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Abstract

Large scale adoption of sustainable technologies for energy production and storage can be

greatly facilitated by scientific advances impacting efficiency, cost and availability. The study

of materials is instrumental in both upgrading the performance of existing technologies and

enabling the development of new ones, and ab-initio methods and machine learning represent

powerful tools in accelerating the process of materials discovery and characterization. This

thesis presents multiple works leveraging computational methods to enable increased under-

standing and predictions of different properties across various classes of materials for renewable

energy applications. A large portion of the discussion is dedicated to the thermodynamics of

oxygen loss, with particular focus on solar-thermochemical water splitting applications for the

production of green hydrogen. After successfully confirming the predictive accuracy of DFT

computations of oxygen vacancy formation energy through comparison with experimental data,

multiple high-throughput DFT studies are conducted surveying different classes of materials and

identifying hundreds of new candidates compounds for solar-thermochemical hydrogen (STCH)

applications. The data generated and insight gained through the high-throughput studies are

then leveraged to construct machine learning models predicting the oxygen vacancy formation

energy, and uncover additional hundreds of new STCH candidate materials. The knowledge

acquired from such works is subsequently applied in a different context by exploring the stability

of oxygen in cathode materials for Li-ion batteries. Finally, the focus is shifted from bulk to

surface phenomena by studying segregation and adsorption behaviours of interest for catalytic

applications. A dataset of hundreds of DFT computed segregation energies is constructed and

used to train a predictive model, and segregation and oxygen adsorption behaviours in mixed

transition metal carbides are investigated to guide the search for new corrosion resistant supports

for fuel cell applications.
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1. Introduction and Motivation

The dramatic increase in world energy demands,1 the fast rate of consumption of the limited

fossil fuel resources,2 and the continuous rise of world temperatures3 clearly indicate the need for

sustainable energy sources. Although several sustainable technologies have been proposed and

developed, widespread adoption can be facilitated by enhancing performance, reducing costs, and

improving availability. In this context, computational investigations of materials can accelerate

materials discovery and characterization.

An attractive alternative to fossil fuels is represented by hydrogen fuel, which offers a widespread

presence of possible sources, lack of harmful combustion products, and possibility for an entirely

carbon free production process involving only water and energy from the Sun.4 While hydrogen pro-

duction through solar power-driven splitting of water can be achieved with a variety of methods,5, 6

thermochemical cycles reach the highest theoretical efficiency by harvesting energy from the entire

solar spectrum.7–9 Solar-thermochemical hydrogen (STCH) production through direct single-step

thermolysis lacks a practical implementation given its need for prohibitively high temperatures10, 11

and gas separation system.12 As a consequence, current efforts focus on multiple step reactions, two

step cycles being favored in order to limit the loss in thermodynamic efficiency accompanying the

increase in number of steps.13 Such cycles consist of a reduction step, in which an oxide compound

looses oxygen upon heating from concentrated solar power, and a water-splitting step, where steam

is flown though the material at lower temperatures, re-oxidizing the material and leaving hydrogen

as a product. The two-step STCH redox process can either involve two different phases (an oxidized

and a reduced one), or occur through the release of a nonstochiometric amount of oxygen δ from
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the metal oxide retaining its original phase throughout the cycling process, taking the form:

MOx → MOx−δ +
δ

2
O2 (1.1)

MOx−δ +δH2O → MOx +δH2 (1.2)

Meredig and Wolverton have analyzed the two step redox reaction from a material-independent

point of view and determined a window of reduction enthalpy (∆Hred) and entropy (∆Sred) for

both reactions steps to be favourable14 at operating conditions of interest. Searching for materials

exhibiting ∆Hred and ∆Sred within this window on a large scale in order to guide experimental

investigation represents an interesting endeavor to be undertaken with the use of ab-initio methods

and machine learning, and occupies a significant portion of the works here presented.

Understanding driving mechanisms of oxygen loss is of interest not just in order to generate it

and control it when advantageous, but also to prevent it when it can be of detriment. An example

of the latter case is represented by Li-ion battery cathodes, where O loss is part of the degradation

of the material with consequent loss of function. As the use of renewable energy technologies,

like solar and wind power, for electricity generation becomes more prevalent and the shift towards

electric-powered transportation accelerates, the development of batteries that offer higher energy

density and are less susceptible to resource limitations is crucial for advancing sustainability. Typical

batteries consist of three essential components: anode, cathode, and electrolyte, and their operation

relies on the reversible release and insertion of lithium at the cathode and anode. To achieve

high-performance lithium batteries, cathodes with high energy density are desirable given their

significant contribution to the cost, weight, and volume of the battery.15 Presently, the prevailing

cathode materials are lithium-transition metal oxides of layered rocksalt-type and spinel structures.

The selection of transition metal cations for these materials is constrained due to, among other

reasons, issues related to their migration upon delithiation, with some of the commonly used

transition metals facing resource-related challenges.16 An alternative gaining increasing attention

lies in the employment of disordered rocksalt-type (DRX) lithium-transition metal materials. Such
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compounds can offer several advantages such as small volume changes during charge and discharge

limiting structural degradation upon cycling, and, in the presence of lithium excess, lithium diffusion

through percolating low barrier channels, and increased capacity through anionic redox.15, 17–19

Furthermore, by exploring the broad compositional space of transition metal cations, the limitations

of traditional ordered cathodes can be potentially circumvented, improving performance and a

reducing reliance on resource-constrained elements. Studies evaluating various disordered rock

salt-type lithium-transition metal compounds are therefore of interest to identify potential new

cathode materials. In the process of selecting suitable candidates, oxygen stability can play a

significant role among the various screening criteria, as oxygen loss can have adverse effect on

safety, structural stability and capacity20.21 The study of factors influencing oxygen stability in

DRX materials therefore represents another interesting problem to be tackled through the use of

DFT and machine learning, and a selected portion of ongoing work in this context is presented in

the latter part of this thesis.

Oxygen also plays a crucial role as an external reactant in a diverse range of contexts, including

processes that allow to harness the aforementioned hydrogen fuel for electricity production. In

polymer electrolyte membrane (PEM) fuel cells, for example, after hydrogen atoms are separated

into protons and electrons at the anode generating current, oxygen is flown through the cathode

and reacts with the protons permeating through the electrolyte and the electrons from the external

circuit forming water. PEM fuel cells present several advantages, such as high power density,

relatively low operating temperatures and low weight and volume compared with other fuel cells,

all characteristics making them particularly suitable for use in vehicle applications. The extent of

future fuel cell implementation is however contingent upon addressing durability-related issues, the

targets of which have yet to be met. Degradation at the cathode is caused my multiple processes,

including, importantly, the corrosion of the carbon supporting the catalytic nanoparticles.22, 23 To

overcome this limitation, efforts are being directed to the search for alternative support materials,

with group IV-VI transition metal carbides (TMCs) attracting significant attention.24–29 While

Mo- and W- based TMCs exhibit appealing properties, they are prone to oxidation and dissolution.
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Earlier TMCs, on the other hand, appear to have higher corrosion resistance, but at the cost of

lower catalytic performance. The use of alloy carbides therefore represents a potential avenue to

achieve simultaneous activity and stability,30 and is the subject of the work presented in the thesis’

concluding chapter.
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2. Methods and Formalisms

2.1 Density Functional Theory

The Hamiltonian of a solid with M atoms and m electrons can be expressed as (within the Born-

Oppenheimer approximation and neglecting relativistic effects):

H =
m

∑
i

Ti +
M

∑
i

VN(ri)+
m

∑
i, j ̸=i

Ve(ri,r j) (2.3)

Where the first term indicates the electronic kinetic energy and following two the potential energy

due to the interaction between electrons and nuclei and among the electrons themselves. Due to the

electron-electron interaction, the resulting many-electron wavefunction is not separable, making the

problem unfeasible to solve exactly in these terms.

The approach at the core of density functional theory (DFT) consists in making the electronic

density ρ the variable of interest. Two seminal theorems by Hohenberg and Khon31 prove, respec-

tively, that there exists a one to one correspondence between the ground state electronic density

and external potential acting on an ensemble of interacting particles, and that a universal energy

functional can be defined for any external potential, and its minimum (the ground state energy) is

found by minimizing the electronic density, thus determining the exact ground state of the system.

The problem can then be reframed, as outlined by Khon and Sham,32 by substituting the interacting

system with a real potential with a non-interacting system acted upon by a Khon-Sham single

particle potential VEFF , obtaining the Khon-Sham equation (which can be solved self-consistently
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as the potential is a function of the density itself):

(−1
2

∇
2 +VEFF)ψi = εiψi (2.4)

Where ψi and εi are the Khon-Sham wavefunction and the corresponding eigenvalues, and VEFF is

composed by three terms: the external potential of the nuclei, a Hartree potential describing the

independent electronic Coulomb repulsion, and an exchange-correlation potential, which contains

all remaining many-body effects of exchange and correlation.

Several approaches have been developed to determine the exchange-correlation potential, none

of them exact. The most widely employed ones, the local density approximation (LDA)33 and the

generalized gradient approximation (GGA),34 utilize the exchange-correlation energy of a uniform

electron gas having the same density of the system at hand at the point of interest, in the second case

also keeping into account the presence of gradients in the density. Further steps towards the "heaven

of chemical accuracy"35 can then be taken, for example, by including the second derivative of the

electron density (meta-GGA) or incorporating a portion of Hartree-Fock exchange, the increase in

accuracy however suffering from an increase in computational cost.

The residual self interaction present in the widely used exchange-correlation functionals leads

to an over-delocalization of electrons of particular impact on more strongly localized systems

such as 3d transition metal oxides.36–40 Multiple strategies can be employed to address this issue.

Hybrid schemes, for example, reduce part of the electron self repulsion, with successful results

in representing several transition metal oxides41.40 A widely used method not suffering from

particularly significant computational costs relies on the addition of a Hubbard-like potential to the

energy functional (DFT+U) as introduced by Dudarev.42

DFT+U is of particular utility when dealing with high-throughput calculations, given its ease

of implementation and very limited impact on simulation times, and is in fact implemented in

computational materials databases such as the Open Quantum Materials Database (OQMD)43, 44

and the Materials Project.45 The Hubbard U potential contains a U parameter, whose value for each
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applicable element is often determined empirically, with "best fit" values often differing depending

on the quantity under examination (eg. lattice parameter, band gap etc.), and the exchange correlation

functional utilized in the computation.38, 46 As highlighted in the literature,38, 46–48 optimal U values

are susceptible to changes in the local environment the transition metal atom of interest is immersed

in, and are therefore influenced by variables such as the oxidation state of the transition metal and

the surrounding ligands.

2.2 Zero Temperature Properties

Stability

The formation energy of a compound is defined as:

∆E f (AaBb..) = E(AaBb..)− ∑
i=A,B..

xiEi (2.5)

Where E(AB..) is the 0K DFT energy of the compound and xi and Ei are the mole fractions and

elemental energies of its constituents (which correspond to the DFT energies per atom, with an

additional correction determined through fitting to experimental formation energies for a number of

elements44).

In order to determine the thermodynamic stability of a compound utilizing DFT formation

energies, a "convex hull" is constructed for the compounds in the relevant chemical space, as

exemplified in Figure 2.1. Two useful quantities in this context are the convex hull distance

(calculated as the difference between the hull energy at the composition of interest and the formation

energy of the compound) and the decomposition energy (determined from the distance to the convex

hull formed by all compositions aside from the one of interest). All compounds on the hull are

considered stable, and have hull distance of zero, while all unstable phases have a positive convex

hull distance. In the context of high-throughput DFT studies, the stability ∆Estab is defined as the

distance to the convex hull (positive for unstable compounds and negative for stable ones) formed

by all phases except the one of interest.
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Figure 2.1: Example of the construction of the convex hull for a binary system, ∆Estab for the stable phase
P2 is defined with respect to the convex hull constructed using P2’ (blue), while that for the unstable phase
P2’ is defined with respect to the hull constructed using P2 (magenta)

Oxygen Vacancy Formation Energy

While the change in enthalpy for a stochiometric reaction can be calculated by taking the DFT energy

difference between the reduced and oxidized structures, the one involved in a non-stochiometric

reduction reaction as the one in Eq. 1.1 is quantified through the oxygen-vacancy formation energy

(Ev f ):

Ev f =
1
δ

E(MOx−δ )+EO − 1
δ

E(MOx) (2.6)

Where E(MOx) and E(MOx−δ ) are the DFT 0k energies of, respectively, a bulk metal oxide cell,

and a cell of the same structure containing an oxygen defect, and EO is DFT reference energy of

oxygen.

Surface Segregation Energy

In multielemental compounds, the composition in the bulk can differ from that at the surface. The

preference of a solute element to be at the surface or in the bulk can be quantified by computing the
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surface segregation energy, calculated as:

∆Esegregation = Esur f ace(host + solute)−Ebulk(host + solute) (2.7)

where Esur f ace(host + solute) and Ebulk(host + solute) indicate the DFT energy of a host slab with

a solute atom, respectively, in the surface layer and in one of the bulk layers.

Adsorbate Binding Energy

When an element is absorbed onto the surface of a host the binding energy of the adsorbate to the

host can be calculated as:

Ebinding = Eslab(host +adsorbate)−Eslab(host)−E(adsorbate) (2.8)

where Eslab(MC+O) and Eslab(MC) indicate the DFT energy of a surface slab with and without

the adsorbate, and E(O) indicates the DFT energy of the adsorbate specie.

2.3 Harmonic Lattice Dynamics

The motion of atoms in a crystal with L unit cells, each containing M atoms, can be described by the

Hamiltonian (with the motion of the nuclei, where most of the mass resides, being considered):49

H =
L,M

∑
l,m

p2
l,m

ml,m
+Φ (2.9)

Where the first term represents the kinetic energy of the nuclei (l and m indexing the unit cell and

the atom respectively), and the second term the potential energy, which can be expanded as a Taylor

series of the atomic displacements ul,m,α (around ul,m,α = 0, l and m again indexing unit cell and

atom, and α representing cartesian coordinates).

The core of the harmonic approximation to lattice dynamics consists in only retaining terms up
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the second degree in the mentioned Taylor expansion, such that the Hamiltonian takes the form:49

H = ∑
l,m

p2
l,m

ml,m
+Φ0 + ∑

l,m,α
∑

l′,m′,α ′
Φl,m,α,l′,m′,α ′ul,m,αul′,m′,α ′ (2.10)

Where Φl,m,α,l′,m′,α ′ represent the second order interatomic force constants, obtained by taking

the second partial derivative of the potential with respect to the displacements ul,m,α and ul′,m′,α ′ ,

evaluated in the equilibrium configuration.

The equations of motion (EOM) for the atoms in the crystal under the harmonic approximation

then take the form:49

mül,m,α = ∑
l′,m′,α ′

Φl,m,α,l′,m′,α ′ul′,m′,α ′ (2.11)

Seeking solutions having the form of plane waves (with wavevector k, branch index j, angular

frequency ωk, j and polarization em, j,k) and substituting them into the EOM, a "dynamical matrix"

can be obtained. The diagonalization of such dynamical matrix then allows to determine the

polarizations em, j,k (which contain the information of the displacement of each atom m in the unit

cell for the phonon mode k,j), and the vibrational frequencies ωk, j.

2.4 Finite Temperature Properties

Density of States

The diagonalization of the dynamical matrix at each k returns 3M frequency eigenvalues, from

which a density of states can be constructed by grouping together frequencies in a given interval:50

g(ω) =
1
L ∑

k, j
δ (ωk, j −ω) (2.12)
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To separately analyze the motion of each atom, the atom specific density of states projected along a

unit vector n̂ can be obtained:50

gm(ω, n̂) =
1
L ∑

k, j
δ (ωk, j −ω)|em, j,k · n̂|2 (2.13)

Vibrational Entropy

Thermodynamic properties can be derived by considering a solid with N atoms as a canonical

ensemble of 3N independent quantum harmonic oscillators with frequencies ωk, j, having the

partition function:50

Z = ∏
k, j

eωk, j/2kBT

eωk, j/kBT −1
(2.14)

In particular, the vibrational entropy can be derived by taking the temperature derivative of

the vibrational Helmholtz free energy (in turn obtained by mutiplying the natural logarithm of the

partition function by a factor kBT ):50

S =
1

2T ∑
k, j

ωk, j coth
ωk, j

2kBT
− kB ∑

k, j
ln(2sinh

ωk, j

2kBT
) (2.15)

2.5 Machine Learning

Machine learning (ML) models are utilized predict properties of interest (the targets) through more

easily available ones (the features) by recognizing underlying patterns in the available data. A

training set is initially employed for the model to learn a representation of the target properties

as a function of the features minimizing the discrepancy between predicted and computed target

values. The performance of the trained model can then be tested on data that was not utilized for

training, and utilized to predict target values for sets of data for which features are available and

target properties are of interest.
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3. Assessment of the Accuracy of DFT

Computed Oxygen Vacancy Formation

Energy

3.1 Background

The thermodynamics of oxygen release from metal oxide materials are fundamental to a number of

energetic processes, and therefore drive materials selection for applications such as solid oxide fuel

cells (SOFCs)51, 52 and solar thermochemical splitting of water and carbon dioxide.7–9, 53

In this context, ab-initio methods and materials databases represent powerful tools to guide

materials exploration on much larger scales than would be experimentally feasible by allowing

for the screening of compounds based on specific properties of interest. In solar thermochemical

hydrogen (STCH) production, for example, density functional theory (DFT) can be used to compute

multiple quantities of interest for materials selection. Typical STCH cycles consist of a reduction

step, in which a metal oxide compound loses oxygen upon heating, and a water-splitting step, where

steam is supplied to the reduced material, which re-oxidizes producing hydrogen. Meredig and

Wolverton have analyzed the thermodynamics of the two-step redox reaction and determined a

window of values of the enthalpy change associated with the reduction reaction (∆Hred) allowing for

both reactions steps to be thermodynamically favourable.14 Materials can thereby be screened for

STCH applications with the use of DFT by evaluating their thermodynamic stability and computing
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oxygen vacancy formation energy (∆Ev f ) to quantify ∆Hred .54, 55

A class of materials that has attracted significant attention for use in STCH is that of perovskites

oxides. The interest in such compounds, initially sparked from promising studies on strontium-

doped lanthanum manganese perovskites,56–59 is supported by a variety of attractive properties:

structural stability up to high temperature, ability to withstand a large amount of oxygen loss,

ease of oxygen diffusion, and a possibility for reduction at lower temperatures than Ceria, the

benchmark material in the field.56, 57, 60, 61 Although the term "perovskite" is at times utilized

somewhat broadly, the work by Breternitz and Schorr62 provides a clear definition consisting of

three specific characteristics: a ratio of 1:1:3 between the two cations and the anion (O in this

case), an octahedral coordination of the B site cation, and a corner sharing octahedral network.

This definition, which will be used throughout this and the next chapter, encompasses a number of

different distortions of the ideal cubic perovskite structure. The lower symmetry distorted phases

are commonly more energetically favourable at lower temperatures, with phase transitions to the

higher symmetry phases, and ultimately the cubic phase, being observed in several materials when

temperature is increased.63–67

Simulating finite temperature phenomena like oxygen release in STCH with a 0K methodology

like DFT raises the possibility that the finite temperature structure differs from the stable one at

0K, introducing additional complexities. As such, examining the influence of crystal structure on

the properties computed in an HT-DFT screening represents a fundamental part of evaluating its

predictive power.

The phase change behavior of perovskites is an example of the conundrum arising when the

high temperature and the 0K stable structure differ, and can significantly impact the computation

of ∆Ev f . In the literature, studies computing the enthalpy change involved in oxygen release from

perovskite structures differ in their approaches with regards to the choice of structures employed in

the simulation. Ezbiri et al.68 and Vieten et al.,69 or example, employed structures derived from the

cubic perovskite phase and examined their reduction to the corresponding brownmillerite phases.

Gautam et al.70 and Wexler55 et al. examined several distorted perovskite prototype structures, and
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introduced a vacancy in a supercell of the lowest DFT energy one. Deml et al.41 and and Emery

et.al54 created vacancy-containing supercells of, respectively, structures reported in the Inorganic

Crystal Structure Database (ICSD),71, 72 and perfect cubic perovskite structures. Indeed, a number

of arguments in favor of the employment of a cubic cell, particularly within high-throughput studies,

can be put forth: (i) its high degree of symmetry (and thus computational efficiency), (ii) some

evidence supporting only a small difference in ∆Ev f between distortions that is comparable to

experimental uncertainty,54, 73 and (iii) reports of phase transitions to cubic from more distorted

phases at higher temperatures, like the ones at which STCH takes place.63–67 As we will later detail,

however, the cubic perovskite structure is often dynamically unstable at 0K, a factor that introduces

difficulties in the computation of the oxygen vacancy formation energy.

Another factor that significantly influences the computation of ∆Ev f is the choice of Hubbard

U parameter in DFT+U calculations. This is especially relevant for perovskites since a large

portion of stable perovskites contain 3d transition metal elements.54 The over-delocalization of

electrons brought about by the residual self-interaction present in exchange-correlation functionals

particularly effects systems like metal oxides containing 3d transition metals, and the introduction

of a Hubbard-like potential to the energy functional42 is a widely used option to address this

delocalization.36–40 DFT+U is especially useful within high-throughput applications given its ease

of implementation and very limited impact on simulation times. The value of the U parameter

contained in the Hubbard term is often determined empirically, and results are highly dependent

not only on the element of interest, but also on its local environment, and on the quantity under

consideration (eg. lattice constant, band gap...)47 Studies in the literature on perovskites oxides and

STCH materials differ in the U values employed, often opting for a constant value across elements

and oxidation states. Deml et al.,41 for example, applied U=3eV to all transition metals aside

from U=5eV for Cu and Ag, while Ezbiri et al.68 opted for the absence of a Hubbard U entirely.

Gautam et al.70 and Wexler et al., on the other hand,55 performed SCAN+U calculations utilizing U

values based on previous results from studies on the effect of U on SCAN calculations of transition

metal oxides.46, 48 Reports of significant variations in reduction energies with U38, 73 motivate us to
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examine the effects of U on ∆Ev f in more detail.

In chapter, we analyze both the influence of different crystal structures and that of different

Hubbard U values on the oxygen vacancy formation energy. We identify issues in the computation

of ∆Ev f in the presence of dynamically unstable structures, and develop a strategy to address them.

We then perform a detailed, quantitative comparison of our DFT+U computational results with

appositely generated experimental data of enthalpy of reduction, and find an accuracy between

0.2-0.6 eV/O. Several paragraphs in this chapter are quoted directly from our manuscript.74

3.2 Methodology

DFT Calculations All calculations have been conducted using the Vienna ab-initio simulation

package (VASP),75, 76 with projector augmented wave (PAW) potentials77 and the Perdew-Burke-

Ernzehof (PBE)78 generalized gradient approximation (GGA) for the exchange-correlation func-

tional. A gamma centered k-point grid with a density of at least 8600 points per reciprocal atom

was emploied, alongside and a plane wave cutoff energy of 520 eV. Self consistency was achieved

when energies of subsequent iterations differed by less than 10−6 eV/cell, and, ionic relaxation was

performed until forces were found to be below 0.01 eV/Å. For all ABO3 compounds in Figure 3.5,

additional calculations of the vacancy formation energy were performed with a plane wave cutoff

of energy 800 eV, and relaxing until forces were below 0.001 eV/Å. In all cases, we observed a

difference in the oxygen vacancy formation energies of less than 0.02 eV/O compared to the 520

eV plane wave cutoff and 0.01 eV/Åforce threshold (see Appendix).

The over-delocalization of electrons due to the residual self interaction present in exchange-

correlation functionals36–40 was treated through the addition of a Hubbard-like potential to the energy

functional42 (DFT+U). The influence of different U values on the vacancy formation energy of each

compound was studied, and a "best fit" U was determined for Mn3+, Mn4+, Fe3+ Co3+ and Ni3+.

Comparison between DFT calculations of vacancy formation energies and experimental results of

enthalpies of reduction are then provided for several sets of Hubbard U values: the "best fit U" vales,
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OQMD U values, and a constant value of U=4eV for all transition metal elements. Spin polarization

with a ferromagnetic configuration was applied to transition metal cations (initializing magnetic

moments to 5µB) for the following reasons: (i) oxygen loss being measured at temperatures higher

than spin ordering,79, 80 (ii) evidence of the limited influence of magnetic configuration on both

bulk and defect DFT energies,81 and (iii) in order to maintain consistency with the high-throughput

studies discussed in the next chapter. For Co-containing compounds, a low-spin configuration

(where magnetic moments are initialized to 0µB for all Co atoms aside from the two neighboring

the O vacancy in the vacancy-containing cell, which are initialized to 1µB) was utilized consistently

for low-throughput calculations.

For all compounds, we calculated the oxygen vacancy formation energy for each unique oxygen

site, and report the lowest one. We used the experimentally synthesized structure when dynamically

stable, and a dynamically stable distortion otherwise, as described in Section 3.3. Defect containing

cells with a minimum of 79 atoms were utilized to maximize accuracy (see Appendix for cell size

convergence testing).

The lack of accuracy in the DFT energies of diatomic molecules requires the addition of an

empirical correction to the DFT energy of the O2 molecule, and hence to the reference energy (EO)

of equations 2.5 and 2.6. Such correction is generally determined by fitting formation energies of

oxides to experimental data,38, 81–84 leading to a range of results depending on the data set utilized

for the fit. Wang et al.,38 Lee et al.81 and Grindy et al.83 have each selected a set of binary oxides

of known structure, eliminating transition metal oxides due to further complexities associated with

the use of DFT+U, and obtained similar values for EO: −4.25 eV for Refs38 and81 (which utilized

the same set of 7 binary oxides), and −4.33 eV for Ref83 (where the pool was expanded to 15). Fig

3.2 illustrates the result of the fit of 13 of the 15 oxides in Grindy’s work, performed with the same

settings as the low-throughput calculations in this work, as well as with OQMD data, leading to a

value of EO =−4.29 eV in both cases. The value of the oxygen DFT reference energy of −4.52

eV employed in the OQMD framework was, however, determined by performing simultaneous fits

of several elements (as detailed in Kirklin et al44), with a data set comprising all OQMD entries
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for which experimental formation energy data was available. Arguments supporting either extreme

of the range of values provided can be formulated, from the breadth of the data included in the

OQMD approach, to the reliability gained by avoiding multiple concurrent fittings when restricting

to non-transition metal binary oxides only. Fig 3.3 displays the result of a third fit, which aims

to exploit the advantages of both the aforementioned strategies by limiting the data set to a few

hundred oxides not containing any of the elements that have a correction applied to their DFT

elemental energy, and leads to a yet different result of −4.43 eV. In light of the above discussion,

we consider the choice of oxygen DFT reference energy value to introduce an additional complexity

in the comparison between computation and experiment presented in the next section. For the

present work, in the interest of consistency between high- and low-throughput data, we employ the

OQMD value of EO =−4.52 eV for all calculations, and emphasize the presence of an associated

uncertainty of about 0.2 eV. We note that a change in the empirical correction factor for O2 would

result in a constant shift of all vacancy formation energies, i.e. the difference between two vacancy

formation energies would be unaffected by this correction.

Figure 3.2: Fits of DFT formation energies (x axis) and experimental formation enthalpies (y axis) of 13
binary oxides of known structure, used to determine the empirical correction to the DFT energy of oxygen,
(a) using the same settings as the low throughput calculations in this work (b) using OQMD data of the same
compounds.
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Figure 3.3: its of DFT formation energies (x axis) and experimental formation enthalpies (y axis) of any
oxide not containing any other fit elements, using OQMD data

In order to determine the 0K dynamic stability of the compounds investigated in the next section,

the phonon dispersion was calculated by means of the finite difference method as implemented

in PHONOPY50 utilizing 2x2x2 supercells (2x2x1 for cases in which the original cell contained

30 atoms). The presence of imaginary frequencies in the phonon band structure was considered

as evidence of dynamic instability. The degree of instability was quantified with the energetic

difference between the unstable phase and its lowest energy dynamically stable distortion on the

OQMD, which we found to be positively correlated with the largest imaginary phonon frequency,

as shown for a selected number of cubic perovskites in Fig 3.4.

3.3 Results

In order to assess the accuracy of DFT in guiding materials search based on reduction thermo-

dynamics, we perform a detailed quantitative comparison between DFT ∆Ev f and experimental

measurements of oxide reduction enthalpies. As mentioned in Section 3.1, this comparison is

commonly complicated by several factors: the lack of appropriate experimental data, the choice of
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Figure 3.4: Relationship between two ways of quantifying the ’degree of dynamic instability’ for a number
of ABO3 cubic perovskite oxides. On the x axis is the energy difference between the cubic phase and the
lowest energy perovskite phase on the OQMD at the same composition, on the y axis the square of the largest
imaginary frequency in the phonon band structure (in other words, the minimum frequency ωmin) of the cubic
perovskite. A quadratic relationship is evident between the two, with slightly different trends depending on
the B site cation, which is indicated by different markers.

Hubbard U in DFT+U calculations, and the choice of crystal structure to employ in the simulation

for cases where 0K ground state structure differs from the finite-temperature-stabilized structure

observed in experiment. In the following section, we first separately address each of these factors

and then present the results of the comparison.

Experimental Data While a variety of experimental studies on examining metal oxide reduc-

tion have been conducted for STCH applications,56–58, 85–95 most of the available data focuses on

hydrogen production cycles, reporting H2 (or CO) yield and O2 release rather than the thermody-

namic quantities computed in DFT screenings.14, 41, 54, 68, 96, 97 We address this issue by selecting a

number of ABO3 compounds for synthesis and characterization. We perform thermogravimetric

measurements on these compounds as a function of temperature and derive the standard state

enthalpy and entropy of reduction, while also extracting structural information via in situ X-ray
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Table 3.1: List of experimentally synthesized compounds on which TGA measurements were performed
and the structures and energy differences of the structures of interest, from left to right: experimentally
observed crystal structures (EXP) (if a phase transition was observed the high temperature structure is
also reported, and the transition is indicated with an arrow),79, 80 dynamically stable distortions (DSD),
ground state structures on the OQMD (DFT GS), energy difference between the cubic perovskite phase
and the ground state structure on the OQMD (∆E(CUB PEROV-DFT GS)), and energy difference between
the experimentally observed structure and the dynamically stable distortion (∆E(EXP-DSD)). Perovskite
structures are indicated with "perov" and the crystal system of the distortion of interest (for example:for
YFeO3 the DFT GS structure is an orthorhombic perovskite with “GdFeO3” prototype, which is indicated as
"ortho perov"), while non-perovskite structures are indicated using the name of the prototype structure on
ICSD (for example: LuMnO3 YMnO3 and HoMnO3 have, in all three cases, a DSD structure with the same
hexagonal structure as prototype: "LuMnO3"). For all structures the spacegroup is reported in parenthesis. A
visual representation of the structures can be found in Figures 11.65 and 11.66

Formula EXP structure DFT DSD structure DFT GS structure

∆E
(CUB PER
- DFT GS)
meV
atom

∆E
(EXP-
DSD)
meV
atom

PrCoO3 ortho perov (Pnma) ortho perov (Pnma) ortho perov (Pnma) 94 -
SmCoO3 ortho perov (Pnma) ortho perov (Pnma) ortho perov (Pnma) 168 -
LaCoO3 rhomb perov (R-3c) rhomb perov (R-3c) monocl perov (P21/c) 86 -

CaMnO3
ortho perov (Pnma)
→ cub perov (Pm-3m) ortho perov (Pnma) ortho perov (Pnma) 101 -

SrMnO3 "BaMnO3" (P63/mmc) "CsCuBr3" (C2221) "CsCuBr3" (C2221) 44 29
BaMnO3 "BaNiO3" (P63/mmc) "KNiCl3" (P63cm) "KNiCl3" (P63cm) 115 1
LaMnO3 rhomb perov (R-3c) ortho perov (Pnma) ortho perov (Pnma) 70 11

YMnO3
"LuMnO3" (P63cm)
→ "Be3N2" (P63/mmc) "LuMnO3" (P63cm) "LuMnO3" (P63cm) 313 -

HoMnO3
"LuMnO3" (P63cm)
→ "Be3N2" (P63/mmc) "LuMnO3" (P63cm) "LuMnO3" (P63cm) 364 -

LuMnO3 "LuMnO3" (P63cm) "LuMnO3" (P63cm) "LuMnO3" (P63cm) 483 -
YFeO3 ortho perov (Pnma) ortho perov (Pnma) ortho perov (Pnma) 322 -
HoFeO3 ortho perov (Pnma) ortho perov (Pnma) "LuMnO3" (P63cm) 364 -
LuFeO3 ortho perov (Pnma) ortho perov (Pnma) "LuMnO3" (P63cm) 493 -
LaNiO3 rhomb perov (R-3c) rhomb perov (R-3c) rhomb perov (R3c) 30

measurements. The list of compounds and crystal structures is given in Table 3.1, and further details

on the experimental measurements, techniques and results can be found in Ref.79, 98, 99

DFT Crystal Structure In our analysis we compare the effects of utilizing different choices of

crystal structure on the DFT computed oxygen vacancy formation energy. To do so, we compute

the oxygen vacancy formation energy utilizing four different structures (also referred to in Table

3.1) for each of the ABO3 compositions selected for experimental investigation:

• the undistorted cubic perovskite structure in the Pm-3m spacegroup (labelled CUB PEROV)

• the lowest energy (or ground state) structure on the OQMD at that composition (labelled DFT
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GS)

• the crystal structure observed during experimental measurements of oxygen loss (labelled

EXP)

• a ’dynamically stable distortion’ (labelled DSD)

The reason for the introduction of the DSD structure is to address the issues arising when the

EXP structure is dynamically unstable at 0K (which will be detailed in the next paragraphs). In

cases where the EXP structure is dynamically stable at 0K, the DSD and EXP structures coincide

and the results for the calculation of the EXP structure are used directly. In the cases where

the EXP structure is instead dynamically unstable, a suitable alternative structure is required for

the calculations. Accordingly, we identify a dynamically stable structure amongst the phases

present in the OQMD at that composition with the same oxygen framework as the respective

experimentally observed structure. The DSD structure is lower in energy than the EXP structure

and often corresponds to the ground state structure on the OQMD. The dynamical (in)stability of all

structures is determined by performing phonon calculations as detailed in the Methods Section.

In order to distinguish the effects of differences in the crystal structure from the consequences

of dynamic instability, we separate the contributions to the oxygen vacancy formation energy into

two terms:

∆Ev f = ∆Ev f ,UN +∆Ev f ,R (3.16)

The first term indicates the effect of removing an O atom while keeping everything else in the

structure fixed, and the second term indicates the effect of letting the atoms in the structure relax

once the O vacancy is introduced.

More specifically, the first term, which we call the ’unrelaxed contribution’ (UN), quantifies the

DFT energy difference between a relaxed (with a relaxation of atomic positions and cell vectors

performed while maintaining the symmetry of the initial structure) bulk metal oxide structure

and that same structure containing the vacancy without any change in cell volume and shape or
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coordinates of the remaining atoms:

∆Ev f ,UN = EUN(ABO3−δ )+EO −ER(ABO3) (3.17)

The second term, which we refer to as ’relaxation contribution’ (R), corresponds to the energetic

change of the vacancy-containing structure when allowing for relaxation of the cell and ionic

positions:

∆Ev f ,R = ER(ABO3−δ )−EUN(ABO3−δ ) (3.18)

Shown in Figure 3.5 are these two contributions to the oxygen vacancy formation energy and

their correlations to the structural choices in the calculations (with U values set, for convenience,

to those in the OQMD). In particular, we compare the results of calculating ∆Ev f utilizing a cubic

perovskite structure, and utilizing the DSD structure. We do so to investigate the accuracy of

calculating ∆Ev f utilizing a cubic perovskite structure even for compounds for which such structure

is not the lowest energy perovskite distortion, which, as mentioned in the introduction, is a strategy

previously adopted in the literature.

We start by examining the relaxation contribution (Figure 3.5 b), as we have found this term to

be significantly affected by the consequences of dynamic instability. Dynamically unstable phases

do not sit in an energetic minimum, but rather at a symmetry-dictated local maximum or saddle point.

When a vacancy is introduced, the symmetry of the cell is lowered and the atomic displacements

which occur to accommodate the defect can change the entire structure (even far away from the

defect) into a more distorted lower energy state. Hence, the energetic difference between the bulk

and the defective cell is smaller than if the bulk cell had been dynamically stable. In other words,

the initial bulk state being higher in energy can be seen as artificially lowering the defect formation

energy. This being an effect of symmetry and atomic displacements, it arises when the defective

cell is allowed to relax. Shown in Figure 3.5 b is a comparison of the relaxation contribution to

the oxygen vacancy formation energy computed for the dynamically stable distortions (y axis)

and for the dynamically unstable cubic perovskite artistotypes (x axis). For all DSDs, relaxation
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results in an energy decrease of about 1 eV/O. In contrast, the effect for cubic perovskite structures

can be of several eV/O. The effect increases with the degree of dynamic instability of the cubic

perovskite structure, here defined as the energetic difference between the energy of the dynamically

unstable cubic perovskite phase and the lowest energy dynamically stable perovskite distortion.

Furthermore, the magnitude of the energetic decrease upon relaxation of the defect-containing

structure increases not only with the degree of instability, but also with the number of atoms that

move during relaxation: the larger the vacancy-containing cell, the larger the energetic gain upon

relaxation of the defective structure, and therefore the larger the lowering of ∆Ev f . This supercell

size dependence present in dynamically unstable compounds can be understood by considering that

the introduction of a vacancy results in a distortion of the entire cell, not merely locally around the

vacancy. Therefore, the more atoms are present in the cell, the more atoms distort upon introducing

the vacancy and letting the structure relax, and the more the energy of the vacancy containing cell

decreases compared to an undistorted structure with the same number of atoms. This then means

that the relaxation energy ∆Ev f ,R per O vacancy increases with the size of the vacancy containing

cell. Note that this effect occurs even if constraints on the cell volume and shape are applied upon

relaxation. This means that an additional and non-trivial issue involved in the use of dynamically

unstable structures for defect calculations is the lack of convergence of the defect formation energy

with respect to cell size, as shown in Figure 3.6.

We now examine the ’unrelaxed contribution’, ∆Ev f ,UN , which encapsulates effects apart from

dynamic instability on ∆Ev f . In Figure 3.5 a, we compare the ∆Ev f ,UN between the DSD structures

and cubic perovskite structures. The orthorhombic and rhombohedral perovskites have very small

deviations in ∆Ev f ,UN between the DSD and cubic perovskite. This is an indication that, in the cases

where we observe a large difference in ∆Ev f between calculations that use a dynamically unstable

cubic perovskite structure and calculations that use a dynamically stable perovskite distortion,

such difference is likely attributable to the dynamic instability of the cubic perovskite phase. For

the cases where the DSD structure is a non-perovskite rather than perovskite, we observe a more

significant difference in ∆Ev f ,UN between DSD and CUBIC PEROV. The largest difference observed
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is for BaMnO3 where the oxygen octahedra in the DSD structure are face-sharing, rather than

corner-sharing like in perovskites. The discrepancy is also present, in smaller scale, in SrMnO3

for which the DSD structure contains both corner- and face-sharing octahedra. These structural

differences are accompanied by differences in the DFT band gap(Eg), which (from OQMD) is

Eg=0 for both BaMnO3 and SrMnO3 in the cubic perovskite phase, but non-zero in both cases for

both the DSD and EXP structure, with values of 1.2 eV for "CsCuBr3"-type SrMnO3 and 1.1 eV

for "BaMnO3"-type SrMnO3, and 1.9 eV for both "BaNiO3"-type and "KNiCl3"-type BaMnO3.

YMnO3, HoMnO3 and LuMnO3, for which the difference between the unrelaxed ∆EDSD
v f and

∆ECUB PEROV
v f is much less pronounced, present a non-perovskite DSD structure in which the Mn

cations are surrounded by polyhedra with 5 oxygen atoms as vertices, connected in a corner-sharing

fashion, and have the same OQMD band gap in both the DSD and the cubic perovskite phase.

We also compare the relaxed and unrelaxed contributions of the DSD and EXP structures and

show that the DSD surrogate structures can capture the energetics of O vacancy formation of

the EXP structures without suffering from the issues of dynamic instability. In Fig 3.7 we plot

∆Ev f ,UN and ∆Ev f ,R comparing DSD and EXP structures. In all cases the difference in the ∆Ev f ,UN

is negligible, indicating that the DSD structures achieve the goal of capturing the ∆Ev f of the

EXP structures when relaxation effects are not considered. As for the relaxation component, a

small difference is visible for compounds for which the EXP structure is dynamically unstable.

The difference ∆Ev f ,R being more contained for EXP structures than for cubic perovskites can be

traced back to the degree of dynamic instability being much smaller, and therefore leading to less

evident lowering of ∆Ev f . While on a practical level a small degree of dynamic instability does

not excessively appear to impact accuracy, the previous observations about the origin of atomic

relaxations away from the vacancy and the lack of convergence with cell size still caution against

the use of dynamically unstable structures.

Hubbard U Parameter Since the selected ABO3 compounds all contain 3d transition metal

atoms, we can assess the influence of the choice of Hubbard U parameter on the oxygen vacancy
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Figure 3.5: Contributions to the DFT-calculated oxygen vacancy formation energy utilizing the cubic and
DSD structures: (a) energy of removing an O atom without allowing for ionic relaxation upon vacancy
formation (Eq. 4), and (b) energy difference between the relaxed and unrelaxed vacancy-containing structures
(Eq. 5). Increasing lightness in the data points color in (b) indicates increase in the degree of dynamic
instability of the cubic structure, quantified by taking the DFT energy difference between the cubic and the
lowest energy perovskite distortion for each compound. In (a), different colors/shapes indicate whether the
structures belong to the perovskite family. U values are those employed in the OQMD and vacancy-containing
supercells are of 119 atoms for BaMnO3„ YMnO3, HoMnO3 and LuMnO3 and 79 atoms for all others.
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Figure 3.6: Change in oxygen vacancy formation energy with cell size for dynamically unstable cubic
perovskite structures, displaying a lack of convergence with cell size, an effect more dramatic the larger the
instability of the cubic structure, here quantified by taking the difference in formation energy between cubic
and the lower energy perovskite distortion on the OQMD.

formation energy, and identify the "best fit" value (Table 3.2) by comparing with experiment. In

general, with the exception of Fe3+ which shows a very weak dependence on the U parameter, a

clear negative linear trend between U and ∆Ev f is visible for all compounds in Fig 3.8. Furthermore,

compounds containing the same element in the same oxidation state show a similar rate of decrease

of ∆Ev f with U and the same "best fit" value of U. Shown in Fig. 3.8 are also the ’best fit’ U

values determined by comparison with experimental data (represented with horizontal banners of

thickness corresponding to the value ranges given by the error bars), and the values employed in

the OQMD (marked with vertical lines). While the two are in general agreement for Co3+, Mn3+

and Fe3+, in the case of Mn4+ and, even more visibly, Ni3+, OQMD U values appear to lead to

a significant underestimation of the vacancy formation energy. In other words, the "best fit" U
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Figure 3.7: Comparison and DFT calculations of the oxygen vacancy formation energy utilizing the
experimentally measured and DSD structure. On the left only electronic relaxation is performed upon vacancy
formation, on the right the energy difference before and after ionic relaxation is considered. U values are those
implemented in the OQMD and vacancy cell sizes are of 79 atoms (119 for BaMnO3, YMnO3, HoMnO3 and
LuMnO3)

values are in multiple cases smaller than the U values employed in the OQMD. Given the limited

extent of the data set and the influence of other variables (such as the correction of the oxygen DFT

reference energy) on the oxygen vacancy formation energy, we consider this evidence to provide

helpful insight to apply to our high-throughput results, but not yet sufficient to be interpreted as

conclusive evidence of the optimal U values to apply to ∆Ev f calculations of perovskite oxides

across the board. Therefore, we conduct the high-throughput study detailed in the next section

utilizing OQMD U values (changing such values would involve very substantial changes to the

database), but, in recognition of the indication of the underestimation that such U values induce in

the vacancy formation energy, we favor compounds with ∆Ev f in the lower part of the window of

interest for STCH.



41

Figure 3.8: Variation of the computed oxygen vacancy formation energy with the U parameter for the ABO3
compounds investigated for experimental comparison, for (a) LnCo3+O3 compounds; (b) LaNi3+O3; (c)
AMn4+O3 compounds; (d) YFe3+O3; and (e) LaMn3+O3. Vertical lines indicate the value employed in the
OQMD framework and horizontal banners represent experimental data, the thickness indicating the value
ranges given by the error bars. DFT values are computed using the DSD structure with vacancy-containing
cells of 79 atoms (119 for BaMnO3)

Comparison Between DFT and Experiment Leveraging the insights gained in the above dis-

cussion, in Fig 3.9 we test the accuracy of DFT calculations of oxygen vacancy formation energy

performed using the DSD structure and the "best fit" U (Table 3.2) by comparing them with the

available experimentally derived enthalpies of reduction. DFT+U calculations exhibit an accuracy

comparable to experimental uncertainty and also capture the relative magnitude of the oxygen-

vacancy formation energy across materials, a crucial point in material prediction. In Figure 3.10 and

3.11 we preform the same comparison as Fig 3.9 utilizing, respectively, the same Hubbard U values

as the ones utilized in the OQMD, and a constant Hubbard U value of 4 eV for all compounds. In
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Table 3.2: List of cations and "best fit" U values determined by comparing the DFT computed oxygen
vacancy formation energy and the experimentally measured enthalpy of reduction. The U values employed in
the OQMD framework are also listed for reference

Cation Co3+ Ni3+ Mn4+ Fe3+ Mn3+

"Best Fit" U [eV] 3 1 2 4 3
OQMD U [eV] 3.3 6.4 3.8 4 3.8

both cases, Pearson and Spearman correlation coefficients remain greater than, respectively, 0.8 and

0.9, confirming the predictive ability of the DFT ∆Ev f calculations in differentiating and ranking

reduction enthalpies across compounds, albeit with an expected increase in the mean absolute error

by approximately 0.3 eV/O.

For practical reasons such as computational expense, different settings (such as defect cell size

and Hubbard U values) than the ones in the low-throughput study in the present chapter are employed

to perform the high-throughput studies in the next chapter. These ’high-throughput settings’ are

as follows: (i) U values from OQMD rather than ’best-fit’ values from the previous section; (ii)

lowest-energy structures at each composition, which we have argued are likely to coincide with

DSD structure (this choice is further discussed in the next chapter); (iii) and vacancy-containing

supercells of smaller sizes than the ones used in low-throughput. In order to validate the predictive

power not only of the computational approach but of its high-throughput implementation as well,

we separately test the agreement of the calculations performed with high-throughput settings with

experiment. The relevant comparison is shown in Figure 3.12, where results are contrasted between

the choice of a cubic perovskite structure employed by Emery at al.54 (a) and the currently proposed

one of the ground state structure (b). The underestimation of ∆Ev f due to dynamic instability is less

dramatic when utilizing the very small 9 atom vacancy-containing cubic cell employed by Emery

et al.54 as compared to what is seen in Fig. 3.12 where 79 atom cells were used. However, the

effect is nevertheless still present, as can also be inferred from the trends in Figure 4.14 and 4.19

presented further below. The agreement with experimental data is considerably improved when

using the ground state structure, as can be seen by a decrease in average difference between DFT
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Figure 3.9: Comparison of the experimental and DFT values of the oxygen vacancy formation energy derived
with best fit U values shown in Table 3.2. In black compounds simulated with the same structure as the
experimentally measured one, in magenta compounds simulated using a dynamically stable distortion (DSD)
maintaining the same type of O environment surrounding the redox-active cation as the experimentally stable
structure. Vacancy-containing cell sizes are of 79 atoms (119 for BaMnO3)

computations and experimental data, despite the error not being systematically lower for every

single compound. The use of the ground state structure results in an even more significant increase

in the Pearson and Spearman correlation (measuring respectively linear and monotonic character) of

the data, indicating that the high-throughput computational settings likely provide a fundamentally

appropriate description of the vacancy formation energy, even though smaller nuances (such as

a non-optimal U value) still lead to a underestimation for some compounds. In addition to the

calculations presented in this work, we have also examined the impact of utilizing the PBE-sol and

SCAN functionals when computing the oxygen vacancy formation energy, again for a range of
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Figure 3.10: Comparison of the experimental and DFT values of the oxygen vacancy formation energy
derived with U values from the OQMD and DSD structures. In black compounds simulated with the same
structure as the experimentally measured one, in magenta compounds simulated using a dynamically stable
distortion (DSD) maintaining the same type of O environment surrounding the redox active cation as the
experimentally stable structure. Vacancy-containing cell sizes are of 79 atoms (119 for BaMnO3)

Hubbard U values.100

As evident from Table 3.1, in addition to the 9 compounds illustrated in Fig 3.12 and 3.9, ther-

mogravimetric measurements were also performed on two orthorhombic perovskite Fe-containing

compounds (LuFeO3 and HoFeO3) and three Mn-containing hexagonal compounds (LuMnO3,

HoMnO3 and YMnO3).79 The two ferrite compounds failed to display any significant oxygen

loss uponheating; our computations agreed with this only when using the DSD structure and not

the cubic (dynamically unstable) structure. As for HoMnO3 and YMnO3, evidence of a phase

transformation from a “LuMnO3”-type structure (with P63cm space group) to a “Be3N2”-type
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Figure 3.11: Comparison of the experimental and DFT values of the oxygen vacancy formation energy
derived with U=4eV for all compounds and and DSD structures. In black compounds simulated with the
same structure as the experimentally measured one, in magenta compounds simulated using a dynamically
stable distortion (DSD) maintaining the same type of O environment surrounding the redox active cation as
the experimentally stable structure. Vacancy-containing cell sizes are of 79 atoms (119 for BaMnO3)

structure (with space group P63/mmc) was observed at higher temperatures, along with a sharp

jump in the measured enthalpy (from 1.5 to 3 eV/O) and entropy (from 70 J/mol O/K to 170 J/mol

O/K) of reduction.99 The mechanism behind the jump in the thermodynamic quantities remains

ambiguous. Results from DFT stability calculations show the “LuMnO3”-type structure phase to be

lower in energy for all three Mn-containing hexagonal compounds, and the calculations of oxygen

vacancy formation energy performed with DSD structures ( “LuMnO3”-type) are in the range 3-3.5

eV/O for the three compounds.

The experimental methodology for determining the thermodynamics of oxygen vacancy forma-
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Figure 3.12: Comparison experimentally derived standard enthalpies of reduction and DFT computed of
the oxygen vacancy formation energies, derived using (a) the cubic perovskite and (b) the DFT ground state
structure, both with OQMD settings, highlighting the significantly higher agreement achieved with the latter
approach. U values are those implemented in the OQMD, and vacancy-containing cells are of 9 atoms for
cubic structures, and 19 (29 for BaMnO3) for ground state structures.

tion yields the enthalpy as a function of non-stoichiometry.101–105 For the purposes of comparison

to the computed results, the experimental value is defined as the average enthalpy over the range

from 0 to the δC , the non-stoichiometry implied by the removal of one oxygen from the supercell,

assuming linearity extends to δC. We have compared this approach with different strategies for

ensuring comparison between the same physical property, such as extrapolation of the experimental

value to δ → 0. Because the dependence of the experimental enthalpy on δ is relatively weak for

most compounds studied here,79 the general aforementioned conclusions about the structure choice

in computation and DFT prediction power remain consistent.

Overall, the evidence indicates that both the low-throughput and high-throughput approaches

outlined in this work reliably predict materials reduction enthalpies accurately enough to differentiate

promising candidates for STCH applications and guide experimental investigation.
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4. High-Throughput DFT Surveys of Metal

Oxides for Water-Splitting Applications

4.1 Background

As motioned in the previous chapter, the oxygen vacancy formation energy is one of the main

quantities of interest to guide materials selection for STCH applications. New candidate metal

oxides can be vetted by screening for materials with ∆Ev f large enough to split water but not so

large as to require unreasonable temperatures to create vacancies.14 Operation temperatures as well

as the materials entropy of reduction influence the values of reduction enthalpy for which the both

steps in a STCH cycle are thermodynamically favorable. Considering typical operating conditions,

and keeping into account the evidence for an underestimation of the experimental ∆Hred in some

computations of ∆Ev f mentioned in Section 3.3, we consider a ∆Ev f window between 2 and 5 eV/O,

recognizing that even within this range, materials with ∆Ev f ≥ 4 eV/O may not undergo detectable

reduction unless the entropy is extremely high (as is the case for ceria).

Having validated the efficacy of our computational approach in predicting ∆Ev f in the previous

chapter, we now apply it on a large scale to perform high throughput DFT studies of multiple classes

of metal oxides. In selecting the structure types to be targeted in the studies we consider multiple

properties of interest for STCH applications: evidence of structural stability up to high temperature,

ability to withstand a large amount of oxygen non-stoichiometry, ease of oxygen diffusion, and

a wide compositional space to explore when decorating the structure. As already touched upon,
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perovskites are a class of materials satisfying numerous of the above criteria, and are therefore

the main class of materials included in the study. In addition to perovskite-type structures we

also include other structural types presenting evidence of attractive properties like ease of oxygen

diffusion, namely pyrochlore and spinel structures. Lastly, we also include other stable transition

metal oxide structures in the OQMD which might not necessarily represent ideal STCH candidates

but can be of interest for other applications, as well as contributing to creating a large and diverse

dataset to be leveraged to develop predictive models of the oxygen vacancy formation energy.

As well as identifying hundreds of new STCH candidates, we generate a new pool of around

2500 vacancy formation energy calculations of over 1000 different materials with a variety of

structures and compositions, all (in their pristine form) within 25 meV/atom of the convex hull.

This constitutes the largest dataset of directly computed vacancy formation energy to date, to our

knowledge. Several paragraphs in this chapter are quoted directly from our manuscripts74.106

4.2 Methodology

All DFT calculations have been conducted using the Vienna ab-initio simulation package (VASP),75, 76

with projector augmented wave (PAW) potentials77 and the Perdew-Burke-Ernzehof (PBE)78 gen-

eralized gradient approximation (GGA) for the exchange-correlation functional. The calculations

were conducted within the framework of OQMD, details on the settings employed can be found

in Refs.43, 44 For compounds containing 3d transition metals or actinides, the over-delocalization

of electrons due to the residual self interaction present in exchange-correlation functionals36–40

was treated through the addition of a Hubbard-like potential to the energy functional,42 and a spin

polarization was applied with a ferromagnetic configuration, initializing magnetic moments to 5µB

(transition metals) and 7 µB (actinides). The oxidation state of each cation was determined using

bond valence parameters as implemented in pymatgen,107 and a small number of compounds were

excluded from the dataset if they contained a rare earth element whose oxidation state differed from

that of the pseudopotential used in the OQMD framework.
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In the interest of selecting structures more likely to be synthesized and avoiding structures with

a significant degree of dynamic instability, for each composition, ∆Ev f calculations were conducted

with the lowest-energy structure at that composition. We created vacancy-containing supercells

with a minimum of 15 atoms (see Appendix for cell size convergence), and considered each unique

oxygen site.

The charge localized on each atom in each pristine structure of interest was determined through

Bader charge analysis as implemented in pymatgen.107 After the introduction of a neutral oxygen

vacancy, the charge localization on each atom in the defect-containing structure was determined in

the same fashion. The charge localization upon vacancy formation was then calculated by taking

the difference in the charge localized on each atom in the defect-containing cell and in the perfect

bulk cell. The charge localized upon vacancy formation was then summed over all atomic sites for

each of the two cation species in each ABO3 and A2B2O7 compound, thus obtaining a total ∆qA

and ∆qB. For ABO3 compounds, the reducing (or redox-active) cation was then labeled based on

the larger of the two ∆q. We note that the nature of this labeling is approximate and not univocal;

for example, for perovskite oxides, while the reducing cation coincides with the B site cation in the

vast majority of cases, evidence of possible reduction of both A and B sites is present in a few cases.

4.3 Results

Before delving in each high-throughput study in detail, in Figure 4.13 we provide a visual represen-

tation of all the compounds for which the formation energies of oxygen vacancies were computed

as individual datapoints (the lowest value of ∆Ev f for each compound is shown). Different markers

indicate the compounds calculated within the high throughput study of perovskites (red triangles),

pyrochlores (blue triangles) and double perovskites (cyan squares), as well as compounds on the

OQMD convex hull with octahedrally coordinated transition metal cations, both from the ICSD

(pink circles) and from other studies (black crosses). As will be further detailed in the next subsec-

tions, these high throughput studies have also led to the identification of hundreds of new STCH
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candidates, highlighted in the figure through a green banner. Lists of the new perovskite, pyrochlore

and double perovskite candidates are provided in the Appendix. The rest of the dataset will be

publicly available following the publication of our other recent works108.109

Figure 4.13: Oxygen vacancy formation energy of the compounds calculated within the high throughput
study of perovskites (red triangles), pyrochlores (blue triangles) and double perovskites (cyan squares), as
well as compounds on the OQMD convex hull with octahedrally coordinated transition metal cations, both
from the ICSD (pink circles) and from other studies (black crosses). The window of interest of oxygen
vacancy formation energy for STCH applications is highlighted in green

4.3.1 Perovskites

In a 2016 study of perovskite oxides, Emery et al54 computed the DFT stability of all decorations

of the ABO3 perovskite structure (with A and B being metal cations), considering the four most

common perovskite distortions. The authors identified over 250 stable compounds, with the rare

earths and alkaline earth metals predominantly occupying the A site, and transition metals the B

site. They also computed oxygen vacancy formation energies of the stable perovskites utilizing the

cubic structure. We here extend their survey to include many additional competing non-perovskite
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ABO3 structures, and, most importantly, revise the computation of the oxygen vacancy formation

energy by utilizing the ground state structure in place of the cubic perovskite structure, following the

considerations about the issues brought about by dynamic instability discussed in Section 3.3. To

identify new promising STCH candidates we first screen for thermodynamic stability by selecting

the lowest energy structure of compounds with at least one structure lying within 25 meV/atom of

the convex hull. We then apply a second filter based on ∆Ev f values for STCH applications.

For all compositions having a structure within 25 meV/atom from the convex hull in one of

the perovskite distortions, we also computed the three other most common prototypes from the

ICSD for ABO3 compounds (see Figure 11.65 for a visual representation of the structures), and

then selected the lowest energy 0K structure considering all available phases on the OQMD at

each composition. Since the Emery study,54 the OQMD has more than doubled in size to over 1

million calculations today.110, 111 This significant expansion of the database not only increases the

reliability of any stability result by introducing other competing phases, but also resulted in the

identification of several new stable ABO3 metal oxide structures which are also included in the

present study. In total, we screen ∼ 2200 compositions and ∼ 19400 structures, selecting stable

ABO3 metal oxides and computing ∆Ev f of ∼400 compounds. Of these, ∼150 have a perovskite

structure as their lowest-energy structure.

In Figs 4.14 and 4.15, we show that using the ground state perovskite structure as opposed

to the cubic perovskite structure significantly changes the ∆Ev f results. Fig 4.14 highlights how

the underestimation in ∆Ev f increases with the size of the instability of the cubic structure, as

can be seen in the evidently descending trends in ∆ECUB PER
v f with increasing ∆Estab. Although

∆Estab quantifies thermodynamic stability, in this case it serves as a quantification of dynamic

(in)stability as well since it reports the energetic difference between the cubic phase and the phase

on the convex hull, which in the majority of the cases is a distorted orthorhombic perovskite. Fig

4.15 demonstrates that using the ground state structure as opposed to the cubic perovskite structure

results in new promising candidates for water-splitting otherwise left out ("False Negatives") and

excludes candidates erroneously determined to be promising ("False Positives"). To be clear, "False
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Negatives" and "False Positives", are defined under the assumption that utilizing the ground state

structure provides a more appropriate description of the vacancy formation energy than utilizing

the dynamically unstable cubic perovskite structure, as discussed in Chapter2.5. Fig 4.17 and 4.18

display the same results, extended by including all non-perovskite structures present in the study

as well, and highlight the same conclusions. A complete list of all ∼180 stable compounds with

∆Estab in the 2-5eV/O window is available in the Appendix.

In both Fig 4.14 and Fig 4.15 we highlight the influence of cation identity on oxygen vacancy

formation energy. In agreement with the previous observations by Wexler et al.55 and Curnan et

al.73 on perovskites with 3d transition metal cations on the B site, we find that the B cation plays a

primary role in determining ∆Ev f . We also find that, in the vast majority of cases, the B cation is the

one on which the majority of the charge localizes upon vacancy formation, as determined by Bader

charge analysis (see Fig 4.16 and discussion in the next paragraph). Furthermore, we observe the

strong correlation between cation identity and ∆Estab to persist when reproducing Fig 4.14 and Fig

4.15 including all non-perovskite structures and highlighting the identity of the cation on which the

majority of the charge localizes (which we refer to as ‘reducing cation’, see Fig 4.17 and 4.18). This

correlation can be connected to the energetic cost associated with the reduction of the cation: cations

which are harder to reduce, such as Sc3+ lead to larger ∆Estab and vice versa for easier-to-reduce

cations such as Mn4+. The relative trends in this energetic cost can be inferred from experimental

data, for example, by looking at commonly reported oxidation states71, 72 (less common oxidation

states reducing to more common ones implying a greater ease of reduction, and vice-versa), or

at experimental measurements of reduction potentials.112 Wexler et al.55 recently introduced a

quantification of the energy of reduction for each cation (and oxidation state) incorporating crystal

field effects by leveraging differences in formation energies between structures containing the cation

of interest in the initial and reduced oxidation state.

The charge localization on A and B site cations (∆q) upon oxygen vacancy formation in

perovskites is illustrated in Fig 4.16. In the majority of the cases rare earth and alkaline earth metals

are on the A site, both groups having significantly larger reduction energies than the transition
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metals, which largely occupy the B sites. Unsurprisingly, in the vast majority of cases most of the

charge localizes on the B site cations upon oxygen vacancy formation (i.e. we identify the B site

cation as the reducing cation). In cases where a cation which is easier to reduce, such as Bi3+,

occupies the A site, a significant lowering of ∆Ev f compared to other compounds with the same

B site cation can be observed, accompanied by a larger charge localization on the A site cation.

In such cases (eg. BiVO3, BiCrO3, BiMnO3, TeFeO3 ) evidence for reduction on both sites can

be observed, with BiVO3 going as far as having most charge localizing on the A site cation. A

suggestion of reduction of both A and B cations with Bi3+ on the A site was also put forth by

Wexler et al.,55 and can represent a desirable property as it would lead to an increase in the entropy

change involved in the reduction reaction, and thus to a more favorable STCH cycle.14, 70

When considering ∆Ev f in the lower end of the STCH window, availability and lack of pro-

hibitive cost or toxicity, Mn4+, Mn3+ and Co3+ emerge as the most promising redox-active cations

for STCH applications (see Table 3), although we do note that our investigations of REMnO3

(YMnO3, LuMnO3 and HoMnO3) suggest higher temperatures to be needed to reduce “LuMnO3”

type compounds.79 Co3+ and Mn3+ have also been highlighted as promising B site cations in

perovskites in the recent work by Wexler et al.,55 despite differences in the specific predicted

values probably due to the differences in exchange correlation functional and Hubbard U, and

in the structures included in the study. While Mn4+ displays a rather low reduction enthalpy in

perovskites, making it less attractive as the sole B-site element,98 the oxygen vacancy formation

energy can be increased by introduction of substitutional elements on the B site. We synthesized

two Mn4+-based mixed perovskites and, encouragingly, found these to display favourable redox

thermodynamics and high fuel production upon cycling.113, 114 Attractive redox values for Mn3+

and Mn4+ were also previously reported in the work by Vieten et al. analyzing several mixed

perovskites.69 Among the other common B cation metal oxide elements identified in the study not

suffering from particular cost and toxicity concerns, V3+, Ti3+ and Cr3+ all appear to be too hard to

reduce for STCH applications and Ni3+ potentially too easy. Lastly, while several Fe3+-containing

compounds display ∆Ev f values in the 2-5eV STHC window, such values all lie above 4eV/O,



54

and Fe3+, previously suggested as an attractive cation by Wexler at al.,55 is considered less likely

to be promising candidate, as supported by the experimental observation of very limited if not

entirely absent oxygen loss previously mentioned in the experimentally synthesized perovskite

ferrite compounds.

Figure 4.14: Oxygen vacancy formation energy derived using (a) the cubic perovskite structure, and (b) the
ground state perovskite structure in the DFT simulations, displayed as a function of stability of the relevant
structure. The left hand side clearly highlights a sharp decrease in ∆Ev f with increasing dynamic instability
of the cubic phase. Different markers indicate different B-site cations.

For the vast majority of the stable perovskites identified in this study the ground state structure

is a distortion of lower symmetry than the perfect cubic phase. An especially convenient metric

to estimate the degree of structural distortion, given its simplicity and ease of computation, is the

Goldschmidt tolerance factor115 :

tolerance =
rA + rO√
2(rB + rO)

(4.19)
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Figure 4.15: Comparison of oxygen vacancy formation energy calculated using the DFT ground state
perovskite structure on the OQMD and the cubic perovskite structure. Areas in red indicate false positives
(compounds which are in the window of interest for STCH when using the cubic perovskite structure but not
the ground state structure), in green false negative (the opposite of the previous instance), and in blue true
positives (compounds that would be deemed promising in both cases). Different markers indicate different
B-site cations. Larger deviations from the diagonal largely correspond to compounds with a higher degree of
dynamic instability of the cubic phase, as further highlighted in Fig 4.14

In Figure 4.19 we show how this metric, which is often used to predict the structure and synthe-

sizability of a perovskite composition, can also capture two contrasting behaviours in the oxygen

vacancy formation energy of perovskites when using the ground state versus the cubic structure.

On the one hand, an inverse correlation with tolerance can be observed when utilizing ground state

structure, in agreement with observations of compressive strain increasing the oxygen vacancy

formation energy.116 As rare earth cations occupy the A site in the majority of the ABO3 perovskites

here analyzed, for the same B cation, higher values of the tolerance factor are associated with

earlier rare-earth A cations, and lower values with later rare-earth A cations. The more distorted

structures of perovskites that contain later rare-earth A cations are characterized by higher values of
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Figure 4.16: Correlation between the oxygen vacancy formation energy and the charge localized upon
vacancy formation on the B cations and on the A cations in ABO3 perovskites. In the near entirety of the
cases the majority of the charge localizes on the B cation, unless the A cation is significantly easier to reduce,
as is the case for BiVO3.

the vacancy formation energy compared to other perovskites with the same B cation. They are also

characterized by higher values of the magnetic moment of the B cation, indicating a decrease in the

covalent character of the B-O bond, a behaviour similar to what observed by Varignon et al.117 in

Ni-based perovskites. In contrast, when the cubic structure is utilized, the observed trend is reversed,

i.e. higher values of the tolerance factor are associated with higher values of the vacancy formation

energy for compounds containing the same B cation, a behaviour that can be attributed once again

to its dynamic instability. The more distorted the ground state structure, the larger the distance of

the cubic structure from the energetic landscape minimum, and thus the larger the underestimation

of ∆Ev f when using the cubic structure.
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Figure 4.17: Oxygen vacancy formation energy derived using (a) the cubic perovskite structure, and (b)
the ground state structure on the OQMD in the DFT simulations, displayed as a function of stability of the
relevant structure. The left hand side clearly highlights a sharp decrease in ∆Ev f with increasing dynamic
instability of the cubic phase. Different markers indicate different reducing cations.

4.3.2 Pyrochlores

In a recent study, He et al109 computed DFT the stability of all possible A2B2O7 compositions (with

A and B being metal cations) in the pyrochlore structure, as well as the 2 competing structures most

commonly found in the Inorganic Crystal Structure Database (ICSD).71, 72 More than 300 stable

compounds were identified, with the A site being predominantly occupied by rare earth elements

and the B site by transition metals. We performed oxygen vacancy formation energy calculations

of the stable compounds and identified around 50 of them to lie within the widow of interest for

STCH, a complete list is reported in the Appendix.

In Figure 4.20 b and c we present the results of oxygen vacancy formation energy calculations
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Figure 4.18: Comparison of oxygen vacancy formation energy calculated using the DFT ground state
structure on the OQMD and the cubic perovskite structure. Areas in red indicate false positives (compounds
which are in the window of interest for STCH when using the cubic perovskite structure but not the ground
state structure), in green false negative (the opposite of the previous instance), and in blue true positives
(compounds that would be deemed promising in both cases). Different markers indicate different reducing
cations.

of stable pyrochlore compounds, and also display perovskite compounds in Figure 4.20 a for

comparison. Like the perovskites examined above, pyrochlore oxides have multiple non-equivalent

vacancy sites. The difference between the sites, however, is not just in the lengths and angles of the

bonds between the oxygen and its nearest neighbor cations, but also in the species of the neighboring

cations. For one of the sites the nearest neighbors (NN) to the O atom are B cations, while for the

other the nearest neighbors are A cations (see Fig 11.67 for a visual representation of the structure).

Both vacancy sites are represented in Figure4.20: the site with B cations as NN (also referred to as

"V1") in Figure4.20 b, and the site with A cations as NN (also referred to as "V2") in NN Figure4.20

c, with different markers indicating the B site cations in both cases. A significant difference can be
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Figure 4.19: Oxygen vacancy formation energy derived using (a) the cubic structure, and (b) the ground
state structure in the DFT simulations, displayed as a function of the tolerance factor computed using a bond
valence method.118 Different markers and colors symbolize different B site cations and oxidation states.

observed between the two sites, with the vacancy formation energy of sites surrounded only by rare

earth cations being significantly higher than that of the sites with transition metal neighbors, which

in turn has similar values to perovskites with the same B transition metal cation neighbors.
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Figure 4.20: Oxygen vacancy formation energy of (a) ABO3 perovskite oxides, and (b) and (c) A2B2O7
pyrochlore oxides. In (a) ∆Ev f of the lowest energy vacancy is reported, as all vacancy sites have the same A
and B cation nearest neighbors. In (b) ∆Ev f of sites with A and B cations (where B cations are the closest) as
nearest neighbors is reported, and in (c) ∆Ev f of sites with only A cation nearest neighbors is reported. In
all cases different markers and colors indicate the species and oxidation state of the B cation of each given
compound. The vertical line indicates the 25meV stability cutoff applied for compound selection.

4.3.3 Double Perovskites

A natural extension of the work on simple perovskites presented in Section consists in applying a

similar methodology, to double perovksites, a class of materials obtained by A and B site substitution

of the perovskite structure,119–122 in the presence of ordering. Similarly to perovskites, double

perovskites exist in a variety of distortions of the ideal structure, but with the additional complexity

introduced by the A or B site ordering,120, 121 therefore opening a much larger compositional and

structural space.

A first high-throughput DFT stability study of 104 A2BB′O6 compounds has been completed by

J.He et al,108 comprising over 35,000 calculations surveying multiple distortions120 of the idea rock

salt B ordered structure. Such structure is the most commonly observed one for A2BB’O6 double

perovskites and is characterized by an alternation between the B and B’ cation on both rows and
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Figure 4.21: Unrelaxed (∆Ev f ,UN) vs relaxation ( ∆Ev f ,R) contributions to the oxygen vacancy formation
energy of (a) ABO3 perovskite oxides, and (b) and (c) A2B2O7 pyrochlore oxides. In (a) ∆Ev f of the lowest
energy vacancy is reported, as all vacancy sites have the same A and B cation nearest neighbors. In (b) ∆Ev f

of sites with A and B cations (where B cations are the closets) as nearest neighbors is reporeted, and in (c)
∆Ev f of sites with only A cation nearest neighbors is reported. In all cases different markers and colors
indicate the species and oxidation state of the B cation of each given compound.

columns119–121 (see Fig 11.67 for a visual representation of the structure). To determine the lowest

energy phase, 10 different distortions of A2BB’O6 perovskites were considered (P21/c, C2/m, P1,

P-1, I4/m, I4/mmm, R3, R-3, R-3m, Fm-3m), with A=Ca, Sr, Ba and La (and, for the most common

P21/c structure, A=Zn, Cd, Hg and Pb), and 50 metal elements on the B sites, totaling around

10,000 compositions. The 3 most common A2BB’O6 competing phases on the ICSD were also

calculated. Using this strategy, more than 500 stable (within 25 meV/atom of the OQMD convex

hull) double perovskites were identified. For each of those compounds, we computed the vacancy

formation energy of all non-unique oxygen sites.

Once again, a strong influence of the identity of the cations neighboring the vacancy on ∆Ev f can

be observed. Due to the nature of the rocksalt-type B site ordering of the double perovskite structure,

each unique O is bonded to both B site cation species (B and B’). Examining cases in which both B

and B’ are among the species highlighted in Figure 4.20, similar trends to those identified in simple



62

perovskites and pyrochlores can be observed. For example, among La2AlB’O6 double perovskites,

having B’=V 3+, Cr3+, and Fe3+ leads to a progressively lower vacancy formation energy (with

values of, respectively, 6.2 eV/O, 5.8 eV/O and 4.4 eV/O). Similarly, Mn4+ is associated with a

lower ∆Ev f than Sn4+ when occupying the B’ site in Ca2ZrB’O6 (2.8 eV/O vs 4.7 eV/O). While

the above examples highlight the dominant role in determining ∆Ev f to be played by the easiest

to reduce cation, significant differences in ∆Ev f can also be identified when the identity of the

other cations is changed. Once again, the trends identified in simple perovskites and pyrochlores

appear to hold, with, for example, B=H f 4+, Zr4+, and Ti4+ leading to a progressively lower ∆Ev f

in Ca2BMnO6 (with values of, respectively 3.0 eV/O, 2.8 eV/O and 2.3 eV/O)

4.3.4 Other Metal Oxides

In addition to the data produced through the high-throughput studies presented above, we also

screened the OQMD for metal oxide compounds satisfying the following criteria: (i) the com-

pound lies on the convex hull, (ii) the compound contains transition metal cations, (iii) oxygen

is the only anion species, and (iv) the transition metal cations have octahedral coordination to

oxygen anions. Of these compounds, about half were reported on the ICSD, and the other half

consists of hypothetical compounds calculated to be DFT stable. The hypothetical compounds were

discovered exploiting several different strategies: solution of experimental diffraction data using

database searching,123 machine learning prediction leveraging an improved version of CGCNN,124

substitution of chemically similar elements into already-known compounds,125, 126 and inclusion of

compounds discovered in the work of Wang et al.127 For all compounds, we computed the oxygen

vacancy formation energy of different unique vacancy sites.
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5. Machine Learning Predictions of Oxygen

Vacancy Formation Energy

5.1 Background

As seen in the previous chapters, one of the most useful thermodynamic properties to compute

through the use of DFT for materials screening is the energy of formation of neutral oxygen

vacancies (∆Ev f ). In order to effectively utilize ∆Ev f -based screening strategies to search for new

materials, large datasets of defect energies will be required. Compared to defect-free bulk DFT

calculations, which are relatively inexpensive and publicly available for 105-106 compounds in

databases such as the OQMD43, 44 and the Materials Project,45 ∆Ev f calculations can be significantly

more expensive due to the creation of supercells and the consideration of multiple possible vacancy

sites, as well the lower symmetry of the defect-containing structure.

Hence, in order to screen large pools of candidate materials, researchers have sought more

computationally efficient ways to generate ∆Ev f predictions. A number of previous studies attempted

to identify predictors of ∆Ev f which would allow bypassing DFT defect calculations entirely,

relying on properties available from DFT calculations of the defect-free structure, and in some cases

even proposing structural and compositional descriptors that do not require any DFT calculation

at all. Deml et al. developed two different models of ∆Ev f based on a linear combination of

descriptors.41, 96 The first work96 leveraged a training set of 10 perovskite oxides and utilized the

bulk material’s formation enthalpy and bandgap as descriptors. The subsequent work41 expanded the
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training set to 45 binary and ternary oxides with a variety of crystal structure types, and expressed

∆Ev f as a function of the formation enthalpy, the average difference in Pauling electronegativity

between the oxygen and its nearest neighbor cations and, replaced the bandgap with the energy

difference between the oxygen p band center and the middle of the band gap. Wan et al128 then

utilized the model predictions on 1750 oxides from the second work to identify simple descriptors

of ∆Ev f solely based on compositional features. They tested several regression methods and

identified the best descriptors to be the difference in Pauling electronegativity between the oxygen

and its nearest neighbor cation and the fraction of valence electrons in the material belonging

to oxygen. Leveraging instead the dataset of around 300 ∆Ev f calculations of perovskite oxides

by Emery et al.,54 Liu et al.129 also aimed to identify simple features not requiring any DFT

calculation, considering elemental properties and proposing a descriptor composed of cation valence,

electronegativity and atomic radii. Recently, Wexler et al.55 introduced a description of ∆Ev f as a

linear combination of DFT defect-free stability, band gap, reduction energy of the metal cations

neighboring the vacancy and bond strength between the oxygen and its neighboring metal cations.

With such features, they presented two linear models, one trained on a set of 142 oxygen vacancies

of perovskite oxides lying within 25 meV/atom of the convex hull, and another one trained on

perovskites in any of 6 considered distortions without any stability restriction. Approaching the

problem from a more general point of view, Witman et al130 selected ∼200 different oxides spanning

63 space groups and 14 elements and computed the formation energy of all unique defects in each

structure, thereby generating a dataset of over 1000 defect energies. The authors then employed a

significantly more complex type of learning than any of the previously mentioned studies, adapting

the CGCNN model originally introduced by Xie et al.131 to predict any type of defect formation

energy by including oxidation state and site-specific information.

The examples of models of ∆Ev f present in the literature contain significant differences with

regards to the training set, the features, and the type of models employed to describe the vacancy

formation energy. All three of these factors can significantly affect ∆Ev f predictions in terms of

accuracy, generality, interpretability and training time.
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Features: one can broadly divide feature types in two categories: (i) global, i.e. quantities that

are single-valued for each defect-free compound, such as the formation energy and the bandgap,

and (ii) site-specific, i.e. that depend on the specific O vacancy site under consideration, and

are multi-valued for each each defect-free compound, such as any feature that depends on the

nearest neighbors of the vacancy site. Models only containing global features are limited in that,

since such features don’t allow for the differentiation of single vacancy sites, the model will give

the same prediction for all O vacancy sites in the same material. Furthermore, features related

to the metal cations can be further divided into either (i) element-specific, such as the Pauling

electronegativity, or (ii) element- and valence-specific such as the ionic radius. Models that heavily

rely on non-valence specific cation features are limited in their ability to differentiate the behaviour

of compounds containing the same elements but in different oxidation states.

Training Set: models with smaller training sets containing less structural and compositional

variety will be less likely to give accurate predictions when extrapolating to new structures and

compositions that are less represented in the training data. Furthermore, training sets containing

structures that are significantly off the convex hull or are not the lowest-energy structure at each

composition are more likely to contain dynamically unstable structures, which present significant

complications when computing the DFT oxygen vacancy formation energy (see Section 3.3).

ML Model: linear models, while being fast and intuitive, do not capture more complex rela-

tionships between descriptors and target properties, are sensitive to outliers and can be prone to

overfitting. On the other side, non-linear models are capable of identifying useful feature rep-

resentation by leveraging complex relationships between variables and can perform better upon

extrapolation, but, particularly in the case of neural networks, come at a greater cost in terms of

training time and interpretability, and typically require a larger amount of training data to perform

well.

In this chapter, we leverage the dataset of oxygen vacancy formation energy calculations

introduced in the previous chapter to investigate the above aspects of ∆Ev f prediction and develop

new models. We introduce new descriptors of ∆Ev f and compare their performance with that of
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the descriptors previously employed in the literature. We find the random forest models using the

features introduced in this work to achieve the best performance, obtaining a mean absolute error on

testing of ∼0.3 eV/O, comparable to the accuracy observed upon comparison of DFT computations

of oxygen vacancy formation energy when compared to experimental result seen in Section 3.3.

We then subsequently leverage the models predictions to aid in the search for materials for STCH

applications, and successfully identify over 250 new candidates. Several paragraphs in this chapter

are quoted directly from our manuscript.106

5.2 Methodology

The performance of models utilizing four different regression techniques was investigated: random

forest regression(RFR), support vector regression (SVR), kernel ridge regression (KRR) and linear

regression (LR). In all cases, the models were developed utilizing the Scikit-learn Python library,

and optimizing the hyperparameters through a grid search.

5.3 Results

5.3.1 Data

Combining the data from all the high-throughput DFT studies describes in the previous chapter,

our entire dataset contains 2677 different oxygen vacancy formation energy calculations of 1157

different metal oxides. Figure 5.22 shows the distribution of the entire dataset over spacegroups and

elements. Structures belonging to 55 different spacegroup appear in the dataset, with the highest

frequency spacegroups being P21/c (to which most of the A2BB’O6 double perovskites belong to),

Pnma (to which most ABO3 perovskites belong to), and Fd-3m (to which A2B2O7 pyrochlores

belong to). 66 different cation elements are considered, with 90% appearing at least 5 times in the

dataset, and 75% appearing at least 20 times. Figure 5.23 shows the distribution of ∆Ev f values

across the dataset, and differentiates the "unrelaxed" and "relaxation" contributions (see Section
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3.3) to the vacancy formation energy.

Figure 5.22: Distribution of the compounds in the entire dataset over elements (lighter shades indicating more
compounds containing that element) and spacegroups (where each spacegroup is indicated by its number
index).

5.3.2 Machine Learning Models

In developing a model for predicting the oxygen vacancy formation energy we have multiple goals.

We firstly aim to identify simple-to-extract features that only rely on compositional and generic

structural information and can be combined with the widely employed Magpie feature set introduced

by Ward et al.132 to specifically target oxygen vacancy formation energy prediction. We then also

want to leverage the wealth of information generated through DFT calculations of the pristine

structure of interest to compose a feature set containing only a small number of descriptors with
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Figure 5.23: Distribution of values of the oxygen vacancy formation energy, and of its relaxation (∆Ev f ,R)
and unrelaxed (∆Ev f ,UN) contributions for the compounds contained in the dataset.

intuitive relation to oxygen vacancy formation energy. In both cases, we then want to use the features

in conjunction with prediction algorithms capable of identifying relationships between features

and target property that go beyond linearity while still being fast and interpretable, and achieve

reliable predictive accuracy starting with even just a few hundred training points. We introduce the

selected features in Section 5.3.2.1, where we also describe other features previously employed in

the literature which we will use for comparison. In Section 5.3.2.2 we then train random forest

models on the data introduced in the previous chapter and compare the performance obtained using

various combinations of features, including previous feature sets employed in the literature. We

find the models using the feature sets introduced in this work to be the best performing ones out of

the ones examined, achieving a mean absolute error as low as ∼0.3 eV/O. Finally, in Section 5.3.3

we employ such models to predict the oxygen vacancy formation energy of newly calculated, DFT

stable (within 25 meV/atom of the convex hull), A and B site ordered AA’BB’O6 double perovskites

and select the most promising ones for STCH applications.
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5.3.2.1 Features

The present section is dedicated to the description of various features used for ∆Ev f predictions.

First, the choices behind the two feature sets selected in this work (referred to as Feature set I

and Feature set II) are detailed. Then, other features used in previous works are listed and briefly

described, explicitly mentioning which ones can be classified as global features, and which as

site-specific. The nomenclature introduced in this section to refer to each feature and feature set is

utilized for the rest of the paper.

Our first step is to introduce features capable of accounting for the strong influence, which we

have highlighted in the previous chapter, of the atomic species and oxidation state of the cations

in each metal oxide on the oxygen vacancy formation energy. In order to differentiate each cation

in our dataset while capturing the energetic change involved in the breaking of the bonds and the

redistribution of charge involved in the creation of an oxygen vacancy, we compute the unrelaxed

oxygen vacancy formation energy (see Methods and Section 3.3) of a binary oxide containing each

such cation. We refer to this quantity as ∆EMOx
v f , where M indicates the cation species, the oxidation

state is 2x+, and the binary oxides are selected by looking for the lowest energy MOx compounds

in the OQMD. The values of ∆EMOx
v f for the cations included in this work are displayed in Figure

11.64. Trends in accordance with what we observed for perovskites and pyrochlore oxides can

be identified: (i) rare-earth and alkali metal species having larger ∆EMOx
v f than most transition and

post-transition metals, (ii) and ∆EMOx
v f decreasing with increasing period among the same transition

metal series, and (iii) being larger for smaller oxidation states for the same metal.

We then construct two feature sets that leverage the information contained in the descriptor

detailed above.

Feature set I contains two types of features:

• Magpie:

The Magpie feature set introduced by Ward et al., which contains stoichiometric attributes

(such as the number of elements in the compound), elemental properties statistics (such as the

average atomic number of the elements in the compound), electronic structure attributes (such
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Figure 5.24: ∆EMOx
v f of all M2x+ cations included in the dataset. Different markers indicate different oxidation

states: blue circles for 1+, cyan lines for 2+, green triangles for 3+, yellow squares for 4+, orange pentagons
for 5+, and red hexagons for 6+. Trends across groups, periods and oxidation states can be observed:
rare-earth and alkali metal species have larger ∆EMOx

v f than most transition and post-transtion metals, and
∆EMOx

v f decreases with increasing period among the same transition metal series, and is larger for smaller
oxidation states for the same metal.

as the average number of d electrons across elements in the compound), and ionic compound

attributes (such as the "ionic character" of the compound).132 These are all global features.

• stats(∆EMOx
v f ):

Statistics over features constructed from the unrelaxed vacancy formation energy of binary

oxides. Two particular quantities are selected. (i) min(∆EMOx
v f ): the lowest value of ∆EMOx

v f

among all M2x+ cations in the structure, which is a global feature. Considering, for example,

the pyrochlore Lu2Mn2O7, where Mn4+ is the easiest to reduce cation, min(∆EMOx
v f ) would

correspond to ∆EMnO2
v f . (ii) < ∆EMOx,NN

v f >: the weighted average of ∆EMOx
v f over all M2x+

cations neighboring the vacancy, which is a site-specific feature. The weights are defined

to sum to 1, and to be larger for cations with smaller ∆EMOx
v f , so as to reflect the dominant

role in determining ∆Ev f that cations with smaller ∆EMOx
v f have, as observed in the previous

chapter. Specifically, for each cation i neighbouring the vacancy having ∆EMOx,i
v f , its weight

is defined as wi =
1

1+(E
MOx,i
v f −min(E

MOx,NN
v f ))

1
∑i wi

, where min(EMOx,NN
v f ) is the lowest ∆EMOx

v f

among the cations neighboring the vacancy. Considering again the example of pyrochlore

Lu2Mn2O7, which has two types of vacancy sites (V1 where neighbors are 2 B and 2 A

cations, and V2 where neighbors are 4 A cations), for V1 < ∆EMOx,NN
v f > would correspond

to 2wMnO2∆EMnO2
v f +2wLu2O3∆ELu2O3

v f with wLu2O3 =
1

1+(E
Lu2O3
v f −∆EMnO2

v f )

1
2wMnO2+2wLu2O3

∼ 0.1
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and wMnO2 = 1 1
2wMnO2+2wLu2O3

∼ 0.4, and for V2 <∆EMOx,NN
v f > would correspond to ∆ELu2O3

v f

. The selection of these quantities is aimed at capturing the influence that the nature of the

cations neighboring the vacancy has on the oxygen vacancy formation energy, and reflecting

the dominant role of cations with smaller ∆EMOx
v f .

A major advantage of only requiring compositional and generic structural information is that this

feature set can in principle be utilized without the need for any previous DFT calculation of the bulk

structure, and only necessitates a structural prototype decorated with all the elemental combinations

of interest (which is often the starting point of high-throughput studies). We note that a significant

caveat of the above consideration is that, upon relaxation, atomic positions can at times change

enough for the oxidation state of the cations determined from the relaxed and unrelaxed structure

to differ. Given that cation oxidation states play a major role in ∆EMOx
v f -related features, this can

significantly affect predictions. To assess the extent of the impact of this effect, we determine

the oxidation states of all cations in all compounds in our dataset before and after relaxation,

finding that in 90% of the cases they remain the same. We therefore conclude that, while not an

infallible strategy, Feature set I can be used to coarsely screen ∆Ev f of compounds prior to running

DFT calculations. For example, within a search for new compounds with a specific structural

prototype(s) and ∆Ev f in a target range, we can use an ML model with Feature set I to produce

∆Ev f predictions on the unrelaxed structures, and then reduce the number of DFT calculations of

the pristine structures by only computing structures with a predicted ∆Ev f within a range of interest

(ideally larger than the final target range so as to reduce possible false negatives).

Feature set II, which excludes Magpie features and is thus much smaller, is composed of the

following features:

• stats(∆EMOx
v f ):

The same two quantities described in the previous paragraph, with the only difference that

the weights used to calculate are now also inversely proportional to the bond length between

O and the relevant neighboring cation in order to capture more information on the local

environment surrounding the vacancy.
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• ∆E f :

The formation energy of the compound, aiming to capture energy change related to breaking

bonds across the whole compound. This is a global feature.

• (Esite
Op +Eg):

The energy difference between the center of mass of the p band of the oxygen atom which

becomes vacant and the first unoccupied state in the band structure (as computed using the

pristine structure before introducing the vacancy), aiming to capture the energetic change

associated with the change of state of the electrons previously involved in the bond with the

O atom becoming vacant. This is a site-specific feature.

Having a feature set containing only a small number of features presents the advantage of being

versatile, less prone to overfitting risk, and interpretable.

In order to compare the predictive value of our features against features used in other studies,

we compute the following features from other studies:

• V NN
r :

The maximum reduction potential of the cations neighboring the vacancy. For each cation M

with oxidation state x, the reduction potential is calculated by taking the energetic difference

between the energy of the ground state polymorph of the binary oxide MOx/2 and the energy

of the ground state polymorph of the binary oxide MO(x−1)/2, and accounting for the O

energy. This is a site-specific feature. This feature was introduced in the work by Wexler

et al.,55 where more details can be found. We note that in Wexler et al.55 the ground state

polymorphs are taken from the Materials Project while in the present work they are taken

from the OQMD.

• Eg:

The band gap of the bulk compound of interest. This is a global feature. This feature was

utilized in the work by Wexler et al.,55 where more details can be found.



73

• ΣENN
b :

The sum of the crystal bond dissociation energy of the cations neighboring the vacancy. For

each M with oxidation state x, the crystal bond dissociation energy is calculated by taking the

ratio between the cohesive energy of the ground state polymorph of the binary oxide MOx/2

and the number of M-O bonds present in that binary oxide. In turn, the cohesive energy of

a binary oxide MOx/2 is calculated by subtracting the cohesive energy of the metal and the

bond dissociation energy of O2 from the formation energy of the binary oxide. This is a

site-specific feature. This feature was introduced in the work by Wexler et al.,55 where more

details can be found. Once again, we note that in Wexler et al.55 the ground state polymorphs

are taken from the Materials Project while in the present work they are taken from the OQMD.

• ∆Estab:

The stability of the bulk compound of interest. This is a global feature. This feature was

utilized in the work by Wexler et al.,55 where more details can be found.

• (EOp +0.75Eg):

The sum of the bandgap and the difference in energy between the Fermi energy and the center

of mass of the oxygen p band of a compound. This is a global feature. This feature was

introduced in the work by Deml et al.,41 where more details can be found.

• < ∆χNN >:

The average difference in Pauling electronegativity between oxygen and its first nearest

neighbors. This is a global feature. This feature was introduced in the work by Deml et al.,41

where more details can be found, and was also employed in the work by Wan et al.128

• ∆χ1stNN :

The site specific difference in Pauling electronegativity between oxygen and its closest cation.

This is a site-specific feature. When evaluating the performance of the features utilized in

the works by Deml et al.41 and Wan et al.128 in the next section, this feature, rather than

the previous one is utilized. The reason behind this choice is that, while the original works
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only predict one ∆Ev f value for each compound, in this work we separately predict the

values of different vacancy sites, and we therefore consider the substitution of the average

electronegativity difference with the site specific one to provide a fairer evaluation in this

case. We also note that this substitution improves the performance of the two feature sets.

• #e−O/#e−tot

The product of the number of electrons in a single O atom and the number of O atoms in the

compound of interest, divided by the total number of electrons in the compound of interest.

This is a global feature. This feature was introduced in the work by Wan et al.,128 where more

details can be found.

5.3.2.2 Models Performance

Having introduced numerous descriptors of the oxygen vacancy formation energy in the previous

section, we now test and compare the performance achieved by machine learning algorithms using

different combinations of such descriptors. The machine learning algorithm of choice for most of

the analysis is a random forest regressor,133 both due to its reportedly solid performance across a

variety of tasks, robustness against overfitting, speed and interpretability, and since, as we will show,

it yields lower error than other tested regressors (kernel ridge, support vector machine, and linear

regression). To give a more complete insight, we also examine correlation coefficients between the

different descriptors.

We first test the predictive accuracy of the feature sets introduced in this work with different

amounts of training data. Figure 5.25 displays the mean absolute error achieved by a random

forest model utilizing the two feature sets against training set size, with a fixed test set size of

500 datapoints. In all cases, training and testing set are selected such that, even in the presence

of multiple different vacancy sites for the same compound, the sites are separated so that each

compound only appears in one of the two sets, i.e. performance testing is only on entirely unseen

compounds. For all ranges of training data, the two feature sets display a very similar performance,

achieving a mean absolute error as low as 0.3 eV/O when the full training set size is utilized.
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We also compare the two feature sets with the Magpie feature set (black square) and highlight

the doubling in accuracy (halving in MAE) that occurs when introducing the binary ∆Ev f -related

features (blue triangle). In addition to the performance tests just described, we also investigate

the accuracy achieved when predicting the unrelaxed and relaxation contributions to the vacancy

formation energy (respectively, ∆EUN
v f and ∆ER

v f , see Section 3.3) independently from each other.

We find that, when utilizing a training set of 2000 datapoints and Feature set I, the MAE upon

prediction of ∆EUN
v f is of ∼0.2 eV/O and that of ∆ER

v f is of ∼0.1 eV/O. To put the above results in

context, we note that, for the compounds included in our dataset, ∆EUN
v f spans a range of ∼8eV,

while ∆ER
v f lies between 0 and -2eV for the vast majority of the cases, with a magnitude smaller than

1eV in over half of the cases (see Fig 5.23). This highlights the opportunity for achieving a more

accurate ∆Ev f prediction by identifying features capable of capturing the mechanisms involved

ionic relaxation upon vacancy formation (i.e. targeting the relaxation component), which is of

interest for future improvements.

We then compare the performance of the feature sets introduced in this work with those present

in the literature. The differences in the training sets, both in terms of size and content, and in

the regressors used in previous studies can lead to significant differences in performance upon

extrapolation. Therefore, in order to achieve a transparent comparison, we opt for utilizing the

same training set (the one presented in this work) and regressor (a random forest regressor) for

different models that utilize the feature sets introduced in each work we consider. The results are

displayed in Figure 5.26, where "Ref A" indicates the work by Wan et al.128 (marked with green

stars), "Ref B" the work by Deml et al41 (marked with yellow crosses), "Ref C" the work by Wexler

et al.55 (marked with cyan plus signs), and "This Work" refers to the feature set introduced in this

work that leverages DFT bulk calculation information (i.e. the one previously referred to as Feature

Set II, marked with red triangles in both 5.25 and Fig 5.26). Through the comparison we see that,

for all training set sizes, the random forest model using the feature set introduced in this work

systematically outperforms the other models. Among the other models, the one utilizing the feature

set developed by Wexler et al.55 also shows remarkable performance, reaching a mean absolute error
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Figure 5.25: Performance of random forest models utilizing different feature sets as a function of training
set size. The datapoints are centered on averages over 10 random choices of training data, with error bars
representing standard deviations. The marker indicate different feature sets. The black square indicates the
Magpie feature set. The blue triangle indicates the feature set composed of Magpie features and information
on the oxygen vacancy formation energy of binary oxides with the same cations as the ones neighboring
the vacancy, i.e. Feature set I described in Section 5.3.2.1. The red triangle indicates the feature set which
uses information from DFT bulk calculations, i.e. Feature set II described in Section 5.3.2.1. The test set
size is always 500. Train and test set are randomly selected with the enforcement of the condition that each
composition can only appear in one of the two sets. Without this condition, as many compounds have multiple
non-equivalent vacancy sites, it is likely that a purely random train-test separation would lead to different
sites of the same compound appearing in the two sets.

below 0.4 eV/O. We attribute a significant role in such achievement to the presence of features which

clearly capture the difference both in specie and in oxidation state of the metal cations neighboring

the vacancy, which we have seen to have a primary impact on ∆Ev f in the previous chapter. We

deem the absence of such type of feature to be the main reason limiting the accuracy reached by the

model utilizing the feature set introduced by Deml et al.41 Lastly, the feature set chosen by Wan et

al128 appears to produce significantly less accurate predictions, although we note that the aim of the

authors was to identify a particularly simple set of features and avoid overfitting. Since previous
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works have focused on compounds with a non-zero DFT bandgap, and ∼ 25% of the compounds in

our dataset have a zero OQMD-computed DFT bandgap, we also reproduce Figure 5.26 limiting the

training and testing set to the compounds with Eg > 0. The results of this additional performance

test, displayed in Fig 5.27, are largely similar to those presented in Figure 5.26, with evidence of a

modest performance improvement for the models utilizing the feature sets introduced by Wexler

et al and Wan et al, but the overall predictive hierarchy between feature sets is left unchanged. In

addition to the above comparison of the predictive power of random forest models utilizing different

feature sets in the literature, we also consider performance of the convolutional neural network

introduced by Witman et al.130 The lowest mean absolute error upon prediction of oxygen vacancy

formation energy with a compound-wise train/test split (i.e. with the same logic applied in this

study as described in the previous paragraph) is reported to be 0.45 ± 0.12 eV/O, and to have been

achieved with 10-fold cross validation and a training set of over 103 datapoints. We however note

that the training set utilized by the authors is composed of a variety of vacancy types, and that cation

vacancy formation energies are likely to be less informative for oxygen vacancy prediction. We

therefore point out that out of the 1481 defect energies present in the entire dataset, only 795 are

from oxygen vacancies.

To gain further insight on the predictive utility of each of the individual features composing

the feature sets just discussed, we now examine both their statistical correlation to ∆Ev f , and the

informational gain they carry in comparison with the Magpie feature set. Throughout this discussion

we refer to the different features using the nomenclature introduced in Section 5.3.2.1, where we

explain in detail the significance and computation of each feature. In Figure 5.28 a we first report the

Pearson and Spearman coefficients of each single feature in correlation with the vacancy formation

energy. Features are ordered based on the magnitude of their correlation with the vacancy formation

energy, and it can be clearly seen that features related to cation reduction (∆EMOx
v f , ∆EMOx,NN

v f , and

V NN
r ) exhibit the highest magnitude of correlation to the vacancy formation energy. The formation

energy (∆E f ) and band structure-related properties containing information about the oxygen p band

(Esite
Op +Eg and EOp + 0.75Eg) also show a strong correlation with ∆Ev f , all having Pearson and
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Figure 5.26: Mean absolute error of prediction of oxygen vacancy formation energy by random forest
models utilizing different feature sets as a function of training set size. "Ref A" indicates the work by Wan et
al.128 (where the set of features is: ∆χ1stNN , #e−O /#e−tot , the total number of atoms, O atoms and electrons per
formula unit, and the fraction of O atoms), "Ref B" the work by Deml et al41 (where the set of feature is:
∆E f , (EOp +0.75Eg) and ∆χ1stNN), "Ref C" the work by Wexler et al.55 (where the set of features is: V NN

r ,
Eg, ΣENN

b and ∆Estab), and "This Work" indicates Feature set II described in the previous section. The test set
size is always 500 and train and test set are randomly selected with the enforcement of the condition that
each composition can only appear in one of the two sets.

Spearman coefficients above 0.67. In Figure 5.28 b we then examine the predictive accuracy of

each feature when employed in a random forest model along with the Magpie feature set. The

aim of this analysis is twofold. Firstly, to broaden the range of correlation types considered, as,

while informational, the Pearson and Spearman coefficients don’t recognize all types of dependence

between variables that can be leveraged by, eg. a random forest model. Secondly, to benchmark

the utility of each additional feature compared to what could already be captured with an easily

available, readily implementable, and widely used feature set. To perform the comparison, we

compute the mean absolute error achieved by a random forest model with different training set

sizes and a fixed test set size of 500 datapoints, starting with the Magpie feature set (black square),
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Figure 5.27: Mean absolute error of prediction of oxygen vacancy formation energy by random forest
models utilizing different feature sets as a function of training set size. "Ref A" indicates the work by Wan et
al.128 (where the set of features is: ∆χ1stNN , #e−O /#e−tot , the total number of atoms, O atoms and electrons per
formula unit, and the fraction of O atoms), "Ref B" the work by Deml et al41 (where the set of feature is:
∆E f , (EOp +0.75Eg) and ∆χ1stNN), "Ref C" the work by Wexler et al.55 (where the set of features is: V NN

r ,
Eg, ΣENN

b and ∆Estab), and "This Work" indicates Feature Set B described in the previous section. The test
set size is always 400 and train and test set are randomly selected from compounds in the dataset that have a
non-zero OQMD computed DFT band gap, with the enforcement of the condition that each composition can
only appear in one of the two sets.

and then including one additional feature individually. We firstly notice that site-specific features,

which are marked with circles, generally outperform global ones, marked with squares. A major

exception to the above observation are the ∆EMOx
v f -related features. In fact, especially for lower

training sizes, but in general throughout any training set size, the features related to cation reduction

are very apparently the best performing ones. Such features are the two introduced in this work:

∆EMOx
v f and ∆EMOx,NN

v f , and the one introduced by Wexler et al,55 V NN
r . This evidence corroborates

our earlier observation that the presence of element- and oxidation state- specific information in

the feature set introduced by Wexler et al in plays a significant role in its competitive performance.
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We also remark that, while features such as the formation energy of the pristine structure ∆E f do

not exhibit any significant improvement in prediction accuracy of ∆Ev f when added to the Magpie

feature set, this does not indicate a lack of utility in ∆Ev f prediction per se (as we can see by the

correlation coefficients in Fig 5.28 a) but rather a redundancy with the information already captured

by Magpie (Magpie is in fact utilized for predictions of ∆E f itself132, 134, 135).

Figure 5.28: (a) Pearson (lower left triangle) and Spearman (upper right triangle) correlation coefficients
of each feature with the oxygen vacancy formation energy. Red indicates positive correlation and blue
indicates negative correlation, with darker shades indicating a stronger correlation. Feature names utilize
the nomenclature introduced in Section 5.3.2.1 and are ordered top to bottom by magnitude (absolute value)
of the correlation coefficients. (b) Mean absolute error of prediction of oxygen vacancy formation energy
by random forest models utilizing different feature sets as a function of training set size. The black square
indicates the case where only the Magpie feature set is utilized, while all other markers indicate the Magpie
feature set plus one additional feature. When the additional feature is site-specific (i.e. contains information
that depends on the site of the oxygen vacancy, such as nearest neighbors), the marker is circular, otherwise
the marker is squared. The test set size is always 250 and train and test set are randomly selected with the
enforcement of the condition that each composition can only appear in one of the two sets.

Finally, we test the effect that different regressors have on ∆Ev f predictions, when using the

same training and feature set (see Fig 5.29). We test random forest (RF), support vector (SVR),

kernel ridge (KRR) and linear regressors (LR), with the different sets of features examined in Figure

5.26. Random forest emerges as the best performing algorithm in all cases, with support vector
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and kernel ridge following, and linear regression achieving a significantly more limited accuracy.

Furthermore, the feature set introduced in this work achieves the lowest mean absolute error across

all regressors, its predictive power being by far the least affected by regressor choice among the

feature sets considered.

Figure 5.29: Mean absolute error of prediction of oxygen vacancy formation energy of different combinations
of features and regressors. In (a) results are obtained by considering on the full dataset (2000 training data,
500 test), and (b) only compounds with a non-zero OQMD computed DFT band gap (1500 training data, 400
test). RFR indicates random forest regression, SVR, support vector regression, KRR kernel ridge regression,
and LR linear regression. "Ref A" indicates the work by Wan et al.128 (where the set of features is: ∆χ1stNN ,
#e−O /#e−tot , the total number of atoms, O atoms and electrons per formula unit, and the fraction of O atoms),
"Ref B" the work by Deml et al41 (where the set of feature is: ∆E f , (EOp+0.75Eg) and ∆χ1stNN), "Ref C" the
work by Wexler et al.55 (where the set of features is: V NN

r , Eg, ΣENN
b and ∆Estab), and "This Work" indicates

Feature Set B described in the previous section.

5.3.3 New Predictions

Having demonstrated the predictive power of random forest models utilizing the feature sets we

introduced, we now exemplify their use in the search for new materials. Specifically, we choose to

focus on new compounds for STCH applications. In this context, the perovskite family possesses

a number of attractive properties, such as ability to withstand high temperature, and accomodate

oxygen defects, and ease of oxygen diffusion. Having already studied both simple ABO3 perovskites

and B site ordered A2BB’O6 double perovskites in the previous chapter, we now take the next step

in combinatorial complexity by considering two different cation species on both the A and the B site.

In order to avoid the creation of large supercells to simulate disordered atomic configurations, we

focus on ordered compounds. While numerous examples of B site ordered double perovskites are
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present in the literature, ordering on the A site appears more infrequent, often being stabilized by

anion or cation vacancies.121 A number of examples of concurrent A and B site ordering in double

perovskites have however been reported in compounds such as NaNdMnWO6, where the A cations

assume a layered-type of ordering, and the B cations assume a rocksalt configuration analogous

to that of the double perovskites presented in Section 4.3.136, 137 We therefore choose to focus on

this structure type, and in particular the NaNdMnWO6 structural prototype, which crystallizes in

a monoclinic cell presenting both out-of-phase rotations of the oxygen octahedra about the [110]

direction of the cubic structure and in-phase rotation of the octahedra about the [001] direction136

(see Fig 11.67 for a visual representation of the structure).

To search for new STCH compounds with NaNdMnWO6 structure type, we apply two screening

criteria: thermodynamic stability and oxygen vacancy formation energy. In particular, we look

for compounds within 25meV/atom of the OQMD convex hull and with a ∆Ev f between 2 and

4.5 eV/O. In the past, this type of screening has been conducted by first computing the stability

of all decorations of the structural prototype of interest, and subsequently computing the vacancy

formation energy of the stable compounds identified in the previous step. In the present case,

considering all distinct metal cations decorations of AA’2BB’O6 double perovskite cation sites leads

to millions of possible combinations. In order to render the problem computationally tractable, we

employ multiple strategies to decrease the number of candidates.

As a first step, we reduce the number of compositions to be evaluated for thermodynamic

stability. To do so, we first limit the possible cations occupying each site to specific groups that are

more likely to lead to stable and ordered compounds.137 In particular, we circumscribe the A site

cations to alkali and alkali earth metals (K,Na,Rb,Ca,Sr,Ba), the A’ ones to rare earth elements, the

B cation to transition metals (any 3d, 4d, 5d transition metal), and the B’ cation to early, high-valent

transition metals (Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W). We then leverage the Feature set I introduced

in Section 5.3.2.1 (the one containing only compositional and generic structural information) to

predict the compounds’ vacancy formation energies and apply a first, coarser, filter eliminating

compounds having all predicted ∆Ev f values above 4.5 eV/O. Through this combined strategy, we
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reduce the number of compounds to ∼8600. We then perform stability calculations on the remaining

compounds, and find over 600 of them to lie within 25meV of the OQMD convex hull. While the

possibility of such compounds presenting cation disorder upon synthesis is conceivable, previous

calculations on two recently experimentally reported mixed perovskites have shown that oxygen

vacancy formation calculations performed on the ordered double perovskite equivalent of the mixed

perovskite produced results accurate enough to guide candidate selection for STCH.113, 114

Having identified several hundred new stable (within 25 meV of the hull) AA’2BB’O6 candidates,

we employ the random forest model using Feature set II introduced in Section 5.3.2.1 (the one

containing information from the DFT calculation of the defect-free structure) to predict their oxygen

vacancy formation energies. For each compound, six unique oxygen sites can be identified (one in

each A layer, and four between the two A layers), making the prediction goal not only to differentiate

∆Ev f among different compounds, but also among different sites in the same compound, in order to

predict the smallest value of ∆Ev f for each compound. In the majority of cases, the model predicts

∆Ev f of all the O sites in the same compound to be within 0.3 eV/O of each other. We perform

preliminary calculations on a subset of 5 compounds, and confirm the models predictions of lack

of large difference between vacancies before relaxation, but however observe more significant

differences upon relaxation in some cases, with the vacancies between the two A layers having

a more negative ∆ER
v f (and therefore a smaller ∆Ev f ). Based on these observations, we restrict

our candidate search by considering only the O vacancy sites between the two A layers. We then

select the compounds with the smallest predicted ∆Ev f lying in the target STCH range and directly

compute their vacancy formation energy within the OQMD framework. Through such calculations,

we both confirm the predictive power of the model, finding ∆Ev f values to lie in the exact range

in over 75% of the cases, and within 0.5 eV/O of the range in 99% of the cases, and identify

over 250 new STCH candidates, a complete list of which is reported in the Appendix. Within

such candidates, we highlight the presence of cations previously identified as promising for STCH

applications: Mn3+ (in compounds like (Ca,Sr)(Y,La,Ce,Pr,Sm,Tb,Gd,Dy)Mn(Ti,V)O6), Mn4+ (in

compounds like Na(Y,Ce,Pr,Sm,Nd,Gd,Tb,Tm,Ho,Dy)Mn(Ti,Zr,Hf)O6) and Co3+ (in compounds
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like (Ca,Sr)(La,Nd,Pr,Dy)CoTiO6).
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6. Computational Study of the Entropy of

Oxygen Vacancy Formation in Metal Oxides

6.1 Background

The formation of oxygen vacancies can have favourable effects for various technologies. As

highlighted in the previous chapters, the presence oxygen loss plays a fundamental role in STCH,

with typical two step cycles relying on oxygen release at higher temperature to then harvest H2 upon

flowing water vapour in the oxygen deficient material at lower temperatures.7–9, 56–58 Analogous

processes utilizing on oxygen loss for a two step reduction-oxidation reaction also find application

for air separation69 and splitting of CO2 into CO and O2.56–58, 68, 138 In solid oxide fuel cells

(SOFCs) the vacancy sites are instrumental for bulk oxide ion diffusion, providing pathways for the

transport of the ions.51, 52 Oxygen off-stoichiometry can also be advantageous in a variety of other

applications, for example photocatalysis139 and piezocatalysis.140

As seen in previous chapters, significant efforts have been dedicated to the computation of

oxygen vacancy formation energies (∆Ev f ), covering a range of different structure types and a

vast array of compositions.41, 54, 96, 130 The availability of sizeable datasets of ∆Ev f calculations

has then offered the possibility of uncovering trends across materials and developing predictive

models,41, 54, 96, 128–130 presenting an even larger potential for materials investigation.

Finite temperature properties such as the entropy of defect formation, however, remain less

studied on a computational level. Naghavi et al.141 examined the entropic contribution originating



86

from the coupling between orbital and spin angular momenta in lanthanide ions, finding the

reduction of Ce4+ ions to result in an exceptionally large value compared to all other lanthanide

atoms, and uncovering a particularly significant contribution the large entropy of reduction of Ceria,

the benchmark material in STCH.53, 105 The solid state entropy of reduction of Ceria was also at

the center of a study by Gopal and van de Walle,142 who computed configurational and vibrational

entropic contributions through cluster expansion Hamiltonian-based Monte Carlo simulations.

While still investigating defect formation in Ceria, Grieshammer et. al143 targeted the vibrational

component alone, examining multiple types of defects including O vacancies. Similar small-scale

studies examining the vibrational entropy of O vacancy formation in a specific material of interest

have been conducted for a limited number of metal oxide compounds.144, 145 Wider-ranging studies

than the ones present in the literature are of interest to deepen the understating of the role of the

solid state vibrational entropy of O vacancy formation in processes like the ones involved in STCH,

and investigate common features and differences between materials.

In this study, we examine the the change in solid state vibrational entropy involved in the

formation of oxygen vacancies (∆Svib) in 10 different metal oxide compounds, crystallizing in

different structure types: perovskite, double perovskite, hexagonal "LuMnO3"-type, and pyrochlore.

We consider the process of formation of neutral oxygen vacancies, where, rather than the lattice itself

acting as a reservoir for the oxygen becoming vacant, the final state of oxygen is accounted for with a

gaseous entropy term discussed in the last section of the text. We both highlight common features in

∆Svib between the compounds examined, such as the trend with temperature, and identify significant

differences, such as the contributions from the cations neighboring the vacancy. Examining the

mechanisms leading to positive or negative contributions to ∆Svib, we find the lengthening of the

bonds between the cations where charge localizes upon vacancy formation and the neighboring

oxygen atoms to lead to an increase in vibrational entropy, and the loss of the O atom itself to be

the main contribution responsible for the steady decrease in ∆Svib at higher temperatures. We also

compare the change in solid state vibrational entropy to other significant contributions to the total

entropy of vacancy formation, namely the gas entropy of O2 and the configurational entropy, finding
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∆Svib to play a smaller but non-negligible role. Several paragraphs in this chapter are quoted directly

from our manuscript.146

6.2 Methods

All DFT calculations have been conducted using the Vienna ab-initio simulation package (VASP),75, 76

with projector augmented wave (PAW) potentials77 and the Perdew-Burke-Ernzehof (PBE)78 gener-

alized gradient approximation (GGA) for the exchange-correlation functional. A plane wave cutoff

energy of 520 eV was employed, with a gamma centered k-point grid with a density of at least

8600 points per reciprocal atom, and spin polarization was applied with a ferromagnetic configu-

ration, initializing magnetic moments to 5µB. The over-delocalization of electrons in compounds

containing 3d transition metals due to the residual self interaction present in exchange-correlation

functionals36–40 was treated through the addition of a Hubbard-like potential to the energy func-

tional.42 Results in Sections 6.3.1 and 6.3.2 are presented for a constant value of U=4eV for all

compounds (U=3.8eV for the "LuMnO3"-type compounds), but the effect of utilizing different U

values is explored in Section 6.3.3.

Phonon dispersions were calculated by means of the finite difference method as implemented in

PHONOPY.50 The solid state vibrational entropy of vacancy formation ∆Svib (per O vacancy) was

calculated by computing the difference in vibrational entropy between the pristine and vacancy-

containing cell, which for an AxByOz compound can be expressed as:

∆Svib = Svib(AxByOz−δ )−Svib(AxByOz) (6.20)

Where Svib(AxByOz−δ ) is the vibrational entropy of the defect containing cell (containing one O

vacancy), and Svib(AxByOz) is the vibrational entropy of the defect-free cell, both of which are

calculated from structures where both volumes and atomic positions are allowed to relax (i.e. at

p=0). Note that, while the vibrational entropy of vacancy formation is a function of temperature, we

refer to it as ∆Svib instead of ∆Svib(T ) for shorthand in many instances in the text.



88

∆Svib was computed for 10 different compounds: the orthorhombic perovskites LaMnO3,

CaMnO3, YFeO3 and LaFeO3, the B site ordered double perovskites Sr2MnTiO6 and Ca2MnTiO6,

the "LuMnO3"-type compounds YMnO3, HoMnO3 and LuMnO3, and the pyrochlore Lu2Mn2O7.

For each compound, vacancy containing structures were obtained by introducing an oxygen vacancy

(VO) in supercells of, respectively, 80 atoms for perovskite oxides, 90 atoms for "LuMnO3"-type

compounds, and 88 atoms for pyrochlore oxides. 1x2x1 supercells of the 80 atom cells (where the b

axis is shorter than the a and c axis before doubling) were constructed for phonon calculations of

perovskite oxides, such that phonon calculations were conducted with cell dimensions ≳ 10Åalong

all directions for all compounds. The above are the largest cell dimensions that could be considered

at a reasonable computational cost.

In Section 6.3.1, in order to investigate the effect of temperature on the contribution from

different frequencies to the total the vibrational entropy of VO formation, the quantity ∆Svib(ω,T )

is computed by only integrating the entropy up to a frequency ω (with ∆g(ω) indicating the density

of states difference between the defective and pristine structures):

∆Svib(ω,T ) =
∫

ω

0
(

1
2T

coth(
ω

2kBT
)− kBln(2sinh(

ω

2kBT
)))g(ω)dω (6.21)

In Section 6.3.4, other contributions to the total entropy of VO formation are examined. ∆Svib

only accounts for the change in the solid state vibrational entropy (at the harmonic level) of the

metal oxide upon introducing an O vacancy, and is calculated as the difference in vibrational

entropy between two cells with a different number of atoms (specifically, one less O atom in the

defect-containing cell). The vibrational entropy of O in its final gas state is accounted for (along

side the translational and rotational contributions) in the gas entropy term (discussed in Section

6.3.4). The total entropy of O vacancy formation can then be calculated as:

∆Stot = ∆Svib +1/2S(O2)+∆Sother (6.22)

Where 1/2S(O2) represents the gas entropy contribution and ∆Sother accounts for contributions to
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the total entropy of VO formation other than the change in solid state vibrational entropy and the

gas entropy. For the compounds examined in this text, we consider the main contribution to ∆Sother

to be from the configurational entropy, as further discussed in Section 6.3.4, but other sources of

entropy, such as electornic configurational141 and magnetic can also contribute to the total entropy

of VO formation.

6.3 Results

In Figure 6.30 we compare the solid state vibrational entropy of Vo formation of all the com-

pounds we selected as a function of temperature, subdividing by structure type: (a) perovskite, (b)

"LuMnO3"-type and (c) pyrochlore. It can be observed that, in all cases, an initial increase in ∆Svib

is followed by a peak around room temperature, and then a steady decrease. Despite the general

similarities in the overall temperature behaviour, differences can be observed between materials,

mainly in terms of the height and location of the peak, and of the rate of descent. We analyse

these behaviours over the next sections. Firstly, in Section 6.3.1, we rationalize the general shape

of the temperature dependence of ∆Svib, identifying the main contributions to each feature of the

curve. In Section 6.3.2 we then analyze single atomic contributions to the vibrational entropy,

highlighting similarities and differences between compounds. Finally, in Section 6.3.4, we examine

the configurational and gas phase contributions to the entropy of vacancy formation.

6.3.1 Temperature Behaviour of the Vibrational Entropy

As visible in Figure 6.30, two basic components of the trend of ∆Svib with T can be identified: an

initial increase and a subsequent decrease. In order to investigate the origin of these features, we

first visualize the differences in the phonon density of states of the pristine and of the vacancy

containing structure and the contributions to the entropy of different vibrational frequency regions

at various temperatures. To connect the ∆Svib vs T curve to the contribution from different atoms in

the structure, we then also examine their individual contributions to the phonon density of states.
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Figure 6.30: Solid state vibrational entropy of O vacancy formation as a function of temperature for
compounds with (a) a perovskite structure, (b) a "LuMnO3"-type structure, and (c) a pyrochlore structure.
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As the general features of the ∆Svib vs T curve are common to all compounds we studied, we select

one specific compound, HoMnO3 to illustrate and density of states-related properties in the main

text, reporting the remaining compounds in the supplementary text.

We start the investigation of the origin of temperature dependence ∆Svib on T of by examining

general features of the phonon density of states (DOS) of HoMnO3. In Fig 6.31 (a) we first compare

the DOS of the pristine and defect-containing structure. Several differences can be noticed in

the phonon DOS of the defective structure when compared to the pristine one, most notably an

additional lower frequency (∼ 2 THz) peak and a red-shift in the frequencies of states at higher

frequencies (∼ 17 THz). Having compared the two DOS curves (defect-containing and pristine)

separately, we then compute their difference, and integrate it over vibrational frequency, as shown

through the black dotted line In Fig 6.31 (b). The integrated ∆ DOS has positive values for all lower

frequencies, with then a peak at around 17 THz followed by a decrease to negative values for higher

frequencies. To examine how the contribution of different frequencies to the vibrational entropy

changes with temperature we also display in Figure 6.31 (b) the running integral of the vibrational

entropy of vacancy formation, ∆Svib(ω,T ) (defined in Eqn. 6.21), for 5 different temperature

values (identified through different colors). At lower temperatures, the dominant contribution to

the vibrational entropy comes from smaller frequencies, where the integrated ∆ DOS is positive,

which is consistent with the initial growth of ∆Svib with temperature observed in Figure 6.30. As

temperature increases, however, larger frequencies start to have a larger weight, and, due to the now

no longer negligible contribution from the frequencies at which the integrated ∆ DOS is negative,

∆Svib starts decreasing.

Having identified the main features in the phonon density of states which determine the depen-

dence of ∆Svib on T, we now investigate the source of these features. To do so, we separate the

contributions to the phonon band structure from the different atoms in the structure. In Figure 6.32

we display the atom projected phonon density of states (PDOS) of (a) the pristine structure, and

(b) the vacancy-containing structure of HoMnO3. In the low frequency region the contributions

from the heaviest (in this case Ho) atoms dominate, while O, being the lightest species, is mainly
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Figure 6.31: (a) phonon density of states of the pristine ("bulk", orange) and vacancy-containing ("defect",
green) structures of HoMnO3. (b) lefthand y axis: Difference in the density of states between vacancy-
containing and bulk structures, integrated over vibrational frequencies (black dotted line). Righthand y axis:
∆Svib(ω,T ) (see eqn. 6.21), the vibrational entropy difference between the bulk and vacancy-containing
structure of HoMnO3, containing only contributions up to the vibrational frequency value indicated in the x
axis (solid lines of different colors indicating different temperatures)

associated with the higher frequency region. The low frequency peak observed in the defect DOS in

Figure 6.31(a) is associated with a redshift of the vibrational frequency of the Ho atom neighboring

the vacancy, which is consistent with bond-breaking. A similar redshift is also associated with the

vibrational frequencies of the Mn atoms neighboring the vacancy. We consider both such redshifts

to determine the initial positive value of the integrated ∆ DOS and of ∆Svib. As for the oxygen

atoms, a redshift upon vacancy formation can also be observed in the region ∼15-17 THz, which

is responsible for the peak in the integrated DOS. However, the higher density of states in the

pristine structure at larger frequencies (∼ 18 THz), which we also associate with the presence of one

additional oxygen atom (the one becoming vacant) in the pristine structure, eventually dominates

leading to a decrease in ∆Svib. We note that, even if the vibrational contribution from the oxygen

in its final gaseous state as part of the O2 molecule was added to the computation of ∆Svib, the

results would be very similar to what displayed in Figure 6.30, due to the vibrational frequency

of molecular oxygen being significantly higher than that of oxygen in the metal oxide lattice. An

estimate of the vibrational entropy of vacancy formation entirely excluding the contribution from

the oxygen atom becoming vacant can be obtained by first computing the atomic projections of
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the vibrational entropy of the pristine cell, then calculating their sum excluding the contribution

from the O becoming vacant, and finally subtracting the result from the vibrational entropy of the

vacancy containing cell. Such a computation, resulting in the pristine cell having the same number

of atoms as the defective cell, results in the entropy difference plateauing to positive values after the

initial growth, leaving the ranking between compounds unchanged (see Fig 6.33).

Figure 6.32: Atom projected phonon density of states of (a) the bulk structure and (b) the vacancy-containing
structure of HoMnO3. Red dotted lines represent contributions from O atoms, grey dashed lines from Mn
atoms, and blue solid lines from Ho atoms.

6.3.2 Atomic Contributions to the Vibrational Entropy

After an brief look at general characteristics of the contribution of different atoms in the structure to

the phonon density of states presented in the previous section for an exemplary material (HoMnO3),

the present section provides in depth look at the atomic contributions to the vibrational entropy

of all compounds included in the study. The analysis is carried out by first grouping the atoms

based on their distance to the vacancy, and then examining them singularly. A and B cations are

differentiated from O anions, and changes in charge localization and bond length are included in the

discussion.

Figure 6.34 displays the per atom contribution to ∆Svib (∆Satom
vib ) for the different atoms in each

compound, with the atoms being clustered in 6 different groups (8 groups for double perovskites):
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Figure 6.33: Change in solid state vibrational entropy upon formation of an oxygen vacancy computed
excluding the contribution from the oxygen atom becoming vacant, and displayed as a function of temperature

(i) the A cations neighboring the O vacancy site, referred to as "A NN" (ii) the B cations neighboring

the O vacancy site, referred to as "B NN" (and, for double perovskites, (ii.i) the B’ cations for

neighboring the O vacancy site, referred to as "B’ NN", where "B" indicates Mn and "B’" indicates

Ti) (iii) the O anions bonded to the A and B cations neighboring the vacancy, referred to as "O

2NN" (iv) all other A cations, referred to as "A other", (v) all other B cations, referred to as "B

other" (and, for double perovskites, (v.i) all other B’ cations, referred to as "B’ other"), and (vi) all

other O cations, referred to as "O other". The histograms are color-coded to indicate the number of

atoms in each group (darker colors indicating more atoms), and, once again, the figure is divided in

sub-figures grouping the compounds by structure type: (a) "LuMnO3"-type, (b) pyrochlore, and (c)

perovskite.

Comparing different compounds, multiple commonalities and differences in the contributions

to the vibrational entropy from each group of atoms can be highlighted. Firstly, in all cases, the

largest per atom contribution to ∆Svib is associated with the cations neighboring the vacancy, with

a second sizeable contribution coming from the O atoms bonded to those cations. Significant

variations can however be observed in both the magnitude and the sign of the contributions from the
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cations nearest neighbors to the O vacancy. Fe based perovskites, for example, show a fairly larger

"B NN" contribution compared to Mn based perovskites. The ultimately larger value of ∆Svib in

LaMnO3 and CaMnO3 compared to YFeO3 and LaFeO3 can attributed to the largest contributions

from "O 2NN" atoms and non-nearest neighbor cations, which despite their smaller per-atom

contribution compared to NN cations, are larger in number. Mn based double perovskites, on the

other hand, show a large positive contribution from the Mn nearest neighbor, but, concurrently, a

large negative contribution from the Ti nearest neighbor. A consistently larger "A NN" contribution

can be identified in Mn based "LuMnO3"-type compounds compared to perovskites, with the "B

NN" contribution being significantly larger in LuMnO3 than in YMnO3 and HoMnO3. Finally,

the pyrochlore Lu2Mn2O7 displays a large positive "B NN" contribution and an equally large, but,

negative "A NN" contribution.

To gain deeper insight on the origin of the different features highlighted in Figure 6.34, we

plot in Figure 6.37 all the ∆Satom
vib contributions from individual atoms separately (i.e. to each

atom corresponds a single data-point). We correlate ∆Satom
vib to the change in average vibrational

frequency of each atom upon vacancy formation (∆ < ωatom >), and we also discuss changes in

charge localization and bond lengths. In this instance, the datapoints are color-coded based on the

average vibrational frequency of the atom of interest in the pristine structure ("< ωatom
BULK >"). The

marker shapes are then chosen to distinguish A cations (squares), B cations (diamonds), and O

anions (circles), with a superimposed star to mark the A and B cations neighboring the vacancy

(those referred to as "A NN", "B NN" and "B’ NN" in Figure 6.34), and a superimposed asterisk to

mark the O anions bonded to the cations neighboring the vacancy (those referred to as "O 2NN" in

Figure 6.34). We recognize once again some of the features previously identified in Figure 6.34, but

also observe additional details.

In general, a strong correlation between the change in the average vibrational frequency asso-

ciated with each atom (∆ < ωatom >) and its contribution to the solid state vibrational entropy of

vacancy formation (∆Satom
vib ) can be observed: atoms experiencing stronger redshifts in frequency

give a stronger positive contribution to ∆Svib, and the opposite for blueshifts. A second correlation
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between ∆Svib and the average vibrational frequency associated with each atom prior to defect

formation ("< ωatom
BULK >") can also be observed. Specifically, for the same change in frequency,

atoms with contributions dominating the lower frequency range (A cations) have a larger impact on

the vibrational entropy than atoms with contributions dominating the higher frequency range (O

anions). In other words, if a line were to be fitted to the datapoints belonging to each group of atoms

in Figure 6.37, the line associated with A atoms would be steeper that associated with O atoms. The

presence of color-coding based on "< ωatom
BULK >" also allows to observe differences in vibrational

frequencies among each group (i.e. among A cations, B cations and O anions). In addition to more

evident observations, such as heavier A cations like Lu vibrating at lower frequencies than much

lighter cations like Ca, more subtle differences can also be observed. Among the "LuMnO3"-type

compounds, for example, Y cations are associated with visibly higher vibrational frequencies com-

pared to Ho and Lu, in accordance with the lower ∆Svib of YMnO3 compared to LuMnO3 HoMnO3.

This feature can also be noticed when comparing the integrated ∆ DOS of the 3 compounds (see

Fig S3) in the 0-3 THz range, where LuMnO3 and HoMnO3 have an almost identical trend, with an

initial growth starting at lower frequencies than YMnO3.

Having discussed general aspects of the correlation between ∆Satom
vib and ∆ < ωatom >), we now

concentrate on the individual contributions from different atom types in each structure. On the

whole, we again recognize the cations neighboring the vacancy, and the O atoms bonded to them, as

the ones associated with the most sizeable per-atom contributions to ∆Svib. However, differences

between B and A cations within the same compound, and between compounds, are evident.

Focusing first the B-site cations, we observe a lengthening of the majority of B-O bonds of the

B cations neighboring the O vacancy, consistent with the localization of charge on such cations

upon vacancy formation. The significant frequency redshift (and consequent positive contribution to

∆Svib) observed for the B atoms neighboring VO is therefore not only related to the breaking of their

bond to the oxygen atom that becomes vacant, but also to the softening of many of their bonds to the

other neighboring O atoms. Larger ∆Satom
vib and ∆ < ωatom > are associated with a larger change in

the cation’s magnetic moment, consistent with a larger change in the charge localized on the atom
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upon vacancy formation. LaFeO3, YFeO3, Ca2TiMnO6, Sr2TiMnO6 and Lu2Mn2O7, which exhibit

the largest contribution from B cations neighboring the vacancy, all display changes in the magnetic

moment by ∼0.6-0.7µB on each "B NN" Fe or Mn cation, while the magnetic moment of two Mn

atoms neighboring the vacancy in LaMnO3 and CaMnO3 changes by an average ∼0.3µB. Similarly,

while the Mn atoms neighboring the vacancy in YMnO3 and HoMnO3 display a change in magnetic

moment of around ∼0.1µB, in LuMnO3, two of the three Mn atomic neighboring the vacancy (the

ones with the largest visible frequency redshift) change by about ∼0.4 µB. Furthermore, the only

large per-atom contribution to ∆Svib associated with a cation not neighboring the O vacancy can be

observed in double perovskite oxides, and corresponds to the second Mn cation where the majority

of the charge localizes upon vacancy formation (the first Mn cation where charge localizes being

the one neighboring the vacancy). The large decrease in the average vibrational frequency of this

second Mn cation can once again be traced back to the lengthening of the bonds to its neighboring

O anions resulting from the additional negative charge localized on it. On the opposite end to what

just observed, the absence of significant charge localizing on the Ti cation neighboring the vacancy

in the two double perovskite oxides can be related to its ∆Satom
vib contribution opposing that of the

Mn atom neighboring the vacancy. Despite the breaking of the bond between the Ti atom and

the oxygen becoming vacant, the shortening of the remaining Ti-O bonds appears to result in a

dominant negative contribution ∆Svib, and blueshift of the average vibrational frequency associated

with the Ti atom.

Differently from the B cations described above, no sizeable change in the charge localized on the

A cations neighboring the vacancy is observed upon VO formation. While still experiencing bond

breaking, the change in length of the remaining A-O bonds varies in sign, resulting often in smaller

"A NN" ∆Satom
vib values compared to the ones associated with "B NN". The compounds for which

the most sizeable "A NN" contributions can be observed are the 3 "LuMnO3"-type oxides, and the

pyrochlore oxide. In the first case, the breaking of the bond between the oxygen becoming vacant

and its closest A cation results in a shift of such cation in the opposite direction to the previously

occupied O site. Such shift is accompanied by a mixed shortening and lengthening of the remaining
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A-O bonds, with the bonds becoming longer, however, coinciding with the ones associated with

longitudinal force constants of greater magnitude, an observation in line with the overall positive

contribution to ∆Svib. In pyrochlore Lu2Mn2O7, on the other hand, upon the breaking of the Lu-O

bond of the two Lu atoms nearest to VO, a shortening of the remaining Lu-O bonds be observed

across the board, resulting in an overall negative contribution to ∆Svib.

Figure 6.34: Per-atom contribution to the solid state vibrational entropy of O vacancy formation in: (a)
"LuMnO3"-type, (b) pyrochlore, and (c) perovskite structures. Atoms are divided in 6 groups (8 groups for
double perovskites): (i) the A cations neighboring the O vacancy site, referred to as "A NN" (ii) the B cations
neighboring the O vacancy site, referred to as "B NN" (and, for double perovskites, (ii.i) the B’ cations for
neighboring the O vacancy site, referred to as "B’ NN", where "B" indicates Mn and "B’" indicates Ti) (iii)
the O cations bonded to the A and B cations neighboring the vacancy, referred to as "O 2NN" (iv) all other A
cations, referred to as "A other", (v) all other B cations, referred to as "B other" (and, for double perovskites,
(v.i) all other B’ cations, referred to as "B’ other"), and (vi) all other O cations, referred to as "O other".
Histograms colors indicate the number of atoms in each group (darker colors indicating more atoms)

6.3.3 Influence of Hubbard U on the Vibrational Entropy

DFT calculations of metal oxides containing 3d transition metals, like the ones studied in this

work, suffer from an over-delocalization of electrons brought about by the residual self-interaction

present in exchange-correlation functionals. The addition of a Hubbard-like term to the energy

functional4236373839,40 which carries a very limited additional computational cost, is a widely

employed strategy to address this issue, and the one utilized in the present work. The value of
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Figure 6.35: Contributions to the solid state vibrational entropy of O vacancy formation in: (a) "LuMnO3"-
type, (b) pyrochlore, and (c) perovskite structures. Atoms are divided in 6 groups (8 groups for double
perovskites): (i) the A cations neighboring the O vacancy site, referred to as "A NN" (ii) the B cations
neighboring the O vacancy site, referred to as "B NN" (and, for double perovskites, (ii.i) the B’ cations for
neighboring the O vacancy site, referred to as "B’ NN", where "B" indicates Mn and "B’" indicates Ti) (iii)
the O cations bonded to the A and B cations neighboring the vacancy, referred to as "O NN2" (iv) all other A
cations, referred to as "A other", (v) all other B cations, referred to as "B other" (and, for double perovskites,
(v.i) all other B’ cations, referred to as "B’ other"), and (vi) all other O cations, referred to as "O other".
Histograms colors indicate the number of atoms in each group (darker colors indicating more atoms)

the U parameter contained in the Hubbard term can have sizeable effects on different properties,

and optimal values vary with the transition metal of interest and with the local environment it is

immersed in.47

We here investigate the influence of different U values on the vibrational entropy of vacancy

formation of different compounds. Given the significant computational expense involved in each

∆Svib calculation, we perform this investigation for a subset of the compounds, spanning different

structures, and different identities and oxidation states of the 3d transition metal B cations. As

shown in Figure 6.38, the largest change in vibrational entropy with U value can be observed for

YMnO3, with Ca2TiMnO6 and LaFeO3 displaying small to negligible differences between U values.

Examining the individual atomic contributions to the vibrational entropy of defect formation (see

Fig S4), it appears that for YMnO3, a decrease in U value leads to lower contributions across the

board, while Ca2TiMnO6 and LaFeO3 display very little response to changes in U on all atomic
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Figure 6.36: Integrated difference in the density of states between vacancy-containing and pristine cells of
LuMnO3, HoMnO3 and YMnO3

Figure 6.37: Per-atom contribution to the solid state vibrational entropy of O vacancy formation in: (a)
"LuMnO3"-type, (b) pyrochlore, and (c) perovskite structures, as a function of change in average vibrational
frequency of each atom upon vacancy formation. Each datapoint represents a single atom in the compound,
color-coded based on the average vibrational frequency of the atom of interest in the pristine structure
("< ωatom

BULK >"). The marker shapes distinguish A cations (squares), B cations (diamonds), and O anions
(circles), with a superimposed star to mark the A and B cations neighboring the vacancy (those referred to as
"A NN", "B NN" and "B’ NN" in Figure 6.34), and a superimposed asterisk to mark the O anions bonded to
the cations neighboring the vacancy (those referred to as "O 2NN" in Figure 6.34).
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contributions.

Figure 6.38: Change in solid state vibrational entropy with temperature for different Hubbard U values for
(a) YMnO3, (b) Ca2TiMnO3 and (c)LaFeO3
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Figure 6.39: Contributions to the solid state vibrational entropy of O vacancy formation in YMnO3,
Ca2TiMnO6 and LaFeO3 for different values of the Hubbard U parameter. Atoms are divided in 6 groups
(8 groups for double perovskites): (i) the A cations neighboring the O vacancy site, referred to as "A NN"
(ii) the B cations neighboring the O vacancy site, referred to as "B NN" (and, for Ca2TiMnO6 , (ii.i) the
B’ cations for neighboring the O vacancy site, referred to as "B’ NN", where "B" indicates Mn and "B’"
indicates Ti) (iii) the O cations bonded to the A and B cations neighboring the vacancy, referred to as "O
NN2" (iv) all other A cations, referred to as "A other", (v) all other B cations, referred to as "B other" (and,
for Ca2TiMnO6 , (v.i) all other B’ cations, referred to as "B’ other"), and (vi) all other O cations, referred to
as "O other". Histograms colors indicate the number of atoms in each group (darker colors indicating more
atoms)

6.3.4 Total Entropy of O Vacancy Formation

Having examined the change in solid state vibrational entropy upon vacancy formation in the previ-

ous sections, we now discuss other sources of entropy playing a significant role in the total entropy
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of vacancy formation. As mentioned in Section , ∆Svib only includes vibrational contributions from

the metal oxide itself, and does not account for the final gaseous state of the oxygen being lost

by the metal oxide. Therefore, the oxygen gas entropy is the first contribution we discuss in the

present section. Furthermore, the multiplicity of sites upon which defects can be introduced results

in an additional, defect concentration-dependent, contribution to the total entropy, in the form of

configurational entropy.

The oxygen gas entropy can be accounted for as half of the gas entropy of the O2 molecules,

and can be extracted from tabulated standard values.147 Figure 6.40 displays the derived non-

configurational entropy of O vacancy formation, computed by combining the gas entropy and the

solid state vibrational entropy contributions. In all cases, in addition to the visible dominance of the

gas entropy contribution, the temperature dependences of ∆Svib and ∆S(O2) can also be observed to

counterbalance each other, leading to an almost constant value of the non-configurational entropy

above room temperature.

Figure 6.40: Sum of the solid state vibrational entropy of O vacancy formation (∆Svib), and the gas entropy
of oxygen (1/2 S(O2)) as a function of temperature for the compounds investigated in Sections 6.3.1 and 6.3.2

The configurational entropy associated with the formation of oxygen vacancies can be computed

analytically assuming dilute solution behaviour. In this case, the per-vacancy contribution is a
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function of the non-stoichiometry δ , which varies depending on the the available sites, and, if

relevant, on the energy difference between them. For the compounds included in this study, and for

nonstoichiometry values between δ = 0.01 and δ = 0.1, this results in values ranging between ∼ 3

kB and ∼ 6 kB. In addition to multiplicity of configurations associated with the oxygen vacancy, a

similar reasoning can be applied to the cations undergoing reduction, with again configurational

entropy values depending on possible sites (eg. for the compounds in this study, sites on the A

sublattice are not included as they do not show evidence of reduction, but reduction on both the A

and B sublattices can be observed in other cases70). Considering all B sites, aside from the ones

occupied by Ti atoms in double perovskites, for nonstoichiometry values between δ = 0.01 and

δ = 0.1, this additional entropy contribution varies between ∼ 1 kB and ∼ 8 kBfor the compounds

in this study. It should be however noted that that deviations from ideal values of the configurational

entropy can often be observed as a results of phenomena like interactions between defects.142

Entropies of reduction for a number of the compounds investigated in this work were reported in

recent experimental studies by Qian et al.7911311499 and Mastronardo et al.98 Comparison between

computational results and experimental data is however complicated by multiple factors. Firstly,

the three "LuMnO3"-type compounds displayed evidence of a phase transition to a (dynamically

unstable at 0K) "Be3N2"-type structure, with a jump in the extracted thermodynamic quantities

of reduction the mechanisms behind which remain ambiguous79 . LaMnO3 was synthesizes in an

rhombohedral perovskite structure (rather than the orhtorhombic DFT ground state), dynamically

unstable at 0K. Both CaMnO3 and Ca2TiMnO6 were also observed to undergo a phase transition, in

this case to the cubic perovksite phase (again dynamically unstable at 0K), leaving only a small range

of values for which oxygen loss was measured from the ground state distorted perovskite structure.

Furthermore, cation disorder on the B lattice was experimentally observed in both Ca2TiMnO6

and Sr2TiMnO6. Finally, YFeO3 displayed very limited oxygen loss, impacting the accuracy of

the extracted entropy and enthalpy of reduction. In addition to the just mentioned complications,

the experimental uncertainties of 0.5-2.5 kB are comparable in magnitude to differences between

compounds in our calculated vibrational entropies, and the impact of potential deviations from
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the ideal configurational entropy represent an additional source of uncertainty in the total entropy

calculation. Overall, we refrain from reporting a detailed comparison between calculations and

experimental results as we believe it would not provide substantial evidence either supporting or

refuting the predictive accuracy of the vibrational entropy calculations reported in this work.
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7. Oxygen Stability in Disordered Rock Salt

Lithium Transition Metal

Oxides

7.1 Background

Disordered rock salt (DRX) lithium transition metal oxide materials are attracting growing interest

as new cathode materials for Li-ion batteries due to multiple attractive properties. Cation disorder

can result in small volume changes during charge and discharge limiting structural degradation

upon cycling, and, in the presence of lithium excess, lithium diffusion through percolating low

barrier channels can be activated, and anionic redox can be leveraged for increased capacity.15, 17–19

Without the limits of traditional ordered cathodes, the large compositional space of transition metal

cations can be explored to both increase performance and to circumvent resource-related issues

concerning commonly employed metals like cobalt.16

In an exceptionally wide ranging work, Liu et al.148 recently surveyed thousands of candidate

DRX compounds. The DFT stability of special quasi-random (SQS) representations of DRX

structures, as well as the most common rock salt type LiMO2 structures, was directly computed and

utilized as a first filter for candidate materials. Short range order preferences were then estimated,

and compounds were further ranked based on evaluations of their average voltage and capacity.

While capacity and voltage are primary aspects of cathode selection, oxygen stability can play an
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important role. Oxygen loss can be a safety concern, promote phase transitions to spinel structures

in layered materials with an adverse effect on voltage, and lead to transition metal reduction and

rearrangement thereby impacting capacity and structural stability20.21 The ability to evaluate oxygen

stability on a computational level is therefore an aspect of interest for material selection.

Despite their many advantages, lithium excess disordered rock salt structures present several

complexities that directly affect oxygen bonding and complicate the understanding of the mech-

anisms governing oxygen stability. The presence of disorder favours for example the occurrence

of a variety of different oxidation states for the transition metal cations in a way which can be

non-trivial to determine, and, as noted in previous chapters, can have a large impact on oxygen

vacancy formation energy. Disorder also leads to differing numbers and configurations of Li cations

neighboring the oxygen sites, which can effect the energetics of the O bands and thereby the ease

of oxygen removal.18 Furthermore, the introduction of Li-excess and the onset of delithiation

are accompanied by changes in the oxidation states of the transition metal cations, once again

modifying the energetics of oxygen vacancy formation. In order to be able to utilize oxygen stability

as screening criterion for candidate materials, a deeper understating of all the above behaviours is

desired.

In this chapter, we discuss a selected portion of ongoing work in understanding and predicting

oxygen stability across a variety of DRX candidate materials.

7.2 Methodology

All calculations have been conducted using the Vienna ab-initio simulation package (VASP),75, 76

with projector augmented wave (PAW) potentials77 and the Perdew-Burke-Ernzehof (PBE)78

generalized gradient approximation (GGA) for the exchange-correlation functional. A gamma

centered k-point grid with a density of at least 8600 points per reciprocal atom was employed,

alongside and a plane wave cutoff energy of 520 eV. Self consistency was achieved when energies

of subsequent iterations differed by less than 10−6 eV/cell, and ionic relaxation was performed until
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forces were found to be below 0.01 eV/Å. The over-delocalization of electrons due to the residual

self interaction present in exchange-correlation functionals36–40 was treated through the addition of

a Hubbard-like potential to the energy functional42 (DFT+U), with the same U values employed in

the OQMD43,44 and a spin polarization with a ferromagnetic configuration was applied to transition

metal cations.

7.3 Results

Given the previously mentioned complexities of lithium rich DRX systems, in order to deconstruct

the mechanisms involved in oxygen vacancy formation, we examine multiple different structural

configurations, and investigate differences in cation valence and arrangement and their impact on

oxygen loss. In this analysis we focus on one exemplary material composition, while also providing

wider ranging observations and insights from the ongoing study of several other candidate materials

throughout the discussion .

We start by examining the layered structure of the exemplary material, which presents multiple

characteristics facilitating its analysis, such as the transition metal cation elements appearing to

have the same oxidation state throughout the structure. Examining the oxygen vacancy formation

energy of all oxygen sites in the compound, we obseve in all cases values consistent in both relative

and absolute magnitude with the ease of reduction of the cations in the structure determined in

Section 4.3, 3.3 and 5.3. Oxygen sites with a larger number of harder to reduce cation neighbors

also display larger vacancy formation energy, and, upon analyzing the change in atomic magnetic

moments upon vacancy formation, charge appears to localize on all three of the transition metal

cations neighboring the vacancy. Similar behaviours have also been recognized in the layered

structures of other candidate compounds, with in several cases additional complexities being present

as a consequence of cations in different sites across the structures having different oxidation states,

and resulting in greater variations in the oxygen vacancy formation energy.

In Figure 7.41 we then examine the oxygen vacancy formation energies of all oxygen sites in the
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disordered rock salt structure. Differently from the layered structure, O sites differ in the number of

Li nearest neighbors (NN), which appear to have a primary effect on the vacancy formation energy.

The larger the number of lithium cations neighboring the oxygen atom, the closer the center of its

p band is to the Fermi energy, consequently lowering the energetic cost involved in the formation

of a vacancy. This trend is consistent with previous observations of lithium bonding arrangement

leading to large changes p band energy, and thereby ease of oxygen removal.18 Such a trend was

also observed in all other DRX compounds under examination in the broader scope of this work,

with an average Pearson correlation coefficient between ∆Ev f and Esite
Op +Eg of ∼ 0.85, and, in all

cases, the easiest to remove oxygen always having 5 Li nearest neighbors. A very strong correlation

can also be identified between ∆Ev f and the electrostatic energy difference between the pristine and

vacancy containing structure calculated with nominal charges, therefore establishing two powerful

descriptors of vacancy formation energy in DRX structures. Examining atomic magnetic moments,

we observe once again charge localizing on the cations neighboring the vacancy. Differently from

the layered structure, however, evidence of one of the cations having a larger oxidation state (which

is for many transition metal cations associated with a greater ease of reduction) can be observed,

with charge localizing on such cation upon vacancy formation even in cases in which it does not

neighbor the vacant site. For the sites having 5 Li nearest neighbors, for example, the charge can be

seen to localize on the only NN transition metal cation and on the aforementioned higher oxidation

state cation upon vacancy formation in all cases.

Since the SQS structures employed in the high-throughput DFT screening lack the presence of

oxygen sites having 6 neighboring Li cations, a type of environment very likely to be present in

real DRX compounds, we study a modification of such structures where a pair of Li-TM cations

are swapped so as to manufacture a local 6 Li NN environment while retaining charge balance

with the same oxidation states of the cations. As can be seen in Figure 7.42, the p band of the site

with 6 Li NNs lies closer to the Fermi energy compared to all other sites, requiring less energy to

form a vacancy, in agreement with the general trends previously identified. Examination of atomic

magnetic moments reveals the charge to localize on the easiest to reduce TM cations upon vacancy
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Figure 7.41: Oxygen vacancy formation energy of different sites in the exemplary DRX material’s structure
as a function of the energy difference between the average energy of the oxygen p band of the site becoming
vacant. Different markers indicate different number of Li cations neighboring the vacancy

formation.

Figure 7.42: Oxygen vacancy formation energy of different sites in the exemplary DRX material’s structure
as a function of the energy difference between the average energy of the oxygen p band of the site becoming
vacant. Different markers indicate different number of Li cations neighboring the vacancy
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Finally, we examine the more complex cases brought about by lithium excess and delithiation.

In Figure 7.43 we compare the oxygen vacancy formation energy of the exemplary DRX material’s

structure (a) in the absence of lithium excess or delithiation, (b) in the presence of 20 % Li-excess,

(c) with Li-excess and a vacant Li site. In all cases the strong correlation between ∆Ev f and the

number of Li NNs, as well as the energy of the oxygen p band, can be observed to hold. Furthermore,

the formation of lithium vacancies appears to additionally weaken the binding of some of the oxygen

atoms, primarily the ones neighboring the Li vacancy itself.

Figure 7.43: Oxygen vacancy formation energy of different sites in (a) the DRX structure (b) the Li-excess
DRX structure, and (c) Li-excess DRX structure with a Li vacancy, as a function of the energy difference
between the average energy of the oxygen p band of the site becoming vacant. Different markers indicate
different number of Li cations neighboring the vacancy, the plus sign in (c) indicating the O atoms neighboring
the Li vacancy

Overall strong predictors of relative trends in oxygen vacancy formation energy between

different sites in the same DRX compounds have been identified, drastically reducing the number of

calculations required to estimate the lower bound to ∆Ev f in each compound. Comparisons between

different compounds, on the other hand, still present complexities, such as variations in oxidation

states across transition metal cation sites. Machine learning models targeting the prediction of ∆Ev f

across compounds are being developed, considering a variety of features aiming to capture the

different bonding environment of O across the structures.
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8. Surface Segregation Energies of

Transition and Post-Transition Metals

8.1 Background

Surface composition plays a fundamental role in determining a system’s reactivity. The introduction

of a solute specie on the surface a host system can favourably modify catalytic activity and selectivity,

as seen for example by Kyriakou et al.149 upon doping of Pd on Cu 111. It can also help reduce

adverse effects such as CO poisoning through the decrease of CO binding strength, as reported by

Liu et al.150 when introducing Pt on a Cu 111 surface. The presence of different species underneath

the surface of a catalyst metal can also significantly affect reaction energies and mechanisms, as for

instance observed by Duan et al.151 upon examination of the addition of different transition metal

sub-layers to Pt 111 surface slabs. For a specific bulk composition, the concentration of species at

the surface can be tuned to enhance catalytic performance, as demonstrated by Suntivich et al.152

with Pt-Au nanoparticles. Surface segregation, in which an alloy component migrates from the bulk

to the surface layer, can therefore be crucial for promoting or suppressing chemical reactions.

In order to evaluate the segregation behavior of different solute-host combinations, surface

segregation energies (∆Esegregation) can be examined on a computational level, and have been the

subject of multiple works in the literature.153–161 Particularly influential and large scale studies were

conducted by Ruban et al153 and Nilekar et al.,154 wherein the dilute surface segregation energies

of a 24 by 24 matrix of transition metal solute-host pairs were calculated. Such works utilized the
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linear muffin tin orbital method, the atomic sphere approximation, the local density approximation

for the exchange correlation energy, and lacked the inclusion of the effect of the relaxation of atomic

positions. The investigation of the impact of such approximations on calculation results is then of

interest to determine the accuracy of the reported ∆Esegregation values.

Transition metals have been at the center of numerous works studying catalytic behaviour and

surface segregation151, 153–161 . Post transition metal and metalliod elements such as Sn, Te, Tl, Pb

and Bi, have also attracted interest for a number of catalytic applications.162, 163 Their segregation

behaviour, however, appears to remain less studied, motivating the interest towards the creation of a

database similar to the one produced by Ruban et al153 targeting group XII to XVI elements.

Large scale DFT calculations of surface segregation energies come at a significant computational

cost, and the development of models capable of describing segregation behaviour without the need

for direct DFT computation is therefore of interest. Multiple efforts in the literature have been

directed towards this goal.155, 164–166 Ologunagba and Kattel explored several elemental features in

conjunction to gradient boost regression trained on the data produced by Ruban et al.153 Farsi et. al

directly computed segregation energies155 to different Pt, Ir, Pd, and Rh surfaces and developed

a statistical model capable of distinguishing the behaviour of different surfaces. Salem et al.166

leveraged Farsi’s calculations to construct a machine learning model utilizing composition- and

bonding-based features. Rao et al.165 computed the energies of different solute configurations and

developed a bound-counting-based model to describe them. Out of the descriptors proposed in the

literature, surface energies and atomic radii of the constituting elements display a particularly strong

correlation with segregation behaviour,153 which can be in connected to their role as driving forces

of segregation: species with larger radii and smaller surface energies are driven to migrate to the

surface. While the computation of surface energies is costly itself, in a recent work, Tran et al.158

published a database of DFT computed surface energies of over 100 polymorphs of 70 elements,

rendering Esur f ace an easily accessible feature to be leveraged in machine learning models.

In this chapter we tackle all of the three above mentioned aspects of surface segregation energy

computation, that is: (i) assessment of the influence of various computational choices on the
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∆Esegregation calculations (ii) creation of a database of segregation energies of post-transition metals,

and (iii) development of a predictive model.

8.2 Methodology

All DFT calculations have been conducted using the Vienna ab-initio simulation package (VASP),75, 76

with projector augmented wave (PAW) potentials77 and the Perdew-Burke-Ernzehof (PBE)78 gen-

eralized gradient approximation (GGA) for the exchange-correlation functional. A plane wave

cutoff energy of 520 eV was employed, and spin polarization was applied with a ferromagnetic

configuration, initializing magnetic moments to 5µB. Different atomic relaxation schemes were

investigated, as detailed in the next section. Surface slabs with a minimum of 7 atomic layers

and 10 Åof vacuum were utilized, with larger slab and vacuum thicknesses showing no significant

difference in surface segregation energy (see Appendix).

8.3 Results

8.3.1 Accuracy of Surface Segregation Energy Calculations

Upon the introduction of a solute atom, the local environment surrounding it undergoes changes

to accommodate it, and the relaxation of atomic positions can have a non-negligible effect on the

properties of the system. We therefore start our analysis by examining the effect of such relaxation

on the surface segregation energy, differentiating the optimization of multiple degrees of freedom.

In Figure 8.44 we display the surface segregation energy of 4d transition metal solutes (25% in-layer

concentration) to the 111 surface of a FCC Pt host, and compare the effects of : (i) allowing

for partial relaxation by freezing the bottom 3 atomic layers to their bulk lattice position while

optimizing the atomic positions in the other layers (green squares), and (ii) allowing for a full

relaxation of the slab (cyan crosses: the optimization is stopped when the magnitude of the residual

forces on each atom is smaller than 0.01 eV/Å, yellow plus sings: the optimization is stopped
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when the total energy of the system changes by less than 10−5 eV between each ionic step, as

implemented in the OQMD framework). In all cases we see that, as long as the positions of the

atoms surrounding the solute are allowed to relax, only very minor changes in ∆Esegregation can be

observed between different relaxation schemes. In order to gain further insight on the impact of

atomic relaxation, in Figure 8.45 we separately examine the energetic change due to relaxation of the

atomic positions upon introduction of the solute atom (i) in a bulk layer (blue triangles) and (ii) in

the surface layer (red triangles), also reporting, for comparison, (iii) the difference between the two

(magenta diamonds), which equates to the energetic change due to relaxation of the atomic positions

upon segregation of the solute to the surface. It can be observed that, while the effect of relaxation

is sizeable both at the surface and in the bulk, the two effects largely cancel out when examining

surface segregation, resulting in a smaller, although non-negligible, effect on ∆Esegregation.

Figure 8.44: Surface segregation energy of transition metal solutes to the 111 surface of FCC Pt, with
different markers indicating relaxation schemes for the slab.

Solute atoms can occupy a multiplicity of sites in sub-surface atomic layers, with significant

differences in energy as well as on catalytic properties. In the present study, we focus on the
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Figure 8.45: Change in energy after allowing the relaxation of atomic positions after the introduction of a
solute atom in a Pt slab, red triangles indicate the relaxation energy when the solute is in a bulk layer, blue
triangles indicate the relaxation energy when the solute is in the surface layer, and magenta diamonds indicate
the difference between the previous two, which also equates to the difference surface segregation energy
between a case where atoms are allowed to relax and a case in which they are not.

computation of energetic differences between a solute at the surface and in the bulk, and are

therefore interested in the layer representing the bulk to be deep enough for the segregation energy

not to change if a deeper layer is utilized instead. In Figure 8.46 we examine ∆Esegregation of

transition metal solutes (25 % in-layer concentration) on (a) the 111 surface of FCC Pt, and (b) the

110 surface of BCC Fe, with different depths of the sub-surface layer containing the solute atom.

We see that in all cases segregation to the surface from layers beyond the 4th is constant in value.

In order to represent dilute behaviour, the in-layer concentration of solute specie should be

small enough for the surface segregation energy to be converged with respect to it. Increase in slab

width (needed to achieve more dilute concentrations), however, comes at a significant computational
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Figure 8.46: Surface segregation energy of transition metal solutes from a sub-surface layer indicated with
different markers to the (a) 111 surface of FCC Pt and (b) the 100 surface of BCC Fe.

expense, such that in practice a compromise between dilution and computational efficiency has

to be established. In Figure 8.47 and 8.48 we examine the surface segregation energy different

concentrations of transition metals solutes in Pt and Fe hosts. In most cases, ∆Esegregation cab be

observed to be converged to within ∼ 0.1 eV a with a 11% solute concentration (achieved with a

3x3 surface slab).

Having established an adequate representation of dilute behaviour, we now compare our calcu-

lations with the ones reported by Ruban et al.153 In Figure 8.49 and 8.50, it can be seen that the

results presented in the work by Ruban et al. are accurate enough to successfully (i) identify trends

across transition metal hosts and solutes, (ii) distinguish segregation and anti-segregation behaviour,

and (iii) differentiate stronger and weaker (anti)segregation. Despite the existence of non-negligible

differences between our DFT results and Ruban’s calculations for a number of solute-host pairs, we

consider the above evidence sufficient to deem Ruban’s results accurate enough not to require to be

re-computed.
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Figure 8.47: Surface segregation energy of transition metal solutes from a sub-surface layer to the 111
surface of FCC Pt, with different markers indicating different in-layer concentrations of the solute.

Figure 8.48: Surface segregation energy of transition metal solutes from a sub-surface layer to the 110
surface of BCC Fe, with different markers indicating different in-layer concentrations of the solute.
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Figure 8.49: Comparison of the surface segregation energy of transition metal solutes from a sub-surface
layer to the 111 surface of FCC Pt, as calculated in this work with a 3x3, 7 layer slab, indicated with black
squares, and as reported in the work by Ruban et al.,153 indicated with red stars

Figure 8.50: Comparison of the surface segregation energy of transition metal solutes from a sub-surface
layer to the 110 surface of BCC Fe, as calculated in this work with a 3x3, 7 layer slab, indicated with black
squares, and as reported in the work by Ruban et al.,153 indicated with red stars
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8.3.2 High Throughput DFT Calculations of Surface Segregation Energies

of Transition Metal Solutes in Post-Transition Metal Hosts

Having positively assessed the reliability of the results presented by Ruban et al.,153 we take those

results a starting point, and expand the database of surface segregation energy to closed packed

transition metal surfaces by including post-transition metal and metalloid solutes. We consider the 24

host transition metals investigated by Ruban et al., in combination with 10 group XIII to XVI solutes:

Al,Ga,Ge,In,Sn,Sb,Te,Tl and Bi, and construct slabs of a minimum of 7 layers and 10 Åof vacuum,

with an 11% in-layer solute concentration. The computed surface segregation energies are displayed

in Figure 8.51, with rows being associated with hosts and columns with solutes, and different colors

indicating different segregation behaviour (stronger blues for stronger antisegregation, stronger reds

for stronger segregation, and lighter colors for more neutral behaviours). In the vast majority of the

cases a strong segregating behaviour of the post-transition metal solutes can be observed, in line

with their smaller surface energies158 and larger atomic radii167 compared to their transition metal

hosts. Trends among host transition metals similar to those observed in Ruban’s data can also be

recognized, with earlier and later transition metal hosts being less prone to solute segregation than

group VI to IX transition metals hosts.

Figure 8.51: Surface segregation energies of post-transition metal solutes in transition metal hosts. The
structure of the host is the DFT ground state, and the surface is the lowest energy surface for each structure
type. Stronger red colors indicate stronger anti-segregation, and stronger blue colors indicate stronger
segregation, white indicates neutral behaviour.
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8.3.3 Machine Learning Model of Surface Segregation Energy

By combining the results presented in the previous section to those published by Ruban et al.,153

a dataset of over 800 surface segregation energy calculations can be constructed. In addition to

providing hundreds of new datapoints, the inclusion of post transition metal solutes introduces a

diversity in properties which would otherwise be unlikely to be captured when only considering

transition metals, therefore representing a beneficial development compared to previous studies

in the literature. The combined dataset can serve as a sizeable and diverse training set to develop

machine learning models and evaluate the predictive utility of different features, which is the focus

of the present section.

In constructing a set of features, we leverage easily accessible properties of the host and the

solute while also highlighting differences between the two specie as well as between the bulk

and surface environment. A large number of descriptors previously employed in the literature

are considered (which include compositional attributes such as the electronegativity, as well as

structural attributes such as the coordination in the bulk and at the surface) in addition to other

commonly available features (such as ground state volume per atom and valence state). Figure 8.52

provides a visualization of the typical performance upon testing achieved by a ransom forest model

with a 20-80 split conditional on solute species only appearing on one of the two sets (we consider

this to be a more realistic exemplification of its use). Data points collected from the work by Ruban

et al.153 are represented with blue squares, while ones associated with the calculations presented in

the previous section are represented with black circles, both groups appearing to be well predicted

by the model, which displays a mean absolute error on testing of ∼ 0.2 eV.

Upon investigation of the feature importance we note that the difference in surface energy

between host and solute drastically dominates, with the only other significant contributions being

from the surface energy of the host and the size differences of the two specie (quantified via the

ground state volume per atom and the atomic radii published by Vainshtein167). As previously

mentioned, this strong correlation to differences in surface energies and atomic radii between hosts

and solutes can be rationalized by considering their role in promoting or suppressing segregation
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behaviour. We note that the inclusion of a single type of surface for each host is likely to underesti-

mate the importance of features such as the coordination number at the surface, the examination of

differences between multiple surfaces of the same transition metal host will therefore be the first

step in future developments of the present work.

Figure 8.52: Performance upon testing (80-20 split where a solute specie can only appear in either training
or testing) of a random forest model containing several compositional and structural attributes predicting
the surface segregation energy of transition metal (Ruban et al.153) and post-transition metal (this work, see
Section 8.3.2) solutes in transition metal hosts.
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9. Oxygen Binding to Mixed Transition

Metal Carbides

9.1 Background

One of the factors limiting the durability of fuel cells is the corrosion of the carbon supporting the

Pt catalyst in the cathode through an oxidation reaction forming carbon dioxide.23 To overcome

this limitation, efforts are being directed to the search for alternative materials, with group IV-VI

transition metal carbides (TMCs) attracting significant attention. Multiple works have examined Mo-

and W- based TMCs in particular, finding evidence of mechanical stability, high conductivity and

high catalytic activity, accompanied, however, by vulnerability to oxidation and dissolution.24–29

Earlier TMCs, on the other hand, appear to have higher corrosion resistance, but at the cost of lower

catalytic performance. Given these observations, a possible avenue to develop new TMC-based

supports can be explored by considering new compounds alloying different transition metals and

evaluating the effect that this has on their surface properties.

In the exploration of new materials, ab-initio methods can represent a powerful tool to guide

and accelerate candidate selection, and surface properties and interactions have been at the center

of a plethora of computational studies. Notably, in a recent effort to accelerate the discovery of

new high performance catalysts, Chanussot et al168 developed the Open Catalyst (OC20) database,

containing over 1M DFT calculations of adsorption energies spanning a wide range of materials,

surfaces, and adsorbates. The breadth and volume of the data contained in OC20 is significantly
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larger than any previous catalyst DFT dataset effort, and has opened the door for numerous efforts

in the advancement of machine learning predictions of adsorption-related properties.

In the context of the search for new corrosion resistant metal carbide supports for fuel cell

applications, an easily accessible quantity on a computational level that can be used as a predictor

of oxidation potential (which can in turn be related to corrosion resistance) of metal carbides is the

oxygen binding energy (OBE). Kimmel et al169 first found evidence of a correlation between the

oxidation potential of metal carbides and the oxygen binding energy of the parent metal, and Hamo

et al30 and Tereshchuk et al170 then identified such relationship to hold with the OBE of the metal

carbide itself. In both cases, trends across chemical groups and periods were identified, with the

binding being stronger the earlier the group and a the later the period of the transition metal.

While previous results of oxygen binding energy of simple transition metals and transition metal

carbides can be a helpful starting point, they are not likely to hold in all conditions. Numerous works

in the literature have examined the influence of structural and compositional changes on surface

binding energies.171–183 In general, differences in the surface electronic properties occur as a result

of changes in the valence states of the surface metals due to changes in coordination, available

binding sites, strain, and interactions with the the valence states of other metal or carbon atoms.

Given the strong relationship between surface states and adsorption energies, all such changes can

give rise to significant changes in adsorption behaviour, and the effects might be in contrast with

each other. This motivates us to examine these effects in detail.

In this chapter we examine the evolution of the oxygen absorption behaviour on transition metal

carbide surfaces upon the introduction of different transition metal solutes. We focus on three metal

carbides of interest: MoC, WC and Mo2C, and introduce group IV and V transition metal solute

atoms on preferred surfaces. For each TMC, we consider four solute transition metal species that

have previously shown evidence of increase corrosion resistance: Ta, Ti, Hf and Zr.
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9.2 Methodology

All calculations have been conducted using the Vienna ab-initio simulation package (VASP),75, 76

with projector augmented wave (PAW) potentials77 and the Perdew-Burke-Ernzehof (PBE)78

generalized gradient approximation (GGA) for the exchange-correlation functional. A plane wave

cutoff energy of 520 eV was employed, and electronic and ionic convergence were determined at,

respectively, 10−6 eV and 10−2 eV/Å.

For Mo2C, we considered the hexagonal α phase, where Mo atoms form a hexagonally close

packed structure with carbon atoms randomly filling half of the octahedral interstitial sites.184

While no unified model α-M2oC for DFT calculations is available, Shi et al.185 compared the

possible configurations of occupation of C sites in a in a 12 atom cell and determined an eclipsed

configuration with a Mo-C-Mo-C stacking mode to be the most stable, regardless of the functional

employed in the calculation. Such structure has also been employed by Haines et al.186 and

Han et al.187 Wang et al.188 considered an equivalent variation of the eclipsed configuration and

compared all low index surfaces, finding the 101 surface, and specifically the mixed metal and

carbon termination (from hereon referred to as Mo/C termination), to be the most stable one for

most values of the C chemical potential considered. We independently confirmed such observation

and selected such surface for our calculations. For MoC and WC, we considered the stable phase on

the OQMD convex hull, in both cases and experimentally well known, ordered, hexagonal crystal

structure with P-6m2 space group (once again commonly referred to as α phase). We selected the

metal termination of the 001 surface following evidence of its higher stability and stronger binding

to adsorbates.30, 170

We first computed the segregation energy of the the solute Ta,Ti,Zr and Hf atoms on the selected

surfaces. For the Mo/C termination of the 101 surface of Mo2C, we utilized a 1x1 surface slab of

56 atoms, 6 of which on each surface, and a 10Åvacuum layer, and we only allowed the top 12 to

relax their ionic positions. We found a positive segregation energy (i.e. lack of segregation to the

surface) for Ti and Ta, and a negative segregation energy for Zr and Hf. For the metal terminated

001 surfaces of WC and MoC, we utilized 2x2 surface slab of 5 metal and 4 carbon layers, with the



126

bottom 3 layers frozen, and a 10Åvacuum layer. For both metal carbides, we found all solutes to

have a negative segregation energy. The observed trends in segregation energies are similar to those

of the corresponding pure transition metals, as shown in Figure 9.53.

Figure 9.53: Surface segregation energies of Ta,Ti,Zr and Hf solutes in MoC, WC, Mo2C hosts. The
segregaiton energies in the metal carbides are compared to those in the pure metal, finding similar trends.

For the solutes showing surface segregation tendency (i.e. having a negative surface segregation

energy), we then computed the oxygen binding energy (OBE) for 0%,25%,50%,75% and 100%

concentration of solute at the surface. For the Mo/C termination of the 101 surface of Mo2C we

utilized a 1x1 slab of 32 atoms, 6 of which on each surface. We considered all bridge and top sites

for O adsorption, and find the bridge site between the topmost two metal atoms to be the most

favourable one. For the metal terminated 001 surfaces of MoC and WC we utilized slabs of 8 atomic

layers, with the bottom 2 frozen in place. We considered all non-equivalent top bridge and hollow

binding site for all types of surface solute concentration. In all cases the more highly coordinated

sites resulted to have the strongest binding. However, among the hollow sites, HCP sites resulted

more favourable in some cases (generally, the for lower concentrations of solutes at the surface),

and FCC sites in others. We therefore report the binding energy for both types of hollow sites.
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9.3 Results

In order to investigate the effect of different ranges of interactions of between oxygen and the

surface solute metal atoms, we examine multiple solute and adsorbate configurations. In particular,

we focus on differentiating 1st and 2nd nearest neighbor (NN) interactions considering oxygen

binding to sites with the following configurations (in all cases the oxygen coverage was 25% and

the notation corresponds to: [# of solute atoms that are 1stNN to the O adsorbate atom, # of solute

atoms that are 2ndNN to the O adsorbate atom]):

• for the HCP hollow site of the 001 surface of WC and MoC:

[0,0], [1,0], [2,0], [3,0], [0,3], [1,3], [2,3], [3,3]

• for the bridge site of the 101 surface of Mo2C:

[0,0], [1,0], [2,0], [2,1], [2,2]

The above configurations allow us to examine effect of having an increasing number of solute atoms

occupying 1st and 2nd nearest neighbor sites to the oxygen in isolation from each other (i.e. we

produced datapoints with a varying number of 1st NN solute atoms and a fixed number of 2nd NN

ones, and viceversa). We can then construct a linear model of oxygen binding energy of a similar

nature to the ones utilized by Anderson et al.189 and Liu et al.,190 and express OBE as a function of

the number of solute atoms occupying the 1st and 2nd nearest neighbors to the adsorbate:

OBE = E0 +E1NN#1NN +E2NN#2NN (9.23)

Where E0 is the oxygen binding energy to the pure metal carbide, #1NN and #2NN are the number

of solute atoms among the 1st and 2nd nearest neighbors to the absorbate, and E1NN and E2NN are

the changes in OBE due to the presence of solute atoms in the first and second nearest neighbor

shell of the adsorbate.

In Figures 9.54, 9.55 and 9.58 we display the oxygen binding energy of, respectively, WC,

MoC and Mo2C surface with different solutes for the different NN configurations listed above,
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with dashed and dotted line representing the linear fitting satisfying equation 9.23. In all cases the

binding is to the most favourable sites: HCP hollow sites for MoC and WC and bridge sites between

two Mo atoms in Mo2C. Dotted lines connect datapoints with the same number of 1st NN solute

atoms (therefore indicating the effect of changes in the number of 2nd NN solute atoms), and dashed

lines connect datapoints with the same number of 2nd NN solute atoms (therefore indicating the

effect of changes in the number of 1st NN solute atoms). Steeper lines indicate a stronger influence

of the solute specie under consideration on the OBE of the metal carbide. It can be seen that, in

all cases, both 1st and 2nd NN interactions with the solute atoms lead to a lowering of the oxygen

binding energy, with the 1st NN interactions having a stronger effect.

In Figure 9.59 we summarize the results of the linear fits by displaying E1NN and E2NN of all

solutes and metal carbide combinations examined. This allows us to easily compare both the effect

of different solute atoms on the oxygen binding energy of the same host metal carbide, and to

contrast any observation with the OBE trends previously reported in the literature for the host and

solute metals in their pure metal and metal carbide forms. For both metals and metal carbides, a

strengthening of the oxygen binding was observed the earlier the group and a the later the period of

the transition metal, with the OBE of Zr<Ti<Ta<Mo<W169 and HfC<ZrC<TiC<TaC<MoC<WC.170

Consistently with the weaker oxygen binding associated with Mo an W compared to Hf,Zr,Ti,Ta, we

observe the addition of the latter metals as solutes to strengthen the binding of oxygen to WC, MoC

and Mo2C surfaces in all cases. However, multiple differences with respect to the OBE trends of the

pure metals can be noticed. While the OBE of Ta is reported to be significantly weaker than Ti and

Zr, 1st NN interactions of O with Ta solute atoms on the 001 surfaces of both MoC and WC display

bond strengthening effect greater than in the case of Zr. In turn, the strengthening effect of 1st NN

Zr atoms appears to be significantly smaller than that of 1st NN Ti and Hf atoms. Furthermore,

Ti also shows 2nd NN interactions of a stronger nature than any of the other solute metals. In

addition to considering the binding to the most favourable sites (HCP) in MoC and WC (reported in

blue in Figure 9.59) , we here also report (in red) the effects that solute Hf,Zr,Ti,Ta atoms have on

the strength of the binding of the FCC sites, which are the most favourable ones in pure TiC,ZrC
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and HfC (the fits for FCC sites are displayed in 9.56 and 9.57 ). This allows us to observe two

phenomena: the first is that the the trends in the strength of the 1st and 2nd NN contributions of

different solute atoms remain the same between FCC and HCP sites (i.e. Ti has much stronger 2nd

NN contributions than Zr for example), the second is that the binding strengthening effect of the

solute atoms is much more pronounced for FCC sites, which results in those sites becoming more

favourable for higher (∼>50%) solute concentrations. The summary of NN contributions across

hosts and solutes in Figure 9.59 also allows us to compare the effect of the same solute on different

hosts. We notice that, for example, both Zr and Hf have significantly greater effects on the binding

of oxygen to the bridge sites of the Mo/C terminated 101 surface of Mo2C, than to the hollow HCP

sites of the 001 metal surfaces of MoC and WC, which highlights the importance of considering

differences in surface morphology and site preference.

Figure 9.54: Oxygen binding energy to the metal termination of the 001 surface of WC with Ta,Ti,Zr and Hf
solute atoms on the surface. Markers indicate the computed binding energy of O to HCP hollow sites with
the number of 1st and 2nd nearest neighbor solute atoms specified on the x axis, blue markers indicate sites
with no solute atoms in the 2nd NNs and cyan markers indicate sites with at least one solute atom in the 2nd

NNs. Lines represent the linear fitting according to equation 9.23. Dotted lines connect datapoints with the
same number of 1st NN solute atoms and dashed lines connect datapoints with the same number of 2nd NN
solute atoms.

In order investigate the effects leading to the trends observed in Figure 9.59, we examine in

further detail the case of 100% solute surface concentration, where the differences between solutes
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Figure 9.55: Oxygen binding energy to the metal termination of the 001 surface of MoC with Ta,Ti,Zr and
Hf solute atoms on the surface. Markers indicate the computed binding energy of O to HCP hollow sites with
the number of 1st and 2nd nearest neighbor solute atoms specified on the x axis, blue markers indicate sites
with no solute atoms in the 2nd NNs and cyan markers indicate sites with at least one solute atom in the 2nd

NNs. Lines represent the linear fitting according to equation 9.23. Dotted lines connect datapoints with the
same number of 1st NN solute atoms and dashed lines connect datapoints with the same number of 2nd NN
solute atoms.

Figure 9.56: Oxygen binding energy to the metal termination of the 001 surface of WC with Ta,Ti,Zr and Hf
solute atoms on the surface. Markers indicate the computed binding energy of O to FCC hollow sites with the
number of 1st and 2nd nearest neighbor solute atoms specified on the x axis, blue markers indicate sites with
no solute atoms in the 2nd NNs and cyan markers indicate sites with at least one solute atom in the 2nd NNs.
Lines represent the linear fitting according to equation 9.23. Dotted lines connect datapoints with the same
number of 1st NN solute atoms and dashed lines connect datapoints with the same number of 2nd NN solute
atoms.
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Figure 9.57: Oxygen binding energy to the metal termination of the 001 surface of MoC with Ta,Ti,Zr and
Hf solute atoms on the surface. Markers indicate the computed binding energy of O to FCC hollow sites with
the number of 1st and 2nd nearest neighbor solute atoms specified on the x axis, blue markers indicate sites
with no solute atoms in the 2nd NNs and cyan markers indicate sites with at least one solute atom in the 2nd

NNs. Lines represent the linear fitting according to equation 9.23. Dotted lines connect datapoints with the
same number of 1st NN solute atoms and dashed lines connect datapoints with the same number of 2nd NN
solute atoms.

Figure 9.58: Oxygen binding energy to the mixed metal carbon termination of the 101 surface of Mo2C with
Zr and Hf solute atoms on the surface. Markers indicate the computed binding energy of O to bridge sites
with the number of 1st and 2nd nearest neighbor solute atoms specified on the x axis, blue markers indicate
sites with no solute atoms in the 2nd NNs and cyan markers indicate sites with at least one solute atom in the
2nd NNs. Lines represent the linear fitting according to equation 9.23. Dotted lines connect datapoints with
the same number of 1st NN solute atoms and dashed lines connect datapoints with the same number of 2nd
NN solute atoms.
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Figure 9.59: Effect of Ta,Ti,Zr and Hf solute atoms on oxygen binding energy to the surfaces of host WC,
MoC, Mo2C quantified with E1NN and E2NN according to equation 9.23.

are exacerbated. The surface layers of Ta,Ti,Zr and Hf on α-WC and α-MoC differ from their

carbide phases in various aspects: the M-M distance on the surface is reduced, the atomic layers

have different stacking, and the M-C distance also changes. Furthermore, the presence of different

metals (Mo or W) in the bulk also leads to interactions between such metals and the surface metals,

the carbon, and the adsorbate. We explore each of the above aspects.

Firstly, we consider the change in surface M-M distance. When on the surface of WC and

MoC, Ta,Ti,Zr and Hf atoms all are under compressive strain, i.e. they have a lower M-M distance

than in their pure metal carbide phases, as detailed in Table 9.3. To examine the effect of this

lowering in the M-M distance in isolation from other effects, we compute the OBE of the metal

carbides as a function of strain in the direction parallel to the surface. While applying strain to the

slab also changes the M-C distance, the magnitude of such change is significantly smaller than

that of the change in M-M distance. As shown in Figure 9.60, for strain values lower than 5%,

compressive strain results in a stronger binding in all cases other than for the FCC sites in TaC.

When the compressive strain increases even further though, we observe, especially on FCC sites, an

inversion of the trend, with the binding starting to get weaker the larger the compression.
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Figure 9.60: Oxygen binding energy of metal carbides as a function of strain. Each marker indicates a
different metal carbide

Table 9.3: Strain of Ta,Ti,Zr and Hf at the surface of MoC and WC

Surface Metal Strain on α-WC Strain on α-MoC Strain on β -MoC

Ta -8.5% -8% -2.6%
Ti -5.5% -5% +0.6%
Zr -13.6% -13.1% -8%
Hf -12.3% -11.8% -6.6%

We next examine the effect of having different metals in the bulk layers, and differentiate it from

both surface strain effects and differences in the stacking of the atomic layers. In order to do so, we

now consider Ta,Ti,Zr and Hf surface layers on the 111 surface of the cubic β phase of MoC, which

has the same stacking as TaC,TiC,ZrC and HfC. In Figure 9.61 a, we compare β -MoC slabs with

one surface layer Ta,Ti,Zr and Hf (marked with a black circle) with TaC,TiC,ZrC and HfC slabs

with the same surface M-M distance as in β -MoC (marked with back cross). While not nearly as

large of an effect as the one of strain analysed in the previous paragraph, we see a weakening of the

binding of O to Zr and Hf surfaces when Mo occupies the sub-surface metal layer.

Finally, we incorporate the effect of the structural difference differences in the stacking of the

metal layers. To do so, in Figure 9.61 b, we compare α-MoC slabs with one surface layer Ta,Ti,Zr

and Hf (marked with a black circle) with two other conditions: (i) TaC,TiC,ZrC and HfC slabs

with the same surface M-M distance as in α-MoC (marked with back cross), and (ii) α-MoC slabs,
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where, in addition to the surface layer, the first metal layer under the surface one is of the same

species (i.e. Ta,Ti,Zr or Hf) (marked with back plus sign). When comparing α-MoC with one

and two Ta,Ti,Zr or Hf layers we see once again that the effect of having Mo in the sub-surface

metal layer is a weakening of the binding of O to Zr and Hf surfaces. We also however observe

that Ta,Ti,Zr and Hf on the surface of α-MoC with a sub-surface layer of the same specie have

significantly lower OBE than on the surface of their parent metal carbide with the same M-M

distance.

Figure 9.61: Oxygen binding energy of Ta,Ti,Zr,Hf layers on hexagonal MoC the plus sign indicates the
case where the top two metal layers of the surface are Ta,Ti,Zr or Hf, while the circle indicates that only the
surface layer is, while all other metal layers are Mo

In summary, through the exploration of different combinations of solute, hosts, and solute surface

concentrations, we highlight the complexity brought about by the alloying of different transition

metal carbides. We examine different factors, such changes in metal-metal and metal-carbon

distance, as well as interaction between different metals, and highlight their role in determining

changes in surface absorption behaviour. Most importantly, we show evidence for the disruption
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of trends in surface adsorption properties of pure metal carbides upon alloying, highlighting the

importance of performing direct examinations of the systems of interest rather than relying on the

extrapolation of trends present in simple systems.
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10. Summary and Outlook

In this thesis we presented multiple works targeting the understanding and prediction of different

properties across various classes of materials, all under the common umbrella of renewable energy

applications.

A large portion of the discussion is dedicated to the thermodynamics of oxygen loss, a phe-

nomenon of relevance in several technologies, with a special focus on solar-thermochemical water

splitting for green hydrogen production (STCH). After successfully assessing the accuracy of

DFT-computed oxygen vacancy formation energies compared with experimental data, we presented

the result of multiple high-throughput studies evaluating thermodynamic stability and O vacancy

formation across several structure types, most notably perovskite-type oxides. Within such studies,

we identified hundreds of new STCH candidate compounds, complete lists of which are reported in

the appendix. We also identified trends related to metal oxide reduction and developed machine

learning models capable of predicting the vacancy formation energy with an accuracy comparable to

that of DFT calculations against experimental data. Natural extensions of this work would include

the assessment of the predictive power of our descriptors across more diverse structure types, and the

development of new features as needed, an undertaking which we have commenced by investigating

oxygen loss behaviours in multiple rock salt-type lithium transition metal oxide compounds. Our

initial results confirmed the utility of site-specific properties related to electronic-structure and

cation reduction, but also indicated the presence of additional complexities related to binding and

charge distribution compared to the ordered transition metal oxides examined in the previous high

throughput studies. To address such complexities a variety of new bonding-, electronic structure-
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and charge distribution- related features are being evaluated, and future avenues will involve the

construction of more complex models leveraging different types of learning algorithms.

In conjunction with the energy, we have also examined the entropy of oxygen vacancy formation

for a selected group of metal oxides with diverse structure types, including perovskite-type ones.

Our analysis indicated the solid state vibrational contribution to be characterized by a temperature

dependence counteracting that of oxygen gas, therefore lessening the variation of the total entropy

of vacancy formation with temperature. While non-negligible differences in vibrational entropy

were recognized between compounds, suggesting it to be a tunable quantity in the search for new

STCH compounds, its magnitude was generally observed to be significantly smaller than the gas

and dilute configurational entropy, indicating a more promising strategy to involve focusing on

different sources of entropy. An interesting avenue in this sense is represented by the search of new

Ce4+-containing compounds so as to leverage the large contribution from the on site electronic

entropy of reduction. As one of the main drawbacks of Ceria is its large enthalpy of reduction, a

strategy for computational studies can be the search for new compounds capable of leveraging Ce

reduction at a lower enthalpy cost, as exemplified on a small scale by the recent work by Naghavi et

al.191

We have then moved our focus from bulk to surface phenomena, by studying segregation and

adsorption behaviours of interest for catalytic applications. We have generated a new pool of data

evaluating the segregation behaviour of post transition metals, and identified useful descriptors

for large scale prediction of surface segregation energies. Natural extensions of this work would

then include the examination of different surfaces and the inclusion of more complex chemistries,

once again assessing the predictive power of current features at each degree of extrapolation and

developing new features as needed. A small scale investigation of such type was conducted on

transition metal carbides, were segregation trends analogous to the corresponding transition metal

systems were observed. The examination of binding strength of oxygen to the surfaces of these

mixed transition metal carbides revealed the existence of more complex behaviours than those

predicted by simply extrapolating oxygen adsorption trends in transition metals or pure transition
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metal carbides. These observations motivate the interest in conducting large scale studies examining

different configurations to gain a deeper understating of the mechanisms governing oxygen binding

in these systems, and predict new transition metal carbide materials with higher corrosion resistance.
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Appendix A: Additional Figures

Figure 11.62: Difference in oxygen vacancy formation energy for the compounds in Figure 3.5 (computed
for the DSD structure) (a) between using a plane wave cutoff of 800 eV and a 520 eV, and (b) between
a threshold of atomic forces of 0.001 eV/Åand of 0.01 eV/Å(note that for SrMnO3 and BaMnO3 a 0.002
eV/Åthreshold was used due to a much slower convergence). In all cases differences in ∆Ev f using the two
different convergence criteria are less than 0.02 eV/O.
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Figure 11.63: Convergence in oxygen vacancy formation energy with cell size as a function of tolerance, with
different marker types indicating the cell size. Interestingly, the compounds with the largest difference in Ev f

between cell sizes are the ones whose tolerance is closest to 1. Colors indicate different structures: pink for
ilmenite (R-3), purple for orthorhombic pervoskite (Pnma), blue for rhombohedral perovskite (R-3c), green
for cubic perovskite (Pm-3m), yellow for tetragonal perovskite (P4mm), black for hexagonal structure with
"LuMnO3" prototype (P63cm), gray for the DSD structure for SrMnO3, with prototype "CsCuBr3" (C2221),
and BaMnO3, with prototype "KNiCl3" (P63cm). Compounds with orthorhombic structure dominate the
high-throughput search, and have thus been thoroughly analysed by choosing A and B site elements from
the most common groups identified in the work by Emery et al. Compounds in the figure are, in descending
order of ∆Ev f : CaHfO3, BaHfO3, AcAlO3, LaAlO3, DyCrO3, PmGaO3, BaTiO3, FeTiO3, YFeO3, GdRhO3,
YbIrO3, LaMnO3, LuMnO3, HoMnO3, YMnO3, BaMnO3, CaMnO3, SrMnO3, LaNiO3, BaPdO3
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Figure 11.64: Change in oxygen vacancy formation energy of different compounds with size of the vacancy-
containing cell. For all cell sizes greater than 16 atoms (which is the case for all compounds presented in the
figure other than LiNbO2, which has 8 atoms in its unit cell, and NaScO2, which has 4) ∆Ev f is converged to
within 0.1eV/O.
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Figure 11.65: Prototype structures used in the high-throughput study of ABO3 compounds discussed in
Section 4.3 The most common perovskite structural distortions (a) cubic (Pm-3m), (b) orthorhombic (Pnma),
(c) tetragonal(P4mm), (d) rhombohedral(R-3c) were surveyed for all ABO3 compositions,. Then, for
compositions where at least one of the perovskite structures was found to be within 25 meV/atom from the
convex hull, the next 3 most common stable ABO3 structures on the ICSD were computed: (e) ilmenite (R-3),
(f) hexagonal "LuMnO3" prototype (P63cm), and rhombohedral "CaCO3" prototype (R-3c, here not pictured
as it was never found to have lower energy than the stable perovskite structure at the same composition). These
are also the structures observed experimentally for multiple compounds discussed in Section 3.3 CaMnO3,
YFeO3, HoFeO3, LuFeO3, PrCoO3 and SmCoO3 have both EXP and DSD orthorhombic perovskite structures
(b) , LaCoO3 and LaNiO3 have both EXP and DSD rhombohedral perovskite structures (d), LaMnO3 has an
EXP rhombohedral perovskite structure (d) and a DSD orthorhombic perovskite structure (b), and LuMnO3,
YMnO3 and HoMnO3 have both EXP and DSD structures with "LuMnO3" prototype (f).
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Figure 11.66: Comparison between the dynamically unstable structure observed experimentally (top) and
the dynamically stable structure employed in DFT simulations (bottom) for SrMnO3 (left) and BaMnO3
(right), discussed in Section 3.3 . (a) is SrMnO3 with prototype "BaMnO3" (P63/mmc), (b) is BaMnO3
with prototype "BaNiO3" (P63/mmc), (c) SrMnO3 with prototype "CsCuBr3" (C2221), (d) BaMnO3 with
prototype "KNiCl3" (P63cm).
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Figure 11.67: Prototype structures used in the high-throughput studies of (a) A2B2O7 pyrochlores, and (b)
A2BB’O6 and (c) AA’BB’O6 double perovskites. A cations are in blue (different shades for different species
in AA’BB’O6), B cations are in grey (different shades for different species in AA’BB’O6 and A2BB’O6), and
oxygen anions in red (different shades for the two oxygen types, referred to as V1 and V2 in Section 4.3, in
A2B2O7)

Figure 11.68: Surface segregation energy of transition metal solutes to (a) the 111 surface of FCC Pt and
(b) the 110 surface of BCC Fe, with different markers indicating different thickness of the slab and of the
vacuum layer.
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Appendix B: List of Candidate STCH
Compounds

Table 12.4: List of all DFT stable ABO3 compounds with a vacancy formation energy within the window of
interest for STCH applications. Each column indicates (from the left) the compound’s formula, stability on
the OQMD, DFT-computed oxygen vacancy formation energy of the lowest energy oxygen site, and OQMD
entry id. Compounds whose initial structure was not obtained through one of the 4 prototype perovskite
distortions in Fig 11.65 are marked with asterisks, two asterisks for structures imported from the ICSD, one
for hypothetical prototypes

Composition ∆Estab [eV/atom] ∆Ev f [eV/O] OQMD Entry ID

KRhO3* -0.045 2.0 679672
SrBiO3 0.012 2.0 681684
BMnO3* 0.009 2.0 1390037
SrPbO3 -0.041 2.1 682323
CsSbO3* -0.009 2.1 692568
RbAsO3* -0.05 2.1 1367023
AgAsO3* -0.024 2.1 692657
LaAuO3** -0.07 2.1 13267
KAsO3* -0.033 2.1 1349221
CaPdO3* 0.018 2.2 1371367
BiMnO3 0.023 2.2 682095
NaPtO3* -0.024 2.2 678856
LiRuO3* -0.015 2.3 1775242
HgTeO3** 0.019 2.3 11518
BaPdO3* -0.105 2.4 1368197
YbPdO3* -0.091 2.4 1371628
CaPbO3* -0.028 2.4 692558
CuAsO3* 0.002 2.5 692845
NiPdO3* -0.019 2.5 1734039
CdPtO3* 0.004 2.5 1322992
YbPbO3* -0.019 2.5 692589
PmCoO3 -0.013 2.5 682619
AgVO3** -0.007 2.5 14776
PrCoO3 -0.0 2.5 1602675
LaCoO3 0.001 2.6 681655
EuPtO3 -0.065 2.7 682040
AuSbO3* -0.011 2.7 1366270
LiIrO3* -0.035 2.7 1775246
TbCoO3 0.024 2.7 682958
TlAsO3* -0.048 2.7 1739267
KRuO3* 0.008 2.7 679312
MgMnO3* -0.012 2.8 692913
LiVO3* -0.005 2.8 678942
NiMnO3** -0.031 2.8 6121
BaPtO3* -0.116 2.8 1374564
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BaRhO3* -0.053 2.8 1735051
NaAsO3* -0.03 2.8 678505
KVO3** -0.017 2.8 1937
BaMnO3** -0.034 2.8 15847
EuPbO3 -0.026 2.9 682396
HgVO3** -0.002 2.9 14798
SmCoO3 0.01 3.0 681405
TlRhO3* -0.002 3.0 1323315
RbVO3** -0.02 3.0 1939
TlRuO3* -0.003 3.0 1323314
NdCoO3 0.004 3.0 682643
SrPtO3* 0.019 3.0 1370500
CuSbO3* 0.007 3.0 692575
KIrO3* -0.093 3.0 678385
ErFeO3* -0.025 3.0 1289965
CaRhO3** -0.007 3.1 20858
NaIrO3* -0.041 3.1 678620
YbPtO3* -0.099 3.1 1372997
LiAsO3* -0.053 3.1 692788
YMnO3** -0.033 3.1 20815
TmFeO3** -0.029 3.1 9944
RbSbO3* -0.094 3.1 678277
NaRuO3* -0.009 3.2 678662
NaTcO3 -0.053 3.2 351423
InFeO3** 0.006 3.2 12707
SrRhO3* -0.017 3.2 1366189
KTcO3 -0.025 3.2 354565
CdGeO3** 0.005 3.3 37777
BaTeO3** -0.042 3.3 2375
ScMnO3** 0.007 3.3 646566
HoFeO3* -0.02 3.3 1289960
MnGeO3* -0.029 3.3 1364346
LiTcO3 0.017 3.3 826292
KSbO3* -0.102 3.3 678860
BaIrO3* -0.005 3.3 1374687
FeTeO3 -0.006 3.3 1758758
BTlO3* -0.025 3.3 1377332
HgIrO3* -0.006 3.4 1323027
HgSbO3* -0.047 3.4 1365265
TmMnO3** -0.046 3.4 20526
FeRhO3* 0.02 3.4 1749929
TbMnO3* -0.032 3.4 1289713
TlVO3* 0.001 3.4 1346120
NiGeO3* 0.012 3.5 1347235
LaMnO3 0.0 3.5 682005
ZnTeO3** 0.001 3.5 37405
CaIrO3** -0.01 3.5 4775
SrGeO3** -0.05 3.5 11090
LuFeO3* -0.028 3.5 1289991
LiSbO3** -0.056 3.5 4513
RbOsO3* 0.019 3.5 678964
HgAsO3** -0.039 3.5 25361
SbAsO3** -0.011 3.6 6869
SrTeO3** -0.023 3.6 22435
LaRhO3 -0.046 3.6 682003
GePbO3** -0.05 3.6 21913
DyMnO3** -0.036 3.6 24010
CeRhO3 -0.048 3.6 681387
PrRhO3 -0.04 3.6 682842
MgGeO3** -0.024 3.6 6605
NdRhO3 -0.034 3.6 682453
NaSbO3* -0.137 3.7 678635
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PmRhO3 -0.029 3.7 682729
CeMnO3 -0.069 3.7 682131
HoMnO3** -0.038 3.7 16146
SrIrO3* -0.005 3.7 1375571
BFeO3** -0.018 3.7 6449
TbRhO3** -0.013 3.7 21885
SmRhO3 -0.024 3.7 693355
CsVO3** -0.049 3.7 32716
YbIrO3* -0.06 3.7 1367021
NaOsO3 0.005 3.7 682146
GdMnO3* -0.029 3.7 1289760
PrMnO3 0.002 3.8 681412
GdRhO3 -0.018 3.8 693421
ErMnO3** -0.039 3.8 20525
YRhO3* -0.004 3.8 1276731
SrRuO3 -0.013 3.8 681695
EuIrO3* -0.055 3.8 1363245
NdMnO3 0.001 3.8 682271
TlSbO3** -0.101 3.8 13943
PmMnO3 -0.056 3.8 681391
CdSnO3* -0.013 3.8 692621
YbTeO3* -0.004 3.8 692527
ErRhO3* -0.008 3.9 1370838
LuMnO3** -0.04 3.9 20527
TlOsO3* -0.041 3.9 1323322
TiCdO3* -0.021 3.9 678398
PbVO3* 0.018 3.9 1752471
BaGeO3* -0.053 3.9 1364441
SmMnO3* -0.034 3.9 1708044
NaReO3 0.007 3.9 353271
RbTcO3* -0.057 3.9 1482539
TmRhO3* -0.007 3.9 1759375
LuRhO3* -0.003 3.9 1763609
LiOsO3 0.007 3.9 826281
BiGaO3** 0.005 3.9 21825
InGeO3* -0.009 3.9 1597020
CaVO3 -0.009 4.0 681780
CaRuO3 -0.017 4.0 681693
VCdO3** -0.003 4.0 15653
EuRuO3 -0.042 4.0 681894
NbAgO3* 0.021 4.0 678273
CeFeO3 -0.047 4.1 682411
MnSnO3* -0.023 4.1 692986
PbSnO3* 0.017 4.1 679426
DyFeO3 -0.019 4.2 693143
TbFeO3 -0.021 4.2 693084
NdFeO3 -0.036 4.2 681760
BaSnO3 -0.019 4.2 352504
GdFeO3 0.0 4.2 681830
CsTcO3* -0.013 4.2 678263
SmFeO3 -0.03 4.2 681794
YFeO3 -0.016 4.2 693115
CaGeO3* 0.014 4.2 1740539
PrInO3* -0.018 4.2 1289953
CeInO3* -0.017 4.3 1289928
PrFeO3 -0.04 4.3 682008
BaOsO3* 0.016 4.3 1735058
NiSnO3* -0.005 4.3 1371889
MgSnO3* -0.011 4.3 1278185
SmInO3* -0.015 4.3 1376057
PmInO3* -0.016 4.3 1289989
SrSnO3 -0.015 4.3 682160
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PmFeO3 -0.063 4.3 682227
BaRuO3** -0.029 4.4 21866
CrFeO3* 0.003 4.4 1743455
LaInO3* -0.012 4.4 1289942
NdInO3* -0.02 4.4 1367680
SnGeO3* -0.021 4.4 678714
BiCrO3 0.018 4.4 682285
ScGaO3* 0.015 4.4 1748177
YbOsO3 0.024 4.4 682034
GaInO3** 0.003 4.5 5814
EuTcO3 -0.067 4.5 681980
CaSnO3* -0.013 4.5 679059
FeVO3* -0.013 4.5 1741536
VBiO3 0.007 4.6 682938
AlSbO3* 0.019 4.6 692518
TiSnO3* 0.022 4.6 678608
ZrCdO3* 0.023 4.6 692582
LuGaO3* 0.001 4.6 1748176
EuSnO3 -0.061 4.7 681696
YbSnO3 -0.02 4.7 682934
VNiO3* 0.011 4.7 1745056
HfCdO3* 0.015 4.8 678495
TiCrO3* 0.008 4.8 679714
ZnVO3* 0.002 4.8 1745057
CaTcO3 -0.017 4.9 681718
BaMoO3 0.012 4.9 352904
PbTiO3 -0.021 5.0 679867
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Table 12.5: List of all DFT stable double perovskite A2B2O7 pyrochlore compounds with vacancy formation
energy within the window of interest for STCH applications.

Composition ∆Ev f [eV/O]

Gd2Pb2O7 2.0
Sm2Mn2O7 2.1
Ca2Ir2O7 2.1
La2Pd2O7 2.1
Tm2Pd2O7 2.1
Er2Pd2O7 2.1
Ho2Pd2O7 2.2
Gd2Mn2O7 2.2
Tb2Mn2O7 2.2
Ce2Pd2O7 2.2
Dy2Mn2O7 2.2
Sm2Pb2O7 2.2
Dy2Pd2O7 2.2
Pr2Pd2O7 2.2
Tb2Pd2O7 2.2
Bi2Rh2O7 2.2
Ho2Mn2O7 2.2
Tm2Mn2O7 2.2
Nd2Pd2O7 2.2
Sm2Pd2O7 2.2
Nd2Pb2O7 2.3
Pr2Pb2O7 2.4
La2Pb2O7 2.4
Ce2Pb2O7 2.4
Tl2Ge2O7 2.4
Lu2Rh2O7 2.6
Tm2Rh2O7 2.7
Er2Rh2O7 2.8
Ho2Rh2O7 2.9
Dy2Rh2O7 2.9
Tb2Rh2O7 2.9
Gd2Rh2O7 3.0
Sm2Rh2O7 3.1
La2Rh2O7 3.2
Nd2Rh2O7 3.2
Ce2Rh2O7 3.2
Pr2Rh2O7 3.2
Tm2Ir2O7 3.4
Lu2Sn2O7 3.4
Tm2Sn2O7 3.6
Lu2V2O7 3.6
Tb2Ir2O7 3.7
Gd2Ir2O7 3.7
Tm2V2O7 3.8
Ho2Sn2O7 3.8
Er2V2O7 3.8
Ho2V2O7 3.8
Dy2Sn2O7 3.8
Nd2Ir2O7 3.9
Pr2Ir2O7 4.0
Gd2Sn2O7 4.0
La2Ir2O7 4.1
Sm2Sn2O7 4.2
Nd2Sn2O7 4.3
Pr2Sn2O7 4.4
Gd2Fe2O7 4.4
Dy2V2O7 4.4
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La2Sn2O7 4.5
Ce2Sn2O7 4.5
Lu2Ge2O7 4.8
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Table 12.6: List of all DFT stable double perovskite A2BB’O6 compounds with vacancy formation energy
within the window of interest for STCH applications.

Composition ∆Ev f [eV/O]

Ca2ZnRuO6 2.0
Ba2TlIrO6 2.0
Sr2TiPdO6 2.0
Ca2CoSbO6 2.0
Sr2PdPbO6 2.0
Sr2CoSbO6 2.1
Ba2SnPbO6 2.1
Ba2HgIrO6 2.1
Ba2ZnRuO6 2.1
Sr2TiMnO6 2.1
Ca2TlSbO6 2.2
Ca2InBiO6 2.2
Sr2InBiO6 2.2
Ba2TlSbO6 2.2
Sr2HgIrO6 2.2
CdTePb2O6 2.2
Sr2FeRhO6 2.2
Sr2SnPbO6 2.2
Ba2HgTeO6 2.2
Sr2NbCoO6 2.3
Ca2NiRuO6 2.3
Sr2NiRuO6 2.3
Sr2RuPbO6 2.3
Sr2TaTlO6 2.3
Ba2ScBiO6 2.3
Ca2ScBiO6 2.3
Ca2TiMnO6 2.3
La2GaCoO6 2.3
Sr2TlSbO6 2.3
Ba2CoRuO6 2.3
Ca2TaCoO6 2.3
Sr2ZrCrO6 2.3
Ca2TlRuO6 2.4
Ba2TaTlO6 2.4
Sr2TlRuO6 2.4
LiLa2BiO6 2.4
Sr2MgRuO6 2.4
Sr2TaCoO6 2.4
Sr2CoRuO6 2.4
MnTePb2O6 2.4
La2CuPdO6 2.4
NaLa2BiO6 2.4
Sr2HfCrO6 2.4
Ca2MgRuO6 2.4
Ca2PdRuO6 2.4
Ba2IrPbO6 2.4
La2CdPdO6 2.5
Ca2YBiO6 2.5
Sr2ScBiO6 2.5
NbFePb2O6 2.5
MnZn2TeO6 2.5
Ba2ZrPbO6 2.5
Sr2SnPdO6 2.5
Ba2MnSbO6 2.6
Sr2HgTeO6 2.6
Sr2ZrPbO6 2.6
Ba2MgRuO6 2.6
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Ba2HfPbO6 2.6
La2ZnPdO6 2.6
Sr2TlIrO6 2.6
La2CrNiO6 2.7
La2CoPdO6 2.7
La2NiPdO6 2.7
Ca2NiIrO6 2.7
Ba2YBiO6 2.7
Ba2CuWO6 2.7
Sr2HfPdO6 2.7
Ca2CdIrO6 2.7
Sr2MnIrO6 2.8
Ca2ZrPdO6 2.8
La2MgCrO6 2.8
Ca2ZnIrO6 2.8
Ca2TaMnO6 2.8
La2MnCdO6 2.8
Sr2YBiO6 2.8
Ba2MnNbO6 2.8
Sr2HfPbO6 2.8
Ca2ZrMnO6 2.8
La2MnZnO6 2.8
Sr2ZnIrO6 2.9
Sr2ZrMnO6 2.9
La2CrCoO6 2.9
Ca2MnNbO6 2.9
Ba2TePbO6 2.9
Ca2CoIrO6 2.9
La2MgPdO6 2.9
Ba2TaMnO6 2.9
Ca2HfMnO6 2.9
Sr2HfMnO6 3.0
Sr2ZrPdO6 3.0
La2CoRhO6 3.0
Sr2CdIrO6 3.0
Ca2VFeO6 3.0
Ca2MgIrO6 3.1
Sr2RuRhO6 3.1
Ba2MnIrO6 3.1
Ba2ZnIrO6 3.1
Sr2TiRhO6 3.1
Ba2CdTeO6 3.1
Sr2FeTeO6 3.2
Sr2NiIrO6 3.2
La2AgIrO6 3.2
Ca2FeTeO6 3.2
Sr2BiRuO6 3.2
Sr2CoTeO6 3.2
Ca2CdTeO6 3.2
Sr2CdTeO6 3.2
Ba2MnTeO6 3.2
Sr2NiTeO6 3.2
Ca2MnSbO6 3.2
Sr2TePbO6 3.2
Sr2CoIrO6 3.2
Ba2CdIrO6 3.3
Ba2BiIrO6 3.3
Ca2NiTeO6 3.3
La2NiRhO6 3.3
Sr2MnSbO6 3.3
Ca2MnTeO6 3.3
Ca2IrRhO6 3.3
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Sr2FeRuO6 3.4
Ba2MgTeO6 3.4
Ca2MnIrO6 3.4
La2CuIrO6 3.4
Ca2RuRhO6 3.4
Ca2FeIrO6 3.4
Ba2MgIrO6 3.4
TaInPb2O6 3.5
Sr2MgTeO6 3.5
Ca2FeRuO6 3.5
Sr2NbFeO6 3.5
Sr2GaSbO6 3.5
Ba2BiSbO6 3.5
Ca2MgTeO6 3.5
Sr2FeIrO6 3.5
Sr2CrIrO6 3.5
La2MnRhO6 3.5
ScZn2SbO6 3.5
La2CuRuO6 3.6
Ca2CuReO6 3.6
Ba2FeTeO6 3.6
CdRePb2O6 3.6
Ba2NbFeO6 3.6
Sr2ZrRhO6 3.6
Ba2InSbO6 3.7
Ba2HfRhO6 3.7
Ca2NbFeO6 3.7
Ca2GaSbO6 3.7
Ca2IrRuO6 3.7
Sr2CrRuO6 3.7
Sr2InIrO6 3.7
Ba2TaFeO6 3.7
La2MnCrO6 3.7
Ba2InRuO6 3.7
Sr2AlSbO6 3.7
Sr2AlRuO6 3.7
Ba2InIrO6 3.8
Sr2AlIrO6 3.8
Sr2HfRhO6 3.8
Ca2InRuO6 3.8
Ca2TiIrO6 3.8
Ba2TiSnO6 3.9
Sr2InRuO6 3.9
Sr2TiVO6 3.9
Sr2VSbO6 3.9
Ca2CrRuO6 3.9
La2FeRhO6 3.9
Ca2AlSbO6 3.9
Ba2ScRuO6 3.9
Ca2AlRuO6 3.9
Sr2BiSbO6 3.9
Sr2InSbO6 4.0
Ba2CdMoO6 4.0
La2GaRhO6 4.0
Sr2ScRuO6 4.0
Ca2ScIrO6 4.0
Sr2CuReO6 4.0
Sr2TiIrO6 4.0
Ca2NbRhO6 4.0
La2MnFeO6 4.0
Ba2NbRhO6 4.1
Ca2ScRuO6 4.1



170

Sr2TiSnO6 4.1
Sr2CdMoO6 4.1
Ba2ScSbO6 4.1
Sr2CdReO6 4.2
La2CdRuO6 4.2
Ca2YRuO6 4.2
LiLa2SbO6 4.2
Ca2TiSnO6 4.2
NaLa2SbO6 4.2
LiLa2AsO6 4.2
Ba2YRuO6 4.2
La2MgIrO6 4.3
Sr2NbRhO6 4.3
Sr2YRuO6 4.3
Ca2CdReO6 4.3
Ca2ScSbO6 4.3
Sr2ZrIrO6 4.3
Sr2ScSbO6 4.3
Sr2ZrVO6 4.4
La2AlFeO6 4.4
La2MnRuO6 4.4
La2FeSnO6 4.4
NbCrPb2O6 4.4
La2ScRhO6 4.4
Ca2ZrVO6 4.4
La2FeRuO6 4.5
Sr2TaRhO6 4.5
La2NiSnO6 4.5
Ca2YSbO6 4.5
Ba2NbBiO6 4.5
Ba2ZrIrO6 4.5
La2MnSnO6 4.5
Ca2HfVO6 4.6
Sr2NbBiO6 4.6
Ba2HfIrO6 4.6
La2ScFeO6 4.6
La2InGaO6 4.6
Ba2ZrSnO6 4.6
Sr2HfIrO6 4.6
La2InFeO6 4.6
Sr2YSbO6 4.6
La2MgRuO6 4.7
Ca2TaBiO6 4.7
Ca2TiGeO6 4.7
Ca2ZnReO6 4.7
La2VNiO6 4.7
Ba2FeMoO6 4.7
Sr2TaBiO6 4.7
Ba2TaInO6 4.7
Ca2ZrSnO6 4.7
NbVPb2O6 4.7
La2CrFeO6 4.8
Sr2FeReO6 4.8
Ca2TaInO6 4.8
Ba2ZrRuO6 4.8
Ba2ZnMoO6 4.8
Ba2TaBiO6 4.8
Sr2ZrSnO6 4.8
Ba2CoMoO6 4.8
Ca2FeMoO6 4.8
Ba2HfRuO6 4.8
Sr2ZrRuO6 4.9
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Sr2FeMoO6 4.9
La2VInO6 4.9
Sr2HfSnO6 4.9
La2CrInO6 4.9
Ba2MnMoO6 4.9
La2NiGeO6 4.9
Sr2MgMoO6 5.0
Ba2CrMoO6 5.0
Sr2NbRuO6 5.0
Ca2ReNiO6 5.0
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Table 12.7: List of all DFT stable AA’BB’O6 compounds with a vacancy formation energy within the window
of interest for STCH applications.

Composition ∆Ev f [eV/O]

NaYbTaPbO6 2.0
BaEuNbTlO6 2.0
NaEuMnNbO6 2.0
NaEuTaPbO6 2.0
NaTmTiMnO6 2.0
RbNdZrPbO6 2.0
NaHoTiMnO6 2.0
NaErTiMnO6 2.0
KDyHfPbO6 2.0
NaEuTaMnO6 2.0
RbCeTaTlO6 2.0
KDyZrPbO6 2.0
KCeHfMnO6 2.0
NaPrTiMnO6 2.0
NaCeTiPdO6 2.0
NaPrTiPdO6 2.0
KCeMnNbO6 2.1
NaNdTiMnO6 2.1
BaEuTaTlO6 2.1
KGdHfPbO6 2.1
RbCeZrPbO6 2.1
KGdZrPbO6 2.1
KHoHfPbO6 2.1
KYHfPbO6 2.1
NaSmTiPbO6 2.1
RbCeHfPbO6 2.2
NaGdTiPbO6 2.2
NaTbTiPbO6 2.2
NaHoTiPbO6 2.2
NaDyTiPbO6 2.2
KLaMnNbO6 2.2
NaTmTiPbO6 2.2
CaLaTiCoO6 2.2
NaTmZrPbO6 2.2
KNdZrPbO6 2.2
KLaTaMnO6 2.3
SrNdTiCoO6 2.3
NaErZrPbO6 2.3
NaHoZrPbO6 2.3
NaYZrPbO6 2.3
NaTbZrPbO6 2.3
NaDyZrPbO6 2.3
NaGdZrPbO6 2.3
KPrZrPdO6 2.3
KCeTaMnO6 2.3
NaSmZrPbO6 2.3
NaNdZrPbO6 2.3
KLaZrPdO6 2.4
KLaHfPdO6 2.4
KCeHfPbO6 2.4
NaDyHfPbO6 2.4
CaPrTiCoO6 2.4
NaYHfPbO6 2.4
KCeZrPdO6 2.4
NaNdZrMnO6 2.4
NaCeZrMnO6 2.4
KCeHfPdO6 2.4
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NaTbHfPbO6 2.4
KLaHfPbO6 2.4
CaNdTiCoO6 2.4
NaSmHfPbO6 2.4
NaNdHfMnO6 2.4
KCeZrPbO6 2.5
CaNdZrTlO6 2.5
KPrHfPbO6 2.6
KHoZrPbO6 2.6
NaPrZrMnO6 2.6
KCeTaTlO6 2.6
NaSmZrMnO6 2.6
KPrTaTlO6 2.6
BaLaTiMnO6 2.6
KTbZrPbO6 2.6
RbPrZrPbO6 2.7
NaPrHfMnO6 2.7
NaYHfMnO6 2.7
NaSmTaMnO6 2.7
NaDyHfMnO6 2.7
NaCeTaMnO6 2.7
NaNdTaMnO6 2.7
NaCeHfMnO6 2.7
NaPrTaMnO6 2.7
NaGdHfMnO6 2.7
NaTbHfMnO6 2.7
KSmZrPbO6 2.8
BaEuTaMnO6 2.8
KPrZrPbO6 2.8
KTbHfPbO6 2.8
CaDyTiCoO6 2.8
RbCeNbFeO6 2.8
NaTmHfPbO6 2.8
KSmHfPbO6 2.9
RbPrTaFeO6 2.9
KNdHfPbO6 2.9
NaNdHfPbO6 2.9
NaHoHfPbO6 2.9
NaErHfPbO6 2.9
NaSmHfMnO6 3.0
SrPrTiMnO6 3.1
NaCeTaTlO6 3.1
SrLaTiMnO6 3.1
CaSmTiMnO6 3.1
NaNdTaTlO6 3.1
KCeNbFeO6 3.1
SrCeTiMnO6 3.1
CaNdTiMnO6 3.2
CaLaTiMnO6 3.2
CaPrTiMnO6 3.2
KGdTaFeO6 3.2
NaHoHfMnO6 3.2
BaPrTiFeO6 3.3
BaLaTiFeO6 3.3
SrCeHfTlO6 3.3
BaYbTaFeO6 3.4
BaCeTiFeO6 3.4
CaTbTiMnO6 3.4
CaCeMnVO6 3.4
CaGdTiMnO6 3.4
CaPrMnVO6 3.4
CaCeTiMnO6 3.4
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SrHoTiFeO6 3.4
CaNdMnVO6 3.5
SrDyTiFeO6 3.5
SrTbTiFeO6 3.5
CaNdTaCuO6 3.5
SrGdTiFeO6 3.5
BaLaTiRhO6 3.6
BaPrTiRhO6 3.6
CaGdMnVO6 3.6
CaLuTiFeO6 3.6
BaCeTiRhO6 3.6
CaYMnVO6 3.6
SrSmTiFeO6 3.6
CaDyMnVO6 3.7
BaEuTaFeO6 3.7
CaTmTiFeO6 3.7
CaErTiFeO6 3.7
SrNdTiFeO6 3.7
CaHoTiFeO6 3.7
CaDyTiFeO6 3.7
CaTbTiFeO6 3.7
CaGdTiFeO6 3.8
NaCeTiIrO6 3.8
NaPrTiIrO6 3.8
SrPrTiFeO6 3.8
KLaTiRuO6 3.8
KCeTiRuO6 3.8
BaEuNbRhO6 3.8
CaNdTiFeO6 3.8
SrCeTiFeO6 3.8
CaCeTiFeO6 3.8
CaYVFeO6 3.9
CaYTiFeO6 3.9
KCeZrIrO6 3.9
CaLaTiFeO6 3.9
NaTbVSbO6 3.9
SrNdTiRhO6 3.9
RbEuZrSbO6 3.9
RbTmTiTeO6 3.9
RbHoTiTeO6 4.0
CsSmTiTeO6 4.0
RbLuTiTeO6 4.0
CaErTiRhO6 4.0
CaHoTiRhO6 4.0
RbNdTiTeO6 4.0
CsPrTiTeO6 4.0
NaDyTiRuO6 4.0
CaTbTiRhO6 4.0
NaTbTiRuO6 4.0
CaGdTiRhO6 4.0
KCeTaRhO6 4.0
SrLaTiRhO6 4.0
RbLaTiTeO6 4.0
CaLuTiRhO6 4.0
SrCeTiRhO6 4.0
KEuZrSbO6 4.0
KEuNbRuO6 4.0
NaSmTiRuO6 4.0
CaTmTiRhO6 4.0
CaCeTiRhO6 4.0
RbCeTiTeO6 4.0
CaSmTiRhO6 4.0
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NaYbZrSbO6 4.0
CaLaTiRhO6 4.1
NaEuNbIrO6 4.1
RbEuHfSbO6 4.1
NaCeTiRuO6 4.1
SrPrTiRhO6 4.1
CaPrTiRhO6 4.1
RbErTiTeO6 4.1
KCeTiTeO6 4.1
CsHoTiTeO6 4.1
RbYTiTeO6 4.1
CsDyTiTeO6 4.1
SrNdVFeO6 4.1
RbGdTiTeO6 4.1
NaPrTiRuO6 4.1
CsGdTiTeO6 4.1
CaYTiRhO6 4.1
RbTbTiTeO6 4.1
KErTiTeO6 4.1
KTmTiTeO6 4.1
KHoTiTeO6 4.1
CaNdTiRhO6 4.1
KEuHfSbO6 4.1
KPrTiTeO6 4.1
KYTiTeO6 4.1
KSmTiTeO6 4.2
NaLuTiSnO6 4.2
KNdTiTeO6 4.2
RbDyTiTeO6 4.2
KDyTiTeO6 4.2
KTbTiTeO6 4.2
NaCeCdMoO6 4.2
KGdTiTeO6 4.2
SrCeVFeO6 4.2
RbCeCdWO6 4.2
CaLuVFeO6 4.2
NaCeCdWO6 4.2
SrSmTiRhO6 4.3
CaGdVFeO6 4.3
NaTmCdWO6 4.3
NaTbCdWO6 4.3
NaYCdWO6 4.3
CaHoVFeO6 4.3
CaPrVFeO6 4.3
CaSmVFeO6 4.3
KPrCdWO6 4.3
CaDyVFeO6 4.3
NaYbHfSbO6 4.3
KCeZrRuO6 4.3
KLaZrRuO6 4.3
CaDyTiRhO6 4.3
CsEuTaTeO6 4.3
CaErVFeO6 4.3
CaTmVFeO6 4.3
BaEuCdWO6 4.3
NaYTaFeO6 4.4
NaPrCdWO6 4.4
SrCeHfFeO6 4.4
KPrZrRuO6 4.4
NaEuNbRuO6 4.4
KCeCdMoO6 4.4
NaTmTaFeO6 4.4
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NaGdTaFeO6 4.4
NaDyTaFeO6 4.4
SrCeZrRhO6 4.4
NaErTaFeO6 4.4
NaYbNbRuO6 4.4
NaNdCdWO6 4.4
NaHoTaFeO6 4.4
KYbHfSbO6 4.4
NaSmCdWO6 4.4
SrGdNbCdO6 4.5
NaLaCdWO6 4.5
CaHoNbCdO6 4.5
BaCeNbCdO6 4.5
CaDyNbCdO6 4.5
NaYbTaRuO6 4.5
BaNdTaCdO6 4.5
KCeCdWO6 4.5
CsYTiTeO6 4.5
RbEuTaTeO6 4.5
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