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ABSTRACT

Essays on Revenue Management

Mustafa Akan

This thesis encompasses the work on bid-price controls for network revenue manage-

ment and a dynamic model of revenue management with strategic consumers. The �rst

line of research studies the circumstances under which bid-price controls are optimal or

near optimal with minimal assumptions on the network topology and the stochastic struc-

ture of demand. In this general setting, in a discrete time model, I propose several novel

bid-price control mechanisms and study their properties, proving that optimal bid prices

form a martingale. To explore the martingale property further, I also consider a continu-

ous time, rate-based model of network revenue management and show how an "-optimal

bid-price control and the corresponding bookings can be characterized as a solution to

a Forward-Backward Stochastic Di¤erential Equation (FBSDE). The analysis provides a

new methodological approach to study revenue management problems by de�ning them

as stochastic control problems and deriving the associated dual stochastic control prob-

lems. In the important special case of continuous information, machinery of FBSDE�s and

Ito calculus can be used to solve the network revenue management problem. Using the
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FBSDE connection, Malliavin calculus and Monte Carlo methods for solving FBSDE�s

can be utilized to compute near optimal bid prices.

The second line of research incorporates the strategic consumer behavior in revenue

management. I consider a dynamic model of revenue management with strategic con-

sumers, where unlike in the classic revenue management literature, demand learning is

the underlying process that leads to arrivals. In this setting, consumers learn their true

valuations sequentially and a monopolist system manager tries to maximize her pro�ts by

sequentially screening the consumers. I identify the conditions under which the system

manager can achieve the �rst-best solution. If these conditions are not satis�ed, then the

optimal mechanism is a menu of expiring refund contracts.
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CHAPTER 1

Bid-Price Controls for Network Revenue Management (joint

with Bar¬̧s Ata)

The de�ning feature of network revenue management is that the products being sold

consume the capacities of multiple resources. In this complex setting, bid-price controls

represent a popular and intuitively appealing approach to quantity-based revenue man-

agement. Such a control mechanism associates a threshold price (called a bid price) with

each resource dynamically over time, and a booking request is accepted if the following

two conditions are met: the remaining capacities of the various resources are adequate to

meet the request; and the revenue generated by accepting the request exceeds the sum of

the bid prices associated with the resources consumed. Bid-price controls are motivated

by the price interpretation of optimal dual variables in deterministic linear programming,

and a bid price is often described as the "opportunity cost" of consuming a resource�s

remaining capacity; see for example [10].

Bid-price controls are now widely used in practice, but their justi�cation remains

incomplete. Chapter 3 of [60] summarizes the literature of network revenue management

through roughly 2003, including a thorough discussion of bid-price control mechanisms,

which began with [58] and [65]; also see [30] for an elaborate survey. Bid-price controls

continue to attract the attention of university and industry researchers, but we are not

aware of any recent work that bears upon the issues discussed in this paper. The initial
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impetus for our research was a comment by Robert Phillips several years ago, conjecturing

that optimal bid prices form a martingale. His conjecture was advanced in the context of

ongoing discussions with colleagues in the airline industry, some of whom asserted that

the bid prices associated with capacity of a �ight leg tends to increase as the departure

date approaches, while others made the reverse claim.

An obvious impediment to proving this conjecture is the negative result by [59], who

showed by example that an optimal bid-price control mechanism need not exist. The

authors produced a 2-period counter example in which the optimal sequence of accept-

reject decisions cannot be achieved by means of the speci�c bid-price control mechanism

they propose. In this paper, we identify the circumstances under which bid-price controls

are optimal or near optimal. In particular, we report encouraging results regarding the

optimality properties of bid-price controls. These results are proved without making

any assumptions on the stochastic structure of demand; our model allows non-stationary

demands with an arbitrary dependence structure, including both inter-temporal and cross-

product dependencies which enables us to capture demand substitution across products

and over time.

As we shall see in Section 1.1, the controls in network revenue management problem (P)

are adapted and use all the information available at the time of decision making. Hence,

if we require bid prices to be predictable, that is, bid prices can depend on information

available only up to a point before the booking decisions are being made, there will be

an optimality gap in general. In other words, the bookings resulting from a predictable

bid-price control may not be optimal for the network revenue management problem in

general. Therefore, we �rst adopt a generous de�nition of bid-price controls and allow the
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policy parameters to be adapted, i.e. they can depend on all the information available at

the time of decision making. In this context, we identify a class of adapted generalized

bid-price controls, and show that there does exist an optimal control within that class, cf.

Theorem 1. Moreover, there exists an optimal control within that class such that the bid

prices form a martingale, cf. Theorem 2.

In the course of establishing Theorem 1, we see that bid-price controls implemented in

the ordinary sense, cf. [60], are not optimal in general even if they are adapted. As can be

seen from our formulation (P), cf. Section 1.1, the network revenue management problem

is a linear program and hence, its objective is piecewise linear and concave in the vector

of remaining capacities. Intuitively, the basic idea behind bid-price controls is that they

capture the displacement cost or the opportunity cost of capacity associated with booking

decisions. Taking a dynamic programming point of view, the system manager wishes

to assess how the value-to-go function changes as she makes booking decisions at each

decision point. If the value-to-go function was a¢ ne, then the bid-pricing approach in the

ordinary sense would work. However, at each decision point, the value-to-go function is a

piecewise linear and concave function because the network revenue management problem

is a linear program. Therefore, if the current capacity and remaining capacity after each

booking decision are on the same facet of the value-to-go function, then the bid-pricing

approach in the ordinary sense would work, but problems arise if they are on di¤erent

facets. Moreover, if the two capacity vectors lie on an edge, then the gradient of the

value-to-go function is not well de�ned. In these cases, it is not clear how to de�ne and

implement bid-price controls. Thus, the bid-prices implemented in the ordinary sense

are not optimal in general even if they can depend on all the information available at
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the time of decision making. Nonetheless, we show in Theorem 1 that using bid-price in

conjunction with capacity usage limits gives rise to optimal bookings. The capacity usage

limit processes also address the concerns raised by [65] that without any explicit booking

limits, the bid-price control mechanisms would book more than optimal requests in case

of a burst in demand. Such capacity usage limits are typically used in practice as part

of bid-price systems for network revenue management in order to handle unanticipated

demand surges, cf. [49].

Consider the usual case where the incremental information arriving during a small time

window is also small. Then we expect intuitively that the extra latitude of adaptedness we

allow in formulating and applying bid-prices is not very signi�cant so that the predictable

version of the bid-price control should be near optimal as the updating frequency of the

policy parameters increases. To explore this, we consider predictable generalized bid-price

controls in Section 1.3, whose parameters at a decision point are required to depend only

on the information available at a point strictly before decision making. While predictable

bid-price controls are sub-optimal in general, we construct a near-optimal one in Section

1.3 under mild assumptions. To be speci�c, we show that the expected revenue resulting

from the proposed predictable bid-price control converges to the objective function value

of the network revenue management problem as the updating frequency of the bid-price

and the capacity usage limits increases. Moreover, the predictable bid prices we construct

form a martingale, too. The near optimality of the predictable bid-price controls shows

their robustness to small information distortions. In the same vein, martingale property

is also robust to informational distortions and still holds for predictable bid-prices.
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Bid-price controls are practically appealing because they are easy to implement. The

generalized bid-price controls we propose decompose the complex network revenue man-

agement problem across time. Nonetheless, they do not decompose decision making across

products. In particular, one needs to solve a linear program at each decision point. For-

tunately, we prove that there exists a bid-price control which uses only the bid prices

associated with various resources and decomposes decision making across products. Bet-

ter yet, we show that there exists a predictable such bid-price control which is near optimal

in the usual case when periods are small provided that either demand during each period

is small or the incremental information arriving during each period is small. The bid-

prices form a martingale in this case, too. Moreover, the bid-prices used at each decision

point are last updated in the previous period re�ecting the way bid-prices are used in

practice. Moreover, the bid-price control we propose can be viewed as a perturbation of

those implemented in the ordinary sense. In particular, given bid prices, the two booking

mechanisms result in the same bookings except when the fare of a product is only slightly

larger than the sum of the bid prices of the resources that product uses, cf. (1.4). In that

case, the bid-price control we propose books only a fraction of demand while the ordinary

implementation suggests booking all demand.

In establishing the near optimality of the latter bid-price control, we consider an as-

ymptotic regime where the number of periods grow to in�nity and period lengths tend to

zero, while the planning horizon [0; T ] and the underlying probabilistic primitives (cumula-

tive demand and fare processes) remain unchanged. We believe preserving the uncertainty

in the limit is necessary to maintain the key trade-o¤s in the network revenue manage-

ment problem and the novel feature of this asymptotic regime is that it does preserve
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the stochastic nature of demand unlike the asymptotic regimes considered previously in

the literature. Our analysis also provides bounds on the optimality gap associated with

predictable bid-price control we propose, which do vanish in this asymptotic regime, cf.

Corollaries 10 and 12.

To elaborate further on the practical signi�cance these results, note that anyone using

bid-price controls in practice will update bid-prices less often than required for exact

optimality. Thus, if there existed an optimal bid-price control in the ordinary sense, the

practical signi�cance of this would have been to provide rough assurance that by refreshing

policy parameters often enough, one could approach optimality. We believe that our

results do equally well in that regard. Moreover, our results provide the additional insight

that to assure good performance, bid-prices should either be used in conjunction with

capacity usage limits, cf. Theorems 1 and 5, or one must take additional care (if one uses

only bid prices in decision making) when the fare of a product only slightly exceeds the

sum of the bid prices of the resources it uses, in which case one should not book all the

demand contrary to the ordinary implementation of the bid-price controls.

Finally, our paper is the �rst to establish the martingale property of (near) optimal bid

prices. The martingale property provides us with the understanding that if the system

manager makes the optimal accept/reject decisions, a decrease in the option value of

capacity should be balanced by the increase in the opportunity cost of capacity. The

martingale representation of optimal bid-prices also leads to a promising connection to the

literature on the pricing of American options where one tries to pick the best martingale

to optimize a certain objective. This connection is more transparent if the capacity of

a resource in the network revenue management problem is thought of as an option that
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could be exercised in each period. The martingale property of (near) optimal bid prices

is further explored in Chapter 2 using a continuous-time rate based model of network

revenue management.

1.1. The model

We consider a network revenue management model consisting of K resources and

J products. In an airline setting, a resource corresponds to a �ight leg and a product

corresponds to a particular itinerary. A primitive of our model is a K � J non-negative

capacity consumption matrix A, where the entry Akj denotes the amount of resource k

capacity consumed by one unit of product j. There are N periods to the terminal time.

The periods need not have equal length. To be more speci�c, the end of each period

is denoted by tn for n = 1; : : : ; N ; and we let t0 = 0 and tN = T . In each period n,

�rst the demand during that period is realized, then the number of bookings for each

product is determined at time tn so that the capacity constraints are not violated. Then

revenue resulting from the bookings is realized and the capacity vector is updated. The

booking vectors are continuous1 and the fares are set exogenously. The capacity not

utilized until the terminal time has no value. The objective is to determine the optimal

controls (booking decisions) in each period to maximize total expected revenue subject

to capacity constraints.

The evolution of information (or uncertainty) is described by the �ltered complete

probability space (
,F , {Ft : 0 � t � T},P), where Ft denotes the information available

at time t. The system manager observes the evolution of information continuously starting

1That is, we may choose to ful�ll any fraction of demand by allowing the booking vectors to take values
in RJ+. The case with integrality requirements on booking controls can be analyzed using a similar
framework.
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at time t0 = 0, although she exerts control at the end of each period, that is, at times

ftn : n = 1; : : : ; Ng. These decision times are exogenous but the time di¤erence between

the decision times may be arbitrary as well as the number of decision times. To facilitate

the analysis to follow let � = ft1; : : : ; tNg denote the set of decision times where tn also

denotes the end of period n for n = 1; : : : ; N .

The cumulative demand is modelled as a non-decreasing, J-dimensional stochastic

process fD(t) : 0 � t � Tg with �nite mean, adapted to the underlying information

structure {Ft : 0 � t � T}, where Dj(t) denotes the cumulative demand for product j up

to time t. No assumption of the independence of demand across products or across time

is made; indeed, we allow for dependent demand. In our formulation, the system state

at decision time tn is described by a K-dimensional vector x(tn) of remaining capacities;

xk(tn) denotes the remaining capacity of resource k at time tn. The demand observed

by the system manager at time tn is the J-dimensional vector D(tn) � D(tn�1), which

is the demand accumulated since the last decision time tn�1, that is, during period n.

Upon observing demand realization D(tn)�D(tn�1) during period n, the system manager

chooses a J-dimensional vector u(tn) of booking levels, where uj(tn) denotes the booking

level for product j at decision time tn. Given the initial capacity vector x(t0) = C, and

the booking levels u(tn) for n = 1; : : : ; N , the evolution of the system state (the capacity

process) is governed by the following system dynamics equation:

(1.1) x(tn) = x(tn�1)� Au(tn) for n = 1; : : : ; N .

A booking vector u(tn) at decision time tn results in a revenue of f(tn) � u(tn), where

f(tn) is the exogenously set vector of fares at decision time tn. The process of fares is
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a bounded, non-negative, adapted (i.e. f(t) 2 Ft, t 2 [0; T ]) continuous-time stochastic

process, which need not be constant nor stationary, allowing us to model randomness

in product fares and incorporate the time value of money into the analysis2. The fare

process f is continuous-time stochastic process and we are concerned with its value only

at decision times tn for n = 1; : : : ; T . The fare and demand processes can be dependent as

well. Clearly, D, x, u, f are all stochastic processes, but their dependence on the sample

path will be suppressed for notational brevity. The objective is to choose adapted booking

controls u(tn) for n = 1; : : : ; N to maximize total expected revenue subject to feasibility

constraints. That is, choose u(tn), which can depend on all the information Ftn available

at time tn; for n = 1; : : : ; N so as to

Maximize
NX
n=1

E[f(tn) � u(tn)]

subject to

x(t0) = C; (P)

x(tn) = x(tn�1)� Au(tn); n = 1; : : : ; N;

Au(tn) � x(tn�1); n = 1; : : : ; N;

0 � u(tn) � D(tn)�D(tn�1); n = 1; : : : ; N;

where the �rst two constraints describe how capacity evolves over time and the last two

impose the capacity and demand restrictions on booking levels in each period. The

formulation (P) will be referred to as the network revenue management problem, and an

optimal control refers to the set of controls fu(tn) : n = 1; : : : ; Ng that maximizes the

2We allow constant and/or deterministic fares as special cases.
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expected revenues
NX
n=1

E[f(tn) � u(tn)] while satisfying the constraints of (P). We denote

the optimal objective function value (that is, the maximum expected revenues that can

be generated in the network revenue management problem) by P�.

1.2. An Adapted Generalized Bid-Price Control and Its Optimality

In this subsection we introduce a class of adapted bid-price control mechanisms and

show that there exists an optimal bid-price control within that class. We also prove

that the optimal bid-prices form a martingale. The adapted bid-price control we propose

involves the pair of adapted vector valued stochastic processes (�; �); we will suppress the

dependence of � and � on the sample path for notational brevity. We allow �(tn) and

�(tn) to depend on all the information Ftn available at time tn for n = 1; : : : ; N . Each

component of �(tn) is associated with a particular resource and �k(tn) is be interpreted

as the bid price for resource k at time tn for k = 1; : : : ; K. Similarly, �k(tn) is associated

with resource k, and is interpreted as a capacity usage limit on resource k at decision

time tn. The proposed bid-price control is executed as follows: At each decision time tn,

the system manager �rst observes the demand D(tn) �D(tn�1) for period n. Then, she

solves the following linear program denoted by (P(tn)) to determine the booking levels:

Maxu(f(tn)� A
0
�(tn)) � u+ �(Au� �(tn)) � e

subject to(P (tn))

Au � �(tn),

0 � u � D(tn)�D(tn�1),
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where � > 0 is arbitrarily small and e is the K-dimensional vector of ones. This linear

program is lexicographic in the following sense. The system manager �rst sets � = 0

and solves (P(tn)). If there are multiple solutions, then she picks the one that maximizes

the second term in the objective. Ties can be broken arbitrarily. Ideally, the system

manager strives to choose a "maximal" solution that has Au = �(tn). Here, the constraint

Au � �(tn) creates "usage limits" or booking limits on the resources in some sense.

However, these limits di¤er from the booking limits in the literature in the sense that the

latter refers to the limits on the amount we can sell of each product, cf. [49].

Hereafter, we will refer to the process � as the capacity usage limit process and � as

the bid price process. The following theorem establishes the optimality of the adapted

bid-price controls and a constructive proof is provided in Appendix A.1.

Theorem 1. There exists an optimal adapted bid-price control (�; �). That is, the

booking controls u resulting from the adapted bid-price control (�; �) constitute an optimal

solution to the network revenue management problem (P).

Next, we further investigate the structural properties of the bid prices associated with

an optimal adapted bid-price control. The following theorem establishes the martingale

property of optimal adapted bid prices and it is proved in Appendix A.1.

Theorem 2. There exists an optimal adapted bid-price control (�; �) such that the

optimal bid-price process f�(tn) : n = 1; : : : ; Ng is a martingale adapted to (fFtn : n =

1; : : : ; Ng;P).

To elaborate further on the implications of the martingale property of bid-prices,

consider the two e¤ects on the valuation of capacity in the network revenue management
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problem. The �rst e¤ect is that the option value of capacity goes down as we get closer

to the terminal time. The second e¤ect is that the opportunity cost of capacity goes up

as time advances and we sell capacity. Even though it is not obvious which one of these

two e¤ects will dominate over time, the martingale property implies that if the system

manager makes the optimal booking decisions at each time point, then these two e¤ects

will balance each other and the optimal adapted bid-prices, which can be thought as the

opportunity cost of capacity, remains constant in a stochastic sense. In other words, there

is no upward or downward trend for bid prices.

Capacity usage limit process � is essential for the optimality since it ensures that

we follow an optimal trajectory of remaining capacities. The capacity usage limits are

necessary for optimality only if there are multiple solutions to the network revenue man-

agement problem. This suggests that multiplicity of solutions can cause bid prices to be

non-optimal. Indeed, the capacity usage limit process � also addresses the concerns raised

by [65] that without any explicit booking limits, the bid-price control mechanisms would

book more than optimal requests in case of a burst in demand. Such permissible capacity

restrictions are typically used in practice as part of bid-price systems for network revenue

management in order to handle unanticipated demand surges, cf. [49].

The martingale property of optimal bid prices also leads to a notable connection to the

literature on the pricing of American options where one tries to pick the best martingale

to optimize a certain objective. This connection is more transparent if the capacity of

a resource in the network revenue management problem is thought of as an option that

could be exercised in each period. This relationship is further analyzed in the subsequent

section.
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Intuitively, if the amount of information �owing into the system during short period

is small, then the performance of adapted and predictable bid-price controls should be

close to each other. This point is illustrated in the next section by constructing a near

optimal bid-price control where the bid-price and capacity usage limit processes depend

only on the information at a point strictly before decision making.

1.3. Predictable Generalized Bid-Price Controls

In an adapted bid-price control, the bid-price and the capacity usage limit processes are

functions of the information available at the time of decision making. However, anyone

using bid-price controls in practice will update bid prices less often than required for

adaptedness. Thus, it is important from a practical standpoint to study bid prices that

are predictable, that is, they depend only on the information available strictly before

booking decisions.

Recall that the controls in the network revenue management problem (P) are adapted

and use all the information available at the time of decision making. Hence, if we restrict

bid prices to be predictable and use information only up to a point strictly before the

booking decisions are being made, there will be an optimality gap in general. That is, the

booking controls resulting from a predictable bid-price control may not be optimal for the

network revenue management problem (P) in general. Therefore, a natural direction is to

look for the "best" predictable bid-price control. Nevertheless, this a very broad question

as one could come up with a staggeringly complex array of predictable bid-price controls.

Therefore, we take a somewhat di¤erent approach and construct a predictable bid-price

control which is near optimal, cf. Theorem 5.
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To facilitate our analysis in this section, we introduce the parameter3 h > 0 as the

time gap between the last time the bid-price and capacity usage limit vectors are updated

and the time at which the booking decisions are made. To be speci�c, the bid-price

and capacity usage limit vectors to be used at decision time tn can depend only on the

information Ftn�h available at time tn � h for n = 1; : : : ; N . As a preliminary to the

construction of a near optimal predictable bid-price control, we impose further structure

on the information structure {Ft : 0 � t � T} by assuming that it is semi-continuous.

The following de�nition of a semi-continuous information structure is due to [36].

De�nition 3. An information structure {Ft; 0 � t � T} is semi-continuous if Ft =

Ft� for t 2 (0; T ]; where Ft� is the information available just before t. Formally, Ft� is

the information generated by the collection of information sets fFs : s < tg.

To add concreteness to the de�nition of semi-continuous information structures, con-

sider the following familiar demand processes, cf. [36]. First of all, the information

structure generated by the Poisson process is semi-continuous. Likewise, the information

structure generated by renewal processes, functionals of Brownian motion and any rate

based model of demand is semi-continuous. Hence, the demand process in our model can

be any of the above or any other demand process whose natural information structure is

semi-continuous4.

3Our results carry over to the setting where one introduces a collection of parameters fhn : n = 1; : : : ; Ng;
one for each decision time.
4The role played by the semi-continuous information structures in the construction of the near optimal
predictable bid-price scheme is to ensure that all continuous-time martingales adapted to the information
structure are continuous almost surely for any �xed time t 2 [0; T ], cf. [36] and [23]. Notice, however,
that the continuous-time martingales adapted to semi-continuous information structures need not have
continuous sample paths.
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To facilitate our construction of a predictable bid-price control, �x an optimal adapted

bid-price control (�; �), where {�(tn) : n = 1; : : : ; Ng is a martingale, cf. Theorems 1

& 2. A natural approach for constructing a predictable bid-price control is to take the

conditional expectation of (�; �). Thus, for h > 0 and n = 1; : : : ; N de�ne

(1.2) e�h(tn) = E[�(tn) j Ftn�h];

(1.3) e�h(tn) = minfE[�(tn)jFtn�h]; C � n�1X
m=1

e�h(tm)g:
By construction, the bid-price process e�h(tn) and the capacity usage limit process e�h(tn)
are adapted to the information Ftn�h available at time tn � h. The following proposition

establishes the martingale property of the predictable bid-price control (e�h; e�h) for each
h > 0 and is proved in Appendix A.2.

Proposition 4. For h > 0, the predictable bid-price process fe�h(tn) : n = 1; : : : ; Ng
is a martingale adapted to (fFtn�h : n = 1; : : : ; Ng;P).

The execution of the proposed predictable bid-price control is similar to that of an

adapted one, cf. Section 1.2. Namely, at each decision time tn for n = 1; : : : ; N , the
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system manager solves the following linear program to determine the bookings.

max
u
(f(tn)� e�h(tn)A) � u+ �(Au� e�h(tn)) � e

subject to (Ph(tn))

Au � e�h(tn);
0 � u � D(tn)�D(tn�1):

As in the adapted case this linear program is lexicographic and the system manager prefers

a maximal solution. However, the bid-price vector e�h(tn) and the capacity usage limit
vector e�h(tn) used in the linear program Ph(tn) at decision time tn are predictable since

they use information only up to time tn � h. The execution of the predictable bid-price

control (e�h; e�h) using the set of linear programs Ph(tn) results in a feasible control for the
network revenue management problem. (The feasibility of these controls will be shown in

Appendix A.3.) One would also hope that for small values of h, the performance of the

proposed predictable bid-price control is close to that of the optimal adapted bid-price

control. Indeed, the following theorem establishes the near optimality of the predictable

bid-price control (e�h; e�h) constructed as in (1.2) and (1.3).

Theorem 5. The predictable bid-price control (e�h; e�h) de�ned in (1.2)-(1.3) is near
optimal. That is, as h & 0, the expected revenue generated by the bookings resulting

from (e�h; e�h) converges to the expected revenue generated by the optimal adapted bid-price
control (�; �); which, in turn, is equal to the optimal objective function value P� of the

network revenue management problem (P).
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The sequence of controls resulting from the predictable bid-price scheme are also close

to an optimal solution to the network revenue management problem (P) for small values

of h. That is, every cluster point of (e�h; e�h) is an optimal control for the network revenue
management problem (P). Recall that h > 0 is the di¤erence between the last time the

bid-price and the permissible capacity vectors are updated and the time at which they

are actually used. One would hope that for small values of h, the performance of the

proposed predictable bid-price policy is close to that of the optimal adapted bid-price

scheme. Indeed, the following theorem establishes the near optimality of the predictable

bid-price scheme (e�h; e�h) constructed as in (1.2) and (1.3). It also shows that the sequence
of controls resulting from the predictable bid-price scheme are close to an optimal solution

to the network revenue management problem (P) for small values of h.

To be more precise, let Uhn (!) denote the set of optimal solutions to the linear program

Ph(!; tn) for n = 1; : : : ; N and a realization ! 2 
; and let Uh(!) = Uh1 (!)�� � ��UhN(!) for

! 2 
 denote the set of solutions resulting from the predictable bid-price policy (e�h; e�h)
for h > 0. In particular, denote a generic element of Uh(!) by uh(!). That is, for ! 2 
,

h > 0 and uh(!) 2 Uh(!), we have the following representation:

uh(!) = (uh(!; t1); : : : ; u
h(!; tN));

where uh(!; tn) is any optimal solution to (Ph(!; tn)) for n = 1; : : : ; N:

Then we consider the collection of the set of optimal controls fUh(!) : ! 2 
gh>0

resulting from the collection of predictable bid-price policies f(e�h; e�h)gh>0 and identify its
cluster (limit) points. To this end, we next provide a precise de�nition of a cluster point

of the predictable bid-price policies f(e�h; e�h)gh>0.
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De�nition 6. (u(!) : ! 2 
) is a cluster point of the sequence of predictable bid-price

controls f(e�h; e�h)gh>0, if for every ! 2 
, there exists a sequence hm & 0 as m!1 and

uhm(!) 2 Uhm(!) for m � 1 such that

uhm(!)! u(!) as m!1.

For ! 2 
, the set of cluster points u(!) is denoted by U(!).

It is easy to see that U(!) is non-empty for each ! 2 
; and the following theorem

establishes the optimality of every cluster point u(!) 2 U(!) of f(e�h; e�h)gh>0 and is
proved in Appendix A.2.

Theorem 7. The predictable bid-price scheme (e�h; e�h) de�ned in (1.2)-(1.3) is near
optimal. That is, as h& 0 :

a) The expected revenue generated by the bookings resulting from (e�h; e�h) converges to
the expected revenue generated by the optimal adapted bid-price scheme (�; �); which, in

turn, is equal to the objective function value of the network revenue management problem

(P).

b) Every cluster point of (e�h; e�h) is an optimal control for the network revenue man-
agement problem (P).

Theorem 5 sheds light on the signi�cance of information for the performance of the

bid-price controls. In particular, Theorem 5 suggests that in the presence of resource

usage limits (capacity usage limit processes), the non-optimality of the predictable bid-

price controls in general results from the information gap and not from the network e¤ect
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or the large replacement of capacity. The near optimality of the proposed predictable bid-

price control shows the robustness of the bid-price policies to small information distortions.

In the same vein, martingale representation is also robust to informational distortions and

still holds for predictable bid-prices.

1.4. A Class of Simple Predictable Bid-Price Controls

In this section, we introduce a class of simple bid-price controls, which only use bid-

prices associated with various resources for decision making, hence, are easy implement.

Moreover, bid-prices used in each period are updated in the previous period, i.e. they

are predictable. To be more speci�c, the bid-price control we propose involves a bid-price

process �, where � (tn) depends only on the information Ftn�1 available at time tn�1 for

n = 1; : : : ; N , and a parameter " > 0, and is executed as follows: At each decision time

tn, the system manager observes demand D (tn) � D (tn�1) for period n. Then, letting

Aj denote the jth column of the capacity consumption matrix A, she makes the booking

decisions for various products sequentially with respect to the product index j = 1; : : : ; J

as follows:

(1.4) uj(tn) =

8>>>><>>>>:
0 if fj(tn)� �(tn)A

j < 0;

Dj (tn)�Dj (tn�1) if fj(tn)� �(tn)A
j > ";

fj(tn)��(tn)Aj
"

[Dj (tn)�Dj (tn�1)] if 0 � fj(tn)� �(tn)A
j � ";

provided there is enough capacity, i.e. uj(tn)Aj � x (tn�1) �
Pj�1

l=1 ul (tn)A
l. Otherwise,

uj (tn) is scaled down as dictated by the remaining capacity. The reader may feel that the

order in which the booking decisions for various products are made is arbitrary, which is
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Figure 1.1. The bookings as a function of the di¤erence fj(tn)� �(tn)A
j:

indeed the case. As shall seen in the proof of Theorem 9, our results are independent of

this ordering.

The bid-price control we propose can be seen as a perturbation of an ordinary bid-price

control, cf. [60]. In particular, for each product j = 1; : : : ; J , the bookings in (1.4) are the

same as those resulting from an ordinary bid-price control as long as fj(tn)��(tn)Aj does

not fall in the interval (0; "), in which case an ordinary bid-price control would dictate

booking all the demand, i.e. Dj (tn) � Dj (tn�1). In contrast, the bid-price control we

propose books

uj(tn) =
fj(tn)� �(tn)A

j

"
[Dj (tn)�Dj (tn�1)] < Dj (tn)�Dj (tn�1) :

Figure 1.1 displays uj(tn) as a function of the di¤erence fj(tn) � �(tn)A
j. Indeed, the

graph looks more and more like a step function as " tends to zero, which would result

from an ordinary bid-price control.

In what follows, we will view the set of decision points � = ft1; : : : ; tNg as a decision to

be made as well. One can view these decisions as being made hierarchically. The system
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manager �rst chooses the parameter " > 0 and a partition � at time zero, followed by

the bid-prices to be used, which are updated dynamically over time. To be more speci�c,

we are interested in an asymptotic regime where the system manager makes decisions

more and more frequently, i.e. the number of period N tends to in�nity while the period

lengths tend to zero. Nonetheless, the stochastic primitives of the problem and the planing

horizon remain unchanged. We will denote the revenues resulting from the bookings in

(1.4) by Obj(�; ";�) to highlight its dependence on �; " and �. The following de�nition

is needed to state the main result of this section.

De�nition 8. Given a stochastic process fZ (t) : 0 � t � Tg and a partition � =

ft0; t1; : : : ; tNg of [0; T ] with t0 = 0 and tN = T , the pth variation of Z over the partition

�, denoted by Vp (Z;�) ; is de�ned as follows5:

Vp (Z;�) =
NX
n=1

jZ (tn)� Z (tn�1)jp , p � 1.

The quadratic variation essentially captures the volatility of a stochastic process over

time. Next we state the key result of this section, from which Corollaries 10 and 12 follow.

Theorem 9. For " > 0 and any partition � = ft0; t1; : : : ; tNg of [0; T ], there exists a

bid-price process �" such that f�" (tn) : n = 1; : : : ; Ng is a martingale adapted to (fFtn�1 :

n = 1; : : : ; Ng;P) with

0 � �" (tn) � B for n = 1; : : : ; N:

5j�j is the sup norm in RJ :
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Moreover, we have the following bound on the optimality gap:

(1.5) jObj (�"; ";�)� P �j � �"+
C

"
[EVp (�";�)]1=p [EVq (D;�)]1=q ;

for p > 1 and q = p= (p� 1), where B;C and � are constants depending only on the

capacity consumption matrix A, the upper bound F on the fare process and the expected

cumulative demand over the planning horizon.

The bound (1.5) provided in Theorem 9 re�ects two sources of error: The �rst term

�" is a perturbation error, cf. proof of Theorem 9, while the second term is due to the

information gap between predictable versus adapted bid-price controls. Theorem 9 makes

no assumptions on the primitives of the problem. That is, the various stochastic processes

and the underlying information structure is very general. Next, we consider two important

special cases. The �rst one assumes that demand over small periods is also small, which

corresponds to the mathematical statement that sample paths of the demand process are

continuous.

Corollary 10. If the demand process has continuous sample paths, then

(1.6) jObj (�"; ";�)� P�j � �2"+
2�1�3
"

p
EV2 (D;�):

Moreover, for every " > 0, one can choose a partition �" �ne enough such that

jObj (�"; ";�")� P�j ! 0 as "! 0:

Specializing the bound (1.5) of Theorem 9 to this case yields the upper bound (1.6) in

terms of the quadratic variation V2 (D;�) of demand, which tends to zero as the partition
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� gets �ner. The upper bound in equation (1.6) (more generally the upper bound (1.5))

sheds light on how one should choose the decision points � = ft0; t1; : : : ; tNg. To be more

speci�c, given an absolute error tolerance, one picks an " which determines the perturba-

tion error �". The smaller the perturbation error is, the �ner the corresponding partition

�" must be to respect the given error tolerance. Hence, the upper bound (1.6) helps the

system manager trade-o¤ the two sources of error by choices of " and the corresponding

partition �". A similar trade-o¤ can also be made in the context of Corollary 12, which

concerns the case of continuous information. Roughly speaking, an information structure

is continuous if the incremental information arriving over small periods is also small. The

formal de�nition is provided next.

De�nition 11. An information structure fFt; t 2 R+g is said to be continuous if for

every event E, the posterior probability assessment P(E j Ft) is continuous.

[36] proves that an information structure is continuos if and only if all stopping times

are predictable, which in turn is a equivalent to the statement that every continuous-time

martingale has continuous sample paths.

Corollary 12. If the information structure fFt : 0 � t � Tg is continuous, then for

every " > 0, one can choose a partition �" �ne enough such that

jObj (�"; ";�")� P�j ! 0 as "! 0:

Combining the results of this section we conclude that in the usual case where periods

are small compared to the planning horizon, there exists a simple predictable bid-price

control which is near optimal if either the demand arriving during small periods is also
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small, or the incremental information arriving over small periods is small. These results

also generate the insight that one must take additional care when the fare of a product

exceeds the sum of the bid-prices of the resources it uses by a slight margin. In this case,

one should book only a fraction of the demand, contrary to the ordinary bid-price controls

which should dictate booking all demand.

1.5. A Special Case with Network Flow Structure

Although we have not imposed any integrality requirement on the bookings made

in our model of network revenue management, cf. Section 1.1, in practice the booking

vectors often should be integer valued. Moreover, the demand for products is typically not

continuous but integral. Therefore, in this section, we consider a formulation where such

integrality requirements are in place. In fact, the network revenue management problem

(P) introduced in Section 1.1 corresponds to a continuous relaxation of the problem at

hand. Next, imposing additional restrictions on the capacity consumption matrix A and

assuming that the initial capacity vector C and the demand realizations the cumulative

demand process D are integer valued, we show that in the continuous relaxation, bookings

made by a generalized bid-price scheme are actually integral, and thus optimal for the

formulation with integrality requirements.

To that end, �rst assume that the capacity consumption matrix has consecutive 1�s

in each column and 0�s everywhere else (the �rst and the last row are assumed to be

consecutive to each other). This special structure arises naturally in car rental and hotel

revenue management applications, cf. [15]. We �rst show that A is totally unimodular,

that is the determinant of each square submatrix of A is equal to 0; 1, or �1. The use of
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totally unimodular matrices in integer programming is typical; an integer program with a

totally unimodular constraint matrix and integer right-hand side can be solved e¢ ciently

as a linear program since the LP relaxation provide integer solutions. In the same vein,

total unimodularity of A will provide the key role in proving the integrality of bookings

by making the extreme points of the feasible region in the linear programs (P(tn)) integer

valued. Under the consecutive 1�s assumption, there exists a unimodular transformation6

that transforms A into a matrix with at most one 1 and one �1 in each column, cf. [64].

The totally unimodularity of A follows from the fact a matrix consisting of only 1, 0 and

�1 is totally unimodular if it has no more than two nonzero entries in each column and

the sum of the entries in a column that has two nonzero coe¢ cients is zero. Assume

further that the initial capacity vector C and the demand process D, are integer valued.

This implies that, the feasible region

Fn(x) = fu 2 RJ+ : Au � x; u � D (tn)g for n = 1; : : : ; N

is an integral polyhedron for integral x 2 RK+ , provided that it is non-empty, cf. [46].

A nonempty polyhedron Fn(x) � RJ+ is integral if and only if all of its extreme points

are integral. Particularly, since C is integer valued, F1(C) is an integral polyhedron and

the bookings made in period 1 are integral as (P(t1)) is a linear program with feasible

region F1(C). Then, the initial capacity vector at the beginning of period 2 would also be

integral since A consists only of 0�s and 1�s. Therefore, it can be shown inductively that

the bookings made by a generalized bid-price scheme (�; �) are actually integral, thus

optimal for the formulation with integrality requirements.

6A linear transformation y = Bx is unimodular if the determinant of the matrix B is 1 or �1.
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Moreover, since matrices with one 1 and one �1 in each column are node-arc incidence

matrices, optimization problem (P(tn)) can be solved via network �ow techniques for each

i 2 I, which in turn makes the solution to (P(tn)) quite e¢ cient. Indeed, the network

�ow structure arises naturally for many airlines as pointed out by [34].
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CHAPTER 2

Bid-Price Controls for Network Revenue Management:

Martingale Characterization of Optimal Bid Prices (joint with

Bar¬̧s Ata)

The network revenue management problems arise naturally in airline, railway, cruise-

line and hotel revenue management, more generally, whenever, customers buy bundles of

resources under various terms and conditions. In such settings, bid-price controls represent

an intuitively appealing and powerful approach to quantity-based revenue management.

To be speci�c, given a network of resources, a bid-price control assigns a threshold price,

that is, a bid price, for each resource dynamically over time. Then, the decision to ful�ll a

booking request is made based on the availability of various resources and whether or not

the revenue associated with the request exceeds the sum of the bid-prices of the resources

it uses. Bid-price controls simplify decision making in network revenue management by

reducing the number of parameters required for implementation (one bid price has to

be speci�ed for each resource) since evaluating a booking request requires only a simple

comparison of the fare to the sum of the bid prices for the requested resources.

Bid-price controls are introduced by [58] and further analyzed by [65]. Williamson

computes the bid prices of various resources by means of mathematical programming

formulations and interprets the bid-price of a resource as the opportunity cost of using

one additional unit of the resource. This re�ects the intuitive notion that a booking



39

request should be accepted only if its fare exceeds the opportunity cost of the reduction

in resource capacities required to satisfy that request. Thus, bid prices retrieved from a

revenue management system may facilitate decision making in other areas of management

such as capacity planning or pricing.

[59] considers bid price controls in a discrete time model of network revenue manage-

ment, where the discretion is �ne enough such that in each period at most one request

arrives. In this context, a bid-price control is implemented by specifying one bid price for

each resource (leg) for each time period and capacity vector, and the request is accepted

if the fare of the request is higher than the sum of the bid prices it uses. The authors

show that the optimal policy need not correspond to a bid-price control, and provide a

two-period counter example which shows that the bid-price policy as de�ned immediately

above may not result in optimal accept/deny decisions. The insight they provide for

why bid-price controls may not be optimal is that the bid price for a resource may not

correspond to the opportunity cost of using one additional unit of that resource due to

two reasons: First, selling one unit of capacity might be a large change in the capacity of

several resources at the same time if the remaining capacity is low and hence the interpre-

tation of the bid prices as the marginal value of one unit of additional capacity may not

be correct. Second, the revenues may depend on the remaining capacity in a nonlinear

way.

Despite this counter example, bid-price controls are widely used in practice, cf. [49],

as they provide a simple, yet powerful approach to quantity-based network revenue man-

agement. In this vein, researchers have worked on various practical heuristic methods to

derive bid-price controls. [10] proposed a new method based on approximate dynamic
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programming. Their method computes adaptive and nonadditive bid prices based on

a linear programming approximation to the value function of a dynamic programming

formulation. The authors provide a comparison of their method and the bid-price con-

trol based on deterministic linear programming approach and show that their algorithm

results in higher revenues and more robust performance.

[61] revisits the network revenue management problem studied in [59] and proposes a

new method to compute bid prices. Topaloglu explicitly considers the temporal dynamics

of the customer arrivals and generates bid prices that depend on the remaining leg ca-

pacities. His method is based on relaxing certain capacity constraints that link decisions

for di¤erent �ight legs by associating Lagrange multipliers with them. Then the problem

is decomposed by �ight legs and one can concentrate on one �ight leg at a time, which

simpli�es the problem tremendously. Topaloglu also shows through a numerical study

that his method outperforms the standard heuristics signi�cantly.

[63] follows a similar approach but uses a di¤erent relaxation of the capacity con-

straints which yields time-dependent prices. Their approach provides an upper bound on

the optimal objective value of the problem, which is tighter than the one obtained from

the so-called deterministic linear program. The authors also show that the bid prices they

propose are asymptotically optimal as leg capacities and demand grow proportionally to

in�nity. Moreover, the authors discuss how to adopt their method to incorporate cancel-

lations. Finally, the authors demonstrate through numerical examples that their method

can improve on the existing methods. Another related paper is [1]. Adelman consid-

ers the dynamic programming formulation of the network revenue management problem.
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Then assuming an a¢ ne functional form for the value function and using the linear pro-

gramming representation of the dynamic programming formulation, the author computes

time-dependent (deterministic) bid prices. He also shows that his approach yields an up-

per bound tighter than the one obtained from the deterministic linear program. Both [1]

and [63] observe that their (approximate) method yields (deterministic) bid prices which

are decreasing over time.

Another paper related to ours is [38], where the author considers a stylized (determin-

istic) �uid model of a general dynamic pricing problem for selling a network of resources.

In Kleywegt�s model prices are chosen dynamically to sell products (or itineraries) to mul-

tiple customer classes over time. Kleywegt�s model is very general in terms of problem

primitives and allows order cancellations. Moreover, Kleywegt observes that his model

readily extends to incorporate probabilistic customer choice behavior. The author also

develops a solution method and tests it with some numerical examples. Among other

things, Kleywegt shows through an exact analysis that in his setting the opportunity cost

of capacity under an optimal policy remains constant, which is in line with the martin-

gale property of optimal bid prices in our setting. Indeed, looking more carefully at the

numerical examples of [1] and [63] reveals that the bid prices seem to be constant except

toward the end of planning horizon, which may be due to their approximate mode of

analysis.

[62] presents a stochastic approximation method to compute bid prices in network

revenue management problems by viewing the total expected revenue as a function of

bid prices and using sample path derivatives to identify a good set of bid prices. The

author demonstrates through numerical examples that the bid prices obtained by his
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method outperforms the ones by the standard methods especially when bid prices are not

computed frequently. [31] applies approximate dynamic programming ideas to revenue

management problems. [50] develops a novel di¤usion approximation to the network

revenue management and advances a policy which is asymptotically optimal under the

so-called di¤usion scaling.

In this chapter, we analyze a continuous-time, rate-based model of network revenue

management. Our main contribution is to prove "-optimality of a simple bid-price control.

The proposed bid-price control only uses bid-prices associated with various resources,

hence, it is easy to implement. In what follows, we also construct an optimal generalized

bid-price control which consists of a bid-price process and a capacity usage limit process,

where the bid-price process forms a martingale. Although the generalized bid-price control

we introduce here resembles the bid-price control of the previous chapter, it does give rise

to new insights in this setting.

We provide further insights and implications of the martingale property of the (near)

optimal bid prices, which become more transparent in our continuous-time model. Al-

though the martingale property is primarily a theoretical contribution, it has surprising

implications. For instance, exploiting the martingale property one can connect the opti-

mal bid prices to Forward-Backward Stochastic Di¤erential Equations (FBSDE). Given

that there are readily available numerical methods for computing solutions FBSDEs, one

may borrow that machinery to compute bid prices. Thus, this connection sets the stage

up for a novel and analytically sound computational approach and is explored in Chapter

3.
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Our analysis also sheds light on the non-optimality of bid-price controls de�ned in the

classical sense, providing the new insight that the reason for potential non-optimality is

not only the discreteness in demand but also the degeneracy or multiplicity of solutions,

which will be elaborated on in Section 2.4. Although the bid prices de�ned in the classical

sense may not be optimal in general, we provide some hypotheses guaranteeing their op-

timality (and "-optimality). Unfortunately, identifying simple conditions on the problem

primitives under which these hypotheses can be veri�ed does not seem easy. Nevertheless,

we feel that these hypotheses bring out the key step in proving such optimality results

and help elucidate potential issues with the classical bid-price controls and why they fail

to be optimal. In other words, our results provide further understanding of bid-price con-

trols, their characterization and limitations, and the role they play in designing capacity

allocation schemes in network revenue management problems.

From a methodological perspective, our analysis builds on the convex analysis frame-

work of [55] and the duality results of [11]. [11] develops a new approach to problems

of stochastic optimal control using convex duality. In particular, [11] de�nes the dual

problems in stochastic optimal control and the coextremality conditions associated with

the dual optima by applying general methods of convex analysis introduced by [51], [52],

[53] and [54]. Bismut also provides results on the existence of optimal solutions for a

general class of convex stochastic control problems, which include the stochastic control

problems studied in this paper. This paper also illustrates the utility of stochastic duality

techniques and their applicability in the revenue management context.

The rest of the chapter is structured as follows: Section 2.1 presents the model. Precise

de�nition of several bid-price controls are introduced in Section 2.2. A dual formulation
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to the network revenue management problem and the associated coextremality conditions

are provided in Section 2.3. An optimal generalized bid-price mechanism is de�ned in

Section 2.4. There, we also provide su¢ cient conditions for the existence of (near) optimal

bid-price controls in the classical sense. In Section 2.5, we discuss a perturbed network

revenue management and its dual, based on which we also de�ne an "-optimal bid-price

control. In Section 2.6, some concluding remarks are provided along with future research

directions. The proofs, derivations and auxiliary results are relegated to Appendices B.2

through B.5 throughout the chapter. A summary of [11] is provided in Appendix B.1.

2.1. The Model

We analyze a continuous-time, rate-based model of network revenue management.

There are K resources and J products. In an airline setting a resource is a �ight leg

and a product is a speci�c itinerary. A primitive of our model is a K � J non-negative

capacity consumption matrix A, where Akj denotes the amount of resource k capacity

consumed by one unit of product j. The jth column of A is denoted by Aj. The de�nition

of a product contains all terms and conditions associated with the purchase. Thus, there

may be more than one product that use the same amount of each resource but di¤er

in price, purchase restrictions etc. Therefore, in practice, the number of products will

be large compared to the number of resources. In our model, at each point in time the

system manager observes the demand rate and chooses the corresponding booking rate

for each product. The booking rates for the products translate into consumption rates for

the resources through the capacity consumption matrix A. The objective is to maximize

expected revenues over the time horizon [0; T ] subject to capacity and demand constraints.
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Uncertainty is modeled by a given complete probability space (
,F ,P), and the evolu-

tion of information is modeled through the increasing collection {Ft; t 2 R+} of complete

sub-�-�elds of F . In particular, Ft represents the information available to the system

manager at time t. All stochastic processes to appear will be adapted to the �ltration

{Ft; t 2 R+}. We assume that {Ft; t 2 R+} is right-continuous and has no time dis-

continuity as in [11]. An information structure that has no time discontinuity is also

referred to as a quasi-continuous information structure in [36], which also proves that the

natural �ltrations of most of the commonly encountered processes are quasi-continuous,

including the natural �ltrations generated by the Poisson process and Brownian motion.

As a matter of fact, [12] extends the framework and results in [11] to the more general

setting of the control of semi-martingales where the quasi-continuity assumption is also

dropped.

The demand for the various products is generated by the J-dimensional demand rate

process fd(!; t) : (!; t) 2 
�[0; T ]}. In particular, dj(!; t) is the rate at which demand for

product j arrives at the system at time t along the sample path !. Then, the cumulative

demand observed by the system manager for product j over the interval [t1; t2] is

Z t2

t1

dj(!; s)ds;

if sample path ! 2 
 is realized. The following are the only two assumptions we make

on the demand rate process: We assume that the demand rate process fd(!; t) : (!; t) 2


 � [0; T ]} is bounded and adapted to the �ltration {Ft : 0 � t � T}. In particular, we

allow for non-stationary demand with an arbitrary dependence structure, including both

inter-temporal and cross-product dependencies.
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As the system evolves, the system manager exerts control on the system by selecting

a nonnegative vector of booking rates at each point in time. That is, for each ! 2 
 and

0 � t � T; the systemmanager chooses the J-dimensional vector of booking rates, denoted

by u(!; t). In particular, uj(!; t) denotes the booking rate for product j at time t along

the sample path ! for j = 1; : : : ; J . Then, under the control fu(!; t) : (!; t) 2 
� [0; T ]g,

the cumulative bookings for product j up to time t along sample path ! is given by

(2.1) Uj(!; t) =

Z t

0

uj(!; s)ds:

The system state at time t 2 [0; T ] for the realization ! is the K-dimensional vector of

remaining capacities denoted by x(!; t). The component xk(!; t) denotes the remaining

capacity for resource k = 1; : : : ; K at time t. Given a control fu(!; t) : (!; t) 2 
� [0; T ]g;

the system state evolves according to the following system dynamics equation

(2.2) x(!; t) = C � AU(!; t) for (!; t) 2 
� [0; T ],

where C is the initial capacity vector and U(!; t) is the vector of cumulative bookings

up to time t whose jth component is given by (2.1). We use the shorthand notation x

to denote the stochastic process fx(!; t) : (!; t) 2 
 � [0; T ]g. Similarly, u denotes the

booking rate process fu(!; t) : (!; t) 2 
� [0; T ]g.

A booking rate process u is feasible only if it satis�es demand and capacity restrictions.

The demand restriction on bookings is that for each (!; t) 2 
� [0; T ]; the booking rate

for each product should be less than or equal to the demand rate for that product. The

capacity restriction on bookings is that the remaining capacity for each resource at the

terminal time T should be nonnegative almost surely.
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A booking rate vector u(!; t) at time t given a sample path ! results in an instanta-

neous revenue rate of f(!; t) � u(!; t), where f(!; t) is the exogenously set vector of fares.

The process of fares ff(!; t) : (!; t) 2 
� [0; T ]g is bounded, non-negative and adapted

to the information structure {Ft; t 2 R+}. The fare process can be non-stationary and

arbitrarily correlated with the demand process, which, in turn, allows us to model depen-

dencies between the fare and demand process and potentially capture demand substitution

across products and over time.

The objective is to choose a booking rate process u so as to maximize expected revenue

subject to the demand and capacity restrictions. That is, choose booking rate vector

u(!; t) for each (!; t) 2 
� [0; T ] so as to

maximize E

24 TZ
0

f(!; t) � u(!; t) dt

35
subject to

x(!; t) = C � AU(!; t); (!; t) 2 
� [0; T ]; (Pcont)

U(!; t) =

tZ
0

u(!; s)ds; (!; t) 2 
� [0; T ];

0 � u(!; t) � d(!; t); (!; t) 2 
� [0; T ];

x(!; T ) � 0; ! 2 
,

where the �rst and second constraints describe how capacity evolves over time, and

the third and fourth constraints are the demand and capacity restrictions, respectively.

Throughout the rest of the paper we will refer to the formulation (Pcont) as the network

revenue management problem.
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As an aside, since the fare process can be an arbitrary adapted stochastic process,

the formulation (Pcont) of the network revenue management problem subsumes possible

discounted formulations.

2.2. Bid-Price Control De�nitions and Summary of Results

In our setting, a bid-price process is a K-dimensional, non-negative stochastic process

� = f�(!; t) : (!; t) 2 
 � [0; T ]g, where �k(!; t) denotes the bid-price, or the shadow

price, associated with resource k at time t along the sample path !. Next, we introduce

three closely related de�nitions of bid-price controls, which will be used in subsequent

sections.

De�nition 13. (Bid-Price Control): Given a bid-price process � = f�(!; t) : (!; t) 2


�[0; T ]g and a booking function � : R3+ ! R+, the pair (�; �) is called a bid-price control,

where the corresponding booking rates for each product j = 1; : : : ; J are determined as

follows:

(2.3) uj(!; t) = �(�(!; t)Aj; fj(!; t); dj(!; t)) for (!; t) 2 
� [0; T ].

Given a bid-price control (�; �), for each product j and each (!; t), the booking func-

tion � compares the fare fj(!; t) with the sum of the bid prices for the resources used by

product j, �(!; t)Aj, and dictates how much of the demand rate dj(!; t) to book. Our def-

inition allows for non-linear booking functions. In particular, it may not result in a "bang-

bang" booking process; u is called a bang-bang booking process if uj(!; t) 2 f0; dj(!; t)g

for almost all (!; t) 2 
 � [0; T ] and j = 1; : : : ; J . In this sense, our de�nition of a bid-

price control is more generous than the classical de�nition; and the latter can be viewed
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as a special case of ours. In particular, the booking decisions under a bid-price control in

the classical sense necessarily result in a bang-bang booking process. The next de�nition

introduces the bid-price control in the classical sense in our setting.

De�nition 14. (Classical Bid-Price Control) For each bid-price process �, there cor-

responds a classical bid-price control denoted by �, which dictates the following booking

rates for each product j = 1; : : : ; J and (!; t) 2 
� [0; T ]:

uj(!; t) =

8><>: dj(!; t) if fj(!; t) � �(!; t)Aj;

0 otherwise.

One can view a classical bid-price control � as a speci�c bid-price control (�; �) where

�(z) = z31fz2�z1g for z 2 R3+; from which it follows that

(2.4) �(�(!; t)Aj; fj(!; t); dj(!; t)) =

8><>: dj(!; t) if fj(!; t) � �(!; t)Aj;

0 otherwise.

A bid-price control (�; �) is called optimal if the booking rates resulting form (�; �), cf.

(2.3), constitute an optimal solution to the network revenue management problem (Pcont).

Given " > 0, a bid-price control (�"; �") is called "-optimal if the revenues associated with

the resulting booking process u" is within " of the optimal objective value of the network

revenue management problem (Pcont).

An important virtue of bid-price controls is that they o¤er a tractable solution for

a complex problem of allocating a network of resources to a large number of products.

Bid-price controls simplify the control in network revenue management by reducing the

number of parameters required for implementation (one bid price is speci�ed for each
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resource.) In addition, a bid-price control decomposes the problem across time, sample

paths and products. That is, given a bid-price control (�; �), at each point in time and for

every sample path, the booking rates are determined only as a function of the current bid-

prices, fares and demand rates without having to account for the future impact of current

decisions. Moreover, the booking decisions for each product can be made in isolation,

independently of the booking decisions for other products.

Next, we consider a simple example to illustrate the classical bid-price controls. This

example is indeed the continuous-time, rate-based version of the counter example provided

by [59].

Example 1. There are two resources and three products with the associated capacity

consumption matrix

A =

264 1 0 1

0 1 1

375 :
The planning horizon is [0; 2]: Each resource has initial capacity of one, that is, C = (1; 1)0:

There is no uncertainty or non-stationarity in product fares. In particular, the vector of

product fares is given by

f = (250; 250; 500)0:

The only uncertainty is in the demand rate process. The evolution of uncertainty is

suitably represented by an information tree in Figure 2.1. The terminal nodes of the

tree correspond to speci�c sample paths. The intermediate set of nodes represent the

resolved uncertainty by time t = 1: On each arc of the information tree displayed is the

corresponding demand rate vector. There are six sample paths and the probability of each

sample path is also displayed in Figure 2.1, from which one can deduce the probabilities
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of various events. In particular, during [0; 1] we will see demand for only one type of

product (at rate 1). The probability of having demand for product 3 is 0:4; for product 1

it is 0:3 and for product 2 it is 0:3: On the other hand, during [1; 2]; we see either demand

for product 3 (at rate 1) with probability 0:8 or no demand with probability 0:2: To be

more speci�c, the demand rate process displayed in Figure 2.1 is given as follows:

d(!1; t) = (1; 1)0, t � 2 and d(!2; t) =

8><>: (1; 1)0; t � 1;

(0; 0)0; t > 1;

d(!3; t) =

8><>: (1; 0)0; t � 1;

(1; 1)0; t > 1;
and d(!4; t) =

8><>: (1; 0)0; t � 1;

(0; 0)0; t > 1;

d(!5; t) =

8><>: (0; 1)0; t � 1;

(1; 1)0; t > 1;
and d(!6; t) =

8><>: (0; 1)0; t � 1;

(0; 0)0; t > 1:

It is easy to see that the optimal solution is to book only product 3, while denying all

other requests. This results in the expected revenue of 440: Formally, the solution is given

as follows:

u(!1; t) = u(!2; t) =

8><>: (0; 0; 1)0; t � 1;

(0; 0; 0)0; t > 1;
(2.5)

u(!3; t) = u(!5; t) =

8><>: (0; 0; 0)0; t � 1;

(0; 0; 1)0; t > 1;
(2.6)

u(!4; t) = u(!6; t) =

8><>: (0; 0; 0)0; t � 1;

(0; 0; 0)0; t > 1:
(2.7)
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As an aside, this solution corresponds to the optimal solution of the Talluri-van Ryzin

example, which also books only product 3 and results in expected revenue of 440:

Consider the following classical bid-price control: �(!1; t) = �(!2; t) = (250; 250)0;

and

�(!3; t) =

8><>: (251; 150)0; t � 1;

(312:5; 187:5)0; t > 1;
and �(!4; t) =

8><>: (251; 150)0; t � 1;

(5; 0)0; t > 1;

�(!5; t) =

8><>: (150; 251)0; t � 1;

(187:5; 312:5)0; t > 1;
and �(!6; t) =

8><>: (150; 251)0; t � 1;

(0; 5)0; t > 1:

Observe that the classical bid-price control � results in the optimal bookings given in

(2.5)-(2.7), and hence yields expected revenue of 440: It is also easy to check that the

bid-price process � forms a martingale. Also note the choice of the optimal bid-price

control is not unique. Once can easily come up with other optimal classical bid prices.

The bid-price control given immediately above shows that the classical bid-price con-

trols are indeed optimal for this particular example. Thus, it sheds light onto reasons

for non-optimality in the Talluri-van Ryzin example. As pointed out earlier in the liter-

ature, the non-optimality stems from discreteness, and, in particular, from the fact that

each booking consumes a large fraction of remaining capacity. In contrast, in our setting

the bookings at each point in time consumes only an in�nitesimal amount of capacity.

We also allow frequent (indeed continuous) updating of bid prices. These allow the bid-

price controls to perform optimally. Therefore, in addition to discreteness of the problem,

infrequent updating of bid prices may be another reason for non-optimality of classical

bid-price controls.
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Figure 2.1. Evolution of uncertainty in Example 1.

Although the classical bid-price controls are optimal for the example immediately

above, we next present an example where no classical bid price control can be optimal.

Indeed, we show a stronger result that no bang-bang control can be optimal.

Example 2. We have a single resource and two products. As in the earlier example

the fares are constant. In particular, we have

C = 1; A = [1; 1] and f = (100; 200)0:

The planning horizon is [0; 1]: The underlying probability space (
,F ,P) is de�ned as

follows: 
 = [0; 1] and F is the collection of Borel subsets of [0; 1] (suitably completed).

Let � be a random variable de�ned on (
,F) with strictly positive density g on [0; 1]:

Then P is the probability measure induced by g; and each sample path can be thought of
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as a particular realization of � : Demand for the two products is given as follows:

d1(t) =

8><>: 2 if t � � ;

0 if t > �;
and d2(t) =

8><>: 0 if t � � ;

1 if t > �:

The information Ft available at time t is the �-algebra generated by fd(s) : 0 � s � tg ;

suitably completed with the null sets of F :

In this setting, we prove that no classical bid-price control � adapted to {Ft; t � 0} can

be optimal. First, observe that the revenue management problem (Pcont) has a pathwise

solution in this example, which is given as follows:

u1(t) =

8><>: 1 if t � � ;

0 if t > �;
and u2(t) =

8><>: 0 if t � � ;

1 if t > �:

In particular, the optimal revenue is 200� 100� along each sample path which results in

the expected revenue of

200� 100E[� ] = 200� 100
1Z
0

g(s)ds:

We argue by contradiction to conclude that no classical bid-price control can be optimal.

Suppose that there exists an optimal bid-price control �: First, note that under � we must

have

(2.8)

�Z
0

21f�(t)� 1gdt = � almost surely.
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That is, we must book exactly half of the requests for product 1: Suppose (2.8) does not

hold. Then, with positive probability we have at least one of the following:

�Z
0

21f�(t)� 1gdt < �;(2.9)

�Z
0

21f�(t)� 1gdt > �:(2.10)

If we have (2.9) with positive probability, then for those sample paths the total revenue

is given by
�Z
0

2001f�(t)� 1gdt+ 200(1� �) < 200� 100� :

Thus, if (2.9) arises with positive probability, then the expected revenues under � will be

strictly less than 200 � 100E[� ]; the optimal objective. Similarly, if (2.10) happens with

positive probability, then the revenue along such a sample path is

�Z
0

2001f�(t)� 1gdt+ 200

241� �Z
0

21f�(t)� 1gdt

35 < 200� 100� :
Thus, the expected revenue is strictly less than 200�100E[� ] in this case too, contradicting

optimality. Therefore, we must have (2.8). That is, almost surely

(2.11)

�Z
0

21f�(t)� 1gdt = � :

Then since � has a strictly positive density on [0; 1] and both sides are absolutely contin-

uous functions of � ; we conclude by di¤erentiating both sides of (2.11) with respect to �
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that for almost every t and sample path

1f�(t)� 1g =
1

2
;

which clearly is a contradiction. Thus, no classical bid-price control can be optimal.

As this example shows no classical bid-price control can achieve optimal bookings in

general. In this speci�c example, if we impose the upper bound of 1 on the capacity

consumption rate and use the bid price of � = 1 at all times, then the resulting bookings

will be optimal. Next, we show that this idea works in great generality. That is, using

bid prices in conjunction with limits on capacity consumption rates results in optimal

bookings. To this end, the next de�nition introduces a generalized bid-price control along

the lines of Chapter 1. In our setting, a generalized bid-price control involves a pair of

stochastic processes (�; �), where � is a bid-price process and � = f�(!; t) : (!; t) 2


 � [0; T ]g is a K-dimensional, nonnegative stochastic process; we will refer to � as the

capacity usage limit process.

De�nition 15. (Generalized Bid-Price Control) Given a bid-price process � and a

capacity usage limit process �, the pair (�; �) is called a generalized bid-price control. For

each (!; t) 2 
� [0; T ], the booking rate vector u(!; t) corresponding to (�; �) is given by
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the solution to the following linear program: Choose booking rate vector u so as to

maximize (f(!; t)� A
0
�(!; t)) � u+ �(Au� �(!; t)) � e

subject to(P (!; t))

Au � �(!; t),

0 � u � d(!; t),

where � > 0 is arbitrarily small and e is the K-dimensional vector of ones.

As before, �k(!; t) is the bid-price or the shadow price for resource k at time t along

the sample path !. Similarly, �k(!; t) is associated with resource k, and will be used

as an upper bound on the consumption rate of resource k at time t along the sample

path !. The linear program (P(!; t)) is lexicographic in the following sense. The system

manager �rst solves (P(!; t)) by setting � = 0. In the case of multiple optimal solutions,

she selects the one that maximizes (Au � �(!; t)) � e. For concreteness, tie breaking is

done as follows in case of multiple such solutions. The potential choices of basis matrices

are numbered up-front. For each (!; t), the optimal solutions are characterized by the

extreme points, each of which corresponds to a basis matrix. In case of multiple optimal

solutions, the system manager picks the (extreme) optimal solution which corresponds

to the basis matrix with the lowest index. Ideally, the system manager tries to choose a

"maximal" booking rate u that has Au = �(!; t). A generalized bid-price control (�; �)

is said to be optimal if the booking rate process u resulting from its execution is optimal

for the network revenue management problem (Pcont). As will be seen below (cf. Proof

of Theorem 18), if � and � are chosen optimally, then the bookings under (�; �) satisfy
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Au = �(!; t) for a.e. (!; t): In particular, the capacity usage limit process � ensures that

the system state x follows an optimal trajectory, which is crucial for optimality because

of potential issues due to degeneracy or multiplicity of solutions, cf. Section 2.4.

As pointed out earlier, it is easy to see that setting

�(!; t) = 1 and �(!; t) = 1 for (!; t) 2 
� [0; 2]

results in optimal bookings in Example 2.

In what follows, we �rst show that there exists an optimal generalized bid-price control

(�; �) for the network revenue management problem. We also show that the optimal bid-

price process � forms a martingale. Second, we identify some su¢ cient conditions under

which an optimal bid-price control in the classical sense exists. Although, identifying

simpler conditions on the problem primitives under which these su¢ cient conditions can

be veri�ed does not seem easy, they bring out the key step in proving such results. Third,

by the help of a perturbed version of the network revenue management problem, we

construct an "-optimal bid-price control (�"; �") for each " > 0, where the associated

bid-price process �" forms a martingale. The bid-price control (�"; �") can be viewed as a

perturbation of the classical bid-price control corresponding to the bid-price process �". In

particular, it does not involve any capacity usage limits, and hence, is easier to implement.

Finally, we show that for small values of ", the booking process u" corresponding to

the bid-price control (�"; �") is close to an optimal booking process for (Pcont). These

results are proved without making any assumptions on the stochastic structure of demand

and fare processes, allowing non-stationary demand and fare processes with an arbitrary

dependence structure, including both inter-temporal and cross-product dependencies.
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To facilitate our analysis of bid-price controls, in the next section we present a sto-

chastic control problem that is dual to the network revenue management problem (Pcont)

in the sense of [11].

2.3. Dual Network Revenue Management Problem

In this section we present the dual problem formulation (Dcont) of the network revenue

management problem (Pcont) laid out in Section 2.1, and the coextremality results between

the two formulations. The dual problem associated with the network revenue management

problem (Pcont) is obtained using the stochastic duality theory of [11]. [11] develops a new

approach to problems of stochastic optimal control using convex duality, which enables

us to express the network revenue management problem in an equivalent way but in a

completely di¤erent context. In particular, [11] de�nes the dual problems in stochastic

optimal control and the coextremality conditions associated with the dual optima by

applying general methods of convex analysis introduced by [51], [52], [53] and [54]. A

summary of [11] is provided in Appendix B.1.

Following [11] the dual problem of control associated with the network revenue man-

agement problem (Pcont) can be stated as follows (see Appendix B.3 for its derivation):

Choose a K-dimensional, square integrable, random vector y0 2 F0 and a K-dimensional,

square-integrable martingale M , which is null at zero, stopped at time T and adapted to
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the �ltration {Ft; t 2 R+}, so as to

minimize E

24 TZ
0

d(!; t) � [f(!; t)� y(!; t)A]+dt+ C � y0(!)

35
subject to (Dcont)

y(!; t) = y0(!) +M(!; t); (!; t) 2 
� [0; T ];

y(!; T ) � 0; ! 2 
,

where [z]+ = (maxf0; z1g; : : : ;maxf0; zJg)
0
for z 2 RJ .

In the dual problem formulation, y is the dual state variable. The value of the state

variable y at time zero is given by y0 2 F0, which is constant if there is no randomness

at time zero. The dual state vector y(!; t) can be interpreted as the shadow price for

or the value assigned to the resources at time t along the sample path !. Then the

objective of the dual problem formulation can be interpreted as the value attributed to

the network of resources by a given choice of the shadow price process. Thus, the dual

problem formulation has the following interpretation: The system manager chooses the

shadow price process y, which is a non-negative martingale, so as to minimize the expected

value she attributes to her network of resources.

In dual problem formulation (Dcont), M is a predictive term, null at zero, or the

best estimate at time t of the unresolved uncertainty. M is a term that integrates the

information on environmental factors. That is, it contains the relevant information from

the future and serves the purpose of integrating into the dual variable y this necessary

information.
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A remarkable feature of the dual problem is that the dual state variable y can have

jumps, corresponding to the jumps ofM: To elaborate on this, consider the setting where

the information is revealed continuously over time. In particular, consider a stopping time

� which is de�ned as the �rst time an event happens. Under a continuous information

structure this event is foretellable by a sequence of events. Intuitively, no event takes us

by surprise under a continuous information structure. As put by [23], "We are forewarned

by a succession of precursory signs, of the exact time the phenomenon will occur"; see

[36] for a precise de�nition of a continuous information structure.

An equivalent characterization of continuous information structures is that all mar-

tingales have continuous sample paths, cf. [36]. Moreover, the martingale term M of

the dual problem formulation (Dcont) will have jumps only if the information arrives dis-

continuously, say, because of unpredictable changes in the business environment, political

situation etc. in which case the value of the resources re�ected by the shadow prices has

to be adjusted abruptly, in a discontinuous manner. That is, the new information can

signi�cantly increase or decrease the bid prices. Hence, continuity of M under a contin-

uous information structure is the re�ection of the continuos �ow of information into the

system.

To elaborate further, suppose that any martingale, and hence the optimal bid-prices

can be represented as a stochastic integral with respect to a given Brownian motion w

plus a martingaleM that is orthogonal to w. Then, loosely speaking w contains the short

term uncertainties and M is a prediction of the long-term uncertainties. The interpre-

tation of the martingale term M is intuitively appealing since it enables us to express

formally the distinction in the decision making process between continuous information
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processing which is done on a routine basis and discontinuous information processing done

by reassessing the predictions.

The dual problem (Dcont) and the primal problem (Pcont) are closely linked to each

other. Above all, the objective function values of (Pcont) and (Dcont) are equal. Moreover,

any optimal primal solution and any optimal dual solution satisfy a set of coextremality

conditions, which are necessary and su¢ cient conditions for optimality. The following

proposition summarizes the duality results between the two formulations that are relevant

for our purposes; its proof is given in Appendix B.3.

Proposition 16. The network revenue management problem (Pcont), that is, the pri-

mal problem, and the dual problem (Dcont) have the same optimal objective value. More-

over, letting u be a feasible control for (Pcont) with the corresponding state trajectory x,

and (y0;M) be a feasible control for (Dcont) with the corresponding state trajectory y, the

controls u and (y0;M) are optimal for (Pcont) and (Dcont), respectively, if and only if they

satisfy the coextremality conditions (D.1) and (2.13) given below:

(2.12) y(!; T ) � x(!; T ) = 0; a.e. ! 2 
;

and for j = 1; : : : ; J and almost all (!; t) 2 
� [0; T ] with dj(!; t) > 0;

(2.13)

if uj(!; t) = 0; then y(!; t)Aj � fj(!; t) � 0,

if 0 < uj(!; t) < dj(!; t); then y(!; t)Aj � fj(!; t) = 0,

if uj(!; t) = dj(!; t); then y(!; t)Aj � fj(!; t) � 0.



63

The following corollary is immediate from Proposition 16 and it provides an upper

bound on the objective function value of the network revenue management problem

(Pcont).

Corollary 17. For any non-negative, square integrable martingale y adapted to the

�ltration fFt; t 2 R+g,

E

24 TZ
0

d(!; t) � [f(!; t)� y(!; t)A]+dt+ C � y0(!)

35
provides an upper bound on the objective function value of the network revenue manage-

ment problem (Pcont).

2.4. An Optimal Generalized Bid-Price Control

In this section we show the existence of an optimal generalized bid-price control (�; �)

de�ned as in Section 2.2 such that the optimal bid-price process f�(!; t) : (!; t) 2 
 �

[0; T ]g forms a martingale. Recall that a generalized bid-price policy (�; �) is said to

be optimal if the booking rate process fu(!; t) : (!; t) 2 
 � [0; T ]g resulting from the

execution of (�; �) is optimal for the network revenue management problem (Pcont), cf.

Section 2.2. The following theorem is the main result of this section and is proved in

Appendix B.4.

Theorem 18. There exists an optimal generalized bid-price control (�; �) such that

the optimal bid-price process f�(!; t) : (!; t) 2 
� [0; T ]g is a martingale adapted to fFt :

t 2 [0; T ]g.
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As can be seen from the proof of Theorem 18, we construct an optimal generalized bid-

price control (�; �) by using an optimal state trajectory y for the dual problem (Dcont) as

the bid-price process �. To elaborate on its connection to the classical bid-price controls,

�x (!; t) 2 
� [0; T ] and suppose that

fj(!; t) 6= �(!; t)Aj for j = 1; : : : ; J:

Then it can be seen from the coextremality conditions (D.1) and (2.13) that the booking

rate vector u(!; t) is uniquely determined by the bid-price vector �(!; t) as follows: For

j = 1; : : : ; J ,

(2.14) uj(!; t) =

8><>: dj(!; t) if fj(!; t) > �(!; t)Aj;

0 if fj(!; t) < �(!; t)Aj:

Our construction of the generalized bid-price control (�; �) will choose the capacity

usage limit process �(!; t) = Au(!; t) in this case, and the optimal generalized bid-price

control results in the same booking decisions as a classical bid-price control would, cf.

(2.14). Moreover, arguing heuristically, one can simply set � = 0 and �(!; t) = 1, in

which case the execution of the generalized bid-price control reduces to a classical bid-price

control, because the problem (P(!; t)) decomposes across products:

Di¤erences may arise, though, when fj(!; t) = �(!; t)Aj for some products and the

capacity usage limit vector �(!; t) can be crucial in separating an optimal booking rate

from a non-optimal one. In this sense, the need for a capacity usage limit process � for

optimality is linked to the multiplicity of optimal solutions u to (Pcont) associated with
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a given optimal dual solution y to (Dcont). Recall that one reason cited for the non-

optimality of the classical bid-price controls is the discreteness of demand and bookings,

cf. [59]. In contrast, our analysis suggests that discreteness may not be the only reason for

non-optimality as we avoid it by adapting a rate-based model, or a stochastic �uid model.

Rather, the reason for potential non-optimality of the classical bid-price controls in our

setting seems to be the multiplicity or degeneracy which arises when fj(!; t) = �(!; t)Aj

for some product j = 1; : : : ; J over a non-negligible set of (!; t).

In the next subsection, we explore conditions under which an optimal primal solution

u is uniquely characterized by a given bid-price process � and propose some hypotheses

that guarantee optimality or near-optimality of the classical bid-price controls.

2.4.1. Su¢ cient Conditions for Existence of Optimal Classical Bid-Price Con-

trols

In this subsection we identify conditions under which classical bid-prices are optimal.

In particular, we introduce a series of hypotheses which we will relate to the existence

of optimal classical bid-price controls. The strict complementary slackness condition

introduced in the next de�nition is key to the optimality of the classical bid-price controls.

De�nition 19. A solution u to the network revenue management problem (Pcont) and

a K-dimensional, non-negative process z = fz(!; t) : (!; t) 2 
 � [0; T ]g are said to

satisfy strict complementary slackness condition for (!; t) 2 
 � [0; T ] if exactly one of

the following is true for (!; t) and j = 1; : : : ; J :

(1) uj(!; t) = 0 and z(!; t)Aj > fj(!; t);

(2) uj(!; t) > 0 and z(!; t)Aj � fj(!; t):
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Then the following hypotheses provide su¢ cient conditions for the optimality and "-

optimality of the classical bid-price controls; and Proposition 20 states the rather obvious

consequences of the hypotheses.

Hypothesis 1 There exists a bang-bang solution u to the network revenue manage-

ment problem (Pcont) and a dual solution y to (Dcont) that satisfy the strict complementary

slackness condition for a.e. (!; t) 2 
� [0; T ].

Hypothesis 2 For every " > 0, there exists a bang-bang solution u" to the network

revenue management problem (Pcont) and a dual solution y" to (Dcont) such that u" and

y" satisfy the strict complementary slackness condition except for a set of dP
dt measure

" > 0.

Proposition 20. The following hold:

a) If Hypothesis 1 is true, then there exists an optimal classical bid-price control such

that the associated bid-price process forms a martingale adapted to the �ltration fFt;

t 2 R+g.

b) If Hypothesis 2 is true, then for every " > 0, there exists an "-optimal classical

bid-price control such that the associated bid-price process forms a martingale adapted to

the �ltration fFt; t 2 R+g.

Example 3. We have a single resource and two products. The fares are constant. In

particular, we have

C = 3; A = [1; 1]; and f = (100; 200)0:
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The planning horizon is [0; 4]: There is no uncertainty in the environment. Demands for

the two products are given as follows:

d1(t) =

8><>: 1 if t � 2;

0 otherwise,
and d1(t) =

8><>: 0 if t � 2;

1 otherwise.

It is clear by inspection that the optimal solution books half of class 1 requests and all

class 2 requests, resulting in optimal revenue of 500: Neither hypothesis 1 nor hypothesis

2 are satis�ed in this example. Note that the unique solution to the dual problem is

�(t) = 100 for 0 � t � 4; which is easy to see since additional capacity results in booking

more demand for product 1: That is, the shadow price of the resource is 1: Restricting

attention to bang-bang solutions of the primal problem (as required by the hypothesis),

it is clear that the Lebesgue measure of the set F = ft 2 [0; 1] : u1(t) = 0g under any

optimal solution must be 0:5: Thus, for t 2 F; we have u1(t) = 0 and �(t) � f1 so that

the strict complementary slackness conditions are violated with measure 0:5: Of course,

an interesting open question is that whether one can impose additional assumptions on

problem primitives to rule out such examples, which is left as a topic for future research.

A su¢ cient condition for Hypothesis 1 to be true is that there exists an optimal state

trajectory y for the dual network revenue management problem (Dcont) such that the

measure of the set

E = f(!; t) : y(!; t)Aj � fj(!; t) = 0 for some j = 1; : : : ; Jg

is zero dP 
 dt. In that case, every optimal solution u to (Pcont) is necessarily bang-

bang since it should satisfy the coextremality conditions with y. This, in turn, would
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require the solution to the network revenue management problem (Pcont) to be unique

since otherwise taking convex combinations of distinct bang-bang optimal solutions would

produce optimal solutions that are not bang-bang. However, calling for a unique bang-

bang solution to (Pcont) might be a strong assumption that would be hard to satisfy.

Admittedly, verifying the hypotheses stated immediately above for a general class of

problems is not easy, and it remains an open question for future research to identify

conditions on the problem primitives that will make these hypotheses true. Nonetheless,

these hypotheses bring out multiplicity of solutions and strict complementary slackness as

the key issues in proving the existence of optimal bid-price controls in the classical sense.

In the next section, we pursue an alternative path and construct an "-optimal bid-

price control for any given " > 0. To this end, we introduce a perturbed version of the

network revenue management problem. The perturbed problem for " > 0, in turn, gives

rise to an "-optimal bid price control, which can be viewed as a perturbation of a classical

bid-price control. The perturbation results in a strictly concave problem which has a

unique solution. This is a form of regularization that gives the strict complementarity

needed to ensure that the optimal primal solution can be derived directly from the dual

problem.

2.5. An "-Optimal Bid-Price Control

In this section, we introduce a perturbed version of the network revenue management

problem (Pcont) and its dual. Then we derive the coextremality conditions between the

two formulations, which eventually gives rise to an "-optimal bid-price control. For each

" > 0, the perturbed problem (P") can be stated as follows: Choose a booking rate vector
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u(!; t) for each (!; t) 2 
� [0; T ] so as to

maximize E

24 TZ
0

[f(!; t) � u(!; t)� 1
2

JX
j=1

"j(!; t)u
2
j(!; t)] dt

35
subject to

x(!; t) = C � AU(!; t); (!; t) 2 
� [0; T ]; (P")

U(!; t) =

tZ
0

u(!; s)ds; (!; t) 2 
� [0; T ];

0 � u(!; t) � d(!; t); (!; t) 2 
� [0; T ];

x(!; T ) � 0; ! 2 
,

where "j(!; t) is de�ned as follows: For j = 1; : : : ; J and (!; t) 2 
� [0; T ], let

(2.15) "j(!; t) =

8><>:
"

dj(!;t)
if dj(!; t) > 0;

" otherwise.

The perturbed problem (P") is the same as the network revenue management problem

(Pcont), except for the quadratic term in its objective, which makes it a strictly concave

problem. Thus, the perturbed problem (P") has a unique solution. Consequently, by this

simple perturbation we avoid the issues of multiplicity of the solution or degeneracy issues

encountered earlier, which in turn leads to an easy characterization of the solution to the

perturbed problem (P") in terms of the optimal shadow price process derived from its

dual formulation.

The dual problem (D") of the perturbed network revenue management problem (P")

can be stated as follows (see Appendix B.5 for its derivation): Choose a K-dimensional,
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square integrable, random vector y0 2 F0 and a K-dimensional, square-integrable mar-

tingale M , which is null at zero, stopped at time T; and adapted to the �ltration {Ft;

t 2 R+}, so as to

minimize E

24 TZ
0

g"(f(!; t)� y(!; t)A; d(!; t))dt+ C � y0(!)

35
subject to (D")

y(!; t) = y0(!) +M(!; t); (!; t) 2 
� [0; T ];

y(!; T ) � 0; ! 2 
,

where g"(z; d) =
PJ

j=1 h"(zj; dj) and for j = 1; : : : ; J , h" is given by

(2.16) h"(zj; dj) =

8>>>><>>>>:
0 if zj � 0;

zjdj � "
2
dj if zj � ";

z2j d
2
j

2"
if 0 < zj < ":

As pointed out earlier, the di¤erence between (P") and (Pcont) is that (P") has the

strictly concave term �1
2

PJ
j=1 "j(!; t)u

2
j(!; t) in its objective function in addition to the

revenue term f(!; t) � u(!; t), which makes (P") a strictly concave problem. As a result,

there is a unique optimal solution u" for (P"), cf. Proposition 22, which can be determined

through the coextremality conditions between (P") and (D"), cf. Proposition 21.

The following proposition summarizes the duality results between the two formulations

that are relevant for our purposes; its proof is given in Appendix B.5.
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Proposition 21. The perturbed primal problem (P ") and its dual (D ") have the same

optimal objective value. Moreover, letting u" be a feasible control for (P ") with the cor-

responding state trajectory x", and (y"0;M
") be a feasible control for (D ") with the corre-

sponding state trajectory y", the controls u" and (y"0;M
") are optimal for (P ") and (D "),

respectively, if and only if they satisfy the following coextremality conditions (2.17) and

(2.18) given below:

(2.17) y"(!; T ) � x"(!; T ) = 0; a.e. ! 2 
;

and for j = 1; : : : ; J and almost all (!; t) 2 
� [0; T ] with dj(!; t) > 0;

(2.18)

if u"j(!; t) = 0; then fj(!; t)� y"(!; t)Aj � 0,

if u"j(!; t) = dj(!; t); then fj(!; t)� y"(!; t)Aj � ";

if 0 < u"j(!; t) < dj(!; t); then fj(!;t)�y"(!;t)Aj
"

dj(!; t) = u"j(!; t).

One would expect that for small values of " the objective value of the perturbed prob-

lem (P") is close to that of the network revenue management problem (Pcont). Building

on this intuition, we next construct a bid-price control (�"; �") which is "-optimal for the

network revenue management problem (Pcont) for " > 0. To facilitate our construction,

�x an optimal state trajectory y" for the perturbed dual problem (D") for each " > 0.

Then, for " > 0; let �" = y" and

(2.19) �"(zj; fj; dj) =

8>>>><>>>>:
0 if fj < zj;

dj if fj > zj + ";

fj�zj
"
dj if zj � fj � zj + ":
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It follows from De�nition 13, cf. (2:3), that for each " > 0, the bookings under the

bid-price control (�"; �") are given as follows.

(2.20) u"j(!; t) =

8>>>><>>>>:
0 if fj(!; t)� �"(!; t)Aj < 0;

dj(!; t) if fj(!; t)� �"(!; t)Aj > ";

fj(!;t)��(!;t)Aj
"

dj(!; t) if 0 � fj(!; t)� �"(!; t)Aj � "

for (!; t) 2 
� [0; T ] and j = 1; : : : ; J . The following proposition states the optimality of

the control u" given in (2.20) for the perturbed problem (P") and is proved in Appendix

B.5.

Proposition 22. For each " > 0, the booking control fu"(!; t) : (!; t) 2 
 � [0; T ]g

given in (2.20) is the unique optimal control for the perturbed problem (P ").

One would hope that for small values of " > 0, the performance of the bid-price

control (�"; �") is close to the optimal objective value of (Pcont). Indeed, the following

theorem establishes the "-optimality of the bid-price control (�"; �"). It also shows that

the booking controls u" resulting from the bid-price controls f(�"; �") : " > 0g are close to

an optimal solution to the network revenue management problem (Pcont) for small values

of ". Viewing the booking controls u" for " > 0 as an element of L2, the space of square

integrable functions on 
 � [0; T ], it is easy to see that the controls u" for " > 0 are

uniformly bounded in L2. Thus, it follows from Alaoglu�s Theorem, cf. [28], that the

collection of booking controls fu" : " > 0g is weak� compact. De�ning U as the collection

of weak limit points of the sequences of booking controls fu"n : n � 1g where "n & 0 as

n!1, the following theorem establishes the optimality of every weak limit u 2 U , and

its proof is given in Appendix B.5.
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Theorem 23. The collection of bid-price controls f(�"; �") : " > 0g and the associated

booking controls fu" : " > 0g satisfy the following:

a) For each " > 0, the bid-price process �" is a non-negative martingale.

b) For each " > 0, the bid-price control (�"; �") is �"-optimal, where

(2.21) � =

JX
j=1

Z T

0

E[dj(!; t)]dt:

c) Every weak limit u 2 U of the booking controls fu" : " > 0g as "& 0 is an optimal

booking control for the network revenue management problem (Pcont).

For " > 0 and product j = 1; : : : ; J , the bid-price control (�"; �") behaves in the same

way as a classical bid-price control as long as fj(!; t) � �"(!; t)Aj does not fall in the

interval (0; "), in which case a classical bid-price control would dictate booking all of the

demand. In contrast, the bid-price control (�"; �") results in a booking rate of

fj(!; t)� �"(!; t)Aj

"
dj(!; t) < dj(!; t):

Figure 2.2 displays u"j(!; t) as a function of the di¤erence fj(!; t)� �"(!; t)Aj. The slope

of the line segment in the middle of the �gure is dj(!; t)=", and as "& 0, the graph looks

more and more like a step function, corresponding to a bang-bang control, which would

result from a classical bid-price control.

2.6. Discussion

We consider a continuous-time model of network revenue management. First, we prove

that there exists an optimal generalized bid-price control, where the bid-price process
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Figure 2.2. The bookings corresponding to the "-optimal bid-price control (�"; �")

forms a martingale. A generalized bid-price control consists of a bid-price process and

a capacity usage limit process, which creates limits on the instantaneous capacity usage

rate of the resources. We also identify su¢ cient conditions under which an optimal bid-

price control in the classical sense exists. Although identifying simpler conditions on

the problem primitives under which these su¢ cient conditions can be veri�ed does not

seem easy, they still bring out the key step in proving such results. Next, we analyze a

perturbed version of the network revenue management problem and its dual, using which

we construct an "-optimal bid-price control. The bid-price process associated with the

"-optimal bid-price control forms a martingale, too. Finally, we show that every weak�

limit of the sequence of booking processes resulting from the "-optimal bid-price controls

as "& 0 is an optimal solution to the network revenue management problem.

Connection to Forward-Backward Stochastic Di¤erential Equations (FBS-

DEs). In Chapter 3, we will show that through another perturbation, the optimal primal

and dual state trajectories can be expressed as a solution to a FBSDE; see [29] and the
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references therein for an overview of FBSDEs. This intriguing connection is useful in two

regards: First, the numerical methods for solving FBSDEs can be adapted to our setting

to compute (near) optimal bid prices; see, for example, [41] and [27] for PDE methods

and [13] and [9] for Monte-Carlo methods for solving FBSDEs. Indeed, the latter studies

report encouraging results for solving FBSDEs in high dimensions. Second, the question

of whether there exists an "-optimal bid-price control in the classical sense can equiva-

lently be stated as a question of the existence of a solution to a FBSDE; see Chapter 3

for further discussion.

Connection to Dynamic Programming. Recall that the stochastic primitives

of our model are very general, allowing an arbitrary dependence structure both across

time and across products. In particular, the underlying demand process need not be a

Markovian process. [22] notes that "... Bellman equation approach is essentially limited

to Markovian systems." Therefore, analyzing the network revenue management problem

(Pcont) under general probabilistic assumptions by dynamic programming does not seem to

be a viable approach. Thus, we adopt the convex analysis approach of [11]. Nonetheless,

[11] formally derives a connection between his approach and the dynamic programming

approach for controlled Ito processes, and shows formally (under various technical as-

sumptions) that the optimal dual state variable equals the gradient of the value function

obtained by dynamic programming along the optimal trajectory. Even if we look at the

restrictive version of the network revenue management problem, which is Markovian, the

state space constraints prevents us from making such a connection. Nonetheless, we in-

tuitively expect in a Markovian setting that the optimal bid prices (or shadow prices)
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derived from the dual problem correspond to (generalized) gradients of the value function

obtained from the dynamic programming formulation.

Practical insights and implementation issues. Although we study a stylized

rate-based model, or a stochastic �uid model, the insights we provide carry over to more

practical settings. For instance, one can model the demand for various products as a

multidimensional, doubly-stochastic Poisson process, where the intensity of the Poisson

process is given by a constant multiple of the demand rate process fd(!; t) : (!; t) 2


� [0; T ]g of Section 2.1. For such systems with high initial capacity and high demand,

the model introduced in Section 2.1 is a good approximation. Indeed, it is the so-called

associated �uid model. It is important, however, to point out that our �uid model is a

stochastic �uid model, and it captures all key trade-o¤s faced by the system manager

unlike most �uid models considered in the literature which are deterministic models.

Moreover, viewing our rate-based network revenue management model as a �uid model

of a more practical system and using its solution, one can propose near optimal policies.

To elaborate further, one can implement the "-optimal bid-price controls proposed in the

preceding sections in a practical setting as follows. At every point in time, given the

"-optimal bid prices �" for our rate based model, a request for product j is accepted if

fj � �"Aj + ", and it is rejected if fj � �"Aj, while the system manager �ips a coin with

success probability (fj � �"Aj)=" to decide when 0 < fj � �"Aj < ". That is, she accepts

the request with probability (fj��"Aj)=" and rejects it with probability 1�(fj��"Aj)="

when 0 < fj � �"Aj < ". Moreover, as updating the bid-prices continuously may not be

practical, one could use a discrete review policy with su¢ ciently small review periods.

We conjecture that such policies can be shown to be near optimal for systems with large
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capacity and high demand. Although we provide no proof of these assertions, the literature

on large call centers and their analysis via �uid models make these claims plausible; see

for example [7] and [8].

The martingale representation of optimal bid-prices also leads to a connection to the

literature on the pricing of American options where one tries to pick the best martingale

to optimize a certain objective; see for example [56], [3], and [35]. Indeed, the dual net-

work revenue management problem (Dcont) corresponds to picking the best non-negative

martingale to minimize a certain objective.

Finally, answering the question of when a (near) optimal bid-price control in the

classical sense exists remains a future research direction. Hypotheses 1-3 give su¢ cient

conditions under which an optimal bid-price control in the classical sense exists. Although

Proposition 20 sheds some light on the existence of optimal classical bid-price controls,

determining conditions on problem primitives that render Hypotheses 1-3 true remains

an open problem.
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CHAPTER 3

Bid-Price Controls for Network Revenue Management:

Connection to the Forward-Backward Stochastic Di¤erential

Equations (joint with Bar¬̧s Ata)

In this chapter, we discuss the connection of the continuous-time network revenue

management problem to the theory of (generalized) forward-backward stochastic di¤er-

ential equations (FBSDE); see [29] and the references therein. Our ultimate objective in

this chapter is to relate the optimal primal and dual state trajectories to the solution of

a forward-backward stochastic di¤erential equation. To be more speci�c, we show how

an "-optimal bid-price control and the corresponding solution to the continuous-time net-

work revenue management problem can be characterized as a solution to a (generalized)

FBSDE. The connection of "-optimal bid prices to FBSDEs is insightful in two regards:

First, the numerical methods for solving FBSDEs can be adapted in our setting to com-

pute bid prices. Second, the question of whether there exists an "-optimal TvR bid-price

control can equivalently be stated as a question of existence of a solution to a FBSDE.

To facilitate this connection, we next introduce yet another perturbation of the con-

tinuous time network revenue management problem and the corresponding dual problem.

As a preliminary, �rst de�ne R(�) = 6TJFD=�3, where F and D are upper bounds on

the fare and demand rate processes, respectively. Next, for � > 0 and z 2 R, de�ne  �(z)
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as

(3.1)  �(z) =

8><>: 0 if z � �;

R(�) (z��)
2

2
if z < �;

Then, for "; � > 0, the perturbed problem (P";�) can be stated as follows: Choose the

booking rate vector u(!; t) for each (!; t) 2 
� [0; T ] so as to

maximize E

24 TZ
0

 
f(!; t) � u(!; t)� 1

2

JX
j=1

"j(!; t)u
2
j(!; t)

!
dt

35
� E

24 TZ
0

KX
k=1

 �(xk(!; t)) dt

35
subject to

x(!; t) = C � AU(!; t); (!; t) 2 
� [0; T ]; (P ";�)

U(!; t) =

tZ
0

u(!; s)ds; (!; t) 2 
� [0; T ];

0 � u(!; t) � d(!; t); (!; t) 2 
� [0; T ];

where "j(!; t) is de�ned by (2.15) for (!; t) 2 
� [0; T ] and j = 1; : : : ; J .

In the perturbed problem (P";�), the term  � in the objective is a strictly convex cost

function on the state variable xk for k = 1; : : : ; K. For capacity levels below �;  � results

in a quadratic cost term, whereas no cost is incurred when the capacity of a resource is

greater than or equal to �, cf. (3.1). Although we do not have a hard constraint imposing

the non-negativity of the remaining capacity at any time in the planning horizon, notice

that  �(z) % 1 for z < 0 as � & 0. Our de�nition of R(�) simply ensures that the
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function  �(�) results in su¢ ciently large penalty so as to ensure that the resulting state

trajectory is non-negative. Indeed, it will be shown that for given " > 0 and � > 0,

any optimal booking rate control that solves (P";�) would almost surely have nonnegative

capacity for each resource at the end of planning horizon, cf. Proposition 26.

The following de�nitions are needed to introduce the dual problem associated with

(P";�): For � > 0 and z 2 RK let ��(z) =
PK

k=1 �
�
k(zk), where for k = 1; : : : ; K,

(3.2) ��k(zk) =

8><>: 0 if zk > 0;

1
R(�)

z2k
2
+ �zk if zk � 0:

Then, the dual formulation (D";�) associated with (P";�) is stated as follows (see Appendix

C for its derivation): Choose a K-dimensional, square integrable, random vector y0 2 F0;

a K-dimensional, square integrable stochastic process f :y(!; t) : (!; t) 2 
 � [0; T ]g and

a K-dimensional, square integrable martingale M , which is null at zero and stopped at

time T; and adapted to the �ltration {Ft; t 2 R+}, so as to

minimize E

24 TZ
0

[g"(f(!; t)� y(!; t)A; d(!; t)) + ��(
:
y(!; t))]dt+ C � y0(!)

35
subject to

y(!; t) = y0(!) +

Z t

0

:
y(!; s)ds+M(!; t); (!; t) 2 
� [0; T ]; (D";�)

:
y(!; t) � 0; (!; t) 2 
� [0; T ];

y(!; T ) = 0; ! 2 
,

where g"(z; d) =
PJ

j=1 h"(zj; dj) and h"(�) is given by (2.16). The following proposition

establishes the non-negativity of the dual state trajectories and is proved in Appendix C.
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Proposition 24. Every feasible dual state trajectory y for the perturbed problem (D";�)

is non-negative for a.e. (!; t) 2 
� [0; T ].

One di¤erence between the perturbed problem (D";�) and the perturbed dual problem

(D") of Chapter 2 is that we choose
:
y, the rate of change or drift of the dual state variable

y, and incur the in�nitesimal cost rate of ��(
:
y(!; t)) at (!; t) 2 
 � [0; T ]. Another

important di¤erence is that, any feasible dual state trajectory y for (D";�) is equal to zero

at time T for a.e. ! 2 
, whereas the optimal dual state trajectory y" for (D") satis�es

y"(!; T ) � x"(!; T ) = 0; ! 2 
;

where x" is the primal state trajectory associated with an optimal solution u" for (P").

The following proposition summarizes the duality results between the formulations

(P";�) and (D";�) that are relevant for our purposes, and its proof is given in Appendix C.

Proposition 25. The perturbed primal problem (P ";�) and its dual (D ";�) have the

same optimal objective value. Moreover, letting u";� be a feasible control for (P ";�) with the

corresponding state trajectory x";�, and (y";�0 ;
:
y
";�
;M ";�) be a feasible control for (D ";�) with

the corresponding state trajectory y";�, the controls u";� and (y";�0 ;
:
y
";�
;M ";�) are optimal

for (P ";�) and (D ";�), respectively, if and only if they satisfy the following coextremality

conditions (3.3) and (3.4): For k = 1; : : : ; K and almost all (!; t) 2 
� [0; T ];

(3.3)

:
y
";�
k (!; t) = 0 if x";�k (!; t) � � and

:
y
";�
k (!; t) = R(�)(x";�k (!; t)� �) if x";�k (!; t) < �;
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and for j = 1; : : : ; J and almost all (!; t) 2 
� [0; T ] with dj(!; t) > 0;

(3.4)

if u";�j (!; t) = 0; then fj(!; t)� y";�(!; t)Aj � 0,

if u";�j (!; t) = dj(!; t); then fj(!; t)� y";�(!; t)Aj � ";

if 0 < u";�j (!; t) < dj(!; t); then fj(!;t)�y";�(!;t)Aj
"

dj(!; t) = u";�j (!; t).

Next, we de�ne the bid-price control (�";�; �";�) for the continuous-time network rev-

enue management problem for "; � > 0. To facilitate our construction, �x an optimal state

trajectory y";� for the perturbed dual problem (D";�) for each "; � > 0. Then, for "; � > 0;

let �";� = y";�; and �";� = �" as de�ned in (A.23). Note that �";� = y";� is a valid bid-price

process, cf. Proposition 24. Then the bookings under the bid-price control (�";�; �";�) are

given as follows, cf. (2.3).

(3.5) u";�j (!; t) =

8>>>><>>>>:
0 if fj(!; t)� �";�(!; t)Aj < 0;

dj(!; t) if fj(!; t)� �";�(!; t)Aj > ";

fj(!;t)��";�(!;t)Aj
"

dj(!; t) if 0 � fj(!; t)� �";�(!; t)Aj � ";

for (!; t) 2 
 � [0; T ] and j = 1; : : : ; J . The following proposition states the optimality

of the control u";� for the perturbed problem (P";�), and it is proved in Appendix C.

Proposition 26. For each "; � > 0, the control fu";�(!; t) : (!; t) 2 
� [0; T ]g given

in (3.5) is the unique optimal control for the perturbed problem (P ";�). Moreover, for

"; � > 0, u";� is feasible for (Pcont).

For small values of "; � > 0, one would hope that expected revenue generated by u";� is

close to optimal objective value of (Pcont). Indeed, the following theorem establishes the

"-optimality of the bid-price control (�";�; �";�). We de�ne eU as the collection of weak
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limits of the booking controls fu";� : "; � > 0g as "; � & 0, that is, eU is the collection of
weak limit points of the sequences of booking controls fu"n;�n : n � 1g where "n; �n & 0 as

n!1. Then, the next theorem also establishes the optimality of every weak limit u 2 eU
for the continuous-time network revenue management problem (Pcont), and its proof is

given in Appendix C.

Theorem 27. The collection of bid-price processes f(�";�; �";�) : "; � > 0g and the

associated booking controls fu";� : "; � > 0g satisfy the following:

a) For each resource k = 1; : : : ; K and "; � > 0; the bid-price process �";�k is a non-

negative supermartingale adapted to the �ltration fFt : t 2 [0; T ]g with �";�k (!; T ) = 0 for

a.e. ! 2 
; whereas �";�k stopped at the �rst time the capacity of resource k drops below �

is a martingale.

b) For "; � > 0, the bid-price control (�";�; �";�) is (�"+ ��)-optimal, where � is given

by (2.21) and

(3.6) � =
KJF

mink;jfAkj : Akj > 0g
:

c) Every weak limit u 2 eU of the booking controls fu";� : "; � > 0g as "; � & 0 is an

optimal control for the continuous-time network revenue management problem (Pcont).

The next proposition shows how the dual state trajectory y";� associated with an "-

optimal bid-price control (�";�; �";�) and the corresponding solution to the continuous-time

network revenue management problem can be characterized as the solution to a (gener-

alized) Forward-Backward Stochastic Di¤erential Equation. The generalized Forward-

Backward Di¤erential Equation de�ned in (3.7)-(3.9) is obtained by coupling the system
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dynamics equations governing primal-dual state trajectories of solutions to (P";�) and

(D";�) with the coextremality conditions stated in Proposition 25 that characterize an

optimal primal-dual solution pair. The proof of Proposition 28 is given in Appendix C.

Proposition 28. For "; � > 0, stochastic processes x";� and y";� correspond to optimal

state trajectories for the primal problem (P ";�) and the dual problem (D ";�) if and only if

(x";�; y";�;M) jointly solve the following (generalized) FBSDE: For (!; t) 2 
� [0; T ], and

k = 1; : : : ; K,

dxk = �
"

JX
j=1

Akj�
";�(y(!; t)Aj; fj(!; t); dj(!; t))

#
dt;(3.7)

dyk =  
0

�(xk(!; t)) dt+ dMk;(3.8)

xk(0) = Ck and yk(!; T ) = 0;(3.9)

where M is a K-dimensional martingale, null at zero, stopped at time T and adapted to

the �ltration fFt; t 2 R+g, and

(3.10)  
0

�(xk) =

8><>: R(�)(xk � �) if xk < �;

0 if xk � �:

Moreover, given a solution (x";�; y";�;M) to the (generalized) FBSDE, the corresponding

optimal booking control u ";� for (P ";�) is uniquely determined by the coextremality condi-

tions (3.3)-(3.4).

The backward stochastic di¤erential equations were �rst introduced by [47] and [26];

and is by now well studied. Forward-backward di¤erential equations arise naturally in

contingent claim valuation problems in mathematical �nance. Solving the FBSDE as in
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(3.7)-(3.9) requires the coupling of the forward equation (3.7) with the backward equation

(3.9), which leads to a circular dependence.

The FBSDEs received considerable attention in recent years; see for example [48], [29]

and the references therein. There are two main methods for the study of FBSDEs: The

�rst one is purely probabilistic, and the main idea is to use Ito�s formula and contrac-

tion mapping arguments to obtain local existence and uniqueness. The second method

concerns a "four-steps scheme" (see [41] and [27]). The latter is a sort of combina-

tion of the methods of semi-linear partial di¤erential equations and probability theory.

In general, numerical solutions to FBSDE�s can be obtained via several approximation

schemes, see [25], [4], [5], [17] and [42] and the references therein. Clearly, one can adopt

these techniques to compute "-optimal bid prices for the continuous-time network revenue

management problem. The connection to FBSDEs also sheds light on the question of the

optimality of TvR bid-price controls.

Existence of "-optimal bid-price controls. Replacing the booking function �";� in

the generalized FBSDE in (3.7)-(3.9) by the booking function �, where �(z) = z31fz2�z1g,

gives rise to the following FBSDE: For (!; t) 2 
� [0; T ], and k = 1; : : : ; K,

dxk = �
"

JX
j=1

Akjdj(!; t)1ffj(!;t)�y(!;t)Ajg

#
dt;(3.11)

dyk =  
0

�(xk(!; t)) dt+ dMk;(3.12)

xk(0) = Ck and yk(!; T ) = 0;(3.13)

where M is a K-dimensional martingale, null at zero, stopped at time T and adapted to

the �ltration fFt; t 2 R+g. The next proposition shows that we can state the question of
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existence of an "-optimal TvR bid-price control as a question of existence to a FBSDE.

The proof of Proposition 29 is given in Appendix C.

Proposition 29. For � > 0, if (x; y;M) jointly solve the FBSDE de�ned in (3.11)-

(3.13), then the TvR bid-price control with bid-price process � = y is ��-optimal.

3.1. The Continuous Information Case

In this subsection, we introduce an additional assumption on the underlying informa-

tion structure, which enables us to reach sharper conclusions. Namely, we assume that the

information structure {Ft; t 2 R+} is continuous. An information structure is continuous

if the posterior probability of any event is updated in a continuous manner. To be more

precise, we next present the de�nition of a continuous information structure due to [36].

De�nition 30. The information structure fFt; t 2 R+g (already assumed to be right

continuous) is said to be continuous if for every event E 2 F , the posterior probability

assessment P(E j Ft) has a continuous modi�cation.

Examples of continuous information structures include the �ltration generated by a

continuous process having the strong Markov property. Thus, the information structure

generated by a di¤usion process is continuous. The canonical example of a continuous

information structure is the one generated by a Brownian motion. The next proposition

states the equivalent characterizations of continuous information structures and is proved

in [36].

Proposition 31. The following statements are equivalent:

(i) The information structure fFt; t 2 R+g is continuous.
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(ii) Every martingale on (
,F ,P) adapted to fFt; t 2 R+g has a continuous modi�-

cation.

(iii) All stopping times are predictable.

Consider a stopping time � which is de�ned as the �rst time an event happens. Then

this event is foretellable by a sequence of events except possibly on a set of probability

zero, if � is a predictable stopping time. Therefore it follows from Proposition 31 that

under a continuous information structure no event can take us by surprise. That is, as

put by [23], "we are forewarned by a succession of precursory signs, of the exact time the

phenomenon will occur". Also, recall that the martingale term M in the dual problem of

control contains the relevant information from future and serves the purpose of integrating

into the dual variable y this necessary information. Principally, the information may arrive

discontinuously because of unpredictable changes in the business environment, political

situation etc. In these circumstances, the system manager should revise his predictions so

as to take into account the new information that became available. This new information

is incorporated exactly through the term dM . Then, the new information can signi�cantly

increase or decrease the bid prices which re�ect the marginal value of resources. Hence,

the continuity of M under a continuous information structure is the re�ection of the

continuous �ow of information into the system.

To elaborate further, suppose that any martingale, and hence the optimal bid-prices,

can be represented as a stochastic integral with respect to a given Brownian motion w plus

a martingale M that is orthogonal to w in the sense of [11]. Then, loosely speaking, w

contains the short term uncertainties andM is a prediction of the long-term uncertainties.

The interpretation of the martingale term M is intuitively appealing since it enables us
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to express formally the distinction in the decision making process between continuous

information processing which is done on a routine basis and discontinuous information

processing which is done by reassessing the predictions.

3.1.1. FBSDE�s Under Continuous Information

Taking the canonical continuous information structure generated by a Brownian motion

as the underlying information structure, every martingale on this space is an Ito integral

and the generalized FBSDE in (3.7)-(3.9) reduces to

dxk = �
"

JX
j=1

Akj�
";�(y(!; t)Aj; fj(!; t); dj(!; t))

#
dt;(3.14)

dyk =  
0

�(xk(!; t)) dt+ Zk � dw;(3.15)

xk(0) = Ck and yk(!; T ) = 0;(3.16)

where w represents an m-dimensional Brownian motion which generates the underlying

information structure, and Zk is an m-dimensional adapted stochastic process.

3.2. FBSDEs under general information structures

Under general information structures, the martingale multiplicity of the informa-

tion structure leads to a representation similar to the one in continuous information

case, cf. Section 3.1. To that end, let M2 denote the space of square integrable mar-

tingales on (
,F ,P) which are null at zero. A collection of orthogonal martingales

M = (M1; : : : ;MN) adapted to {Ft; t 2 R+} is an orthogonal basis with multiplicity

N(M2) � 1 for M2 if any square integrable martingale in M2 can be expressed as a

stochastic integral with respect to M , cf. Chapter 4 of [37].
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The path breaking work of [39] shows the existence of an orthogonal basis of martin-

gales M = (M1; : : : ;MN) for M2, where the multiplicity N(M2) of M2 represents the

dimension of uncertainty which could be resolved at any one time. A direct consequence

of this martingale representation technique is that the (general) FBSDE (3.7)-(3.9) can

now be written as

dxk = �
"

JX
j=1

Akj�
";�(y(!; t)Aj; fj(!; t); dj(!; t))

#
dt;(3.17)

dyk =  
0

�(xk(!; t)) dt+ �k � dM;(3.18)

xk(0) = Ck and yk(!; T ) = 0;(3.19)

where M is the orthogonal martingale basis and �k is an N(M2)-dimensional predictable

process. Then, the problem of solving for an "-optimal bid-price control reduces to the

one of looking for the process �k for k = 1; : : : ; K.

3.3. Discussion

By the help of a perturbation of the continuous-time network revenue management

problem (Pcont), we write a (generalized) FBSDE whose solution gives us an optimal

primal trajectory and an "-optimal bid-price process. The "-optimal bid-price process

associated with resource k = 1; : : : ; K forms a supermartingale and is equal to zero at

the terminal time, whereas the bid-price process stopped at the �rst time the capacity of

resource k drops below � is a martingale. The connection between the network revenue

management problem and the FBSDE�s may lead to new insights and a novel computa-

tional approach.
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We also discuss in Section 3.1, the special case of continuous information. Under con-

tinuous information structures, no event is a "surprise" and the optimal bid-prices are

continuous martingales. An important continuous information structure is the one gener-

ated by the Brownian motion, under which all continuous martingales can be expressed

as Ito integrals. This, in turn enables us to employ Ito calculus and the machinery of

FBSDE�s. References for several numerical studies are also provided in Section 3.
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CHAPTER 4

Revenue Management by Sequential Screening (joint with Bar¬̧s

Ata and James D. Dana, Jr.)

Most models of revenue management consider dynamic demand �consumers arrive

and sequentially choose whether or not to purchase. While this is a reasonable assumption

for many non-durable consumer goods, for durable goods, or services that are purchased in

advance, such as travel and lodging, consumers often choose both when and whether or not

to purchase. This paper considers a revenue management model with strategic consumers,

that is, consumers who are forward-looking and choose when to buy. We assume all

consumers �arrive�at the very beginning, but demand is nevertheless dynamic because we

assume that consumers learn their valuations at di¤erent times. While consumers learn

their valuations sequentially, the �rm cannot observe when consumers learn their demands

or what they are willing to pay when they learn those demands and so consumers are free

to purchase at any time, including both before and after they learn their valuations.

Revenue management has two important elements. The �rst is dynamic capacity con-

trol, which is valuable when the total demand is uncertain. The second is price discrimi-

nation, which is valuable when consumers are heterogeneous and have private information

about their demands. This chapter considers only this second element.

Our �rm chooses its pricing policy to maximize its expected pro�t given knowledge of

the distribution of consumer demands, but without knowing which consumer is which. We
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formulate the �rm�s optimal pricing policy as a mechanism design problem. In particular,

we look for the pro�t maximizing direct-revelation pricing policy. While direct revelation

mechanisms are not used in practice, because direct-revelation mechanisms are always

optimal, they represent the theoretical benchmark against which all other pricing policies

should be compared. After analyzing the direct revelation mechanism we demonstrate

that it can be implemented using a menu of simple contingent contracts.

We �nd that the optimal pricing policy induces all consumers to make their purchases

at the very beginning, before they learn their valuations, but allows consumers to cancel

and claim a refund after they learn their valuations. Partially refundable sales are a

commonly used pricing practice by airlines, hotels, theaters, and restaurants. Airlines,

for example, often o¤er fully refundable, partially refundable, and non-refundable tickets.

Moreover, the availability of these refund options changes over time. Lower priced, non-

refundable tickets may be available only in advance, while higher-priced, refundable tickets

are often available until the day of departure. Partially refundable, or equivalently, options

contracts are also used by large manufacturers to purchase electric power. These contracts

reduce the risk faced by manufacturers, but also allow electricity suppliers to extract

more of the surplus from the manufacturers because the exercise prices in the options are

typically less distortionary than electricity spot prices.

Our model generalizes the work of [19] who considered the optimal pricing policy

when heterogeneous consumers learn about their demand at the same time. As in their

work, the optimal pricing policy induces all consumers to make their purchases at the

very beginning, before they learn their valuations, but allows consumers to cancel and

claim a refund after they learn their valuations and the �rm varies the size of the refund
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that it o¤ers consumers in order to extract more surplus. However, we show that the �rm

does even better when it varies both the length of time that they are refundable as well

as the size of the refund.

O¤ering refundable purchases, or equivalent option contracts, allows the �rm to ex-

tract more total surplus from consumers and to better discriminate among them. When

consumers are ex ante homogeneous, the �rm charges each consumer a premium equal

to marginal cost if they take the good, and a �at fee equal to their expected consumer

surplus whether or not they take the good. This contract extracts all the surplus from

consumers and is more pro�table than the optimal spot price. When consumers are ex

ante heterogeneous the �rm can do better by o¤ering a menu of contracts. Consumers

vary in the ex ante distribution of their valuations and the point in time when they learn

their valuation. By varying when the cost of taking the good (or the return price) and the

point in time when consumers must make their �nal consumption decision, the �rm can

extract more surplus than if it o¤ers a single contract. Indeed, under some assumptions

on the demand distribution the �rm can extract the entire consumer surplus even when

consumers are heterogeneous.

We consider a variety of distributional assumptions for consumers�valuations. When

consumers who learn their valuations later have higher valuations, in the sense of �rst order

stochastic dominance, then the optimal pricing policy gives the highest value consumer

the longest time to exercise the option and a refund price equal to marginal cost, or

equivalently the longest time to claim a refund and a refund price equal to marginal cost.

This induces the e¢ cient consumption for this consumer. If the �rst best is feasible,

lower valuation consumers purchase tickets that become non-refundable sooner, and the
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price paid is increasing in consumers�expected valuations, but the refund price is always

equal to marginal cost. If the �rst best is not feasible, then lower valuation consumers

still purchase tickets which become non-refundable sooner and the refund price is higher

than marginal cost, at least for some consumers. Intuitively, o¤ering a higher refund is

more attractive to low valuation consumers than high valuation consumers because they

exercise the option more often. So the �rm can increase the refund price, and increase the

original purchase price by a nearly o¤setting amount, and make the contract less attractive

to the highest valuation consumer, who will never be able to exercise that option because

they will not learn their valuations in time.

When consumers who learn later have more dispersed valuations, that is, their dis-

tribution is a mean preserving spread of the distribution of valuations for all consumers

who learn earlier, we show that the �rst best is always achievable. That is, consumers

with less dispersed valuations purchase tickets that become non-refundable sooner, and

the price paid is increasing in the variance of consumers�valuations, but the refund price

is always equal to marginal cost.

Other papers in the economics literature have looked at pricing when consumers learn

their valuations over time. [18] considers a monopolist with commitment power who

chooses whether to sell to consumers at a uniform price before or after they have learned

their demand. In a related paper, [24] considers a monopolist without commitment

who intentionally creates a shortage of capacity to create a buying frenzy in the spot

market and to induce buyers to purchase early, before they know their valuations. [21]

considers a competitive model in which heterogeneous consumers divide their purchases

between advanced sales, when they may not yet know their demands, and spot market
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sales, after their valuations have been realized. [33] consider a monopolist who sells to

heterogeneous consumers, some of whom purchase early before they know their departure

time preferences and some of whom purchase late after they learn their preferences. Like

[19], [21] and [33] assume consumers learn their valuations at the same time. (See also

[43], [32]).

Some papers in the operations management literature have considered optimal pricing

and capacity controls when heterogeneous consumers purchase in an exogenously given,

sequential order. [40] considers a setting where the consumers have either high or low

valuations, which are known and observable. Consumers with low valuations arrive in the

�rst period, while the consumers with high valuations arrive in the second period. There

is aggregate uncertainty, and a system manager chooses how much capacity to reserve for

the consumers with high valuations. [40] characterizes the optimal policy as a booking

limit policy. [14] and [20] provide extensions of Littlewood�s result to n customer classes,

characterizing the optimal capacity control policy by nested booking limits. There are

extensions of this capacity control models in various di¤erent directions in the operations

literature. [60] provides an extensive review of that literature. Although most papers in

the operations management literature ignore the strategic consumer behavior, modeling

consumer behavior received some attention in recent years; see [57] for a review.

The rest of the chapter is structured as follows: Section 4.1 presents the model. The

mechanism design problem is introduced in Section 4.1.1, where we also present the nec-

essary and su¢ cient conditions for implementing the �rst-best solution. We consider a

variety of distributional assumptions for consumers�valuations in Sections 4.2-4.4. We

�rst consider the case where the consumer valuations increase over time in the sense of
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First Order Stochastic Dominance in Section 4.2. Section 4.3 investigates the case with

the consumer valuations exhibiting "reversed" First Order Stochastic Dominance. We an-

alyze the situation where the valuations become more dispersed over time, i.e. the case of

mean preserving spread, in Section 4.4. Some concluding remarks are provided in Section

4.5. The technical and lengthy proofs are relegated to Appendices. Chapter 5 establishes

a revelation principle for our setting in continuous time. Appendix D.1 establishes some

technical results regarding the mechanism design problem. Appendix D.2 consists of the

lengthy and technical proofs in the First Order Stochastic Dominance case. Finally, the

technical Appendix D.3 is dedicated to the derivation of the dual problems associated

with convex dynamic control problems that arise in the analysis.

4.1. The Model

We assume that consumers are heterogeneous and that their types are continuously

distributed on [0; �t] with a strictly positive density function h (t) and cumulative distrib-

ution function H (t). That is, h (t) represents the relative frequency of type t consumers

in the population. Consumers learn their type at time zero. The type t determines the

probability distribution of their valuations as well as the time at which they learn their

valuations. Without loss of generality, we assume that type t consumer privately learns

her realized valuation at time t. The valuation of a type t consumer is distributed ac-

cording to the probability density function g (v; t) on the interval [v; v]. Let f (v; t) be the

joint distribution of types and valuations. Clearly, it follows that

Z
v;t

f (v; t) dvdt = 1, h (t) =
Z
v

f (v; t) dv, and g (v; t) =
f (v; t)

h (t)
:
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We also assume that each unit of the good costs the monopolist c and that both the

consumers and the monopolist are risk neutral, and the consumption takes place at time

�t.

4.1.1. Mechanism Design Problem

In this section, we consider the pro�t maximizing incentive-compatible direct-revelation

mechanisms for the monopolist. The revelation principle established in Chapter 5 proves

that there is no loss of generality in assuming that the monopolist should structure his

incentive system so that all consumers will be willing to reveal all of their information to

him honestly. This result generalizes the revelation principle of [45] to continuous-time

communication games, and is of interest on its own right. It also implies that in the

optimal incentive-compatible direct-revelation mechanism, contracting takes place after

the consumer privately learn their type but before they know their valuations perfectly,

i.e. consumers are asked to report their type at time zero. Since the monopolist can do

no better than the maximally centralized communication system in which, at every stage,

each individual con�dentially reports all his private information to a central mediator, a

type t consumer is asked to report her realized valuation at time t, the exact moment she

learns her valuation. Then, for each pair of reports of valuation v and type t, let y (v; t) be

the probability that the monopolist delivers the good, and let x (v; t) denote the payment

to the monopolist.
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The monopolist�s mechanism design problem can be stated as follows: Choose pay-

ments �
x (v; t) : t 2 [0; t]; v 2 [v; v]

	
and delivery probabilities

�
y (v; t) : t 2 [0; t]; v 2 [v; v]

	
so as to

maximize
Z
v;t

f (v; t) [x (v; t)� cy (v; t)] dvdt

subject toZ v

v

[vy (v; t)� x (v; t)] g (v; t) dv � 0 for t 2 [0; t]; (IR)

vy (v; t)� x (v; t) � vy (v0; t)� x (v0; t) for v; v0 2 [v; v] and t 2 [0; t] (ICt)Z v

v

[vy (v; t)� x (v; t)] g (v; t) dv

�
Z v

v

h
max
v0
fvy (v0; t0)� x (v0; t0)g

i
g (v; t) dv for t0 > t; (IC0)Z v

v

[vy (v; t)� x (v; t)] g (v; t) dv

� max
v0

Z v

v

[vy (v0; t0)� x (v0; t0)] g (v; t) dv for t0 < t; (IC0)

0 � y (v; t) � 1 for t 2 [0; t] and v 2 [v; v]: (F)
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The �rst set of constraints are the individual rationality, or participation, constraints.

These constraints are imposed to guarantee that the �rm gives every consumer nonneg-

ative expected surplus. Note that there is no ex-post individual rationality constraint,

i.e. the ex-post utility vy (v; t) � x (v; t) of type t with a realized valuation v could be

negative. For example, the consumer might purchase a ticket to attend a meeting but

not be eligible for a full refund if she later realizes that she will not be able to attend the

meeting.

The second set of constraints, (ICt), are the incentive compatibility constraints with

respect to the consumers�realized valuations. These are imposed to guarantee that every

consumer, conditional on reporting their type at time zero truthfully, �nds it optimal to

report her realized valuation truthfully at time t.

The third set of constraints, (IC0) and (IC0), are the global incentive compatibility

constraints with respect to the reports of consumers�types. Note that there is a distinction

between "upward" deviations and "downward" deviations because when a type t consumer

reports a lower type, i.e., t0 < t, she will be asked to report her valuation before see knows

her true valuation, while if the consumer reports a higher type, i.e., t0 > t, she will be

asked to report her valuation after she knows her true valuation. (IC0) guarantees that

no consumer �nds it pro�table to deviate �upwards�. If a type t consumer pretends to

be type t0 > t, she will be asked to report her valuation at time t0 and she will report the

valuation that maximizes her ex-post surplus. Thus, the expected surplus that a type t

consumer gets by pretending to be type t0 > t is given by the right hand side of (IC0),

which should be less than or equal to the ex-ante surplus that a type t consumer gets by

reporting her type and subsequently her valuation truthfully.
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Similarly, (IC0) is imposed to guarantee that no consumer �nds it pro�table to deviate

"downwards". In this case, type t consumer reports the valuation that maximizes her

expected surplus given that she already reported her type as t0 < t. Hence, (IC0) imposes

the restriction that ex-ante surplus that a type t consumer gets by reporting her type and

subsequently her valuation truthfully is larger than the expected surplus she will obtain

by pretending to be type t0 < t and subsequently choosing her best report for valuation.

The �nal set of constraints, denoted by (F), require the delivery rule y to be feasible.

The following lemma characterizes how the consumers report their valuation if they do

not report their types truthfully at time zero and its proof is provided in the Appendix.

Lemma 32. (i) If a type t consumer reports her type as t0 > t at time zero, then for

any mechanism that satis�es the constraint (ICt), when she reports her valuation at time

t0, it is optimal for her to report her true valuation, that is,

v 2 argmax
v0
fvy (v0; t0)� x (v0; t0)g :

(ii) If a type t consumer reports her type as t0 < t at time zero, then for any mechanism

that satis�es (ICt), when she reports her valuation, it is optimal for her to report her

expected valuation at time t0, that is,

Et [v] 2 argmax
v0

Z v

v

[vy (v0; t0)� x (v0; t0)] g (v; t) dv;

where

Et [v] =
Z v

v

vg (v; t) dv for t 2 [0; �t] .
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Lemma 32 follows from (ICt) constraints and proves that if type t consumer deviates

upward and pretends to be a higher type t0 > t, she will report her true valuation at time

t0, which she already learned at time t. On the other hand, if type t consumer pretends

to be a lower type t0 < t, she will report her best prediction of her valuation at time t0,

namely her expected valuation Et [v], since she does not know her true valuation yet.

Using Lemma 32, we can simplify (IC0) and (IC0) and the monopolist�s problem be-

comes: Choose the payments
�
x (v; t) : t 2 [0; t]; v 2 [v; v]

	
and the delivery probabilities�

y (v; t) : t 2 [0; t]; v 2 [v; v]
	
so as to

maximize
Z
v;t

f (v; t) [x (v; t)� cy (v; t)] dvdt

subject toZ v

v

[vy (v; t)� x (v; t)] g (v; t) dv � 0 for t 2 [0; t]; (IR)

vy (v; t)� x (v; t) � vy (v0; t)� x (v0; t) for v; v0 2 [v; v] and t 2 [0; t] (ICt)Z v

v

[vy (v; t)� x (v; t)] g (v; t) dv

�
Z v

v

[vy (v; t0)� x (v; t0)] g (v; t) dv for t0 > t; (IC0)Z v

v

[vy (v; t)� x (v; t)] g (v; t) dv

�
Z v

v

[vy (Et [v] ; t0)� x (Et [v] ; t0)] g (v; t) dv for t0 < t; (IC0)

0 � y (v; t) � 1 for t 2 [0; t] and v 2 [v; v]: (F)

Ignoring the incentive compatibility constraints, (ICt), (IC0), and (IC0), it is easy to

see that the optimal solution to the monopolist�s problem is to set for all types y (v; t) = 1



102

if v � c and y (v; t) = 0 if v < c while extracting all of the expected surplus from the

consumers, that is, the monopolist chooses the payments x (v; t) such that

Z v

v

[vy (v; t)� x (v; t)] g (v; t) dv = 0 for all t:

In other words, ignoring the incentive compatibility constraints, the monopolist allocates

the good e¢ ciently (i.e., y (v; t) = 1 if v � c and y (v; t) = 0 if v < c) and extracts all of

the expected surplus from the consumers.

A solution to the mechanism design problem
�
x (v; t) ; y (v; t) : t 2 [0; t]; v 2 [v; v]

	
implements the �rst-best solution if it

(i) has e¢ cient allocation of the good (y (v; t) = 1 if v � c and y (v; t) = 0 if v < c),

(ii) extracts all the expected surplus from the consumers, i.e.

Z v

v

[vy (v; t)� x (v; t)] g (v; t) dv = 0 for all t;

(iii) satis�es the incentive compatibility constraints (ICt), (IC0) and (IC0).

The next proposition characterizes the conditions under which a monopolist can imple-

ment the �rst-best solution; and its proof is given in the Appendix. We introduce the fol-

lowing notation as an aid in the statement of the next proposition: De�ne Et [v � c; v � c]

as the expected surplus above the marginal cost of a type t consumer, i.e.

Et [v � c; v � c] =

Z v

c

(v � c) g (v; t) dv for t 2 [0; �t] :
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Proposition 33. The monopolist can implement the �rst-best solution if and only if

the following two conditions hold: For t 2 [0; �t] ;

(Condition 1) Et0 [v � c; v � c] � Et [v � c; v � c] for t0 > t;

and for types t such that Et [v] � c,

(Condition 2) Et0 [v � c; v � c] � Et [v � c] for t0 < t:

Proposition 33 makes it clear that the monopolist is better o¤ when consumers learn

their preferences sequentially. Speci�cally, when Conditions 1 and 2 hold, the monopolist

is able to implement the unconstrained �rst-best. On the other hand, when the consumers

learn their valuations at the same time, the monopolist cannot exploit the di¤erences in

learning times to screen consumers. In particular, the only setting when the monopolist

can implement the �rst-best in [19] is the degenerate case that all the consumers have

the same expected surplus from obtaining the good, i.e. Et [v � c; v � c] does not depend

on t.

Condition 1 of Proposition 33 is satis�ed whenever the valuations of consumers "in-

crease" as t increases. In that case, the higher types are more willing to pay for the

good and they get the good with a higher probability while the deviation of the lower

types to higher ones are deferred by the fact that their willingness to pay for the good

is less. Condition 2 is satis�ed when the expected valuations of di¤erent types are not

too di¤erent or if the loss in the expected surplus due to reporting her valuation before

the true realization is relatively large. For instance, if v > c (this is the case when c = 0

and v > 0), then the expected surplus of a consumer is not a¤ected by the timing of her
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report of her valuation and in this case Conditions 1 and 2 cannot both hold except in

the degenerate case when Et [v] is independent of t.

If Conditions 1 and 2 of Proposition 33 are satis�ed, then the �rst-best solution can

be implemented using the following menu of expiring refund contracts: For a report of

type t 2 [0; �t] at time zero, charge Et [v � c; v � c] + c for the ticket with a refund of

c if the ticket is returned until time t. Since the refund is c for the returned tickets,

only consumers with valuations higher than the cost will �y, which makes the allocation

e¢ cient. Moreover, the expected utility of all the consumers is equal to zero since

Z v

v

[vy (v; t)� x (v; t)] g (v; t) dv

=

Z v

c

vg (v; t) dv � (1�G (c; t)) (Et [v � c; v � c] + c)

�G (c; t)Et [v � c; v � c]

= 0:

If Condition 1 of Proposition 33 is satis�ed, no type t would want to purchase the ticket

designed for a higher type t0 > t. Similarly, if Condition 2 of Proposition 33 is satis�ed,

no type t would want to purchase the ticket designed for a lower type t0 < t since the

refund of the ticket for type t0 expires at time t0, while type t consumer is still uncertain

about her valuation for the ticket.

Next, we consider the optimal mechanism when Conditions 1 and 2 of Proposition 33

are not satis�ed. De�ne u (v; t) = vy (v; t)� x (v; t) to be the consumer�s ex post surplus
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after she truthfully reports his type t and then his realized valuation v. Also de�ne

U (t) =

Z v

v

u (v; t) g (v; t) dv

to be the expected surplus of a consumer of type t at time zero. We make the technical

assumption that U is of bounded variation, which is true for a very broad class of func-

tions. Letting G (�; t) denote the cumulative probability distribution of the valuations of

type t, we assume that it changes smoothly across types. That is, the partial derivative

@G (v; t) =@t exists for all v and t.

The next lemma establishes that for any optimal mechanism, when the consumer

draws a greater valuation, he receives the good with a greater probability and has a

greater consumer surplus. The proof of the lemma is standard in the mechanism design

literature and therefore is skipped.

Lemma 34. The incentive compatibility constraint (ICt) is satis�ed if and only if

(i) @u (v; t) =@v = y (v; t) ;

(ii) y (v; t) is non-decreasing in v.

In the next section, we analyze the case in which the types�valuations can be ordered

using �rst order stochastic dominance, where Condition 1 of Proposition 33 is readily

satis�ed.

4.2. First order stochastic dominance

In this section, we focus attention on the case when the consumers�valuation increase

with their type in the sense of �rst order stochastic dominance (FSD), which is the natural
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assumption in many settings. For example, in an airline context, business travellers often

have higher valuations than the leisure travellers and they typically learn their realized

valuation after the leisure types. The formal de�nition of �rst order stochastic dominance

in the context of our model is as follows.

De�nition 35. Type t is "higher" than type t0 if G (v; t) � G (v; t0) for all v. The type

space [0; �t] is ordered by �rst order stochastic dominance if t > t0 implies that t is higher

than t0 for all t; t0 2 [0; �t].

Under �rst order stochastic dominance, Condition 1 of Proposition 33 is satis�ed. To

see this, �rst notice that, for a given t, we can write

Et [v � c; v � c] =

Z v

c

(v � c) g (v; t) dv = (�v � c)�
Z v

c

G (v; t) dv;

where the second equality is obtained using integration by parts. Then, for any t0 > t, we

have

Et0 [v � c; v � c]� Et [v � c; v � c] =

Z v

c

[G (v; t)�G (v; t0)] dv � 0;

since G (v; t0) � G (v; t) for all v by FSD.

If Condition 2 of Proposition 33 is also satis�ed, then it is easy to see that the optimal

solution to the mechanism design problem is given by U (t) = 0 for all t and y (v; t) = 1

if v � c and 0 otherwise; and appropriate payment schemes are as described earlier.

However, if Condition 2 of Proposition 33 is violated, that is, if

E�t [v � c] > E0 [v � c; v � c] ;
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then for those types t such that Et [v] � c and

Et [v � c] > E0 [v � c; v � c] ;

it is pro�table to deviate at time zero and pretend that they are type zero.

This implies that the �rm cannot extract all the surplus and implement the e¢ cient

allocation without violating the incentive compatibility constraints. Therefore, we next

consider the case in which the type space is ordered with respect to �rst order stochastic

dominance and Condition 2 of Proposition 33 is violated.

In what follows, we �rst consider a relaxed version of the monopolist�s problem and

show that its optimal solution indeed satis�es all the constraints of the original problem.

Hence, it is optimal for the original problem as well. As an intermediate step, we �rst prove

that the expected surplus U (t) of type t is nondecreasing under FSD. Subsequently, a key

step in our approach is to establish that without loss of optimality, we can restrict attention

to solutions of the form y (v; t) 2 f0; 1g, cf. Proposition 37, which in turn corresponds

to refund contracts. We then characterize the best refund contract, cf. Proposition 39.

Finally, we show that the refund contract characterized in Proposition 39 is indeed optimal

for the monopolist�s screening problem.

Building on Lemma 34, the following proposition characterizes the expected surplus

function U , which facilitates our analysis. The proof of Proposition 36 is given in Appendix

D.2.
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Proposition 36. Under FSD, without loss of generality, the objective function can be

written as:

Z
v;t

f (v; t) [x (v; t)� cy (v; t)] dvdt =

Z
v;t

f (v; t) (v � c) y (v; t) dvdt� U (0)�
Z �t

0

(1�H (t)) dU (t) :

Moreover, the payments
�
x (v; t) : t 2 [0; t]; v 2 [v; v]

	
are non-negative and if the incen-

tive compatibility constraint (ICt) is satis�ed, then U is nondecreasing and satis�es

(4.1) 0 � U 0 (t) � �
Z v

v

y (v; t)
@G (v; t)

@t
dv:

Using Proposition 36, we next consider the following relaxed version of the monopo-

list�s problem (P1relaxed): Choose the delivery probabilities

�
y (v; t) : t 2 [0; t]; v 2 [v; v]

	



109

so as to

maximize
Z
v;t

f (v; t) [(v � c) y (v; t)] dvdt� U (0)�
Z �t

0

(1�H (t)) dU (t)

subject toZ v

v

[vy (v; t)� x (v; t)] g (v; t) dv � 0 for t 2 [0; t]; (IR)

y (v; t) =
@u (v; t)

@v
and y (v; t) is non-decreasing in v; (fICt)

0 � U 0 (t) � �
Z v

v

y (v; t)
@G (v; t)

@t
dv, (fIC0)

U (t) � max
t0<t

fEt [v] y (Et [v] ; t0)� x (Et [v] ; t0)g : (ICglobal)

0 � y (v; t) � 1 for t 2 [0; t] and v 2 [v; v]: (F)

The relaxed problem (P1relaxed) di¤ers from the original mechanism design problem in

several ways. First of all, the incentive compatibility constraints (ICt) are replaced by

their local counterparts (fICt), which are equivalent by Lemma 34. Moreover, the incentive
compatibility constraints regarding "upward" deviations (IC0) are ignored, except for the

local constraints (fIC0), which were derived from Proposition 36, cf. equation (4.1). The

incentive compatibility constraints (IC0) regarding "downward" deviations are rewritten

as (ICglobal). The individual rationality (IR) and feasibility (F) constraints are the same

as those in the original mechanism design problem.

For the remainder of this section, we make the standard assumption that the monotone

hazard rate condition holds on the valuation space, that is, (1�G (v; t)) =g (v; t) is non-

increasing in v.
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A key quantity for our analysis is the virtual surplus function � (v; t) de�ned as

� (v; t) = v � c+
(1�H (t))

h (t)

@G (v; t) =@t

g (v; t)
:

The virtual surplus function � (v; t) is similar to the one de�ned by [44] for one-dimensional

non-linear pricing problems. The �rst part of � (v; t) corresponds to the social surplus of a

type t consumer with valuation v from consuming one unit of the good, whereas the second

part is the distortion due to inducing truth-telling for a type t consumer with valuation

v. In addition to the hazard rate (1�H (t)) =h (t) as in the standard one-dimensional

non-linear pricing problems, the second term also includes an "informativeness measure"

(@G (v; t) =@t) =g (v; t), which represents how informative the type of the consumer is re-

garding his valuation. The distortions increase with the informativeness measure since

it is more di¢ cult for the monopolist (i.e. more information rent has to be given to the

consumer) in order to prevent marginally di¤erent consumers from pretending to be a

type t consumer with valuation v. Throughout the remainder of this section, we assume

that � (v; t) is increasing in v for a given t and increasing in t for a given v. Intuitively,

this implies that the revenue contribution of a consumer taking into account the incentive

constraints is increasing in valuation and type.

The following proposition partially characterizes the optimal solution to the relaxed

problem, and its proof is given in Appendix D.2.

Proposition 37. Under FSD, there exists an optimal solution to the relaxed problem

(P1relaxed) such that y(v; t) 2 f0; 1g. Moreover, for t 2 [0; �t], there exists a cut o¤ k (t)

such that y (v; t) = 1 if and only if v � k (t).
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The following corollary of Proposition 37 will be instrumental in characterizing the

optimal contract and is proved in Appendix D.2.

Corollary 38. Given an optimal solution to the relaxed problem (P1relaxed) as in Propo-

sition 37 such that y(v; t) 2 f0; 1g with corresponding cuto¤s fk (t) : 0 � t � �tg, we have

for all t 2 [0; �t] that

max
t0<t

fEt [v] y (Et [v] ; t0)� x (Et [v] ; t0)g

= Et [v]

+ max
t02f� :y(Et[v];�)=1g

�
U (t0)�

Z v

k(t0)

(v � k (t0)) g (v; t0) dv � k (t0)

�
:

Corollary 38 tells that if a type t were to pretend to be a lower type, than it is in his

best interest to choose a type t0 such that reporting his expected valuation of Et [v] at

time t0, type t will be able to obtain the good with probability one, i.e. Et [v] � k (t0) cf.

Proposition 37, in which case the payment to the monopolist would be

x (Et [v] ; t0) = U (t0)�
Z v

k(t0)

(v � k (t0)) g (v; t0) dv � k (t0) :
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Using Corollary 38, we rewrite the constraint (ICglobal) of the formulation (P1relaxed) and

de�ne the relaxed problem formulation (P2relaxed) as follows: Choose the delivery proba-

bilities
�
y (v; t) : t 2 [0; t]; v 2 [v; v]

	
so as to

maximize
Z
v;t

f (v; t) [(v � c) y (v; t)] dvdt� U (0)�
Z �t

0

(1�H (t)) dU (t)

subject toZ v

v

[vy (v; t)� x (v; t)] g (v; t) dv � 0 for t 2 [0; t]; (IR)

y (v; t) =
@u (v; t)

@v
and y (v; t) is non-decreasing in v; (fICt)

0 � U 0 (t) � �
Z v

v

y (v; t)
@G (v; t)

@t
dv, (fIC0)

U (t)� Et [v] �

max
t02f� :y(Et[v];�)=1, �<tg

�
U (t0)�

Z v

k(t0)

(v � k (t0)) g (v; t0) dv � k (t0)

�
(ICglobal)

0 � y (v; t) � 1 for t 2 [0; t] and v 2 [v; v]: (R)

The next proposition characterizes the optimal solution to the problem (P2relaxed) and

is proved in Appendix D.2.

Proposition 39. There exists an optimal solution to relaxed problem (P2relaxed), which

is characterized by the cut-o¤ points fk (t) : 0 � t � �tg such that the allocation y satis�es

y (v; t) = 1 for v � k (t) and y (v; t) = 0 otherwise. Moreover, for that optimal solution,

the global incentive compatibility constraint (ICglobal) binds for the highest type �t only, who

is indi¤erent between her contract and the contract choice of the lowest type, i.e.

U (�t) = E�t [v]� E0 [max fv; k (0)g] :
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The optimal solution is further characterized by two thresholds t1; t2 with 0 < t2 < �t and

0 � t1 � t2 such that U (t) = 0 for t � t2 and U (t) > 0 otherwise. To be more speci�c,

U 0 (t) = �
Z v

k(t)

@G (v; t)

@t
dv for t � t2;

while U 0 (t) = 0 for t � t2. Finally, the optimal cuto¤ points fk (t) : 0 � t � �tg are

characterized as follows: For t � t2, k (t) � c and k (t) is nonincreasing and is the unique

solution of � (k (t) ; t) = 0, where

� (v; t) = (v � c) +
(1�H (t))

h (t)

@G (v; t) =@t

g (v; t)
:

Similarly, k (t) is nonincreasing with k (t) � c for t � t2. In particular, k (0) > c with

k (t) (strictly) decreasing for t � t1, while k (t) = c for t 2 (t1; t2).

Given the cuto¤points fk (t) : 0 � t � �tg characterized in Proposition 39, the transfer

payments can be written as follows:

x (v; t) =

8><>: x (t) if v < k (t) ;

x (t) if v � k (t) ;

where x (t) = x (t) + k (t). Note that the expected surplus of type t consumer can be

written as

(4.2) U (t) = �x (t) +
Z �v

k(t)

(1�G (v; t)) dv:
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Then, since U (t) = 0 for t 2 [0; t2], we write

x (t) =

Z �v

k(t)

(1�G (v; t)) dv for t � t2:

For t � t2, we write the following by taking the derivatives of both sides of (4.2).

(4.3) x0 (t) = �U 0 (t)� dk (t)

dt
(1�G (k (t) ; t))�

Z �v

k(t)

@G (v; t)

@t
dv;

Therefore, we can calculate x (t) for t � t2 from (4.3) and the boundary condition that

x (t2) =

Z �v

k(t2)

(1�G (v; t2)) dv:

Having characterized x (t), we write x (t) = x (t) + k (t) for t 2 [0; �t], and interpret

f(x (t) ; k (t)) : 0 � t � �tg as a menu of expiring refund contracts where type t is charged

the initial price x (t) and is o¤ered a refund of k (t) if he chooses not to consume the good

or use the service before time t. In other words, the refund k (t) is only good before time

t.

The following proposition establishes the optimality of this refund contract for the

monopolist�s original screening problem introduced in Section 4.1.

Proposition 40. The menu of refund contracts f(x (t) ; k (t)) : 0 � t � �tg character-

ized immediately above is an optimal mechanism for the screening problem of the monop-

olist presented in Section 4.1.

Proof of Proposition 40. Since the cuto¤ points fk (t) : 0 � t � �tg are optimal for

(P2relaxed) and (P
2
relaxed) is more relaxed than the original screening problem of the mo-

nopolist, if the menu of refund contracts f(x (t) ; k (t)) : 0 � t � �tg satisfy the constraints
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of the original problem, then it is an optimal mechanism for the screening problem of the

monopolist.

We check whether the constraints of the screening problem of the monopolist is satis-

�ed by the menu of refund contracts f(x (t) ; k (t)) : 0 � t � �tg. Since U (t) � 0 for all t,

cf. Proposition 39, individual rationality (IR) constraints are satis�ed. The feasibility (F)

constraints are readily satis�ed. Moreover, from Lemma 34 (fICt) constraint of (P2relaxed)
and the incentive compatibility constraint (ICt) of the original problem are equivalent and

hence (ICt) of the original problem are satis�ed. Since the incentive compatibility con-

straints (IC0) regarding "downward" deviations were rewritten as (ICglobal) in (P2relaxed)

and the cuto¤ points fk (t) : 0 � t � �tg are optimal for (P2relaxed), the refund contracts

f(x (t) ; k (t)) : 0 � t � �tg

satisfy (IC0) of the original screening problem.

What remains is to show that the refund contracts f(x (t) ; k (t)) : 0 � t � �tg satisfy

(IC0). We �rst prove that any type t 2 [t2; �t] does not �nd it pro�table to pretend to be

some higher type t0 > t. To that end, let U (t; t0) denote the expected utility of type t by
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pretending to be type t0 > t. We have

U (t; t0) =

Z v

v

[vy (v; t0)� x (v; t0)] g (v; t) dv

=

Z v

k(t0)

[v � x (t0)] g (v; t) dv +

Z k(t0)

v

[�x (t0)] g (v; t) dv

=

Z v

k(t0)

[v � (x (t0) + k (t0))] g (v; t) dv +

Z k(t0)

v

[�x (t0)] g (v; t) dv

= �x (t0) +
Z v

k(t0)

[v � k (t0)] g (v; t) dv:(4.4)

Hence, taking the derivative of both sides of equation (4.2), we obtain

(4.5)
@U (t; t0)

@t0
= �dx (t

0)

dt0
� dk (t0)

dt0
(1�G (k (t0) ; t)) .

From Proposition 39, k0 (t) � 0 for t � t2. Then,

@U (t; t0)

@t0
� �dx (t

0)

dt0
� dk (t0)

dt0
(1�G (k (t0) ; t0)) ,

= U 0 (t0) +

Z �v

k(t0)

@G (v; t0)

@t0
dv;

� 0;

where the �rst inequality is obtained using equation (4.5), k0 (t) � 0 and the fact that

(1�G (k (t0) ; t0)) � (1�G (k (t0) ; t0)) ;
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which is due to FSD. The equality in the second step follows from taking the derivatives

of both sides of the equation

(4.6) U (t) = �x (t) +
Z �v

k(t)

(1�G (v; t)) dv:

Finally, the third line is true since from Proposition 36, we have

U 0 (t0) � �
Z �v

k(t0)

@G (v; t0)

@t0
dv:

Then, by integrating both sides of the inequality,

@U (t; t0)

@t0
� 0;

and hence, we obtain U (t; t0) � U (t). This proves that any type t 2 [t2; �t] does not �nd

it pro�table to pretend to be type some type t0 > t.

Since t2 does not �nd the deviation to some type t0 2 [t2; �t] pro�table and since

U (t2) = 0, FSD implies that any type t 2 [0; t2] does not want to pretend to be type

t0 2 [t2; �t] as well. To see this, note that

@U (t; t0)

@t
=

Z �v

k(t0)

(v � k (t0))
@g (v; t)

@t
dv;

= (�v � k (t0))
@G (�v; t)

@t
�
Z �v

k(t0)

@G (v; t)

@t
dv;

= �
Z �v

k(t0)

@G (v; t)

@t
dv;

> 0;
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and

U (t; t0) = �x (t0) +
Z v

k(t0)

[v � k (t0)] g (v; t) dv

is increasing in t for a given t0. Hence, to conclude the argument that (IC0) is satis�ed by

the refund contract f(x (t) ; k (t)) : 0 � t � �tg, we show that any type t 2 [0; t2] does not

want to pretend to be type t0 2 (t; t2). To be more speci�c,

U (t; t0) = �x (t0) +
Z v

k(t0)

[v � k (t0)] g (v; t) dv;

� �x (t0) +
Z v

k(t0)

[v � k (t0)] g (v; t0) dv;

= U (t0)

= 0;

which completes the proof that (IC0) is satis�ed.

Hence, the menu of refund contracts f(x (t) ; k (t)) : 0 � t � �tg is a feasible mechanism

for the screening problem of the monopolist presented in Section 4.1, which also proves

its optimality. �

The next proposition investigates how the optimal initial price fx (t) : 0 � t � �tg

changes over time and is proved in Appendix D.2.

Proposition 41. The optimal menu of refund contracts f(x (t) ; k (t)) : 0 � t � �tg has

the following properties: The optimal price path fx (t) : 0 � t � �tg is continuous except

for an upward jump at time t2. Moreover, the optimal initial price x (t) is constant for

t < t1 and is strictly increasing with rate x0 (t) = �
R �v
c
v @G(v;t)

@t
dv for t 2 (t1; t2). Then, the
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price has an upward jump at t2 and is strictly decreasing with rate x0 (t) = k0 (t)G (k (t) ; t)

for t 2 [t2; �t] while x (�t) > x (t) for all t < t2.

Proposition 41 characterizes the optimal menu of expiring refund contracts. Illustra-

tive optimal price and refund paths are given in Figures 4.1 and 4.2, where the speci�c

shape of the curve would depend on the distribution functions G (v; t) and H (t).

Although the optimal initial price is decreasing for t > t2 as can be seen from Proposi-

tion 41 and Figure 4.2, the "e¤ective" price x (t)�G (k (t) ; t) k (t) ; de�ned as the expected

transfer from the consumer to the monopolist, is increasing since the rate of change of

the e¤ective price is

x0 (t)�G (k (t) ; t) k0 (t)�
�
g (k (t) ; t) k0 (t) +

@G (k (t) ; t)

@t

�
k (t)

= �
�
g (k (t) ; t) k0 (t) +

@G (k (t) ; t)

@t

�
k (t)

> 0:

The e¤ective price is clearly increasing for t � t1, since the refund size and the likelihood

of exercising the refund is decreasing while the initial price remains constant. Similarly,

for t 2 [t1; t2], the initial price is increasing whereas the refund size is constant and the

likelihood if exercising the refund is decreasing.

4.3. First order stochastic dominance reversed

In this section, we focus on the case that the types who learn their valuation early have

a higher valuation in the sense of �rst order stochastic dominance (FSD). For instance,

in an airline context, business travellers often have higher valuations than some tourists
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Figure 4.1. Optimal refund size as a function of time.

Figure 4.2. Optimal initial price as a function of time.

who might try to purchase the ticket at the last minute. The formal de�nition of the

"reversed" �rst order stochastic dominance in the context of our model is as follows.

De�nition 42. The type space [0; �t] is ordered by "reversed" FSD if for any t > t0,

G (v; t) � G (v; t0) for all v.

Condition 1 of Proposition 33 is violated in this case, and hence, �rst-best solution can-

not be achieved. Nonetheless, it is easy to characterize the optimal mechanism, which can
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again be implemented by a menu of expiring refund contracts. The following proposition

characterizes the optimal mechanism in this case.

Proposition 43. Under "reversed" FSD, there exists cut-o¤ points fk (t) : 0 � t � �tg

such that the optimal allocation y satis�es y (v; t) = 1 for v � k (t) and y (v; t) = 0

otherwise. The expected utility function U is nonincreasing and satis�es

U 0 (t) = �
Z v

k(t)

@G (v; t)

@t
dv for t 2 [0; �t] :

Finally, the optimal cuto¤ points fk (t) : 0 � t � �tg are characterized as follows: k (t) is

the unique solution of  (k (t) ; t) = 0, where

 (v; t) = (v � c)� H (t)

h (t)

@G (v; t) =@t

g (v; t)
:

The payments are then given as follows: For t 2 [0; �t],

x (v; t) =

8><>: x (t) if v < k (t) ;

x (t) if v � k (t) ;

with x (t) = x (t) + k (t) and

x (t) =

Z �v

k(t)

(v � k (t)) g (v; t) dv � U (t) :

Proof. By de�nition, we have

@G (v; t) =@t = lim
h&0

G (v; t+ h)�G (v; t)

h
� 0:
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As in Proposition 36, we can prove that without loss of optimality, the objective of the

monopolist can be written as

(4.7)
Z
v;t

f (v; t) (v � c) y (v; t) dvdt� U (�t) +

Z
[0;�t]

H (t) dU (t) :

To see this, note that using integration by parts

Z �t

0

h (t)U (t) dt = fU (t)H (t)g jt=�tt=0 �
Z
[0;�t]

H (t) dU (t) = U (�t)�
Z
[0;�t]

H (t) dU (t) :

Then consider the problem:

maximize
Z
v;t

f (v; t) (v � c) y (v; t) dvdt� U (�t) +

Z
[0;�t]

H (t) dU (t)

subject to

U 0 (t) � �
Z v

v

y (v; t)
@G (v; t)

@t
dv for t 2 [0; �t] ;

0 � y (v; t) � 1 for t 2 [0; �t] and v 2 [v; �v] ;

ignoring the global IC constraints.

We prove that in an optimal solution, it should be that

U 0 (t) = �
Z v

v

y (v; t)
@G (v; t)

@t
dv:

We argue by contradiction. Suppose not. Let U , y denote an optimal solution to the

relaxed problem stated immediately above with the property that

U 0 (t) < �
Z v

v

y (v; t)
@G (v; t)

@t
dv



123

for some interval [� 1; � 2]. Suppose we decrease U (0) by the amount

Z �2

�1

�
�U 0 (t) +

Z v

v

y (v; t)
@G (v; t)

@t
dv

�
dt:

At the same time, we keep the allocation y and U 0 (t) for t 2 [0; �t] n [� 1; � 2] the same, while

setting

U 0 (t) = �
Z v

v

y (v; t)
@G (v; t)

@t
dv

for t 2 [� 1; � 2]. Let eU be the modi�ed expected utility function. That is, the modi�ed

expected utility function eU is de�ned as follows using the original utility function U : Let
eU (0) = U (0)�

Z �2

�1

�
�U 0 (t) +

Z v

v

y (v; t)
@G (v; t)

@t
dv

�
dt;

eU (t) = U 0 (t) for t 2 [0; �t] n [� 1; � 2] ;

eU 0 (t) = �
Z v

v

y (v; t)
@G (v; t)

@t
dv for t 2 [� 1; � 2] :

Then, eU (t) > U (t) for t < � 2 and eU (t) = U (t) for t � � 2. The change in the objective

function resulting from the modi�ed expected utility function eU is
Z �2

�1

H (t)

�
�U 0 (t) +

Z v

v

y (v; t)
@G (v; t)

@t
dv

�
dt

which is strictly positive. Thus, the objective improves. Hence, we have

U 0 (t) = �
Z v

v

y (v; t)
@G (v; t)

@t
dv for all t:

Since

U 0 (t) = �
Z v

v

y (v; t)
@G (v; t)

@t
dv � 0 for all t;
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it is optimal to have U (�t) = 0, in which case using (4.7) the optimal y can be found by

solving the following problem: Choose the allocation y so as to

maximize
Z
v;t

f (v; t) (v; t) y (v; t) dvdt

subject to

0 � y (v; t) � 1;

where

 (v; t) = (v � c)� H (t)

h (t)

@G (v; t) =@t

g (v; t)
:

Then, y satis�es y (v; t) = 1 for v � k (t) and y (v; t) = 0 otherwise where k (t) is the unique

solution of  (k (t) ; t) = 0. Then, it is easy to check that (ICt) constraints are satis�ed

using the payments x characterized in the statement of Proposition 43. Moreover, we can

show that the proposed solution satis�es the constraints (IC0) and (IC0) in a way similar

to the analysis in the proof of Proposition 40, which concludes the proof of Proposition

43. �

When the types who learn their valuation early have a higher valuation, the �rm can-

not use the learning dynamics to separate the types. Indeed, in the reversed �rst order

stochastic dominance case, the �rm can never implement the �rst-best solution. The rea-

son is that the types who learn early can always choose to wait to make their purchase and

the monopolist cannot deter them from doing so since they make consumption decisions

when they know their demand if they wait to purchase.

Since @G (v; t) =@t � 0 due to reversed �rst order stochastic dominance, k (t) � c for

all t, and hence all types are rationed except type zero who has the highest valuation
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distribution. The expected utility of the consumers decrease over and the latest type to

learn his valuation gets zero expected surplus. The �rst component of the virtual surplus

function  (v; t) is again the social surplus of a type t consumer with valuation v from

consuming one unit of the good, while the second part is the distortion due to inducing

truth-telling for a type t consumer with valuation v. The rate H (t) =h (t) in the second

component of  (v; t) di¤ers from the hazard rate (1�H (t)) =h (t) of the standard one-

dimensional non-linear pricing problems since one unit of the informational rent supplied

to type t, has to be supplied to all the lower types as opposed to all the higher types as

in the virtual surplus function � (v; t) of Section 4.2.

The following corollary shows that the optimal mechanism can be implemented via a

menu of expiring refund contracts.

Corollary 44. Under reversed �rst order stochastic dominance, the menu of expiring

refund contracts f(x (t) ; k (t)) : 0 � t � �tg with x (t) and k (t) as in Proposition 43 is an

optimal mechanism for the screening problem of the monopolist presented in Section 4.1.

Moreover, since @G (v; t) =@t � 0; it is easy to see that

k (t) = c+
H (t)

h (t)

@G (k (t) ; t) =@t

g (v; t)
� c;

that is, all types are rationed again and the allocation of type zero is e¢ cient, i.e. k (0) = c.

4.4. Mean preserving spread

In this section, we consider the case when the consumers�valuations are ordered by

second order stochastic dominance. In particular, the consumers who learn their valua-

tions later also face greater uncertainty regarding their valuations. To be more speci�c,
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we assume that all consumers have the same expected valuation for the good, but for any

t > t0, the valuation distribution of type t is a mean preserving spread of that of type t0.

The formal de�nition is as follows:

De�nition 45. Let z = Et [v] for all t. If t > t0 then G (v; t) � G (v; t0) for all v < z

and G (v; t) � G (v; t0) for all v > z.

Throughout this section, we assume that the types are ordered in the sense of mean

preserving spread. It is immediate from De�nition 45 that @G (v; t) =@t � 0 for v > z and

@G (v; t) =@t � 0 for v < z. The next proposition characterizes the optimal mechanism

under MPS.

Proposition 46. Under MPS the �rst-best solution can be implemented.

Proof. The next identity follows from integration by parts and will facilitate the

proof.

(4.8) Et [v � c; v � c] = (�v � c)�
Z v

c

G (v; t) dv for all t:

Consider the case z � c, where Condition 2 of Proposition 33 is readily satis�ed since

z = Et [v] � c for all t. Moreover, it follows from (4.8) that for t0 > t,

Et0 [v � c; v � c]� Et [v � c; v � c] =

Z v

c

[G (v; t)�G (v; t0)] dv � 0;

where the last inequality follows since @G (v; t) =@t � 0 for v � z. Condition 1 of Propo-

sition 33 also holds and the result follows.
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Next consider the case z > c, where Condition 2 holds because for t0 < t,

Et0 [v � c; v � c]� Et [v � c] = Et0 [v � c; v � c]� Et0 [v � c] = Et0 [v � c; v < c] < 0:

To check Condition 1, note the following identity, which follows from integration by parts:

Z �v

c

G (v; t) dv = �v � z �
Z c

v

G (v; t) dv for all t;

where the integral on the right hand side is increasing in t by De�nition 45 since z > c.

Thus, the integral on the left is decreasing in t. Combining that with (4.8) shows that

Condition 1 holds. �

From Proposition 46, the menu of refund contracts f(x (t) ; k (t)) : 0 � t � �tg where

the refund size is equal to the marginal cost, i.e. k (t) = c for t 2 [0; �t] and the initial

price is is equal to x (t) = Et [v � c; v � c] + c is the optimal mechanism for the screening

problem of the monopolist presented in Section 4.1.

The next corollary investigates how the optimal initial price fx (t) : 0 � t � �tg changes

over time and follows from Proposition 47 and Condition 1 of Proposition 33.

Corollary 47. Under MPS, the optimal price path fx (t) : 0 � t � �tg is increasing

over time.

Proposition 46 and Corollary 47 prove that consumers with less dispersed valuations

purchase tickets that become non-refundable sooner, and the price paid is increasing in

the variance of consumers�valuations, but the refund price is always equal to marginal

cost.
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4.5. Discussion

We consider a revenue management model with strategic, i.e. forward looking con-

sumers. Consumers vary in the ex ante distribution of their valuations and the time at

which they learn their valuation. Consumers privately learn their valuations at di¤erent

times and can purchase the good at any instance, both before and after they learn their

valuations. The �rm observes neither the time at which consumers learn their valuations

nor their valuations and chooses a selling policy to maximize total expected pro�ts.

We analyze the �rm�s optimal pricing policy in a mechanism design framework. With-

out loss of generality, the �rm looks for the pro�t maximizing direct-revelation pricing

policies and induces all consumers to buy the good at time zero. In other words, it is op-

timal for the �rm to sell to the consumer before they learn their valuations while permits

consumers to return the good sold for a certain refund after they learn their valuations.

Looking for the pro�t maximizing direct-revelation pricing policies, we establish the

necessary and su¢ cient conditions for the �rm to implement the �rst-best solution. Specif-

ically, when Conditions 1 and 2 of Proposition 33 hold, the monopolist is able to implement

the unconstrained �rst-best. In particular, Condition 1 of Proposition 33 is satis�ed when

the consumers who learn their demand late in the horizon have "higher" valuations. In

that case, consumers who learn late are more willing to pay more for the good and they

get the good with a higher probability. Condition 2 of Proposition 33 is satis�ed when

the expected valuations of di¤erent types of consumers are not too di¤erent or if the loss

in the expected surplus due to making the consumption decisions before knowing one�s

true valuation is relatively large. If Conditions 1 and 2 of Proposition 33 are satis�ed,

then the �rst-best solution can be implemented using a menu of expiring refund contracts



129

where the refund size is equal to the marginal cost and the prices increase over time.

The monopolist is better o¤ if the consumers learn their valuations sequentially since this

enables her to exploit the di¤erences in learning times to screen consumers.

We consider a variety of distributional assumptions for consumers�valuations. First,

we analyze the case under which consumers who learn their valuations later have higher

valuations, in the sense of �rst order stochastic dominance. Then the optimal pricing

policy always provides the highest value consumer with the longest time to exercise the

return option and a refund price equal to marginal cost. If the �rst-best is feasible, then

a menu of expiring refund contracts with a refund size equal to the marginal cost and

increasing prices is optimal. If the �rst best is not feasible, a menu of expiring refund

contracts is still optimal for the �rm and lower valuation consumers still purchase tickets

which become non-refundable sooner while the refund price is higher than marginal cost.

The allocation of the highest type is e¢ cient whereas the refund size of some other types

are distorted with respect to the �rst best. While the initial price and the refund size

are distorted with respect to the �rst best, nevertheless, the e¤ective price paid by the

consumers is increasing over time.

The second case of interest is the one where consumers who learn their valuations early

have higher valuations, in the sense of �rst order stochastic dominance, which we refer

as reversed �rst order stochastic dominance. In this case, the �rm can never achieve the

�rst-best solution and a menu of expiring refund contracts is again the optimal mechanism

and all consumer types are rationed again while the allocation of the type who learns the

earliest is e¢ cient.
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Finally, we investigate the case when consumers who learn later have more dispersed

valuations in the sense that their distribution is a mean preserving spread of the distri-

bution of valuations for all consumers who learn earlier. Then, we show that the �rst

best is always achievable. A menu of expiring refund contracts with the refunds equal to

marginal cost is optimal and consumers with less variable demand purchase tickets that

become non-refundable sooner while the price is increasing in the dispersion of consumers�

valuations.

For any distributional assumption on consumers�valuations, exploiting the sequential

learning of the consumers gives the �rm an additional screening instrument. In certain

cases, the monopolist is even able to extract all the expected surplus from the consumers.

In particular, if the valuations of the consumers who learn later are "higher" and the

expected valuations of the consumers are not to far away from each other (or the loss in

surplus due to making consumption decisions before fully knowing the demand is high),

then the monopolist can implement the �rst best. O¤ering refundable purchases allows the

�rm to extract more surplus from consumers compared to spot market sales. Moreover,

when consumers vary in the ex ante distribution of their valuations and the time at which

they learn their valuations, optimal contract varies not only the price of the ticket and

the size of the refund but also the time at which the refunds are expiring.



131

CHAPTER 5

Revelation Principle for Continuous-Time Communication

Games (joint with Bar¬̧s Ata and James D. Dana, Jr.)

In this chapter, we establish a revelation principle that there is no loss of generality in

assuming that the monopolist should structure his incentive system so that all consumers

will be willing to reveal all of their information to him honestly. This result generalizes the

revelation principle of [45] to continuous-time communication games, and is of interest

on its own right.

Consider a setting with one principal and one agent. Let � = [0; �t] � f[v; �v] [ �g

denote the set of all possible states of the agent�s private information. To be more speci�c,

� = (t; v) implies that the agent is of type t with valuation v whereas (t; �) for t 2 [0; �t]

means that the agent knows that he is of type t but his true valuation has not yet realized.

Let D denote the principal�s decision domain. That is, D denotes the set of decisions that

the principal can take at each point in time. Similarly, let M denote the set of messages

that the principal can send to the agent and R denote the report that the agent can send

to the principal at each point in time. The generality of these spaces allows us to model

mixed, i.e. randomized, actions and messages.

Uncertainty is modeled by the complete probability space (
, H ,P), where 
 denotes

the sample space and H is a �-�eld of subsets of 
. The evolution of information is

modeled through the increasing sequences {Ft; t 2 R+} and {Gt; t 2 R+} of complete
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sub-�-�elds of H. In particular, Ft represents the private information available to the

agent at time t and Gt denotes the information observable to the principal and the agent

at time t. Then, de�ne

Ht = Ft _ Gt for t � 0

to be the information available to the agent at time t and let R denote the space of R-

valued, Ht�predictable stochastic processes and let {Art ; t 2 R+} be the natural �ltration

generated by the stochastic process r 2 R, satisfying the usual conditions, and

Brt = Art _ Gt for t � 0;

which denotes the information available to the principal at time t upon seeing the agent�s

reports until then.

Following [45], to describe a typical coordination mechanism which could be estab-

lished by the principal, letM be the set of all possible processes of messages which the

agent might receive from the principal. That is, M consists of M -valued, Brt -adapted

stochastic processes for r 2R. Then, D is the set of all possible processes of actions that

can be taken by the principal. More precisely, D consists of D-valued, Brt -adapted sto-

chastic processes for r 2R. In our setting, d 2 D may represent a description of how the

principal might plan to sell to the consumers and this includes any actions on the side of

the consumers that can be observed by the principal as these are considered as part of

the principal�s decision domain.

Let Up : D � � ! R denote the utility function of the principal and u : D � � ! R

denote the utility function of the agent. That is, u (d; v; t) denotes the utility of an agent
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of type t and valuation v if the principal follows the decision rule d 2 D. Notice that

u (d; v; t) denotes the ex-post utility of the consumer since there are no random variables

that she cannot observe at the terminal time �t. Given these structures, the principal�s

problem is to coordinate his decisions and those of his agents so as to maximize his ex-

pected utility. We assume that the principal has complete control over all communication,

that he can request any information which the agent is willing to send, and that he can

send messages and recommendations to the agent. However, the principal cannot directly

observe an agent�s type in �.

A coordination mechanism for the principal consists of the message space M , report

space R as de�ned above, where the agent can choose among the reporting strategies r 2

R and the principal can choose the message strategy m 2 M. Notice that the messages

that the agent receives should depend on the reports she has sent. Similarly, the decision

strategy d of the principal in D can also depend on these reports and

� (d;m; r)

denotes the probability measure on the decision strategy d and the messages m that the

principal will choose given that the agent is planning to send the reports according to the

strategy r 2 R. Whenever we write � (d;m; r), it should be understood that for all t 2

[0; �t], the agent reports fr (s) : 0 � s � tg to the principal at time t. Then, (�;D,M, R)

completely describes the coordination mechanism established by the principal.

In the context of this coordination mechanism (�;D,M, R) agent controls his choice

of reporting strategy in R as a function of his type. Recall that there are no private

decisions or actions by the agent in our setting. Hence, the agent selects a reporting
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strategy � as a function of her private information and each such reporting strategy �

generates reports in the set R. Then, � (d;m;�) denotes the probability measure on

the decision strategy d and the messages m that the principal will choose given that the

agent is planning to send the reports according to the reporting strategy �. The expected

utility of the agent of type � at time t is given by

Ut (�j� ;d;m) =
Z

D�M�[v;v]

u (d; v; �) d� (d;m;�) dPt (v)

where the reporting strategy of the agent is dictated by � and Pt (�) = P (� jHt) is the

distribution over the valuations1 for the agent given her information Ht up to time t.

Notice that since u (d; v; �) is the ex-post utility of the agent, Ut (�j� ;d;m) represents

the expected utility of the agent looking into the future standing at time t.

The reporting strategy � of the agent forms an equilibrium of this communication

game if and only if � is superior to any other reporting strategy at each point in time.

That is,

(5.1) Ut (�j� ;d;m) � Ut (�̂j� ;d;m) for all t 2 [0; �t] :

Even though Ut (�j� ;d;m) denotes the expected utility of the agent looking into the future

standing at time t, the constraint (5.1) is equivalent to requiring that the continuation

payo¤ of the agent under the reporting strategy � is higher than any other �̂ since any

cost or bene�t incurred until time t by the agent is sunk and does not a¤ect the decisions

thereafter.

1Pt (�) takes values in f0; 1g if the agent has already learned her true valuation at time t and it is equivalent
to g (�; �) if the agent knows that her true type is � but has not learned her true valuation yet.
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The principal�s problem is to �nd a coordination mechanism (�;D,M, R) such that

there is an equilibrium reporting strategy which gives the principal highest expected

pro�ts.

We say that a coordination mechanism is direct if the reporting strategy � takes values

in the type space �, i.e. R = �. More precisely, the agent reports her private information

at each time point denoted by ! = f!t : t 2 [0; �t]g and recalling that the reporting strategy

� is a function of the private information of the agent, with an abuse of notation, we have

� (t; !) = ! (t; !). Then, !0 corresponds to the type of the agent and subsequently !t

includes the information regarding the valuation of the agent if the agent learns it before

time t. Under a direct mechanism, the probability function � (d;m; !̂) is the probability

measure of the principal choosing the decisions d 2D and the messages m 2M given the

report of the private information !̂ = f!̂t : t 2 [0; �t]g on the side of the consumer. The

direct mechanism is honest if !̂t = !t for all t where !t denotes the true information of

the consumer at time t.

Proposition 48. Given any equilibrium of reporting strategy � and coordination

mechanism (�;D,M, R), there exists an incentive-compatible direct mechanism in which

the principal gets the same expected utility (when the agents are honest) as in the given

equilibrium of the given mechanism. Thus, the optimal incentive-compatible direct coordi-

nation mechanism is also optimal in the class of all coordination mechanisms.

Proof of Proposition 48. Given the equilibrium of reporting strategy � and coordi-

nation mechanism (�;D,M, R), consider the following direct mechanism: The reporting

strategy �� takes values in the type space � and the agent reports her private information
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at each time point denoted by f!t : t 2 [0; �t]g. The principal uses the probability measure

�� on D �M�R such that

�� (�; �; !̂) = � (�; �; � (!̂)) :

That is, under the direct mechanism, if the agent chooses to report the private information

!̂ = f!̂t : t 2 [0; �t]g, the principal assigns the same probability measure to all the decision

and message strategies (d;m) as in the original coordination mechanism where the agent

uses the reporting strategy � (!̂) 2 R since � is a function of agent�s private information.

We prove that the direct mechanism consisting of the reporting strategy �� and coor-

dination mechanism (��;D,M, R) is incentive compatible. We argue by contradiction.

Suppose that the agent �nds it more pro�table to report her information untruthfully at

some point. That is, suppose that the agent �nds reporting her information as !̂ instead

of !. That is,

Z
D�M�[v;v]

u (d; v; �) d�� (d;m; !̂) dPt (v) >
Z

D�M�[v;v]

u (d; v; �) d�� (d;m;!) dPt (v)

for some !̂ = f!̂t : t 2 [0; �t]g while the true information of the agent evolves according to

! = f!t : t 2 [0; �t]g. Then, we also have

Z
D�M�[v;v]

u (d; v; �) d� (d;m;e�) dPt (v) > Z
D�M�[v;v]

u (d; v; �) d� (d;m;�) dPt (v) ;

where e� (!) = � (!̂). In other words, in the original coordination mechanism, the agent
would also �nd it more pro�table to choose the reporting strategy � (!̂) 2 R instead of
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� (!) if ! were her true information, which is a contradiction to the fact that � is an

equilibrium reporting strategy. �

Proposition 48 establishes the revelation principle that in order to maximize her total

expected pro�ts, the monopolist can consider only incentive-compatible direct-revelation

mechanisms in our setting.
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APPENDIX A

Proofs of the Results in Chapter 1

A.1. Proof of the Results Regarding Adapted Bid-Price Controls

In this section, we prove Theorems 1 and 2 along with some auxiliary results regarding

a Lagrangian representation of the network revenue management problem (P). Our proof

can be broken down to four major steps. First, we prove the existence of an optimal

solution to the network revenue management problem. Second, we show the validity of a

Lagrangian representation for the network revenue management problem. To this end, we

introduce a discretized version of the network revenue management problem in Section

A.1.1 where at each decision time the demand and fare processes may have only �nitely

many realizations. Third, we interpret the Lagrangian representation as an adapted bid-

price control. In particular, we construct an optimal adapted bid-price control (�; l),

which, of course, provides a constructive proof of Theorem 1. Finally, the complementary

slackness conditions associated with the Lagrange multipliers gives rise to the martingale

property of optimal bid prices, proving Theorem 2.

We �rst establish the existence of an optimal solution to the network revenue man-

agement problem. The proof of the next proposition is straightforward and it is skipped.

Proposition 49. There exists an optimal control for the network revenue management

problem.
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Proof of Proposition 49. The proof is based on induction where the induction will

be on the number of periods until the terminal time. First, we establish the induction

basis by proving that there exists an optimal solution to (P) if N = 1. That is, consider

the last decision time tN . For a given capacity process x(!; tN�1) � 0; ! 2 
, we solve

the following problem to determine the bookings

max E[f(!; tN) � u(!; tN)]

subject to

Au(!; tN) � x(!; tN�1); ! 2 
,

0 � u(!; tN) � D(!; tN)�D(!; tN�1); ! 2 
:

Notice that, we can maximize this problem along each sample path !. That is, for each

! 2 
, we solve

max
u

f(!; tN) � u

subject to

Au(!; tN) � x(!; tN�1);

0 � u(!; tN) � D(!; tN)�D(!; tN�1):

Let u�(!; tN) denote an optimal solution to this problem which exists since the objective

function is continuous in u and the feasible region is compact. Then, the resulting control

fu�(!; tN) : ! 2 
g would maximize the expected revenue. Moreover, the objective
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function value of the linear program we solve for each ! 2 
 is continuous in x(!; tN�1)

since we have a linear program.

To facilitate our analysis, let Vn+1(!; x) denote the optimal revenue that can be gen-

erated in decision times n + 1 through N if we have capacity x at the end of period n

and ! is realized. As the induction hypothesis, assume that an optimal solution exists for

decision times n+1 through N and Vn+1(!; x(!; tn)) is a continuous function of x(!; tn),

where x(!; tn) is the process of remaining capacities at decision time tn. At decision time

tn we solve the following program for the given capacity process x(!; tn�1):

max E[f(!; tn) � u(!; tn)] + E[Vn+1(!; x(!; tn�1)� Au(!; tn))]

subject to

Au(!; tn) � x(!; tn�1); ! 2 
,

0 � u(!; tn) � D(!; tn)�D(!; tn�1); ! 2 
:

We can optimize again for each sample path ! 2 
. Then, for ! 2 
, we solve

max
u

f(!; tn) � u+ Vn+1(!; x(!; tn�1)� Au)

subject to

Au(!; tn) � x(!; tn�1),

0 � u(!; tn) � D(!; tn)�D(!; tn�1):

Note that the objective function is continuous in u while the feasible region is compact and

hence, an optimal solution u�(!; tn) exists for ! 2 
 and n = 1; : : : ; N . Thus, an optimal
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solution exists for decision times n through N . Moreover, Vn(!; x(!; tn�1)), the objective

function value of the linear program solved at decision time tn along !, is continuous in

x(!; tn�1). �

A.1.1. A Discrete Approximation of the Network Revenue Management Prob-

lem

In this section, we introduce a discrete approximation to the network revenue management

problem (P). To be speci�c, we introduce a sequence of problems indexed by m = 1; 2; : : :

such that in each problem the distributions of the demand during each period and the

vector of fares have �nite support so that these problems reduce to �nite linear programs,

allowing us to use the machinery of linear programming. As the readers will see, this

sequence of problems will be helpful in proving statements about the network revenue

management problem (P), cf. Theorem 1 and Propositions 50 & 51.

Since for each product the cumulative demand has �nite mean and the fare process is

bounded, there exist constants F and Km for m = 1; 2; : : : and n = 1; : : : ; N such that

(A.1) P[D(tn)�D(tn�1) � IKm]E[D(tn)�D(tn�1) j D(tn)�D(tn�1) � IKm] � 1=3m;

(A.2) sup
!2
; t2�

f(!; t) � IF;

where I denotes the J-dimensional vector of ones. Without loss of generality assume Km

and F to be multiples of 1=2m. Fixing m, for each product j we truncate the demand

during a period by Km. Then we discretize demand during each period by taking a J-

dimensional dyadic partition of the cube [0; Km]J comprised of equal size grids, each of
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which is a J-dimensional cube with a side length of 1=2m. Similarly, we discretize the

vector of fares in each period by taking a J-dimensional dyadic partition of the cube

[0; F ]J comprised also of equal size grids, each of which is a J-dimensional cube with a

side length of 1=2m. Combining these two partitions, we construct a dyadic partition of

the 2J-dimensional set [0; Km]J � [0; F ]J comprised of 2J-dimensional cubes with side

lengths of 1=2m. Hereafter, we will refer to these 2J-dimensional cubes as grids.

In formulating the discrete approximation, we pretend that the system manager can-

not distinguish the demand and fare realizations in a grid and regards them as a single

realization of demand and fare. When the system manager cannot distinguish the demand

and fare realizations in a grid, she acts as if the demand and fare realizations were at their

lowest possible level in that grid. Then, using this discretization one can represent the

evolution of information as a �nite information tree. That is, we get a �nite number of

"information nodes" for each decision time and the problem can be formulated as a linear

program. To be more precise, an information node corresponds to a subset of 
 and two

sample paths ! and !0 belong to the same information node for the mth partition at de-

cision time tn only if the demand and fare realizations D(!; tr)�D(!; tr�1) and f(!; tr);

and D(!0; tr) � D(!0; tr�1) and f(!0; tr) are in the same grid for each r = 1; : : : ; n. Let

Im denote the set of information nodes resulting from the discretization of demand and

fare processes. Associated with each information node is the probability of visiting that

information node which is the probability measure of the sample paths corresponding

to that information node. Let pi denote the probability of visiting information node i

for i 2 Im; where pi = P(i) viewing information node i as a measurable subset. Every

information node i 2 Im has a unique predecessor in the information tree denoted by i�
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(associated with the previous period). Similarly, let i+ denote a generic element of the

set of nodes that can be subsequent to information node i. The set of information nodes

at decision time tn are denoted by Imn , where Im0 contains a single information node for all

m. To be precise, Imn corresponds to all combinations of the di¤erent discrete realizations

of demand and fare at decision times t1; : : : ; tn.

To repeat, the system manager behaves as if the sample paths in each grid results in a

single demand realization and a single fare realization. Since the number of possible such

realizations are �nite, we get a �nite linear program. Consider the �nite linear program

resulting from the mth discretization. Upon entering information node i 2 Im, the system

manager behaves as if the demand realization is equal to the lowest possible demand

realization and the fare realization is equal to the lowest possible fare in information node

i. That is, if information node i corresponds to the case that for product j, we have at

decision time tn

s=2m � Dj(!; tn)�Dj(!; tn�1) < (s+ 1)=2
m;

r=2m � fj(!; tn) < (r + 1)=2
m;

then the system manager acts as if the actual demand and fare realizations are s=2m and

r=2m respectively.

In essence, we approximate (P) from "below" by a sequence of �nite linear programs.

At each decision time the system manager decides on the bookings for each product so

that the capacity and demand restrictions are not violated. (Recall that for each product

the demand realizations are governed by the lowest value of the demand for that product
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in a grid.) The objective is again to maximize expected revenue subject to the feasibility

constraints.

The following notation is needed to proceed with the analysis. Let di;m and f i;mdenote

the discretized demand and fare at information node i 2 Im, respectively. Let ui;m denote

the booking vector at information node i 2 Im. Similarly, denote vector of remaining

capacities upon entering information node i 2 Im by xi;m. Then, the �nite linear program

resulting from the mth discretization (denoted by (Pm)) is given by

Maximize
X
i2Im

pif i;m � ui;m

subject to

xi;m = C , i 2 Im1 ;

xi;m = xi�;m � Aui�;m, i 2 Imn , n = 2; : : : ; N;(Pm)

Aui;m � xi;m, i 2 Imn , n = 1; : : : ; N ,

0 � ui;m � di;m; i 2 Imn , n = 1; : : : ; N:

For a realization ! 2 
, we visit a sequence of information nodes (one for each decision

time). Given an optimal control fui;mgi2Im to (Pm), we can rewrite controls ui;m, i 2 Im,

as a function of the sample paths ! by tracking which information nodes we visit at each

decision time. Formally, for ! 2 
, let

um(!; tn) = ui;m if ! 2 i and i 2 Imn :
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Note that as the approximation of (P) through the discretized problems gets �ner, that

is, as m % 1, we get a sequence of booking controls. The following proposition shows

that the optimal controls for the discretized problems converge to an optimal control for

the network revenue management problem (P).

Proposition 50. There exists an optimal control eu(�; �) : 
��! RJ+ for the network

revenue management problem (P) constructed from the sequence of controls um for m =

1; 2; : : : . More speci�cally, for every ! 2 
 and n = 1; : : : ; N there exists a subsequence

mn;r such that

eu(!; tn) = lim
r!1

umn;r(!; tn),

and mn;r is a further subsequence of mn�1;r for n � 2.

Proof of Proposition 50. The proof can be divided into three steps. First, we prove

the existence of a limiting process eu. Second, we prove the feasibility of eu for (P). Finally,
we prove the optimality of eu for (P). As our �rst step, we use the formal setup introduced
above to show that for every ! 2 
 and n = 1; : : : ; N there exists a subsequence mn;r(!)

such that for n � 2, mn;r(!) is a further subsequence of mn�1;r(!) and

eu(!; tn) = lim
r!1

umn;r(!)(!; tn) for n = 1; : : : ; N .

We will next explicitly construct such a subsequence. To that end, �rst consider the

decision time t1. For each ! 2 
, the sequence fum(!; t1)g is nonnegative and bounded

from above. In particular, there exists a �nite numberM such that sup!2
, t2� u
m
j (!; t) �

M for j = 1; : : : ; J . (Note that such constant M exists since the capacity C is �nite.)

We apply the following procedure to construct a convergent subsequence of fum(!; t1)g.
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Recall that the elements of fum(!; t1)g are J-dimensional vectors. We illustrate the

construction for the case J = 2 for simplicity. The generalization for the cases J � 3

is straightforward. Let J = 2. Then, the sequence fum(!; t1)g resides in the square

[0;M ] � [0;M ]. The construction proceeds by repeated division to produce a sequence

of nested squares whose common point will be shown to be a limit point of fum(!; t1)g.

First, divide the square [0;M ]� [0;M ] into four squares of side length M=2. Index these

squares from 1 to 4 clockwise from top. That is, the square [0;M=2] � [M=2;M ] has

index 1, the square [M=2;M ]� [M=2;M ] has index 2, the square [M=2;M ]� [0;M=2] has

index 3 and so on. At least one of these squares should contain an in�nite subsequence of

fum(!; t1)g. Pick the square with the smallest index that contains an in�nite subsequence

of fum(!; t1)g. The indexing rule generates an unambiguous choice of the square to pick.

We now divide the square of length M=2 that we picked again into four squares of side

lengthM=4. Index these squares clockwise from top and select the square with the smallest

index that contains an in�nite subsequence of fum(!; t1)g. If we continue in this manner,

we obtain a sequence of nested squares that contain in�nite subsequences of fum(!; t1)g

and the side length of the square resulting from the rth division is M=2r. Let m1;r(!)

denote the subsequence that is constructed by the application of this procedure to the

sequence fum(!; t1)g. That is, we constructm1;r(!) by repeatedly selecting a subsequence

of fum(!; t1)g that is contained in the square we selected as a result of the division process.

A common element of the sequence of squares resulting from the division procedure exists

and is unique from the Nested Intervals Property, cf. [6]. Denote this point by eu(!; t1).
Then, we have that eu(!; t1) = limr!1 u

m1;r(!)(!; t1). Since for each ! 2 
, the choice
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of the nested squares resulting from the division process in unambiguous, we have that

m1;r(!) 2 Ft1 for r = 1; 2; : : : by construction.

Next, we consider the second decision time t2. We consider the sequence

fum1;r(!)(!; t1)g;

where m1;r(!) is the subsequence constructed for decision time t1 using the division

method described above. We apply the same procedure of repeated division to the se-

quence

fum1;r(!)(!; t1)g

and construct a subsequence m2;r(!) such that the limit

eu(!; t2) = lim
r!1

um2;r(!)(!; t2)

exists. We apply the procedure inductively for decision times tn for n = 1; : : : ; N . Then,

for every ! 2 
 and n = 1; : : : ; N there exists a subsequence mn;r(!) such that for n � 2,

mn;r(!) is a further subsequence of mn�1;r(!) and

eu(!; tn) = lim
r!1

umn;r(!)(!; tn) for n = 1; : : : ; N .

Moreover, mn;r(!) 2 Ftn for r = 1; 2; : : : and n = 1; : : : ; N by construction and this

concludes the existence step of the proof of Proposition 50.

Our second step is to prove the feasibility of eu for (P). Note that the demand restric-
tions of (P) are satis�ed by eu since for every ! 2 
, along the convergent subsequence
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mn;r(!), we have

0 � umn;r(!)(!; tn) � D(!; tn)�D(!; tn�1); n = 1; : : : ; N;

and passing to the limit as r !1 we get

0 � eu(!; tn) � D(!; tn)�D(!; tn�1), n = 1; : : : ; N:

Since for every ! 2 
 and for all m along the convergent subsequence mN;r(!), we

have
PN

n=1Au
mN;r(!)(!; tn) � C; and in the limit we obtain

PN
n=1Aeu(!; tn) � C due to

Dominated Convergence Theorem. Thus, eu satis�es the capacity constraints.
We now check the measurability of eu, i.e. eu(!; tn) 2 Ftn. For a 2 R and n = 1; : : : ; N ,

we have

(um(!; tn))
�1(a;1) 2 Ftn ;

since um(!; tn) takes �nitely many values for all m due to discretization of demand

(um(!; tn) takes a single value for each information node in the set Imn ) and every in-

formation node in Imn is a subset of Ftn. We can rewrite umn;r(!)(!; tn) as

umn;r(!)(!; tn) =
1X
k=1

1fmn;r(!)=kgu
k(!; tn);

and, hence umn;r(!)(!; tn) 2 Ftn for all r which follows from the fact that

1fmn;r(!)=kg 2 Ftn

and uk(!; tn) 2 Ftn for all k. Since umn;r(!)(!; tn)! eu(!; tn) almost surely as r !1, we

get eu(!; tn) 2 Ftn.
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As a preliminary to establishing the optimality of eu, we show the convergence of the
objective function values of the discretized problems. To be speci�c, we show that the

objective function values of the discretized problems converge to the expected revenue

generated by the feasible control eu for the network revenue management problem (P).

That is,

(A.3) lim
m!1

NX
n=1

E[fm(!; tn) � um(!; tn)] =
NX
n=1

E[f(!; tn) � eu(!; tn)];
where fm(!; tn) = f i;m if ! 2 i and i 2 Imn .

We �rst show that the revenue generated along a sample path !,

NX
n=1

fm(!; tn) � um(!; tn);

is non-decreasing in m almost surely. That is, P almost surely,

NX
n=1

fm(!; tn) � um(!; tn)

increases weakly as the partition gets �ner. To see this, �rst note that um is feasible

for the (m + 1)st discretization. Moreover, the fare and demand that is assumed by the

system manager to realize weakly increases on each grid as the partition gets �ner. Hence,

applying the control um for the (m+ 1)st discretized problem generates at least as much

revenue as um on each grid of the mth discretized problem. However, um+1 does at least

as good as this control and the revenue generated along a sample path ! weakly increases.

Moreover, total revenue generated along each sample path is also bounded by above

as the initial capacity C is bounded and so is the revenue that can be generated along
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each sample path. Then, objective function values of the discretized problems form a

monotone sequence of real numbers which should have a limit. For every ! 2 
; this limit

also coincides with the revenue generated by eu along !. Then,
NX
n=1

fm(!; tn) � um(!; tn)

converges to
NX
n=1

f(!; tn) � eu(!; tn)
for every !; and the result follows from the Dominated Convergence Theorem.

To conclude our last step, we prove that eu is optimal for the network revenue manage-
ment problem (P). We start with an optimal solution to (P), which was shown to exist

in Proposition 49. Then, we construct a feasible solution to each discretized problem

using that optimal solution. We show that the objective function values of these feasible

solutions converge to the objective function value of (P), which proves the optimality of

eu for (P). Let u� be an optimal solution to (P). Construct a feasible solution um to the
mth discretized problem as follows. For decision time tn and information node i 2 Imn ,

the booking for product j is given by

(A.4) umj (!; tn) =

8><>: maxf0;E[u�j(!; tn)j i]� 1=2mg if ! 2 i, di;mj < Km;

E[ minfu�j(!; tn); Kmgj i] if ! 2 i, di;mj = Km;

where di;mj is the discretized demand for product j at information node i and Km is the

level at which we truncate the demand. This control satis�es the demand restrictions in

the case of di;mj < Km because of the feasibility of u� for (P). The case of di;mj = Km

clearly satisfy the demand restrictions.



156

The proposed bookings um also satisfy the capacity restrictions since

NX
n=1

u�j(!; tn) � C for all !

and the cumulative bookings under the proposed control is less than or equal to a condi-

tional expectation of
PN

n=1 u
�
j(!; tn) and hence is in turn less than or to the capacity C.

Moreover, um is clearly adapted. The expected revenue under um is greater than or equal

to

(A.5)
NX
n=1

X
i2Imn

piE[f(!; tn) � u�(!; tn) j i ]� JNF=2m �NF 22J2m=3m � JNM=2m;

where F is the bound on the fare process and M is a �nite number such that

sup
!2
, t2�

u�j(!; t) �M

for j = 1; : : : ; J . (Note that such constant M exists since the capacity C is �nite.)

The second and third terms in (A.5) give upper bounds on the loss in revenue due to

approximation of the demand and the last term gives an upper bound for the loss in fare

due to approximation of fare from below.

To be more speci�c, at an information node i 2 Imn such that d
i;m
j < Km, the feasible

control umj (!; tn) as de�ned in (A.4) books E[u�j(!; tn)j i]� 1=2m for product j provided

that it is positive. On the other hand, at an information node i 2 Imn such that d
i;m
j � Km,

we have umj (!; tn) = E[ minfu�j(!; tn); Kmgji] by (A.4). In the latter case, multiplying
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umj (!; tn) with the probability of being in information node i 2 Imn we get

P(i)umj (!; tn) = P(i)E[ minfu�j(!; tn); Kmgji]

= P(i)E[u�j(!; tn)ji]� P(i)E[ maxfu�j(!; tn)�Km; 0gji]

� P(i)E[u�j(!; tn)ji]

�P(i)E[ maxfDj(!; tn)�Dj(!; tn�1)�Km; 0gji]

� P(i)E[u�j(!; tn)ji]� 1=3m;(A.6)

where the second line is obtained by rearranging terms. The �rst inequality is a result of

replacing maxfu�j(!; tn)�Km; 0g by maxfDj(!; tn)�Dj(!; tn�1)�Km; 0g and the fact

that u�j(!; tn) � Dj(!; tn) �Dj(!; tn�1) by feasibility of u�. Finally, to get (A.6) we use

the fact that cumulative demand process has �nite mean and the inequality (A.1) holds.

The expected revenue under umj for the m
th discretized problem is

NX
n=1

pif i;m � E[um(!; tn) j i ] �
NX
n=1

X
i2Imn

pif i;m � E[u�(!; tn) ji ]

�
NX
n=1

X
i2Imn

pif i;mJ

2m
�

NX
n=1

F 22m2J

3m

�
NX
n=1

X
i2Imn

piE[f(!; tn) � u�(!; tn) ji ]

�JNF
2m

� NF 22J2m

3m
� JNM

2m
;(A.7)

where the �rst inequality is obtained by replacing um with u� and accounting for the

fact that at each information node i 2 Imn such that di;mj < Km, the di¤erence between
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E[um(!; tn) j i ] and E[u�(!; tn) j i ] is bounded by 1=2m, whereas at an information node

i 2 Imn such that d
i;m
j � Km (which exists at most F 2J 2m times at each period) we have

P(i)umj (!; tn) � P(i)E[u�j(!; tn)ji]� 1=3m

by (A.6). Finally, the second inequality is obtained by replacing the term f i;m �E[u�(!; tn)

j i ] with E[f(!; tn) � u�(!; tn) j i ]. Then, the last term in (A.7) is an upper bound in the

loss in expected revenue due to approximating the fare of each product at each information

node.

Therefore, the expected revenue under the optimal solution to the mth discretized

problem is greater than or equal to (A.5). Since (A.5) converges to the objective function

value of the network revenue management problem (P) as m!1, it follows from (A.3)

that eu is optimal for (P). �
Having proved the optimality of eu for (P), we next show the existence of the Lagrange

multipliers for the network revenue management problem (P) as the last step towards the

proofs of Theorems 1 and 2. The Lagrange multiplier for a resource also forms a martingale

until the capacity of that resource is exhausted due to complementary slackness conditions.

Proposition 51. There exists ey(!; tn) 2 Ftn for ! 2 
 and n = 1; : : : ; N such

that u� = fu�(!; t)g(!;t)2
�� is an optimal solution to the network revenue management

problem (P) if and only if it maximizes the Lagrangian

L(u; ey) =

NX
n=1

E[f(!; tn) � u(!; tn)]� E[ey(!; t1) � C]
�

NX
n=2

E[ey(!; tn) � (x(!; tn�1)� x(!; tn�2) + Au(!; tn�1))]
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among all feasible solutions to (P). Moreover, there exists an optimal solution eu to (P)
such that its corresponding state trajectory ex satis�es the following: For n = 1; : : : ; N � 1
and ! 2 
;

(A.8) (ey(!; tn)� E[ey(!; tn+1)j Ftn ]) � ex(!; tn�1) = 0.
Proof of Proposition 51. Let feui;mgi2Im denote an optimal control for the mth

discretized problem (Pm), and fexi;mgi2Im denote the corresponding state trajectory. Re-
call that exi;m denotes the vector of remaining capacities upon entering information node
i 2 Im. The dual linear program to the mth discretized problem (Pm) is given by

Minfvi;mgi2Im
X
i2Im

pi[(0 _ (f i;m � A
0
yi;m)) � di;m] + C � y0;m

subject to (Dm)

yi;m = E[yi+;m j i]� vi;m; i 2 Im;

vi;m � 0; i 2 Im;

where yi+;m = 0 for i 2 ImN by convention and di;m denote the discretized demand at

information node i 2 Im. From linear programming duality, the optimal dual variables

feyi;mgi2Im satisfy the complementary slackness conditions, which in turn imply the fol-
lowing.

(A.9) (eyi;m � E[eyi+;m j i]) � exi;m = 0 for i 2 Im.



160

Recall that i+ denotes a generic information node that is preceded by the information

node i and given i, it can be thought of as a discrete random variable. The primal optimal

state trajectory fexi;mgi2Im is nonnegative and uniformly bounded by the initial capacity
C. We next prove that the dual variables feyi;mgi2Im are nonnegative and uniformly

bounded, too. The non-negativity of an optimal dual solution eyi;m then follows from

the facts that vi;m � 0 for i 2 Im and eyi+;m = 0 for i 2 ImN . The objective function

value of the discretized network revenue management problems are less than or equal toPN
n=1 E[f(!; tn) � (D(!; tn)�D(!; tn�1))]], which is uniformly bounded since the demand

process has �nite mean and fare process is bounded. Then, the objective function value of

(Dm) are also uniformly bounded due to strong duality. For an optimal solution feyi;mgi2Im
to (Dm) we have that its objective function value is in the interval [C�ey0;m;PN

n=1 E[f(!; tn)�

(D(!; tn) � D(!; tn�1))]] and ey0;m is uniformly bounded. The same is true, by a similar
argument, for all eyi;m if we consider the smaller primal and dual problems that starts at
information node i, and hence, feyi;mgi2Im are uniformly bounded.
To facilitate our analysis, �x an optimal dual solution ey and de�ne the following: If

! 2 i, i 2 Imn and n = 1; : : : ; N ,

um(!; tn) = eui;m, ym(!; tn) = eyi;m; xm(!; tn�1) = exi;m.
We will show that the limit of ym(!; tn) gives us the processes y(!; tn) as in the statement

of Proposition 51. Recall that, for each ! 2 
, we have constructed in Proposition 50

the subsequences mn;r(!), n = 1; : : : ; N such that mn;r(!) is a further subsequence of

mn�1;r(!) for n � 2 and fumn;r(!)(!; tn)g has a limit as r ! 1. Here, we use the same
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subsequences. Then, fxmn;r(!)(!; tn)g also has a limit as r !1 since

xmn;r(!)(!; tn) = C � A
nX
k=1

umn;r(!)(!; tk) for n = 1; : : : ; N .

For each ! 2 
, the procedure described in the proof of Proposition 50 can be re-

peated if necessary to construct further subsequences of mn;r(!) for n = 1; : : : ; N so

that fymn;r(!)(!; tn)g have a limit as well. (fymn;r(!)(!; tn)g forms a nonnegative and

uniformly bounded sequence.) Thus, without loss of generality assume for every ! 2 


and n = 1; : : : ; N that fymn;r(!)(!; tn)g converges as r ! 1. Denote for ! 2 
 and

n = 1; : : : ; N

eu(!; tn) = lim
r!1

umn;r(!)(!; tn),

ex(!; tn) = lim
r!1

xmn;r(!)(!; tn);

ey(!; tn) = ymn;r(!)(!; tn):

By construction of the subsequences mn;r(!), we have that eu(!; tn); ey(!; tn) 2 Ftn for
n = 1; : : : ; N . We showed in Proposition 50 that eu is an optimal solution to (P). We can
rewrite (A.9) as

(ymn;r(!)(!; tn)� E[ymn+1;r(!)(!; tn+1)j Ftn ]) � xmn;r(!)(!; tn�1) = 0,

for n = 1; : : : ; N � 1 and ! 2 
. As r ! 1, ymn+1;r(!)(!; tn+1) converges to ey(!; tn+1).
From Dominated Convergence Theorem, we get as r !1

(A.10) (ey(!; tn)� E[ey(!; tn+1)j Ftn ]) � ex(!; tn�1) = 0, n = 1; : : : ; N � 1 and ! 2 
,
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proving (A.8).

Now consider a feasible solution u� to (P) which maximizes L(u; ey) among all feasible
solutions to (P), and let x� be its corresponding state trajectory. Since ey is nonnegative
and u� is a feasible solution to (P),

(A.11)
NX
n=2

E[ey(!; tn) � (x�(!; tn�1)� x�(!; tn�2) + Au�(!; tn�1))] + E[ey(!; t1) � C] � 0.
whereas (A.11) with eu instead of u� is zero from (A.10). Then, we should have

(A.12)
NX
n=1

E[f(!; tn) � eu(!; tn)] � NX
n=1

E[f(!; tn) � u�(!; tn)],

since u� maximizes L(u; ey). The optimality of eu for (P) implies that u� is optimal for
(P) and, (A.12) holds with equality. Combining this with (A.10) and the fact that u�

maximizes L(u; ey) we prove that (A.11) holds with equality.
Next, consider any optimal solution u�� to (P) and its corresponding state trajectory

x��. We have

NX
n=2

E[ey(!; tn) � (x��(!; tn�1)� x��(!; tn�2) + Au��(!; tn�1))] + E[ey(!; t1) � C] = 0:
Hence, L(u��; ey) = NX

n=1

E[f(!; tn) � eu(!; tn)] = L(eu; ey), and u�� maximizes L(u; ey) among
all feasible solutions to (P). �

Proof of Theorem 1. We interpret the Lagrange multipliers in Proposition 51 as

the opportunity cost of resources and construct optimal adapted bid-price and permissible

capacity processes for the network revenue management problem (P). To this end, let ey
denote Lagrange multipliers as in Proposition 51. Let eu be an optimal solution to (P)
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such that its corresponding state trajectory ex satis�es (A.8). The existence of such an
optimal solution is established in Proposition 51. An optimal adapted bid-price control

will be constructed using ey and eu. First, consider the Lagrangian as in Proposition 51
(we suppress the dependence of the stochastic process ! for brevity):

L(u; ey) =
NX
n=1

E[f(tn) � u(tn)]�
NX
n=2

E[ey(tn) � (x(tn�1)� x(tn�2) + Au(tn�1))]

�E[C � ey(t1)]
=

NX
n=1

E[f(tn) � u(tn)]�
NX
n=2

E[(ey(tn)� ey(tn+1)) � x(tn�1)]
�

NX
n=1

E[ey(!; tn+1)Au(tn)]� E[C � ey(t1)]
=

NX
n=1

E[(f(tn)� E[ey(tn+1)j Ftn ]A) � u(tn)]
�

NX
n=2

E[(ey(tn)� E[ey(tn+1)j Ftn ]) � x(tn�1)]� CEey(t1);
where second equality is a rearrangement of terms and the last equality follows from the

de�nition of conditional expectation. By Proposition 51, if a feasible solution maximizes

L(u; ey) among all feasible solutions to (P), then it is an optimal solution to (P). The
problem of maximizing L(u; ey) among the feasible solutions to (P) decomposes by each
decision time tn and all ! 2 
. Thus, a feasible solution u is optimal for (P) if and only
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if, for each tn and almost every ! 2 
; u(!; tn) solves the following problem:

max
u
(f(!; tn)� E[ey(!; tn+1)j Ftn ]A) � u

subject to

Au � x(!; tn�1);

0 � u � D(!; tn)�D(!; tn�1);

where x is the state trajectory corresponding to u.

Given the Lagrange multipliers ey and an optimal solution eu to the network revenue
management problem (P) and its corresponding state trajectory ex as in Proposition 51,
we de�ne the adapted bid-price and capacity usage limit processes as follows: e�(!; tn) =
E[ey(!; tn+1)j Ftn ] for ! 2 
 and n = 1; : : : ; N;
(A.13) e�(!; tn) = E[ey(!; tn+1)j Ftn ] for ! 2 
 and n = 1; : : : ; N;

(A.14) e�(!; tn) = ex(!; tn�1)� ex(!; tn) for ! 2 
 and n = 1; : : : ; N .
First note that the proposed bid price process e�(!; tn) is measurable with respect to Ftn
since it is de�ned as a conditional expectation with respect to Ftn. The proposed capacity

usage limit vector e�(!; tn) is also measurable with respect to Ftn since at decision time
tn along the sample path !, the decision maker knows the optimal bookings eu(!; tn).
Next we show that the proposed adapted bid-price control (e�; e�) de�ned as in (A.13)

and (A.14) is an optimal adapted bid-price control. That is, the booking controls resulting

from (e�; e�) constitute an optimal solution to the network revenue management problem
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(P). Recall that the proposed bid-price control (e�; e�) is executed as follows: At each
decision time tn for n = 1; : : : ; N the system manager �rst observes the demand realization

D(!; tn) �D(!; tn�1) for period n along the sample path !. Then, she solves the linear

program (P (!; tn)) to determine the booking levels:

Maxu(f(!; tn)� A
0e�(!; tn)) � u+ �(Au� e�(!; tn)) � e

subject to(P(!; tn))

Au � e�(!; tn),
0 � u � D(!; tn)�D(!; tn�1),

where " > 0 is arbitrarily small and e is the K-dimensional vector of ones. We de-

�ne (u(e�;e�)(!; t))(!;t)2
�� as the controls associated with the generalized bid-price con-
trol (e�; e�), i.e. u(e�;e�)(!; tn) is an arbitrary optimal solution to (P(!; tn)) for ! 2 


and n = 1; : : : ; N . Let (x(e�;e�)(!; t))(!;t)2
�� denote the state trajectory associated with
(u(e�;e�)(!; t))(!;t)2
��. We will show that (u(e�;e�)(!; t))(!;t)2
�� forms an optimal solution
to the network revenue management problem (P) of Section 1.1.

To establish the optimality of u(e�;e�), we will show that u(e�;e�) maximizes L(u; ey). From
Proposition 51, the problem of maximizing L(u; ey) among feasible solutions to (P) de-
composes by each ! 2 
 and decision time tn for n = 1; : : : ; N . Then, we need to show
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that u(e�;e�)(!; tn) solves

max
u
(f(!; tn)� E[ey(!; tn+1)j Ftn ]A) � u

subject to (P(e�;e�)(!; tn))
Au � x(e�;e�)(!; tn�1);
0 � u � D(!; tn)�D(!; tn�1)

at each ! 2 
 and decision time tn for n = 1; : : : ; N . Since eu is an optimal solution to
the network revenue management problem (P), it maximizes L(u; ey) among all feasible
solutions to (P). Thus, eu(!; tn) solves the following problem at each ! 2 
 and decision

time tn for n = 1; : : : ; N

max
u
(f(!; tn)� E[ey(!; tn+1)j Ftn ]A) � u

subject to (eP(!; tn))
Au � ex(!; tn�1);
0 � u � D(!; tn)�D(!; tn�1):

To show that u(e�;e�)(!; tn) solves (P(e�;e�)(!; tn)), we �rst prove that

x(e�;e�)(!; tn�1) = ex(!; tn�1) for all ! 2 
 and for n = 1; : : : ; N:
For all ! 2 
 and for n = 1; : : : ; N we know that eu(!; tn) solves ( eP (!; tn)) by the
decomposition result, and that Aeu(!; tn) = e�(!; tn) by (A.14). Therefore, eu(!; tn) is
an optimal solution to (P(!; tn)) as well, which in particular exhausts the permissible
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capacity. Then, since the linear program (P(!; tn)) is lexicographic, all optimal solutions

to (P(!; tn)) exhaust the permissible capacity, that is, the capacity constraint necessarily

binds. Therefore, since u(e�;e�)(!; tn) is also an optimal solution to (P(!; tn)), it must be
that

Au(e�;e�)(!; tn) = e�(!; tn) = ex(!; tn�1)� ex(!; tn);
by (A.14). This, in turn, ensures that

x(e�;e�)(!; tn�1) = C �
n�1X
m=1

Au(e�;e�)(!; tm);

= C �
n�1X
m=1

(ex(!; tm�1)� ex(!; tm)) = ex(!; tn�1);
where x(e�;e�)(!; tn�1) is the capacity vector at the end of period n � 1 under the control
u(e�;e�). Essentially, we are following the "optimal trajectory", that is, the trajectory of eu.
An immediate implication of this result is that the problems (P(e�;e�)(!; tn)) and (eP(!; tn))
are equivalent for all ! 2 
 and for n = 1; : : : ; N .

What remains to be shown is that u(e�;e�)(!; tn) solves (P(e�;e�)(!; tn)) at each ! 2 
 and
for n = 1; : : : ; N . To see this, recall that eu(!; tn) is an optimal solution to (P(!; tn)) for
all ! 2 
 and for n = 1; : : : ; N . Therefore, the objective function values of eu(!; tn) and
u(e�;e�)(!; tn) for (P(!; tn)) are equal. That is,

(f(!; tn)� A
0E[ey(!; tn+1)j Ftn ]) � eu(!; tn)

= (f(!; tn)� A
0E[ey(!; tn+1)j Ftn ]) � u(e�;e�)(!; tn);(A.15)
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since e�(!; tn) = E[ey(!; tn+1)j Ftn ] by (A.13) and
Aeu(!; tn)� e�(!; tn) = Au(e�;e�)(!; tn)� e�(!; tn) = 0.

Then, since eu(!; tn) solves (eP(!; tn)) so does u(e�;e�)(!; tn) by (A.15). Moreover, as
(P(e�;e�)(!; tn))

and (eP(!; tn)) are equivalent for all ! 2 
 and for n = 1; : : : ; N this implies that

u(e�;e�)(!; tn) solves (P(e�;e�)(!; tn)) for n = 1; : : : ; N and ! 2 
. This in turn implies

that u(e�;e�) maximizes L(u; ey) among all feasible solutions to (P) and hence by Proposi-
tion 51, u(e�;e�) is an optimal solution for the network revenue management problem (P),

proving the optimality of the proposed adapted bid-price control (e�; e�). �
Proof of Theorem 2. Proposition 51 shows the existence of an optimal solution eu to

the network revenue management problem (P) such that the associated state trajectory

ex satis�es (A.8). Fix such an optimal solution. Then, using the Lagrange multiplier ey as
in Proposition 51, construct the adapted bid-price process � and the permissible capacity

processes � as follows: For ! 2 
 and n = 1; : : : ; N;

(A.16) �(!; tn) = E[ey(!; tn+1)j Ftn ] and �(!; tn) = ex(!; tn�1)� ex(!; tn):
The bid-price control (�; �) constructed as such is shown to form an optimal adapted

bid-price control for the network revenue management problem (P) in Theorem 1. Then,

the bid-price process �k for k = 1; : : : ; K forms a martingale until the last period at the

end of which the capacity of resource k is exhausted. Formally, de�ne the stopping time
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�k for resource k as

�k(!) = inffn : exk(!; tn) = 0g;
which is the �rst period at the end of which the capacity resource k is exhausted, where

the in�mum of the empty set is 1 by convention. For the Lagrange multiplier ey as in
Proposition 51, we have that

(ey(!; tn)� E[ey(!; tn+1)j Ftn ]) � ex(!; tn�1) = 0; n = 1; : : : ; N � 1 and ! 2 
;

cf. (A.8). This implies that the stopped process {eyk(!; tn ^ �k(!)) : n = 1; : : : ; Ng is a
martingale. Let ey(!; tn ^ �(!)) denote the stochastic process whose kth component is the
stopped process eyk(!; tn ^ �k(!)). Then, the adapted bid-price process constructed from
ey(!; tn ^ �(!)) will form a martingale.

We next prove that the bookings resulting from the execution of the bid-price control,

whose adapted bid-price process is constructed using ey(!; tn ^ �(!)); is optimal for the
network revenue management problem. Since the bid-price control constructed using ey as
in (A.16) is optimal, it su¢ ces to show that for each decision time tn where n = 1; : : : ; N

and ! 2 
, if u� 2 RJ+ solves the maximization problem

max
u
(f(!; tn)� E[ey(!; tn+1 ^ �(!))j Ftn ]A) � u

subject to

Au � �(!; tn); (Pstopped(!; tn))

0 � u � D(!; tn)�D(!; tn�1);
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then, it is also optimal for the problem

max
u
(f(!; tn)� E[ey(!; tn+1)j Ftn ]A) � u

subject to

Au � �(!; tn); (Punstopped(!; tn))

0 � u � D(!; tn)�D(!; tn�1):

Note �rst that if tn < �(!), then tn+1 � �(!) and y(!; tn+1 ^ �(!)) = y(!; tn+1) which

makes the statement true. Now consider the case when tn � �(!). Then, the capacity

of at least one resource is zero at decision time tn. Consider a generic resource k whose

capacity has already exhausted at decision time tn, i.e. exk(!; tn�1) = 0. We have for

resource k

�k(!; tn) = exk(!; tn�1)� exk(!; tn) = 0;
and for all products that use resource k we should have zero bookings. That is, if Akj > 0,

we have uj = 0: This implies,

(E[ey(!; tn+1 ^ �(!))j Ftn ]A) � u
=

JX
j=1

KX
k=1

E[eyk(!; tn+1 ^ �(!))j Ftn ]Akjuj;
=

JX
j=1

KX
k=1

E[eyk(!; tn+1)j Ftn ]Akjuj;
= (E[ey(!; tn+1)j Ftn ]A) � u:
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Now, let u� solve Pstopped(!; tn) and u�� solve Punstopped(!; tn). Clearly, u� is feasible for

Punstopped(!; tn). Moreover,

(f(!; tn)� E[ey(!; tn+1j Ftn ]A) � u�� = (f(!; tn)� E[ey(!; tn+1 ^ �(!))j Ftn ]A) � u��;
� (f(!; tn)� E[ey(!; tn+1 ^ �(!))j Ftn ]A) � u�;
= (f(!; tn)� E[ey(!; tn+1j Ftn ]A) � u�;

and u� is optimal for Punstopped(!; tn) as well. �

A.2. Proof of the Results Regarding Predictable Bid-Price Controls

In this section we prove Theorem 5 which establishes the near optimality of the pre-

dictable bid-price control constructed as in (1.2)-(1.3). Recall that an optimal adapted

bid-price control (�; �) is constructed in the proofs of Theorems 1 and 2 so that the

adapted bid-price process f�k(!; tn) : n = 1; : : : ; Ng for resource k = 1; : : : ; K is a mar-

tingale adapted to (fFtn : n = 1; : : : ; Ng;P). For the rest of the argument we �x such an

optimal adapted bid-price control (�; �).

As a preliminary to the proof of Theorem 5, we show that the predictable bid-price

and permissible capacity processes converge to their adapted counterparts as the time gap

disappears.

Lemma 52. limh&0 e�h(!; tn) = �(!; tn) and limh&0 e�h(!; tn) = �(!; tn) for a.e.

! 2 
 and n = 1; : : : ; N:

Proof of Lemma 52. Proposition 6.1 of [36] states that if Z is a martingale adapted

to the semi-continuous �ltration {Ft; 0 � t � T}, then Z(!; t�) = E[Z(!; t) j Ft�] for
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a.e. !,where Ft� =
_
s<t

Fs. That is,

lim
s%t

Z(!; s) = E[Z(!; t)jFt�] for a.e. ! 2 
.

Notice that {E[�(!; tn) j Fs+tn�1 ] : s 2 (0; tn � tn�1]} is a martingale adapted to

fFt; tn�1 � t � tng:

Then, for ! 2 
 and n = 1; : : : ; N

lim
h&0

E[�(!; tn) j Ftn�h] = E[E[�(!; tn) j Ftn ] j Ftn�];

= E[�(!; tn) j Ftn ] = �(!; tn),

from the semi-continuity of the information structure. Similarly, limh&0 E[�(!; tn) j

Ftn�h] = �(!; tn) and hence limh&0 e�h(!; tn) = �(!; tn) for ! 2 
 and n = 1; : : : ; N:

We next argue that limh&0 e�h(!; tn) = �(!; tn) for n = 1; : : : ; N and ! 2 
, by

induction. First recall that given the Lagrange multipliers ey and an optimal solution eu to
the network revenue management problem (P) and its corresponding state trajectory ex
as in Proposition 51, the adapted permissible capacity process � is constructed as follows:

�(!; tn) = ex(!; tn�1)� ex(!; tn) for ! 2 
 and n = 1; : : : ; N .
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As the induction basis consider the �rst decision time t1. We have

e�h(!; t1) = minfE[�(!; t1) j Ft1�h]; Cg;

= minfE[C�ex(!; t1) j Ft1�h]; Cg;
= E[C�ex(!; t1) j Ft1�h];
= E[�(!; t1) j Ft1�h];

and the convergence of e�h(!; t1) to �(!; t1) follows from the argument above regarding

the martingales adapted to semi-continuous information structures. As the induction

hypothesis assume that limh&0 e�h(!; tm) = �(!; tm) for m = 1; : : : ; n � 1 where n � 2.

Then

lim
h&0

e�h(!; tn) = lim
h&0

minfE[�(!; tn) j Ftn�h]; C �
n�1X
m=1

e�h(!; tm)g;
= minf�(!; tn) ; C �

n�1X
m=1

�(!; tm)g;

= �(!; tn):

The second equality follows from the induction hypothesis, whereas the last equality is

true since �(!; tn) � ex(!; tn�1) for n = 1; : : : ; N . �
Proof of Proposition 4. Recall that the optimal adapted bid-price process � is a

martingale. Then, for n = 1; : : : ; N

e�h(!; tn) = E[�(!; tn) j Ftn�h] = E[�(!; T ) j Ftn�h];
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and fe�h(!; tn) : n = 1; : : : ; Ng is a martingale by construction. The second equality is

obtained via replacing �(!; tn) by its value at the terminal time T; and this this replace-

ment is valid due to the fact that optimal adapted bid-price process � is a martingale and

it is described completely by its terminal value and the associated �ltration. �

Proof of Theorem 5. The execution of the proposed adapted and predictable bid-

price policies involve the maximization of the linear programs (P(!; tn)) and (Ph(!; tn))

for n = 1; : : : ; N and ! 2 
. We prove that as h & 0, the expected revenue generated

by the bookings resulting from (e�h; e�h) for h > 0 converges to the expected revenue

generated by the optimal adapted bid-price control (�; �), which, in turn, is equal to the

objective function value of the network revenue management problem (P). To that end,

we prove that the objective function values of the linear program (Ph(!; tn)) converges to

that of (P(!; tn)) as h& 0. Recall that from Lemma 52, limh&0 e�h(!; tn) = �(!; tn) and

limh&0 e�h(!; tn) = �(!; tn) for n = 1; : : : ; N: This implies that the objective function value

of the linear program (Ph(!; tn)) converges to that of (P(!; tn)) as h& 0. Next we prove

that for every ! 2 
 and n = 1; : : : ; N , the revenue generated by an optimal solution

to (Ph(!; tn)) converges as h & 0 to the revenue generated by an optimal solution to

(P(!; tn)). To that end, let uh (!; tn) be an optimal solution to (Ph(!; tn)) for n = 1; : : : ; N

and ! 2 
. Similarly, let u (!; tn) be an optimal solution to (P(!; tn)) for n = 1; : : : ; N

and ! 2 
. We already know that

lim
h&0

(f(!; tn)� e�h(!; tn)A) � uh (!; tn) + �(Auh (!; tn)� e�h(!; tn)) � e
= (f(!; tn)� �(!; tn)A) � u+ �(Au (!; tn)� �(!; tn)) � e:(A.17)
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By de�nition of �(!; tn), cf. (A.14), we have Au (!; tn)� �(!; tn). Notice that

lim
h&0
(Auh (!; tn)� e�h(!; tn)) � e = 0:

We prove this by contradiction. Suppose

lim
h&0
(Auh (!; tn)� e�h(!; tn)) � e < 0:

(Recall that Auh (!; tn) � e�h(!; tn) by feasibility of uh (!; tn) for (Ph(!; tn)):) Then,
appropriately trimming u (!; tn) so as to satisfy the capacity usage limit imposed bye�h(!; tn) and passing to the limit as h & 0, we get a contradiction to the fact that the

objective function value of the linear program (Ph(!; tn)) converges to that of (P(!; tn))

as h& 0. Hence,

lim
h&0
(Auh (!; tn)� e�h(!; tn)) � e = 0

and we can write

lim
h&0

(f(!; tn)� e�h(!; tn)A) � uh (!; tn) + �(Auh (!; tn)� e�h(!; tn)) � e
= lim

h&0
(f(!; tn)� e�h(!; tn)A) � uh (!; tn) ;

= lim
h&0

f(!; tn) � uh (!; tn)� �(!; tn) � �(!; tn);

which implies together with (A.17) that limh&0 f(!; tn) � uh (!; tn) = f(!; tn) � u (!; tn).

Hence, the function
PN

n=1 f(!; tn) � uh(!; tn) converges almost surely. From Dominated

Convergence Theorem, the expected revenue generated by the controls resulting from the



176

predictable bid-price control converge to the expected revenue generated by an optimal

solution to (P), proving Theorem 5. �

The execution of the proposed adapted and predictable bid-price policies involve the

maximization of the linear programs (P(!; tn)) and (Ph(!; tn)) for n = 1; : : : ; N and ! 2


. (For clarity, I will emphasize the dependence of the programs (P(!; tn)) and (Ph(!; tn))

on ! for the remainder of the proof.) To facilitate our analysis of the convergence of the

problems (Ph(!; tn)) to (P(!; tn)) as h & 0, we eliminate the hard constraints in linear

problems (P(!; tn)) and (Ph(!; tn)) by incorporating penalty expressions in the objective

function. The formulation with penalty expressions is more �exible because it allows us

to study the convergence of maximization problems in terms of convergence of extended

real valued functions. To that end, de�ne the indicator function �F (�)

(A.18) �F (x) =

8><>: 0 if x 2 F;

1 otherwise.

Let hm be any sequence such that hm & 0 as m!1. Then, for ! 2 
 and n = 1; : : : ; N

consider the minimization of the extended real valued function gm(�; !; tn) on RJ where

gm(u; !; tn) is de�ned as

gm(u; !; tn) = (e�hm(!; tn)A� f(!; tn)) � u+ �fv: Av�e�hm (!;tn)g(u)
+�fv: 0�v�D(!;tn)�D(!;tn�1)g(u):
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The problem of minimizing gm(�; !; tn) is equivalent to maximizing Phm(!; tn) for ! 2 


and n = 1; : : : ; N . Also de�ne the function g(�; !; tn) to represent (P(!; tn)) as follows:

g(u; !; tn) = (�(!; tn)A� f(!; tn)) � u+ �fv:Av��(!;tn)g(u)

+�fv:0�v�D(!;tn)�D(!;tn�1)g(u):

For the de�nitions of the terms used in the subsequent statements and proofs, see [55].

Lemma 53. The sequence fgm(�; !; tn)gm2N+ is eventually level-bounded for ! 2 


and n = 1; : : : ; N . At the same time g(�; !; tn) and gm(�; !; tn) are lower semi-continuous

and proper. Moreover, gm(�; !; tn) converges epigraphically to g(�; !; tn), i.e.

gm(�; !; tn)!e g(�; !; tn)

for ! 2 
 and n = 1; : : : ; N .

Proof of Lemma 53. For ! 2 
 and n = 1; : : : ; N , gm(�; !; tn) and g(�; !; tn) are

lower semi-continuous since their epigraphs are closed in RJ�R. gm(�; !; tn) and g(�; !; tn)

are proper since u = 0 is feasible for both. To show the epigraphical convergence of

gm(�; !; tn) to g(�; !; tn), we use Proposition 7.2 of [55] which proves that fm !e f if and

only if at each point x one has

lim inf
m!1

fm(xm) � f(x) for every sequence xm ! x;

lim sup
m!1

fm(xm) � f(x) for some sequence xm ! x:



178

First consider a point u 2 RJ such that g(u; !; tn) < 1, i.e. u is a feasible point for the

problem (P(!; tn)). Consider an arbitrary sequence such that um ! u as m!1. Then,

lim infm!1 g
m(um; !; tn) is attained along a subsequence whose elements are feasible for

the corresponding problems, i.e. gm(um; !; tn) < 1. Without loss of generality assume

that um are feasible for Pm(!; tn). Then, for all m along the subsequence, we have

Aum � e�hm(!; tn), 0 � um � D(!; tn)�D(!; tn�1)

and

gm(um; !; tn) = (e�hm(!; tn)A� f(!; tn)) � um:

Moreover, we also have

lim
m!1

gm(um; !; tn) = (�(!; tn)A� f(!; tn)) � u = g(u; !; tn):

Hence, along the same subsequence we have lim supm!1 g
m(um; !; tn) � g(u; !; tn) as

well as lim infm!1 gm(um; !; tn) � g(u; !; tn).

Now consider some u such that g(u; !; tn) = 1; i.e. u is infeasible. Let um ! u.

The inequality lim supm!1 g
m(um; !; tn) � g(u; !; tn) =1 is already satis�ed. Next, we

prove that lim infm!1 gm(um; !; tn) = g(u; !; tn). This is true since

lim
m!1

e�hm(!; tn) = �(!; tn), lim
m!1

e�hm(!; tn) = �(!; tn),

and u does not satisfy the constraints of the problem g(�; !; tn) represents. Thus, if

um ! u, then after some large enough index M , for all m � M , um would be infeasible
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for gm(�; !; tn), too. Hence, we will have gm(um; !; tn) = 1 for all m � M which imply

that lim infm!1 gm(um; !; tn) = g(u; !; tn). �

Proof of Theorem 7. To execute the proposed predictable bid-price policy, the

system manager solves at each decision time tn for n = 1; : : : ; N and for each realization

of ! 2 
, the linear program (Ph(!; tn)) to determine the bookings. We �rst establish

the feasibility of the controls (bookings) resulting from the proposed predictable bid-price

policy for the network revenue management problem (P). Let uh(!) denote an arbitrary

element of Uh(!). That is, for ! 2 
, h > 0, we have

uh(!) = (uh(!; t1); : : : ; u
h(!; tN));

where uh(!; tn) is any optimal solution to (Ph(!; tn)) for n = 1; : : : ; N: The control

fuh(!; t)g(!;t)2(
;�) clearly satis�es the demand restrictions of the network revenue man-

agement problem (P). To check whether fuh(!; t)g(!;t)2(
;�) satis�es the capacity restric-

tions, we prove that
PN

n=1
e�h(!; tn) � C for all ! 2 
. For n = 1, we have e�h(!; t1) � C

due to the de�nition of e�h(!; tn). For n � 2,
e�h(!; tn) = minfE[�(!; tn) j Ftn�h]; C �

n�1X
i=1

e�h(!; ti)g;(A.19)

� C �
n�1X
i=1

e�h(!; ti);(A.20)

and, hence,
Pn

i=1
e�h(!; ti) � C. Since the bookings fuh(!; t)g(!;t)2(
;�) satisfy

NX
n=1

Auh(!; tn) �
NX
n=1

e�h(!; tn) � C;
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they are feasible for the network revenue management problem (P).

Having proved the feasibility of the bookings resulting from (e�h; e�h) for h > 0; we

next prove that as h& 0, the expected revenue generated by those bookings converges to

the expected revenue generated by the optimal adapted bid-price scheme (�; �), which, in

turn, is equal to the objective function value of the network revenue management problem

(P). To study the limit as h & 0, we analyze the limits along arbitrary sequences such

that hm & 0 as m!1. The properties proved in Lemma 53 enable us to use Theorem

7.33 of [55], from which it follows that inf gm(�; !; tn)! inf g(�; !; tn) (�nite) as m!1

for ! 2 
 and n = 1; : : : ; N . At the same time, for v in some index set N 2 N1, where

N1 is the set of all subsequences of natural numbers N containing all v beyond some

v 2 N, that is, N1 = fN � N: NnN �niteg;the sets argmin gv(�; !; tn) are non-empty

and form a bounded sequence with

(A.21) lim sup
v
( argmin gv(�; !; tn)) � argmin g(�; !; tn):

Recall that from Lemma 52, limm!1 e�hm(!; tn) = �(!; tn) and limm!1 elhm(!; tn) =
l(!; tn) for n = 1; : : : ; N: Combining this with (A.21), we see that for every ! 2 
, the

revenue generated along ! by the controls uhm(!) converge as m ! 1 to the revenue

generated by an optimal solution to (P) along !, where uhm(!) 2 Uh(!) for all m.

Hence, the function
PN

n=1 f(!; tn) � uhm(!; tn) converges almost surely. From Dominated

Convergence Theorem, the expected revenue generated by the controls resulting from the

predictable bid-price policy converge to the expected revenue generated by an optimal

solution to (P), proving the �rst part of Theorem 7.
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Finally, note that for every ! 2 
, by de�nition we have

U(!) = lim sup
r!1

(argmin ghr(�; !; t1)� � � � � argmin ghr(�; !; tN)).

From (A.21) it follows that for ! 2 
 and n = 1; : : : ; N , u(!; tn) 2 argmax(P(!; tn)) for

u(!) 2 U(!). Then, the optimality of the adapted bid-price policy (�; �) for (P) implies

that u(!) is an optimal solution to (P) along !. Hence, every cluster point (u(!) : ! 2 
)

of the sequence of predictable bid-price controls f(e�h; e�h)gh>0 is an optimal control for
the network revenue management problem, proving second part of Theorem 7. �

A.3. Proofs Regarding Section 1.4

As our �rst step, we introduce a perturbed version of the network revenue management

problem (P). For each " > 0, the perturbed problem (P") can be stated as follows: Choose

u(tn) 2 Ftn for n = 1; : : : ; N so as to

Maximize
NX
n=1

E

"
f(tn) � u(tn)�

1

2

JX
j=1

"j(tn)u
2
j(tn)

#
subject to

x(t0) = C; (P")

x(tn) = x(tn�1)� Au(tn); n = 1; : : : ; N;

Au(tn) � x(tn�1); n = 1; : : : ; N;

0 � u(tn) � D(tn)�D(tn�1); n = 1; : : : ; N;
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where "j(tn) is de�ned as follows: For j = 1; : : : ; J and n = 1; : : : ; N , let

"j(tn) =

8><>:
"

Dj(tn)�Dj(tn�1) if Dj(tn)�Dj(tn�1) > 0;

" otherwise.

The di¤erence between (P") and (P) is that (P") has the strictly concave term

�1
2

JX
j=1

"j(tn)u
2
j(tn)

in its objective function in addition to the revenue term f(tn) � u(tn), which makes (P") a

strictly concave problem. Note that from (P"), we recover the network revenue manage-

ment problem (P) for " = 0. The existence of a unique optimal solution to (P") can be

shown using an argument similar to Proposition 49.

Lemma 54. For each " > 0, there exists a bid-price process � with � (tn) 2 Ftn for

n = 1; : : : ; N such that the booking controls u de�ned as in (1.4) using � constitute an

optimal solution to the perturbed network revenue management problem (P") and for each

resource k = 1; : : : ; K, the bid-price process f�k(tn) : n = 1; : : : ; Ng is a martingale.

Moreover, 0 � � (tn) � B for n = 1; : : : ; N where B = JF maxj E[Dj(!; T )]:

Proof of Lemma 54. The proof can be divided into four major steps. We �rst intro-

duce a discrete approximation to the perturbed problem (P"). We derive the dual convex

problem associated with the discretized problem (P") and the resulting coextremality

conditions. Second, we prove that the limit u of the optimal controls for the discretized

problems is indeed an optimal control for (P"). Third, we de�ne the bid-price process �

using the limit of the dual variables to the discretized problems. We also show that u as
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de�ned in (1.4) using � constitute an optimal solution to the perturbed network revenue

management problem (P"). Finally, we show that the bid-price process � we de�ned forms

a martingale.

We �rst introduce a discrete approximation to the perturbed problem (P"). To be

speci�c, we use the discretization introduced in Section A.1.1. Then, we have a sequence

of problems indexed by m = 1; 2; : : : such that in each problem the distributions of the

demand during each period and the vector of fares have �nite support so that these

problems reduce to �nite convex programs, allowing us to use the machinery of convex

programming.

Let di;m and f i;mdenote the discretized demand and fare at information node i 2 Im,

respectively. Then, de�ne "i;mj as follows: Let "i;mj = " if di;mj = 0 and "i;m = "=di;mj if

di;mj > 0. Let ui;m denote the booking vector at information node i 2 Im. Similarly,

denote vector of remaining capacities upon entering information node i 2 Im by xi;m.

Then, the �nite convex program resulting from the mth discretization is given by the
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following �nite convex problem (denoted by (Pm" )):

Maximize
X
i2Im

"
pif i;m � ui;m � 1

2

JX
j=1

"i;mj
�
ui;mj

�2#

subject to

xi;m = C , i 2 Im1 ;

xi;m = xi�;m � Aui�;m, i 2 Imn , n = 2; : : : ; N;(Pm" )

Aui;m � xi;m, i 2 ImN , n = 1; : : : ; N ,

0 � ui;m � di;m; i 2 Imn , n = 1; : : : ; N;

where the capacity constraints Aui;m � xi;m are imposed only for information nodes

i 2 ImN in the last period. Imposing the capacity constraints only for the information

nodes in the last period is equivalent to imposing them for every node i 2 Im.

Let feui;mgi2Im denote an optimal control for the mth discretized problem (Pm" ), and

fexi;mgi2Im denote the corresponding state trajectory. Using the convex duality framework
of [55], the dual convex program to the mth discretized problem (Pm" ) is given by

Minfvi;mgi2Im
X
i2Im

pi[g"(f
i;m � yi;mA; di;m)] + C � y0;m

subject to (Dm" )

yi;m = E[yi+;m j i]� vi;m; i 2 Im;

vi;m � 0; i 2 Im;
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where g"(z; d) =
PJ

j=1 h"(zj; dj) and for j = 1; : : : ; J , h" is de�ned as

(A.22) h"(zj; dj) =

8>>>><>>>>:
0 if zj � 0;

zjdj � "
2
dj if zj � ";

z2j d
2
j

2"
if 0 < zj < ":

We have yi+;m = 0 for i 2 ImN by convention and di;m denote the discretized demand

at information node i 2 Im. The non-negativity of an optimal dual solution eyi;m then

follows from the facts that vi;m � 0 for i 2 Im and eyi+;m = 0 for i 2 ImN . Moreover,

the objective function value of the discretized problems (Pm" ) are less than or equal toPN
n=1 E[f(!; tn) � (D(!; tn)�D(!; tn�1))], which is uniformly bounded since the demand

process has �nite mean and fare process is bounded. Then, the objective function value of

(Dm
" ) are also uniformly bounded due to strong duality. For an optimal solution feyi;mgi2Im

to (Dm" ) we have that its objective function value is in the interval [C �ey0;m; JFE[D(!; T )]
where F is the bound on the fare process and ey0;m is uniformly bounded. By a similar
argument, we can prove that eyi;m is uniformly bounded by JFE[D(!; T )] if we consider
the smaller primal and dual problems that starts at information node i.

From convex programming duality, the optimal primal-dual variables feui;mgi2Im and
feyi;mgi2Im satisfy a set of coextremality conditions which are necessary and su¢ cient for
optimality. To facilitate our analysis, �rst de�ne for " > 0 the booking function �" as

follows:

(A.23) �"(zj; fj; dj) =

8>>>><>>>>:
0 if fj < zj;

dj if fj > zj + ";

fj�zj
"
dj if zj � fj � zj + ":
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It is easy to see that �" is continuous in all of its arguments. Then, the convex duality

results of [55] imply that primal-dual variables feui;mgi2Im and feyi;mgi2Im are optimal

for (Pm" ) and (D
m
" ), respectively if and only if they satisfy the following coextremality

conditions:

(A.24) (eyi;m � E[eyi+;m j i]) � exi;m = 0 for i 2 ImN ;
and for j = 1; : : : ; J and for all j with di;mj > 0,

eui;mj = �"(E[eyi+;mji]Aj; f i;mj ; di;mj ) for i 2 ImN :

Having completed the �rst step of the proof of Lemma 54, we rewrite controls eui;m and
eyi;m, i 2 Im, as a function of the sample paths ! by tracking which information nodes we
visit at each decision time. Formally, for ! 2 
, let

eui;mj (!; tn) = ui;m and eym(!; tn) = eyi;m if ! 2 i and i 2 Imn :

Next, to embark on the second step of the proof of Lemma 54, we show the existence of a

limiting process u such that for every ! 2 
 and n = 1; : : : ; N there exists a subsequence

mn;r(!) so that for n � 2, mn;r(!) is a further subsequence of mn�1;r(!) and

u(!; tn) = lim
r!1

eumn;r(!)(!; tn) and y(!; tn) = lim
r!1

eymn;r(!)(!; tn) for n = 1; : : : ; N .

The subsequences mn;r(!) 2 Ftn can be constructed as in the proof of Proposition

51. Moreover, we have u(!; tn); y(!; tn) 2 Ftn by construction. The feasibility of u
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for (P) has been established in the proof of Proposition 50. Hence, u is also feasi-

ble for the perturbed problem (P"). Since the booking function �" is continuous and

eui;mj = �"(E[eyi+;mji]Aj; f i;mj ; di;mj ) for i 2 ImN , we have

(A.25) u(!; tn) = �"(E[y(!; tn+1)jFn]Aj; fj (!; tn); Dj(!; tn)�Dj(!; tn�1))

for ! 2 
 and n = 1; : : : ; N .

Next we show that u is optimal for the perturbed problem (P") and the booking

controls u de�ned as in (1.4) using the bid-price process � = E[y(!; tn+1)jFn] are equal to

u, proving the optimality of u for (P"). As a preliminary to establishing the optimality of u,

we show the convergence of the objective function values of the discretized problems. To be

speci�c, we show that the objective function values of the discretized problems converge to

the objective function value generated by the feasible control u for the perturbed network

revenue management problem (P").

We �rst show that the objective function value generated along a sample path ! is

non-decreasing in m almost surely. That is, P almost surely,

NX
n=1

"
fm(!; tn) � eum(!; tn)� 1

2

JX
j=1

"mj (!; tn)
�eumj (!; tn)�2

#

increases weakly as the partition gets �ner. To see this, �rst note that eum is feasible for
the (m+1)st discretization. Moreover, the fare and demand that is assumed by the system

manager to realize weakly increases on each grid as the partition gets �ner. The value of

"mj (!; tn) is either constant for all m � 0 (this is the case when Dj (!; tn)�Dj (!; tn�1) =

0) or it is increasing for all m � Q for some constant Q � 1 (this is the case when
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Dj (!; tn)�Dj (!; tn�1) > 0:) Hence, applying the control eum for the (m+1)st discretized
problem generates at least as much revenue as eum on each grid of the mth discretized

problem for m large enough. However, eum+1 does at least as good as this control and
the revenue generated along a sample path ! weakly increases. Moreover, total revenue

generated along each sample path is also bounded by above as the initial capacity C is

bounded and so is the revenue that can be generated along each sample path. Then,

objective function values of the discretized problems form a monotone sequence of real

numbers which should have a limit. For every ! 2 
; this limit also coincides with the

revenue generated by u along ! and the result follows from the Dominated Convergence

Theorem.

To we prove that u is optimal for the perturbed network revenue management problem

(P"), we start with an optimal solution to (P") and construct a feasible solution to each

discretized problem. We show that the objective function values of these feasible solutions

converge to the objective function value of (P"), which proves the optimality of u for (P").

Let u� be an optimal solution to (P"). Construct a feasible solution bum to the mth

discretized problem as follows. For decision time tn and information node i 2 Imn , the

booking for product j is given by

bumj (!; tn) =
8><>: maxf0;E[u�j(!; tn)j i]� 1=2mg if ! 2 i, di;mj < Km;

E[ minfu�j(!; tn); Kmgj i] if ! 2 i, di;mj = Km;

where Km is the level at which we truncate the demand. The control bum satis�es the

demand constraints and is clearly adapted. The expected revenue under bum is greater
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than or equal to

NX
n=1

X
i2Imn

piE

"
f(!; tn) � u�(!; tn)�

1

2

JX
j=1

"j(!; tn)
�
u�j(!; tn)

�2����� i
#

�JNF=2m �NF 22J2m=3m � JNM=2m � JN"

2m
;(A.26)

where F is the bound on the fare process and M is a �nite number such that

sup
!2
, t2�

u�j(!; t) �M

for j = 1; : : : ; J . (Note that such constant M exists since the capacity C is �nite.)

Therefore, the expected revenue under the optimal solution to themth discretized problem

is greater than or equal to (A.26). Since (A.26) converges to the objective function value

of the perturbed network revenue management problem (P") as m ! 1, it follows that

u is optimal for (P"), completing the second step of the proof of Lemma 54.

Having proved the optimality of u for (P"), we next prove that the booking controls u

de�ned as in (1.4) using the bid-price process � = E[y(!; tn+1)jFn] is indeed an optimal

solution to (P"). Feasibility of u for (P") follows from its de�nition. Moreover, by de�nition

of u and the coextremality condition (A.25), we have u = u and u is optimal for (P")

because given the bid prices E[y(!; tn+1)jFn], the booking function �" uniquely de�nes a

booking control.

To conclude the proof of Lemma 54, we prove that the bid-price process

� = E[y(!; tn+1)jFn]
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forms a martingale which follows from the dual system dynamics. Moreover, since

feyi;mgi2Im
are uniformly bounded by

JFE[D(!; T )];

so are y(!; tn+1) for n = 1; : : : ; N and ! 2 
. Thus,

0 � � (tn) � B

for B = JF maxj E[Dj(!; T )]: �

Proof of Theorem 9. Fix an " > 0 and a partition � = ft0; t1; : : : ; tNg of [0; T ].

Let f� (tn) : n = 1; : : : ; Ng with � (tn) 2 Ftn for n = 1; : : : ; N; be a bid-price process as

in Lemma 54. Then, the booking controls u de�ned as in (1.4) using � constitute an

optimal solution to the perturbed network revenue management problem (P") and for

each resource k = 1; : : : ; K, the bid-price process f�k(tn) : n = 1; : : : ; Ng is a martingale.

De�ne the predictable bid-price process f�" (tn) : n = 1; : : : ; Ng as follows:

�" (tn) = E [� (tN) jFn�1] for n = 1; : : : ; N:

That is, the predictable bid-price process �" is constructed by taking the conditional

expectation of the adapted bid-price process � as in Lemma 54. Then, by construc-

tion the predictable bid-price process f�" (tn) : n = 1; : : : ; Ng is a martingale adapted to

(fFtn�1 : n = 1; : : : ; Ng;P) as well. The fact that 0 � �" (tn) � B for n = 1; : : : ; N
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follows from Lemma 54, which states that 0 � � (tn) � B for n = 1; : : : ; N where

B = JF maxj E[Dj(!; T )].

Next we provide the optimality gap (1.5) in Theorem 9. Let u" denote the booking

controls de�ned as in (1.4) using the adapted bid-price process �. Then, from Lemma 54,

u" is the unique optimal solution to the perturbed network revenue management problem

(P"). Let u be an optimal solution to the network revenue management problem (P). As

our �rst step, we prove that

(A.27)

�����
NX
n=1

E[f(tn) � u"(tn)]� P�
����� � �";

where P� is the objective function value of (P) and is equal to
NX
n=1

E[f(tn) � u(tn)]. To

prove (A.27), notice that u is also feasible for the perturbed problem (P") and we have

NX
n=1

E[f(tn) � u(tn)]� "
JX
j=1

E [Dj (T )]

�
NX
n=1

E

"
f(tn) � u(tn)�

1

2

JX
j=1

"j(tn) (uj(tn))
2

#

�
NX
n=1

E

"
f(tn) � u"(tn)�

1

2

JX
j=1

"j(tn)
�
u"j(tn)

�2#
;

�
NX
n=1

E [f(tn) � u"(tn)] :

The �rst inequality follows from the de�nition of "j(tn) , and the fact that u(tn) � Dj (tn)�

Dj (tn�1) for n = 1; : : : ; N . The second inequality is given by feasibility of u for (P ") and

optimality of u ". The last inequality proves (A.27) since u" is also feasible for (P).
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Finally, to conclude the proof of Theorem 9, we prove that�����Obj (�"; ";�)�
NX
n=1

E [f(tn) � u"(tn)]
����� � C

"
[EVp (�";�)]1=p [EVq (D;�)]1=q :

First de�ne the booking function �" for " > 0 as follows:

�"(zj; fj; dj) =

8>>>><>>>>:
0 if fj < zj;

dj if fj > zj + ";

fj�zj
"
dj if zj � fj � zj + ":

It is easy to see that �" is continuous in all of its arguments. Then, we can write�����Obj (�"; ";�)�
NX
n=1

E [f(tn) � u"(tn)]
�����

�
�����
NX
n=1

JX
j=1

E
�
fj(tn)�

"(�"Aj; fj (tn); Dj(tn)�Dj(tn�1))
�
�

NX
n=1

E [f(tn) � u"(tn)]
�����

+

�����Obj (�"; ";�)�
NX
n=1

JX
j=1

E
�
fj(tn)�

"(�"Aj; fj (tn); Dj(tn)�Dj(tn�1))
������

We �rst consider the following term:�����Obj (�"; ";�)�
NX
n=1

JX
j=1

E
�
fj(tn)�

"(�"Aj; fj (tn); Dj(tn)�Dj(tn�1))
������ ;
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quanti�es the loss in revenue from ignoring the capacity constraints. For notational

brevity, de�ne �Dj (tn) = Dj(tn)�Dj(tn�1). We have

Obj (�"; ";�)

�
NX
n=1

JX
j=1

E
�
fj(tn)�

"(�"Aj; fj (tn);�Dj (tn)))
�

�F
a
E

"
KX
k=1

NX
n=1

JX
j=1

Akj�
"(�"Aj; fj (tn);�Dj (tn))� Ck

#+
:

Since

F

a
E

"
KX
k=1

NX
n=1

JX
j=1

Akj�
"(�"Aj; fj (tn);�Dj (tn))� Ck

#+

� F

a
E

"X
k;n;j

Akj
�
�"(�"Aj; fj (tn);�Dj (tn))� �"(�Aj; fj (tn);�Dj (tn))

�#+

� FEK

a
E

"X
n;j

���"(�"Aj; fj (tn);�Dj (tn))� �"(�Aj; fj (tn);�Dj (tn))
��# ;

� FEK

a"

h
(E [Vp (�";�)])1=p (E [Vq (D;�)])1=q

i
;

we get

Obj (�"; ";�) �
NX
n=1

JX
j=1

E
�
fj(tn)�

"(�"Aj; fj (tn); Dj(tn)�Dj(tn�1))
�

�FEK
a"

h
(E [Vp (�";�)])1=p (E [Vq (D;�)])1=q

i
:
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That is, we have�����Obj (�"; ";�)�
NX
n=1

JX
j=1

E
�
fj(tn)�

"(�"Aj; fj (tn); Dj(tn)�Dj(tn�1))
������

� FEK

a"

h
(E [Vp (�";�)])1=p (E [Vq (D;�)])1=q

i
:

Then, we also have�����Obj (�"; ";�)�
NX
n=1

E [f(tn) � u"(tn)]
�����

�
�
FEK

a"
+
KJFE

"

�h
(E [Vp (�";�)])1=p (E [Vq (D;�)])1=q

i
Now we focus on the term

�����
NX
n=1

JX
j=1

E
�
fj(tn)�

"(�"Aj; fj (tn); Dj(tn)�Dj(tn�1))
�
�

NX
n=1

E [f(tn) � u"(tn)]
�����

Then, we have�����
NX
n=1

JX
j=1

E
�
fj(tn)�

"(�"Aj; fj (tn); Dj(tn)�Dj(tn�1))
�
�

NX
n=1

E [f(tn) � u"(tn)]
�����

is less than or equal to

FJ

"

�����
NX
n=1

E [j�" (tn)A� � (tn)Aj jD(tn)�D(tn�1)j]
����� ;

where F is the upper bound on the fare process, E = maxk;j fAkjg and the inequality

follows from the fact that the booking function �" is Lipschitz continuous in its �rst
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argument with Lipschitz constant less than

jDj(tn)�Dj(tn�1)j =":

From this, we get�����
NX
n=1

"
JX
j=1

E
�
fj(tn)�

"(�"Aj; fj (tn); Dj(tn)�Dj(tn�1))
�
� E [f(tn) � u"(tn)]

#�����
� KJFE

"

�����
NX
n=1

E [j�" (tn)� � (tn)j (Dj(tn)�Dj(tn�1))]

����� :(A.28)

Treating
NX
n=1

PJ
j=1 E (�) as a product measure and applying Holder�s inequality to

(A.28), we get �����Obj (�"; ";�)�
NX
n=1

E [f(tn) � u"(tn)]
�����

�
�
FEK

a"
+
KJFE

"

�h
(E [Vp (�";�)])1=p (E [Vq (D;�)])1=q

i
;(A.29)

where q = p= (p� 1). Then, (A.29) together with (A.27) completes the proof of Theorem

9. �

Proof of Corollary 10. Suppose the demand process fD (t) : 0 � t � Tg has con-

tinuous sample paths. For each " > 0 and for each partition �, from (1.5) of Theorem 9

we have

jObj (�"; ";�)� P�j � �"+
C

"

h
(E [V2 (�";�)])1=2 (E [V2 (D;�)])1=2

i
;

= �"+
2BC

"

p
E [V2 (D;�)];
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since (E [V2 (�";�)])1=2 � 2B. To see this, note that by Theorem 9, we have �" � B where

B = JF maxj E[D(!; T )]. Hence,

E [V2 (�";�)] = E
"
NX
n=1

(�" (tn)� �" (tn�1))
2

#
= E

�
(�" (tN)� �" (t0))

2� � 4B2;

where the second equality follows from the fact that �" is a martingale and the last

inequality is true since �" � B.

Moreover, since demand process is continuous, E [V2 (D;�)] ! 0 as the the parti-

tions get �ner. Then, for each ", we can choose a partition �" �ne enough such thatp
E [V2 (D;�)] � "2. Thus, we have

jObj (�"; ";�")� P�j ! 0 as "! 0;

which concludes the proof of Corollary 10. �

Proof of Corollary 12. Suppose that the information structure fFt : 0 � t � Tg

is continuous. Then, the sample paths of �" are continuous. For each " > 0 and for each

partition �, from Theorem 9 we have

jObj (�"; ";�)� P�j � �"+
C

"

h
(E [V3 (�";�)])1=3

�
E
�
V3=2 (D;�)

��2=3i
;

= �"+
2C
PJ

j=1 E [Dj (T )]

"
(E [V3 (�";�)])1=3 :



197

Now observe that we can write

E [V3 (�";�)] = E

"
NX
n=1

(�" (tn)� �" (tn�1))
3

#
;

= E

"
sup
n
(�" (tn)� �" (tn�1))

NX
n=1

(�" (tn)� �" (tn�1))
2

#
:

As the partitions �" get �ner, we have lim"!0 supn (�
" (tn)� �" (tn�1)) = 0 since the

sample paths of �" are continuous. Moreover, since
NX
n=1

(�" (tn)� �" (tn�1))
2 is bounded

by JF maxj=1;:::;J E[D(!; T )], we get lim"!0 E [V3 (�";�)] = 0 by Dominated Conver-

gence Theorem. Thus, for each ", we can choose a partition �" �ne enough such that

(E [V3 (�";�)])1=3 � "2 and we get

jObj (�"; ";�")� P�j ! 0 as "! 0;

which concludes the proof of Corollary 12. �
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APPENDIX B

Proofs of the Results in Chapter 2

B.1. Summary of Bismut (1973)

We �rst introduce the probability framework used in the paper. Let (
,F ,P) denote

a complete probability space. {Ft; t 2 R+} is an increasing sequence of complete sub-�-

�elds of F :We assume that the sequence of complete sub-�-�elds is right-continuous and

has no time discontinuity, That is, for any increasing sequence (Sn)n2N of stopping times,

we have

F(limn Sn) =
_
n

FSn :

An information structure that has no time discontinuity is also referred to as a quasi-

continuous information structure in [36], which also proves that the natural �ltrations of

most of the commonly encountered processes are quasi-continuous, including the natural

�ltrations generated by the Poisson process and Brownian motion. As a matter of fact,

[12] extends the framework and results in [11] to the more general setting of the control

of semi-martingales where the quasi-continuity assumption is also dropped. Let J be the

�-�eld of 
 � [0;1) of the well measurable or optional sets. That is, J is the �-�eld

generated by the adapted processes which are right-continuous with left limits. J � is the

completion for the measure dP 
 dt. w denotes an m-dimensional Brownian motion on

(
,F ,P) adapted to {Ft; t 2 R+}. V is an n-dimensional vector space.
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We next de�ne the following spaces of functions. For any stopping time �, L�2 is the

space of square integrable F� measurable random variables, with values in V . Let L21

denote the space of dP
dt classes u of J � measurable functions with values in V such

that

E(
Z T

0

ju(!; t)j dt)2 <1:

Similarly, let L22 denote the space of dP
dt classes H of J � measurable functions that

have values in V such that

E
Z T

0

jH(!; t)j2 dt <1:

L is the space of square integrable martingales which take values in V; are stopped at time

T and null at 0. W is the subspace of L generated by the stochastic integrals relative to

w of elements of L22. Let W? be an orthogonal of W in L in the sense of [23]. W? can

then be decomposed into the sum of two orthogonal subspaces of martingalesW1 andW2,

i.e. W? = W1�W2. In practice, we would either have W1 = W? or W1 = f0g where 0 is

the constant martingale equal to zero.

The problem of control can be de�ned as follows. We �rst describe the set of admissible

controls for the primal and the dual problems. De�ne R1 and R2 by

R1 = L02 � L21 � L22 �W1;

R2 = L02 � L21 � L22 �W2:

Each x = (x0;
:
x;H;M) 2 R1 de�nes uniquely the stochastic process xt by

(B.1) xt = x0 +

Z t

0

:
xsds+

Z t

0

Hsws +Mt:
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Similarly, each y = (y0;
:
y;H

0
;M

0
) 2 R2 de�nes uniquely the stochastic process yt by

yt = y0 +

Z t

0

:
ysds+

Z t

0

H
0

sdws +M
0

t :

The elements of R1 and R2 denote the spaces of stochastic processes that are admissible

as primal and dual solutions to the control problems we will de�ne shortly. In de�ning the

control problems, further constraints may be included through objective functions taking

values on extended real line R [ f1g so that the feasible admissible controls is a proper

subset of R1 or R2.

The primal problem of control is concerned with minimizing the functional �l;L de�ned

on R1 as

�l;L(x) =

8>>><>>>:
l(x0; xT ) + E

TZ
0

L(!; t; x(!; t);
:
x(!; t); H(!; t))dt if x 2 R1;

1 otherwise,

where x = (x0;
:
x;H;M) is a stochastic process de�ned as in (B.1). A control x 2 R1 is

feasible only if �l;L(x) <1. L is a normal convex integrand in the sense of [51], de�ned

on 
 � [0; T ] � V � V � V m. The functional l helps us de�ne the boundary conditions

of the problem and consists of two convex, lower semi-continuous functionals l0 and lT as

follows:

l(x0; xT ) = l0(x0) + lT (xT ):

To be more speci�c, the functional l0 is de�ned on L02 with values in R [ f1g and will

assist in setting the initial conditions of the problem. On the other hand, lT is de�ned on
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LT2 with values in R [ f1g and introduces the boundary conditions and penalties at the

terminal time T .

In convex duality framework, every function f is coupled with its conjugate function

f � de�ned as

(B.2) f �(y) := sup
x
fx � y � f(x)g:

We refer to f � as the dual of f . The de�nition of the dual problem of control relies on

the duals of the integrand L and the functional l. Let L� be the dual integrand of L and

de�ne M on 
� [0; T ]� V � V � V m as

M(!; t; p; s;H
0
) = L�(!; t; s; p;H

0
):

Note that we have swapped the order of the terms s and p in de�ning M in terms of L�.

Similarly, de�ne m on L02 � LT2 by

m(y0; yT ) = l�0(y0) + l�T (�yT );

where l�0 and l
�
T are the duals of l0 and lT , respectively. The dual problem of control, then,

consists of the minimization of the functional �m;M on R2, where for y = (y0;
:
y;H

0
;M

0
),

�m;M(y) is given by

�m;M(y) =

8>>><>>>:
m(y0; yT ) + E

TZ
0

M(!; t; y(!; t);
:
y(!; t); H

0
(!; t))dt if y 2 R2;

1 otherwise.



202

The following theorem establishes the duality between the two problems of stochastic

control represented by �l;L and �m;M .

Theorem IV-1 (Bismut) infx2R1 �l;L(x) = � infy2R2 �m;M(y) provided �l;L or �m;M

are not identically 1.

Having derived the dual problem of control, we next analyze the necessary and su¢ -

cient conditions for primal-dual control pairs to be optimal. Let @f denote the subgradient

of a function f , cf. [55].

De�nition 55. x 2 R1 and y 2 R2 are said to be coextremal if

a) dP
 dt a.s. (
�
y(!; t); y(!; t); H

0
(!; t)) 2 @L(!; t; x(!; t); �x(!; t); H(!; t))

b) y0 2 @l0(x0), �yT 2 @lT (xT ):

Note that the de�nition of coextremality is symmetric between the primal and the

dual problems.

Theorem IV-2 (Bismut) The following assertions are equivalent:

a) x and y are coextremal;

b) x minimizes �l;L on R1, y minimizes �m;M on R2 and �l;L(x) = ��m;M(y).

Theorem IV-2 proves that x is optimal for the primal problem of control and y is

optimal for the corresponding dual problem of control if and only if x and y are coextremal.

Moreover, in that case the objective function value of the primal problem of control is

equal to the negative of the objective function value of the dual control problem.

B.2. An Auxiliary Weak� Convergence Lemma

As a preliminary, �rst let L2(
 � [0; T ]; FT 
 B[0; T ]; P) denote the set of functions

X : 
�[0; T ]! RJ that are measurable with respect to the product �-algebra FT
B[0; T ]
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such that

E
Z T

0

jX(!; t)j2 dt <1;

where B[0; T ] is the Borel �-algebra on [0; T ]. The space L2(
 � [0; T ]; FT 
 B[0; T ]; P)

is endowed with the usual inner product h�; �i given by

hX; Y i = E

24 TZ
0

X(!; t) � Y (!; t)dt

35
for X;Y 2 L2(
� [0; T ]; FT 
 B[0; T ]; P) so that it is a Hilbert space.

We also view the stochastic processes as mappings from 
� [0; T ] into RJ . To be more

speci�c, we view the adapted stochastic processes as the elements of L2(
� [0; T ]; J �
T ; P),

where J �
T is the completion for the measure dP 
 dt of the �-�eld JT generated by the

adapted processes on 
� [0; T ] which are right-continuous with left limits. Then, L2(
�

[0; T ]; J �
T ; P) is also a Hilbert space endowed with the inner product h�; �i. In particular,

L2(
� [0; T ]; J �
T ; P) can be viewed as a closed subset of L2(
� [0; T ]; FT 
B[0; T ]; P),

For completeness, we next state the de�nition of weak� convergence, which is followed by

the main result of this section.

De�nition 56. The sequence fXng of elements of L2(
 � [0; T ]; FT 
 B[0; T ]; P) is

said to converge in the weak� topology to an element X of L2(
� [0; T ]; FT 
B[0; T ]; P)

if for all Y 2 L2(
� [0; T ]; FT 
 B[0; T ]; P),

hXn; Y i ! hX; Y i as n!1.

Lemma 57. Let fun : n � 1g be a sequence of feasible controls for the network revenue

management problem (Pcont) which converges to u in the weak� topology. Then, u is a
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feasible booking control for (Pcont). Moreover, the expected revenue under un converges to

that under u as n!1: That is,

lim
n!1

E

24 TZ
0

f(!; t) � un(!; t)dt

35 = E
24 TZ
0

f(!; t) � u(!; t)dt

35 :
Proof. To prove that u is a feasible control for the network revenue management

problem (Pcont), we need to check that u is adapted and satis�es demand and capacity

restrictions. First, we prove that u 2 L2(
 � [0; T ]; J �
T ; P), and hence u is adapted to

the �ltration {Ft; t 2 R+}. To this end, note that for all n � 1 and v 2 (L2(
 �

[0; T ]; J �
T ; P))?, we have hun; vi = 0. Then, we also have

lim
n!1

hun; vi = hu; vi = 0;

which implies that u 2 L2(
� [0; T ]; J �
T ; P).

Second, we show that u satis�es the demand restrictions, i.e.

0 � u(!; t) � d(!; t) for a.e. (!; t) 2 
� [0; T ]:

Note that hun; vi � 0 for all n � 1 and v 2 L2(
 � [0; T ]; FT 
 B[0; T ]; P) such that

v � 0 for a.e. (!; t) 2 
 � [0; T ]. Then, we have that hu; vi � 0 as well for all v 2

L2(
� [0; T ]; FT 
B[0; T ]; P) such that v � 0, and hence u(!; t) is non-negative for a.e.

(!; t) 2 
� [0; T ]. To show that u(!; t) � d(!; t) for a.e. (!; t) 2 
� [0; T ], observe that

for all v 2 L2(
� [0; T ]; FT 
 B[0; T ]; P) such that v � 0 for a.e. (!; t) 2 
� [0; T ], we
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have

0 � hd� un; vi ;

= hd; vi � hun; vi :

Then, we have hd; vi � hu; vi = hd� u; vi � 0 and hence d(!; t) � u(!; t) � 0 for a.e.

(!; t) 2 
� [0; T ].

Third, we show that A
R T
0
u(!; t)dt � C for a.e. ! 2 
. It su¢ ces to show that

E

24(C � A

TZ
0

u(!; t)) � �(!)

35 � 0
for all square integrable � such that � 2 FT and �(!) � 0 for a.e. ! 2 
. From feasibility

of un, we have for all n;

E

24(C � A

TZ
0

un(!; t)) � �(!)

35 � 0:
Assume without loss of generality that the capacity consumption matrix A has rank

K. If not, we can simply consider a new capacity consumption matrix eA = [I A] of

dimension K � (K + J), where the demand for the �rst K products is equal to zero for

all (!; t) 2 
 � [0; T ] and the demand for the rest of the products is given as before.

Then, the de�nitions of L2(
� [0; T ]; FT 
B[0; T ]; P) and the inner product are modi�ed

accordingly and the analysis to follow carry over to this problem.

Let � 2 RJ such that A� = C. Such � exists since the column space of A is RK .

Then, we have that


�
T
� un; A

0
�
�
= E

24(C � A

TZ
0

un(!; t)) � �(!)

35. To see this, note
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that

�
�

T
� un; A

0
�

�
= E

24 TZ
0

(
�

T
� un(!; t)) � A0

�(!)dt

35 ;
= E

24 TZ
0

(
A�

T
� Aun(!; t)) � �(!)dt

35 ;
= E

24(C � A

TZ
0

un(!; t)) � �(!)

35 :
Then,



�
T
� un; A

0
�
�
� 0 for all n and square integrable �(!) � 0 such that � 2 FT .

Since

lim
n!1

�
�

T
� un; A

0
�

�
=

�
�

T
� u;A

0
�

�
;

this implies that for all square integrable �(!) � 0 such that � 2 FT , we have

E

24(C � A

TZ
0

u(!; t)) � �(!)

35 � 0:
Finally, we show that for all adapted fare processes {f(!; t) : (!; t) 2 
� [0; T ]},

E

24 TZ
0

f(!; t) � un(!; t)dt

35! E

24 TZ
0

f(!; t) � u(!; t)dt

35 as n!1.

This follows simply from the de�nition of the weak limit and the fact that f 2 L2(
 �

[0; T ]; FT 
 B[0; T ]; P). �
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B.3. Derivation of the dual network revenue management problem and the

coextremality results

Derivation of the dual network revenue management problem (Dcont). We

will follow the road map provided by [11] to derive the dual problem of control associated

with the network revenue management problem (Pcont). In particular, we �rst append the

penalty expressions corresponding to the demand and capacity restrictions on bookings

in the objective function by de�ning the convex, extended real valued integrand L and

the convex functional l. We also formulate the problem towards minimization. Next, we

compute the conjugate convex functions associated with L and l so as to de�ne the dual

integrand M and the dual functional m. The dual problem of control is de�ned using M

and m.

The system dynamics equation for the network revenue management problem is given

by

(B.3) x(!; t) = C �
tZ
0

Au(!; s)ds; (!; t) 2 
� [0; T ]:

Comparing (B.3) with the set of admissible controls for the primal problem in the frame-

work of [11], cf. Proposition I-1 of [11], �rst thing to note is that there is no stochastic

integration term and martingale term in (B.3).

To facilitate the analysis to follow, de�ne the indicator function �F (�) for a given set

F by
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�F (x) =

8><>: 0 if x 2 F a.s.;

1 otherwise.

We express the network revenue management problem (Pcont) in terms of the convex

integrand L and the convex lower semi-continuous functional l which are de�ned as follows.

De�ne L on 
� [0; T ]� RK� RK as

(B.4) L(!; t; x;
�
x) =

8><>: �f(!; t) � u+ �RJ+(u) + �RJ�(u� d(!; t)) if
�
x = �Au;

1 otherwise.

In (B.4),
�
x denotes the rate of change of x, where x is the state variable denoting the

vector of remaining capacities. The integrand L serves the purpose of eliminating the

hard constraints of the network revenue management problem (Pcont) by appending them

to the objective function as penalty expressions. In this sense, the penalty expression

�RJ+(u)+�RJ�(u�d(!; t)) is the demand restriction on bookings and replaces the constraint

0 � u � d(!; t):

Notice also that we have reformulated the problem towards minimization and �f(!; t) �u

is the negative of the rate at which revenue is generated. The system dynamics equation

(B.3) is incorporated in L by the fact that we require
�
x to be equal to �Au.

Next step is to de�ne the functional l on L02 � LT2 with values on R [ f1g so as

to initiate the problem with capacity vector C and dictate non-negativity of remaining
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capacity at the terminal time T . The functional l is de�ned as

(B.5) l(x0; xT ) = l0(x0) + lT (xT );

where the convex, lower semi-continuous functionals l0 and lT are given by

(B.6) l0(x0) = �fCg(x0); lT (xT ) = �RK+ (xT ):

The functional l0 replaces the constraint that x(!; 0) = C for a.e. ! 2 
 and lT re-

places the capacity constraint x(!; T ) � 0 for a.e. ! 2 
. Then, the network revenue

management problem (Pcont) can equivalently be stated as a problem of minimizing

E

24 TZ
0

L(!; t; x(!; t);
�
x(!; t))dt+ l(x0; xT )

35 :
As our second step in deriving the dual problem of control, we compute the conjugates

to the functions L and l. Let L� denote the conjugate to L. To be speci�c,

(B.7) L�(!; t; s; p) = sup
z2RK ; y2RK

fz � s+ y � p� L(!; t; z; y)g for s; p 2 RK :

We can express L� more explicitly as follows. Note that L(!; t; z; y) < 1 only if there

exists some u 2 RJ such that y = �Au and 0 � u � d(!; t). Then, for s; p 2 RK , we

can write L� as

L�(!; t; s; p) = sup
z2RK ; 0�u�d(!;t)

fz � s� pAu� (�f(!; t) � u)g;

= sup
z2RK

fz � sg+ sup
0�u�d(!;t)

f(f(!; t)� pA) � ug;

= �f0g(s) + [f(!; t)� pA]+ � d(!; t):
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The �rst line is obtained by replacing y with �Au for 0 � u � d(!; t) and noting that

L(!; t; z; y) = �f(!; t) � u. The second line follows from the observation that we can take

the supremum in the �rst line separately for z and u. To get the third line, note that

sup
0�u�d(!;t)

f(f(!; t)� pA) � ug = [f(!; t)� pA]+ � d(!; t);

by simple constrained maximization. Finally, we have supz2RKfz � sg = �f0g(s), since

supz2RKfz � sg takes the value 1 if sk 6= 0 for k = 1; : : : ; K.

Using the conjugate L� of the primal integrand L, we calculate the dual integrandM .

For (!; t) 2 
� [0; T ] and s; p 2 RK , the dual integrand M is given by

M(!; t; p; s) = L�(!; t; s; p):

That is, for (!; t) 2 
� [0; T ] we have

M(!; t; y(!; t);
:
y(!; t)) = L�(!; t;

:
y(!; t); y(!; t));

= �f0g(
:
y(!; t)) + [0 _ (f(!; t)� y(!; t)A)] � d(!; t);

where the expression �f0g(
:
y(!; t)) in the second line forces

:
y(!; t) = 0 for a.e. (!; t) 2


� [0; T ]. Then, the dynamics of the dual variable y is given by

y(!; t) = y0 +

Z t

0

:
y(!; s)ds+M(!; t);

= y0 +M(!; t);

where M is a square integrable martingale null at zero.
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What remains is to derive the terminal conditions associated with the dual problem.

To that end, de�ne the functional m on L02 � LT2 as follows:

m(y0; yT ) = l�0(y0) + l�T (�yT );

where l�0 and l
�
T are the conjugates of l0 and lT .. We calculate l

�
0 as follows:

l�0(y) = sup
x
fy � x� l0(x)g;

= sup
x2fCg

fy � xg;

= C � y:

A similar calculation yields l�T (y) = �RK� (y): From [11], the functional m for the dual

problem is given by

m(y0; yT ) = l�0(y0) + l�T (�yT );

= C � y0 + �RK� (�yT );

= C � y0 + �RK+ (yT );(B.8)

where the expression �RK+ (yT ) imposes that y(!; T ) � 0 for a.e. ! 2 
.

The dual problem of control is then to minimize

E
TZ
0

M(!; t; y(!; t);
�
y(!; t))dt+m(y0; yT );
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which is equivalent to minimizing

E

24 TZ
0

d(!; t) � [f(!; t)� y(!; t)A]+dt+ C � y0(!)

35
subject to (Dcont)

y(!; t) = y0(!) +M(!; t); (!; t) 2 
� [0; T ]

y(!; T ) � 0; ! 2 
,

where M is a square integrable martingale stopped at T , null at zero and adapted to

the �ltration fFt; t 2 R+g. Since the network revenue management problem (Pcont) is

trivially feasible (simply let u(!; t) = 0 for all (!; t) 2 
� [0; T ]), the objective function

values of (Pcont) and (Dcont) are equal to each other, cf. Theorem IV-1 of [11]. �

Proof of Proposition 16. The network revenue management problem (Pcont) and

the dual problem (Dcont) have the same optimal objective value by Theorem IV-1 of [11].

Moreover, by Theorem IV-2 of [11], letting u be a feasible control for (Pcont) with the

corresponding state trajectory x, and (y0;M) be a feasible control for (Dcont) with the

corresponding state trajectory y, the controls u and (y0;M) are optimal for (Pcont) and

(Dcont), respectively, if and only if they satisfy the coextremality conditions stated in

De�nition IV-1 of [11]. To be more speci�c about the coextremality conditions for the

network revenue management problem and its dual problem, we derive the subgradients

of L, l0 and lT , where L is a convex integrand and l0 and lT are convex functionals as in

the derivation of the dual network revenue management problem (Dcont).

First, we calculate the subgradient of L from its epigraphical normals. To that end,

we use Theorem 8.9 of [55] which proves that for h : Rn ! [�1;+1] and any point x
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at which h is �nite, one has

@h(x) = fv : (v;�1) 2 Nepi h(x; h(x))g;

where, epi h denotes the epigraph of h de�ned as

epi h := f(x; �) 2 Rn � R : � � h(x)g;

and Nepi h(x; h(x)) is the set of vectors normal to the set epi h at (x; h(x)) in the general

sense as in De�nition 6.3 of [55].

For (!; t) 2 
� [0; T ], the epigraph of the integrand L at (!; t) is given by

epi L(!; t) = f(x; �x; �) 2 R2K � R : �
x = �Au; 0 � u � d(!; t); � � �f(!; t) � ug;

since the points (x;
�
x) 2 R2K where L(!; t; x; _x) = 1 are such that the vertical line

(x; _x)� R misses epi L(!; t). Then, we can write

(B.9) @L(!; t; x;
�
x) = f(v1; v2) 2 R2K : (v1; v2;�1) 2 Nepi L(!;t)(x;

�
x; L(!; t; x;

�
x))g:

First, note that for (!; t) 2 
� [0; T ], epi L(!; t) is a convex set and the point

(x;
�
x; L(!; t; x;

�
x)

is an element of epi L(!; t) for (x;
�
x) 2 R2K . Let v denote an arbitrary element of R2K+1,

where the �rst K components of v is denoted as v1, the subsequent K components by v2

and the last component by v�. That is, v = [v1; v2; v�]
0
; where v1; v2 2 RK and v� 2 R.
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Then, Theorem 6.9 of [55], gives

Nepi L(!;t)(x;
�
x; L(!; t; x;

�
x))(B.10)

= fv 2 R2K+1 : [(x; �x; �)� (x; �x; L(!; t; x; �x))] � v � 0; 8(x; �x; �) 2 epi L(!; t)g:(B.11)

We next establish the following properties of Nepi L(!;t)(x;
�
x; L(!; t; x;

�
x)) for (!; t) 2 
�

[0; T ]; which will assist us in �nding the subgradients of L.

Property 1. For (!; t) 2 
� [0; T ]; if

v = (v1; v2; v�)
0 2 Nepi L(!;t)(x;

�
x; L(!; t; x;

�
x));

then v1 = 0.

To verify Property 1, �rst note that any v =(v1; v2; v�)
0
such that v1k < 0 cannot be in

Nepi L(!;t)(x;
�
x; L(!; t; x;

�
x)). Suppose not. Then, we could �nd an element (ex; e�x; e�) of epi

L(!; t) such that it is equal to (x;
�
x; L(!; t; x;

�
x)) except the kth component of ex; where

we have exk < xk. However, we have

[(ex; e�x; e�)� (x; �x; L(!; t; x; �x)] � v = (exk � xk)v
1
k > 0;

contradicting the fact that (v1; v2; v�) 2 Nepi L(!;t)(x;
�
x; L(!; t; x;

�
x)), cf. (D.28). Similarly,

any (v1; v2; v�) such that v1k > 0 cannot be an element of

Nepi L(!;t)(x;
�
x; L(!; t; x;

�
x));

which proves Property 1. Coupled with (B.9) and Theorem IV-1 of [11], Property 1

proves that
�
y(!; t) = 0 for a.e. (!; t) 2 
� [0; T ].
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Property 2. For (!; t) 2 
� [0; T ] and j = 1; : : : ; J with dj(!; t) > 0, if
�
x = �Au

for u such that 0 � u � d(!; t) and v = (v1; v2; v�) 2 Nepi L(x;
�
x; L(!; t; x;

�
x)), then, the

following conditions hold.

(v2A+ v�f(!; t))j � 0, if uj = 0;

(v2A+ v�f(!; t))j = 0, if 0 < uj < d(!; t);

(v2A+ v�f(!; t))j � 0, if uj = dj(!; t):

To establish Property 2, �rst recall that for any (x;
�
x; �) 2 epi L(!; t), there exists

some u 2 RJ such that �
x = �Au, 0 � u � d(!; t) and � � �f(!; t) � u. Consider now an

element (x;
�
x;�f(!; t) � u) of epi L(!; t); where �

x = �Au. Then, we the following holds

for v =(v1; v2; v�) 2 Nepi L(x;
�
x; L(!; t; x;

�
x)):

[(x;
�
x;�f(!; t) � u)� (x; �x; L(!; t; x; �x)] � v

= v1 � (x� x) + v2 � ( �x� �
x) + v�(�f(!; t) � u� L(!; t; x;

�
x));

= v2 � (Au� Au) + v�(�f(!; t) � u+ f(!; t) � u);

= (v2A+ v�f(!; t)) � (u� u):

First, consider the case when uj = 0 for some j = 1; : : : ; J . If u = u except for the jth

component, we have (v2A+ v�f(!; t)) � (u� u) � 0; only if (v2A+ v�f(!; t))j � 0: From

(D.28), since (x;
�
x;�f(!; t) � u) is an element of epi L(!; t), this proves the �rst part of

Property 2, namely, if uj = 0; then (v2A + v�f(!; t))j � 0. The argument is similar for
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the cases when 0 < uj < d(!; t) and uj = d(!; t) and this completes the proof of Property

2.

To summarize, for (x;
�
x) such that L(!; t; x;

�
x) < 1 and

�
x = �Au, if (v1; v2; v�) 2

Nepi L(!;t)(x;
�
x; L(!; t; x;

�
x)), then from Property 2, the following conditions hold for j =

1; : : : ; J:

(v2A+ v�f(!; t))j � 0, if uj = 0;

(v2A+ v�f(!; t))j = 0, if 0 < uj < dj(!; t);

(v2A+ v�f(!; t))j � 0, if uj = dj(!; t):

Recall that the subgradient of L is related to the normal cone of its epigraph as follows.

@L(!; t; x;
�
x) = f(v1; v2) : (v1; v2;�1) 2 Nepi L(x;

�
x; L(!; t; x;

�
x))g;

The coextremality conditions in De�nition IV-1 of [11], state that dP
 dt a.s.

(
�
y(!; t); y(!; t)) 2 @L(!; t; x(!; t); �x(!; t)):

That is, for a.e. (!; t) 2 
� [0; T ];

(
�
y(!; t); y(!; t);�1) 2 Nepi L(x(!; t);

�
x(!; t); L(!; t; x(!; t);

�
x(!; t)))g:
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This implies that for j = 1; : : : ; J and a.e. (!; t) 2 
� [0; T ]; we have

(y(!; t)A� f(!; t))j � 0, if uj(!; t) = 0;(B.12)

(y(!; t)A� f(!; t))j = 0, if 0 < uj(!; t) < dj(!; t);(B.13)

(y(!; t)A� f(!; t))j � 0, if uj(!; t) = dj(!; t);(B.14)

which establishes the coextremality conditions stated in (2.13).

To complete the proof of Proposition 16, we calculate the subgradients @l0(x0), and

@lT (xT ), and derive the coextremality condition (D.1). First, consider l0, which is de�ned

as l0(x0) = �fCg(x0):We will use Theorem 8.9 of [55] to calculate @l0(x). At any point x

for which l0 is �nite, we have

@l0(x) = fv : (v;�1) 2 Nepi l0(x; l0(x))g;

where epi l0 is given by

epi l0 = f(x; �) 2 RK � R : x = C; � � 0g;

= C1 � : : :� CK � R+:

Notice that epi l0 is a box, and hence, we can use Example 6.10 of [55] to calculate its

normal cone. As a result,

Nepi l0(x; l0(x)) = NC1(x1)� : : :�NCK (xK)�NR+(l0(x));
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where NCk(x1) = (�1;1) for k = 1; : : : ; K since Ck is a one-point interval. Finally,

NR+(l0(x)) = (�1; 0] because for a feasible x, we have l0(x) = 0, and in that case we

are at the left end point of the interval R+, which implies through Example 6.10 of [55]

that NR+(l0(x)) = (�1; 0]: In consequence, the coextremality condition y0 2 @l0(x0), cf.

De�nition IV-1 of [11], for a feasible y0 is equivalent to

(y0;�1) 2 Nepi l0(y0; l0(y0))

and places no further restrictions on y0.

Finally, we calculate the subgradient of lT (xT ) where lT (xT ) = �RK+ (xT ):Again, epi l0

is a box. Indeed, epi l0 = RJ+1+ , and we can resort to Example 6.10 of [55]. We have

Nepi lT (x; lT (x)) = NR+(x1)� : : :�NR+(xK)�NR+(lT (x)):

Consequently, NCk(x1) = (�1; 0] for x1 � 0 and NCk(x1) = f0g if x1 > 0 for k =

1; : : : ; K. Finally, NR+(lT (x)) = (�1; 0] since lT (x) = 0 for a feasible x. Thus, the

coextremality condition �yT 2 @lT (xT ) in De�nition IV-1 of [11], implies that y(!; T ) � 0

and y(!; T ) � x(!; T ) = 0 for a.e. ! 2 
. This establishes the coextremality condition

D.1 and completes the proof of Proposition 16. �

B.4. Proofs in Section 2.4

Proof of Theorem 18. We interpret the dual variables in dual network revenue

management problem (Dcont) as the opportunity cost of resources and construct optimal

bid-price and capacity usage limit processes for the network revenue management problem

(Pcont) using them. To this end, �x an optimal solution u to (Pcont) and an optimal solution
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y to its dual (Dcont). Given the optimal solutions u and y, de�ne bid-price process � and

the capacity usage limit process � as follows:

(B.15) �(!; t) := y(!; t) and �(!; t) := Au(!; t) for (!; t) 2 
� [0; T ].

Then, the bid-price process � is a martingale adapted to fFt; t 2 R+g since y is so. Having

de�ned � and �, let u(�;�)(!; t) denote the booking rate vector under the generalized

bid-price control (�; �) for (!; t) 2 
 � [0; T ]. That is, u(�;�)(!; t) solves (P(!; t)) for

(!; t) 2 
� [0; T ]: Observe that the booking rate process {u(�;�) (!; t) : (!; t) 2 
� [0; T ]}

is clearly feasible for the network revenue management problem (Pcont). To see this, note

that since u(�;�)(!; t) solves (P(!; t)), it clearly satis�es the demand constraints. Moreover,

we have

Au(�;�)(!; t) � �(!; t):

Then integrating both sides of this over [0; T ], using the de�nition of �(!; t); cf. (B.15),

and the fact that u is feasible for (Pcont), we conclude that

AU (�;�):(!; t) �
TZ
0

�(!; t)dt = A

TZ
0

u(!; t) = AU(!; T ) � C;

where U (�;�)(!; t) denotes the vector of cumulative bookings under (�; �) up to time T:

Thus, the booking policy u(�;�) is feasible for (Pcont).



220

To establish the optimality of u(�;�), we will show that u(�;�) maximizes the expected

revenues, that is,

E
TZ
0

f(!; t) � u(�;�)(!; t)dt = E
TZ
0

f(!; t) � u(!; t)dt:

To that end, �rst note that u(!; t) is feasible for (P(!; t)). To see this, note that 0 �

u(!; t) � d(!; t), which follows because u solves (Pcont), and that Au(!; t) = �(!; t)

by de�nition of �, cf. (B.15). Then u(!; t) solves (P(!; t)) for a.e. (!; t) 2 
 � [0; T ]

because uj(!; t) = dj(!; t) whenever y(!; t)Aj < fj(!; t) by the coextremality conditions,

cf. Proposition 16. That is, u(!; t) is an optimal solution to (P(!; t)), which in particular

exhausts the capacity usage limit, i.e. Au(!; t) = �(!; t) by construction of �: In other

words, u(!; t) not only maximizes the �rst term in the objective of (P(!; t)) but also

the second term by setting it to zero, which is the maximum it can be since we require

Au � �(!; t) in (P(!; t)). Then since (P(!; t)) is lexicographic any bookings under (�; �)

must not only maximize the �rst term but also it must set the second term to zero. In

particular, we must have

Au(�;�)(!; t) = �(!; t) for a.e: (!; t) 2 
� [0; T ]:

Moreover, Au(!; t) = �(!; t) by construction of (�; �), cf. (B.15). In other words, the

primal controls u and u(�;�) result in the same state trajectory.

Since both u(!; t) and u(�;�)(!; t) are optimal solutions for (P(!; t)), for a.e. (!; t) 2


� [0; T ]; we have

(B.16) (f(!; t)� A0�(!; t)) � u(�;�)(!; t) = (f(!; t)� A0�(!; t)) � u(!; t).
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Moreover, as argued immediately above we also have

(B.17) Au(�;�) = �(!; t) = Au(!; t):

Then combining (B.16)-(B.17), we conclude that

f(!; t) � u(�;�)(!; t) = f(!; t) � u(!; t) for a.e. (!; t) 2 
� [0; T ]:

Thus, the expected revenue generated by u(�;�) is equal to the expected revenue generated

by u, proving the optimality of the generalized bid-price control (�; �) for the continuous

network revenue management problem (Pcont). �

B.5. Proofs in Section 2.5

Derivation of the dual problem (D"). We follow the same steps as in the derivation

of (Dcont). That is, we �rst append the penalty expressions associated with the demand

and capacity restrictions on bookings in the objective function by de�ning the convex,

extended real valued integrand L" and the convex functional l". The problem is also

formulated towards minimization. Next, we compute the conjugate convex functions

associated with L" and l" and de�ne the dual integrand M" and the dual functional m",

by the help of which we de�ne the dual problem of control.

De�ne L"; the normal convex integrand in the sense of [51], on 
� [0;1)�RK�RK ,

as follows:

(B.18) L"(!; t; x;
�
x) = �f(!; t) � u+

JX
j=1

"j(!; t)u
2
j

2
� u+ �RJ+(u) + �RJ�(u� d(!; t));
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if
�
x = �Au and L"(!; t; x;

�
x) = 1 otherwise. Since the terminal conditions of (P")

are the same as the terminal conditions of (Pcont), the functional l"; which speci�es the

terminal conditions and the initial system parameters, is the same as l, cf. (D.22) and

(D.23). Hence, all the terminal conditions in the dual formulation (D") are the same as

the terminal conditions of (Dcont). Then, (P") is equivalent to minimizing

E
TZ
0

L"(!; t; x(!; t);
�
x(!; t))dt+ l"(x0; xT ):

In order to de�ne the dual problem of control, we derive the conjugate to the function

L". Let L�" be the dual integrand of L". That is,

L�"(!; t; s; p) = sup
z2RK ; y2RK

fz � s+ y � p� L"(!; t; z; y)g for s; p 2 RK

= sup
0�u�d(!;t)

fz � s� pAu� (�f(!; t) � u+
JX
j=1

"j(!; t)u
2
j

2
)g;

= sup
z2RK

fz � sg+ sup
0�u�d(!;t)

f(f(!; t)� pA) � u�
JX
j=1

"j(!; t)u
2
j

2
)g;

= �f0g(s) + g"(f(!; t)� pA; d(!; t));

where g"(z; d) =
PJ

j=1 h"(zj; dj) and h" is given by (2.16). The second line is obtained by

replacing y with �Au for 0 � u � d(!; t) and noting that L"(!; t; z; y) = �f(!; t) � u +PJ
j=1

"j(!;t)u
2
j

2
. The third line follows from the observation that we can take the supremum

in the second line separately for z and u. To get the fourth line, note that g"(z; d(!; t)) is



223

the value function of the following maximization problem.

Maximize0�v�d(!;t) z � v �
JX
j=1

"j(!; t)

2
v2j ;

whose solution for j = 1; : : : ; J is given by

v�"(z; !; t) = (v
�
1;"; : : : ; v

�
J;"), v

�
j;"(zj; !; t) =

8>>>><>>>>:
0 if zj � 0;

dj(!; t) if zj � ";

zj
"
dj(!; t) if 0 < zj < ":

The terminal conditions associated with the dual problem to (P") are derived as fol-

lows. As mentioned above, we have l" = l and, hence l�" = l�. This, in turn implies that

m" = m, where m is de�ned in (B.8). The dual problem of control is then to minimize

E
TZ
0

M"(!; t; y(!; t);
�
y(!; t))dt+m"(y0; yT );

which is equivalent to minimizing

E

24 TZ
0

g"(f(!; t)� y(!; t)A; d(!; t))dt+ C � y0(!)

35
subject to (D")

y(!; t) = y0(!) +M(!; t); (!; t) 2 
� [0; T ]

y(!; T ) � 0; ! 2 
,

where M is a square integrable martingale stopped at T , null at zero and adapted to the

�ltration fFt; t 2 R+g. Since the primal problem (P") is trivially feasible (simply let



224

u(!; t) = 0 for all (!; t) 2 
 � [0; T ]), the objective function values of (P") and (D") are

equal to each other, cf. Theorem IV-2 of [11]. �

Proof of Proposition 21. The perturbed problem (P") and its dual problem (D")

have the same optimal objective value by Theorem IV-1 of [11]. From Theorem IV-2

of [11], letting u" be a feasible control for (P") with the corresponding state trajectory

x", and (y"0;M
") be a feasible control for (D") with the corresponding state trajectory y",

the controls u" and (y"0;M
") are optimal for (P") and (D"), respectively, if and only if

they satisfy the coextremality conditions stated in De�nition IV-1 of [11]. Recall that the

terminal conditions of the perturbed problem (P") and the network revenue management

problem (Pcont) are the same. Thus, the coextremality conditions for the problems (P")

and (D") regarding the terminal conditions are the same as those for the problems (Pcont)

and (Dcont). This, in turn, establishes the coextremality condition (2.17). To compute the

coextremality conditions stated in De�nition IV-1 of [11], the subgradient of the convex

integrand L" de�ned in (B.18) needs to be calculated.

To calculate the subgradient of L", �rst note that for (!; t) 2 
� [0; T ], we can write

the following:

(B.19) L"(!; t; x;
�
x)� L(!; t; x;

�
x)�

JX
j=1

"j(!; t)u
2
j

2
= 0 if

�
x = �Au;

where L is the convex integrand for the network revenue management problem (Pcont)

given in (B.4). Let @uL"(!; t; x;
�
x) and @ _xL"(!; t; x;

�
x) denote the subgradients of L" with

respect to u and
�
x, respectively. That is, @ _xL"(!; t; x;

�
x) is the projection of the set

@L"(!; t; x;
�
x) on

�
x axis. @uL"(!; t; x;

�
x) is similarly de�ned by viewing

�
x as a function of

u. Notice that L and L" are convex and piecewise linear quadratic, cf. De�nition 10.20
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of [55]. Therefore, from Exercise 10.22 of [55], we can calculate the subgradients of each

term in (B.19) separately. The subgradient of L with respect to
�
x is already calculated in

the proof of Proposition 16. To calculate @uL(!; t; x;
�
x) and @uL"(!; t; x;

�
x) at (x;

�
x) such

that L(!; t; x;
�
x); L"(!; t; x;

�
x) < 1, we will use the basic chain rule for subgradients as

in Theorem 10.6 of [55], which implies that

@ _xL"(!; t; x;
�
x)�(�A0

)� @ _xL(!; t; x;
�
x)�(�A0

)��"(!; t; u) = f0g;

where �"
j(!; t; u) = "j(!; t)uj. Then, y(!; t) 2 @ _xL"(!; t; x;

�
x) if and only if

(B.20) (�y(!; t)A��"(!; t; u)) 2 �A�@ _xL(!; t; x;
�
x):

De�nition IV-1 of [11] and the coextremality conditions in Proposition 16 imply that if

v 2 A�@ _xL(!; t; x;
�
x); then for j = 1; : : : ; J with dj(!; t) > 0;

vj � fj(!; t) � 0, if uj = 0;(B.21)

vj � fj(!; t) = 0, if 0 < uj < dj(!; t);(B.22)

vj � fj(!; t) � 0, if uj = dj(!; t):(B.23)

Then, together with (B.20), the conditions (B.21)-(B.23) establish the coextremality con-

ditions (2.18). �

Proof of Proposition 22. For each " > 0, the optimality of the control fu"(!; t) :

(!; t) 2 
� [0; T ]g given in (2.20) for the perturbed problem (P ") follows from Theorem

IV-2 of [11], and the fact that u" and y" satisfy the coextremality conditions stated in

Proposition 21 where y" is an optimal state trajectory for (D"). We next argue that for
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each " > 0; (P ") has a unique solution. Suppose not. Then, there exists booking controls eu
and u that are optimal for (P ") and yet are not equal on a set of strictly positive dP
 dt

measure. From Theorem IV-2 of [11], both eu and u should satisfy the coextremality

conditions (2.17)-(2.18) with y". However, this implies that eu(!; t) and u(!; t) are equal
for a.e. (!; t) 2 
� [0; T ]. Contradiction. Hence, for each " > 0; u" is the unique solution

for (P "). �

Proof of Theorem 23. The bid-price process �" is de�ned as �" = y", where y"

is an optimal state trajectory for the perturbed dual problem (D"). Since y" forms a

martingale, so does �". The terminal condition y"(!; T ) � 0 for a.e. ! 2 
 and the fact

that y" is a martingale guarantees that �"(!; t) � 0 for a.e. (!; t) 2 
 � [0; T ], which

proves the �rst part of Theorem 23.

Next, we prove that the bid-price policy (�"; �") is �-optimal, where � is given by

(2.21). To that end, let u be an optimal booking control for the network revenue man-

agement problem (Pcont). Notice that u is also feasible for the perturbed problem (P").

From Proposition 22, the control fu"(!; t) : (!; t) 2 
 � [0; T ]g resulting from the bid-

price policy (�"; �") is the unique optimal control for the perturbed problem (P ") for each

" > 0. Then, the objective value of u" is greater than or equal to the objective value of u
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for the perturbed problem (P "). Thus, we have

E

24 TZ
0

[f(!; t) � u(!; t)] dt

35� "
JX
j=1

Z T

0

E[dj(!; t)]dt

� E

24 TZ
0

[f(!; t) � u(!; t)� 1
2

JX
j=1

"j(!; t)u
2
j(!; t)] dt

35
� E

24 TZ
0

[f(!; t) � u"(!; t)� 1
2

JX
j=1

"j(!; t) (u
"
j(!; t))

2] dt

35 ;
� E

24 TZ
0

[f(!; t) � u"(!; t)] dt

35 :(B.24)

The �rst inequality follows from the de�nition of "j(!; t), cf. (2.15), and the fact that

u(!; t) � d(!; t) for a.e. (!; t) 2 
�[0; T ]. The second inequality is given by feasibility of u

for (P ") and optimality of u ". The last inequality holds since
PJ

j=1 "j(!; t) (u
"
j(!; t))

2 � 0;

and it proves that u " is �"-optimal since u" is also feasible for (Pcont) and completes the

proof of the second part of Theorem 23.

Finally, we show that every weak limit eu 2 U of the booking controls fu" : " > 0g

is an optimal booking control for the network revenue management problem (Pcont). Let

fu"n : n � 1g be a sequence of feasible controls for the network revenue management

problem (P) which converges to eu in the weak� topology as "n & 0. From Lemma 57, eu
is a feasible booking control for (P) and, we have

lim
n!1

E

24 TZ
0

f(!; t) � u"n(!; t)dt

35 = E
24 TZ
0

f(!; t) � eu(!; t)dt
35 :

The optimality of eu, then follows from (B.24). �
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APPENDIX C

Proofs of the Results in Chapter 3

Derivation of the dual problem (D";�). As in the derivations of (Dcont) and (D"),

we follow the road map given by [11]. We express the primal problem (P";�) in terms of

the convex integrand L";� and the convex lower semi-continuous functional l";� which are

de�ned as follows. De�ne the normal convex integrand L";� on 
� [0;1)�RK �RK as:

(C.1)

L";�(!; t; x;
�
x) = �f(!; t) � u+

JX
j=1

"j(!; t)u
2
j

2
� u+

KX
k=1

 �(xk) + �RJ+(u) + �RJ�(u� d(!; t))

if if
�
x = �Au and L";�(!; t; x;

�
x) = 1 otherwise. De�ne the functional l";� on L02 � LT2

with values on R [ f1g; which will initiate the problem with capacity vector C. The

functional l";� is de�ned as

(C.2) l";�(x0; xT ) = l";�0 (x0) + l";�T (xT );

where the convex, lower semi-continuous functionals l";�0 and l";�T are given by

(C.3) l";�0 (x0) = �fCg(x0); l";�T (xT ) = 0:

The functional l";�0 sets x(!; 0) = C for a.e. ! 2 
, and l";�T (xT ) = 0 re�ects the fact that

there are no hard constraints on the remaining capacity at the terminal time. Then, the
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problem (P";�) is equivalent to the problem of minimizing

E
TZ
0

L";�(!; t; x(!; t);
�
x(!; t))dt+ l";�(x0; xT ):

In order to de�ne the dual problem of control, we derive the conjugate to the function

L";�. Let L�";� denote the conjugate to L";�. That is,

L�";�(!; t; s; p)

= sup
z2RK ; y2RK

fz � s+ y � p� L";�(!; t; z; y)g for s; p 2 RK

= sup
z; 0�u�d(!;t)

fz � s� pAu� (�f(!; t) � u+
JX
j=1

"j(!; t)u
2
j

2
+

KX
k=1

 �(zk))g;

= sup
z2RK

fz � s�
KX
k=1

 �(zk)g

+ sup
0�u�d(!;t)

f(f(!; t)� pA) � u�
JX
j=1

"j(!; t)u
2
j

2
)g;

= ��(s) + �RK� (s) + g"(f(!; t)� pA; d(!; t));

We get the second line by replacing y with �Au for 0 � u � d(!; t) and noting that

L";�(!; t; z; y) = �f(!; t) � u +
PJ

j=1

"j(!;t)u
2
j

2
+
PK

k=1  �(zk). The third line follows from

the observation that we can take the supremum in the second line separately for z and u.

To obtain the fourth line, note that g"(f(!; t) � pA; d(!; t)) is the value function of the

following maximization problem:

Maximize0�v�d(!;t) (f(!; t)� pA) � v �
JX
j=1

"j(!; t)

2
v2j :
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Finally, supz2RKfz �s�
PK

k=1  �(zk)g is equal to �
�(s)+�RK� (s), where �

�(z) =
PK

k=1 �
�
k(zk)

and ��k is given by (3.2) for k = 1; : : : ; K.

The dual integrand M";� is calculated from the conjugate L�";� of the primal integrand

L";� as follows. For (!; t) 2 
� [0; T ] and s; p 2 RK , the dual integrand M";� is given by

M";�(!; t; p; s) = L�";�(!; t; s; p):

Then, for (!; t) 2 
� [0; T ] we have

M";�(!; t; y(!; t);
:
y(!; t))

= L�";�(!; t;
:
y(!; t); y(!; t));

= ��(
:
y(!; t)) + g"(f(!; t)� y(!; t)A; d(!; t)) + �RK� (

:
y(!; t));

Accordingly, the dynamics of the dual variable y for the problem (D";�) is given by

y(!; t) = y0 +

Z t

0

:
y(!; s)ds+M(!; t);

where M is a square integrable martingale, stopped at T; null at zero and
:
y(!; t) � 0 for

a.e. (!; t) 2 
� [0; T ].

Finally, we derive the terminal conditions associated with the dual problem (D";�). To

that end, de�ne the functional m";� on L02 � LT2 as follows:

m";�(y0; yT ) = (l
";�
0 )

�(y0) + (l
";�
T )

�(�yT );
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where (l";�0 )
� and (l";�T )

� are the conjugates of l";�0 and l";�0 . We have

(l";�0 )
�(y) = C � y and (l";�T )

�(y) = �f0g(y):

The functional m";� for the dual problem is given by

m";�(y0; yT ) = (l";�0 )
�(y0) + (l

";�
T )

�(�yT );

= C � y0 + �f0g(yT );

where the expression �f0g(yT ) imposes that y(!; T ) = 0 a.e. ! 2 
.

The dual problem (D";�) associated with (P";�) is then to minimize

E
TZ
0

M";�(!; t; y(!; t);
�
y(!; t))dt+m";�(y0; yT );

which is equivalent to minimizing

E

24 TZ
0

[g"(f(!; t)� y(!; t)A; d(!; t)) + ��(
:
y(!; t))]dt+ C � y0(!)

35
subject to

y(!; t) = y0(!) +

Z t

0

:
y(!; s)ds+M(!; t); (!; t) 2 
� [0; T ]; (D";�)

:
y(!; t) � 0; (!; t) 2 
� [0; T ];

y(!; T ) = 0; ! 2 
,

where M is a square integrable martingale stopped at T , null at zero and adapted to the

�ltration fFt; t 2 R+g. �
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Proof of Proposition 24. Let y be a feasible state trajectory for the problem (D";�).

Suppose the statement is not true. Then, there exists a resource k = 1; : : : ; K such that

the set

B = f(!; t) 2 
� [0; T ] : yk(!; t) < 0g

has strictly positive measure dP
 dt. Now consider for t 2 [0; T ]; the sets

Bt = f! 2 
 : yk(!; t) < 0g:

Bt should have strictly positive measure for some t in a set that also has strictly positive

Lebesgue measure. Fix such a time point t. We will next show that for ! 2 Bt,

we have yj(!; T ) < 0 with strictly positive probability. First note that Bt 2 Ft since

yk(!; t) : 
 ! R is measurable with respect to Ft. We have from the dual system

dynamics in (D";�),

yk(!; t) = (y0)k +

tZ
0

�
yk(!; s)ds+Mk(!; t):

Then, yk(!; T ) can be written as

yk(!; T ) = yk(!; t) +

TZ
t

�
yk(!; s)ds+Mk(!; T )�Mk(!; t):

Recall that M is a martingale adapted to {Ft; t 2 R+} and is null at zero. Thus,

E[(Mk(!; T )�Mk(!; t))1F ] = 0
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for all F 2 Ft where 1F is the indicator function of the set F . Now consider

Pf! : ! 2 Bt; yk(!; T ) < 0g =

Z
Bt

1f!: yk(!;T )<0gdP

�
Z



1Bt\f!: Mk(!;T )�Mk(!;t)<�yk(!;t)gdP:

> 0;

since the set

Bt \ f! : Mk(!; T )�Mk(!; t) < �yk(!; t)g

has strictly positive measure. To prove this, suppose not. Then, as M is a martingale

adapted to {Ft; t 2 R+} and Bt 2 Ft, we have

0 = Ef(Mk(!; T )�Mk(!; t))1Btg

=

Z



1Bt(Mk(!; T )�Mk(!; t))dP

=

Z



1Bt\f!: Mk(!;T )�Mk(!;t)<�yk(!;t)g(Mk(!; T )�Mk(!; t))dP

+

Z



1Bt\f!: Mk(!;T )�Mk(!;t)��yk(!;t)g(Mk(!; T )�Mk(!; t))dP

� (�yk(!; t))P(Bt)

> 0;

which proves that every feasible dual state trajectory y is non-negative for a.e. (!; t) 2


� [0; T ]: �
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Proof of Proposition 25. Theorem IV-1 of [11] implies that the primal problem

(P ";�) and its dual (D ";�) have the same optimal objective value. Let u";� be a feasible

control for (P ";�) with the corresponding state trajectory x";�, and (y";�0 ;
:
y
";�
;M ";�) be a

feasible control for (D ";�) with the corresponding state trajectory y";�. By Theorem IV-2

of [11], the controls u";� and (y";�0 ;
:
y
";�
;M ";�) are optimal for (P ";�) and (D ";�), respectively,

if and only if they satisfy the coextremality conditions stated in De�nition IV-1 of [11].

We will next calculate the coextremality conditions stated in De�nition IV-1 of [11]

explicitly for the primal problem (P ";�) and its dual (D ";�). To that end, we calculate the

subgradients of L";�, l
";�
0 and l";�T , where L";� is a convex integrand and l

";�
0 and l";�T are

convex functionals as in the derivation of the dual (D";�).

The integrand L";� for (P";�) is given by (C.1) and for (!; t) 2 
� [0; T ] and x;
�
x 2 RK

can equivalently be expressed as

(C.4) L";�(!; t; x;
�
x) = L"(!; t; x;

�
x) +

KX
k=1

 �(xk);

where L" is the normal convex integrand for the perturbed problem (P") de�ned in (B.18).

Note that by (C.4), the subgradient of L";� with respect to
�
x is the same as the subgradient

of L" with respect to
�
x for (!; t) 2 
� [0; T ]. The coextremality condition in De�nition

IV-1 of [11] regarding a dual state trajectory y";� asserts that dP
 dt a.s. we have

y";�(!; t) 2 @ _xL";�(!; t; x";�(!; t);
�
x
";�
(!; t));

where @ _xL";� denotes the subgradient with respect to _x. The subgradient conditions in

(2.18) together with the fact that the subgradient of L";� with respect to
�
x is the same as
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the subgradient of L" with respect to
�
x for (!; t) 2 
�[0; T ]; implies that the coextremality

conditions in (3.4) should hold between u";� and (y";�0 ;
:
y
";�
;M ";�).

Next we calculate the subgradients of L";� with respect to x. From (B.18) and the fact

that
PK

k=1  �(xk) is di¤erentiable we have that

(C.5) @xL";�(!; t; x;
�
x) =

(
r
 

KX
k=1

 �(xk)

!)
:

The coextremality condition in De�nition IV-1 of [11] regarding _y";� states that dP 
 dt

a.s. we have

(C.6) _y";�(!; t) 2 @xL";�(!; t; x";�(!; t);
�
x
";�
(!; t)):

Thus, the de�nition of  �, cf. (3.1) together with (C.5) and (C.6), imply that for a.e.

(!; t) 2 
� [0; T ],

:
y
";�
k (!; t) = 0 if x";�k (!; t) � � and

:
y
";�
k (!; t) = R(�)(x";�k (!; t)� �) if x";�k (!; t) < �;

which establishes the coextremality condition in (3.3). �

Proof of Proposition 26. For "; � > 0, the optimality of the control fu";�(!; t) :

(!; t) 2 
� [0; T ]g given in (3.5) for (P ";�) follows from Theorem IV-2 of [11] and the fact

that for an optimal state trajectory y";� for (D";�), u";� and y";� satisfy the coextremality

conditions stated in Proposition 25. We argue that for "; � > 0; (P ";�) has a unique

solution. Suppose not. Then, there exists booking controls eu and u that are optimal for
(P ";�) such that eu and u are not equal on a set of strictly positive dP
 dt measure. From
Theorem IV-2 of [11], both eu and u should satisfy the coextremality conditions (3.3)-(3.4)
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with y". This, in turn, implies that eu(!; t) and u(!; t) are equal for a.e. (!; t) 2 
� [0; T ].
Contradiction. Thus, (P ";�) has a unique solution and fu";�(!; t) : (!; t) 2 
 � [0; T ]g is

the unique optimal for (P ";�).

We next prove that for "; � > 0, u";� is feasible for the continuous-time network revenue

management problem (Pcont). Clearly, u";� satis�es the demand restrictions of (Pcont).

Hence, it su¢ ces to check whether u";� satis�es the capacity restriction. That is, we prove

that for a.e. ! 2 
, x";�(!; T ) � 0, where x";� is the state trajectory corresponding to

the booking control u";�. Suppose not. Suppose that for some resource k = 1; : : : ; K, we

have x";�k (!; T ) < 0 on some set N of strictly positive measure. We will show that this

contradicts the optimality of u";� for (P";�). First, note that

(C.7) E
TZ
0

[f(!; t) � u";�(!; t)� 1
2

JX
j=1

"j(!; t) (u
";�
j )

2(!; t)] dt � FJDT;

where F and D are the bounds on the fare and demand processes, respectively. We next

provide a lower bound on the cost term

�E

24 TZ
0

KX
k=1

 �(x
";�
k (!; t))] dt

35 :
For k = 1; : : : ; K, de�ne the stopping time �";�k as the �rst time the capacity of resource

k drops below zero under the control u";�. Formally, for k = 1; : : : ; K and ! 2 
;

�";�k (!) = infft � 0 : x";�(!; t) � 0g;
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where we set �";�k (!) = T if x";�k (!; T ) � 0. For ! 2 N , we have �";�k (!) < T by the

boundedness of the demand rate process. Then, the following holds.

E

24 TZ
0

KX
k=1

 �(x
";�
k (!; t))] dt

35 � E

264 TZ
�";�k (!)

 �(x
";�
k (!; t))dt j N

375 ;(C.8)

= E

264 TZ
�";�k (!)

R(�)

2
(x";�k (!; t)� �)2dt j N

375 :(C.9)

First, observe that since the demand rate is bounded, we have

T � �";�k (!) �
�

DJA
;

where D is the bound on the demand rate, and A = supk=1;:::;Kf
PJ

j=1Akjg. Then, we

can write (C.9) as

EN

264 TZ
�";�k (!)

R(�)

2
(x";�k (!; t)� �)2dt

375 � R(�)

2
EN

264
�

DJ �AZ
0

z2(!; t)dt

375 ;
where

z(!; 0) = 0, z(!; t) = tDJA for 0 � t � �

DJA
:
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Then, we have

R(�)

2
EN

264
�

DJ �AZ
0

(x";�k (!; t)� �)2dt

375 � R(�)

2
EN

264
�

DJ �AZ
0

z2(!; t)dt

375 ;
� �3

R(�)

6
P(N);

= TJFDP(N);

since R(�) = 6TJFD=�3. However, from (C.7), replacing u";�(!; t) with 0 for all t 2 [0; T ]

and ! 2 N leads to a feasible control for (P";�) that has a higher objective function

value than u";�, contradicting the optimality of u";� for (P";�). Hence, for a.e. ! 2 
,

x";�(!; T ) � 0 and u";� is feasible for the continuous-time network revenue management

problem (Pcont). �

Proof of Theorem 27. The bid-price process �";� is de�ned as �";� = y";�, where

(y";�0 ;
:
y
";�
;M ";�) is an optimal control for the dual problem (D";�) and for (!; t) 2 
�[0; T ];

the state trajectory y";� is given by

y";�(!; t) = y";�0 (!) +

Z t

0

:
y
";�
(!; s)ds+M ";�(!; t):

From Proposition 26, the booking controls u";� corresponding to the bid-price control

(�";�; �";�) is the unique optimal for the problem (P";�) for "; � > 0. Letting x";� be the

primal state trajectory associated with u";�, the coextremality condition (3.3) requires

that for k = 1; : : : ; K and almost all (!; t) 2 
� [0; T ];

(C.10)

:
y
";�
k (!; t) = 0 if x";�k (!; t) � � and

:
y
";�
k (!; t) = R(�)(x";�k (!; t)� �) if x";�k (!; t) < �:
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Then, for each resource k = 1; : : : ; K and "; � > 0; the bid-price process �";�k is a non-

negative supermartingale adapted to the �ltration fFt : t 2 [0; T ]g with �";�k (!; T ) = 0 for

a.e. ! 2 
. For k = 1; : : : ; K, de�ne the stopping time �";�k as the �rst time the capacity

of resource k drops below � under the control u";�. That is, for k = 1; : : : ; K and ! 2 
;

�";�k (!) = infft � 0 : x
";�
k (!; t) � �g;

where x";� is the state trajectory associated with u";� and �";�k (!) = T if x";�k (!; T ) � �.

Then, f�";�k (!; t ^ �
";�
k (!)) : (!; t) 2 
 � [0; T ]g is a martingale adapted to the �ltration

fFt : t 2 [0; T ]g since
:
y
";�
k (!; t ^ �

";�
k (!)) = 0 for a.e. (!; t) 2 
 � [0; T ] by (C.10). That

is, �";�k stopped at the �rst time the capacity of resource k drops below � is a martingale

and this completes the proof of the �rst part of Theorem 27.

Second, we prove that the bid-price policy (�";�; �";�) is (�"+ ��)-optimal, where � is

given by (2.21) and � is de�ned in (3.6). Let u be an optimal booking control for the

network revenue management problem (Pcont). For k = 1; : : : ; K, de�ne the stopping time

�k as the �rst time the capacity of resource k drops below � under the control u. That

is, for k = 1; : : : ; K and ! 2 
;

�k(!) = infft � 0 : xk(!; t) � �g;

where x is the state trajectory associated with u and �k(!) = T if x(!; T ) � �. De�ne

the stopping time � as the �rst time the capacity of some resource drops below � under

the control u. Formally, for ! 2 
;

�(!) = inf
k=1;:::;K

f�k(!)g:
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Then, consider the booking control eu derived from u as follows: For (!; t) 2 
 � [0; T ],

and j = 1; : : : ; J , de�ne

euj(!; t) =
8><>: u(!; t) if t � minv2fk:Akj>0gf�v(!)g;

0 otherwise.

It is clear that eu is a feasible control for the problem (P";�). From Proposition 26, u";�
is the unique optimal control for the perturbed problem (P";�) for "; � > 0. Hence, the

objective value of u";� is greater than or equal to the objective value of eu for the problem
(P";�). Moreover, the expected revenue generated by eu has the following lower bound.
(C.11) E

24 TZ
0

[f(!; t) � u(!; t)] dt

35� �KJF

mink;jfAkj : Akj > 0g
� E

24 TZ
0

[f(!; t) � eu(!; t)] dt
35 :

To see why (C.11) holds, observe that u and eu generate the same revenue until time
�(!) along each sample path !. The di¤erences may arise after time �(!), where for

j = 1; : : : ; J we have euj(!; t) = 0 by de�nition for t > minv2fk:Akj>0gf�v(!)g. For each

resource k = 1; : : : ; K, the expected revenue loss due to having euj(!; t) = 0 for all products
j such that Akj > 0 after time �k(!) is less than or equal to �=K, and (C.11) holds. Then,
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letting ex denote the state trajectory under eu, we have
E

24 TZ
0

[f(!; t) � u(!; t)] dt

35� "�� ��

� E

24 TZ
0

[f(!; t) � eu(!; t)� 1
2

JX
j=1

"j(!; t) eu2j(!; t)� KX
k=1

 �(exk(!; t))] dt
35

� E

24 TZ
0

[f(!; t) � u";�(!; t)� 1
2

JX
j=1

"j(!; t) (u
";�
j )

2(!; t)�
KX
k=1

 �(x
";�
k (!; t))] dt

35 ;
� E

24 TZ
0

[f(!; t) � u";�(!; t)] dt

35 :(C.12)

The �rst inequality follows from (C.11), the de�nition of "j(!; t), cf. (2.15) and the fact

that u(!; t) � d(!; t) for a.e. (!; t) 2 
 � [0; T ]. The second inequality is given by

feasibility of eu for (P ";�). The last inequality establishes the (�" + ��)-optimality of u ";�

and completes the proof of the second part of Theorem 27.

Finally, we show that every weak limit �u 2 eU of the booking controls fu";� : "; � > 0g is
an optimal booking control for the continuous-time network revenue management problem

(Pcont). Let fu"n;�n : n � 1g be a sequence controls of feasible controls for the continuous-

time network revenue management problem (Pcont) which converges to �u in the weak�

topology as "n; �n & 0. From Lemma 57, �u is a feasible booking control for (Pcont) and,

we have

lim
n!1

E

24 TZ
0

f(!; t) � u"n;�n(!; t)dt

35 = E
24 TZ
0

f(!; t) � �u(!; t)dt

35 :
The optimality of �u, then follows from (C.12). �
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Proof of Proposition 28. Combining the primal system dynamics equation dx =

�Audt with the coextremality condition (3.4) gives (3.7). Similarly, combining the dual

system dynamics dy =
:
ydt+dM with the coextremality condition (3.3) gives (3.8). Hence,

x";� and y";� jointly solve (3.7)-(3.9).

Conversely, suppose x";� and y";� jointly give a solution to (3.7)-(3.9). Let u ";� denote

the booking process corresponding to the trajectory x";� such that for (!; t) 2 
� [0; T ],

and j = 1; : : : ; J

u ";�j (!; t) = �";�(y";�(!; t)Aj; fj(!; t); dj(!; t)) :

Then, u ";� is a feasible booking rate process for (P ";�). Similarly, (y";�0 ;
:
y
";�
;M ";�) is a

feasible control for (D ";�), where for (!; t) 2 
� [0; T ], and k = 1; : : : ; K, :
yk
";�is given by

:
yk
";�
(!; t) =  

0

�(x
";�
k (!; t));

andM ";� is as in (3.8). Since, u ";� and (y";�0 ;
:
y
";�
;M ";�) satisfy the coextremality conditions

in (3.3) and (3.4), from Proposition 25 they are optimal for (P ";�) and (D ";�), respectively.

�

Proof of Proposition 29. First, observe that the analysis in Section 3 can be

extended for the case " = 0 easily. One only needs to avoid division by ". For " = 0 and

� > 0, the coextremality conditions associated with the perturbed problem (P ";�) and its

dual (D ";�) can be stated as follows: Letting u";� be a feasible control for (P ";�) with the

corresponding state trajectory x";�, and (y";�0 ;
:
y
";�
;M ";�) be a feasible control for (D ";�) with

the corresponding state trajectory y";�, the controls u";� and (y";�0 ;
:
y
";�
;M ";�) are optimal

for (P ";�) and (D ";�), respectively, if and only if they satisfy the following coextremality
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conditions (C.13) and (C.14): For k = 1; : : : ; K and almost all (!; t) 2 
� [0; T ];

(C.13)

:
y
";�
k (!; t) = 0 if x";�k (!; t) � � and

:
y
";�
k (!; t) = R(�)(x";�k (!; t)� �) if x";�k (!; t) < �;

and for j = 1; : : : ; J and almost all (!; t) 2 
� [0; T ] with dj(!; t) > 0;

(C.14)

if u";�j (!; t) = 0; then fj(!; t)� y";�(!; t)Aj � 0,

if u";�j (!; t) = dj(!; t); then fj(!; t)� y";�(!; t)Aj � 0;

if 0 < u";�j (!; t) < dj(!; t); then fj(!; t)� y";�(!; t)Aj = 0.

For � > 0, suppose (x; y;M) jointly solve the FBSDE de�ned in (3.11)-(3.13). Let u

denote the bookings resulting from the booking function � in the forward equation (3.11).

That is, for j = 1; : : : ; J and (!; t) 2 
� [0; T ],

uj(!; t) = dj(!; t)1ffj(!;t)�y(!;t)Ajg.

Then, x; y and u satisfy the coextremality conditions (C.13) and (C.14) and, hence, u is

an optimal control for the perturbed problem (P ";�) for " = 0 and � > 0. From Theorem

27, the TvR bid-price control with bid-price process � = y is ��-optimal. �
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APPENDIX D

Proofs of the Results in Chapter 4

D.1. Proofs of the Results in Section 4.1

Proof of Lemma 32. First of all, 8t 2 [0; t] and t0 > t,

v = argmax
v0
fvy (v0; t0)� x (v0; t0)g :

To see this, note that from the IC constraint at time t0, we have

vy (v; t0)� x (v; t0) � vy (v0; t)� x (v0; t0) for v; v0 2 [v; v]:

Second, we focus on

max
v0

Z v

v

[vy (v0; t0)� x (v0; t0)] g (v; t) dv, 8t 2 [0; t], t0 < t:

That is, we will consider what a consumer of type t would report as her valuation if she

reports her type as t0 < t. My conjecture is that she will report her best estimate of her

valuation, i.e. Et [v] =
R v
v
vg (v; t) dv. Note that from the IC constraint at time t0, we have

vy (v; t0)� x (v; t0) � vy (v0; t)� x (v0; t0) for v; v0 2 [v; v]:
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Moreover, we can write

max
v0

Z v

v

[vy (v0; t0)� x (v0; t0)] g (v; t) dv

= max
v0

�Z v

v

vy (v0; t0) g (v; t) dv �
Z v

v

x (v0; t0) g (v; t) dv

�
= max

v0

�
y (v0; t0)

Z v

v

vg (v; t) dv � x (v0; t0)

Z v

v

g (v; t) dv

�
= max

v0
fEt [v] y (v0; t0)� x (v0; t0)g ;

which is maximized at v0 = Et [v] due to the IC constraint at time t0. That is,

Et [v] = argmax
v0

Z v

v

[vy (v0; t0)� x (v0; t0)] g (v; t) dv, 8t 2 [0; t], t0 < t:

This is as if the consumer knows that her valuation at time t0 is Et [v], in which case, she

would have reported Et [v] as her valuation. �

Proof of Proposition 33. We �rst prove the "only if" part. Suppose a solution�
x (v; t) : t 2 [0; t]; v 2 [v; v]

	
and

�
y (v; t) : t 2 [0; t]; v 2 [v; v]

	
to the mechanism design

problem implements the �rst-best solution. Then, all the expected surplus is extracted

from the consumers, i.e.

Z v

v

[vy (v; t)� x (v; t)] g (v; t) dv = 0 for all t:

This implies that

Z v

v

x (v; t) g (v; t) dv =

Z v

c

vg (v; t) dv = Et [v; v � c] :
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For (ICt) constraint at time t to be satis�ed, we need the following conditions:

for v � c, v � x (v; t) � v � x (v0; t) for v0 � c and t 2 [0; t];

for v � c, v � x (v; t) � �x (v0; t) for v0 < c and t 2 [0; t];

for v < c, � x (v; t) � v � x (v0; t) for v0 � c and t 2 [0; t];

for v < c, � x (v; t) � �x (v0; t) for v0 < c and t 2 [0; t]:

First focus on the conditions under which the incentive compatibility constraints at time

zero are satis�ed.

Under the choice of y and x as above, the IC constraints at time 0 becomes

0 �
Z v

v

[vy (v; t0)� x (v; t0)] g (v; t) dv, 8t 2 [0; t], t0 > t;

0 �
Z v

v

[vy (Et [v] ; t0)� x (Et [v] ; t0)] g (v; t) dv, 8t 2 [0; t], t0 < t;

which can be written as follows:

0 � Et [v; v � c]�
Z v

v

x (v; t0) g (v; t) dv, 8t 2 [0; t], t0 > t;

0 � y (Et [v] ; t0)Et [v]� x (Et [v] ; t0) , 8t 2 [0; t], t0 < t:

Then, the types t such that Et [v] < c, would never want to pretend that they are some

type t0 < t, since y (Et [v] ; t0) = 0. The types t such that Et [v] < c, would not want to



247

pretend that they are some type t0 > t only if

Z v

v

x (v; t0) g (v; t) dv � Et [v; v � c] , 8t0 > t:

Now consider the types t such that Et [v] � c. The types t such that Et [v] � c, would

not want to pretend that they are some type t0 < t only if

x (Et [v] ; t0) � Et [v] , 8t0 < t:

The types t such that Et [v] > c, would never want to pretend that they are some type

t0 > t only if Z v

v

x (v; t0) g (v; t) dv � Et [v; v � c] , 8t0 > t:

To summarize, the payments
�
x (v; t) : t 2 [0; t]; v 2 [v; v]

	
should satisfy the following

conditions:

(1) Z v

v

x (v; t) g (v; t) dv = Et [v; v � c] ;

(2) For IC constraint at time t to be satis�ed, it must be that

for v � c, � x (v; t) � �x (v0; t) for v0 � c and t 2 [0; t];

for v � c, v � x (v; t) � �x (v0; t) for v0 < c and t 2 [0; t];

for v < c, � x (v; t) � v � x (v0; t) for v0 � c and t 2 [0; t];

for v < c, � x (v; t) � �x (v0; t) for v0 < c and t 2 [0; t]:



248

(3) For types t such that Et [v] < c,

Z v

v

x (v; t0) g (v; t) dv � Et [v; v � c] , 8t0 > t:

(4) For types t such that

Et [v] � c;

Z v

v

x (v; t0) g (v; t) dv � Et [v; v � c] ;8t0 > t:

and

x (Et [v] ; t0) � Et [v] , 8t0 < t:

First observe that since for v � c, x (v; t) � x (v0; t) for v0 � c and t 2 [0; t]; we should

have x (v; t) = x (v0; t) for v0; v � c. Moreover, since for v < c, �x (v; t) � �x (v0; t) for

v0 < c and t 2 [0; t], we should have x (v; t) = x (v0; t) for v0; v < c. That is, the payments

can only depend on the type and whether the valuation v is greater than c or not. So

de�ne the payments x(t) and x (t) as the payment from type t if her valuation is below

c and above c respectively. Then, we can write the conditions above as follows: Let � (t)

denote the probability that the valuation of type t is above c. Then,

(1)

� (t)x (t) + (1� � (t))x (t) = Et [v; v � c] ;

(2) For IC constraint at time t to be satis�ed, we need the following conditions:

for v � c, v � x (t) � �x (t) for t 2 [0; t];

for v < c, � x (t) � v � x (t) for t 2 [0; t];
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That is,

for v � c, v � x (t)� x (t) for t 2 [0; t];

for v < c, x (t)� x (t) � v for t 2 [0; t];

which implies that x (t)� x (t) = c.

(3) For types t such that Et [v] < c, we have

� (t)x (t0) + (1� � (t))x (t0) � Et [v; v � c] , 8t0 > t:

(4) For types t such that Et [v] � c, we have

� (t)x (t0) + (1� � (t))x (t0) � Et [v; v � c] , 8t0 > t:

x (t0) � Et [v] , 8t0 < t:

Since x (t)� x (t) = c, the question is whether the payments
�
x (t) : t 2 [0; t]

	
satisfy

the following conditions

(1)

x (t) = Et [v; v � c]� c� (t) ;

(2) For types t such that Et [v] < c,

c� (t) + Et0 [v; v � c]� c� (t0) � Et [v; v � c] , 8t0 > t:
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For types t such that Et [v] � c,

c� (t) + Et0 [v; v � c]� c� (t0) � Et [v; v � c] , 8t0 > t:

Et0 [v; v � c]� c� (t0) + c � Et [v] ;8t0 < t;

which completes the "only if" part of the proof.

To prove the "if" part of the proof, consider the following solution to the mechanism

design problem: For all t, let y (v; t) = 1 if v � c and y (v; t) = 0 if v < c. De�ne the

payments x (v; t) as follows: x (v; t) =x(t) if v < c and x (v; t) =x(t) + c for v � c where

x (t) = Et [v; v � c] � c� (t). Then, it is easy to check that this solution implements the

�rst-best under Conditions 1 and 2 of Proposition 33. �

D.2. Proofs of the Results in Section 4.2

Proof of Proposition 36. Since U is of bounded variation, we can write U (t) =

UC (t)+�U (t), where �U (t) = U (t)�U (t�). Then, using integration by parts and as-

suming without loss of generality that the cumulative type distribution fH (t) : 0 � t � �tg

is continuous, we get

Z
v;t

f (v; t) [x (v; t)� cy (v; t)] dvdt

=

Z
v;t

f (v; t) [(v � c) y (v; t)] dvdt� U (0)

�
Z
[0;�t]

(1�H (t)) dUC (t)�
X
0<s<�t

(1�H (t))�U (t) ;
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where
P

0<s<�t (1�H (t))�U (t) is at most a countable sum. To see this, note that

Z �t

0

h (t)U (t) dt = U (0) +

Z
[0;�t]

(1�H (t)) dUC (t) +
X
0<s<�t

(1�H (t))�U (t) :

We can rewrite the objective as follows: Since u (v; t) = vy (v; t)� x (v; t) ; we have

x (v; t)� cy (v; t) = �u (v; t) + (v � c) y (v; t) :

The objective is then to maximize

Z
v;t

f (v; t) [x (v; t)� cy (v; t)] dvdt

=

Z
v;t

f (v; t) [�u (v; t) + (v � c) y (v; t)] dvdt;

= �
Z
v;t

f (v; t)u (v; t) dvdt+

Z
v;t

f (v; t) [(v � c) y (v; t)] dvdt;

= �
Z �t

0

h (t)U (t) dt+

Z
v;t

f (v; t) [(v � c) y (v; t)] dvdt;

=

Z
v;t

f (v; t) [(v � c) y (v; t)] dvdt� U (0)

�
Z
[0;�t]

(1�H (t)) dUC (t)�
X
0<s<�t

(1�H (t))�U (t) :

Then, we prove that

lim sup
h!0

U (t+ h)� U (t)

h
� �

Z v

v

y (v; t)
@G (v; t)

@t
dv:
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By (IC0) constraint at time 0, we get for a type t and h > 0,

U (t) � U (t+ h)�
Z v

v

[vy (v; t+ h)� x (v; t+ h)] g (v; t+ h) dv

+

Z v

v

[vy (v; t+ h)� x (v; t+ h)] g (v; t) dv;

where the �rst line is just adding and subtracting U (t+ h), and the inequality follows

because by the incentive constraints at time 0, type t would not want to pretend like type

t+ h > t. Then, we get

U (t+ h)� U (t) �
Z v

v

[vy (v; t+ h)� x (v; t+ h)] g (v; t+ h) dv

�
Z v

v

[vy (v; t+ h)� x (v; t+ h)] g (v; t) dv;

from which it follows that

lim sup
h&0

U (t+ h)� U (t)

h

� lim
h&0

1

h

Z v

v

[vy (v; t+ h)� x (v; t+ h)] (g (v; t+ h)� g (v; t)) dv

=

Z v

v

u (v; t)
@g (v; t)

@t
dv;

= �
Z v

v

y (v; t)
@G (v; t)

@t
dv;

where the last inequality follows from Lemma 34 and integration by parts. This provides

an upper bound on the right-hand derivative of U (t). Similarly using (IC0) constraint at
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time 0, we

lim sup
h&0

U (t)� U (t� h)

h
� �

Z v

v

y (v; t)
@G (v; t)

@t
dv:

Then, since

lim sup
h!0

U (t+ h)� U (t)

h
� �

Z v

v

y (v; t)
@G (v; t)

@t
dv <1;

the expected utility function U cannot have upward jumps.

As our next step, we prove that any optimal U does not have downward jumps.

Suppose not. Suppose that U has a downward jump at type � . That is, U (� � ") > U (�)

for " > 0, where " is small. Then, as type � does not �nd it pro�table to pretend like

some type � 0 < � , the types t 2 (� � "; �) for " > 0 su¢ ciently small would not want it

pro�table to pretend like some type � 0 < � � ". At the same time, the types t 2 (� � "; �)

for " > 0 su¢ ciently small would not �nd it pro�table to pretend to be some type

t0 2 [� ; �t] as well since otherwise type � would strictly prefer to deviate and pretend to be

type t0. Let Û denote a modi�ed expected utility function such that Û (t) = U (� � ") for

t 2 t 2 (� � "; �) and Û (t) = U (t), otherwise. Then, Û has a better objective function

value than U and is still feasible. Contradiction.

Next, we show that U is nondecreasing. Suppose there exists some interval [� 1; � 2]

of types over which U 0 (t) < 0. Since the right hand side of the global IC constraint is

increasing in t, the global IC constraint is not binding for t 2 [� 1; � 2]. Then, we can choose

Û such that Û (t) = U (� 2) for t 2 [� 1; � 2] and this will strictly increase the objective. On

the other hand, this modi�cation creates a downward jump in the expected utilities at

the point � 1. In particular, U (t) > U (� 1) for t < � 1 yet arbitrarily close to � 1. However,
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since the global IC constraint is satis�ed for � 1 under Û , it must be the case that the

global IC constraint is not binding for those types t � � 1 and U (t) � Û (� 1). Thus,

setting Û (t) = U (� 2) for those types again strictly improves the objective. Carrying out

this procedure repeatedly eliminates any point where U 0 < 0. Thus, U 0 (t) � 0 for all t.

An immediate implication is that

X
0<s<�t

(1�H (t))�U (t) = 0:

Moreover, U is everywhere di¤erentiable and this concludes the proof of the fact that

0 � U 0 (t) � �
Z v

v

y (v; t)
@G (v; t)

@t
dv:

Finally, we prove that in any optimal mechanism, the payments

�
x (v; t) : t 2

�
0; t
�
; v 2 [v; v]

	
are nonnegative. We �rst prove that for a given t, x (v; t) is increasing in v. We have

@u (v; t) =@v =
@ [vy (v; t)� x (v; t)]

@v
= y (v; t) + v

@y (v; t)

@v
� x (v; t) :

From Lemma 34, @u (v; t) =@v = y (v; t) and y (v; t) is non-decreasing in v. Thus, x (v; t) =

v @y(v;t)
@v

� 0.

Hence, it su¢ ces to prove that x (v; t) � 0 for all t 2
�
0; t
�
. We argue by contradiction.

Suppose not. Suppose there exists a type t̂ such that x (v; t) < 0. First consider the

case that t̂ > 0. If x
�
v; t̂
�
< 0, then u

�
v; t̂
�
> 0 and since @u

�
v; t̂
�
=@v � 0, we have
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u
�
v; t̂
�
> 0 for all v 2 [v; v]. However, (IC0) implies that for all t < t̂,

U (t) =

Z v

v

[vy (v; t)� x (v; t)] g (v; t) dv

�
Z v

v

�
vy
�
v; t̂
�
� x

�
v; t̂
��
g (v; t) dv;

=

Z v

v

u
�
v; t̂
�
g (v; t) dv

> 0:

But then, we can decrease U (t) for all t 2
�
0; t̂
�
by " by increasing the payments and

not changing the allocation y. This will strictly improve the objective while all the incen-

tive compatibility constraints are still satis�ed, contradicting the optimality of the solu-

tion with payments
�
x (v; t) : t 2

�
0; t
�
; v 2 [v; v]

	
. Finally, suppose x (v; 0) < 0. Then,

U (0) > 0 and since the incentive compatibility constraints regarding downward deviations

hold, there exists a type et > 0 such that U (t) > 0 for all t 2 �0;et�.Then, we can decrease
U (t) for all t 2

�
0;et� by " by increasing the payments and not changing the allocation y,

which will strictly improve the objective while all the incentive compatibility constraints

are still satis�ed. This concludes the proof of the fact that in any optimal mechanism,

the payments are nonnegative. �

The following auxiliary optimal control problem (PA) and its dual (DA), and the coex-

tremality conditions between the two formulations will facilitate the proof of Proposition
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40. First, consider (PA): Choose control fy (v) : v 2 [v; �v]g so as to

maximize
Z �v

v

(v � c) g (v; t) y (v) dv

subject to

_z (v) = (1�G (v; t)) y (v) with z (v) = 0;

_s (v) = �@G (v; t)
@t

y (v) with s (v) = 0;

_u (v) = y (v) with u (v) = u0; (PA)

z (�v) � U� (t)� u0;

s (�v) � _U� (t) ;

u (�v) � u� (�v) ;

0 � y (v) � 1;

where z; s; u denote state trajectories and we treat U� (t), _U� (t) and u� (�v) as given con-

stants. The dual formulation (DA) of (PA) is derived in Appendix D.3 and is given as

follows: Choose f�z (v) ; �s (v) ; �u (v) : v 2 [v; �v]g so as to

min
Z �v

v

max

�
0; g (v; t) (v � c)� @G (v; t)

@t
�s (v) + (1�G (v; t)) �z (v)

�
dv + u0�z (v)

subject to

_�z(v) = _�s(v) = _�u(v) = 0; (DA)

�u(v) = 0;

�s(�v); �z(�v) � 0:
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The following lemma states the necessary and su¢ cient conditions for optimality and is

proved in Appendix D.3.

Lemma 58. Let fy (v) : v 2 [v; �v]g be a feasible solution for (PA) with the correspond-

ing state trajectories fz (v) ; s (v) ; u (v) : v 2 [v; �v]g and f�z (v) ; �s (v) ; �u (v) : v 2 [v; �v]g

be a feasible control for (DA). The controls y and �z; �s; �u are optimal for (PA) and (DA),

respectively, if and only if they satisfy the following coextremality conditions:

(i) �s(v) = 0 for all v:

(ii)

(D.1) y (v) 2 arg max
0�z�1

�
z

�
v � c+

1�G (v; t)

g (v; t)
�z (�v)

��
for all v:

(iii) If z (�v) > U (t)� u0, then �z (�v) = 0.

Proof of Proposition 37. First, we show that there exists an optimal solution to

(P1relaxed) such that y (v; t) 2 f0; 1g for all v; t. To this end, �x an optimal solution U�,

y� (The corresponding ex-post utility function will be denoted by u�) We will proceed

by modifying this solution appropriately to reach at another solution U�, y, which is of

the desired form. In particular, we will keep the expected utility function U� unchanged,

while modifying the allocation probabilities. This will show that for each t, there exists a

cut-o¤ point k (t) such that y (v; t) = 1 if v � k (t) whereas y (v; t) = 0 if v < k (t).

Fixing t, de�ne the modi�ed allocation y (v; t) as the solution to the following prob-

lem. (For notational brevity, we suppress the dependence of y on t): Choose the control
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fy (v) : v 2 [v; �v]g so as to

maximize
Z �v

v

(v � c) g (v; t) y (v) dv

subject to

0 � y (v; t) � 1;

_u (v) = y (v) with u (v) = u0; (ePA)Z �v

v

g (v; t)u (v) dv � U� (t) ;Z v

v

�
�@G (v; t)

@t

�
y (v) dv � _U� (t) ;

u (�v) � u� (�v; t) ;

where U� (t), _U� (t) and u� (�v; t) are taken as constants. It follows from integration by

parts that Z �v

v

g (v; t)u (v) dv = u0 +

Z �v

v

(1�G (v; t)) y (v) dv;

which helps us rewrite the third constraint as

(D.2)
Z �v

v

(1�G (v; t)) y (v) dv � U� (t)� u0:

Then, (ePA) reduces to the auxiliary problem (PA) and it follows from Lemma D.23 that

y (v) 2 arg max
0�z�1

�
z

�
v � c+

1�G (v; t)

g (v; t)
�z (�v)

��
;

where �z (�v) � 0. Under the standard monotone hazard rate condition that

(1�G (v; t)) =g (v; t)
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is nondecreasing in v, we have that

v � c+
1�G (v; t)

g (v; t)
�z (�v)

is increasing in v, and that y (v) 2 f0; 1g for all v. Indeed, for all t, there exists a cuto¤

k (t) such that y (v; t) = 1 if v � k (t) whereas y (v; t) = 0 if v < k (t) so that y (v) is

nondecreasing in v.

As an aside, note that for each optimal solution to (ePA), we can decrease u0 and make
the constraint (D.2) bind. Thus, without loss of generality, we focus only on solutions

where (D.2) binds.

For type t, the modi�ed solution will have U� (t) as the expected utility and y (v; t)

as the allocation. (The modi�ed ex-post utility function u (v; t) is also derived from the

above optimal control problem.) This modi�ed solution is clearly of the desired form

and weakly improves the objective of (P1relaxed). To establish that it is indeed an optimal

solution to (P1relaxed), we only need to check the global IC constraint. To check this, note

that u (�v; t) � u� (�v; t) (for all t) by the last constraint of (ePA) and that @u (v; t) =@v = 1
for v such that u (v; t) � 0, where the latter assertion follows since u (v; t) � 0 for all t.

To see why u (v; t) � 0 for all t, notice that if u (v) > 0 and the constraint that

Z �v

v

g (v; t)u (v) dv � U� (t)

does not bind in problem (ePA), we can decrease u (v) and increase the objective of the
original mechanism design problem. If u (v) > 0 and the constraint that

Z �v

v

g (v; t)u (v) dv � U� (t)
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binds, then it should be that U� (t) > 0. Then, we should have U� (t0) > 0 for all t0 < t

as any type t0 < t could get a strictly positive surplus by pretending to be type t. As U�

is increasing, this would imply that U� (t) > 0 for all t, in which case increasing u (v; t)

uniformly for all types would increase the pro�ts. Contradiction.

Since u (v; t) � 0 for all t, it must be that u (v; t) � u� (v; t) for all v such that

u (v; t) � 0. Thus, the global IC constraint holds since

U� (�t) � max
t
fu� (E�t [v] ; t)g ;

= max
t2f� :u�(E�t[v];�)�0g

fu� (E�t [v] ; t)g ;

� max
t2f� :u�(E�t[v];�)�0g

fu (E�t [v] ; t)g ;

� max
t2f� :u(E�t[v];�)�0g

fu (E�t [v] ; t)g ;

= max
t
fu (E�t [v] ; t)g ;

which completes the proof. �

Proof of Corollary 38. From Lemma 34, @u (v; t) =@v = y (v; t) = 0 for v < k (t)

and @u (v; t) =@v = y (v; t) = 1 for v � k (t). This implies that for a given t, x (v; t) is the

same for all valuations v < k (t). Similarly, since

u (v; t) = vy (v; t)� x (v; t) = v � x (v; t) ;

and @u (v; t) =@v = y (v; t) = 1 for v � k (t), it also follows that given t, x (v; t) is the

same for all valuations v � k (t). Any x(v; t) that satis�es the (ICt) constraint is of the
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form

x (v; t) =

8><>: x (t) if v < k (t) ;

x (t) if v � k (t) :

Moreover, it follows that x (t) = x (t) + k (t). To see this, note that for a consumer with

valuation k (t)� " for " > 0 small, to report her valuation truthfully, it must be that

(D.3) � x (t) � (k (t)� ")� x (t) :

The left hand side is the utility that a type t consumer with valuation k (t) � " gets by

reporting her type truthfully and obtaining the good with probability 0, in which case

she makes a payment of x (t). The right hand side is the utility that the consumer with

valuation k (t) � " gets by reporting her valuation as k (t) and obtaining the good with

probability 1 and paying x (t). Since (D.3) should hold for all " > 0 small, we obtain

�x (t) � k (t) � x (t). Repeating the same argument for a consumer with valuation

k (t) + ", we also obtain �x (t) � k (t)� x (t). Hence, x (t) = x (t) + k (t).
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Using Proposition 37 and x (t) = x (t) + k (t),

U (t0) =

Z v

v

[vy (v; t0)� x (v; t0)] g (v; t0) dv;

=

Z k(t0)

v

[vy (v; t0)� x (v; t0)] g (v; t0) dv

+

Z �v

k(t0)

[vy (v; t0)� x (v; t0)] g (v; t0) dv;

=

Z k(t0)

v

[�x (t0)] g (v; t0) dv +
Z �v

k(t0)

[v � x (t0)] g (v; t0) dv;

=

Z �v

k(t0)

vg (v; t0) dv �
Z k(t0)

v

x (t0) g (v; t0) dv

�
Z �v

k(t0)

(x (t0) + k (t0)) g (v; t0) dv;

=

Z v

k(t0)

vg (v; t0) dv � x (t0)� (1�G (k (t0) ; t)) k (t0) :

This implies that

x (t0) = �U (t0) +
Z v

k(t0)

vg (v; t0) dv � (1�G (k (t0) ; t)) k (t0) ;

and

(D.4) k (t0) + x (t0) = �U (t0) +
Z v

k(t0)

vg (v; t0) dv +G (k (t0) ; t) k (t0) :

Then, notice that a type t will not deviate to a type t0 < t for which y (Et [v] ; t0) = 0.

This is the case because U (t) � 0 and the payments are nonnegative for all t and v, cf.
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Proposition 36. Hence, type t will get a payo¤ of

Et [v] y (Et [v] ; t0)� x (Et [v] ; t0) = �x (Et [v] ; t0) � 0

if she pretends to be type t0 < t. Thus, without loss of generality, consider only types

t0 < t such that y (Et [v] ; t0) = 1, in which case

(D.5) x (Et [v] ; t0) = k (t0) + x (t0) .

Finally, using Proposition 37, (F), and the fact that type t will only consider deviating to

types t0 < t such that y (Et [v] ; t0) = 1, we can write

max
t0<t

fEt [v] y (Et [v] ; t0)� x (Et [v] ; t0)g

= max
t02f� :y(Et[v];�)=1, �<tg

fEt [v] y (Et [v] ; t0)� x (Et [v] ; t0)g

= Et [v]� min
t02f� :y(Et[v];�)=1, �<tg

fx (Et [v] ; t0)g ;

Then, by (D.4) and (D.4),

Et [v]� min
t02f� :y(Et[v];�)=1, �<tg

fx (Et [v] ; t0)g

= Et [v]� min
t02f� :y(Et[v];�)=1, �<tg

�
�U (t0) +

Z v

k(t0)

vg (v; t0) dv +G (k (t0) ; t) k (t0)

�
;

= Et [v]� min
t02f� :y(Et[v];�)=1, �<tg

�
�U (t0) +

Z v

k(t0)

(v � k (t0)) g (v; t0) dv + k (t0)

�
;

= Et [v] + max
t02f� :y(Et[v];�)=1, �<tg

�
U (t0)�

Z v

k(t0)

(v � k (t0)) g (v; t0) dv � k (t0)

�
;

which concludes the proof. �
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Proof of Proposition 39. Proposition 37 and Corollary 38 immediately yields that

there exists an optimal solution to the relaxed problem (P2relaxed) characterized by the cut-

o¤ points fk (t) : 0 � t � �tg such that the allocation y satis�es y (v; t) = 1 for v � k (t)

and 0 otherwise. Hereafter, we will consider that optimal solution. The remainder of the

proof consists of three major steps, each of which includes several steps.

The �rst step of the proof characterizes the expected utility function U . In particular,

it shows that U is nondecreasing with U (0) = 0 and that there exists a threshold t2 � �t

such that

U 0 (t) =

8><>: 0 if t < t2;

�
R v
k(t)

@G(v;t)
@t

dv if t � t2:

The second step characterizes the optimal cuto¤ points fk (t) : 0 � t � �tg, showing

that for types t � t2, k (t) is the unique solution of � (k (t) ; t) = 0, where

� (v; t) = (v � c) +
(1�H (t))

h (t)

@G (v; t) =@t

g (v; t)
:

It also shows that k (t) � c, and k (t) is nonincreasing for t � t2. Moreover, k (t) nonin-

creasing on [0; t2) with k (0) > c. To be more speci�c, it shows that there exists another

threshold t1 � t2 such that k (t) is decreasing on [0; t1], while k (t) = c on (t1; t2).

Finally, the third step shows that in the optimal solution we have 0 < t2 < �t, ruling

out the possibilities t2 = �t and t2 = 0.

Step 1. To establish the claims of Step 1 as stated above, we �rst prove two auxiliary

results. The �rst auxiliary result states that if the constraint (ICglobal) binds for some

type t, then it should also bind for all types t0 higher than t, i.e. t0 > t. The second
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auxiliary claim proves that in any optimal solution, we have

U 0 (t) 2
�
0;�

Z v

k(t)

@G (v; t)

@t
dv

�
:

In what follows, we establish these auxiliary result in Steps 1.A and 1.B. Finally, we show

that if U 0 (t0) > 0 for some t0, then U 0 (t) > 0 for all t � t0, establishing the proof of Step

1.

Step 1.A. We start by proving that if the global constraint for downward deviations

binds for some type t, then it should also bind for all t0 > t. To see this, note that

(D.6)
dEt [v]
dt

= �
Z v

v

@G (v; t)

@t
dv � �

Z v

k(t)

@G (v; t)

@t
dv � U 0 (t) :

The derivative of the left hand side of (ICglobal) is U 0 (t). The derivative of the right hand

side of (ICglobal) is greater than or equal to @Et [v] =@t since the derivative of the �rst term

on the right hand side of (ICglobal) is @Et [v] =@t and the second term is also increasing in

t. Hence, the derivative of the left hand side of (ICglobal) is always less than the derivative

of the right hand side. This implies that if (ICglobal) binds for type t, it will bind for all

types t0 > t.

Step 1.B. Next, we prove that in any optimal solution to (P2relaxed), we should have

either U 0 (t) = 0 or U 0 (t) = �
R v
k(t)

@G(v;t)
@t

dv. First recall that from Proposition 36, we

have for all t that

0 � U 0 (t) � �
Z v

k(t)

@G (v; t)

@t
dv:
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We argue by contradiction. Suppose that there exists an interval [� 1; � 2] such that

0 < U 0 (t) < �
Z v

k(t)

@G (v; t)

@t
dvfort 2 [� 1; � 2] :

First notice that (ICglobal) cannot not bind for any positive measure subset of [� 1; � 2].

Suppose not. Then, there exists a subinterval of [� 1; � 2] over which (ICglobal) binds. With-

out loss of generality, we suppose that (ICglobal) binds for t 2 [� 1; � 2]. Otherwise, we could

have picked the subinterval to start with. Then,

U (� 1) = max
t02f� :y(E�1 [v];�)=1, �<�1g

�
U (t0)�

Z v

k(t0)

(v � k (t0)) g (v; t0) dv � k (t0)

�
+E�1 [v] :

Since U 0 (� 1) < �
R v
k(�1)

@G(v;�1)
@t

dv, and the derivative of the right hand side of (ICglobal) at

the point � 1 is greater than or equal to �
R v
v
@G(v;�)
@t

dv, we have

max
t02f� :y(E�1+"[v];�)=1, �<�1+"g

�
U (t0)�

Z v

k(t0)

(v � k (t0)) g (v; t0) dv � k (t0)

�
> U (� 1 + ")� E�1+" [v]

for " > 0 su¢ ciently small. That is, (ICglobal) is violated for types � 1 + ", which is a

contradiction to the optimality of U .

Since (ICglobal) does not bind for [� 1; � 2], then the objective function can be improved

by having U 0 (t) = 0 for t 2 [� 1; � 1 + "] for " > 0 su¢ ciently small and appropriately

increasing U 0 (t) (which can be done since U 0 (t) < �
R v
k(t)

@G(v;t)
@t

dv for t 2 [� 1; � 2]) such

that U (� 2) remains unchanged. This proves that in any optimal solution to (P2relaxed), we

should have either U 0 (t) = 0 or U 0 (t) = �
R v
k(t)

@G(v;t)
@t

dv.
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Having proved the auxiliary results for Step 1, we now conclude the proof of Step 1

by showing that if U 0 (t0) > 0 for some t0, then U 0 (t) > 0 for all t � t0. Suppose this

statement is not true. Then, there exists an interval [� 1; � 2] over which U 0 (t) = 0. For

t 2 [� 1; � 2], the constraint (ICglobal) cannot bind, cf. (D.6) of Step 1.A. Therefore, we can

modify U such that U 0 (t0) = 0 for t 2 [t0; t0 + "] while keeping U (� 2) the same as before,

which improves the objective function. Hence, it must be that if U 0 (t0) > 0 for some t0,

then U 0 (t) > 0 for all t � t0.

Finally, de�ne t2 2 [0; �t] as the lowest type such that U 0 (t) > 0. Formally,

t2 = inf ft 2 [0; �t] : U 0 (t) > 0g ;

where t2 = �t if U (t) = 0 for all t. Observe that since U 0 (t) is either zero or �
R v
k(t)

@G(v;t)
@t

dv

by Step 1.B, we conclude that U (0) = 0 and U 0 (t) = 0 for t � t2, while

U 0 (t) = �
Z v

k(t)

@G (v; t)

@t
dv for t > t2;

which completes the proof of Step 1.

Step 2. To establish Step 2 of the proof, we �rst prove two auxiliary results. The �rst

one, proved in Step 2.A, states that the constraint (ICglobal) binds for the highest type �t.

The second auxiliary result, proved in Step 2.B, asserts that if t2 > 0, then there exists a

type et < t2 such that the constraint (ICglobal) regarding type �t�s deviation to pretending

to be type et binds. That is,
U (�t) = E�t [v] + U

�et�� Z v

k(et)
�
v � k

�et�� g �v;et� dv � k
�et� :
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Then in Step 2.C, we characterize the optimal cuto¤ points k (t) for t < t2. Similarly,

Step 2.D characterizes the optimal cuto¤ points k (t) for t � t2, ignoring the constraint

(ICglobal) for types t 2 [t2; �t) regarding their deviations to pretending to be types t0 2 [t2; �t].

Finally, in Step 2.E, we verify that the (ICglobal) constraints ignored in Step 2.D indeed

hold for the optimal cuto¤s k (t) for t � t2 characterized in that step.

Step 2.A. We start the proof of Step 2 by showing that (ICglobal) binds for �t. That

is, we prove that

U (�t) = E�t [v] + max
t02f� :y(E�t[v];�)=1g

�
U (t0)�

Z v

k(t0)

(v � k (t0)) g (v; t0) dv � k (t0)

�
:

We argue by contradiction. Suppose not. Then, the global IC constraint does not bind

for any type, cf. Step 1.A. There can be two cases. The �rst case is that U (�t) = 0. Then,

U (t) = 0 for all t, by Step 1.B.

In this case, i.e. the case that (ICglobal) does not bind for �t and U (�t) = 0, we must

have k (t) > c for t 2 [0; "] for " > 0 su¢ ciently small. To prove this, �rst notice

that under assumption that Condition 2 of Proposition 33 is violated, i.e. E�t [v � c] >

E0 [v � c; v � c], there exists " > 0 su¢ ciently small such that

E�t [v � c] > Et [v � c; v � c] for t 2 [0; "] ,

which follows by the continuity of the expectation Et [v � c; v � c] is t. Moreover, for the

global incentive compatibility constraint (ICglobal) of �t not to bind when type �t pretends

to be type t 2 [0; "], it must be the case that

U (�t) > E�t [v] +
�
U (t)�

Z v

k(0)

(v � k (0)) g (v; 0) dv � k (0)

�
:
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Then, since U (t) = 0 for all t,

(D.7) E�t [v � k (0)] <

Z v

k(0)

(v � k (0)) g (v; 0) dv:

Together with the fact that for all t,

k +

Z v

k

(v � k) g (v; t) dv

increases as k increases1 and the assumption that Condition 2 of Proposition 33 is violated,

i.e. E�t [v � c] > E0 [v � c; v � c], equation (D.7) implies that k (0) > c. Indeed, by

continuity of G (v; t) in t, we have

E�t [v � c] > Et [v � c; v � c]

for t 2 [0; "] and " > 0 su¢ ciently small. Thus, if the global incentive compatibility

constraint (ICglobal) of �t does not bind when type �t pretends to be type t, then it must be

the case that k (t) > c for all t 2 [0; "]. However, the objective function can be improved

by lowering k (t) slightly for types [0; "] so that the global IC constraints are not violated

and we still set U (t) = 0 for all types. Hence, it cannot be the case that the global IC

constraint does not bind for �t and U (�t) = 0.

Next, we deal with the case that the global IC constraint does not bind for �t and U (�t) >

0. In this case, the global IC constraint does not bind for any type, cf. Step 1.A, and we

can uniformly decrease U (t) slightly for those types such that U (t) > 0 so that the global

1To see this, observe that

@

@k

�
k +

Z �v

k

(v � k) g (v; t) dv
�
= 1�

Z �v

k

g (v; t) dv = G (k; t) > 0.
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IC constraints are not violated. Then, the objective function improves, contradicting the

optimality of U . Hence, it cannot be the case that the global IC constraint does not bind

for type �t.

Having proved that (ICglobal) binds for �t, we proceed to characterizing the optimal

cuto¤ points fk (t) : 0 � t � �tg for a given t2 2 [0; �t].

Step 2.B. Recall that t2 2 [0; �t] is the lowest type such that U 0 (t) > 0, i.e.

t2 = inf ft 2 [0; �t] : U 0 (t) > 0g :

We prove that if t2 > 0, then there exists a type et < t2 such that the global IC constraint

for �t binds regarding the deviation of type �t to pretend to be type et. That is,
U (�t) = E�t [v] + U

�et�� Z v

k(et)
�
v � k

�et�� g �v;et� dv � k
�et� :

We also prove that k
�et� � c. If t2 = �t, then the result follows from Step 2.A. Suppose

t2 < �t. We argue by contradiction. Suppose that type �t strictly prefers her contract o¤er

to the contract o¤ers of types t 2 [0; t2]. Then, there exists an " > 0 su¢ ciently small

such that (ICglobal) does not bind for type t 2 [t2; t2 + "). To prove this, suppose on

the contrary that type �t strictly prefers her contract o¤er to the contract o¤ers of types

t 2 [0; t2] and that (ICglobal) constraint of type t = t2 binds, which in turn implies that

(ICglobal) constraints of all types t 2 [t2; �t] binds. Since the (ICglobal) constraint of type t2

binds, it must be that type t2 is indi¤erent between his contract o¤er and the contract
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o¤er of some type t̂ < t2. That is,

(D.8) U (t2) = Et2 [v] + U
�
t̂
�
�
Z v

k(t̂)

�
v � k

�
t̂
��
g
�
v; t̂
�
dv � k

�
t̂
�
= 0:

Since the expected utility obtained by type �t by pretending to be type t̂ is strictly less

than U (�t), we have

(D.9) U (�t) > E�t [v] + U
�
t̂
�
�
Z v

k(t̂)

�
v � k

�
t̂
��
g
�
v; t̂
�
dv � k

�
t̂
�
:

Since U 0 (t) = �
R v
k(t)

@G(v;t)
@t

dv for t 2 [t2; �t], by integrating and using the boundary condi-

tion U (t2) = 0, we conclude

U (�t) =

Z t

t2

Z v

k(t)

�
�@G (v; t)

@t

�
dvdt

�
Z t

t2

Z v

v

�
�@G (v; t)

@t

�
dvdt

=

Z t

t2

dEt [v]
dt

dt

= E�t [v]� Et2 [v] :(D.10)



272

However, combining (D.8) and (D.9), we get

U (�t)� U (t2)

= U (�t) ;

> E�t [v] + U
�
t̂
�
�
Z v

k(t̂)

�
v � k

�
t̂
��
g
�
v; t̂
�
dv � k

�
t̂
�

�Et2 [v]� U
�
t̂
�
+

Z v

k(t̂)

�
v � k

�
t̂
��
g
�
v; t̂
�
dv + k

�
t̂
�

= E�t [v]� Et2 [v] ;

which is contradicts with (D.10), proving that there exists an " > 0 su¢ ciently small,

such that (ICglobal) does not bind for type t 2 (t2; t2 + ").

Then, we can set U (t) = 0 for t 2 [t2; t2 + ") and also decrease U (t) slightly for

all types t 2 [t2 + "; �t], which will strictly improve the objective without violating the

incentive compatibility constraints. This proves that there exists a type et < t2 such that

U (�t) = E�t [v] + U
�et�� Z v

k(et)
�
v � k

�et�� g �v;et� dv � k
�et� :

Finally, we prove that k
�et� � c. Again we argue by contradiction. Suppose k

�et� < c.

The utility that type �t gets by pretending to be type et is
E�t [v] + U

�et�� Z v

k(et)
�
v � k

�et�� g �v;et� dv � k
�et� ;

where U
�et� = 0 since et � t2. However, the deviation utility is decreasing in k

�et�.
Moreover, the allocation is also getting more e¢ cient as k

�et� increases since k �et� < c.
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Thus, increasing k
�et� slightly and keeping U �et� = 0 improves the objective while (ICglobal)

constraint is still satis�ed. Hence, we should have k
�et� � c.

Having established the auxiliary results for Step 2, we next characterize the optimal

cuto¤s k (t) for t < t2 in Step 2.C.

Step 2.C. Letting t1 be the highest type such that the global IC constraint for �t binds,

i.e.

t1 = sup

�
t 2 [0; �t] : U (�t) = E�t [v]�

Z v

k(t)

(v � k (t)) g (v; t) dv � k (t)

�
;

we show that t1 < �t and type �t is indi¤erent between his contract and the contract o¤er

of any type t 2 [0; t1]. Moreover, we establish that k (t) is (strictly) decreasing over the

interval [0; t1]. Finally, if t1 < t2, then k (t) = c for t 2 (t1; t2).

We �rst show that t1 < �t. If t2 < �t, we have t1 � t2 < �t by Step 2.B. If t2 = �t, then

optimality requires that t1 < �t. To see this, note that if t2 = �t (i.e. U (t) = 0 for all t),

then

U (�t) > E�t [v]� Et [max fv; cg] ;

for t close enough to �t, and hence, setting k (t) = c is optimal for t close enough to �t

since setting k (t) = c yields an e¢ cient allocation and the incentive constraints are still

satis�ed. This proves that t1 < �t when t2 = �t as well.

To prove that type �t is indi¤erent between his contract and the contract o¤er of any

type t 2 [0; t1], we argue by contradiction. Suppose that type �t strictly prefers his contract

to the contract o¤er of some type t̂ 2 [0; t1]. Then, for types t 2
�
t̂; t̂+ "

�
where " > 0
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su¢ ciently small, we must have

U (�t) > E�t [v]�
Z v

k(t)

(v � k (t)) g (v; t) dv � k (t) :

First notice that since k (t1) � c by the previous step, and due to the fact that

U (�t) = E�t [v]�
Z v

k(t1)

(v � k (t1)) g (v; t1) dv � k (t1) ;

we should have k (t) > c for t 2
�
t̂; t̂+ "

�
. Then, the objective function strictly improves

by decreasing k (t) slightly in a neighborhood of t̂ and keeping U the same, which is a

contradiction. Thus, the global IC constraint for type �t binds regarding her deviation to

any type t 2
�
t̂; t̂+ "

�
. Since k (t1) � c and the types are ordered by FSD, this argument

also proves that k (0) > c. Together with Step 2.B, this also proves that the global

incentive compatibility constraint (ICglobal) binds for the highest type �t, who is indi¤erent

between her contract and the contract choice of the lowest type, i.e.

U (�t) = E�t [v]� E0 [max fv; k (0)g] :

Moreover, since

U (�t) = E�t [v]�
Z v

k(t)

(v � k (t)) g (v; t) dv � k (t)

for all t 2 [0; t1] and Z v

k

(v � k) g (v; t) dv + k

is increasing in k for all t, k (t) is strictly decreasing over the interval [0; t1] if t1 > 0. If

t1 < t2 we have k (t) = c for t 2 [t1; t2] since the global incentive compatibility constraints
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are not binding for deviations to types in the interval [t1; t2] and the e¢ ciency in the

allocation requires k (t) = c.

In summary, k (0) > c with k (t) decreasing2 for t � t1, while k (t) = c for t 2 (t1; t2),

characterizing the optimal cuto¤ k (t) for t < t2. Next, we characterize the optimal cuto¤s

k (t) for t � t2 in Step 2.D.

Step 2.D. In this step, we characterize the optimal cuto¤ k (t) for t � t2, ignoring

the constraints (ICglobal) for types t 2 [t2; �t) regarding their deviation to pretending to be

types t0 2 [t2; �t], which will be veri�ed in Step 2.E. To be speci�c, we prove that if t2 < �t,

then for t � t2, k (t) satis�es � (k (t) ; t) = 0, where

� (v; t) = (v � c) +
(1�H (t))

h (t)

@G (v; t) =@t

g (v; t)
:

2Indeed, k (t) is strictly decreasing for t � t1 under strict FSD.
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We proceed as follows: For a given t2 2 [0; �t], we solve for the optimal allocation solving

the following problem, denoted (PD): Given t2, we choose k (t) so as to maximize

Z t2

0

Z �v

k(t)

f (v; t) (v � c) dvdt+

Z �t

t2

Z �v

k(t)

f (v; t)� (v; t) dvdt;

subject to

E�t [v]� S (t) � R (k (t) ; t) for all t � t2;

U (t)� S (t) + E�t [v] � R (k (t) ; t) for all t > t2;

_S (t) = 0 and S (�t) = U (�t) ; (PD)

_U (t) = 0 for t � t2;

_U (t) =

Z v

k(t)

(�@G (v; t) =@t) dv for t > t2;

k (t) 2 [v; �v] ;

where

R (k; t) =

Z v

k

(v � k) g (v; t) dv + k

and S (t) is a state variable such that S (t) = U (�t) for all t. Moreover, U (t) is viewed a

state variable in the problem (PD) and the objective function is rewritten using Proposi-

tion 36 and incorporating the fact that _U (t) = 0 for t � t2 and

_U (t) =

Z v

k(t)

(�@G (v; t) =@t) dv for t > t2:

The constraint that

E�t [v]� S (t) � R (k (t) ; t) for all t � t2;
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makes sure that type �t does not �nd it pro�table to pretend he is of type t 2 [0; t2].

Similarly, the constraint

U (t)� S (t) + E�t [v] � R (k (t) ; t) for all t > t2;

ensures that type �t does not �nd it pro�table to pretend he is of type t 2 (t2; �t).

Following [53], the dual problem of control associated with the above optimal control

problem (DD) is given as follows: (The derivation is along the same lines as the derivations

of the dual problem (D2) of optimal control problem (P2) in the proof of Proposition 37

and hence, is skipped.) Choose f�u(t) : t 2 [0; �t]g and f�u(t) : t 2 [0; �t]g so as toZ �v

v

M(t; �u(t); �s(t); _�u(t); _�s(t))dt

subject to

_�u(t) = 0; (DD)

�s (�t) = ��u (�t) ;

�s (0) = 0:

where M is given as follows: For t � t2,

M(t; �u(t); �s(t); _�u(t); _�s(t))

= L�(t; _�u(t); _�s(t); �u(t); �s(t));

= �f0g f _�u(t)g

+ sup
s;k2[v;�v];E�t[v]�s�R(k;t)

�
s _�s(t) +

Z �v

k

f (v; t) (v � c) dv

�
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For t > t2,

M(t; �u(t); �s(t); _�u(t); _�s(t))

= L�(t; _�u(t); _�s(t); �u(t); �s(t));

= �f0g f _�u(t)g

+ sup
s;k2[v;�v];E�t[v]�s�R(k;t)

�
s _�s(t) + �u (t)

Z �v

k

�@G (v; t)
@t

dv +

Z �v

k

f (v; t)� (v; t) dv

�
:

The dual problem of control (DD) and the primal problem (PD) are closely linked to

each other. Above all, their objective function values are equal. Moreover, any optimal

primal solution and any optimal dual solution satisfy a set of coextremality conditions,

which are necessary and su¢ cient conditions for optimality. Using [53], the coextremality

conditions between primal-dual solution pairs imply that for t � t2, k (t) should be an

optimal solution to the following problem: Choose k so as to

maximize U (�t) _�s(t) +
�Z v

k

(�@G (v; t) =@t) dv
�
�u(t) +

Z �v

k

f (v; t)� (v; t) dv:

subject to

U (t)� U (�t) + E�t [v] � R (k; t) ;

k 2 [v; �v] :

The coextremality conditions also require that if U (t) > 0, then �u(t) = 0, which

immediately implies that �u(t) = 0 for t > t2. Since, _�u(t) = 0 for all t from the dual

problem (DD) stated above, we must have �u(t) = 0 for all t. Since �s (0) = 0 and
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�s (�t) = ��u (�t) from (DD), we have �s (0) = �s (�t) = 0. Moreover, _�s (t) = 0 if

U (t)� U (�t) + E�t [v] < R (k (t) ; t) ;

which is the case when k (t) satis�es � (k (t) ; t) = 0 for all t � t2. Then, since we propose

a solution with cuto¤ points k (t) such that � (k (t) ; t) = 0 and the proposed cuto¤ k (t)

solves the relaxed problem of choosing k so as to

maximize
Z �v

k

f (v; t)� (v; t) dv

subject to

U (t)� U (�t) + E�t [v] � R (k; t) ;

k 2 [v; �v] ;

going back and checking the yields that the cuto¤ points k (t) such that � (k (t) ; t) = 0

satisfy the coextremality conditions for all t. Since the coextremality conditions are

necessary and su¢ cient for optimality, k (t) is the optimal cuto¤ point.

Moreover, since � (k (t) ; t) = 0, we have

k (t) = c� (1�H (t))

h (t)

@G (v; t) =@t

g (v; t)
� c:

As the virtual utility function � (v; t) is increasing in t for a given v, we have k0 (t) � 0

and hence, y (v; t) is increasing in t for a given v.

Step 2.E. Finally, to conclude the proof of Step 2, we prove that for t2 < �t, the

constraint (ICglobal) for types t 2 [t2; �t) regarding their deviations to pretending to be

types t0 2 [t2; �t] holds for the optimal cuto¤s k (t) for t � t2 characterized in Step 2.D.
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By Lemma 34, the transfer payments can be written as x (v; t) = x (t) if v < k (t)

and x (v; t) = x (t) if v � k (t) with k (t) = x (t) � x (t). Using integration by parts, the

expected surplus of a type t consumer is given as follows

U (t) = �x (t) +
Z �v

k(t)

vg (v; t) dv � k (t) (1�G (k (t) ; t)) ;

= �x (t) +
Z �v

k(t)

(1�G (v; t)) dv:(D.11)

Taking derivatives of both sides and using the fact that

U 0 (t) = �
Z v

k(t)

@G (v; t)

@t
dv for t � t2,

we get

�x0 (t)� k0 (t) (1�G (k (t) ; t)) = 0 for t � t2.

For t 2 [t2; �t], let U (t; t0) denote the expected utility of type t when he claims to be of

type t0 2 (t; �t]. Then U (t; t0) is given by

U (t; t0) =

Z v

v

[vy (v; t0)� x (v; t0)] g (v; t) dv

=

Z v

k(t0)

[v � x (t0)] g (v; t) dv +

Z k(t0)

v

[�x (t0)] g (v; t) dv

=

Z v

k(t0)

[v � (x (t0) + k (t0))] g (v; t) dv +

Z k(t0)

v

[�x (t0)] g (v; t) dv

= �x (t0) +
Z v

k(t0)

[v � k (t0)] g (v; t) dv:(D.12)

Since k (t) satis�es � (k (t) ; t) = 0 and the virtual utility function � (v; t) is increasing in

t for a given v, we have k0 (t) � 0. Then, taking the derivatives of both sides of (D.12),
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we obtain

(D.13)
@U (t; t0)

@t0
= �dx (t

0)

dt0
� dk (t0)

dt0
(1�G (k (t0) ; t)) .

Since k0 (t) � 0, we get

@U (t; t0)

@t0
� �dx (t

0)

dt0
� dk (t0)

dt0
(1�G (k (t0) ; t0)) ,

= U 0 (t0) +

Z �v

k(t0)

@G (v; t0)

@t0
dv;

� 0;(D.14)

where the �rst inequality is obtained using equation (D.13), k0 (t) � 0 and

(1�G (k (t0) ; t0)) � (1�G (k (t0) ; t0)) :

due to FSD. The second line follows from (D.11) and the third line is true since from

Proposition 36, we have

U 0 (t0) � �
Z �v

k(t0)

@G (v; t0)

@t0
dv:

Then it follows from the following identity

U (t; t0) =

Z t0

t

@U (t; t0)

@t0
+ U (t)

and from (D.14) that U (t; t0) � U (t). This proves that for t2 < �t, the constraint (ICglobal)

for types t 2 [t2; �t) regarding their deviations to pretending to be types t0 2 [t2; �t] is

satis�ed.
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The constraint (ICglobal) for �t does not bind for deviations to types in the interval

[t2; �t]. Moreover, the global incentive compatibility constraint (ICglobal) does not bind for

type t < �t since if (ICglobal) had binded for some type t0 < �t, it should have been that

k (t) = v for t 2 [t0; �t], which contradicts the fact that k (t) � c for t � t2 and k (t) is the

unique solution of � (k (t) ; t) = 0 for t > t2, which implies k (t) � c under FSD.

Since from Step 2.C the global incentive compatibility constraint (ICglobal) binds for

the highest type �t and type �t is indi¤erent between her contract and the contract choice

of the lowest type, i.e.

U (�t) = E�t [v]� E0 [max fv; k (0)g] ;

it follows that the global incentive compatibility constraint (ICglobal) binds for the highest

type �t only.

To summarize, in Steps 2.B through 2.E, we showed that for t2 2 [0; �t], the optimal

cuto¤ points fk (t) : 0 � t � �tg are given as follows. From Step 2.D, for t � t2, k (t) is

nonincreasing and is the unique solution of � (k (t) ; t) = 0, where

� (v; t) = (v � c) +
(1�H (t))

h (t)

@G (v; t) =@t

g (v; t)
:

Also, k (t) is nonincreasing with k (t) � c for t � t2. Similarly, k (0) > c with k (t) (strictly)

decreasing for t � t1, while k (t) = c for t 2 (t1; t2). Moreover, the global incentive

compatibility constraint (ICglobal) binds for the highest type �t only, who is indi¤erent

between her contract and the contract choice of the lowest type, i.e.

U (�t) = E�t [v]� E0 [max fv; k (0)g] :
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Step 3. In this step, we prove that 0 < t2 < �t. We have already established the

optimal allocation for a given t2. We �rst prove that optimality requires t2 < �t. To that

end, consider the objective function value if we have t2 = �t � ". In that case, it follows

from Step 2.D. that the optimal allocation dictates � (k (t) ; t) = 0 for t > t2, and from

Step 1.B we have that

_U (t) = �
Z v

k(t)

@G (v; t)

@t
dv for t > t2;

so that

U (�t) = �
Z �t

t2

Z v

k(t)

@G (v; t)

@t
dv:

Then, since the global IC constraint for �t binds, cf. Step 2.A, k (0) satis�es

U (�t) = E�t [v]�
Z v

k(0)

(v � k (0)) g (v; 0) dv � k (0) :

Moreover, k (t) is decreasing until the point t1 � t2 where t1 satis�es

(D.15) U (�t) = E�t [v]�
Z v

c

(v � c) g (v; t1) dv � c:

We also have for t 2 [t1; t2] that k (t) = c. Next, we rule out the possibility that t1 = �t.

To see this note that since

E�t [v]� c =

Z v

v

(v � c) g (v; �t) dv <

Z v

v

(v � c)+ g (v; �t) dv;

we have that

(D.16)
Z v

c

(v � c) g (v; �t) dv + c > E�t [v] :
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Note also that if t2 = �t, then U (t) = 0 for all t. Therefore, it follows from (D.15) and

(D.16) that t1 < �t. Clearly, we can think of t1; t2 and k (t) for t < t2 as a function of "

when t2 = �t�". Moreover, just as argued for " = 0, we can show that t1 (") < t2 (") = �t�"

for " > 0 su¢ ciently small.

The objective function of the monopolist as a function of " is given by the following:

Z t̂(")

0

Z �v

k(t;")

f (v; t) (v � c) dvdt+

Z �t�"

t̂(")

Z �v

c

f (v; t) (v � c) dvdt(D.17)

+

Z �t

�t�"

Z �v

k(t)

f (v; t)� (v; t) dvdt;

where � (k (t) ; t) = 0 for t � t2 (") = �t � ", and k (t; ") for t � t1 (") is characterized by

the following

(D.18)
Z �t

�t�"

Z v

k(t)

(�@G (v; t) =@t) dv = E�t [v]�
Z v

k(t)

(v � k (t)) g (v; t) dv � k (t) :

Similarly, t1 (") is given by the following.

Z �t

�t�"

Z v

k(t)

(�@G (v; t) =@t) dv = E�t [v]�
Z v

c

(v � c) g (v; t1 (")) dv � c:

Derivative of the objective given in (D.17) with respect to " is as follows.

t01 (")

Z �v

c

f (v; t1 (")) (v � c) dv �
Z t1(")

0

@k (t; ")

@"
f (k (t; ") ; t) (k (t; ")� c) dt

�
Z �v

c

f (v; t2 (")) (v � c) dv � t01 (")

Z �v

c

f (v; t1 (")) (v � c) dv

+

Z �v

k(t2("))

f (v; t2 ("))� (v; t2 (")) dv;
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which is equal to

Z t1(")

0

�
�@k (t; ")

@"

�
f (k (t; ") ; t) (k (t; ")� c) dt�

Z �v

c

f (v; t2 (")) (v � c) dv

+

Z �v

k(t2("))

f (v; t2 ("))� (v; t2 (")) dv:

Calculating the derivative of the objective at " = 0 gives the following

Z t1(0)

0

�
� @k (t; ")

@"

����
"=0

�
f (k (t; 0) ; t) (k (t; 0)� c) dt�

Z �v

c

f (v; �t) (v � c) dv

+

Z �v

k(�t)

f (v; �t)� (v; �t) dv:(D.19)

We want to show that this expression if positive. To this end, lets consider the last two

terms. Since

� (v; t) = (v � c) +
(1�H (t))

h (t)

@G (v; t) =@t

g (v; t)

and � (k (t) ; t) = 0 for t � t2, we have k (�t) = c. Thus,

Z �v

k(�t)

f (v; �t)� (v; �t) dv �
Z �v

c

f (v; �t) (v � c) dv

=

Z �v

k(�t)

f (v; �t) [� (v; �t)� (v � c)] dv

=

Z �v

k(�t)

f (v; �t)

�
(1�H (�t))

h (�t)

@G (v; �t) =@t

g (v; �t)

�
dv

= 0:

Thus, the expression in (D.19) reduces to the following

Z t1(0)

0

�
� @k (t; ")

@"

����
"=0

�
f (k (t; 0) ; t) (k (t; 0)� c) dt:
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To determine the sign of this expression, we next characterize @k (t; ") =@" by di¤erenti-

ating both sides of the equation (D.18), which gives

dk (t; ")

d"
=

R v
k(t2("))

�
�@G(v;t2("))

@t

�
dvR v

k(t;")
g (v; t) dv � 1

< 0:

In particular,

dk (t; ")

d"

����
"=0

=

R v
c

�
�@G(v;�t)

@t

�
dv

�G (k (t; 0) ; t) < 0:

Then, since k (t; 0) � c > 0 on a set of positive measure and dk(t;")
d"

���
"=0

< 0, we conclude

that Z t1(0)

0

�
� @k (t; ")

@"

����
"=0

�
f (k (t; 0) ; t) (k (t; 0)� c) dt > 0:

Therefore, we must have t2 < �t.

Similarly, we check whether it is optimal to have t2 = 0. To that end, we write the

expected pro�ts of the �rm as follows:

(D.20)
Z "

0

Z �v

k(t;")

f (v; t) (v � c) dvdt+

Z �t

"

Z �v

k(t)

f (v; t)� (v; t) dvdt;

Derivative of this objective with respect to " is given by the following.

Z �v

k(";")

f (v; ") (v � c) dv +

Z "

0

�
�@k (t; ")

@"
f (k (t; ") ; t) (k (t; ")� c)

�
dt

�
Z �v

k(")

f (v; ")� (v; ") dv
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Then evaluating this at " = 0, it reduces to the following

Z �v

k(0)

f (v; 0) (v � c) dv �
Z �v

k(0)

f (v; 0)� (v; 0) dv

=

Z �v

k(0)

f (v; 0) [(v � c)� � (v; 0)] dv;

=

Z �v

k(0)

1

h (0)

@G (v; 0) =@t

g (v; 0)
dv;

> 0:

Therefore, we must have t2 > 0, which completes the proof of Step 3. In other words, it

is not optimal to have t2 = �t, i.e. U (t) = 0 for all t. Similarly, it is not optimal to have

t2 = 0, i.e. U 0 (0) > 0. This concludes the proof of Proposition 39. �

Proof of Proposition 41. In order to analyze the behavior of the initial price path

fx (t) : 0 � t � �tg, we consider three regions. First, we have for t � t2 that

x (t) =

Z �v

k(t)

(1�G (v; t)) dv + k (t) :

Then,

x0 (t) = k0 (t)� k0 (t) (1�G (k (t) ; t))�
Z �v

k(t)

@G (v; t)

@t
dv;

= k0 (t)G (k (t) ; t)�
Z �v

k(t)

@G (v; t)

@t
dv;

= k0 (t)G (k (t) ; t)

�
�
�v
@G (�v; t)

@t
� k (t)

@G (k (t) ; t)

@t
�
Z �v

k(t)

v
@g (v; t)

@t
dv

�
;

= k0 (t)G (k (t) ; t) +

�
k (t)

@G (k (t) ; t)

@t
+

Z �v

k(t)

v
@g (v; t)

@t
dv

�
;
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since @G(�v;t)
@t

= 0.

First, focus on the types t1 < t � t2. On this interval, k (t) = c, and hence,

x0 (t) = c
@G (c; t)

@t
+

Z �v

c

v
@g (v; t)

@t
dv;

= c
@G (c; t)

@t
+

�
�c@G (c; t)

@t
�
Z �v

c

v
@G (v; t)

@t
dv

�
;

= �
Z �v

c

v
@G (v; t)

@t
dv;

and hence, x0 (t) > 0.

For t 2 [0; t1], we can �nd k0 (t) as follows: We know that

Et [max fv; k (t)g]

is constant over the interval [0; t1]. That is, derivative of

k (t)

Z k(t)

v

g (v; t) dv +

Z �v

k(t)

vg (v; t) dv
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is zero, i.e.

0 = k0 (t)

Z k(t)

v

g (v; t) dv + k (t) k0 (t) g (k (t) ; t) + k (t)

Z k(t)

v

@g (v; t)

@t
dv

+

Z �v

k(t)

v
@g (v; t)

@t
dv � k0 (t) k (t) g (k (t) ; t)

= k0 (t)

Z k(t)

v

g (v; t) dv + k (t)

Z k(t)

v

@g (v; t)

@t
dv +

Z �v

k(t)

v
@g (v; t)

@t
dv

= k0 (t)

Z k(t)

v

g (v; t) dv +

Z �v

k(t)

v
@g (v; t)

@t
dv

+k (t)
@G (k (t) ; t)

@t
� k (t)

@G (v; t)

@t

= k0 (t)

Z k(t)

v

g (v; t) dv +

Z �v

k(t)

v
@g (v; t)

@t
dv + k (t)

@G (k (t) ; t)

@t
:

That is,

�Z �v

k(t)

v
@g (v; t)

@t
dv + k (t)

@G (k (t) ; t)

@t

�
= �k0 (t)

Z k(t)

v

g (v; t) dv:
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Then,

x0 (t) = k0 (t)G (k (t) ; t)

�
�
�v
@G (�v; t)

@t
� k (t)

@G (k (t) ; t)

@t
�
Z �v

k(t)

v
@g (v; t)

@t
dv

�
;

= k0 (t)G (k (t) ; t)� �v@G (�v; t)
@t

+

�
k (t)

@G (k (t) ; t)

@t
+

Z �v

k(t)

v
@g (v; t)

@t
dv

�
;

= k0 (t)G (k (t) ; t)� �v@G (�v; t)
@t

� k0 (t)

Z k(t)

v

g (v; t) dv;

= k0 (t)G (k (t) ; t)� �v@G (�v; t)
@t

� k0 (t)G (k (t) ; t) dv;

= ��v@G (�v; t)
@t

= 0:

Now consider the case that t > t2. Then,

x0 (t) = �U 0 (t)� dk (t)

dt
(1�G (v; t))�

Z �v

k(t)

@G (v; t)

@t
dv;

Therefore, we can calculate x (t) for t � t2 from (4.3) and the boundary condition that

x (t2) =

Z �v

k(t2)

(1�G (v; t2)) dv:
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That is,

x0 (t) = x0 (t) + k0 (t) ;

= �U 0 (t)� dk (t)

dt
(1�G (k (t) ; t))�

Z �v

k(t)

@G (v; t)

@t
dv + k0 (t) ;

=

Z v

k(t)

@G (v; t)

@t
dv � dk (t)

dt
(1�G (k (t) ; t))�

Z �v

k(t)

@G (v; t)

@t
dv + k0 (t) ;

= �dk (t)
dt

(1�G (k (t) ; t)) + k0 (t) ;

= k0 (t) [�1 +G (k (t) ; t) + 1]

= k0 (t)G (k (t) ; t) ;

< 0,

thus, the initial prices are decreasing over the interval [t2; �t].

The price x (�t) charged to the highest type can be found as follows: We have

U (�t) = E�t [v]� E0 [max fv; k (0)g] :

Moreover,

U (�t) = �x (�t) +
Z �v

c

(1�G (v; �t)) dv:
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Then,

x (�t) = x (�t) + c;

=

Z �v

c

(1�G (v; �t)) dv � U (�t) + c;

=

Z �v

c

(1�G (v; �t)) dv + c� E�t [v] + E0 [max fv; k (0)g] ;

=

Z �v

c

(1�G (v; �t)) dv + c� E�t [v] + E0 [max fv; k (0)g] ;

= v �
Z �v

v

(1�G (v; �t)) dv

+

Z �v

c

(1�G (v; �t)) dv + c+ E0 [max fv; k (0)g] ;

= v �
Z c

v

(1�G (v; �t)) dv + c+ E0 [max fv; k (0)g] :

We can �nd x (t2) as follows:

x (t2) = x (�t)�
Z �t

t2

k0 (t)G (k (t) ; t) dt;

= v �
Z c

v

(1�G (v; �t)) dv + c+ E0 [max fv; k (0)g]

�
Z �t

t2

k0 (t)G (k (t) ; t) dt;

where � (k (t) ; t) = 0 and hence,

k (t) = c� (1�H (t))

h (t)

@G (k (t) ; t) =@t

g (k (t) ; t)
:
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Next, we calculate x (t2�). To that end, �rst consider the case that t1 = t2. Then,

x (t2) = x (0). Moreover,

x (0) = x (0) + k (0) ;

=

Z �v

k(0)

(1�G (v; 0)) dv + k (0) ;

= �k (0) (1�G (k (0) ; 0)) +

Z �v

k(0)

vg (v; 0) dv + k (0) ;

=

Z �v

k(0)

vg (v; 0) dv + k (0)G (k (0) ; 0) ;

= E0 [max fv; k (0)g] :
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This implies that

x (t2)� x (0) > x (�t)� x (0) ;

=

Z �v

c

(1�G (v; �t)) dv + c� E�t [v] ;

=

Z �v

c

(1�G (v; �t)) dv + c�
�Z �v

v

vg (v; �t) dv

�
=

Z �v

c

(1�G (v; �t)) dv + c+

�
v �

Z �v

v

(1�G (v; �t)) dv

�
;

=

Z �v

c

(1�G (v; �t)) dv + c+ v �
Z �v

v

(1�G (v; �t)) dv;

= c+ v �
Z c

v

(1�G (v; �t)) dv;

� c+ v �
�Z c

v

dv

�
;

= c+ v � [c� v] ;

= 2v

� 0:

Thus, there is an upward jump in price at the point t2 in the case that t1 = t2.

In the case that t1 < t2, we know that k (t2) = c and U (t2) = 0. Thus, if x (t2) > x (�t),

type t2 would pretend to be type �t. Thus, we have x (t2) < x (�t) < x (t2+) and there is

an upward jump in the prices at the point t2 as well.�
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D.3. Technical Results

Derivation of the dual problem to (PA) and the coextremality conditions.

We will follow the road map provided by [53] to derive the dual problem of control as-

sociated with (P2). In particular, we �rst append the penalty expressions corresponding

to the constraints in the objective function by de�ning the convex, extended real valued

integrand L and the convex functional l. We also formulate the problem towards mini-

mization. Next, we compute the conjugate convex functions associated with L and l so as

to de�ne the dual integrand M and the dual functional m. The dual problem of control

is de�ned using M and m.

To facilitate the analysis to follow, de�ne the indicator function �F (�) for a given set

F by

�F (x) =

8><>: 0 if x 2 F;

1 otherwise.

We express (PA) in terms of the convex integrand L and the convex lower semi-

continuous functional l which are de�ned as follows. De�ne L on [v; �v] � R6 as follows:

(D.21) L(v; s; z; u; _s; _z; _u) = �g (v; t) (v � c) y + �R�(y � 1) + �R+(y)

if _s = y
h
�@G(v;t)

@t

i
; _z = y (1�G (v; t)) ; _u = y and L(v; s; z; u; _s; _z; _u) =1 otherwise. The

integrand L eliminates the hard constraints of (PA) by appending them to the objective
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function as penalty expressions. In this sense, the penalty expression

�R�(y � 1) + �R+(y)

makes sure that 0 � y (v) � 1 for all v 2 [v; �v]. Notice also that we have reformulated

the problem towards minimization. The system dynamics is incorporated in L by the

fact that we require _s = y
h
�@G(v;t)

@t

i
, _z = y (1�G (v; t)) and _u = y, since otherwise the

integrand L takes the value 1.

Next step is to de�ne the functional l on R3 � R3 with values on R [ f1g so as to

initiate the problem with appropriate initial values of the state variables and impose the

restrictions to be satis�ed by the valuations �v. To be more speci�c, The functional l is

de�ned as

(D.22) l (sv; zv; uv; s�v; z�v; u�v) = lv(sv; zv; uv) + l�v(s�v; z�v; u�v);

where the convex, lower semi-continuous functionals lv and l�v are given by

lv(sv; zv; uv) = �f0g(sv) + �fu0g(uv);(D.23)

l�v(s�v; z�v; u�v) = �R+(s�v � _U� (t)) + �R+(z�v + u0 � U� (t)) + �R�(u (�v)� u� (�v)):(D.24)

The functional l0 dictates that s (v) = 0 and u (v) = u0, which initiates the problem,

whereas lT imposes the constraints that

z (�v) � U� (t)� u0; s (�v) � _U� (t) and u (�v) � u� (�v) :
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Then, the primal problem (PA) can equivalently be stated as a problem of minimizing

Z �v

v

L(v; s(v); z(v); u (v) ;
�
s(v);

�
z(v);

�
u(v))dv + l (sv; zv; uv; s�v; z�v; u�v) :

As our second step, we compute the conjugates to the functions L and l. Let L� denote

the conjugate to L. To be speci�c,

L�(v; ps; pz; pu; qs; qz; qu)(D.25)

= sup
s;z;u; _s; _z; _u

fsps + zpz + upu + _sqs + _zqz + _uqu � L(v; s; z; u; _s; _z; _u)g:

We can express L� more explicitly as follows. Note that L(v; s; z; u; _s; _z; _u) < 1 only if

there exists some y 2 [0; 1] such that _s = y
h
�@G(v;t)

@t

i
, _z = yG (w; t) and _u = y. Then, we

can write L� as follows: for ps; pz; pu; qs; qz; qu 2 R;

L�(v; ps; pz; pu; qs; qz; qu)

= sup
s;z;u;y2[0;1]

8><>: sps + zpz + upu

+y [qu + g (v; t) (v � c) + (�@G (v; t) =@t) qs + (1�G (w; t)) qz]

9>=>; ;

= �f0g fpsg+ �f0g fpzg+ �f0g fpug

+max f0; qu + g (v; t) (v � c) + (�@G (v; t) =@t) qs +G (w; t) qzg :

The �rst equality is obtained by replacing _s = y
h
�@G(v;t)

@t

i
, _z = yG (v; t) and _u = y and

noting that L(v; s; z; u; _s; _z; _u) = �g (v; t) (v � c) y. The second line follows from carrying

out the maximization problem in the second line. To get the second equality, note that
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we have

sup
s;z;u

fsps + zpz + upug = �f0g fpsg+ �f0g fpzg+ �f0g fpug ;

since sups;z;u fsps + zpz + upug takes the value 1 unless ps = pz = pu = 0.

Using the conjugate L� of the primal integrand L, we calculate the dual integrandM .

For v 2 [v; �v] and qs; qz; qu; ps; pz; pu 2 R; the dual integrand M is given by

M(v; qs; qz; qu; ps; pz; pu) = L�(v; ps; pz; pu; qs; qz; qu):

That is,

M(v; �s(v); �z(v); �u(v);
:
�s(v);

:
�z(v);

:
�u(v))

= L�(v;
:
�s(v);

:
�z(v);

:
�u(v); �s (v) ; �z (v) ; �u(v));

= �f0g f
:
�s(v)g+ �f0g f

:
�z(v)g+ �f0g f

:
�u(v)g

+max f0; �u(v) + g (v; t) (v � c) + (�@G (v; t) =@t) �s (v) + (1�G (v; t)) �z (v)g :

This implies that
:
�s(v) =

:
�z(v) =

:
�u(v) = 0 for all v:

What remains is to derive the terminal conditions associated with the dual problem.

To that end, de�ne the functional m as follows:

m(�s(v); �z(v); �u(v); �s(�v); �z(�v); �u(�v))

= l�v(�s(v); �z(v); �u(v)) + l
�
�v(��s(�v);��z(�v);��u(�v));
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where l�v and l
�
�v are the conjugates of lv and l�v. We calculate l

�
0 as follows:

l�v(�s; �z; �u) = sup
xs;xz ;xu

fxs�s + xz�z + xu�u � lv(xs; xz; xu)g;

= sup
xu

fxu�ug+ u0�z;

= �f0g(�u) + u0�z:

Since

m(�s(v); �z(v); �u(v); �s(�v); �z(�v); �u(�v))

= l�v(�s(v); �z(v); �u(v)) + l
�
�v(��s(�v);��z(�v);��u(�v));

the coextremality condition impose the restriction that �u(v) = 0. Together with the fact

that
:
�u(v) = 0 for all v, this implies that �u(v) = 0 for all v.

Similarly, since

l�v(s�v; z�v; u�v) = �R+(s�v � _U� (t)) + �R+(z�v + u0 � U� (t)) + �R�(u�v � u� (�v)):

we get

l��v(�s; �z; �u) = sup
xs;xz ;xu

fxs�s + xz�z + xu�u � l�v(xs; xz; xu)g;

= sup
xs� _U�(t)

fxs�sg+ sup
xz��u0+U�(t)

fxz�zg+ sup
xu�u�(�v)

fxz�zg;

= �R�(�s) + �R�(�z) + �R+(�u):
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Then, the coextremality conditions impose the following restrictions:

�s(�v); �z(�v) � 0 and �u(�v) � 0:

The dual problem of control is then to minimize

Z �v

v

M(v; �s(v); �z(v); �u(v);
:
�s(v);

:
�z(v);

:
�u(v))dv

+m(�s(v); �z(v); �u(v); �s(�v); �z(�v); �u(�v));

which is equivalent to minimizing

Z �v

v

max

�
0; �u(v) + g (v; t) (v � c)� @G (v; t)

@t
�s (v) + (1�G (v; t)) �z (v)

�
dv

+ u0�z (v)

subject to (DA)

_�s(v) = _�z(v) = _�u(v) = 0;

_�u(v) = 0;

�s(�v); �z(�v) � 0:

Since the primal problem (PA) is trivially feasible (simply use the original allocation y�),

the objective function values of (PA) and (DA) are equal to each other, cf. Theorem 4 of

[53]. This concludes the derivation of the dual problem to (PA). �
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Proof of Lemma 58. We �rst establish part (i) of Lemma 58. To that end, notice

that using the constraints that

_�s(v) = _�z(v) = _�u(v) = 0;

_�u(v) = 0;

�s(�v); �z(�v) � 0;

we can rewrite the dual problem (DA) as follows:

min
�z ;�s

u0�z +

Z c

v

max

�
0; g (v; t) (v � c)� @G (v; t)

@t
�s + (1�G (v; t)) �z

�
dv

+

Z �v

c

g (v; t) (v � c) dv � �s

Z �v

c

@G (v; t)

@t
dv + �z

Z �v

c

(1�G (v; t)) dv

subject to (DA)

�s; �z � 0:

Then, since @G (v; t) =@t � 0 for all v and u0 � 0, it must be that �s = 0. This completes

the proof of part (i).

We next prove parts (ii) and (iii) of Lemma 58. The primal problem (PA) and its dual

(DA) have the same optimal objective value by Theorem 4 of [53]. Moreover, by Theorem

5 of [53], lettingfy (v) : v 2 [v; �v]g be a feasible solution for (PA) with the corresponding

state trajectories fu (v) ; s (v) ; z (v) : v 2 [v; �v]g, and f�s (v) ; �z (v) ; �u (v) : v 2 [v; �v]g be

a feasible control for (DA), the controls y and �s; �z; �u are optimal for (PA) and (DA),

respectively, if and only if they satisfy the following coextremality conditions: For almost
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every v 2 [v; �v],

(�s (v) ; �z (v) ; �u (v) ;��s (�v) ;��z (�v) ;��u (�v))

is an element of

(D.26) @l (s (v) ; z (v) ; u (v) ; s (�v) ; z (�v) ; u (�v))

and

( _�s (v) ; _�z (v) ; _�u (v) ; �s (v) ; �z (v) ; �u (v))

is an element of

(D.27) @L(v; s(v); z(v); u (v) ;
�
s(v);

�
z(v);

�
u(v))

where @L and @l denote the subgradients of the convex integrand L and the the func-

tional l, de�ned as in the derivation of the dual problem to (PA) and the coextremality

conditions.

To be more speci�c about the coextremality conditions, we derive the subgradients of

L, lv and l�v, where L is a convex integrand and lv and l�v are convex functionals as in the

derivation of the dual problem (DA). The theory of subgradients of convex functions on

Rn is presented at length in Section 9 of [55]. This theory includes formulas to calculate

subgradients in various situations.

First, we calculate the subgradient of L from its epigraphical normals. To that end,

we use Theorem 8.9 of [55] which proves that for h : Rn ! [�1;+1] and any point x
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at which h is �nite, one has

@h(x) = fv : (v;�1) 2 Nepi h(x; h(x))g;

where, epi h denotes the epigraph of h de�ned as

epi h := f(x; �) 2 Rn � R : � � h(x)g;

and Nepi h(x; h(x)) is the set of vectors normal to the set epi h at (x; h(x)) in the general

sense as in De�nition 6.3 of [55].

For v 2 [v,�v], the epigraph of the integrand L is de�ned as follows: epi L(v) consists

of points (s; z; u; _s; _z; _u; �) 2 R7 such that

_s = y

�
�@G (v; t)

@t

�
; _z = y (1�G (v; t)) ; _u = y, � � �g (v; t) (v � c) y and 0 � y � 1;

since the points (s; z; u; _s; _z; _u) 2 R6where L(v; s; z; u; _s; _z; _u) = 1 are such that the

vertical "line" (s; z; u; _s; _z; _u) 2 R6 misses epi L(v).

Then, we can write

@L(v; s; z; u;
�
s;

�
z;

�
u)

=
n
(v1; v2) 2 R6 : (v1; v2;�1) 2 Nepi L(t)

�
s; z; u;

�
s;

�
z;

�
u; L

�
v; s; z; u;

�
s;

�
z;

�
u
��o

:

First, note that for v 2 [v; �v], epi L(v) is a convex set and the point

�
s; z; u;

�
s;

�
z;

�
u; L

�
v; s; z; u;

�
s;

�
z;

�
u
��
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is an element of epi L(v) for (s; z; u;
�
s;

�
z;

�
u) 2 R6. Let v denote an arbitrary element of

R7, where the �rst 3 components of v is denoted as v1, the subsequent 3 components by

v2 and the last component by v�. That is, v = [v1; v2; v�]
0
; where v1; v2 2 R3 and v� 2 R.

Then, Theorem 6.9 of [55], gives

Nepi L(v)

�
s; z; u;

�
s;

�
z;

�
u; L

�
v; s; z; u;

�
s;

�
z;

�
u
��

(D.28)

=

8><>: v 2 R7 : 8(s; z; u; _s; _z; _u; �) 2 epi L(v);h
(s; z; u; _s; _z; _u; �)� (s; z; u; �s; �z; �u; L

�
v; s; z; u;

�
s;

�
z;

�
u
�
)
i
� v � 0:

9>=>; :(D.29)

We next property will assist us in �nding the subgradients of L and establishing part (ii)

of Lemma 58.

Property A. For v 2 [v; �v] ; if

v =(v1; v2; v�)
0 2 Nepi L(v)

�
s; z; u;

�
s;

�
z;

�
u; L

�
v; s; z; u;

�
s;

�
z;

�
u
��

;

and if _s = y
h
�@G(v;t)

@t

i
; _z = y (1�G (v; t)) and _u = y; for y such that 0 � �y � 1, then,

�y 2 arg max
0�z�1

�
z

�
�v� (v � c)� @G (v; t) =@t

g (v; t)
v11 +

1�G (v; t)

g (v; t)
v12 +

v13
g (v; t)

��
:

To establish Property A, �rst recall that for any (s; z; u; _s; _z; _u; �) 2 epi L(v), there

exists some y 2 [0; 1] such that

_s = y

�
�@G (v; t)

@t

�
; _z = y (1�G (v; t)) ; _u = y, � � �g (v; t) (v � c) y.
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Consider now the following element of epi L(v):

�
ŝ; ẑ; û;

b�
s;
b�
z;
b�
u; �̂

�
=
�
s; z; u;

�
s;

�
z;

�
u; L

�
v; s; z; u;

�
s;

�
z;

�
u
�
� g (v; t) (v � c) (y � �y)

�
:

where y > �y and

_s = y

�
�@G (v; t)

@t

�
; _z = y (1�G (v; t)) and _u = y:

Then, for

v =(v1; v2; v�) 2 Nepi L(v)
�
s; z; u;

�
s;

�
z;

�
u; L

�
v; s; z; u;

�
s;

�
z;

�
u
��

;

the following holds:

��
ŝ; ẑ; û;

b�
s;
b�
z;
b�
u; �̂

�
�
�
s; z; u;

�
s;

�
z;

�
u; L

�
v; s; z; u;

�
s;

�
z;

�
u
���

� v

= v21

�b�
s� �

s

�
+ v22

�b�
z � �

z

�
+ v23

�b�
u� �

u

�
� v�g (v; t) (v � c) (y � �y) ;

= (y � �y)
�
v21

�
�@G (v; t)

@t

�
+ v22 (1�G (v; t)) + v23 � v�g (v; t) (v � c)

�
;

Then, we have

��
ŝ; ẑ; û;

b�
s;
b�
z;
b�
u; �̂

�
� (s; z; u; �s; �z; �u; L

�
v; s; z; u;

�
s;

�
z;

�
u
�
)

�
� v � 0;

only if

�y 2 arg max
0�z�1��y

�
z

�
v � c� @G (v; t) =@t

g (v; t)
v11 +

1�G (v; t)

g (v; t)
v12 +

v13
g (v; t)

��
:
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Similarly, considering now an element of epi L(v):

�
ŝ; ẑ; û;

b�
s;
b�
z;
b�
u; �̂

�
=
�
s; z; u;

�
s;

�
z;

�
u; L

�
v; s; z; u;

�
s;

�
z;

�
u
�
� g (v; t) (v � c) (y � �y)

�
:

where y < �y and

_s = y

�
�@G (v; t)

@t

�
; _z = y (1�G (v; t)) and _u = y;

we have

��
ŝ; ẑ; û;

b�
s;
b�
z;
b�
u; �̂

�
� (s; z; u; �s; �z; �u; L

�
v; s; z; u;

�
s;

�
z;

�
u
�
)

�
� v � 0;

only if

�y 2 arg max
1��y�z�1

�
z

�
v � c� @G (v; t) =@t

g (v; t)
v11 +

1�G (v; t)

g (v; t)
v12 +

v13
g (v; t)

��
:

Thus,

�y 2 arg max
0�z�1

�
z

�
�v� (v � c)� @G (v; t) =@t

g (v; t)
v11 +

1�G (v; t)

g (v; t)
v12 +

v13
g (v; t)

��
;

and Property A is established.

To prove part (ii) of Lemma 58 recall that

@L(v; s; z; u;
�
s;

�
z;

�
u)

=
n
(v1; v2) 2 R6 : (v1; v2;�1) 2 Nepi L(t)

�
s; z; u;

�
s;

�
z;

�
u; L

�
v; s; z; u;

�
s;

�
z;

�
u
��o
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and

( _�s (v) ; _�z (v) ; _�u (v) ; �s (v) ; �z (v) ; �u (v)) 2 @L(v; s(v); z(v); u (v) ;
�
s(v);

�
z(v);

�
u(v)):

Property A proves that if _s(v) = y(v)
h
�@G(v;t)

@t

i
; _z(v) = y(v) (1�G (v; t)) and _u(v) =

y(v), then

(D.30)

y(v) 2 arg max
0�z�1

�
z

�
v � c� @G (v; t) =@t

g (v; t)
�s (v) +

1�G (v; t)

g (v; t)
�z (v) +

�u (v)

g (v; t)

��
:

Since f�s (v) ; �z (v) ; �u (v) : v 2 [v; �v]g is a feasible control for (DA), it must be that

_�s (v) = _�z (v) = 0 for all v and �u (v) = 0 for all v. Then, (D.30) and part (i) of

Lemma 58 and the fact that �u (v) = 0 proves that

y(v) 2 arg max
0�z�1

�
z

�
v � c+

1�G (v; t)

g (v; t)
�z (v)

��

and establishes part (ii) of Lemma 58.

We next property will assist us in �nding the subgradients of l�v and establishing part

(iii) of Lemma 58.

Property B. For (vs; vz; vu; v�)
0
2 R4, if

v =(vs; vz; vu; v�) 2 Nepi l�v (s; z; u; l�v (s; z; u)) ;

and z > U� (t)� u0, then vz = 0.
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To verify Property B, �rst note that , any v =(vs; vz; vu; v�) such that vz < 0 cannot

be in Nepi l�v (s; z; u; l�v (s; z; u)). Suppose not. Then, we could �nd an element (ŝ; ẑ; û; �̂)

(ŝ; ẑ; û; �̂) = (s; ~z; u; l�v (s; ~z; u))

of epi L(v) such that it is equal to (s; z; u; l�v (s; z; u)) except that we have ~z < z.and

~z > U� (t)� u0. However, we have

[(ŝ; ẑ; û; �̂)� (s; z; u; l�v (s; z; u))] � v > 0:

From Theorem 6.9 of [55], this contradicts the fact that

(vs; vz; vu; v�) 2 Nepi l�v (s; z; u; l�v (s; z; u)) :

Similarly, any v =(vs; vz; vu; v�) such that vz > 0 cannot be in

Nepi l�v (s; z; u; l�v (s; z; u)) :

This completes the proof of Property B.

Part (iii) of Lemma 58 then follows from Property B and the coextremality condition

(D.27). This concludes the proof of Lemma 58. �
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