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ABSTRACT

Topological Restriction Homology is Locally Even in Characteristic p

Micah Darrell

The goal of this thesis is to prove that topological restriction homology, TR, is locally

even in the quasi-syntomic topology in characteristic p. This local evenness was already

known for the other main trace theories, but is more subtle for TR.
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CHAPTER 1

Introduction

In this dissertation we prove that the p-typical topological restriction homology, TR, is

locally even in the quasisyntomic topology in characteristic p. This result is motivated

by [2], where it is shown that the p-completions of HH, HC−, THH, TC−, TP, and TC

all have this local evenness property, but it remained unknown for TR. For the sake of

notational simplicity we suppress the p-completions going forward.

Topological restriction homology is an invariant of commutative rings with important

connections to p-adic Hodge theory and algebraic K-theory. Given a commutative ring A,

the topological restriction homology, TR(A) ∈ CycSp, is a cyclotomic spectrum, which

we will define below. It has the amazing property that

TR(A) ' lim←−
e

ΩK (A[t]/te, (t)) ,

where the right hand side is known as the curves on K-theory of A [10]. The Dundas-

Goodwillie-McCarthy theorem provides an identification

K∗(A[t]/te, (t)) ∼= TC∗(A[t]/te, (t)),

which allows us to compute TR(A) as
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TR(A) ' lim←−
e

ΩTC (A[t]/te, (t)) .

In [2] a filtration is constructed on TC, known as the motivic filtration, for n ∈ N, the

n’th graded piece of this filtration on TC(A) is denoted Zp(n)(A) and

Zp(n)(A) ∼= fib
(
φ− can : N≥n�̂A{n} → �̂A{n}

)
[2n].

Here �̂ is the Nygaard-completed prismatic cohomology, N≥n� is the n’th piece of the

Nygaard filtration, and {n} denotes the n’th Breuil-Kisin twist, which we will ignore

moving forward by working over Fp.

For an Fp-algebra A, there is an identification �̂A ' LWΩA, between the prismatic coho-

mology and the derived crystalline cohomology. If the ring A has a δ-lift to characteristic

0, it is explained in [18] how to compute the derived crystalline cohomology LWΩA and

its Nygaard filtration, using the divided power de Rham complex of the lift.

We write Ae for the Fp-algebra

Ae ∼= k[y1/p∞

, x]/(y, xe),

for a perfect Fp-algebra k, this lets us identify

LWΩAe '
(
W (k)

[
y1/p∞ ,

yn

n!

] [
x,
xem

m!

]
d−−−→ W (k)

[
y1/p∞ ,

yn

n!

] [
x,
xem

m!

]
dx

)∧
p
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where m and n range across N.

From here we can explicitly compute the cohomology of the complexes Zp(i)(Ae) for all

n, e. These complexes only have cohomology in degree 1, so the BMS spectral sequence,

which is just the spectral sequence of the motivic filtration on TC, collapses and identifies

TC2i−1 (Ae, (e)) ∼= H1 (Zp(i)(Ae)) .

This identification allows us to explicitly compute the transition maps on the homotopy

groups of the diagram

TR(Ae) ' lim←−
e

ΩTC (A[t]/te, (t)) ,

and from here we check by hand that these transition maps satisfy the Mittag-Leffler

condition. This implies that TR(Ae) is concentrated in even degrees.

These calculations extend to the higher dimensional case

Ake = k[y
1/p∞

1, . . . , y
1/p∞

k, x]/(y, . . . , yk, x
e),

where k ∈ N ∪ {∞}, where we also verify that TR(Ake) is concentrated in even degrees.

Every characteristic p quasisyntomic ring admits a cover by a quasiregular semiperfect

ring with a relatively perfect map to a ring of the form Ake , and using the filtration on TR

from [21] this is enough to prove that every quasisyntomic ring in characteristic p has a
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cover by a ring where TR is even.

We attempt to make this dissertation as self contained as possible, below we summarize

the contents of each chapter.

In chapter 2 we review the major trace theories, as well as the historical development of

the field.

In chapter 3 we review the geometric approach to p-adic Hodge theory.

In chapter 4 we sketch the construction of prismatic cohomology in [2], and explain the

quasisyntomic local evenness of all of the trace theories.

Chapter 5 is the paper Local Evenness of Topological Restriction Homology in Character-

istic p, which is the heart of this dissertation.
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CHAPTER 2

An Overview of Trace Theories

In recent years trace methods have been the centerpiece of many major results in p-adic

Hodge theory and algebraic K-theory. In this section we attempt to give an introduction

to the subject.

2.1. Hochschild Homology

In the 1940’s Hochschild homology was introduced by Hochschild [15]. For a polynomial

algebra A over a ring R, the Hochschild homology of A relative to R is defined as the

homology of the Hochschild complex

HHn(A/R) = Hn(. . .
d3−→ A⊗R A⊗R A

d2−→ A⊗R A
d1−→ A),

where the maps are

d1(a⊗ b) = ab− ba,

d2(a⊗ b⊗ c) = (ab⊗ c)− (a⊗ bc) + (ca⊗ b),

d3(a⊗ b⊗ c⊗ d) = (ab⊗ c⊗ d)− (a⊗ bc⊗ d) + (a⊗ b⊗ cd)− (da⊗ b⊗ c),

etc.
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When R = Z we denote HH(A/R) = HH(A). If A is commutative, then ab − ba = 0 for

all a, b ∈ A, and we see that HH0(A/R) = A/(d1(A⊗R A) = A.

Still in the commutative case, HH1(A/R) = ker(d1)/im(d2), and since d1 = 0 this is

HH1(A/R) = A⊗ A/(a⊗ bc = ab⊗ c+ ca⊗ b).

The relation in the quotient is exactly the Leibniz rule, so we have

HH1(A/R) ∼= Ω1
A/R.

To see this, define the map

φ : A⊗R A→ Ω1
A/R,

φ(a⊗ b) = a db,

now φ(a⊗ bc) = φ(ab⊗ c+ ca⊗ b) takes the form ad(bc) = abdc+acdb, which is precisely

the Leibniz rule.

One can continue on and check by hand that

HHn(A/R) ∼= Ωn
A/R,

although it gets tedious in degrees higher than 4. By developing a little more theory we

will obtain a less tedious proof of this result.



14

Recall the bar complex

B•(A/R) = (. . . A⊗R A⊗R A⊗R A
d2−→ A⊗R A⊗R A

d1−→ A⊗R A),

with

d1(a⊗ b⊗ c) = ab⊗ c− a⊗ bc,

d2(a⊗ b⊗ c⊗ d) = (ab⊗ c⊗ d)− (a⊗ bc⊗ d) + (a⊗ b⊗ cd),

etc.

This is almost the Hochschild complex, we just need to shift it up by a degree, adding A

to degree 0, and add the wrapped around terms to the formula for dn. These can both

be done in one fell-swoop,

HH•(A/R) ∼= A ⊗
A⊗

R
A
B•(A/R).

Since the bar complex is a resolution of A, we can write this is

HH•(A/R) ∼= A ⊗
A⊗

R
A

L A ∼= TorA⊗RA(A,A).

Now since we already know that HH1(A/R) ∼= Ω1
A/R, in order to prove that HHn(A/R) ∼=

Ωn
A/R in general, we can show that ∧nHH1(A/R) ∼= HHn(A/R). This is equivalent to

showing
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∧nTorA⊗RA
1 (A,A) ∼= TorA⊗RA

n (A,A),

which follows from computing the right hand side with the Koszul complex. In 1962,

Hochschild, Kostant, and Rosenberg [16] used these ideas to prove:

Theorem (HKR). For A a smooth R-algebra,

HHn(A/R) ∼= Ωn
A/R.

At this point we will abandon historical accuracy in exchange for the elegance that the

modern theory provides. To this end, for any commutative ring R, and commutative

R-algebra A, we define

HH(A/R) := A⊗L
A⊗L

RA
A,

where we take this tensor product in the ∞-category CAlgR of E∞-rings over R. In

this setting HH(A/R) is now a spectrum as opposed to a chain complex, but in the case

where A is a smooth algebra over R the homotopy groups of this spectrum agree with the

homology of the chain complex defined above. In particular for A smooth over R

πnHH(A/R) ∼= Ωn
A/R.

We will usually denote πnHH(A/R) as HHn(A/R).
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In this derived setting there is now a version of the HKR for arbitrary commutative R-

algebras A, where one replaces Ωn
A/R with the cotangent complex ∧nLA/R, which can no

longer be HHn(A/R) as it is an entire complex, but instead there is a filtration Fil•HKR

on HH(A/R) with

griHKRHH(A/R) ' ∧iLA/R.

This filtration is known as the HKR filtration, and it comes from left Kan extension of

the Postnikov filtration.

There is an identification HH(A/R) ' A⊗S
1
, where this is the copower operation with the

space S1. To see this, write S1 ' ∗ t∗t∗ ∗ as the suspension of S0, we can compute A⊗S
1

in CAlgR as A⊗(∗t∗t∗∗) since the copower commutes with colimits, and this is precisely

HH(A/R).

This perspective provides an S1-action on HH(A/R), by acting on the S1 factor in the

tensor product. At the level of homotopy groups this S1-action on HH(A/R) becomes an

action of π∗(S
1 ∧ R) on π∗HH(A/R), where π∗(S

1 ∧ R) ∼= H∗(S
1, R) ∼= R[ε]/ε2, |ε| = 1.

This gives us a differential on the homotopy groups of HH(A/R), given by multiplication

by ε. This differential is referred to as the Connes’ operator, and is usually denoted as

B : HHn(A/R)→ HHn+1(A/R).

When A is a smooth R-algebra the HKR-theorem identifies HHn(A/R) ∼= Ωn
A/R, and

under this identification the Connes’ operator agrees with the de Rham differential d :
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Ωn
A/R → Ωn+1

A/R. Connes’ constructed this operator as a generalization of the de Rham

complex that makes sense for non-commutative rings, which has been very fruitful in the

world of non-commutative geometry, but we will not explore these ideas here.

It is common to use the notation T instead of S1 in this setting, and we will adopt this

convention moving forward.

The T-action on HH(A/R) lets us view HH(A/R) as an object of the ∞-category of

T-equivariant spectre SpBT = Fun(BS1, Sp). There is a homotopy fixed point functor

(−)hT : SpBT → Sp,

which is a higher analogue of group cohomology. We define the Negative Cyclic Homology

HC−(A/R) := HH(A/R)hT.

There is also a functor known as the Tate construction (−)tT : SpBT → Sp, which is a

higher analogue of Tate cohomology. We define the Periodic Cyclic Homology

HP(A/R) := HH(A/R)tT.

There is a natural transformation (−)hT → (−)tT which gives a map HC−(A/R) →

HP(A/R).
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In the 1980’s it was proven by many mathematicians that if R contains Q and A is a

smooth R-algebra, then the Negative Cyclic Homology recovers the Hodge filtration on

the de Rham complex

HC−(A/R) '
∏
i∈Z

Ω≥iA/R[2i],

the Periodic Cyclic Homology recovers the de Rham complex,

HP(A/R) '
∏
i∈Z

Ω•A/R[2i],

and the map (−)hT → (−)tT which gives a map HC−(A/R) → HP(A/R) is given by the

inclusion of the Hodge filtration.

2.2. The Dennis Trace

The Hochschild homology receives a map from algebraic K-theory, known as the Dennis

trace map

tr : K(A)→ HH(A).

Informally this map comes from the chain of maps

BGLn(A)→ BcycGLn(A)→ BcycMn(A)→ BcycA ' HH(A),

which are respectively the natural map from the bar construction to the cyclic bar con-

struction, the map induced from the inclusion GLn →Mn, and then the map induced by
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the trace Mn(A)→ A. The cyclic bar construction is a modification of the bar construc-

tion that adds the wrap around maps mentioned above, and provides another construction

of Hochschild homology.

This map is usually very far from being an isomorphism. For a trivial example, HH(Z) '

Z, but K(Z) is extremely complicated. For a less trivial example, one can compute

HH(Fp) ' Fp〈x〉,

with |x| = 2. This is the divided power algebra on a class in degree 2. However K(Fp)

vanishes in positive even degrees, and π2i−1K(Fp) ∼= Z/(pi − 1).

The Dennis trace map K(A)→ HH(A) lifts through the canonical map HC−(A)→ HH(A)

[9] to give a map called the Goodwillie-Jones trace

tr : K(A)→ HC−(A).

This map is usually a more useful approximation than K(A)→ HH(A).

Theorem (Goodwillie, 1986). Let I ⊂ A be a nilpotent ideal in a Q-algebra A, then

K(A) K(A/I)

HC−(A) HC−(A/I)

is cartesian, where the vertical maps are the trace. Equivalently, the Goodwillie-Jones

trace induces an equivalence on the fibers of the horizontal maps.
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Around this time pioneered the idea that there should be a version of Hochschild homology

relative to the sphere spectrum ”HH(A/S)”, which would have a much closer relationship

to algebraic K-theory.

2.3. Topological Hochschild Homology

In the 1980’s Bökstedt constructed the above theory of Hochschild homology relative to

the sphere spectrum and named it Topological Hochschild Homology, THH. This theory

was studied extensively throughout the 90’s and early 2000’s by many mathematicians,

but in 2017 Nikolaus and Scholze gave a new construction of THH using the formalism

of higher algebra provided by the work of Lurie. Scholze’s motivation for thinking about

THH was inspired by a computation of Hesselholt [12], that

π0THH(OC ; Zp)hT ∼= Ainf .

This is the p-complete Topological Hochschild Homology, OC is the ring of integers in the

p-completion of the algebraic closure of Qp, and Ainf is Fontaine’s infinitesimal period

ring. At the time there were hopes that a cohomology theory could be constructed that

would simultaneously be a generalization of étale, de Rham, and crystalline cohomology

for p-adic varieties. The ring Ainf was a natural candidate as a base ring for such a coho-

mology theory due to its various relationships to the other period rings in p-adic Hodge

theory, plus THH is closely related to HH, which is already closely related to the de Rham

cohomology. All signs seemed to point at THH being related to this cohomology theory.

This has all since been verified, THH was used to give the original construction of the
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prismatic cohomology!

For an E∞-ring A, we define the Topological Hochschild Homology of A as

THH(A) := A⊗T,

where the copower is now computed in the ∞-category CAlg(Sp) of E∞-rings.

Nikolaus and Scholze also gave a new construction of the∞-category CycSp, of cyclotomic

spectra [20], where an object X ∈ CycSp consists of the data of a T-equivariant spectrum

X, and a map φp : X → X tCp for every prime p. The Tate diagonal provides THH(A)

with the structure of a cyclotomic spectrum, and the map φp : THH(A)→ THH(A)tCp is

known as the cyclotomic Frobenius.

The unit object of CycSp is given by the sphere spectrum with the trivial T-action,

denoted Striv. Then define the Topological Cyclic Homology of X ∈ CycSp

TC(X) := MapCycSp(Striv, X).

This is a drastic simplification of the classical definition of topological cyclic homology,

which relied on methods from genuine equivariant homotopy theory.

Bökstedt was able to compute [6]
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THH(Fp) ' Fp[x], |x| = 2,

which is a much more palateable result than HH(Fp) ' Fp〈x〉, |x| = 2.

There are several other trace theories derived from THH, first by taking the homotopy

fixed points we obtain the Topological Negative Cyclic Homology

TC−(A) := THH(A)hT,

and by taking the Tate construction we obtain the Topological Periodic Homology

TP(A) := THH(A)tT.

There is a canonical map

TC−(A)→ TP(A),

coming from the canonical map (−)hT → (−)tT.

From now on we will assume there is a fixed prime p, and we restrict attention to the

p-completed Topological Hochschild Homology denoted THH(− ; Zp).

The Tate orbit lemma gives an identification [20]

(THH(A;Zp)tCp)hT ' TP(A;Zp).
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So applying homotopy fixed points to the cyclotomic Frobenius map φ : THH(A;Zp) →

THH(A;Zp)tCp , we get a map

φhT : TC−(A;Zp)→ TP(A;Zp).

There is an equalizer diagram

TC(A;Zp) TC−(A;Zp) TP(A;Zp).
can

φ

This equalizer diagram is the standard way to approach calculations of TC(A;Zp), for

example in [20, p. 4.4.10] it is shown that

πiTC−(Fp) ∼= Zp[ũ, v]/(ũv − p),

with |ũ| = 2, |v| = −2,

πiTP(Fp) ∼= Zp[v±1],

with |v| = −2, and

πiTC(Fp) ∼=


Zp i = 0,−1

0 otherwise

2.4. Topological Restriction Homology

For a cyclotomic spectrum X, and n ∈ N, we inductively define the Truncated Topological

Restriction Homology functors
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TR1(X) := X,

TR2(X) := XhCp ×XtCp X,

where the map XhCp → X tCp is the canonical map, and X → X tCp is the cycloctomic

Frobenius, and the general formula

TRn(X) := (XhCp)hCpn−2 ×
(XtCp )

hC
pn−2

TRn−1(X).

It is enlightening to see one more example, so

TR3(X) ' (XhCp)hCp ×(XtCp )hCp

(
XhCp ×XtCp X

)
,

the left hand map in the fiber is (−)hCp applied to the canonical map XhCp → X tCp , and

the right hand map is (−)hCp applied to the cyclotomic Frobenius X → X tCp .

There are projection maps TRn(X)→ TRn−1(X), and we define

TR(X) := lim←−TRn(X).

For a ring A, it is typical to write TR(A) = TR(THH(A)).

Restriction Homology and its truncations are analogous to a higher algebra version of the

Witt-vector construction, in fact [13]:
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Theorem (Hesselholt). For a commutative ring A,

π0TR(A) ∼= W (A),

and,

π0TRn(A) ∼= Wn(A).

Where W (A) and Wn(A) are the p-typical Witt vectors of A, and the n-truncated p-

typical Witt vectors of A, respectively.

Recall that for a ring A a Frobenius lift on A is a map ψ : A→ A such that ψ/p : A/p→

A/p is the Frobenius map x 7→ xp. There is a close connection between Frobenius lifts

and delta structures on a ring A, indeed given any Frobenius lift ψ we obtain a delta

structure by taking

δ(x) =
xp − ψ(x)

p
,

and if A is p-torsion free this process is reversible so delta structres and Frobenius lifts

are equivalent data. A delta structure on A is also equivalent to a section of the map

W2(A)→ A, i.e. given a map ψ : A→ W2(A) such that A→ W2(A)→ A is the identity,

we can write ψ(x) = (x, δ(x)) for some delta structure on A.

We say that a cyclotomic spectrum X ∈ CycSp has a Frobenius lift if the cyclotomic

Frobenius map X → X tCp can be factored through the canonical map XhCp → X tCp to

give a map X → XhCp . This is tautologically equivalent to the projection map TR2(X)→

X admitting a section X → TR2(X). Indeed, a section of TR2(X)→ X is a map



26

X → XhCp ×XtCp X,

which is of the form (ψ, id), ψ : X → XhCp , where (can◦ψ) : X → X tCp ' φ : X → X tCp .

Interestingly, TR(A) itself has a Frobenius lift for all A, and in fact

Theorem (Krause-Nikolaus) [17]. For a cyclotomic spectrum X, the map TR(X)→

X exhibits TR(X) as the universal co-free p-cyclotomic spectrum with Frobenius lifts over

X.

Topological restriction homology has deep connections to algebraic K-theory:

Theorem (Hesselholt, McCandless) [10][19]. For a connective E1-ring R, there is a

natural equivalence of spectra

TR(R) ' lim←−
e

ΩK(R[t]/te, (t))

The spectrum K(R[t]/te, (t)) is defined as the fiber of the map K(R[t]/te) → K(R), and

the limit of these is referred to as the curves on K-theory.

Interestingly, in 1977 Bloch was studying the curves on K-theory as a potential approach

to construct a cohomology theory that simultaneously generalizes the `-adic étale co-

homology and the crystalline cohomology [4]. In retrospect, it seems that Bloch had

discovered an early predecessor of the prismatic cohomology.
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2.5. Trace Maps

One of the original motivations for introducing topological hochschild homology was to

refine the trace map K(A) → HH(A) to a map K(A) → THH(A) that was closer to an

isomorphism. The trace theory functors can be extended to functors Catstab∞ → CycSp,

where to recover for example THH(A) for a ring A, we take THH of the category PerfA.

In [5] it is proven that algebraic K-theory is the universal additive invariant, i.e. if E is

an additive invariant with values in spectra

E : Catex∞ → Sp,

then Natadd(K, E) ' E(S), where these are the natural transformations of additive in-

variants. So in particular,

Natadd(K,THH) ' THH(S),

and there is a canonical map K→ THH corresponding to 1 ∈ π0THH(S) ∼= Z.

Since THH is an additive invariant, the functor

THH : Catstab∞ → CycSp,

has a factorization

Catstab∞
z−→ NMot

tr−→ CycSp,
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where tr is an exact functor. Since algebraic K-theory is given by the mapping spectrum

in the category of Non-commutative motives

K(C) ' mapNMot(z(PerfS), z(C)),

the functor tr induces a map

mapNMot(z(PerfS), z(C))→ mapCycSp(tr(S), tr(C)),

and the right hand side is mapCycSp(Striv,THH(C)) = TC(C).

This is then a map known as the cyclotomic trace

tr : K(C)→ TC(C),

which is the most important trace map.

Let Kinv(A) := fib(tr : K(A) → TC(A)), be the fiber of the cyclotomic trace map. The

following theorem is one of the major results in the field.

Theorem [8]. If R→ R′ is a surjective map of rings with nilpotent kernel, then Kinv(R)→

Kinv(R′) is an equivalence.

The cyclotomic trace map is is étale locally an equivalence after p-completion, as made

precise by the following theorem.
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Theorem [7]. Let R be a strictly Henselian local ring with residue characteristic p, then

Kinv(R)/p ' 0, so in particular

K(R;Zp) ' TC(R;Zp).

There is also a trace map from the K-theory of endomorphisms to the topological re-

striction homology, although this map isn’t currently as well understood. It is a result of

Lindenstrauss-McCarthy that topological restriction homology and the reduced K-theory

of endomorphisms have the same Goodwillie-Taylor tower. There also seems to be work in

progress by Nikolaus where it is shown that a variant of the K-theory of endomorphisms

known as the cyclic K-theory is equivalent to TR.
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CHAPTER 3

A Brief Introduction to p-adic Hodge Theory

In this section we give a very brief introduction to p-adic Hodge theory, focusing on the

geometric approach.

3.1. Motivation

In 1949 Weil put forth several conjectures concerning the number of Fq-points of a pro-

jective variety X. The Fq points of X, denoted X(Fq) can be identified with the points

of X
(
Fp
)

that are fixed by Frobr, where q = pr.

In topology the Lefschetz fixed point theorem would let us count these fixed points in

terms of the trace of the map induced on cohomology. This suggests that if there was a

cohomology theory for varieties that behaved similarly to ordinary cohomology it would

offer a solution to all of Weil’s conjectures except for the Riemann hypothesis. Such a

cohomology theory is known as a Weil cohomology theory.

The `-adic étale cohomology is a Weil cohomology theory constructed in 1960 by Grothendieck,

in 1974 Deligne proved Weil’s Riemann Hypothesis using `-adic cohomology, finally set-

tling all of Weil’s conjectures.
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In topology, the ordinary cohomology is the uniquely classified by the Eilenberg-Steenrod

axioms. In algebraic geometry however, several different Weil cohomology theories were

discovered. Grothendieck proposed a theory of motives, intuitively motives should be

some sort of linear type object, there should be a universal motive attached to any pro-

jective variety which will contain all cohomological information about that variety, and

all of the known Weil cohomology theories should come from a specialization of the motive.

There are three primary Weil cohomology theories, these are

1. The `-adic cohomology where ` is a prime number, written

H∗et(X,Q`),

which is only well behaved over a geometrically closed field of characteristic p 6= `,

2. the crystalline cohomology written

H∗crys(X/Zp)⊗Zp Qp,

which is only well behaved in characteristic p, and

3. the de Rham cohomology written

H∗dR(X),
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which is only well behaved in characteristic 0.

The primary goal of the geometric approach to p-adic Hodge theory is to understand

the relationships between these various cohomology theories. Intuitively, we expect that

these cohomology theories contain roughly the same information about the variety they

are applied to, but this information comes from different structure.

For example, if X/K is a smooth proper variety over a field K, one usually considers the

étale cohomology of the geometric fiber XK = X ×Spec(K) Spec
(
K
)
,

H∗et(XK ,Q`).

The étale cohomology has an action of the Galois group Gal
(
K/K

)
.

The de Rham cohomology H∗dR(X) has no such canonical Galois action, but instead since

the de Rham cohomology is the cohomology of a canonical chain complex, it has a filtration

known as the Hodge filtration

. . . ⊆ Fil2H∗dR(X) ⊆ Fil1H∗dR(X) ⊆ Fil0H∗dR(X) = H∗dR(X),

coming from the stupid filtration on the de Rham complex.

Since intuitively these cohomology theories contain the same information, one should ex-

pect a way to convert the étale cohomology into the de Rham cohomology, and vice versa,



33

in a way such that the Galois action can be used to recover the Hodge filtration and vice

versa.

3.2. Comparison Theorems

For simplicity, in this section we let K = Qp be the field of p-adic numbers, so K = Qp,

the ring of integers OK = Zp, and the residue field k = OK/p = Fp.

Given a smooth proper variety X/OK , we expect the cohomology of X to be the same

across all fibers, but since X/OK is in mixed characteristic, each fiber is over a different

field.

The special fiber of X,

Xk = X ×OK
(OK/p) ,

lives in characteristic p, so usually one is interested in the crystalline cohomology of the

special fiber

H∗crys (Xk/Zp) .

We also consider the de Rham cohomology of X,

H∗dR(X) ∈ F (K) ,
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which takes values in the category of filtered OK-modules.

In this case, there is an equivalence

H∗crys (Xk/Zp) ∼= H∗dR (X) ,

due to a result of Berthelot, which says that one can compute the crystalline cohomology

of X/k by finding a lift of X to W(k) and computing the de Rham cohomology there.

The geometric generic fiber of X,

XK = X ×OK
K,

lives in characteristic 0, so we consider the p-adic étale cohomology (this is just the `-adic

cohomology where ` = p),

H∗et (XK ,Qp) ∈ RepGK
(Qp) ,

which takes values in the category of Qp-vector spaces with an action of the Galois group

Gal
(
K/K

)
= GK , also known as the category of Qp-valued GK-representations.

Fontaine constructed a ring called the de Rham period ring, BdR, which is a field extension

of K, equipped with a GK-action such that the GK-invariants of BdR are K, i.e.

BGK
dR
∼= K,
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and a filtration.

Fontaine then conjectured

Conjecture (de Rham comparison conjecture). There is an equivalence

H∗dR(X)⊗K BdR ' H∗et (XK ,Qp)⊗Qp BdR,

which is compatible with the Galois action (where we equip H∗dR(X) with the trivial Galois

action), and the filtration (where we equip H∗et(XK ,Qp) with the trivial filtration).

This would allow us to recover the de Rham cohomology from the p-adic étale cohomology,

since

H∗dR(X) ∼= H∗dR(X)⊗K (BdR)GK

∼=
(
H∗dR(X)⊗K BGK

dR

)GK

∼=
(
H∗et (XK ,Qp)⊗Qp BdR

)GK

.

It turns out that the Galois action on the étale cohomology cannot be recovered from

the Hodge filtration alone, but the identification of crystalline and de Rham cohomology

gives additional structure to the de Rham cohomology in the form of a Frobenius map.
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In order to take advantage of the Frobenius map on the de Rham cohomology, we need

to base change the étale cohomology up to a ring with a Frobenius map. There is no

Frobenius map on BdR, but Fontaine introduced a subring Bcrys ⊆ BdR which does have

a Frobenius morphism

φ : Bcrys → Bcrys.

This ring inherits the Galois action and filtration from BdR, and has the property that

Fil0
(
Bφ=1
crys

)
= Qp,

where Bφ=1
crys is the subring of Frobenius fixed points.

Fontaine also conjectured

Conjecture (Crystalline comparison). There is an equivalence

H∗dR(X)⊗K Bcrys ' H∗et (XK ,Qp)⊗Bcrys,

which respects all structure, i.e. it is Galois equivariant, Frobenius equivariant, and pre-

serves the filtration.

The name crystalline comparison comes from the previously mentioned equivalence be-

tween the de Rham and crystalline cohomology in this case.

Then to recover the étale cohomology from the de Rham cohomology, observe that
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H∗et (XK ,Qp) ∼= H∗et (XK ,Qp)⊗Qp Fil0
(
Bφ=1
crys

)
∼= Fil0

(
H∗et (XK ,Qp)⊗Qp Bcrys

)φ=1

∼= Fil0 (H∗dR (X)⊗K Bcrys)
φ=1
.

where we equip the étale cohomology with the trivial filtration and Frobenius action.

Both of these conjectures were proven by Faltings, but now have many different proofs

using different approach.

3.3. Integral p-adic Hodge Theory

In the previous section we worked with the rationalized cohomology theories, but the

integral theories contain more information about the variety they are applied to.

In [1], an integral version of the crystalline comparison theorem is proven

Theorem [BMS1]. Let X be a proper smooth formal scheme over OK, where OK is the

ring of integers in a complete discretely valued nonarchimedean extension K of Qp with

perfect residue field k. Let C be a completed algebraic closure of K, and write XC for the

rigid-analytic generic fiber of X . There are comparison isomorphisms

Hi
et (XC ,Zp)⊗Zp Bcrys

∼= Hi
crys (Xk/W(k))⊗W(k) Bcrys,
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which is compatible with the Galois action, Frobenius, and filtration.

This implies that Hi
et (XC ,Qp) is a crystalline-representation, which is just a fancy way of

saying

dimQp(Hi
et (XC ,Qp)) = dimQp(

(
Hi
et (XC ,Qp)⊗Qp Bcrys

)GK ).

There is a mixed characteristic version of the theory of Dieudonné modules, known as

Breuil-Kisin-Fargues modules.

First let Ainf := W(O[), where O is the ring of integers of C, and O[ is the tilt of O, which

is lim←−φO/p, the inverse limit perfection of O/p. There is a canonical map θ : Ainf → O,

which is surjective with kernel generated by an element ξ.

The period rings BdR and Bcrys can be derived from Ainf as follows.

To obtain BdR,

B+
dR
∼= Ainf

[
1

p

]̂
ξ

, BdR
∼= B+

dR

[
1

ξ

]̂
ξ

,

where this is the ξ-adic completion.

To obtain Bcrys, let ε be a compatible system of p-power roots of unity in O, so ε gives an

element in O[ = lim←−φO/p. Then let µ = [ε]−1 ∈ Ainf . Then let Acrys be the PD-envelope
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of θ, i.e. the p-completion of the Ainf -algebra generated by ξ
n!

, n ≥ 1, inside of Ainf

[
1
p

]
.

Then

Bcrys
∼= Acrys

[
1

µ

]
.

Definition. A Breuil-Kisin-Fargues Module is a finitely presented Ainf -module M , along

with a a Frobenius semi-linear morphism

φM : M

[
1

ξ

]
→M

[
1

φ(ξ)

]
,

such that M
[

1
p

]
is finite free over Ainf

[
1
p

]
.

Fargues proved that a Breuil-Kisin-Fargues module is equivalent to the data of a finite

free Zp-module T , and a chosen B+
dR-lattice inside of T ⊗Zp BdR.

The authors of [1] also prove an analogue of the de Rham comparison theorem, which

gives an equivalence

Hi
crys(X/B

+
dR)⊗B+

dR
BdR
∼= Hi

et(X,Zp)⊗Zp BdR,

for proper smooth adic spaces X over C, and B+
dR is another period ring, whose fraction

field is BdR.
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This comparison tells us that the crystalline cohomology gives us a preferred B+
dR-lattice

inside the BdR-module Hi
et(X,Zp) ⊗Zp BdR, so combining these we get a Breuil-Kisin-

Fargues module which knows the étale, crystalline, and de Rham cohomology of X.

These ideas suggest that we should look for a cohomology theory that takes values directly

in the category of Breuil-Kisin-Fargues modules, which has all three of these cohomology

theories as a specialization. In [1] such a cohomology theory was constructed, called the

Ainf -cohomology, denoted

RΓAinf
(X ) ,

for a proper smooth formal scheme X .
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CHAPTER 4

Topological Hochschild Homology and p-adic Hodge Theory

In [2] topological Hochschild homology is used to give a construction of a new cohomology

theory known as the prismatic cohomology. We outline this construction here.

4.1. Flat Descent for Trace Theories

Recall that the HKR-filtration on the Hochschild homology Fil∗HH(A/R) has

griHKR ' ∧iLA/R[i].

In [2] it is shown that wedges of the cotangent complex have flat descent, i.e. for any base

ring R the functors

A 7→ ∧iLA/R,

are fpqc sheaves with values in the derived ∞-category of R-modules D(R).

The HKR-filtration on HH(A) then inductively implies that HH is an fpqc sheaf, and

then one can prove that THH is an fpqc sheaf by observing that

(
THH(−/R)⊗THH(S) τ≤nTHH(Z)

)
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is a Postnikov tower with limit THH(−). The graded pieces of this tower are

(
THH(−)⊗THH(Z) Z

)
⊗ πnTHH(Z) ' HH(−)⊗ πnTHH(Z),

and since πnTHH(Z) is a perfect complex this is an fpqc sheaf for each n, so THH is an

fpqc sheaf as the limit of this tower.

This also implies fpqc descent for HC−(−/R) and TC−(−), since the limit of a sheaf is a

sheaf. With a little more work it can also be shown that HP(−/R) and TP(−) are fpqc

sheaves, and from here it follows that TRn(−) and TR(−) are fpqc sheaves, as they can

be written as a limit of fpqc sheaves.

4.2. Perfectoid rings and the Quasisyntomic site

In 2011 Scholze introduced the notion of a perfectoid space [22]. Since then these ideas

have proven invaluable in p-adic Hodge theory. We use a slightly different notion of a

perfectoid ring here, which are sometimes called integral perfectoid rings to distinguish

them from the perfectoid fields of [22].

Given a ring R, Fontaine’s infinitesimal period ring Ainf(R) is defined as

Ainf(R) := W (R[),

where R[ is the inverse limit perfection (R/p)perf of R/p. If R is p-complete, the universal

property of the Witt vectors tells us that to specify a map Ainf(R) → R it is enough to
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specify a map (R/p)perf → R/p, and we let θ : Ainf(R) → R be the map corresponding

to the canonical projection map (R/p)perf → R/p.

A perfectoid ring is:

Definition. A ring R is said to be a perfectoid ring if it is p-complete, there is an element

π ∈ R such that πp = pu for a unit u, the Frobenius map is surjective on R/p, and the

kernel of the map θ : Ainf(R)→ R is generated by one element.

We will see later that Bökstedt’s calculation of THH(Fp) can be extended to give a cal-

culation that THH(R) ' R[x], |x| = 2, for any perfectoid ring R.

There is a close connection between the cotangent complex and topological Hochschild ho-

mology and the trace theories have flat descent; these two facts motivate one to work with

a refinement of the flat site where the rings have particularly nice cotangent complexes,

known as the quasisyntomic site.

Definition. A ring A is quasisyntomic if A is p-adically complete, has bounded p∞-

torsion, and LA/Zp has p-complete Tor-amplitude in [−1, 0].

A ring has bounded p∞-torsion if there exists N ∈ N such that all pn-torsion elements of

A, for n ≥ N , are already pN -torsion elements. The Tor-amplitude condition on LA/Zp

just means that for any A/p-module N ,

(
LA/Zp ⊗LA A/p

)
⊗LA/p N
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has homotopy groups concentrated in degrees [−1, 0].

There is also a relative version of quasisyntomic, where a map A→ B is a quasisyntomic

map if B is p-completely flat over A, and LB/A has p-complete Tor-amplitude in [−1, 0].

The category QSynop is a site, where the covers are quasisyntomic maps A → B which

are p-completely faithfully flat.

The quasisyntomic site QSynop has a particularly nice basis, made up of the quasiregular

semiperfectoid rings.

Definition. A ring S ∈ QSyn is quasiregular semiperfectoid if there is a map R → S

with R perfectoid, and the Frobenius is surjective on S/p.

A quasiregular semiperfectoid ring of characteristic p is usually called a quasiregular

semiperfect ring.

The subcategory of quasiregular semiperfectoid rings forms a site QRSPerfdop, and every

element A ∈ QSyn admits a cover A → S with S ∈ QRSPerfd, so QRSPerfd is a basis

for QSyn.
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Quasiregular semiperfectoid rings have particularly nice p-complete cotangent complexes.

To see this, given S ∈ QRSPerfd, pick a perfectoid ring R with a surjection R→ S. Then

the transitivity triangle for Zp → R→ S takes the form

LR/Zp ⊗R S → LS/R → LS/Zp .

Since R → S is surjective LS/R is concentrated in degree -1, and we can use the transi-

tivity triangle of Zp → Ainf (R) → R, and since Ainf is relatively perfect over Zp, after

p-completion LAinf/Zp ' 0, so LR/Ainf
' LR/Zp , but Ainf (R) → R is surjective, so it is

also concentrated in degree -1. Thus LS/Zp is p-completely concentrated in degree -1.

4.3. Recovering de Rham Cohomology From Negative Cyclic Homology

In the previous section we saw that the p-complete cotangent complex of a quasiregular

semiperfectoid ring S is concentrated in degree −1. Recall that the HKR filtration on

HH(S/Zp) has griHKR ' ∧iLS/Zp [i], if S ∈ QRSPerfd this is concentrated in degree 2i. So

HH(S/Zp,Zp) is even.

Since QRSPerfd is a basis for QSyn, and HH is even on QRSPerfd, this proves that

HH(−/Zp;Zp) is locally even in the quasisyntomic topology. This is an important result

that is true for other trace theories as well, and will be a central focus of this dissertation.

The homotopy fixed point spectral sequence
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Ep,q
2 = Hp(T, π−qHH(S/Zp;Zp))⇒ π−p−qHC−(S/Zp;Zp),

degenerates, since BT ∼= CP∞, so the group cohomology Hp(T, π∗HH(S/Zp;Zp)) can be

computed as the singular cohomology Hp(CP∞, π∗HH(S/Zp;Zp)), and the singular coho-

mology H∗(CP∞,Z) ∼= Z[x], |x| = 2.

This shows that HC−(−/Zp;Zp) is locally even in the quasisyntomic topology.

The degeneration of the homotopy fixed point spectral sequence yields a filtration on

π0HC−(S/Zp;Zp) with the i’th graded piece being the p-completion of ∧iLS/Zp [−i]. One

can check that this is the p-completion of the Hodge-completed derived de Rham complex

LΩS/Zp .

Since QRSPerfd is a basis for QSyn, the sheaf π0HC−(−/Zp;Zp) is identified with the

sheaf L̂Ω−/Zp . This is a toy example of the construction of prismatic cohomology, which

will be the sheaf π0TC−(−;Zp).

4.4. Local Evenness of THH and its variants

For a perfectoid ring R, in [2, p. 6] it is shown that

π∗THH(R;Zp) ∼= R[u], |u| = 2.
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Using the homotopy fixed point spectral sequence, and the Tate spectral sequence, it is

then derived that

π∗TC−(R;Zp) ∼= Ainf [u, v]/(uv − ξ), |u| = 2, |v| = −2

π∗TP(R;Zp) ∼= Ainf [σ
±1], |σ| = 2.

GivenA ∈ QRSPerfd, pick a perfectoid ringR with a surjectionR→ A. Then THH(A;Zp)

is a THH(R;Zp)-algebra, so it is equipped with a degree 2 map u : THH(A;Zp)[2] →

THH(A;Zp) given by multiplication by u ∈ π2THH(R;Zp). This map fits into a cofiber

sequence

THH(A;Zp)[2]→ THH(A;Zp)→ HH(A/R;Zp).

If A is quasismooth then πiHH(A/R;Zp) ∼= Ωi
A/R, and this cofiber sequence will let us

inductively define a filtration on THH(A;Zp) with

grn =
⊕
∧iLA/R[n],

where this sum ranges over all i ≤ n with i− n even.

Since A ∈ QRSPerfd, ∧iLA/R lives in degree i, so these graded pieces are concentrated

in even degrees and the spectral sequence of this filtration tells us that THH(A;Zp) is

concentrated in even degrees.



48

The homotopy fixed point spectral sequence and the Tate spectral sequence then imply

that TC−(A;Zp) and TP(A;Zp) are even, respectively. Evennes of TC then follows since

TC is the fiber of a map TC− → TP.Since QRSPerfd is a basis for QSyn, evennes on

QRSPerd implies local evennes on QSyn of these functors.

For S ∈ QRSPerfd, the Nygaard-completed prismatic cohomology of S, written �̂S to be

�̂S := π0TC−(S;Zp),

and the Nygaard filtration on �̂S, written N≥∗�̂S is the filtration coming from the homo-

topy fixed point spectral sequence, so

griN≥∗�̂S
∼= π2iTHH(S;Zp).

For a general A ∈ QSyn, we unfold the above constructions, i.e. since QRSPerfd is a basis

for QSyn, we sheafify the above constructions to give constructions on all of QSyn.

Since THH(S;Zp) is even for S ∈ QRSPerd, we have that THH(−;Zp) is locally even on

QSyn. Consider the double speed Postnikov filtration on THH, written

FilnTHH(−;Zp) = τ≥2nTHH(−;Zp),

this is a sheaf.

For a general A ∈ QSyn, in [2] they define
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FilnTHH(A;Zp) := RΓsyn(A, τ≥2nTHH(−;Zp)),

FilnTC−(A;Zp) := RΓsyn(A, τ≥2nTC−(−;Zp)),

FilnTP(A;Zp) := RΓsyn(A, τ≥2nTP(−;Zp)).

Then for A ∈ QSyn,

�̂A := gr0TC−(A;Zp),

extends the definition of the Nygaard-completed prismatic cohomology, where

N≥n�̂A ' grnTC−(A;Zp).

There is also a filtration on TC, since

TC(A;Zp) ' fib
(
φ− can : TC−(A;Zp)→ TP(A;Zp)

)
,

we have

FilnTC(A;Zp) ' fib
(
φ− can : FilnTC−(A;Zp)→ FilnTP(A;Zp)

)
.

The graded pieces of this filtration are denoted Zp(n)(A), and play a major role in this

dissertation.

Conjecturely, this filtration is supposed to be compatible with the motivic filtration on

K-theory under the trace map K→ TC.
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There is now a construction of prismatic cohomology which avoids the use of topological

Hochschild homology [3], but the connection between the two is still fruitful in p-adic

Hodge theory and in homotopy theory.
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CHAPTER 5

Local Evenness of Topological Restriction Homology in

Characteristic p

5.1. Introduction

In [18] a method is given to compute the syntomic cohomology Zp(i)(k[x]/x2) for k a

perfect Fp-algebra. The idea is that k[x]/x2 lifts to a quasisyntomic δ-ring of characteristic

0, A = Acrys(k[x]/x2), and then �k[x]/x2 ' RΓcrys(k[x]/x2/Zp) can be computed using the

derived de Rham cohomology LΩA – which can be computed explicitly using the divided

power de Rham complex

W (k)

[
x,
x2j

j!

]
j≥0

→ W (k)

[
x,
x2j

j!

]
j≥0

dx.

The Nygaard filtration on this complex admits an explicit description, which allows one

to compute Zp(i)(k[x]/x2) = fib(ϕ/pi−can) : N≥iLΩA → LΩA. In [23] it’s explained how

to use these methods to compute Zp(i)(k[x]/xe) and several clever notational conventions

are introduced to simplify these computations.

In this article we will further use these methods to compute the syntomic cohomology of

truncated polynomial algebras over some simple quasiregular semiperfect rings.
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Theorem 2. For R = k[y
1/p∞

1 , ..., y
1/p∞

t , x]/(y1, ..., yt, x
e), k a perfect Fp-algebra, i ∈ N,

Zp(i)(R) is concentrated in degree 1, and there is an isomorphism

H1(Zp(i)(R)) ∼=
⊕
m∈Ip,

α∈Z[1/p]t

W (k)/{p((s))m, e},

where Ip is the set of integers coprime to p, with s = s(p, i, e,m, α). Here ((s)) :=

max(s, 0), and {a, e} = a if e - a, and {a, e} = e otherwise.

We then explain how to identify

TR
(
k[y

1/p∞

1 , ..., y
1/p∞

t ]/(y1, ..., yt)
)
' lim←−

e

Zp(i)
(
k[y

1/p∞

1 , ..., y
1/p∞

t , x]/(y1, ..., yt, x
e)
)

using [11] and [8].

Then by analyzing this limit we show that for quasiregular semiperfect rings of this form

TR is concentrated in even degrees.

Theorem 4. For k a perfect Fp-algebra, TR
(
k[y

1/p∞

1 , ..., y
1/p∞
n ]/y1, ..., yn

)
is even.

Finally using the filtration on TR coming from [21] we conclude that for quasisyntomic

algebras in characteristic p, TR is locally even in the quasisyntomic topology.

Theorem 5. Let S be a quasisyntomic algebra over a perfect Fp algebra R, TR(S) is

locally even in the quasisyntomic topology.
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5.2. Zp(i) for some quasiregular semiperfect rings

The goal of this section is to compute the syntomic cohomology for rings of the form

R = k[y1/p∞ , x]/(y, xe), where k is a perfect Fp algebra. This is the truncated polynomial

algebra on x over the quasiregular semiperfect ring S = k[y1/p∞ ]/(y). The prismatic

cohomology is symmetric monoidal, so we can compute

�R ' �S ⊗LZp
�Fp[x]/xe .

Since S is quasiregular semiperfect, there is an identification �S ' Acrys(S) ∼= W(k)[y1/p∞ , y
n

n!
],

which is a flat Zp-algebra. Then using the identification of �Fp[x]/xe with the p-completed

divided power de Rham complex as in [18] and [23] we get

�R '
(
W (k)

[
y1/p∞ ,

yn

n!

] [
x,
xej

j!

]
d−−−→ W (k)

[
y1/p∞ ,

yn

n!

] [
x,
xej

j!

]
dx

)∧
p

From now on we take n ∈ N[1/p], so we can write W (k)
[
y1/p∞ , y

n

n!

]
as W(k)

[
yn

bnc!

]
. We

use the ideas and notation from [23] to write the above complex as

⊕
m,n

W (k)

〈
yn

bnc!
xm

bm/ec!

〉
d−−−→

⊕
m,n

W (k)

〈
yn

bnc!
xm

Γdm/ee
dlogx

〉
,

where Γdm/ee = bm−1
e
c!, n ranges through N[1/p] and m ∈ N.
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Notice that this complex has a bi-grading by m,n with a generator in degree (m,n) given

by yn

bnc!
xm

bm/ec! , this is a N × N[1/p] grading. Also recall that d is the W (k)
[
yn

bnc!

]
-linear

differential, so d
(
yn

bnc!
xm

bm/ec

)
= yn

bnc!d
(

xm

bm/ec

)
. The logarithmic differential dlogx satisfies

x ∗ dlogx = dx, so xm−1dx = xmdlogx which diagonalizes the differential. The point of

these notations is to cleanly write the differential in terms of the generators

d

(
yn

bnc!
xm

bm/ec!

)
= m

yn

bnc!
xm−1

bm
e
c!
dx

= m
bm−1

e
c!

bm/ec!
yn

bnc!
xm−1

bm−1
e
c!
dx

= {m, e} y
n

bnc!
xm

Γdm/ee
dlogx,

where

{m, e} := m
Γdm/ee
bm/ec!

=


m e - m

e e | m.

To understand the Nygaard filtration we can identify LWΩR ' ACrys(S)⊗Zp LWΩFp[x]/xe ,

and since the Nygaard filtration is symmetric monoidalN ∗ ' p∗ACrysS⊗p∗ZpN≥∗LWΩFp[x]/xe .

Alternatively, N≥i is the subcomplex where the Frobenius map φ is divisible by pi. The

Frobenius sends the degree (m,n) generator yn

bnc!
xm

bm/ec! to ypn

bnc!
xpm

bm/ec! writing this in terms

of the degree (pm, pn) generator we get

bpnc!
bnc!

bpm/ec!
bm/ec!

ypn

bpnc!
xpm

bpm/ec!
.
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Then using the Legendre formula to compute the p-adic valuation of these coefficients we

see that N≥iLWΩR is given by

⊕
m,n

p((i−bm/ec−bnc))W (k)

〈
yn

bnc!
xm

bm/ec!

〉
d−−−→

⊕
m,n

p((i−dm/ee−bnc))W (k)

〈
yn

bnc!
xm

Γdm/ee
dlogx

〉
,

where ((a)) = max(a, 0).

We now need to compute the cohomology of LWΩR and N≥iLWΩR. In both cases

H0 = 0, except in degrees m = 0 since the differential is injective. The bigrading also

passes to cohomology, so we have

H1(LWΩR)(m,n) = W (k)/{m, e}
〈
yn

bnc!
xm

Γdm/ee
dlogx

〉
,

H1(N≥iLWΩR)(m,n) = W (k)/pε(i){m, e}
〈
p((i−dm/ee−bnc)) y

n

bnc!
xm

Γdm/ee
dlogx

〉
.

Where

ε(i) = ((i− bm/ec − bnc))− ((i− dm/ee − bnc))

=


1 bm/ec < dm/ee ≤ i− bnc

0 otherwise.

Our goal is to compute Zp(i)(R) = fib(φ/pi− can) : N≥iLWΩR → LWΩR, so now we can

use the long exact sequence in cohomology to determine Hk(Zp(i)(R)) if we can determine



56

the map (φ/pi − can) : Hk(N≥iLWΩR)→ Hk(LWΩR).

The canonical map comes from the inclusion, so it sends a degree (m,n) generator

p((i−dm/ee−bnc)) y
n

bnc!
xm

Γdm/ee
dlogx ∈ H1(N≥iLWΩR)(m,n)

to

p((i−dm/ee−bnc)) y
n

bnc!
xm

Γdm/ee
dlogx ∈ H1(LWΩR)(m,n).

So

can
(
H1(N≥iLWΩR)(m,n)

)
= p((i−dm/ee−bnc))H1(LWΩR)(m,n).

Similarly, the divided Frobenius map sends a degree (m,n) generator

p((i−dm/ee−bnc)) y
n

bnc!
xm

Γdm/ee
dlogx ∈ H1(N≥iLWΩR)(m,n)

to

p((i−dm/ee−bnc))−i+1 ypn

bnc!
xpm

Γdm/ee
dlogx ∈ H1(LWΩR)(pm,pn).

Where the +1 in the exponent of p comes from

dlog(xp) =
pxp−1

xp
dx = p

1

x
dx = pdlogx.

Now writing this element in terms of the degree (pm, pn) generator we get

p((i−dm/ee−bnc))−i+1 y
pn

bnc!
xpm

Γdm/ee
dlogx = pt

ypn

bpnc!
xpm

Γdpm/ee
dlogx,
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where t is still to be determined.

The Legendre formula and properties of a valuation tell us that

vp

(
bpnc!
bnc!

)
= bnc+ vp (bnc!)− vp (bnc!)

= bnc,

and

vp

(
Γdpm/ee
Γdm/ee

)
= bm/ec+ vp

(
{pm, e}
p{m, e}

)
= dm/ee − 1.

So t = ((i − dm/ee − bnc)) − i + 1 + bnc + dm/ee − 1. If dm/ee + bnc > i, then ((i −

dm/ee− bnc)) = 0 and t = dm/ee+ bnc− i. Otherwise all of the terms cancel and s = 0.

In other words t = ((dm/ee+ bnc − i)), and

φ/pi
(
H1(N≥iLWΩR)(m,n)

)
= p((dm/ee+bnc−i))H1(LWΩR)(pm,pn).

Since the canonical map is ((i − dm/ee − bnc)) p-divisible, and the divided Frobenius is

((dm/ee + bnc − i)) p-divisible, for any values of the variables at least one of these will

be 0. So in any degree (m,n) that is mapped into by both the canonical map and the

divided Frobenius, (φ/pi − can) is surjective, since in this degree the map is a difference

of a surjective map and a p-divisible map, which by p-completeness is still surjective.

This lets us conclude that (φ/pi − can) is surjective, since in any degree (m,n) where

H1(LWΩR)(m,n) 6= 0 we must have p|{m, e}, but since {m, e} = e only if e|m we must
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have p|m either way. Then since n ∈ N[1/p] it is also p-divisible, and degree (m,n) is in

the image of the Frobenius. Therefore H2(Zp(i)(R)) = 0.

Now fix n, and an odd m such that p - m. Using the idea from [14], we consider the

following map

⊕
a≥0

H1
(
N≥iLWΩR

)
(pam,pan)

φ/pi−can−−−−−→
⊕
a≥0

H1 (LWΩR)(pam,pan) .

This is not a graded map, but is still a filtered map. For low values of a the divided

Frobenius map is an isomorphism (pam, pan) 7→ (pa+1m, pa+1n), but for large enough

values of a the canonical map will become an isomorphism (pam, pan) 7→ (pam, pan). The

kernel is then H1(N≥iLWΩR)(psm,psn) for s the smallest value of a such that the divided

Frobenius map is no longer an isomorphism. Explicitly, s is the smallest positive integer

such that

⌈
psm

e

⌉
+ bpsnc > i,

which we denote s(e,m, n), or sometimes for convenience just s with the dependence on

e,m, n left implicit.

Theorem 1. For R = k[y1/p∞ , x]/(y, xe), k a perfect Fp-algebra, there is an isomorphism
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H1(Zp(i)(R)) ∼=
⊕
m∈Ip,
n∈Z[1/p]

W (k)/{p((s))m, e},

where Ip is the set of integers coprime to p, and s = s(p, i, e,m, n) is not a constant.

These same methods can be applied to the quasiregular semiperfect rings of the form

R = k[y
1/p∞

1 , .. , y
1/p∞

t , x]/(y1, .., yt, x) with t ∈ N. To simplify things going forward we will

use the multi-index notation α = (n1, ..., nt), which lets us write

yα

bαc!
=

y1

bn1c!
y2

bn2c!
...

yt
bntc!

.

With this new notation in hand we have

LWΩR '
⊕
m,α

W (k)

〈
yα

bαc!
xm

bm/ec!

〉
d−−−→

⊕
m,α

W (k)

〈
yα

bαc!
xm

Γdm/ee!

〉
,

where α ranges over all length t multi-indexes of elements in N[1/p].

Just as before we get

H1(LWΩR)(m,α) = W (k)/{m, e}
〈
yα

bαc!
xm

Γdm/ee
dlogx

〉
,

H1(N≥iLWΩR)(m,α) = W (k)/pε(i){m, e}
〈
p((i−dm/ee−bαc`1 )) y

α

bαc!
xm

Γdm/ee
dlogx

〉
,

where bαc`1 := bn1c+ bn2c+ ...+ bntc is the `1 norm of bαc.
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Let s(e,m, α) be the minimal value of a such that the divided Frobenius map is no longer

an isomorphism between degrees (pam, paα) 7→ (pa+1m, pa+1α), which is harder to give an

explicit formula for in this case.

Theorem 2. For R = k[y
1/p∞

1 , ..., y
1/p∞

t , x]/(y1, ..., yt, x
e), k a perfect Fp-algebra, there is

an isomorphism

H1(Zp(i)(R)) ∼=
⊕
m∈Ip,

α∈Z[1/p]t

W (k)/{p((s))m, e},

where Ip is the set of integers coprime to p, and s = s(p, i, e,m, α) is not a constant.

5.3. Computation of TR

In this section we compute TR for quasiregular semiperfect rings. The spectral sequence

of the motivic filtration is given by

Ei,j
2 = Hi−j(Zp(−j)(R))⇒ π−i−jTC(R;Zp).

Since Zp(i)(R) is concentrated in degree 1, this spectral sequence degenerates and we get

T̃C2i−1(R) ∼= H1(Zp(i)(R)).

Then from the Dundas-Goodwillie-McCarthy theorem [8] we have

K2i−1(k[y1/p∞ , x]/(y, xe), (x)) ∼= T̃C2i−1(k[y1/p∞ , x]/(y, xe)),
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and we would like to use the description of TR due to Hesselholt [11] and McCandless

[19]

TR(k[y1/p∞ ]/y) ' lim←−
e

ΩK(k[y1/p∞ , x]/(y, xe), (x))

to understand TR(k[y1/p∞ ]/y).

First we understand this limit diagram for the toy example TR(Fp), where we have

TR(Fp) ' lim←−
e

ΩK(Fp[x]/xe, (x),Zp) ' Zp

For a fixed p, i, e, with (e, p) = 1, and any m ∈ Ip recall that

H1 (Zp(i)(Fp[x]/xe))m
∼= Z/p((s+1))

In order to describe a generator of H1Zp(i)(R) consider the diagram from [23] illustrating

the map

⊕
a≥0

H1
(
N≥iLWΩR

)
(pam)

φ/pi−can−−−−−→
⊕
a≥0

H1 (LWΩR)(pam) .



62

N≥iH1(LWΩRe)m H1(LWΩRe)m

Zp/p
〈
p((i−dm/ee)) xm

Γdm/ee

〉
0

Zp/p2
〈
p((i−dpm/ee)) xpm

Γdpm/ee

〉
Zp/p

〈
xpm

Γdpm/ee

〉

...
...

Zp/ps
〈
p((i−dps−1m/ee)) xp

s−1m

Γdps−1m/ee

〉
Zp/ps−1

〈
xp

s−1m

Γdps−1m/ee

〉

Zp/ps+1
〈
p((i−dpsm/ee)) xp

sm

Γdpsm/ee

〉
Zp/ps

〈
xp

sm

Γdpsm/ee

〉

Zp/ps+1
〈
p((i−dps+1m/ee)) xp

s+1m

Γdps+1m/ee

〉
Zp/ps+1

〈
xp

s+1m

Γdps+1m/ee

〉

Where we use the same notation as [23] and have taken the quotient by summands with

a ≥ s+ 1.

To build a generator of the kernel, start by taking a generator in degree s+1, in this degree

can−φ/pi = can is an isomorphism, so this element hits the generator of H1(LWΩ)ps+1m,

we must subtract off the preimage of this generator under φ/pi coming from the degree s

term, which is the generator in degree s as φ/pi is an isomorphism in degree s. In degree

s the canonical map is no longer an isomorphism, so can(gens) lifts to p((i−dpsm/ee))gens−1.

Repeating this process we find that a generator of the kernel is given by the element
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(gens+1,−gens, p((i−dpsm/ee))gens−1,−p((i−dpsm/ee))+((i−dps−1m/ee))gens−2, ....)

In particular, these elements get highly p-divisible in low degrees, so for degrees much

lower than s(e) they are 0. This will let us show that the transition map trfe = 0 for

large values of f , since s(f)→∞ as f →∞.

The transition map trfe : H1Zp(i)(Fp[x]/xf )m → H1Zp(i)(Fp[x]/xe)m is a graded map,

and in degree k is given by multiplication by

(5.1)
Γdpkm/ee
Γdpkm/fe

p((i−dpkm/fe))−((i−dpkm/ee))

Proposition 1. For any e, for all f large enough trfe = 0. So in particular TR(Fp) ' Zp.

Proof. Since limf→∞ s(f) = limfblogp
fi
m
c = ∞, choose f large enough such that

s(f,m) > 2s(e,m) for allm – this will make the terms in degree≤ s(e,m) of H1Zp(Fp[x]/xf )

at least ps+1-divisible, and so the map is 0. �

5.3.1. Evenness of TR(k[y
1/p∞

1 , . . . , y
1/p∞

t ]/(y1, . . . , yt)

Now we would like to compute TR
(
k[y

1/p∞

1 , . . . , y
1/p∞

t ]/(y1, . . . , yt

)
by using the identifi-

cations

TR
(
k[y

1/p∞

1 , . . . , y
1/p∞

t ]/(y1, . . . , yt)
)
' lim←−

e

ΩK
(
k[y

1/p∞

1 , . . . , y
1/p∞

t , x]/(y1, . . . , yt, x
e), (x),Zp

)
,

and
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π2i−1K
(
k[y

1/p∞

1 , . . . , y
1/p∞

t , x]/(y1, . . . , yt, x
e), (x),Zp

)
∼= H1Zp(i)

(
k[y

1/p∞

1 , . . . , y
1/p∞

t , x]/(y1, . . . , yt, x
e
)
.

This case is slightly more difficult than that of TR(Fp), because it is no longer the case

that s(e)→∞ as e→∞, meaning the transition maps are non-trivial in some degrees.

Lemma 3. The limit diagram

lim←−
e

H1Zp(i)(k[y
1/p∞

1 , . . . , y
1/p∞

t , x]/(y1, . . . , yt, x
e)),

for t ∈ N ∪ {∞} is Mittag-Leffler.

Proof. Fix an e ∈ N, we need to show that for some large enough value of f, we have

im(trfe) = im(trf ′e) for all f ′ ≥ f , i.e. the image of the transition maps stabilizes. For

fixed e, there are only finitely many values of m such that

H1Zp(i)(k[y
1/p∞

1 , . . . , y
1/p∞

t , x]/(y1, . . . , yt, x
e))(m,n) 6= 0.

This lets us reduce to the case where there is only a single value of m.

As before there are two things contributing to the map trfe, these are the coefficients

which in degree (pkm, pkn) are given by

Γdpkm/ee
Γdpkm/fe

p((i−dpkm/fe−bpknc))−((i−dpkm/ee−bpknc)),

since there are only finitely many values of m, each with only finitely many values of

k ≤ s(e,m), these coefficients eventually stabilize in all degrees for large values of f .
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Choose an f ′′ large enough for these coefficients to be stable for all f ≥ f ′′.

The other way for the image to change as f grows is for s(f,m, n) to change, since if

s(f,m, n) 6= s(f−1,m, n) then in degree (m,n) the transition map trfe is more p-divisible

than tr(f−1)e. The transition map becoming more p-divisible is of course not an issue if

tr(f−1)e = 0, so we must only show that f can be chosen large enough to stabilize the

transition maps in degrees (m,n) that do not eventually become 0, and simultaneously

in degrees (m,n) where the maps do eventually become 0, f is large enough for trfe = 0.

Recall that s(f,m, n) is the minimal value of a such that

⌈
pam

f

⌉
+ bpan1c+ . . .+ bpantc ≥ i.

So s is a step function that is decreasing in m and each n, and increasing in f .

Let s′ = s(e,m, 0), i.e. s′ is the minimal value of a such that
⌈
pam
e

⌉
≥ i. This is the

maximal possible value of s at stage e since for any n, s(e,m, n) ≤ s(e,m, 0). Now choose

f ′ large enough such that

⌈
p2s′m

f ′

⌉
= 1,

this ensures that for values of f ≥ f ′,

⌈
pkm

f

⌉
+
⌊
pkn1

⌋
+ . . .+

⌊
pknt

⌋
= 1 +

⌊
pkn1

⌋
+ . . .+

⌊
pknt

⌋
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no longer depends on f for values of k ≤ 2s′, and if k > 2s′ then the transition map is 0

anyways.

Now for all f ≥ max (f ′, f ′′) the transition maps are stable, so the limit diagram is

Mittag-Leffler

�

So in particular

Theorem 4. For k a perfect Fp-algebra, TR
(
k[y

1/p∞

1 , . . . , y
1/p∞

t ]/(y1, . . . , yt

)
is even.

Proof. Using the above identifications we find that

π2(i−1)TR
(
k[y

1/p∞

1 , . . . , y
1/p∞

t ]/(y1, . . . , yt)
)
' lim←−

e

H1Zp(i)
(
k[y

1/p∞

1 , . . . , y
1/p∞

t , x]/(y1, . . . , yt, x
e
)
.

Only lim←−
1 terms can contribute to odd degrees in TR, but this diagram is Mittag-Leffler

so there can be no lim1 terms. �

5.3.2. Local Evenness of TR

Theorem 5. For S a quasi-syntomic algebra over a perfect Fp algebra k, TR(S) is locally

even in the quasisyntomic topology.

Proof. Given a presentation of S,

k[x1, ..., xn]→ S,



67

with n possibly ∞, we obtain a quasisyntomic cover S → S ′ from the following pushout

square

k[x1, ..., xn] S

k[x
1/p∞

1 , ..., x
1/p∞
n ] S ′,

where S ′ is of the form k[x
1/p∞

1 , ..., x
1/p∞
n ]/(f1, ..., fm), and (f1, ..., fm) is a regular sequence.

Now letting R = k[x
1/p∞

1 , ..., x
1/p∞
n ] and defining yi 7→ fi gives a relatively perfect map

S ′′ := R[y
1/p∞

1 , ..., y1/p∞

m ]/(y1, ..., ym)→ S ′.

Since S ′′ → S ′ is relatively perfect, LS′/S′′ vanishes after p-completion, and LS′′/Zp ⊗S ′ '

LS′/Zp . Using the Nygaard filtration further gives that �S′′ → �S′ is surjective (since S ′

and S ′′ are quasiregular semiperfect, their prismatic cohomology is concentrated in degree

0).

Now using the filtration on TR from [21, p. 6.2], evenness for S ′ will follow from showing

that the equalizer diagram,

Eq
(∏

(N≥i�S′/N≥i+1�S′)/p
n ⇒

∏
�S′/p

n
)
,

is surjective which follows from evenness of S ′′ as

(
N≥i�S′′/N≥i+1�S′′

)
⊗S′′ S ′ ' N≥i�S′/N≥i+1�S′ ,

and surjectivity of �S′′ → �S′ , so surjectivity in the equalizer diagram for S ′′ implies

surjectivity of the equalizer for S ′.
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