

In the next chapter, we will address some of these limitations. First, we expand the scale and

demographics of our participants by evaluating self-assessment criteria with students from multiple

schools. Additionally, since many of the self-assessment criteria are related to particular moments

in the programming process, we analyze student self-assessments relative to particular moments.

52

Finally, to better understand the influence of these self-assessments on student motivation, we

explore the relationship between self-assessments and self-efficacy.

53

CHAPTER 4

STUDY 2: WHY DO CS1 STUDENTS THINK THEY’RE BAD AT PROGRAMMING?

INVESTIGATING SELF-EFFICACY AND SELF-ASSESSMENTS AT THREE

UNIVERSITIES

4.1 Problem and background

Foundational research in psychology has shown that students’ self-assessments of their ability have

a strong impact on self-efficacy [23]. One study found that CS1 students, at times, assess their

programming ability negatively even after a successful programming performance [14]. These

authors suggest that the negative evaluations occur when students’ problem-solving process does

not match their expectations [14]. For example, students might think they have performed poorly

on a programming problem if it takes longer to complete than they expected.

In the work presented in Chapter 1, we found that students often have varying perspectives

on the criteria that should be used to evaluate programming ability. Surprisingly, many of these

criteria contradict the practices that instructors think are important to novice success [85, 86, 87],

or the practices of professional programmers [88, 89, 90, 87, 91, 92]. For example, we found that

some students think looking up syntax and getting errors are signs of low programming ability [13].

These criteria may explain why students have negative reactions to positive programming episodes.

Even though many of the criteria are associated with specific moments while programming, we do

not know if students negatively self-assess when they encounter those moments and if these self-

assessments impact self-efficacy.

In addition, we do not know why students use these self-assessment criteria or how they estab-

lish their expectations for the programming process [14]. Since in Chapter 3, we found that stu-

dents use self-assessment criteria that do not align with professional programming practice [13],

we hypothesize that students may have inaccurate perceptions of professional programmers. Ad-

54

ditionally, prior research indicates that students tend to rate themselves more favorably than their

peers, using a self-enhancement bias in their evaluations [68, 70]. At the same time, women tend

to under-evaluate their performance in science [73], and have a weaker self-enhancement bias [93].

Given the challenging learning context that CS1 presents for many students, we were interested in

understanding if students use self-enhancement biases in their self-assessments and how factors

such as gender might shape or encourage the negative self-assessments.

To address these questions, we conducted a survey study with CS1 students at three universities.

The goals of this study were to (1) identify the programming moments that cause students to

negatively self-assess, (2) investigate differences in how students self-assess across universities,

(3) identify whether there is a relationship between negative self-assessments and self-efficacy, (4)

explore if students have inaccurate perceptions of professional programming practices and if these

perceptions correlate with the moments during the programming process that students negatively

self-assess, (5) explore how students assess themselves in comparison to how they assess others and

(6) investigate how gender might play a role in students’ self-assessments. We designed vignette-

style survey questions to measure whether students negatively self-assess at thirteen programming

moments, such as struggling with errors or spending time planning.

4.2 Methods

In this chapter, we ask six research questions to better understand the moments that cause students

to negatively assess their programming ability:

• RQ1: When presented with scenarios of programming moments, which do students say cause

them to negatively self-assess?

• RQ2: Are there any differences in the moments that students say cause them to negatively

self-assess across university contexts?

• RQ3: Do students who report making negative self-assessments in response to more mo-

ments have a lower self-efficacy in their CS course?

55

• RQ4: Do student perceptions of professional programming practices correlate with the mo-

ments that cause them to negatively self-assess?

• RQ5: Are there differences in students’ assessments of themselves and their assessments of

others?

• RQ6: Are the differences in these assessments impacted by the gender of the student or the

character?

Through these questions, we aim to identify the programming moments that prompt students to

negatively self-assess, and uncover any differences across university contexts. We also aim to mea-

sure the relationship between self-assessments and student self-efficacy, and determine whether

students’ inaccurate perceptions of professional programming practice contribute to their self-

assessments. Finally, we aim to understand whether any self-assessment biases might explain

the prevalence of the negative self-assessments while programming in CS1.

To answer these questions, we conducted a survey study. We chose a survey methodology

because it ensures that we can measure each student’s reactions to the same set of moments, rather

than an observational approach where similar events might not naturally occur for each student.

We were interested in learning how responses might vary across different populations of students,

so we conducted our study at three universities. Additionally, we conducted follow-up interviews

with a small portion of the survey participants to learn more about their thought process when

answering the survey questions.

4.2.1 Survey design

We designed the survey with a number of sections, each measuring a different construct. We

measured student self-efficacy in their programming course first, to ensure that responses would

be unbiased by the later sections of the survey. We adapted the five-question general academic

efficacy survey from [94] by changing their references to “coursework” to “in my CS1 class”

(where “CS1” is replaced with the name of the student’s course). For example, we asked students

56

Self-assessment moment Vignette
Getting a simple er-
ror

Jen is working on her programming assignment. She runs her code. An
error pops up. She immediately realizes that she left out a parenthesis. She
adds the parentheses and her code runs successfully. Jen thinks: “That was
a stupid mistake. A good programmer wouldn’t make small mistakes like
this.”

Starting over Nadia is working on a hard homework problem. She plans out a solution.
She writes a few lines of code. She realizes that her approach to the problem
will not work. She decides to start over. Nadia feels frustrated that she
wasted time. She erases all her code and starts again.

Not understanding
an error message

Frank is working on a programming problem. He runs his code. An error
pops up. Frank has no idea what the error message means. He is not sure
what to try next. He thinks: “I’m doing so badly, I don’t even know what
this message means”.

Stopping program-
ming to plan

Diego starts working on a programming problem. He writes a few lines of
code. He realizes that he is confused about what to do next. He pauses and
plans his next steps. Diego wishes that he did not have to stop writing code
to plan.

Getting help from
others

Julie is working on her homework assignment. She gets stuck. Julie meets
with an instructor to get help in order to finish the assignment.

Spending a long
time on a problem

Tamyra is working really hard on a programming problem. She solves the
problem. She is proud of herself. Tamyra looks at the clock and realizes
how many hours she spent on the problem. She feels upset because it took
her so long to finish it.

Not knowing how
to start

Miguel reads his programming homework assignment. He opens up the
editor but has no idea where to start. Miguel feels disappointed in himself
because he doesn’t even know how to approach the problem.

Using resources to
look up syntax

Arjun is working on a programming problem. He can’t remember the syn-
tax. He uses Google to look up the syntax. He is disappointed that he could
not remember the syntax on his own.

Spending time
planning at the
beginning

Jake is unsure how to begin his programming assignment. He spends time
planning how to solve the problem. Eventually, Jake comes up with a plan
and begins to write code. Jake wishes that he did not need to spend as much
time planning before writing code.

Spending a long
time looking for a
simple error

Isabella is working on a challenging problem. She runs into an error. She
looks through the code but can’t find it. After a long time, she realizes that it
was a small typo. She thinks to herself: “Wow. I am so bad at programming.
A good programmer would not take so long to find a simple error.”

Struggling to fix er-
rors

Daniel is working on his programming homework. He runs his code and
gets an error. He struggles to fix the error for a long time. When he runs the
code, another error comes up. He struggles again. Eventually, he fixes it.
Then, a different error comes up.

Not able to finish in
time expected

Sirena is working on her programming assignment. She expects to finish it
in one night. After a while, she decides to stop working because it got late.
She feels upset that she was not able to finish it in one night.

Does not under-
stand the problem
statement

Fatima reads her programming homework assignment. She does not under-
stand what the problem statement is asking her to do. She feels upset and
frustrated because she can’t even understand the question.

Table 4.1: The thirteen self-assessment moments and the vignettes that we included on the survey.

57

to rate how much they agree with the statement, “I’m certain I can master the skills taught in

my CS1 class this term” on a 6-point forced-choice Likert scale. We chose to use a survey that

measured self-efficacy in their CS course instead of a survey about programming self-efficacy in

general, because course expectations are well-defined and consistent. In comparison, students may

interpret the definition of “good” in a programming self-efficacy survey differently. For example,

some students might report a low self-efficacy if they believe they are not good at programming

relative to experts, even if they have high self-efficacy about their ability to learn CS and succeed

in the course.

Next, we measured whether specific programming moments elicit negative self-assessments.

We designed vignette-style survey questions that convey vivid descriptions of specific program-

ming moments and then asked students to report how they feel when they experience those mo-

ments. To design the vignette-style survey questions, we curated a list of self-assessment moments.

We define a self-assessment moment as a point in the programming process that might elicit stu-

dent evaluations about how they are doing on a task. We started with the list of moments that

are associated with the programming intelligence self-assessment criteria identifed in Chapter 3

[13] and added additional moments based on need-finding interviews with students. Then, we de-

signed vignettes that describe a character encountering each of the programming self-assessment

moments. To refine the vignettes and ensure that they represented the moments accurately, we

conducted preliminary user studies that asked students to talk out loud while reading the questions

to reveal their interpretations. The moments and the associated vignettes can be seen in Table 4.1.

After each vignette, we asked participants to rate how much they agree with two statements:

one about the character and one about themselves. The statement about themselves asks students

to rate if they negatively evaluate themselves when they experience a similar moment while pro-

gramming. For example, the statement following the using resources to look up syntax vignette is:

I feel like I’m not doing well on a problem when I can’t remember the syntax and have to look it up.

(6-point Likert scale). We call these questions self-assessment vignette questions. The statement

about the character for the same vignette asks students to rate how much they agree with: I think

58

Arjun is not doing well on the assignment because he had to use a resource to look up syntax..

Since we wanted to understand when students were negatively evaluating themselves, potentially

causing feelings of low self-efficacy, we only asked about negative reactions to the vignettes. We

also included a check question after two of the vignettes that instructed participants to enter a

specific response to ensure that they were reading the survey questions carefully.

The gender of the vignette character was communicated through the pronouns used in the

vignette. To control for any biases in participant responses based on the character’s gender or

ethnicity, we randomized the names of the characters across vignettes and participants. We also

randomized the order that the vignettes appeared to control for earlier vignettes affecting responses

to later vignettes. Finally, we randomized the order that the questions appeared after each vignette.

We chose to use vignette-style survey questions because they help elicit students’ memories of

similar experiences. This style of survey has been used extensively in the field of psychology as

an approach to reduce self-report biases, particularly with survey questions in cases where partici-

pants might be concerned about social approval from the researcher [95, 96]. Vignette-style survey

questions are also useful when asking about decisions, judgements or situations that the partici-

pants may not have previously considered, like when students self-assess while programming. In

those cases, asking a direct question might lead to inaccurate results compared to a vignette. How-

ever, since vignette-style surveys ask students to recall memories, they can not generate the same

emotional experience as a field experiment [97, 98, 29].

The last section of the survey measures whether students believe that professionals encounter

the moments described in the self-assessment vignette questions. We hypothesize that students

strive to be like professionals in their field and thus their perceptions of professional programmers

might correlate with the moments that prompt them to negatively self-assess. The results from our

previous study indicated that students do not believe that “good programmers” encounter the self-

assessment moments, even though studies show that professional programmers regularly encounter

them [88, 92, 87, 13]. We asked about professional programmers rather than more advanced

students or “good programmers” because we wanted to capture students’ perceptions of undeniable

59

experts and not of people who are better but may still be learning.

For each of the thirteen self-assessment moments, we asked students to finish a sentence about

professional programmers. For example, the question associated with the using resources to look

up syntax self-assessment moment states:

Professional programmers:

• often forget the exact syntax and use Google and other resources to help them

remember.

• remember the syntax they need and rarely have to look it up.

In each question, one option states that professional programmers encounter the self-assessment

moment, aligning with research on professional programming practice. The other option states

that the self-assessment moment rarely or never occurs in professional practice, which contradicts

research on professional programming practice. The questions are presented in a randomized

order to control for earlier questions affecting students’ responses to later questions. The options

following the questions are also presented in a randomized order to control for potential bias caused

by the order in which students read them.

The full survey can be found at https://bit.ly/2B7irzC.

4.2.2 Participants

I recruited participants from CS1 courses at three universities that serve different populations of

students, all located within the same metropolitan area in the midwestern United States. University

1 is a highly selective, private, research-focused university (R1) that is mid-sized (8,200 undergrad-

uates) and primarily residential. University 2 is a selective, private research university (R2) that is

larger (14,500 undergraduates) and primarily nonresidential. University 3 is a less selective, pub-

lic university with masters programs (M1) that is mid-sized (6,400 undergraduates) and primarily

nonresidential. University 3 has been recognized as the most diverse university in the midwest.

See Table 4.2 for the demographics of our participants at each university.

https://bit.ly/2B7irzC

60

School # F AA A LA W O 2+
University 1 78 58% 6% 35% 4% 42% 4% 8%
University 2 57 32% 7% 23% 10% 47% 5% 5%
University 3 78 17% 7% 24% 31% 24% 8% 6%
= Total responses, F = Female, AA = African American, A = Asian, LA = Latin American, W =
White, O = Other, 2+ = Two or More Races.

Table 4.2: Demographic data from survey participants for each university in percentages.

A total of 283 students took our survey over a three week period in the middle of their program-

ming courses. I removed data from participants who did not answer the check questions correctly.

This left us with a total of 214 participants, with 78 from University 1, 57 from University 2, and

79 from University 3. I recruited participants from two introductory CS courses at University 1,

one that is required for all CS majors and another that is not part of the major sequence. I recruited

students from the introductory programming course at University 2. I recruited students from the

first two classes in the introductory computer science sequence for CS majors at University 3.

Since I was most interested in studying self-evaluations across the different school contexts, we

focus our analysis at the school level rather than the class level.

4.2.3 Survey procedure

All participants completed the survey in a proctored room with a researcher present. However, the

recruitment and distribution of surveys varied based on the constraints of the university policies,

course structure, and instructor preferences. For some of the classes, I announced the survey in

class and posted the announcement on the class discussion board, directing interested students to

take the survey with the researcher at a designated time and place on campus, outside of class time.

For other classes, I announced the survey in class and interested students filled out the survey at

the end of class. For the remainder of the classes, I announced the survey in the course lab section

and interested students filled out the survey during or directly after that lab section. These different

recruitment methods may have impacted the participation rates in the classes, so our findings may

be subject to participation bias. However, given that this is the first study of self-assessments across

61

multiple universities, we believe it still makes an important contribution despite this limitation. All

survey participants provided informed consent for the survey and were compensated for their time

with a $5 gift card of their choice.

4.2.4 Follow-up interview procedure

I conducted semi-structured follow-up interviews to understand whether students interpreted the

vignette-style survey questions in the ways we expected. I also explored whether the vignettes

encouraged students to recall similar moments in their own programming experiences. Finally,

I used the interviews to investigate students’ rationales for their responses. I randomly selected

survey respondents from each of the three universities to participate in the follow-up interviews

from the participants who indicated interest in participating in future research studies. Of the

students I contacted, I interviewed 6 participants from University 1, 4 from University 2 and 3

from University 3.

Students who agreed to participate in the interview met with the me individually, either via

video conference or in-person at their respective university. They first signed a consent form al-

lowing for audio and video recording of the interview. Then, I gave the participants their previously

completed survey and asked them to re-read each of the vignette questions. I asked them to think-

aloud while reading the questions and say anything that came to mind, similar to a talk-aloud [84].

I then asked students to explain why they answered each of the survey questions the way they did.

4.2.5 Findings

To answer our four research questions, we analyzed a number of measures calculated from the

survey responses. Before beginning the analysis, we evaluated the normality of our data using a

Shapiro-Wilk test and found that it was statistically significant for all of our measures. We therefore

use non-parametric statistical methods for the analysis presented in this chapter.

62

Figure 4.1: Histograms of the responses to each of the self-assessment vignette questions on a 6-
point Likert scale ranging from strongly disagree (-3) to strongly agree (3). Students who answered
on the agree side of the scale were reporting that they negatively self-assess at that programming
moment.

4.2.6 Students from all three universities reported negative self-assessments

To answer RQ1, we analyzed students’ responses to the self-assessment vignette questions to eval-

uate if these moments prompt negative self-assessments. First, we plotted a histogram of student

responses to each self-assessment vignette question, shown in Figure 4.1. We expected that only

some students would report that they negatively self-assess at each moment because in our previous

study, we found high variation in students’ agreement with the self-assessment criteria [13]. The

histograms show that the responses to some of the self-assessment vignette questions were widely

distributed across the scale, like struggling to fix errors, while others leaned heavily to one side,

like does not understand the problem statement. A few of the questions even have a bimodal dis-

tribution, like starting over, which shows that students report two distinct views of these moments.

Overall, we found that each question has at least some responses across the full scale, indicating

that all of the moments prompt negative self-assessments for some students. These results are

63

notable because the moments described in the vignettes are natural parts of expert programming

practice, and should not necessarily prompt students to negatively self-assess.

To gain an overarching view of the directionality of student responses, we calculated the per-

centage of participants who agreed with each self-assessment vignette question by combining par-

ticipants who responded with slightly agree, agree, and strongly agree. Agreeing with a question

represents a negative self-assessment at that moment. A summary of the percent agreement for

each self-assessment vignette question is shown in Table 4.3. The results ranged from 15% of stu-

dents reporting that stopping programming to plan prompts negative self-assessments to 84% of

students reporting that not knowing how to start prompts negative self-assessments. These results

help us identify the programming moments that most students use to assess their ability.

To answer RQ2, we analyzed whether there were any differences in the moments that students

say cause them to negatively self-assess across university contexts. We enumerated their responses

to the 6-point Likert scale, ranging from negative three for strongly disagree up to positive three for

strongly agree. We used a Kruskal-Wallis test to compare students’ responses at each university for

each of the self-assessment vignette questions, the results of which are shown in Table 4.3. Out of

the thirteen self-assessment moments, only one showed a significant difference between the three

universities: finishing in the time expected (H(2) = 10.16, p-value = .006). For this self-assessment

vignette question, the mean responses were 0.077 for University 1, 0.053 for University 2 and -

0.760 for University 3, suggesting that fewer students at University 3 view completion speed as a

sign of ability, compared to the students at Universities 1 and 2. It is surprising that only one of the

self-assessment moments was significantly different across the three universities because these are

different types of institutions serving different populations of students. This suggests that most of

these moments can be generalized across contexts.

4.2.7 Students understood and related to the vignettes

We analyzed the twelve interviews to ensure that students interpreted the vignettes in the ways

we intended, and to evaluate potential risks in the survey design. We did not conduct a formal

64

Self-assessment moment Percentage
that self-
assesses
at the
moment

Comparison of
responses to self-
assessment vignette
questions across
universities

Percentage
with in-
accurate
perception
of profes-
sionals

Relationship
between each self-
assessment vignette
and the associated
professional pro-
grammers question

Getting a simple error 22.43% (H(2) = 0.267, p =
0.875)

19.16% U(214) = 3823, p =
0.421

Starting over 55.61% (H(2) = 1.328, p =
0.515)

14.49% U(214) = 3196.5, p
= 0.249

Not understanding an error
message

61.68% (H(2) = 0.374, p =
0.829)

57.94% U(214) = 6025.5, p
= 0.306

Stopping programming to
plan

15.42% (H(2) = 3.859, p =
0.145)

10.28% U(214) = 2784.5, p
= 0.010

Getting help from others 28.50% (H(2) = 4.828, p =
0.089)

26.64% U(214) = 5171.5, p
= 0.074

Spending a long time on a
problem

36.92% (H(2) = 1.034, p =
0.596)

14.95% U(214) = 3595.5, p
= 0.029

Not knowing how to start 84.11% (H(2) = 2.495, p =
0.287)

50.93% U(214) = 6061, p =
0.430

Using resources to look up
syntax

30.37% (H(2) = 1.227, p =
0.542)

42.06% U(214) = 6920, p =
0.002

Spending time planning at
the beginning

18.22% (H(2) = 4.471, p =
0.1069)

15.42% U(214) = 4038, p <
0.001

Spending a long time look-
ing for a simple error

34.58% (H(2) = 4.051, p =
0.1319)

35.98% U(214) = 6246, p =
0.022

Struggling to fix errors 59.81% (H(2) = 1.834, p =
0.3997)

44.39% U(214) = 6445.5, p
= 0.071

Not able to finish in time
expected

49.53% (H(2) = 10.16, p =
0.006)

17.29% U(214) = 3760.5, p
= 0.1457

Does not understand the
problem statement

78.97% (H(2) = 1.173, p =
0.556)

48.60% U(214) = 6688.5, p
= 0.027

Table 4.3: Results of our statistical analysis of the self-assessment moments. The second column
displays the percentage of students who agree with each vignette question. The third column shows
the Kruskal-Wallis tests evaluating the differences in student responses to the vignette questions
across the three schools. All but one of the vignette questions showed no significant difference,
suggesting that most of these moments can be generalized across contexts. The fourth column
shows the percentage of students who report that professional programmers do not encounter the
self-assessment moments. The last column displays the Mann-Whitney U tests evaluating the cor-
relations between responses to the self-assessment vignette questions and associated professional
programmers questions. Six of the moments showed significant results, suggesting that these per-
ceptions may contribute to students’ self-assessments at these moments. Significant results are
bolded.

65

analysis of the interviews because our sample size was small. Thus, instead of looking for themes,

we extracted instances in the interviews when students described their interpretation of a vignette

scenario, provided rationale for their response, or mentioned that a vignette sparked the recollec-

tion of a particular programming memory. The vignette questions were newly designed and thus

we want to confirm the validity of our findings. One potential risk is that students might answer

the self-assessment vignette questions based on hypothetical moments rather than memories of

specific programming experiences. However, we found that students referenced their own related

programming experiences when discussing their answers to the self-assessment vignette questions

in the interviews. For example, P6 discussed a specific experience from the current week’s home-

work when explaining his response to the starting over vignette:

“A lot of the times I have to erase my code, like many-a-times, like even for this current

homework assignment I had to erase several lines of code, sometimes just starting from

the beginning.”

We also saw participants relate events that happened to the vignette characters to their own pro-

gramming experiences. For example, P10 noticed that both he and Diego get help from the TAs.

He said:

“[The question was] kinda cool for me because Diego had to get help from the instruc-

tor and I often have to get help from the TAs a lot and I don’t feel like I’m doing bad.

Like I feel like I’m just improving myself.”

Another potential risk is that students might only answer the questions negatively because the

questions are framed with a negative angle. We would expect students to respond in both direc-

tions because our findings from Chapter 1 show that they have varied reactions to these moments

[13]. To evaluate whether this happened, we looked for instances in the interviews when students

explained the rationale for their responses to the questions in both positive and negative directions.

We found that students agreed and disagreed with the questions and had a distinct rationale for their

66

responses. For example, we heard students describe both opinions around the topic of planning.

P3 described planning as an important part of the process:

“I actually [stop to plan in the middle of a problem] a lot but I don’t feel bad about it

because I feel that planning is a really huge part before you even start anything. So it

is something that you shouldn’t feel bad about. I actually think it is one of the things

that everybody should do before just jumping into a problem.”

On the other hand, P1 said that when she spends time planning, she feels that it means she is not

properly prepared for the problem:

“Yeah I definitely feel bad when I have to spend time planning and can’t start pro-

gramming right away, because at that time I am in a situation where I feel that oh I

did a lot of practice and still I was stuck and I did not know where to start from and

where to end . . . as a computer science student, we don’t have to think after reading

the question, that ok this is the plan going on in my mind. Rather, we should implement

it and we should write it whatever way we feel and by running the program, we can

get to know the error instead of wasting time in the beginning.”

Both participants personally related to the vignette whether they agreed or disagreed with the

character’s negative assessment. This suggests that the vignettes elicited reactions and captured

the differences in from students who felt both similarly and differently from the character.

Another potential risk is that students might not consider the nuances in the survey question

when providing their answer, which could discount the distinctions we incorporated into the vi-

gnettes. However, we found that participants mentioned that they weighed these specific details in

the vignettes when deciding how to answer the questions. For example, P7 discussed the nuances

in the different types of errors:

“You are not doing poorly if you are getting a bunch of syntax errors. But sometimes

you do get errors that you completely don’t understand and don’t make any sense and

then that is a loss of concept . . . I think it would feel more like a setback if it was

67

a concept understanding because I feel like that is more part of the understanding

process. . . So, I would feel like I’m doing less well in comparison to where I get a

syntax error.”

This shows how the nuances in different types of errors impacted the way P7 answered the

question, suggesting that students consider these details when reacting to the scenarios. This indi-

cates that incorporating nuanced details into survey questions is important for gaining an accurate

representation of the moments that elicit negative self-assessments.

Overall, we found that students resonated with the vignettes and reflected on their own expe-

riences while answering the questions. These interviews helped establish that the self-assessment

vignette questions capture students’ interpretations of programming moments with reasonable ac-

curacy.

4.2.8 Students who self-assess more frequently have lower self-efficacy

To answer RQ3, we analyzed the relationship between students’ responses to the self-assessment

vignette questions and the self-efficacy survey. Enactive attainments, or the results of performing

tasks related to subject mastery, are the most influential information source for students’ self-

efficacy [23], so we expected that students who negatively self-assess more strongly or more fre-

quently would have lower self-efficacy in their programming course.

To test this hypothesis, we created a measure that represents the degree to which each stu-

dent negatively self-assesses, which we call the self-assessment compound score. We computed

this measure by averaging students’ responses to all of the self-assessment vignette questions after

converting the responses to numerical values ranging from negative three to positive three. In aver-

aging the questions, we are not suggesting that students’ responses should be internally consistent,

but rather that they each represent an instance of a negative self-assessment. For example, two

students could have the same self-assessment compound score, yet one student might report mak-

ing negative self-assessments when he gets errors while the other student reports making negative

self-assessments when she spends time planning. We therefore use this measure to get an overall

68

sense of how strongly and frequently each student negatively self-assesses. We also averaged stu-

dents’ responses to the five self-efficacy questions to create a self-efficacy compound score, after

confirming that the responses have high internal consistency (Cronbach’s alpha of 0.91).

Then, to test our hypothesis, we used a Spearman’s rank correlation coefficient to measure

whether there was a correlation between the two compound scores. The results show a signifi-

cant negative association between students’ self-assessment compound score and their self-efficacy

(rs(212) = -0.418, p < 0.001). This finding shows that students who negatively self-assess more

frequently and strongly tend to have lower self-efficacy in their CS1 course. From this analysis,

we cannot determine whether this is a causal relationship. However, since self-efficacy theory

has previously established that negative self-assessments influence students’ overall self-efficacy

[23], it is possible that there is a causal relationship between these negative self-assessments and

self-efficacy. Future research should therefore try to establish this causal relationship.

We were also interested in measuring whether there were any differences in the relationship

between students’ negative self-assessments and self-efficacy across the three universities. First,

we tested whether there was a difference in the compound self-efficacy scores between the three

schools. A Kruskal-Wallis test revealed a significant difference (H(2) = 13.96, p-value < 0.001).

Students at University 1 reported an average self-efficacy compound score of 1.808, compared to

an average of 1.375 at University 2 and an average of 2.071 at University 3 (higher scores indicate

higher self-efficacy). Given there was a difference in students’ self-efficacy across the univer-

sities, but not in their responses to the self-assessment vignette questions, we hypothesized that

there might be a difference in the correlation between the self-assessment compound score and

self-efficacy. To test this, we ran a non-parametric ANCOVA (using the sm.ancova subroutine in

R), which analyzes differences in correlations between a set of non-parametric regression curves

[99]. We chose a smoothing parameter of h=1 because this provided an accurate representation

of the data without overfitting. The test returned a p-value < .001, showing that there is a sig-

nificant difference in the strength of the correlation between the self-assessment compound score

and self-efficacy across the three schools. The fit lines in Figure 4.2 show that the self-assessment

69

Figure 4.2: Graph showing the self-assessment compound score and the self-efficacy compound
score for each survey participant, grouped by university. The results of the nonparametric AN-
COVA show that the fit lines for each of the universities are significantly different from each other.

moments have a stronger correlation with self-efficacy for students at University 2, and a weaker

correlation for students at University 3. This could be because a number of other factors beyond

self-assessments correlate with self-efficacy in computer science [63, 21, 22, 64, 7]. For example,

if students already have high self-efficacy due to factors like encouragement from the instructor,

high grades, or an expectation that the course is easy, self-assessments may not have as strong of

an impact on students’ beliefs in their ability to succeed.

4.2.9 Perceptions of professional programmers may influence self-assessment moments

We expect that multiple factors may impact the set of moments students use to negatively self-

assess while programming, and findings from our previous study suggested that students’ percep-

tions of more experienced programmers may be one of those factors [13]. Therefore, to answer

RQ4, we explored students’ perceptions of professional programming practice to evaluate whether

70

these perceptions correlate with the moments that cause them to negatively self-assess. First, we

evaluated how frequently students reported that each of the self-assessment moments rarely occur

in professional practice. The results ranged from 10% of students believing that professionals do

not stop programming to plan to 58% of students believing that professionals always understand

their error messages, shown in Table 4.3. This indicates that there is a wide variation in students’

perceptions of professional programmers and shows that many students’ perceptions do not align

with studies of professional practices [88, 92, 87].

Next, we wanted to measure whether students’ responses to the self-assessment vignette ques-

tions correlated with their responses to the professional programming survey questions. We hy-

pothesized that students who think that professional programmers do not encounter the self-assessment

moments would be more likely to negatively self-assess during these moments. For example, if

a student believes that professional programmers do not spend time planning, she may be more

likely to negatively self-assess when she has to spend time planning. We used a Mann-Whitney U

test to evaluate if there was a significant difference in students’ responses to the self-assessment

vignette questions based on their responses to the corresponding professional programming ques-

tions, as shown in Table 4.3. We found a significant effect for six of the moments, for example

using resources to look up syntax and spending time planning in the beginning. Additionally, two

of the other moments were trending towards significance (p-value between .05 and .1). We found

no significant effect for five of the moments. These results suggest that in some cases, students’

perceptions of the professional programming process may influence the moments when they neg-

atively self-assess.

Finally, we analyzed the interviews to understand whether students’ perceptions of professional

practice factored into their responses to the self-assessment vignette questions. We also analyzed

the interviews with a more exploratory lens to identify other rationales that students provided

for their responses. We noticed that multiple students, unprompted, brought up professional pro-

gramming practice when explaining their response to the self-assessment vignette questions. For

example, when P10 explained why she does not negatively self-assess after getting a syntax error,

71

she said:

“This is with simple errors . . . I strongly disagree that you are doing badly on it. I

don’t even feel like I’m doing badly on it because I get a small error. Again, I’m pretty

sure professionals make mistakes.”

Similarly, P9 explained her response about using resources saying:

“I said slightly agree because I’ve gone to a lot of tutoring centers so I know that

professionals or people with more experience than me do use websites to help them

figure it out. So I feel like I am not doing well [when I need to use resources] because

I wish that I could figure it out on my own and I would be doing better if I could figure

it out on my own but it’s not a major way to see that I’m not doing well.”

Because P9 knows that professional programmers use resources, she responded with slightly agree

instead of agree. While her perception of professional programmers may not have fully informed

her reactions to this moment, she still factored it into her response. Additionally, when P8 ex-

plained her response to the vignette about memorizing syntax, she said:

“I [think] that programmers need to know every single little piece of syntax and ev-

ery code and how to at least start doing everything. . . so the fact that I don’t have it

memorized just made me feel bad.”

Note that we cannot tell from this statement whether P8 is referring to professionals or simply more

experienced programmers. In either case, it is clear that she is considering her perception of expert

practice in making her self-assessment. Overall, these quotes show that students use their per-

ceptions of more experienced programmers to form their assessments of particular programming

moments.

Through our analysis, we identified additional factors beyond perceptions of professionals that

students considered when reporting on the self-assessment moments. For example, many partici-

pants used social comparisons. P13 said:

72

“Yeah I definitely feel badly on a problem if I don’t know where to start. Just like I

said before, just seeing everyone else around me being able to solve it. I don’t know

if I’m just struggling and everyone else is breezing through it, then I feel badly about

myself and I feel like I’m not as smart as everyone else.”

Self-efficacy theory states that the vicarious experience of watching peers informs students’ en-

active attainments [23], which could explain why social comparisons arose as a rationale for stu-

dents’ responses. Students also rationalized their responses by citing recommendations given by

their professors. For example P4 said:

“I put disagree, mainly because of our professors. They always tell us that planning

should be first and once you have your plan then you start coding.”

These quotes suggest that peer comparisons and recommendations from professors are additional

factors that may contribute to the particular moments that prompt students to negatively self-assess,

which should be explored further in future studies. These other factors may help explain why we

did not find a correlation between students’ responses to the perceptions of professional program-

mer questions and the self-assessment vignette questions for every moment. Students’ inaccurate

perceptions of professional programming practice partially explain why students make negative

self-assessments at natural parts of the programming process, but other factors also play an impor-

tant role in determining students’ self-assessments.

4.2.10 Students evaluate themselves more critically than they evaluate others

To answer our RQ5, we measured whether there were differences in students’ assessments of

themselves and their assessments of the vignette characters. We first converted the responses to

the two forced-choice Likert-scale questions following each vignette to a numerical scale ranging

from -3 (strongly disagree) to 3 (strongly agree). By agreeing to a statement that follows a vi-

gnette, participants demonstrate a belief that they (or the characters) are performing poorly during

that moment. Therefore, to calculate self-critical bias we subtracted their response to the question

73

Figure 4.3: Graph showing the percentage of participants who exhibited a self-enhancement bias,
a self-critical bias, and no bias, when comparing their responses to the questions following each of
the thirteen vignettes.

about themselves from their response to the question about the character for each vignette ques-

tion. For example, a participant may slightly agree (1) that the character is performing poorly in a

particular moment, and slightly disagree (-1) that they are performing poorly. We would calculate

1 minus -1 resulting in a self-enhancement bias of 2 for that vignette. A positive value indi-

cates a self-enhancement bias in participants’ responses. After calculating these self-enhancement

biases, we grouped participants into three categories for each vignette: those who exhibited a

positive self-enhancement bias, those who exhibited no bias, and those who exhibited a negative

self-enhancement bias.

Surprisingly, we found that very few students exhibited a self-enhancement bias. As shown in

Figure 4.3, only 3-5% of participants had a positive self-enhancement bias for each question, while

25-60% of students had a negative self-enhancement bias. We refer to a negative self-enhancement

bias as a self-critical bias. Overall, these findings suggest that CS1 students tend to be more critical

of themselves than of others, which is surprising given previous findings on the prevalence of self-

enhancement biases. This self-critical bias could manifest in two degrees of severity. Students

could believe that both they and the character are performing poorly or well, but differ in the

strength of the assessments (e.g. slightly agree for the character, agree for themselves). Or, students

could believe that they are performing poorly (e.g. slightly agree) but make no negative assessment

74

of the character (e.g. disagree), and vice versa. We were interested in measuring how often students

assessed themselves in a different direction than the character, so for each vignette, we counted how

often participants’ responses to the two vignette questions fell on different sides of the Likert scale.

We found that only 1-4% of participants negatively assessed the character but not themselves for

each vignette, while 9-36% of participants negatively assessed themselves but not the character for

each vignette. Furthermore, we found that 85% of students negatively assessed themselves but not

the character for at least one vignette, while only 18% of students assessed the character but not

themselves for at least one vignette. This effect was most common for the moments starting over

and does not understand the problem statement, in which 35% and 33% of students respectively

assessed themselves but not the character negatively. These findings show that a significant number

of students negatively assess themselves at moments that they think are acceptable for others.

4.2.11 Self-critical bias is stronger when the student or the vignette character is female

Finally, to answer RQ6, we analyzed whether self-critical bias was influenced by gender. For the

remaining analyses, we did not include the five students who reported non-binary gender identi-

ties because we feared the size of the group would result in an inaccurate representation of their

experience. For the binary students, we conducted a Mann-Whitney U test, and found that female

students were significantly more likely to have a self-critical bias than male students (Z = 3484.5,

p < 0.001), with a median bias of 0.46 for male students and 0.92 for female students.

Women are underrepresented in computer science, and prevalent stereotypes depict computer

scientists as technologically-oriented males [38]. As a result, we wondered whether students might

assess themselves differently in relation to female and male vignette characters. We averaged the

self-critical bias that each participant reported for the vignettes with female characters and the

vignettes with male characters. Then, we conducted a Wilcoxon signed-rank test, a non-parametric

paired t-test, between these two scores and found that participants were significantly more self-

critical when the vignette character was female (Z = 8688, p < 0.05). The median self-critical bias

was 0.57 when the vignette character was male, and 0.71 when they were female.

75

After finding that students are generally more critical of themselves in comparison to female

vignette characters, we wondered whether this effect is influenced by the gender of the participant.

To answer this question, we conducted an Aligned Rank Transform, a non-parametric ANOVA. We

used the same self-critical bias scores for female and male vignette characters described above. We

found that the gender of the character (F(1, 206) = 4.39, p < 0.05) and the gender of the participant

(F(1,206) = 14.90, p < 0.001) both had significant effects on self-critical bias. While this effect

appears to be stronger for male students, we did not find a significant interaction (F(1, 206) = 0.36,

n.s.). We often think of female students as being most affected by stereotypes about who belongs

in computer science, however these findings show that male students are also influenced by these

narratives.

4.3 Conclusion

In this chapter, we contribute the results of a survey study with 214 CS1 students from three uni-

versities. We found for each of the programming moments that some students report to negatively

self-assess when they encounter the moment, even though these moments occur in professional

practice. Interestingly, for twelve of the thirteen self-assessment vignette questions, there was no

significant difference in students’ responses based on their university, despite large differences in

the populations of students that these universities serve. This suggests that many self-assessment

moments generalize across different university populations. We also found that the frequency with

which students negatively self-assess correlates with their overall self-efficacy in their program-

ming course. While there was little difference in the self-assessment moments across the schools,

the degree to which the self-assessment moments correlated with students’ overall self-efficacy

significantly differed between the universities, which suggests that environment may have a strong

influence on self-efficacy. We conducted two secondary analyses to explore potential explanations

for why students may negatively self-assess based on these moments. We found that students have

inaccurate perceptions of professional programmers and these perceptions correlated with their

responses to some of the self-assessment vignette questions. This suggests that these perceptions

76

may influence when students negatively self-assess. Additionally, we found that very few stu-

dents exhibit a self-enhancement bias in this domain. Instead, we found that many students exhibit

what we call a self-critical bias, with 96% of participants rating themselves more harshly than the

vignette character in response to at least one vignette. We also found that female students are

significantly more likely to have a self-critical bias than male students and all students tend to be

more self-critical in comparison to a female student versus a male student.

Based on our findings, students may not have an accurate understanding of professional prac-

tice, and thus may have misguided expectations of their own programming practice. This gap in

knowledge may exist because CS1 courses typically do not teach the cognitive aspects of pro-

gramming, including problem-solving strategies and programming practices [10]. By explicitly

teaching about programming practices in CS1, we may be able to help students build accurate

expectations of the programming process and reduce negative self-assessments. Previous stud-

ies have taught about programming practices through techniques like direct instruction [10] and

by showing recordings of professional programmers [100]. However, we also know that some stu-

dents negatively self-assess in response to moments despite knowing they are not universal signs of

poor performance. These students view the moments as more problematic for themselves than for

others. To better support this group of students, CS1 teaching staff could call attention to moments

when students may be assessing themselves particularly harshly, and help these students reframe

their perceptions of the moments. These interventions will likely improve student self-efficacy in

their programming course, since we found that students who negatively self-assess more frequently

and strongly tend to have lower self-efficacy.

While these results provide valuable insight into CS1 student experiences, our study has a

few limitations. First, even though we chose the self-assessment moments included in our survey

based on previous research and preliminary user studies, it is likely that our set of moments is not

comprehensive. There may be other moments in the programming process that prompt students

to make negative self-assessments. In particular, cultural differences both within and outside of

the United States may strongly influence the moments that prompt students to negatively self-

77

assess. Additionally, while our interviews with a small sample of students provide promising

initial evidence that our survey accurately captures student self-assessments, we need to conduct

a more formal validation of the survey. Finally, our results rely on student self-reports based

on remembered experiences triggered by the vignettes. While retrospective assessments are still

relevant for understanding students’ perceptions of ability, we do not know whether these responses

accurately reflect the thoughts that arise during programming episodes. However, we chose this

methodology because the survey allowed us to collect a larger sample of data with consistent

experiences between students.

This research lays a theoretical foundation for designing interventions that reduce unnecessary

negative self-assessments for novice programmers. With the recent emphasis on personalized feed-

back interventions through the IDE, a system that automatically detects self-assessment moments

from interaction log data could help us study these moments and intervene when they occur. Thus,

in the next chapter, I focus on identifying and detecting when these moments will occur, with the

goal of providing direction for researchers or practitioners to design interventions that can help

reframe student reactions when they occur. Additionally, from this study, we provide both practi-

tioners and researchers a new understanding of the student experience for course instructors and

researchers interested in the student programming process.

78

CHAPTER 5

STUDY 3: AN APPROACH FOR DETECTING STUDENT PERCEPTIONS OF THE

PROGRAMMING EXPERIENCE FROM INTERACTION LOG DATA

5.1 Problem and background

In the previous chapters, we established the prevalence of negative self-assessments in CS [31, 13].

However, we do not know how the negative self-assessments arise in and impact the student pro-

gramming experience. Currently, we have a limited understanding of the programming moments

that prompt these negative self-assessments and can not identify them in the programming process

as they were defined broadly in the vignette survey questions. If we could detect these moments as

they arise during the programming process, we would be able to study the programming experience

at those moments more directly.

Furthermore, if such a detection system were automated, we could study these moments using

a significantly larger sample of data, as manually detecting them is labor-intensive. An automated

detection system would also enable the development of real-time feedback interventions, which

provide messages to students at key moments. This type of intervention has been shown to be

particularly effective in influencing student beliefs that arise during an activity and mediating stu-

dents’ perceptions in other contexts [48, 49]. Additionally, since the feedback would be provided

by a technological system, these interventions can scale to meet the increasing demand and high

faculty to student ratios in CS.

Interaction log data collected from programming environments may be useful for automatically

detecting self-assessment moments. Researchers have successfully leveraged this type of data to

analyze student programming process [101, 102, 103], predict student performance [104, 101,

105, 106, 107], and build automated feedback interventions [108, 61]. However, most of these

prior systems use bottom-up methods to identify behavioral patterns in interaction data, rather

79

than using top-down approaches to detect pre-defined programming moments like struggling with

syntax errors, an example of the self-assessment moments. Systems that use top-down approaches,

such as cognitive tutors [109, 110, 111] generally require models of expert practice. However,

researchers are not experts in understanding how students perceive the programming process, and

thus we would need to elicit this knowledge from students to create such a model in this domain.

To address this gap in our ability to study the negative self-assessment moments in the stu-

dent programming experience, we contribute an approach called retrospective-enabled perception

recognition for designing systems that detect student perceptions of the programming process. In

this approach, the designer uses retrospective interviews [84] to elicit student perceptions of pro-

gramming moments, and then builds a qualitative codebook that describes the behavioral patterns

indicative of each moment. This codebook is used to inform the design of an expert system. We

used our approach to design an automated detection system for eight self-assessment moments

based on retrospective interviews with 41 CS students. We evaluated the performance of our sys-

tem using data collected from an additional 33 students, comparing the automatically detected

moments to those manually labelled by the authors. Our results are promising, with F1 scores

ranging from 66% to 98%. All of the students were from a CS2 class in an R1 university and

worked on the same programming problem. Thus, while the results are promising, we recognize

that this study was conducted within a very particular context and population, so the system may

not be generalizable. We also present an analysis of our systems’ incorrect decisions, enabled by

the transparency of the expert system approach. Our detection system has the potential to facilitate

future studies of self-assessment moments and support interventions that provide real-time feed-

back. Additionally, we believe the retrospective-enabled perception recognition approach can be

used more broadly to design detection systems for student perceptions in other contexts.

5.2 Use of interaction log data in CS Education

There is a rich history of research studies that interpret the log data collected from student interac-

tions with programming environments to study the programming process. Researchers analyze

80

interaction data using two primary approaches: to produce new knowledge from a bottom-up

analysis of student interactions (data-driven approaches), and to perform top-down detection of

programming moments. I briefly will discuss both of these approaches.

Many researchers have taken data-driven approaches to study the student programming process

[102, 103, 112, 113] and to evaluate or predict student performance [104, 101, 105, 106, 107, 20].

For instance, early work by Soloway et al. studied the origins of issues in student programs by

logging their compiler errors during programming sessions and analyzing patterns [112]. Similarly,

Jadud analyzed compilation logs to measure student progress on programming problems [104].

More recently, researchers have leveraged machine learning techniques to identify patterns in log

data. For example, Blikstein et al. clustered students based on their problem-solving pathways to

study their progress through programming assignments [101]. Berland et al. also used clustering

techniques to study student tinkering behaviors and observe how they change across programming

stages [103]. These studies all use data-driven approaches to find patterns in interaction log data

that inform our understanding of novice programmers. However, data-driven approaches cannot be

used to identify specific moments in the programming process that are predefined based on theory

as data-driven decision making processes are not generally human-interpretable.

Fewer studies have analyzed interaction log data with a top-down approach. A top-down ap-

proach is where researchers use expert knowledge of the programming process to detect moments

from log data. Thus, instead of using an exploratory approach with the data, they use the data to

help inform, support, or identify prior theory or empirical findings. Expert systems, which model

expert decision-making processes, are a common technique used for top-down approaches. Expert

systems reason about student interactions based on models of expert practice and knowledge. For

example, expert systems have been used in cognitive tutors, [109, 110, 111] like the LISP tutor

[114], to interpret student interaction data and provide relevant feedback. Marwan et al. used

this approach to develop a tool that analyze CS student program states to identify milestones in

their progress as they solve problems [61]. However, none of these models focus on designing

systems that identify moments based on student perceptions instead of expert knowledge. With

81

our retrospective-enabled perception recognition approach, we suggest a new methodology for

building tools that interpret interaction log data based on student perceptions.

5.3 Retrospective-enabled perception recognition

The main contribution of this chapter is our approach for detecting student perceptions of the

programming experience from interaction log data. In this section, we describe our new approach

and present the methods we used to build a system to detect moments when students may negatively

self-assess while programming.

5.3.1 Data collection tools

To enable our system, we designed extensions to collect interaction log data from two programs:

jGRASP [115] (an IDE often used in introductory Java courses) and Chrome (a commonly used

web browser). We chose these two programs because they account for a large portion of student

interactions with the computer while programming. Each extension collects time-series data in a

JSON format for a number of user actions and events, which allows us to keep track of student

behavior and the state of the IDE. Our jGRASP extension, built in collaboration with the jGRASP

development team, captures all keystrokes, cursor movements, console messages, and interactions

with buttons and windows. Our Chrome tool captures all navigation on websites, including the

URLs and scrolling behavior while viewing a page. During the data collection process, we iterated

on the events and actions collected by the extensions as we learned more about the behaviors

associated with each moment. For example, after looking at the data, we realized that student

scrolling patterns revealed important information about their behavior, so we added this to our

extensions.

5.3.2 Phase 1: Retrospective interviews

We conducted retrospective interviews during Phase 1 to capture student perceptions of the pro-

gramming experience. We recruited 41 participants from a large public university in the United

82

Table 5.1: Negative self-assessment moments detected by the expert system.

Moments and detailed descriptions
Using resources to look up syntax from the web or other sources
Using resources to research an approach from the web or other sources
Changing approaches to try a new approach for solving the programming problem
Writing a plan in the comments or notes to outline future programming steps
Getting simple errors are usually compiler errors due to oversights or typos
Getting Java errors are usually runtime errors due to conceptual mistakes
Struggling with errors while trying to fix or debug the errors
Stopping to think while implementing a solution

States. At the time of the study, all participants enrolled in a second-semester introductory CS

course (CS2), a requirement for CS majors, were eligible to participate. We recruited students

with emails sent by the professor of the course. The study took place virtually through Zoom.

Students provided consent to participate and were compensated for their time.

The goal of the interview was to gather examples of self-assessment moments naturally occur-

ring during programming sessions, along with participants’ perceptions of those moments. When

a participant joined the Zoom call, the researcher installed the Chrome and jGRASP extensions

on the student’s computer. Then the researcher provided a short review of how to use jGRASP

to ensure a baseline level of familiarity with the development environment. We asked the student

to work on one of three similar programming problems while sharing their screen, and told them

to work on the problem like they would a homework assignment. All students programmed using

the Java language. During this part of the interview, the researcher turned the student’s video and

microphone off and did not interrupt them to reduce the effect of the lab environment on their

behavior as much as possible.

After 30 minutes of programming, we conducted a retrospective interview [84]. We gave the

student a list describing a subset of the self-assessment moments from Chapter 2 [31] (see examples

in Table 5.1). We chose to only include the moments that occur during the programming process,

like changing approaches, and not general reflections, like spending a long time on a problem,

because we were more likely to be able to determine when they will happen. Finally, the student

and researcher watched a screen recording of the programming session and the student identified

83

Figure 5.1: Timeline graph demonstrating the self-assessment moments that occurred in a partici-
pant interview.

each time one of those moments occurred. In Figure 5.1, we provide an example of the self-

assessment moments that were labelled in the retrospective interview for one participant.

5.3.3 Phase 2: Qualitative analysis

The goal of Phase 2 was to develop a qualitative codebook that the researchers could use to identify

negative self-assessment moments independently, without additional knowledge of student percep-

tions. Identifying moments such as using resources may appear straightforward, however students’

perceptions of these moments are quite nuanced. For example, in our prior work students reported

different reactions when using resources to look up syntax versus using resources to research how

to solve the problem [13, 31]. While it is relatively easy to determine when a student is viewing

a website or a course resource, determining the purpose of its use is more difficult. In addition,

it is critical to identify each use of a resource, because a student who references the same re-

source multiple times will have a different experience than a student who uses multiple resources

for different purposes. We therefore use a detailed qualitative codebook to capture the nuances

discovered through the retrospective interview process.

To develop this codebook, we qualitatively analyzed the retrospective interviews. After con-

ducting the first 20 interviews, we compiled a list of all student-labeled moments. From that list,

we distilled a set of representative behaviors for each moment and wrote an initial draft of the code-

book. The codebook includes a high-level definition of each moment and a set of heuristics that

describe the behavioral patterns indicative of each moment. We then re-watched the first twenty

interviews and iterated on the behavioral descriptions for each moment until two researchers could

accurately and consistently label all of the moments. The final codebook can be seen in Appendix

A.

As an example, we describe how we identify struggling with errors using our codebook. We

84

defined three levels of behavioral indicators for this moment: strong, medium, and weak. If a

student exhibits a strong indicator, such as running code in an attempt to fix a bug three times

in a row without succeeding, we would label this as struggling with errors. If there is no strong

indicator, but there are two medium indicators, such as using resources after getting an error, we

would also label this as struggling with errors. Finally, while weak indicators, such as a slower

pace of typing, are not enough to label the moment on their own, the researchers use them to

strengthen their confidence in the decisions.

5.3.4 Phase 3: Codebook verification

In Phase 3, we first tested the codebook using data from an additional 21 interviews. After each

new interview, two authors watched the screen recording of the programming session and used the

codebook to label the self-assessment moments. Then, the researchers compared their decisions

to the participant’s labels in the retrospective interview as member-checks of the labelling scheme

[116]. When there were misalignments between a participant’s labels and the researchers’ labels

that could not be explained by the participant misusing or missing a label, the researchers adjusted

the description of that moment to incorporate the newly observed behavior. This iterative process

continued until the researchers did not need to make changes for five consecutive interviews in

which the moment was present. At that point, we considered the codebook for that moment to

have reached saturation [117, 118]. Of the 12 moments that we asked students to label during

the retrospective interview, we were able to reach saturation for eight (see Table 5.1). Most of

the moments for which we did not reach saturation occurred at the beginning of the programming

session, such as writing a plan before implementation. At this point, students generally interact

less with the computer, making it more difficult to identify these moments.

5.3.5 Phase 4: Implementation of the detection system

In Phase 4, we built an expert system to detect self-assessment moments using the heuristics in our

qualitative codebook. Our system has two stages: data transformation and decision-making. In this

85

section, I first describe the implementation of each of these stages. Then, I describe an example

for detecting one of the moments.

In the data transformation stage, we parse through each event captured in the interaction log

data chronologically. At each item in the log, we record around 100 researcher-authored metrics

into a knowledge base. Together the metrics provide a comprehensive snapshot of the state of the

programming process. For example, one metric captures the number of lines that a student pastes

from a resource into their code. Other metrics require more calculations, for example evaluating if

a student was editing mid-line when they stopped to look for a resource. In order to calculate these

metrics, we use the log data to keep a constant state of the programming environment, including

both how the programming environment is represented to the student as well as helper variables to

keep track of historical values. For example, when a student goes to a resource, in order to know if

they were editing mid-line when they left the IDE, we need to have a record of the last edits they

made in the editor.

In the decision-making stage, we analyze the metrics at each log event to determine if any of the

self-assessment moments occurred. We use two different styles of heuristic algorithms, either if-

then rules when there is less ambiguity in the decision-making process (e.g. getting simple errors),

or fuzzy logic [119] when many metrics need to be considered in parallel (e.g. using resources

to look up syntax). For example, we use fuzzy logic to increase our confidence that a student is

using a resource to look up syntax if they paste either one or two lines of code from the resource.

There are a number of complexities in this stage that we considered. For example, we keep track of

the previous identification of a moment in order to ensure that there are not extraneous duplicates.

Another complexity is determining a particular start time for the moment as the interval when the

moment can be determined may not be at the beginning. For example, we need to know how a

student uses the internet to determine which using resources label is accurate. Thus, the moment

will not get triggered until the student returns from using resources, but the ’start’ of the moment

will be logged as when the student goes to the resource initially.

As a concrete example, consider the strong indicator for the struggling with errors moment,

86

when a student runs the code in an attempt to fix a bug three times in a row. One metric for this

indicator calculates whether the student is working on the same error across multiple compilations.

This metric keeps track of the number of the errors in the console and the names of the errors.

After each compile, we use this information (along with some additional details about code edits)

to evaluate if the student is still working on the same bug.

We chose an expert system because retrospective data is time-intensive to collect. It is impracti-

cal to collect enough student-labeled data to serve as ground-truth for machine learning algorithms.

Additionally, data-driven approaches often produce features that are not human-interpretable, mak-

ing it difficult to understand their decisions and limitations. With an expert system, we can trace

the decision process and ensure that the system is making logical choices.

5.4 Evaluation of the system

5.4.1 Methods

We evaluated our system by comparing the automatically detected moments to those manually

labelled by the research team based on the codebook. We chose to use researcher labels as the

ground truth because participants do not use the same diligence in labelling as researchers. While

participants are able to report when events occurred, they may not report them during an interview

as consistently as necessary for ground-truth data due to differing interpretations of the moments

and participant attention spans. In order to gather consistent ground-truth data, we relied on the

codebook that was previously verified.

We collected data from programming sessions with 33 additional students from the same uni-

versity and CS2 course as our initial interviews. Again, students programmed using the Java

language. By choosing students from the same course, we keep consistency in the data but can not

test generalizability. The setting and procedure were the same, with the exception of the retrospec-

tive interview, which was excluded. To establish the reliability of the researcher-assigned labels,

my collaborator and I independently labelled the same seven interviews, or 21% of this data set,

achieving 82% agreement. We then independently labelled the remainder of the data.

87

One challenge in evaluating this system is establishing a way to compare moment timing be-

tween the researchers and the machine. When manually labelling the moments, the researchers

picked a timeslot from non-overlapping ten-second windows (e.g., 0-10, 10-20). When comparing

the system’s results to the researcher-labelled set, we used an additional fifteen-second buffer on

both sides of the ten-second window because the start time of a moment can be difficult to de-

termine and might fall on the border of a window. We marked a machine detection as correct if

the timestamp assigned to a label was within this forty-second window. We used a slightly larger

buffer to more accurately represent two of the moments. For changing approaches, we used a

two-minute buffer instead of a fifteen-second buffer because this moment often takes places over

a few minutes, and we did not have a way to consistently identify matching start times. For strug-

gling with errors, the researchers identified the start and end time for the error cycle in which the

participant struggled. We deemed a system-identified label as correct if the system chose any time

within the error-cycle boundaries. While both of these windows are larger, they reflect the context

of these moments and the system’s ability to identify these moments accurately.

After running our system on the log data from our evaluation data set, we further analyzed its

performance by looking at each false positive and false negative result. The authors reviewed each

case and categorized the reason for the false detection by watching the screen recording of the

moment and consulting the codebook. During this process, we identified a number of instances

when the researchers mislabeled moments, and also noted the limitations of our system.

5.4.2 Findings

Our results in Table 5.2 show that we had very high F1 scores for some moments, such as getting

simple errors, and lower but still reasonable F1 scores for others, such as writing a plan. While

precision and recall are both important, high precision matters most for interventions to ensure

that real-time messages are delivered in response to true moments, and recall is most important

for studies to ensure that relevant moments are not missed. The data also shows that the moments

arise at varying levels of frequency; getting simple errors and stopping to think were most frequent,

88

Table 5.2: Results from the evaluation of the detection system.

Moment Precision Recall F1 Score Count Human Errors
Using resources to look up syntax 82.0% 86.1% 84.0% 128 2
Using resources to research approach 66.7% 66.7% 66.7% 21 1
Changing approaches 73.1% 73.1% 73.1% 26 8
Writing a plan 60.0% 75.0% 66.7% 15 0
Getting simple errors 99.1% 97.7% 98.4% 213 13
Getting Java errors 90.3% 90.3% 90.3% 31 2
Struggling with errors 69.2% 90.0% 78.3% 26 5
Stopping to think 79.1% 75.3% 77.2% 159 15

while writing a plan and using resources to research an approach only occurred occasionally.

Our system tended to perform worse for less frequent moments, likely because our codebook

and system were developed using fewer observations. However, the frequency of a moment does

not necessarily indicate its importance. While we do not yet know how each moment influences

student self-efficacy, some of the less frequent moments may have a stronger impact on student

experiences than the more frequent ones.

One benefit of our approach is that our system’s decisions are transparent and can be assessed

using our qualitative codebook. This enabled us to conduct an analysis on our system’s false

positives and false negatives. First, our analysis revealed many human errors in labeling, showing

how challenging it is for humans to accurately label this type of data and highlighting the value of

an automated system. Our analysis also revealed trends that provide direction for improving the

system. For example, 10% of the system’s incorrect decisions occurred because the researcher and

system disagreed about the timing of a moment. When we designed the codebook, we focused on

describing the heuristics to determine whether a moment occurred, rather than the exact start time

for every moment. As a result, our system had less information to help it choose start times. Many

of these moments occur over a period of multiple minutes, and therefore detection within a wider

range of times could be acceptable. In the future, we would suggest either developing heuristics

for determining start times during the qualitative analysis or changing the evaluation to allow the

system to select any time point during the moment, as we did for struggling with errors.

Our analysis of the system’s incorrect decisions also revealed that particular metrics were dif-

89

ficult to encode. For example, our system was not always able to determine when a student had

resolved a particular error, which is crucial to detecting the struggling with errors moment. This

can be quite complex, as students exhibit a wide variety of behaviors when debugging. Another

challenge we encountered is that our system does not always have enough information to deter-

mine the student’s purpose for using resources when it knows a using resources moment occurred,

resulting in a lower recall for using resources to research an approach. Even though our met-

rics generally provided enough guidance for the researcher, without human intuition or contextual

understanding, the system was less accurate in interpreting the variety of ways that students use

resources. With more development time, we could increase the accuracy of detection for both of

these moments, but it would require significant effort to fully model all potential behaviors. While

it is likely not possible to fully capture the variance in student behavior in our models, our rela-

tively high detection accuracy and our concrete ideas for improvement show that this is a viable

approach.

5.5 Conclusion

In this chapter, we present a new approach for designing systems that detect student perceptions

of the programming process, called retrospective-enabled perception recognition. We apply this

approach to develop an expert system to detect programming moments that prompt students to

negatively self-assess, building on expertise gained through retrospective interviews with 41 CS2

students. We evaluated our system with programming session data collected from an additional 33

CS2 students, finding that our system achieved F1 scores ranging from 66% to 98% for the eight

self-assessment moments.

While we are encouraged by our system’s performance, this work has a number of limitations.

First, our evaluation relies on researcher-assigned labels. While we verified the labeling process

through a formal qualitative analysis, researcher labels may not perfectly represent student percep-

tions. Additionally, while we believe the retrospective-enabled perception recognition approach

can be applied to other problems, the system itself was built in a very particular context. We devel-

90

oped and tested our system with students from just one course and university, working on a similar

set of problems in the same language. Additionally, all data was collected in a lab setting and not

in-the-wild. Thus, the applicability of the system itself may be limited to this one particular con-

text. From this work, we do not know if it is possible to build a system that is broadly generalizable

or if different detection systems are needed based on sociocultural and course context. Additional

work is needed to understand whether our system will generalize to a more naturalistic setting,

more diverse problems, and other programming languages.

Through retrospective-enabled perception recognition, we contribute a new approach for com-

bining qualitative methods and expert system design to detect moments that students perceive as

meaningful. Furthermore, our system for detecting negative self-assessment moments has the po-

tential to enable new studies and interventions that were not previously possible. In future work,

we hope to use this system to further study how student perceptions and self-assessment impact

student experiences in the programming process. This future work will continue to inform in-

structors and curriculum developers of CS1 programs and enable the design of real-time feedback

interventions to help students re-frame self-assessment moments and improve self-efficacy.

91

CHAPTER 6

STUDY 4: USING ELECTRODERMAL ACTIVITY MEASUREMENTS TO

UNDERSTAND NOVICE PROGRAMMER EMOTIONS

6.1 Problem

For novice programmers, code writing can be a roller-coaster of emotions, from frustration and des-

peration, to joy and pride [5, 120, 121, 122, 123]. Emotions are important for researchers to con-

sider because they correlate with long-term outcomes like project and course performance [6, 124,

122, 123], self-efficacy [14, 6], and self-assessed productivity [125]. In previous chapters, we iden-

tified that some students negatively self-assess at moments throughout the programming process.

While our detection algorithm can identify the moments of potential negative self-assessment, we

do not know if students have reactions in those specific moments or how students experience them.

Thus in this chapter, we begin to explore the relationship between emotions and self-assessment

moments by identifying the events that cause students to experience emotional reactions while

programming.

Identifying the specific causes of students’ emotions while programming is key to improving

their programming experiences. A number of studies have explored programmer emotions using a

variety of methods, including asking general questions about the events that trigger emotions [126,

127], interrupting students while programming to learn about their emotions [128], and asking

about affect during predetermined events [123]. While these studies provide a valuable foundation

to our understanding of programmer emotions, they have a number of limitations. Participants

often struggle to accurately recall their emotional reactions after the fact [28], but interrupting them

as they work impacts the authenticity of the programming experience. However, we currently lack

a method for analyzing emergent programmer emotions during authentic programming sessions

with a moment-to-moment unit of analysis.

92

Measuring physiological reactions throughout a programming session may provide new in-

sights into the emotional experiences of programmers. Emotions are not just cognitive reactions;

they also create physiological changes in the body, like increases in heart rate and sweat pro-

duction, which can be measured by sensors [129]. Physiological sensors provide continuous and

fine-grained data that allow researchers to pinpoint particular moments when people experience

emotions and analyze emotions across time. Since people may not always be aware of their emo-

tions, physiological devices can measure emotional stimuli even when people are not cognizant of

those experiences [130, 131].

With the increasing availability of sensors, cued-recall experts have suggested adding infor-

mation provided by physiological data sources to retrospective interviews to assist in triggering

student recall of events [132]. Physiological data provides an additional lens through which in-

terviewers and participants can view participants’ emotional experiences, which complements the

cognitive and behavioral indicators that we can measure with surveys, interviews, log data, and

observation [131, 129, 133]. Physiological data sources may help improve student recall in ret-

rospective interviews by surfacing moments of high emotional responses for further discussion.

However, we are not aware of any existing studies that have attempted to utilize physiological data

sources with a cued-recall methodology in the computer science education domain.

To address this gap, we used electrodermal activity (EDA) sensors to capture physiological

data while novice programmers work on a programming problem. We utilized this data to trigger

student recall during a retrospective interview of the programming session with the goal of an-

swering two questions: (1) What events during programming trigger novice programmers to have

emotional reactions? (2) How do student remembered experiences align with visual inspection of

EDA data?

93

6.2 Background

6.2.1 Emotions

While emotions are a common occurrence in everyday life, they are notoriously difficult to define

scientifically [134]. There is agreement across theories that emotions involve multiple processes

in the body, including both cognition and the work of the autonomous nervous system. This is

reflected in the American Psychological Association’s definition of an emotion: “a complex reac-

tion pattern, involving experiential, behavioral, and physiological elements, by which an individual

attempts to deal with a personally significant matter or event” [135]. Scherer’s Component Pro-

cess Model identifies five coordinated processes that make up emotions. The five processes are:

cognitive appraisal of the situation, bodily symptoms, tendencies towards action, facial and vo-

cal expression, and feelings [134]. In this dissertation, we use this definition of emotions as it

summarizes research showing that emotions are multi-faceted, involving co-existing processes of

cognition (e.g. thoughts), behavior (e.g. facial expression changes, activity changes) and physiol-

ogy (e.g. increased heartbeat, sweating) [134].

With the recent trends towards understanding student affect and motivation, computing educa-

tion researchers have increasingly studied the emotions that novice programmers experience [120,

125, 124, 126, 121, 136]. For example, Bosch & D’Mello identified novice programmer affective

states, showing that novices experience emotions from engagement and happiness to disgust and

frustration [123]. Kinnunen and Simon identified different aspects of freshman programmer expe-

riences, like the ’hit by lightning’ experience, which occurs when a student encounters a problem

that they did not expect [5, 14].

A number of these studies have identified that student emotions correlate with measures of stu-

dent success, like performance and persistence. For example, Bosch et al. identified that boredom,

flow, and confusion are correlated with student performance [122]. Lishinski et al. found that

emotions correlate with student performance on projects and has long- and short-term effects on

course performance [6]. Studies have also found that novice programmer emotions correlate with

94

self-efficacy and self-assessed productivity [14, 6, 125]. For example, Kinnunen and Simon docu-

mented that after an unsuccessful programming episode, novices expressed that they had feelings

of inadequacy and stupidity. Additionally, emotions likely influence student persistence through

the CS major since enjoyment of programming is a main factor in student decisions to major in CS

[15], and students’ recollection of past programming assignments are dominated by their emotional

experiences [5, 124].

6.2.2 Existing methodologies for identifying triggers of emotions during novice programming

A few studies have attempted to identify the triggers of the various emotions that students expe-

rience while working on programming problems. Two studies identified a list of triggers for both

negative and positive emotions by asking novice programmers generally about the causes of their

emotions [126, 127]. Despite the interview happening directly after a programming session, these

studies did not direct the questions about emotions towards specific instances in that session, but

were general to their programming experiences. For example, Girardi et al. asked programmers

“What are the causes for your negative emotions during programming?” These types of ques-

tions require students to reconstruct memories based on an association, in this case recalling the

programming events that aligned with experiences of negative emotions. This question format re-

sults in less accurate recollections when compared to asking students to provide detail of specific

instances of a programming session [28, 29]. Drosos et al. accessed specific examples of frustra-

tion by instructing students to report their emotions on a survey throughout a programming session

[137]. While this data provides specific examples of emotional triggers in-action, the programming

session is not authentic because the students had to report their emotions throughout the session.

Additionally, identifying the points of interests are solely reliant on students to remember to report

their emotions. Although they did not directly report on the triggers for student emotions, Bosch

& D’Mello addressed these issues by using a qualitative approach to understand the emotions that

novices experienced during their first computer programming learning session [123]. After the par-

ticipant worked on a programming problem, the researchers and participants together watched the

95

Figure 6.1: Phasic and tonic activity segmented in an EDA signal, demonstrated by Caruelle et al.
[139].

screen recording and front-facing video of the session, pausing the recording at specific interaction

events to ask participants about their affect. Since the probing points were predetermined, these

findings may be missing instances when students have emotional reactions that the researchers did

not expect. Thus, in this chapter, I suggest a new method for studying specific instances of events

that trigger emotions during authentic programming sessions.

6.2.3 Physiological data analytics - electrodermal activity

When a person experiences an emotional stimulus, it creates sympathetic neuronal activity, which

results in frequent, tiny changes in sweat production [129, 131, 133, 138]. These changes may not

be noticeable to the individual, but can be detected through electrodermal activity (EDA) sensors.

Electrodermal activity is the measurement of skin conductance, which is based on the amount of

sweat; the more sweat on a person’s skin, the higher electrical conductivity.

An EDA signal can be broken into two components, phasic and tonic, seen in Figure 6.1 [139].

Phasic activity is the short-term fluctuations, or peaks and valleys, that represent neuronal activity,

as after a triggering event there will be an immediate spike in skin conductance. These peaks are

referred to as skin conductance responses (SCR) and can be used to study temporally unfolding

events [133, 131]. Interestingly, the intensity of SCRs often reflects the physiological significance

of events that trigger them. Tonic activity is the general level of EDA and varies slowly, thus is

96

Figure 6.2: The Empatica E4 wristband [140].

referred to as the skin conductance level (SCL). While SCL is influenced by emotions, external

factors can also impact SCL, like time of day [129]. Shifts in tonic level and changes to frequency

and amplitudes of peaks in the phasic activity are indicators of changes in emotions [129].

Physiological data, and specifically EDA, has been used to study students’ affective state during

cognitive tasks [141, 142, 139, 143, 130]. EDA data addresses three common challenges with

measurement of student emotions [139]:

• Emotions can occur at any time, but many data collection methods capture information at

specific intervals. EDA can be measured continually through an entire activity.

• Participants do not always express the emotions they have experienced. EDA data indicates

the presence of emotions, even when participants have difficulty reporting those emotions

due to their inability to remember, discomfort in talking about the emotional experience, or

challenges with describing emotions accurately.

• Emotions can be subconscious. Not all emotions are conscious to respondents, yet EDA can

capture these sub-cognitive reactions [138].

Additionally, EDA data is simple to collect. There are many devices that can measure EDA, most

97

of which have a cost accessible to researchers and only require the user to wear a wrist-band or

clip on their finger.

Computing education researchers have begun to use EDA as a tool to understand student emo-

tions during the programming process. Specifically, two studies developed machine learning mod-

els that could accurately predict emotions from EDA data of a programming session [126, 127]. To

create ground truth data, the researchers periodically interrupted the participants while program-

ming to get self-reported emotions. Then, they trained and tested SVM machine learning models

using the EDA data. Both studies were able to build models that could reliably predict program-

mer emotions. While these machine learning algorithms demonstrate the prediction power of EDA

data to understand student emotions, machine learning models require large amounts of training

and testing data, often for each individual student, as well as development time and knowledge.

Additionally, machine learning algorithms only provide information about the outcomes of the

algorithm, and not the context in which the emotions arose, the factors that determined the algo-

rithm’s decision, or the insights into the transitions between moments. Finally, the data that the

algorithm references as ground-truth is not collected from an authentic programming experience

as the participants were regularly interrupted.

A number of other studies have also explored the use of EDA in understanding the program-

ming experience [144, 145, 146, 147]. For example, Wroble evaluated the number of SCRs that

occurred during a programming task and found that there was a correlation between the number of

SCRs in the programming session and student self-report of their overall emotion [146]. Ahonen

et al. used EDA to look at emotional synchrony between pair programmers [145]. They utilized

visual inspection and signal evaluation to investigate differences and similarities in pair program-

ming roles. These prior studies demonstrate the usefulness of EDA in understanding emotions. In

this chapter, we combine the benefits of EDA with retrospective interviews to further understand

student emotions while programming.

98

6.3 Method

This study aimed to answer our two research questions by identifying the events that trigger stu-

dent emotions while programming and studying whether students’ remembered experiences align

with EDA data. We designed a lab study in which we collected EDA data while students worked

on programming problems, and then conducted a retrospective interview that leveraged the EDA

data using a cued-recall technique to improve students’ ability to remember their emotional expe-

riences. We chose to analyze our data using a qualitative methodology to uncover the rich context

of students’ emotional experiences while programming.

6.3.1 Participants & setting

I recruited 14 undergraduate students (10 men and 4 women, aged 18-21) from a mid-sized private

university in the Southeastern United States. I conducted this study at the beginning of a semester,

in January 2022. All participants had only completed one introductory CS course; some partici-

pants had started a second introductory CS course. I choose this population of students because I

believed they had enough experience with CS to develop perceptions and opinions, but were still

deciding if they should pursue CS. I recruited students through emails sent by the professors of the

introductory programming courses and announcements made in class.

6.3.2 Study procedure

I conducted two-hour interviews with participants individually, following social distancing and

masking protocols. There were two sections of the interview: a programming session and a retro-

spective interview.

Programming session

I directed participants to work on a programming problem for 30 minutes. The problem descrip-

tion, which described the expected functionality and provided examples, asked participants to write

99

a function that removed duplicate words from a sentence, where duplicates were case-insensitive. I

designed the lab study to emulate a normal programming session as much as possible. I instructed

participants to use resources as they would for a normal homework assignment. Participants used

their own laptops, but used the jGrasp IDE [115], which was new for many participants. When the

participant began working on the problem, I left the room. While programming, participants wore

an Empatica E4 wristband EDA sensor [148, 140] on each wrist, as seen in Figure 6.2. I choose to

use a wristband sensor instead of fingertip sensors because it is less disturbed by the movements

involved in using a keyboard and mouse.

Retrospective interview

After the programming session, I followed the procedure in Section 6.3.3 to analyze the EDA

data captured by the Empatica E4 device. This analysis produced a list of timestamps of skin

conductance responses (SCRs) captured in the EDA data, which indicates potential emotional

responses.

I then conducted a retrospective interview [84] using cued-recall techniques [132, 149] with

the SCRs as cues. The participant and I watched the screen recording and laptop camera recording

of the programming session together, with the list of SCR timestamps displayed onscreen as a

reference. As we watched the recording, I asked the participant to describe their programming

experience and any emotions they felt. When we reached a point in the recording that aligned

with an SRC timestamp, I informed the participant that an SRC had occurred and asked them to

describe what happened at that moment and whether they experienced an emotion. Any time the

participant identified an emotional reaction, I asked whether it was a positive or negative emotion,

and what they believe caused the emotion.

One potential concern with this approach is that participants might feel pressure to create a

narrative to fit the SRCs, for example due to a bias caused by the study’s demand characteristics

[150]. To address this issue, I discussed the nature of EDA data with participants at the beginning

of the interview, before watching the recording of the programming session. Specifically, I told

100

Figure 6.3: Results from skin conductance response (SCR) detection for P12. SCRs are marked
by dotted vertical lines. EDA level is displayed in blue.

participants that while EDA sensors are good at detecting when emotional reactions occur, other

unrelated factors can also cause SCRs, such as rapid arm movements. My goal was to ensure that

participants felt comfortable sharing that they did not experience an emotion, or experienced an

emotion due to a distraction rather than the programming task, at a moment when the EDA sensor

picked up an SCR.

6.3.3 SCR detection

I conducted the analysis for determining the SCRs in the programming session after the participant

finished programming but before the retrospective interview. To identify SCRs, I first used the

peak-detection algorithm from EDA explorer [151]. To determine the correct parameters to set

the tolerances for the algorithm, I conducted a parameter sweep with 16 sets of parameters. The

parameters included a tolerance value, or the minimum amplitude that a peak must reach in order

to be considered an SCR. I chose the parameter set that best identified distinctive peaks without

capturing noise based on visual inspection of graphs of the detected peaks from each parameter

set.

Finally, I visually inspected the graph to remove any mislabeled SCRs and add any unlabeled

101

SCRs in order to improve the accuracy of the results. Visual inspection has been used to identify

SCRs in prior work [147, 139]. Visual inspection can improve the accuracy of EDA data because

SCRs may not always be perfect peaks. For example, when there are multiple SCRs in a row, the

second peak might start before the first resolved, making it difficult for an algorithm to identify

them. The result of this analysis for participant 12 is displayed in Figure 6.3.

6.3.4 Identification of triggers of emotions

My colleagues and I conducted a qualitative analysis of the interview data to identify types of

moments in the programming session that triggered emotions. I generated an initial codebook for

moments that trigger emotions. I started by reviewing a subset of the interview transcripts with

an open-coding protocol [152], focusing on instances when participants expressed an emotion and

described a trigger for that emotion. I iterated on the themes as I reviewed more transcripts.

This process generated a list of emotion triggers and associated descriptions of the triggers

broken into positive and negative emotion categories. For example, after having an issue with the

compiler a participant said: ”I think I was happy that ran”. We categorized the trigger of the

positive emotion in that moment as ”resolving interface issues”.

My colleague and I then used the codebook to independently code emotion-trigger pairs in

the data. We coded interviews separately and discussed discrepancies after coding each transcript,

iterating on the codebook when necessary. To check consistency, my colleague and I independently

coded three transcripts, or 21% of the data. We had a percent agreement of 83%, which represents

good agreement. I coded the remainder of the transcripts.

6.3.5 Analysis of EDA data with respect to student experiences

I next investigated how the EDA data reflects student experiences throughout the programming

session to better understand how EDA data can be used to interpret the student programming

process. I aligned the graphical representation of the EDA data with participants’ descriptions of

their experiences across the entire programming session. While in the interview I only used the

102

timestamps of SCRs, for this analysis I considered three features to reflect more gradual emotional

changes that take place across time. The three features that we used to analyze the EDA graphs

are: the amplitude of SCRs, frequency of SCRs, and drifts or changes in skin conductance level

(SCL), as they are most indicative of emotions [129].

During the analysis, I annotated each participant’s EDA graph with the student’s recollections

of the activities they performed and the emotions they experienced during the programming ses-

sion. This side-by-side view of student report and physiological data facilitated analysis of how

EDA evolved with students’ emotional reactions as they worked through the problem. Then I wrote

memos about the patterns that she observed in the EDA data, observing how the descriptions of

the events aligned with changes in the EDA features [153]. The memos were used to detail my

observations of the notable behaviors of the EDA data as related to the student recalled experi-

ences. Finally, I reviewed the memos and the annotations to identify common patterns seen across

multiple participants.

6.4 Findings

We share our findings, corresponding to our two research questions, in the following two sections.

First, we present a set of events that trigger students to experience positive and negative emotions

while programming and present detailed examples from our data set. Second, we present evi-

dence of the relationship between student remembered experiences and patterns in their EDA data,

identifying a few common emotional patterns that arose across multiple participants.

6.4.1 Events that trigger student emotions

To answer our first research question, we identified a set of programming events that students said

triggered an emotional reaction. From the qualitative analysis, we identified 21 themes of these

events, including 8 that participants reported caused positive emotions (see Table 6.1) and 13 that

participants reported caused negative emotions (see Table 6.2). When identifying the triggers, we

only labeled moments where both the emotion and trigger were present. Thus, there may be other

103

Table 6.1: Events that triggered positive emotions during the programming session.

Trigger Explanation Count
Getting direction
from a resource

When a student learns something or finds something useful in
a resource.

22

Typing code / mak-
ing progress

When a student has positive emotions from the action of typing
code in the editor. This occurs when there is the feeling of
being productive.

11

Completing a step in
coding problem

When a student completes a task, whether it is a step in the pro-
gramming problem, or a subgoal in their process to completing
the problem. This is outcome oriented and denotes concrete
completions of a step, generally evidenced by running code,
but not always.

10

Having a plan When a student has a plan for their code. This also could be
relief or excitement from recognizing a new plan.

9

Fixing errors When existing errors are fixed and no longer present. 7
Remembering
syntax correctly

When a student remembers syntax without external help. This
is not about writing code, but specifically remembering with-
out help.

5

Understanding the
problem statement

When a student has positive reaction from reading the problem
statement because they understand the question.

3

Resolving interface
issues

When a student resolves an issue unrelated to solving the pro-
gramming problem. Some examples include: IDE, finder, re-
source access. This is the end of the “interface issues” trigger.

3

Other When a student experiences a positive emotion but the trigger-
ing event does not fit into one of the specified labels.

4

104

Table 6.2: Events that triggered negative emotions during the programming session.

Trigger Explanation Count
Not knowing some-
thing

When a student feels they need to use a resource because they
do not know something, because they forgot it or do not know
it.

23

Interface issues When a student has issues unrelated to solving the program-
ming problem. Some examples include: ads, IDE, finder, re-
source access.

15

Resource not help-
ing

When a student uses a resource but does not find it to be help-
ful. This may occur because they do not understand the re-
source or can not find the right source.

15

Realizing there is an
error

When a student gets an error. This is about the existence of an
error and not the struggle with fixing the error

14

Struggling while try-
ing to fix an error

When a student struggles with or spends a long time work-
ing on errors, whether they are simple or not. For example,
repeatedly trying to solve the same error multiple times unsuc-
cessfully.

12

Intimidation from
reading problem
statement

When a student has a negative reaction to reading the problem,
either because they do not know how to approach the problem
or because they are intimidated by it.

11

Not making progress When a student feels they are not making progress towards
the solution. This could be displeasure about spending time
thinking or not making progress on the problem.

6

Realizing code/plan
not working as ex-
pected

When a student has implemented code and realizes the code
or their plan for the code is not working in the manner they
expected. This occur when running or from reading the code.

4

Changing approach /
deleting code

When a student changes the approach they have been taking to-
wards the problem. This often appears when a student deletes
lines of written code.

4

Not understanding
error message

When a student does not understand the text of an error mes-
sage.

2

Struggling to fix pro-
gram behavior

When a student struggles to fix a logic error or incorrect code
behavior.

2

Encountering code
formatting issues

When a student has issues with the formatting of the code, not
the functionality of the code.

2

Not remembering
problem description

When a student has to read the problem statement again be-
cause they forgot it or misunderstood it.

2

Other When a student experiences a negative emotion but the trigger-
ing event does not fit into one of the specified labels.

5

105

instances of these triggers where participants did not experience an emotion. The count represents

the number of instance when these triggers caused an emotion. Interestingly, many of the positive

events were opposites or counterparts to negative events. For example, we found that negative

emotions occurred when a student experienced issues working with their tools (code: “interface

issues”), and positive emotions occurred when a student relieved those issues (code: “resolving

interface issues”).

Many of these moments involved interaction with a variety of information, resources and tools,

like reading the problem statement, interacting with the console in the IDE, and searching for

resources online. While students may interact with the same tool or process, we often found that

they experienced different emotions depending on their intentions, responses, and results of the

interaction. For example, students often searched for resources to help them complete the coding

problem, but their emotional responses differed depending on whether they found the resource

helpful (code: “useful resource”), unhelpful (code: “resource not helping”), or difficult to use

(code: “interface issues”). We also found that students had different reactions to the exact same

circumstances. For example, some students had a negative emotional reaction when they could not

remember syntax and used a resource to look it up (code: “not knowing something”). However,

other students in the same situation did not experience an emotional reaction at all.

While we did not reference the physiological data while conducting this analysis, that data

informed the retrospective interview. One risk of this approach is that participants may have felt a

need to explain the SRCs, even if they did not experience emotions at those moments, which could

lead to inaccurate trigger-emotion pairs. To confirm that participants felt comfortable sharing that

they did not experience an emotion, or experienced an emotion due to a distraction rather than

the programming task, we reviewed all instances where I asked the participant if they experienced

an emotion when an SRC was detected. We found that all 14 participants said that they did not

experience an emotion at least one time when directly asked. For example, when asked if he

experienced any emotions at a particular SRC, P3 said “I think not yet. I’m not sure what it would

be yet.” Many students also shared that external factors impacted their programming session.

106

For example, when asked if he experienced an emotion at a particular point in the programming

session, P10 said “No, I don’t think so. I just started texting on my phone.” These responses

provide some confidence that students were accurately reporting their emotional experiences in

the interviews.

The benefit of this methodology is that it allowed us to question students about very specific

moments during the programming session. As a result, we were able to dig into the specific

experiences that led to emotions. In the following sections, we describe nuances and overarching

themes for some of our most frequent codes, highlighting differences in the ways that students

described the triggers of their emotions.

Not knowing something

“Not knowing something” was the most frequent trigger for negative emotions in our data set, with

23 instances across 11 of our 14 participants (79%). The emotions that students most frequently

described at these moments were frustration (7 mentions) and annoyance or irritation (8 mentions).

Some students also associated this moment with embarrassment or shame (4 mentions).

When describing the moments of “not knowing something”, participants frequently mentioned

that they had once learned the content they were trying to remember. “I know I’ve written this

type of code a lot of times. So I’d say I was probably annoyed with myself for not remembering

it...that it didn’t come in my head straight away” said P3, when describing his annoyance for not

remembering the syntax for using the length method. P10 described his lack of memory for how to

separate words in a String, saying “It was annoying because I had done that before, I just couldn’t

remember”. The memory that this information was once at their fingertips seemed to contribute to

their irritation that it was now gone.

Participants also described the simplicity of what they had forgotten as a reason for their neg-

ative emotion around forgetting. “I was a little bit ashamed that I forgot how to do something

so simple in Java,” said P11, describing her memory lapse when importing the Java Scanner. P5

expressed that he “should” recall the typical first line in a Java program: “[I]t was muscle memory

107

back when I took that class, where I would just import java.util, and then I forgot how to

spell it.”. The participants perceived these minor details as basic, and thus within their capacity to

memorize.

At times, participants generalized their lack of knowing something quite broadly, stating that

they had forgotten everything about a topic or even a whole course. P1 said, “most of my knowledge

from the class I might’ve forgotten, so going back and having to use a resource was a little bit

irritating, certainly.” P13 recalled feeling “embarrassed” after watching the screen recording of

getting errors in her code. She reflected, “I realize[d] I don’t remember any of this”. Upon

looking at her previous assignments, P8 described her emotional response: “okay, this is harder

than I thought. I don’t really remember anything from past semester. So I would say again, some

panic”. It is unlikely that these students forgot all of the course content, but in their emotional

state they felt a substantial lack of knowledge.

In each of these instances of the “not knowing something” code, we saw that self-judgment

was present along with the negative emotional response. When these participants did not know

something or had to look something up, a negative assessment of their own ability was often a

key factor in their emotional appraisal of the moment. This aligns with past studies that found

correlations between self-efficacy and negative emotions [14, 6]. This also aligns with past work

by Gorson & O’Rourke that found that students negatively self-assessed when they needed to use

a resource to look up syntax or research an approach [31].

We also found that students often had the opposite reaction when they did know something.

Specifically, we found five instances where students experienced a positive emotion after “remem-

bering syntax correctly”. For example, after P3 wrote the initial structure of his code, he said “I

was pretty happy that I did remember it on the first try, which was cool.” This indicates that student

emotions are often tied to whether or not they can recall coding content while programming.

108

Getting direction from a resource

“Getting direction from a resource” was the most frequent trigger for positive emotions in our

data, with 22 occurrences across 11 of our 14 participants (79%). When participants mentioned

feeling a specific emotion after finding a resource helpful, they were most likely to describe relief

or relaxation (6 mentions), happiness or joy (4 mentions), and excitement or hope (3 mentions).

We found that sometimes, simply the realization that they had access to a helpful resource was

enough to trigger a positive emotional reaction. P8 found relief when she realized she could search

the internet for help despite not yet identifying specific content to use in the program at hand. She

said: “It’s like, oh, okay. Yes. I can use Google. I think it’s a sense of relief, like okay, I have more

sources. I can use other people’s ideas. I just remembered that.” Similarly, P2 recalled that his

ZyBooks content might be a useful place to find insight on the problem, leading to happiness. He

described the triggering moment as, “thinking about going onto my class content, which I guess to

some extent it relieved me from me being lost.” In both cases, the possibility of finding something

helpful in a resource was enough to spark positive emotions.

Participants often had a specific goal in mind when looking through resources, and thus expe-

rienced positive emotions when they found it. P4 described such a scenario as she looked through

past programs on her computer to find out how to use the .indexOf() method: “I knew what I

wanted, but I didn’t know the vocabulary for that and I just found it on my notes.” P14 reported a

similar situation, saying she felt “a little bit of excitement that I saw a result that was what I was

looking for” as she searched Google for information about how to split Strings.

Other times, participants looked through resources in a less targeted manner, and thus when

they chanced upon information they deemed helpful they experienced a positive emotion. After

P12 typed a broad Google search, he recalled a moment of joy. He said: “this .split() method

did not come to me before, in my mind. And now I just saw it randomly. So I thought maybe this

would work.” P8 had a similar experience when using Google. She recalled positive emotions

when looking through a Stack Overflow page: “I saw .length and my thought process was of

course you can do it with that .length.” These participants had a chance encounter with a useful

109

clue, resulting in a positive feeling.

We also saw the opposite reaction to occur when students were not able to find the help they

needed from a resource. We found 16 instances of negative emotions when participants encoun-

tered moments of “resource not helping”. For example, when P1 was not able to use a website to

solve his confusion, he stated “this one irritated me so much, just opening this website. I was not

having it. It was no help ... I was annoyed.” P13 had a similar experience, stating that he was frus-

trated when he was “not finding what I was looking for.” These findings suggest that resources can

often be a source of emotional stimulus depending on if students are able to find the information

they need.

Typing code / making progress

“Typing code / making progress” appeared as a trigger for positive emotions in 11 instances across

6 of our 14 participants. Participants expressed happiness or general positivity in these moments (6

instances), as well as a sense of accomplishment or confidence (2 instances) and relief (2 instances).

Participants described these moments in terms like “making progress” (P2, P14), “moment of

progression” (P12), and “getting/going somewhere” (P1, P8, P14).

When asked about why they had a positive emotion in these particular moments, participants

often described the process of writing code. For example, when P2 was recalling a moment when

he erased erroneous code partway through the coding session, he said, ”I pushed delete and I’m

thinking of actually progressing”. He described his emotion in that moment as ”happy that I’m

starting to write something”. For P14, her feeling of hopefulness was triggered by ”seeing the

program start to come together and adding more things to it”. P12 described the precise moment

when he felt positively about his progress as when he typed code in his editor: ”When I start

writing int i and int x is equals to one, for this length, I feel a moment of progression, that

I’m actually going forward. I’m actually going forward in this problem towards the solution”.

These participants associated the action of adding content to the editor or the anticipation of typing

code with a positive sense of progression, even though they had not yet run their code to test

110

whether it truly worked.

The opposite was also true: negative emotions were associated with “not making progress”,

which were often tied to not writing code or typing. “Not making progress” was a trigger for

negative emotion for 4 participants, across 6 instances. Participants used a variety of terms to

describe their feelings in this scenario, including ”anxious”, ”worry”, ”frustration”, ”stress”, and

”distress”.

P1 expressed that spending too much time thinking and not starting to code soon after reading

the problem statement led to a feeling of ”anxiety”. He said: ”I was processing it and I realized I

was taking a little bit too long to start coding. So I was like, ‘Shoot. Okay, let’s go. Let’s transfer

over to start coding’”. Even in the beginning of the programming session, P1 felt negatively if he

was not implementing code.

At times, the emotions around making progress were so strong, they determined the partici-

pant’s behavior. For example, P2 was using the internet to get help on the problem, but did not find

the answer he was looking for. He felt frustrated ”because I’m not actually progressing in what I

want to do”. Instead of continuing to use resources, he went back to his code and started typing.

He said,

I know one thing that I did wrong, which is just go back to the code. I should have

known that I’m not going to just figure out suddenly something off of just going right

back into the code and doing something. I just really felt like I wanted to progress...I

wanted to just I guess, still maybe delete something or maybe type something, but it’s

not really even useful. So, I just wanted in any way, having the feeling of progressing.

His desire to have the positive feeling of making progress was so strong that he stopped and went

back to the code, even though he admits that it was futile.

We found that our participants’ sense of progress can drive emotion, both positively and neg-

atively. This sense of progression is often associated with the action of typing code in the editor,

whether it is beneficial or not and can drive participant programming behaviors.

111

Realizing there is an error

We found that the moment when participants realize that an error is present can yield negative

emotions. We identified 14 of these instances across 7 of our 14 participants (50%). These partici-

pants expressed specific emotions like frustration or annoyance (6 mentions), worry (2 mentions),

and disappointment (2 mentions) upon realizing there was an error in their code.

Participants shared that one reason ”realizing there is an error” can trigger emotions is that

it revealed that their code was not correct. ”Realizing there is an error” was more likely to cause

negative emotions when participants expected their code to be successful, versus when they did not

expect it to work. P1 described such a moment: “The main thing about the error that frustrated me

was that I thought I had a solution... but I just didn’t”. Similarly, P7 described his disappointment

at seeing an error message after compiling his code as: “It’s just a let down, as I said. It’s a

confidence roller coaster. Hitting that compile button, I knew that it wasn’t going to be completely

correct, but yet I had the confidence it was”. Although he was aware that it was unlikely that his

solution would work, he still believed it would, and thus was saddened by the error.

Even when the error was relatively minor and easy to fix, some participants still felt negative

emotions. For P6, a minor error caused a negative emotion because it was a repeated error. He

described his reaction as: “I got the same error I got before. So I knew how to fix it, but then I

had another error, but it was something really simple. So probably just another slight frustration”.

While the frustration was slight, P1 had a negative emotion after experiencing multiple errors in a

row. P5 had a similar experience, where he felt annoyed at a small error after receiving multiple,

even though the error itself was understandable and easy to fix. He said, “I guess that would’ve

been an instance of having screwed that up a couple of times and then again, making another tiny

little mistake”.

Just the recognition that an error exists caused a negative reaction for some of our participants.

At times, these errors indicated large issues in their plan or code, while on other occasions, the

errors were quite simple. This may be due to the circumstances in the programming session, like

finding multiple errors in a row, or negative views on errors.

112

6.4.2 Emotional experiences reflected in EDA data

To answer our second research question, we explored the relationship between the participants’

remembered experiences and the tonic and phasic changes in the EDA data, finding strong align-

ment. Specifically, the EDA data provides a map of student experiences, not only highlighting

emotional moments (reflected by peaks), but also aligning with their emotional state over time (re-

flected in tonic level and peak frequency and amplitude). We share two participants’ programming

episodes to demonstrate how EDA data reflects their experiences. We also share three patterns that

we observed across participants in the analysis process.

Participant 11

We start by describing the programming session of Participant 11 (P11) and the aligning EDA

data. See Figure 6.4a for the respective EDA graph with associated quotes. At the beginning, P11

described feeling nervous and stressed about working on the problem. This initial reaction to the

programming problem aligns with the small but noticeable peaks that we see around Marker A.

Following Marker A, we observe a downward slope in the EDA data at Marker B. At this point,

P11 is waiting for a resource to open. From the interview data alone, we would not know if P11

continued to feel stressed during the waiting time or was just sedentary. From the reduction in

peaks and downward slope of skin conductance level (SCL) in the EDA data, we can infer that

the participant was sedentary in this transition. Once P11 has access to the resource, she reported

feeling nervous and anxious about how much she will complete. This nervousness occurred around

Marker C, when the SCL rose and the peaks increased.

After searching through resources, P11 realized that the preset function she was looking for

did not exist, and she would have to write the code for this sub-task herself. This caused a strong

emotional reaction, which lines up with the large spike that can be seen at Marker D. Afterwards,

she continued to look for a resource to help solve the problem. The SCL drifted down as she made

progress in understanding the problem and determined an approach. Around the time of Marker

X, she found a website that helped her develop a concrete plan for implementation. After that

113

(a) EDA graph of P11

(b) EDA graph of P8 (c) EDA graph of P9

Figure 6.4: EDA graphs of participants demonstrating the ”Cruise Control” pattern, which begins
on each graph at the Marker X.

114

point, she was much calmer. Her energy shifted from determining how to solve the problem to

implementing the plan laid out in the resource.

”Cruise Control”

For a number of participants, we found that a large decrease in EDA (both SCL and phasic activity)

occurred at the same time as the participant determined their plan and started to implement their

code. This occurred for P11 at Marker X, as described in the previous section. We also saw this

phenomena with P8 and P9, shown in Figures 6.4b and 6.4c. These participants described an event

that helped them determine their plan for approaching the problem, allowing them to shift their

focus from research and planning to implementing the new approach. The participants described

feeling calmer and less stressed while implementing compared to planning, because they perceive

implementing as a more confined problem space then planning. P8 described why she was less

stressed after making a plan: ”the first part was more frustrating and the second part was more

exciting than stressful because as time passed, I had a better understanding of the problem and

better understanding of how to use the resources and got comfortable with the situation more”.

The EDA data for this point of the programming session demonstrated very strong similarities

across the three participants. At each of these moments, there was a steady, large drop in EDA

followed by consistently lower SCL and phasic activity. This can be seen in Figure 6.4, where

we have marked an X at this moment in each of the graphs for P8, P9 and P11. P9 used the term

“Cruise Control” to describe the implementation phase. He said: ”Yeah, I think more so in just

cruise control here, where I know and I have a plan as to what I’m going to do. So there’s minimal

gray area with my plan and I just know what’s happening, which is a solid feeling.” His description

of “Cruise Control” aligns with the other students’ experiences, as they all expressed that they felt

that the problem was mostly solved after the turning point, and was evidenced in the EDA data.

115

(a) EDA graph of P1

(b) EDA graph of P3 (c) EDA graph of P10

Figure 6.5: EDA graphs demonstrating high emotion sections, indicated by the shading.

116

Participant 1

Next, we describe P1’s programming session and respective EDA data. See Figure 6.5a for the

respective EDA graph with associated quotes. Shortly after beginning, P1 reported being disap-

pointed when he realized that he was spending a long time thinking and had not begun to code.

He expressed that he was anxious and thought ”Shoot. Ok, let’s go. Let’s transfer over to start

coding”. This feeling came with a ”sense of urgency” to start implementing, which aligned with a

peak in EDA at Marker A. Later in the programming session, P1 tested his code and got an error.

The error aligns with the peak in EDA at Marker B. After the error, the annoyance continued as

the participant could not determine how to fix the code despite using resources. This aligns with

the section following Marker B where there continues to be frequent peaks in the EDA data. He

then recognized that he was unsuccessful at using resources around Marker C, expressing disap-

pointment that aligns with a time when the EDA peaks have high amplitude and are close together.

Both the density and height of the peaks and the participant’s qualitative description indicate that

this shaded section was a strongly emotional and frustrating part of the session.

P1’s SCL drifts downward as his emotions became more positive. He shares that he actively

calmed himself down. He describes that he was ”attempting to gather my thoughts and bring my

emotions down to a level where I could actually make good and viable steps towards working on a

solution.” Then, he recalled feeling calmer and starting to make progress around Marker D, where

there is a decrease in SCL and less frequent peaks. The negative emotions reemerged at the end of

the session. He described his thinking as: ”being reflective, but in a bad way. More as in, ‘Wow.

Well, I suck’”. This negative emotion and evaluation aligned with Marker E on the EDA graph,

which shows a large, rapid increase in EDA followed by a few additional peaks.

High emotion sections of a programming session

A visual inspection of P1’s EDA graph shows an increase in physiological activity around Markers

B and C with all three indicators of physiological reactions: frequent peaks, increased altitude of

peaks, and increased SCL. As expected, this aligns with his description of particularly strong emo-

117

tions, indicating that he reached a peak of frustration. Looking across the EDA graphs, we found

other participants with a section of the programming session that has multiple indicators of phys-

iological reactions and aligns with a particularly emotional section of the programming session,

like P3 and P10, which can be seen in Figure 6.5. These sections may be particularly important to

identify and understand because participants are having such a significant physiological reaction

to the programming experience in these moments.

P10 had a section of high frustration and annoyance because he did not have the resources he

wanted and was not able to remember how to do part of the programming problem. This frustration

directly aligned with peaks in the EDA that had significantly higher amplitudes than the earlier

section of the problem and slight increase in SCL, seen at the beginning of the shaded section of

the graph. The peaks persisted as P10 could not find what he was looking for. Relief from this

highly emotional part came when he found a resource. The peaks subside in the EDA data and

the SCL began to lower at this time, right after the shaded part of the graph. In the identified part

of the programming session, P10 experienced strong emotions, aligning with high amplitude and

frequent peaks in the EDA data.

In the EDA graph of P3, there is an increase in frequency and amplitude of the peaks (at

the first part of the shaded section) followed by an increase in SCL (at the second part of the

shaded section), which aligned with a particularly frustrating part of the programming session as

P3 struggled with an error. Following that initial error, the participant continued to struggle with

errors. Around the end of the shaded part, the participant was feeling even more frustrated. He

described this as: ”I’d say that coming up here was probably the most frustrating part of the whole

thing, like when this doesn’t work.” At the time when there was an increase in SCL and high peak

amplitude and frequency, P3 describes the highest frustration.

Low EDA activity indicating fewer negative emotions

While the majority of the participants had both tonic and phasic activity in their EDA data through-

out the programming session, two participants, P4 and P14, had steady EDA levels throughout the

118

(a) EDA graph of P4

(b) EDA graph of P14

Figure 6.6: EDA graphs demonstrating participants who experienced few negative emotions while
working on the programming problem.

119

entire programming session. Specifically, the graphs for P4 and P14, seen in Figure 6.6, show

consistent EDA during the programming problem, both in SCL and in the lack of phasic activity.

For both participants, this sharply contrasts their EDA activity before the programming session,

in the shaded region, which starts with high SCL and has phasic activity, demonstrating the range

their EDA could reach if they encountered emotional stimuli.

During the qualitative coding analysis, we identified the fewest instances of negative emotions

for these two participants. P4 and P14 had 2 and 4 negative emotions respectively, while the

remainder of the participants had an average of 9.25 negative emotions, ranging from 6-15. P4

explained why she did not get an emotion when she realized there were errors, a trigger for some

of the other participants. She said: ”Every time after I type code and I run it for the first time, I

expect it to fail. So that’s why ... it didn’t affect me that much either way.” Similarly, when asked

about emotions, P14 expressed that he was mostly thinking and not experiencing emotions. For

example, after running his code, he said ”I think it’s still mostly just kind of thinking and sort

of analyzing, but the program just outputs. Trying to think about what to do next.” Interestingly,

both P4 and P14 had similar number of positive emotions to the rest of the participants, 6 and 9

respectively, while the remainder of the participants had an average of 5 positive emotions, ranging

from 0-9. In our data, positive emotions seem to not be as influential to phasic or tonic activity in

EDA as negative emotions.

6.5 Discussion

Our analysis of retrospective interviews informed by EDA data from 14 undergraduate students

allowed us to identify 21 different events that trigger emotional experiences while programming.

These triggers and associated emotions provide new insights into the programming experiences

that are most salient for students. The most common event to trigger a negative emotion was the

experience of not knowing something, highlighting the pressure that students put on themselves

to remember syntax and problem-solving approaches they have used previously. Similarly, the

most common event to trigger a positive emotion was getting direction from a resources, showing

120

that finding direction and having a plan is both relieving and exciting. Interestingly, many of

the triggers of positive and negative emotions were opposites of each other, which can help us

identify the big moments that are likely to produce emotional reactions, such as making or not

making progress and getting or fixing an error. While all but one participant experienced positive

emotions, all participants experienced negative emotions and we saw a larger number of negative

emotions overall. Furthermore, many participants exhibited strong reactions to negative triggers,

for example by jumping to self-judgment, which may suggest underlying issues in programming

confidence.

These insights into students’ emotional experiences while programming have important impli-

cations for research and practice. Previous research shows that experiencing negative emotions

while programming correlates with lower project and course performance, both in the short and

long term [21]. As a result, the finding that many students experience more negative emotions than

positive ones while programming is problematic, particularly since some students show indications

of negatively self-assessing in response to emotionally-triggering events. Future research could ex-

plore the relationship between emotional reactions and other key factors, such as self-efficacy [14,

6], sense of belonging [7], and negative self-assessment moments [31] to better understand the im-

plications of negative emotions while programming. In the near-term, our findings on the common

triggers of both positive and negative emotions could inform pedagogy and practice, for exam-

ple by prompting discussions about common emotional experiences and discussing strategies for

managing feelings of frustration, anxiety, or under-confidence while programming.

Our second analysis identified broader patterns in the EDA data that aligned with participants’

remembered experiences. We found that the EDA data clearly reflected the narratives that students

described in their retrospective interviews, even though participants did not have access to the full

EDA graphs. Common patterns, such as a reduction in tonic SCL in the EDA data after devising

a plan and beginning to implement it, arose from the data despite our small sample. Furthermore,

we found that students can have very different emotional experiences while programming. Some

students experience very few emotions, reflected in their steady and low EDA data, while others

121

experience periods of strong and intense (usually negative) emotions, which aligned with high

phasic activity and a raise in SCL. These initial findings suggest many directions for future re-

search. For example, researchers could use patterns in EDA data to compare student experiences

or isolate particularly interesting segments of a programming session. Further studies could also

use this methodology with a larger sample of students to identify additional common patterns in

student programming experiences, and potentially study the relationship between these patterns

and outcomes like performance and self-efficacy.

This research was enabled by a new methodology that combines EDA data with retrospective

interviews. Our findings suggest that EDA data can serve as a valuable resource for prompting

student recollections during interviews. Students easily identified and described the emotions they

experienced at SCRs, along with the associated context in their programming session. They also

felt comfortable telling me when no emotion had occurred at an EDA peak, suggesting that their

recollections of emotions were valid. As a result, we believe this is a promising method for gain-

ing insights into students’ emotions while programming. In the future, a similar approach could

be used to explore emotional reactions during many types of coding activities such as reading

unfamiliar code, using instructional materials, or pair programming. Future work should also

further validate this approach by using an experimental design to compare traditional interviews,

retrospective interviews that use only screen captures of programming sessions, and retrospective

interviews with screen captures and EDA data. This would allow us to directly measure the added

value of EDA data in prompting detailed student recollections of their emotional experiences.

6.6 Limitations

While this study contributes new insights and an approach for understanding student emotions, it

has a few important limitations. First, we recruited students from a single private university. This

limits the generalizability of our findings, because students in a different learning environment

might have a different set of emotional triggers or might exhibit different physiological reactions

to a programming session. In addition, while our algorithms and methods were designed to reduce

122

the impact of noisy data, there is always the potential for data inaccuracies when using physical

sensors, resulting in either false-positives or false-negatives in the EDA peak data. Furthermore,

while we incorporated physiological data into our interview protocol with the goal of improving

recall of emotions, we are still limited by participants’ ability to identify and describe those emo-

tions. Since we provided participants with a list of SCRs during the interview, one concern is that

participants may have felt pressure to produce a narrative that explained the peaks. Our data sug-

gests that participants felt comfortable notifying us when no emotion occurred at a given peak, but

it is still possible that the presence of the peak data overly influenced student recall of the events

that triggered emotions. Conducting a formal study comparing retrospective interviews with and

without EDA peak data could help further validate the reliability of this approach for investigating

emotional experiences in the future.

Since us as researchers are a tool in the analysis, the unconscious bias that we have from our

previous experiences and research may impact the qualitative analysis. This potential limitation is

generally unavoidable as we are human, however we designed the methods and procedures to limit

this concern. For example, we used the EDA data to guide the probing in the interview so that I did

not have to determine which moments to ask about. During the analysis, we looked for instances

where the participant expressed an emotion and used that to guide the moments that we included

in the analysis. Finally, we used IRR in order to confirm that we were consistent and reliable in

our interpretation of participant talk. These considerations provide confidence that we addressed

the unconscious bias as much as possible.

6.7 Conclusion

In this chapter, we leverage electrodermal activity (EDA) data to prompt student recollections of

their emotional experiences while programming during retrospective interviews. This approach

allowed us to identify 21 distinct events that trigger positive and negative emotions during pro-

gramming sessions, providing new information about the experiences that are most salient for

students. We also showed that there is a strong relationship between student remembered experi-

123

ences and the tonic and phasic elements of EDA graphs, demonstrating the expressiveness of EDA

data. Our findings suggest that many students experience more negative than positive emotions

while programming, and that different students can have very different emotional reactions to the

same programming events. This research opens up a number of potential areas for future work,

including studies of the relationship between emotions while programming and other factors such

as self-efficacy or self-assessments as well as further investigations into the utility of EDA data for

prompting student recollections of emotions. We hope that this research inspires a continued focus

on the emotional experience of introductory programming students.

124

CHAPTER 7

DISSERTATION CONCLUSION

I present a number of contributions in my dissertation that improve our understanding of student

experiences working on programming problems, specifically focusing on student perception of in-

telligence. The contributions from my dissertation can be broken into four categories: practical,

conceptual, methodological, and technological. In the next few paragraphs, I discuss the contribu-

tions from each of these categories.

The findings from my research studies will inform how practitioners coach students, both in

computing education classes and informal learning spaces. Specifically, practitioners can utilize

the insights into the moments during the programming process that cause students to make neg-

ative self-assessments and experience emotional reactions. For example, with the list of criteria

that students use for self-assessments, practitioners can adjust their lectures or grading rubrics

to encourage students to have more productive perspectives of programming ability. When wit-

nessing students experience these moments, practitioners can also provide encouragement to deter

false perspectives of the programming process. Additionally, practitioners can help students ad-

dress self-critical biases by increasing awareness of the bias and encouraging students to evaluate

themselves fairly. Finally, our findings indicate that some students have inaccurate perceptions

of professional programmers, suggesting that practitioners should provide more opportunities for

students to learn about professional programming practice to promote more accurate perspectives

on how professionals work.

In this dissertation, I make conceptual contributions that provide new frameworks for under-

standing novice programming experiences. Specifically, we started with focusing on growth mind-

set theory as a framework for understanding how students think about their programming intelli-

gence while working on programming problems. Through our research studies, I have found that

understanding student perspectives on programming intelligence is much more complicated than

125

mindset theory allows. I found that students use widely varying criteria for evaluating their pro-

gramming intelligence. In addition, many of these criteria are more critical than the criteria that

professionals and instructors use for evaluating programming process. While there is some indica-

tion that students use unnecessarily strict criteria in prior studies, no study identified a set of these

criteria or documented their importance to student perceptions and self-efficacy. The conceptual

contribution of my dissertation research is this new framework for evaluating how students think

about and evaluate their programming ability and the groundwork of a new model for how this

theory connects to related constructs, like self-efficacy and emotions.

Methodologically, I contribute two new research approaches for studying student perspectives

of their programming experiences that combine qualitative research methods with data sources like

sensors and interaction log data. The first methodological contribution is an approach for design-

ing an automated detection systems based on student perspectives of the programming process,

which I describe in Chapter 5. The approach combines AI detection systems with retrospective

interviews to produce a system that can detect moments of potential negative self-assessment. The

methodology produces a system that relies on student perspectives of their programming expe-

riences instead of expert-models. The second approach uses physiological devices for gaining

insights into student emotions to inform a retrospective interview, which I described in Chapter 6.

Most studies during the programming process rely solely on student self-report to gain insight into

their emotions, despite the challenges for students to accurately recall and express their feelings.

Similarly, past studies utilizing physiological data generally rely on self-report as the gold-standard

for their machine learning algorithms. My methodology uses EDA data to cue student recall during

a retrospection of their programming session and improve the self-reported data. Researchers in

any domain can use this methodology to improve participant accuracy for recalling emotions in

a retrospective interview. My findings demonstrate the benefits of combining qualitative research

methods with additional data sources like sensors or log data. Future studies should continue to

use these methodologies, along with the guiding principles presented in the introduction, when

designing studies that focus on student perspectives.

126

Finally, in this dissertation, I make a technological contribution by building a tool that can

identify the moments that cause negative self-assessments from interaction log data of a program-

ming session. We used a combination of retrospective interview data and basic artificial intel-

ligence techniques to build this detection system. While there are many feedback systems and

personalized learning environments designed for novice programmers, few systems have focused

on identifying moments based on student motivation and perceptions. Most prior systems pro-

vide feedback for cognitive events, like when a student needs help, based on expert knowledge

of programming process. Instead, this system identifies moments based on student perceptions of

the programming process. With this system, designers of personalized learning environments for

novice programmers can identify and provide feedback to students at the critical moments when

they make negative self-assessments. By providing feedback at the specific moments when stu-

dents may be overly critical of themselves, we can directly address students’ negative perceptions

of programming ability when they occur.

Across the four chapters of the dissertation, I identified three different sets of information that

are important contributors to the student programming experience: self-assessment criteria, self-

assessment moments, and triggers of emotions. While my studies do not provide clear explanations

of the relationship between these constructs, I can note significant overlap between the lists. This

overlap is demonstrated both in topic of the list item and the similarities in student quotes dur-

ing interviews. To demonstrate the overlap, I provide an example quote from each of the three

constructs that relate to student perspectives on planning and thinking. In the first study, we iden-

tified criteria that students use to evaluate their programming ability, one of which was thinking

and planning is not progress. For example, one student said ”Someone is good at programming

if they keep typing and don’t have to sit there and think”. Then in the second study, we found

that students self-assessed throughout the programming session at moments related to the criteria.

For example, related to the self-assessment criteria of thinking and planning is not progress, we

found that students negatively self-assessed when they spend time planning at the beginning of a

programming session. For example, one participant said to me “Yeah I definitely feel bad when

127

I have to spend time planning and can’t start programming right away”, demonstrating that stu-

dents make negative self-assessments when they encounter a moment of spending time planning.

Finally, we investigated moments that trigger students to experience emotions while programming,

noticing similarities between the self-assessment moments and these triggers. Similar to spending

time planning, students described that they experienced negative emotions when they did not make

progress in programming, which occurred when they were not typing code in the editor. This often

occurred when students spent time thinking and planning. For example, one participant said: “Be-

cause I don’t like just sitting there and just looking at the screen, not even writing anything. I like

actually writing. . . Maybe about 30 seconds into just sitting there. I had a negative [emotion], like,

‘Okay, why am I just sitting here?’”. From this example, the similarities in the criteria, moments

and events are demonstrated through the quotes, indicating a strong relationship between the lists.

Future work should continue to explore the relationship.

In this dissertation, I provide a new understanding of how students experience working on pro-

gramming problems. From my research, we better understand how students evaluate themselves

and how students develop their perceptions of programming ability. Practically, these findings

help instructors provide better support to introductory programming students. Conceptually, re-

searchers now have a new framework with which to interpret student experiences in programming.

Methodologically, researchers have a new technique for identifying critical moments from student

perspectives and a new approach for capturing insights into emotion triggering events. Finally,

I provide technology developers and designers the tools to design environments that intervene at

the critical moments of student self-assessment to promote positive viewpoints on programming

ability. Together, my work opens many opportunities for improving student perceptions of their

programming intelligence and pushes computing education researchers to continue to factor stu-

dent perceptions and experiences into their research agendas and tool development.

128

7.1 Future work

My findings open a wide range of opportunities for researchers and intervention designers to con-

tinue to further understand the student programming experience and apply these findings into new

interventions. Additionally, the research agenda provides the insights necessary to begin the de-

velopment of an intervention for improving student reactions when they encounter moments of

frequent negative self-assessment. Specifically, in Study 2, I contribute a list of potential negative

self-assessment moments. This list provides researchers with the instances of when they could

intervene with a feedback message. Then, in Study 3, I designed a detection system that can

automatically identify when those moments occur. This provides researchers with the awareness

of when students might be making negative self-assessments. Finally, I began an exploration of

how students react emotionally in those moments, which will help the intervention designers write

the messaging for the feedback. Future studies should thus build on this work by designing and

implementing an intervention that improves student self-efficacy. However, the limitations of my

work suggests a number of other studies. For example, while we gained insights on the events that

cause students to have emotional reactions, we did not have enough participants to explore if there

is a relationship between student emotional reactions and the moments where they make negative

self-assessments. Future work should explore this relationship to better understand how students

experience the self-assessment moments. With that understanding, in combination with the find-

ings from Study 2 on the explanations as to why students experience negative emotions at those

moments, researchers should be able to design messages for the feedback system. Thus, while my

research does not start the intervention design, I lay the ground work for this type of intervention

to be possible.

129

REFERENCES

[1] Occupational Outlook Handbook, Sep. 2020.

[2] C. Scaffidi, M. Shaw, and B. Myers, “An Approach for Categorizing End User Program-
mers to Guide Software Engineering Research,” p. 5, 2005.

[3] C. Scaffidi, “Workers who use spreadsheets and who program earn more than similar work-
ers who do neither,” in 2017 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC), Raleigh, NC: IEEE, Oct. 2017, pp. 233–237, ISBN: 978-1-5386-
0443-4.

[4] D. Weintrop et al., “Defining Computational Thinking for Mathematics and Science Class-
rooms,” Journal of Science Education and Technology, vol. 25, no. 1, pp. 127–147, Feb.
2016.

[5] P. Kinnunen and B. Simon, “Experiencing programming assignments in CS1: The emo-
tional toll,” in Proceedings of the Sixth international workshop on Computing education
research, ACM, 2010, pp. 77–86.

[6] A. Lishinski, A. Yadav, and R. Enbody, “Students’ Emotional Reactions to Programming
Projects in Introduction to Programming: Measurement Approach and Influence on Learn-
ing Outcomes,” in Proceedings of the 2017 ACM Conference on International Computing
Education Research - ICER ’17, Tacoma, Washington, USA: ACM Press, 2017, pp. 30–38,
ISBN: 978-1-4503-4968-0.

[7] N. Veilleux, R. Bates, C. Allendoerfer, D. Jones, J. Crawford, and T. Floyd Smith, “The
relationship between belonging and ability in computer science,” in Proceeding of the 44th
ACM technical symposium on Computer science education, ACM, 2013, pp. 65–70.

[8] C. M. Lewis, R. E. Anderson, and K. Yasuhara, “”I Don’t Code All Day”: Fitting in
Computer Science When the Stereotypes Don’t Fit,” in Proceedings of the 2016 ACM
Conference on International Computing Education Research, ser. ICER ’16, event-place:
Melbourne, VIC, Australia, New York, NY, USA: Association for Computing Machinery,
2016, pp. 23–32, ISBN: 978-1-4503-4449-4.

[9] J. R. Shapiro and A. M. Williams, “The Role of Stereotype Threats in Undermining Girls’
and Women’s Performance and Interest in STEM Fields,” Sex Roles, vol. 66, no. 3-4,
pp. 175–183, Feb. 2012.

[10] D. Loksa, A. J. Ko, W. Jernigan, A. Oleson, C. J. Mendez, and M. M. Burnett, “Program-
ming, Problem Solving, and Self-Awareness: Effects of Explicit Guidance,” in Proceedings

130

of the 2016 CHI Conference on Human Factors in Computing Systems, ACM Press, 2016,
pp. 1449–1461, ISBN: 978-1-4503-3362-7.

[11] A. E. Flanigan, M. S. Peteranetz, D. F. Shell, and L.-K. Soh, “Exploring Changes in Com-
puter Science Students’ Implicit Theories of Intelligence Across the Semester,” in Proceed-
ings of the Eleventh Annual International Conference on International Computing Educa-
tion Research, ser. ICER ’15, event-place: Omaha, Nebraska, USA, New York, NY, USA:
Association for Computing Machinery, 2015, pp. 161–168, ISBN: 978-1-4503-3630-7.

[12] Q. Cutts, E. Cutts, S. Draper, P. O’Donnell, and P. Saffrey, “Manipulating mindset to posi-
tively influence introductory programming performance,” in Proceedings of the 41st ACM
technical symposium on Computer science education, ACM, 2010, pp. 431–435.

[13] J. Gorson and E. O’Rourke, “How Do Students Talk About Intelligence? An Investiga-
tion of Motivation, Self-efficacy, and Mindsets in Computer Science,” in Proceedings of
the 2019 ACM Conference on International Computing Education Research - ICER ’19,
Toronto ON, Canada: ACM Press, 2019, pp. 21–29, ISBN: 978-1-4503-6185-9.

[14] P. Kinnunen and B. Simon, “My program is ok – am I? Computing freshmen’s experiences
of doing programming assignments,” Computer Science Education, vol. 22, no. 1, pp. 1–
28, Mar. 2012.

[15] C. M. Lewis, K. Yasuhara, and R. E. Anderson, “Deciding to major in computer science:
A grounded theory of students’ self-assessment of ability,” in Proceedings of the seventh
international workshop on Computing education research, ACM, 2011, pp. 3–10.

[16] A. Bandura, Self-efficacy: The exercise of control. Macmillan, 1997.

[17] ——, “Self-efficacy,” The Corsini encyclopedia of psychology, pp. 1–3, 2010, Publisher:
Wiley Online Library.

[18] D. H. Schunk, “Self-efficacy, motivation, and performance,” Journal of Applied Sport Psy-
chology, vol. 7, no. 2, pp. 112–137, Sep. 1995.

[19] J. D. Relich, R. L. Debus, and R. Walker, “The mediating role of attribution and self-
efficacy variables for treatment effects on achievement outcomes,” Contemporary Educa-
tional Psychology, vol. 11, no. 3, pp. 195–216, 1986, Publisher: Elsevier.

[20] C. Watson, F. W. Li, and J. L. Godwin, “No tests required: Comparing traditional and
dynamic predictors of programming success,” in Proceedings of the 45th ACM technical
symposium on Computer science education, 2014, pp. 469–474.

[21] A. Lishinski, A. Yadav, J. Good, and R. Enbody, “Learning to Program: Gender Differences
and Interactive Effects of Students’ Motivation, Goals, and Self-Efficacy on Performance,”

131

in In Proceedings of the 2016 ACM Conference on International Computing Education
Research, ACM Press, 2016, pp. 211–220, ISBN: 978-1-4503-4449-4.

[22] V. Ramalingam, D. LaBelle, and S. Wiedenbeck, “Self-efficacy and mental models in
learning to program,” in ACM SIGCSE Bulletin, vol. 36, ACM, 2004, pp. 171–175.

[23] A. Bandura, “Self-efficacy mechanism in human agency.,” American psychologist, vol. 37,
no. 2, p. 122, 1982.

[24] P. Kinnunen and B. Simon, “CS majors’ self-efficacy perceptions in CS1: Results in light
of social cognitive theory,” in Proceedings of the seventh international workshop on Com-
puting education research, ACM, 2011, pp. 19–26.

[25] A. V. Robins, “Novice programmers and introductory programming,” The Cambridge hand-
book of computing education research, vol. 1, pp. 327–376, 2019.

[26] C. M. Lawson, “A survey of computer facility management,” Datamotion, vol. 8, no. 7,
pp. 29–32, 1962.

[27] R. D. Pea and D. M. Kurland, “On the Cognitive Prerequisites of Learning Computer
Programming,” p. 93, 1983.

[28] J. S. Olson and W. A. Kellogg, Ways of Knowing in HCI. Springer, 2014, vol. 2.

[29] B. Parkinson and A. S. R. Manstead, “Making sense of emotion in stories and social life,”
Cognition & Emotion, vol. 7, no. 3-4, pp. 295–323, May 1993.

[30] J. Gorson and E. O’Rourke, “CS1 Student Assessments of Themselves Relative to Oth-
ers: The Role of Self-Critical Bias and Gender,” in Proceedings of the 15th International
Conference of the Learning Sciences-ICLS 2021., International Society of the Learning
Sciences, 2021.

[31] J. Gorson and E. O’Rourke, “Why do CS1 Students Think They’re Bad at Programming?
Investigating Self-efficacy and Self-assessments at Three Universities,” in Proceedings
of the 2020 ACM Conference on International Computing Education Research, 2020,
pp. 170–181.

[32] J. Gorson, N. LaGrassa, C. H. Hu, E. Lee, A. M. Robinson, and E. O’Rourke, “An Ap-
proach for Detecting Student Perceptions of the Programming Experience from Interaction
Log Data,” in Artificial Intelligence in Education, Series Title: Lecture Notes in Computer
Science, vol. 12748, Cham: Springer International Publishing, 2021, pp. 150–164, ISBN:
978-3-030-78291-7 978-3-030-78292-4.

[33] J. Gorson, K. Cunningham, M. Worsley, and E. O’Rourke, “Using electrodermal activity
measurements to understand novice programmer emotions (In Review),” in Proceedings of

132

the 2022 ACM Conference on International Computing Education Research - ICER ’22,
2022.

[34] C. Watson and F. W. Li, “Failure rates in introductory programming revisited,” in Proceed-
ings of the 2014 conference on Innovation & technology in computer science education -
ITiCSE ’14, Uppsala, Sweden: ACM Press, 2014, pp. 39–44, ISBN: 978-1-4503-2833-3.

[35] L. Ott, B. Bettin, and L. Ureel, “The impact of placement in introductory computer science
courses on student persistence in a computing major,” in Proceedings of the 23rd Annual
ACM Conference on Innovation and Technology in Computer Science Education, 2018,
pp. 296–301.

[36] C. M. Mueller and C. S. Dweck, “Praise for intelligence can undermine children’s motiva-
tion and performance.,” Journal of personality and social psychology, vol. 75, no. 1, p. 33,
1998.

[37] S. R. Zentall and B. J. Morris, ““Good job, you’re so smart”: The effects of inconsistency
of praise type on young children’s motivation,” Journal of Experimental Child Psychology,
vol. 107, no. 2, pp. 155–163, Oct. 2010.

[38] A. Master, S. Cheryan, and A. N. Meltzoff, “Computing whether she belongs: Stereo-
types undermine girls’ interest and sense of belonging in computer science.,” Journal of
educational psychology, vol. 108, no. 3, p. 424, 2016, Publisher: American Psychological
Association.

[39] A. Fisher and J. Margolis, “Unlocking the clubhouse: The Carnegie Mellon experience,”
ACM SIGCSE Bulletin, vol. 34, no. 2, pp. 79–83, 2002.

[40] J. M. Cohoon, “Just get over it or just get on with it,” Retaining women in undergrad-
uate computing. In J. Cohoon & W. Aspray (Eds.), Women and information technology:
Research on underrepresentation, pp. 205–238, 2006.

[41] C. S. Dweck, Self-theories: Their role in motivation, personality, and development. Psy-
chology Press, 1999, ISBN: 1-84169-024-4.

[42] C. S. Dweck and E. L. Leggett, “A social-cognitive approach to motivation and personal-
ity.,” Psychological review, vol. 95, no. 2, p. 256, 1988.

[43] C. S. Dweck, Mindset: The new psychology of success. Random House Incorporated, 2006.

[44] L. S. Blackwell, K. H. Trzesniewski, and C. S. Dweck, “Implicit theories of intelligence
predict achievement across an adolescent transition: A longitudinal study and an interven-
tion,” Child development, vol. 78, no. 1, pp. 246–263, 2007.

133

[45] C. Good, J. Aronson, and M. Inzlicht, “Improving adolescents’ standardized test perfor-
mance: An intervention to reduce the effects of stereotype threat,” Journal of Applied De-
velopmental Psychology, vol. 24, no. 6, pp. 645–662, Dec. 2003.

[46] J. Aronson, C. B. Fried, and C. Good, “Reducing the Effects of Stereotype Threat on
African American College Students by Shaping Theories of Intelligence,” Journal of Ex-
perimental Social Psychology, vol. 38, no. 2, pp. 113–125, Mar. 2002.

[47] D. S. Yeager et al., “Using design thinking to improve psychological interventions: The
case of the growth mindset during the transition to high school.,” Journal of Educational
Psychology, vol. 108, no. 3, pp. 374–391, 2016.

[48] E. O’Rourke, K. Haimovitz, C. Ballweber, C. Dweck, and Z. Popović, “Brain points: A
growth mindset incentive structure boosts persistence in an educational game,” in Pro-
ceedings of the SIGCHI conference on human factors in computing systems, ACM, 2014,
pp. 3339–3348.

[49] A. T. Corbett and J. R. Anderson, “Locus of feedback control in computer-based tutor-
ing: Impact on learning rate, achievement and attitudes,” in Proceedings of the SIGCHI
conference on Human factors in computing systems, ACM, 2001, pp. 245–252.

[50] B. Simon et al., “Saying isn’t necessarily believing: Influencing self-theories in comput-
ing,” in Proceedings of the Fourth international Workshop on Computing Education Re-
search, ACM, 2008, pp. 173–184.

[51] D. H. Schunk, “Attributions and Perceptions of Efficacy during Self-Regulated Learning
by Remedial Readers.,” 1989.

[52] N. E. Betz and G. Hackett, “The relationship of mathematics self-efficacy expectations to
the selection of science-based college majors,” Journal of Vocational Behavior, vol. 23,
no. 3, pp. 329–345, Dec. 1983.

[53] G. Hackett and N. E. Betz, “A self-efficacy approach to the career development of women,”
Journal of Vocational Behavior, vol. 18, no. 3, pp. 326–339, Jun. 1981.

[54] R. W. Lent and G. Hackett, “Career self-efficacy: Empirical status and future directions,”
Journal of Vocational Behavior, vol. 30, no. 3, pp. 347–382, Jun. 1987.

[55] F. Pajares and M. D. Miller, “Role of self-efficacy and self-concept beliefs in mathemati-
cal problem solving: A path analysis.,” Journal of educational psychology, vol. 86, no. 2,
p. 193, 1994, Publisher: American Psychological Association.

[56] I. T. Miura, “The relationship of computer self-efficacy expectations to computer interest
and course enrollment in college,” Sex Roles, vol. 16, no. 5-6, pp. 303–311, Mar. 1987.

134

[57] F. B. Tek, K. S. Benli, and E. Deveci, “Implicit Theories and Self-Efficacy in an Introduc-
tory Programming Course,” IEEE Transactions on Education, vol. 61, no. 3, pp. 218–225,
Aug. 2018.

[58] J. Hui, M. Greenberg, and E. Gerber, “Understanding Crowdfunding Work: Implications
for Support Tools,” in CHI ’13 Extended Abstracts on Human Factors in Computing Sys-
tems, ser. CHI EA ’13, event-place: Paris, France, New York, NY, USA: Association for
Computing Machinery, 2013, pp. 889–894, ISBN: 978-1-4503-1952-2.

[59] E. Harburg, J. Hui, M. Greenberg, and E. M. Gerber, “Understanding the Effects of Crowd-
funding on Entrepreneurial Self-Efficacy,” in Proceedings of the 18th ACM Conference on
Computer Supported Cooperative Work & Social Computing, ser. CSCW ’15, event-
place: Vancouver, BC, Canada, New York, NY, USA: Association for Computing Machin-
ery, 2015, pp. 3–16, ISBN: 978-1-4503-2922-4.

[60] P. Shea and T. Bidjerano, “Learning presence: Towards a theory of self-efficacy, self-
regulation, and the development of a communities of inquiry in online and blended learning
environments,” Computers & education, vol. 55, no. 4, pp. 1721–1731, 2010, Publisher:
Elsevier.

[61] S. Marwan, G. Gao, S. Fisk, T. W. Price, and T. Barnes, “Adaptive Immediate Feedback
Can Improve Novice Programming Engagement and Intention to Persist in Computer Sci-
ence,” in Proceedings of the 2020 ACM Conference on International Computing Education
Research, Virtual Event New Zealand: ACM, Aug. 2020, pp. 194–203, ISBN: 978-1-4503-
7092-9.

[62] B. Hasan, “The influence of specific computer experiences on computer self-efficacy be-
liefs,” Computers in Human Behavior, vol. 19, no. 4, pp. 443–450, Jul. 2003.

[63] P. Askar and D. Davenport, “An investigation of factors related to self-efficacy for Java
programming among engineering students,” TOJET: The Turkish Online Journal of Edu-
cational Technology, vol. 8, no. 1, 2009.

[64] D. W. Govender and S. K. Basak, “An investigation of factors related to self-efficacy for
Java programming among computer science education students,” Journal of Governance
and Regulation, vol. 4, no. 4, pp. 612–619, 2015.

[65] S. A. Ambrose, Ed., How learning works: seven research-based principles for smart teach-
ing, 1st ed, ser. The Jossey-Bass higher and adult education series. San Francisco, CA:
Jossey-Bass, 2010, OCLC: ocn468969206, ISBN: 978-0-470-48410-4.

[66] D. L. Butler and P. H. Winne, “Feedback and self-regulated learning: A theoretical synthe-
sis,” Review of educational research, vol. 65, no. 3, pp. 245–281, 1995.

135

[67] C. Quintana, M. Zhang, and J. Krajcik, “A Framework for Supporting Metacognitive As-
pects of Online Inquiry Through Software-Based Scaffolding,” Educational Psychologist,
vol. 40, no. 4, pp. 235–244, Dec. 2005.

[68] M. D. Alicke, “Global self-evaluation as determined by the desirability and controllability
of trait adjectives.,” Journal of Personality and Social Psychology, vol. 49, no. 6, pp. 1621–
1630, 1985.

[69] J. D. Brown, “Evaluations of Self and Others: Self-Enhancement Biases in Social Judg-
ments,” Social Cognition, vol. 4, no. 4, pp. 353–376, Dec. 1986.

[70] V. S. Y. Kwan, O. P. John, D. A. Kenny, M. H. Bond, and R. W. Robins, “Reconcep-
tualizing Individual Differences in Self-Enhancement Bias: An Interpersonal Approach.,”
Psychological Review, vol. 111, no. 1, pp. 94–110, 2004.

[71] J. Kruger and D. Dunning, “Unskilled and unaware of it: How difficulties in recogniz-
ing one’s own incompetence lead to inflated self-assessments.,” Journal of personality and
social psychology, vol. 77, no. 6, p. 1121, 1999, Publisher: American Psychological Asso-
ciation.

[72] K. W. Eva and G. Regehr, ““I’ll never play professional football” and other fallacies of self-
assessment,” Journal of Continuing Education in the Health Professions, vol. 28, no. 1,
pp. 14–19, 2008.

[73] J. Ehrlinger and D. Dunning, “How chronic self-views influence (and potentially mislead)
estimates of performance.,” Journal of personality and social psychology, vol. 84, no. 1,
p. 5, 2003, Publisher: American Psychological Association.

[74] H. Ginsburg, Entering the child’s mind: The clinical interview in psychological research
and practice. New York: Cambridge University Press, 1997.

[75] M. J. Scott and G. Ghinea, “On the domain-specificity of mindsets: The relationship be-
tween aptitude beliefs and programming practice,” IEEE Transactions on Education, vol. 57,
no. 3, pp. 169–174, 2014.

[76] M. B. Miles, A. M. Huberman, and J. Saldana, Qualitative data analysis: A methods
sourcebook. Sage publications, 2018.

[77] D. R. Thomas, “A general inductive approach for analyzing qualitative evaluation data,”
American journal of evaluation, vol. 27, no. 2, pp. 237–246, 2006.

[78] A. Strauss and J. Corbin, “Grounded theory methodology,” Handbook of qualitative re-
search, vol. 17, pp. 273–85, 1994.

136

[79] C. S. Dweck and J. Bempechat, “Children’s theories of intelligence: Consequences for
learning,” Learning and motivation in the classroom, pp. 239–256, 1983.

[80] J. S. Eccles and B. L. Barber, “Student council, volunteering, basketball, or marching band
what kind of extracurricular involvement matters?” Journal of adolescent research, vol. 14,
no. 1, pp. 10–43, 1999.

[81] T. Byrt, J. Bishop, and J. B. Carlin, “Bias, prevalence and kappa,” Journal of Clinical
Epidemiology, vol. 46, no. 5, pp. 423–429, May 1993.

[82] H. De Vries, M. N. Elliott, D. E. Kanouse, and S. S. Teleki, “Using Pooled Kappa to Sum-
marize Interrater Agreement across Many Items,” Field Methods, vol. 20, no. 3, pp. 272–
282, Aug. 2008.

[83] K. A. Hallgren, “Computing inter-rater reliability for observational data: An overview and
tutorial,” Tutorials in quantitative methods for psychology, vol. 8, no. 1, p. 23, 2012.

[84] K. A. Ericsson and H. A. Simon, Protocol analysis: Verbal reports as Data. Cambridge,
MA: MIT Press, 1984.

[85] A. Ebrahimi, “Novice programmer errors: Language constructs and plan composition,”
International Journal of Human-Computer Studies, vol. 41, no. 4, pp. 457–480, 1994.

[86] R. McCartney, A. Eckerdal, J. E. Mostrom, K. Sanders, and C. Zander, “Successful stu-
dents’ strategies for getting unstuck,” in ACM SIGCSE Bulletin, vol. 39, ACM, 2007,
pp. 156–160, ISBN: 1-59593-610-6.

[87] B. Hanks and M. Brandt, “Successful and unsuccessful problem solving approaches of
novice programmers,” in ACM SIGCSE Bulletin, vol. 41, ACM, 2009, pp. 24–28.

[88] S. Sonnentag, “Expertise in professional software design: A process study.,” Journal of
applied psychology, vol. 83, no. 5, p. 703, 1998, Publisher: American Psychological Asso-
ciation.

[89] W. Visser, “Strategies in programming programmable controllers: A field study on a pro-
fessional programmer,” in Empirical Studies of Programmers: Second workshop (ESP2),
Ablex, 1987, pp. 217–230.

[90] L. Murphy, G. Lewandowski, R. McCauley, B. Simon, L. Thomas, and C. Zander, “De-
bugging: The good, the bad, and the quirky–a qualitative analysis of novices’ strategies,”
in ACM SIGCSE Bulletin, vol. 40, ACM, 2008, pp. 163–167.

[91] T. D. LaToza, G. Venolia, and R. DeLine, “Maintaining mental models: A study of devel-
oper work habits,” in Proceeding of the 28th international conference on Software engi-
neering - ICSE ’06, Shanghai, China: ACM Press, 2006, p. 492, ISBN: 978-1-59593-375-1.

137

[92] M. Perscheid, B. Siegmund, M. Taeumel, and R. Hirschfeld, “Studying the advancement in
debugging practice of professional software developers,” Software Quality Journal, vol. 25,
no. 1, pp. 83–110, Mar. 2017.

[93] J. Kurman, “Gender, Self-Enhancement, and Self-Regulation of Learning Behaviors in
Junior High School,” Sex Roles, vol. 50, no. 9/10, pp. 725–735, May 2004.

[94] C. Midgley et al., “Patterns of Adaptive Learning Scales,” American Psychological Asso-
ciation, Tech. Rep., Apr. 2013, type: dataset.

[95] J. Cohen D, L. Margulieux, M. Renken, and W. M. Jones, “Conclusions from the Valida-
tion of a Vignette-Based Instrument to Measure Maker MIndsets,” in Proceedings of the
Fifteenth International Conference for the Learning Sciences (ICLS) 2020, Nashville, TN,
USA: International Society of the Learning Sciences, Inc.[ISLS]., Jun. 2020.

[96] C. S. Alexander and H. J. Becker, “The Use of Vignettes in Survey Research,” Public
Opinion Quarterly, vol. 42, no. 1, p. 93, 1978.

[97] S. E. Carlson, D. G. Rees Lewis, E. M. Gerber, and M. W. Easterday, “Challenges of peer
instruction in an undergraduate student-led learning community: Bi-directional diffusion
as a crucial instructional process,” Instructional Science, vol. 46, no. 3, pp. 405–433, Jun.
2018.

[98] J. L. Collett and E. Childs, “Minding the gap: Meaning, affect, and the potential shortcom-
ings of vignettes,” Social Science Research, vol. 40, no. 2, pp. 513–522, Mar. 2011.

[99] A. W. Bowman and A. Azzalini, Applied smoothing techniques for data analysis: the kernel
approach with S-Plus illustrations. OUP Oxford, 1997, vol. 18.

[100] J. Bennedsen and M. E. Caspersen, “Revealing the programming process,” in ACM SIGCSE
Bulletin, vol. 37, ACM, 2005, pp. 186–190, ISBN: 1-58113-997-7.

[101] P. Blikstein, M. Worsley, C. Piech, M. Sahami, S. Cooper, and D. Koller, “Programming
pluralism: Using learning analytics to detect patterns in the learning of computer program-
ming,” Journal of the Learning Sciences, vol. 23, no. 4, pp. 561–599, 2014.

[102] P. Blikstein, “Using learning analytics to assess students’ behavior in open-ended program-
ming tasks,” in Proceedings of the 1st international conference on learning analytics and
knowledge, ACM, 2011, pp. 110–116.

[103] M. Berland, T. Martin, T. Benton, C. Petrick Smith, and D. Davis, “Using learning analytics
to understand the learning pathways of novice programmers,” Journal of the Learning
Sciences, vol. 22, no. 4, pp. 564–599, 2013.

138

[104] M. C. Jadud, “Methods and Tools for Exploring Novice Compilation Behaviour,” in Pro-
ceedings of the Second International Workshop on Computing Education Research, ser. ICER
’06, event-place: Canterbury, United Kingdom, New York, NY, USA: Association for
Computing Machinery, 2006, pp. 73–84, ISBN: 1-59593-494-4.

[105] A. Ahadi, R. Lister, H. Haapala, and A. Vihavainen, “Exploring Machine Learning Meth-
ods to Automatically Identify Students in Need of Assistance,” in Proceedings of the
eleventh annual International Conference on International Computing Education Research
- ICER ’15, Omaha, Nebraska, USA: ACM Press, 2015, pp. 121–130, ISBN: 978-1-4503-
3630-7.

[106] J. P. Munson and J. P. Zitovsky, “Models for early identification of struggling novice pro-
grammers,” in Proceedings of the 49th ACM Technical Symposium on Computer Science
Education, 2018, pp. 699–704.

[107] C. Piech, M. Sahami, D. Koller, S. Cooper, and P. Blikstein, “Modeling how students learn
to program,” in Proceedings of the 43rd ACM technical symposium on Computer Science
Education, ACM, 2012, pp. 153–160.

[108] S. Edwards and Z. Li, “Towards progress indicators for measuring student programming
effort during solution development,” in Proceedings of the 16th Koli Calling International
Conference on Computing Education Research - Koli Calling ’16, Koli, Finland: ACM
Press, 2016, pp. 31–40, ISBN: 978-1-4503-4770-9.

[109] J. R. Anderson, A. T. Corbett, K. R. Koedinger, and R. Pelletier, “Cognitive tutors: Lessons
learned,” The journal of the learning sciences, vol. 4, no. 2, pp. 167–207, 1995.

[110] J. R. Anderson, F. G. Conrad, and A. T. Corbett, “Skill acquisition and the LISP tutor,”
Cognitive Science, vol. 13, no. 4, pp. 467–505, 1989, Publisher: Elsevier.

[111] A. Corbett, “Cognitive computer tutors: Solving the two-sigma problem,” in International
Conference on User Modeling, Springer, 2001, pp. 137–147.

[112] E. Soloway, J. Bonar, and K. Ehrlich, “Cognitive strategies and looping constructs: An
empirical study,” Communications of the ACM, vol. 26, no. 11, pp. 853–860, Nov. 1983.

[113] M. Fuchs, M. Heckner, F. Raab, and C. Wolff, “Monitoring students’ mobile app coding
behavior data analysis based on IDE and browser interaction logs,” in 2014 IEEE Global
Engineering Education Conference (EDUCON), Istanbul: IEEE, Apr. 2014, pp. 892–899,
ISBN: 978-1-4799-3191-0.

[114] B. J. Reiser, J. R. Anderson, and R. G. Farrell, “Dynamic Student Modelling in an Intelli-
gent Tutor for LISP Programming.,” in IJCAI, vol. 85, 1985, pp. 8–14.

139

[115] J. H. Cross, D. Hendrix, and D. A. Umphress, “JGRASP: An integrated development en-
vironment with visualizations for teaching java in CS1, CS2, and beyond,” in 34th Annual
Frontiers in Education, 2004. FIE 2004., IEEE Computer Society, 2004, pp. 1466–1467.

[116] A. K. Shenton, “Strategies for ensuring trustworthiness in qualitative research projects,”
Education for Information, vol. 22, no. 2, pp. 63–75, Jul. 2004.

[117] B. Saunders et al., “Saturation in qualitative research: Exploring its conceptualization and
operationalization,” Quality & Quantity, vol. 52, no. 4, pp. 1893–1907, Jul. 2018.

[118] M. O’Reilly and N. Parker, “‘Unsatisfactory Saturation’: A critical exploration of the no-
tion of saturated sample sizes in qualitative research,” Qualitative Research, vol. 13, no. 2,
pp. 190–197, Apr. 2013.

[119] L. A. Zadeh, “Fuzzy logic,” Computer, vol. 21, no. 4, pp. 83–93, 1988, Publisher: IEEE.

[120] M. Coto, S. Mora, B. Grass, and J. Murillo-Morera, “Emotions and programming learning:
Systematic mapping,” Computer Science Education, pp. 1–36, May 2021.

[121] J. Chetty, ““I hate programming” and Other Oscillating Emotions Experienced by Novice
Students Learning Computer Programming,” p. 7, 2013.

[122] N. Bosch, S. D’Mello, and C. Mills, “What Emotions Do Novices Experience during Their
First Computer Programming Learning Session?” In Artificial Intelligence in Education,
H. C. Lane, K. Yacef, J. Mostow, and P. Pavlik, Eds., Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013, pp. 11–20, ISBN: 978-3-642-39112-5.

[123] N. Bosch and S. D’Mello, “The Affective Experience of Novice Computer Programmers,”
International Journal of Artificial Intelligence in Education, vol. 27, no. 1, pp. 181–206,
Mar. 2017.

[124] P. Haden, D. Parsons, K. Wood, and J. Gasson, “Student affect in CS1: Insights from an
easy data collection tool,” in Proceedings of the 17th Koli Calling International Conference
on Computing Education Research, Koli Finland: ACM, Nov. 2017, pp. 40–49, ISBN: 978-
1-4503-5301-4.

[125] D. Graziotin, X. Wang, and P. Abrahamsson, “Do feelings matter? On the correlation of
affects and the self-assessed productivity in software engineering,” p. 21, 2014.

[126] D. Girardi, N. Novielli, D. Fucci, and F. Lanubile, “Recognizing developers’ emotions
while programming,” in Proceedings of the ACM/IEEE 42nd International Conference on
Software Engineering, Seoul South Korea: ACM, Jun. 2020, pp. 666–677, ISBN: 978-1-
4503-7121-6.

140

[127] S. C. Muller and T. Fritz, “Stuck and Frustrated or in Flow and Happy: Sensing Developers’
Emotions and Progress,” p. 12, 2015.

[128] I. Drosos, P. J. Guo, and C. Parnin, “HappyFace: Identifying and predicting frustrating
obstacles for learning programming at scale,” in Visual Languages and Human-Centric
Computing (VL/HCC), 2017 IEEE Symposium on, IEEE, 2017, pp. 171–179.

[129] J. J. Braithwaite, D. G. Watson, R. Jones, and M. Rowe, “A guide for analysing electroder-
mal activity (EDA) & skin conductance responses (SCRs) for psychological experiments,”
Psychophysiology, vol. 49, no. 1, pp. 1017–1034, 2013.

[130] P. Blikstein and M. Worsley, “Multimodal Learning Analytics and Education Data Min-
ing: Using Computational Technologies to Measure Complex Learning Tasks,” Journal of
Learning Analytics, vol. 3, no. 2, pp. 220–238, Sep. 2016.

[131] W. Boucsein, Electrodermal activity. Springer Science & Business Media, 2012.

[132] T. Bentley, L. Johnston, and K. von Baggo, “Evaluation using cued-recall debrief to elicit
information about a user’s affective experiences,” in Proceedings of the 17th Australia
Conference on Computer-Human Interaction: Citizens Online: Considerations for Today
and the Future, 2005, pp. 1–10.

[133] M. E. Dawson, A. M. Schell, and D. L. Filion, “The electrodermal system,” 2017, Pub-
lisher: Cambridge University Press.

[134] K. R. Scherer, “What are emotions? And how can they be measured?” Social Science
Information, vol. 44, no. 4, pp. 695–729, Dec. 2005.

[135] APA dictionary of psychology. American Psychological Association.

[136] M. M. T. Rodrigo and R. S. Baker, “Coarse-grained detection of student frustration in an
introductory programming course,” in Proceedings of the fifth international workshop on
Computing education research workshop - ICER ’09, Berkeley, CA, USA: ACM Press,
2009, p. 75, ISBN: 978-1-60558-615-1.

[137] I. Drosos, P. J. Guo, and C. Parnin, “HappyFace: Identifying and predicting frustrating
obstacles for learning programming at scale,” in Visual Languages and Human-Centric
Computing (VL/HCC), 2017 IEEE Symposium on, IEEE, 2017, pp. 171–179.

[138] H. D. Critchley, J. Eccles, and S. N. Garfinkel, “Interaction between cognition, emotion,
and the autonomic nervous system,” in Handbook of clinical neurology, vol. 117, Elsevier,
2013, pp. 59–77.

141

[139] D. Caruelle, A. Gustafsson, P. Shams, and L. Lervik-Olsen, “The use of electrodermal
activity (EDA) measurement to understand consumer emotions – A literature review and a
call for action,” Journal of Business Research, vol. 104, pp. 146–160, Nov. 2019.

[140] E4 wristband | Real-time physiological signals | Wearable PPG, EDA, Temperature, Mo-
tion sensors.

[141] D. Lunn and S. Harper, “Using Galvanic Skin Response Measures to Identify Areas of
Frustration for Older Web 2.0 Users,” in Proceedings of the 2010 International Cross Dis-
ciplinary Conference on Web Accessibility (W4A), ser. W4A ’10, event-place: Raleigh,
North Carolina, New York, NY, USA: Association for Computing Machinery, 2010, ISBN:
978-1-4503-0045-2.

[142] M.-H. Choi et al., “Changes in Cognitive Performance Due to Three Types of Emotional
Tension,” in Database Theory and Application, Bio-Science and Bio-Technology, Y. Zhang,
A. Cuzzocrea, J. Ma, K.-i. Chung, T. Arslan, and X. Song, Eds., Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010, pp. 258–264, ISBN: 978-3-642-17622-7.

[143] M. Worsley and P. Blikstein, “A multimodal analysis of making,” International Journal of
Artificial Intelligence in Education, vol. 28, no. 3, pp. 385–419, 2018, Publisher: Springer.

[144] Y. S. Can, N. Chalabianloo, D. Ekiz, and C. Ersoy, “Continuous Stress Detection Using
Wearable Sensors in Real Life: Algorithmic Programming Contest Case Study,” Sensors,
vol. 19, no. 8, p. 1849, Apr. 2019.

[145] L. Ahonen, B. U. Cowley, A. Hellas, and K. Puolamäki, “Biosignals reflect pair-dynamics
in collaborative work: EDA and ECG study of pair-programming in a classroom environ-
ment,” Scientific Reports, vol. 8, no. 1, p. 3138, Dec. 2018.

[146] M. Wrobel, “Applicability of Emotion Recognition and Induction Methods to Study the
Behavior of Programmers,” Applied Sciences, vol. 8, no. 3, p. 323, Feb. 2018.

[147] K. Nolan, A. Mooney, and S. Bergin, “An Investigation of Gender Differences in Computer
Science Using Physiological, Psychological and Behavioural Metrics,” in Proceedings of
the Twenty-First Australasian Computing Education Conference on - ACE ’19, Sydney,
NSW, Australia: ACM Press, 2019, pp. 47–55, ISBN: 978-1-4503-6622-9.

[148] C. McCarthy, N. Pradhan, C. Redpath, and A. Adler, “Validation of the Empatica E4 wrist-
band,” in 2016 IEEE EMBS International Student Conference (ISC), Ottawa, ON, Canada:
IEEE, May 2016, pp. 1–4, ISBN: 978-1-5090-0935-0.

[149] A. Bruun, E. L.-C. Law, T. D. Nielsen, and M. Heintz, “Do You Feel the Same? On the Ro-
bustness of Cued-Recall Debriefing for User Experience Evaluation,” ACM Transactions
on Computer-Human Interaction, vol. 28, no. 4, pp. 1–45, Oct. 2021.

142

[150] M. T. Orne, “On the social psychology of the psychological experiment: With particu-
lar reference to demand characteristics and their implications.,” American Psychologist,
vol. 17, no. 11, 1962.

[151] S. Taylor, N. Jaques, Weixuan Chen, S. Fedor, A. Sano, and R. Picard, “Automatic iden-
tification of artifacts in electrodermal activity data,” in 2015 37th Annual International
Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan:
IEEE, Aug. 2015, pp. 1934–1937, ISBN: 978-1-4244-9271-8.

[152] J. Corbin and A. Strauss, Basics of Qualitative Research (3rd ed.): Techniques and Proce-
dures for Developing Grounded Theory. Thousand Oaks, California, May 2020.

[153] J. Saldaña, The coding manual for qualitative researchers. sage, 2021.

143

APPENDIX A

QUALITATIVE CODEBOOK FOR RESEARCHERS TO IDENTIFY MOMENTS OF

POTENTIAL SELF-ASSESSMENT

This codebook was designed during Study 3, discussed in Chapter 5. We used an iterative qual-

itative procedure to design and validate the codebook. The codebook is designed for researchers

to use while watching secreen recordings of a programming session to identify the moments that

align with the self-assessment moments, whether or not the student self-assess. In addition, the

codebook informed the design of the automated tool for detecting the moments.

A.1 Guide for labeling using resources moments

Using resources labels are used for the moments when participants use resources to get help on

solving the programming problem. While some participants consider internal IDE features, such

as the debugger, console messages, or a new, empty file, to be resources; in this codebook, we only

consider using resources labels for when they use external resources, such as using the browser or

opening an existing file.

Using resources moments are further divided into three labels: using resources for syntax, using

resources for approach, and using resources in general. We are interested in identifying when

students use resources for approach or syntax, however, since there is some overlap in the way

participants interpret approach versus syntax, as two participants might label the same behavior as

different moments, we use the using resources in general label for behaviors that do not clearly

fit either one or the other category. Specifically, if a participant’s behaviors are not particularly

indicative of either syntax or approach, label that moments the using resources in general label.

On the other hand, if we think that a participant is using resources for both syntax and approach

in the session, we will label it approach. This is because using resources for syntax should only

label moments where a participant purely uses the resources for syntax and nothing else, as it

144

is likely that if a participant researches an approach, they might end up learning about syntax

simultaneously.

When deciding which of the three sub-labels to use, the participant’s purpose of using resources

should be the main factor to consider. However, since we can not always know the purpose while

watching a participant programming, we present five different types of indicators for determining

what students used the resources for: 1) behaviors before using resource, 2) time on resource, 3)

search terms (if applicable), 4) behaviors while using resources, 5) behaviors when returning. To

make a decision, you should evaluate across the groups to see if there is more indication in one

direction compared to others. The decision needs to be a conglomerate and not just based on time,

even if time is a strong indicator. When there is conflict, the search terms should get priority if

they are clear.

A.1.1 Definitions of terms and concepts

Below are the terms and concepts that are applicable to all three using resources labels.

Types of resources

• Search results are results from web search engines such as Google or Bing

• Online course materials are material provided by a course, generally accessed course web-

sites

• Existing files on the participant’s computer or personal cloud folder that they open with

jGRASP - generally past assignments or practice problems or examples from their current

or previous class

• Other files that are not Java files and are either on the participant’s local computer or in their

personal cloud folder, for example, a PDF document or course slide that is saved locally on

their computer

145

Broad search term

Search terms that only contain the name of a data type plus “java” or “java method” without

specifying a method, for example “string java”, “arraylist java method”, “scanner java”.

Indistinct search term

When the participant conducts more than one search in the same using resources session, if the

new search term fits the following situations, the new search term will be considered as indistinct:

• Adds “java” to the beginning or the end of the search term and search again (generally

because they did not add “java” to the search term and thus get search results in other pro-

gramming languages).

• There is a typo in the previous search term, so participant either click the suggested search

term given by the search engine or manually re-enter the correct search term

• Rearranges words in the previous search term and/or adding extra word(s) that does not

affect the meaning of the search term. For example: “string java method” to “java method

for string”, “arraylist java remove” to “arraylist java 8 remove”

Online documentation of a Java class

Documentation is defined as any formal write-up of a class and usually contains a list of methods

supported by the class, such as full documentation of Class String. It is not a forum, example

or blogpost like Stack Overflow. Oracle documentation is the mostly commonly used website

for documentation by participants. We have also seen participants using tutorials point for such

documentation.

Moments that do not qualify for any of the using resources labels

• Spent less than 3 seconds on the resources (or such a short period of time that they clearly

could not have learned something from the experience)

146

• The problem description is the only site they visit

• Did a search but did not click into any search results after the results page is loaded and

leave shortly after they search without using the resource. Likely if they quickly scrolled

and skimmed through the search results, they realized that this is not helpful, so they either

do another search/ use a different type of resource/ go back to the IDE instead. Be aware:

this is not to be mistaken for when participants use the preview of search results as their

source of information and thus do not need to click into any site. This would count as a

label, see using resource for syntax description for more details.

• Looked at the table of contents or index of a resource (often a class syllabus) but does not

click into any particular reference page.

When to count a new session of using resources

When a participant uses a resource, the following situations will be considered as a new session

for using resources and do not count as toggling:

• Go to a new site not linked on current site. For example, participant enters a url or a book-

mark in the browser. If they click to a link from the current page (not the search result page)

that leads to a new site, it will not be a new session

• Go to a different search result

• Start a new search

• Open a new existing file

• Switch to a different file or a different tab in the browser than the file/ tab that they were last

on in the most previous using resources session (assuming the different file/ tab is already

opened either in the IDE or the browser)

It is common to see participants toggling between the IDE and the resource while they are imple-

menting the syntax of a method or syntax of an approach. Toggling should not be a new label.

147

Toggling must include these factors:

• Return to the resource within a short pause or they are still implementing the information

learned from the resources (for reference: around 1 minute since they left). If in the time

when they are back in the IDE qualifies for stopping to think, it should be a new label for

using resources

• The resource they go back to must be the same one as the most recent using resources label

• The resource must already be open on the computer; meaning they did not close the tab/file

the last time they left

If they flip to the problem description or go back the IDE for a very short period of time

(like a quick flip to look at something quickly or while changing views; approximately less than 5

seconds) in the middle of using resources, it will be considered as the same using resources session.

If they pause on the problem description or the IDE for longer or make changes in the editor, see

rules for toggling.

When to start/stop measuring time spent on a certain type of resource

• If the participant is using google search, the timing starts when the browser fully loads the

search result

• If the participant is using online course resource, the timing starts after they navigate through

the table of contents (or anything similar to that, if applicable) on the course website and

click into a page/lesson/file etc. Could get to the course website through search engine or

bookmark on browser or a link they kept somewhere else

• If the participant is using an existing file within jGRASP OR a local file on their computer

(for example a PDF document or slides) OR a file on their personal cloud folder, the timing

starts when they open the file

148

• In all cases, whenever focus returns to jGRASP (or if they are using a file as a resource,

the focus returns to the main file) OR go to the problem description while they are on the

browser, the resource timer stops.

• In all cases, if there are multiple instances of using resources, such as using more than one

type of resources, opening multiple files within jGRASP, and clicking into different search

results or doing another search, the total time on resources is accumulated across different

instances as long as they are all in the same session. The total time will be used for evaluating

time indicator, unless more detailed situations are specified.

Situations with multiple instances of using resources in one session

In situations where there are multiple instances of using resources, especially when they do multi-

ple distinct searches in the same session, only if all instances are clear to be for syntax individually

would we label the session as using resources for syntax. If there are both approach and syntax

related searches, then the moment should be labelled approach.

A.1.2 Using resource for syntax

See participant leave jGRASP IDE or open a different file within jGRASP.

Purposes for using resources that count as syntax

Should only label moments as using resources for syntax where a participant purely uses the re-

sources for syntax and nothing else.

• Syntax of [specific method calls]: this is under the condition that the participant has an idea

of what method to use, and they are unsure of syntax of that method

• Syntax for [declaring a non-primitive data type of variable], for example: int array, arraylist,

hashset

• Syntax for [importing packages lines]

149

• Syntax for [loops or conditional statements], such as syntax for a for-each loop

• Look up how to implement similar functions or methods from other programming languages

• Coding style guide (most likely from course material)

Behavior before going to resources

Positive indicators:

Strong:

• Stopped typing in the middle of implementing a method or just finished typing a method and

immediately goes to a resource to look up that method. In this case, the method they just

typed should be relevant to the content of the resource. “In the middle of implementing a

method” refers to situations when the participant already typed out part of the method name

(for example, “.toLower” if intended to do “.toLowerCase()”) or typed the full method name

but not yet added the required parameters

• Gets simple java error and goes directly to a resource (does not get label stopping to think

before deciding to use resource). For example: getting “error: cannot find symbol” and

realizing that they forget to import package(s), and thus using resources for syntax of the

importing lines

Middle:

• Stopped typing in the middle of a line in general

• Could be in the middle of setting up a loop, a conditional statement, etc., but not in the

middle of implementing a method

Negative indications:

• Stopping to think before using the resource

• Occurring before implementation starts

150

Behaviors while using resources

Time spent on resources for syntax

Most of the participants spend less than 1 minute on resources if they are using resources for

syntax (if the time is under 30 seconds then it is even more likely using resources). However,

some participants could be working on the problem at either a faster or slower pace than other

participants. Therefore, search terms and other behaviors should be prioritized. when total time

exceeds 30 seconds.

If the situation fully fits the description for special cases, we would use special cases for time

on resources instead of total time for evaluating time indication. If not, use total time.

Total time

Strong indication:

• 3 - 20 seconds, very likely to be using resources for syntax even without seeing other behav-

iors

Middle indication:

• 20 - 30 seconds

Neutral:

• 30 seconds - 1 minute

Negative indication:

• 1 minute and 30 seconds, especially the participant looks at more than one previous files

within jGRASP or conducts more than one distinct search without leaving the browser

Special cases for time on resources

Spent a total of less than 1 minute on two search results without leaving the browser (under the

same search term or indistinct search terms)

151

When participant leaves jGRASP IDE entirely

To decide if a chrome session was using resources for syntax, look for the following things:

Strong:

• Search terms (when using a search engine) that serve as strong indicator for syntax:

• Search term that contains a specific java method

• Example search terms: “string length java”, “substring java”, “tostring java”, “arraylist java

remove”

• Search term that highly resembles the purpose of a specific java method

• Example search terms: “Java how to find length of string”, “Make all values in string lower-

case java”, “Splitting things into individual words java”

• Specifying about how to declare a variable with non-primitive data type such as arraylist, int

array

• Example search terms: “Declare int array java”, “creating an arraylist in java”

• Using Google search and then clicking into image search results for example syntax instead

of website results;

• Using broad search term and navigating to online documentation of a class and doing a text

search on that page

• Once on page, do a text search for the desired method (if they do not use text search, see

weak indicator);

• Only looking at the preview of each search result on the page as their source of information

without clicking into any search results

152

• Slowly browsing the results, usually spend longer time on the search engine and scroll further

down for more information then simply deciding the results are not useful and thus leave the

browser or do another search

• Often we can see what they are reading by noticing when participants move the cursor to

trace through the text while reading

Weak:

• Using broad search term and navigating to online documentation of a class and go directly

to the desired method

• Though it may appear to be the participant is simply scrolling through a list of available

methods, if they scroll faster (instead of slowly browsing) and stop at where they found the

method, it is likely that they are using resources for syntax.

Indicators of using resources for syntax when they stay within jGRASP

Students open up another existing file (which generally is previous homework or examples). (Not

able to identify indicative behaviors for how they use the file yet, see [Behaviors before going to

resources] [Time spent on the resource] and [Behaviors after coming back to the solution file] in

order to make a decision)

Behaviors after coming back to the solution file

Strong:

• Pasting up to two lines of code

• Few character or single term edit at the line they were working on before leaving the file for

resource

153

• Such behavior happens when students double check that they wrote the right syntax, which

means the resource they looked up is related to what they are typing right before they left the

file they were working on

• Adding a package (line starting with “import”) to the top of the editor

Middle:

• Editing current line: finishing the line of code that the participant left off before going to

resources or editing within the same line, and the resource they look up is relevant to the line

they are editing.

Weak indicator:

• Small edits on previous lines (a few character or single term)

A.1.3 Using resource for approach

Purpose of using resources for approach

• Participants use resources for approaches to help them determine how to solve the problem.

The approach could be for the whole problem or for a subproblem. Here is a list of examples

of using resources for approach:

• Look up existing solutions to help approach the whole problem

• Look up a list of available methods from a class to look for a potential method to use

• Look up how to implement a certain type of data structure or algorithm

• Look up how to implement recursion

• Recall that the problem is similar to an example or a practice problem from class, look up in

course materials or existing java files

• Looking up methods online and examples (either online or in files) to understand a concep-

tual mistake after getting an (simple) error.

154

Behavior before going to resources

Strong:

• Occurring after stopping to think

• Occurring before starting implementation for the whole problem.

This label often occurs when participants are figuring out approach / planning, which often

happen at the beginning of the session, but can also occur when they change approaches during

implementation

Middle:

• Occurring after a pause in typing that is generally 15-30 seconds, even if it is not counted as

stopping to think

Behaviors while using resources

Time spent on resources for approach If the situation fully fits the description for special cases,

we would use special cases for time on resources instead of total time for evaluating time indica-

tion. If not, use total time.

Total time

Strong:

• Spending more than 1 minute on resources

Neutral:

• Spending 30 seconds - 1 minute on resources

Negative:

• Spending less than 30 seconds (less than 20 seconds is extremely negative)

Special cases for time on resources

Strong:

155

• Clicking into two search results (or more) from the same search engine and search term

without leaving the browser and spending at least 30 seconds on both (or at least two) of

them

Middle:

• Clicking into more than two search results

• Regardless of time spent on each result, but will be a strong indicator if total time exceeds 1

minute

• Different search result could be under the same search engine and search term OR indis-

tinctly search terms OR search terms that are highly similar (only off by one or two words,

the overall meaning of the search term is still the same or very similar) using more than one

type of resource without going back to the file they are working on, and spending at least 30

seconds on one type of the resources

For leaving jGRASP IDE entirely

When using chrome, it is indicative of using resources for approach when students do the following

things: Strong indicator:

• Going to sites that are articles and blog post about solutions

• Terms that we are likely to see in Google searches: words used in the assignment, for ex-

ample: ”duplicate” and ”remove” (although remove might not be good enough, so maybe

remove duplicates or removing duplicates is better) ”permutation”

• Asking a broader question about the problem solution or a particular aspect of the problem

(examples: “how to get the next word java” ”how to remove duplicates strings from array

java” ”reading through a document word by word in java”)

• Terms about problem-solving techniques and algorithms, for example: “recursion”

156

Middle indicator:

• Using provided examples on website such as StackOverflow or on their course website with

example problems as reference for an example structures

Weak indicator:

• Using broad Google search and navigating to documentation of a class and appearing to

be slowly scrolling through instead of looking for a specific method AND/OR text search

“method” within the documentation

NOTE: Broad google search terms are NOT indicative one way or the other unless we analyze how

they navigate the site (like scrolling). Browsing online course material, especially explanations of

concepts

For within jGRASP

Students will open up previous homework or examples.

Strong:

• Freezing the screen on one part of the existing file for a longer period of time (for reference:

more than 20 seconds) without scrolling up and down

Middle:

• Opening up previous homework or examples, slowly scrolling through the editor to see how

they implemented a similar approach in the past

Behaviors after using resources for determining approach

After coming back to IDE in the file they are working on, we could see one of the following

behaviors to help identifying using resources for approach:

Strong:

157

• Pasting in a large chunk of code from a resource and editing it afterwards to fit the problem

they are working on

• Label - stopping to think

• Pausing shortly without typing anything in the IDE and doing another search instead

Middle:

• Pasting more than two lines of code

• Starting implementation for the whole problem

• Label - changing approach (see description for changing approach)

• Toggling back and forth the same resources while implementing

Weak:

• Starting typing on a new, empty line, and continuing with the current approach

A.1.4 Using resources in general

This general using resources label is used when the behaviors of using resources is not indicative

either syntax or approach, or if the purpose of using a resource is not clear and the indicators are

not clearly for either one.

Situations where we can not determine if participant is using resources for syntax or approach,

thus label as general

• Student looks up resources before starting to implement, scrolls a while, finds something

and then starts to implement. (were they scrolling and looking for it specifically or were

they scrolling until they found the right thing and thus needed an approach and found it so

started implementing

158

• 2.10 scrolling in chrome behind IDE

• When a google search does not seem relevant to what they are doing, such that we don’t

know if they were looking up something for syntax or approach. For example: googled

”char to int”, clicked into one for a few sec, hit back, clicked in again for a few sec, then

googled integer value for char java, clicked into one for a few sec, hit back, clicked into

another one with an ascii table

• If we really don’t know how to tell their original purpose for going to a resource.

Purpose of using resources that is not for syntax or approach, thus label as general

• Use resources for jGRASP features.

• Sometimes participants seek help on how to use certain features of jGRASP on chrome, such

as debugger, instead of help on solving the programming problems. Therefore, the following

behaviors should not be seen in the moments of using resources:

• Google search terms that contain “jgrasp”

• Looking at online jGRASP help

• Look up meaning of a word from the problem description or resources

• This also includes if they are searching for the translation of a word.

Behaviors that are considered “neutral” as they are not indicative of either syntax or approach

(although they are not necessarily indicative of general)

• Using Google search for example syntax from websites like Geeksforgeeks, W3, stackover-

flow, and the search term is unclear;

• Opening course slides without using text search for a specific method

159

• Opening course website and flipping through a couple different pages on the website without

spending noticeably longer on any of them

A.2 Getting simple errors

Explanation of the label: These are characterized by errors that a student could easily overlook

and think they should be easy to fix, although it may take a long time for a student to identify the

cause of the error. Simple errors are distinguished by forgetting something and not a conceptual

mistake/misunderstanding. Simple errors must be compiler errors. No runtime errors count as

“simple” errors. An “error” in their program logic that causes unexpected runtime behavior also

does not count as an error here.

It is possible that they get multiple errors at a time, when determining if it is a “simple error”,

we should use the first error in the console and on the highlighted line suggested by the IDE,

because that is usually what they tackle first.

Errors from testing in the interactions or from testing in a separate file will also be evaluated

for simple java error and java error labels.

Common examples of simple errors

• While watching the participant programming, we could tell a compiler error is a simple error

if the cause of the error is one of the followings:

• Forgetting to import a directory

• Declaring more than one variable/ function with the same name

• Missing parenthesis/ semicolon/ square bracket

• Mismatching curly brace(s)

• Forgetting to declare a variable before calling it in the program

• Violating variable naming rules

160

• Incorrect syntax for method calls, such as mis-spelling method names or forgetting to add ()

• Incompatible type conversion, such as data type of a variable and return type of a function

• Using incorrect variable names due to mistakes like mis-spelling

• Incorrect syntax for initializing a variable

Error messages from an simple error

Here is an example list of exact error messages that often are the results of simple errors:

• ”error: ‘ (‘ expected” ”error: ’)’ expected”

• missing parentheses

• ”error: ‘ ;’ expected”

• Missing semicolons

• violating variable naming rules

• “error: not a statement”

• violating variable naming rules

• ”error: bad initializer for for-loop”

• Incorrect syntax for a for loop

• “error: xxx is already defined in yyy”

• Declaring more than one variable/ function with the same name

• “error: incompatible types: ...”

• Return statement does not match with function header

161

• Passing in wrong data type for a function input

• Declaring a variable with incorrect data type

• “error: reached end of the file while parsing”

• Missing closing curly brace(s) at the end of the program

• “error: cannot find symbol”

• Forgetting to import a directory

• Forgetting to declare a variable before calling it in the program

• Using incorrect variable names due to mistakes like mis-spelling

• Incorrect syntax for method calls

A.3 Getting Java error

Student gets runtime error, including runtime errors in both the interactions and in the editor, or

student gets compiler error, and the cause of the compiler error does not fit into the definition of

simple error.

Errors from testing in the interactions or from testing in a separate file will also be evaluated

for simple java error and java error labels.

Examples include:

• compiler error:

– ”error: class, interface, or enum expected”

– “error: java: file not found”

• runtime error:

– “error: array index out of bound”

162

– “exception in thread ”main” java.lang.StackverflowError”

However, even if the cause of the compiler error fits into a simple error, if the participant never

fixes the error and moves on and avoid the error, it should be labeled a Java Error and NOT a simple

error. This is because the participant doesn’t figure out what the root of the error is, and thus does

not know that it is simple. NOTE: if the participant runs out of time and that’s why they can’t fix

it then it can not be determined.

Common examples of compiler errors that participants label as “simple” but sometimes fail to

fix:

• “Error: illegal start of type” or “Error: illegal start of expression”

• Such errors usually come from mismatching curly braces in the program, and we have found

that some participants had a hard time identifying that missing curly braces is the cause.

Though they might label it as a simple java error, if they did not succeed in fixing it, we

would use a java error label in this situation.

A.4 Struggling with error

The error the participant is struggling with must be either compiler error, runtime error, or unex-

pected program runtime behavior. In order to qualify as struggling with error, these behaviors must

happen directly after getting a java error, simple java error or unexpected runtime behavior.

Behaviors after getting errors and struggling with errors

NOTE: It does not count as struggling with errors if they fix the error before stopping to think,

even if it is a simple error and they do not run the code to get rid of the error (for example, if they

put a semi colon in where it was missing but do not push run because they know it is fixed).

Strong indication:

If we see one of the following behaviors, we could be certain that the participant is struggling

with errors.

163

• (for java or simple java errors) Idle time with jGRASP or the problem description in focus

(no activity) for 1.5 minutes (will get stopping to think label).

• Idle time can include scrolling and looking at the errors, even though that is not included in

stopping to think

• Allowed to make changes to whitespace within time as long as they are only a minor edit

(not an attempt to fix the code). Edits can only be erasing or adding whitespace.

• Using debugger or interactions with an active error in the console or after unexpected runtime

behavior

• (for java or simple java errors) Running or compiling code and receiving an error for the

same issue at least three times, with some changes being made in between. Must qualify as

in the same error cycle. If it is less than three times, see the middle indicator.

• (for unexpected program runtime behavior) Commenting out test cases or commenting out

the lines that call the main function in public static void main(String[] args)

Middle indication:

These behaviors do not qualify for the moment on their own. If we see at least two of the

following behaviors or one of them in combination with the behaviors mentioned in the strong

indication section, we could label the moment for struggling with error.

• Using resources for syntax or approach after getting error(s)

• Temporarily commenting/ deleting out a piece of code and rerunning the program **in order

to understand which part of the code is causing the errors

• “Temporarily” means we should see commenting, rerunning (or recompiling), and uncom-

menting happen consecutively during the time they are working on the error(same for delet-

ing, rerunning, and restoring the piece of code that has been deleted). The time span of

164

temporarily commenting/ uncommenting is usually under 2 minutes, but it depends on a

participant’s overall implementing speed.

• If the participant does not uncomment/ restore, it is likely that they are “changing approach”.

See the description for changing approaches

• Rerunning (or recompiling) code without making any changes.

• Making changes to the code, and then rerunning (or recompiling) it but didn’t fix the error.

Changes could be any size, but changes should not be directly commenting out or deleting

the lines that have errors. In order for it to count as rerunning (or recompiling) and in the

same error cycle, make sure that it qualifies as an error cycle (see definition).

Weak indication (General behaviors):

It is common to see at least one of the following behaviors while participants are struggling

with errors, but these behaviors should not be used as an indication of the label struggling with an

error.

• Slowly scrolling through the console to read all the error messages

• Slowly scrolling through the IDE to examine the code, including their own implementation

and the provided starter code

• Slower pace of typing speed

• Stopping to think after getting error but under 1.5 minutes (over 1.5 minutes is a strong

indicator)

Moving on without fixing the error

Sometimes participants might continue implementation for the problem without fixing the current

error, or without running the code to confirm the error is fixed. If the participant has not rerun the

code after making changes and is typing/ editing the code regularly on lines not suggested by the

165

error messages (similar to the pace before getting errors), the participant is no longer struggling

with the error and has moved on to continue implementing.

A.5 Writing a plan

Could occur before or after implementation has begun. Participants externally brainstorms or

plans. This is in the form of: writing in the IDE or writing on paper/ipad or notepad on computer.

Within the IDE

This is what the comments should be that count as planning:

• Writing comments that describe the steps that they think they will use to approach the

problem- either inside or outside of the main function (which is the provided function with

/*your solution goes here*/)

• Writing comments in the middle of a function/ loop body as a placeholder for coming back

to finish code implementation later. The function/ loop body does not have to be empty. (our

examples are between 1 and 4 lines). The content of a placeholder comment should be a

direct instruction of what functionality the participant is planning to implement at that spot

• Writing comments before a loop (could be a nested loop) or the header of a function defined

by the participant that details the participants’ plan for what they will put in the loop/function

or their brainstorming to figure out what should go in there.

Note: When they are writing a plan in comments, we will only re-evaluate the moment when

they type code in between writing comments. Other situations such as stopping to think, using

resources, etc., will not affect the current session of writing a plan in comments.

Specific indicators to help identify comments that are planning:

(Note, purpose of comment should always be priority, but these indicators can help to determine

the purpose of the comment) When watching a participant program, we found that the comments

166

that count as writing plans often are:

• Are at least 2 lines long

• If the comment is only one line:

– Should be at least around 5 words

– Both the line right above and below should be empty at the time when the participant

writes the comment OR

– The line of comment is right above an empty helper function (empty = they only wrote

the declaration) or an empty loop (empty = only set up the conditions)

• include content that is:

– direct instructions on what to do in code

– a combination of written language and pseudocode/ methods.

• are ALWAYS independent and NOT inline

Comments that should NOT count as planning:

• Commenting out existing code

• Single line comments directly above functions/loops that have code in them (it still counts

if the content is only comments) This is because the single line comment is usually docu-

menting the purpose of the functions/loops after they start to implement the functions/loops

body.

• Sample output of the program mentioned in the problem description (more likely to see

before starting implementation)

• Instruction for the problem based on the problem description

167

– Usually appears at the first line in the IDE and outside of the function they are going to

work on

– The participant could directly copy and paste from the problem description or write in

their own words

– Usually happens in the beginning phase of programming when the participant only has

little or no implementation

• Reminder: comments that are used to remind themselves instead of part of the planning,

such as “needs RETURN”

• Documentation of existing code, usually are inline comments or on the line directly above

the code

Outside of IDE

Participant could be writing plans on notepad or other text editor on computer OR writing plans on

paper/ ipad. However, since we are not able to see if they are writing plans on paper/ ipad based on

their screen activity, either in detection or by human watching, we will not consider such behavior

for evaluating writing a plan label.

If we were considering content in an outside text editor, this is how we would identify if it

was planning:

Include the content that is:

• direct instructions on what to do in code

• a combination of written language and pseudocode/ methods.

Exclude the content that is:

• Sample output of the program mentioned in the problem description (more likely to see

before starting implementation)

168

• Instruction for the problem based on the problem description. The participant might directly

copy and paste from the problem description or write in their own words

• Reminders for what to do that are not planning

A.6 Stopping to think after starting implementation

Time indicator for stopping to think

Student is idle on the screen for at least 25-30 seconds (although generally over one minute) AND

is a lengthy pause relative to the pace by which they are programming (if they are moving quickly,

a shorter pause will count compared to if they are moving slowly).

Situations that require longer pause

At the beginning phase of implementation

If the participant is still at the beginning phase of implementation, the idle time must be at

least 45 seconds in order to qualify for stopping to think. This is because students may go back

to the problem description to try to understand the problem and that is not stopping to think about

implementation. Beginning phase of implementation means the participant only has little imple-

mentation, such as initializing one object, and not yet starts building logics or functionalities. In

general, implements less than 3 lines of meaningful code.

Before going to resources for approach

If the participant pauses before going to resources for approach, the idle time must be at least

30 seconds in order to be qualified for stopping to think. This is because they may just be thinking

about how they want to use the resource and that is separate from stopping to think independently.

Coming back from resource

If the participant is scrolling around on the screen initially, this may be to get their bearings

again (especially after using a resource for a long time) and the time spent scrolling does not count

towards stopping to think.

169

Getting simple java error or java error

Time spent actively scrolling through the console output or the run I/O doesn’t count as stop-

ping to think if they are scrolling to read the content and not aimlessly scrolling around the output.

Additionally, the idle time must be at least 30 seconds after getting an error. Also 30 seconds if the

debugger is open.

Unexpected runtime behavior

Time spent actively scrolling through run I/O doesn’t count as stopping to think if they are

scrolling to read the content and not aimlessly scrolling around the output. Time spent toggling

between run I/O and problem description doesn’t count as stopping to think.

During writing a plan

If the participant pauses while writing a plan, either in the IDE or in another text editor on the

computer, the idle time must be at least 30 seconds in order to be qualified for stopping to think.

Stopping to think CAN occur while participants are in the process of writing a plan.

Activity on the screen that disqualifies stopping to think

During the pause (i.e. not typing code or no activity in the IDE), it does not count as “idle time” if

the participant is:

• Looking at any resources

• Writing plans

• (Slowly and) steadily scrolling through the IDE to read the starter code, or looking at the

provided test cases

• Scrolling in the console to read the error messages. It is very likely to have mini pauses in

between scrolling. If they pause for longer than about 5 seconds, the time will be counted

into idle time.

• Making changes to the code

170

– Inserting or deleting empty lines does not count as changes to the code

– Exception: if they already have some initial implementation (at least 2 meaningful

lines of code) by the time they pause, they can make small edits, generally up to 10

characters or add/ finish up to one line of code at the line they stop, as long as there are

at least 20 seconds of idle time before and after the changes and still qualify as stopping

to think. Each set of changes should not take longer than 10 seconds.

NOTE: Writing comments that do not count as planning does not disqualify stopping to think.

Participants might toggle between jGRASP and the problem description a couple of times while

stopping to think. Therefore, during a pause, they could have jGRASP or the problem description

in focus. In focus means the “selected window”. If there are multiple windows on the screen, it

should be the window on top. If it is split screen, it should be the window that the participant last

interacted with.

Notable behaviors before stopping to think

• Label: getting simple java error

• Label: getting java error

• Label: unexpected runtime behavior

Notable behaviors after stopping to think:

• Label: Using resources for approach

• Label: writing a plan during implementation

• Label: changing approaches (realizing the current one will not work and thinking about a

new one)

171

A.7 Changing approach

Changing approach could be trying a new approach, abandoning an idea or going back to the old

approach. We will only include situations where changing approaches happens in their implemen-

tation in the IDE and not a change in their plan (see Note A)

Preconditions

Preconditions are the labels that happen before the participant starts changing approach. To deter-

mine if something should count as a precondition, it should be while they are working on the same

topic. So if they get an error and solve it and move onto something else, this error is no longer a

precondition, however, if they get an error and then use resources for five minutes and then change

something, the error can count as a precondition. Generally, this happens within four minutes of

changing approaches, but that may be longer if the participant spends a long time on something

like using resources.

At least one of these preconditions must be seen as part of the qualification for the moment:

• Label - Stopping to think (very likely to see)

• Label - Using resources, could be for determining approach or syntax (common to see)

• Label - Writing a plan during implementation (less likely to see)

• Label - Getting Java error: must be runtime error that comes from the implementation, not

error from testing in the interaction or a separate file

• Label - Unexpected runtime behavior

Behaviors after preconditions

The following behaviors could indicate changing approach and are categorized into three sections

(strong/ middle/ weak) based on the level of indication. If more than one of these behaviors happen,

they usually occur within 3 minutes of the other. In some cases, it could go above 3 minutes if

172

stopping to think or using resources happens in between. They can indicate the same “changing

approaches” label if the participant is still working on the same topic.

Strong: the behaviors that fall under this section are enough to be qualified for the label

alone without being in combination with other behaviors after the presence of at least one of

the preconditions.

• Inserting at least 5 new, empty lines to push down the old existing code, AND starting new

code that looks similar to the one that is being pushed down (for example method names or

structure). (This happens when participants program a new idea before getting rid of the old

one)

– New code must not be comments

– Old code (the part that has been pushed down):

* Must be at least 3 lines of “meaningful code” OR has the structure of loop(s) and/or

conditional statement(s) created but not filled in.

* The “old code” ends at the end of the function the participant is currently working

on, which could be the main function they are asked to work on or a function they

defined on their own

• Changing the structure of the code from using a for loop to using recursion, or the other way

around

– Recursion is implemented by a function calling itself, so it is generally a helper function

– Likely, this will look like a participant deleting a for loop and moving part or all of the

contents of the loop to the recursive helper function and then calling that function from

where the loop was.

– This behavior is more likely to take longer to implement than other changing ap-

proaches indicators.

• Erasing all the implementation and then starting over

173

– The implementation must have some structures (for reference: 3 meaningful lines of

code) or is a chunk they have been working on for a while

– Must have counted as starting implementation.

– Does not require any precondition

Middle indicators:

The behaviors that fall under this section are commonly seen when changing approaches. They

independently qualify for the label if at least two of the preconditions happened. Otherwise, one

of these behaviors must be in combination with at least one other behavior from strong/ middle/

weak sections to indicate the label.

• Commenting out or deleting at least 3 meaningful lines or 50

– Does not count if the code is commented out and then reinstated within one minute

IF there is a code run or compile between those two things. See Note B for further

explanation

– Might only delete one or two lines of code at a time in the process of changing ap-

proach, in this case, the lines of deleted code can be accumulated over time as long as

it is within the 3-minute period

Weak indicators The behaviors fall under this section are either not as common as the two

behaviors in the middle section or could easily be mistaken as simply editing approach. Therefore,

the behaviors in this section should only be supplements and must be in combination with other

behaviors in strong/ middle sections. We may label it as changing approaches if there are two weak

behaviors AND two preconditions.

• Changing conditions of loop(s) and/ or if statement(s)

• Changing the output data type of a helper function defined by the participant

• Erasing/replaces all of the content within a loop or conditional statement.

174

• Uncommenting or restoring code

• Implementing a new type of data structure at the top part of the code

– Must already have implemented some code before this, specifically at least 3 meaning-

ful lines or has a structure of loop(s) and/or if/else statement(s)

– Example: hashset, arraylist

Negative Indication

• Run/ compile the code before finishing implementing for the whole problem. It is unlikely to

see the participants compile the code either right before or after changing approaches if they

have not yet finished implementing the whole problem. It is more likely that the participant

is testing to see if they fixed an error instead of changing approaches.

A.8 Unexpected runtime behavior

Unexpected program runtime behavior happens when the program successfully runs with no error

but the output is different from what the participant expects. This usually happens when they think

they are done with implementation for the whole problem, but the output they get is incorrect.

Although less likely, it is still possible to see unexpected runtime behavior for partial test of the

program instead of the full program.

Indication of the moment

Strong indicator

• Fixed multiple compiler errors before the program successfully runs with no error, but fails

the tests. Errors could be simple java errors or java errors, but must not be from testing

in the interactions or in a separate file. It is common to see the participant try to compile

the program a few times throughout the programming session to check for/fix syntax errors,

yet they do not hit run until they think they are done with implementation. It will still be

175

a strong indicator of unexpected runtime behavior if they actively fixed errors that come up

throughout the programming session and then ran the code and it did not pass the tests.

• Changed approaches after getting the previous unexpected runtime behavior label, run the

program, and the program output is incorrect

• User has to end the runtime. Will say: “Process ended by user” in run I/O

• (For full program test) The first time the participant successfully runs the program for a full

program test but receives incorrect output

• (For full program test) Ignore the parameter passed to the function and use System.in in the

implementation instead, test the program with their own input in Run I/O and get incorrect

output

Middle indicator:

Need to make sure for middle indicators that they were not expecting the output that they got

and were trying for something else.

• Made changes to the program after getting the previous unexpected runtime behavior label,

run the program, but the program output is incorrect.

• Changes might include adding new variable(s), adding new conditional statement(s), delet-

ing lines, etc., but not qualified for changing approaches label

• If they were not expecting the full program to run correctly, and they were expecting this

part of the program (running a partial test), then it is not unexpected runtime behavior. Ad-

ditionally, if they fix something in the code that they know will fix a mistake but not solve

the full problem, it does not count as unexpected runtime behavior.

Negative indicator

• Run the program at the beginning, even if they get no error and an output. At the beginning of

a programming session means when the participant has not yet or just started to implement.

176

Some participants would run the program at the beginning to check if the starter file is able to

successfully run and compile on their computers, and thus they are expecting to see empty/

incorrect output or failed test cases messages.

• Run the program when the main function is empty, even if they have worked on other self-

defined function(s). In this case, if they hit run, they are just checking if there is any syntax

error in the self-defined function(s).

• It is unlikely to be this label a second time if they rerun and get that same incorrect output

as the previous run, especially if there are minimal changes to the code between runs (only

different by a few characters), as the participant is expecting the incorrect output that time..

• The participant makes no changes to the program since the previous unexpected runtime

behavior label(s) (or added and removed changes so that the program is exactly the same as

the last unexpected runtime behavior). This is because the participant knows the program

will generate the same incorrect output, and thus it is not an unexpected runtime behavior.

For example, after getting unexpected runtime behavior, the participant made changes to the

program, but the changes generate runtime error. The participant removed the changes, reran

the program, and got the same incorrect output.

• If the only change between runs is that the participant adds or deletes console outputs (sys-

tem.out. . .) statement, it is generally not an unexpected runtime behavior moment.

Behaviors after the moment

• Strong indicator

• Label - changing approach

• Label - stopping to think

177

A.9 Glossary of terms and instructions

A.9.1 Term: Main Function

The function that the participant is asked to work on, which is the function that contains “/*your

solution goes here*/”. Not referring to public static void main(String[] args).

A.9.2 Term: Implementation

Defining the term: starting to implement.

Starting to implement occurs when the participant adds any characters to the IDE that are not:

• comments

• solely import statements at the top of the IDE (ex: import java.utils.*)

• exact same code they delete from the starter code

Characters must persist in the IDE for generally at least 30 seconds or enough to such that it isn’t

immediately deleted.

Additionally, if at any point in implementing, a participant erases all of the executable code

that they added (not code present in the starter file), they go back to the “before implementing”

stage. When they add characters again (abiding by the same criteria as above), it counts as starting

to implement again

A.9.3 Term: Error Cycle

When participants rerun their code after getting an error, in order for it to count as in the same error

cycle, the following qualifiers must apply:

• The new error(s) must be consistent with the original error as either compiler error or runtime

error

178

• Any of the original errors should not be solved. The participant may have introduced new

errors so the original error does not show, but the original error should still be an issue (and

would come up if there were to remove the newly introduced error. The new errors may be

exactly the same, more or different errors from the original error, but the cause of the original

error should still be an issue.

Side note: there is an internal hierarchy in jGRASP that determines the order of what errors to dis-

play first. For example, the IDE will not display “error: cannot find symbol” before the participant

fixes “error: ‘ ; ‘ expected” even if both errors exist in the program at the same time. Therefore,

simply using error counts is not a reliable way to identify struggling with error after rerunning.

Things to note that start a new error cycle:

• Error count going down (not from introducing a new syntactic error -¿ which generally is

only 1 error)

• Errors resolved entirely

• Completely different errors for a different issue (and solved the initial issue)

• Participant moves on to work on something else -¿ could be seen by switching files, com-

menting/deleting code

NOTE: A compiler error may not stop an Error Cycle for Runtime errors if its syntactical

A.9.4 Term: Meaningful Code

“Meaningful code” is code written by the participant and is part of the participant’s actual imple-

mentation for the problem. When referring to “meaningful lines” in the context below, we mean

lines that are not:

• Blank

• Provided starter code

179

• Code written for testing purposes, for example, system.out.println()

• Only curly braces

• Comments

If the participant deletes the line in the middle of writing it or after just finishing it, the line will

not be counted as a meaningful line as well.

When the participant defines their own function(s) outside of the main function as helper func-

tion(s), if the participant comments/ deletes out all the lines in the main function that call the helper

function(s), it is the same as commenting/ deleting out the whole helper function(s). Thus, the line

count of commenting/ deletion will be the total meaningful lines of the helper function(s).

	Title Page
	Acknowledgments
	Dedication
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Problem description
	Research approach
	Research objectives of the studies in my dissertation
	Contributions of the research

	Background
	Mindset theory
	Self-efficacy theory
	Self-assessments
	Gap in literature

	Study 1: How do students talk about programming intelligence?
	Problem and background
	Interview study
	Methods
	Data analysis
	Mindset findings
	Self-assessment criteria findings
	Discussion

	Survey study
	Participants and setting
	Open-ended survey question
	Likert scale survey questions

	Conclusion

	Study 2: Why do CS1 students think they’re bad at programming? Investigating self-efficacy and self-assessments at three universities
	Problem and background
	Methods
	Survey design
	Participants
	Survey procedure
	Follow-up interview procedure
	Findings
	Students from all three universities reported negative self-assessments
	Students understood and related to the vignettes
	Students who self-assess more frequently have lower self-efficacy
	Perceptions of professional programmers may influence self-assessment moments
	Students evaluate themselves more critically than they evaluate others
	Self-critical bias is stronger when the student or the vignette character is female

	Conclusion

	Study 3: An approach for detecting student perceptions of the programming experience from interaction log data
	Problem and background
	Use of interaction log data in CS Education
	Retrospective-enabled perception recognition
	Data collection tools
	Phase 1: Retrospective interviews
	Phase 2: Qualitative analysis
	Phase 3: Codebook verification
	Phase 4: Implementation of the detection system

	Evaluation of the system
	Methods
	Findings

	Conclusion

	Study 4: Using electrodermal activity measurements to understand novice programmer emotions
	Problem
	Background
	Emotions
	Existing methodologies for identifying triggers of emotions during novice programming
	Physiological data analytics - electrodermal activity

	Method
	Participants & setting
	Study procedure
	SCR detection
	Identification of triggers of emotions
	Analysis of EDA data with respect to student experiences

	Findings
	Events that trigger student emotions
	Emotional experiences reflected in EDA data

	Discussion
	Limitations
	Conclusion

	Dissertation Conclusion
	Future work

	References
	Qualitative Codebook for Researchers to Identify Moments of Potential Self-Assessment
	Guide for labeling using resources moments
	Definitions of terms and concepts
	Using resource for syntax
	Using resource for approach
	Using resources in general

	Getting simple errors
	Getting Java error
	Struggling with error
	Writing a plan
	Stopping to think after starting implementation
	Changing approach
	Unexpected runtime behavior
	Glossary of terms and instructions
	Term: Main Function
	Term: Implementation
	Term: Error Cycle
	Term: Meaningful Code

