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Abstract

Given directives such as the UN Global Goals targeting sustainable development, the
research presented herein makes but a small contribution to the advancement of al-
ternative energy technologies. Nevertheless, the present work was largely motivated to
address specific points of intrigue within the thermoelectrics community. The general
principles demonstrated, however, may be directly applicable to other areas of solid-state
research.

Thermoelectric materials, which can convert heat to electricity through the Seebeck ef-
fect, require a complex optimization of their electronic and thermal properties. For the
past 2 decades, great strides have been made to improve their energy conversion effi-
ciency—and many successes in doing so can be attributed to reductions in the thermal
conductivity. In the long-standing phonon gas model of thermal transport, where atomic
vibrations carry heat in a manner analogous to gas particles, the strategy has been to
introduce scattering mechanisms that impede transport. This works well in many mate-
rials. Recently, however, we have demonstrated that the thermal conductivity of materials
like lead telluride may be engineered by controlling their bulk elastic properties, effec-
tively controlling the speed of the phonons, which is a fundamentally different mechanism
than scattering.

Another proposed method of reducing thermal conductivity was to utilize phase transi-
tions, with the hope of introducing additional phonon scattering. In fact, there are many
reports of reduced thermal conductivity (and improved thermoelectric performance) thro-
ugh both solid-solid and solid-liquid (analogous to ice melting) phase transitions. Here,
a reassessment of the underlying thermodynamic relationship between thermal conduc-
tivity and thermal diffusivity demonstrates that thermal conductivity is likely underes-
timated from thermal diffusivity measurements when latent heats from phase transfor-
mations are not taken into account. In several well-characterized material systems it is
shown that thermal conductivity is not greatly impacted by phase transitions, whereas
thermal diffusivity is. This relates to a need for the accurate characterization of the heat
capacity of materials at high temperature. For materials not undergoing a phase transi-
tion a simple equation was developed to describe high temperature heat capacity that is
likely more accurate than experiments in many cases.

Although phase transitions may not result in ultralow thermal conductivity, there are
materials (and materials still to be discovered) with intrinsically high anharmonicity that
results in high phonon scattering rates and low thermal conductivity. Here, anharmonic-



4

ity is an aspect of bonding in materials that deviates from Hooke’s Law, i.e. there are
non-linear interactions between atoms. Anharmonicity is also used to explain thermal
expansion. Thus, characterizing anharmonicity has widespread repercussions. Here, it
is proposed that the harmonic (e.g. elastic) properties of solids can be thermodynamically
related to higher order anharmonic effects of bonding. Specifically, a physical model of
thermal expansion is developed by considering that harmonic phonons produce a pres-
sure pushing the solid outwards, while the elasticity of the atomic bonds compensates the
phonon pressure to achieve mechanical equilibrium. Besides fundamentally reconsider-
ing the nature of anharmonic behaviors in solids, this simple model provides accessible
estimates of thermal expansion and the thermodynamic Grüneisen parameter that may
be used for thermodynamic modeling and high-throughput screening of anharmonicity,
both necessary for next-generation computational materials design.

The desire to reduce thermal conductivity for improved thermoelectric efficiency is sum-
marized well by the "phonon-glass electron-crystal" mantra. Here, the thermal proper-
ties of the material are desired to be glass-like (amorphous-like) since glasses are known
to exhibit some of the lowest thermal conductivities of all solids. However, glasses are
not typically good electronic conductors, and so crystallinity is desirable for this aspect
of thermoelectrics optimization. Indeed, this concept has been demonstrated in some
solids like semiconducting clathrates, zinc antimonide and skutterudites. Nevertheless,
the atomic vibrations in crystals are often only discussed in terms of the phonon gas
model. Only recently has it has it been shown that vibrations in crystals and those in
glasses can be described in the same mathematical framework, and that crystalline ma-
terials can transition to more glass-like behavior under certain circumstances. In this
work, a phenomenological model of thermal transport by diffusons (the primary mech-
anism of heat transport in glasses) is developed for applications to crystalline materials.
This study was one of the first to promote a reclassification of vibrations in crystals and
gives an estimate of the so-called "minimum" thermal conductivity that can be used to
benchmark experimental observations. Specifically, the model gives an estimate for ther-
mal conductivity in the case where all vibrations in the material behave as diffusons.
Again, characterizing the fundamental nature of vibrations in solids has far reaching
implications for energy materials beyond thermoelectrics.

So far, both thermodynamic analysis and microscopic models have been used to charac-
terize the thermal properties of solids. In this work, they were also utilized to assess the
stability of materials for device-level operation. In one case, it is shown that there are
thermodynamic stability criteria in a subclass of thermoelectric materials called mixed
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ionic-electronic conductors. Their stability depends on the atomic chemical potential of
the mobile atom. Importantly, this means that there is a critical voltage above which the
material can decompose. This is related to, but not the same as, the prevalent idea that
these materials cannot sustain high current densities. In fact, it is shown experimentally
that the superionic material copper sulfide can sustain high current densities when the
voltage is kept below the thermodynamic critical voltage of the material.

Lastly, an estimate for the fracture toughness of solids is proposed that is based on
ideal-strength calculations. Modern computational methods in materials science pro-
vide a unique opportunity to investigate fracture at the level of local atomic structures.
The integral of the ideal stress-displacement curve is used to approximate the work of
fracture. That is, to estimate the total energy required to make new surfaces. This com-
putational method is shown to reproduce the magnitude of experimental results quite
well, indicating that the relevant physics of fracture are being captured. This method is
easily generalized to defect structures in materials and may be useful for atomic scale
materials design.

Although this body of work is but a humble offering to the scientific community, when re-
search is coupled with international collaboration and education outreach, great strides
can be made in small steps. It is my passion to explore material properties, to build the
energy sciences community and to share knowledge with others.
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Notation Conventions

This text is written with the philosophy that a certain level of notational detail may be
omitted explicitly so that the reader can focus on higher level concepts. Particularly as
there are many equations, the goal is to communicate the essential thermodynamics and
physics without being overbearing with superscripts, subscripts, or tensor math. Conse-
quently, they are included in the text to the extent that they are essential to communicate
the main idea.

With this in mind, it should be noted that many equations are written in a way that
references the tensor form, but looks to relate scalar quantities. In so much as thermal
conductivity, thermal expansion, elastic constants, etc. are in fact tensors, any discus-
sion of these quantities as scalars can be thought of as either one particular direction
or an appropriate average over all directions such that the property can be considered
isotropic.

A separate comment on notation is related to the complexity associated with working in
such diverse topics as thermal transport to fracturemechanics. Given the limited number
of variables to choose from some are bound to be repeated. This may partially reflect a
desire to retain notations familiar to each respective subtopic. Unfortunately, this results
in situations like: V is used to denote volume and also the electric potential (voltage).
In situations such as this distinctions will be made in the text, where appropriate, to
avoid confusion. Although, in many cases, the particular definition should be apparent
contextually.

Lastly, the nomenclature page is provided for reference, but is not exhaustive. Its primary
aim is to provide quick access to variables that are used consistently throughout the text.
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Nomenclature

α thermal expansion coefficient

CP heat capacity at constant pressure

cp mass specific heat at constant pressure

CV heat capacity at constant volume

∆H enthalpy of transformation

ε strain

γ thermodynamic Grüneisen parameter

} reduced Planck constant

κe electronic thermal conductivity

kB Boltzmann constant

κdiff diffuson thermal conductivity

κL lattice thermal conductivity

κph phonon thermal conductivity

D thermal diffusivity (microscopic)

µ chemical potential

µ̃ electrochemical potential

MW molecular weight

ω angular frequency of vibration

φ order parameter

ρ density

σ stress



11

σe electonic conductivity, sometimes denoted as σ

θD Debye temperature

vl longitudinal speed of sound

Vm molar volume

vs appropriate average speed of sound

vt transverse speed of sound

B bulk modulus

D thermal diffusivity (thermodynamic)

F Faraday constant

H enthalpy

JQ heat flux

Je electonic flux (current density), sometimes denoted as J

n number density (per volume) of atoms or electrons

P pressure

R gas constant

S entropy

T absolute temperature

t time

U internal energy

V electric potential

V volume

z assigns sign and magnitude of electric charge

zT thermoelectric figure-of-merit

γe Sommerfeld coefficient of electronic heat capacity

κ thermal conductivity

∇ gradient operator

e elementary charge
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= 0.5 (green squares), x = 1.0 (yellow triangles), x = 1.5 (orange diamonds), x
= 2.0 (purple triangles), have magnitudes within ±3% of the Mg3Sb2 model
curve (grey line) below 220 K. The experimental results of this study agree
with the low temperature values reported for Mg3Sb2 by Yoon [3] (open blue
circles). The reported values at higher temperature (>300 K) are more scat-
tered, with the measured values of this study (red dots) having the largest
magnitude, but a slope in agreement with theory. The experimental values
of Shuai, et al. [4] (open blue stars) and Tamaki, et al. [5] (green asterisk
markers) agree best with both the magnitude and slope of the model curve.
Bhardwaj and Misra [6] (open triangle markers) and Chen, et al. [7] (gold
X markers) report values somewhat lower in magnitude, but with similar
slopes as the others. Note that the linear dilation term is responsible for
increasing CP ≈5% above the Dulong-Petit value by 600 K. . . . . . . . . . . 69

3.6 Determination of the coefficient of electronic heat capacity γe from low
temperature heat capacity measurements. The y-intercept is γe and the
linear slope is β as discussed in Section 3.3. . . . . . . . . . . . . . . . . . . 72

3.7 Heat capacity of the MAB phases. Experimental measurements of heat ca-
pacity (markers) and high temperature model (solid lines) of the MAB phases
MoAlB, Mn2AlB2 and Fe2AlBe. The excellent agreement of this model with
previously reported high temperature results [8] provides confidence in the
model for the other compounds. The model makes use of the experimentally
measured speed of sound to estimate the Debye temperature θD and bulk
modulus B, as well as experimentally measured thermal expansion to ac-
count for the dilation contribution to CP. The electronic contribution made
use of the linear Sommerfeld term as discussed in text. Magnetic terms are
not expected to contribute above the phase transition, which is the peak (or
plateau) in the experimental data near 300 K. . . . . . . . . . . . . . . . . . 73

3.8 Heat capacity of zinc antimonide. Experimental heat capacity reported
at low temperature by Bhattacharya et al [9] (blue squares), and at high
temperature by Toberer et al [10] (green diamonds), compared with themodel
defined by Eq. 3.11 (black line). . . . . . . . . . . . . . . . . . . . . . . . . . . 74
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3.9 Phase diagram and heat capacity of copper selenide. Section of the
Cu-Se phase diagram showing (a) the α → β phase transition region [11]
of Cu2−dSe, as well as, (b) the temperature dependent equilibrium phase
fraction of β, φβ, and the temperature derivative dφβ/dT for the nominal
Cu1.985Se composition defined by the path of the arrow in panel a. Thermal
properties for the nominal Cu1.985Se composition including (c) the experi-
mental heat capacity [12] (blue points in top panel) measured by differential
scanning calorimetry and the model heat capacity (black line in top panel)
calculated using dφβ/dT shown in panel b. . . . . . . . . . . . . . . . . . . . . 76

3.10Experimental characterization of elastic softening in lead telluride by
low temperature heat capacity measurements. Debye model fits to the
lowest temperature data are used to extract the thermally averaged speed
of sound through its relation to the Debye temperature (θD ∼ vs). (a) The
plot of CP/T vs T 2 is not recommended for materials like PbTe that have
substantial contributions to the phonon density of states at low frequencies
that cause a rapid rise in the heat capacity that is not expected from the
Debye model, as determination of the Debye region may be difficult. For
example, compare the temperature range of the linear region (T 2 < 20 K2)
with that in Fig. 3.6. (b) A plot of CP/T

3 shows softening as a change in
the so-called Debye level, the horizontal plateau at the lowest temperatures.
This plot further emphasizes deviations from the Debye model (i.e. the peak
∼10 K, see inset) that is more more distinguishable than the change in slope
observed in panel a. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.11 Illustration of softening and its impact on low temperature heat ca-
pacity. (a) Example phonon dispersion demonstrating the shift in phonon
modes to lower frequency that is meant by "softening". This phonon disper-
sion is sketched using the BZBC model described by Kaviany [13, 14]. (b)
The corresponding phonon density of states from which heat capacity can
be calculated. (c) The heat capacity determined from the density of states
shown in panel b, illustrating both the change in Debye level and subtle
shift of the hump due to the transverse acoustic phonons. . . . . . . . . . . 79

4.1 Thermoelectric efficiency at phase transitions. Experimental reports
suggest that the thermoelectric figure-of-merit zT increases sharply at phase
transitions in various materials [15, 16, 17]. In all cases, the increase in zT

can be largely attributed to a drastic reduction in thermal conductivity. . . 82



20

4.2 The process of estimating thermal conductivity and thermoelectric
performance. Two possible pathways for calculating thermal conductiv-
ity κ (and zT ) from thermal diffusivity D and volumetric heat capacity ρcp
are shown. One possibility (upper panels) is to use the Dulong-Petit heat
capacity, i.e. cp ≈ cv, resulting in zT > 2 for this hypothetical material. The
other possibility (lower panels) is to include the enthalpy of transformation
in the heat capacity, i.e. ρcp according to Eq. 4.2, resulting in zT < 2. . . . . 84

4.3 Characteristic time scale for thermal and atomic diffusion and its ef-
fect on heat capacity. When a phase transformation occurs so slowly it
is effectively frozen (blue region) the phase transformation enthalpy (∆H)
need not be considered and the total heat capacity at high temperature is
approximately the Dulong-Petit value of 3kB/atom (“CP ≈ 3kB/atom” in fig-
ure). When the atomic motion that facilitates such transformations occurs
as fast as the relaxation time of the heat carrying phonons or electrons, the
phase transformation enthalpy (∆H) contributes to the total heat capacity
(“∆H contribution” in figure). In between these extremes the extent of the
(∆H contribution depends on the time dependent characteristics of the ma-
terial property of interest and its measurement. Plotted values are described
in Table C.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.4 Effect of heat capacity on thermal diffusivity through phase transfor-
mation regions. Demonstration of the sharp decrease in thermal diffusiv-
ity for (a) InSb [15], Cu2Se [12], AgCrSe2 [18], SnSe [17], and Zn4Sb3 (this
study) having temperature dependent phase transformations, i.e. dφ/dT
6=0; as well as, (b) the exemplary case of Zn4Sb3 which has a smooth change
in thermal conductivity κ (measured using a steady-state method [19]), while
a peak is observed in the heat capacity cp [9] and a decrease is observed in
thermal diffusivity D through the phase transition. The use of cpφ and the
experimental D results in an underestimation of κ through the phase tran-
sition. Further comparison with experimental κ of Zn4Sb3 is given in Fig.
4.5. The scaling used in panel a is discussed in Appendix D . . . . . . . . . 88
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4.5 Characterization of thermal conductivity through the phase transition
of zinc antimonide. Thermal conductivity of Zn4Sb3 measured by steady-
state methods [9, 20, 21, 19] (solid curves) showing a smooth change in κ

through the phase transition, with no peak or valley, unlike the thermal
conductivity estimated from thermal diffusivity which ignores the transfor-
mation contribution to the total heat capacity, i.e. CpφD, which leads to the
incorrect conclusion that κ has a sharp drop through the phase transition
(dashed black line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.6 Estimated thermal conductivity and thermoelectric figure-of merit zT
of indium antimonide sample. . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.7 Phase diagram and analysis of partial melting in indium antimonide.
Section of the In-Sb phase diagram [22] showing the InSb-Sb eutectic re-
gion (a) and the nominal InSb1.04 composition at 775 K, as well as, (b) the
temperature dependent equilibrium phase fraction of liquid for the InSb1.04

composition in the InSb + liquid region of the phase diagram. . . . . . . . . 91

4.8 Impact of dynamic doping of copper in lead telluride on thermal prop-
erties. The subsequent rise in heat capacity with increasing Cu content
is consistent with increased latent heat effects described by Fig. 4.3. The
relevant phase diagram is characterized in ref. [23]. Here, it is important
to recognize the behavior in thermal diffusivity as abnormal, particularly in
the higher doped material, and suspect that heat capacity effects may be
at play (possibly beyond the extent that the heat capacity measurements
suggest). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.9 Heat capacity effect on thermal diffusivity in copper selenide. Using
the model of heat capacity for Cu2Se through the phase transition (black
curve top panel) it is possible to model the thermal diffusivity (black curve
bottom panel) and compare with the experimental thermal diffusivity deter-
mined by the laser flash method [12] (red points in bottom panel). In the
thermal diffusivity model, the thermal conductivity κ is assumed to remain
constant throughout the phase transition ("κ= constant" in figure), such that
the entire temperature effect is attributed to the total heat capacity. The
close agreement of the model thermal diffusivity to the experimental mea-
surements is a strong indication that thermal conductivity is not changing
much (if at all) through the phase transition. . . . . . . . . . . . . . . . . . . 97



22

4.10Drastic impact of using a constant heat capacity in a temperature
regime having a phase transition. (a) The total thermal conductivity for
SnSe [17] (purple triangles, top panel) and InSb [15] (pink circles, bottom
panel), appears to be underestimated as compared with the dashed lines
that illustrate typical κ ∝ T−1 behavior; as well as, (b) the thermoelectric
figure of merit for SnSe [17] (purple triangles) and InSb [15] (pink circles),
which is likely overestimated as compared with the dashed lines that illus-
trate zT if the thermal conductivity behaved as illustrated in panel a. . . . . 98

4.11The high temperature heat capacity of tin selenide. Comparison be-
tween the linear estimates of heat capacity [17, 24] and calorimetry results
that have a peak through the phase transition of SnSe [25, 26]. The mag-
nitude of the peak in CP can explain the deviation of estimated thermal
conductivity from the trend line shown in Fig. 4.10. . . . . . . . . . . . . . . 99

5.1 Two different paths to understanding thermal expansion. While thermo-
dynamically equivalent (Eq. 5.2), the current explanation of thermal expan-
sion is through the perspective that vibrational modes shift as the volume
changes (top panel). In this picture, anharmonicity is required for vibra-
tional states to shift. Alternatively, the change in pressure due to changes
in temperature can be considered (bottom panel), as is often done for gases.
Pressure is related to the kinetic energy (velocity) of the atoms and anhar-
monicity is not required in the lowest order description of atomic movement
in solids. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
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5.2 Depiction of pressure due to kinetic energy and its effect on equilib-
rium volume with temperature. (a) The pressure due to kinetic energy
can be derived by considering the momentum flux through a fixed imagi-
nary surface (e.g. pink and green planes in figure). Since the (time averaged)
flux of momentum is equal in both directions, the (thermodynamic) pressure
exerted on both sides of the surface is also equal. From this perspective,
vibrating atoms in a solid exert a pressure on the rest of the solid just as
gas particles exert a pressure on their container. (b) Equilibrium volume
as a function of temperature for an argon filled balloon demonstrating that
thermal expansion is linear due to the balance between the ideal gas (ki-
netic) pressure and the elastic response of the balloon (Eq. 5.5). (c) The
equilibrium volume of solids [27, 28] also increases linearly with increasing
temperature (at high temperature) and can be attributed to an analogous
mechanical mechanism as the thermal expansion of the ideal gas in an
elastic medium. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.3 Thermal expansion coefficient and Grüneisen parameters of lead tel-
luride, PbTe. (a) Coefficient of linear thermal expansion αL for PbTe esti-
mated using the “phonon pressure model” of thermal expansion (see Meth-
ods) calculated from harmonic eigenmodes and eigenvectors found from
density functional theory (solid orange line) compared with experimental
results (triangles [29], diamonds [27], dashed-line [30]). The “high tem-
perature approximation” is found from a simplified analytical model (See
Appendix E) and is defined as αL = 3kB/2m̄v

2
s , where kB is Boltzmann’s con-

stant, m̄ = 2.8× 10−25 kg atom−1 is the average atomic mass and vs = 1850 m
s−1 is the average speed of sound. The inset illustrates how phonon modes
contribute to the vibrational pressure exerted by an atom differently at dif-
ferent temperatures due to the number of phonons that are excited. Here
the real space direction of the atom vibrations (i.e. phonon eigenvectors) is
shown by arrows. The length of the arrows is scaled by the heat capacity of
the phononmode. (b) Mode Grüneisen parameters γi of PbTe calculated from
density functional theory (gold diamonds) and their average value, compared
with the estimated “Harmonic Grüneisen parameter” (see Methods). . . . . . 106
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5.4 Apparent relations between “anharmonic” and harmonic properties of
solids. (a) An equal plot comparing the ‘DFT Grüneisen parameter’ (i.e. the
average mode Grüneisen parameter) with the ‘Harmonic Grüneisen Param-
eter’ (i.e. the thermodynamic Grüneisen parameter estimated from the har-
monic model of thermal expansion) for 119 compounds. Light grey dashed
lines indicate a factor of 2 from the equal line. (b) The thermodynamic
Grüneisen parameter estimated from Eq. 5.8 in terms of the speed of sound
ratio x = vt/vl (using the RMS speed of sound, which is Eq. 5.9, gives the
dark blue line and using the bulk modulus and vs given by Anderson [31],
gives the mid blue line, which diverges as x→ 0) compared with a previous
theory given by Druyvesteyn [32] (dashed blue line) and the DFT calculated
thermodynamic Grüneisen parameters (average γi) of individual materials
(light grey circles) as well as the average Grüneisen parameters (yellow-green
circles) of materials binned according to their speed of sound ratio (bins:
[0.2,0.3), [0.3,0.4), [0.4,0.5), [0.5,0.6), [0.6,0.7)). The area of the marker is
related to the number of materials it represents and the color represents the
average density of those materials. The “liquid” limit for this model of solids
is the case where the transverse speed of sound goes to zero (Poisson’s ratio
= 0.5). The other thermodynamic limit (vt/vl =

√
3/2, Poisson’s ratio= −1)

is the point where Eq. 5.9 gives γ = 0. . . . . . . . . . . . . . . . . . . . . . . 108

6.1 Visual representation of the fundamental differences between phonon
and diffuson models of thermal transport. The defining characteristics
of phonon-based models include the speed of sound (v) and mean free path
(`). Diffuson-based models of Einstein [33], formally defined by Allen and
Feldman [34, 35, 36, 37, 38], and that described here rely on a thermal dif-
fusivity coming from random walk considerations, which leads to the jump
attempt frequency (2ω/2π) and the probability of a successful jump (P ) being
the operative theoretical inputs. Kittel (` = a) [39], Clarke (` = a) [40], Cahill
(` = λ/2) [41], and Slack (` = λ) [42] made estimations of κmin from a phonon
perspective. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
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6.2 Estimation of the average frequency of vibration. A log-log plot demon-
strating the linear correlation (Eq. 6.8) of the experimentally determined
}ωavg (found from the vibrational density of states) with the Debye temper-
ature (kBθD = }(6 π2n)

1/3
vs) calculated from the arithmetic average sound

velocity (vs = 1
3(2vt + vl)) using the values found in Table 6.1. A linear slope

of 1 is shown for reference (thin dotted line). Note that the Debye model
would predict a linear slope of 0.75, which is substantially higher than this
heuristic finding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.3 Diffusons as a model of minimum thermal conductivity. A comparison
of κdiff with the Cahill model, κglass, shows that κglass is a good estimate for
the measured thermal conductivity (within a factor of 2), whereas κdiff may
be a better metric for estimating the minimum thermal conductivity. Plotted
points are the same that appear in Fig. 7 of ref. [43]. . . . . . . . . . . . . . 120

6.4 Temperature dependent diffuson model. The experimental vibrational
density of states for PbTe at 100 K taken from [44] (panel A) and the temper-
ature dependent κdiff(T ) calculated numerically using Eq. 6.13, tending to
κdiff = 0.157 W/mK at high temperature when the entire density of states is
thermally excited (panel B). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.5 Comparison of the temperature dependence of minimum thermal con-
ductivity models. The experimental vibrational density of states (red cir-
cles) for Si at 300 K taken from [45], the Debye density of states (blue curve)
having a maximum energy kBθD determined by the speed of sound (Ta-
ble 6.1), and the truncated Debye density of states (green curve) with a
maximum energy 0.95 kBθD (panel A). κdiff (T ) was calculated numerically
(κdiff-Experimental g(ω), red curve, using Eq. 6.13) and analytically (κdiff-
Truncated Debye, green curve, using Eq. 6.16), and compared with the
Cahill (κglass, blue curve) and Einstein (κE, gray curve) models, with ex-
perimental thermal conductivity measurements of amorphous Si [46, 47]
shown for reference (panel B). The low temperature behavior for each model
is κdiff ∝ T 4, κglass ∝ T 2, and κE ∝ e−θE/T , respectively. . . . . . . . . . . . . 124
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7.1 Physical and chemical processes of ion migration and metal deposition
in MIECs. (a) Metallic Cu deposition on the surface of a Cu2S sample in-
duced by a current. (b-e) Schematic of (b) the energy landscape for ions; (c)
random ion motion without net flux; and (d) net ion flux under directional
force or field. Due to a directional force or field and depending on the elec-
trode constraints, MIECs may either reach a (e) steady-state without net ion
transport (and without metal deposition) or (f) continuous metal deposition
(or other decomposition), if the local Cu concentration reaches a critical level
determined by the stability range of the MIECs. . . . . . . . . . . . . . . . . . 129

7.2 Schematic of material behavior under experimental conditions leading
to the determination of the critical voltage Vc. . . . . . . . . . . . . . . . 132

7.3 Critical electric potential difference Vc for several Cu-based TE MIECs
in the isothermal case. (a) Current density dependence of relative electri-
cal resistance variation R/R0) for several Cu-based TE MIECs with L = 10
mm. (b) Experimentally determined Vc (L = 10 mm). (c) Material length L de-
pendences of Vc and the critical current density Jc for Cu1.97S. The dashed
line is a guide to the eyes. (d) Vc as a function of Cu off-stoichiometry δ in the
Cu2−δS (δ = 0, 0.01, 0.03, 0.04, 0.06, and 0.1) samples with L = 10 mm. The
dashed line represents the Vc curve based on Eq. 7.8. All measurements
were carried out at 750 K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7.4 Schematic of the experimental setup used to determine the critical
electric potential difference in the isothermal case. . . . . . . . . . . . . 134

7.5 Procedure for determining the critical voltage. (a) Illustration of the
measurement procedure for the critical electric potential difference in the
isothermal case. The red lines depict the case when Cu deposits. (b) Current
density dependence of the variation of relative electrical resistance for the
Cu1.97S sample at 750 K. The points in the red circle depict the case when
Cu deposits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7.6 Temperature dependence of the critical voltage. Experimental critical
electric potential difference for Cu2Se and Cu2S superionic phases at dif-
ferent temperatures. The dashed lines are guides to the eyes. . . . . . . . . 136
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7.7 Determination of the critical voltage in the presence of a temperature
gradient. (a) Schematic of the experimental setup used for determining
the critical electric potential difference under a thermal gradient. (b) The
measurement process illustrated for the critical electric potential difference
in thermal gradient. The red lines depict the case when Cu deposits. . . . . 137

7.8 Critical electric potential difference Vc measurements for the TEMIECs
under thermal gradient. (a) The relative Seebeck coefficient variation (S/S0)
as a function of the current density for Cu1.97S at Tcathode = 300 K and Tanode

= 673 K. The positive J means that the current direction is the same as
the heat flux direction. The negative J means that the current direction is
opposite to the heat flux direction. (b) Experimentally determined Vc,same

and Vc,opposite as a function of |∆T |, showing qualitative agreement with Eq.
7.7. The temperatures at the anode and cathode for each flux direction can
be found in text. The length of all measured samples is 6 mm. The dashed
lines are guides to the eyes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

7.9 Strategy to improve the service stability and reliability of TE MIECs.
(a) Schematic for limiting the ion movement by including thin electron-
conducting and ion-blocking interfaces; either grain boundaries (red areas)
or a secondary phase (yellow areas). (b) Schematic of ion-blocking electri-
cally conducting interfaces that allow the concentration profile to be reset at
each interface so that the ion concentration does not ever reach the upper
limit. (c) Relative resistance variation (R/R0) as a function of current density
for different Cu1.97S samples at a constant temperature of 750 K without a
thermal gradient. (d) Relative Seebeck coefficient variation (S/S0) as a func-
tion of current density for different Cu1.97S samples under the condition of
thermal gradient (Tanode = 673 K and Tcathode = 300 K). The insets in (c) and
(d) show the optical images of the measured Cu1.97S samples. The critical
current density was measured across the segment in the middle. . . . . . . 141
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8.1 The integral stress-displacement method of determining the fracture
energy, G. The physics of fracture is captured by the continuous defor-
mation of the atomic structure in the computational simulation (left). The
work required to create two new surfaces is found by integrating the stress-
displacement curve (right). The stress-displacement curve is different for
different crystallographic directions within a material and can be changed
by adding defects such as twins to the crystallographic structure. These
defect structures can be investigated using this method which may or may
not increase fracture energy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

8.2 Ideal stress-displacement curves for titanium carbide and titanium ni-
tride. Here, the tensile loading is in the [100] crystallographic direction.
Note that displacement can be converted to strain using the relevant lattice
parameters (4.34 Å for TiC and 4.25 Å for TiN). . . . . . . . . . . . . . . . . . 146

8.3 Bond deformations in titanium carbide and titanium nitride. Bond
length as a function of tensile strain for TiC and TiN along the [100] di-
rection in tension. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

8.4 Calculated fracture toughness compared to experimental values. Specif-
ically, the comparison of experimental fracture toughness values [48, 49,
50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66] to fracture
toughness values calculated using fracture energies estimated from the in-
tegral stress-displacement method. This calculated fracture toughness is an
estimate of the experimental fracture toughness in bulk materials using the
idealized case where fracture occurs in the weakest crystallographic direc-
tion and without consideration of any additional toughening mechanisms.
In this sense, the fracture toughness calculated herein is a realistic lower
limit of experimental values. Both mode I and mode II fracture toughness
calculations are plotted (see Table 8.1). . . . . . . . . . . . . . . . . . . . . . . 148
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8.5 Ductile to brittle behavior of fracture toughness in BCC tungsten. The
ductile to brittle transition in tungsten results in a drastic reduction in frac-
ture toughness as the temperature is lowered from room temperature. Here,
our 0 K calculation of fracture toughness is in agreement with the experi-
mental trend in fracture toughness. This behavior is somewhat common in
BCC metals, but not others, so while the 0 K DFT calculation is a starting
point for understanding the temperature dependence of materials like tung-
sten, in general the 0 K calculation is in agreement with room temperature
experimental values of fracture toughness. . . . . . . . . . . . . . . . . . . . 152

A.1 Regression analysis to determine the Sommerfeld coefficient. The de-
pendence of the value of the Sommerfeld coefficient in relation to how large
the linear fit region is. Here, the fit region starts from the first data point
(at 4.0 K) through data points at progressively higher temperatures (plotted
here by their squared value). At first, the R-squared value is low due to the
small number of data points that are sampled, but the value of γe remains
consistent up until T 2 ∼ 200 K at which point the estimate of γe decreases
due to deviations from the T 3 law as the density of states rises faster than
the Debye model predicts. The R-squared value remains high, however, such
that careful attention should be paid in how the fit region is selected. The
dashed line (γe = 1.94 mJ mol−1K−2) was determined by averaging the indi-
vidual γe values determined by the different fit regions, excluding the first
two points (having low R-squared values) and the last two points (which are
clearly decreasing due to deviations from linearity). . . . . . . . . . . . . . . 196

B.1 Estimation of the Sommerfeld coefficient in MAB phases. The Sommer-
feld coefficient γe of the MAB phases Mn2AlB2 (upper curve) and Fe2AlB2

(lower curve) can be estimated assuming an arbitrary polynomial to the low
temperature CP data. Since magnetic contributions at low temperature do
not have the same temperature dependence as the electronic contriubiton
(i.e. linear with T ), then a plot of CP/T vs T 2 is still expected to give a rea-
sonable estimate of γe as the intercept of the y-axis. . . . . . . . . . . . . . . 197
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F.1 The connection of critical chemical potential to composition. In two
phase regions (e.g. A+AB) the atomic chemical potentials are fixed (con-
stant), however the chemical potential changes continuously across the sin-
gle phase region (green dashed curve). The sample made with some initial
off-stoichiometry (grey point in the AB single phase region) is subjected to
progressively higher electric fields, causing the composition (as well as local
chemical potential) to change across the sample. The critical point corre-
sponds to when the material has reached its maximimum (or minimum)
solubility and the chemical potential inside the sample is equivalent to the
chemical potential of the adjacent phase (shown here as the case when the
chemical potential of atom A in compound AB is equivalent to the chemical
potential of pure A). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

H.1 Uncertainty in fracture energy estimations. The fracture energy was
sometimes estimated from extrapolations of the ideal strength curves. In all
cases, a linear regression was utilized. Although this introduces some sub-
jectivity to the process, it is unlikely to affect the estimate of G by more than
a few percent and certainly not more than a factor of 2. As fracture tough-
ness goes as

√
G, small uncertainties in G have negligible consequences for

the conclusions drawn from the resulting calculation of fracture toughness. 210
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Chapter 1

Introduction

Global climate change and resource scarcity mean that renewable energy sources must
be adopted. As it is, current reports show that ∼67% of energy produced in the United
States is lost due to production, transmission and use inefficiencies (Fig. 1.1). Much
of this unutilized energy is lost in the form of heat. In many respects, this is because
heat is "slippery," or easily lost before utilization. Unlike electrical circuits, which act like
water pipelines for electrons, there is not such an efficient process for directing the flow
of heat. Thus, while many engineering processes generate heat due to thermodynamic
losses (like friction), there is a fundamental inability to direct or harness that heat.

This is partly because there is no one mechanism of heat transport. Instead, there are
three that have fundamentally different considerations:

1. Conduction - internal transport of heat within solids.

2. Convection - heat transport due to bulk movement of atoms or molecules (like those
in gases and liquids).

3. Radiation - heat transported by light (the principle behind infra-red "night vision"
goggles).

It is clear that each of these mechanisms is related to one or more technology relevant to
everyday living, from gas turbine power generation to the boiling water on your kitchen
stove top (Fig. 1.2). Due to the particular relevance of solids as engineering materials,
much of the work presented herein will focus on characterizing and interpreting thermal
conduction.

The desire to control and harness heat and utilize energy efficiently is driven in part by
social responsibility. In order to be good stewards of our planet we should make use of our
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Figure 1.1: Estimated U.S. Energy Consumption in 2019. Energy production and use relations
quantified by Lawrence Livermore National Laboratory. Original content can be found at https:
//flowcharts.llnl.gov/.

available resources in the most humanitarian way according to our technological capa-
bilities. Given our current technological prowess, the ideal scenario would be to remove
our dependence on fossil fuels, which have to be burned and inherently require thermal
losses to maximize power output, and utilize alternative energy production methods (e.g.
solar, wind, etc.) in conjunction with next-generation, thermally-efficient, energy storage
devices (e.g. batteries, fuel cells, etc.) to regulate and meet grid-level electricity demands
[67].

Furthermore, renewable technologies provide a platform for the advancement of devel-
oping countries by providing independent energy ownership and driving local economies
[68, 69]. The development of these next generation energy solutions will rely on the ability
to engineer materials with specific electrical and thermal transport properties.

As far as thermal technologies are concerned, there is a desire to make newmaterials with
either lower thermal conductivity (better thermal insulators) or higher thermal conduc-
tivity (better thermal conductors, so-called heat pipes). Thermal insulators are necessary

https://flowcharts.llnl.gov/
https://flowcharts.llnl.gov/
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Figure 1.2: An illustration of the primary mechanisms of heat transfer: conduction, convec-
tion and radiation.

for containing heat, which can improve the efficiency of processes that inherently require
high temperatures such as refractory processes [70]. Heat pipes serve to effectively direct
the flow of heat, which is arguably more difficult. Nevertheless, directing heat flow on
small length-scales is particularly important in computer technologies where computing
efficiency and processor speeds are limited by the rate at which heat can be removed from
the device [71, 72, 73]. The hope of making solid-state quantum computers is also likely
to be limited by the ability to minimize thermal fluctuations, and thus requires careful
temperature control on small length-scales [74].

Thermoelectric generators, which convert heat into electricity through the solid-state See-
beck effect, are one example of an energy harvesting device that could become prevalent
if the energy conversion efficiency could be enhanced and devices can be made cost-
effectively. This is largely a materials problem, as an optimized thermoelectric material
requires high electrical conductivity and a large Seebeck coefficient, while thermal con-
ductivity should be as low as possible [75]. These properties will be discussed in more
detail later. A typical thermoelectric device is shown in schematic form in Fig. 1.3.

Although thermoelectric materials hold promise to reclaim some of the heat wasted in
engineering processes, the primary application of thermoelectric generators to date has
been for deep space exploration. Specifically, Radioisotope Thermoelectric Generators
(RTG) are “atomic batteries” that currently power the Voyager Probes, Cassini, and the
Curiosity Rover. These devices convert the heat from the radioisotope nuclear mate-
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Figure 1.3: Schematic construction of a thermoelectric module. The thermoelectric device
is constructed by connecting p- and n-type semiconductors (i.e. the thermoelectric materials) in
series with a heat absorber on one side (the hot side) and a heat exchanger on the other (the cold
side). The materials are thermally in parallel and electrically in series during operation, which
causes a current to flow.

rial (e.g. Pu-238) into usable electricity to power the on-board electronics. Since these
thermoelectric generators have no moving parts, they tend to be very reliable, as demon-
strated by the 40+ years of continuous communication with the Voyager space probes.
In return, the constant operating conditions of space are ideal for thermoelectrics. Part
of the trouble in finding terrestrial applications for thermoelectric generators is the di-
verse temperature ranges of waste heat. Thermoelectrics have to be optimized for the
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operational temperature of interest, making the transference of one device to multiple
applications difficult.

Due to the symmetry of physics, however, thermoelectric devices can also run in reverse.
This is to say that, instead of converting heat (via a temperature difference) into elec-
tricity, an electric current can be used to generate a temperature difference. This has
large implications for efficient, small scale (low volume) cooling near room temperature.
While compressor-based refrigeration becomes increasingly more efficient for large vol-
umes, the efficiency of thermoelectric devices is constant (volume independent). Thus,
at small volumes there is a crossing point. Then, a thermoelectric device would be more
efficient for cooling a volume than a compressor-based system. Couple this with the re-
alization that we cool entire buildings (a large volume) just for the comfort of the humans
inside the structure (a fractionally small volume). The ability of thermoelectric devices to
provide efficient local cooling has yet to be fully explored. But, these considerations may
drastically reduce energy consumption and waste.

For technological applications, it is also necessary to consider material and device stabil-
ity during operation. This includes chemical stability and mechanical stability of materi-
als and interfaces [76, 77, 78, 79, 80]. For example, continual observations of chemical
decomposition led the National Aeronautics and Space Administration to discontinue de-
velopment of a new thermoelectric device based on copper selenide after nearly a decade
of research [81, 82]. The ability of a material to resist fracture is also fundamental to
device design and implementation.

It is with these motivations in mind that the present work aims to contribute towards the
progression of thermoelectric technologies. However, it would be remiss not to mention
that there is a vast degree of overlap between the materials science topics relevant to the
development of thermoelectric materials and those of other energy materials. This is to
say that, while the present studies were "thermoelectrics motivated" there are, in many
cases, direct implications for the design and characterization of other energy materials.
Specific examples are given throughout the text. In particular, the results presented here
to aid in the interpretation of thermal conductivity behaviors through phase transitions
will be important to battery materials as their thermal transport properties are further
characterized, as these materials typically undergo phase transitions during charge and
discharge cycles. The relation of thermal transport in these materials to "thermal run-
away" and device failure is presently the topic of much scientific investigation [83]. The
thermodynamic stability criterion developed for mixed ionic-electronic conducting ther-
moelectric materials is also expected to be fundamental to engineering the stability of
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halide perovskite solar cells. Lastly, the novel insights presented here in rethinking the
fundamental nature of vibrations in solids has profound implications for mechanistically
understanding and quantifying thermal properties and thermal transport in materials
regardless of application.
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Chapter 2

Background

The materials science of solids is comprised of observations (measurements) and theory
(models) that span many orders of magnitude. As atoms and their bonds dictate the
bulk behavior of materials, there is a need to understand the atomic scale behavior of
atoms in solids. However, the bulk properties that are observed at the macroscale (e.g. in
engineering devices) are the culmination of many interactions at the atomic scale. This
results in "emergent" phenomena that are the collective behavior of many complicated
processes.

The inference here is that measurements of "bulk properties" necessarily includes some
summation and/or averaging over all of the atomic-scale phenomena. That is, bulk mea-
surements do not investigate individual atomic behavior in the individual sense. When
the volume of material that is being measured is large enough (in a statistical sense), a
thermodynamic framework can be used to describe the behavior of that volume element.

Thermodynamics has the generality to describe interdependent relations of material re-
sponse(s) to experimental parameters. The goal of physics, in this case, is to then de-
scribe the underlying mechanism(s) that explains the thermodynamic observation. Con-
sequently, the utility of both thermodynamic and physical models provides ample insights
for engineering design.

In this perspective, there are thermodynamic truths (experimental observations) that
may have more than one physics explanation, or progressive levels of the same physi-
cal theory. This chapter aims to outline fundamental aspects of both thermodynamic
methods and measurements, as well as established physics in solids.
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2.1 Equilibrium Thermodynamics

In order to learn something about a material, it is necessary to perturb it in some way.
When the perturbation is relatively small, "uniform" throughout the material and time-
independent, then equilibrium thermodynamics can characterize a large variety of ma-
terial responses (from a reference state) due to external stimuli.

Free energy functions (e.g. Gibbs free energy or Helmholtz free energy) are constructed in
order to define the energetic changes of the material given the relevant thermodynamic
conditions of the experiment. For example, the Gibbs free energy describes the energy in
the system that is available to do work when the system is held at constant temperature
and pressure. Alternatively, the Helmholtz free energy can be used when temperature
and volume are held constant. These functions describe the condition for equilibrium
when they obtain their "minimum" value, or correspondingly, when their derivative goes
to zero.

In differential form, the effects of perturbations (T , P , N , X) on the Gibbs free energy G
are characterized as

dG = V dP − SdT +
∑
i

µi dNi +
∑
j

AjdXj , (2.1)

where T is temperature having the conjugate variable entropy S, P is pressure having
the conjugate variable volume V , µi is the chemical potential of species i that describes
changes in the free energy when the number Ni of species changes, and, similarly, Aj is
the coefficient that describes how G changes due to purturbation (external variable) Xj.

Similarly, the differential of the Helmholtz free energy F is written as

dF = V
∑
ij

σijdεij − SdT +
∑
a

µadNa +
∑
b

AbdXb, (2.2)

which has been written to emphasize that P and V can be abstracted (generalized) to
include the full tensor relation of stress σ and strain ε. Again, the effects of other external
variables can also be considered to change the free energy of the system, such as an
electric or magnetic field.

In Figure 2.1 the interrelations of thermodynamic variables are considered from a ma-
terials perspective (see ref. [1]). For example, stress and strain are related by the elastic
constants (elasticity) of the material. Temperature and entropy are related through heat
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Figure 2.1: Schematic of interconnections between thermodynamic variables. Relations
between thermodynamic variables are coupled by partial derivatives [1]. In most cases, these
derivatives are used to define material properties (e.g. the elastic tensor, heat capacity and per-
mittivity tensor).

capacity. If stress (pressure) is held constant when the temperature is changed, then en-
tropy changes according to the heat capacity at constant stress. The conjugate variable
to stress, that is strain, is expected to change according to the thermal expansion coeffi-
cient at constant stress. In this manner, the thermo-electro-mechanical interactions in
solids can be visualized.

One of the most profound insights from thermodynamics is Maxwell’s relations. They are
derived simply from the calculus of differentials, such that the order of differentiation
with respect to two variables does not matter. Considering the Gibbs and Helmholtz free
energy functions as an illustration (and as functions of only two variables, i.e. all other
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variables are held constant):

∂

∂T

[(
∂G

∂Ni

)
T

]
Ni

=
∂

∂Ni

[(
∂G

∂T

)
Ni

]
T

(2.3)

and
∂

∂T

[(
∂F

∂εij

)
T

]
εij

=
∂

∂εij

[(
∂F

∂T

)
εij

]
T

(2.4)

which, considering the definitions of the partial derivatives, can be written simply as(
∂µi
∂T

)
Ni

= −
(
∂S

∂Ni

)
T

(2.5)

and (
∂σij
∂T

)
εij

=

(
∂S

∂εij

)
T

(2.6)

and similar relationships can be derived from other free energy functions. The profound
implication of these thermodynamic (mathematical) relationships is that the temperature
dependence of one thermodynamic variable is related to isothermal changes of a differ-
ent thermodynamic variable. Since thermodynamic quantities, namely entropy, can be
difficult to measure directly, Maxwell relations provide methods to relate experimental
observations of measurable variables to those that cannot be measured.

Looking again at Figure 2.1 more carefully, there is a simple way of determining which
variables have a Maxwell relation. If the line that connects two variables (say A and B) has
a crossing, then there is a Maxwell relation of those variables (A,B) with the two variables
associated with the intersecting line (C and D). If the line connecting two variables (A
and B) does not have a crossing, then it only has a Maxwell relation if there are a pair
of variables (C and D) that are connected by a line that runs parallel to the AB line.
Of course, this only indicates which variables have Maxwell relations and not the exact
relationship. Nonetheless, it is straightforward to consider the mathematical construct
of the free energy functions and determine the Maxwell relations directly from there.

Throughout the text, thermodynamic variables and associated material properties will
be defined as necessary. As will necessary thermodynamic relations. Here, it is only
important to illustrate the general energetic principles and versitility of a thermodynamic
perspective.
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2.2 Transport Thermodynamics

The "uniform" perturbations considered in the previous section may very well be non-
uniform in real materials. This is to say that spatial variations can exist such there
are gradients in thermodynamic variables. Inherently, this means that the material is
not-at-equilibrium. The extent to which this matters depends on which thermodynamic
variable, the magnitude of the spatial variation, and the underlying material physics
related to the thermodynamic property. Nevertheless, a general consequence of non-
uniformity (spatial gradients) in materials is a flow of matter and/or energy that seeks to
bring the material to equilibrium, so-called transport.

All transport phenomena are inherently non-equilibrium effects. In other words, systems
not-at-equilibrium attempt to equilibrate via transport. For typical (small) deviations from
equilibrium, transport can be described by the phenomenological linear flux equations
of non-equilibrium thermodynamics [84]. Just as free energy functions were written to
describe changes in energy due to perturbations in thermodynamic variables, the linear
flux equations describe the "desire" of a thermodynamic quantity to move (transport) in
response to a gradient in a thermodynamic variable. If this "desire" is not otherwise
impeded, there will be a flux. In general, the net flux J of a thermodynamic quantity
throughout the material will depend on all of the available transport mechanisms i and
all of the gradients in thermodynamic variables Xj that relate to that thermodynamic
quantity, written as

J =
∑
i,j

Li,j∇Xj . (2.7)

The coefficient Lij is the material property that determines how quickly transport can
occur by mechanism i due to a gradient in Xj.

While Eq. 2.7 is written somewhat abstractly in order to capture generality, simple cases
where the flux of electronic charges is only due to gradients in electrical potential, heat
flux is due only to the temperature gradient, and the flux of atoms is due to concentration
(chemical potential) gradients are shown schematically in Figure 2.2.

2.2.1 Thermal Transport

In the case of conductive thermal transport, which is the mechanism by which solids
can achieve thermal equilibrium (i.e. a uniform temperature throughout the material),
Fourier [85] defined thermal conductivity as the proportionality between the heat flux
density, JQ [J s−1 m−2], and the temperature gradient ∇T .
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Figure 2.2: The transport of mass (atoms and electrons) and energy (heat) in solids is driven
by gradients in thermodynamic potentials. These gradients in thermodynamic potentials are
analogous to the gradient in potential energy (∇U in figure) that causes macroscopic masses to fall
due to gravity. The material property that defines these particular relationships are the electrical
conductivity σ, thermal conductivity κ and atomic diffusion coefficient D.

Thus, thermal conductivity κ, as it is measured, is a thermodynamic quantity. While
experiments can be designed in order to investigate particular mechanisms of thermal
conduction, the bulk property is strictly defined as the coefficient relating heat flux JQ
to the temperature gradient ∇T . In tensor notation,

JQ,i = −κij ∇jT . (2.8)

where JQ,i is the component of the heat flux vector in the i-direction and ∇jT is the
component of the temperature field in the j-direction. Thus, κij is a second rank tensor.

While the full tensor is certainly important in certain situations (e.g. in single crystal ma-
terials), bulk polycrystalline materials can often be considered isotropic. This is because
the orientation dependence is averaged out by all of the randomly oriented crystallites
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in the material. Thus, while recognizing that material properties like elastic modulus,
thermal and electrical conductivity, etc. are tensors, it is often possible to consider their
scalar (averaged) analogs for most theoretical purposes pertaining to bulk materials. This
significantly reduces notation (subscripts and superscripts) that can be distracting. This
is how we arrive at the simple form of heat flux as JQ,

JQ = −κ∇T , (2.9)

which still alludes to the tensor form, but omits the subscripts.

Since the heat energy, Q [J], is a conserved quantity (in the absence of source terms),
there is a continuity equation associated with Eq. 2.9 [84],

1

V

∂Q

∂t
+∇ · JQ = 0 , (2.10)

relating the time derivative of Q to the divergence of JQ. V [m3] is the volume element
of material being considered. Inherent in any thermodynamic model is that it is coarse
grain enough (i.e. large enough volume) for thermodynamic quantities to be applicable.
It is also important to realize that Eqs. 2.9 and 2.10 refer to Q as a thermodynamic
quantity that is independent of any microscopic model of how heat is contained (stored
or transported) by the solid.

Then the internal energy, U [J], having the differential form dU = dQ + dW , at constant
volume (i.e., dW = 0), can be used to obtain(

∂U

∂t

)
V

=

(
∂Q

∂t

)
V
. (2.11)

Similarly, at constant pressure, (
∂H

∂t

)
P

=

(
∂Q

∂t

)
P

(2.12)

is obtained from a Legendre transform. Making use of the product rule,(
∂H

∂t

)
P

=

(
∂H

∂T

)
P

(
∂T

∂t

)
P
, (2.13)

and substituting Eq. 2.9 into Eq. 2.10, then for conditions when ∇κ ≈ 0,(
∂T

∂t

)
P

=
κ

ρcp
∇2T , (2.14)
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where
ρcp =

1

V

(
∂H

∂T

)
P

(2.15)

defines the volumetric heat capacity from the density ρ and mass specific heat cp.

Since thermal diffusivity, D, is defined as the coefficient of the Laplacian in the second
order differential heat equation (in the absence of source terms),

dT

dt
= D∇2T , (2.16)

comparison of Eq. 2.14 and 2.16 gives the well-known relation

κ = ρcpD , (2.17)

remembering that, for experiments at constant pressure,

dT

dt
=

(
∂T

∂t

)
P
. (2.18)

The thermal diffusivity D can be experimentally determined just from the time evolu-
tion of the temperature profile of the material when the solution of the boundary-value
problem is known [86, 85]. In the laser flash method [87], D ∝ L2/t1/2 is defined by the
sample thickness, L, and the time required for the temperature evolution to reach half
of its maximum value, t1/2. Thus, D can be determined from the sample/experimental
geometry and the time-dependent temperature profile, independent of the assumption of
sample homogeneity or porosity, and implies the geometric density should be used in Eq.
2.14 [88]. The accuracy of thermal diffusivity measurements is within ∼2-3% when the
error in L is minimized.

This shows the intimate thermodynamic relation between thermal conductivity, heat ca-
pacity and thermal diffusivity. Particularly for measurements above room temperature,
thermal diffusivity can be easily and reliably measured. Heat capacity and thermal con-
ductivity, however, are more easily and reliably measured below room temperature. Thus,
this thermodynamic relationship allows for one property to be estimated if the other two
are known.
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2.2.2 Charge Transport

The flux equation from linear non-equilibrium thermodynamics for any charged species
of particles (mol m−2 s−1) is given by:

j = −L
[
∇µ̃+

(
s +

Q

T

)
∇T
]
, (2.19)

where the coefficient, L, obeys the Onsager reciprocity relations, and is related to the
conductivity, σ, of the species by

L =
σ

(zF )2 , (2.20)

and z specifies the sign/magnitude of the charge. The electrochemical potential (µ̃) is
related to the chemical potential (µ) and electric potential (V ) as µ̃ = µ + zFV . Then the
current flux density (C m−2 s−1) contributed by that species is

J = zFj = − σ

zF
[∇µ̃+ s ∇T ] , (2.21)

and we have used the convenient shorthand

s =

(
s +

Q

T

)
, (2.22)

where s and Q/T have units of entropy, s is the specific entropy, and Q is the so-called
heat of transport [89]. This equation can then be applied to any charged species.

Considering the case for electronic carriers (ze = ±1),

Je = − σe
zeF

[∇µ̃e + se ∇T ] , (2.23)

Considering the case for ionic carriers, from Eq. 2.21, explicitly,

Jion = − σion
zionF

[∇µ̃ion + sion ∇T ] . (2.24)

When ion-blocking electrodes are used (i.e., there can be no ion flux) and Jion = 0. In this
case, the total electrochemical potential is the open circuit electrochemical potential,

∇µ̃ion = (∇µ̃ion)Jion=0 = −sion ∇T . (2.25)
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2.3 Thermoelectric Effect and Figure-of-Merit

The thermoelectric effect responsible for thermoelectric technologies is the voltage that is
caused when any material is placed in a temperature gradient. Simply, this is due to the
fact that more electronic states will be populated at higher temperatures than at lower
temperatures. Any charged ionic species that are mobile may also diffuse as the result of
a temperature difference (e.g. the Soret effect), however this case will not be considered
here. Regardless, the non-uniform distribution of electric charges results in a net electric
potential across the material. So, when the material is not at constant temperature (i.e.
there is a "hot side" and a "cold side") a net voltage develops across the material.

While this occurs in every material (yes, think about holding your hand over a candle
- there will be an ever-so-small voltage across your hand), some materials that we call
"thermoelectrics" have relatively high voltages ∆V that develop for the same temperature
difference ∆T . The magnitude of this effect is defined by the Seebeck coefficient S that
can be defined simply as

S =
∆V

∆T
. (2.26)

Strictly speaking, the Seebeck coefficient is defined under open circuit conditions and,
analogous to Eq. 2.25, this is found by setting Je = 0 in Eq. 2.23.

With this definition of the Seebeck coefficient, all of the relevant thermodynamic proper-
ties needed to determine the thermoelectric efficiency of a material have been discussed.
The so-called material figure-of-merit zT is thus defined as

zT =
σS2

κ
T, (2.27)

which indicates that the electrical conductivity σ and Seebeck coefficient S should be
maximized, while thermal conductivity κ should be minimized. Implicitly all of these
terms are temperature dependent.

It should be reiterated that, in this context, the figure-of-merit is defined by thermody-
namic measurements of materials properties. Thus, when evaluating zT the requisite
thermodynamic implications of measurement methods and approximations should be
thoroughly considered before the underlying physics can be assessed.
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2.4 Microscopic Physics

In this body of work, the object of microscopic physics is to describe the underlying
mechanisms of the thermodynamic quantities that are determined from bulk (thermody-
namic) measurements. While contemporary computational materials science techniques
have the capabilities to provide exact values (in many cases), analytical theories aim to
mathematically describe the primary mechanisms underlying the material property in
a mechanistic and tangible way. Thus, analytic theory is the focus here, for concep-
tual reasons, with the understanding that computational methods can be utilized (where
appropriate) when accurate values of materials properties are to be ascertained.

2.4.1 Thermal Transport

The thermal conductivity that is measured directly, or estimated from its thermodynamic
relation to thermal diffusivity, is in fact a total. That is, it contains the contributions of
every mechanism that is available to transport heat in the material. For any arbitrary
number of mechanisms,

κ =
∑
i

κi. (2.28)

Typically, however, other information about the material is known that provides hints as
to what mechanisms are likely to contribute to the total thermal conductivity. For the
majority of engineering solids, it is only necessary to consider two primary contributions
to κ, namely,

κ = κL + κe, (2.29)

which includes the contribution from atomic vibrations (i.e. the lattice) κL and from
electronic carriers κe. Again, we are breaking from the thermodynamic quantity κ and
now attempt to understand the underlying mechanisms responsible for the measured
value.

Electronic Thermal Conductivity

It was first noticed byWiedemann and Franz in the 1850s that the thermal conductivity of
metals was linearly related to their electrical conductivity when appropriately normalized
by temperature. Later this relationship could be derived using an elementary theory of
electrons in conjunction with the Boltzmann transport equation. These details are not
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particularly relevant for the main discussion of this text, so it is enough to simply state
that:

electrons carry both electric charge and thermal energy (heat).

It is not surprising then, that the bulk measurements of electrical and thermal conduc-
tivity made by Wiedemann and Franz were proportional given that electrons carry most
of the heat in metals.

As it turns out, the heat carried by electrons is always proportional to the correspond-
ing electrical conductivity since both quantities are carried by the same particles. The
general relationship between κe and σe is

κe = LeσeT. (2.30)

where the coefficient Le is the Lorenz number. For metals, Le = 2.44× 10−8 W Ω K−2, but
it does depend to a certain degree on the number of electronic carriers [90].

Importantly, the independent relation of κe on the electrical conductivity is what allows
for the estimation of the lattice contribution,

κL = κ− LeσeT. (2.31)

Lattice Thermal Conductivity

The heat carried by atomic vibrations tends to be negligible in most metals (i.e. κL �
κe), but is a comparable contributor in many semiconductors (i.e. κL ≈ κe) and is the
dominant mechanism of thermal transport in electrical insulators (i.e. κL � κe). Indeed,
the primary focus of this work will pertain to the latter two cases. Here, understanding
the underlying physics of κL can be utilized to devise engineering design principles that
directly impact the total thermal conductivity κ.

In this section, discussions about thermal conductivity κ assume κ ≈ κL. Furthermore,
the description of κL may also be comprised of multiple terms depending on the specific
nature of the vibrations being considered. With foresight to the rest of the text, the general
construction of κL can include contributions from both phonons κph and diffusons κdiff ,

κL = κph + κdiff . (2.32)

This is a somewhat new concept [36, 91, 92, 93, 94].
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Phonon Gas Model

The kinetic theory of gases is often a starting point for describing the physics of transport.
In the case of thermal conductivity the kinetic theory phenomenologically describes the
transport of heat in solids as

κL =
1

3
Cv` (2.33)

where C is the heat capacity per unit volume (i.e. the thermal energy being transported),
v is the average speed of a collective lattice vibration (i.e. phonon) and ` is the average
phonon mean free path (i.e. distance traveled between scattering events), where col-
lectively v` describes how "fast" heat diffuses through the material. In this perspective
phonons behave like gas particles and, hence, is called the "phonon gas model." Thus,
κL written in Eq. 2.33 is more aptly named as the phonon thermal conductivity κph.

The extension of the phonon gas model to consider how individual vibrations contribute
to the thermal conductivity tensor can also be considered. Then, κph,ij can be obtained by
solving the Peierls-Boltzmann transport equation in the relaxation time approximation.
In standard notational form:

κph,ij =
∑
ks

Cph(ks) vg,i(ks) vg,j(ks) τ(ks), (2.34)

where specific phonon modes are indexed by their wavevector k and branch index s,
denoted by the compound label ks. Then Cph(ks) is the heat capacity of the phonon
mode, vg,i(ks) = dω(ks)/dki is the component of the phonon group velocity vector pointing
in the i direction, τ(ks) is the lifetime of the phonon (i.e. time between scattering events).

Modern computational techniques are typically capable of calculating κph directly for
structures that are not too complicated. Recently, a unified approach to calculate both
κph and κdiff has been developed [92]. The results of these calculated κL are comparable
to experimental values when the measured material does not have a significant num-
ber of defects (atomic or microstructural), as these are difficult to account for in current
computational methods.

Spectral Thermal Conductivity

Although explicit consideration of individual vibrational modes is possible, analytically it
is much easier to group vibrations according to their frequency (i.e. energy }ω) and assign
"average" behaviors to the vibrations at that frequency. In this manner the high-level
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physics can be captured mathematically, without tediously worrying about the behavior
of individual vibrations. Since this looks at thermal transport phenomena as a function
of frequency, it is termed "spectral thermal conductivity." Of course, this approach has
major limitations. Even so, spectral theories typically capture the correct magnitude of
thermal conductivity and predict trends with experimental variables that are useful for
engineering design.

In this perspective, any model for the thermal conductivity carried by the atomic vibra-
tions of a solid must consider three components:

1. the number of vibrations of a particular energy that are available to carry heat, i.e.
the vibrational density of states, g (ω),

2. the quantity of heat that can be carried by each vibration, i.e. the heat capacity per
mode, C (ω), and,

3. the propagation behavior of these vibrations through the material, i.e. the thermal
diffusivity for each vibration, D (ω).

Therefore, the total thermal conductivity can be written as the frequency-dependent in-
tegral

κ =

ˆ ∞
0

g (ω) C (ω) D (ω) dω . (2.35)

The spectral heat capacity C (ω) for lattice vibrations follows from Bose-Einstein statistics,
explicitly

C (ω) =
∂

∂T

(
}ω

e
}ω
kBT − 1

)
, (2.36)

and saturates to C (ω) = kB in the T →∞ limit.

Consequently, the primary difference between thermal conductivity models is in the
choice of physics used to characterize the propagation behavior, D (ω). In the phonon
gas model,

D (ω) = v(ω)2τ(ω), (2.37)

as expected from a spectral averaging of the terms in Eq. 2.34. Lastly, it should be noted
that a different form of D (ω) will be developed for diffusons later in the text.
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2.4.2 Charge Transport

This body of work does not explicitly consider the microscopic mechanisms of charge
transport in solids other than by assigning individual contributions to electronic charge
carriers (electrons) and to mobile ionic species. Otherwise, charge transport is discussed
in a thermodynamic context. Nevertheless, a brief discussion is included here to, again,
draw parallels between thermodynamic descriptions and microscopic mechanisms, as
well as to identify key physical parameters relevant to engineering design.

Electronic Transport

It is again possible to begin with a kinetic model. The well-known Drude theory of elec-
trical conductivity is conveniently written as

σ =
nee

2τe
m*

e
, (2.38)

to explicitly include the so-called "effective mass" m* that may or may not differ from
the rest mass of an electron, but describes the characteristic inertial mass of electron
quasi-particles that describe the collective behavior of electrons in a solid. The electronic
conductivity also depends on the number of carriers ne and their characteristic time τe
between scattering events.

As with thermal conductivity, the simple Drude model can be expanded upon to consider
the specific electronic band structure of the material and contributions from individual
electronic states. These are foregone considerations here. Computational techniques like
BoltzTraP [95] make investigations of electronic properties accessible for many materials.

The total charge transport due to electronic species (electrons and holes) is, of course,
the sum of both. In metals and intrinsic semiconductors typically both charge carriers
should be considered. Degenerate semiconductors (heavily doped with either electrons or
holes) are ideal for thermoelectric applications since they have a large electronic conduc-
tivity due to only one carrier type, which is necessary to prevent the Seebeck coefficient
from being reduced.

A simple derivation of the Seebeck coefficient by Mott [96] shows the inherent relation to
electronic conductivity through the number of carriers and effective mass. Explicitly,

S ∝
(
kB

zee

)
m*n

−2/3
e T. (2.39)
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Here it is seen that the Seebeck is negative for electrons and positive for holes. The total
Seebeck is the sum of the contributions from both carriers, and is subsequently reduced
(approaches zero) when there are an equal number of both electrons and holes.

Ionic Transport

A separate contribution to the total charge transport can come from any charged mobile
ions in the solid. The subset of solids known as superionic conductors are particularly
relevant for sensor and battery applications. Some of these materials are also electronic
conductors and have low thermal conductivity, making them desirable for thermoelectrics
applications.

Although the equations presented for the microscopic picture of thermal and electronic
conductivity were somewhat simplified in order to better communicate the essential ele-
ments of the theory, the same cannot be said for ionic conduction. In the present state,
ionic transport is largely defined phenomenologically, without a deeper underlying trans-
port model that is "fully" (more) predictive of ionic behavior. This is likely the result of
the complexity of interactions associated with moving an entire ion through a solid. As
opposed to the behavior of atomic vibrations or electrons, which already require a quite
detailed theory to describe, the behaviors of ionic transport are still being investigated
and the theoretical understanding that is needed for predictive power and modeling is
still under development.

However, the phenomenological transport model does provide some insights into the likely
nature of ionic transport. The general form of ionic conductivity is given as

σion =
σ0

T
exp

(
−∆Hm
kBT

)
(2.40)

and, clearly, there is an activation barrier to transport that is governed by the enthalpy
of migration ∆Hm. However, most of the essential physics is hidden within the prefactor
σ0. Expanding this term,

σ0 =
(zione)

2

kB
nionΓa2

0ω0 exp

(
∆Sm
kB

)
(2.41)

which includes the concentration of mobile ions nion, a geometric factor Γ that describes
what positions are available for the averagemobile ion tomove to, the characteristic length
a0 that an ion travels when it moves, as well as the characteristic frequency of vibration ω0
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that facilitates the hopping-like transport and the entropic term that is associated with
transport ∆Sm. In practice, both σ0 and ∆Hm are fit to experimental measurements.
Theoretically and computationally there is a predictive understanding of the migration
barrier ∆Hm. Understanding the prefactor σ0 at a more rigorous and predictive level is
currently the subject of much attention in solid-state ionics [97, 98].

2.4.3 Comment on the Disparity in Conductivity

A large motivation for studying the thermal properties of materials, especially those prop-
erties related to thermal transport, is due to the fundamental disparity between electronic
and thermal conductivity. While materials were very quickly categorized according to
their electronic conductivity (which is also related to their optical properties), thermal
properties and thermal conductivity do not provide such a stark contrast between mate-
rials.

To illustrate, consider the electrical conductivity of silicon and the thermal conductivity
of silicon (Fig. 2.3). The electrical conductivity can easily span 6 orders of magnitude.
Thermal conductivity can only span about 1, or maybe 2 orders of magnitude if amor-
phous silicon is included (κ ∼ 1 W m−1K−1 at 300 K). This is primarily due to the fact
that materials can have electronic carrier concentrations that vary by many orders of
magnitude (even though changes in composition may be subtle [99]), whereas the heat
capacity of solids is generally fairly constant, spanning 1-2 orders of magnitude at most.
Thus, whatever advantages can be gained by maximizing or minimizing the diffusion of
thermal energy by vibrational modes, either by tuning the elastic properties of the ma-
terial (controlling the speed of sound or phonon velocity [2]) or by introducing scattering
mechanisms [100, 101, 102, 103], these effects are highly sought after.

In the case of thermoelectric materials, where electronic structure is also essential to
the thermoelectric performance, it is essential to explore all possible avenues to reduce
thermal conductivity while retaining the electronic structure. This is to say that it is not
so simple as to simply switch to a material with lower thermal conductivity.
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Figure 2.3: Illustration of the disparity between electrical and thermal conductivity in
solids. Here, silicon is shown as an exemplary case, where electrical conductivity spans ∼6 or-
ders of magnitude (largely due to the ability to control the number of electronic carriers), whereas
thermal conductivity spans ∼1–2 orders of magnitude, and even that requires significant effort to
control both phonon speed and mean free path [2]. Figure modified from the original developed
by Riley Hanus.
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Chapter 3

Characterization of Heat Capacity

3.1 Overview

The ability of a material to store thermal energy is defined by its heat capacity. In solids,
this quantity is fairly consistent between different materials at room temperature, as first
noted by Dulong and Petit in the early 1800s. Here, temperature considerations of heat
capacity are discussed, as are phenomena that can lead to additional heat storage. Sim-
ple models and equations are developed to give accessible and accurate descriptions of
heat capacity for engineering purposes.

This chapter largely draws from content contained within the published works:

Agne, Matthias T., et al. "Heat capacity of Mg3Sb2, Mg3Bi2, and their alloys at high
temperature." Materials Today Physics 6 (2018): 83-88.
Agne, Matthias T., Peter W. Voorhees, and G. Jeffrey Snyder. "Phase Transfor-
mation contributions to heat capacity and impact on thermal diffusivity, thermal
conductivity, and thermoelectric performance." Advanced Materials 31.35 (2019):
1902980.
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3.2 Thermodynamic Description

The differential enthalpy (in units of Joules) of a single phase material having natural
variables of entropy, S, and pressure, P , is

dH = TdS + V dP. (3.1)

Since S is a function of (T ,V ), then at constant pressure

CP =

(
∂H

∂T

)
P

= T

(
∂S

∂T

)
V

+ T

(
∂S

∂V

)
T

(
∂V

∂T

)
P

= CV + V Bα2T. (3.2)

Here, T
(
∂S
∂T

)
V

= CV is the heat capacity at constant volume; T
(
∂S
∂V

)
T

(
∂V
∂T

)
P = V Bα2T is

the dilation contribution calculated from the volume, V , isothermal bulk modulus, B,
and volumetric thermal expansion, α. Eq. 3.2 very clearly demonstrates the progressive
levels for approximating CP:

• Using CP ≈ CV, or the Dulong-Petit limit (3kB/atom) at high temperature, is a good
first approximation.

• Including the dilation contribution (e.g. the effects of anharmonicity) is the first or-
der correction, which becomes more important above the Debye temperature [104].

For a multi-phase material system, however, the total enthalpy of the system is a volume-
weighted average of the enthalpies of each phase and the additional molar enthalpy hi
required to change the molar quantity ni of component i in each phase. Then the differ-
ential enthalpy should be written as

dH = TdS + V dP +
∑
i

hidni . (3.3)

Taking a two-phase system of α and β as an example, then S = φαS
α + φβS

β and ni =

φαn
α
i + φβn

β
i . Here, φ is the phase fraction of each phase, such that φα + φβ = 1. The

differentials are: dS = φαdS
α + φβdS

β (at constant φ) and dni =
(
nβi − nαi

)
dφβ (at constant

ni) since dφα = −dφβ. Now Eq. 3.3 can be rewritten as

dH = T (φαdS
α + φβdS

β) + V dp+ ∆Hα→β dφβ (3.4)
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where ∆Hα→β =
∑

i hi

(
nβi − nαi

)
is the total enthalpy of transforming α into β. Since,

entropy is a function of (T ,V ) and φβ is a function of (T ,P ), the total heat capacity at
constant pressure is then given by

CP =

(
∂H

∂T

)
P

= φα (CαV + ΓαT ) + φβ

(
CβV + ΓβT

)
+ ∆Hα→β

(
∂φβ
∂T

)
P
. (3.5)

where Γ = V Bα2 is the dilation correction for the indicated phase in the composite system.
Again, ∆Hα→β is the total enthalpy of transforming α to β. Since ∆Hα→β can often be
considered to be a constant (independent of φ and T ), large changes in phase fraction with
temperature give rise to large contributions to the heat capacity. Eq. 3.5 is an excellent
description for CP in two phase systems, and the method can be applied to multi-phase
systems of any size. Obviously, Eq. 3.5 reduces to Eq. 3.2 when the material is single
phase (i.e. φβ = 0).

3.3 Physical Contributions to Heat Capacity

The first-order difference between CP and the heat capacity at constant volume, CV, is
the contribution due to dilation of the material via thermal expansion,

CP = CV +Bα2T = CV(1 + γαT ) , (3.6)

where α is the volumetric thermal expansion coefficient, B is the isothermal bulk modu-
lus, γ = Bα/CV is the thermodynamic Grüneisen parameter and T is the absolute temper-
ature. Note that Eq. 3.6 has implicitly been normalized by volume (unlike the previous
section). Additional contributions to CP from electronic carriers and vacancies can also
be considered. As can the effects of phase transformations in multi-phase materials.
Since thermodynamic quantities are additive, the total heat capacity of the material is
the sum of all contributions. However, the relative contribution of each of these different
"degrees-of-freedom" (i.e. the available mechanisms by which the solid can store heat)
in the system will depend on the specific physics at play, some of which are considered
here.

3.3.1 Phonon Heat Capacity

The dominant contribution to the heat capacity of solids at high temperature (e.g. near
and above room temperature) is due to atomic vibrations (phonons). When the phonon
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density of states, g(ω), can be considered as temperature independent, CV can be calcu-
lated using

CV = 3nkB

ˆ ∞
0

(
g(ω)

3n

)(
}ω
kBT

)2(
e

}ω
kBT

)(
e

}ω
kBT − 1

)−2

dω, (3.7)

where n is the number density of atoms and g(ω)/3n is the normalized phonon density
of states (

´∞
0 [g(ω)/3n] dω = 1). Thus, CV can be evaluated when g(ω) is known or can be

approximated. In turn, CP can be modeled from the perspective of Eq. 3.6 using the CV

determined by Eq. 3.7 and values of α and B (or the Grüneisen parameter γ), which may
be determined experimentally or computationally.

A common approximation for g(ω) is the Debye model, which assumes phonons are an
elastic continuum with a linear dispersion relation (ω = vk). Specifically,

g(ω) =
3ω2

2π2v3
s

, (3.8)

which allows for the density of states to be approximated from the average speed of sound
in the material vs. Since materials really are an elastic continuum in the low frequency
limit, measurements of heat capacity at low temperature often capture the approximately
linear portion of the phonon dispersion, facilitating a measurement of the material speed
of sound. In fact, the Debye model predicts CV = βT 3 in the T → 0 limit, where β is
related to the Debye temperature through the relation:

θD =

(
12

5
π4NR

)1/3

β−1/3, (3.9)

when β has units of J mol−1K−4, N is the number of atoms per formula unit and R is the
gas constant. In turn, the Debye temperature is related to vs as

θD = (}/kB)(6π2n)1/3vs, (3.10)

which connects the thermal and elastic properties of materials.

Although the Debyemodel can be used in Eq. 3.7 to estimate the temperature dependence
of CV from 0 K, a simple description of the temperature dependence as CV saturates to
the Dulong-Petit value can be obtained by fitting a Maier-Kelly [105] polynomial to the
Debye model CV. The obtained polynomial is accurate for T > θD/2. When substituted



61

into Eq. 3.6 this gives a reasonable estimate of CP at high temperatures (T > θD/2),

cp

[
J g−1K−1

]
≈ 3NR

MW

[
1 +

1

104

(
T

θD

)
− 1

20

(
T

θD

)−2
]

+A

(
T

θD

)
, (3.11)

where A is primarily the dilation term in units of J g−1K−1, i.e.

A = BVmα
2θD/MW . (3.12)

Alternatively, A can be found directly from the slope (dcp/dT ) of high temperature heat
capacity measurements.

3.3.2 Electrons and Vacancies

Electronic contributions to the heat capacity are not expected to be discernible for semi-
conductors where carrier concentrations are typically less than 1021 cm−3. This is demon-
strated by the Sommerfeld model of electronic heat capacity,

cV,el =
π2

3
k2

Bge(EF)T , (3.13)

where ge(EF) is the density of electronic states evaluated at the Fermi level. In the
parabolic band approximation,

ge(E) =
1

2π2

(
2m*
}2

)3/2

E1/2, (3.14)

and the Fermi level is related to the carrier concentration ne as

EF =
}2

2m*
(
3π2ne

)2/3
, (3.15)

showing that the magnitude of electronic heat capacity scales linearly with the effective
mass m* and is proportional to the number of electronic carriers as n1/3

e (Fig. 3.1). Not
to be confused with the Grüneisen parameter, the so-called Sommerfeld coefficient is
typically denoted as γ (eg. in Fig. 3.1) or γe (to distinguish it from Grüneisen γ) and
defines the linear relation between cV,el and T in Eq. 3.13.

The determination of γe from low temperature heat capacity measurements is possible by
considering the T → 0 limit, where electronic contributions to the heat capacity dominate
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Figure 3.1: The Sommerfeld coefficient of electronic heat capacity. The contribution to heat
capacity (CV) due to electrons according to the Sommerfeld model increases linearly with temper-
ature as γT . The magnitude of heat capacity depends on the carrier concentration and effective
mass of the charge carriers (defined relative to the mass of a free electron m0 in figure).

over phonon contributions. In this regime, CP = CV and can be written as

CV = γeT + βT 3, (3.16)

such that a plot of CP/T vs T 2 gives a straight line, with the y-intercept equal to the value
of γe.

Furthermore, the contribution due to vacancies can be estimated in the dilute limit as

Cp,vac ≈ R
(

∆Hvac
RT

)2

e−
∆Hvac
RT , (3.17)

where ∆Hvac is the vacancy formation energy. This term is also typically small, e.g.
∼53 kJ mol−1 for Mg vacancies in degenerate n-type Mg3Sb2 material [106], resulting in
Cp,vac<0.2% of the Dulong-Petit value at 800 K. However, vacancy effects near the melting
temperature may become important in some materials.
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3.3.3 Two-phase Considerations

For the case of two-phase materials, where phase transformations can occur and there
is an additional contribution to CP according to Eq. 3.5, the magnitude of this additional
heat capacity may be estimated from the equilibrium phase diagram. Consider the order
parameter φ as the fractional quantity of the phase of interest (i.e. phase fraction). The
equilibrium phase fraction can be determined from the phase diagram. Here, a schematic
phase diagram having a miscibility gap is used for demonstration (Fig. 3.2a). In general,
however, many thermoelectric alloys and composites have been made in systems having
more complicated phase diagrams [15, 107, 108, 11, 109, 110, 111, 112, 113, 114, 115,
116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126].

For a fixed nominal composition, x0, the equilibrium phase fraction changes with temper-
ature according to the inverse lever rule (Fig. 3.2b). When kinetics are fast enough, the
phase fraction is able to maintain the equilibrium value as the temperature is changed.
According to Eq. 3.5, the excess heat capacity is not only determined by the energy asso-
ciated with the transformation ∆H, but also by the rate of change of the transformation
(∂φ/∂T )P (Fig. 3.2b). Thus, rapid changes in solubility with temperature can lead to
substantial contributions to heat capacity. For typical values of ∆H ≈ 104 J mol−1 and
values of (∂φ/∂T )P ≈ 10−3 K−1 (see Fig. 3.2b), then latent heat contributions to cp on the
order of tens of J mol−1 K−1 are easily possible. This can be an appreciable fraction of the
Dulong-Petit value. Specific values of (∂φ/∂T )P are, of course, phase diagram dependent.
In the case of Cu2Se, values of (∂φ/∂T )P ≈ 10−1 K−1 can occur (see Section 3.7).

3.4 Case Study of Magnesium Antimonide

The high thermoelectric performance reported for n-type Mg3(Sb,Bi)2 compounds has
attracted much interest and has initiated a great effort to optimize this material [127,
128, 129, 130, 131, 132, 133, 106, 134, 135, 136, 5, 137, 138, 139, 140, 141, 142,
143, 144]. One of the origins of this high performance in the Mg3(Sb,Bi)2 system is its
anomalously low thermal conductivity, which is attributed to the undersized Mg cation
and the corresponding soft, anharmonic Mg-Sb bonds [145, 134]. Because of the high
thermoelectric performance, this material possesses a large potential to be utilized for
practical thermoelectric applications, such as power generation for space probes and
also refrigeration devices near room temperature.

However, the heat capacity values of Mg3(Sb,Bi)2, which are required to calculate ther-
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Figure 3.2: Equilibrium values of φ and dφ/dT can be calculated from the phase diagram.
(a) In this example miscibility gap system, the area below the solvus line is a two-phase mixture
of α and β with the equilibrium phase fraction φ at each temperature defined by the inverse lever
rule. Above the solvus line (shaded region) the single phase γ is formed. (b) The equilibrium phase
fraction of the α phase is shown as a function of temperature for several x0, and the corresponding
derivative dφ/dT , which becomes larger in magnitude approaching the solvus temperature and
can contribute significantly to the heat capacity of the solid.

mal conductivity, are inconsistent between studies [6, 7, 4, 5]. At high temperature, the
deviation of heat capacity data is more than 10% among previous reports. Before ther-
moelectric applications can be considered, it is vital to obtain reliable and consistent
thermal conductivity data in this system. Temperature dependent heat capacity data is
required to calculate thermal conductivity, κ through the relation:

κ = ρcpD, (3.18)

where D [m2s−1] is the thermal diffusivity and CP = ρcp is the volumetric heat capacity [J
m−3K−1], typically calculated from experimental bulk density, ρ [kg m−3], and the mass
specific heat cp [J kg−1K−1]. Although the various reports all rely on the laser flashmethod
to measure D, different reports have used different values of CP. These different values
of heat capacity directly correspond to an over/underestimation of the thermoelectric
figure of merit, zT , and leads to a loss of consistency among data reported from different
groups.

The problem with experimentally obtained CP lies in the uncertainty of the heat capacity
measurement at high temperature due to the difficulty of the calibration and temperature
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control [88, 146]. Because of this uncertainty, it is often more accurate to use the Dulong-
Petit value of heat capacity which is temperature independent. The Dulong-Petit value is
often discussed as a specific heat at constant volume, CV, because it does not contain
contributions to the specific heat from anharmonic effects [147] (e.g., thermal expansion),
but also ignores the heat capacity due to electronic carriers, formation of vacancies,
etc. Near room temperature these effects are typically smaller than 5% of the Dulong-
Petit value. At higher temperatures, however, these temperature dependent contributions
to CP can become appreciable, such that estimates of zT can be affected by 10-20%.
For example, a ∼15% difference in zT at 725 K was obtained for a Mg3(Sb,Bi)2 alloy
depending if the Dulong-Petit or an experimental heat capacity was used (compare zT
in Refs. [106, 137]). Thus, for systems like Mg3(Sb,Bi)2 where 10% accuracy in thermal
conductivity (and zT ) is desired, it is imperative to obtain reliable heat capacity values for
precise evaluation of the thermoelectric performance, as has been done for PbTe [148].

In this study, we successfully establish a physics-based model to evaluate values of CP

at high temperature by considering the contribution from thermal expansion combined
with experimentally measured low temperature heat capacity. It is found that the high
temperature heat capacity of the entire solid solution range can be simply described by a
single polynomial equation which should be a new standard for calculating the thermal
conductivity of Mg3(Sb,Bi)2.

3.4.1 Low Temperature Analysis

The Mg3Sb2 and Mg3Bi2 compounds are known to have soft shear moduli and highly
anharmonic bonding compared with other isostructural compounds (e.g., CaMg2Sb2)
[134, 149]. These characteristics contribute to the low lattice thermal conductivity that
makes Mg3Sb2−xBix alloys promising for thermoelectric applications. However, the high
anharmonicity present in these compounds means that the use of the Dulong-Petit heat
capacity is likely a significant underestimate at high temperatures.

This study utilized low temperature heat capacity measurements to determine the Debye
temperature for a series of Mg3Sb2−xBix compounds (x = 0, 0.5, 1.0, 1.5, 2). By plotting
CP/T

3 vs T it is possible to determine the so-called Debye level, β. This horizontal plateau
is observed when atomic vibrations dominate the heat capacity in the T → 0 K limit (i.e.,
g(ω) ∝ ω2) and is related to the Debye temperature through the relations discussed in
Section 3.3.1. In Fig. 3.3a, the experimental values of CP/T

3 are plotted along with
corresponding Debye model fits of β. The Debye temperatures obtained from pulse-echo
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Figure 3.3: Debye temperature of Mg3Sb2−xBix alloys. Measured values of molar heat capac-
ities plotted as CP/T

3 vs T (markers) for several compositions in the Mg3Sb2−xBix system, with
corresponding Debye model curves (dashed lines); as well as, (b) the Debye temperatures obtained
from the data shown in panel (a) and from pulse-echo speed of sound data, plotted vs nominal
composition.

speed of sound measurements are in excellent agreement with those determined from
heat capacity (Fig. 3.3b).

Clearly there is an elastic softening as Mg3Sb2 is alloyed with Mg3Bi2 that appears to
follow a linear relation (Vegard’s law) with composition. Interestingly, although the Debye
temperature decreases by 23%, the bulk modulus remains nearly constant across the
compositional range (Table 3.1). This indicates that it is predominantly the shear modes
that soften during alloying.

Thermal expansion is an inherently anharmonic effect, such that more anharmonicity
tends to result in larger thermal expansion coefficients. The volumetric thermal expan-
sion coefficient,α, determined via dilatometry (66.9×10−6K−1) is comparable to other an-
harmonic thermoelectric materials like PbTe (59.1×10−6K−1) and SnTe (63.9×10−6K−1)
[151]. However, temperature dependent X-ray diffraction results obtained herein gave a
37% lower absolute magnitude of α, likely resulting from a systemic error in the temper-
ature control. Nevertheless, the X-ray measurements indicate that the thermal expan-
sion coefficient is independent of composition, within 10%. Previous experimental and
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Table 3.1: Physical properties of the Mg3Sb2−xBix alloy system

Compound: Mg3Sb2
(x=0)

Mg3Sb1.5Bi0.5
(x=0.5)

Mg3SbBi
(x=1.0)

Mg3Sb0.5Bi1.5
(x = 1.5)

Mg3Bi2
(x=2)

Bulk Modulus, B (GPa) 45.9
36.4
[134]
42 [150]

47.5 45.3 – –
38.4
[134]
37 [150]

Shear Modulus, G (GPa) 16.0
15.7
[134]
19 [150]

16.4 15.5 – –
13.4
[134]
15 [150]

Poisson ratio, ν 0.34
0.32
[150]

0.34 0.35 – –
0.32
[150]

Molar volume, Vm (m3mol−1) 7.86E-05 7.98E-05 8.09E-05 8.23E-05 8.35E-05
Debye temperature, θD (K) 230 ± 2

228 ± 4
216 ± 4
218 ± 3

199 ± 2
201 ± 3

191 ± 1
–

177 ± 2
–

computational work on Mg3Sb2 reported α values of 51.9×10−6K−1and 61.7×10−6K−1,
respectively, at 300 K [134]. These values are larger than those for the isostructural
compounds CaMg2Sb2 and CaMg2Bi2 (and the Yb analogues), again due to the larger an-
harmonicity of Mg3(Sb,Bi)2. Computational values as large as almost 90×10−6K−1 were
reported for Mg3Sb2 at 600 K [134]. However, experimentally, there is no indication of a
significant increase in α from 300 to 720 K.

Experimental heat capacities of Mg3Sb2 and Mg3Bi2 from 2 to 220 K can be well described
using Eq. 3.6 (Fig. 3.4a). The DFT calculated density of states (Fig. 3.4b, used in Eq.
3.7) also shows that Mg3Bi2 is softer than Mg3Sb2, in agreement with the trend in Debye
temperatures (Fig. 3.3b). A constant value of Bα2 = 206.9 J m−3K−2 is used, based
on the average measured value of bulk modulus (46.2 GPa) and the high temperature
value for the volumetric thermal expansion coefficient (66.9×10−6K−1). The temperature
dependence of α, which is constant at high temperature but goes to zero at 0 K, can
be neglected because the Bα2 term is already relatively small and is multiplied by the
absolute temperature (Eq. 3.6), effectively suppressing the dilation contribution below
150 K. As T increases, however, the dilation term is necessary to account for the deviation
of the measured CP from CV (compare dashed and solid lines in Fig. 3.4).

3.4.2 Extension to High Temperature

The success of using the physics-based model (Eq. 3.6) to describe the low temperature
heat capacity (Fig. 3.4) provides validation for using the model to describe the heat ca-
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Figure 3.4: Heat capacity and vibrational density of states of Mg3Sb2 and Mg3Bi2. Mea-
surements of low temperature molar heat capacities of Mg3Sb2 (grey circles) and Mg3Bi2 (purple
triangles) modeled by Eq. 3.6 (solid lines), using the linear dilation term discussed in text and
the constant volume heat capacity (dashed lines) calculated using (b) the DFT phonon densities
of states of Mg3Sb2 (grey shaded) and Mg3Bi2 (purple line) in Eq. 3.7.

pacity over the full temperature range (Fig. 3.5). Particularly, by demonstrating that the
model correctly captures the magnitude and curvature of CP leading up to 300 K means
that extrapolation to higher temperatures is self-consistent with low temperature mea-
surements. Since the molar heat capacities of the entire compositional range (0≤ x≤2)
are similar at low temperatures (e.g., the spread in values is < 5% of the mean at 220 K),
the CP model for Mg3Sb2 can be used as a good approximation for the entire system. For
temperatures from 100 to 220 K, the model is within 1% of the average of the experimen-
tal values. Then the error of the model can be estimated from the range of the 5 data
sets as approximately ±3%. As can be seen in Fig. 3.5, measurements of high temper-
ature (>300 K) heat capacity in the Mg3Sb2-xBix system vary substantially in magnitude
(≈20% at 400 K, see Fig. 3.5). This is likely the result of the sensitivity of measurement
techniques (e.g., differential scanning calorimetry) to baseline corrections/calibration.
Nonetheless, the high temperature slopes of the measured CP values (dCP/dT ) are qual-
itatively consistent with that predicted from the bulk modulus and thermal expansion.
This supports the idea that measurements are prone to systemic errors that lead to dif-
fering absolute magnitudes between studies, whereas relative magnitudes (i.e., dCP/dT )
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Figure 3.5: The heat capacity of Mg3Sb2-xBix alloys. A compilation of experimental heat ca-
pacity values for Mg3Sb2-xBix alloys over the full temperature range. The low temperature values
(<300 K) measured herein: x=0 (grey circles), x = 0.5 (green squares), x = 1.0 (yellow triangles), x
= 1.5 (orange diamonds), x = 2.0 (purple triangles), have magnitudes within ±3% of the Mg3Sb2
model curve (grey line) below 220 K. The experimental results of this study agree with the low
temperature values reported for Mg3Sb2 by Yoon [3] (open blue circles). The reported values at
higher temperature (>300 K) are more scattered, with the measured values of this study (red dots)
having the largest magnitude, but a slope in agreement with theory. The experimental values of
Shuai, et al. [4] (open blue stars) and Tamaki, et al. [5] (green asterisk markers) agree best with
both the magnitude and slope of the model curve. Bhardwaj and Misra [6] (open triangle markers)
and Chen, et al. [7] (gold X markers) report values somewhat lower in magnitude, but with similar
slopes as the others. Note that the linear dilation term is responsible for increasing CP ≈5% above
the Dulong-Petit value by 600 K.

agree. Thus, the model is likely a better estimate of the magnitude of the high tempera-
ture CP since it is consistent with the low temperature values and reproduces the linear
slope observed in the high temperature measurements.

In recognizing that the molar heat capacities of the Mg3Sb2-xBix system are similar (Fig.
3.5) and can be estimated by a simple model (Eq. 3.6) over the full temperature range
(grey line in Fig. 3.5), it is advantageous to make the model values of CP accessible for
engineering applications. Herein, a Maier-Kelly [105] polynomial expression was found
to describe the model curve (normalized RMS error of 0.2%), and thus estimate the mag-
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nitude of experimental heat capacity ±3% for the range 200 K ≤ T ≤800 K:

cp

[
J g−1K−1

]
=

3NR

MW

(
1 + 1.3× 10−4 T − 4× 103 T−2

)
, (3.19)

where 3NR=124.71 J mol−1K−1 since N=5 (number of atoms per formula unit) and R is
the gas constant. MW is the molecular weight of the formula unit being considered (in
units of g mol−1). By the Neumann-Kopp rule, this same expression is expected to hold
when dopants/substitutions are introduced. In that case, an appropriate MW should be
used accordingly. Also note that Eq. 3.19 is written in a way that the unit dimensions
may be easily changed. The dimensionless heat capacity CP/3nkB is the polynomial term
in parenthesis in Eq. 3.19.

The excellent agreement of Eq. 3.19 even for the full solid solution fromMg3Sb2 to Mg3Bi2
and its closeness to the Dulong-Petit value (3NR/MW) suggests that Eq. 3.19 should be
a good estimate even for doped (such as Te, La n-type dopants or Na, Li p-type dopants)
or alloyed (Ca, Zn, Cd, etc. up to ∼30%) samples.

The equivalence of Eq. 3.11 (θD=282 K) with Eq. 3.19 for Mg3Sb2-xBix compounds pro-
vides compelling justification for the use of Eq. 3.11 to accurately estimate the heat
capacity of other compounds at high temperature. In fact, Eq. 3.11 is likely more accu-
rate than even experimental measurements, not only for Mg3Sb2-xBix , but also for other
single phase materials [88].

3.4.3 Summary

Including the first-order anharmonic correction to the harmonic phonon heat capacity
provides an accurate description of experimental heat capacity of Mg3(Sb,Bi)2 up to 800
K. The self-consistency of the CP model with both low and high temperature experimen-
tal results provides validation that it can be used to estimate the magnitude of high
temperature CP where experimental results are scattered. The model is likely to be more
accurate for a given new material than an individual measurement considering the typi-
cal uncertainties of high temperature heat capacity measurements. A simple polynomial
expression is given for the suggested heat capacity values over the 200 K≤ T ≤800 K
range that is expected to be accurate within ±3% for Mg3(Sb,Bi)2 solid solutions even
when considering dopant and alloying additions. The high anharmonicity of Mg3(Sb,Bi)2
compounds leads to deviations of CP from the Dulong-Petit limit at high temperatures.
We recommend the suggested values of CP be used so that thermal conductivity is not ap-
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preciably underestimated and to improve accuracy of comparing results among different
laboratories.

3.5 Characterization of MAB Phases

The MAB phases are atomically laminated transition metal (M) borides, whose crystal
structures are comprised of transition metal boride (M-B) layers separated by a bilayer or
monolayer of Al (A) atoms. As electrically conductive, high-temperature layered ceramics,
they resemble the MAX phases [152]. Their bulk synthesis has only recently been realized
[153], and thus their thermophysical characterization is important for classifying these
materials for potential technological applications.

3.5.1 Determination of Electronic Heat Capacity

In the characterization of the heat capacity of the MAB phases, like the MAX phases
[154], it is necessary to include the electronic heat capacity for an accurate description
across the full temperature range.

In the case of the MAB phase MoAlB [8], it has a non-negligible electronic heat capacity,
determined here to be γe = 1.94 mJ mol−1 K−2 (Fig. 3.6). This makes use of the strategy of
determining the Sommerfeld coefficient γe as discussed in Section 3.3. It is important to
note that the value of γe depends on the region that is linearly fit (e.g. the blue region in
Figure). Further discussion on determining the Sommerfeld coefficient γe can be found
in Appendix A.

The Mn2AlB2 and Fe2AlB2 MAB phases are somewhat different than the MoAlB case, in
that there is a net magnetic moment at low temperature that adds an additional contri-
bution to the heat capacity. Thus, while the low temperature (T → 0) limit is not linear
when CP/T is plotted versus T 2, the y-intercept is still a reasonable estimate of γe (see
Appendix B).

3.5.2 Estimation of High Temperature Heat Capacity

Since the magnetic phase transition in Mn2AlB2 and Fe2AlB2 is around room tempera-
ture, the high temperature heat capacity does not have a magnetic component. Thus, the
simple description of high temperature heat capacity (Eq. 3.11) can be used for MoAlB,
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Figure 3.6: Determination of the coefficient of electronic heat capacity γe from low temper-
ature heat capacity measurements. The y-intercept is γe and the linear slope is β as discussed
in Section 3.3.

Mn2AlB2 and Fe2AlB2. However, the linear term A has to be adapted to include the elec-
tronic contribution as,

A =
θD

MW
(BVmα

2 + γe). (3.20)

In all cases, the dilation contribution to CP can be estimated in the same manner as for
the Mg3Sb2 materials (Section 3.4) using the experimentally determined bulk modulus
and thermal expansion coefficient.

It was then possible to estimate the high temperature heat capacity according to Eq. 3.11
using the A coefficient defined by Eq. 3.20 (Fig. 3.7).

3.6 Characterization of Zinc Antimonide

The thermoelectric material Zn4Sb3 is a remarkable example of the "phonon-glass electron-
crystal" philosophy and has an exceptional zT in the ∼400–700 K range [155]. At lower
temperature ∼250 K it undergoes a phase transition, which is relevant to a later discus-
sion in this work.

Here, it is demonstrated how Eq. 3.11 provides a simple and accurate description of the
temperature dependent heat capacity outside of the phase transition region. In three
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Figure 3.7: Heat capacity of the MAB phases. Experimental measurements of heat capac-
ity (markers) and high temperature model (solid lines) of the MAB phases MoAlB, Mn2AlB2 and
Fe2AlBe. The excellent agreement of this model with previously reported high temperature results
[8] provides confidence in the model for the other compounds. The model makes use of the exper-
imentally measured speed of sound to estimate the Debye temperature θD and bulk modulus B,
as well as experimentally measured thermal expansion to account for the dilation contribution
to CP. The electronic contribution made use of the linear Sommerfeld term as discussed in text.
Magnetic terms are not expected to contribute above the phase transition, which is the peak (or
plateau) in the experimental data near 300 K.

easy steps:

1. Calculate the Dulong-Petit heat capacity.

The value 3NR
MW

= 0.2785 J g−1K−1 was calculated using N = 7 (atoms per for-
mula unit) and MW = 626.84 g mol−1.

2. Determine the Debye temperature θD.

In this case, a value of the Debye temperature θD = 237 K was taken from
literature [156]. Experimentally, it can be obtained by the methods discussed
in Section 3.3.1.

3. Estimate the linear term A.
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Figure 3.8: Heat capacity of zinc antimonide. Experimental heat capacity reported at low
temperature by Bhattacharya et al [9] (blue squares), and at high temperature by Toberer et al
[10] (green diamonds), compared with the model defined by Eq. 3.11 (black line).

If the material properties needed to calculate A (as in Eq. 3.20) are unknown,
it is also possible to use the slope of experimental heat capacity measurements
which are generally more reliable than their absolute magnitude. Here, the
coefficient A = θD × 6.521× 10−5 J g−1K−1 was determined using dcp/dT found
from a linear regression of the experimental data given by Toberer, et al. [10]
(green diamonds in Fig. 3.8).

Using these values in Eq. 3.11 accurately captures the temperature dependent heat
capacity for temperatures greater than θD/2 (black line in Fig. 3.8). Again, effects of the
phase transition on heat capacity were not considered here.
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3.7 Characterization of Copper Selenide

There are many similarities between Cu2Se and Zn4Sb3. Both are p-type semiconduc-
tors due to the large number of cation (copper or zinc) vacancies. Both undergo phase
transitions in which the high temperature phase has a high ionic mobility of the cations.
And both have a high thermoelectric performance that is generally limited by their chem-
ical stability during operation. In the case of Cu2Se, it is generally accepted to have high
thermoelectric performance at high temperature (∼1000 K) [157], but it is highly debated
if (or to what degree) the thermoelectric efficiency peaks at the phase transition ∼400 K.
Here, the phase transformation contribution to heat capacity is considered.

Examination of the Cu2−dSe region of the phase diagram [11] shows a two phase region
(Fig. 3.9a), from which φβ and

(
∂φβ/∂T

)
p can be calculated (Fig. 3.9b). This is done

using the inverse lever rule as shown in Fig. 3.2.

Then, Eq. 3.5 can be used to estimate the heat capacity including the phase transforma-
tion contribution. For simplicity, the Dulong-Petit value can be used for the cv component
and the dilation term can be neglected (for both phases) in the temperature range of in-
terest. The latent heat contribution for the Cu1.985Se nominal composition is estimated
using

(
∂φβ/∂T

)
p determined from the phase diagram and ∆Hα→β = 30 J g−1 [11].

This model for the heat capacity is in good overall agreement with carefully measured
experimental values [12] (Fig. 3.9c). However, there is thermal broadening associated
with the experimental method that is not captured in the model cp. In other words, there
is not a discontinuity in the experimental cp but a more gradual decrease above ∼410 K
(compare blue squares with black curve in Fig. 3.9c).

3.8 Characterization of Elastic Softening

The recently noted importance of elastic softening for tuning thermal conductivity in bulk
solids is a new mechanism for improving thermoelectric performance. In a model PbTe
system, the thermal conductivity could be reduced by ∼20% with a reduction in the bulk
speed of sound by only ∼7% [2]. This demonstrates the subtle dependence of transport
properties on the elastic properties of materials (e.g. the speed of sound).

Similarly, the connection of elastic properties to the ionic conductivity of Li ion batteries
makes the characterization of elastic properties essential to understanding transport in
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Figure 3.9: Phase diagram and heat capacity of copper selenide. Section of the Cu-Se phase
diagram showing (a) the α→ β phase transition region [11] of Cu2−dSe, as well as, (b) the temper-
ature dependent equilibrium phase fraction of β, φβ, and the temperature derivative dφβ/dT for
the nominal Cu1.985Se composition defined by the path of the arrow in panel a. Thermal proper-
ties for the nominal Cu1.985Se composition including (c) the experimental heat capacity [12] (blue
points in top panel) measured by differential scanning calorimetry and the model heat capacity
(black line in top panel) calculated using dφβ/dT shown in panel b.

a general sense. Thus, characterization of the speed of sound (or elastic modulus) is of
utmost importance for characterizing and assessing these new transport phenomena.

Low temperature heat capacity, which can thermally probe the elastic continuum of ma-
terials (at low enough temperatures), is an excellent resource for determining the elastic
properties of materials. While bulk solids (nominally fully dense) may use ultrasonic
methods (pulse echo or resonant) to characterize the elasticity of the material, highly
anisotropic materials, porous materials, or even powders can utilize heat capacity mea-
surements to extract thermally averaged elastic properties.

3.8.1 Evaluation of Elasticity in Lead Telluride

The low temperature heat capacity results of Mg3Sb2 materials (Fig. 3.3) demonstrate
the principle perfectly. In that case, the elastic softening was due to alloying. In the
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case of the bulk PbTe materials considered here (Fig. 3.10), the elastic softening is strain
induced [2].

It should be noted that the traditional CP/T vs T 2 plot is difficult to analyze since the
linear region spans a small temperature range. In fact, had the present study not made
measurements as low as 1.8 K, the Debye-like elastic region would have been missed
entirely. It is typical for low temperature heat capacity measurements to begin ∼4 K. If
that had been the case, the plot of CP/T vs T 2 would have still looked fairly linear (see
T 2 > 20 K2 in Fig. 3.10a), which one may erroneously interpret as being the Debye-like
region. However, CP/T can never be negative as both CP and T can only be positive. Thus,
if the y-intercept of the CP/T vs T 2 linear regression is significantly less than zero (beyond
typical errors in regression analysis) this would indicate that the Debye region has been
missed, or is not the dominant contribution to CP if other physics is at play.

Instead, the plot of CP/T
3 vs T is used as it was in the case of Mg3Sb2. The horizontal

plateau (∼ 2 K in Fig. 3.10b) clearly shows the so-called "Debye level" needed to extract
the speed of sound (see Section 3.3.1). The deviation of the heat capacity due to the quick
rise in the phonon density of states (due to the low frequency transverse modes) is clearly
seen as a hump centered around ∼10 K. This hump does not necessarily mean there is a
"rattling" mode, as is often inferred in other materials, but rather there is a large density
of states at low frequency that is not accounted for by the Debye model.

3.8.2 Phenomenological Description of Elastic Softening

As an illustration of the nature of softening, and how transverse acoustic phonons can
give rise to the peak observed in the low temperature plot of CP/T

3, consider the simple
phonon dispersion shown in Fig. 3.11a that was constructed using the Brillouin zone
boundary condition (BZBC) model described by Kaviany [13, 14]. The flattening of the
transverse acoustic branch around 4 meV gives rise to a peak in the density of states at
this same point (Fig. 3.11b). As the longitudinal branch is essentially linear (Debye-like)
it would produce a horizontal plateau in the CP/T

3 plot as shown in Fig. 3.10. However,
due to the presence of the transverse branch, the peak in low temperature heat capacity
is reproduced (Fig. 3.11c). Thus, this simple model captures the main elements observed
experimentally:
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Figure 3.10: Experimental characterization of elastic softening in lead telluride by low tem-
perature heat capacity measurements. Debye model fits to the lowest temperature data are
used to extract the thermally averaged speed of sound through its relation to the Debye temper-
ature (θD ∼ vs). (a) The plot of CP/T vs T 2 is not recommended for materials like PbTe that have
substantial contributions to the phonon density of states at low frequencies that cause a rapid
rise in the heat capacity that is not expected from the Debye model, as determination of the Debye
region may be difficult. For example, compare the temperature range of the linear region (T 2 < 20
K2) with that in Fig. 3.6. (b) A plot of CP/T

3 shows softening as a change in the so-called Debye
level, the horizontal plateau at the lowest temperatures. This plot further emphasizes deviations
from the Debye model (i.e. the peak ∼10 K, see inset) that is more more distinguishable than the
change in slope observed in panel a.

1. The shift in Debye level is indicative of a change in the bulk speed of sound (larger
value of CP/T

3 means smaller θD).

2. The subtle shift of the peak in CP/T
3 to lower temperature is explained by a corre-

sponding shift in the frequencies of the transverse phonon modes.



79

Figure 3.11: Illustration of softening and its impact on low temperature heat capacity. (a)
Example phonon dispersion demonstrating the shift in phonon modes to lower frequency that
is meant by "softening". This phonon dispersion is sketched using the BZBC model described
by Kaviany [13, 14]. (b) The corresponding phonon density of states from which heat capacity
can be calculated. (c) The heat capacity determined from the density of states shown in panel
b, illustrating both the change in Debye level and subtle shift of the hump due to the transverse
acoustic phonons.
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Chapter 4

Thermal Conductivity Through Phase Transitions

4.1 Overview

The accurate characterization of thermal conductivity κ, particularly at high temperature,
is of paramount importance to many materials, thermoelectrics in particular. The ease
and access of thermal diffusivityDmeasurements allows for the calculation κ of when the
volumetric heat capacity, ρcp, of the material is known. However, in the relation κ = ρcpD,
there is some confusion as to what value of cp should be used in materials undergoing
phase transformations. Herein, it is demonstrated that the Dulong-Petit estimate of cp at
high temperature is not appropriate for materials having phase transformations with ki-
netic timescales relevant to thermal transport. In these materials, there is an additional
capacity to store heat in the material through the enthalpy of transformation ∆H. It is
shown experimentally in Zn4Sb3 that the decrease in D through the phase transition at
250 K is fully accounted for by the increase in cp, while κ changes smoothly through the
phase transition. Consequently, reports of κ dropping near phase transitions in widely
studied materials such as PbTe and SnSe have likely overlooked the effects of excess heat
capacity and overestimated the thermoelectric efficiency, zT [158].

The bulk of this chapter was published as:

Agne, Matthias T., Peter W. Voorhees, and G. Jeffrey Snyder. "Phase Transfor-
mation contributions to heat capacity and impact on thermal diffusivity, thermal
conductivity, and thermoelectric performance." Advanced Materials 31.35 (2019):
1902980.
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4.2 Motivations

Well characterized thermophysical properties, especially thermal conductivity, κ, are cru-
cial for modern engineering design and applications. Both low κ (e.g. thermoelectric and
thermal barrier) and high κ (e.g. thermal management and heat sink) technologies rely
on accurate thermal property measurements to evaluate material/device performance
and efficiency. For thermoelectric materials, where the energy conversion efficiency is
determined by the material figure-of-merit [75], zT ∝ κ−1, it is vital to obtain reliable
and consistent thermal conductivity data before applications can be considered.

The drive to improve thermoelectric efficiency through reductions in thermal conductivity
has been successful over the past two decades [159, 160, 161]. The general approach
has been to reduce the lattice thermal conductivity κL through phonon scattering by
introducing various defects in the material. Although it has also been demonstrated that
controlling the elastic properties of the material may be equally or more important in
some materials [2]. Beneficially, it seems that introducing microstructural defects can
reduce thermal conductivity through both mechanisms (softening and scattering).

The use of phase transitions has been proposed as a method of improving zT through
further reducing thermal conductivity (Fig. 4.1). Observations of κL approaching zero
during phase transitions in some materials lead to the idea of "critical" phonon scattering
as a mechanism for thermal conductivity suppression. However, it was later noted that
a corresponding peak in heat capacity at the phase transition was also present causing
some confusion as to which heat capacity to use in the estimation of thermal conductivity.

Although direct measurements of κ are possible [88], it is more frequent in measurement
above room temperature to calculate thermal conductivity through the relation (Section
2.2.1)

κ = ρcpD. (4.1)

Here, D [m2 s−1] is the thermal diffusivity and ρcp = (∂H/∂T )P is the constant pressure
heat capacity [J m−3K−1] typically calculated from experimental bulk density, ρ [kg m−3]
and the mass specific heat cp [J kg−1 K−1]. Eq. 4.1 is utilized largely because measure-
ments of thermal diffusivity, D, are accurate (within ∼3%) and easily accessible [88].

Thus, the uncertainty in calculating κ (often 10% or more) is frequently attributed to
measurement of heat capacity [88, 146]. Due to the uncertainty in the absolute magni-
tude of high temperature heat capacity measurements, it is often more accurate to use
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Figure 4.1: Thermoelectric efficiency at phase transitions. Experimental reports suggest that
the thermoelectric figure-of-merit zT increases sharply at phase transitions in various materials
[15, 16, 17]. In all cases, the increase in zT can be largely attributed to a drastic reduction in
thermal conductivity.

a model. Usually, the temperature independent Dulong-Petit heat capacity is a good ap-
proximation (within ∼5%) near room temperature. At higher temperatures, a model that
incorporates a linear temperature dependence may be appropriate [104, 88, 8].

However, an incomplete understanding of heat capacity measurements and models can
lead to inaccurate estimations of κ in some systems, especially those having substantial
latent heats (e.g. during phase transitions). The recent debate surrounding the ther-
moelectric material, Cu2Se, is an excellent example [12, 162, 11, 16, 163, 164]. In this
material, and others [17, 15, 18], the thermal diffusivity drops markedly as the material
undergoes a phase transition. Depending on the heat capacity used to calculate κ, a
maximum zT between 0.6 [12] to 2.3 [16] has been reported due to the superionic phase
transition in Cu2Se. As exemplified in Fig. 4.2, the choice of heat capacity can have a
drastic impact on zT values.

To properly characterize the behavior of thermal conductivity through a phase transition,
it is paramount to understand the concurrent behavior of heat capacity. Recognizing that
the total capacity of a material to absorb heat includes both the intrinsic heat capacity
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of the phases present and the enthalpy (heat) of transformation ∆H that is required
to maintain equilibrium (characterized by the order parameter φ) as the temperature is
changed,

ρcp =

(
∂H

∂T

)
p

= Cpφ + ∆H

(
∂φ

∂T

)
p
. (4.2)

Here, Cpφ = (∂H/∂T )p,φ is the intrinsic heat capacity of the phases present. It can be
approximated as the Dulong-Petit value of 3kB/atom, or a temperature dependent model
can be used. Note that Eq. 4.2 is essentially a generalized form of Eq. 3.5 written in
a consolidated notation, a detailed description can be found in Section 3.2. The second
term, which includes the enthalpy of transformation ∆H (the heat associated with a
complete phase transformation) that can be estimated from an integrated peak in heat
capacity measurements, is not typically considered. This is understandable as one could
argue that (∂φ/∂T )p should be zero in the steady-state measurement of κ. However, we
show theoretically why this term is non-zero and should be included in the calculation
of κ when transformation kinetics are fast on the timescale of thermal transport. Not
including the enthalpy of transformation can lead to significantly underestimated values
of κ in the region of peak zT for many important cases, such as Cu2Se, PbTe and SnSe,
where exceptional zT > 2 has been reported.

This work examines the relevant thermodynamic definitions for the estimation of thermal
conductivity from thermal diffusivity, while considering the non-equilibrium and kinetic
aspects of materials during experiments. It is demonstrated that latent heat can con-
tribute significantly to the total heat capacity in some cases, including several material
systems with high reported thermoelectric performance.

4.3 Time Dependent Heat Capacity

The relation of thermal conductivity to thermal diffusivity (Eq. 4.1) comes from a deriva-
tion of the heat equation from linear non-equilibrium thermodynamics [84] (see Section
2.2.1). In this derivation, the heat capacity is obtained by applying the chain rule, and
is actually a ratio of two time dependent derivatives. Explicitly,

ρcp =

(
∂H

∂T

)
P

=

(
∂H

∂t

)
P
/

(
∂T

∂t

)
P

(4.3)

is the ratio of the time rates of change of enthalpy to temperature. Thus, the timescale of
the processes is relevant. In fact, Eq. 4.2 can be written to include the time dependence
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Figure 4.2: The process of estimating thermal conductivity and thermoelectric perfor-
mance. Two possible pathways for calculating thermal conductivity κ (and zT ) from thermal
diffusivity D and volumetric heat capacity ρcp are shown. One possibility (upper panels) is to use
the Dulong-Petit heat capacity, i.e. cp ≈ cv, resulting in zT > 2 for this hypothetical material. The
other possibility (lower panels) is to include the enthalpy of transformation in the heat capacity,
i.e. ρcp according to Eq. 4.2, resulting in zT < 2.

as [165]

ρcp =

(
∂H

∂T

)
P

= Cpφ + ∆H
(∂φ/∂t)P
(∂T/∂t)P

, (4.4)

in which the first term, Cpφ, depends on the instantaneous temperature T (t) and the sec-
ond term clearly demonstrates how the timescales of transformation and thermal trans-
port are important to the total heat content in the material. Specifically, the transforma-
tion enthalpy contributes to the total heat capacity on timescales where changes in φ and
T occur concurrently. When transformation kinetics are slow, i.e. (∂φ/∂t)P → 0, only the
intrinsic heat capacity is relevant (blue region in Fig. 4.3). However, when transformation
kinetics are fast, i.e. φ can respond “instantly” to temperature changes, additional heat
is absorbed in order to maintain equilibrium (red region in Fig. 4.3). Note that advanced
study of time-dependent heat capacity may benefit from a transformation of Eq. 4.4 to
frequency space, but this is not necessary to support the conclusions drawn herein.

As a brief aside, Cpφ (the “intrinisic heat capacity”) includes the contributions from the
atomic vibrations, electrons, etc. that determine CV and Γ for each phase (see Eq. 3.5).
These mechanisms to store heat respond “instantaneously” to temperature changes, as
opposed to the transformation term in Eq. 3.5 which generally has an activation barrier
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(i.e. for diffusion-mediated transformations). At high temperatures (i.e. above the Debye
temperature) Cpφ is dominated by the Dulong-Petit heat capacity and is therefore largely
independent of temperature and φ (because

∑
φi = 1 and each phase tends to have about

the same number of atoms/volume). The dilation term Γ is only a small correction,
and it is often sufficient to treat it as a constant (independent of T and φ) using room
temperature values of B and α [104]. Thus, Cpφ has little to no dependence on φ(t) for
the cases discussed herein.

Atomic rearrangement often has a slower response to changes in temperature than the
atomic vibrations or electrons. Thus, the primary time dependence of heat capacity is
due to the kinetics of transformation. In Eq. 4.4, however, it may not be immediately
obvious what happens as (∂T/∂t)P → 0. The confusion may arise because (∂T/∂t)P can
be interpreted both as a “heating rate” which can be set by the experimenter, but also
as the temperature fluctuations when the macroscale temperature is constant. By the
fluctuation-dissipation theorem these two interpretations are linked, and may be best
considered by a spectral analysis.

Nevertheless, to identify systems where latent heat may be expected to contribute to the
total heat capacity, the characteristic time of atomic rearrangement at a given tempera-
ture can be compared to the characteristic time of thermal transport (Fig. 4.3). Using the
atomic diffusion coefficient, Da [m2 s−1], and the number density of atomic sites, n [m−3],
the characteristic time of atomic rearrangement is defined here as ta = D−1

a n−2/3. Some
examples are shown in Fig. 4.3 (values given in Appendix C). Many engineering materi-
als, including good thermoelectric systems, can exhibit ta values of similar magnitude to
phonon relaxation times.

4.4 Impact of Heat Capacity on Thermal Diffusivity

In many instances, phase transformations in a material occur so slowly that they do not
contribute significantly to the total enthalpy and so it is appropriate to use ρcp = Cpφ.
Steel at room temperature is one example (Fig. 4.3). Like many structural metals, steel
is a complex mixture of phases where the microstructure and even some of the phases
present are metastable. Under conditions where transformations do not occur (∂φ/∂T )P =

0. Thus, these materials only have a capacity to store and conduct heat according to their
available vibrational and electronic degrees of freedom. This is to say that heat capacity
and thermal transport are facilitated by the same mechanisms.
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Figure 4.3: Characteristic time scale for thermal and atomic diffusion and its effect on heat
capacity. When a phase transformation occurs so slowly it is effectively frozen (blue region) the
phase transformation enthalpy (∆H) need not be considered and the total heat capacity at high
temperature is approximately the Dulong-Petit value of 3kB/atom (“CP ≈ 3kB/atom” in figure).
When the atomic motion that facilitates such transformations occurs as fast as the relaxation time
of the heat carrying phonons or electrons, the phase transformation enthalpy (∆H) contributes
to the total heat capacity (“∆H contribution” in figure). In between these extremes the extent of
the (∆H contribution depends on the time dependent characteristics of the material property of
interest and its measurement. Plotted values are described in Table C.1

This is not true, however, in systems with phase transformations having “fast” kinet-
ics. Besides the heat capacity due to the mechanisms responsible for thermal transport
(nominally Cpφ), there is simultaneously an additional heat capacity due to the dynamic
transformation of φ (i.e. atomic rearrangement). The consequence of this additional heat
capacity on measurement values is often overlooked. In particular, measurements of
thermal diffusivity have been prone to misinterpretation because the total heat capacity
is not often used in Eq. 4.1. In fact, the kinetic timescale of φ can also give rise to a
time-dependent thermal diffusivity (substitute Eq. 4.4 in Eq. 4.1). For “instantaneous”
transformations,

D =
κ

Cp φ + ∆H (∂φ/∂T )P
, (4.5)

which clearly shows that experimentally measured thermal diffusivity, D, is expected to
decrease when (∂φ/∂T )P is non-zero, independent of the behavior of κ. Thus, the inter-
play of heat capacity and thermal diffusivity, particularly near phase transitions, should
be considered before changes in thermal conductivity can be attributed to structural,
compositional or nano/microstructural features.
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Undeniably, a sharp decrease in D is observed in phase transformation regions, followed
by a step-wise increase above the maximum phase transition temperature (Fig. 4.4a).
This does not mean that κ mimics the behavior of D. On the contrary, it is more likely
that κ changes smoothly (or remains fairly constant) through the phase transition, and
that the behavior of D is primarily due to changes in heat capacity.

This is well-demonstrated in Zn4Sb3, which undergoes an α/α′ → β phase transition
around 250 K [113]. Because the phase transition occurs below room temperature,
steady-state measurements of κ are accessible and reliable. Careful measurements of
κ and cp across the phase transition have been previously reported [9, 20, 113, 19],
which show a smooth change in κ even though a peak is observed in cp (Fig. 4.4b and
4.5). From Eq. 4.5, it is expected that there should be a corresponding decrease in D

due to the excess heat capacity. Indeed, low temperature thermal diffusivity measure-
ments performed in this study confirm this hypothesis (Fig. 4.4b). Conversely, κ would
be significantly underestimated through the phase transition if only Cpφ was used in Eq.
4.1 (dashed black line in top panel of Fig. 4.4b). Note that the behavior of κ, cp and D in
Zn4Sb3 are in qualitative agreement with complex measurements at the glass transition
temperature of glycerol, which show strong frequency dependence of heat capacity and
thermal diffusivity but constant thermal conductivity [166].

4.5 Comment on Zinc Antimonide

An important aspect of this work is that conclusions about the behavior of thermal con-
ductivity can only be made after the effects of the total heat capacity on thermal prop-
erties measurements are considered. In particular, there is an explicit dependence of
thermal diffusivity on the total heat capacity (Eq. 4.5). Thus, the observation of a peak
in total heat capacity corresponds to a dip in thermal diffusivity for Zn4Sb3 around 250
K (Fig. 4.4b). Steady state measurements of κ show a smooth change across the phase
transition region, and have no peak or valley, regardless of the absolute magnitude (Fig.
4.5). However, if the thermal conductivity is estimated as κ = CpφD, ignoring the peak
in the total heat capacity, then the behavior of κ through the phase transition would be
misconstrued as having a valley (dashed black line in Fig. 4.5).
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Figure 4.4: Effect of heat capacity on thermal diffusivity through phase transformation re-
gions. Demonstration of the sharp decrease in thermal diffusivity for (a) InSb [15], Cu2Se [12],
AgCrSe2 [18], SnSe [17], and Zn4Sb3 (this study) having temperature dependent phase transfor-
mations, i.e. dφ/dT 6=0; as well as, (b) the exemplary case of Zn4Sb3 which has a smooth change
in thermal conductivity κ (measured using a steady-state method [19]), while a peak is observed
in the heat capacity cp [9] and a decrease is observed in thermal diffusivity D through the phase
transition. The use of cpφ and the experimental D results in an underestimation of κ through the
phase transition. Further comparison with experimental κ of Zn4Sb3 is given in Fig. 4.5. The
scaling used in panel a is discussed in Appendix D

4.6 Partial Melting of Indium Antimonide

Because of this impact from latent heat on heat capacity, thermal diffusivity measure-
ments are affected and, can thereby lead to an overestimation of zT (Fig. 4.2). For exam-
ple, InSb was reported to more than double its thermoelectric performance and achieve
zT > 1 when in equilibrium with liquid Sb [15] (Fig. 4.6). However, the study used the
Dulong-Petit value (Cpφ) for the heat capacity to estimate thermal conductivity κ using Eq.
4.1 and the measured thermal diffusivity. Consequently, a negative (unphysical) value
for the “lattice” thermal conductivity κL (obtained by subtracting the electronic contri-
bution to thermal conductivity using the Wiedemann-Franz law [90], see Eq. 2.31) was
calculated at 775 K (i.e. in the two-phase region).
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Figure 4.5: Characterization of thermal conductivity through the phase transition of zinc
antimonide. Thermal conductivity of Zn4Sb3 measured by steady-state methods [9, 20, 21, 19]
(solid curves) showing a smooth change in κ through the phase transition, with no peak or valley,
unlike the thermal conductivity estimated from thermal diffusivity which ignores the transfor-
mation contribution to the total heat capacity, i.e. CpφD, which leads to the incorrect conclusion
that κ has a sharp drop through the phase transition (dashed black line).

The proposed method to improve the thermoelectric performance of InSb at high temper-
ature was to melt an InSb−Sb eutectic secondary phase [15]. Indeed, above the eutec-
tic temperature (∼765 K), a sharp drop in thermal diffusivity was observed. Using the
Dulong-Petit value of heat capacity, the researchers concluded that the thermal conduc-
tivity dropped sharply as well, resulting in a 3× improvement in zT at 775 K. In calculat-
ing the lattice thermal conductivity negative values were obtained, and it was suggested
that the Lorenz number may be the cause. However, a significant latent heat contribu-
tion to the heat capacity was overlooked by assuming the Dulong-Petit value. From the
In-Sb phase diagram [22] (Fig. 4.7a), the equilibrium phase fraction and correspond-
ing

(
∂φLiquid/∂T

)
p at 775 K can be estimated for the sample with nominal composition

InSb1.04 (black point in Fig. 4.7). Using
(
∂φLiquid/∂T

)
p = 1.4 ×10−3 K−1 calculated from the

phase diagram and the reported enthalpy of transformation (solid→liquid) ∆Hs→L = 22

kJ mol−1 [22], the latent heat contribution to the heat capacity can be estimated as ∼30
J mol−1K−1. The Dulong-Petit value is ∼50 J mol−1K−1. Thus, a more realistic total heat
capacity at 775 K is at least 80 J mol−1K−1. A value of ∼110 J mol−1K−1 would produce
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Figure 4.6: Estimated thermal conductivity and thermoelectric figure-of merit zT of indium
antimonide sample.

the value of κ given by the trend line in Fig. 4.10a, which is reasonable given the estima-
tion of Cpφ as the Dulong-Petit value and the estimation of

(
∂φLiquid/∂T

)
p from the phase

diagram. These estimates of the total heat capacity lead to a positive value for the lattice
thermal conductivity of the InSb1.04 material at 775 K, assessed here to be at least 0.8
W m−1K−1.

Thus, including the ∆H contribution to the total heat capacity, which can be estimated
using the In-Sb phase diagram, gives a positive value for κL and a reasonable value for
the total heat capacity at 775 K that is ∼2.2 times the Dulong-Petit value gives the trend-
line value for κ shown in Fig. 3.2a. This analysis is highly suggestive that the thermal
conductivity of bulk InSb is not changing much in the presence of the liquid eutectic
phase, such that partial melting is not suggested as a strategy for improving the high
temperature efficiency of thermoelectric materials.

4.7 Beware of T -dependent Solubility

Dynamic doping, which relies on the temperature dependent solubility of a dopant atom
to change the carrier concentration of a semiconductor with temperature, is a partic-
ular example where the transformation heat capacity should not be forgotten. In such
a system the main semiconducting phase must be in equilibrium with a second phase
containing the dopant.

The dynamic doping of PbTe by copper [23] or silver [115] has been reported to lead to
high thermoelectric efficiency. However, negative values for κL would have been obtained
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Figure 4.7: Phase diagram and analysis of partial melting in indium antimonide. Section of
the In-Sb phase diagram [22] showing the InSb-Sb eutectic region (a) and the nominal InSb1.04
composition at 775 K, as well as, (b) the temperature dependent equilibrium phase fraction of
liquid for the InSb1.04 composition in the InSb + liquid region of the phase diagram.

in the case of Cu-doped PbTe if experimental values of cp (which are ∼30% larger than
pure PbTe at 600 K) had not been used in Eq. 4.1 (Fig. 4.8).

Again, this points to the drastic impact that temperature dependent solubility can have
on heat capacity (Eq. 4.2) and, ipso facto, on measurements of thermal diffusivity (Eq.
4.5). In systems where precipitates are found at room temperature, e.g. sodium [125] and
silver [115, 167] doped PbTe, heat capacity effects may be present at higher temperatures.

4.8 Settling the Copper Selenide Controversy

Past experience with Cu2Se, and confirmed here with Zn4Sb3, demonstrates that even
nominally single-phase materials can show a pronounced effect in thermal diffusivity
that can lead to overestimates of zT . It is common for studies on thermoelectric materi-
als to use the Dulong-Petit (or Cpφ) value and measured diffusivity throughout the entire
temperature range [88]. Although this may at first seem reasonable, a real compound
semiconductor will have a small multiple-phase region (two or more phases in equilib-
rium) near the transition that will lead to (∂φ/∂T )P 6= 0 over a finite temperature range,
as has been demonstrated for Cu2Se [168, 11] and can be expected for Zn4Sb3 [113] and
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SnSe [169].

Using Dulong-Petit, zT values greater than 2 can be estimated in Cu2Se [16], as discussed
by Brown et al. [12]. Later, measurements of thermal effusivity [170] and thermal con-
ductivity directly [163], as well as a detailed analysis aiming to remove transformation
effects from thermal properties measurements [162], confirm that the actual thermal
conductivity and its impact on zT are much less affected than one would expect using
Dulong-Petit. The generalized methodology for interpreting and modeling heat capac-
ity and thermal diffusivity measurements presented here also indicates that the phase
transition has little impact on zT or thermal conductivity in Cu2Se.

Specifically, by making use of the heat capacity analysis presented in Section 3.7 it is
possible to determine the corresponding impact on thermal diffusivity measurements.
However, this requires an assumption about the temperature behavior of thermal con-
ductivity. Since the temperature range is fairly narrow, and the thermal conductivity is
fairly constant on either side of the phase transition (not the typical 1/T behavior ex-
pected for phonons), then a constant thermal conductivity through the phase transition
is a reasonable first approximation. The expectation being that, if a drastic reduction in
thermal conductivity is occurring, this analysis would show that.

Thus, when a constant thermal conductivity is assumed through the α→ β phase transi-
tion, the corresponding thermal diffusivity (D = κ/ρcp, black line in bottom panel of Fig.
4.9) can be calculated from the model cp (black line in top panel of Fig. 3.9c). The cal-
culated D is expectedly similar to that measured experimentally. This analysis is highly
suggestive that the thermal conductivity is not changing much (if at all) through the
phase transition, in agreement with [170]. In any case, using only the Dulong-Petit value
for heat capacity through the superionic phase transition of Cu2−dSe would obviously
result in an underestimated value of κ and erroneous high zT .

The new measurements reported herein for Zn4Sb3 corroborate the findings in Cu2Se
that thermal diffusivity is affected by the phase transition (Fig. 4.4), whereas thermal
conductivity has a negligible impact on zT throughout the transformation region. The
surprisingly small impact on zT and success of the generalized model with Zn4Sb3 sug-
gests there might be other materials or materials systems with similar effects on thermal
diffusivity and overestimated zT when Dulong-Petit is used throughout a phase transfor-
mation.
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4.9 Sad News for Tin Selenide

Remarkable zT values, approaching and even exceeding 2, reported in SnSe [17, 171,
172, 173, 174, 175, 24, 176] coincide with a phase transition and are likely overestimated
because of underestimated heat capacity (Fig. 4.10). The α → β phase transition and
other solubility effects are indicated in other recent studies of SnSe [177, 178, 179, 180,
181] and SnS [182, 183, 184]. Since the reported thermal conductivity increases and zT
decreases after the phase transition, there is a good indication that thermal diffusivity is
reduced by the total heat capacity through the phase transformation region (illustrated
in Fig. 4.4a). Calorimetry measurements of SnSe materials (Fig. 4.11) show a peak in
heat capacity through the phase transition [185, 26, 186, 187], which is expected since
X-ray diffraction results [17, 186] indicate that (∂φ/∂T )P 6= 0 in Eq. 4.2. The peak in the
total heat capacity reported from calorimetry is ∼1.5 times the Dulong-Petit value, which
can explain the difference between the reported κ and the trend-line in Fig. 4.10a.

Measurements of heat capacity obtained by the laser flash method used in ref. [17] did
not show a peak, only a nearly constant value close to that of Dulong-Petit. This is likely
due to the difficulties in measuring heat capacity by the laser flash method, particularly
near phase transitions [188]. In addition to the effect on thermal diffusivity, a multi-
phase transformation in a compound semiconductor can lead to changes in intrinsic
defect concentrations, like in dynamic doping, which alter the Seebeck coefficient and
electrical conductivity, as was also found in Cu2Se [11].

Calorimetry results of SnSe consistently show a peak in heat capacity through the phase
transition at around 800 K [189, 185, 25, 190, 26, 186, 191, 187], with some transitions
sharper than others (Fig. 4.11). Further comparison is given in ref. [185]. A peak in
heat capacity is expected (in accordance with Eq. 4.2) because there is a reported heat
of transformation ∆H of ∼1–2 kJ mol−1 [189, 191] and a reported two-phase region (i.e.
dφ/dT 6= 0) [169].

The heat capacities reported in refs. [17, 24, 176] are all indirectly derived using the laser
flash diffusivity instrument and a representative sample (e.g. Pyroceram standard). The
result of their experimental methodology is a nearly constant value of heat capacity that
resembles the Dulong-Petit value over the entire investigated temperature range. Note
that while the thermal diffusivity values reported in ref. [17] were validated by Netzsch,
the heat capacity values were not. Typically, the laser flash method to determine heat
capacity is accurate within ∼8% [192], but difficulties in obtaining reliable values near
phase transitions have been discussed [192, 188]. Furthermore, ASTM Standard E1461
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for determining thermal diffusivity by the flash method warns against using the method
to determine the heat capacity of inhomogeneous systems, including materials with high
anisotropy. Nevertheless, heat capacity peaks corresponding to phase transitions have
been characterized by laser flash using detailed methods [193, 188].

Given the totality of calorimetry observations which indicate a peak in heat capacity,
the X-ray diffraction results [17, 186] that confirm dφ/dT 6= 0 and the careful methods
required to obtain reliable heat capacity values from laser flash instruments, it is highly
likely that the heat capacity reported in refs. [17, 24, 176] is underestimated through
the phase transformation region. Unfortunately, this results in a direct underestimation
of thermal conductivity through the phase transition and corresponding overestimation
of zT . Thus, while SnSe is still a high performing thermoelectric material (with zT ∼ 2) it
may not have the ground breaking efficiency (zT approaching 3) that was first reported.

4.10 Conclusions

In general, the examples presented herein suggest that thermal conductivity changes
smoothly through phase transformations while thermal diffusivity can be greatly affected
by the phase transformation enthalpy contribution to the heat capacity. Thus, even
though these are steady-state materials properties where no net phase transformation
may be taking place, microscale atomic fluctuations taking place at timescales of heat
fluctuations give rise to an increase in the heat capacity that decreases the thermal
diffusivity but has little effect on the thermal conductivity. This applies even to nominally
isothermal transformations in single component systems, such as the HCP→BCC phase
transition of zirconium at 1140 K [194].

Although this work gives guidance for how to interpret thermal diffusivity measurements
by considering heat capacity effects, it still may not be an easy task to accurately estimate
thermal conductivity. This is because accurate measurements of high temperature heat
capacity are notoriously difficult with systemic errors and the generalized heat capac-
ity model described herein requires accurate thermodynamic and kinetic information.
Consequently, experimental reports of thermal conductivity in complex material systems
should clearly state what heat capacity is used (e.g. the Dulong-Petit value) and indicate
potential impacts of latent heat on the reported values, rather than using routine specific
heat measurements that may be flawed.

Accurate evaluations of thermal conductivity from thermal diffusivity must utilize the
total heat capacity contained by the solid on timescales of thermal transport. When it
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contributes, the heat capacity contribution from the heat of transformation can be pre-
dicted using a generalized model and the equilibrium phase diagram. Although thermal
diffusivity is suppressed, the effect of latent heat on thermal conductivity was found to
be negligibly small, such that the thermal conductivity changes smoothly through phase
transformations.

In many good thermoelectric materials at their operation temperatures, atomic rear-
rangement may be fast enough that latent heats will suppress the thermal diffusivity.
An apparent increase in zT will result if a heat capacity is used that does not account for
the latent heats. In particular, any discontinuity, spike, or sharp decrease that is found
in thermal diffusivity measurements should be scrutinized before the same features are
ascribed to the thermal conductivity. Even estimated values of lattice thermal conductiv-
ity κL which are substantially below estimates for the lower limit of thermal conductivity
[195, 41] should be scrutinized (such as in Cu3SbSe3 [196]) as they may indicate that κ is
underestimated, as was found in cases of dynamic doping. Substantial underestimates
of κ and overestimates of zT , as demonstrated in Cu2Se, are likely prevalent in other
systems such as SnSe.
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Figure 4.8: Impact of dynamic doping of copper in lead telluride on thermal properties. The
subsequent rise in heat capacity with increasing Cu content is consistent with increased latent
heat effects described by Fig. 4.3. The relevant phase diagram is characterized in ref. [23]. Here,
it is important to recognize the behavior in thermal diffusivity as abnormal, particularly in the
higher doped material, and suspect that heat capacity effects may be at play (possibly beyond the
extent that the heat capacity measurements suggest).
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Figure 4.9: Heat capacity effect on thermal diffusivity in copper selenide. Using the model
of heat capacity for Cu2Se through the phase transition (black curve top panel) it is possible
to model the thermal diffusivity (black curve bottom panel) and compare with the experimental
thermal diffusivity determined by the laser flash method [12] (red points in bottom panel). In the
thermal diffusivity model, the thermal conductivity κ is assumed to remain constant throughout
the phase transition ("κ= constant" in figure), such that the entire temperature effect is attributed
to the total heat capacity. The close agreement of the model thermal diffusivity to the experimental
measurements is a strong indication that thermal conductivity is not changing much (if at all)
through the phase transition.
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Figure 4.10: Drastic impact of using a constant heat capacity in a temperature regime hav-
ing a phase transition. (a) The total thermal conductivity for SnSe [17] (purple triangles, top
panel) and InSb [15] (pink circles, bottom panel), appears to be underestimated as compared
with the dashed lines that illustrate typical κ ∝ T−1 behavior; as well as, (b) the thermoelectric
figure of merit for SnSe [17] (purple triangles) and InSb [15] (pink circles), which is likely overes-
timated as compared with the dashed lines that illustrate zT if the thermal conductivity behaved
as illustrated in panel a.
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Figure 4.11: The high temperature heat capacity of tin selenide. Comparison between the
linear estimates of heat capacity [17, 24] and calorimetry results that have a peak through the
phase transition of SnSe [25, 26]. The magnitude of the peak in CP can explain the deviation of
estimated thermal conductivity from the trend line shown in Fig. 4.10.
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Chapter 5

Inherent Anharmonicity of Harmonic Solids

5.1 Overview

Since the groundbreaking realization that atomic vibrations account for most of the ca-
pacity of a solid to store heat [197, 198], so-called “lattice dynamics” has given rise to
foundational theories of the thermal behaviors of materials [199, 200, 201, 202, 203].
The frequencies and polarizations of these vibrations (i.e. phonons) are governed by the
complex bonding between atoms, which is physically represented by a spring-mass model
that can account for interactions (spring forces) between the atoms (masses) [199]. The
lowest order “harmonic” approximation only considers linear forces between atoms and
is thought incapable of explaining phenomena like thermal expansion and thermal con-
ductivity [204], which are attributed to non-linear (anharmonic) interactions. It is tacitly
assumed that the harmonic and anharmonic properties are entirely independent – even
though no real material is found with very little anharmonicity. Here we show that har-
monic vibrational pressure relates thermodynamically to thermal expansion and thus the
Grüneisen parameter γ, a metric of anharmonicity. We derive a model of thermal expan-
sion in solids where this vibrational or phonon pressure is balanced by the elastic pres-
sure due to strain in the material (analogous to an elastic balloon membrane balancing
the pressure of a gas). This model captures the magnitude and temperature dependence
of thermal expansion in real solids and provides an estimation of γ that is comparable
to values obtained using quantum mechanical methods. Furthermore, chemical intu-
ition that γ should trend with bond type and atomic coordination [205, 206] is physically
justified using a simplified analytical model. Our results indicate that harmonic and
anharmonic interactions in solids are inherently linked. We anticipate that this model
of phonon pressure can be used as a starting point for more sophisticated analysis and
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may be useful in understanding other complicated material phenomena such as ther-
mal transport in complex materials [207, 92, 93] and the nature of ionic transport in
solid-state Li-ion battery materials [97]. Furthermore, this study provides a pathway for
high-throughput screening of anharmonicity for computational materials design.

5.2 Thermodynamic Beginnings for Thermal Expansion Models

The spring-mass model of atomic bonding has been an indispensable tool, providing a
clear conceptual link between classical and quantum mechanics [199]. In this model,
the complicated interactions between atoms (masses) are attributed to spring-like forces.
Specifically, the key aspects of bonding are described by an n-degree Taylor expansion
of the interatomic potential about the equilibrium position of the atoms. Then the total
potential energy of the material can be written in terms of the displacement u of atoms
α, β, etc. from their equilibrium positions in cartesian coordinates (indexed by i,j,k) as
[208]

U = U0 +
∑
α

∑
i

(−fαi )uαi +
1

2!

∑
α,β

∑
i,j

Cαβij uαi u
β
j +

1

3!

∑
α,β,γ

∑
i,j,k

Cαβγijk uαi u
β
j u

γ
k + . . . .

(5.1)

Here, U0 accounts for any initial potential energy already contained by the bonds (springs)
at equilibrium and the linear term (−fαi = (∂U/∂uαi )uαi =0) is zero since there is no net force
on any atom at equilibrium (by definition). The “harmonic” term (with force constants
Cαβij ) is the lowest order term that describes changes in the potential energy when an atom
is displaced from its equilibrium position and can be used to obtain the fundamental
frequencies of vibration (i.e. phonon eigenmodes). Cubic (i.e. Cαβγijk ) and higher order
“anharmonic” terms account for non-linear forces between atoms. Implicitly, each term
(U0, f , C and u) in Eq. 5.1 is temperature dependent since the force constants and
equilibrium positions of the atoms can change with temperature.

The generality of Eq. 5.1 has made it the starting point for theoretical and computational
assessments of diverse material behaviors [199, 208, 209]. But, it becomes computa-
tionally expensive to consider both higher order terms in atomic displacement and the
temperature dependence of the potential. The thermodynamic Maxwell relation, however,
between entropy S, pressure P , volume V and temperature T ,

(∂S/∂V )T = (∂P/∂T )V , (5.2)
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subsequently shows that isothermal material properties can be related to temperature
dependent properties (the subscripts indicate which variable is held constant). It is not
surprising then that a description of thermal expansion (i.e. the quasi-harmonic model
[210]) can be obtained using the Taylor expansion (Eq. 5.1) at 0 K, since (∂P/∂T )V is
directly related to the bulk modulus B and thermal expansion coefficient α = (∂ lnV/∂T )P
as

(∂P/∂T )V = − (∂P/∂ lnV )T (∂ lnV/∂T )P = Bα. (5.3)

In the quasi-harmonic approximation, the change in vibrational entropy with volume is
attributed to changes in phonon frequencies ωi with volume, i.e.

(∂S/∂V )T =
∑
i

(∂S/∂ωi)T (∂ωi/∂V )T . (5.4)

From this perspective (e.g. Fig. 5.1) anharmonic terms are necessary in Eq. 5.1 for
(∂ωi/∂V )T 6= 0 [211], leading to the conclusion that harmonic solids cannot have thermal
expansion.

Utilizing the phonon entropy (e.g. the quasi-harmonic approximation) however, is but
one approach to modeling the physics of anharmonicity (Fig. 5.1). Alternatively, a mech-
anistic description of the pressure in solids could be used. This is easily done for an
ideal gas but has not been considered for solids. The pressure exerted by an ideal gas
is due to its kinetic energy. Atoms in a solid have the same form of kinetic energy as an
ideal gas and should therefore have a similar pressure. Importantly, the kinetic energy of
atoms inside a solid will change with temperature with or without any change in the vi-
brational frequencies. This is to say that a mechanical model of pressure in solids would
not necessarily require anharmonic terms to be included in the potential.

Herein, we provide an intuitive (mechanical) understanding of thermal expansion that
also suggests an inherent connection between harmonic and anharmonic aspects of
bonding in real solids. The specific nature of thermal expansion, thermal conductiv-
ity, and other “anharmonic” material properties is at the forefront of solid-state materials
research [212], as are methods to predict/calculate these properties en masse [213, 214].
Consequently, a mechanistic understanding of vibrational pressure in solids has broad
implications for materials engineering and high-throughput screening of diverse mate-
rial phenomena, such as negative thermal expansion, ultralow thermal conductivity and
superconductivity.
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Figure 5.1: Two different paths to understanding thermal expansion. While thermodynami-
cally equivalent (Eq. 5.2), the current explanation of thermal expansion is through the perspective
that vibrational modes shift as the volume changes (top panel). In this picture, anharmonicity
is required for vibrational states to shift. Alternatively, the change in pressure due to changes in
temperature can be considered (bottom panel), as is often done for gases. Pressure is related to
the kinetic energy (velocity) of the atoms and anharmonicity is not required in the lowest order
description of atomic movement in solids.

5.3 Phonon Pressure in Solids

It is well-known that an ideal gas at volume V exerts a pressure P (force/area) that
is proportional to its average internal energy, PV = 2E/3. When combined with the
equipartition theorem (E ∼ kBT ), this relation gives the microscopic origin of the ideal
gas law, PV = NRT . In general, pressures arise as a result of the confinement of kinetic
energy. Consequently, diverse physical systems from ideal gases to laser beams [215]
and ultrasound acoustic waves [216] all produce pressures that are proportional to their
kinetic energy density. Each of these pressures can be determined by considering the
flux of linear momentum (i.e. kinetic energy) through an arbitrary plane representing a
confining surface (Fig. 5.2a). In the realistic case where the kinetic particles are actually
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confined by an elastic medium, there is an associated pressure (stress) provided by the
medium as it deforms (i.e. strain 6= 0) in response to interacting with the particles.

For the same reasons, the kinetic energy of atomic vibrations gives rise to pressures in
solids that can be thought of as phonon pressure. In fact, analogous to the ideal gas
pressure, this phonon pressure is temperature dependent due to the change in kinetic
energy with temperature. Thus, even for a harmonic solid, there is a pressure that can
mechanistically facilitate thermal expansion (see Methods). For the sum of forces inside
the solid to be zero at equilibrium (e.g. the linear term fαi in Eq. 5.1), the force exerted
by the atomic vibrations must be compensated by an elastic restoring force that is pro-
portional to the change in the equilibrium position. This is essentially the same physics
that describes an elastic balloon filled with an ideal gas.

To illustrate, consider a gas kept at a finite pressure in equilibrium with an elastic envi-
ronment as a filled balloon. The elastic response of the balloon is characterized by the
bulk modulus B, it has a total pressure at volume V that can be related as

Ptotal = Pkinetic + Pelastic =
NRT

V
− B (V − V0)

V
= 0. (5.5)

The volume that satisfies this equilibrium condition is (V − V0) = NRT/B, which in-
creases linearly with temperature. In other words, the thermal expansion coefficient is
expected to be approximately constant (temperature independent). This is known to be
the case according to Charles’ law (i.e. at constant pressure) and is confirmed here for
the case of elastic pressure (Fig. 5.2b). The volume of solids is also linearly proportional
to temperature (Fig. 5.2c) when the kinetic energy of atomic vibrations increases linearly
with temperature (i.e. at high temperature).

The expansion of a balloon with temperature is the natural result of balancing the
temperature-dependent pressure of the kinetic gas with the elastic pressure in the balloon
(Eq. 5.5). This equates to a minimization of the temperature dependent free energy of
the system with respect to volume. Because vibrating atoms in a solid have the same
form of momentum flux (kinetic energy) as a gas they must also produce an outward
pressure to expand. Unlike a gas, which needs external confinement (e.g. the balloon),
the balancing force creating the mechanical equilibrium (net force = 0) in a solid must
be from the interatomic forces (represented by springs).

This is to say that thermal expansion can be described within the harmonic approx-
imation. Specifically, the present theory uses the phonons found from the harmonic
approximation to calculate the pressure exerted by atoms on the rest of the solid. There



105

Figure 5.2: Depiction of pressure due to kinetic energy and its effect on equilibrium volume
with temperature. (a) The pressure due to kinetic energy can be derived by considering the
momentum flux through a fixed imaginary surface (e.g. pink and green planes in figure). Since
the (time averaged) flux of momentum is equal in both directions, the (thermodynamic) pressure
exerted on both sides of the surface is also equal. From this perspective, vibrating atoms in a solid
exert a pressure on the rest of the solid just as gas particles exert a pressure on their container.
(b) Equilibrium volume as a function of temperature for an argon filled balloon demonstrating
that thermal expansion is linear due to the balance between the ideal gas (kinetic) pressure and
the elastic response of the balloon (Eq. 5.5). (c) The equilibrium volume of solids [27, 28] also
increases linearly with increasing temperature (at high temperature) and can be attributed to an
analogous mechanical mechanism as the thermal expansion of the ideal gas in an elastic medium.

is a corresponding volume (strain) that satisfies the equilibrium condition at each temper-
ature (analogous to Eq. 5.5). The thermal expansion coefficient is found from summing
the individual contributions of all the vibrational modes (see Methods).

Remarkably, this intuitive picture of thermal expansion largely captures both the magni-
tude and temperature dependence of experimental observations (Fig. 5.3a). It should
be reiterated that this estimation of the thermal expansion coefficient is determined
solely using harmonic vibrational states in conjunction with the mechanical concept of
phonon pressure (e.g. see inset of Fig. 5.3a). The relevance of lead telluride, PbTe,
as a high-efficiency thermoelectric material makes this example particularly interesting,
since understanding its vibrational properties is fundamental to engineering its ther-
mal conductivity [2]. As PbTe is considered an archetype of anharmonic materials [217]
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Figure 5.3: Thermal expansion coefficient and Grüneisen parameters of lead telluride, PbTe.
(a) Coefficient of linear thermal expansion αL for PbTe estimated using the “phonon pressure
model” of thermal expansion (see Methods) calculated from harmonic eigenmodes and eigenvec-
tors found from density functional theory (solid orange line) compared with experimental results
(triangles [29], diamonds [27], dashed-line [30]). The “high temperature approximation” is found
from a simplified analytical model (See Appendix E) and is defined as αL = 3kB/2m̄v

2
s , where kB

is Boltzmann’s constant, m̄ = 2.8 × 10−25 kg atom−1 is the average atomic mass and vs = 1850
m s−1 is the average speed of sound. The inset illustrates how phonon modes contribute to the
vibrational pressure exerted by an atom differently at different temperatures due to the number
of phonons that are excited. Here the real space direction of the atom vibrations (i.e. phonon
eigenvectors) is shown by arrows. The length of the arrows is scaled by the heat capacity of the
phonon mode. (b) Mode Grüneisen parameters γi of PbTe calculated from density functional the-
ory (gold diamonds) and their average value, compared with the estimated “Harmonic Grüneisen
parameter” (see Methods).

and is known to have complex (higher order) bonding interactions [218], it is unexpected
that a harmonic model could capture an anharmonic property like the thermal expan-
sion behavior so well. In the quasi-harmonic approximation, the large thermal expan-
sion coefficient is attributed to the relatively large positive mode Grüneisen parameters
(γi = − (∂ lnωi/∂ lnV )T) at all frequencies (Fig. 5.3b). Here, the phonon pressure makes
the solid expand, corresponding to γi > 0. The close agreement between the two perspec-
tives (compare "harmonic γ" and "average γi" in Fig. 5.3b) is indicative of an underlying
connection (e.g. Fig. 5.1). In the present perspective, the large thermal expansion co-
efficient in PbTe is thus explained by the large ratio of phonon pressure to the elastic
restoring force.

It should be noted that, in the present calculations, atoms were considered to vibrate in-
dependent of each other. However, the coordinated movements of neighboring atoms are
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likely important in some cases, particularly in negative or anomalous thermal expansion
materials [219, 220]. The influence of higher order anharmonicity may also contribute to
the behavior of thermal expansion [210]. Thus, further considerations of atomic struc-
ture and bonding could lead to a better understanding of the relation between the present
phonon pressure perspective and the mode Grüneisen parameters found from quantum
mechanics, which may provide insights to the origin of negative thermal expansion in
some solids.

Complex bonding interactions in real solids necessarily include anharmonic terms (i.e.
non-linear forces). Here we show that the lowest-order harmonic description is related
to those higher order effects (Figs. 5.3 and 5.4), but does not preclude additional anhar-
monic considerations that may be important. Specifically, the harmonic theory of ther-
mal expansion is thermodynamically connected to anharmonicity through the Grüneisen
relation. The thermodynamic Grüneisen parameter γ is a restatement of Eq. 5.2 that can
be written as [211]

γ =
αB

CV
, (5.6)

where the heat capacity CV approaches the Dulong-Petit value (3kB/atom) at high tem-
perature. Then the “harmonic Grüneisen parameter” can be calculated in the high tem-
perature limit using the phonon pressure model of thermal expansion in conjunction
with the bulk modulus determined by density functional theory (see Methods). This
scalar “harmonic Grüneisen parameter” is compared with the scalar “DFT Grüneisen pa-
rameter” found by averaging the mode Grüneisen parameters γi (Fig. 5.4a). The overall
agreement (within a factor of ∼2) corresponds to the agreement between their respective
thermal expansion estimations. The important point, however, is that the vibrational
properties of harmonic phonon modes can be related to their own anharmonicity at the
thermodynamic level.

Using the theory of phonon pressure, it is also possible to show that the thermodynamic
Grüneisen parameter (average γi) can be estimated from the ratio of the bulk-averaged
transverse and longitudinal speeds of sound (x = vt/vl) (Fig. 5.4b), or equivalently the
isotropic Poisson’s ratio. The connection is plausible given that Poisson’s ratio is a fun-
damental metric of materials behavior when strained elastically [221]. To arrive at this
analytic result, we use a simplified form of the vibrational pressure model (see Methods)
to obtain the thermal expansion coefficient α in terms of the heat capacity cV, density ρ
and speed of sound vs, as

α ≈
(

3

2

)
CV

ρv2
s

. (5.7)
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Figure 5.4: Apparent relations between “anharmonic” and harmonic properties of solids.
(a) An equal plot comparing the ‘DFT Grüneisen parameter’ (i.e. the average mode Grüneisen
parameter) with the ‘Harmonic Grüneisen Parameter’ (i.e. the thermodynamic Grüneisen param-
eter estimated from the harmonic model of thermal expansion) for 119 compounds. Light grey
dashed lines indicate a factor of 2 from the equal line. (b) The thermodynamic Grüneisen param-
eter estimated from Eq. 5.8 in terms of the speed of sound ratio x = vt/vl (using the RMS speed
of sound, which is Eq. 5.9, gives the dark blue line and using the bulk modulus and vs given by
Anderson [31], gives the mid blue line, which diverges as x→ 0) compared with a previous theory
given by Druyvesteyn [32] (dashed blue line) and the DFT calculated thermodynamic Grüneisen
parameters (average γi) of individual materials (light grey circles) as well as the average Grüneisen
parameters (yellow-green circles) of materials binned according to their speed of sound ratio (bins:
[0.2,0.3), [0.3,0.4), [0.4,0.5), [0.5,0.6), [0.6,0.7)). The area of the marker is related to the number
of materials it represents and the color represents the average density of those materials. The
“liquid” limit for this model of solids is the case where the transverse speed of sound goes to zero
(Poisson’s ratio = 0.5). The other thermodynamic limit (vt/vl =

√
3/2, Poisson’s ratio= −1) is the

point where Eq. 5.9 gives γ = 0.

Substituting this result into the thermodynamic definition of the Grüneisen parameter
(Eq. 5.6) yields

γ ≈ 3

2

B

ρv2
s

, (5.8)

which, when vs is considered to be the root mean square speed of sound (i.e. v2
s = (2v2

t +

v2
l )/3), can be written as

γ ≈ 3

2

(
3− 4x2

)
(1 + 2x2)

, (5.9)

where x = vt/vl. This form of the Grüneisen parameter (Eqs. 5.8 and 5.9) has been
obtained previously [222, 223] but was based on a different assumption about the nature
of vibrational pressure. In that work, the temperature dependence of vibrational pressure
was not considered [222].
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It is easily acknowledged that this approximation for the Grüneisen parameter (Eq. 5.9,
dark blue line in Fig. 5.4b) is quite crude given the scatter in the data (grey circles in Fig.
5.4b). But its usefulness is more apparent when comparing with the average Grüneisen
parameter of materials with similar speed of sound ratios (yellow-green circles in Fig.
5.4b), demonstrating that there is an intimate connection between material chemistry,
elasticity, and anharmonicity that has not been fully explored. For one, Eq. 5.9 indicates
that solids that are more “liquid-like” (i.e. x → 0) are expected to be more anharmonic.
This corresponds to the large Grüneisen parameter in metals like gold, silver and lead,
where the atomic structure and bonding is often described as positively charged ions held
together by a sea of negatively charged electrons. The reason being that the electrons are
delocalized and can be easily rearranged like a liquid. Conversely, the Grüneisen pa-
rameter is much lower in highly directional, covalently bonded materials like diamond
and silicon, when x is closer to the upper thermodynamic limit of

√
3/2. Another relation

between γ and Poisson’s ratio [32], derived from analytical considerations of an anhar-
monic interatomic potential, indicates γ diverges as x → 0, but gives similar estimates
as Eq. 5.9 for most materials (0.4 < x < 0.7, dashed light blue line in Fig. 5.4b). Using
a different average vs (i.e. a harmonic mean [31]) in Eq. 5.8 will also cause γ to diverge
since vs → 0 as vt → 0 (mid-blue line in Fig. 5.4b), suggesting that the root mean square
speed of sound better captures the nature of the elastic pressure.

Altogether, this relation (Eq. 5.9) provides a simple physical justification for the chemist’s
intuition that the anharmonicity of solids is related to the type of bond and atomic coordi-
nation (density) [205, 206, 224]. Nor would it be surprising if more intricate connections
were found between elasticity, atomic structure and anharmonicity through modern ma-
chine learning methods.

This profound connection of the thermodynamic Grüneisen parameter with harmonic
properties of solidsmeans that transport phenomena like thermal conductivity and atomic
diffusionmay also be explained in terms of a harmonic potential. The temperature depen-
dence of vibrational pressure corresponds to a temperature dependent potential energy
landscape such that interactions between vibrational modes (e.g. phonon-phonon scat-
tering) may be accounted for within perturbation theory. However, further investigations
are needed to reconcile the relations between harmonic and anharmonic terms in the
interatomic potential. Nevertheless, having accessible estimates for thermal expansion
(e.g. Eq. 5.7) and the thermodynamic Grüneisen parameter allows for higher accuracy
descriptions of the temperature dependent molar volumes and constant pressure heat
capacity [225] needed for the thermodynamic modeling that is crucial to the design of
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next generation materials [226].

The concept of phonon pressure provides a physical mechanism for “anharmonic” behav-
ior (i.e. thermal expansion) that thermodynamically relates harmonic and anharmonic
aspects of bonding in solids. That is, harmonic solids have an inherent anharmonicity.
In this perspective, the harmonic potential shifts with temperature to be centered around
the equilibrium position determined by the force balance between vibrational pressure
and the elasticity of the material (analogous to Eq. 5.5). The success of the Tempera-
ture Dependent Effective Potential (TDEP) method developed by Hellman and coworkers
[227, 228] further supports the idea that there are aspects of anharmonicity that can
be represented by a harmonic potential that changes with temperature. In the TDEP
method, the equilibrium atomic position also changes with temperature through a force
balance procedure. Instead of explicitly using the theory of vibrational pressure, the
residual forces between those calculated from the model potential and those obtained by
molecular dynamics simulation are minimized. The necessity of a temperature depen-
dent potential is apparent given that the Taylor expansion around equilibrium at 0 K is
unable to reproduce finite temperature observations in some materials [227, 229].

5.4 Perspective

Although Brillouin [230] first proposed that thermal expansion in solids may be due to the
vibrational pressure of elastic waves, the field of lattice dynamics largely left this mech-
anistic idea behind. As a result, it is commonly thought that harmonic solids cannot
have thermal expansion and other properties assumed to be due entirely to anharmonic
effects [204]. Here, the physical mechanism of phonon pressure leads to an explanation
for thermal expansion based on only the lowest-order, harmonic approximation of solids.
The connection of thermal expansion to the thermodynamic Grüneisen parameter, as
well as other anharmonic behavior in solids, suggests that harmonic material descrip-
tors may correlate with anharmonic properties more generally. The insights gained from
this fundamental shift in thought-paradigm may be used to better understand both basic
thermodynamic properties of solids, including melting (e.g. the Lindemann melting crite-
ria), as well as the mechanisms of complex transport phenomena like superconductivity,
ionic transport, and heat transport in defective materials.



111

Chapter 6

Diffuson Limit of Thermal Conductivity

6.1 Overview

A model for the thermal conductivity of bulk solids is proposed in the limit of diffusive
transport mediated by diffusons as opposed to phonons. This diffusive thermal con-
ductivity, κdiff, is determined by the average energy of the vibrational density of states,
}ωavg, and the number density of atoms, n. Furthermore, κdiff is suggested as an appro-
priate estimate of the minimum thermal conductivity for complex materials, such that
(at high temperatures) this estimate κmin gives values 37% lower than the widely-used
Cahill result and 18% lower than the Clarke model for κmin, on average. This model of
diffuson-mediated thermal conductivity may thus help explain experimental results of
ultralow thermal conductivity.

The bulk of this chapter was published as:

Agne, Matthias T., Riley Hanus, and G. Jeffrey Snyder. "Minimum thermal con-
ductivity in the context of diffuson-mediated thermal transport." Energy & Envi-
ronmental Science 11.3 (2018): 609-616.

6.2 Where Phonons Fail

The classic phonon gas model of thermal conduction works well in many cases. In this
perspective, phonon quasiparticles behave gas-like in that they carry thermal energy and
physically scatter off of each other and defects in the material much like we can imagine a
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gas. However a fundamental assumption that leads to the phonon gas model is sufficient
periodicity of the material, such that the Bloch conditon is satisfied. In materials like
nanomaterials, quasicrystals or crystals with very large unit cells there is an argument
that sufficient periodicity may be lacking (at least on some length-scale).

It is well known that glassy materials do not behave according to the phonon gas model,
but it was only recently that attempts to bridge the two perspectives have been under-
taken [36, 231, 232, 92]. This work, particularly, was one of the first to reconsider the
nature of vibrations in crystalline solids. From the perspective that crystalline materials
can have vibrational character that is more similar to glassy materials than to the typical
phonon gas model we arrive at this diffuson model of "minimum" thermal conductivity
for solids.

6.3 Concept of Minimum Thermal Conductivity

The concept of a minimum thermal conductivity, κmin, carried by the atomic vibrations
of any solid material (crystalline or amorphous), is of practical technological importance.
For example, materials screening and design for thermoelectric, thermal barrier and
other thermal management applications often rely on models of κmin to benchmark ex-
perimental observations or predict optimal material performance [233, 234, 40, 235, 236,
237]. Due to the complexity of thermal conductivity there is not a unique definition of
κmin, and one practical option is to take relevant models of thermal conductivity and as-
sume some limiting condition(s) that results in a reasonable estimate of what κmin could
be. It may also be argued that amorphous materials are systems where the experimen-
tally measured κ would be closest to a predicted κmin.

Most previous models of κmin have largely relied on the phonon description of thermal
conductivity (Fig. 6.1). The form of phonon mediated thermal conductivity (analogous to
a kinetic gas) is

κ =
1

3
Cv` (6.1)

where C is the heat capacity per unit volume, v is the average speed of a collective lat-
tice vibration (phonon) and ` is the average phonon mean free path. The length scale of
atomic disorder can be used to phenomenologically describe ` [238, 39]. In the Kittel [39]
and Clarke [40] models, the minimum thermal conductivity can be thought of as the limit
` → a (a is the interatomic spacing). The Cahill [239, 41] and Slack [42] models instead
use a wavelength dependent mean free path to incorporate wave mechanics in the de-
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scription of `. Cahill uses ` = λ/2, whereas Slack uses ` = λ. These models work well for
many materials and give an intuitive description of the phonon limit (at high temperature)
of thermal conductivity (Fig. 6.1). However, as experimental thermal conductivities have
been found below the Cahill and Clarke models, a different model/philosophy may pro-
vide insight into the limitations of phonon-based models and provide improved predictive
power for experimentalists.

The mathematical description of lattice vibrations as phonons requires periodicity, which
is not the case in amorphous materials or even nanomaterials and quasicrystals. Con-
sequently, in the phonon picture of κmin (` → a, the so-called Ioffe-Regel limit [240] of
phonons) the lattice vibration does not sample enough periodicity of the lattice to be a
well-defined phonon or have the properties of such. Consequently, in this limit, it is
technically more correct to define a diffusivity term, D, which has the units of v` (m2/s)
but v and ` are not independently defined, such that there is no need for a well-defined
wavevector [241]. In the mechanism of diffusive thermal transport, heat is quantized by
diffusons, characterized by a diffusivity. Diffusons can be present in any material, but
may better describe atomic vibrations in materials with more atomic disorder (including
crystals with large complex unit cells [242]).

Here we will use the diffuson theory of Allen and Feldman, thoroughly developed in refs.
[34, 35, 36, 37, 38], to derive a phenomenological diffusive thermal conductivity, κdiff,
from the vibrational density of states. κdiff is defined as the limit of entirely diffusive (dif-
fuson mediated) thermal transport (Fig. 6.1). Even though the group velocity of phonons
(measured by the speed of sound) is no longer the operative theoretical parameter, it can
be incorporated post hoc by its correlation with the average frequency of the vibrational
density of states. Lastly, by comparison of κdiff with previous models of κmin we suggest
that κdiff may be an appropriate estimation for κmin in some cases. Whereby, κdiff may
help to explain materials with ultralow thermal conductivity.

6.4 Random Walk Diffuson Model

The diffuson theory of Allen and Feldman explains diffusive thermal transport as the har-
monic coupling between non-propagating (i.e., not phonons or propagons), non-localized
(i.e., able to transfer energy, not locons) atomic vibrations. It is in the spirit of diffu-
son theory that we construct this phenomenological model. The propagation behavior of
diffusons is derived assuming each diffuson travels according to the path of a random
walk. In random walk theory, the net distance, xN, traveled by a quantum after N discrete
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Figure 6.1: Visual representation of the fundamental differences between phonon and diffu-
son models of thermal transport. The defining characteristics of phonon-based models include
the speed of sound (v) and mean free path (`). Diffuson-based models of Einstein [33], formally
defined by Allen and Feldman [34, 35, 36, 37, 38], and that described here rely on a thermal
diffusivity coming from random walk considerations, which leads to the jump attempt frequency
(2ω/2π) and the probability of a successful jump (P ) being the operative theoretical inputs. Kittel
(` = a) [39], Clarke (` = a) [40], Cahill (` = λ/2) [41], and Slack (` = λ) [42] made estimations of κmin
from a phonon perspective.

steps of size αl is xN = αl
√
N . This is related to the random walk diffusivity, DRW, and the

elapsed time, t, through the parabolic relation

DRW =
x2
N
t

=
α2
lN

t
. (6.2)

Here, N/t (number of steps/unit time) may be interpreted as the frequency of energy
transfer attempts multiplied by the probability of a successful transfer, P . Einstein [33],
in his model for thermal conductivity (see also ref. [41]), inferred that each oscillator
made 2 attempts to transfer energy in one period of oscillation, N/t = (2ω/2π) P . From
Eq. 6.2 we arrive at an isotropic approximation for the diffuson diffusivity,

Ddiff (ω) =
1

3

n−
2
3ω

π
P, (6.3)

by taking α = n−
1
3 as the approximate jump distance between oscillators, where n is the

number density of atoms. The factor of 1/3 comes from assuming a three dimensional
system. Anisotropy may inhibit diffusion in certain directions and has ramifications
discussed below. We also note that P = 1 is a theoretical maximum diffusivity for dif-
fusons and is comparable to Ddiff (ω) = 0.47

3 n−
2
3ω found by fitting N/t to MD results of
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the diffuson contribution to thermal transport in amorphous Si [34]. The other limit,
P = 0, phenomenologically describes the condition for locons (i.e., zero energy trans-
fer). In the random walk diffuson picture, each oscillator acts completely independent
from one another, resulting in a form of transport fundamentally different than that of
phonons, where the phonon propagation is defined by a group velocity and relaxation
time (D = 1

3v
2
gτ ).

From Eqs. 2.36 and 6.3, Eq. 2.35 can be composed as the maximum (P = 1) diffusive
thermal conductivity,

κdiff = 3nkB

ˆ ∞
0

(
g (ω)

3n

) (
1

3

n−
2
3ω

π

)
dω , (6.4)

which simplifies to

κdiff =
n

1
3kB

π

´∞
0 g (ω) ω dω´∞

0 g (ω) dω
=
n

1
3kB

π
ωavg. (6.5)

Thus, it is the average oscillator frequency, ωavg, which becomes the defining metric for
the high temperature limit of diffuson-mediated thermal conductivity. In many cases
ωavg can be determined straightforwardly from inelastic neutron scattering experiments
or computational methods. Furthermore, we will show that ωavg may be approximated
from speed of soundmeasurements and κdiff may be appropriately used in the explanation
of ultralow thermal conductivity materials. This approach to constructing κdiff may also
be used in the construction of a two-channel model of thermal transport [94] (i.e. κL =

κph + κdiff).

By comparing Eqs. 5 and 6, it is possible to define the average diffuson diffusivity, D̄diff,
that is the weighted average of diffusivities, Ddiff (ω):

D̄diff =

´∞
0 g (ω) Ddiff (ω) dω´∞

0 g (ω) dω
=
n−

2
3 ωavg

3π
, (6.6)

when P=1. Feldman, et al. [38] utilizedmolecular dynamics (MD) simulations to ascertain
the spectral function D (ω) for amorphous silicon. Thus, it is possible to compare the D̄diff

calculated from Eq. 6.6 with the average diffusivity value calculated from the MD results.
Using the MD data shown in Fig. 6.2 of ref. [38], the average diffusivity of amorphous
silicon was determined to be D̄MD =

´
g(ω) D(ω) dω´

g(ω) dω
= 4.9×10−3 cm2/s. The estimation using

the average vibrational energy (}ωavg = 44 meV [38]) and the number density of atoms for
Si (Table 6.1) in Eq. 6.6 gives D̄diff = 5.2 × 10−3 cm2/s . The agreement between the MD
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result and Eq. 6.6 is quite good and provides some validation for the use of Eq. 6.3. In
fact, Allen and Feldman [34] use an equation with the same form as Eq. 6.3 to fit their
MD results in the context of diffuson-mediated thermal transport. They suggest that the
agreement between the phenomenological model and the MD result supports the idea of
a microscopic definition of minimum thermal conductivity [34]. Here, the random walk
derivation of κdiff allows for inferences about the physics of ultralow thermal conductivity,
whereas Refs. [242, 34] are limited to dimensional analysis arguments.

However, it is important to note that the more-extensive MD study [38] indicates that
there are both propagating (low energy, see arrow in Fig. 6.2 of ref. [38]) and completely
localized (high energy, see mobility edge line in Fig. 6.2 of ref. [38]) vibrations in their
model of amorphous Si, accounting for about 7% of the vibrational density of states [36].
Diffusons are proposed as the non-propagating, non-localized heat-carrying vibrations
at intermediate energies. In the derivation of κdiff (Eq. 6.5) from Ddiff(ω) (Eq. 6.3), all vi-
brations contained within the density of states contribute to diffusive thermal transport,
i.e. there are no propagating vibrations with larger contributions to thermal conductiv-
ity, and there are no localized vibrations that do not contribute to thermal conductivity.
Consequently, κdiff is the diffuson-mediated thermal conductivity. In using κdiff as a type
of κmin, it should be recognized that experimental thermal conductivities found below
κdiff would tend to indicate that the material may have a significant number of localized
vibrations (locons) that do not conduct heat; or, other exceptional physics may be at play,
such as phonon focusing [243].

6.5 Debye Relation with Experimental Density of States

Although the derivation shows that it is possible to estimate κdiff directly from g (ω), it is
recognized that g (ω) is not always easily accessible experimentally or computationally,
especially if the material system is complex (multi-phase, large unit cell, etc.). During the
course of this study, it was found heuristically that the Debye temperature, θD, defined
here by

kBθD = }ωD = }(6π2n)
1/3
vs , (6.7)

can be used as a metric to estimate the experimentally determined ωavg. It is important
to recognize that, in the context of diffuson theory, θD may be regarded as a proxy for the
influence of bond strength, atomic mass, and average atomic separation on the spectral
distribution of the density of states. Specifically, by compiling g (ω), the arithmetic average
speed of sound, vs = 1

3(2vt + vl) and number density of atoms, n, for 24 compounds
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Figure 6.2: Estimation of the average frequency of vibration. A log-log plot demonstrating
the linear correlation (Eq. 6.8) of the experimentally determined }ωavg (found from the vibrational
density of states) with the Debye temperature (kBθD = }(6 π2n)

1/3
vs) calculated from the arithmetic

average sound velocity (vs = 1
3 (2vt + vl)) using the values found in Table 6.1. A linear slope of 1 is

shown for reference (thin dotted line). Note that the Debye model would predict a linear slope of
0.75, which is substantially higher than this heuristic finding.

reported in the literature with speeds of sound spanning an order of magnitude (Table
6.1), we found the linear correlation (R2 = 0.98) (Fig. 6.2)

}ωavg ≈ 0.61 kBθD , (6.8)

having a normalized root-mean-square error of 3.6% (RMSE ≈ 4 meV). It should be noted
that the harmonic average speed of sound is another option for calculating the scalar θD

[244], which was found to give a slightly worse correlation (R2 = 0.97, RMSE ≈ 5 meV), but
would still lead to the same conclusions drawn below. Other methods of estimating θD

(e.g., from low temperature heat capacity or inelastic neutron/x-ray scattering methods)
are also expected to correlate with ωavg .
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Table 6.1: Experimental number density of atoms n calculated from ICSD reported unit cell vol-
umes, and the longitudinal (vl) and transverse (vt) speeds of sound used to calculate the Debye
temeprature (θD) from the arithmetic average speed of sound, as well as the experimental average
energy (}ωavg) determined from the vibrational density of states. The speeds of sound for PbTe
were measured herein by 5 MHz pulse-echo ultrasound, see ref. [2] for detailed methods.

Element/Compound n/1028

(atoms m−3)
vl (m s−1) vt (m s−1) Debye Model

kBθD (meV)
Experimental
}ωavg (meV)

RbI 2.03 2411 [245] 1236 [245] 11.39 7.69 [246]
PbTe 2.67 3102 1662 16.42 7.85 [44]
RbBr 2.46 2580 [245] 1508 [245] 13.92 9.16 [246]
KI 2.3 2534 [245] 1501 [245] 13.47 9.71 [246]
NaI 2.78 2716 [245] 1688 [245] 15.79 11.23 [246]
KBr 2.69 3053 [245] 1843 [245] 17.26 11.52 [246]
RbCl 2.81 3078 [245] 2518 [245] 21.09 11.99 [246]
NaBr 3.7 3392 [245] 2112 [245] 21.71 13.70 [246]
KCl 3.22 3896 [245] 2366 [245] 23.48 14.92 [246]
Cu2Se 6.02 3086 [247] 1381 [247] 19.6 16.20 [248]
RbF 4.46 3946 [245] 2333 [245] 26.12 16.46 [246]
NaCl 4.93 4470 [249] 2570 [249] 30.14 18.24 [246]
KF 6.98 4608 [245] 2842 [245] 36.24 20.35 [246]
NaF 8.03 5664 [245] 3673 [245] 48 27.89 [246]
FeO 10.06 6630 [250] 3230 [250] 52.07 35.31 [246]
CaO 7.17 8120 [251] 4880 [251] 63.51 37.78 [246]
SrTiO3 8.4 7860 [252] 4680 [252] 64.48 38.85 [246]
Si 5 8480 [253] 5860 [253] 63.62 39.55 [246]
ZnO 8.4 6000 [245] 2831 [245] 43.68 40.33 [254]
MgO 10.69 9576 [249] 6038 [249] 87.88 49.75 [246]
TiC 9.87 9429 [255] 5856 [255] 83.55 55.55 [246]
SiC 9.64 11730 [249] 7430 [249] 104.27 74.00 [254]
c-BN 16.92 16117 [256] 10653 [256] 177.01 104.40 [254]
Diamond 17.63 18120 [245] 12323 [245] 205.05 121.43 [254]

6.6 Comparison with Minimum Thermal Conductivity Models

Next, we compare our diffuson thermal conductivity, κdiff, to previous models of κmin

based on the maximum phonon scattering approach. This comparison gives good justi-
fication to use κdiff as a new formulation of κmin. Consequently, κdiff may thus be used
to explain the experimental results of ultralow thermal conductivity materials. First, we
point out that Eq. 6.8 can be used to further simplify Eq. 6.5 to depend solely on n and
vs:

κdiff ≈ 0.76 n
2
3 kB

1

3
(2vt + vl) , (6.9)

which makes this formulation of κdiff directly comparable to the Cahill result,

κglass = 1.21 n
2
3 kB

1

3
(2vt + vl) . (6.10)
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Here it is easily seen that κdiff is approximately 37% lower than κglass on average. In fact,
κglass is better used as a predictor for the experimental thermal conductivity of amorphous
and disordered materials [43]. This is to say that, as a decent approximation, κglass ≈
κmeasured (within a factor of 2) and κdiff may be a better estimation of κmin (Fig. 6.3). The
ideal κminwould always predict a thermal conductivity that is lower than the measured
value, and all of the data points in Fig. 6.3 would be to the left of that predicted line.
Using κdiff as κmin very nearly satisfies this requirement, and only a few points remain to
the right of the κdiff line (shaded region in Fig. 6.3).

Further comparison shows that κdiff is ≈18% lower than the κmin equation presented by
Clarke [40],

κmin, Clarke ≈ 0.93 n
2
3 kB

1

3
(2vt + vl) , (6.11)

who also suggested that vs = 1
3 (2vt + vl) ≈ 0.94

√
Y/ρ is a reasonable approximation (within

20%) for the speed of sound from Young’s modulus, Y (N/m2), and density, ρ (kg/m3).
As Eq. 6.11 is effectively a restatement of the Kittel κmin, these comparisons suggest
that the diffuson mechanism of thermal transport conducts heat more slowly than the
maximum phonon scattering limit predicts. This leads to the implication that materi-
als with thermal conductivities near to κdiff are transporting heat at a rate analogous to
the maximum rate if all of the atomic vibrations were diffusons. Experimental thermal
conductivities that fall below κdiff would tend to indicate that there is some interest-
ing/exceptional mechanism that is influencing thermal conductivity. Thus, κdiff provides
a reference value for the upper limit of diffusive thermal conductivity and may give some
physical insight to conduction mechanisms in ultralow thermal conductivity materials.

6.7 Temperature Dependence of Diffuson Model

Although most thermoelectric generators, thermal barrier coatings and thermal manage-
ment devices are concerned with temperatures at or above room temperature, making the
high temperature limit of κdiff the primary focus, it is important to make some remarks
about the temperature dependence of the model presented above. The sole temperature
dependence is incorporated through the heat capacity term, which accounts for the ther-
mal activation of higher energy atomic vibrations as the temperature is raised from 0 K.
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Figure 6.3: Diffusons as a model of minimum thermal conductivity. A comparison of κdiff with
the Cahill model, κglass, shows that κglass is a good estimate for the measured thermal conductivity
(within a factor of 2), whereas κdiff may be a better metric for estimating the minimum thermal
conductivity. Plotted points are the same that appear in Fig. 7 of ref. [43].

Explicitly, Eq. 2.36 can be rewritten as

C (ω) = kB

(
}ω
kBT

)2 e
}ω
kBT(

e
}ω
kBT − 1

)2 (6.12)

which, in turn, can be used to incorporate a temperature dependence into Eq. 6.4:

κdiff (T ) =
n

1
3kB

π

ˆ ∞
0

(
g (ω)

3n

)(
}ω
kBT

)2 e
}ω
kBT(

e
}ω
kBT − 1

)2 ω dω . (6.13)
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Here it is assumed that g (ω) and the diffusive mechanism of thermal transport are both
reasonably independent of temperature. In effect, the integral in Eq. 6.13 is a tempera-
ture dependent average frequency, ωavg(T ), of the vibrational spectrum,

κdiff (T ) =
n

1
3kB

π
ωavg (T ) , (6.14)

and ωavg(T ) converges, of course, to a constant value (ωavg in Eq. 6.5) when the entire
vibrational spectrum is thermally activated in the T →∞ limit.

However, it may be necessary to use κdiff(T ) in the temperature range of interest if T < θD.
This is to say that high energy vibrations that are not yet thermally activated should not
be included in the calculation of κdiff. Considering PbTe as an example, g(ω) is fairly
independent of temperature up to 500 K [44]. The INS data at 100 K (Fig. 6.4a) was used
for all calculations, and numerical integration of Eq. 6.13 for temperatures up to 500
K reveals that κdiff(T ) is converged to the high T value by 500 K (Fig. 6.4b). As the full
vibrational spectrum (up to 16 meV in Fig. 6.4a) is excited by ∼190 K (kBT ≈ 16 meV),
the high temperature approximation is quite good for PbTe above room temperature.

The Einstein model of thermal conductivity, κE (see, e.g., ref. [239]), may be the most
rudimentary equation for diffusive thermal transport, having a characteristic frequency,
ωE, that is constant with temperature and a density of states given by g (ω) = 3n δ(ω−ωE).
Nevertheless, using ωE = ωavg (gray lines in Fig. 6.5) results in an Einstein model that
converges to the value of κdiff at high temperatures and goes as κE ∝ e−θE/T at low
temperatures (θE = }ωE/kB). As ωE is the only and ipso facto the maximum frequency
of the Einstein density of states, κE converges to the high temperature value of κdiff at a
lower temperature than if there were a distribution to the density of states (Fig. 6.5b).
In order to better approximate the temperature dependence of κdiff found numerically, it
is possible to utilize the correlation between ωavg and θD (Eqs. 6.8 and 6.9), to estimate
κdiff (T ) using the Debye model g (ω) given by Eq. 3.8 (blue curve in Fig. 6.5a). However,
to converge at the high temperature value given by Eq.6.9, the upper limit of integration
has to be changed to compensate for the fact that the average frequency of the Debye
model is higher than that found experimentally. Explicitly,

κdiff ≈
n

1
3kB

π}
(0.61 kBθD) = kB

ˆ fωD

0

(
3

2π2

ω2

v3
s

)(
n−

2
3ω

3π

)
dω (6.15)

and equivalence with Eq. 6.9 is achieved when the upper limit of integration is defined
by f ≈ 0.95 (truncated Debye model, green curve in Fig. 6.5a). Switching to the reduced
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variable, x = }ω/kB T , then κdiff (T ) may be approximated as

κdiff (T ) ≈ n−
2
3kB

2π3v3
s

(
kBT

}

)4 ˆ 0.95
θD
T

0

x5ex

(ex − 1)2dx , (6.16)

which predicts κdiff goes as T4 at low temperatures (Fig. 6.5b). This temperature depen-
dence is a direct result of using a parabolic density of states (typical of propagating lattice
waves) with a diffusivity of diffusons that is linear in ω. The Cahill model of κglass uses a
parabolic density of states, but assumes phonon scattering is inversely proportional to ω,
giving a diffusivity that is proportional to ω−1. Thus, κglass goes as T2 at low temperatures,
in better agreement with the thermal conductivity of amorphous materials (Fig. 6.5b).
Consequently, the thermal conductivity of real materials is likely dominated by propagat-
ing (phonon-like) vibrations at low temperatures, whereas κmin at high temperature may
be better described by diffuson-like vibrations.

This conclusion is well-supported by a recent computational study on vibrations in a ran-
dom In1−xGaxAs alloy [231], as well as in defect-free crystalline CePbBr3 [92], Yb14MnSb11

[93] and Cu12Sb4S13 [257].

It should be noted that although diffuson-like thermal transport is more likely in com-
plex materials with low and ultralow thermal conductivity, correctly characterizing vibra-
tional behavior is a non-trivial challenge. For example, the contribution of diffuson-like
vibrations to the thermal conductivity of Tl3VSe4 at high temperature is currently under
investigation [258, 94, 259].

6.8 Summary

The Kittel, Slack, and Cahill (phonon-based) models, i.e. κglass, are good approximations
for amorphous materials particularly at low temperatures. However, at high temperature,
thermal conductivities are sometimes even lower, suggesting that κdiff may be a better
estimate for a minimum thermal conductivity, κmin. Here we define κdiff as the limit of
thermal conductivity when vibrations are not propagating (not phonon-like) but also not
localized (specifically, P = 1).

Additionally, by correlating ωavg with the Debye temperature (}ωavg ≈ 0.61 kBθD) it is possi-
ble to estimate κdiff from simple and accessible speed of sound measurements. From this
correlation, we find that κdiff is approximately 37% lower than the κglass estimate of Cahill
using identical experimental inputs. In many cases, this may reconcile experimental ob-
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Figure 6.4: Temperature dependent diffuson model. The experimental vibrational density
of states for PbTe at 100 K taken from [44] (panel A) and the temperature dependent κdiff(T )
calculated numerically using Eq. 6.13, tending to κdiff = 0.157 W/mK at high temperature when
the entire density of states is thermally excited (panel B).

servations with the concept of minimum thermal conductivity. However, observations
of thermal conductivities below the κdiff value are not unexpected, and would tend to
indicate extraordinary physics leading to ultralow thermal conductivity. For example,
complex materials may have a large number of localized (locon-like) vibrations that do
not contribute to thermal conductivity; or, anisotropy may give rise to the exceptional
mechanism of phonon focusing.

Finally, in the context of our analysis of PbTe, using κdiff as a benchmark for minimum
thermal conductivity leads to the conclusion that further reductions in thermal conduc-
tivity may be possible in many good thermoelectric materials. Engineering the vibrational
properties of these materials may lead to diffuson-like thermal transport, resulting in sig-
nificant improvements to the thermoelectric figure of merit.
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Figure 6.5: Comparison of the temperature dependence of minimum thermal conductivity
models. The experimental vibrational density of states (red circles) for Si at 300 K taken from
[45], the Debye density of states (blue curve) having a maximum energy kBθD determined by
the speed of sound (Table 6.1), and the truncated Debye density of states (green curve) with
a maximum energy 0.95 kBθD (panel A). κdiff (T ) was calculated numerically (κdiff-Experimental
g(ω), red curve, using Eq. 6.13) and analytically (κdiff-Truncated Debye, green curve, using Eq.
6.16), and compared with the Cahill (κglass, blue curve) and Einstein (κE, gray curve) models, with
experimental thermal conductivity measurements of amorphous Si [46, 47] shown for reference
(panel B). The low temperature behavior for each model is κdiff ∝ T 4, κglass ∝ T 2, and κE ∝ e−θE/T ,
respectively.
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Chapter 7

Thermodynamic Stability in Mixed Conductors

7.1 Overview

Many superionic mixed ionic-electronic conductors with a liquid-like sublattice have been
identified as high efficiency thermoelectric materials, but their applications are limited
due to the possibility of decomposition when subjected to high electronic currents and
large temperature gradients. Here, through systematically investigating electromigration
in copper selenide thermoelectric materials, we reveal the mechanism for atom migration
and deposition based on a critical chemical potential difference. Then, a strategy for sta-
ble use is proposed: constructing a series of electronically conducting, but ion-blocking
barriers to reset the chemical potential of such conductors to keep it below the threshold
for decomposition, even if it is used with a high electric currents and/or large tempera-
ture differences. This strategy not only opens the possibility of using such conductors
in thermoelectric applications, but may also provide approaches to engineer perovskite
photovoltaic materials and the experimental methods may be applicable to understand-
ing dendrite growth in lithium ion batteries.

The bulk of this chapter was published as:

Qiu, Pengfei, Matthias T. Agne, et al. "Suppression of atom motion and metal de-
position in mixed ionic electronic conductors." Nature Communications 9.1 (2018):
1-8.
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7.2 Introduction to Superionic Conductors

Superionic conductors are solids in which at least one type of atom forms a rigid sublat-
tice framework and another type of atom forms a “melted” liquid-like sublattice composed
of highly mobile charged atoms, i.e. ions [260]. The description of the ensemble of highly
mobile ions in terms of a “liquid” sublattice derives from the fact that the entropy change
during transition into the superionic phase is comparable to the entropy change dur-
ing a solid/liquid phase transition [260]. This unique liquid-like ion migration is the
basis for many phenomena and applications in the fields of solid-state ionics, e.g. of
solid electrolytes, batteries, fuel cells, and various types of sensors [261]. Ion migration
also occurs in materials with much lower ion mobility, and is often the origin of electric
field-driven degradation in hybrid organic-inorganic perovskite solar cell materials (e.g.
CH3NH3PbI3) and Cu-based photovoltaic materials [262, 263]. Ion migration and the
redox-based formation of conducting paths in dielectrics is the basis for future informa-
tion storage technologies (atomic switching and memristive devices) [264].

Recently, the application of superionic mixed ionic-electronic conductors (MIECs) with a
liquid-like sublattice has been extended to the field of thermoelectrics. A concept named
as “Phonon-Liquid Electron-Crystal” (PLEC) has been proposed to design and develop
high-performance thermoelectric (TE) materials that conduct phonons like a liquid and
electrons like a crystal [157]. A large family of novel Cu-, Ag- and Zn-based superionic
MIECs have been identified satisfying this concept – with typical examples being Cu2−δX
(X = S, Se, Te), Ag2Se, CuAgSe, Zn4Sb3, Cu5FeS4, Cu7PSe6, and Cu12Sb4S13, etc. [157,
265, 266, 267, 268, 155, 269].

In a MIEC, both the ions and electrons (or holes) are mobile such that atom (rather than
ion) migration is possible, which may lead to composition changes within the MIECs
[270]. Many new and unusual electrical and thermal transport properties, such as the
reduced specific heat, ultralow and temperature independent lattice thermal conductiv-
ity, and extremely high TE figure of merit zT > 2.0 have been observed and reported in
these MIECs [271]. The high TE performance and the fact that Cu is relatively non-toxic
and earth-abundant has attracted much attention to these MIECs for both fundamental
studies and industrial applications.

Despite the high performance, the stability and reliability of MIECs are key concerns for
long-term service in real applications for batteries, photovoltaics, and thermoelectrics.
In Li-ion batteries, for instance, the Li dendrite growth can result in catastrophic failure
leading to combustion or explosion [272]. In CdTe-CuxTe solar cells, Cu atoms can mi-
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grate into the CdTe absorber and CdS window layers to form carrier traps that reduce
device performance [263]. In thermoelectrics, the added potential risk using MIECs con-
tributed to the discontinuation of Cu2−δSe development for aeronautics and space appli-
cations [273, 274].

The mobile Cu species in Cu-based MIECs are prone to deposit on the surface at the
cathode to form Cu metal when an external electric field or temperature gradient is ap-
plied (Fig. 7.1a). If Cu is not supplied at the anode, the Cu metal deposition at the
cathode will change the initial material’s composition and degrade TE performance as
the metal deficiency in MIECs is optimized for a high zT . In TE devices with MIECs, Cu
metal deposition on the sample surface may also damage the contact between the TE
material and the electrode by forming cracks to increase electrical/thermal resistance
and degrade the power output and conversion efficiency [82]. In addition, the plating of
Cu at the cathode may lead to the evaporation of chalcogenides at the anode, resulting
in the breakage of the thermolegs [81]. This is partly why NASA stopped the program
of Cu1.97Ag0.03Se1+y-based radioisotope thermal generators in 1981 after more than 10
years of research activity [82]. Therefore, metal deposition caused by ion flux must be
restricted to improve the stability and reliability of TE devices consisting of MIECs before
the use in any industrial application.

In this study, through systematically investigating the behavior of various MIECs with
a liquid-like ionic sublattice in an electric field with or without a temperature gradient,
we reveal the relations of ion migration, metal deposition, and materials degradation in
MIECs for thermoelectric application. A general model is proposed to reveal the thermo-
dynamic threshold for decomposition of MIECs. With this understanding, we develop a
strategy to improve the MIECs’ stability and reliability by adding electronically conduct-
ing, but ion-blocking interfaces in the material.

7.3 Mechanism of Ion Transport in Mixed Conductors

The physical and chemical processes of atom migration and metal deposition in MIECs
are presented in Fig. 7.1b-f. The mobile ions (Cu+ in Cu2S and Cu2Se) possess high
diffusivities, as they have relatively low activation energies for migration, Ea (e.g. 0.19
eV in Cu2S and 0.14 eV in Cu2Se [275, 276]. Simply, neighboring sites are energetically
close and jumps are frequent (Fig. 7.1b). If there is no directional force or field applied
to the uniform material, the random motion of ions is equal in all directions and there
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will be no net mass transport in a specific direction (Fig. 7.1c). In response to an ex-
ternal driving force (an electric field or temperature gradient) the charge carriers (ions
and electronic species) flow (Fig. 7.1d). If the electrodes do not allow for ion transfer,
there can be no net ionic current in the stationary state, and a concentration gradient
of ions will form within the material. For reasons of electroneutrality, this concentra-
tion gradient will lead to an equal concentration gradient of electrons, and in essence, a
chemical composition gradient is formed. If the concentration variation remains within
the stability limits of the material, i.e. within the homogeneous phase field defined by
the phase diagram of the MIEC, the concentration gradient of the mobile component acts
as diffusion force opposing the external applied force on the mobile component, and a
steady-state condition is achieved, i.e., there is no driving force for further migration of
the neutral component (Fig. 7.1e). In the following, we describe transport of the neutral
metal component as transport of atoms for the sake of simplicity. In the steady-state con-
dition with ion blocking electrodes, the material can still transport a net flux of electric
charge (via electrons or holes in the presence of an electric field) and heat (via electrons or
holes and phonons in the presence of a temperature gradient), but the net flux of atoms
is zero. This steady-state condition of vanishing atom transport, also called the Soret
steady state [277], is similar to the condition in a conventional TE material (e.g. Bi2Te3,
PbTe, and SiGe) [278, 279, 280].

However, the change in the chemical potential of the migrating atom may lead to de-
composition of the MIEC and prevent the formation of a steady-state condition. At the
electrode interface, a critical chemical potential may be reached where a decomposition
(product) phase is favored. For instance, in Cu2−δ(Se,S), when the chemical potential
of Cu at the cathode is equal to or higher than the chemical potential of Cu metal, the
reduction of Cu+ to Cu metal at the cathode or the oxidation of selenium/sulfur anions
to Se/S (solid and/or gaseous) at the anode can occur [273, 274, 82, 81]. The chemical
potential beyond which decomposition occurs also corresponds to a “solubility limit” of
Cu in the MIEC. The maximum solubility of Cu precedes Cu metal deposition and the
minimum solubility of Cu precedes Se/S oxidation. When the Cu concentration increases
beyond this “solubility limit”, Cu metal will deposit at the cathode if the kinetics of metal
crystallization allows (Fig. 7.1f). Once this happens, the material and the interface in the
device can be permanently altered. We note that the deposition of Cu metal is also hin-
dered by a nucleation barrier. For Cu deposition the chemical potential of Cu needs then
to be slightly higher than its standard potential, µ0(Cu), but all the general conclusions
above remain the same.



129

Figure 7.1: Physical and chemical processes of ion migration andmetal deposition in MIECs.
(a) Metallic Cu deposition on the surface of a Cu2S sample induced by a current. (b-e) Schematic
of (b) the energy landscape for ions; (c) random ion motion without net flux; and (d) net ion
flux under directional force or field. Due to a directional force or field and depending on the
electrode constraints, MIECs may either reach a (e) steady-state without net ion transport (and
without metal deposition) or (f) continuous metal deposition (or other decomposition), if the local
Cu concentration reaches a critical level determined by the stability range of the MIECs.

The thermodynamic threshold for the maximum or minimum solubility in Cu-based
MIECs can be reached if there is a sufficient change in the chemical potential of Cu
atoms due to applied forces (electric field and temperature gradient). In steady state,
the net change in chemical potential of Cu atoms can be determined from the sum of
the change in electrochemical potentials of the constituent ions and electronic carriers.
Because copper atoms are in equilibrium with copper ions and electrons, the electro-
chemical potentials (µ̃) are related by

µCu = µ̃Cu+ + µ̃e− . (7.1)

Thus the change in chemical potential across the material (defined by the electrodes each
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end is in contact with),

∆µCu = µanodeCu − µcathodeCu = ∆µ̃Cu+ + ∆µ̃e− . (7.2)

Consequently, our goal is to relate experimental parameters to µCu in order to explain the
critical condition of Cu metal deposition in Cu-based MIECs.

From the flux equation of linear non-equilibrium thermodynamics (see section 2.2.2)
[89, 281], the electronic current density, J , is driven by the gradient of the electrochemical
potential of the electronic species and the temperature gradient through the relation

J = −σ
[

1

zeF
∇µ̃e− + Se∇T

]
, (7.3)

where ze defines the charge (-1 for electrons or +1 for holes), F is Faraday’s constant,
and σ is the specific electrical conductivity. Se which has the sign and units of the elec-
tronic Seebeck coefficient, captures the effect of thermodiffusion due to the temperature
gradient ∇T . Using the analogous flux equation for ions, considering the case when ion
blocking electrodes are used (i.e., there is no ion flux, JCu+ = 0), then the electrochem-
ical potential driving force exactly cancels the thermal driving force for ion migration.
Explicitly,

∇µ̃Cu+ = −zCu+ F SCu+∇T , (7.4)

and SCu+ similarly relates to the thermodiffusion of Cu ions. When the gradients in Eqs.
7.3 and 7.4 only apply in the x-direction they can be integrated, which for linearly varying
systems (such as MIECs [282]) is equivalent to being multiplied through by ∆x = L (L
is the effective length between electrodes), and used in the relation defined by Fig. 7.2.
Upon rearranging, we arrive at

V =
JL

σ
= − 1

zeF
∆µCu − S*∆T , (7.5)

where S* accounts for the net effect of thermodiffusion and V is the experimental param-
eter (in units of voltage, calculated from J ) of this study.

Because there are bounds to the chemical potential range over which the material can
exist, there must be some critical chemical potential difference (∆µcritCu ) at which Cu metal
deposition occurs. From Eq. 7.5, it is straightforward to find the voltage corresponding
to this critical chemical potential difference:

1. in the isothermal case:
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Vc = − 1

zeF
∆µcritCu , (7.6)

where Vc is a critical voltage that results from a critical applied current density Jc,
and,

2. in a temperature difference,

Vc = − 1

zeF
∆µcritCu − S*∆T , (7.7)

where it is important to note that the sign of ∆T (=Tanode − Tcathode) is important, as
will be discussed.

From this analysis it is expected that a voltage difference, not current density, is the
critical parameter for Cu deposition. We also note that in open circuit conditions (no
electronic or ionic current) the thermodynamics predicts a critical ∆T resulting in Cu
deposition at the cathode (when Vc = 0 in Eq. 7.7).

Further consideration of the isothermal condition (Eq. 7.6) reveals that Vc only depends
on the composition of the compound relative to the “solubility limit”. This allows for the
use of a microscopic defect model to relate off-stoichiometry, δ, in Cu2−δX (X=S, Se) to
the critical chemical potential in Cu-based MIECs. A parameter named as the critical
off-stoichiometry (δc) is introduced here, corresponding to the “solubility limit” of Cu
concentration at the cathode of the MIEC. Based on the theory proposed by Yokota and
Korte et al. [283],

Vc = −RT
F

(
arcsinh

(
δc

2
√
Ke

)
− arcsinh

(
2δ − δc
2
√
Ke

))
. (7.8)

Ke is the equilibrium constant for electrons and holes that is independent of stoichiom-
etry, R is the gas constant, and T is the temperature. The thermodynamic theory devel-
oped herein predicts that a given off-stoichiometry and temperature gradient will result
in limitations on the electrical potential difference that is stable across the material. Us-
ing this knowledge, the latter part of this paper will address possible ways to engineer
stability in these materials for thermoelectric applications.
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Figure 7.2: Schematic of material behavior under experimental conditions leading to the
determination of the critical voltage Vc.

7.4 Isothermal Ion Transport in Mixed Conductors

Taking the family of Cu-based TE MIECs as an example, the determination of Vc is intro-
duced for the isothermal case. When an externally applied electric field does not raise
V between the two ends of the sample to the critical Vc value, the Cu atoms simply re-
distribute inside the sample to form a steady-state gradient of Cu concentration without
metal deposition at the cathode (Fig. 7.1e). After removing the electric field, the Cu con-
centration gradient gradually returns to the initial homogeneous state (Figs. 7.1 and 7.2).
Thus, for V < Vc, the Cu redistribution under the external electric field is temporary, with
no lasting effect on the MIEC. However, when the external electric field reaches Vc (Fig.
7.1f), Cu metal will deposit. Although metallic Cu is not thermodynamically stable after
the electric field is removed, many of the metallic deposits cannot immediately diffuse
back into the sample (kinetically limited). In this case, the average Cu concentration in-
side the MIEC is reduced (Fig. 7.2), which causes measureable changes of the resistivity
(Fig. 7.3a).

The Vc values for several Cu-based TE MIECs, including Cu2−δS (δ = 0, 0.01, 0.03, 0.04,
0.06, and 0.1), Cu2Se, and Cu2S0.5Se0.5, are experimentally determined at a constant
temperature of 750 K (Table 7.1) by using the apparatus and method shown in Figs. 7.4
and 7.5.

The details can be found in Appendix G. The maximum Vc value for all samples is only
0.11 V (Fig. 7.3b). Such small values are consistent with the ease of observing Cu-metal
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Figure 7.3: Critical electric potential difference Vc for several Cu-based TE MIECs in the
isothermal case. (a) Current density dependence of relative electrical resistance variation R/R0)
for several Cu-based TE MIECs with L = 10 mm. (b) Experimentally determined Vc (L = 10 mm).
(c) Material length L dependences of Vc and the critical current density Jc for Cu1.97S. The dashed
line is a guide to the eyes. (d) Vc as a function of Cu off-stoichiometry δ in the Cu2−δS (δ = 0, 0.01,
0.03, 0.04, 0.06, and 0.1) samples with L = 10 mm. The dashed line represents the Vc curve
based on Eq. 7.8. All measurements were carried out at 750 K.

deposition in these TE MIECs [273, 274]. Notice that Vc is constant for a series of Cu1.97S
samples with various material lengths, L, whereas Jc decreases with increasing L (Fig.
7.3c). This agrees well with Eqs. 7.5-7.7 in which Vc is not dependent on length but Jc is.
Thus, although it may seem natural to be concerned about metal deposition due to high
current density in a TE generator device, it is the voltage and not the current density that
defines the critical quantity, which is in agreement with the insight of Eq. 7.5.

Furthermore, we found experimentally (Fig. 7.3d) that Vc gradually increases with in-
creasing Cu off-stoichiometry (δ in Cu2−δS). Intuitively, this coincides with a reduction
in the chemical potential of Cu as the off-stoichiometric material is more willing to accept
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Figure 7.4: Schematic of the experimental setup used to determine the critical electric
potential difference in the isothermal case.

Table 7.1: Experimental critical current density Jc, critical electronic potential difference Vc, and
electrical conductivity σ for several typical Cu-based TE MIECs at 750 K. The compositions de-
termined by electron probe microanalysis (EPMA) are also included.

Composition EPMA
Composition

Sample
Length (cm)

Jc (A cm−2) Vc (V) σ/104

(S m−1)
Cu2Se Cu2.004Se 10 18-21 0.103(±0.008) 1.74
Cu2S0.5Se0.5 Cu1.990S0.5Se0.501 10 7-8 0.096 ±0.006 0.52
Cu2S Cu2.009S 10 0.14-0.21 0.024(±0.003) 0.02
Cu1.99S Cu1.992S 10 0.47-0.57 0.053(±0.005) 0.14
Cu1.97S Cu1.975S 10 11-13 0.087(±0.004) 1.14
Cu1.96S Cu1.961S 10 18-20 0.090(±0.005) 2.01
Cu1.94S Cu1.939S 10 27-29 0.093(±0.003) 2.86
Cu1.90S Cu1.904S 10 51-54 0.107(±0.003) 4.67
Cu1.97S Cu1.975S 6 16-18 0.090(±0.005) 1.74
Cu1.97S Cu1.975S 3 28-32 0.093(±0.007) 0.52

Cu atoms. This trend can be well explained by Eq. 7.8. According to the Cu-S binary
equilibrium phase diagram [284], Cu2−δS has a wide composition range (0 < δ < 0.27) at
750 K. Thus, for these Cu2−δS (δ = 0, 0.01, 0.03, 0.04, 0.06, and 0.1) samples, constant
values for δc (=-0.03) and Ke(=2.24×10−3) fit the experimental data well using Eq. 7.8
(Fig. 7.3d). In theory, δc should correspond to the Cu-rich phase boundary composi-
tion found on the phase diagram, but here it is used as a phenomenological constant.
Since Ke = xnxp = exp(−∆Ge/RT ), where xn and xp are the molar fractions of intrinsic
electrons and holes, respectively [283], the electron-hole pair free energy of formation,
∆Ge, is estimated to be 0.4 eV; consistent with the band gap of cubic Cu2S reported by
Lukashev et al [285]. In addition, it was found experimentally that the Vc values for both
Cu2S and Cu2Se increase with increasing temperature (Fig. 7.6), which corresponds to
an increase in ∆µcritCu associated with the increase in phase width of these MIECs with
temperature [284, 286].
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Figure 7.5: Procedure for determining the critical voltage. (a) Illustration of the measurement
procedure for the critical electric potential difference in the isothermal case. The red lines depict
the case when Cu deposits. (b) Current density dependence of the variation of relative electrical
resistance for the Cu1.97S sample at 750 K. The points in the red circle depict the case when Cu
deposits.

An illustration of how the atomic chemical potential changes across the single phase
region and how the critical voltage is intuitively connected to off-stoichiometry is shown
in Appendix F.1.

7.5 Ion Transport of Mixed Conductors in Temperature Gradient

In the non-isothermal case, the relative directions of the electric current and the heat
flux are expected to have dramatic effects on Vc (Eq. 7.7). If the current direction is the
same as the heat flux direction (i.e., Tanode > Tcathode), the electrical potential and temper-
ature gradient work together to drive atom migration to the cathode. Conversely, when
the direction of the electric current is opposite to the heat flux (i.e., Tanode < Tcathode),
the current and temperature gradient have opposed driving forces for atom migration.
Although the necessary condition for metallic Cu to plate out is that the chemical po-
tentials of Cu in the MIEC are that of Cu metal at the cathode, this is a necessary but
not sufficient condition because some degree of overpotential may be required to initiate
and drive the electrodeposition reaction. The rate of deposition is not addressed in the
thermodynamics analysis here.

Nevertheless, irrespective of overpotential effects, ∆µcritCu is expected to be constant for a
given temperature difference, regardless of the relative flux directions. This is because
the range of chemical potentials corresponds to the range in compositional phase space,
which is negligibly impacted by the electric field. For engineering applications, this allows
us to contrast the critical current densities that can be applied relative to the temperature



136

Figure 7.6: Temperature dependence of the critical voltage. Experimental critical electric
potential difference for Cu2Se and Cu2S superionic phases at different temperatures. The dashed
lines are guides to the eyes.

gradient. For a constant magnitude of |∆T | and ∆µcritCu in Eq. 7.7, we can write

Vc,same =
Jc,sameL

σavg
= − 1

F
∆µcritCu − S*|∆T | (7.9)

when the current is applied in the same direction as the temperature gradient (Jc,same),
or

Vc, opposite =
Jc,oppositeL

σavg
= − 1

F
∆µcritCu + S*|∆T | (7.10)

when the current is applied in the opposite direction as the temperature gradient (Jc,opposite).
Here, L and σavg are the effective length and average electrical conductivity across the
superionic phase on the sample, respectively. Put another way, Vc,same and Vc,opposite are
different from the isothermal case due to the additional potential that results from the
thermodiffusion of charged species (generalized Seebeck effect).

Taking Cu1.97S as an example, the critical current density in the non-isothermal case
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Figure 7.7: Determination of the critical voltage in the presence of a temperature gradient.
(a) Schematic of the experimental setup used for determining the critical electric potential differ-
ence under a thermal gradient. (b) The measurement process illustrated for the critical electric
potential difference in thermal gradient. The red lines depict the case when Cu deposits.

Table 7.2: The average electrical conductivity σavg of Cu1.97S for different temperature ranges.

350–473 K 350–523 350–573 K 350–623 K 350–673 K
σavg/104 (S m−1) 1.01 0.96 0.94 0.98 1.03

is measured by using the apparatus and method shown in Fig. 7.7. The details can be
found in Appendix G. At a constant ∆T (=673 K−300 K), a significant difference in critical
current density is required depending on the relative flux directions (Fig. 7.8a). If the cur-
rent direction is the same as the heat flux direction, Jc,same ≈ 0.3 A cm−2 is large enough
to obtain metallic Cu deposition near the cold side. However, if the current direction is
reversed, Jc,opposite ≈ 20 A cm−2 is required to obtain metallic Cu deposition at the hot
side. This observation is in agreement with the thermodynamic expectations, although
overpotential effects may contribute. To further demonstrate the trend predicted by Eq.
7.7, Vc,same and Vc,opposite were evaluated as a function of increasing |∆T | by using the
σavg data shown in Table 7.2 (Fig. 7.8b). As expected, Vc,opposite is found to increase with
|∆T | and Vc,same is found to decrease with |∆T | (Fig. 7.8b).

7.6 Strategy to Improve Stability in Mixed Conductors

In real TE generators the direction of the current flowing through the p-type legs is al-
ways the same as the direction of the heat flux. Consequently, the thermodynamic un-
derstanding validated through the temperature gradient experiments is very helpful to
design stable TE devices based on these high performance MIECs. Eq. 7.5 and Fig. 7.3c
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Figure 7.8: Critical electric potential difference Vc measurements for the TE MIECs under
thermal gradient. (a) The relative Seebeck coefficient variation (S/S0) as a function of the current
density for Cu1.97S at Tcathode = 300 K and Tanode = 673 K. The positive J means that the current
direction is the same as the heat flux direction. The negative J means that the current direction
is opposite to the heat flux direction. (b) Experimentally determined Vc,same and Vc,opposite as a
function of |∆T |, showing qualitative agreement with Eq. 7.7. The temperatures at the anode and
cathode for each flux direction can be found in text. The length of all measured samples is 6 mm.
The dashed lines are guides to the eyes.

clearly show that Vc is length independent; thus, Vc,same in Eq. 7.7 is length indepen-
dent as well. Changing the geometry cannot change the critical chemical potential – it is
fixed for a given temperature, temperature gradient, and off-stoichiometry. However, the
total voltage across a thermoelectric leg can be increased by using a series connection
of several segments of MIEC material, in which electrically-conducting, but ion-blocking
interfaces are used between the individual segments. The reason for this is simple: the
total voltage across the series-segmented leg, Vleg, is the sum of voltages across each
segment, Vseg as

Vleg =
∑

segments
Vseg. (7.11)

When n segments are approximately the same length, and each segment has the same
critical voltage, Vseg,c , the critical voltage for the entire leg is Vleg,c = nVseg,c.

The schematic of this strategy is shown in Fig. 7.9a. These interfaces limit the ion
movement but allow the free movement of the electrons or holes. Schematically, the ion
concentration distribution rises linearly (as in Fig. 7.1e) in each segment, but because
the chemical potential is reset by the ion-blocking interfaces a saw-tooth like pattern can
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be obtained. Engineering the number of segments n can allow for high voltages (and
corresponding current densities) without reaching the critical chemical potential that
results in the degradation of the material.

Initially, we test this strategy at a constant temperature of 750 K. The unsegmented
Cu1.97S leg exhibits a critical applied current density of ≈11 A cm−2. However, for a
three-segment Cu1.97S leg, the critical applied current density is ≈30 A cm−2 (Fig. 7.9c).
This is in excellent agreement with the thermodynamic theory. The critical chemical
potential for Cu at 750 K is then equivalent to Vseg,c = 0.09 V, as determined from the
unsegmented leg. Because Vc is geometry independent, each segment has this same
critical voltage. When the three segments are connected in series the critical voltage
across the leg rises to Vleg,c =0.27 V, exactly as expected.

Series segmentation is also effective in the case of a temperature gradient. As before,
the critical voltage for the leg is the sum of critical voltages for each segment. However,
the temperature dependencies of ∆µcritCu and S* may lead to different critical voltages for
each segment. Nevertheless, the unsegmented leg can only substantiate a small current
density of Jc,same = 0.3 A cm−2 (Fig. 7.9d). A three-segment leg, was found to sustain a
significantly larger current density, Jc,same ≈ 3.0 A cm−2, about one order of magnitude
higher than the unsegmented Cu1.97S leg (Fig. 7.9d). Correspondingly, the critical volt-
age across the leg is increased from Vc,same = 0.002 V to about 0.018 V. If more Cu-atom
blocking layers are added, the critical total voltage across the leg can be expected to con-
tinue to increase. Therefore, the present data strongly suggests that MIECs can indeed
sustain large current densities and achieve high stability whenever the local chemical
potential is engineered to be lower than the corresponding critical chemical potential.

7.7 Summary

By understanding the thermodynamic principles behind ion and atom migration and
metal deposition in TE MIECs, we derive a thermodynamic model to understand the
critical electrical potential difference for decomposition of non-stoichiometric MIECs at
constant temperature, and demonstrate that it is a critical voltage, not current, that is the
limiting factor. In the more complicated case of concurrent electrical and thermal fluxes,
the experimental observations are in excellent qualitative agreement with the thermo-
dynamic predictions. Furthermore, we propose the use of ion-blocking but electrically
conducting interfaces to enhance the critical electric potential difference in engineering
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applications. This is most efficiently done with a grain-boundary engineered microstruc-
ture. This study clearly shows that ion migration and metal deposition can be effectively
suppressed in MIECs, which has been an overwhelming concern, but not solved before.
Consequently, the technique demonstrated herein to increase the critical potential opens
a new possibility of using these TE MIECs in real applications. Recently, we have devel-
oped a geometric design strategy (at the device level) to avoid the critical voltage of mixed
conductors, which resulted in a stable high-efficiency thermoelectric device [77]. We ex-
pect that the mechanism and strategies proposed in this study for TE materials should
also be valid for other ionic conductors, and thus can be used in the research areas of,
photovoltaics, solid electrolytes, and various sensors. Although the strategy of blocking
ion transport is not applicable for batteries, the experimental and theoretical methods
for characterizing and understanding atom deposition in MIECs should be applicable to
Li batteries.
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Figure 7.9: Strategy to improve the service stability and reliability of TE MIECs. (a)
Schematic for limiting the ion movement by including thin electron-conducting and ion-blocking
interfaces; either grain boundaries (red areas) or a secondary phase (yellow areas). (b) Schematic
of ion-blocking electrically conducting interfaces that allow the concentration profile to be reset
at each interface so that the ion concentration does not ever reach the upper limit. (c) Relative
resistance variation (R/R0) as a function of current density for different Cu1.97S samples at a
constant temperature of 750 K without a thermal gradient. (d) Relative Seebeck coefficient vari-
ation (S/S0) as a function of current density for different Cu1.97S samples under the condition of
thermal gradient (Tanode = 673 K and Tcathode = 300 K). The insets in (c) and (d) show the optical
images of the measured Cu1.97S samples. The critical current density was measured across the
segment in the middle.
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Chapter 8

Energetic Considerations of Fracture

8.1 Overview

Fracture mechanics is a fundamental topic to materials science. Fracture toughness,
in particular, is a material property of great technological importance for device de-
sign. The relatively low fracture toughness of many semiconductor materials, includ-
ing many electronic and energy materials, makes it difficult to use these materials in
applications with large external stresses. Here, it is shown how the ideal strength of
crystalline materials, which can be obtained from density functional theory calculations,
is a direct method to probe fracture behavior and fracture toughness. Specifically, the
integral stress-displacement method is used to estimate the energy (work) of fracture
that is needed for the calculation of fracture toughness. While fracture is assumed to
occur in the weakest crystallographic direction, other idealized cases (including those
with defects) could easily be adapted. By comparison with experimental fracture tough-
ness values, the calculated fracture toughness values provide realistic estimates for bulk
materials and are predictive of experimental single crystal results. Consequently, ideal
strength calculations may be useful for benchmarking experimental measurements and
can serve as a starting point for the construction of multi-scale fracture models and the
computational design of new materials and devices.

8.2 Fracture Criterion

The resilience of a material to fracture is defined in part by its fracture toughness, which
describes the conditions for crack growth to occur. Since even ambient stresses present in



143

everyday devices can be problematic for some materials, fracture toughness is an impor-
tant engineering design metric. In particular, the utility of semiconductor materials for
applications having applied stresses often requires clever engineering solutions. Thermal
and vibrational stresses are often present in electronic [287, 288] and energy materials
[289, 290] (including those used for efficient gas turbines [70]) during operation. Addi-
tionally, new, strong materials are desired for modern applications, like internet-of-things
devices [291].

8.2.1 Definition of Fracture Toughness

The mechanical failure of materials by fracture (or rupture) is an inevitable result of the
finite strength of atomic bonds. Although bonding is the fundamental material property
that determines fracture conditions, defects (e.g. cracks) are often the primary focus
since they serve to amplify local stresses well beyond the nominal external stress applied
to the material. Griffith [292] was the first to recognize that material properties (i.e.
bonding) and system properties (i.e. stress state and defect geometry) were connected
through a thermodynamic criteria for fracture. Later, Irwin [293] and Orowan [294,
295] expounded upon Griffith’s work and defined fracture toughness, K, as the inherent
material property which determines fracture conditions. For plane strain conditions, the
mode I (tensile force acting to open the crack) fracture toughness, KIc, is given by

K2
Ic = GIcE/(1− ν2) = φσ2

f ac (8.1)

where E and ν are the Young’s modulus and Poisson’s ratio for an isotropic material, GIc

is the work of fracture per unit area, σf is the nominal stress needed for fracture to occur
in a material with critical crack length, ac, and φ is a numeric factor depending on the
geometry of the crack. For brittle materials having an elliptical crack, Griffith found that
φ = π and GIc = 2γs, where γs is the surface energy and the factor of 2 arises because 2
surfaces are created. Orowan and Irwin generalized the Griffith result to include ductile
fracture, but the form of Eq. 8.1 is retained. In the general sense, GIc is the energy per
unit area needed to create additional surfaces.

For mode II (shear force in the plane of the crack, parallel to the crack direction) in the
plane strain condition, Rice [296] derived the fracture toughness KIIc as

K2
IIc = 2GIIcµ/(1− ν) (8.2)



144

Figure 8.1: The integral stress-displacement method of determining the fracture energy,
G. The physics of fracture is captured by the continuous deformation of the atomic structure in
the computational simulation (left). The work required to create two new surfaces is found by
integrating the stress-displacement curve (right). The stress-displacement curve is different for
different crystallographic directions within a material and can be changed by adding defects such
as twins to the crystallographic structure. These defect structures can be investigated using this
method which may or may not increase fracture energy.

where µ is the shear modulus and GIIc = γus, which Rice calls the unstable stacking
energy corresponding to the nucleation of a full dislocation.

Although fracture toughness is defined by material properties, it is experimentally more
accessible to estimate K by finding the critical crack length for a given applied stress.
This is largely because G is difficult to obtain experimentally. While it is straight-forward
to find relaxed surface energies (e.g. the Boettger method [297, 298] or other "slab meth-
ods"), a distinction should be made between surface energy (e.g. the excess energy due
to the dangling bonds of a relaxed surface) and the energy required to make a surface.

8.2.2 The Work of Fracture

The "surface energy" relevant to fracture is, in fact, the energy (work) required to break
atomic bonds and form a new surface (i.e. G/2). While having units of [J/m2], this is not
necessarily the same surface energy as γs. Griffith made the approximation that the frac-
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ture energy was twice the surface energy (G = 2γs) for brittle materials. This approxima-
tion is valid when surfaces are made via thermodynamically reversible processes, which
is not necessarily the case due to the complexity of fracture (e.g. plasticity). This mis-
understanding has led to widespread estimates (of varying complexity) of fracture tough-
ness based on relaxed surface energies found computationally [299, 300, 301, 302, 303].
However, the ability to investigate fracture directly via computational methods no longer
requires such an approximation to be made. The integral under any stress-strain curve
is the total mechanical energy stored in the material per unit volume (i.e. energy den-
sity). When the material is strained to failure, the integral under the stress-strain curve
describes how much work was done to the material to fracture it. This is often called
toughness [304]. Alternatively, the integral of a stress-displacement curve has units of
energy per unit area and describes the energy required to create the new surfaces formed
when the material fractures (Fig. 8.1). These quantities can be evaluated at the atomic
scale using computational methods to determine the "ideal" stress-strain or "ideal" stress-
displacement relations for atomic structures (e.g. the unit cell of a crystalline material).

Herein, it is shown that the fracture energy G (specifically GIc and GIIc) can be estimated
from the integral stress-displacement method using the ideal stress-displacement curves
obtained by density functional theory calculations (Fig. 8.1). From this estimation of G
the fracture toughness can be calculated. By comparison with experimental reports, this
method gives realistic estimates for fracture toughness that may provide insights into the
fundamental nature of fracture beyond the atomic scale.

8.3 Ideal Strength of Titanium Carbide and Nitride

Ideal strength calculations were undertaken for TiC and TiN using density functional
theory methods (see Appendix I). In both cases, a tensile stress was applied along the
[100] crystallographic direction. Their stress-displacement curves are shown in Fig. 8.2.
The ideal strength (i.e. the maximum stress that the material can obtain) is 33.8 GPa for
TiC and 31.4 GPa for TiN.

We extracted the bond length changes to determine the response of the bonds to tensile
strain, as shown in Fig. 8.3. The Ti-C and Ti-N bonds along the [100] direction linearly
increase with increasing tensile strain. This suggests the structure uniformly resists the
deformation. The softening and breakage of these bonds gradually release the internal
stress, leading to structural failure.
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Figure 8.2: Ideal stress-displacement curves for titanium carbide and titanium nitride. Here,
the tensile loading is in the [100] crystallographic direction. Note that displacement can be con-
verted to strain using the relevant lattice parameters (4.34 Å for TiC and 4.25 Å for TiN).

Specifically, the atomic structures and bond lengths against tensile strain were extracted
to determine the bond-responding processes. As the tensile strain increases to 0.104
which corresponds to the ideal tensile stress of 31.38 GPa for TiN (Fig. 8.3b), the strong
covalent Ti-N1 bond along the [100] direction is uniformly stretched from 2.15 to 2.37
Åwith a stretching ratio of 10.2%. While the Ti-N2 bond along the [001] direction is
slightly shrunk from 2.15 to 2.09 Åwith a shrinking ratio of 2.8%. With further increasing
tensile strain, the Ti-N1 bond starts to soften, with a linearly increased length, while
the Ti-N2 bond length remains unchanged. This leads to the structural yielding and
gradually released internal stress. At 1.208 tensile strain (Fig. 8.3c), the Ti-N1 length
increases to 4.74 Å. This highly stretched length indicates a highly softened or non-
interaction bonding, leading to a very low internal stress of 2.02 GPa. The softening and
breakage of these covalent Ti-N1 bonds gradually release the internal stress, leading to
the structural failure. In TiC, the atomic configurations and bond-responding process is
similar with that in TiN, as shown in Fig. 8.3d.

Using the integral stress-displacement method (illustrated in Fig. 8.1), we estimated the
fracture energy G from the weakest crystallographic direction for both our TiC and TiN
calculations and several previously reported ideal strength calculations [305, 306, 307,
308, 53, 309, 310, 311, 312, 313, 314, 315, 316, 317]. From the estimate of G, and the
bulk elastic properties also found from DFT, fracture toughness values were calculated
using Eq. 8.1 or 8.2 (depending on the mode of fracture). Surface energies of relaxed
structures were also calculated for several materials and used to estimate the fracture
energy (Table 8.2).
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Figure 8.3: Bond deformations in titanium carbide and titanium nitride. Bond length as a
function of tensile strain for TiC and TiN along the [100] direction in tension.
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Figure 8.4: Calculated fracture toughness compared to experimental values. Specifically, the
comparison of experimental fracture toughness values [48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58,
59, 60, 61, 62, 63, 64, 65, 66] to fracture toughness values calculated using fracture energies
estimated from the integral stress-displacement method. This calculated fracture toughness is
an estimate of the experimental fracture toughness in bulk materials using the idealized case
where fracture occurs in the weakest crystallographic direction and without consideration of any
additional toughening mechanisms. In this sense, the fracture toughness calculated herein is a
realistic lower limit of experimental values. Both mode I and mode II fracture toughness calcula-
tions are plotted (see Table 8.1).

In order to obtain the fracture energy, G, the integral of the stress-displacement curve
is needed. Knowledge of the unit cell, was utilized for each material in order to convert
strain to absolute displacement. Using the crystallographic direction in which the crys-
tal is being pulled as well as the DFT calculated lattice parameters, the relevant lattice
parameter was determined. For instance, for a cubic material being pulled in the <100>
direction, the relevant lattice parameter was simply the lattice parameter, a. Likewise, for
a BCC material being pulled in the <111> direction, the relevant lattice parameter is

√
3

2 a.
In order to convert the stress-strain curve to a stress-displacement curve, the strain was
multiplied by this relevant lattice parameter.

Numerical integration was performed in MATLAB, using interpolant fitting between data
points. In cases where the DFT created stress-displacement curve did not include data
points for the zero of stress at complete material failure, linear extrapolations were intro-
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duced to complete the area under the curve, introducing some subjectivity to the estima-
tion of G. This procedure may affect the estimate of G by a few percent. The values for
unit cell parameters, modulii, Poisson’s ratio and estimated fracture toughness for all of
the materials in this study are compiled in Table 8.1.

8.4 Comparison of Calculated Fracture Toughness with Experiment

Fracture toughness is an important limiting factor for device implementation and lifetime.
The desire for computational materials design necessarily includes having estimates of
fracture toughness, K, that can be used in engineering purposes. Herein, K is calculated
from the fracture energy, G, estimated from ideal strength calculations. This integral
stress-displacement method aims to capture the physics of fracture within the idealized
case of fracture occurring on the weakest crystallographic plane.

The physics of fracture on the atomic scale is the breaking of and/or rearrangement of
atomic bonds. While the loading geometries and distribution of internal stresses within
bulk materials is vastly more complicated, computational materials techniques (DFT or
molecular dynamics) are well-suited to investigate specified loading conditions on local
atomic structures. In particular, the "ideal" strength of crystalline solids can be investi-
gated, which is found from the stress-strain behavior of a defect-free "perfect" crystal. The
magnitude of the ideal strength depends on the loading geometry and crystallographic di-
rection. A pure tensile stress results in the cleavage of atomic planes. Shear stress results
in the formation of a dislocation. Generally, ideal shear strengths are lower than ideal
tensile strengths, reflecting the experimental evidence that dislocations tend to govern
deformation in crystals. Furthermore, for a particular applied stress, certain crystal-
lographic directions are stronger than others. "Cleavage planes" are typically planes of
high atomic density that are the first to fracture in brittle materials.

In general, crack propagation will depend on the local stress state near the crack tip rela-
tive to the crystal orientation. Consequently, the weakest crystallographic plane may not
always be the preferential crack growth direction. This is particularly relevant for bulk
polycrystalline materials where the relative orientation of adjacent grains can influence
crack propagation. Here, fracture toughness is calculated using the fracture energy G
estimated from the weakest crystallographic plane in either shear and/or tensile loading.
This is representative of the idealized case of fracture occurring along the weakest crys-
tallographic plane, without crack deflection or toughening mechanisms present. This
calculation of K can thus be expected to capture the magnitude of experimental results
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for polycrystalline samples, but is more aptly a lower bound. As seen in Fig. 8.4 this
is generally the case. Even though fracture toughness values can vary drastically for
the same material, the estimated K provides a realistic magnitude of the observed frac-
ture toughness in most cases, and is predictive of the lowest values reported for a given
material. Experimental values much larger than these estimates are likely due to addi-
tional toughening mechanisms not captured by the present method, such as the effects
of polycrystallinity.

8.4.1 Titanium Carbide

TiC has well-studied mechanical properties due to its high melting point and high hard-
ness making it valuable in high temperature applications such as components for jet en-
gines and rocket nozzles [323]. Our fracture toughness calculations were able to capture
the magnitude of fracture toughness quite well. The single crystal fracture toughness is
reported to be ∼1.5 MPa

√
m in the [100] direction [59]. Our fracture toughness estimate

along that same direction was calculated to be 1.9 MPa
√
m, demonstrating good agree-

ment between experiment and this method. The dependence of fracture toughness on
crystal orientation as well as polycrystallinity is well-demonstrated in TiC. As illustrated
in Fig. 8.1, the area under the curve, G, can vary between the weak and strong crystallo-
graphic directions. Thus, if a material is not fracturing along the weakest direction, it can
be expected that the fracture toughness would be greater. For example, while the weakest
crystallographic direction of the single crystal has an experimental fracture toughness
as low as ∼1.5 MPa

√
m, this increases to ∼3.6 MPa

√
m in the strongest crystallographic

direction [59]. Polycrystalline experiments of fracture toughness report values around
3.6 MPa

√
m [59, 315]. Further efforts using alloying and introducing nanostructures

have been found to increase the fracture toughness to ∼ 7 MPa
√
m [323, 324].

8.4.2 Titanium Nitride

Thin film TiN is incredibly useful for microelectronics [325, 326, 327], corrosion protective
coatings [328, 329], and energy material applications [330, 331, 332]. These applications
often include high stress states which necessitates understanding of mechanical proper-
ties including fracture behavior. Thin film TiN has been reported experimentally to have
a fracture toughness of about 1.72-2.9 MPa

√
m [329, 333], in excellent agreement with

our calculation of 1.76 MPa
√
m. The strong agreement between our calculations using
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the integral stress-displacement and experimental values for TiC and TiN suggests that
this method may work well for other technical ceramics and semiconductors.

8.4.3 Bismuth Telluride

In fact, these same insights gained from the well-studied TiC and TiN materials are also
demonstrated in the fracture toughness of the layered material Bi2Te3, which relevant
for thermoelectric applications near room temperature [334]. Our calculated fracture
toughness (∼ 0.02 MPa

√
m) corresponds to the lower bound of the experimental value

for a single crystal (0.042 ± 0.016 MPa
√
m [48]). Given the particularly brittle nature of

Bi2Te3 the fracture toughness of polycrystalline materials can be ∼10× higher than the
single crystal value due to crack blunting and deflection at grain boundaries. Particularly
for highly anisotropic materials, grain orientation can be expected to play a significant
role [49].

8.4.4 Considerations of Temperature Dependence

The close agreement with single crystal data is not surprising since the DFT calculations
are representative of 0 K conditions for a perfect single crystal. Toughening mechanisms
(e.g. defects) introduced at higher temperatures or polycrystalline conditions are not
taken into account and thus we would expect our calculated fracture toughness values
to be at the lower bound of experimental work. For instance, it has been shown experi-
mentally that tungsten and vanadium undergo ductile to brittle transitions causing the
fracture toughness to decrease with temperature [335, 62]. Our estimation for the frac-
ture toughness of single crystal W is in strong agreement with measurements at 77 K,
and shows the embrittlement with temperature down to 0 K (Fig. 8.5). Thus, while the
ideal strength calculations reported here correspond to the 0 K condition, they may be
used as a basis for understanding temperature dependent fracture mechanics.

Nevertheless, even though the temperature dependence of W had to be taken into consid-
eration, the single crystal experimental data was well predicted by the present method.
In addition to TiC and Bi2Te3, the calculated fracture toughness of Si also showed good
agreement with single crystal experiments. These were all room temperature fracture
toughness values that do not have the same strong temperature dependence as W. The
overall agreement of our calculated K with single crystal experimental values (compare
solid line with blue squares in Fig. 8.4) is a strong indication that the essential physics
of fracture is being captured by the computational technique.



152

Figure 8.5: Ductile to brittle behavior of fracture toughness in BCC tungsten. The duc-
tile to brittle transition in tungsten results in a drastic reduction in fracture toughness as the
temperature is lowered from room temperature. Here, our 0 K calculation of fracture toughness
is in agreement with the experimental trend in fracture toughness. This behavior is somewhat
common in BCCmetals, but not others, so while the 0 K DFT calculation is a starting point for un-
derstanding the temperature dependence of materials like tungsten, in general the 0 K calculation
is in agreement with room temperature experimental values of fracture toughness.

8.4.5 Extension to Defect Structures

Although the "ideal" strength of solids may not include defects [336], it is still possible
to investigate the effects of defect structures on fracture toughness using this method
[307, 305]. This is shown schematically in Fig. 8.1. In the case of Bi2Te3, a factor of 2
to 4 improvement in fracture toughness may be possible by introducing nanotwinning to
the structure. This was estimated by considering the DFT calculated stress-strain rela-
tions for atomic arrangements having a nanotwinned structure [305, 307]. In general,
computational techniques may provide a unique insight into the physics of fracture when
point defects (e.g. vacancies or atomic substitutions), dislocations or defect structures
(like grain boundaries) are included in the calculation. It has been shown experimen-
tally [337, 338, 339] that the presence of defects can have varying degrees of impact on
the fracture toughness depending on factors such as dislocation structure, grain bound-
ary geometries, and defect pinning. The generality of the integral stress-displacement
method lends itself to computationally probing the fracture behavior of many atomic ar-
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rangements, allowing for greater insight to fracture mechanisms on the atomistic scale.

8.4.6 Comparison to Relaxed Surface Energies

Lastly, it should be noted that the estimates of fracture energy G found from slab calcula-
tions of surface energy (Eq. I.0.1) and from the integral stress-displacement method were
not always in agreement (Table 8.2). The surface energy found by the slab method is for
a relaxed structure and does not probe the continuous deformation of the material dur-
ing fracture. Thus, while further investigation is needed to understand the discrepancy
between the two methods, the integral stress-displacement method (Fig. 8.1) is expected
to be a better probe into the actual fracture mechanics, which are not necessarily ther-
modynamically reversible.

8.5 Summary

Ideal strength calculations provide insights into fracture behavior at the atomic level.
The fracture energies obtained from the weakest crystallographic directions result in frac-
ture toughness estimates whose magnitude are consistent with experimental reports and
provide a basis for more-involved studies of fracture. The effects of defects like vacan-
cies, interstitials, dislocations and grain boundaries may also be investigated within the
framework of the integral stress-displacement method. Although fracture is inherently
complicated, realistic values of fracture toughness can be calculated that can be used
for computation based materials design [226], multi-scale fracture models, or other engi-
neering applications where a baseline approximation of fracture toughness is necessary.
Since this work relies only on first principles, it could be used to calculate the antici-
pated fracture toughness of new materials, allowing for reverse engineering towards the
development of next-generation technologies.
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Table 8.1: Parameters used in estimating fracture toughnesses where E is the Young’s modulus,
µ is the shear modulus, ν is Poisson’s ratio, and G is the estimated fracture energy.

Material Tensile
(T) or
Shear
(S)

Calculated
fracture
tough-
ness

(MPa
√
m)

Unit cell parameter(s) (Å) E (GPa) µ (GPa) ν G
(J/m2)

Bi2Te3 S 0.02 a=4.47, c=31.15 [305] 15 [305] 11 [305] 0.21
[305]

0.02

CaMg2Sb2 S 0.17 a= 4.69, c= 7.59 [310] 69 [310] 28 [310] 0.22
[310]

0.40

CaZn2Sb2 S 0.13 a=4.50, c= 7.51 [310] 52 [310] 20[310] 0.30
[310]

0.30

CoSb3 S 0.46 a=9.048 [306] 145 [306] 59 [306] 0.23
[306]

1.38

CoSb3 T 0.56 a=9.048 [306] 145 [306] 59 [306] 0.23
[306]

2.04

Ge T 0.80 a=4.075 [318] 155 [61] 45 [318] 0.19
[318]

3.95

InSb S 0.24 a=6.648 [307] 49 [307] 19 [307] 0.28
[307]

1.07

La3Te4 S 0.07 a= 9.686 [308] 64 [308] 25 [308] 0.29
[308]

0.07

Mg3Sb2 S 0.10 a= 4.59, c= 7.27 [310] 48 [310] 18 [310] 0.31
[310]

0.18

PbS S 0.44 a= 5.994 [53] 77 [53] 30 [53] 0.27 [53] 2.29
PbSe S 0.33 a=6.207 [53] 70 [53] 28 [53] 0.26 [53] 1.44
PbTe S 0.23 a=6.56 [53] 60 [53] 24 [53] 0.24 [53] 0.82
PbTe T 0.28 a=6.56 [53] 60 [53] 24 [53] 0.24 [53] 1.27
Si T 0.82 3.686 [318] 169 [319] 61 [318] 0.2 [318] 3.81

SnSe S 0.04 a=11.790, b=4.219,
c=4.524 [309]

41 [309] 17 [309] 0.21
[309]

0.03

TiC T 1.94 a=4.3372 429 176 [318] 0.22 8.35
TiN T 1.76 a=4.2551 437 180 [318] 0.24 6.69

TiNiSn S 0.63 a=5.912 [311] 172 [311] 67 [311] 0.28
[311]

2.12

TiNiSn T 0.90 a=5.912 [311] 172 [311] 67 [311] 0.28
[311]

4.31

V T 0.40 a=2.98 [320] 130 [320] 48 [320] 0.36
[320]

6.14

W T 1.00 a=3.17 [312] 540 [321] 161 [322] 0.28
[314]

1.70

Table 8.2: Calculated surface energies for CoSb3,TiNiSn, PbTe, TiC, and TiN surfaces and the
comparison of fracture energy G values estimated from slab calculations of surface energy and
the integral stress-displacement method utilized in this study.

CoSb3 TiNiSn PbTe TiC TiN
Surface Plane (100) (111) (100) (100) (100)

G = 2γs (using Eq.I.0.1) (J/m2) 2.36 5.14 0.31 3.22 2.44
G (using integral method) (J/m2) 1.38 4.31 1.27 8.35 6.69
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Chapter 9

Outlook and Conclusions

The ability to control bulk material properties at an engineering level is essential to the
development of next generation technologies. The progress made in tuning electrical
transport properties (e.g. semiconductor devices) has revolutionized human capabilities
through computational power. Now, it seems that our ability to harness thermal trans-
port will be fundamental to the further advancement of current technologies, and may
hold the key to unlocking new technologies presently unattainable. The present efforts in
developing electro-mechanical devices, opto-electronic devices, thermo-mechanical and
thermo-electric devices may be only the starting point for technologies that combine these
various effects. The current trend in internet-of-things technologies would suggest that
materials with multi-sensory capabilities are in our future.

The ultimate goal of becoming independent of fossil fuels and using sustainable energy
harvesting and storagemethods is also limited by our ability to develop efficient and stable
materials-based devices. The recent breakthrough in solar efficiency [340] is one such
stepping stone. However, a fundamental understanding of the physics of ionic transport,
battery thermodynamics, as well as the mechanisms of electro-catalysis are all subjects
that can directly lead to improvements in energy sustainability. These, among many
others, are the promise of 21st Century materials science.

The thermoelectrics-motivated problems considered in this work, aim to direct the field
towards improvements in thermoelectric efficiency by reconsidering the fundamental na-
ture of vibrations in solids, which may lead to new engineering design principles for re-
ducing (tuning) thermal conductivity. Additionally, insights into the operational stability
of materials and devices gives direct guidance for mitigating chemical decomposition in
mixed conductors and assessing fracture toughness computationally. In all respects, this
work provides a path forward for the computational design of materials from the atomic
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scale to device-level thermodynamic considerations.

Specifically, a great deal of effort was put forth to characterize the nature of heat capacity
in solids, both with and without phase transitions, and its implications for estimations
of thermal conductivity. From the analysis presented herein, phase transitions do not
significantly impact thermal conductivity, and are not likely to significantly improve ther-
moelectric performance. Furthermore, the complicated effects that phase transitions
may have on material properties measurements can make the interpretation of these
measurements difficult in general (i.e. beyond thermal properties). Thus, caution is
advised in the characterization of thermoelectric properties (and zT ) when phase trans-
formations are present. This includes temperature dependent solubility, as in dynamic
doping. These effects should also be considered as other materials, like electrode mate-
rials in batteries, are characterized as they undergo phase transformations.

Nevertheless, the work put forth to characterize anharmonicity and the nature of vi-
brations in complex crystals has far reaching implications for thermoelectrics and other
disciplines of solid-state science. The connection of the thermodynamic Grüneisen pa-
rameter to thermal conductivity and phonon scattering is directly impacted by these
results connecting the harmonic (e.g. elastic) properties of solids to anharmonic (e.g.
thermal expansion) properties. Understanding and interpreting the vibrational behav-
iors of solids is essential to developing higher level transport models in ionics, as recent
results suggest. Furthermore, engineering design principles based on a diffuson theory
of thermal transport may lead to novel strategies for controlling thermal conductivity.
As a "minimum" thermal conductivity, the model of diffuson transport developed herein
provides a benchmark for experimental observations and may thus be used to assess the
nature of ultralow thermal conductivity in some solids. Rethinking anharmonicity and
the nature of vibrations in solids may also lead to insights regarding high temperature
superconductors, which have yet to be well-explained.

At the device level, chemical stability and resistance to fracture are crucial to engineering
design and implementation. Here, it is demonstrated that it is, in fact, a critical voltage
that determines the decomposition condition of the material, which is not the same as
"high current density" as is prevalently discussed. This understanding leads directly to
design strategies for the stable operation of mixed conducting thermoelectric materials.
The systematic trouble of decomposition in halide perovskite solar cells is governed by
the same underlying thermodynamic conditions. Thus, the work presented here may
also guide the development of stable devices in that field. The generality of this thermo-
dynamics approach is likely beneficial to the characterization of phenomena in battery
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materials, such as characterizing the formation of lithium dendrites.

Lastly, energetic considerations of fracture suggest that ideal strength calculations from
first principles can capture the essential physics of fracture. From these calculations,
the magnitude of experimental fracture toughness values can be obtained. The present
results are more indicative of the experimental lower limit of fracture toughness, which
is useful as an engineering design parameter for technological devices, but the method is
easily adapted to explore the complexities of fracture at the atomic scale. The importance
of defect structures in many materials, especially for structural applications, makes this
method particularly useful for exploratory computational materials design.

As far as future directions are concerned, there are many straight-forward progressions
alluded to within this text. An accurate characterization of the phase diagram and na-
ture of the phase transition in SnSe, for example. Also, consideration of the spectral
(time-dependence) of heat capacity through phase transitions using molecular dynamics
simulations (for example) may provide a more quantitative description of the impacts of
phase transitions on thermal properties measurements. These investigations would be
useful for latent heat storage materials as well. This work on diffusons in solids has
already motivated inelastic neutron scattering studies of large unit cell crystals to look
for signatures of diffuson character in vibrational measurements. Certainly this is a
completely new area of exploration for crystalline solids and both theoretical and exper-
imental work to understand the effects of crystalline disorder on vibrational character
are required. In what limit is phonon scattering theory still applicable? Furthermore,
the mechanical concept of phonon (vibrational) pressure as it is related to anharmonicity
in solids, there remain many questions as to how this ties into current theories of an-
harmonicity, as well as how it may be used to explain transport behavior in solids (like
phonon and diffuson thermal transport, or even ionic conduction). Also, the marriage of
the concept of phonon pressure with ideal strength calculations suggests there may be
a mechanical description of melting. The theory and methods developed to characterize
decomposition in mixed conductors is largely predictive of trends and not magnitudes
presently. The characterization (experimental and/or computational) of the thermody-
namic parameters needed to assess stability in these materials, and their temperature
dependence, will be hugely beneficial to the design of thermoelectric devices, solar cells
and others.

The culmination of work developed here is intended as a stepping stone along the path to
greater technological and humanitarian achievements. Its purpose to answer immediate
questions and to inspire curiosities among the thermoelectrics community is hoped to
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have a broader impact on solid-state materials research through the inherent transfer-
ence of thermodynamic principles and these microscopic insights to other energy mate-
rials.
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Appendix A

Extracting the Sommerfeld Coefficient

The dependence of the value of the Sommerfeld coefficient is dependent on the linear fit
region that is chosen (Fig. A.1). Here, the fit region starts from the first data point (at 4.0
K) through data points at progressively higher temperatures (plotted here by their squared
value). At first, the R-squared value is low due to the small number of data points that
are sampled, but the value of γe remains consistent up until T 2 ∼ 200 K at which point the
estimate of γe decreases due to deviations from the T 3 law as the density of states rises
faster than the Debye model predicts. The R-squared value remains high, however, such
that careful attention should be paid in how the fit region is selected. The dashed line
(γe = 1.94 mJ mol−1K−2) was determined by averaging the individual γe values determined
by the different fit regions, excluding the first two points (having low R-squared values)
and the last two points (which are clearly decreasing due to deviations from linearity).
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Figure A.1: Regression analysis to determine the Sommerfeld coefficient. The dependence
of the value of the Sommerfeld coefficient in relation to how large the linear fit region is. Here,
the fit region starts from the first data point (at 4.0 K) through data points at progressively higher
temperatures (plotted here by their squared value). At first, the R-squared value is low due to the
small number of data points that are sampled, but the value of γe remains consistent up until
T 2 ∼ 200 K at which point the estimate of γe decreases due to deviations from the T 3 law as the
density of states rises faster than the Debye model predicts. The R-squared value remains high,
however, such that careful attention should be paid in how the fit region is selected. The dashed
line (γe = 1.94 mJ mol−1K−2) was determined by averaging the individual γe values determined by
the different fit regions, excluding the first two points (having low R-squared values) and the last
two points (which are clearly decreasing due to deviations from linearity).
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Appendix B

Sommerfeld Coefficient of Mn2AlB2 and Fe2AlB2

Figure B.1: Estimation of the Sommerfeld coefficient in MAB phases. The Sommerfeld coef-
ficient γe of the MAB phases Mn2AlB2 (upper curve) and Fe2AlB2 (lower curve) can be estimated
assuming an arbitrary polynomial to the low temperature CP data. Since magnetic contributions
at low temperature do not have the same temperature dependence as the electronic contriubiton
(i.e. linear with T ), then a plot of CP/T vs T 2 is still expected to give a reasonable estimate of γe
as the intercept of the y-axis.
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Appendix C

Atomic Diffusion Times

Table C.1: Parameters used to calculate the relative atomic diffusion times presented in Fig. 4.3.
Number density of atoms was approximated from crystallographic information available through
the ICSD database. Diffusion time is defined as ta = D−1

a n−2/3.

Reference Diffusion
of:

In the sys-
tem:

Atomic dif-
fusion coef-
ficient, Da
(cm2 s−1)

Density
of atomic
sites, n
(m−3)

Temperature
(K)

Diffusion
time, ta (s)

[341] Cu Cu2Se 5.50E-04 6.02E+28 673 1.20E-12
[342] Ag PbSe 1.26E-05 3.52E+28 1000 7.40E-11
[343] Ag Cu2S 1.22E-06 6.97E+28 400 4.90E-10
[342] Na PbSe 5.35E-08 3.52E+28 1000 1.70E-08
[344] Co CoO 9.70E-10 1.03E+29 1250 4.70E-07
[342] Sb PbTe 8.19E-10 2.96E+28 1000 1.30E-06
[342] Na PbTe 3.85E-11 2.96E+28 1000 2.70E-05
[342] Sb PbSe 2.70E-11 3.52E+28 1000 3.40E-05
[343] Ag Cu2Te 9.54E-12 5.58E+28 400 7.20E-05
[345] Ge PbTe 1.30E-11 2.96E+28 893 8.00E-05
[346] O UO2 1.00E-12 7.34E+28 1000 5.70E-04
[347] Sr CaMgSi2O6

(diopside)
3.89E-14 1.09E+29 1400 1.10E-02

[348] Ni NiO 2.80E-15 1.10E+29 1000 1.60E-01
[349] Al Si 3.40E-17 5.00E+28 1000 2.20E+01
[350] Pb CaTiSiO5

(titanite)
7.74E-18 8.65E+28 1000 6.60E+01

[351] Se Zr60Cu24Al11Ni5 1.20E-20 3.25E+28 673 8.20E+04
[352] C Steel 6.57E-24 8.20E+28 300 8.10E+07
[353] C C (diamond) 1.11E-27 1.76E+29 1200 2.90E+11
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Appendix D

Scaling of Thermal Diffusivity

Thermal diffusivities for InSb1.04 [15], Cu2Se [12], AgCrSe2 [18], and SnSe [17] were either
taken directly from reported values of thermal diffusivity, or calculated from the reported
thermal conductivity using the heat capacity and density provided by the authors. The
thermal diffusivity of Zn4Sb3 was measured using the laser flash method in this study.
In order to show the universality of the decrease in thermal diffusivity through the phase
transition, and subsequent increase above the maximum phase transition temperature,
the thermal diffusivity was scaled by the magnitude of this step-wise increase (∆Dstep)
as:

Dscaled =
D −Dmin

∆Dstep
, (D.0.1)

where Dmin is the lowest value of thermal diffusivity. Similarly, the temperature values
were scaled so that the phase transition regions are comparable. This relies on either
reported temperature ranges of the phase transition or knowledge of the phase diagram.
Then,

Tscaled =
T − TPT,max

TPT,max − TPT,min
, (D.0.2)

where TPT,max is approximately the maximum temperature of the phase transition and
TPT,min is considered to be the onset temperature of the phase transition.
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Appendix E

Phonon Pressure Calculations

E.0.1 Phonon Pressure Model

The sum of stresses acting on an atom due to a phonon mode (having frequency ω, wave
vector k and branch index s) is zero at equilibrium. Thus, analogous to Eq. 5.5, the
vibrational (kinetic) stress of this phonon mode is compensated by its corresponding
elastic stress. Explicitly, the total stress σks in the n̂-direction acting on atom α and
pertaining to the ks vibrational mode is derived here to be

σks =
}ωks

Va
fBE(ωks, T )|êks · n̂|2 − ρv2

p|êks · n̂|εks = 0. (E.0.1)

Here, the vibrational stress exerted by an atom on a plane (whose normal direction is
defined by the n̂ unit vector) by a vibration (having the unit eigenvector êks that deter-
mines the motion of atom α) is proportional to the kinetic energy of each phonon mode
(}ωks/2) as well as the number of phonons that are excited according to the Bose-Einstein
distribution,

fBE (ωks, T ) =
1

exp
(
}ωks
kBT

)
− 1

, (E.0.2)

and Va is the atomic volume. This relation can be found from momentum flux consider-
ations analogous to an ideal gas (Fig. 5.2).

The elastic stress acting against (compensating) the vibrational stress is defined by the
elastic modulus (ρv2

p) governing the vibration, where ρ is the mass density of the solid
and vp = ωks/||k|| is the magnitude of the phase velocity of the phonon. Then, the strain
response due to the ks vibrational mode, εks, is also in the n̂ direction, and achieves
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equilibrium when

εks =
}ωks

Va

fBE (ωks, T ) |êks · n̂|
ρv2

p
. (E.0.3)

Thermal expansion in the n̂-direction due to the ks vibrational mode is found using Eq.
E.0.1 and the thermodynamic relation(

∂εks
∂T

)
σks

= −(∂σks/∂T )εks
(∂σks/∂εks)T

(E.0.4)

and the total thermal expansion in the n̂-direction is found by summing over all vibra-
tional modes, (

∂εij
∂T

)
σ

=
∑
k,s

(
∂εks
∂T

)
σks

. (E.0.5)

It should be noted that σ and ε considered throughout Eqs. E.0.1 to E.0.5 are tensors
(σij , εij), the elements of which are defined by the unit vector n̂. When n̂ points only in the
x-, y-, or z-direction, Eq. E.0.5 corresponds to the linear thermal expansion coefficient
αL in that direction. The volumetric thermal expansion coefficient is the summation of
the three linear thermal expansions, or in the case of materials with cubic symmetry like
PbTe, α = 3αL. The above derivation is written explicitly for materials with one atom per
primitive unit cell, but is easily generalized to many-atom unit cells by considering the
partial pressures contributed by each atom.

The Grüneisen parameter can be calculated from the volumetric thermal expansion coef-
ficient according to Eq. 5.6 and can be used to renormalize the frequencies ωks within the
single Grüneisen parameter approximation (i.e. all vibrational modes have the same γi).
This process can be done iteratively with temperature and, thus, phenomenologically ac-
counts for the gentle increase in the thermal expansion coefficient at high temperatures
(as shown in Fig. 5.3).

The "harmonic Grüneisen parameter" used in Fig. 5.4 did not consider any renormaliza-
tion of vibrational frequencies and was calculated using Eqs. E.0.1, E.0.4 and E.0.5 in
the T →∞ limit.

A simplified analytic description of thermal expansion can also be derived from the con-
cept of vibrational pressure (Eq. 5.7). Here, an approximation for the frequency distri-
bution of vibrational modes must be made, as well as the vibration direction. The Debye
model of phonons as a dispersive continuum is often used to approximate the distribution
of vibrational modes in solids and is applicable here. In the isotropic approximation the
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elastic properties of the solid are independent of direction and the atoms vibrate equally
in all directions (i.e. the average incidence cosine |êks · n̂| is 1/2). Making use of these
approximations, the linear thermal expansion coefficient αL can be written as

αL ≈
3kB

4π2ρv5
s

ˆ ωD

0
ω2

(
}ω
kBT

)2 exp
(

}ω
kBT

)
(

exp
(

}ω
kBT

)
− 1
)2dω, (E.0.6)

where ρ is the density (kg m−3), vs is the average speed of sound (m s−1), and ωD =(
6π2n

)1/3
vs is the Debye frequency, which uses vs and the number density of atoms n

(atoms m−3) to approximate the maximum frequency of vibration in the solid.

E.0.2 Density Functional Theory Calculations

Harmonic eigenmodes (phonons) and corresponding mode Grüneisen parameters γi were
found using density function theory methods. The compounds shown in Fig. 5.4a were
previously reported [214]. Additional calculations were undertaken to calculate ther-
modynamically averaged Grüneisen parameter for compounds with varied vt/vl ratios as
shown in Fig. 5.4b. The isotropically averaged speed of sounds (vt and vl) were calcu-
lated using the christoffel code.[354] The elastic modulus tensor input for the code was
calculated from the Density Functional Perturbation Theory (DFPT) [355, 356] capabil-
ities implemented in the VASP code.[357] We used the PBEsol [358] formulation of the
exchange–correlation energy functional derived under a generalized-gradient approxima-
tion (GGA).[359] Plane-wave basis sets were truncated at an energy cutoff of 500 eV, and
a Γ- centered k-point mesh with a density of ∼8000 k-points per reciprocal atom (KPPRA)
was used. The electronic degrees of freedom in the self-consistent loop were converged to
10−8 eV. All structures were relaxed with respect to cell vectors and their internal degrees
of freedom until forces on all atoms were less than 0.1 eV nm−1. "DFT Grüneisen pa-
rameters" were found by thermodynamically averaging the mode Grüneisen parameters
γi in the high temperature limit such that they are weighted equally at all frequencies.
The mode Grüneisen parameters were calculated using a finite difference method as im-
plemented in Phonopy.[208] For this, the phonon calculations of the compounds were
performed on structures where the cell parameters were strained by +/- 0.02%.
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Appendix F

Critical Chemical Potential

In two phase regions (e.g. A+AB or B+AB) the atomic chemical potentials are fixed (con-
stant) by Gibbs phase rule. However the chemical potential changes continuously across
the single phase region (green dashed curve in Fig. F.1). As the sample made with some
initial off-stoichiometry (grey point in the AB single phase region) is subjected to pro-
gressively higher electric fields, the composition (as well as local chemical potential) also
changes across the sample. The critical point corresponds to when the material has
reached its maximimum (or minimum) solubility and the chemical potential inside the
sample is equivalent to the chemical potential of the adjacent phase, shown here as the
case when the chemical potential of atom A in compound AB is equivalent to the chemical
potential of pure A.
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Figure F.1: The connection of critical chemical potential to composition. In two phase
regions (e.g. A+AB) the atomic chemical potentials are fixed (constant), however the chemical
potential changes continuously across the single phase region (green dashed curve). The sample
made with some initial off-stoichiometry (grey point in the AB single phase region) is subjected to
progressively higher electric fields, causing the composition (as well as local chemical potential)
to change across the sample. The critical point corresponds to when the material has reached its
maximimum (or minimum) solubility and the chemical potential inside the sample is equivalent to
the chemical potential of the adjacent phase (shown here as the case when the chemical potential
of atom A in compound AB is equivalent to the chemical potential of pure A).
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Appendix G

Measurement of Critical Voltage in MIECs

G.0.1 Overview

The detailed preparation process of the Cu-based TEMIECs used in the present study can
be found elsewhere [271]. The experimental work of this particular project was headed
by Pengfei Qiu.

The experimental parameter, Vc, was ascertained by monitoring the electronic properties
(e.g. electrical resistance R and Seebeck coefficient S) of the material after applying dif-
ferent electric currents or temperature gradients. Because the TE properties of the MIEC,
especially the electrical resistance R and (electronic) Seebeck coefficient S, are very sen-
sitive to the chemical composition, by monitoring the variation of the relative electrical
resistance (R/R0, where R0 is the initial electrical resistance) or relative Seebeck coeffi-
cient (S/S0, where S0 is the initial Seebeck coefficient) under different current densities,
the critical Vc can be determined. The critical current density, Jc, corresponds to the
point when R/R0 (or S/S0) begins to decrease, is shown in Fig. 7.3a.

In the isothermal case, the chemical potential of Cu atoms is determined by the voltage
on the sample generated by the electric current (see Eq. 7.5), which is determined exper-
imentally as V = J L

σ , where J is the applied electric current density, and σ and L are the
electrical conductivity and effective length of the MIEC, respectively. In the evaluation of
Vc, the temperature is set 750 K. The length of the measured sample is 10 mm. The typi-
cal 4-point electrical conductivity at the experimental temperature is used for resistance
measurement.

In the non-isothermal case and Tanode > Tcathode (Eq. 7.6), the electrical potential and
temperature gradient work together to drive atom migration to the cathode. In this case,
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the Cu metal deposition will occur at the superionic-phase/normal-phase interface if
Tcathode is lower than the superionic phase transition temperature of the MIEC; or, at
the cathode if Tcathode is above the superionic phase transition temperature. When the
relative fluxes are opposed (Tcathode is the hot side), Cu metal deposits at the cathode so
long as Tcathode is above the superionic phase transition temperature. This was accounted
for in the effective length, L, used to calculate Vc. In the evaluation of Vc,same, the cathode
temperature Tcathode was fixed at 300 K, but |∆T | was calculated relative to the superionic
phase transition temperature of Cu1.97S (≈ 350 K). The anode temperatures, Tanode, were
473 K, 523 K, 573 K, 623 K, and 673 K, respectively. To determine Vc,opposite, Tanode was
fixed at 300 K and Tcathode was set to 473 K, 523, 573, 623 K, and 673 K, respectively.
The length of the measured sample is 6 mm.

G.0.2 Segmented Leg Construction

The Jc and Vleg,c values for a n = 3 segmented Cu1.97S leg (total length is Lleg = 10 mm)
are experimentally obtained. The leg is made by bonding three Lseg ≈ 3.3 mm pieces
together by using conductive carbon paste as the Cu-atom blocking layer. The data of
this three-segment Cu1.97S leg are compared with those of the unsegmented Cu1.97S leg
(Lleg = L = 10 mm). Fig. 4d shows the relative Seebeck coefficient variation S/S0 values
for a three-segment Cu1.97S leg with Lseg = 2 mm, Tanode = 673 K, and Tcathode = 300
K. The leg was fabricated in the same manner previously described. The data for the
unsegmented Cu1.97S leg (Lleg = L = 6 mm) is included for comparison.

G.0.3 Isothermal Condition

The schematic of the critical electric potential difference measurement apparatus in
isothermal case is shown in Figure 7.4. Two nickel blocks (10 × 5 mm3) are used as
the electrodes to conduct the electric current flowing through the measured samples.
These high thermal-conductive nickel blocks can also weaken the temperature variation
on the sample caused by the Peltier effect when stressing current on the sample. Two Pt
wires are pasted on the sample to record the potential variation induced by the DC cur-
rent. The electrodes, sample, and Pt wires are packaged into the furnace chamber of the
Netzsch DIL 402C equipment. All measurements are carried out in static Ar atmosphere.

In order to simplify the experiments, we use nickel blocks as Cu ion blocking electrodes.
The external electric field is generated by drawing a constant current across the sam-
ple. The magnitude of the build-up electric potential difference along the sample can
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be adjusted via tuning the value of current density. In order to sufficiently polarize the
sample by diffusion of Cu atoms, the duration for each current pulse is 10 minutes.
After switching off the current, we wait for 10 minutes to let the Cu atoms sufficiently
diffuse back and reach again equilibrium. Then, the electrical resistance R is measured
by using a 4-point method and a small DC current. The measured resistance R is then
compared with the initial value R0 before the next current pulse. If R is unchanged, the
current density J is enhanced to further raise the electric potential difference across the
sample, followed by repeating the above measurement processes. In this way, the criti-
cal current density and critical electric potential difference corresponding to the onset of
Cu-metal deposition can be identified as the case when R shows an abrupt decrease (see
Figure 7.5a). Because we use a 4-point resistance measurement, the electric potential
difference reported here does not include any potential drop across the electrodes where
the Cu-metal deposition may or may not occur. Thus even if there is an over-potential
drop across the electrodes to deposit Cu this potential drop is not included in the electric
potential difference measured here. Take Cu1.97S as an example, Figure 7.5b shows the
measurement results at 750 K.

G.0.4 Temperature Gradient Condition

The measured sample is located between a Cu block and a heater inside a nickel block
(Fig. 7.7). Good thermal contact is maintained at the interfaces using one compression
spring. The Cu block is used as the cold side and its temperature is controlled by the
circulating water. A program based on LabView software is used to control the input
power to the heater. Two Pt wires are pasted on the sample near the hot end to record
the Seebeck coefficient variation (S/S0) induced by the temperature gradient and the DC
current. The measurement is conducted inside a chamber that is filled with argon. This
apparatus allows for simultaneous measurement of electric potential and temperature
and application of current of up to 2 A. The length of the measured sample is 6 mm.

When the temperature at the hot side is raised to the specified value, we wait for two
hours to let the sample reach the stationary state. After the initial Seebeck coefficient
S0 (= V0/∆T , where V0 and ∆T are the electropotental and the temperature difference
between the two Pt wires, respectively) is recorded, a constant current is stressed on
the sample. In order to sufficiently polarize the sample by diffusion of Cu atoms, the
duration for each time current stress is 10 minutes. After switching off the current,
we wait for 10 minutes to let the Cu atoms sufficiently diffuse back and reach again
equilibrium. Then, the Seebeck coefficient S is recorded again and compared with the
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initial value S0 before the next time current test. If S is unchanged, the current density J
is increased to further raise the electric potential difference across the sample, followed
by repeating the above measurement processes. In this way, the critical current density
corresponding to the onset of Cu-metal deposition can be identified as the case when
S shows an abrupt decrease (see Figure 7.7b). The critical electric potential difference
can then be calculated. Similar with the above measurements in isothermal case, the
over-potential drop across the electrodes is also not included here.
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Appendix H

Estimation of Fracture Energy

In some cases the DFT calculations did not consider the extreme strains needed for the
stress to return to zero. In these cases, a linear extrapolation was utilized (e.g. Fig. H.1).
These extrapolations introduce a degree of uncertainty into the estimation of the frac-
ture energy G, but are not expected to affect the conclusions drawn from the calculated
fracture toughness.
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Figure H.1: Uncertainty in fracture energy estimations. The fracture energy was sometimes
estimated from extrapolations of the ideal strength curves. In all cases, a linear regression was
utilized. Although this introduces some subjectivity to the process, it is unlikely to affect the
estimate of G by more than a few percent and certainly not more than a factor of 2. As fracture
toughness goes as

√
G, small uncertainties in G have negligible consequences for the conclusions

drawn from the resulting calculation of fracture toughness.
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Appendix I

Ideal Strength Calculations

Ideal strength calculations were undertaken for TiC and TiN using the following proce-
dure. All density functional theory (DFT) calculations were performed by the Vienna ab
initio Simulation Package (VASP). The Perdew-Burke-Ernzerhof (PBE) exchange-correlation
functional with the projector augmented wave (PAW) method was used to account for the
core-valence interactions [360, 361, 362]. A plane wave cutoff energy of 500 eV gives good
convergence for the total energies. The convergence criteria were set to 1×10−6 eV energy
difference for solving the electronic wave function and 1 × 10−2 eV/Å force for geometry
optimization. All calculations used the -centered Monkhorst-Pack scheme with a fine
resolution of 2π × 1/40 Å−1 in the k-point reciprocal space sampling. The detailed quasi-
static mechanical loading setup of TiC and TiN is similar with our previous calculations
on thermoelectric materials [311, 53, 309].

We calculated the surface energy, γs, from the following formula [363, 364],

γs =
Eslab −N · Ebulk

2A
, (I.0.1)

where Eslab is the total energy of surface slab obtained from density functional theory
calculations, N is the number of atoms in the surface slab, Ebulk is the bulk energy
per atom, and A is the surface area. In all the slab calculations, the slab direction is
surrounded by a vacuum region of 10 Å to decouple the slabs. All the surface atoms are
fully relaxed to optimize the surface structure. The calculated slab energies for CoSb3,
TiNiSn, PbTe, TiC, and TiN surfaces are listed in Table 8.2.
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