
NORTHWESTERN UNIVERSITY

Methods for Nonlinear and Noisy Optimization

A DISSERTATION

SUBMITTED TO THE GRADUATE SCHOOL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

for the degree

DOCTOR OF PHILOSOPHY

Field of Industrial Engineering and Management Science

By

Yuchen Xie

EVANSTON, ILLINOIS

September 2021

2

c© Copyright by Yuchen Xie 2021

All Rights Reserved

3

ABSTRACT

Methods for Nonlinear and Noisy Optimization

Yuchen Xie

In this thesis, we aim to develop efficient algorithms with theoretical guarantees for

noisy nonlinear optimization problems, with and without constraints, under various dif-

ferent assumptions. Apart from Chapter 1 which provides relevant backgrounds, the

remaining of thesis is divided into four chapters.

In Chapter 2, we establish the theoretical convergence results for a modified BFGS

method when bounded noise is presented in both function and gradient evaluations. In

order to guarantee the stability of BFGS update in the presence of such noise, we propose

to modify the classic BFGS method by incorporating a procedure called lengthening, which

spaces out the points at which gradient differences are collected when necessary. We show

that on strongly convex functions, the proposed BFGS method is globally convergent to

a neighborhood of the minimizer, whose size depends on the noise level.

The lengthening procedure described in Chapter 2 requires the knowledge of the

strongly convex parameter of the objective function, making it difficult to apply the

proposed method in realistic settings. In Chapter 3, we build upon the ideas in Chapter

4

2 and propose a practical noise-tolerant BFGS/limited-memory BFGS (L-BFGS) method

which addresses this difficulty. We design a new line search that is capable of performing

adaptive lengthening without knowing exogenous function information. We prove that

the proposed method is globally convergent on strongly convex functions, and performs

better than unmodified BFGS/L-BFGS on noisy optimization problems both in terms of

efficiency and the accuracy it reaches.

In Chapter 4, we consider the derivative-free optimization (DFO) where we only have

access to the noisy objective function but not its derivatives. One approach under this set-

ting is computing an approximation of the derivative using finite-difference, and in order

for this approach to be efficient, the finite-difference interval needs to be chosen appro-

priately. A typical choice is
√
εM , but this choice can perform poorly when we have noise

in function evaluations. To address this issue, we propose an estimation procedure that

performs a bisection search on the finite-difference interval to find near-optimal difference

interval. We show that under suitable assumptions, the proposed procedure terminates in

finite iterations, and outputs optimal differencing intervals (up to constant). In addition,

this procedure can be generalized to any finite difference scheme beyond forward differ-

ence and central difference, including schemes for estimating higher-order derivatives. We

also demonstrate its reliability and accuracy on a number of noisy functions.

Apart from bounded noise we consider in previous chapters, another frequently seen

type of noise is stochastic noise. In Chapter 5, we consider a constrained stochastic op-

timization problem, where the objective function is computed in expectation, and the

variables are subject to deterministic and simple convex constraints. A common method

5

for such problems is the mini-batching stochastic proximal gradient method, which com-

putes a stochastic gradient for the objective function using a mini-batch of samples, and

applies the proximal gradient method. One difficulty in this method is choosing the size of

mini-batch appropriately so that the overall sample complexity is kept to a minimum. To

achieve this goal, we describe an adaptive sampling strategy, which adaptively increases

the batch size as the iterates approach the minimizer. We present global convergence

results for the proposed algorithm, on both strongly convex and general convex objective

functions. Numerical experiments are also presented to demonstrate the efficacy of the

proposed method.

6

Acknowledgements

It is only with the unwavering support of many people that I can achieve this milestone

in my life, and I would like to express my sincerest gratitude to them.

First and foremost, I would like to thank my advisor Professor Jorge Nocedal. It

is a great honor for me to be advised by and work alongside one of the great minds in

optimization. Thank you for being a great advisor who has patiently guided me, once

an outsider to the field of optimization, into such a beautiful world. Thank you for

being a great mentor and offering me so much advice, guidance, and opportunities for my

academic and career development. Thank you for being a great role model to whom I

shall always look up. Thank you for being a great friend, who is so caring, understanding,

supporting, encouraging, and always willing to help. I am incredibly fortunate to have

you throughout this journey.

I would like to thank many mentors I have had throughout my Ph.D. studies, all of

whom I have learned a great deal from. Thank you, Professor Andreas Wächter and

Professor Ermin Wei, for teaching me so much and serving on my dissertation committee.

Thank you, Professor Richard Byrd, for the opportunities to collaborate with you and

for your help with many challenging problems I’ve encountered. Thank you, Professor

Zhaoran Wang, for leading me into the world of machine learning. I have also had the

privilege of collaborating with many other exceptional researchers: Raghu, Michael, Yi,

and Melody. Thank you all for your efforts in our research projects.

7

I want to thank the IEMS faculty for offering me admission to the Ph.D. program five

years ago, teaching me so much about industrial engineering, and being role models as

exceptional researchers. I also want to thank the IEMS staff members for always being

so warm and helpful, especially Stephen and Agnes.

I also want to thank my lab mates who have shared office L375 with me: Albert,

Francisco, Raghu, Alejandra, Ruby, Michael, Melody, Oliver, Xinyi, Shigeng, and Shima.

Thank you for warmly welcoming me into the optimization lab, for discussing stimulating

ideas with me, for putting up with me when I am noisy, and for making me feel like a

part of a family.

The past five years have been incredibly happy, for which I have my dear friends

to thank. Ruby and Yi, when I began my Ph.D. studies five years ago, I could never

have imagined that I could make such dear friends like you, with whom I would share

so many memories. We’ve had so many ups and downs, went past so many milestones

in our journey, and we went through all of them together. Although we are no longer in

the same city, I believe that our friendship will be long-lasting. Yi’an, you’re always so

passionate, cheerful while also intelligent and insightful. It was a pleasure to have you as

a dear friend, a role model, and a roommate. Muchen, thank you for all the fun we’ve

had and for all the help you’ve given me when I need it. Yintai, Liwei, Xin, and so many

more friends, thank you all for bringing joy to my life. I could not list all the names here,

but the memories with these friends will always be in my heart.

Last but not least, I want to thank my family members. Mum and Dad, although you

are not here with me during my Ph.D. studies, your unconditional love and support are

what keep me forward in this journey. I want to thank my grandma, grandpa, and elder

8

sister for always believing in and caring about me. Sisi, my fiancée, thank you for always

believing in me, for seeing the best in me, and for encouraging me when I’m doubting

myself. In the first two years of my Ph.D. life, we lived in different countries and could

only see each other once in several months. Thank you so much for changing your career

path entirely, going across the ocean to come to this country and be with me. I love you

and thank you for being in my life.

9

Table of Contents

ABSTRACT 3

Acknowledgements 6

Table of Contents 9

List of Tables 12

List of Figures 14

Chapter 1. Introduction 21

1.1. Quasi-Newton Methods for Noisy Optimization Problems 22

1.2. Derivative-free Optimization and Finite Difference 29

1.3. Stochastic Optimization and Adaptive Sampling 32

Chapter 2. Analysis of the BFGS Method with Errors 34

2.1. Introduction 34

2.2. The Algorithm 36

2.3. Convergence Analysis 41

2.4. Numerical Experiments 78

2.5. Final Remarks 81

10

Chapter 3. A Noise-Tolerant Quasi-Newton Algorithm for Unconstrained

Optimization 83

3.1. Introduction 83

3.2. The Algorithm 87

3.3. Convergence Analysis 94

3.4. A Practical Algorithm 104

3.5. Numerical Experiments 113

3.6. Final Remarks 127

Chapter 4. Adaptive Finite-Difference Estimation 129

4.1. Introduction 129

4.2. Adaptive Finite-Difference Interval Estimation 132

4.3. Numerical Experiments 151

4.4. Conclusion 158

Chapter 5. Constrained and Composite Optimization via Adaptive Sampling

Methods 162

5.1. Introduction 162

5.2. Outline of the Algorithm 167

5.3. Derivation of the Algorithm 170

5.4. Using an Inner-Product Test in Place of the Norm Test 184

5.5. Numerical Experiments 187

5.6. Final Remarks 189

References 191

11

Appendix A. Additional Numerical Experiments for Chapter 5 196

12

List of Tables

3.1 Parameter Settings for the Methods Tested 115

3.2 Unconstrained CUTEst Problems Tested. d is the number of variables.116

4.1 Commonly used finite-difference schemes, their testing ratios using

the doubling trick, and their leading terms in the Taylor expansion. 142

4.2 Schemes used in the experiments. The scheme is defined by S = (w, s)

as in (4.11). All schemes have d = 1 (i.e., estimating gradient); q is

defined in (4.12). 151

4.3 Detailed results for v̂(t) = cos(t) with different noise levels; r represents

the final testing ratio; h∗ is the h that minimizes δS(h; v̂, t, εf) reported

by minimize scalar function in scipy.optimize and could be

unreliable. 156

4.4 Detailed results for v̂(t) = a · sin(b · t) with εf = 1E-3; r represents the

final testing ratio; h∗ is the h that minimizes δS(h; v̂, t, εf) reported

by minimize scalar function in scipy.optimize and could be

unreliable. 160

4.5 Detailed results for special examples, with εf = 1E-3; r represents the

final testing ratio; h∗ is the h that minimizes δS(h; v̂, t, εf) reported

13

by minimize scalar function in scipy.optimize and could be

unreliable. 161

5.1 Characteristics of the binary datasets used in the experiments. 187

14

List of Figures

1.1 Condition number of Hk, generated by BFGS method on a simple

noisy function (ARWHEAD from CUTEst problem set). 29

2.1 Results of 20 runs of Algorithm 2.1. The graph plots the log of the

optimality gap for the true function, log10 (φ(xk)− φ∗), against the

iteration number k. The horizontal red dashed line corresponds to

the noise level log10 max {εg, εf} = 0. The vertical purple dashed line

marks the first iteration at which lengthening is performed (k = 8). 79

2.2 Log of the norm of true gradient log10 ‖∇φ(xk)‖ against iteration k for

20 runs of Algorithm 2.1. The horizontal red dashed line corresponds

to the noise level, and the vertical purple dashed line corresponds to

the first iteration at which lengthening is performed. 80

2.3 Log of the condition number of H
1/2
k ∇2φ(xk)H

1/2
k against iteration

k. Note that after the iteration reaches the noise level, the Hessian

approximation remains accurate. 80

3.1 The condition number of the BFGS matrix κ(Hk) against the number

of iterations on the ARWHEAD problem with added noise. 86

15

3.2 The condition number of the BFGS and BFGS-E matrices κ(Hk)

against the number of iterations (left) and the smallest and largest

eigenvalues of Bk against the number of iterations (right) on the

ARWHEAD problem. The final norm of the true gradient achieved by

BFGS is approximately 1.97e−04. 117

3.3 The true optimality gap φ(xk) − φ∗ against the number of gradient

evaluations on the ARWHEAD problem for εf = 0, and for the following

gradient noise levels: ξg = 10−1 (left), 10−3 (middle), and 10−5 (right).

The black dashed line denotes the iteration before the split phase

becomes active. 118

3.4 Cumulative number of gradient evaluations against the iteration

count on the ARWHEAD problem for εf = 0 and ξg = 10−3 for BFGS

and BFGS-E. The left figure plots the long-term behavior and the

right figure plots the short-term behavior. The results for L-BFGS

and L-BFGS-E as well as different noise levels are similar. The black

dashed line denotes the iteration before the split phase becomes

active. 119

3.5 The true optimality gap φ(xk) − φ∗ against the number of gradient

evaluations applying BFGS-E on the ARWHEAD, EIGENCLS, and

ENGVAL1 problems for εf = 0 and ξg = 10−3 with incorrectly input

ε̄g = ωεg for ω ∈ { 1
10
, 1

5
, 1

2
, 1, 2, 5, 10}. 119

3.6 Intermittent Noise. Optimality gap φ(xk)− φ∗ against the number of

iterations on the CRAGGLVY problem. ξf = 0 and ξg alternates between

16

0 and with ξg = 10−1 every Nnoise iterations. Results for Nnoise = 10

(left), 25 (middle), and 50 (right). The black dashed line denotes the

iteration before the split phase becomes active. 121

3.7 The true optimality gap φ(xk) − φ∗ against the number of gradient

evaluations on the ENGVAL1 problem for εf = 0, and for the following

gradient noise levels: ξg = 10−1 (left), 10−3 (middle), and 10−5 (right).

The black dashed line denotes the iteration before the split phase

becomes active. 122

3.8 The true optimality gap φ(xk) − φ∗ against the number of gradient

evaluations on the EIGENCLS problem for εf = 0, and for the following

gradient noise levels: ξg = 10−1 (left), 10−3 (middle), and 10−5 (right).

The black dashed line denotes the iteration before the split phase

becomes active. 123

3.9 Intermittent Noise. Optimality gap φ(xk)− φ∗ against the number of

iterations on the CRAGGLVY problem. ξf = 0 and ξg alternates between

0 and with ξg = 10−1 every Nnoise iterations. Results for Nnoise = 10

(left), 25 (middle), and 50 (right). The black dashed line denotes the

iteration before the split phase becomes active. 124

3.10 Optimality gap φ(xk)− φ∗ against the number of gradient evaluations

on problem DIXMAANH, with ξf = 10−3 on all six plots, and with

ξg = 10−1 (left), ξg = 10−3 (middle), and ξg = 10−5 (right). The

black dashed line denotes the iteration before the split phase becomes

active. 125

17

3.11 Optimality gap φ(xk)− φ∗ against the number of gradient evaluations

on problem DIXMAANH with ξg = 10−5 on all six plots, and with

ξf = 10−1 (left), ξf = 10−3 (middle), and ξf = 10−5 (right). The

black dashed line denotes the iteration before the split phase becomes

active. 126

3.12 Morales profiles for the optimality gap φ(xk) − φ∗ across 41

unconstrained CUTEst problems with ξf = 10−3 and ξg = 10−3.

Results are averaged over 5 runs. The left figure compares BFGS

against BFGS-E while the right figure compares L-BFGS against

L-BFGS-E. 127

3.13 Morales profiles for the total number of gradient evaluations to achieve

(3.45) across 41 unconstrained CUTEst problems with ξf = 10−3 and

ξg = 10−3. Results are averaged over 5 runs. The left figure compares

BFGS against BFGS-E while the right figure compares L-BFGS

against L-BFGS-E. 127

4.1 Worst case relative error δS(h; v̂, t, εf) against h on function

v̂(t) = cos(t) with different noise levels; the vertical dashed line

represents the h† output by Algorithm 4.1. 154

4.2 Worst case relative error δS(h; v̂, t, εf) against h on function

v̂(t) = a · sin(b · t) for different a and b; the vertical dashed line

represents the h† output by Algorithm 4.1. 155

18

4.3 Worst case relative error δS(h; v̂, t, εf) against h on several special

cases; the vertical dashed line represents the h† output by Algorithm

4.1. 158

5.1 Failure of norm test for constrained problems. 164

5.2 Optimality gap φ(xk) − φ∗ against effective gradient evaluations on

dataset mushrooms, with different strategies to control batch size:

geometric increase (top left), norm test (top right), inner-product test

(bottom left), and comparison between the best run for each method

(bottom right). 189

5.3 Batch size (as a fraction of total number of data points N) against

iterations on dataset mushrooms, with different strategies to control

batch size: geometric increase (top left), norm test (top right),

inner-product test (bottom left), and comparison between the best

run for each method (bottom right). 190

A.1 Optimality gap φ(xk) − φ∗ against effective gradient evaluations

on dataset covtype, with different strategies to control batch size:

geometric increase (top left), norm test (top right), inner-product test

(bottom left), and comparison between the best run for each method

(bottom right). 196

A.2 Batch size (as a fraction of total number of data points N) against

iterations on dataset covtype, with different strategies to control

batch size: geometric increase (top left), norm test (top right),

19

inner-product test (bottom left), and comparison between the best

run for each method (bottom right). 197

A.3 Optimality gap φ(xk) − φ∗ against effective gradient evaluations on

dataset gisette scale, with different strategies to control batch size:

geometric increase (top left), norm test (top right), inner-product test

(bottom left), and comparison between the best run for each method

(bottom right). 198

A.4 Batch size (as a fraction of total number of data points N) against

iterations on dataset gisette scale, with different strategies to

control batch size: geometric increase (top left), norm test (top right),

inner-product test (bottom left), and comparison between the best

run for each method (bottom right). 199

A.5 Optimality gap φ(xk) − φ∗ against effective gradient evaluations

on dataset ijcnn, with different strategies to control batch size:

geometric increase (top left), norm test (top right), inner-product test

(bottom left), and comparison between the best run for each method

(bottom right). 200

A.6 Batch size (as a fraction of total number of data points N) against

iterations on dataset ijcnn, with different strategies to control batch

size: geometric increase (top left), norm test (top right), inner-product

test (bottom left), and comparison between the best run for each

method (bottom right). 201

20

A.7 Optimality gap φ(xk) − φ∗ against effective gradient evaluations

on dataset MNIST, with different strategies to control batch size:

geometric increase (top left), norm test (top right), inner-product test

(bottom left), and comparison between the best run for each method

(bottom right). 202

A.8 Batch size (as a fraction of total number of data points N) against

iterations on dataset MNIST, with different strategies to control batch

size: geometric increase (top left), norm test (top right), inner-product

test (bottom left), and comparison between the best run for each

method (bottom right). 203

A.9 Optimality gap φ(xk) − φ∗ against effective gradient evaluations on

dataset sido, with different strategies to control batch size: geometric

increase (top left), norm test (top right), inner-product test (bottom

left), and comparison between the best run for each method (bottom

right). 204

A.10 Batch size (as a fraction of total number of data points N) against

iterations on dataset sido, with different strategies to control batch

size: geometric increase (top left), norm test (top right), inner-product

test (bottom left), and comparison between the best run for each

method (bottom right). 205

21

CHAPTER 1

Introduction

Optimization problems occur in a wide range of fields including natural science, social

science and engineering, and have been the fundamental tool people use for decision-

making. Most of the optimization algorithms have been developed under the implicit

assumption that the objective functions, including their derivatives, can be evaluated

exactly. In practice however, more often than not the objective functions are evaluated

approximately and contain some noise. Such noise may be a result of the computation

process through which the objective function is evaluated, for example, round-off errors

from floating-point arithmetics. Another source of noise is stochastic optimization, where

objective function is expressed as the expectation of a random variable and is usually

approximated by a sample average. Such settings are very common in simulation opti-

mization and machine learning.

The optimization problem considered in this thesis can be generally expressed as:

min
x∈C

φ(x),

where C ⊆ Rn is the feasible set, and can be either Rn itself (unconstrained optimization)

or a subset of Rn (constrained optimization). However, we must perform this minimization

only by observing noisy function evaluations

f(x) = φ(x) + ε(x),

22

and in some cases, noisy gradient evaluations

g(x) = ∇φ(x) + e(x),

where ε(x) and e(x) model the noise in function and gradient evaluations, respectively.

Depending on the specific applications, ε(x) and e(x) can either be deterministic functions,

or random variables that follow specific distributions.

In Chapter 2 and 3, we consider applying the BFGS and the limited-memory BFGS

(L-BFGS) method to an unconstrained, noisy optimization problem, with access to noisy

function and gradient evaluations where the noise is assumed to be uniformly bounded:

|ε(x)| ≤ εf , ‖e(x)‖ ≤ εg.

In Chapter 4, we consider the scenario where we only have access to the noisy function but

not the gradient, a setting commonly known as derivative-free optimization (DFO), with

the same uniform boundedness assumption. In Chapter 5, we consider a constrained,

stochastic optimization problem, where ε(x) and e(x) are zero-mean random variables.

Each chapter is self-contained, and may use its own set of notations.

In the remaining parts of this chapter, we briefly discuss the backgrounds, introducing

relevant optimization problems and algorithms, and motivating our investigations.

1.1. Quasi-Newton Methods for Noisy Optimization Problems

Quasi-Newton methods are a class of optimization methods for unconstrained opti-

mization problem:

min
x∈Rn

f(x),

23

where f(·) is continuously differentiable. They utilize the displacement sk = xk+1 − xk

and the change in the gradients yk = ∇f(xk+1)−∇f(xk) between consecutive iterations

to extract second-order information of the objective function f(·), and maintain the fast

local convergence speed of Newton’s method without having to evaluate the Hessian, or

Hessian-vector products.

1.1.1. BFGS Method

The Broyden-Fletcher-Goldfarb-Shanno (BFGS) method with Armijo-Wolfe line search

(Algorithm 1.1), is among the most successful and widely-used quasi-Newton methods.

Starting from a positive definite matrix H0 � 0, it iteratively updates matrix Hk as the

approximation of the inverse of the Hessian [∇2f(xk)]
−1

by (1.1), which is equivalent to

solving the following constrained optimization problem:

Hk+1 = argmin
H

‖H −Hk‖2
W , Wsk = yk

s.t. Hyk = sk, HT = H,

where ‖·‖W represents the weighted Frobenius norm and W is any positive definite matrix

such that Wsk = yk.

Line search is a procedure in which the step size αk is determined adaptively, a key

ingredient of the BFGS method. The most common line search used in conjunction with

BFGS method is the Armijo-Wolfe line search, which attempts to find a step size that

24

satisfies the Armijo-Wolfe condition:

φ(xk + αkpk) ≤ φ(xk) + c1αp
T
k∇φ(xk) (Armijo condition)

pTk∇φ(xk + αkpk) ≥ c2p
T
k∇φ(xk), (Wolfe condition)

The first condition is also called the sufficient decrease condition because it requires

the function to decrease sufficiently at the new iterate, generally preventing the step size

from being too large; and the second condition is also called the curvature condition,

which requires the directional derivative of the objective function along the search direc-

tion pk to increase sufficiently, generally preventing the step size from being too small.

It is well known [48] that the Armijo-Wolfe line search can stabilize the BFGS updates.

Moreover, for any function with Lipschitz continuous gradients that is bounded from

below, the standard bi-sectioning Armijo-Wolfe line search terminates finitely, generating

a step size that satisfies the Armijo-Wolfe condition.

The BFGS method with Armijo-Wolfe line search (Algorithm 1.1) has many nice prop-

erties: it is well-defined for any objective function φ(·) that is continuously differentiable

and bounded from below [48]; globally convergent if φ(·) is convex, twice continuously

differentiable with bounded level sets [51]; and locally superlinear convergent if φ(·) is

also strongly convex [18]. While examples of non-convex functions on which the method

fails to converge exist [24, 41], the method performs very well in practice.

25

Algorithm 1.1: BFGS Method with Armijo-Wolfe Line search

Input: smooth function φ(·); constants 0 < c1 < c2 < 1; starting point x0; initial

Hessian inverse approximation H0 � 0.

1: for k = 0, 1, 2, ..., do

2: pk ← −Hk∇φ(xk)

3: Line search: find a stepsize αk that satisfies the Armijo-Wolfe condition:

φ(xk + αkpk) ≤ φ(xk) + c1αkp
T
k∇φ(xk)

pTk∇φ(xk + αkpk) ≥ c2p
T
k∇φ(xk)

4: Take the step:

xk+1 ← xk + αkpk

5: Compute the curvature pair (sk, yk):

sk = xk+1 − xk, yk = ∇f(xk+1)−∇f(xk)

6: Update inverse Hessian approximation using the curvature pairs (sk, yk):

(1.1) Hk+1 =
(
I − ρkskyTk

)
Hk

(
I − ρkyksTk

)
+ ρksks

T
k , where ρk =

1

sTk yk

7: end for

1.1.2. Limited-Memory BFGS Method

The limited-memory BFGS (L-BFGS) method is a modification of the BFGS method,

which aims to reduce the computational and storage cost of the BFGS method on large-

scale optimization problems. It is among the state-of-the-art algorithms for large-scale

unconstrained optimization problems.

26

On a n-dimensional problem, the BFGS method has a per-iteration computational

cost of O(n2) and a storage cost of O(n2). For modern large-scale optimization problems,

an O(n2) cost might be prohibitively high, making it impractical to apply the BFGS

method.

Instead of maintaining a full n × n matrix Hk which encodes all the information of

previous curvature pairs {(sj, yj), j = 0, 1, · · · , k − 1}, the L-BFGS method only keeps a

limited number, m (usually m� n), of most recent curvature pairs, reducing the storage

cost from O(n2) to O(mn). The inverse Hessian approximation matrix Hk used in L-BFGS

method is constructed as follows: starting from H0
k � 0, which is allowed to vary from iter-

ation to iteration, iteratively apply BFGS update (1.1) using curvature pairs (sk−m, yk−m),

(sk−m+1, yk−m+1), · · · (sk−1, yk−1) to obtain a series of matrices H1
k , H

2
k , · · · , Hm

k , and let

Hk = Hm
k .

In L-BFGS method, the matrix Hk is implicitly defined by these m most recent curva-

ture pairs and is never constructed explicitly. Instead, L-BFGS method relies on the two

loop recursion to compute the product Hk∇φk, with a computational cost of only O(mn)

if H0
k is chosen appropriately [48, Chapter 7.2, page 178].

Just like the BFGS method, the L-BFGS method also uses the Armijo-Wolfe line search

to compute the step size αk, where the line search plays a similar role of stablizing the

updates. The L-BFGS method with Armijo-Wolfe line search is shown to be R-linearly

convergent on strongly convex functions [40]; unlike the BFGS method, the L-BFGS

method does not converge superlinearly. Interestingly, all existing analyses of the L-

BFGS indicate a convergence rate that is much slower than the gradient descent method,

which is in sharp contrast to the efficacy of the L-BFGS method in practice. Developing a

27

non-pessemistic analysis for the L-BFGS method that matches its performance in practice

remains an open problem.

1.1.3. BFGS and L-BFGS Method on Noisy Functions

Both the BFGS method and L-BFGS method are developed under the implicit assumption

that the function φ(x) and gradient ∇φ(x) evaluations are exact. If we only have access

to noisy evaluations of function and gradient, i.e., if we only have access to f(x) and g(x)

where

f(x) = φ(x) + ε(x), g(x) = ∇φ(x) + e(x),

then both methods will face two challenges.

First of all, the Armijo-Wolfe line search is no longer guaranteed to success. Without

the presence of noise, one can show that there exists intervals of stepsizes that satisfy

the Armijo-Wolfe condition so long as pk is a descent direction for φ at xk, and that

φ(xk + αpk) is bounded from below for α ≥ 0 [48, Chapter 3.1, page 35, Lemma 3.1]. In

the presence of noise, the Armijo-Wolfe condition must be replaced by:

f(xk + αkpk) ≤ f(xk) + c1αkp
T
k g(xk)

pTk g(xk + αkpk) ≥ c2p
T
k g(xk)

The existence of a stepsize αk such that the above conditions are satisfied is no longer

guaranteed. This means the line search procedure could fail and the algorithm is no longer

well-defined.

28

Another more subtle issue is the contamination of the BFGS matrix. Since BFGS

matrix Hk is updated iteratively using (1.1), it retains information in the curvature pair

(sk, yk). In the presence of noise, yk in the curvature pair is “contaminated” by the noise

in the gradient, as evident in the following decomposition:

yk = g(xk + αkpk)− g(xk) = (∇φ(xk + αkpk)−∇φ(xk))︸ ︷︷ ︸
true gradient difference

+ (e(xk + αkpk)− e(xk))︸ ︷︷ ︸
“noise”

Even if the Wolfe condition can still guarantee sTk yk > 0 (assuming the line search suc-

ceeds), using this contaminated information can result in deterioration of the BFGS ma-

trix Hk, resulting in stagnation of the algorithm. As an example, we plot the condition

number of Hk generated by the vanilla BFGS method on the ARWHEAD problem from the

CUTEst problem set [30], with independent, uniformly distributed noise added to each

component of the gradient; see Figure 1.1. We can see that the condition number of Hk

can grow to 1015, which signifies its deterioration due to the contamination of noise. We

will revisit this example in Chapter 3. Because of the limited-memory of Hk, this issue

is mitigated for the L-BFGS method, but it can still adversely affect the optimization

progress.

In Chapter 2 and 3, we will address these two challenges by modifying the vanilla

BFGS and L-BFGS method. We will establish the conditions under which the line search

procedure is guaranteed to succeed, and address the issue of contamination of Hk through

a procedure we call “lengthening”.

29

0 200 400 600 800 1000
Iterations

103

107

1011

1015

(H
k)

ARWHEAD
BFGS

Figure 1.1. Condition number of Hk, generated by BFGS method on a
simple noisy function (ARWHEAD from CUTEst problem set).

1.2. Derivative-free Optimization and Finite Difference

In many applications, we only have access to the value of the objective function, but

not its derivative. This setting is commonly known as the derivative-free optimization

(DFO), or black-box optimization.

The optimization problem in the DFO setting can be expressed as

min
x∈Rn

f(x), where f(x) = φ(x) + ε(x)

where φ(x) is a smooth function and ε(x) is the noise in the function.

There are a plethora of algorithms for DFO problem; see, for example, [37] for a

thorough review of existing optimization algorithms for DFO. In this thesis, we will focus

on the finite-difference-based approaches, which approximate the gradient by using the

finite-difference approximation.

30

Finite-difference is a simple yet effective method to compute an approximation of the

gradient when it is not available. The basic idea of finite-difference is using the Taylor

expansion. Since function φ(x) is smooth, for any s ∈ Rn and h ∈ R, we have:

φ(x+ h · s) = φ(x) + h · sT∇φ(x) +O(h2).

Therefore, we can approximate a component of ∇φ(x) by:

[∇φ(x)]i ≈
φ(x+ h · ei)− φ(x)

h
,

where ei is the unit vector along i-th coordinate. In practice however, we only have access

to f(x) instead of φ(x), and therefore we use:

(1.2) [∇φ(x)]i ≈
f(x+ h · ei)− f(x)

h
.

This approach is known as forward difference, and h > 0 is called differencing interval.

Alternatively, one can also use:

(1.3) [∇φ(x)]i ≈
f(x+ h · ei)− f(x− h · ei)

2h
;

this approach is known as central difference.

If we assume φ(x) is sufficiently smooth, by Taylor’s theorem, we have:

φ(x+ h · s) = φ(x) + h · sT∇φ(x) +
h2

2
· sT∇2φ(x)s+O(h3),

31

and we can see the error in the forward difference approximation is bounded by:

(1.4)

∣∣∣∣f(x+ h · ei)− f(x)

h
− eTi ∇φ(x)

∣∣∣∣ ≤ h

2
·
∣∣eTi ∇2φ(x)ei

∣∣+O(h2)︸ ︷︷ ︸
error due to truncation

+
2εf
h︸︷︷︸

error due to noise

From (1.4) we can see that the error in forward difference approximation comes from two

sources: error due to truncation, i.e., due to higher order terms in the Taylor expansion,

and error due to noise in f(x). The choice of differencing interval h can affect the ac-

curacy of forward difference approximation: decreasing h will decrease the error due to

truncation, but will increase the error due to noise in f . Therefore, there exists an optimal

choice of h which balances these two sources of error. If we ignore O(h2) term in (1.4),

the optimal choice of h is:

h∗i = 2

√
εf

|eTi ∇2φ(x)ei|
.

For central differencing scheme (1.3), a similar analysis exists, and the optimal choice of

h depends on the bound on the third order derivative of φ.

Unfortunately, such choices require the knowledge of both noise level εf and high-order

derivative of φ. While the noise level can be estimated by using procedures like ECNoise

[43], estimating high-order derivative is very difficult in the DFO setting.

In Chapter 4, we address this difficulty by desgining a bisectioning procedure that

search for the correct differencing interval which balances the error due to truncation and

due to noise, without any knowledge of the high-order derivatives. The procedure applies

to both forward differencing and central differencing scheme, and can be generalized to

arbitrary finite differencing schemes.

32

1.3. Stochastic Optimization and Adaptive Sampling

In many applications, including supervised machine learning and simulation optimiza-

tion, it is of interest to solve the following optimization problem:

min
x∈Rn

F (x)
def
== Eξ [f(x; ξ)] , ξ ∼ D,

where ξ is a random variable following certain distribution D, and f(x; ξ) is a smooth

function of x for all possible values of ξ. A very popular method for solving this problem

is the mini-batching stochastic gradient method, which approximate the gradient of F (x)

via sample average approximation:

∇F (x) ≈ gm(x)
def
==

1

m

m∑
j=1

∇xf(x; ξj), where ξ1, ξ2, · · · , ξm
iid∼ D.

The parameter m is called batch size, and it controls the quality of the gradient approxi-

mation. For a gradient approximateion computed with a batch size of m, the error in the

approximation is of order O(1/
√
m).

While increasing batch size improves the quality of gradient approximation, it also

increases computational and storage cost. It is therefore desirable to balance this trade-

off by adaptively controlling batch size: in the beginning of the optimization, a crude

approximation is sufficient to make progress, and a small m should be used; as the iterates

approach the minimizer, however, a more refined approximation is needed and m must

be increased. A natural idea is to control the error in gm(x) such that it is comparable to

‖∇F (x)‖, i.e., to choose m such that

E
[
‖gm(x)−∇F (x)‖2

]
≤ θ2‖∇F (x)‖2

33

for some θ ∈ (0, 1). This is known as the norm test [16]. It can be shown [16] that under

some assumptions, the idealized version of the norm test can ensure linear convergence

to the minimizer. In practice, the exact gradient ∇F (x) is not available and can only be

estimated.

Nevertheless, the idea behind the norm test cannot directly generalize to the case of

constrained optimization. Consider the constrained optimization setting:

min
x∈Ω

F (x)
def
== Eξ [f(x; ξ)] , ξ ∼ D,

where Ω ⊆ Rn is the feasible set. The reason is that for constrained optimization, the norm

of gradient ‖∇F (x)‖ is no longer a valid measure of progress. Unlike the unconstrained

case, ‖∇F (x)‖ does not converge to 0 even if x converges to a stationary point. In Chapter

5, we investigate this setting and propose a natural generalization of the norm test so that

it applies to constrained optimization.

34

CHAPTER 2

Analysis of the BFGS Method with Errors

2.1. Introduction

The behavior of the BFGS method in the presence of errors has received little attention

in the literature. There is, however, an increasing interest in understanding its theoretical

properties and practical performance when functions and gradients are inaccurate. This

interest is driven by applications where the objective function contains noise, as is the

case in machine learning, and in applications where the function evaluation is a simulation

subject to computational errors. The goal of this chapter is to extend the theory of

quasi-Newton methods to the case when there are errors in the function and gradient

evaluations. We analyze the classical BFGS method with a slight modification consisting

of lengthening the differencing interval as needed; all other aspects of the algorithm,

including the line search, are unchanged. We establish global convergence properties on

strongly convex functions. Specifically, we show that if the errors in the function and

gradient are bounded, the iterates converge to a neighborhood of the solution whose size

depends on the level of noise (or error).

Our analysis builds upon the results in [18], which identify some fundamental proper-

ties of BFGS updating. The extension to the case of inaccurate gradients is not simple due

to the complex nature of the quasi-Newton iteration, where the step affects the Hessian

update, and vice versa, and where the line search plays an essential role. The existing

35

analysis relies on the observation that changes in gradients provide reliable curvature es-

timates, and on the fact that the line search makes decisions based on the true objective

function. In the presence of errors, gradient differences can give misleading information

and result in poor quasi-Newton updates. Performance can further be impaired by the

confusing effects of a line search based on inaccurate function information. We show that

these difficulties can be overcome by our modified BFGS algorithm, which performs effi-

ciently until it reaches a neighborhood of the solution where progress is no longer possible

due to errors.

The proposed algorithm aims to be a natural adaptation of the BFGS method that is

capable of dealing with noise. Other ways of achieving robustness might include update

skipping and modifications of the curvature vectors, such as Powell damping [52]. We

view these as less desirable alternatives for reasons discussed in the next section. The

line search strategy could also be performed in other ways. For example, in their analysis

of a gradient method with errors, Berahas et al. [4], relax the Armijo condition to take

noise into account. We prefer to retain the standard Armijo-Wolfe line search without

any modification, as this has practical advantages.

The literature of the BFGS method with inaccurate gradients includes the implicit

filtering method of Kelley et al. [22, 36], which assumes that noise can be diminished at

will at any iteration. Deterministic convergence guarantees have been established for that

method by ensuring that noise decays as the iterates approach the solution. Dennis and

Walker [26] and Ypma [59] study bounded deterioration properties and local convergence

of quasi-Newton methods with errors, when started near the solution with a Hessian

approximation that is close to the exact Hessian. Barton [2] proposes an implementation

36

of the BFGS method in which gradients are computed by an appropriate finite differencing

technique, assuming that the noise level in the function evaluation is known. Berahas et

al. [4] estimate the noise in the function using Hamming’s finite difference technique [34],

as extended by Moré and Wild [43], and employ this estimate to compute a finite difference

gradient in the BFGS method. They analyze a gradient method with a relaxation of the

Armijo condition, but do not study the effects of noise in BFGS updating.

There has recently been some interest in designing quasi-Newton methods for machine

learning applications using stochastic approximations to the gradient [17, 32, 45, 56].

These papers avoid potential difficulties with BFGS or L-BFGS updating by assuming

that the quality of gradient differences is always controlled, and as a result, the analysis

follows similar lines as for classical BFGS and L-BFGS.

This chapter is organized in 5 sections. The proposed algorithm is described in Sec-

tion 2.2. Section 2.3, the bulk of the chapter, presents a sequence of lemmas related to

the existence of stepsizes that satisfy the Armijo-Wolfe conditions, the beneficial effect

of lengthening the differencing interval, the properties of “good iterates”, culminating in

a global convergence result. Some numerical tests that illustrate the performance of the

method with errors in the objective function and gradient are given in Section 2.4. The

chapter concludes in Section 2.5 with some final remarks.

2.2. The Algorithm

We are interested in solving the problem

min
x∈Rd

φ(x),

37

where the function φ ∈ C1 and its gradient∇φ are not directly accessible. Instead, we have

access to inaccurate (or noisy) versions, which we denote as f(x) and g(x), respectively.

Thus, we write

(2.1)
f(x) = φ(x) + ε(x)

g(x) = ∇φ(x) + e(x),

where ε(x) and e(x) define the error in function and gradient values. 1 To apply the BFGS

method, or a modification of it, to minimize the true function φ, while observing only

noisy function and gradient estimates, we must give careful consideration to the two main

building blocks of the BFGS method: the line search and Hessian updating procedures.

As was shown by Powell [50], an Armijo-Wolfe line search guarantees the stability

of the BFGS updating procedure, and ultimately the global convergence of the iteration

(for convex objectives). In the deterministic case, when the smooth function φ(x) and its

gradient are available, this line search computes a stepsize α that satisfies:

(2.2)
φ(x+ αp) ≤ φ(x) + c1αp

T∇φ(x) (Armijo condition)

pT∇φ(x+ αp) ≥ c2p
T∇φ(x), (Wolfe condition)

where x is the current iterate, p is a descent direction for φ at x, (i.e., pT∇φ(x) < 0),

and 0 < c1 < c2 < 1 are user-specified parameters. The first condition imposes sufficient

decrease in the objective function, and the second requires an increase in the directional

derivative (and is sometimes referred to as the curvature condition). It is well known [48]

1We express f(x) and g(x) as single valued functions, but they could validly be viewed as arbitrary
members of a set valued function at x, where all members of the set satisfy an error bound.

38

that if φ ∈ C1 is bounded below and has Lipschitz continuous gradients, there exists an

interval of steplengths α that satisfy (2.2).

When φ(x) and∇φ(x) are not accessible, it is natural to attempt to satisfy the Armijo-

Wolfe conditions for the noisy function and gradient, i.e., to find α > 0 such that

(2.3)
f(x+ αp) ≤ f(x) + c1αp

Tg(x)

pTg(x+ αp) ≥ c2p
Tg(x),

where p is the BFGS search direction. It is, however, not immediately clear whether such

a stepsize exists, and if it does, whether it satisfies the Armijo-Wolfe conditions (2.2) for

the true function φ.

One possible approach to address these two challenges is to relax the Armijo-Wolfe

conditions (2.3), as is done e.g. by Berahas et al. [4] in their analysis of a gradient method

with errors. An alternative, which we adopt in this chapter, is to keep the Armijo-Wolfe

conditions unchanged, and show that under suitable conditions there is a stepsize that

satisfies the Armijo-Wolfe conditions for both the noisy and true objective functions. Our

main assumption is that the errors ε(x), e(x) in (2.1) are bounded for all x.

Let us now consider the BFGS updating procedure. The key in the convergence

analysis of quasi-Newton methods is to show that the search direction is not orthogonal to

the gradient. In the literature on Newton-type methods, this is usually done by bounding

the condition number of the Hessian approximation Bk. Whereas this is possible for

limited memory quasi-Newton methods, such as L-BFGS, in which Bk is obtained by

performing a limited number of updates, one cannot bound the condition number of Bk

for the standard BFGS method without first proving that the iterates converge to the

39

solution. Nevertheless, there is a result about BFGS updating [18], for strongly convex

objective functions, whose generality will be crucial in our analysis. It states that for

a fixed fraction of the BFGS iterates, the angle between the search direction and the

gradient is bounded away from 90◦.

To apply the results in [18], we need to ensure that the update of Bk is performed

using correction pairs

[sk, yk] = [(xk+1 − xk), (g(xk+1)− g(xk))]

that satisfy,

(2.4)
yTk sk
sTk sk

≥ m̂,
yTk yk
yTk sk

≤ M̂, ∀k,

for some constants 0 < m̂ ≤ M̂ . The Armijo-Wolfe line search does not, however,

guarantee that these conditions are satisfied in our setting, even under the assumption that

φ is strongly convex. To see this, note that when ‖sk‖ is small compared to the gradient

error, the vector yk can be contaminated by errors, and (2.4) may not hold. In other

words, difficulties arise when the differencing interval is too short, and to overcome this

problem, we modify the ordinary BFGS method by lengthening the differencing interval,

as needed. How to do this will be discussed in the next section.

Based on these observations, we provide in Algorithm 2.1 a description of the proposed

method. In what follows, we let Hk denote the inverse Hessian approximation; i.e, Hk =

B−1
k . We say the line search succeeded if it satisfies the Armijo-Wolfe condition after a

limited number of function evaluations. This issue is discussed further in section 3.4.

40

Algorithm 2.1: Outline of the BFGS Method with Errors

Input: functions f(·) and g(·); constants 0 < c1 < c2 < 1; lengthening parameter

xl > 0; starting point x0; initial Hessian inverse approximation H0 � 0.

1: for k = 0, 1, 2, ..., do

2: pk ← −Hkg(xk)

3: Attempt to find a stepsize α∗ such that

f(xk + α∗pk) ≤ f(xk) + c1α
∗pTk g(xk)

pTk g(xk + α∗pk) ≥ c2p
T
k g(xk)

4: if Succeeded then

5: αk ← α∗

6: else

7: αk ← 0

8: end if

9: if ‖αkpk‖ ≥ l then

10: Compute the curvature pair as usual:

sk ← αkpk, yk ← g (xk + sk)− g(xk)

11: else

12: Compute the curvature pair by lengthening the search direction:

sk ← l
pk
‖pk‖

, yk ← g (xk + sk)− g(xk)

13: end if

14: Update the inverse Hessian approximation using the curvature pairs (sk, yk):

(2.5) Hk+1 =
(
I − ρkskyTk

)
Hk

(
I − ρkyksTk

)
+ ρksks

T
k , where ρk =

1

sTk yk

15: xk+1 ← xk + αkpk

16: end for

41

Note that step 12 in Algorithm 2.1 requires an additional gradient evaluation. The

only unspecified parameter in this algorithm is the lengthening parameter l, whose choice

will be studied in the next section. We note for now that l needs only be large enough to

compensate for the error in the gradient, and should be at least of order O(εg), where εg

is a bound on the gradient error. Even though step 12 is executed when the line search

fails, we will show below that the lengthening operation guarantees that sTk yk > 0 so that

the BFGS update is well defined.

As mentioned in Section 2.1, lengthening the step is not the only way to stabilize the

BFGS update in the presence of errors. One alternative is to skip the update, but this can

prevent the algorithm from building a useful Hessian approximation. One can also modify

the curvature vector yk when the stability of the BFGS updating cannot be guaranteed,

but it is difficult to know how to design this modification in the presence of noise in the

function and gradient. We choose the lengthening approach because we view it as well

suited in the presence of noise.

2.3. Convergence Analysis

In this section, we give conditions under which the BFGS method outlined above is

guaranteed to yield an acceptable solution, by which we mean a function value that is

within the level of noise of the problem. Throughout the chapter, ‖·‖ denotes the `2 norm.

Our analysis relies on the following assumptions regarding the true objective function

φ and the errors in function and gradients.

42

Assumption 2.3.1. The function φ(x) is bounded below and is twice continuously

differentiable with an M-Lipschitz continuous (M > 0) gradient, i.e.,

‖∇φ(x)−∇φ(y)‖ ≤M ‖x− y‖ , ∀x, y ∈ Rd.

This assumption could be relaxed to require only that the gradients be Lipschitz contin-

uous; we make the stronger assumption that φ ∈ C2 only to simplify the proof of one of

the lemmas below.

Assumption 2.3.2. The errors in function and gradients values are uniformly

bounded i.e., ∀x ∈ Rd, there exist non-negative constants εf , εg such that

|f(x)− φ(x)| = |ε(x)| ≤ εf

‖g(x)−∇φ(x)‖ = ‖e(x)‖ ≤ εg.

There are many applications where this assumption holds; one of the most prominent is

the case of computational noise that arises when the evaluation of the objective function

involves an adaptive numerical computation [43]. On the other hand, there are other

applications where Assumption 2.3.2 is not satisfied, as is the case when errors are due

to Gaussian noise. Nevertheless, since the analysis for unbounded errors appears to be

complex [23], we will not consider it here, as our main goal is to advance our understanding

of the BFGS method in the presence of errors, and this is best done, at first, in a benign

setting.

43

2.3.1. Existence of Armijo-Wolfe Stepsizes

We begin our analysis by presenting a result that will help us establish the existence of

stepsizes satisfying the Armijo-Wolfe conditions. Since we will impose these conditions

on the noisy functions (i.e. (2.3)), we want to show that the Armijo-Wolfe conditions

also hold for the true function. The following lemma considers two sets of functions and

gradients: FA and GA can be viewed as proxies for the true function and gradient φ and

∇φ, while FB andGB stand for the approximate function f and its gradient approximation

g. (In a later lemma these roles are reversed.) It is intuitively clear, that the Armijo-

Wolfe conditions can only be meaningful when the gradients are not dominated by errors.

Therefore, our first lemma shows that when the gradients GA, GB are sufficiently large

compared to εf , εg, the Armijo-Wolfe conditions can be satisfied.

Below, we let ϕ denote the angle between a vector p ∈ Rd and a vector −G ∈ Rd, i.e.,

(2.6) ϕ = ∠(p,−G) or cosϕ =
−pTG
‖p‖‖G‖

.

In the following lemma, ϕA, ϕB denote the angles obtained by substituting GA, GB in this

definition.

Lemma 2.3.1. Suppose that a scalar function FA : Rd → R is continuous and bounded

below, and that a vector function GA : Rd → Rd satisfies

(2.7) ‖GA(y)−GA(z)‖ ≤ L ‖y − z‖ + Λ, ∀y, z ∈ Rd,

for some constants L > 0, and Λ ≥ 0. Suppose x ∈ Rd is such that GA(x) 6= 0, that

p ∈ Rd satisfies pTGA(x) < 0, and that the stepsize α > 0 satisfies the Armijo-Wolfe

44

conditions

(2.8)
FA(x+ αp) ≤ FA(x) + cA1αp

TGA(x)

pTGA(x+ αp) ≥ cA2p
TGA(x),

for 0 < cA1 < cA2 < 1. Furthermore, consider another scalar function FB : Rd → R and

vector function GB : Rd → Rd satisfying

(2.9)
|FA(y)− FB(y)| ≤ εf , ∀y ∈ Rd

‖GA(y)−GB(y)‖ ≤ εg, ∀y ∈ Rd,

for some non-negative constants εf , εg. For the same x and p, suppose that GB(x) 6= 0

and that p satisfies pTGB(x) < 0. Let γ1, γ2 be two constants such that

(2.10) 0 < γ1 < cA1 and 0 < γ2 < 1− cA2.

If the following conditions hold:

(2.11)

‖GA(x)‖ ≥ 2Λ

(1− cA2) cosϕA

‖GB(x)‖ ≥ max

{
2cA1εg
γ1 cosϕB

,
(1 + cA2)εg
γ2 cosϕB

}
‖GA(x)‖ ‖GB(x)‖ ≥ 8Lεf

γ1(1− cA2) cosϕA cosϕB
,

then the stepsize α satisfies the Armijo-Wolfe conditions with respect to FB and GB:

FB(x+ αp) ≤ FB(x) + (cA1 − γ1)αpTGB(x)(2.12)

pTGB(x+ αp) ≥ (cA2 + γ2)pTGB(x).(2.13)

45

Proof. By the second equation in (2.8), i.e.,

pTGA(x+ αp) ≥ cA2p
TGA(x),

we have

−(1− cA2)pTGA(x) ≤ pT
(
GA(x+ αp

)
−GA(x)).

Using (2.7) we have

−(1− cA2)pTGA(x) ≤ ‖p‖ (αL ‖p‖ + Λ) .

Recalling the definition (2.6), we obtain the lower bound

α ≥ (1− cA2) cosϕA ‖GA(x)‖ − Λ

L ‖p‖
.

From (2.11) we have

‖GA(x)‖ ≥ 2Λ

(1− cA2) cosϕA
,

i.e.,

(1− cA2) cosϕA ‖GA(x)‖ ≥ 2Λ,

from which it follows that

α ≥ α
def
=

(1− cA2) cosϕA ‖GA(x)‖
2L ‖p‖

.

Now, by (2.11) we also have

‖GA(x)‖ ‖GB(x)‖ ≥ 8Lεf
γ1(1− cA2) cosϕA cosϕB

,

46

and thus

−γ1αp
TGB(x) ≥ −γ1αp

TGB(x)

= γ1
(1− cA2) cosϕA ‖GA(x)‖

2L ‖p‖
‖p‖ ‖GB(x)‖ cosϕB

=
γ1(1− cA2) cosϕA cosϕB

2L
‖GA(x)‖ ‖GB(x)‖ ≥ 4εf .(2.14)

From (2.11)

‖GB(x)‖ ≥ 2cA1εg
γ1 cosϕB

,

or equivalently

(2.15) −γ1αp
TGB(x) ≥ 2cA1α ‖p‖ εg.

Adding (2.14) and (2.15) yields

(2.16) −γ1αp
TGB(x) ≥ 2εf + cA1α ‖p‖ εg.

The first inequality in (2.8) and (2.9) give

FB(x+ αp) ≤ FB(x) + cA1αp
TGB(x) + 2εf + cA1α ‖p‖ εg,

which combined with (2.16) yields

(2.17) FB(x+ αp) ≤ FB(x) + (cA1 − γ1)αpTGB(x).

This proves (2.12).

47

Next, by (2.11)

‖GB(x)‖ ≥ (1 + cA2)εg
γ2 cosϕB

,

or equivalently

(2.18) −(1 + cA2)εg ‖p‖ ≥ γ2p
TGB(x).

By the second equation in (2.8) and (2.9) we immediately have

pTGB(x+ αp) ≥ cA2p
TGB(x)− (1 + cA2)εg ‖p‖ .

Then by (2.18) we have

pTGB(x+ αp) ≥ (cA2 + γ2)pTGB(x),

which proves (2.13). �

Note that there is some flexibility in the choice of γ1, γ2 in (2.10), which influences the

constants in (2.11). This lemma gives conditions under which the Armijo-Wolfe conditions

hold, but the bounds (2.11), involve the angles ϕA, ϕB, which have not been shown to

be bounded away from 90◦ (so that the cosine terms are not bounded away from zero).

Hence, this result is preliminary. We continue the analysis leaving the angles ϕA, ϕB as

parameters to be bounded later.

In the sequel we let gk = g(xk), and for nonzero gk, pk,∇φ(xk), we define θk to be the

angle between pk and −gk, and we define θ̃k to be the angle between pk and −∇φ(xk). In

48

other words,

θk = ∠(pk,−gk) or cos(θk) =− pTk gk/‖pk‖‖gk‖,(2.19)

θ̃k = ∠(pk,−∇φ(xk)) or cos(θ̃k) =− pTk∇φ(xk)/‖pk‖‖∇φ(xk)‖.(2.20)

We now use Lemma 2.3.1 to establish the existence of Armijo-Wolfe stepsizes for the noisy

function and gradient, f and g, under the assumption that the true gradient ∇φ is not

too small.

Theorem 2.3.1. Suppose that Assumptions 2.3.1 and 2.3.2 hold, and that at iteration

k the search direction pk satisfies pTk gk < 0. Let 0 < c1 < c2 < 1 and 0 < δ1 < 1,

0 < δ2 < 1 be constants such that δ1 + δ2 < c2 − c1. If

(2.21)

‖∇φ(xk)‖ ≥ max

{
4(c1 + δ1)εg
δ1 cos θk

,
2(1 + c2 − δ2)εg

δ2 cos θk
,

√
16Mεf

(1− c2 + δ2)δ1 cos θk cos θ̃k

}
,

there exists a stepsize αk such that

(2.22)
f(xk + αkpk) ≤ f(xk) + c1αkp

T
k gk

pTk g(xk + αkpk) ≥ c2p
T
k gk.

Proof. We invoke Lemma 2.3.1 with x← xk, FA(·)← φ(·), GA(·)← ∇φ(·), FB(·)←

f(·), GB(·) ← g(·), and p ← pk. Then, from (2.19)-(2.20) we have that ϕA = θ̃k and

ϕB = θk. Let γ1 = δ1, γ2 = δ2; cA1 = c1 + δ1 and cA2 = c2 − δ2. Our assumptions on

δ1, δ2, c1, c2 imply that 0 < cA1 < cA2 < 1, and that conditions (2.10) hold.

49

We must verify that the assumptions of Lemma 2.3.1 are satisfied. By Assump-

tion 2.3.1, FA is bounded below and

‖GA(y)−GA(z)‖ ≤M ‖y − z‖ ,

so that (2.7) holds with L = M and Λ = 0. We assume that pTGB(x) = pTk gk < 0. To

show that pTGA(x) < 0, note that by (2.21)

‖∇φ(xk)‖ ≥
4(c1 + δ1)

δ1

εg
cos θk

> 2εg.

By Assumption 2.3.2, we have that ‖∇φ(xk)− gk‖ ≤ εg. Therefore,

(2.23) ‖gk‖ ≥ ‖∇φ(xk)‖ − εg ≥
1

2
‖∇φ(xk)‖ .

We also have that

‖gk‖ ≥
1

2
‖∇φ(xk)‖ ≥

2(c1 + δ1)εg
δ1 cos θk

>
εg

cos θk
,

or

‖gk‖ cos θk > εg.

50

Recalling again Assumption 2.3.2, this bound yields

pk
TGA(x) ≤ pk

TGB(x) + ‖pk‖ εg

= −‖pk‖ (‖GB(x)‖ cosϕB − εg)

= −‖pk‖ (‖gk‖ cos θk − εg)

< 0.

Since pk is a descent direction for the true function φ, and since φ is continuously

differentiable and bounded from below, we can guarantee [48] the existence of a stepsize

α = αk such that

FA(x+ αp) ≤ FA(x) + cA1αp
TGA(x)

pTGA(x+ αp) ≥ cA2p
TGA(x),

showing that (2.8) is satisfied.

To prove that (2.22) holds, all that is necessary is to show that (2.21) implies conditions

(2.11). The first condition is immediately satisfied, since we have shown that we can

choose Λ = 0. By the definitions given in the first paragraph of this proof, the other two

conditions in (2.11) can be written as

(2.24)

‖gk‖ ≥ max

{
2(c1 + δ1)

δ1

,
(1 + c2−δ2)

δ2

}
εg

cos θk

‖∇φ(xk)‖ ‖gk‖ ≥
8Mεf

(1− c2 + δ2)δ1 cos θk cos θ̃k
.

To see that these two conditions hold, we first note that by (2.23),

‖gk‖ ≥
1

2
‖∇φ(xk)‖ ≥ max

{
2(c1 + δ1)

δ1

εg
cos θk

,
(1 + c2 − δ2)

δ2

εg
cos θk

}
.

51

Also, from (2.21)

‖∇φ(xk)‖ ‖gk‖ ≥
1

2
‖∇φ(xk)‖2 ≥ 8Mεf

(1− c2 + δ2)δ1 cos θk cos θ̃k
.

Hence, all the conditions of Lemma 2.3.1 are satisfied, and we conclude that there exists

a stepsize αk that satisfies (2.22). �

In the previous theorem we gave conditions under which the Armijo-Wolfe conditions

are satisfied with respect to f and g. We now use Lemma 2.3.1 to show that satisfaction

of the Armijo-Wolfe conditions for f implies satisfaction for the true objective φ, for the

same steplength αk, if ‖∇φ(xk)‖ is sufficiently large.

Theorem 2.3.2. Suppose Assumptions 2.3.1 and 2.3.2 are satisfied, and that at iter-

ation k the search direction pk satisfies pTk gk < 0. Let θk and θ̃k be defined by (2.19) and

(2.20). Let 0 < c1 < c2 < 1, and δ̂1, δ̂2 be constants such that 0 < δ̂1 < c1, 0 < δ̂2 < 1− c2.

Suppose there exists a stepsize αk such that

f(xk + αkpk) ≤ f(xk) + c1αkp
T
k gk

pTk g(xk + αkpk) ≥ c2p
T
k gk.

If

(2.25)

‖∇φ(xk)‖ ≥ max

{
8εg

(1− c2) cos θk
,

√
16Mεf

δ̂1(1− c2) cos θk cos θ̃k
,

2c1εg

δ̂1 cos θ̃k
,

(1 + c2)εg

δ̂2 cos θ̃k

}
,

52

then αk satisfies

(2.26)
φ(xk + αkpk) ≤ φ(xk) + (c1 − δ̂1)αkp

T
k∇φ(xk)

pTk∇φ(xk + αkpk) ≥ (c2 + δ̂2)pTk∇φ(xk).

Proof. We prove this by applying Lemma 2.3.1, reversing the roles of FA, FB, com-

pared to Lemma 2.3.1. Specifically, we now let x ← xk, FA(·) ← f(·), GA(·) ← g(·),

FB(·)← φ(·), GB(·)← ∇φ(·), and p← pk. We define ϕA = θk and ϕB = θ̃k as in (2.19),

(2.20). Let cA1 = c1, cA2 = c2; γ1 = δ̂1, γ2 = δ̂2. Clearly we have 0 < cA1 < cA2 < 1.

We need to verify that the assumptions of Lemma 2.3.1 are satisfied. By Assump-

tions 2.3.1 and 2.3.2 we have

‖GA(y)−GA(z)‖ = ‖g(y)− g(z)‖ ≤ ‖∇φ(y)−∇φ(z)‖ + 2εg ≤M ‖y − z‖ + 2εg,

and hence Assumption (2.7) is satisfied with L = M and Λ = 2εg.

We assume that pTGA(x) = pTgk < 0. To show that pTGB(x) < 0, we note from

(2.25) that

‖∇φ(xk)‖ ≥
8εg

(1− c2) cos θk
> 2εg,

and as in (2.23)

‖gk‖ ≥ ‖∇φ(xk)‖ − εg ≥
1

2
‖∇φ(xk)‖ .

Therefore,

(2.27) ‖gk‖ ≥
1

2
‖∇φ(xk)‖ ≥

4εg
(1− c2) cos θk

>
εg

cos θk
,

53

i.e,

‖gk‖ cos θk > εg.

Now,

pTGB(x) ≤ pTGA(x) + ‖p‖ εg

= −‖p‖ (‖GA(x)‖ cosϕA − εg)

= −‖pk‖ (‖gk‖ cos θk − εg)

< 0.

It remains to show that conditions (2.11) are satisfied, from which it would follow that

αk satisfies (2.26), proving the theorem. Since Λ = 2εg, conditions (2.11) read, in the

notation of this lemma,

(2.28)

‖gk‖ ≥
4εg

(1− c2) cos θk

‖∇φ(xk)‖ ≥ max

{
2c1

δ̂1

,
(1 + c2)

δ̂2

}
εg

cos θ̃k

‖∇φ(xk)‖ ‖gk‖ ≥
8Mεf

δ̂1(1− c2) cos θk cos θ̃k
.

We have already shown, in (2.27), the first condition, and the second condition follows

from (2.25). Finally, from (2.27) and (2.25),

‖∇φ(xk)‖ ‖gk‖ ≥
1

2
‖∇φ(xk)‖2 ≥ 8Mεf

δ̂1(1− c2) cos θk cos θ̃k
.

�

54

Theorems 2.3.1 and 2.3.2 establish the existence of a neighborhood of the solution,

defined in terms of ‖∇φ(x)‖, outside of which the Armijo-Wolfe line search strategy is

well defined. This neighborhood depends on εf and εg, as well as cos θk and cos θ̃k — and

the latter two quantities have not yet been bounded away from zero. Thus, similar to

the central role that cos θ̃k plays in the classic convergence analysis of gradient methods,

cos θk and cos θ̃k play a key role in the convergence analysis of our algorithm. The next

step is to find a way to combine the results obtained so far with the theory developed in

[18].

2.3.2. Lengthening the Differencing Interval

The BFGS method is complex in that Hessian updates affect the search direction and

vice versa. As a result, it is not possible to show that the condition number of the

Hessian approximations Bk is bounded without first showing convergence of the iterates.

Nevertheless, it is has been shown [18] that under mild assumptions, the angle between

the search direction and the negative gradient can be bounded away from zero for a

fraction of the iterates, which is sufficient to establish R-linear convergence.

To apply the results in [18], the curvature pairs (sk, yk) used to update Hk must satisfy

(2.29)
yTk sk
sTk sk

≥ m̂,
yTk yk
yTk sk

≤ M̂, ∀k,

for some constants 0 < m̂ ≤ M̂ . These conditions will not generally hold unless we make

the following additional assumption.

Assumption 2.3.3. The function φ is m-strongly convex, with 0 < m ≤ M . (Recall

that M is defined in Assumption 2.3.1.)

55

Assumptions 2.3.1, 2.3.2 and 2.3.3 are still not sufficient to establish (2.29) because, if

‖sk‖ is small compared to the error in the gradient, εg, then the vector yk can be highly

unreliable. In this case, we increase the differencing interval and recompute the gradient

before performing the BFGS update, as stipulated in Algorithm 2.1, i.e., we set

sk ← l
pk
‖pk‖

, yk ← g (xk + sk)− g(xk), l > 0.

We show below that if the lengthening parameter l is sufficiently large, (2.29) holds.

Lemma 2.3.3 identifies the minimum value of l. Before presenting that result, we need

the following technical lemma. In what follows, λ(H) denotes the set of eigenvalues of a

matrix H.

Lemma 2.3.2. Let s, y ∈ Rd be two non-zero vectors, and let 0 < µ ≤ L. There exists

a positive definite matrix H ∈ Sd×d with eigenvalues λ(H) ⊆ [µ, L] such that

y = Hs

if and only if

(2.30)

∥∥∥∥y − L+ µ

2
s

∥∥∥∥ ≤ L− µ
2
‖s‖ .

Proof. Part I. We first show that if that y = Hs with λ(H) ⊆ [µ, L] then (2.30) holds.

Clearly,

λ

(
H − L+ µ

2
I

)
⊆
[
−L− µ

2
,
L− µ

2

]
.

56

Since H − (L+ µ)I/2 is symmetric, we have

∥∥∥∥H − L+ µ

2
I

∥∥∥∥ ≤ L− µ
2

.

Since

y − L+ µ

2
s =

(
H − L+ µ

2
I

)
s,

we conclude that

∥∥∥∥y − L+ µ

2
s

∥∥∥∥ =

∥∥∥∥(H − L+ µ

2
I

)
s

∥∥∥∥ ≤ L− µ
2
‖s‖ .

Part II. We prove the converse by construction. To this end, we make the following

claim: if u, v ∈ Rd are such that ‖u‖ = ‖v‖ = 1, then there exists a symmetric real

matrix Q such that Qu = v and λ(Q) ⊆ {−1, 1}. To prove this, we first note that if

u = −v then we can choose Q = −I. Otherwise, we have u+ v 6= 0, and we let

e =
u+ v

‖u+ v‖
.

Then, a simple calculation shows that

(2.31) Q = 2eeT − I

satisfies Qu = v and QT = Q. Since λ(2eeT) = {0, 2}, we have λ(Q) = {−1, 1}, showing

that our claim is true.

Now, to prove Part II, we assume that (2.30) holds. If

y − L+ µ

2
s = 0,

57

then it follows immediately that y = Hs with λ(H) ⊆ [µ, L]. Otherwise, define

v =
y − L+µ

2
s∥∥y − L+µ

2
s
∥∥ and u =

s

‖s‖
.

We have shown above that since v, u are unit vectors, there exists a symmetric real matrix

Q ∈ Sd×d such that v = Qu and λ(Q) ⊆ {−1, 1}, i.e.,

Q
s

‖s‖
=

y − L+µ
2
s∥∥y − L+µ

2
s
∥∥ .

Hence, we have

y = Hs, where H =
L+ µ

2
I +

∥∥y − L+µ
2
s
∥∥

‖s‖
Q.

Since we assume that ∥∥y − L+µ
2
s
∥∥

‖s‖
≤ L− µ

2
,

and λ(Q) ⊆ {−1, 1}, we conclude that

λ(H) ⊆ [µ, L].

�

With this result in hand, it is easy to establish the following bounds.

Lemma 2.3.3. (Choice of the Lengthening Parameter) Suppose Assumptions 2.3.1,

2.3.2 and 2.3.3 hold. Let s ∈ Rd be a vector such that ‖s‖ ≥ l, and define y = g(x+ s)−

g(x). If

l > 2εg/m,

58

then

(2.32)

yT s

sT s
≥
(
m− 2εg

l

)
def
== m̂ > 0

yTy

yT s
≤
(
M +

2εg
l

)
def
== M̂.

Proof. Let ỹ = ∇φ(x + s)−∇φ(x). Since φ ∈ C2, we have that ỹ = As, where A is

the average Hessian

A =

∫ 1

0

∇2φ(x+ t · s) dt.

Since φ is m-strongly convex with M -Lipschitz continuous gradients, we know that

λ(A) ⊆ [m,M], and by Lemma 2.3.2 we have

(2.33)

∥∥∥∥ỹ − M +m

2
s

∥∥∥∥ ≤ M −m
2

‖s‖ .

By (2.1) and Assumption 2.3.2, we have

‖y − ỹ‖ ≤ 2εg,

and hence ∥∥∥∥y − M +m

2
s

∥∥∥∥ ≤ M −m
2

‖s‖ + 2εg.

If ‖s‖ ≥ l, we have

M −m
2

‖s‖ + 2εg ≤
M −m

2
‖s‖ +

2εg
l
‖s‖ ,

and thus ∥∥∥∥y − M +m

2
s

∥∥∥∥ ≤ (M −m2
+

2εg
l

)
‖s‖ .

59

By defining

(2.34) m̂ = m− 2εg
l
, M̂ = M +

2εg
l
,

we have ∥∥∥∥∥y − M̂ + m̂

2
s

∥∥∥∥∥ ≤ M̂ − m̂
2

‖s‖ .

Note that since l > 2εg/m, we have 0 < m̂ ≤ M̂ . By Lemma 2.3.2, we know that there

exists a positive definite matrix H with λ(H) ⊆ [m̂, M̂] such that

y = Hs.

Then it immediately follows that

yT s

sT s
≥ m̂,

yTy

yT s
≤ M̂,

which proves the result due to (2.34). �

Therefore, if the lengthening parameter satisfies l > 2εg/m, conditions (2.32) hold, as

needed for the analysis that follows. This bound for l requires knowledge of the strong

convexity parameter m, which may not be available in practice. One can show, however,

that if we choose, at each iteration, l > cεgs
T s/yT s where c > 2, the conditions (2.29) will

be satisfied with different constants m̂, M̂ . Although practical and simple to implement,

this latter bound may not be the best in practice, as it results in a much larger M̂ . We

defer discussion of a practical determination of l to Chapter 3.

60

2.3.3. Properties of the “Good Iterates”

We now show that the angle between the search direction of Algorithm 2.1 and the true

gradient is bounded away from 90◦, for a fraction of all iterates. We begin by stating a

result from [18, Theorem 2.1], which describes a fundamental property of the standard

BFGS method (without errors).

Lemma 2.3.4. (Existence of good iterates for classical BFGS) Let H0 � 0, and let

{Hk = B−1
k } be generated by the BFGS update (2.5) using any correction pairs {(sk, yk)}

satisfying (2.29) for all k. Define Θk to be the angle between sk and Bksk, i.e.,

(2.35) cos Θk =
sTkBksk

‖sk‖ ‖Bksk‖
.

For a fixed scalar q ∈ (0, 1), let

(2.36)

β0(q) =
1

1− q

[
tr(B0)− log det(B0) + M̂ − 1− log m̂

]
> 0

β1(q) = e−β0(q)/2 ∈ (0, 1).

Then we have, for all k,

(2.37)
∣∣∣{j ∈ {0, 1, · · · , k − 1}

∣∣ cos Θj ≥ β1(q)
}∣∣∣ ≥ qk.

We now establish a lower bound for the cosine of the angle between the quasi-Newton

direction of Algorithm 2.1 and −gk, i.e., a bound on cos θk defined by setting pk ← −Hkgk

in (2.19).

61

Corollary 2.3.1. Consider Algorithm 2.1 with lengthening parameter l > 2εg/m and

suppose that Assumptions 2.3.1, 2.3.2 and 2.3.3 hold. Let θk be the angle between pk =

−Hkgk and −gk. For a given q ∈ (0, 1), set β1 as in Lemma 2.3.4, and define the index

J of “good iterates” generated by Algorithm 2.1 as

(2.38) J = {j ∈ N| cos θj ≥ β1} ,

as well as the set Jk = J ∩ {0, 1, 2, ..., k − 1}. Then,

(2.39) |Jk| ≥ qk.

Proof. Since l > 2εg/m, we know by (2.32) in Lemma 2.3.3 that conditions (2.29) are

satisfied for all k. Since

Θk = ∠ (sk, Bksk) = ∠ (pk, Bkpk) = ∠ (pk,−gk) = θk,

(2.39) follows from Lemma 2.3.4. �

Having established a lower bound on cos θk (for the good iterates), the next step is to

establish a similar lower bound for cos θ̃k. To do so, we first prove the following result,

which we state in some generality.

Lemma 2.3.5. Let p, g1, g2 ∈ Rd be non-zero vectors. Let ϑ1 be the angle between p

and g1, and ϑ2 the angle between p and g2. Assume

(2.40) cosϑ1 ≥ β > 0,

62

and that g1 and g2 satisfy

(2.41) ‖g1 − g2‖ ≤ ε.

If in addition

(2.42)
ε

‖g2‖
≤ β

4
,

then

cosϑ2 ≥
β

2
.

Proof. From (2.40) we have

pTg1 ≥ β ‖p‖ ‖g1‖ ,

and by (2.41)

pTg2 ≥ ‖p‖ (β ‖g1‖ − ε) .

Hence, by (2.42)

cosϑ2 =
pTg2

‖p‖ ‖g2‖
≥ β ‖g1‖ − ε

‖g2‖

≥ ‖g2‖ − ε
‖g2‖

β − ε

‖g2‖

≥
(

1− ε

‖g2‖

)
β − β

4
.

The bound (2.40) implies that β ≤ 1, and hence

ε

‖g2‖
≤ β

4
≤ 1

4
.

63

Therefore,

cosϑ2 ≥
(

1− ε

‖g2‖

)
β − β

4
≥ β

2
.

�

We also need the following well known result [48] about the function decrease provided

by the Armijo-Wolfe line search.

Lemma 2.3.6. Suppose h : Rd → R is a continuous differentiable function with an

L-Lipschitz continuous gradient. Suppose x ∈ Rd, and that p ∈ Rd is a descent direction

for h at x. Let θ be the angle between −p and ∇h(x). Suppose α > 0 is a step that

satisfies the Armijo-Wolfe conditions with parameters 0 < c1 < c2 < 1:

(2.43)
h(x+ αp) ≤ h(x) + c1αp

T∇h(x)

pT∇h(x+ αp) ≥ c2p
T∇h(x).

Then

h(x+ αp)− h(x) ≤ −c1
1− c2

L
cos2 θ ‖∇h(x)‖2 .

Proof. From the second condition in (2.43) we have

pT [∇h(x+ αp)−∇h(x)] ≥ (c2 − 1)pT∇h(x).

By Lipschitz continuity,

pT [∇h(x+ αp)−∇h(x)] ≤ L‖p‖2α,

64

and from this it follows that

α ≥ −1− c2

L

∇h(x)Tp

‖p‖2 .

Substituting this into the first condition in (2.43) we obtain the desired result. �

We can now show that a fraction of the iterates generated by Algorithm 2.1 produce

a decrease in the true objective that is proportional to its gradient.

Theorem 2.3.3. Suppose that Assumptions 2.3.1, 2.3.2 and 2.3.3 are satisfied, and

let {xk}, and {pk} be generated by Algorithm 2.1. Define β1 and J as in Corollary 2.3.1.

Fix constants 0 < c1 < c2 < 1, and choose δ1, δ2, δ̂1, δ̂2 ∈ (0, 1) such that δ1 + δ2 < c2− c1

and δ̂1 < c1, δ̂2 < 1− c2. If k ∈ J and

(2.44) ‖∇φ(xk)‖ ≥ max

{
A

√
Mεf

β1

, B
εg
β1

}
,

where

A = max

{√
32

(1− c2 + δ2)δ1

,

√
32

δ̂1(1− c2)

}

B = max

{
4(c1 + δ1)

δ1

,
2(1 + c2 − δ2)

δ2

,
8

(1− c2)
,

4c1

δ̂1

,
2(1 + c2)

δ̂2

}
,

then there exists a stepsize αk which satisfies the Armijo-Wolfe conditions for (f, g) with

parameters (c1, c2), i.e.,

f(xk + αkpk) ≤ f(xk) + c1αkp
T
k gk

pTk g(xk + αkpk) ≥ c2p
T
k gk,

65

and any such stepsize also satisfies the Armijo-Wolfe conditions for (φ,∇φ) with param-

eters (c1 − δ̂1, c2 + δ̂2):

φ(xk + αkpk) ≤ φ(xk) + (c1 − δ̂1)αkp
T
k∇φ(xk)

pTk∇φ(xk + αkpk) ≥ (c2 + δ̂2)pTk∇φ(xk)

and in addition,

(2.45)
φ(xk + αkpk)− φ(xk) ≤ −

(c1 − δ̂1)
[
1− (c2 + δ̂2)

]
β2

1

4M
‖∇φ(xk)‖2 .

Proof. Take k ∈ J . By Corollary 2.3.1 we have that cos θk ≥ β1. Now, by (2.44)

‖∇φ(xk)‖ ≥ B
εg
β1

≥ 4(c1 + δ1)

δ1

εg
β1

≥ 4
εg
β1

,

which together with Lemma 2.3.5 and Assumption 2.3.2 implies that cos θ̃k ≥ β1/2. There-

fore, pk = −Hkgk is a descent direction with respect to both gk and ∇φ(xk), which will

enable us to apply Theorems 2.3.1 and 2.3.2.

Before doing so, we need to verify that the assumptions of those two theorems are

satisfied, namely (2.21) and (2.25). To see this, note that since we have shown that

cos θk ≥ β1, cos θ̃k ≥
β1

2

66

then from (2.44) it follows that

‖∇φ(xk)‖

≥ max

{
A

√
Mεf

β1

, B
εg
β1

}

≥ max

{√
32Mεf

(1− c2 + δ2)δ1β2
1

,
4(c1 + δ1)εg

δ1β1

,
2(1 + c2 − δ2)εg

δ2β1

}

≥ max

{√
16Mεf

(1− c2 + δ2)δ1 cos θk cos θ̃k
,

4(c1 + δ1)εg
δ1 cos θk

,
2(1 + c2 − δ2)εg

δ2 cos θk

}
,

as well as

‖∇φ(xk)‖

≥ max

{
A

√
Mεf

β1

, B
εg
β1

}

≥ max

{√
32Mεf

δ̂1(1− c2)β2
1

,
8εg

(1− c2)β1

,
4c1εg

δ̂1β1

,
2(1 + c2)εg

δ̂2β1

}

≥ max

{√
16Mεf

δ̂1(1− c2) cos θk cos θ̃k
,

8εg
(1− c2) cos θk

,
2c1εg

δ̂1 cos θ̃k
,

(1 + c2)εg

δ̂2 cos θ̃k

}
.

Therefore, by Theorems 2.3.1 and 2.3.2 there exists a stepsize αk which satisfies the

Armijo-Wolfe conditions for (f, g) with parameters (c1, c2), and such αk also satisfies

the Armijo-Wolfe conditions for (φ,∇φ) with parameters (c1 − δ̂1, c2 + δ̂2). We then

apply Lemma 2.3.6 with h(·) ← φ(·), θ ← θ̃k and L ← M , Armijo-Wolfe parameters

67

(c1 − δ̂1, c2 + δ̂2) to obtain

φ(xk + αkpk)− φ(xk) ≤ −
(c1 − δ̂1)

[
1− (c2 + δ̂2)

]
M

cos2 θ̃k ‖∇φ(xk)‖2

≤ −
(c1 − δ̂1)

[
1− (c2 + δ̂2)

]
β2

1

4M
‖∇φ(xk)‖2 .

�

The constants A,B, as well as the rate constant in (2.45), do not depend on the objec-

tive function or the noise level, but only on the parameters c1, c2. There is, nevertheless,

some freedom in the specification of A,B and the constant in (2.45) through the choices

of δ1, δ2, δ̂1, δ̂2. From now on, we make a specific choice for the latter four constants, which

simplifies Theorem 2.3.3, as shown next.

Corollary 2.3.2. Suppose Assumptions 2.3.1, 2.3.2 and 2.3.3 are satisfied, and let

{xk}, {pk} be generated by Algorithm 2.1. Define β1 and J as in Corollary 2.3.1. Choose

δ1, δ2, δ̂1, δ̂2 as

(2.46) δ1 =
c2 − c1

4
, δ2 =

c2 − c1

4
, δ̂1 =

c1

2
, δ̂2 =

1− c2

2
.

If k ∈ J and

‖∇φ(xk)‖ ≥ max

{
A

√
Mεf

β1

, B
εg
β1

}
,

68

where

(2.47)

A = max

{
16
√

2√
(c2 − c1)(4− c1 − 3c2)

,
8√

c1(1− c2)

}

B = max

{
8

1− c2

,
8(1 + c1)

c2 − c1

+ 6

}
,

then there exists a stepsize αk which satisfies the Armijo-Wolfe conditions on (f, g) with

parameters (c1, c2), i.e.,

f(xk + αkpk) ≤ f(xk) + c1αkp
T
k gk

pTk g(xk + αkpk) ≥ c2p
T
k gk,

and any such stepsize also satisfies the Armijo-Wolfe conditions on (φ,∇φ) with param-

eters (c1/2, c2/2 + 1):

φ(xk + αkpk) ≤ φ(xk) +
c1

2
αkp

T
k∇φ(xk)

pTk∇φ(xk + αkpk) ≥
1 + c2

2
pTk∇φ(xk),

and in addition,

φ(xk + αkpk)− φ(xk) ≤ −
c1(1− c2)β2

1

16M
‖∇φ(xk)‖2 .

Proof. We begin by verifying that the choices (2.46) of δ1, δ2, δ̂1, δ̂2 satisfy the require-

ments in Theorem 2.3.3. It is clear that δ1, δ2, δ̂1, δ̂2 ∈ (0, 1) since 0 < c1 < c2 < 1. We

also have

δ1 + δ2 =
c2 − c1

2
< c2 − c1, δ̂1 =

c1

2
< c1, δ̂2 =

1− c2

2
< 1− c2.

69

Applying Theorem 2.3.3 with the choices (2.46), we have

A = max

{√
32

(1− c2 + δ2)δ1

,

√
32

δ̂1(1− c2)

}

= max

{
16
√

2√
(c2 − c1)(4− c1 − 3c2)

,
8√

c1(1− c2)

}

B = max

{
4(c1 + δ1)

δ1

,
2(1 + c2 − δ2)

δ2

,
8

(1− c2)
,

4c1

δ̂1

,
2(1 + c2)

δ̂2

}
= max

{
8

1− c2

,
8(1 + c1)

c2 − c1

+ 6

}
.

Therefore, by Theorem 2.3.3 we know that there exists a stepsize αk which satisfies the

Armijo-Wolfe conditions for (f, g) with parameters (c1, c2), and any such stepsize also

satisfies the Armijo-Wolfe conditions for (φ,∇φ) with parameters (c1 − δ̂1, c2 + δ̂2) =

(c1/2, c2/2 + 1). In addition, we also have

φ(xk + αkpk)− φ(xk) ≤ −
(c1 − δ̂1)

[
1− (c2 + δ̂2)

]
β2

1

4M
‖∇φ(xk)‖2

= −c1(1− c2)β2
1

16M
‖∇φ(xk)‖2 .

�

2.3.4. Convergence Results

We are ready to state the main convergence results for our algorithm, which is simply

Algorithm 2.1 using a lengthening parameter l such that

(2.48) l > 2εg/m,

70

We begin by establishing some monotonicity results for the true objective function φ. Note

that since Algorithm 2.1 either computes a zero step (when α∗ = 0) or generates a new

iterate that satisfies the Armijo decrease (2.3), the sequence {f(xk)} is non-increasing.

Theorem 2.3.4. Suppose Assumption 2.3.2 and 2.3.3 are satisfied, and let {xk} be

generated by Algorithm 2.1 with l satisfying (2.48). Define

(2.49) ξk = min
i∈[k]

φ(xi), where [k]
def
== {i ∈ N|0 ≤ i ≤ k} .

Then {ξk} is non-increasing and

ξk ≤ φ(xk) ≤ ξk + 2εf , ∀k ∈ N.

Proof. By definition, {ξj} forms a non-increasing sequence, and we noted above that

{f(xk)} is also non-increasing and therefore

f(xj) = min
i∈[j]

f(xi).

By Assumption 2.3.2 we have

f(xi) ≤ φ(xi) + εf .

Hence

f(xj) = min
i∈[j]

f(xi) ≤ min
i∈[j]

(φ(xi) + εf) = min
i∈[j]

φ(xi) + εf ,

and recalling again Assumption 2.3.2, we have

φ(xj) ≤ f(xj) + εf ≤ min
i∈[j]

φ(xi) + 2εf .

71

Since

ξj = min
i∈[j]

φ(xi) ≤ φ(xj),

we conclude that

ξj ≤ φ(xj) ≤ ξj + 2εf .

�

The next result shows that, before the iterates {xk} reach a neighborhood of the

solution where the error dominates, the sequence {φ(xk)− φ∗} converges to the value 2εf

at an R-linear rate. Here φ∗ denotes the optimal value of φ. Note that in this result we

assume that the line search is successful at all good iterates, before noise dominates. This

is a reasonable assumption since Corollary 2.3.2 guarantees the existence of an interval

satisfying the Armijo-Wolfe conditions.

Theorem 2.3.5. [Linear Convergence to N1] Suppose Assumptions 2.3.1, 2.3.2 and

2.3.3 are satisfied, and let {xk} be generated by Algorithm 2.1 with l satisfying (2.48). Let

N1 =

{
x

∣∣∣∣∣ ‖∇φ(x)‖ ≤ max

{
A

√
Mεf

β1

, B
εg
β1

}}
,

where A,B are given in (2.47). Additionally assume that for all iterates k ∈ J such that

xk /∈ N1,the algorithm chooses αk > 0 satisfying the Armijo-Wolfe conditions for (f, g).

Let

K = min
k
{k ∈ N|xk ∈ N1}

72

be the index of the first iterate that enters N1 (we define K = +∞ if no such iterate

exists). Then there exists ρ ∈ (0, 1) such that

φ(xk)− φ∗ ≤ ρk (φ(x0)− φ∗) + 2εf , ∀k ≤ K − 1.

Proof. By definition, we have that ∀k ≤ K − 1

(2.50) ‖∇φ(xk)‖ > max

{
A

√
Mεf

β1

, B
εg
β1

}
.

Choose 0 ≤ j ≤ k ≤ K − 1, and let J be as defined in Corollary 2.3.1. If j ∈ J , then by

Corollary 2.3.2 we have

φ(xj+1)− φ(xj) ≤ −ζ ‖∇φ(xj)‖2

where

ζ =
c1(1− c2)β2

1

16M
.

By Theorem 2.3.4, we have that φ(xj) ≤ ξj + 2εf , and hence

φ(xj+1) ≤ ξj + 2εf − ζ ‖∇φ(xj)‖2 .

Recalling that

A = max

{
16
√

2√
(c2 − c1)(4− c1 − 3c2)

,
8√

c1(1− c2)

}
,

73

and by (2.50) we have

ζ ‖∇φ(xj)‖2 ≥ c1(1− c2)

16
A2εf

≥ c1(1− c2)

16

[
8√

c1(1− c2)

]2

εf

= 4εf ,

and thus

φ(xj+1) ≤ ξj −
ζ

2
‖∇φ(xj)‖2 .

Since φ is strongly convex by Assumption 2.3.3, we have

‖∇φ(xj)‖2 ≥ 2m(φ(xj)− φ∗) ≥ 2m(ξj − φ∗),

thus we have

ξj+1 ≤ φ(xj+1) ≤ ξj −
ζ

2
‖∇φ(xj)‖2 ≤ ξj −mζ(ξj − φ∗)

i.e.,

ξj+1 − φ∗ ≤ (1−mζ)(ξj − φ∗).

The relation above holds if j ∈ J . If j /∈ J , all we can ascertain is that

ξj+1 ≤ ξj.

By Corollary 2.3.1, we have |[k − 1] ∩ J | ≥ qk, hence

ξk − φ∗ ≤ (1−mζ)qk (ξ0 − φ∗) = ρk(φ(x0)− φ∗)

74

where ρ = (1−mζ)q. Since φ(xk) ≤ ξk + 2εf , we have

φ(xk)− φ∗ ≤ ρk(φ(x0)− φ∗) + 2εf .

�

Remark. It is interesting to consider these results in the noise-free case when εf =

εg = 0. Then we may choose the lengthening parameter l to be arbitrarily small so that line

12 in Algorithm 2.1 is never executed, and Algorithm 2.1 reduces to the standard BFGS

method with Armijo-Wolfe line search. In this case, we have N1 = {x∗} in Theorem 2.3.5,

which establishes the following linear convergence result:

φ(xk)− φ∗ ≤ ρk(φ(x0)− φ∗), ∀k ∈ N.

This result is consistent with established linear convergence for the standard BFGS

method (see [18, Theorem 3.1]). Without extra assumptions on the linesearch proce-

dure and the continuity of ∇2φ(x), this is the best known rate for BFGS method.

The next result shows that the iterates generated by the algorithm enter the neigh-

borhood N1 in a finite number of iterations.

Theorem 2.3.6. Suppose Assumptions 2.3.1, 2.3.2 and 2.3.3 are satisfied. Let {xk}

be generated by Algorithm 2.1 using (2.48). Let N1 and K be defined as in Theorem 2.3.5.

If in addition we assume that max {εf , εg} > 0, then we have

K < +∞

75

Proof. Suppose, by the way of contradiction, that K = +∞, i.e., that xk /∈ N1, for

all k. Pick arbitrary δ > 0, then by Theorem 2.3.5 we have

φ(xk)− φ∗ ≤ δ + 2εf ,

for sufficiently large k. On the other hand, by Assumption 2.3.1,

‖∇φ(x)‖2 ≤ 2M(φ(x)− φ∗), ∀x ∈ Rd.

Hence,

‖∇φ(xk)‖2 ≤ 4Mεf + 2Mδ.

Choose δ sufficiently small such that

‖∇φ(xk)‖2 ≤ 4Mεf + 2Mδ ≤

[
max

{
A

√
Mεf

β1

, B
εg
β1

}]2

,

which is always possible since A > 2 and β1 ∈ (0, 1). Therefore, xk ∈ N1 yielding a

contradiction. �

The next result shows that after an iterate has entered the neighborhood N1, all

subsequent iterates cannot stray too far away from the solution in the sense that their

function values remain within a band of width 2εf of the largest function value obtained

inside N1.

Theorem 2.3.7. Suppose Assumptions 2.3.1, 2.3.2 and 2.3.3 are satisfied. Let {xk}

be generated by Algorithm 2.1 with the choice (2.48). Let N1 and K be defined as in

76

Theorem 2.3.5, and let

φ̂ = max
x∈N1

φ(x),

and

N2 =
{
x|φ(x) ≤ φ̂+ 2εf

}
.

Then,

xk ∈ N2, ∀k ≥ K.

Proof. Since φ is twice continuously differentiable and strongly convex, N1 defined in

Theorem 2.3.5 is a compact set, so φ̂ is well-defined. By Theorem 2.3.6, K <∞. Choose

any k ≥ K. Since xK ∈ N1 and k ≥ K, we have

ξk ≤ ξK ≤ φ(xK) ≤ φ̂.

Recalling Theorem 2.3.4,

φ(xk) ≤ ξk + 2εf ≤ φ̂+ 2εf

which shows that xk ∈ N2. �

Finally, we have the following result regarding the lengthening operation. It shows

that for all “good iterates” that are sufficiently away from N1 lengthening is not necessary.

Theorem 2.3.8. Suppose Assumptions 2.3.1, 2.3.2 and 2.3.3 are satisfied. Let {xk}

be generated by Algorithm 2.1 with lengthening parameter l satisfying (2.48). Let J be

defined as in Corollary 2.3.1, and A,B be defined as (2.47). If k ∈ J and

‖∇φ(xk)‖ ≥ max

{
A

√
Mεf

β1

, B
εg
β1

,
4lM

(1− c2)β1

}
,

77

then ‖αkpk‖ ≥ l, meaning that step 12 of Algorithm 2.1 is not executed.

Proof. Since k ∈ J and

‖∇φ(xk)‖ ≥ max

{
A

√
Mεf

β1

, B
εg
β1

}
,

by Theorem 2.3.3 and Corollary 2.3.2 we know that the stepsize αk satisfies

φ(xk + αkpk) ≤ φ(xk) +
c1

2
αkp

T
k∇φ(xk)

pTk∇φ(xk + αkpk) ≥
1 + c2

2
pTk∇φ(xk).

Thus we have a lower bound on αk:

αk ≥ −
1− c2

2M

∇φ(xk)
Tpk

‖pk‖2 .

Then we have

‖αkpk‖ ≥
1− c2

2M
‖∇φ(xk)‖ cos θ̃k

≥ (1− c2)β1

4M
‖∇φ(xk)‖.

Since

‖∇φ(xk)‖ ≥
4lM

(1− c2)β1

,

we have

‖αkpk‖ ≥
(1− c2)β1

4M
‖∇φ(xk)‖ ≥ l.

�

78

2.4. Numerical Experiments

We implemented Algorithm 2.1 and tested it on a 4-dimensional quadratic function

of the form

φ(x) = 1
2
xTTx,

where the eigenvalues of T are λ(T) = {10−2, 1, 102, 104} . Thus, the strong convexity

parameter is m = 10−2 and the Lipschitz constant M = 104.

The noise in the function ε(x) was computed by uniformly sampling from the interval

[−εf , εf], and the noise in the gradient e(x) by uniformly sampling from the closed ball

‖x‖2 ≤ εg. The maximum noise (or error) level was chosen as εg = εf = 1. We computed

the lengthening parameter l in Algorithm 2.1 as l = 4εg/m, which is twice as large as the

lower bound stipulated in Lemma 2.3.3.

The line search implements the standard bisection Armijo-Wolfe search with param-

eters c1 = 0.01, c2 = 0.5. If the line search is unable to find an acceptable stepsize within

64 iterations, its is considered to have failed, and we set αk = 0. Algorithm 2.1 terminates

if: a) ‖gk‖ ≤ 10−5; or b) 30 consecutive line search failures occur; or c) if Algorithm 2.1

reaches the limit of 60 iterations. The initial iterate is x0 = 105 · (1, 1, 1, 1)T for which

‖∇φ(x0)‖ ≈ 109.

Figures 2.1 and 2.2 plot the results of 20 runs of Algorithm 2.1, all initialized at

the vector x0 given above. In both figures, we indicate the first iteration (in all runs)

when the differencing interval was lengthened, i.e., when step 12 of Algorithm 2.1 was

executed. We observe from Figure 2.1 that Algorithm 2.1 quickly drives the optimality

gap φ(xk) − φ∗ to the noise level. Figure 2.3 plots the log of the condition number of

79

the matrix H
1/2
k ∇2φ(xk)H

1/2
k against the iteration number k. For this small dimensional

quadratic, the BFGS approximation converges to the true Hessian when errors are not

present. Figure 2.3 shows that the Hessian approximation does not deteriorate after the

iterates enter the region where noise dominates, illustrating the benefits of the lengthening

strategy.

Lengthening

0 10 20 30 40 50 60

0

5

10

15

Figure 2.1. Results of 20 runs of Algorithm 2.1. The graph plots the log
of the optimality gap for the true function, log10 (φ(xk)− φ∗), against the
iteration number k. The horizontal red dashed line corresponds to the noise
level log10 max {εg, εf} = 0. The vertical purple dashed line marks the first
iteration at which lengthening is performed (k = 8).

80

Lengthening

0 10 20 30 40 50 60

0

2

4

6

8

Figure 2.2. Log of the norm of true gradient log10 ‖∇φ(xk)‖ against itera-
tion k for 20 runs of Algorithm 2.1. The horizontal red dashed line corre-
sponds to the noise level, and the vertical purple dashed line corresponds
to the first iteration at which lengthening is performed.

0 10 20 30 40 50 60
0

1

2

3

4

5

6

Figure 2.3. Log of the condition number of H
1/2
k ∇2φ(xk)H

1/2
k against iter-

ation k. Note that after the iteration reaches the noise level, the Hessian
approximation remains accurate.

81

2.5. Final Remarks

In this chapter, we analyzed the BFGS method when the function and gradient eval-

uations contain errors. We do not assume that errors diminish as the iterates converge

to the solution, or that the user is able to control their magnitude, but that they are

always present. Because of this, our analysis focuses on global linear convergence to a

neighborhood of the solution, and not on conditions that ensure superlinear convergence

— something that would require errors to diminish very rapidly.

In the regime where the gradient ‖∇φ(x)‖ of the objective function is sufficiently larger

than the errors, we might hope for the classical BFGS method to perform well. However,

even in that regime, errors can contaminate the Hessian update, and the line search can

give conflicting information. In this chapter, we show that a simple modification of the

BFGS method inherits the good performance of the classical method (without errors).

In particular, we extend one of the hallmark results of BFGS, namely Theorem 2.1 in

[18], which shows that under mild conditions a large fraction of the BFGS steps are good

steps, meaning that they do not tend to be orthogonal to the gradient. We also establish

conditions under which an Armijo-Wolfe line search on the noisy function yields sufficient

decrease in the true objective function.

The modification of the BFGS method proposed here consists of ensuring that the

length of the interval used to compute gradient differences is large enough so that differ-

encing is stable. Specifically, if the line search indicates that the size of the latest step is

not large enough compared to the size the gradient error, then the corrections pairs (sk, yk)

used to update the BFGS matrix are modified. Instead of using sk as the differencing

interval, we lengthen it and compute gradient differences based on the end points of the

82

elongated interval. This allows us to establish convergence results to a neighborhood of

the solution where progress is not possible, along the lines of Nedic and Bertsekas [46].

An additional feature of our modified BFGS method is that, when the iterates enter the

region where errors dominate, the Hessian approximation does not get corrupted.

The numerical results presented here are designed to verify only the behavior predicted

by the theory. In our implementation of Algorithm 2.1, we assume that the size of the

errors and the strong convexity parameter m are known, as this helps us determine the size

of the lengthening parameter l, although as discussed immediately following Lemma 2.3.3,

the algorithm can be modified to avoid the need for knowledge of m without disturbing

the analysis.

In the next chapter, we consider a practical implementation of our algorithm that

estimates l adaptively and is able to deal with nonconvexity, and that describes a limited

memory version of the algorithm. The theory presented in this chapter provides the

foundations for the design of such a practical algorithm.

83

CHAPTER 3

A Noise-Tolerant Quasi-Newton Algorithm for Unconstrained

Optimization

3.1. Introduction

Quasi-Newton methods, such as BFGS and L-BFGS, are used widely in practice be-

cause they require only first-order information and are yet able to construct useful qua-

dratic models that make them faster and easier to use than the classical gradient method.

However, in the presence of errors in the function and gradient evaluations, these methods

may behave erratically. In this chapter, we show how to design practical noise-tolerant

versions of BFGS and L-BFGS that retain the robustness of their classical counterparts.

The main challenge is to ensure that the updating process and the line search are not

dominated by noise.

This chapter builds upon the theoretical results of Xie et al. [58] who show that

by incorporating a lengthening procedure, the BFGS method enjoys global convergence

guarantees to a neighborhood of the solution for strongly convex functions. However,

the algorithm proposed in [58] is not practical as it requires knowledge of the strong

convexity parameter m of the objective function, which is normally not known. An

overestimate of m may lead to an unstable iteration, whereas an underestimate can slow

down convergence. The quasi-Newton algorithms proposed in this chapter compute the

lengthening parameter adaptively without the need for exogenous function information;

84

they are designed for solving general nonlinear optimization problems and are supported

by a convergence analysis for strongly convex objectives. A distinctive feature of our

approach is the use of a new line search procedure that works in conjunction with the

lengthening technique introduced in this chapter.

The problem under consideration is

(3.1) min
x∈Rd

φ(x)

where φ : Rd → R is a smooth function. This minimization must be performed while

observing only inaccurate function and gradient information, i.e., by observing

(3.2) f(x) = φ(x) + ε(x), g(x) = ∇φ(x) + e(x),

where the scalar ε and the vector e model the errors. We will consider the setting where

the errors are bounded and the bounds are either known or estimated through an auxiliary

procedure, such as ECNoise or pointwise sample variance estimation [43]. Specifically, we

assume |ε(x)| ≤ εf and ‖e(x)‖2 ≤ εg for all x ∈ Rd, and that the algorithm has access to

εf and εg.

Problems of this type arise in many practical applications, including when the noise

is computational or adversarial. For example, in PDE-constrained optimization, the ob-

jective function often contains computational noise created by an inexact linear system

solver [43], adaptive grids [1], or other internal computations. In those applications, the

optimization method may not be able to control the size of the errors. In other cases,

errors are due to stochastic noise, which can be caused, for example, by an intermedi-

ate Monte Carlo simulation [19]. In these cases, errors may be controllable via Monte

85

Carlo sampling. Error in the gradient can also be inherited from noise in the function

within derivative-free optimization while employing gradient approximations based on

finite-differencing, interpolation, or smoothing [6, 7, 28, 29, 44, 47]. In this case, the

gradient errors can be controlled by the choice of the finite-difference interval, but can

only be diminished to a certain extent under the presence of function noise. We note,

however, that there are applications where noise is not bounded or where the bounds

εf , εg depend on x, in which case the methods proposed here cannot be directly applied.

The fact that the BFGS and L-BFGS methods can be unstable in the presence of

noise is due to the nature of the BFGS updating procedure. One simple way to illustrate

this is by recalling that the Hessian approximation is updated based on observed gradient

differences:

g(x+ p)− g(x) = ∇φ(x+ p) + e(x+ p)−∇φ(x)− e(x), p ∈ Rd.

If ‖p‖ is very small, the gradients of φ could cancel out leaving only noise differences.

Thus, the standard BFGS method may falter even before the iterates approach the region

where noise dominates. Although one could argue that the situation just described is

unlikely in practice, it shows that convergence guarantees cannot be established in this

case.

To provide more concrete numerical evidence for the need to bolster the BFGS method,

we illustrate in Figure 3.1 the solution of the ARWHEAD problem [30] in which independent

random noise uniformly distributed on [−10−3, 10−3] is introduced to each component of

the gradient. One can observe a very large increase in the condition number of the BFGS

matrix that is unseen when noise is removed. This shows that the Hessian approximation

86

is corrupted, and an examination of the run indicates that the line search gives rise to

tiny steps once this has occurred. The ARWHEAD problem is chosen because it is easily

solved yet clearly illustrates the instability of the BFGS matrix under the presence of

noisy updates; we revisit this example in §3.5.1.

0 200 400 600 800 1000
Iterations

103

107

1011

1015

(H
k)

ARWHEAD
BFGS

Figure 3.1. The condition number of the BFGS matrix κ(Hk) against the
number of iterations on the ARWHEAD problem with added noise.

The literature of the BFGS method with inaccurate gradients includes the implicit

filtering method of Kelley et al. [22, 36], which assumes that noise can be diminished at

will at any iteration. Dennis and Walker [26] and Ypma [59] study bounded deterioration

properties and local convergence of quasi-Newton methods with errors, when started near

the solution with a Hessian approximation that is close to the exact Hessian. Barton

[2] and Berahas, et al. [5] propose implementations of the BFGS method and L-BFGS

method in which gradients are computed by an appropriate finite differencing technique,

assuming that the noise level in the function evaluation is known. There has recently

been some interest in designing quasi-Newton methods for machine learning applications

using stochastic approximations to the gradient [9, 15, 17, 32, 45, 56]. These papers

avoid potential difficulties with BFGS or L-BFGS updating by assuming that the quality

87

of gradient differences is sufficiently controlled, and as a result, the analysis follows similar

lines as for their classical counterparts. The work that is most relevant to this chapter

is by Xie et al. [58], who introduce the lengthening technique and establish conditions

under which a steplength satisfying the Armijo-Wolfe line search conditions exists.

The contributions of this work are as follows: i) we propose practical extensions of

the BFGS and L-BFGS methods for nonlinear optimization that are capable of dealing

with noise by employing a new line search/lengthening technique that stabilizes the quasi-

Newton update. This strategy relies on the noise control condition (3.11) introduced in

this chapter; ii) we provide a convergence analysis for the proposed method for strongly

convex objective functions based on the properties the noise control condition instead of

assuming knowledge of the strong convexity parameter, as is done in [58]; iii) we describe

implementations of the methods in full detail, and present extensive numerical results that

suggest that our approach is robust for certain classes of noisy optimization problems.

The chapter is organized into 6 sections. In section 2, we describe the proposed

algorithms, and in section 3 we establish convergence for strongly convex objectives. In

section 4, we describe practical implementations of the noise-tolerant BFGS and L-BFGS

methods. In section 5, we present the results of experiments on noisy synthetic examples.

Lastly, we give our final remarks in section 6.

3.2. The Algorithm

The BFGS and L-BFGS methods for minimizing φ, when only noisy observations (3.2)

of the function and gradient are available, have the form

(3.3) xk+1 = xk − αkHkg(xk),

88

where Hk � 0 is an approximation to the inverse Hessian, ∇2φ(xk)
−1, and the steplength

αk is computed by a line search. Given a curvature pair

(sk, yk) = (xk+1 − xk, g(xk+1)− g(xk))(3.4)

= (αkpk, g(xk + αkpk)− g(xk)),(3.5)

where pk = −Hkg(xk), the BFGS formula updates Hk as follows:

(3.6) Hk+1 = (I − ρkskyTk)Hk(I − ρkyksTk) + ρksks
T
k , where ρk = 1/yTk sk.

The L-BFGS method stores the past t curvature pairs and computes the matrix-vector

product Hkgk via a two-loop recursion, with memory and computational complexity that

is linear with respect to the problem dimension d [40]. For both methods, a line search

ensures that yTk sk > 0, guaranteeing that the update (3.6) is well defined.

As discussed in the previous section, the difference in gradients g(xk+αkpk)−g(xk) may

be dominated by noise, rendering the curvature information inaccurate and potentially

malign. To safeguard against this, Xie et al. [58] introduced a lengthening operation

that ensures that meaningful curvature information is being collected. Specifically, they

redefine the curvature pair by

(3.7) (sk, yk) = (βkpk, g(xk + βkpk)− g(xk)),

where βk ≥ αk is a sufficiently large lengthening parameter. The theoretical analysis in

[58] states that setting βk = O(εg/m‖pk‖) ensures linear convergence to a neighborhood

of the solution for strongly convex problems, where m is the strong convexity parameter

89

and εg is an upper bound on the norm of the gradient noise, i.e.,

(3.8) ‖g(x)−∇φ(x)‖2 = ‖e(x)‖2 ≤ εg ∀x ∈ Rd.

However, the analysis in [58] does not directly yield an implementable algorithm, as the

parameter m is generally not known in practice. Furthermore, [58] does not propose a

practical line search procedure for finding a steplength that satisfies the Armijo-Wolfe

conditions—although it does establish the existence of such a steplength.

We now propose a rule for computing βk that does not require knowledge of m, as

well as a practical line search procedure. In our approach, we enforce the following three

conditions on the steplength αk and the lengthening parameter βk:

f(xk + αkpk) ≤ f(xk) + c1αkg(xk)
Tpk (Armijo condition)(3.9)

g(xk + αkpk)
Tpk ≥ c2g(xk)

Tpk (Wolfe condition)(3.10)

(g(xk + βkpk)− g(xk))
Tpk ≥ 2(1 + c3)εg‖pk‖ (noise control)(3.11)

where 0 < c1 < c2 < 1 and c3 > 0. Here and throughout the chapter, ‖ · ‖ denotes the

Euclidean norm. The Armijo-Wolfe conditions (3.9)–(3.10) ensure that the steplength

αk that is taken by the algorithm is not too short and yields sufficient decrease on the

(noisy) objective function, while the noise control condition (3.11) on βk is designed so

that the difference in the observed directional derivatives is sufficiently large so as not to

be dominated by noise. A motivation for (3.11) and a discussion of its salient properties

are given below.

90

To satisfy the three conditions above one could find a steplength αk that satisfies

(3.9)-(3.10), and if (3.11) holds for βk = αk, then set βk ← αk. Otherwise, one can search

for βk > αk to satisfy (3.11). In practice, we employ a different strategy described in

section 3.4.1 to achieve similar objectives.

The outline of the proposed method is given in Algorithm 3.1.

Algorithm 3.1: Outline of Noise-Tolerant BFGS and L-BFGS Methods

1: Input: function f(·) and gradient g(·); noise level in gradient εg; initial iterate x0

and Hessian approximation H0 � 0;

2: for k = 0, 1, 2, ... do

3: Compute pk = −Hkg(xk) by matrix-vector multiplication (BFGS) or two-loop

recursion [48] (L-BFGS);

4: Perform a line search to obtain αk satisfying (3.9) and (3.10); if the line search

fails, then compute αk such that f(xk + αkpk) ≤ f(xk);

5: Take the step xk+1 = xk + αkpk;

6: Perform a lengthening procedure to obtain βk satisfying (3.11);

7: Compute the curvature pair (sk, yk) using βk, as in (3.7);

8: Update the Hessian approximation Hk by (3.6) (BFGS) or update set {(si, yi)} of

curvature pairs (L-BFGS);

9: end for

The Armijo-Wolfe line search is guaranteed to find a steplength αk that satisfies con-

ditions (3.9)-(3.10) only when the gradient is sufficiently large relative to the noise level;

otherwise pk is not guaranteed to be a descent direction. To handle this case, a line

search failure occurs when a maximum number of trial points is computed without satis-

fying (3.9) and (3.10). The algorithm requires an estimate of the noise level εg, which can

be obtained through sampling or through the Hamming procedure described in [44]. The

91

main remaining ingredient in this algorithm is a description of a procedure for computing

αk and βk in step 3 and 5. This will be discussed in §3.4.2.

3.2.1. Motivation of the Noise Control Condition (2.9)

We first note that the Wolfe condition (3.10) alone does not ensure that the BFGS update

is productive in the noisy setting. Even though (3.10) guarantees that

yTk sk ≥ −(1− c2)g(xk)
T sk > 0,

and this is sufficient for maintaining the positive definiteness of the BFGS matrix, this

does not mean that yk properly reflects the curvature of the true function, namely∇φ(xk+

αkpk)−∇φ(xk), because yk may be contaminated by noise, as discussed before.

Let us, in contrast, observe the effect of the noise control condition (3.11). We have

(g(xk + βkpk)− g(xk))
Tpk

= [(∇φ(xk + βkpk)−∇φ(xk)) + (e(xk + βkpk)− e(xk))]T pk

≤ (∇φ(xk + βkpk)−∇φ(xk))
Tpk + (‖e(xk + βkpk)‖+ ‖e(xk)‖)‖pk‖

≤ (∇φ(xk + βkpk)−∇φ(xk))
Tpk + 2εg‖pk‖,

by (3.8). Combining this with (3.11) we have

(3.12) (∇φ(xk + βkpk)−∇φ(xk))
Tpk ≥ 2c3εg‖pk‖,

92

and thus the true difference in the directional derivative is sufficiently large relative to

the gradient noise εg. If we define

(3.13) ỹk = ∇φ(xk + βkpk)−∇φ(xk),

and recall from (3.7) that sk = βkpk, we can write (3.12) as

ỹTk sk ≥ 2βkc3εg‖pk‖.

We can also establish a relationship between the observed and true curvature along

the step sk. In particular, if βk > 0 satisfies the noise control condition (3.11) and (3.8)

holds, then ∣∣∣∣sTk ỹksTk yk
− 1

∣∣∣∣ ≤ ‖sk‖‖ỹk − yk‖sTk yk
≤ 2εg‖sk‖

sTk yk
≤ 1

1 + c3

which implies that

(3.14)

(
1 +

1

1 + c3

)−1

sTk ỹk ≤ sTk yk ≤
(

1− 1

1 + c3

)−1

sTk ỹk.

This result shows that when condition (3.11) is satisfied, the noisy curvature pair

(sk, yk) is a good approximation to the true curvature pair (sk, ỹk), with the parameter c3

trading off the quality of this approximation with the locality of the curvature information

being collected (in the sense that βk may be excessively large if c3 is chosen to be large).

Note that we are guaranteed finite termination of the lengthening procedure if there

exists a β̄ > 0 such that for all β > β̄,

∇φ(xk + βpk)
Tpk ≥ ∇φ(xk)

Tpk + 2c3εg‖pk‖.

93

This is guaranteed if limβ→∞∇φ(xk + βpk)
Tpk = ∞, which holds for strongly convex

functions, as well as for many other (but not all) functions.

Let us now verify that the noise control condition is compatible with the choice

(3.15) β = O(εg/m‖pk‖)

stipulated by Xie et al. [58] in their convergence analysis of the BFGS method with errors

for strongly convex functions. If φ is m-strongly convex, then

ỹTk pk = (∇φ(xk + βkpk)−∇φ(xk))
Tpk ≥ mβk‖pk‖2.

Therefore, by our assumption, we have

yTk pk ≥ ỹTk pk − 2εg‖pk‖ ≥ (mβk‖pk‖ − 2εg)‖pk‖.

Therefore it suffices to ensure that

(3.16) mβk‖pk‖ − 2εg ≥ 2(1 + c3)εg, i.e. βk ≥
2(2 + c3)εg
m‖pk‖

,

to satisfy (3.11).

Remark 1. It is natural to ask whether there are less expensive alternatives to the

lengthening strategy mentioned above. The noise control condition (3.11) offers the pos-

sibility of skipping the BFGS update when it is not satisfied. We describe this approach

and test it in §3.5. Another possibility is to use Powell damping [48, chapter 18], but

we consider this to be somewhat dangerous, as it would involve repeatedly introducing

spurious information in the Hessian approximation without much safeguard.

94

3.3. Convergence Analysis

Xie et al. [58] established convergence results for the BFGS method using a lengthen-

ing strategy designed to cope with errors in the function and gradient. They assume the

lengthening parameter satisfies βk‖pk‖ ≥ 2εg/m. This leaves open the question of how to

estimate the strong convexity parameter m in practice so that the convergence results in

[58] still hold.

In this chapter, we bypass this thorny issue and propose the lengthening strategy based

on the noise control condition (3.11), which employs an estimate of the noise level of the

gradient εg, but does not require knowledge of m. We now establish conditions under

which Algorithm 3.1 is linearly convergent to a neighborhood of the solution determined

by the noise level. We make the following assumption about the underlying function φ,

which is standard in the analysis of quasi-Newton methods.

Assumption 3.3.1. The function φ is m-strongly convex and has M-Lipschitz con-

tinuous gradients, i.e., there exist constants 0 < m ≤M such that

m‖x− y‖2 ≤ [∇φ(x)−∇φ(y)]T (x− y) ≤M‖x− y‖2, ∀x, y ∈ Rd.

In addition, we assume that the errors in the gradient and objective function approx-

imation are bounded.

Assumption 3.3.2. There are constants εg ≥ 0 and εf ≥ 0 such that

(3.17) ‖∇φ(x)− g(x)‖ ≤ εg, ∀x ∈ Rd, and

95

(3.18) |φ(x)− f(x)| ≤ εf , ∀x ∈ Rd.

Byrd and Nocedal [18] showed that if all curvature pairs (sk, yk) satisfy

(3.19)
sTk yk
sTk sk

≥ m̂,
yTk yk
sTk yk

≤ M̂, ∀k ∈ N,

for some constants 0 < m̂ ≤ M̂ , then most of the iterates generated by the (classical)

BFGS method are “good iterates” in the sense that the angle between the search direction

and the steepest direction is bounded away from orthogonality. This fact is used in [18]

to establish convergence of the BFGS algorithm with various types of line searches for

strongly convex functions.

The first step in our analysis consists of showing that bounds of the form (3.19) are

satisfied for both the BFGS and L-BFGS versions of our noise tolerant Algorithm 3.1,

due to the role of the noise control condition (3.11). For convenience, we summarize the

notation introduced in the previous section:

sk = βkpk, yk = g(xk + sk)− g(xk), ỹk = ∇φ(xk + sk)−∇φ(xk),

and therefore the noise control condition can be written as

sTk [g(xk + sk)− g(xk)] ≥ c εg‖sk‖,

with c = 2(1 + c3).

96

Notation. So far we let Hk denote the BFGS approximation of the inverse Hessian.

The classical analysis of the BFGS method analyzes, however, the direct Hessian approx-

imation Bk defined as B−1
k = Hk [48]. Therefore, some of the results quoted from [58],

are stated in terms of Bk.

Lemma 3.3.1. Suppose that Assumptions 3.3.1 and 3.3.2 hold and that sk 6= 0 is

chosen such that

(3.20) sTk [g(xk + sk)− g(xk)] ≥ c εg‖sk‖,

with c > 2 and εg > 0. Then we have that

(3.21)
sTk yk
sTk sk

≥ c

c+ 2
m,

yTk yk
sTk yk

≤ c

c− 2
M.

Proof. Since ‖sk‖ > 0 we have that

sTk yk
sTk sk

≥ c
εg
‖sk‖

> 0.

In addition, since ‖ỹk − yk‖ ≤ 2εg and by Assumption 3.3.1 we have

sTk yk
sTk sk

≥ sTk ỹk
sTk sk

− 2εg
‖sk‖

≥ m− 2εg
‖sk‖

.

Combining these two inequalities, we obtain

sTk yk
sTk sk

≥ c

c+ 2
m,

which proves the first inequality in (3.21).

97

For the second bound in (3.21), first note that ‖yk‖ ≤M‖sk‖+‖ỹk−yk‖ ≤M‖sk‖+2εg.

Therefore,

(3.22) ‖sk‖ (M‖sk‖+ 2εg) ≥ ‖sk‖‖yk‖ ≥ sTk yk ≥ cεg‖sk‖,

which yields the following lower bound on ‖sk‖:

(3.23) ‖sk‖ ≥ (c− 2)
εg
M
.

Since φ is m-strongly convex with M -Lipschitz continuous gradients, by [10, Proposition

6.1.9 (b)] we have

(x− z)T [∇φ(x)−∇φ(z)] ≥ mM

m+M
‖x− z‖2 +

1

m+M
‖∇φ(x)−∇φ(z)‖2, ∀x, z ∈ Rd.

Setting x← xk + sk, z ← xk, and noticing that x− z = sk, ∇φ(x)−∇φ(z) = ỹk, we have

sTk ỹk ≥
mM

m+M
‖sk‖2 +

1

m+M
‖ỹk‖2.

By re-arranging the terms, we get

‖ỹk‖2 − (M +m)sTk ỹk +

(
M +m

2

)2

‖sk‖2 ≤
(
M −m

2

)2

‖sk‖2,

which is equivalent to ∥∥∥∥ỹk − M +m

2
sk

∥∥∥∥ ≤ M −m
2

‖sk‖ .

Consequently ∥∥∥∥yk − M +m

2
sk

∥∥∥∥2

≤
(
M −m

2
‖sk‖+ 2εg

)2

,

98

i.e.,

‖yk‖2 − (M +m)sTk yk +

(
M +m

2

)2

‖sk‖2

≤
(
M −m

2

)2

‖sk‖2 + 2(M −m)‖sk‖εg + 4ε2g.

Note that we have shown sTk yk > 0, therefore, we can simplify the equation above to

(3.24)
yTk yk
sTk yk

≤ (M +m) +
(2εg +M‖sk‖)(2εg −m‖sk‖)

sTk yk
.

Case 1: if 2εg −m‖sk‖ < 0, then we have

yTk yk
sTk yk

≤ (M +m)− ‖sk‖(2εg +M‖sk‖)
sTk yk

(
m− 2

εg
‖sk‖

)

From (3.22) we know that

‖sk‖(M‖sk‖+ 2εg) ≥ sTk yk

therefore,

yTk yk
sTk yk

≤M + 2
εg
‖sk‖

Combining this with the lower bound ‖sk‖ ≥ (c− 2)εg/M given in (3.23), we have

yTk yk
sTk yk

≤M +
2εg
‖sk‖

≤M +
2

c− 2
M =

c

c− 2
M.

Case 2: if 2εg −m‖sk‖ ≥ 0, then we have from (3.24) and (3.20)

yTk yk
sTk yk

≤ (M +m) +
(2εg +M‖sk‖)(2εg −m‖sk‖)

cεg‖sk‖

= (M +m) +
1

c

(
2 +M

‖sk‖
εg

)(
2
εg
‖sk‖

−m
)
.

99

The right hand side increases as ‖sk‖/εg decreases, hence setting ‖sk‖ to the lower bound

given in (3.23), we have

yTk yk
sTk yk

≤ (M +m) +
1

c

(
2 +M

‖sk‖
εg

)(
2
εg
‖sk‖

−m
)

≤ (M +m) +
1

c

(
2 +M

c− 2

M

)(
2
M

c− 2
−m

)
=

c

c− 2
M.

This proves the second inequality. �

As mentioned above, if we set c = 2(1 + c3) in (3.20), we obtain the noise control con-

dition (3.11). Therefore, we have the following guarantee on the curvature pairs generated

by Algorithm 3.1:

(3.25)
sTk yk
sTk sk

≥ m̂ =
1 + c3

2 + c3

m,
yTk yk
sTk yk

≤ M̂ =

(
1 +

1

c3

)
M, k = 0, 1, 2, ...

To continue using the results in [18] we define, for any γ > 0, the index of “good

iterates” J(γ) as

(3.26) J(γ) = {k ∈ N| cos θk ≥ γ},

where cos θk is the angle between pk = −Hkgk and −gk. The following lemma uses the

bounds (3.25) to show that that for some values γ, the set J(γ) contains a fraction of the

iterates.

100

Lemma 3.3.2. Let {xk}, {pk} be generated by Algorithm 3.1, using either the full-

BFGS or L-BFGS variant. Then for any 0 < q < 1, there exists γ > 0 such that

(3.27) |J(γ) ∩ [0, k − 1]| ≥ qk,

where J(γ) is defined by (3.26).

Proof. For the full-BFGS variant of Algorithm 3.1, since we have shown that (3.25)

holds, Theorem 2.1 in [18] guarantees that for any 0 < q < 1, there exists γF > 0 such

that

(3.28) |J(γF) ∩ [0, k − 1]| ≥ qk.

For the L-BFGS method with memory length t, we have Bk = H−1
k = Bk,t, where

Bk,i+1 are computed by applying BFGS update toBk,i with the curvature pair (sk+i−t, yk+i−t),

and Bk,0 is defined by

Bk,0 =
1

γk
I, γk =

sTk−1yk−1

yTk−1yk−1

.

Now we apply techniques developed in [18]. For any positive definite matrix B, let

ψ(B) = trB − log detB.

Since all curvature pairs {(sk, yk)} satisfy (3.25), by [18, (2.9)] we have

ψ(Bk,i+1) ≤ ψ(Bk,i) + (M̂ − log m̂).

101

Therefore, we have

ψ(Bk) = ψ(Bk,t) ≤ ψ(Bk,0) + t(M̂ − log m̂).

By [18, (2.7)], we have

κ(Bk) ≤ exp [ψ(Bk)] ≤ exp
[
ψ(B0) + t(M̂ − log m̂)

]
=
[
γke

1/γk
]d

exp
[
t(M̂ − log m̂)

]
.

By (3.25) and the Cauchy-Schwarz inequality,

m̂ ≤
sTk−1yk−1

sTk−1sk−1

≤
yTk−1yk−1

sTk−1yk−1

=
1

γk
≤ M̂,

hence,

γke
1/γk = e1/γk−log(1/γk) ≤ exp[M̂ − log m̂],

which implies that

κ(Bk) ≤ exp
[
(d+ t)(M̂ − log m̂)

]
.

Finally, note that since sk = −βkHkgk and HkBk = I,

cos θk =
gTkHkgk
‖gk‖‖Hkgk‖

=
sTkBksk
‖sk‖‖Bksk‖

≥ λmin(Bk)‖sk‖2

λmax(Bk)‖sk‖2
=

1

κ(Bk)

≥ exp
[
−(d+ t)(M̂ − log m̂)

]
.

Therefore, we have

cos θk ≥ γL ≡ exp
[
−(d+ t)(M̂ − log m̂)

]
, ∀k ∈ N,

102

i.e.,

|J(γL) ∩ [0, k − 1]| = k, ∀k ∈ N

which finishes the proof. �

By the discussions above, for both full-BFGS and L-BFGS variants of Algorithm 3.1,

we can choose a fixed q∗ ∈ (0, 1) and find γ∗ > 0 such that

(3.29) |J(γ∗) ∩ [0, k − 1]| ≥ q∗k, ∀k ∈ N;

i.e., such that a fraction of iterates are guaranteed to be good iterates. From now on, let

us fix the choice q∗ and γ∗. Using the above results together with the analysis in [58] we

arrive at the following convergence result.

Theorem 3.3.1. Suppose that Assumptions 3.3.1 and 3.3.2 hold. Let {xk} be gener-

ated by Algorithm 3.1, using either L-BFGS or standard BFGS. Fix q∗ ∈ (0, 1) and choose

γ∗ > 0 such that (3.29) holds. Define

(3.30) N1 =

{
x

∣∣∣∣∣ ‖∇φ(x)‖ ≤ max

{
A

√
Mεf

γ∗
, B

εg
γ∗

}}
,

and

(3.31) N2 =

{
x
∣∣∣ φ(x) ≤ 2εf + max

y∈N1

φ(y)

}
⊇ N1,

103

where

A = max

{
16
√

2√
(c2 − c1)(4− c1 − 3c2)

,
8√

c1(1− c2)

}

B = max

{
8

1− c2

,
8(1 + c1)

c2 − c1

+ 6

}
.

Let

(3.32) K = min
k
{k ∈ N | xk ∈ N1}

be the index of the first iterate that enters N1. Assume that for all iterates k ∈ J(γ∗) such

that xk /∈ N1 the line search procedure finds αk satisfying (3.9)–(3.10). Then there exists

ρ ∈ (0, 1) such that

φ(xk)− φ∗ ≤ ρk (φ(x0)− φ∗) + 2εf , ∀k ≤ K − 1.

Moreover, we have that K < +∞ and

xk ∈ N2, ∀k ≥ K.

Proof. Note that Algorithm 3.1 differs from Algorithm 2.1 of [58], only in the quasi-

Newton updating strategy and lengthening procedure. This implies that the results

through Theorem 3.5 of [58] concerning the existence of an Armijo-Wolfe stepsize, also

apply to Algorithm 2.1 of this chapter, since the proofs of these these results do not de-

pend on the update used. In Lemma 3.3.1 of this chapter we showed that the lengthening

procedure in step 5 of Algorithm 3.1 guarantees bounds on (sTk yk/s
T
k sk) and (yTk yk/s

T
k yk)

104

such as those of Lemma 3.8 of [58]. Using these bounds we established Lemma 3.3.2

whose results are identical to those of Corollary 3.10 in [58], with γ∗ replacing β1. With

that change, the rest of the results of [58], including Theorems 3.16–3.18, hold for Algo-

rithm 3.1 of this chapter, proving the theorem. �

Theorem 3.3.1 states that the iterates generated by Algorithm 3.1 converge linearly to

a neighborhood of the solutionN1, whose size depends on the noise levels εf , εg; the iterates

will enter N1 in finite number of iterations, and will remain in a larger neighborhood N2

thereafter.

3.4. A Practical Algorithm

In order to implement Algorithm 3.1, we need to design a practical procedure for

computing the steplength αk and the lengthening parameter βk. This can be done in

various ways, and in this section we present a technique that has performed well in

practice. After describing this algorithm in detail, we present several heuristics designed

to improve its practical performance.

3.4.1. Two-Phase Line Search and Lengthening Procedure

Algorithm 3.1 and the convergence analysis of the previous section require that αk and

βk satisfy conditions (3.9), (3.10) and (3.11). We now propose a procedure for computing

these quantities.

105

The line search operates in two phases. The initial phase attempts to satisfy three

conditions with the same parameter αk = βk:

f(xk + αkpk) ≤ f(xk) + c1αkg(xk)
Tpk(3.33)

g(xk + αkpk)
Tpk ≥ c2g(xk)

Tpk(3.34)

|(g(xk + αkpk)− g(xk))
Tpk| ≥ 2(1 + c3)εg‖pk‖,(3.35)

where 0 < c1 < c2 < 1 and c3 > 0. Observe that (3.35) and the Wolfe condition (3.34)

imply the noise control condition (3.11) employed so far in the chapter. We incorporate

the absolute value in (3.35) in order to introduce a symmetric noise condition that can be

used to determine when to adapt αk and βk independently. If εf = εg = 0, then we can

guarantee that the initial phase will reduce to the standard Armijo-Wolfe line search, as

we describe below.

The initial phase is done using the logic of the standard bisection search: backtracking

if the Armijo condition is not satisfied, and advancing if the Armijo condition is satisfied

and the Wolfe condition is not, but with one important modification. If the Armijo

condition (3.33) is satisfied, we will check (3.35) prior to checking the Wolfe condition

(3.34).

If at any iteration of the line search the noise control condition (3.35) is not satisfied

or if the line search has performed more than the allowed number (Nsplit) of iterations,

then the initial phase is terminated and the second phase, which we call the split phase,

is triggered. In this phase, αk and βk are updated independently from each other. The

steplength αk is updated via the standard Armijo backtracking line search while the

106

lengthening parameter βk is lengthened independently until the conditions

f(xk + αkpk) ≤ f(xk) + c1αkg(xk)
Tpk(3.36)

(g(xk + βkpk)− g(xk))
Tpk ≥ 2(1 + c3)εg‖pk‖(3.37)

are satisfied. We backtrack more aggressively (by a factor of 10) in the split phase in

order to mitigate the cost of additional function evaluations. The limit Nsplit is imposed

to prevent the line search from being fooled from noise indefinitely.

The two-phase line search (without heuristics) is presented in Algorithms 3.2 and 3.3.

For completeness, we also present the pseudocode for the complete practical algorithm in

3.4.

107

Algorithm 3.2: Two-Phase Armijo-Wolfe Line Search and Lengthening: Initial Phase

1: Input: functions f(·) and g(·); noise level εg; current iterate x; search direction p;

initial steplength α = 1; constants 0 < c1 < c2 < 1, c3 > 0; maximum number of line

search iterations before split Nsplit

2: l← 0, u←∞; . Initialize brackets for bisection

3: for i = 0, 1, 2, ..., Nsplit − 1 do

4: if f(x+ αp) > f(x) + c1αg(x)Tp then . Armijo condition fails

5: u← α;

6: α← (u+ l)/2; . Backtrack

7: else if |(g(x+ αp)− g(x))Tp| < 2(1 + c3)εg‖p‖ then . Noise control condition

fails

8: Break (for loop)

9: else if g(x+ αp)Tp < c2g(x)Tp then . Wolfe condition fails

10: l← α;

11: if u =∞ then . Advance

12: α← 2α;

13: else

14: α← (u+ l)/2;

15: end if

16: else . Satisfies all conditions

17: β ← α ;

18: Return α, β;

19: end if

20: end for

21: α, β ← SplitPhase(f, g, εg, x, p, α, β); . Enter split phase

22: Return α, β;

108

Algorithm 3.3: Split Phase

1: Input: functions f(·) and g(·); noise level εg; current iterate x; search direction p;

initial steplength α; initial lengthening parameter β, constants 0 < c1 < c2 < 1, c3 > 0

2: while f(x+ αp) > f(x) + c1αg(x)Tp do . Armijo condition

3: α = α/10; . Backtrack

4: end while

5: while (g(x+ βp)− g(x))Tp < 2(1 + c3)εg‖p‖ do . Noise control condition

6: β = 2β; . Lengthen

7: end while

8: Return α, β;

Algorithm 3.4: Complete Practical Noise-Tolerant BFGS and L-BFGS Methods

1: Input: function f(·) and gradient g(·); noise level in function εf , noise level in gradient

εg; initial iterate x0 and Hessian approximation H0 � 0;

2: for k = 0, 1, 2, ... do

3: Compute pk = −Hkg(xk) by matrix-vector multiplication (BFGS) or two-loop

recursion [48] (L-BFGS);

4: Perform two-phase Armijo-Wolfe line search (Algorithms 3.2 and 3.3) to find αk

and βk;

5: if αk satisfies (3.33) then

6: Compute xk+1 = xk + αkpk;

7: end if

8: if βk satisfies (3.11) then

9: Compute curvature pair (sk, yk) = (βkpk, g(xk + βkpk)− g(xk));

10: Update Hk by (3.6) (BFGS) or update set {(si, yi)} of curvature pairs (L-

BFGS);

11: end if

12: end for

109

By the design of the two-phase line search, our algorithm behaves the same as the

standard (L-)BFGS algorithm (without interpolation) for non-noisy problems as long as

Nsplit is sufficiently large because the split phase will never occur. In particular, if εg = 0,

then condition 3.35 will always be satisfied by any αk and therefore the initial phase

reduces to the standard Armijo-Wolfe line search. However, unlike the deterministic

setting, the two-phase line search may not be guaranteed to find αk and βk under certain

scenarios. When the iteration has reached the region where errors are large relative to the

gradient, the backtracking line search may fail to find αk; this is to be expected. A more

subtle case is when the function is exceedingly flat along the search direction pk so that

even for a large β the function exhibits insufficient change in curvature; in this case the

lengthening procedure may fail to find an appropriate βk. To safeguard against both of

these cases, the algorithm will terminate if it reaches a maximum number of line search

iterations.

Remark 2. The two-phase algorithm just described may seem too complex. Let

us consider some simpler alternative strategies. One approach is to employ only the

split phase: (1) Compute αk solely through a backtracking line search until the Armijo

condition is satisfied; and (2) Computing βk through a lengthening procedure that enforces

both of the modified noise control and Wolfe conditions. However, the Wolfe condition on

the steplength αk allows the algorithm to take longer steps that may yield larger reductions

in the objective function. This is in agreement with our computational experience.

A second alternative, given in Algorithm 3.1, is the approach employed by Xie et al.

[58], who first solve for a steplength αk that satisfies the Armijo-Wolfe conditions (3.33)-

(3.34), then lengthen βk ≥ αk until βk satisfies the noise control condition (3.35). However,

110

we have found experimentally that performing an Armijo-Wolfe line search attempting

to find a steplength that satisfies the Armijo-Wolfe conditions in the presence of noise

can be costly in terms of function and gradient evaluations because the Armijo-Wolfe

line search may be fooled for many iterations in the presence of moderate to large noise

relative to the gradient. In particular, enforcing the Wolfe condition on the steplength

when the gradient is dominated by noise may lead to ill-advised or unnecessary changes

to the steplength. Rather than doing this, we opt to split the computations of β and

α earlier, as done in Algorithm 3.2 using (3.35) as a means to detect when to split and

consider the Wolfe condition unreliable.

3.4.2. Heuristics

We now describe some heuristics that have improved the performance of the two-phase

line search for the models of noise employed in our experiments.

I. Relaxation of Armijo Condition. The last term in the Armijo condition (3.33) en-

sures sufficient descent, but is useful only if the quantities involved are reliable; otherwise

it is best to dispense with this term. To see this, consider the term g(xk)
Tpk. Although

g(xk)
Tpk = −g(xk)

THkg(xk) < 0 since Hk is positive definite, this quantity could still be

dominated by noise. If g(xk)
Tpk < −εg‖pk‖, we can guarantee that ∇φ(xk)

Tpk < 0, en-

suring that pk is a descent direction with respect to the true objective function. If instead

we have that g(xk)
Tpk ≥ −εg‖pk‖, it is not guaranteed that we can make progress on

the true objective function along pk. In this case, we will consider the gradient estimate

unreliable and dispense the sufficient decrease term, instead relaxing the condition to only

enforce simple decrease f(xk + αpk) < f(xk).

111

Another feature that is useful when the algorithm reaches a region where the noise

in the function is large relative to the objective function is to relax the Armijo condition

(3.33) by adding 2εf to the right hand side. This relaxation will be done only after the first

attempt at satisfying the standard Armijo condition fails. If pk is a descent direction with

respect to φ, which is ensured when g(xk)
Tpk < −εg‖pk‖, then this relaxation guarantees

finite termination of the line search component in the split phase. Other related line

searches employing this relaxation of the Armijo condition have been analyzed in [8].

Combining the two strategies described above, our relaxed Armijo condition can be

summarized as follows:

(3.38) f(xk + αikpk)

≤ f(xk) + c1α
i
kg(xk)

Tpk if i = 0, g(xk)
Tpk < −εg‖pk‖

≤ f(xk) + c1α
i
kg(xk)

Tpk + 2εf if i ≥ 1, g(xk)
Tpk < −εg‖pk‖

< f(xk) if i = 0, g(xk)
Tpk ≥ −εg‖pk‖

< f(xk) + 2εf if i ≥ 1, g(xk)
Tpk ≥ −εg‖pk‖

where αik denotes the i-th trial steplength at iteration k.

II. Reusing Previously Computed α. Over the course of the initial phase, we will track

the best steplength that we have seen that satisfies the Armijo condition

(3.39) αbest
k ∈ arg min

αi
k

{f(xk + αikpk) : (3.38) is satisfied}

as well as its corresponding function value. If the split phase is triggered, we will accept

the previously computed value of αk = αbest
k that most decreased the objective function.

112

III. Initial Value of β. It is important to employ a good initial estimate of β when

entering the split phase, in order to mitigate the cost of the search procedure. Recall from

(3.16) that an appropriate value of the lengthening parameter is, roughly,

(3.40) βk =
2(1 + c3)εg
m‖pk‖2

.

This formula relies on the strong convexity parameter m, which is generally not known,

but since we are only using it to compute an initial value for β, it is not critical to estimate

m accurately. In this vein, we compute a local estimate of m using the observed (s, y)

pairs from prior iterations. For βj with j < k that satisfies both (3.34) and (3.35), we

first compute an estimate of the curvature along the search direction pj corresponding to

the interval length βj:

(3.41) µ̄j =
(g(xj + βjpj)− g(xj))

Tpj
βj‖pj‖2

2

.

To estimate the strong convexity parameter m we track the last h values of the µ̄’s, then

use the smallest of these:

µk = min{µ̄k−1, µ̄k−2, ..., µ̄k−h}.

This aims to be only a local strong convexity estimate, whereas taking the minimum over

all previous µ̄’s may be overly pessimistic. Let us denote by β̄k the value obtained by

making the substitution m ← µk in (3.40), and let βik denote the ith trial lengthening

parameter at iteration k, we define the initial value of the lengthening parameter for the

113

split phase as

(3.42) βi+1
k = max{2βik, β̄k}.

We have observed in our tests that this procedures allows us to significantly mitigate

the cost of additional gradient evaluations that are incurred when lengthening βk, only

requiring an additional 1 − 3 gradient evaluations for the lengthening procedure in our

experiments.

3.5. Numerical Experiments

In this section, we present numerical results illustrating the behavior of the meth-

ods proposed in this chapter on noisy optimization problems. We compare the classical

methods, BFGS and L-BFGS, with their extensions, which we denote as BFGS-E and

L-BFGS-E.

In addition, we study another approach suggested by the noise control condition (3.11),

based on the well known strategy of skipping a quasi-Newton update when it may not be

reliable. In the BFGS (Skips) and L-BFGS (Skips) methods, the quasi-Newton update is

not performed if the noise control condition is not satisfied for c3 = 0, that is,

(3.43) (g(xk + αkpk)− g(xk))
Tpk < 2εg‖pk‖.

Specifically, these methods compute a steplength αk satisfying the Armijo-Wolfe condi-

tions (3.9)-(3.10), and if condition (3.43) holds, the BFGS update is not performed and

114

the next step is computed using the Hessian approximation Bk from the previous itera-

tion; otherwise the iteration is identical to that of the BFGS and L-BFGS methods. (In

the L-BFGS (Skips) method, the correction pair (sk, yk) is not stored when (3.43) holds.)

In summary, the 6 methods tested are:

(1) BFGS: the standard BFGS method given by (3.3), (3.6);

(2) L-BFGS: the standard L-BFGS method with memory t = 10; [48, chapter 7];

(3) BFGS (Skips): the standard BFGS method given by (3.3), (3.6), but skipping

the BFGS update when (3.11) is not satisfied for βk = αk with c3 = 0;

(4) L-BFGS (Skips): the standard L-BFGS method with memory t = 10, but skip-

ping the L-BFGS update when (3.11) is not satisfied for βk = αk with c3 = 0;

(5) BFGS-E: the noise tolerant BFGS method given by Algorithms 3.1, 3.2 and 3.3;

(6) L-BFGS-E: the noise tolerant L-BFGS method, which is identical to BFGS-E,

except that the Hessian approximation is a limited memory matrix with memory

t = 10.

The first four methods employ an Armijo-Wolfe line search that computes a steplength

satisfying (3.9)-(3.10). The last two methods use the specialized line search described

in Algorithms 3.2 and 3.3. In the deterministic case, it is common to employ cubic

or quadratic interpolation to accelerate the Armijo-Wolfe search. We did not do so in

the methods listed above, which use a simple bisection, because it is more robust in the

presence of noise. The parameters for the line search and termination criteria are provided

in Table 3.1.

We selected 41 unconstrained problems from the CUTEst collection [31] (see Table

3.2), and added stochastic uniform noise with different noise levels. The objective function

115

Table 3.1. Parameter Settings for the Methods Tested

c1 c2 c3 t Nsplit

10−4 0.9 0.5 10 30

and gradient have the form

f(x) = φ(x) + ε(x), g(x) = ∇φ(x) + e(x),

where we sample ε(x) and [e(x)]i independently with distribution

ε(x) ∼ U(−ξf , ξf), [e(x)]i ∼ U (−ξg, ξg) for i = 1, ..., d.

This gives the noise bounds |ε(x)| ≤ εf = ξf and ‖e(x)‖ ≤ εg =
√
dξg. Among methods

for uncertainty quantification, ECNoise [43], point-wise sampling, and domain knowledge

could be applied to obtain these bounds in practice. The optimal value φ∗ for each function

was obtained by applying the BFGS method to the original deterministic problem until

it could not make further progress.

The performance of the methods is best understood by studying the runs on each of the

41 test problems. Since this is impractical due to space limitations, for every experiment,

we selected a problem that illustrates typical behavior over the whole test set.

3.5.1. Experiments with Uniform Noise in the Gradient

In the first set of experiments, the gradient contains uniform noise but the function does

not, i.e., εg > 0 and εf = 0. This allows us to test the efficiency of the lengthening

116

Table 3.2. Unconstrained CUTEst Problems Tested. d is the number of
variables.

PROBLEM d PROBLEM d PROBLEM d

ARWHEAD 100 DIXMAANL 90 MOREBV 100
BDQRTIC 100 DIXMAANM 90 NCB20B 100

CRAGGLVY 100 DIXMAANN 90 NONDIA 100
DIXMAANA 90 DIXMAANO 90 NONDQUAR 100
DIXMAANB 90 DIXMAANP 90 PENALTY1 100
DIXMAANC 90 DQDRTIC 100 QUARTC 100
DIXMAAND 90 DQRTIC 100 SINQUAD 100
DIXMAANE 90 EIGENALS 110 SPARSQUR 100
DIXMAANF 90 EIGENBLS 110 TOINTGSS 100
DIXMAANG 90 EIGENCLS 30 TQUARTIC 100
DIXMAANH 90 ENGVAL1 100 TRIDIA 100
DIXMAANI 90 FLETCBV3 100 WATSON 31
DIXMAANJ 90 FREUROTH 100 WOODS 100
DIXMAANK 90 GENROSE 100

procedure in a benign setting that avoids the effects of the noisy line search. In these

experiments, all algorithms were run for a fixed number of iterations.

We begin by revisiting the ARWHEAD problem from Figure 3.1, where noise was inserted

with ξf = 0 and ξg = 10−3. The condition number of the BFGS and BFGS-E matrices is

compared in Figure 3.2, and shows that the noise control condition (3.11) stabilizes the

quasi-Newton update. It may seem surprising that in Figure 3.2 the condition number of

the BFGS matrix, κ(Hk), decreases after having increased sharply. This can be explained

by noting that as the iterates enter into the noisy regime, the difference in the gradient yk

can be corrupted by noise, and we may have sTk yk � sTk ỹk. Thus, some of the eigenvalues

of the BFGS matrix Bk = H−1
k will increase. As the iteration proceeds, the rest of the

eigenvalues become large too, hence decreasing the condition number.

Figure 3.3 plots the optimality gap φ(x) − φ∗ vs the number of gradient evaluations

performed for the four methods on the ARWHEAD problem. BFGS and L-BFGS do not

117

0 200 400 600 800 1000
Iterations

103

107

1011

1015

(H
k)

ARWHEAD
BFGS
BFGS-E

0 200 400 600 800 1000
Iterations

104

109

1014

1019

(B
k)

ARWHEAD

BFGS
BFGS-E

Figure 3.2. The condition number of the BFGS and BFGS-E matrices
κ(Hk) against the number of iterations (left) and the smallest and largest
eigenvalues of Bk against the number of iterations (right) on the ARWHEAD

problem. The final norm of the true gradient achieved by BFGS is approx-
imately 1.97e−04.

achieve as high accuracy in the solution as their noise-tolerant counterparts because the

deterioration in the Hessian approximation leads, at some point, to the generation of very

small steps that severely limit the decrease in the objective function. The behavior of the

methods on this problem is typical of what we have observed. In particular BFGS-E and

L-BFGS-E trigger lengthening of the curvature pairs prior to the point where BFGS and

L-BFGS stagnate due to noise. This indicates that the lengthening procedure stabilizes

the Hessian approximation prior to reaching this neighborhood.

The lengthening procedure in our noise-tolerant algorithms comes at an additional

computational cost. Figure 3.4 plots the cumulative number of gradient evaluations

against the iteration count for the ARWHEAD problem. We observe that for BFGS or

L-BFGS, the cumulative number of gradient evaluations is approximately equal to the

number of iterations. For the noise-tolerant methods, the number of gradient evaluations

match the standard BFGS and L-BFGS methods until the split phase activates. Upon

118

0 1000 2000 3000
Gradient Evaluations

10 5

10 3

10 1

101

(x
k)

*

ARWHEAD
BFGS
BFGS-E

0 1000 2000 3000
Gradient Evaluations

10 8

10 5

10 2

101

(x
k)

*

ARWHEAD
BFGS
BFGS-E

0 1000 2000 3000
Gradient Evaluations

10 11

10 7

10 3

101

(x
k)

*

ARWHEAD
BFGS
BFGS-E

0 1000 2000 3000
Gradient Evaluations

10 6

10 3

100

(x
k)

*

ARWHEAD
L-BFGS
L-BFGS-E

0 1000 2000 3000
Gradient Evaluations

10 10

10 6

10 2

102
(x

k)
*

ARWHEAD
L-BFGS
L-BFGS-E

0 1000 2000 3000
Gradient Evaluations

10 12

10 8

10 4

100

(x
k)

*

ARWHEAD
L-BFGS
L-BFGS-E

Figure 3.3. The true optimality gap φ(xk)− φ∗ against the number of gra-
dient evaluations on the ARWHEAD problem for εf = 0, and for the following
gradient noise levels: ξg = 10−1 (left), 10−3 (middle), and 10−5 (right).
The black dashed line denotes the iteration before the split phase becomes
active.

entering the split phase, we notice that the cost of each iteration is approximately 2− 4

gradient evaluations. This may be explained by the additional 1− 3 gradient evaluations

necessary to find the appropriate βk that satisfies both the noise and Wolfe conditions,

plus one gradient evaluation for triggering the split phase. This cost is worthwhile in that

it allows the algorithm to make progress in the noisy regime.

3.5.1.1. Sensitivity with respect to εg. Since the bound on the gradient error εg

may be estimated by an external procedure, it is possible for εg to be input incorrectly.

In order to investigate the sensitivity of the choice of εg, we consider both under- and

overestimation of it. We perform the same experiment with a fixed ξg = 10−3 and εf = 0

119

0 200 400 600 800 1000
Iterations

0

2000

4000

6000

Gr
ad

ie
nt

 E
va

lu
at

io
ns ARWHEAD

BFGS
BFGS-E

0 10 20 30 40 50
Iterations

0

100

200

300

Gr
ad

ie
nt

 E
va

lu
at

io
ns ARWHEAD

BFGS
BFGS-E

Figure 3.4. Cumulative number of gradient evaluations against the iteration
count on the ARWHEAD problem for εf = 0 and ξg = 10−3 for BFGS and
BFGS-E. The left figure plots the long-term behavior and the right figure
plots the short-term behavior. The results for L-BFGS and L-BFGS-E as
well as different noise levels are similar. The black dashed line denotes the
iteration before the split phase becomes active.

0 1000 2000 3000
Gradient Evaluations

10 8

10 5

10 2

101

(x
k)

*

ARWHEAD
0.1
0.2
0.5
1.0
2.0
5.0
10.0

0 1000 2000 3000
Gradient Evaluations

10 9

10 6

10 3

100

(x
k)

*

EIGENCLS
0.1
0.2
0.5
1.0
2.0
5.0
10.0

0 1000 2000 3000
Gradient Evaluations

10 7

10 4

10 1

102
(x

k)
*

ENGVAL1
0.1
0.2
0.5
1.0
2.0
5.0
10.0

Figure 3.5. The true optimality gap φ(xk)−φ∗ against the number of gradi-
ent evaluations applying BFGS-E on the ARWHEAD, EIGENCLS, and ENGVAL1

problems for εf = 0 and ξg = 10−3 with incorrectly input ε̄g = ωεg for
ω ∈ { 1

10
, 1

5
, 1

2
, 1, 2, 5, 10}.

but provide the algorithm an incorrect ε̄g = ωεg where ω ∈ { 1
10
, 1

5
, 1

2
, 1, 2, 5, 10}. This is

shown in Figure 3.5. We plot only BFGS-E since L-BFGS-E performs similarly.

If the noise is severely underestimated, it can lead to early stagnation of the algorithm

due to corruption of the BFGS matrix. If the noise is severely overestimated, then the

collection of non-local curvature information can result in slower progress towards the

120

solution. Overall, the method tolerates overestimation better than underestimation of

the noise level, as one would expect.

3.5.2. Experiments with Intermittent Noise in the Gradient

In some applications, the noise level in the gradient evaluation may fluctuate rather than

remain constant. One special case is that of intermittent noise. To simulate it, we will set

ξf = 0 and let the noise level in the gradient ξg alternate between 0 and a fixed nonzero

value every Nnoise iterations, where Nnoise ∈ {10, 25, 50}. We show representative results

using the CRAGGLVY problem in Figure 3.9. The CRAGGLVY problem is chosen because it

requires more than Nnoise iterations to solve, whereas the ARWHEAD problem can be solved

in under 25 iterations. The noise-tolerant methods are provided the value of εg but not

Nnoise.

BFGS suffers the most from the inclusion of intermittent noise, and is unable to recover

quickly enough to make progress even when there is no noise in the gradient. In contrast,

BFGS-E is able to continue to make progress immediately once noise is diminished since

the BFGS matrix Hk is less corrupted by noise and therefore able to take advantage of the

non-noisy gradient; see in particular the stepwise behavior on the top right plot in Figure

3.6. L-BFGS-E performs even better than BFGS-E, but note that standard L-BFGS is

quite effective when the noise toggles every Nnoise = 25 or 50 iterations. This is because,

if the number Nnoise of non-noisy iterations is larger than the memory t = 10, L-BFGS is

able to forget all noise-contaminated curvature pairs, then it is able to recover and make

progress.

121

0 200 400 600 800 1000
Iterations

10 7

10 3

101

(x
k)

*

CRAGGLVY
BFGS
BFGS-E

0 200 400 600 800 1000
Iterations

10 8

10 4

100

104

(x
k)

*

CRAGGLVY
BFGS
BFGS-E

0 200 400 600 800 1000
Iterations

10 8

10 4

100

104

(x
k)

*

CRAGGLVY
BFGS
BFGS-E

0 250 500 750 1000
Iterations

10 9

10 5

10 1

103

(x
k)

*

CRAGGLVY
L-BFGS
L-BFGS-E

0 200 400 600 800 1000
Iterations

10 7

10 3

101

(x
k)

*
CRAGGLVY

L-BFGS
L-BFGS-E

0 200 400 600 800 1000
Iterations

10 8

10 5

10 2

101

(x
k)

*

CRAGGLVY
L-BFGS
L-BFGS-E

Figure 3.6. Intermittent Noise. Optimality gap φ(xk)−φ∗ against the num-
ber of iterations on the CRAGGLVY problem. ξf = 0 and ξg alternates between
0 and with ξg = 10−1 every Nnoise iterations. Results for Nnoise = 10 (left),
25 (middle), and 50 (right). The black dashed line denotes the iteration
before the split phase becomes active.

3.5.3. Comparison Against Methods that Employ Update Skipping

We now consider the performance of the BFGS (Skips) and L-BFGS (Skips) methods for

constant and intermittent noise. The appeal of skipping the update when the quality of

the correction pair is not assured is its economy, since the lengthening procedure involves

additional gradient evaluations.

In Figures 3.7 and 3.8, we compare the performance of BFGS (Skips) and L-BFGS

(Skips) to both the standard and extended methods when there is uniform constant noise

in the gradient. We report the results for the ENGVAL1 and EIGENCLS problems, which

are of easy and medium difficulty, respectively. We chose these problems to demonstrate

122

0 1000 2000 3000
Gradient Evaluations

10 5

10 2

101

(x
k)

*

ENGVAL1
BFGS
BFGS (Skips)
BFGS-E

0 1000 2000 3000
Gradient Evaluations

10 9

10 5

10 1

(x
k)

*

ENGVAL1
BFGS
BFGS (Skips)
BFGS-E

0 1000 2000 3000
Gradient Evaluations

10 11

10 7

10 3

101

(x
k)

*

ENGVAL1
BFGS
BFGS (Skips)
BFGS-E

0 1000 2000 3000
Gradient Evaluations

10 7

10 4

10 1

102

(x
k)

*

ENGVAL1
L-BFGS
L-BFGS (Skips)
L-BFGS-E

0 1000 2000 3000
Gradient Evaluations

10 9

10 5

10 1

(x
k)

*
ENGVAL1

L-BFGS
L-BFGS (Skips)
L-BFGS-E

0 1000 2000 3000
Gradient Evaluations

10 10

10 6

10 2

102

(x
k)

*

ENGVAL1
L-BFGS
L-BFGS (Skips)
L-BFGS-E

Figure 3.7. The true optimality gap φ(xk)− φ∗ against the number of gra-
dient evaluations on the ENGVAL1 problem for εf = 0, and for the following
gradient noise levels: ξg = 10−1 (left), 10−3 (middle), and 10−5 (right).
The black dashed line denotes the iteration before the split phase becomes
active.

nuanced cases where fixing the BFGS matrix is not sufficient for making fast progress to

the solution.

In Figure 3.7, we see that BFGS (Skips) and L-BFGS (Skips) can be much more

efficient than BFGS-E and L-BFGS-E. In general, we found that methods that employ

update skipping can be a strong alternative to lengthening if the problem is fairly well-

conditioned and the Hessian does not change much, using much fewer gradient evaluations

than the two-phase line search. However, it can fail to capture the change in curvature

that is necessary for more difficult problems, such as EIGENCLS in Figure 3.8. In such

cases, continuing to update the BFGS matrix using lengthening is able to continue to

123

0 1000 2000 3000
Gradient Evaluations

10 3

10 1

101

(x
k)

*

EIGENCLS
BFGS
BFGS (Skips)
BFGS-E

0 1000 2000 3000
Gradient Evaluations

10 9

10 6

10 3

100

(x
k)

*

EIGENCLS
BFGS
BFGS (Skips)
BFGS-E

0 1000 2000 3000
Gradient Evaluations

10 13

10 9

10 5

10 1

(x
k)

*

EIGENCLS
BFGS
BFGS (Skips)
BFGS-E

0 1000 2000 3000
Gradient Evaluations

10 6

10 3

100

(x
k)

*

EIGENCLS

L-BFGS
L-BFGS (Skips)
L-BFGS-E

0 1000 2000 3000
Gradient Evaluations

10 7

10 4

10 1

(x
k)

*
EIGENCLS

L-BFGS
L-BFGS (Skips)
L-BFGS-E

0 1000 2000 3000
Gradient Evaluations

10 10

10 6

10 2

(x
k)

*

EIGENCLS
L-BFGS
L-BFGS (Skips)
L-BFGS-E

Figure 3.8. The true optimality gap φ(xk)− φ∗ against the number of gra-
dient evaluations on the EIGENCLS problem for εf = 0, and for the following
gradient noise levels: ξg = 10−1 (left), 10−3 (middle), and 10−5 (right).
The black dashed line denotes the iteration before the split phase becomes
active.

improve the quality of the Hessian approximation for more difficult problems, leading to

faster decrease in the objective value compared to skipping.

To see how update skipping compares to lengthening in the intermittent setting, we

report in Figure 3.9 results on CRAGGLVY, a problem of high difficulty. The skipping

methods are able to make faster progress when noise is diminished but not as quickly

as the noise-tolerant methods since they do not benefit from good updates to the BFGS

matrix.

Since skipping is not as robust as lengthening for handling more difficult problems

and in taking advantage of fluctuating noise, we do not report its numerical results for

the experiments in the following section.

124

0 200 400 600 800 1000
Iterations

10 7

10 3

101

(x
k)

*

CRAGGLVY

BFGS
BFGS (Skips)
BFGS-E

0 200 400 600 800 1000
Iterations

10 8

10 4

100

104

(x
k)

*

CRAGGLVY

BFGS
BFGS (Skips)
BFGS-E

0 200 400 600 800 1000
Iterations

10 8

10 4

100

104

(x
k)

*

CRAGGLVY

BFGS
BFGS (Skips)
BFGS-E

0 250 500 750 1000
Iterations

10 9

10 5

10 1

103

(x
k)

*

CRAGGLVY
L-BFGS
L-BFGS (Skips)
L-BFGS-E

0 250 500 750 1000
Iterations

10 9

10 5

10 1

103
(x

k)
*

CRAGGLVY
L-BFGS
L-BFGS (Skips)
L-BFGS-E

0 200 400 600 800 1000
Iterations

10 8

10 5

10 2

101

(x
k)

*

CRAGGLVY
L-BFGS
L-BFGS (Skips)
L-BFGS-E

Figure 3.9. Intermittent Noise. Optimality gap φ(xk)−φ∗ against the num-
ber of iterations on the CRAGGLVY problem. ξf = 0 and ξg alternates between
0 and with ξg = 10−1 every Nnoise iterations. Results for Nnoise = 10 (left),
25 (middle), and 50 (right). The black dashed line denotes the iteration
before the split phase becomes active.

3.5.4. Experiments with Function and Gradient Noise

In this set of experiments, we inject noise in both the function and gradient, i.e., εf , εg > 0.

First, we report in Figures 3.10 and 3.11 results for a representative example: problem

DIXMAANH. We ran all methods for 3000 gradient evaluations to illustrate their long term

behavior, for different values of εg and εf . We note that the lengthening procedure safe-

guards the Hessian updating in the presence of function noise, and the relaxation in the

Armijo condition (3.38) allows the methods to continue making progress far below the

noise level of the function if the gradient noise is sufficiently small to provide good search

directions.

125

0 1000 2000 3000
Gradient Evaluations

10 2

10 1

100

(x
k)

*

DIXMAANH
BFGS
BFGS-E

0 1000 2000 3000
Gradient Evaluations

10 5

10 3

10 1

(x
k)

*

DIXMAANH
BFGS
BFGS-E

0 1000 2000 3000
Gradient Evaluations

10 8

10 5

10 2

(x
k)

*

DIXMAANH
BFGS
BFGS-E

0 1000 2000 3000
Gradient Evaluations

10 2

10 1

100

(x
k)

*

DIXMAANH
L-BFGS
L-BFGS-E

0 1000 2000 3000
Gradient Evaluations

10 4

10 2

100
(x

k)
*

DIXMAANH
L-BFGS
L-BFGS-E

0 1000 2000 3000
Gradient Evaluations

10 8

10 5

10 2

(x
k)

*

DIXMAANH
L-BFGS
L-BFGS-E

Figure 3.10. Optimality gap φ(xk) − φ∗ against the number of gradient
evaluations on problem DIXMAANH, with ξf = 10−3 on all six plots, and with
ξg = 10−1 (left), ξg = 10−3 (middle), and ξg = 10−5 (right). The black
dashed line denotes the iteration before the split phase becomes active.

Lastly, we report the performance of the methods on the 41 test problems listed in

Table 2, using the profiles proposed by Morales [42]. In Figures 3.12 and 3.13 we report,

respectively, the quantities

(3.44) log2

(
φnew − φ∗

φold − φ∗

)
and log2

(
evalsnew
evalsold

)
,

for each problem. Here φnew and φold denote the true objective value of the noise-tolerant

and standard methods after 3000 iterations, and evalsnew and evalsold denote the total

number of gradient evaluations required to achieve one of the conditions:

(3.45) φ(xk)− φ∗ ≤ εf or ‖∇φ(xk)‖ ≤ εg.

126

0 1000 2000 3000
Gradient Evaluations

10 8

10 5

10 2

(x
k)

*

DIXMAANH

BFGS
BFGS-E

0 1000 2000 3000
Gradient Evaluations

10 8

10 5

10 2

(x
k)

*

DIXMAANH
BFGS
BFGS-E

0 1000 2000 3000
Gradient Evaluations

10 8

10 5

10 2

(x
k)

*

DIXMAANH
BFGS
BFGS-E

0 1000 2000 3000
Gradient Evaluations

10 7

10 4

10 1

(x
k)

*

DIXMAANH
L-BFGS
L-BFGS-E

0 1000 2000 3000
Gradient Evaluations

10 8

10 5

10 2

(x
k)

*
DIXMAANH

L-BFGS
L-BFGS-E

0 1000 2000 3000
Gradient Evaluations

10 8

10 5

10 2

(x
k)

*

DIXMAANH
L-BFGS
L-BFGS-E

Figure 3.11. Optimality gap φ(xk) − φ∗ against the number of gradient
evaluations on problem DIXMAANH with ξg = 10−5 on all six plots, and with
ξf = 10−1 (left), ξf = 10−3 (middle), and ξf = 10−5 (right). The black
dashed line denotes the iteration before the split phase becomes active.

All quantities are averaged over 5 runs with different seeds. In Figures 3.12 and 3.13 the

problems are ordered in increasing value of the quantities given in (3.44). One can thus

gauge the success of a method by the area of the graph on its side of the half-space: the

larger the area, the more successful the method.

Figure 3.12 thus compares the (long term) ability of the methods to achieve high

accuracy in the function value, whereas Figure 3.13 measures the short-term cost in terms

of gradient evaluations to achieve the noise level in the function or gradient. These results

suggest that the noise tolerant methods often provide a real improvement in the solution

of certain classes of optimization problems with noisy function and gradient evaluations.

127

0 10 20 30 40
Problem

10

5

0

5

10
lo

g 2
(ne

w
*

ol
d

*
)

BFGS-E

BFGS

0 10 20 30 40
Problem

10

5

0

5

10

lo
g 2

(ne
w

*

ol
d

*
)

L-BFGS-E

L-BFGS

Figure 3.12. Morales profiles for the optimality gap φ(xk) − φ∗ across 41
unconstrained CUTEst problems with ξf = 10−3 and ξg = 10−3. Results
are averaged over 5 runs. The left figure compares BFGS against BFGS-E
while the right figure compares L-BFGS against L-BFGS-E.

0 10 20 30 40
Problem

4

2

0

2

4

lo
g 2

(ev
al

s n
ew

ev
al

s o
ld

)

BFGS-E

BFGS

0 10 20 30 40
Problem

4

2

0

2

4

lo
g 2

(ev
al

s n
ew

ev
al

s o
ld

)

L-BFGS-E

L-BFGS

Figure 3.13. Morales profiles for the total number of gradient evaluations
to achieve (3.45) across 41 unconstrained CUTEst problems with ξf = 10−3

and ξg = 10−3. Results are averaged over 5 runs. The left figure compares
BFGS against BFGS-E while the right figure compares L-BFGS against
L-BFGS-E.

3.6. Final Remarks

Although quasi-Newton methods are widely used in practice, the question of how to

make BFGS and L-BFGS tolerant to errors in the function and gradient has not received

sufficient attention in the literature.

128

This chapter makes two contributions. It introduces the noise control condition (3.11),

which can be used to determine when to skip a quasi-Newton update or adaptively

lengthen the interval from which gradient differences can be employed reliably. Our

proposed BFGS-E and L-BFGS-E methods utilize the latter and enjoy convergence guar-

antees to a neighborhood of the solution for strongly convex functions.

The second contribution of the chapter is to show that the lengthening procedure

based on condition (3.11) is successful in practice, and thus transforms the theoretical

algorithm proposed in [58] into a robust and practical procedure. Our numerical experi-

ments show that quasi-Newton updating remains stable after the algorithm has reached

the region where errors dominate, and this allows the noise tolerant methods to reach

higher accuracy in the solution. Our testing also shows that the proposed algorithms

are not more expensive than the standard BFGS and L-BFGS methods in the region

where the latter two methods operate reliably. Once the iterates reach a neighborhood

where BFGS updating is corrupted and the iteration stalls, the new algorithms invoke

the lengthening procedure that typically requires 2− 4 gradient evaluations per iteration.

We also tested an update skipping strategy based on the noise tolerant condition. We

found that, although update skipping can be very efficient when applied to easy problems

with uniform noise, the noise tolerant methods are more efficient when applied to harder

problems or problems with oscillating noise.

We have made both implementations of the BFGS-E and L-BFGS-E algorithms avail-

able on GitHub1.

1https://github.com/hjmshi/noise-tolerant-bfgs

129

CHAPTER 4

Adaptive Finite-Difference Estimation

4.1. Introduction

The problem of interest is the unconstrained minimization of a smooth function φ :

Rn → R

(4.1) min
x∈Rn

φ(x)

while only given access to noisy evaluations of the objective function f(x) = φ(x) + ε(x)

where the function ε : Rn → R models the error. We assume that the noise is bounded,

i.e., for εf ≥ 0, |ε(x)| ≤ εf for all x ∈ Rn. We will call εf the noise level of f . The noise

level is assumed to be known to the user, either a priori or estimated via sampling or

difference tables; see, for example, [43].

In this work, we consider the finite-difference methods, where a gradient approximation

g(x;h) is computed by

(4.2) [g(x;h)]i =
f(x+ hei)− f(x)

h

where h is the finite-difference interval and is typically chosen as

h = max{1,
√
|xi|}
√
εm,

130

where εm denotes machine precision. Note that n+ 1 function evaluations are needed to

evaluate g(x;h). Although this approach is sensible in the noiseless setting, this particular

choice of the finite-difference interval h may be poor under the presence of large errors.

Consider the following decomposition of the forward-difference formula:

[g(x;h)]i =
φ(x+ hei)− φ(x)

h
+
ε(x+ hei)− e(x)

h
.

The error induced by the first term is called truncation error due to error resulting

from truncation of the Taylor series, and the error induced by the second term is called

measurement error.

This decomposition explains the potential issues that arise with the choice of h: if h is

chosen too small, then measurement error from inexact function evaluations will dominate

the approximation, while if h is chosen too large, then the approximation may remain poor

due to truncation error. The ideal choice of the finite-difference interval must balance both

sources of error. The sensitivity of this choice of the finite-difference interval has prevented

finite-difference methods from being used more widely in derivative-free optimization, as

black-box problems are frequently coupled with noise.

Theoretically, one can bound the errors that arise from each of these terms and derive

an optimal choice of the finite-difference interval h that minimizes this upper bound.

However, the finite-difference formulas rely on knowledge of the noise level εf as well as

bounds on high-order derivatives of the objective function in a neighborhood around x.

While estimating the noise level can be done using ECnoise or pointwise sample variance

estimates, cheaply and accurately determining bounds on high-order derivatives is far

more difficult. Various procedures have been developed in the past for determining L2,

131

the bound on the second order derivative; see [28, 44]. These approaches attempt to

select an appropriate finite-difference interval for approximating L2, then employs this

within the ideal finite-difference interval formula. These heuristics, however, suffer from

multiple weaknesses: (1) some are not affine-invariant, that is, applying the heuristic

to a modified evaluation of the function a · f(x) + b for some a, b ∈ R (a 6= 0) yields

different behavior of the algorithm; (2) the methods are restricted to the estimation of L2

for forward differences; (3) the methods can suffer from symmetry within the function;

(4) they lack rigorous theoretical treatment; and (5) they are not integrated within an

optimization algorithm, that is, they are typically only employed at the beginning of each

run. This approach has been demonstrated to result in low-accuracy solutions, as noted

by [2, 5, 57].

We propose a generalized adaptive procedure for obtaining near-optimal estimates of

the finite-difference interval for any finite-difference scheme for approximating the d-th

order derivative of a noisy univariate function. The approach relies on a bisection search

over the finite-difference interval to balance the truncation and measurement error. While

the approach may be viewed as a generalization of Gill, et al. [28], we develop and analyze

an alternative interpretation of the approach.

This chapter is organized into six sections. In Section 2, we introduce our finite-

difference interval estimation procedure. In Section 3, we provide guarantees for termina-

tion of our procedure, as well as guarantees that the output differencing interval is optimal

up to a constant. In Section 4, we present numerical experiments demonstrating practical

performance of our proposed approach, and concluding remarks are made in Section 5.

132

4.2. Adaptive Finite-Difference Interval Estimation

In this section, we will consider the estimation of the finite-difference interval for a

noisy univariate function for computing an accurate finite-difference approximation of its

derivative. We will let v : R→ R denote a univariate noisy function which satisfies

v(t) = v̂(t) + ε(t),

where v̂(t) is the underlying smooth function and ε(t) is the noise in the function that

satisfies |ε(t)| ≤ εf for all t ∈ R. Over the course of this section, we will generally use

v̂(d)(t) to denote the true d-th derivative of v̂. One can extend this procedure to the

multivariate case by applying the procedure to each component variable, i.e., defining

v(t) = f(x0 + tei) and v̂(t) = φ(x0 + tei) for some reference point x0 ∈ Rn and some

i ∈ {1, ..., n}. We will first consider the simple forward-difference case in Section 4.2.1,

then generalize our approach to arbitrary finite-difference schemes in Section 4.2.2.

4.2.1. Forward-Difference Interval Estimation of Univariate Functions

Suppose we are interested in determining the finite-difference interval for the forward-

difference approximation of the first derivative of v̂. In particular, let

(4.3) v(1)(t;h) =
v(t+ h)− v(t)

h
≈ v̂(1)(t)

denote the forward-difference approximation to v̂(1)(t). Since the Taylor expansion of the

true function v̂ is given by

v̂(t+ h) = v̂(t) + v̂(1)(t)h+
v̂(2)(t)

2
h2 + o(h2),

133

the total error can be bounded by

|v̂(1)(t)−v(1)(t)| =
∣∣∣∣(v̂(t+ h)− v̂(t)

h
− v̂(1)(t)

)
+
ε(t+ h)− ε(t)

h

∣∣∣∣ ≤ |v̂(2)(t)|h
2

+
2εf
h

+o(h).

Ignoring the higher-order term, this yields an optimal interval (with respect to the upper

bound) of

(4.4) h∗ ≈ 2

√
εf

|v̂(2)(t)|
.

Therefore, in order to attain a near-optimal interval, we want to design a procedure that

will yield an interval h = O
(√

εf/|v̂(2)(t)|
)

.

To do this, we will construct a testing ratio which we define as

(4.5) r(h; v, t, εf) =
|v(t+ 2h)− 2v(t+ h) + v(t)|

4εf
.

Given rl > 1 and ru > rl + 2, we will perform a bisection search to find an interval h > 0

that satisfies

(4.6) r(h; v, t, εf) ∈ [rl, ru].

In particular, if r(h; v, t, εf) < rl, then the numerator is dominated by noise, indicat-

ing that h is too small. On the other hand, if r(h; v, t, εf) > ru, then the numerator

significantly dominates the noise, which implies that h is too large. Note that if one

monotonically increases or decreases h by a factor of 2, the new trial h only requires a

single new function evaluation to evaluate the testing ratio.

134

To see why this procedure works to give us a near-optimal h, note that

(4.7) v̂(t+ 2h)− 2v̂(t+ h) + v̂(t) = v̂(2)(t)h2 + o(h2).

Therefore, if we expand the testing ratio, we obtain:

(4.8) r(h; v, t, εf) =

∣∣∣∣ v̂(2)(t)h2

4εf
+
ε(t+ 2h)− 2ε(t+ h) + ε(t)

4εf
+ o(h2)

∣∣∣∣ .
By (4.6) and ignoring the o(h2) term, since

∣∣∣ ε(t+2h)−2ε(t+h)+ε(t)|
4εf

∣∣∣ ≤ 1 by the fact that

|ε(t)| ≤ εf for all t ∈ R, we approximately have

(4.9) r(h; v, t, εf) ∈ [rl, ru]⇒ h ∈ 2

√
εf

|v̂(2)(t)|
· [
√
rl − 1,

√
ru + 1].

Therefore, if rl and ru are chosen properly, we obtain h = O
(√

εf
|v̂(2)(t)|

)
, which is the

same order as the optimal finite-difference interval (4.4).

Remark 1. Although the definition of the testing ratio is similar to Gill, et al. [28],

our approach markedly differs from theirs in three aspects: (1) we utilize the h derived

from the testing ratio directly as the chosen finite-difference interval, whereas Gill, et al.

uses this to estimate the second derivative; (2) our approach utilizes a bisection search to

find h rather than monotonically increasing or decreasing h; and (3) it relies on forward-

difference instead of central-difference estimates.

The first aspect follows from the observation made in (4.9) that h = O
(√

εf
|v̂(2)(t)|

)
.

Hence, the finite-difference interval h obtained by our bisection procedure is near-optimal

in that it is only a constant factor away from the optimal interval. Two observations can

135

be made from this derivation. The first is that since v(t + h) and v(t) are used in the

evaluation of the testing ratio, one can reuse prior function evaluations from the bisection

procedure to estimate v̂(1)(t). The second observation is that the derivation motivates an

initial choice of h = O(
√
εf) as opposed to h = O(4

√
εf), as used in Moré and Wild [44].

The second aspect follows from different tradeoffs between cost and accuracy in the

finite-difference interval estimate. In particular, whereas the Gill, et al. procedure is

cheaper but yields a less accurate estimate, our procedure is able to guarantee a sufficiently

accurate estimate at higher cost.

Lastly, the third aspect was designed to avoid cancellation due to symmetry in the

numerator of the testing ratio. In particular, Gill, et al. [28] rely on a testing ratio using

the central difference:

(4.10)
|v(t+ h)− 2v(t) + v(t− h)|

4εf
∈ [rl, ru].

However, we can obtain poor estimates of the derivative when the function has near cen-

tral symmetry at the point of interest, for example, on function v̂(t) = t3 + t near t = 0

with sufficiently large noise.

Remark 2. Note that the testing ratio is affine-invariant in the sense that r(h; v, t, εf)

remains unchanged if applied to a modified function v̄(t) = a ·v(t)+ b for a 6= 0 and b ∈ R

with noise level |a|εf , i.e. r(h; ṽ, t, |a|εf) = r(h; v, t, εf). Therefore, the finite-difference

interval h will correctly remain unchanged under this transformation. This differs from

136

Moré and Wild’s procedure [44] which relies on the condition

|v(t± h)− v(t)| ≤ τ2 max{|v(t)|, |v(t± h)|}

with τ2 ∈ (0, 1) to ensure that h is not too large. This condition is not affine-invariant in

the sense that adding a sufficiently large b can force the condition to be satisfied.

4.2.2. Generalized Finite-Difference Interval Estimation of Univariate Func-

tions

To our knowledge, all previous finite-difference interval estimation procedures for numer-

ical optimization solely focused on forward differences [2, 28, 44]. However, it has been

found, particularly in the noisy regime, that higher-order finite-difference approximations,

such as central differences, can yield solutions with higher accuracy; see [57]. To han-

dle these cases, we generalize our finite-difference interval estimation scheme to generic

finite-difference approximations for d-th order derivatives.

Consider a general finite-difference approximation scheme S = (w, s) defined over p

points, where we approximate v̂(d)(t) using the equation

(4.11) v
(d)
S (t;h) =

∑p
j=1 wj · v(t+ hsj)

hd
≈ v̂(d)(t)

where w ∈ Rp and s ∈ Rp are the associated weights and shifts of the finite-difference

scheme. As in the forward-difference setting, we denote the finite-difference approximation

as v
(d)
S (t;h). Common examples include forward-difference and central-difference schemes

for approximating the first derivative (i.e., d = 1), where s and w are defined as s = (0, 1)T

and w = (−1, 1)T and s = (−1, 1)T and w = (−1
2
, 1

2
)T , respectively.

137

In order for the finite-difference scheme to be valid, the finite-difference coefficients

w and shifts s must be chosen such that the Taylor expansion of the finite-difference

approximation over the true function satisfies

(4.12)

p∑
j=1

wj · v̂(t+ hsj) = v̂(d)(t)hd + cqv̂
(q)(t)hq + o (hq) .

where cq 6= 0, and q ≥ d+1 denotes the order of the remainder term. In order to guarantee

this, the finite-difference scheme S must satisfy

1

l!

p∑
j=1

wjs
l
j =

1 if l = d

0 if 0 ≤ l < q, l 6= d

and

cq =
1

q!

p∑
j=1

wjs
q
j 6= 0.

Therefore, in the presence of noise, the worst-case error for the finite-difference scheme

of interest can be bounded by

|v(d)(t)− v̂(d)(t)| ≤ |cq|
∣∣v̂(q)(t)

∣∣hq−d + ‖w‖1εfh
−d + o

(
hq−d

)
.

Assuming knowledge of these constants, one can define an (approximately) optimal choice

of h:

(4.13) h∗ ≈
∣∣∣∣ d

q − d
· ‖w‖1εf
cqv̂(q)(t)

∣∣∣∣1/q = O

(∣∣∣∣ εf
v̂(q)(t)

∣∣∣∣1/q
)
.

While εf is assumed to be known and d, q, w and cq are readily available or are easily

derived, the q-th order derivative v̂(q)(x) is unknown and often difficult to compute or

138

estimate. Following the idea from the forward-difference case, we will first construct a

testing ratio rS associated with scheme S:

rS(h; v, t, εf) =

∣∣∣∑p̃
j=1 w̃j · v(t+ hs̃j)

∣∣∣
εf

where w̃, s̃ ∈ Rp̃ satisfy

(4.14)

p̃∑
j=1

w̃j · v̂(t+ hs̃j) = ctv̂
(q)(t)hq + o (hq) , ct =

1

q!

q∑
j=0

w̃j s̃
q
j 6= 0.

Without loss of generality, we require w̃ to satisfy

‖w̃‖1 = 1,

the reason for which will be evident below. We will then perform a bisection search to

find an interval h that satisfies

(4.15) rS(h; v, t, εf) ∈ [rl, ru]

for some rl > 1 and ru > rl + 2. The procedure is summarized in Algorithm 4.1.

139

Algorithm 4.1: Adaptive Finite-Difference Interval Estimation

1: Input: One-dimensional noisy function v : R → R; noise level εf > 0; testing ratio

rS(h; v, t, εf) for scheme S; lower- and upper-bound: rl and ru satisfying 0 < rl < ru;

initial scaling factor h0

2: h← h0

3: l← 0, u← +∞

4: while true do

5: Evaluate rS(h; v, t, εf)

6: if rS(h; v, t, εf) < rl then

7: l← h

8: else if rS(h; v, t, εf) > ru then

9: u← h

10: else

11: break

12: end if

13: if u = +∞ then

14: h← 2l

15: else

16: h← (l + u)/2

17: end if

18: end while

19: return h

By (4.14), we can see that

rS(h; v, t, εf) =

∣∣∣∣∣ctv̂(q)(t)hq

εf
+

∑p̃
j=1 w̃j · ε(t+ hs̃j)

εf
+ o (hq)

∣∣∣∣∣(4.16)

=

∣∣∣∣ctv̂(q)(t)hq

εf
+ ∆ + o (hq)

∣∣∣∣ , |∆| ≤ 1(4.17)

140

where we have defined

∆ =

∑p̃
j=1 w̃j · ε(t+ hs̃j)

εf

to simplify the notation. The fact that |∆| ≤ 1 is a consequence of the requirement that

‖w̃‖1 = 1 and that |ε(t)| ≤ εf . Therefore, if we have rS(h; v, t, εf) ∈ [rl, ru] and if we

ignore o (hq) term, then we (approximately) have

(4.18)

∣∣∣∣ctv̂(q)(t)hq

εf

∣∣∣∣ ∈ [rl − 1, ru + 1]

i.e.,

(4.19) h ∈

[(
rl − 1

|ct|
εf

|v̂(q)(t)|

)1/q

,

(
ru + 1

|ct|
εf

|v̂(q)(t)|

)1/q
]
.

If we look at (4.13), we can see that h has the same dependence on εf and v̂(q)(t) as h∗.

Then, with a suitable choice of the constants rl, ru, we can ensure that the h output by

Algorithm 4.1 is nearly optimal.

To see how this works, consider the examples for forward differencing and central dif-

ferencing below.

Example 1 (Forward Difference). Consider the forward-difference scheme S for approxi-

mating the first derivative:

(4.20) v
(1)
S (t) =

v(t+ h)− v(t)

h

141

where s = (0, 1)T and w = (−1, 1)T . Note that the Taylor expansion over the true function

is given as:

v̂(t+ h)− v̂(t)

h
= v̂(1)(t) +

v̂(2)(t)h

2
+ o(h).

Therefore, the full error of the derivative approximation and the approximate optimal

choice of h is:

(4.21) |v(1)
S (t)− v̂(1)(t)| ≤ |v̂

(2)(t)|h
2

+
2εf
h

+ o(h), h∗ ≈ 2

√
εf

|v(2)(t)|
.

One example of a valid testing ratio is:

(4.22) rS(h; v, t, εf) =
|v(t+ 2h)− 2v(t+ h) + v(t)|

4εf
.

Example 2 (Central Difference). Consider the central-difference scheme for approximating

the first derivative:

(4.23) v
(1)
S (t) =

v(t+ h)− v(t− h)

2h

where s = (−1, 1)T and w = (−1
2
, 1

2
)T . The Taylor expansion of the numerator is given

as:

v̂(t+ h)− v̂(t− h)

2h
= v̂(1)(t) +

v̂(3)(t)h2

6
+ o(h2).

The full error of the derivative approximation and the approximate optimal choice of h

is: ∣∣∣v(1)
S (t)− v̂(1)(t)

∣∣∣ ≤ ∣∣v̂(3)(t)
∣∣h2

6
+
εf
h

+ o(h2), h∗ ≈ 3

√
3εf
|v̂(3)(t)|

.

142

One example of a valid testing ratio is:

(4.24) rS(h; v, t, εf) =
|v(t+ 2h)− 2v(t+ h) + 2v(t− h)− v(t− 2h)|

6εf
.

To our knowledge, our derivation and analysis are the first for procedures of this kind.

To summarize, we present examples of testing ratios rS(h; v, t, εf) for commonly used

finite-difference schemes in Table 4.1. As in the forward-difference case, our procedure is

invariant to affine transformations.

finite-difference approximation testing ratio rS(h; v, t, εf) Taylor leading term

v̂(1)(t) ≈ v(t+h)−v(t)
h

|v(t+2h)−2v(t+h)+v(t)|
4εf

|v̂(2)(t)|h2
4εf

v̂(1)(t) ≈ v(t+h)−v(t−h)
2h

|v(t+2h)−2v(t+h)+2v(t−h)−v(t−2h)|
6εf

|v̂(3)(t)|h3
3εf

v̂(2)(t) ≈ v(t+h)−2v(t)+v(t−h)
h2

|v(t+2h)−4v(t+h)+6v(t)−4v(t−h)+v(t−2h)|
16εf

|v̂(4)(t)|h4
16εf

Table 4.1. Commonly used finite-difference schemes, their testing ratios
using the doubling trick, and their leading terms in the Taylor expansion.

4.2.2.1. Practical Considerations. In order to make this procedure practical, we dis-

cuss a number of considerations below.

I. Generation of Testing Ratio. Although many choices of rS are possible for a finite-

difference scheme S, it would be ideal to be able to automatically generate a testing ratio

given any finite-difference scheme S. A simple yet useful way to construct rS is through

the formula

(4.25) rαS(h; v, t, εf) =

∣∣∣v(d)
S (t;h)− v(d)

S (t;αh)
∣∣∣

Aεf/hd
,

143

where α 6= 1, and A is computed by normalizing the coefficients such that ‖w̃‖1 = 1 is

satisfied. For any α 6= 1, this yields a valid testing ratio rS. A common choice of α is

α = 2, which we will refer to as the doubling trick.

This approach is guaranteed to generate a valid rS because it cancels out the v̂(d)(t)

term in the Taylor expansion, leaving only the relevant higher-order term of order q of in-

terest. The doubling trick allows us to reuse some function evaluations at each iteration.

In addition, since the function evaluations needed for the finite-difference approxima-

tion are already computed within our adaptive procedure, one can immediately evaluate

the finite-difference approximation with the saved function values without any additional

function evaluations.

II. Choice of rl and ru. Ideally, one should choose rl and ru such that they are close to

d

q − d
·
∣∣∣∣ ctcq
∣∣∣∣ · ‖w‖1

in order to yield an h that is close to h∗ in (4.13). Unfortunately, this is not possible

due to the presence of noise, which requires that 1 < rl < ru − 2 in order to ensure

finite-termination; see Section 4.2.2.2. We therefore set

(4.26) rl = max

{
1.1,

1

2
· d

q − d
·
∣∣∣∣ ctcq
∣∣∣∣ · ‖w‖1

}
, ru = 3rl.

Note that this may result in the overestimation of h. However, this has not been overly

problematic in practice as it typically differs by a constant factor.

144

III. Initialization of h0. Noting that the h that satisfies the procedure is approximately

of the form (4.19), it is preferable to initialize h0 = ε
1/q
f . If the finite-difference interval

is reestimated within an optimization algorithm, we can initialize h0 as the h used at the

prior iteration.

IV. Handling of Special Cases. The Taylor expansion analysis elucidates two possible

failure cases for our procedure. In particular, observe that

rS(h; v, t, εf) =

∣∣∣∣ctv̂(q)(t)hq

εf
+ ∆ +O

(
v̂(q+1)(ξ)hq+1

εf

)∣∣∣∣
where ξ ∈ [minj{t+ hs̃j},maxj{t+ hs̃j}]. If v̂(q+1)(ξ) is large, then the higher-order term

can dominate the other terms. This can produce poor estimates of h, particularly when

εf and h∗ is large, even if the condition rS(h; v, t, εf) ∈ [rl, ru] is satisfied.

The other special case occurs if v̂(q)(ξ) = 0 or v̂(q)(ξ) ≈ 0 for ξ in a neighborhood of t.

In this case, rS will be dominated by ∆. In this case, rS(h; v, t, εf) < rl for all h and h will

thus monotonically increase until the maximum number of iterations is reached (which we

set max iter to 20). This occurs, for example, with any (q− 1)-th degree polynomial. In

this case, the method provides a warning but does not flag this as a failure. Note that in

this case, h is a good choice because sending h∗ →∞ would allow for indefinite reduction

in the noise.

V. Extension to Standard Deviation. In some settings, ε(x) is modeled as a random

variable, and we only have access to the standard deviation of the noise. Assuming

E[ε(x)] = 0, one can extend this procedure to the stochastic setting by replacing εf with

145

σf =
√
E[ε(x)2]. While the finite termination guarantees will not hold, particularly if the

noise is unbounded, the procedure will yield an h that has the same dependence on σf

and v̂(2)(t) as the optimal finite-difference interval.

4.2.2.2. Finite Termination. Next, we prove a finite termination theorem for Algo-

rithm 4.1. We start by making the following assumptions:

Assumption 4.2.1. The testing ratio rS satisfies:

|rS(h; v̂, t, εf)− rS(h; v, t, εf)| ≤ 1, ∀x ∈ R,∀h > 0

This assumption is satisfied by our requirement that ‖w̃‖1 = 1 and that |ε(t)| ≤ εf .

Assumption 4.2.2. As a function of h, rS(h; v̂, t, εf) is continuous with rS(0; v̂, t, εf) =

0, and there exists an integer K ∈ N such that

rS(2Kh0; v̂, t, εf) ≥ ru − 1

Assuming that εf > 0, the requirement that rS(0; v̂, t, εf) = 0 is satisfied because

we have (4.14). While this condition is technical, it can be intuitively understood as an

assumption to rule out the special case mentioned above where v̂(q)(ξ) ≈ 0 for ξ in a

neighborhood of t, and it is satisfied if, for example, we have |v̂(q)(ξ)| ≥ η > 0 for all

ξ ∈ R.

Theorem 4.2.1. Suppose Assumptions 4.2.1 and 4.2.2 are satisfied. In addition,

suppose ru and rl are chosen such that 0 < rl < ru − 2. Then, Algorithm 4.1 will

terminate successfully in a finite number of iterations.

146

Proof. Throughout this proof, we assume h ≥ 0.

We will prove by this contradiction. Suppose Algorithm 4.1 does not terminate finitely.

We denote the variables l, u, h used at the beginning of the k-th iteration of Algorithm

4.1 as lk, uk, hk, respectively. Obviously, we have

0 ≤ lk ≤ hk ≤ uk, ∀k ∈ N,

and

lk ≤ lk+1 < uk+1 ≤ uk, ∀k ∈ N.

First, we show that rS(lk; v̂, t, εf) < rl + 1 for all k ∈ N, by induction on k. Clearly

this is true for k = 0 since l0 = 0, and we have rS(0; v̂, t, εf) = 0 by Assumption 4.2.2.

Suppose this is true for k ≤ K. We have two cases: (1) rS(hK ; v, t, εf) < rl, which

by Assumption 4.2.1 implies rS(hK ; v̂, t, εf) ≤ rS(hK ; v, t, εf) + 1 < rl + 1. In this case

lK+1 = hK , so rS(lK+1; v̂, t, εf) = rS(hK ; v̂, t, εf) < rl+1. (2) rS(hK ; v, t, εf) > ru, in which

case lK+1 = lK so by the induction hypothesis rS(lK+1; v̂, t, εf) = rS(lK ; v̂, t, εf) < rl + 1.

Therefore the induction hypothesis holds for K + 1-th iteration.

By a similar argument, we can show that either uk = +∞, or uk < +∞ and

rS(uk; v̂, t, εf) > ru − 1 for all k ∈ N.

In summary, we can show that for all k ∈ N, we have

either rS(lk; v̂, t, εf) < rl + 1 < ru − 1 < rS(uk; v̂, t, εf),(4.27)

or rS(lk; v̂, t, εf) < rl + 1 and uk = +∞.(4.28)

147

Next, we claim that there exists K1 ∈ N such that uk < +∞ for k ≥ K1. Suppose

this is not the case, then we have rS(hk; v, t, εf) < rl, ∀k ∈ N. In this case, we have

hk+1 = 2lk+1 = 2hk, so hk = 2kh0 for all k ∈ N. By Assumption 4.2.2, there exists K ∈ N

such that rS(hK ; v̂, t, εf) ≥ ru − 1, and since rS(hK ; v, t, εf) ≥ rS(hK ; v̂, t, εf)− 1, we have

rS(hK ; v, t, εf) ≥ ru − 2 > rl, a contradiction to rS(hk; v, t, εf) < rl, ∀k ∈ N. This proves

the existence of K1.

Now we’re ready to present the contradiction. For k ≥ K1, since uk <∞, we have

uk+1 − lk+1 =
1

2
(uk − lk)

This implies that uk − lk → 0. Since rS(h; v̂, t, εf) (as a function of h) is continuous and

uK1 < +∞, [0, uK1] is compact so rS(h; v̂, t, εf) (as a function of h) is uniformly continuous

on [0, uK1]. Note that lk, uk ∈ [0, uK1] for k ≥ K1, therefore we have

rS(uk; v̂, t, εf)− rS(lk; v̂, t, εf)→ 0

This contradicts the fact that

rS(lk; v̂, t, εf) < rl + 1 < ru − 1 < rS(uk; v̂, t, εf), ∀k ∈ N, k ≥ K1

Therefore, Algorithm 4.1 must terminate finitely. This finishes the proof. �

4.2.3. Optimality of h

We finish this section by providing a guarantee for the optimality of h output by Algorithm

4.1 under certain assumptions.

148

Assumption 4.2.3. Function v̂ : R→ R is q-th continuously differentiable, with

0 < Llq ≤
∣∣v̂(q)(ξ)

∣∣ ≤ Luq , ∀ξ ∈ R

Notice that under Assumption 4.2.3, v̂(q)(ξ) is a continuous function, and therefore it

is implied that either v̂(q)(ξ) < 0 or v̂(q)(ξ) > 0 holds for all ξ ∈ R. While this assumption

may seem too strong to be useful, we actually only need such a bound to hold in a

neighborhood of t. Here we make this stronger assumption to avoid complications and

simplify the proof.

Theorem 4.2.2. Suppose v̂ satisfies Assumption 4.2.3. Consider estimating v̂(d)(t)

using a finite-difference scheme S = (w, s). Then, the error in the estimator satisfies

∣∣∣v(d)
S (t;h)− v̂(d)(t)

∣∣∣ ≤ |cq|Luqhq−d + ‖w‖1εfh
−d,

and this bound is tight. The optimal h that minimizes this bound is

(4.29) h∗ =

∣∣∣∣ d

q − d
‖w‖1εf
cqLuq

∣∣∣∣1/q
and the optimal worst-case error is of order

O

(
ε
q−d
q

f

(
Luq
) d

q

)

Proof. Let

Γ(h) =

p∑
j=1

wj · v̂(t+ hsj)

149

Since v̂ satisfies Assumption 4.2.3, Γ(h) is q-th continuously differentiable. We apply

Taylor’s theorem to Γ(h) at h = 0 with order q − 1. We have:

Γ(h) = v̂(d)(t)hd +
1

q!
Γ(q)(θ)hq, for some θ ∈ [0, h]

Note that

Γ(q)(θ) =

p∑
j=1

wjs
q
j · v̂(q)(t+ hsj).

By Assumption 4.2.3, we have

∣∣Γ(h)− v̂(d)(t)hd
∣∣ ≤ |cq|Luqhq

Now, notice that

v
(d)
S (t;h) =

Γ(h) +
∑p

j=1 wjε(t+ hsj)

hd
,

therefore we have

∣∣∣v(d)
S (t;h)− v̂(d)(t)

∣∣∣ =

∣∣∣∣∣Γ(h) +
∑p

j=1 wjε(t+ hsj)

hd
− v̂(d)(t)

∣∣∣∣∣
≤
∣∣Γ(h)− v̂(d)(t)hd

∣∣h−d +

∣∣∣∣∣
p∑
j=1

wjε(t+ hsj)

∣∣∣∣∣h−d
≤ |cq|Luqhq−d + ‖w‖1εfh

−d

To see the bound is tight, simply consider v̂(t) = 1
q!
Luq t

q. The rest of the statement is

obvious. �

150

Theorem 4.2.3. Suppose v̂ satisfies Assumption 4.2.3.Let h† be the output of Algo-

rithm 4.1. Then it holds that:

(4.30) h† ∈

[(
rl − 1

|ct|
εf
Luq

)1/q

,

(
ru + 1

|ct|
εf
Llq

)1/q
]

Proof. Let

Ω(h) =

p̃∑
j=1

w̃j · v̂(t+ hs̃j)

We can see that Ω(h) is q-th continuously differentiable. We apply Taylor’s theorem to

Ω(h) at 0 with order q − 1. By (4.14), the Taylor expansion of Ω(h) up to order q − 1 is

0, so we’re only left with the remainder term, i.e.,

Ω(h) =
1

q!
Ω(q)(θ)hq, for some θ ∈ [0, h].

Note that

Ω(q)(θ) =

p̃∑
j=1

w̃j s̃
q
j · v̂(q)(t+ θs̃j).

As we mentioned above, Assumption 4.2.3 implies that v̂(q)(ξ) < 0 or v̂(q)(ξ) > 0 for all

ξ ∈ R. Therefore, we have

|Ω(h†)| ∈
[
|ct|Llqh

q
†, |ct|L

u
qh

q
†
]
.

Now, notice that

rS(h) =

∣∣∣∣Ω(h)

εf
+ ∆

∣∣∣∣ .
Since rS(h†) ∈ [rl, ru] and |∆| ≤ 1, we have:

|Ω(h†)| ∈ [(rl − 1)εf , (ru + 1)εf] .

151

This gives us:

(rl − 1)εf ≤ |ct|Luqh
q
†, (ru + 1)εf ≥ |ct|Llqh

q
†,

i.e.,

h† ∈

[(
rl − 1

|ct|
εf
Luq

)1/q

,

(
ru + 1

|ct|
εf
Llq

)1/q
]

�

Now, suppose both Llq and Luq are of the same order of magnitute O(Lq), then we

know from (4.29) that h∗ = O
(

(εf/Lq)
1/q
)

, and from (4.30) that h† = O
(

(εf/Lq)
1/q
)

as

well, demonstrating the output of Algorithm 4.1 is optimal up to certain constant that

depends on the scheme S and the testing ratio rS.

4.3. Numerical Experiments

We test our proposed procedure on several univariate function. We focus on the case

d = 1, i.e., gradient estimation, since this is most relevant to optimization. Throughout

this section, we will test Algorithm 4.1 using 5 different estimating schemes, shown in

Table 4.2. The testing ratio is generated using the doubling trick, i.e., using (4.25) with

α = 2.

label s w q Comment

FD (0, 1) (−1, 1) 2 forward difference
CD (−1, 1) (−1/2, 1/2) 3 central difference

FD 3P (0, 1, 2) (−3/2, 2,−1/2) 3 forward difference w/ 3 points
FD 4P (0, 1, 2, 3) (−11/6, 3,−3/2, 1/1) 4 forward difference w/ 4 points
CD 4P (−2,−1, 1, 2) (1/12,−2/3, 2/3,−1/12) 5 central difference w/ 4 points

Table 4.2. Schemes used in the experiments. The scheme is defined by
S = (w, s) as in (4.11). All schemes have d = 1 (i.e., estimating gradient);
q is defined in (4.12).

152

For a specific testing function v̂ at point t with noise εf and estimating scheme S =

(w, s), we plot the worst case relative error, as a function of differencing interval h, defined

as:

δS(h; v̂, t, εf) =
1

|v̂(d)(t)|

[∣∣∣∣∣
∑p

j=1wj v̂(t+ sjh)

hd
− v̂(d)(t)

∣∣∣∣∣+ ‖w‖1
εf
hd

]
This function captures the relative error of the estimation scheme S on function v at t in

the worst case. The differencing interval h that minimizes δS(h; v̂, t, εf) is the optimal h.

Notice that δS(h; v̂, t, εf) is a deterministic function that does not rely on the realization

of actual noise in v(xi).

We manually inject uniformly distributed, stochastic noise into v̂ to obtain v, i.e., we

have

v(ξ) = v̂(ξ) + ε(ξ), ε(ξ) ∼ Uniform(−εf , εf), independent of everything else.

We then perform our adaptive procedure Algorithm 4.1 on v and obtain an output h†. We

will plot h† and see how far it is from the minimizer of the worst case relative error function

δS(h; v̂, t, εf). In the tables, we also report the optimizer that minimizes the function

δS(h; v̂, t, εf); this value is returned by scipy.optimize.minimize scalar function and

might be unreliable.

4.3.1. Adaptivity to Noise Levels

To demonstrate our method is adaptive to different noise levels, we perform the test

on a simple function v̂(t) = cos(t) on different noise levels, using different schemes in

Table 4.2. The results are shown in Figure 4.1, which demonstrate that our method can

153

automatically adjust to different noise levels and find near-optimal h. Detailed results on

number of iterations taken and number of function evaluations can be found in Table 4.3.

4.3.2. Affine Invariance

One advantage of our proposed method is that it outputs correct h when the function v

undergoes through an affine transformation. By the way we define our testing ratio, it is

obvious that our procedure is invariant when adding a constant to the function. Hence,

we focus on the transformation of the type v̂(t)→ a · v̂(b · t) for some a, b 6= 0.

Specifically, we test Algorithm 4.1 on function v̂(t) = a · sin(b · t) at t = 0, for different

a and b. We fixed the noise level to be εf = 1E-3. The results are shown in Figure 4.2.

Detailed results can be found in Table 4.4. We can see that our method is affine-invariant

and can output correct results for functions undergone affine transformations.

4.3.3. Difficult and Special Examples

In this subsection, we consider certain functions that are considered difficult or special

in some sense, to demonstrate some features of our method. Some examples come from

[28]. These examples include:

(1) v̂(t) = (et − 1)
2
, at t = −8. This function has extremely small first and second-

order derivative at t = −8, but quickly increases as t increases beyond t = 0;

a naive choice of h =
√
εf/L2 for forward difference can result in an extremely

large h and lead to huge error.

(2) v̂(t) = e100t, at t = 0.01.

154

10 4 10 3 10 2 10 1 100 101

scaling factor h

10 4

10 3

10 2

10 1

100

101

102

103

wo
rs

t c
as

e
re

la
tiv

e
er

ro
r

FD, v(t) = cos(t), t=1.0
f = 1e 08 (h=4.00E-04)
f = 1e 07 (h=1.26E-03)
f = 1e 06 (h=4.00E-03)
f = 1e 05 (h=1.26E-02)
f = 0.0001 (h=4.00E-02)
f = 0.001 (h=1.26E-01)
f = 0.01 (h=7.00E-01)
f = 0.1 (h=1.26E+00)

10 4 10 3 10 2 10 1 100 101

scaling factor h

10 4

10 2

100

102

wo
rs

t c
as

e
re

la
tiv

e
er

ro
r

CD, v(t) = cos(t), t=1.0
f = 1e 08 (h=4.66E-03)
f = 1e 07 (h=1.00E-02)
f = 1e 06 (h=2.16E-02)
f = 1e 05 (h=4.66E-02)
f = 0.0001 (h=1.00E-01)
f = 0.001 (h=2.16E-01)
f = 0.01 (h=4.66E-01)
f = 0.1 (h=1.00E+00)

10 4 10 3 10 2 10 1 100 101

scaling factor h

10 4

10 2

100

102

104

wo
rs

t c
as

e
re

la
tiv

e
er

ro
r

FD_3P, v(t) = cos(t), t=1.0
f = 1e 08 (h=4.89E-03)
f = 1e 07 (h=8.43E-03)
f = 1e 06 (h=2.27E-02)
f = 1e 05 (h=3.91E-02)
f = 0.0001 (h=1.05E-01)
f = 0.001 (h=2.27E-01)
f = 0.01 (h=4.89E-01)
f = 0.1 (h=1.48E+00)

10 4 10 3 10 2 10 1 100 101

scaling factor h

10 4

10 2

100

102

104

wo
rs

t c
as

e
re

la
tiv

e
er

ro
r

FD_4P, v(t) = cos(t), t=1.0
f = 1e 08 (h=2.16E-02)
f = 1e 07 (h=3.84E-02)
f = 1e 06 (h=5.46E-02)
f = 1e 05 (h=1.94E-01)
f = 0.0001 (h=2.81E-01)
f = 0.001 (h=3.84E-01)
f = 0.01 (h=5.46E-01)
f = 0.1 (h=9.71E-01)

10 4 10 3 10 2 10 1 100 101

scaling factor h

10 5

10 3

10 1

101

103

wo
rs

t c
as

e
re

la
tiv

e
er

ro
r

CD_4P, v(t) = cos(t), t=1.0
f = 1e 08 (h=4.08E-02)
f = 1e 07 (h=6.46E-02)
f = 1e 06 (h=1.02E-01)
f = 1e 05 (h=1.62E-01)
f = 0.0001 (h=2.57E-01)
f = 0.001 (h=4.08E-01)
f = 0.01 (h=7.27E-01)
f = 0.1 (h=1.28E+00)

Figure 4.1. Worst case relative error δS(h; v̂, t, εf) against h on function
v̂(t) = cos(t) with different noise levels; the vertical dashed line represents
the h† output by Algorithm 4.1.

155

10 3 10 2 10 1 100 101

scaling factor h

10 2

10 1

100

101

102

wo
rs

t c
as

e
re

la
tiv

e
er

ro
r

FD, v(t) = a sin(b t), t = 0.0, f = 0.001
a = 0.1, b = 0.1 (h=4.05E+00)
a = 0.1, b = 1.0 (h=5.06E-01)
a = 0.1, b = 10.0 (h=4.74E-02)
a = 1.0, b = 0.1 (h=2.02E+00)
a = 1.0, b = 1.0 (h=1.90E-01)
a = 1.0, b = 10.0 (h=2.37E-02)
a = 10.0, b = 0.1 (h=1.01E+00)
a = 10.0, b = 1.0 (h=9.49E-02)
a = 10.0, b = 10.0 (h=7.91E-03)

10 3 10 2 10 1 100 101

scaling factor h

10 2

10 1

100

101

102

wo
rs

t c
as

e
re

la
tiv

e
er

ro
r

CD, v(t) = a sin(b t), t = 0.0, f = 0.001
a = 0.1, b = 0.1 (h=4.62E+00)
a = 0.1, b = 1.0 (h=4.33E-01)
a = 0.1, b = 10.0 (h=3.61E-02)
a = 1.0, b = 0.1 (h=1.73E+00)
a = 1.0, b = 1.0 (h=1.80E-01)
a = 1.0, b = 10.0 (h=1.80E-02)
a = 10.0, b = 0.1 (h=8.65E-01)
a = 10.0, b = 1.0 (h=7.21E-02)
a = 10.0, b = 10.0 (h=9.01E-03)

10 3 10 2 10 1 100 101

scaling factor h

10 2

10 1

100

101

102

wo
rs

t c
as

e
re

la
tiv

e
er

ro
r

FD_3P, v(t) = a sin(b t), t = 0.0, f = 0.001
a = 0.1, b = 0.1 (h=5.81E+00)
a = 0.1, b = 1.0 (h=7.27E-01)
a = 0.1, b = 10.0 (h=9.65E-02)
a = 1.0, b = 0.1 (h=2.18E+00)
a = 1.0, b = 1.0 (h=1.82E-01)
a = 1.0, b = 10.0 (h=9.16E-02)
a = 10.0, b = 0.1 (h=7.27E-01)
a = 10.0, b = 1.0 (h=9.09E-02)
a = 10.0, b = 10.0 (h=8.52E-03)

10 3 10 2 10 1 100 101

scaling factor h

10 2

10 1

100

101

102

103

wo
rs

t c
as

e
re

la
tiv

e
er

ro
r

FD_4P, v(t) = a sin(b t), t = 0.0, f = 0.001
a = 0.1, b = 0.1 (h=6.14E+00)
a = 0.1, b = 1.0 (h=6.14E-01)
a = 0.1, b = 10.0 (h=5.76E-02)
a = 1.0, b = 0.1 (h=3.68E+00)
a = 1.0, b = 1.0 (h=3.45E-01)
a = 1.0, b = 10.0 (h=3.36E-02)
a = 10.0, b = 0.1 (h=1.84E+00)
a = 10.0, b = 1.0 (h=1.54E-01)
a = 10.0, b = 10.0 (h=1.92E-02)

10 3 10 2 10 1 100 101

scaling factor h

10 3

10 2

10 1

100

101

102

wo
rs

t c
as

e
re

la
tiv

e
er

ro
r

CD_4P, v(t) = a sin(b t), t = 0.0, f = 0.001
a = 0.1, b = 0.1 (h=6.52E+00)
a = 0.1, b = 1.0 (h=6.11E-01)
a = 0.1, b = 10.0 (h=6.37E-02)
a = 1.0, b = 0.1 (h=4.08E+00)
a = 1.0, b = 1.0 (h=4.08E-01)
a = 1.0, b = 10.0 (h=3.82E-02)
a = 10.0, b = 0.1 (h=2.45E+00)
a = 10.0, b = 1.0 (h=2.55E-01)
a = 10.0, b = 10.0 (h=2.55E-02)

Figure 4.2. Worst case relative error δS(h; v̂, t, εf) against h on function
v̂(t) = a · sin(b · t) for different a and b; the vertical dashed line represents
the h† output by Algorithm 4.1.

156

scheme h† h∗ r n iter num eval relative error εf

FD 4.00e-04 2.74e-04 2.02 2 4 1.46e-04 1.00e-08
FD 1.26e-03 8.60e-04 2.30 2 4 3.61e-04 1.00e-07
FD 4.00e-03 2.73e-03 1.93 2 4 1.34e-03 1.00e-06
FD 1.26e-02 8.64e-03 2.53 2 4 3.61e-03 1.00e-05
FD 4.00e-02 2.76e-02 2.34 2 4 1.16e-02 1.00e-04
FD 1.26e-01 1.73e+00 1.51 2 4 3.72e-02 1.00e-03
FD 7.00e-01 8.24e+00 1.66 5 9 1.32e-01 1.00e-02
FD 1.26e+00 8.26e+00 2.09 2 4 1.19e-01 1.00e-01
CD 4.66e-03 3.29e-03 2.58 3 10 4.26e-06 1.00e-08
CD 1.00e-02 7.09e-03 2.65 3 10 2.13e-05 1.00e-07
CD 2.16e-02 1.53e-02 3.05 3 10 5.71e-05 1.00e-06
CD 4.66e-02 3.29e-02 3.06 3 10 2.05e-04 1.00e-05
CD 1.00e-01 7.09e-02 2.40 3 10 2.24e-03 1.00e-04
CD 2.16e-01 1.53e-01 2.80 3 10 8.22e-03 1.00e-03
CD 4.66e-01 7.73e+00 2.84 3 10 2.62e-02 1.00e-02
CD 1.00e+00 7.74e+00 2.57 3 10 7.78e-02 1.00e-01
FD 3P 4.89e-03 4.14e-03 2.04 4 11 9.66e-06 1.00e-08
FD 3P 8.43e-03 8.92e-03 1.26 1 4 2.01e-05 1.00e-07
FD 3P 2.27e-02 1.92e-02 2.75 4 11 8.18e-05 1.00e-06
FD 3P 3.91e-02 4.11e-02 1.31 1 4 5.82e-04 1.00e-05
FD 3P 1.05e-01 8.77e-02 3.07 4 11 1.66e-03 1.00e-04
FD 3P 2.27e-01 2.99e+00 1.97 4 11 2.62e-02 1.00e-03
FD 3P 4.89e-01 2.99e+00 2.20 4 11 8.34e-02 1.00e-02
FD 3P 1.48e+00 2.12e+01 1.83 4 11 7.25e-01 1.00e-01
FD 4P 2.16e-02 2.04e-02 2.08 4 16 2.14e-06 1.00e-08
FD 4P 3.84e-02 4.76e-01 2.17 4 16 7.35e-06 1.00e-07
FD 4P 5.46e-02 6.68e-02 1.13 1 6 3.53e-05 1.00e-06
FD 4P 1.94e-01 4.76e-01 2.42 2 8 6.70e-04 1.00e-05
FD 4P 2.81e-01 3.28e+00 1.79 5 21 1.28e-03 1.00e-04
FD 4P 3.84e-01 3.28e+00 1.57 4 16 4.12e-03 1.00e-03
FD 4P 5.46e-01 8.78e+00 1.31 1 6 3.19e-02 1.00e-02
FD 4P 9.71e-01 8.79e+00 1.41 1 6 6.66e-02 1.00e-01
CD 4P 4.08e-02 4.22e-02 2.52 1 6 1.16e-07 1.00e-08
CD 4P 6.46e-02 6.69e-02 2.04 1 6 8.34e-07 1.00e-07
CD 4P 1.02e-01 1.06e-01 1.95 1 6 8.81e-06 1.00e-06
CD 4P 1.62e-01 1.68e-01 1.79 1 6 4.29e-05 1.00e-05
CD 4P 2.57e-01 2.67e-01 1.71 1 6 4.00e-04 1.00e-04
CD 4P 4.08e-01 4.25e-01 1.89 1 6 8.32e-04 1.00e-03
CD 4P 7.27e-01 7.97e+00 2.87 5 26 7.57e-03 1.00e-02
CD 4P 1.28e+00 2.06e+01 2.03 4 20 1.92e-01 1.00e-01

Table 4.3. Detailed results for v̂(t) = cos(t) with different noise levels; r
represents the final testing ratio; h∗ is the h that minimizes δS(h; v̂, t, εf)
reported by minimize scalar function in scipy.optimize and could be
unreliable.

157

(3) v̂(t) = t4 + 3t2− 10t, at t = 0.99999. This function is considered difficult because

v̂′(1) = 0, and represents a case where the estimated derivative is very close to 0.

In addition, this function is a 4-th order polynomial, so the optimal h for CD 4P

is +∞.

(4) v̂(t) = 10000t3 + 0.01t2 + 5t, at t = 1E-9. This example is difficult in that it has

approximate central symmetry at t = 0, which can lead to issues for adaptive

procedures like proposed in [28]. However, we will show that this will not cause

problems for our method.

For each example, we again fix εf = 1E-3, and perform our estimation procedure for

different schemes, and plot the worst case relative error. The results can be found in

Figure 4.3 and Table 4.5.

It is intereting to observe the results for the two polynomials. For v̂(t) = t4 +3t2−10t

and scheme CD 4P, our procedure generated a huge h†; this is consistent with the fact that

scheme CD 4P has q = 5, and v̂(5)(ξ) = 0 for all ξ on this example, which implies that we

should choose h to be as large as possible. The similar is true for scheme FD 4P and CD 4P

on function v̂(t) = 10000t3 + 0.01t2 + 5t.

More interestingly, while theoretically speaking we should choose h = ∞ in such

cases, we can see in Figure 4.3 that this is not the case. There exists a large h such

that δS(h; v̂, t, εf) is minimized, beyond which the relative error begins to increase, and

our method can successfully identify this h. The reason for this phenomenon is round-off

errors; when h becomes too large, round-off error which is multiplicative will dominate

εf ; approximately, this will happen when maxj |v̂(t+ sjh)| εM becomes comparable to εf ,

and this is where the optimal h lies.

158

10 2 10 1 100

scaling factor h

101

103

105

107

wo
rs

t c
as

e
re

la
tiv

e
er

ro
r

v(t) = (et 1.0)2, t = 8.0, f = 0.001
FD (h=1.52E+00)
CD (h=1.73E+00)
FD_3P (h=1.18E+00)
FD_4P (h=9.21E-01)
CD_4P (h=1.43E+00)

10 6 10 5 10 4 10 3 10 2 10 1

scaling factor h

10 2

100

102

104

106

108

1010

1012

wo
rs

t c
as

e
re

la
tiv

e
er

ro
r

v(t) = e100t, t = 0.01, f = 0.001
FD (h=4.94E-04)
CD (h=1.13E-03)
FD_3P (h=1.42E-03)
FD_4P (h=2.40E-03)
CD_4P (h=3.18E-03)

10 5 10 3 10 1 101 103 105

scaling factor h

10 1

102

105

108

1011

1014

1017

1020

wo
rs

t c
as

e
re

la
tiv

e
er

ro
r

v(t) = t4 + 3t2 10t, t = 0.99999, f = 0.001
FD (h=2.37E-02)
CD (h=5.41E-02)
FD_3P (h=6.81E-02)
FD_4P (h=1.54E-01)
CD_4P (h=9.39E+02)

10 5 10 3 10 1 101 103 105

scaling factor h

10 5

10 2

101

104

107

1010

1013
wo

rs
t c

as
e

re
la

tiv
e

er
ro

r

v(t) = 10000t3 + 0.01t2 + 5t, t = 1e 09, f = 0.001
FD (h=5.93E-03)
CD (h=4.51E-03)
FD_3P (h=5.68E-03)
FD_4P (h=6.29E+02)
CD_4P (h=8.35E+02)

Figure 4.3. Worst case relative error δS(h; v̂, t, εf) against h on several spe-
cial cases; the vertical dashed line represents the h† output by Algorithm
4.1.

4.4. Conclusion

In this work, we propose a general, adaptive procedure for estimating differencing

interval for a general finite difference estimation scheme. Without the need for any in-

formation about higher-order derivatives of the function, the proposed procedure can

automatically produce an differencing interval h that is optimal up to a constant. Our

numerical experiments demonstrate that the proposed method is both reliable and efficient

for a wild range of noise levels and functions. We believe such an adaptive procedure lays

159

the fundation for developing efficient and robust finite-difference based DFO optimization

methods.

160

a b scheme h† h∗ r n iter num eval relative error

0.10 0.10 FD 4.05e+00 3.94e+00 1.45 7 9 3.59e-02
0.10 1.00 FD 5.06e-01 7.73e+00 3.20 4 6 3.60e-02
0.10 10.00 FD 4.74e-02 7.73e-01 2.39 3 6 4.69e-02
1.00 0.10 FD 2.02e+00 1.82e+00 2.01 6 8 8.11e-03
1.00 1.00 FD 1.90e-01 1.82e-01 1.38 4 7 1.02e-02
1.00 10.00 FD 2.37e-02 1.82e-02 2.76 4 7 1.48e-02

10.00 0.10 FD 1.01e+00 8.44e-01 2.63 5 7 1.75e-03
10.00 1.00 FD 9.49e-02 8.44e-02 2.13 3 6 1.93e-03
10.00 10.00 FD 7.91e-03 8.44e-03 1.53 4 6 5.66e-04
0.10 0.10 CD 4.62e+00 7.73e+01 3.11 6 14 3.51e-02
0.10 1.00 CD 4.33e-01 3.12e-01 2.58 4 12 3.09e-02
0.10 10.00 CD 3.61e-02 3.12e-02 1.51 3 8 2.15e-02
1.00 0.10 CD 1.73e+00 1.44e+00 1.72 6 16 4.98e-03
1.00 1.00 CD 1.80e-01 1.44e-01 1.94 4 14 5.41e-03
1.00 10.00 CD 1.80e-02 1.44e-02 1.94 4 10 5.41e-03

10.00 0.10 CD 8.65e-01 6.70e-01 2.16 5 14 1.25e-03
10.00 1.00 CD 7.21e-02 6.70e-02 1.25 2 6 8.66e-04
10.00 10.00 CD 9.01e-03 6.70e-03 2.44 5 12 1.35e-03
0.10 0.10 FD 3P 5.81e+00 8.14e+01 2.45 6 9 6.06e-02
0.10 1.00 FD 3P 7.27e-01 8.14e+00 2.91 3 6 1.12e-01
0.10 10.00 FD 3P 9.65e-02 8.14e-01 1.59 6 17 1.99e-01
1.00 0.10 FD 3P 2.18e+00 1.83e+00 1.59 6 11 2.22e-02
1.00 1.00 FD 3P 1.82e-01 2.14e+00 1.47 1 4 1.86e-04
1.00 10.00 FD 3P 9.16e-02 8.14e-01 2.67 9 26 2.05e-01

10.00 0.10 FD 3P 7.27e-01 8.45e-01 1.47 3 6 1.54e-03
10.00 1.00 FD 3P 9.09e-02 8.45e-02 1.62 2 5 1.77e-03
10.00 10.00 FD 3P 8.52e-03 8.45e-03 1.85 7 12 7.43e-04
0.10 0.10 FD 4P 6.14e+00 8.44e+01 2.91 8 23 4.81e-03
0.10 1.00 FD 4P 6.14e-01 8.44e+00 2.82 2 8 5.25e-03
0.10 10.00 FD 4P 5.76e-02 8.44e-01 2.48 5 15 1.79e-02
1.00 0.10 FD 4P 3.68e+00 2.71e+01 2.58 6 16 1.33e-02
1.00 1.00 FD 4P 3.45e-01 2.71e+00 2.15 5 20 2.42e-03
1.00 10.00 FD 4P 3.36e-02 2.71e-01 2.04 7 22 9.53e-04

10.00 0.10 FD 4P 1.84e+00 2.25e+00 1.45 5 14 3.68e-04
10.00 1.00 FD 4P 1.54e-01 2.25e-01 1.12 2 8 2.81e-03
10.00 10.00 FD 4P 1.92e-02 2.71e-01 1.36 5 14 7.83e-04
0.10 0.10 CD 4P 6.52e+00 7.97e+01 2.12 5 14 5.73e-03
0.10 1.00 CD 4P 6.11e-01 7.97e+00 1.57 3 14 4.45e-03
0.10 10.00 CD 4P 6.37e-02 7.97e-01 1.90 6 24 5.23e-03
1.00 0.10 CD 4P 4.08e+00 4.10e+00 2.30 7 26 9.02e-04
1.00 1.00 CD 4P 4.08e-01 4.10e-01 2.30 1 6 9.02e-04
1.00 10.00 CD 4P 3.82e-02 4.10e-02 1.68 6 20 6.98e-04

10.00 0.10 CD 4P 2.45e+00 2.58e+00 1.89 5 18 1.18e-04
10.00 1.00 CD 4P 2.55e-01 2.58e-01 2.31 4 20 1.39e-04
10.00 10.00 CD 4P 2.55e-02 2.58e-02 2.31 5 14 1.39e-04

Table 4.4. Detailed results for v̂(t) = a·sin(b·t) with εf = 1E-3; r represents
the final testing ratio; h∗ is the h that minimizes δS(h; v̂, t, εf) reported by
minimize scalar function in scipy.optimize and could be unreliable.

161

v̂(t) scheme h† h∗ r n iter num eval relative error

(et − 1.0)
2

FD 1.52e+00 1.46e+00 2.30 7 10 6.32e-01

(et − 1.0)
2

CD 1.73e+00 8.69e+00 2.97 6 16 4.01e-02

(et − 1.0)
2

FD 3P 1.18e+00 3.82e+02 2.92 7 16 5.34e-01

(et − 1.0)
2

FD 4P 9.21e-01 3.82e+02 1.65 4 12 4.15e+00

(et − 1.0)
2

CD 4P 1.43e+00 3.82e+02 1.84 5 22 1.11e+00
e100t FD 4.94e-04 3.78e-04 2.31 8 10 1.84e-02
e100t CD 1.13e-03 1.03e-03 1.38 8 18 1.82e-03
e100t FD 3P 1.42e-03 3.82e+02 2.46 8 11 4.18e-03
e100t FD 4P 2.40e-03 3.82e+02 3.14 8 20 8.46e-03
e100t CD 4P 3.18e-03 3.82e+02 2.15 8 20 4.60e-04
t4 + 3t2 − 10t FD 2.37e-02 1.48e-02 2.66 4 7 1.19e+03
t4 + 3t2 − 10t CD 5.41e-02 5.00e-02 1.11 4 12 1.08e+02
t4 + 3t2 − 10t FD 3P 6.81e-02 6.16e-02 1.97 4 9 2.67e+02
t4 + 3t2 − 10t FD 4P 1.54e-01 1.39e-01 2.65 2 8 1.93e+02
t4 + 3t2 − 10t CD 4P 9.39e+02 4.87e+03 1.62 16 48 2.71e-03
10000t3 + 0.01t2 + 5t FD 5.93e-03 4.64e-03 2.79 6 9 1.00e-01
10000t3 + 0.01t2 + 5t CD 4.51e-03 3.68e-03 2.19 6 14 2.65e-02
10000t3 + 0.01t2 + 5t FD 3P 5.68e-03 4.64e-03 2.73 6 9 8.46e-02
10000t3 + 0.01t2 + 5t FD 4P 6.29e+02 4.13e+03 1.95 12 28 1.59e-06
10000t3 + 0.01t2 + 5t CD 4P 8.35e+02 1.03e+04 1.95 12 28 1.99e-07

Table 4.5. Detailed results for special examples, with εf = 1E-3; r repre-
sents the final testing ratio; h∗ is the h that minimizes δS(h; v̂, t, εf) reported
by minimize scalar function in scipy.optimize and could be unreliable.

162

CHAPTER 5

Constrained and Composite Optimization via Adaptive

Sampling Methods

5.1. Introduction

In this chapter, we study the solution of constrained and composite optimization

problems in which the objective function is stochastic and the constraints or regularizers

are deterministic. We propose methods that automatically adjust the quality of the

gradient estimate so as to keep computational cost at a minimum while ensuring a fast rate

of convergence. Methods of this kind have been studied in the context of unconstrained

optimization but their extension to the constrained and composite optimization settings is

not simple because the projections or proximal operators used in the methods introduce

discontinuities. This renders existing rules for the control of the gradient unreliable.

Whereas in the unconstrained setting pointwise decisions suffice to estimate the quality

of a gradient approximation, in the presence of constraints or nonsmooth regularizers one

must analyze the result of a complete step.

Let us begin by considering the optimization problem

(5.1) min
x∈Rn

f(x) s.t. x ∈ Ω,

where f : Rn → R is a stochastic objective function and Ω is a deterministic convex closed

set. Automatic rules for controlling the quality of the gradient when Ω = Rn have been

163

studied from a theoretical perspective and have been successfully applied to expected risk

minimization problems arising in machine learning. Since in that context the gradient

approximation is controlled by the sample size, these methods have been called “adaptive

sampling” methods. A fundamental mechanism for controlling the quality of the gradient

in the unconstrained setting is the norm test [16], which lies behind most algorithms and

theory of adaptive sampling methods.

To describe this test, let Ω = Rn, and consider the iteration

(5.2) xk+1 = xk − αkgk,

where αk > 0 is a steplength and gk is an approximation to the gradient ∇f(xk). To

determine if gk is sufficiently accurate to ensure that iteration (5.2) is convergent, one can

test the inequality [16]:

(5.3) E[‖gk −∇f(xk)‖2
2] ≤ ξ‖∇f(xk)‖2

2, ξ > 0,

where the expectation is taken with respect to the choice of gk at iteration k. If (5.3)

is satisfied, gk is deemed accurate enough; otherwise a new and more accurate gradient

approximation is computed. We refer to this procedure as the norm test to distinguish it

from tests based on angles [14].

The norm test is, however, not adequate in the constrained setting. To see this,

suppose that we apply the gradient projection method, xk+1 = PΩ[xk − αkgk], to solve

problem (5.1) when Ω 6= Rn. A condition such as (5.3) on the quality of the gradient

approximation at one point cannot always predict the quality of the full step because

the latter is based on a projection of the gradient, which may be much smaller. This

164

is illustrated in Figure 5.1, where we consider the minimization of a strongly convex

quadratic function subject to a linear constraint:

min
x∈Rn

1
2
xTQx+ bTx+ c s.t. aTx ≤ 0.

In Figure 5.1, x̂∗ denotes the unconstrained minimizer and x∗ the solution of the con-

strained problem. We let the iterate xk lie on the boundary of the constraint, very close

to the solution x∗, and observe that ‖∇f(xk)‖ is large, and stays large as xk approaches

x∗. Thus, (5.3) does not force the error in gk to zero as xk → x∗.

The instance of gk shown in Figure 5.1 satisfies ‖gk−∇f(xk)‖ < ‖∇f(xk)‖, but results

in a poor step. Clearly satisfaction of (5.3) allows for many such steps. Note, however,

that ‖gk − ∇f(xk)‖ is greater than the norm of the projected gradient PΩ[gk], which is

a more appropriate measure. Thus, since we are concerned about the error in the total

Figure 5.1. Failure of norm test for constrained problems.

165

step, and in this example the step is given by xk+1 − xk = −αkPΩ[gk], it makes sense to

compare ‖gk −∇f(xk)‖ to ‖PΩ[gk]‖ = ‖xk+1 − xk‖/αk.

We generalize this idea and propose the following procedure for measuring the quality

of the gradient approximation. We first compute a projected step xk+1 = PΩ[xk − αkgk]

based on the current gradient estimate gk, and regard gk to be acceptable if the following

inequality holds:

E[‖gk −∇f(xk)‖2
2] ≡Vark [gk] ≤ ξ

∥∥∥∥Ek [xk+1]− xk
αk

∥∥∥∥2

2

, ξ > 0.(5.4)

Otherwise, we compute a more accurate gradient estimate gk, and recompute the step to

obtain the new iterate xk+1.

In this strategy one must therefore look ahead, suggesting that a convenient framework

for the design and analysis of adaptive sampling methods for constrained optimization is

the proximal gradient method. In addition to its versatility, the proximal gradient method

allows us to expand the range of our investigation to include the composite optimization

problem

(5.5) min
x∈Rn

φ(x) = f(x) + h(x),

where f is a stochastic function and h is a convex (but not necessarily smooth or finite-

valued) function. The constrained optimization problem (5.1) can be written in the form

(5.5) by defining h to be the convex indicator function for the set Ω.

The goal of this chapter is to design an adaptive mechanism for gradually improving the

gradient accuracy that can be regarded as an extension of the norm test (5.3) to problems

(5.1) and (5.5). We argue in Section 5.3 that the condition (5.4), with φ replacing f , can be

166

used to build such a mechanism within a proximal gradient method. Although condition

(5.4) appears to be impractical since it involves Ek [xk+1], we show how to approximate

it in practice. The proposed algorithm reacts to information observed during the course

of the iteration, as opposed to methods that dictate the increase in the gradient size a

priori. Specifically, it has been established in [35] that for a stochastic proximal gradient

method in which the sample size grows like ak, with a > 1, convergence can be assured

in the convex case. However, the behavior of the algorithm depends very strongly on the

value of a, and there are no clear guidelines on how to choose it for a given problem.

5.1.1. Literature Review

A deterministic version of the norm test was used by Carter [20] in the design of a trust

region method for unconstrained optimization that employs inexact gradients. Friedlander

and Schmidt [27] propose increasing the sample size geometrically for the solution of

the finite-sum problem, establish a linear convergence result, and report numerical tests

with a quasi-Newton method. Byrd et al. [16] studied the expected risk minimization

problem and provide a complexity result for the geometric growth condition. That paper

also introduces the stochastic version of the norm test (5.3), and reports results with a

Newton-like method. Bollapragada et al. [13] introduced a variant of the norm test, called

the the inner product test, which is designed to improve the practical efficiency of the

method at the price of weakening the theoretical convergence guarantees. (An adaption

of this test to problems (5.1) and (5.5) is presented in Section 5.4.) Adaptive sampling

methods have also been studied by Cartis and Scheinberg [21], who establish a global rate

of convergence of unconstrained optimization methods that (implicitly) satisfy the norm

167

condition. Pasupathy et al. [49] study sampling rates in stochastic recursions. Roosta et

al. [53, 54] analyze sub-sampled Newton methods with adaptive sampling, and De et al.

[25] study automatic inference with adaptive sampling.

There is a large literature on proximal gradient methods for solving composite opti-

mization problems; see e.g. [10] and the references therein. Some of these studies consider

inexact gradients [55], but these studies do not propose an automatic procedure for im-

proving the quality of the gradient. An exception is [3], which deals with a similar subject,

but differ from this chapter in various ways in its treatment of the topic.

5.2. Outline of the Algorithm

Since the constrained optimization problem (5.1) is a special case of the composite

problem (5.5), we focus on the latter and state the problem under consideration as

(5.6) min
x∈Rn

φ(x) = f(x) + h(x), where f(x) = Eθ∼Θ [F (x, θ)] .

Here, F (·, θ) : Rn → R is a smooth function, θ is a random variable with support Θ, and

h : Rn → R∪{∞} is a convex (and generally nonsmooth) function. A popular method for

solving composite optimization problems is the proximal gradient method (see e.g. [11]),

which in the context of problem (5.6) is given as

xk+1 ← argmin
x∈Rn

f(xk) + gTk (x− xk) +
1

2αk
‖x− xk‖2 + h(x), with 0 < αk ≤ 1

L
,(5.7)

where gk is an unbiased estimator of ∇f(xk) and L is a Lipschitz constant defined below.

Here and henceforth, ‖ · ‖ denotes the Euclidean norm. As is well known, we can also

168

write this iteration as

(5.8) xk+1 = proxαkh
(xk − αkgk) ,

where

proxαkh
(zk) = argmin

x∈Rd

h(x) +
1

2αk
‖x− zk‖2 .(5.9)

The proposed adaptive sampling proximal gradient algorithm proceeds in two stages.

At a given iterate xk, it first computes a gradient approximation (using the current sample

size) as well as a proximal gradient step. Based on information gathered from this step,

it computes a second proximal gradient step that determines the new iterate xk+1. An

outline of this method is given in Algorithm 5.1.

169

Algorithm 5.1: Outline of Adaptive Sampling Algorithm for Solving Problem (5.6)

Input: x0, sample size S ∈ N+, and sequence {αk > 0}.

1: for k = 0, 1, 2, ..., do

2: Draw S i.i.d. samples {θ0, θ1, · · · , θS−1} from Θ, compute

(5.10) gk =
1

S

S−1∑
i=0

∇xF (x, θi),

and the proximal gradient step

(5.11) xk+1 = proxαkh
(xk − αkgk) .

3: Determine the new sample size Sk ≥ S (see the next section).

4: if Sk > S then

5: re-sample Sk i.i.d. samples
{
θ̂0, θ̂1, · · · , θ̂Sk−1

}
from Θ, and compute:

xk+1 = proxαkh
(xk − αkgk) , where gk =

1

Sk

Sk−1∑
i=0

∇xF (x, θi);

6: else

7: let xk+1 = xk+1.

8: end if

9: Set S ← Sk.

10: end for

As discussed in Section 5.3.5, when Sk > S, one can reuse the samples from Step 1,

and in Step 3 only gather (Sk − S) additional i.i.d. samples
{
θ̂S, θ̂S+1, · · · , θ̂Sk−1

}
from

Θ.

The unspecified parts of this algorithm are the steplength sequence {αk} and the

determination of a sample size Sk in Step 2. The analysis in the next section provides the

elements for making those decisions. One requirement of the strategy used in Step 2-3 is

170

that, when h is not present, Algorithm 1 should reduce to the iteration (5.2)-(5.3), i.e.,

to an adaptive sampling gradient method using the norm test to control the sample size.

5.3. Derivation of the Algorithm

To motivate our approach for determining the sample size Sk, we begin by deriving a

fundamental condition (see (5.17) below) that ensures that the steps are good enough to

ensure convergence in expectation. The rest of the derivation of the algorithm consist of

devising a procedure for approximating condition (5.17) in practice.

5.3.1. A Fundamental Inequality

We recall that a function f : Rn → R is µ-strongly convex (with µ > 0) iff

(5.12)

f(γx+ (1− γ)y) ≤ γf(x) + (1− γ)f(y)− µ

2
γ(1− γ) ‖y − x‖2 , ∀x, y ∈ Rn, ∀γ ∈ [0, 1].

We also have that if f is a strongly convex and differentiable function, then

(5.13) f(x) ≥ f(y) +∇f(y)T (x− y) +
µ

2
‖x− y‖2, ∀x ∈ Rn.

If a function is continuously differentiable, µ-strongly convex, and has a Lipschitz contin-

uous gradient with Lipschitz constant L, we say that f is [µ, L]–smooth. We make the

following assumptions about problem (5.6).

Assumption 5.3.1. f : Rn → R is a [µ, L]-smooth function and h : Rn → R ∪ {∞}

is a closed convex and proper function.

171

These assumptions imply that the objective function φ defined in (5.6) is strongly

convex, and we denote its minimizer by x∗ and the minimum objective value by φ∗. We

consider the stochastic proximal gradient method (5.7) where gk is an unbiased estimator

of ∇f(xk) adapted to the filtration T generated as Tk = σ (x0, g0, g1, · · · , gk−1) . In other

words, we assume that

(5.14) E (gk|Tk) = ∇f(xk).

For simplicity, we denote conditional expectation as Ek [·] = E (·|Tk) and conditional

variance as Vark [·] = E
[
‖·‖2 |Tk

]
− ‖E (·|Tk)‖2. In what follows, we let fk,∇fk denote

f(xk),∇f(xk), and similarly for other functions. We begin by establishing a technical

lemma that provides the first stepping stone in our analysis.

Lemma 5.3.1. Suppose that Assumptions 5.3.1 hold and that {xk} is generated by

iteration (5.7), where gk satisfies (5.14). Then,

Ek [φk+1 − φ∗] ≤ (1− µαk)(φk − φ∗) + Ek
[
(∇fk − gk)T (xk+1 − xk)

]
−
(

1

2αk
− L

2

)
Ek
[
‖xk+1 − xk‖2] .

172

Proof. By Assumptions 5.3.1, we have that for any fixed xk ∈ Rn,

φk+1 ≤ fk +∇fTk (xk+1 − xk) +
L

2
‖xk+1 − xk‖2 + hk+1

= fk + gTk (xk+1 − xk) +
1

2αk
‖xk+1 − xk‖2 + hk+1 + (∇fk − gk)T (xk+1 − xk)

−
(

1

2αk
− L

2

)
‖xk+1 − xk‖2

≤ fk + gTk (x− xk) +
1

2αk
‖x− xk‖2 + h(x) + (∇fk − gk)T (xk+1 − xk)

−
(

1

2αk
− L

2

)
‖xk+1 − xk‖2 (for any x ∈ Rn by definition (5.7) of xk+1)

= fk +∇fTk (x− xk) +
1

2αk
‖x− xk‖2 + h(x) + (∇fk − gk)T (xk+1 − xk)

+ (gk −∇fk)T (x− xk)−
(

1

2αk
− L

2

)
‖xk+1 − xk‖2

≤ φ(x) +

(
1

2αk
− µ

2

)
‖x− xk‖2 + (∇fk − gk)T (xk+1 − xk)

+ (gk −∇fk)T (x− xk)−
(

1

2αk
− L

2

)
‖xk+1 − xk‖2 (by (5.13)).

This inequality holds for any x ∈ Rn. Let us substitute

(5.15) x← x̃k = βx∗ + (1− β)xk, with β = µαk,

173

in the relation above. Recalling the definition (5.12) of strong convexity, we obtain

φk+1 ≤ φ(x̃k) +

(
1

2αk
− µ

2

)
‖x̃k − xk‖2 + (∇fk − gk)T (xk+1 − xk)

+ (gk −∇fk)T (x̃k − xk)−
(

1

2αk
− L

2

)
‖xk+1 − xk‖2

≤ βφ∗ + (1− β)φk−
µ

2
β(1− β)‖x∗ − xk‖2 +

(
1

2αk
− µ

2

)
‖x̃k − xk‖2︸ ︷︷ ︸

term 1

+ (∇fk − gk)T (xk+1 − xk) + (gk −∇fk)T (x̃k − xk)−
(

1

2αk
− L

2

)
‖xk+1 − xk‖2 .

Term 1 can be written as

− µ

2
β(1− β)‖x∗ − xk‖2 +

(
1

2αk
− µ

2

)
β2 ‖x∗ − xk‖2

=− µ

2
β(1− β)‖x∗ − xk‖2 +

(
1− µαk

2αk

)
β2 ‖x∗ − xk‖2

= β(1− β)‖x∗ − xk‖2

(
β

2αk
− µ

2

)
= 0(5.16)

since β = µαk. Therefore,

φk+1 ≤ βφ∗ + (1− β)φk + (∇fk − gk)T (xk+1 − xk) + (gk −∇fk)T (x̃k − xk)

−
(

1

2αk
− L

2

)
‖xk+1 − xk‖2 .

174

Taking conditional expectation, noting that x̃k ∈ Tk, and recalling (5.14), we have

Ek [φk+1] ≤ βφ∗ + (1− β)φk + Ek
[
(∇fk − gk)T (xk+1 − xk)

]
−
(

1

2αk
− L

2

)
Ek
[
‖xk+1 − xk‖2] ,

and by the definition of β we conclude that

Ek [φk+1 − φ∗] ≤ (1− µαk)(φk − φ∗) + Ek
[
(∇fk − gk)T (xk+1 − xk)

]
−
(

1

2αk
− L

2

)
Ek
[
‖xk+1 − xk‖2] .

�

From this result, we can readily establish conditions under which the proximal gra-

dient iteration, with a fixed steplength αk = α, achieves Q-linear convergence of φk, in

expectation.

Theorem 5.3.1. Suppose that Assumptions 5.3.1 hold, that {xk} is generated by (5.7)

with αk = (1− η)/L for η ∈ (0, 1), and that gk satisfies (5.14). If we have that for all k,

(5.17) αkEk
[
(∇fk − gk)T (xk+1 − xk)

]
≤ η

2
Ek
[
‖xk+1 − xk‖2]

then

(5.18) Ek [φk+1 − φ∗] ≤
[
1− (1− η)

µ

L

]
(φk − φ∗).

We note that when h = 0 and the iteration becomes (5.2), condition (5.17) reduces to

the norm test (5.3) with ξ given by η/(1− η).

175

The assumption on αk in Theorem 5.3.1 is fairly standard. The key is inequality (5.17),

which is the most general condition we have identified for ensuring linear convergence.

However, it does not seem to be possible to enforce this condition in practice, even ap-

proximately, for the composite optimization problem (which includes convex constrained

optimization). Therefore, we seek an implementable version of (5.17), even if it is more

restrictive. Before doing so, we show that condition (5.17) can also be used to establish

convergence in the case when f is convex, but not strongly convex.

5.3.2. Convergence for General Convex f

We now show that when f is convex, the sequence of function values {φ(xk)} converges

to the optimal value φ∗ of problem (5.6) at a sublinear rate, in expectation. To establish

this result, we make the following assumptions.

Assumption 5.3.2. f : Rn → R is convex, differentiable and has an L− Lipschitz

continuous gradient, and h : Rn → R ∪ {∞} is a closed, convex and proper function.

We begin by proving a technical lemma.

Lemma 5.3.2. Suppose that Assumptions (5.3.2) hold and that {xk} is generated by

iteration (5.7), where gk satisfies (5.14) and αk = (1− η)/L for η ∈ (0, 1). If in addition

condition (5.17) is satisfied, we have that for any given z ∈ Tk,

(5.19) Ek [φk+1] ≤ φ(z) +
1

αk
Ek
[
(xk − xk+1)T (xk − z)

]
− 1

2αk
Ek
[
‖xk − xk+1‖2

]
.

176

Proof. By Assumptions (5.3.2), we have that

φk+1 ≤ fk +∇fTk (xk+1 − xk) +
L

2
‖xk+1 − xk‖2 + hk+1

≤ f(z)−∇fTk (z − xk) +∇fTk (xk+1 − xk) +
L

2
‖xk+1 − xk‖2 + hk+1 (by convexity of f)

≤ f(z)−∇fTk (z − xk) +∇fTk (xk+1 − xk) +
L

2
‖xk+1 − xk‖2 + h(z)

−
(
xk − xk+1

αk
− gk

)T
(z − xk+1) (by convexity of h and definition of xk+1)

= φ(z)−∇fTk (z − xk) +∇fTk (xk+1 − xk) +
L

2
‖xk+1 − xk‖2

−
(
xk − xk+1

αk
− gk

)T
(z − xk + xk − xk+1)

= φ(z) + (gk −∇fk)T (z − xk) +
1

αk
(xk − xk+1)T (xk − z)

+

(
L

2
− 1

αk

)
‖xk − xk+1‖2 + (∇fk − gk)T (xk+1 − xk), (rearraging terms)

where the third inequality follows from the fact that 0 ∈ gk + ∂hk+1 + xk−xk+1

αk
. Taking

conditional expectation and using (5.17), we have

Ek [φk+1] ≤ φ(z) + Ek
[
(gk −∇fk)T (z − xk)

]
+

1

αk
Ek
[
(xk − xk+1)T (xk − z)

]
+

(
L

2
− 1

αk

)
Ek
[
‖xk − xk+1‖2

]
+ Ek

[
(∇fk − gk)T (xk+1 − xk)

]
= φ(z) +

1

αk
Ek
[
(xk − xk+1)T (xk − z)

]
+

(
L

2
− 1

αk

)
Ek
[
‖xk − xk+1‖2

]
+ Ek

[
(∇fk − gk)T (xk+1 − xk)

]
(since z ∈ Tk)

≤ φ(z) +
1

αk
Ek
[
(xk − xk+1)T (xk − z)

]
−
(

1

αk
− L

2
− η

2αk

)
Ek
[
‖xk − xk+1‖2

]
(by (5.17))

= φ(z) +
1

αk
Ek
[
(xk − xk+1)T (xk − z)

]
− 1

2αk
Ek
[
‖xk − xk+1‖2

]
,

177

where the last equality is due to αk = 1−η
L

. �

Theorem 5.3.2. Suppose that Assumptions (5.3.2) hold and that {xk} is generated

by iteration (5.7), where gk satisfies (5.14) and αk = α = (1 − η)/L for η ∈ (0, 1). If in

addition (5.17) is satisfied, we have

(5.20) E [φk − φ∗] ≤
L‖x0 − x∗‖2

2(1− η)k
,

where x∗ is any optimal solution of problem (5.6).

Proof. From Lemma 5.3.2, for any z ∈ Tk, we have

Ek [φk+1] ≤ φ(z) +
1

α
Ek
[
(xk − xk+1)T (xk − z)

]
− 1

2α
Ek
[
‖xk − xk+1‖2

]
.

Now substituting z = x∗ ∈ Tk and taking full expectations, we have

E [φk+1 − φ∗] ≤
1

α
E
[
(xk − xk+1)T (xk − x∗)

]
− 1

2α
E
[
‖xk − xk+1‖2

]
=

1

2α
E
[
2(xk − xk+1)T (xk − x∗)− ‖xk − xk+1‖2

]
=

1

2α
E
[
‖xk − x∗‖2 − ‖xk+1 − x∗‖2

]
.

Summing the above inequality for k = 0 to k − 1, we get

1

k

k−1∑
t=0

E [φt+1 − φ∗] ≤
1

2αk
E
[
‖x0 − x∗‖2 − ‖xk − x∗‖2

]
≤ ‖x0 − x∗‖2

2αk
.

178

By substituting z = xk ∈ Tk in Lemma 5.3.2, we have that the sequence of expected

function values is a deceasing sequence; specifically,

Ek [φk+1] ≤ φk −
1

2α
Ek
[
‖xk − xk+1‖2

]
.

Therefore, we have,

E [φk − φ∗] ≤
1

k

k−1∑
t=0

E [φt+1 − φ∗] ≤
‖x0 − x∗‖2

2αk
.

�

5.3.3. A Practical Condition

To obtain a condition that is more amenable to computation than (5.17), we look for an

upper bound for the left hand side of this inequality and a lower bound for the right hand

side. Imposing an inequality between these two bounds will imply (5.17).

Theorem 5.3.3. Suppose that Assumptions 5.3.1 hold, that {xk} is generated by (5.7)

with αk = (1−η)/L for η ∈ (0, 1), and that gk satisfies (5.14). If gk additionally satisfies

(5.21) Vark [gk] ≤
η

2

∥∥∥∥Ek [xk+1]− xk
αk

∥∥∥∥2

,

then (5.17) holds and hence

Ek [φk+1 − φ∗] ≤
[
1− (1− η)

µ

L

]
(φk − φ∗).

179

If instead of Assumptions 5.3.1, the weaker Assumptions 5.3.2 hold, then

E [φk − φ∗] ≤
L‖x0 − x∗‖2

2(1− η)k
,

where x∗ is any optimal solution of problem (5.6).

Proof. We first note that in (5.17),

Ek
[
‖xk+1 − xk‖2] = ‖Ek [xk+1]− xk‖2 + Vark [xk+1 − xk]

≥ ‖Ek [xk+1]− xk‖2 ,

which is a quantity that we can approximate with a sample estimation; as we argue in

Section 5.3.4.

On the other hand, let

x̂k+1 = proxαkh
(xk − αk∇fk) ∈ Tk.

180

Then, since the prox operator is a contraction mapping,

Ek
[
(∇fk − gk)T (xk+1 − xk)

]
= Ek

[
(∇fk − gk)T (xk+1 − x̂k+1)

]
+ Ek

[
(∇fk − gk)T (x̂k+1 − xk)

]
= Ek

[
(∇fk − gk)T (xk+1 − x̂k+1)

]
(since x̂k+1 ∈ Tk)

≤ Ek [‖∇fk − gk‖ ‖xk+1 − x̂k+1‖]

= Ek
[
‖∇fk − gk‖

∥∥proxαkh
(xk − αkgk)− proxαkh

(xk − αk∇fk)
∥∥]

≤ αkEk
[
‖∇fk − gk‖2]

= αkVark [gk] .

Thus, we have obtained both

η

2
‖Ek [xk+1]− xk‖2 ≤ η

2
Ek
[
‖xk+1 − xk‖2]

and

αkEk
[
(∇fk − gk)T (xk+1 − xk)

]
≤ α2

kVark [gk] .

Therefore, if we require that

Vark [gk] ≤
η

2

∥∥∥∥Ek [xk+1]− xk
αk

∥∥∥∥2

,

it follows that condition (5.17) is satisfied. �

The significance of Theorem 5.3.3 is that it establishes the convergence of the algorithm

under condition (5.21) which, although being more restrictive than condition (5.17), can

181

be approximated empirically, as shown in Section 5.3.4. Again, it is reassuring that when

h = 0, condition (5.21) reduces to the norm test (5.3).

5.3.4. Choice of the Sample Size Sk

We now discuss how to ensure that condition (5.21) is satisfied. At iterate xk, suppose

we select Sk i.i.d. samples {θ0, θ1, · · · , θSk−1} from Θ, and set

(5.22) gk =
1

Sk

Sk−1∑
i=0

∇xF (xk, θi).

Clearly, (5.14) holds and the variance of gk is given by

Vark [gk] =
Ek [‖∇xF (xk, θ)−∇f(xk)‖2]

Sk
.

Therefore, (5.21) holds if Sk satisfies

(5.23)
Ek [‖∇xF (xk, θ)−∇f(xk)‖2]

Sk
≤ η

2

∥∥∥∥Ek [xk+1]− xk
αk

∥∥∥∥2

,

or

(5.24) Sk ≥ Ek
[
‖∇xF (xk, θ)−∇f(xk)‖2

]/η

2

∥∥∥∥Ek [xk+1]− xk
αk

∥∥∥∥2

.

This is the theoretical condition suggested by our analysis. Based on this condition we

can state

Corollary 5.3.1. Suppose that Assumptions 5.3.1 hold, that {xk} is generated by

(5.7) with αk = (1 − η)/L for η ∈ (0, 1) and with gk given by (5.22). If the sample sizes

Sk are chosen to satisfy (5.24) for all k, then (5.17) is satisfied and hence (5.18) holds.

182

If instead of Assumptions 5.3.1, the weaker Assumptions 5.3.2 are satisfied, then (5.20)

holds.

In practice, we need to estimate both quantities on the right hand side of (5.24) As was

done e.g. in [14, 16] the population variance term in the numerator can be approximated

by a sample average:

(5.25) Ek
[
‖∇xF (xk, θ)−∇f(xk)‖2

]
≈ 1

S − 1

S−1∑
i=0

‖∇xF (xk, θi)− gk‖
2 ,

where gk is defined in (5.10). We handle the denominator on the right hand side of (5.24)

by approximating ‖Ek[xk+1]− xk‖ with the norm of the trial step ‖xk+1 − xk‖ defined in

(5.11), i.e.,

xk+1 = proxαkh
(xk − αkgk) .

This is somewhat analogous to the approximations made in the unconstrained case in

[14, 16], the main difference being the presence here of the prox operator, which is a

contraction. Given this, we can replace (5.24) by

(5.26) Sk ≥
1

S − 1

S−1∑
i=0

‖∇xF (x, θi)− gk‖
2

/
η

2

∥∥∥∥xk+1 − xk
αk

∥∥∥∥2

.

Our algorithm will use condition (5.26) to control the sample size.

5.3.5. The Practical Adaptive Sampling Algorithm

We now summarize the proposed method in this chapter as Algorithm 5.2, which employs

the aforementioned approximations.

183

Algorithm 5.2: Complete Algorithm for Solving Problem (5.6)

1: Input: x0, initial sample size S ∈ N+, and sequence {αk > 0}.

2: for k = 1, 2, . . . , do

3: Draw S i.i.d. samples {θ0, θ1, · · · , θS−1} from Θ, compute

gk =
1

S

S−1∑
i=0

∇xF (x, θi),

and trial proximal gradient step

(5.27) xk+1 = proxαkh
(xk − αkgk) .

4: Set

(5.28) Sk = max {S, a} , a =
1

S − 1

S−1∑
i=0

‖∇xF (x, θi)− gk‖
2

/
η

2

∥∥∥∥xk+1 − xk
αk

∥∥∥∥2

.

5: if Sk > S then

6: choose (Sk − S) additional i.i.d. samples {θS, θS+1, · · · , θSk−1} from Θ, and

compute:

xk+1 = proxαkh
(xk − αkgk) , where gk =

1

Sk

Sk−1∑
i=0

∇xF (x, θi);

7: else

8: set xk+1 = xk+1.

9: end if

10: Set S = Sk.

11: end for

As noted above, for large S, the choice of Sk given by (5.28) approximately ensures

the condition (5.21) is satisfied. Computing Sk involves one evaluation of the proximal

operator as well as the evaluation S stochastic gradients.

184

5.4. Using an Inner-Product Test in Place of the Norm Test

In the unconstrained setting, Bollapragada et al [14] have observed that the norm

test, although endowed with optimal theoretical convergence rates, is too demanding in

terms of sample size requirements. They derived a practical test called the inner-product

test, which ensures that the search directions are descent directions with high probability,

and performs well with smaller sample sizes. In this section, we extend these ideas to the

constrained (or composite) optimization settings, and derive the equivalent inner-product

test for adaptively controlling the sample sizes.

The goal is to choose the sample sizes such that the algorithm step provides descent

with high probability. We would like to choose a sample size so that d̄k = (x̄k+1− xk)/αk

provides decrease on the objective approximation ∇f(xk)
Td+ h(xk + d), and specifically

so that ∇f(xk)
T d̄k+h(xk+ d̄k)−h(xk) ≤ β(ḡk

T d̄k+h(xk+ d̄k)−h(xk)) for some β ∈ (0, 1).

This means we want to satisfy

(5.29) (∇f(xk)− ḡk)T d̄k ≤ −(1− β)
(
ḡk
T d̄k + h(xk + d̄k)− h(xk)

)
.

To estimate the left hand side of (5.29), note that in general, given a vector p ∈ Rn, since

Ek
[
(ḡ −∇f(xk))

Tp
]

= 0, we can estimate the size of the quantity (ḡk − ∇f(xk))
Tp by

estimating the variance of (ḡk−∇f(xk))
Tp. Since the initial sample size is S this is given

by

(5.30) Vark
[
ḡTk p
]
≈ 1

Sk

1

S − 1

S−1∑
i=0

(
(∇xF (x, θi)− gk)Tp

)2
.

185

We use this estimate in (5.29) with p = d̄k and get the condition

(5.31) Sk ≥
1

S − 1

S−1∑
i=0

(
(∇xF (x, θi)− gk)T d̄k

)2

/
(1−β)2(ḡk

T d̄k +h(xk + d̄k)−h(xk))
2,

where (1−β)2 is analogous to η/2 in (5.26). We are aware that, in using (5.30) with p = d̄k,

we are treating ḡk and d̄k as independent while they are not, but the practical success of

the inner product test in [14] indicates that this approach is worthy of exploration.

We also note that in a problem with convex constraints, where h(·) involves a convex

indicator function with possibly infinite values, the algorithm will only generate feasible

points xk and xk + d̄k, so that in the above discussion h only takes on finite values at

those points.

The version of our algorithm using this approach consists of following Algorithm 5.2

with the right hand side of (5.31) used in place of the formula for a in step 4 in Algorithm

5.2, which is presented in 5.3.

186

Algorithm 5.3: Algorithm for Solving Problem (5.6) using inner-product test

1: Input: x0, initial sample size S ∈ N+, and sequence {αk > 0}.

2: for k = 1, 2, . . . , do

3: Draw S i.i.d. samples {θ0, θ1, · · · , θS−1} from Θ, compute

gk =
1

S

S−1∑
i=0

∇xF (x, θi),

and trial proximal gradient step

xk+1 = proxαkh
(xk − αkgk) .

4: Set Sk = max {S, a}, where

a =
1

S − 1

S−1∑
i=0

(
(∇xF (x, θi)− gk)T d̄k

)2

/
(1− β)2(ḡk

T d̄k + h(xk + d̄k)− h(xk))
2.

5: if Sk > S then

6: choose (Sk − S) additional i.i.d. samples {θS, θS+1, · · · , θSk−1} from Θ, and

compute:

xk+1 = proxαkh
(xk − αkgk) , where gk =

1

Sk

Sk−1∑
i=0

∇xF (x, θi);

7: else

8: set xk+1 = xk+1.

9: end if

10: Set S = Sk.

11: end for

187

5.5. Numerical Experiments

We conducted numerical experiments to illustrate the performance of the proposed

algorithms. We consider binary classification problems where the objective function is

given by the logistic loss with `1-regularization:

(5.32) φ(x) =
1

N

N∑
i=1

log(1 + exp(−yixT zi)) + λ‖x‖1.

Here {(zi, yi), i = 1, . . . , N} are the input output data pairs, and the regularization pa-

rameter is chosen as λ = 1/N . This problem falls into the general category of minimizing

composite optimization problems of the form (5.5), where f(x) = E
[
log(1 + exp(−yixT zi))

]
,

with expectation taken over a discrete uniform probability distribution defined on the

dataset, and h(x) = λ‖x‖1. We use the data sets listed in Table 5.1.

Data Set Data Points N Variables d Reference
covertype 581012 54 [12]
gisette 6000 5000 [33]
ijcnn 35000 22 [39]
MNIST 60000 784 [38]

mushrooms 8124 112 [39]
sido 12678 4932 [39]

Table 5.1. Characteristics of the binary datasets used in the experiments.

We implemented three different variants of proximal stochastic gradient methods

where the batch sizes are either: (1) continuously increased at a geometric rate (labelled

GEOMETRIC), i.e.,

(5.33) Sk =
⌈
S0 (1 + γ)k

⌉
;

188

where γ > 0 is a parameter that will be varied in the experiments; (2) adaptively chosen

based on the norm test (5.26) as in Algorithm 5.2 (labelled NORM); or (3) adaptively chosen

based on the inner-product test (5.31) as in Algorithm 5.3 (labelled IP). The steplength

parameter αk in each method is chosen as the number in the set {2−10, 2−7, · · · , 215} that

leads to best performance. The initial sample size was set to S0 = 2. The methods are

terminated if ‖xk+1 − xk‖/αk ≤ 10−8 or if 100 epochs (passes through entire dataset) are

performed. An approximation φ∗ of the optimal function value was computed for each

problem by running the deterministic proximal gradient method for 50,000 iterations.

Figures 5.2 and 5.3 report the performance of the three methods for the dataset

mushroom, for various values of the parameter γ in (5.33) and η in (5.26) and (5.31) (η in

(5.31) corresponds to 2(1−β)2). Figure 5.2, the vertical axis measures the optimality gap,

φ(x)− φ∗, and the horizontal axis measures the number of effective gradient evaluations,

defined as
∑k

j=0 Sj/N . In Figure 5.3, the vertical axis measures the batchsize as a

fraction of total number of data points N , and the horizontal axis measures the number

of iterations. The results for other datasets in Table 5.1 can be found in Appendix A.

We observe that the inner product test is the most efficient in terms of effective

gradient evaluations, which is indicative of the total computational work and CPU time.

For the geometric strategy, smaller values of γ typically lead to better performance, as

they prevent the batch size from growing too rapidly. The norm test gives a performance

comparable to the best runs of the geometric strategy, but the latter has much higher

variability. In other words, whereas the geometric strategy can be quite sensitive to the

choice of γ, the norm and inner product tests are fairly insensitive to the choice of η.

189

Figure 5.2. Optimality gap φ(xk)−φ∗ against effective gradient evaluations
on dataset mushrooms, with different strategies to control batch size: geo-
metric increase (top left), norm test (top right), inner-product test (bottom
left), and comparison between the best run for each method (bottom right).

5.6. Final Remarks

Algorithms that adaptively improve the quality of the approximate gradient during

the optimization process are of interest from theoretical and practical perspectives, and

have been well-studied in the context of unconstrained optimization. In this chapter, we

proposed an adaptive method for solving constrained and composite optimization prob-

lems. The cornerstone of the proposed algorithm and its analysis is condition (5.17),

which we regard as a natural generalization of the well-known norm test from uncon-

strained optimization. As this condition is difficult to implement precisely in practice, we

approximate it by condition (5.21). We are able to prove convergence for the resulting

190

Figure 5.3. Batch size (as a fraction of total number of data points N)
against iterations on dataset mushrooms, with different strategies to con-
trol batch size: geometric increase (top left), norm test (top right), inner-
product test (bottom left), and comparison between the best run for each
method (bottom right).

methods under standard conditions. It remains to be seen whether there is a condition

with similar properties as (5.17), that is amenable to computation and less restrictive

than (5.21). In this chapter, we also proposed a practical inner-product condition (5.29)

that extends the ideas proposed in the unconstrained settings, and is more efficient in

practice than the norm condition.

191

References

[1] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith, PETSc users
manual, Tech. Rep. Report ANL-95/11, Revision 2.1.1, Argonne National Labora-
tory, Argonne, Illinois, USA, 2001.

[2] R. R. Barton, Computing forward difference derivatives in engineering optimiza-
tion, Engineering optimization, 20 (1992), pp. 205–224.

[3] F. Beiser, B. Keith, S. Urbainczyk, and B. Wohlmuth, Adaptive sam-
pling strategies for risk-averse stochastic optimization with constraints, arXiv preprint
arXiv:2012.03844, (2020).

[4] A. S. Berahas, R. H. Byrd, and J. Nocedal, Derivative-free optimization of
noisy functions via quasi-Newton methods, arXiv preprint arXiv:1803.10173, (2018).

[5] , Derivative-free optimization of noisy functions via quasi-newton methods, SIAM
Journal on Optimization, 29 (2019), pp. 965–993.

[6] A. S. Berahas, L. Cao, K. Choromanski, and K. Scheinberg, Linear inter-
polation gives better gradients than Gaussian smoothing in derivative-free optimiza-
tion, arXiv preprint arXiv:1905.13043, (2019).

[7] , A theoretical and empirical comparison of gradient approximations in
derivative-free optimization, arXiv preprint arXiv:1905.01332, (2019).

[8] A. S. Berahas, L. Cao, and K. Scheinberg, Global convergence rate analysis of
a generic line search algorithm with noise, arXiv preprint arXiv:1910.04055, (2019).

[9] A. S. Berahas, J. Nocedal, and M. Takác, A multi-batch L-BFGS method
for machine learning, in Advances in Neural Information Processing Systems, 2016,
pp. 1055–1063.

[10] D. P. Bertsekas, Convex Optimization Algorithms, Athena Scientific, 2015.

[11] D. P. Bertsekas, A. Nedić, and A. E. Ozdaglar, Convex analysis and opti-
mization, Athena Scientific Belmont, 2003.

192

[12] J. A. Blackard and D. J. Dean, Comparative accuracies of artificial neural
networks and discriminant analysis in predicting forest cover types from cartographic
variables, Computers and electronics in agriculture, 24 (1999), pp. 131–151.

[13] R. Bollapragada, R. Byrd, and J. Nocedal, Adaptive sampling strategies for
stochastic optimization, arXiv preprint arXiv:1710.11258, (2017).

[14] , Adaptive sampling strategies for stochastic optimization, SIAM Journal on Op-
timization, 28 (2018), pp. 3312–3343.

[15] R. Bollapragada, D. Mudigere, J. Nocedal, H.-J. M. Shi, and P. T. P.
Tang, A progressive batching L-BFGS method for machine learning, in International
Conference on Machine Learning, 2018, pp. 620–629.

[16] R. H. Byrd, G. M. Chin, J. Nocedal, and Y. Wu, Sample size selection in
optimization methods for machine learning, Mathematical Programming, 134 (2012),
pp. 127–155.

[17] R. H. Byrd, S. L. Hansen, J. Nocedal, and Y. Singer, A stochastic quasi-
Newton method for large-scale optimization, SIAM Journal on Optimization, 26
(2016), pp. 1008–1031.

[18] R. H. Byrd and J. Nocedal, A tool for the analysis of quasi-Newton methods with
application to unconstrained minimization, SIAM Journal on Numerical Analysis, 26
(1989), pp. 727–739.

[19] R. E. Caflisch, Monte Carlo and quasi-Monte Carlo methods, Acta numerica, 7
(1998), pp. 1–49.

[20] R. G. Carter, On the global convergence of trust region algorithms using inexact
gradient information, SIAM Journal on Numerical Analysis, 28 (1991), pp. 251–265.

[21] C. Cartis and K. Scheinberg, Global convergence rate analysis of unconstrained
optimization methods based on probabilistic models, Mathematical Programming,
(2015), pp. 1–39.

[22] T. Choi and C. T. Kelley, Superlinear convergence and implicit filtering, SIAM
Journal on Optimization, 10 (2000), pp. 1149–1162.

[23] C. Courtney Paquette and K. Scheinberg, A stochastic line search method
with convergence rate analysis, arXiv preprint arXiv:1807.07994, (2018).

193

[24] Y.-H. Dai, Convergence properties of the bfgs algoritm, SIAM Journal on Optimiza-
tion, 13 (2002), pp. 693–701.

[25] S. De, A. Yadav, D. Jacobs, and T. Goldstein, Automated inference with
adaptive batches, in Artificial Intelligence and Statistics, 2017, pp. 1504–1513.

[26] J. Dennis and H. Walker, Inaccuracy in quasi-Newton methods: Local improve-
ment theorems, in Mathematical Programming Studies, R. K. Korte B., ed., vol. 22,
Springer, 1984.

[27] M. P. Friedlander and M. Schmidt, Hybrid deterministic-stochastic methods
for data fitting, SIAM Journal on Scientific Computing, 34 (2012), pp. A1380–A1405.

[28] P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright, Computing
forward-difference intervals for numerical optimization, SIAM Journal on Scientific
and Statistical Computing, 4 (1983), pp. 310–321.

[29] P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization, Academic
Press, London, 1981.

[30] N. I. Gould, D. Orban, and P. L. Toint, CUTEst: a constrained and uncon-
strained testing environment with safe threads for mathematical optimization, Com-
putational Optimization and Applications, 60 (2015), pp. 545–557.

[31] N. I. M. Gould, D. Orban, and P. L. Toint, CUTEr and sifdec: A Constrained
and Unconstrained Testing Environment, revisited, ACM Trans. Math. Softw., 29
(2003), pp. 373–394.

[32] R. M. Gower, D. Goldfarb, and P. Richtárik, Stochastic block BFGS: squeez-
ing more curvature out of data, in Proceedings of the 33rd International Conference
on Machine Learning, 2016.

[33] I. Guyon, S. Gunn, A. Ben-Hur, and G. Dror, Result analysis of the NIPS
2003 feature selection challenge, in Advances in neural information processing sys-
tems, 2004, pp. 545–552.

[34] R. W. Hamming, Introduction to Applied Numerical Analysis, Courier Corporation,
2012.

[35] A. Jalilzadeh, U. V. Shanbhag, J. H. Blanchet, and P. W. Glynn, Optimal
smoothed variable sample-size accelerated proximal methods for structured nonsmooth
stochastic convex programs, arXiv preprint arXiv:1803.00718, (2018).

194

[36] C. T. Kelley, Implicit filtering, vol. 23, SIAM, 2011.

[37] J. Larson, M. Menickelly, and S. M. Wild, Derivative-free optimization meth-
ods, Acta Numerica, 28 (2019), pp. 287–404.

[38] Y. LeCun, C. Cortes, and C. J. Burges, MNIST handwritten digit database,
AT&T Labs [Online]. Available: http://yann. lecun. com/exdb/mnist, (2010).

[39] M. Lichman, UCI machine learning repository. http://archive.ics.uci.edu/ml,
2013.

[40] D. C. Liu and J. Nocedal, On the limited memory BFGS method for large scale
optimization, Mathematical Programming, 45 (1989), pp. 503–528.

[41] W. F. Mascarenhas, The bfgs method with exact line searches fails for non-convex
objective functions, Mathematical Programming, 99 (2004), pp. 49–61.

[42] J. L. Morales and J. Nocedal, Remark on “Algorithm 778: L-BFGS-B: Fortran
subroutines for large-scale bound constrained optimization”, ACM Transactions on
Mathematical Software (TOMS), 38 (2011), pp. 1–4.

[43] J. J. Moré and S. M. Wild, Estimating computational noise, SIAM Journal on
Scientific Computing, 33 (2011), pp. 1292–1314.

[44] , Estimating derivatives of noisy simulations, ACM Transactions on Mathemat-
ical Software (TOMS), 38 (2012), p. 19.

[45] P. Moritz, R. Nishihara, and M. Jordan, A linearly-convergent stochastic
L-BFGS algorithm, in Artificial Intelligence and Statistics, 2016, pp. 249–258.

[46] A. Nedić and D. Bertsekas, Convergence rate of incremental subgradient al-
gorithms, in Stochastic optimization: algorithms and applications, Springer, 2001,
pp. 223–264.

[47] Y. Nesterov and V. Spokoiny, Random gradient-free minimization of convex
functions, Foundations of Computational Mathematics, 17 (2017), pp. 527–566.

[48] J. Nocedal and S. Wright, Numerical Optimization, Springer New York, 2 ed.,
1999.

[49] R. Pasupathy, P. Glynn, S. Ghosh, and F. S. Hashemi, On sampling rates
in stochastic recursions, (2015). Under Review.

http://archive.ics.uci.edu/ml

195

[50] M. Powell, Some global convergence properties of a variable metric algorithm for
minimization without exact line searches, in Nonlinear Programming, R. Cottle and
C. Lemke, eds., Philadelphia, 1976, SIAM-AMS.

[51] M. Powell, Some global convergence properties of a variable metric algorithm for
minimization without exact line searches-nonlinear programming, vol. 4, siam-ams
proceedings, SIAM, Philadelpha, PA, (1976).

[52] M. J. D. Powell, A fast algorithm for nonlinearly constrained optimization calcu-
lations, in Numerical Analysis, Dundee 1977, G. A. Watson, ed., no. 630 in Lecture
Notes in Mathematics, Heidelberg, Berlin, New York, 1978, Springer Verlag, pp. 144–
157.

[53] F. Roosta-Khorasani and M. W. Mahoney, Sub-sampled Newton methods I:
Globally convergent algorithms, arXiv preprint arXiv:1601.04737, (2016).

[54] , Sub-sampled Newton methods II: Local convergence rates, arXiv preprint
arXiv:1601.04738, (2016).

[55] M. Schmidt, N. Roux, and F. Bach, Convergence rates of inexact proximal-
gradient methods for convex optimization, in Advances in Neural Information Pro-
cessing Systems, J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K. Q. Wein-
berger, eds., vol. 24, Curran Associates, Inc., 2011, pp. 1458–1466.

[56] N. N. Schraudolph, J. Yu, and S. Günter, A stochastic quasi-Newton method
for online convex optimization, in International Conference on Artificial Intelligence
and Statistics, 2007, pp. 436–443.

[57] H.-J. M. Shi, M. Q. Xuan, F. Oztoprak, and J. Nocedal, On the numer-
ical performance of derivative-free optimization methods based on finite-difference
approximations, arXiv preprint arXiv:2102.09762, (2021).

[58] Y. Xie, R. H. Byrd, and J. Nocedal, Analysis of the BFGS method with errors,
SIAM Journal on Optimization, 30 (2020), pp. 182–209.

[59] T. J. Ypma, The effect of rounding errors on Newton-like methods, IMA Journal of
Numerical Analysis, 3 (1983), pp. 109–118.

196

APPENDIX A

Additional Numerical Experiments for Chapter 5

Here we present the numerical experiments for remaining data sets.

Figure A.1. Optimality gap φ(xk)−φ∗ against effective gradient evaluations
on dataset covtype, with different strategies to control batch size: geomet-
ric increase (top left), norm test (top right), inner-product test (bottom
left), and comparison between the best run for each method (bottom right).

197

Figure A.2. Batch size (as a fraction of total number of data points N)
against iterations on dataset covtype, with different strategies to con-
trol batch size: geometric increase (top left), norm test (top right), inner-
product test (bottom left), and comparison between the best run for each
method (bottom right).

198

Figure A.3. Optimality gap φ(xk)−φ∗ against effective gradient evaluations
on dataset gisette scale, with different strategies to control batch size:
geometric increase (top left), norm test (top right), inner-product test (bot-
tom left), and comparison between the best run for each method (bottom
right).

199

Figure A.4. Batch size (as a fraction of total number of data points N)
against iterations on dataset gisette scale, with different strategies to
control batch size: geometric increase (top left), norm test (top right),
inner-product test (bottom left), and comparison between the best run for
each method (bottom right).

200

Figure A.5. Optimality gap φ(xk)−φ∗ against effective gradient evaluations
on dataset ijcnn, with different strategies to control batch size: geometric
increase (top left), norm test (top right), inner-product test (bottom left),
and comparison between the best run for each method (bottom right).

201

Figure A.6. Batch size (as a fraction of total number of data points N)
against iterations on dataset ijcnn, with different strategies to control
batch size: geometric increase (top left), norm test (top right), inner-
product test (bottom left), and comparison between the best run for each
method (bottom right).

202

Figure A.7. Optimality gap φ(xk)−φ∗ against effective gradient evaluations
on dataset MNIST, with different strategies to control batch size: geometric
increase (top left), norm test (top right), inner-product test (bottom left),
and comparison between the best run for each method (bottom right).

203

Figure A.8. Batch size (as a fraction of total number of data points N)
against iterations on dataset MNIST, with different strategies to control batch
size: geometric increase (top left), norm test (top right), inner-product
test (bottom left), and comparison between the best run for each method
(bottom right).

204

Figure A.9. Optimality gap φ(xk)−φ∗ against effective gradient evaluations
on dataset sido, with different strategies to control batch size: geometric
increase (top left), norm test (top right), inner-product test (bottom left),
and comparison between the best run for each method (bottom right).

205

Figure A.10. Batch size (as a fraction of total number of data points N)
against iterations on dataset sido, with different strategies to control batch
size: geometric increase (top left), norm test (top right), inner-product
test (bottom left), and comparison between the best run for each method
(bottom right).

	ABSTRACT
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Chapter 1. Introduction
	1.1. Quasi-Newton Methods for Noisy Optimization Problems
	1.2. Derivative-free Optimization and Finite Difference
	1.3. Stochastic Optimization and Adaptive Sampling

	Chapter 2. Analysis of the BFGS Method with Errors
	2.1. Introduction
	2.2. The Algorithm
	2.3. Convergence Analysis
	2.4. Numerical Experiments
	2.5. Final Remarks

	Chapter 3. A Noise-Tolerant Quasi-Newton Algorithm for Unconstrained Optimization
	3.1. Introduction
	3.2. The Algorithm
	3.3. Convergence Analysis
	3.4. A Practical Algorithm
	3.5. Numerical Experiments
	3.6. Final Remarks

	Chapter 4. Adaptive Finite-Difference Estimation
	4.1. Introduction
	4.2. Adaptive Finite-Difference Interval Estimation
	4.3. Numerical Experiments
	4.4. Conclusion

	Chapter 5. Constrained and Composite Optimization via Adaptive Sampling Methods
	5.1. Introduction
	5.2. Outline of the Algorithm
	5.3. Derivation of the Algorithm
	5.4. Using an Inner-Product Test in Place of the Norm Test
	5.5. Numerical Experiments
	5.6. Final Remarks

	References
	Appendix A. Additional Numerical Experiments for Chapter 5

