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Abstract 

Air pollution is a pervasive environmental issue that has significant impacts on human health. 

Urban areas are particularly susceptible to high levels of air pollution due to concentrated emissions and 

populations. Urban air pollution has been linked to a range of adverse health effects, including respiratory 

diseases, cardiovascular diseases, and increased mortality rates. Pollution arises from the release of 

chemicals into the atmosphere, largely stemming from industrial activities, transportation, and energy 

generation. Understanding the sources, transport, and effects of air pollutants is essential, though 

limitations in computational capability and data availability has long hindered the identification of high-

impact hotspots at health relevant scales. Recent developments into chemical transport models and non-

regulatory monitoring techniques now play a crucial role, as these methods contribute to the identification 

of pollutant levels, the identification of vulnerable populations, and the support of evidence-based 

decision-making for effective pollution control strategies. 

 This dissertation investigates air quality over the Midwestern United states, centered over Lake 

Michigan-Chicago, using the latest developments in air quality modeling and observational tools. This 

research employs novel geospatial statistics and analytical methods to investigate concentrations of 

health-hazardous pollutants, namely nitrogen dioxide (NO2), ozone (O3), and fine particulate matter 

(PM2.5).  

Chapter 2 presents a high-resolution simulation of air pollution over the Southern Lake Michigan-

Chicago region. Chemical transport models (CTMs) allow researchers to simulate how pollutants disperse 

and transform in the atmosphere. High-resolution simulations may enhance the accuracy of the model and 

increase its usefulness for public health assessments and policymaking. In this chapter, I examine the 

performance of a 1.3 km and 4 km simulation of pollutant concentrations over a four-month period 

(August 2018, October 2018, January 2019, and April 2019) in the Southern Lake Michigan-Chicago 

region. The 1.3 km simulation exhibits slightly better performance compared to the 4 km simulation. The 

study reveals distinct urban and rural patterns of pollution, with urban areas experiencing significantly 
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higher concentrations of NO2 and PM2.5 (20% – 60% higher than rural areas), while O3 is simulated to be 

lower in urban areas (-6% compared to rural areas). Furthermore, the simulation highlights significant 

disparities in pollutant concentrations across neighborhoods in Chicago, with features such as highways 

contributing to substantial variations in pollution levels. This simulation provides valuable insights into 

the O3 chemistry regime in Chicago, finding that the O3 regime is transitional and VOC-limited, 

depending on the month of study. Overall, this research contributes to a better understanding of air 

pollution dynamics in the Southern Lake Michigan-Chicago region, shedding light on the spatial 

distribution of pollutants and their underlying chemistry. 

Chapter 3 presents a hotspot analysis of Chicago air quality by using three novel air quality 

products: a low-cost sensor network, observations from a satellite instrument, and a chemical transport 

model. The study addresses the lack of intraurban data validation by assessing the spatial agreement of air 

pollution patterns across multiple high-resolution datasets and applies the hotspot analysis to make 

recommendations for researchers and policymakers. I apply a hotspot clustering algorithm, Getis Ord Gi*, 

to identify areas of agreement and disagreement among the data products. The analysis reveals a 

Consensus hotspot on the West side of Chicago, indicating elevated pollution levels across different data 

products, wind directions, and seasons. This hotspot, predominantly inhabited by Hispanic and Latino 

people, requires urgent intervention as an environmental justice priority. Additionally, a medium-

agreement hotspot identified by the low-cost sensors and satellite (i.e., Observational hotspot) highlights 

the need for additional regulatory monitoring in the affected community. Furthermore, a highway hotspot 

shows variations in NO2 concentrations near recessed and elevated highways, a feature not captured in 

model simulations. These findings provide insights into areas of high pollution exposure, underscores the 

importance of targeted interventions, and recommends additional development of monitoring tools for 

improved air quality management in Chicago. By integrating this hotspot approach into air quality 

management frameworks, policymakers can develop targeted interventions and implement sustainable 

practices to mitigate the effects of air pollution on vulnerable populations. 
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In Chapter 4, the WRF-CMAQ simulation is used to investigate air pollution from an 

environmental justice perspective in Chicago. By integrating socioeconomic characteristics with air 

quality data, the study aims to uncover disparities in exposure and the contributing factors to 

environmental injustice. This research is the first to examine intraurban air pollution using a high-

resolution CTM, addressing the limitations of coarser models that overlook significant pollution sources 

like highways within cities. This study is also the first comprehensive analysis to consider multiple 

pollutants, health outcomes, and their connection to environmental justice issues in Chicago. Findings 

reveal that pollutants and demographics exhibit high spatial variability, with no strong linear relationship 

between pollutants and racial, ethnic, or economic demographics. Although average exposure disparities 

in race and ethnicity are relatively small compared to baseline health rates, the Black population 

consistently experiences significantly higher rates of mortality, asthma, and pediatric asthma 

hospitalizations related to pollution. Racial and ethnic exposure disparities persist across income levels, 

indicating that income does not alter the relationship between pollution exposure or health outcomes. To 

address these inequalities, policies should consider both impact and exposure, as areas of health impact 

may not align with areas of high exposure. The study highlights the importance of incorporating health 

and exposure information in addressing air pollution injustices and advocates for equitable solutions. 

In summary, this PhD research is the first to apply a 1.3 km high-resolution CTM to study 

Chicago air pollution. By applying this high-resolution data, this research also presents frameworks to 

isolate areas of outsized exposure and analyze dataset disagreement through hotspot analysis. Further, the 

data generated in this research is applied to analyze the link of exposure and public health at urban scales. 

By advancing CTM research, developing new methods of evaluation, and pioneering methods to 

investigate pollution inequalities at intraurban scales, this research ultimately supports the development of 

evidence-based pollution analysis and effective controls. 
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Chapter 1 

Introduction 

Worldwide, air pollution contributes to 3 – 7 million premature deaths annually (Pozzer et al., 

2023; Vohra et al., 2021). This figure outpaces deaths from tobacco, vehicle collisions, and AIDS (WHO, 

2023), resulting in air pollution contributing to the deaths of 1 in 5 people annually (Vohra et al., 2021). 

This environmental phenomenon further exacerbates existing social inequalities by contributing to 

outsized pollution exposure to minority communities (Clark et al., 2014; Demetillo et al., 2021; Goodkind 

et al., 2019; Nguyen & Marshall, 2018a; Tessum et al., 2021) and unjust health outcomes (Alexeeff et al., 

2018; Buonocore et al., 2023; Castillo et al., 2021). These issues come to a head in urban areas, where a 

high density of population intermingles with a high density of emissions. Today, half of the global 

population lives in an urbanized area, with the figure projected to 68% by 2050, so it is anticipated that a 

larger portion of the global population will encounter urban pollutants in the near future (UN, 2019).  

With the harms borne out of urban air pollution, the field of atmospheric chemistry was pulled 

from a theoretical to an applied science relatively quickly. The discovery of carbon dioxide (CO2) and 

molecular oxygen came in the late 18th century, with atmospheric measurements taken nearly 100 years 

later (Brimblecombe, 1998). From 1920 - 1940, pioneering atmospheric chemists began to hypothesize 

the role of ozone (O3) in the structure of the atmosphere (Gotz et al., 1934) and its mechanism for 

formation (Bates & Nicolet, 1950; Brewer, 1949; Chapman, 1930). After a century of increasing 

industrialization and emissions, air pollution became a public health crisis. In the United States, a smog 

event in Donora, PA in 1948 caused 20 – 40 mortalities and sustained health impacts (Townsend, 1950). 

A few years later, a smog event London, England in 1952 was directly linked to 400 – 1,000 mortalities 

over the course of 4 days (Wilkins, 1954).  

After outcry to lethal smog events, the US government responded by enacting the Air Pollution 

Control Act in 1955. This law allocated federal funds to air pollution research (Moran, 1954) and was 
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followed by the first iteration of the Clean Air Act (CAA) to establish the regulation of air pollutants 

(Act, 1963). The CAA was updated in 1970, providing a major shift in the regulation to authorize the 

Environmental Protection Agency (EPA) to regulate criteria pollutants by setting National Air Quality 

Standards (NAAQS, Act, 1970). With the power of the CAA and EPA, a national monitoring network 

was established to provide continuous ambient monitoring of pollutants, officially cementing the 

mitigation of air pollution as a national priority.  

The NAAQS regulate the 6 criteria pollutants: ground-level ozone (O3), nitrogen dioxide (NO2), 

fine particulate matter (PM10, PM2.5), carbon monoxide (CO), sulfur oxides (SOx, SO2), and lead (Pb). 

The CAA mandates that concentrations for the NAAQS are set to protect human health with adequate 

margin of safety (Act, 1970). With the monitoring capabilities to enforce NAAQS, the evidence linking 

air pollution and negative health outcomes have grown stronger. Here, I highlight some of the pathways 

and detrimental health effects of O3, NO2, and PM2.5. First, O3 is a highly reactive chemical which 

interacts and dissolves into the lung tissues (Mudway, 2000). As such, long-term and short-term exposure 

to O3 is associated with increased risk of asthma, bronchitis, inflammation, hospitalizations, and 

premature mortality (Anderson et al., 2013; Chen et al., 2007; Hoek et al., 2013). Second, NO2 is also a 

respiratory irritant which interacts and damages the lung tissue (Persinger et al., 2002). Long-term and 

short-term exposure to NO2 is associated with increased risk of asthma, hospitalizations, respiratory 

infections, and premature mortality (Huangfu & Atkinson, 2020). Finally, PM2.5 is associated with 

cardiovascular and respiratory diseases, as PM2.5 can be deposited into the lungs and absorbed into the 

blood stream (Sørenseng et al., 2003). As such, exposure to PM2.5 is linked to increased risk of asthma, 

heart attacks, hospitalizations, decreased lung function, and premature mortality (M. Franklin et al., 

2007). 

After the initial thrust of health-related air pollution research borne out of EPA regulations, the 

modern age of air quality sciences began with the advent of computers. New applications of 

computational power included remote-sensing tools which were onboarded onto satellite payloads. In 
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1978, the first space-borne instrument to measure atmospheric makeup, the Total Ozone Monitoring 

Spectrometer (TOMS), was launched by the National Aeronautics and Space Administration (NASA). 

This geo-orbiting instrument took daily snapshots of O3 and SO2 in the atmosphere at a spatial resolution 

of 1092 x 1108 km (Bowman & Krueger, 1985). The instrument was launched to collect data for 

meteorological, air pollution, and oceanographic scientists. Notably, TOMS was instrumental in 

identifying the stratospheric O3 hole over the Antarctic (Arrigo, 2003; Margitan et al., 1995). This 

discovery spurred international cooperation to reduce the use of chlorofluorocarbons (CFCs), the 

chemical compound which was found to deplete the O3 concentrations (Rowland, 1990). With the success 

of TOMS, dozens of remote-sensing instruments have been launched into space (Martin, 2008), including 

those which focus on tropospheric pollutants to support CTM assessment and human health assessments. 

Further computational development spurred innovation into numerical modeling tools for 

application in atmospheric sciences. The first models of atmospheric flows were developed in the late 

1890s, named the three primitive equations: 1) continuity, to represent the conservation of mass, 2) 

conservation of momentum, to describe hydrodynamical flow on the surface of a sphere, and 3) thermal 

energy equations, to reflect heat sources in the system (Jacobs, 1999). These primitive equations form the 

basis of numerical weather modeling today. The first general circulation model (GCM) to incorporate 

oceanic and atmospheric processes was developed by the National Oceanic and Atmospheric 

Administration (NOAA) in the late 1960s (NOAA, 2022), which was followed by the first global, 3-

dimensional model of tropospheric chemistry (Zimmerman, 1984). To develop global circulation models 

with chemistry, GCMs incorporate the primitive equations with additional variables to capture the fluxes, 

deposition, and chemical production/loss of atmospheric constituents. As computers have continued to 

increase in power, modern dynamic chemical transport models (CTMs) include detailed chemistry, 

advection, hydrology, and sub-grid processes (Byun & Schere, 2006; Henze et al., 2007; Wong et al., 

2011). Modern CTMs are used to inform increasingly complex earth-system dynamic problems and are 

considered the state-of-the science method to address questions in atmospheric chemistry.   
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The latest advancements in CTMs continue to exploit the computational efficiency gains of the 

modern age. One expanded capacity due to higher computational power are higher-resolution model 

simulations. Operational CTMs used to create air quality forecasts run at a horizontal grid resolution 

between 36 x 36 km2 (21 x 21 mi2) or 12 x 12 km (7.4 x 7.4 mi2) (Kang et al., 2010). Higher-resolution 

‘hindcasts’, which do not need to be quickly spun up for operational use, have been downscaled to 

approximately 1 x 1 km2 resolution (Torres‐Vazquez et al., 2022). Higher resolution air quality 

simulations are better at predicting air quality compared to their coarse counterparts (Fountoukis et al., 

2013; Gan et al., 2016) and provide enhanced spatiotemporal resolution to better reflect exposure and 

health disparities (Mohegh et al., 2021; Thompson & Selin, 2012).  

Finally, the latest advancement in computational networks have benefitted new monitoring of air 

pollution through the internet of things (IoT), the umbrella term to describe the physical sensors and 

software providing communication about the environment (Suresh et al., 2014). Originally developed to 

enable the remote monitoring of objects, urban planners and city officials have taken advantage of the IoT 

networking capabilities to monitor traffic, heat, and pollution for use in policy development (Theodoridis 

et al., 2013). Decreasing costs in sensor parts and faster internet connectivity have supported the 

proliferation of low-cost air quality sensor networks (Kumar et al., 2015). These monitoring networks 

have been supported by local governments and executed through partnerships with scientists (Catlett et 

al., 2017), non-profit organizations (Peters et al., 2022), and corporations (Daepp et al., 2022). Some low-

cost sensor projects have no central governance, such as PurpleAir, which is an internet-connected 

monitoring network driven by citizen scientists (Barkjohn et al., 2021). Low-cost sensor networks are 

particularly attractive for cities, as the networks can provide real-time information about the air pollution 

at spatial resolutions which satellite instruments and operational forecasts do not currently match.  

Regardless, ground-level pollution measurements from EPA reference-grade monitors are the 

gold-standard method to capture the ‘nose-level’ exposure of pollutants for policy and health impact 

studies, even though these measurements are spatially and (occasionally) temporally limited. By 
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combining reference-grade measurements with supplemental information from satellite instruments, low-

cost sensors, and air quality models, higher-resolution air quality information can be achieved and applied 

for use in policy-making and health-impact assessments (Ryan & LeMasters, 2007).   

The push for higher-resolution air quality data continues to be motivated by the original 

motivation for the CAA: the devastating health impacts of air pollution. With better information on health 

impacts and environmental emissions, clusters of cancer (Thun & Sinks, 2004) and asthma (Etzel, 2003) 

have been directly linked to local emission sources. In the US, areas experiencing high rates of cancer, 

asthma, and cardiovascular disease are also overwhelmingly people of color (POC, the people who 

identify as non-White Hispanic and Latino, Black, Asian, Pacific Islander, and Indigenous). Poor health 

incidence rates in POC communities are in part are due to lower health care access (Makri & Stilianakis, 

2008) and co-morbidities (Seposo et al., 2020; Sinden & Stockley, 2010; Sørensen et al., 2023) which 

elevate health risks , however, these elevated risk factors are influenced themselves by systemic racism 

(Feagin & Bennefield, 2014; Johnson, 2020). Systemic racism is the way in which polices and practices 

in a society or organization support a continued unfair treatment based on race and support an unfair 

advantage to others (Carmichael & Hamilton, 1967; Paradies et al., 2015). As systemic racism influences 

health outcomes, scholars have also hypothesized that systemic racism also influences the kind of 

environment which POC have access to live in. For example, a discriminatory federal mortgage appraisal 

policy by the Home Owners Lending Corporation (HOLC) limited the housing options of POC in the 

1940s by declaring high POC neighborhoods as unworthy of investment, a practice called redlining 

(Nelson et al., 2021). Current air pollution concentrations in historically redlined areas show that redlined 

areas 1) have high POC populations and 2) experience higher PM2.5 concentrations (Lane et al., 2022). 

This example encapsulates that regardless of racist intent, the environmental inequalities disproportionally 

effect POC: numerous studies have found that POC are more exposed to polluting emission sources 

(Goodkind et al., 2019; Tessum et al., 2019, 2021), experience higher pollution exposure levels (Clark et 

al., 2022a; Morello-Frosch & Jesdale, 2006), and experience more health impacts due to air pollution 
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(Chambliss et al., 2021; Southerland et al., 2021). The environmental justice (EJ) movement has come as 

a response to the systemic environmental racism and socioeconomic disenfranchisement. The EJ 

movement calls for the liberation of POC from the institutional factors which cause POC higher 

environmental risks (Mohai et al., 2009).  

A key tenant of EJ is to address the injustice caused by environmental risks through equal 

enforcement of current policies and the development and enforcement of policies which lessen 

inequalities. Previous studies on racial exposure inequalities look at national-scale disparities (Clark et al., 

2014, 2022a; Morello-Frosch & Jesdale, 2006; Tessum et al., 2021), though urban areas are more polluted 

and have more POC populations (Pew Research, 2018). National exposure disparity studies will control 

for ‘urban’ vs. ‘rural’ demographic differences by computing inequalities relative to average state or 

county-level demographic exposures, but a single county or state may include urban, suburban, and rural 

development levels. Few studies quantify the systemic air pollution exposure disparities within city-limits 

themselves. Studies which leverage municipal boundaries may better quantify intraurban disparities, as 

this boundary can inform local city policy to mitigate the urban emission sources which contribute to 

intraurban disparities, targeting the local factors which contribute to inequalities and expanding analysis 

beyond the national trend of higher pollution in urban areas. With the development of high-fidelity and 

high-resolution air quality datasets, air pollution monitoring capabilities have caught up to the demand for 

EJ policies to directly target urban disparities in unequal pollution exposure and impacts. 

In this dissertation, I use a high-resolution chemical transport model to analyze air quality over 

the Southern-Lake Michigan-Chicago region (Figure 1.1). The following experiments in this dissertation 

use a coupled Weather Research Forecast Community Multiscale Air Quality Modeling System (WRF-

CMAQ, Wong et al., 2011) simulation to analyze criteria pollutants. WRF-CMAQ creates numerical 

simulations of air quality by using information about the emissions, chemistry, and physics of the 

atmosphere. The model relies on first principles to predict concentrations of airborne gases, particles, and 

their compositions. To set up our model framework, custom meteorologically informed emissions based  
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Figure 1.1 Model set up for WRF-CMAQ simulation described in this dissertation. (a) Shows the nested 

simulation configuration, with the d03 (1.3 km) domain centered around Chicago. For additional 

information on model configuration, see Chapter 2. 

on the 2016 NEI (Eyth et al., 2019) were processed using the Sparse Matrix Operating Kernel of 

Emissions (SMOKE, B.H. Baek & Seppanen, 2018) and meteorology from a standalone WRF simulation. 

The spatial surrogates used to set up emissions at the 1.3 km simulation were provided by the Lake 

Michigan Air Directors Consortium (LADCO, 2019) and the 4 km surrogates were provided by CMAS 

(CMAS, 2018). With these customized inputs, the following experiments are the first to investigate air 

quality in Chicago using a high resolution CTM.  

This dissertation is comprised of five chapters, with an introduction (1), three results chapters (2-

4) and a conclusion (5).  Each of the results chapter in this dissertation uses the WRF-CMAQ model with 

the aim to 1) characterize and validate urban air pollution spatial heterogeneity, 2) intercompare CTMs 

output with low-cost sensor measurements and satellite observations and 3) use the model to gain insights 

on how air pollution interacts with populations and impacts health. Appendices 1 – 3 provide 

supplemental information for Chapters 2 – 4, while Appendices 4 – 8 provide references and the abstracts 

of projects which were published over the course of the PhD to which I contributed to.  

In Chapter 2 of this dissertation, we apply the WRF-CMAQ model to characterize air quality in 

the Southern Lake Michigan region. This study addresses a gap in the literature: few high-resolution (~1 

km x 1 km horizontal resolution) characterizations of urban air quality had been performed (as of 
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publication, only Torres‐Vazquez et al., 2022 over the New York City Metropolitan area). This research 

is the first to apply a CTM at this spatial resolution in Chicago, elucidating how enhanced horizontal 

resolution can alter model performance and how the finer simulation of pollutants can be more 

representative of emission sources, which is particularly important for near-highway neighborhoods. The 

chapter focuses on validating the simulation of key pollutants, namely nitrogen dioxide (NO2), ozone 

(O3), and particulate matter (PM2.5), and then analyzing the output in the context of the urban 

environment. Chicago, a city in nonattainment for O3 levels, has long been studied to identify the 

dominant pathways for O3 formation, and in part, this study is motivated by conflicting chemical regimes 

identified for the formation of O3 over Chicago. O3 is formed from the emission of primary pollutants 

(VOCs and NOx) and the interaction with the environment (radiation and water vapor). The regime of O3 

formation, be it NOx or VOC-limited, has been widely studied through there is no consensus to which 

chemical regime Chicago follows (T. Foley et al., 2011; Jin et al., 2017; Jing & Goldberg, 2022). Further, 

given the high-resolution nature of this study, this study is motivated by being the first to be able to 

characterize neighborhood-scale variation in pollutants within Chicago using a CTM. This study was 

published in the Journal of Geophysical Research: Atmospheres in March 2023. 

The final takeaways of Chapter 2 are that: 

2.1 The 1.3 km WRF-CMAQ simulation outperforms the 4 km simulation in simulating most 

criteria pollutants. 

2.2 Simulated spatial pollutant patterns show distinct urban-rural footprints, with urban NO2 

and PM2.5 20% – 60% higher than rural, and urban O3 6% lower. 

2.3 Pollutants within Chicago are simulated to have substantial concentration disparities 

across neighborhoods. 

2.4 Fine-scale emitting features, such as highways, are more apparent in the fine-resolution 

simulation which results in higher concentrations of NO2 and PM2.5 in near-highway 

neighborhoods. 
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2.5 The O3 chemical regime in Chicago is NOx-limited in August 2018, VOC-limited in 

October 2018, January 2019, and April 2019. 

In Chapter 3 of this dissertation, we build off the validation and characterization of Chicago air 

pollution using WRF-CMAQ by using NO2 observations from a low-cost sensor network and satellite 

instrument. This study addresses the growing research gap about data validation at intraurban scales, as 

few reference monitors are available to test the spatial validity of air pollution patterns from multiple 

high-resolution datasets. Previous studies have used a combination of low-cost sensors, satellite 

observations, and/or CTM output to create high-resolution analysis of urban air quality (Cordova et al., 

2021; Ryan & LeMasters, 2007), though few studies assess the data validity of each tool. I use a hotspot 

clustering algorithm, Getis Ord Gi* (Getis & Ord, 2010) to assess agreement across data products. To do 

this, I run the hotspot clustering algorithm for each air quality data product and identify overlapping 

hotspots. In identifying areas with 3/3 hotspot overlap (i.e.: Consensus hotspot), I highlight the area in 

Chicago which has strong evidence for elevated pollution and would therefore need intervention most 

urgently. In areas with 2/3 dataset agreement (i.e.: Medium-Agreement Hotspots), I investigate the 

underlying reasons which may contribute to dataset mismatch and suggest additional development into 

each tool.  This study is under review in Environmental Research Letters, as of July 2023. 

The final takeaways of Chapter 3 are that: 

3.1 By analyzing the area of intersection across Getis-Ord Gi* hotspots, we can identify areas 

with high data agreement (Consensus hotspot) for intervention, or medium agreement, to 

target the underlying reasons for air quality product disagreement. 

3.2 While the spatial patterns of NO2 identified by each data product shows different 

formations, the Consensus hotspot on the West side of Chicago is consistently identified 

across products, wind directions, and seasons. 

3.3 With high agreement across air quality data products, we find that between 332,000 – 

501,000 Chicago residents are exposed to significantly elevated levels of NO2 pollution, 
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with this area being majority Hispanic and Latino, further highlighting this area for 

intervention as an EJ priority. 

3.4 The medium-agreement hotspot identified in the low-cost sensors and satellite 

(Observational Hotspot) but not model highlights an EJ community which could be better 

served with additional regulatory monitoring. 

3.5 The medium-agreement hotspot over the highway (Highway hotspot) highlights how 

sensors near recessed highways report in higher NO2, while sensors near elevated 

highways report higher NO2 in August 2022, which is a feature not captured in model 

simulations. 

In Chapter 4, I use the WRF-CMAQ simulation to analyze air pollution through an environmental 

justice lens. By integrating the socioeconomic characteristics of Chicago with the air quality data from the 

simulation, I aim to uncover potential disparities in exposure and the underlying factors contributing to 

environmental injustice. This study is the first to use a high-resolution CTM to investigate air pollution at 

the intraurban scale, which is important as Chapter 2 identifies how emissions sources, such as highways, 

are significant pollution sources in Chicago, and these sources are smoothed out by coarser models. This 

study is also the first to comprehensively look at multiple pollutants, multiple health outcomes, and 

connect the impacts of intraurban air pollution to environmental justice issues in Chicago. We utilize this 

analysis to emphasize that incorporating health and exposure information is a more effective approach to 

addressing air pollution injustices compared to policies that focus on only one aspect. Overall, by 

employing an environmental justice perspective, I aim to shed light on the intersectionality of social and 

environmental issues, ultimately advocating for more equitable and sustainable solutions to air pollution 

challenges. This study is being prepared for submission. 

The final takeaways of Chapter 4 are that: 



 

 

23 

4.1 The pollutants and demographics have high spatial variability, but no pollutant has a 

strong linear relationship to any racial, ethnic, or economic demographic, so areas of high 

pollutants affect multiple demographics and incomes. 

4.2 The average exposure disparities across Chicago are relatively small compared to the 

baseline health incidence rates. As such, we find small inequalities in exposure with 

respect to race and ethnicity: compared to the Chicago average, the Hispanic and Latino 

population are exposed to 2 – 4% higher NO2 and PM2.5 and the Black population is 

exposed to 1% higher MDAO3. In contrast, the Black population consistently experiences 

30 – 45% higher mortality, asthma, and pediatric asthma hospitalization rates. As such, 

the Black population experiences the worst pollution-related health outcomes, with 38 – 

40% higher rates of NO2, PM2.5, and MDAO3-attributable mortality, asthma, and 

pediatric asthma hospitalization rates. 

4.3 At every income level, we find the same racial and ethnic exposure disparities, indicating 

that income does not change the relationship between pollution exposure. The Hispanic 

and Latino population experience higher NO2 and PM2.5 exposure at all income levels, the 

Black population experiences higher MDAO3 exposure at all income levels. Pollution-

attributable health outcomes decrease slightly with higher incomes across all racial and 

ethnic groups, though the racial and ethnic segregation across health outcomes exist at all 

income levels with the Black population experiencing the worst health outcomes.  

4.4 Given that areas of health impact are not necessarily located in areas of high exposure, I 

suggest developing policies which balance impact and exposure to best reduce 

inequalities in both spheres. I show that by reducing pollution in areas with the highest 

health incidence rates results in increased exposure inequalities for the Hispanic and 

Latino population, though greatly benefits the Black population. In reducing pollution in 

areas with the highest concentrations, the attributable health inequalities for the Black 
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population increase but the exposure inequalities decrease. By isolating areas with the 

highest exposure and mortality rates, we decrease inequalities in exposure for the 

Hispanic and Latino population and decrease health impacts in the Black community, 

though to lesser degree than isolating one outcome.  

To summarize, this dissertation research is the first to apply a high-resolution WRF-CMAQ 

model at the neighborhood scale over Chicago to investigate the model validity, chemical speciation, and 

multi-species impacts of exposure. This research also provides new methodological frameworks to 

process and validate high-resolution air quality data products when regulatory monitoring is not available 

for validation. Moreover, by applying this new data to address environmental injustices, we uncover the 

nuanced exposure and health disparities caused by Chicago air pollution and develop new 

recommendations on how to address these injustices. 
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Chapter 2 

Simulation of Neighborhood-Scale Air Quality with Two-Way Coupled WRF-CMAQ Over 

Southern Lake Michigan-Chicago Region 

This chapter is published as: Montgomery, A., Schnell, J. L., Adelman, Z., Janssen, M., & Horton, D. E. 

(2023). Simulation of neighborhood-scale air quality with two-way coupled WRF-CMAQ over southern 

Lake Michigan-Chicago region. Journal of Geophysical Research: Atmospheres, 128, e2022JD037942. 

https://doi. org/10.1029/2022JD037942 

 

Abstract 

The southern Lake Michigan region of the United States, home to Chicago, Milwaukee, and other 

densely populated Midwestern cities, frequently experiences high pollutant episodes with unevenly 

distributed exposure and health burdens. Using the two-way coupled Weather Research Forecast and 

Community Multiscale Air Quality Model (WRF-CMAQ), we investigate criteria pollutants over a 

southern Lake Michigan domain using 1.3 and 4 km resolution hindcast simulations. We assess WRF-

CMAQ’s performance using data from the National Climatic Data Center and EPA Air Quality System. 

Our 1.3 km simulation slightly improves on the 4 km simulation’s meteorological and chemical 

performance while also resolving key details in areas of high exposure and impact, i.e., urban 

environments. At 1.3 km, we find that most air quality-relevant meteorological components of WRF-

CMAQ perform at or above community benchmarks. WRF-CMAQ’s chemical performance also largely 

meets community standards, with substantial nuance depending on the performance metric and 

component assessed. For example, hourly simulated NO2 and O3 are highly correlated with observations 

(r > 0.6) while PM2.5 is less so (r = 0.4). Similarly, hourly simulated NO2 and PM2.5 have low biases 

(<10%), whereas O3 biases are larger (>30%). Simulated spatial pollutant patterns show distinct urban-

rural footprints, with urban NO2 and PM2.5 20-60% higher than rural, and urban O3 6% lower. We use our 

1.3 km simulations to resolve high-pollution areas within individual urban neighborhoods and 
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characterize seasonal changes in O3 regimes across tight spatial gradients. Our findings demonstrate both 

the benefits and limitations of high-resolution simulations, particularly over urban settings. 

Plain Language Summary 

In this study we use an air quality model to simulate air pollution at very fine spatial scales over a 

central midwestern U.S. domain that includes Chicago, IL and Milwaukee, WI. We assess our model's 

performance relative to meteorological and air quality observations and then characterize the spatial 

patterns of modeled pollutants. We find large differences in air pollution between urban and rural settings. 

Because our model operates at fine spatial scales, we are also able to discuss differences in air pollution in 

different neighborhoods in individual cities. In Chicago, we find elevated pollution near highways and in 

south and west side neighborhoods, findings that are consistent with previous reports of disparate air 

quality related health impacts. 

2.1 Introduction 

Exposure to poor air quality in the U.S. has been found to exacerbate respiratory diseases (Kurt et 

al., 2016), drive disparate health burdens in racial minority populations (Jbaily et al., 2022; Tessum et al., 

2021), and contribute to ~100,000 premature deaths annually (Goodkind et al., 2019). Given the 

substantial public health burden associated with exposure to poor air quality, it is essential to resolve 

pollutant concentrations at high spatiotemporal resolutions. Pollutant exposure in high population 

settings, i.e., urban environments, can vary widely, which can contribute to disparities in health outcomes 

on a neighborhood-by-neighborhood basis across individual cities (Alexeeff et al., 2018; O’Leary & 

Lemke, 2014; Southerland et al., 2021). Determining the relationship between heterogeneous pollutant 

exposure and disparate health effects is challenging given observational constraints. For example, 

regulatory-grade air quality monitoring stations are relatively sparse and therefore spatial coverage is 

limited, particularly in urban settings. Observing platforms that do have better spatial coverage, e.g., 

remote sensed satellite observations, often have temporal limitations such as making only one observation 
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a day in the case of polar orbiters (Penn & Holloway, 2020). Given the need to resolve pollutants across 

impact-relevant scales (Clark et al., 2022b), researchers often turn to physics- and chemistry-based 

Chemical Transport Models (CTMs) which allow for the spatial heterogeneity of pollutants to be 

estimated at high temporal resolutions in areas that are otherwise unmonitored (J. Hu et al., 2019). 

State-of-the-science CTMs resolve pollutants at ever-increasing spatiotemporal scales. For example, the 

Community Multiscale Air Quality modeling system (CMAQ; Byun & Schere, 2006) was developed by 

the U.S. Environmental Protection Agency (EPA) to study the complex interactions of pollutants and 

meteorology and increase our understanding of atmospheric processes. Over time, the spatial resolution of 

CTMs like CMAQ has increased as computational costs decrease and spatially-defined inputs are 

resolved at finer scales (Gan et al., 2016). Higher resolution CTM studies have the potential to simulate 

more accurate meteorology, emissions, and pollutant concentrations than coarser resolution models 

(Fountoukis et al., 2013; Gan et al., 2016; Torres‐Vazquez et al., 2022). However, some simulated 

meteorological and chemical variables may show lower model performance at finer resolutions because 

of incomplete characterizations of complex terrain and limitations in the planetary boundary layer 

formation (Tran et al., 2018; Zhang et al., 2014). Notably, epidemiological studies have identified the use 

of high-fidelity, high-resolution air quality characterizations as better at capturing pollution-related health 

impacts (Jiang & Yoo, 2018; Southerland et al., 2021; Thompson et al., 2014). 

Given the potential benefits of high resolution CTM studies, here we utilize WRF-CMAQ to 

characterize pollutant concentrations over a southern Lake Michigan domain, a region in the central 

midwestern U.S., which includes the major population centers of Chicago, IL and Milwaukee, WI. 

Previous modeling studies have focused on this region due to the atmospheric complexities associated 

with Lake Michigan and high O3 pollution in the region (Abdi‐Oskouei et al., 2020; Dye et al., 1995; T. 

Foley et al., 2011). By and large, air quality in this region has been improving due to emission controls 

and the outsourcing of industry and manufacturing (Jing et al., 2014). However, pockets of poor air 
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quality persist, particularly in and downwind of urban centers like Chicago, which has been in EPA 8-

hour O3 National Ambient Air Quality Standards (NAAQS) non-attainment status since 2004 (EPA, 

2022).  

From a regional perspective, poor air quality in Midwestern summers is often associated with 

warm stagnant air masses (Jing et al., 2017; Schnell & Prather, 2017; Tai et al., 2010), while near-surface 

winter pollution is largely restricted to particulate matter accumulations associated with temperature 

inversions (Tran et al., 2018). However, at local scales, local geography, meteorology, and emissions 

often play a synergistic role. For example, in Chicago, the coastal geography, micro-meteorology, and 

high-emitting urban footprint combine to create an active atmospheric regime that often facilitates 

accumulation of primary pollutants and/or the precursors of secondary pollutants. Indeed, Chicago’s O3 

NAAQS nonattainment status is a direct result of interacting emissions, geography, and meteorology – 

particularly the interaction of precursor emissions with Lake Michigan’s lake breeze. Because the 

formation of O3 is generally dependent on the ratio of precursor emissions, i.e., nitrogen oxides (NOx) 

and volatile organic compounds (VOCs), the EPA has restricted NOx emissions (EPA, 2019). However, 

previous studies have found that Chicago is in a transitional or VOC-limited regime (Duncan et al., 2014; 

Jin et al., 2017; Jing et al., 2014) – suggesting a limitation to the efficacy of emissions controls that only 

consider NOx and do not also reduce VOCs.  

Similar to O3, the concentration of NO2 depends on meteorological factors such as winds and 

temperature (Harkey et al., 2015), however given the relatively short lifetime of NO2, proximity to 

emission sources also plays a substantial role, particularly in the development of intra-urban 

heterogeneities. In satellite analyses, Chicago appears as a large source of NO2 pollution to the greater 

Midwest (Goldberg et al., 2021), a factor that contributes to the formation and elevated concentration of 

downwind/rural O3. In addition, NO2 can be a precursor to PM2.5 formation through the oxidation of NO2 

to nitrate. While Chicago is currently in compliance with PM2.5 standards, PM2.5 has previously been 
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found to be elevated in comparison with rural areas due to the confluence of transportation, energy 

generation, and industrial emissions, as well as atmospheric transport, and secondary formation processes 

(Zhang et al., 2014). 

Given the above complexities, we hypothesize that the characterization of air quality in the 

southern Lake Michigan-Chicago region would benefit from resolving fine scale interactions and impacts 

of local geography on atmospheric chemistry and meteorology. As such, here we use a high-spatial 

resolution numerical model that includes atmospheric meteorology, chemistry, and components of their 

interactions and feedbacks, i.e., the two way-coupled Weather Research and Forecasting-Community 

Multiscale Air Quality modeling system (WRF-CMAQ). These high-resolution simulations are made 

possible by the Lake Michigan Air Directors Consortium (LADCO) spatial surrogate dataset (LADCO, 

2022), which defines the allocation of county-level emission information to a 1.3 km grid. We 

characterize our air quality estimates as “neighborhood-scale”, because our 1.3 km simulations have an 

average of ~5 grid cells for each of the 77 community areas that comprise Chicago (Chicago Data Portal, 

2022). LADCO spatial surrogates are used in the Sparse Matrix Operating Kernel of Emissions (SMOKE) 

processing system (B.H. Baek & Seppanen, 2018) with the U.S. EPA 2016 Beta modeling platform (Eyth 

et al., 2019) to produce emission data for our 1.3 km grid. We use this emissions dataset in WRF-CMAQ 

to simulate 4 months representative of the 4 meteorological seasons and characterize pollutant 

concentrations over a central-Midwestern and Chicago-centric domain.  

2.2 Methods 

2.2.1 CTM Simulations and Domains 

We performed CTM simulations using the two-way coupled Community Multi-scale Air Quality 

(CMAQ, v5.2; Byun & Schere, 2006) and Weather Research and Forecasting (WRF, v3.8; Skamarock et 

al., 2008) modeling system (WRF-CMAQ; Wong et al., 2012). The two-way configuration of WRF-

CMAQ allows feedbacks between simulated aerosols and WRF’s shortwave radiation scheme. To 
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perform WRF-CMAQ simulations, we follow the methodology of Wong et al. (2012): (1) we produce 

dynamically downscaled meteorology with stand-alone WRF simulations, (2) we then use the stand-alone 

WRF output to create meteorologically-informed emissions data using the Sparse Matrix Operating 

Kernel of Emissions (SMOKE), and lastly (3) we run the coupled WRF-CMAQ model, incorporating the 

meteorologically-informed SMOKE emissions data. 

 

Figure 2.1 Nested model domains and observation sites. (a) Spatial footprint of nested model domains. 

We perform stand-alone WRF simulations at 12 km horizontal resolution in the d01 domain. Dynamically 

downscaled two-way coupled WRF-CMAQ simulations are performed in the d02 and d03 domains at 4 

km and 1.3 km horizontal resolutions. (b) We use Local Climatological (LCD) Data from the National 

Climatic Data Center (NCDC) for meteorological validation of the 4 km (d02, purple) and 1.3 km (d03, 

pink) domains. The station located at Chicago-O’Hare is indicated by a triangle in the center of the d03 

domain in panel (b). (c) EPA Air Quality System (AQS) stations are used to validate simulated pollutants. 

AQS stations are colored by chemical species and several AQS sensors for different chemical species are 

co-located, thus overlap on the map. 

To generate boundary and initial conditions and facilitate the production of meteorologically-

informed emissions data, we first perform a stand-alone WRF simulations to generate three-dimensional 
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meteorology in nested domains with 12 km (CONUS; d01), 4 km (Midwest; d02), and 1.3 km (southern 

Lake Michigan; d03) resolutions (Figure 2.1a). We use a 10-day spin-up period and simulate four months 

– August 2018, October 2018, January 2019, and April 2019 – using a 60, 20, and 6-second timestep for 

the 12, 4, and 1.3 km domains respectively. To allow soil moisture and soil temperature variables to reach 

a state of statistical equilibrium with observational constraints, we turn on the soil moisture initialization 

option during the 10 day spin-up (Pleim & Xiu, 2003).  We run WRF with 35 vertical layers from the 

surface to 30 hPa with a lowest model level thickness of ~20 m. Initial conditions and 3 hourly lateral 

boundary conditions for the 12 km domain are sourced from the North Atlantic Regional Reanalysis 

(NARR; Mesinger et al., 2006). Simulated WRF meteorology is nudged toward reanalysis using Four-

Dimensional Data Assimilation (FDDA) above the boundary layer, using nudging coefficients from 

LADCO (2022) and Otte (2008) for temperature and wind (3×10-4 s-1, 1×10-5 s-1 , and 1×10-6 s-1 for 12 

km, 4 km, and 1.3 km) and the water vapor mixing ratio (1×10-5 s-1, 1×10-6 s-1, and 1×10-7 s-1 for 12 km, 4 

km, and 1.3 km. We incorporate the land cover product from the National Land Cover Database (NLCD; 

Dewitz, 2021) at a 9 arc-second resolution. For the WRF physics options, we select the Morrison 2-

moment microphysics scheme (Morrison et al., 2009), version 2 of the Kain-Fritsch (KF2) cumulus cloud 

parameterization for the 12- and 4-km simulations (Kain, 2004),the Asymmetric Convective Model 

version 2 (ACM2) for the planetary boundary layer (Pleim, 2007) and the Pleim-Xiu land surface model 

(Xiu & Pleim, 2001) with soil moisture and temperature nudging (Pleim & Gilliam, 2009; Pleim & Xiu, 

2003). We use the Rapid Radiative Transfer Model for GCMs (RRTMG; Clough et al., 2005) for both our 

shortwave and longwave radiation schemes.  

To create 4 km and 1.3 km emissions inputs for use in WRF-CMAQ, we processed the EPA’s 

2016 Beta emissions modeling platform with the SMOKE software. We process the 2016v7.2 National 

Emissions Inventory (Eyth et al., 2019) using the 2016 SMOKE Beta Platform, relying on 4 km spatial 

surrogates provided by CMAS (CMAS, 2022) and 1.3 km spatial surrogates provided by LADCO 

(LADCO, 2022). The spatial surrogates map county-level emissions inventories to model grid cells by 
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using the geographic attributes of the modeling area (such as population, industry, and economic activity). 

Meteorological conditions are a key factor in determining various vehicle emission processes such as 

tailpipe exhaust, evaporative processes, brake and tire wear, idling, cold starts (wherein an engine has 

been at rest for 12+ hrs), and hoteling (wherein long-haul trucks idle for extended rest periods) (SMOKE 

v4.5 User’s Manual, 2017). As such, we integrate the 2018 and 2019 stand-alone WRF-simulated 

meteorology into the MOVES version developed for the 2016 beta platform, using the 2016 MOVES 

activity data (Eyth et al., 2019). We use SMOKE to create emissions for the on-road, point, and nonpoint 

sectors, with meteorology affecting the point, onroad, and some non-point sector processes. We calculate 

biogenic emissions (BEIS), lightning NOx emissions, and windblown dust “inline” during the coupled 

WRF-CMAQ simulation. Within the point sector, we use 2018 and 2019 CEM data to integrate the 

reported energy-generating unit (EGU) data.  

To ultimately simulate atmospheric pollutants, we run the two-way coupled version of WRF-

CMAQ at 4 km and 1.3 km. We first run coupled WRF-CMAQ over the 4 km domain using the 

meteorological boundary conditions from the 12 km stand-alone WRF simulation, nudging from NARR 

(3-hourly resolution) and chemical boundary and initial conditions from CAM-Chem (Emmons et al., 

2020; The CESM2 Development Team, 2019), with chemical variables mapped in Table S1.1 . We run 

the coupled 4 km simulation with an 18-second time step and 10-minute radiation time step, with CMAQ 

coupled every 8 WRF steps. We then use the 4 km output as meteorological and chemical boundary 

conditions for the 1.33 km WRF-CMAQ simulation. For the 1.33 km WRF-CMAQ simulation, we run 

WRF with a 6 second time step and 5-minute radiation time step, with CMAQ coupled every 8 WRF 

steps. Both the 4 km and 1.3 km simulations integrate the Carbon Bond Mechanism version 6 and aerosol 

module version 6 with aqueous chemistry (cb6r3_ae6_aq) to create atmospheric constituents. For the two-

way WRF-CMAQ 4 km and 1.3 km simulations, we applied FDDA coefficients to keep the model 

simulation closer to observations above the boundary layer, using default nudging coefficients for 

temperature and wind (3×10-4 s-1) and the water vapor mixing ratio (1×10-5 s-1).  
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2.3 Results 

To present our two-way coupled WRF-CMAQ simulations and highlight their ability to resolve 

neighborhood-scale air quality, we begin with evaluations of the model’s domain-wide meteorological 

and chemical performance across temporal scales. We then highlight the utility of simulations that resolve 

air quality within individual neighborhoods by conducting an in-depth analysis of intra-urban air quality 

by characterizing pollutant heterogeneities across Chicago, IL and their interactions with local 

meteorological features, infrastructure, emissions sources, and the temporal distribution of emissions. 

Lastly, we assess the benefits, and in some cases disbenefits, of higher spatial resolution for model-

observation fidelity performance. 

We begin by comparing model-simulated air quality and meteorological data from our highest 

resolution 1.3 km domain (d03; Figure 2.1) to ground-based observations. We evaluate model 

performance for each simulated month. Our air quality performance evaluation primarily focuses on O3, 

NO2, and PM2.5, although other EPA criteria pollutants (i.e., CO and SO2) are also discussed. We evaluate 

model fidelity to meteorological and air pollutant observations using the following performance metrics: 

mean observation (μd), mean prediction (μp), normalized mean bias (NMB), normalized mean error 

(NME), correlation coefficients (r), mean error (ME), mean bias (MB), and root mean squared error 

(RMSE) as defined in Table S1.2. By normalizing model-simulated variables, the statistical performance 

of our simulations can be compared to similar model simulations performed over locations with different 

meteorology, emission profiles, and chemical regimes. 

2.3.1 WRF-CMAQ Meteorological Performance  

To assess the performance of the two-way coupled WRF-CMAQ meteorological output over the 1.3 km 

domain, we compare model simulated variables to ground-based measurements of meteorological 

conditions. We use hourly observational data from METAR stations aggregated by the National Climatic 

Data Center (NCDC) (Figure 2.1b). We focus on 2-m temperature (T2) and relative humidity (RH) at 2 
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m, and wind speed (WS) and wind direction (WD) at 10 m, each of which is important to the fate and 

transport of atmospheric pollutants. We evaluated model fidelity using the performance recommendations 

outlined in Table S1.3 (Emery et al. 2001). Model-observation comparisons occur where WRF grid cells 

contain NCDC stations (Figure 2.1b). The 1.3 km domain contains 10 NCDC stations, which allows for 

model-observation comparison and assessment at 0.01% of the simulation grid cells (90,720 total). We 

also assess the model’s meteorological performance within Chicago city limits, which has a single NCDC 

station. 

In Table 1.1, we summarize the model’s 1.3 km domain (d03) hourly meteorological performance 

against observations. We assess diurnal meteorological performance in Figure S1.1. For each month, 

WRF-CMAQ simulated T2, WD, and WS meet the correlation performance criteria suggested by Emery 

et al., 2001 (Table S1.3). Emery et al. (2001) do not make RH performance recommendations. WRF 

performance is best when simulating T2; model-station agreements have low biases and errors, though 

January 2019 and August 2018 have slightly higher biases than Emery et al.’s suggested benchmark 

(Table 1.1). Model simulations have a consistent warm bias across seasons, with the highest biases in 

August 2018 and January 2019 (MB = 0.8 °C), and highest mean errors in January 2019 and April 2019 

(ME = 1.9 °C). Simulated RH is also highly correlated with observations (r > 0.70), with the highest bias 

and error in April 2019 (MB = 5.1 %, ME = 11.3). Simulated wind speeds are biased low in each season 

but meet MB benchmark criteria in January 2019 and April 2019. The lowest WRF performance is shown 

by WD, which only meets suggested MB criteria for April 2019. Model simulated WD and station 

measurements are highly correlated (r > 0.5), except for August 2018 (r = 0.3). The simulation is wetter 

(MB < 6%) and warmer (MB < 0.8 °C) than observations for all months, except for August 2018, where 

RH is biased low (MB = -5.7%). 
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Table 2.1 Comparison of two-way coupled WRF-CMAQ simulated hourly meteorological variables with 

NCDC observations for 1.3 km (d03) simulations. The average observed value is noted as μd, while the 

predicted value is noted as μp. *Indicates performance outside of Emery et al. (2001) suggested 

benchmarks (Table S1.3). 

Var Month μd μp MB ME RMSE r 

T2  (°C) 08/2018 23.2 24.0 0.8* 1.8 2.4 0.9 

10/2018 10.8 11.1 0.3 1.8 2.3 0.9 

01/2019 -5.8 -5.0 0.8* 1.9 2.5 1.0 

04/2019 9.2 9.2 0.0 1.9 2.5 0.9 

Average 9.4 9.8 0.5 1.9 2.4 0.9 

RH (%) 08/2018 76.6 71.0 -5.7 11.1 14.4 0.7 

10/2018 74.8 76.6 1.9 12.2 15.4 0.7 

01/2019 74.6 78.6 4.0 9.6 11.7 0.7 

04/2019 66.1 71.9 5.8 12.4 16.1 0.8 

Average 73.0 74.5 1.5 11.3 14.4 0.7 

WS (m/s) 08/2018 6.9 6.1 -0.7* 2.9 3.7* 0.6 

10/2018 8.8 7.3 -1.5* 3.2 4.1* 0.7 

01/2019 10.2 10.1 -0.1 3.4 4.7* 0.7 

04/2019 10.6 8.3 -2.3* 3.8 4.8* 0.7 

Average 9.1 8.0 6.7 22.3 35.4 0.6 

WD  (°) 08/2018 166.0 196.7 30.7* 78.8* 127.8 0.3 

10/2018 190.6 207.7 17.1* 53.6* 102.2 0.5 

01/2019 192.8 208.5 15.7* 41.4* 89.5 0.6 

04/2019 166.8 171.0 4.3 52.2* 99.4 0.6 

Average 179.1 196.0 17.0 56.5 104.7 0.5 

 

Within Chicago city limits, there is one NCDC meteorological station, located ~16 km inland 

from Lake Michigan at O’Hare International Airport on the northwestern edge of the city (denoted by a 

triangle in Figure 2.1b). Model performance in comparison to the O’Hare meteorological station is shown 

in Table S1.4 and Figure S1.2. Similar to the full 1.3 km domain comparison, meteorology in the model 

grid cell that contains O’Hare shows high correlations with NCDC observations for T2, WS, and RH. 
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Also, like the full domain comparison, WRF-simulated T2 has the highest correlation with observations, 

while WD correlations are lowest. The ME and RMSE are higher for the O’Hare grid cell for WS and RH 

than for the full 1.3 km domain comparison, but lower for T2 and WD. Unlike the full 1.3 km domain, 

simulated T2 is cooler than observations at O’Hare (-0.2 °C), though the RH biases are similar to the 

domain average (Table S1.4).  

2.3.2 WRF-CMAQ Pollutant Simulation Performance 

To assess WRF-CMAQ pollutant simulation performance, we compare model simulated criteria pollutant 

concentrations to measurements of NO2, O3, PM2.5, SO2 and CO from EPA Air Quality System (AQS) 

monitoring stations, which report hourly observations of each pollutant. Model-observation comparisons 

occur where WRF-CMAQ grid cells contain EPA AQS stations (Figure 2.1c). The number of EPA 

monitoring stations changes within the 1.3 km domain depending on the season with 115 total stations in 

August 2018, 115 in October 2018, 73 in January 2019, and 119 in April 2019. Over our simulation 

period, there were a maximum of 10 NO2, 67 O3, 29 PM2.5, 8 SO2, and 5 CO monitors, though some 

stations occasionally drop offline during our simulation period. Notably, the number of O3 monitors drops 

from 67 to 23 in January 2019. We filter EPA station data by removing observations with negative 

concentration values and quality assurance (QA) flags. 

We compare model simulated pollutants to AQS observations over several different time scales, 

including 4-monthly or annualized mean, monthly mean, daily mean, hourly mean, and daily maximum 

(Figure 2.2). We calculate the annualized mean by averaging across our simulated months of August 

2018, October 2018, January 2019, and April 2019. In the following, we provide quantitative assessments 

of each criteria pollutant across different temporal periods to provide context for model performance on 

both fine (hourly, daily, and daily maximum) and coarse scales (monthly and annual), with diurnal 

profiles available in the supplement (Figure S1.3). In general, the model and observations have better 

agreement with longer time-averaging slices, e.g., lower biases and errors. To provide greater context for 

our model performance, we follow EPA recommendations (Dennis et al., 2010) and compare the 
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performance of WRF-CMAQ over our 1.3 km domain to previously published CTM studies (Table S1.5). 

Our comparisons use fine-scale, domain-agnostic studies (<4 km horizontal resolution), or coarser-scale 

(>4 km horizontal resolution) studies focused on Chicago, the Midwest, or the Great Lakes region, i.e., 

studies with similar model domains. We select studies that use the same statistical metrics as in Table 

S1.1, simulate time periods after the year 2000, and integrate a similar CTM (WRF-CMAQ or WRF-

Chem).  We do not focus on other benchmark studies that use coarser and/or older versions of CTMs or 

emissions models (Emery et al., 2017; Simon et al., 2012). 

 

Figure 2.2 Model performance relative to observations of 5 pollutants over 5 different time-averaging 

periods. The periods are: hourly (red), daily (yellow), daily maximum (blue), and monthly (black). The 

average of the four simulation months, each drawn from a different meteorological quarter, i.e., the 

annualized performance is depicted as a black horizontal line. Each panel summarizes a key performance 

metric: (a) correlation coefficient (pearson r), (b) normalized mean bias (NMB), (c) and normalized mean 

error (NME). 
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Table 2.2 WRF-CMAQ performance metrics for hourly simulated 1.3 km (d03) pollutants as compared 

to EPA AQS station observations. The average observed value is noted as μd, while the predicted value is 

noted as μp. 

      1.3 km Domain Performance 

Var Month μd μp NMB% NME% r 

NO2 08/18 10.38 10.69 2.98 55.76 0.59 

10/18 10.76 11.05 2.64 66.08 0.47 

01/19 13.13 9.59 -26.95 45.45 0.62 

04/19 11.19 10.57 -5.56 51.21 0.63 

Average 11.37 10.48 -6.72 54.62 0.57 

O3 08/18 30.28 40.25 32.92 40.04 0.69 

10/18 20.38 32.12 57.66 62.55 0.58 

01/19 24.61 31.47 27.88 34.10 0.65 

04/19 36.33 47.35 30.35 34.46 0.61 

Average 27.90 37.80 37.20 42.79 0.63 

PM2.5 08/18 12.12 7.49 -38.21 54.61 0.25 

10/18 6.78 7.89 16.43 67.18 0.35 

01/19 9.42 9.83 4.39 50.87 0.52 

04/19 7.60 6.26 -17.62 53.94 0.51 

Average 8.98 7.87 -8.76 56.65 0.41 

SO2 08/18 0.76 1.41 87.23 169.66 0.21 

10/18 0.83 1.13 37.14 139.52 0.11 

01/19 0.99 1.18 19.68 110.15 0.21 

04/19 0.79 1.25 57.57 152.94 0.12 

Average 0.76 0.96 25.33 116.39 0.18 

CO 08/18 250.72 204.53 -18.42 43.25 0.24 

10/18 229.61 188.81 -17.77 46.99 0.31 

01/19 284.08 186.90 -34.21 40.55 0.46 

04/19 281.43 183.51 -34.79 44.70 0.40 

Average 261.46 190.94 -26.30 43.87 0.35 

 

Of all pollutants, we find that WRF-CMAQ-simulated NO2 is closest to the observations with low 

NMB and high correlations across months (Figure 2.2). The annualized average hourly correlation of NO2 

is high (r = 0.6; Figure 2, Table 1.2), while its bias is low (NMB < -7%; Figure 2.2, Table 2.2). NO2 

model-observation correlations are generally greater than 0.6 regardless of temporal assessment scale, 
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except for October 2018 (Figure 2.2). We find slight high biases in model simulated hourly NO2 in 

August (NMB = 3%) and October 2018 (NMB = 3%) and low biases in January (NMB = -27%) and April 

2019 (NMB = -6%) (Table 2.2). When compared to previously published WRF-CMAQ studies with 

different domains/resolutions, our NO2 simulation performance exceeds NMBs and correlations reported 

by Bickford et al. (2014), Harkey et al. (2015), and Vijayaraghavan et al. (2009).  

Model-simulated O3 is high relative to observations, with limited variation across seasons (Figure 

2.2 and Table 2.2). We find that the annualized average correlation of simulated hourly O3 is high (r = 

0.6), but that the annualized NMB (38%) and NME (42%) are high. The highest NME for O3 occurs in our 

October 2018 simulation (58%), which corresponds with the highest NME for NO2 (64%). The lowest 

NMB and NME are found in January 2019 (27%, 34%), which has the lowest concentrations of O3. 

Compared to other studies in the Great Lakes region, our biases and errors are higher than those of 

Bickford et al. (2013), who ran WRF-CMAQ without two-way coupling, and Abdi-Ouskouei et al. 

(2020), who used WRF-Chem. Other similar CTMs studies report O3 biases similar to those reported here 

(Odman et al., 2019; S. Pan et al., 2017; Qin et al., 2019; Travis et al., 2016; Zhang et al., 2014). Our high 

O3 bias is mainly driven by an over prediction of simulated O3 concentrations during periods of low 

observed O3, particularly at night (Figure S3). During warm “ozone season” months when observed O3 is 

high (O3 > 60 ppb), our NMB is negative (-5.4% and -7.2% for August and April) and NME are less than 

17% (Table S1.6). When our model performance evaluation is limited to hours when observed O3 

concentrations are greater than the 50%ile value, average annualized NMB is reduced to ~25% (Table 

S1.6). Lastly, and further confirming WRF-CMAQ’s challenges with capturing low O3 concentrations, 

the NMB in our model-simulated daily maximum 8-hr running average O3 (MDAO3) is ~27% when 

annualized, ~25% in O3 season months, and only ±2% when MDAO3 is greater than 60 ppb (Table S1.6).  

Unlike model simulated O3, our simulated hourly PM2.5 concentrations have low biases and low 

correlations (Figure 2.2 and Table 2.2). The annualized average correlation of hourly PM2.5 is 0.4, with 
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NMB of -10% and NME of 56%. August 2018 hourly PM2.5 has the largest bias (-38%) and lowest 

correlation (r = 0.25), while the highest NME (67%) and highest positive NMB (16%) are found in 

October 2018. Within the Great Lakes region, we find that our model-observation agreement for PM2.5 

has higher correlations and similar NMEs to Bickford et al., 2013. Compared to other WRF-CMAQ 

studies within the continental U.S., our PM2.5 NME is lower than Hogrefe et al., 2015 but higher than Liu 

et al., 2010 and Wang et al., 2021. Our PM2.5 NMB and MB are similar to Hogrefe et al. (2015) and Wang 

et al. (2021), but lower than Liu et al. 2010 and Torres‐Vazquez et al., 2022.  

The agreement of our model simulated SO2 and CO compared to the AQS observations were the 

lowest of the 5 criteria pollutants (Figure 2.2 and Table 2.2). Annualized average correlation of SO2 is 

0.18, with NMB = 25% and NME = 116%. Annual average correlation of CO is 0.35, with NMB = -26% 

and NME = 44%. Few previous WRF-CMAQ studies report their performance of SO2 and CO. Compared 

to those that do, our simulation of SO2 had lower NMBs, higher NMEs, and lower correlations (Bickford 

et al., 2014; Campbell et al., 2019). 

2.3.3 Domain-wide Characterization of WRF-CMAQ Simulated Pollutants 

In Figure 2.3, we show monthly-average simulated NO2, O3, and PM2.5 concentrations over the 1.3 km 

domain (d03) for each season (Figure S1.4 shows model results overlaid with station observations). 

Simulating pollutants at a 1.3 km spatial resolution facilitates the characterization of distinct urban-rural 

patterns, the influence of Lake Michigan on regional O3 distributions, pollutant hotspots over highway 

corridors, stationary emitting sources, and urban centers. We distinguish urban areas from rural by 

classifying the most populated census tracts (>95%ile) from the American Community Survey 2018 

(Manson, Steven et al., 2022) as urban, and all other areas as rural (Figure S1.5). In the following, we 

individually discuss domain-wide analyses of each pollutant and then highlight the model’s 

characterization of pollutants within the city of Chicago. 
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The simulated NO2 concentrations largely track high-population areas and highway corridors 

(Figure 2.3a-e). In all seasons, the interstate highway system that connects population centers is 

highlighted by the interconnected system of roadways with elevated NO2 concentrations. The lowest NO2 

concentrations in our domain are simulated over northernmost and easternmost portions of Lake 

Michigan, in areas distant from emissions sources. Likewise, rural areas distant from roadways have low 

NO2 concentrations. We find that the average annual urban concentration of NO2 in our domain is 

simulated to be 3.5 ppb (59.8%) higher than average concentrations in rural portions of our domain 

(Figure 2.3 & Table S1.7). Across seasons, domain-wide NO2 concentrations correspond with the 

magnitude of simulated NOx emissions (Figure S1.6). In January 2019, domain average NO2 

concentrations are highest (μ = 3.1 ppb; Figure 2.3c), which corresponds to our highest simulated NOx 

emissions (μNOx,January = 2.6 x 10-3 g/s). The lowest domain average NO2 concentrations occur in April 

2019 (μ = 2.4 ppb; Figure 2.3d), which co-occurs with low NOx emissions (μNOx,april = 2.5 x 10-3 g/s). 

In contrast to NO2, O3 concentrations are simulated to be relatively low over urban areas and 

roadways, with low concentrations over individual highway corridors apparent (Figure 2.3f-j). Across 

seasons, the spatial distribution of O3 concentrations is relatively consistent, however the magnitude of O3 

concentrations varies by season. Of the four months that we simulate, we find that the highest O3 

concentrations occur in April 2019, (μ = 49.4 ppb; Figure 2.3i), while the lowest concentrations are 

simulated in January 2019 (μ = 33.9 ppb; Figure 2.3h). Over simulated warm season months (i.e., April 

2019 and August 2018), we find that domain-wide O3 concentrations are ~1.5 times higher than cool-

season concentrations. Comparing concentrations across the urban-rural divide (Figure S1.5), we find that 

O3 over urban areas is simulated to be ~3.3 ppb (9.4%) lower than over rural areas, with the greatest 

urban-rural difference in cool season months (Table 2.3). 
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Figure 2.3 Monthly and annualized average WRF-CMAQ simulated NO2 (a-e), O3 (f-j) and PM2.5 (k-o) 

for the 1.3 km simulation domain (d03). From left-to-right each column presents August 2018, October 

2018, January 2019, and April 2019, with the domain-average (μ) concentrations annotated in the lower 

left of each panel. The right-most column provides the annualized average. Note: the colorbar for O3 

concentrations begins at 20 ppb. 

Across all seasons, the highest simulated concentration of O3 in the 1.3 km domain occurs over 

Lake Michigan (Figure 2.3f-j). The simulation of elevated over-lake O3 concentrations is consistent with 

previous Lake Michigan observation and modeling campaigns (Doak et al., 2021; Dye et al., 1995; Foley 

et al., 2011), and similar to other studies focused on inland bodies of water (e.g., Chesapeake Bay, 

Goldberg et al., 2014). Elevated O3 over Lake Michigan is thought to be dependent on the circulation of 

primary pollutants from land to lake via the lake-breeze. Elevated O3 over the lake occurs through the 

following idealized sequence of events: (1) In the morning land-based emissions (O3 precursors) are 

transported over the lake by a land-breeze, which combine with shipping emissions, and are trapped 

within a shallow boundary layer. (2) As the day warms, the land-lake temperature gradient weakens, and 

the land breeze dwindles. Fewer NOx emissions are transported to the lake. (3) As sunlight increases, 

photochemical production of O3 over the lake is enhanced. Due to the low number of depositional 

pathways over the lake, O3 accumulates. (4) On days where a lake breeze forms, O3 is advected inland, 
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often to areas where the original precursor emissions did not originate. Lake breeze effects are primarily a 

warm season phenomenon, however, the low concentration of over-lake depositional pathways also 

contributes to elevated cool season O3 concentrations (Figure 2.3f-j) (Doak et al., 2021; Dye et al., 1995). 

In our simulations, land-lake O3 concentration differences are greatest in August 2018, as the average 

concentration of O3 over land (39.8 ppb) is 11 ppb lower than the average O3 concentration over the lake 

(50.4 ppb). 

Domain-wide simulated PM2.5 concentrations show greater spatial smoothness, such that elevated 

PM2.5 hot spots have a more diffusive footprint compared to NO2 hot spots (Figure 2.3k-o). Across 

months, the spatial pattern of simulated PM2.5 concentrations is relatively consistent and largely tied to the 

location of emission sources. Despite consistent spatial patterns across months, the relative magnitude of 

PM2.5 concentrations is influenced by meteorological conditions (e.g., boundary layer height and wind 

speeds), the magnitude of seasonal primary PM emissions, and secondary PM pollutant formation 

reactions. The domain-wide average concentration of PM2.5 peaks in January 2019 (μ = 6.9 μ/m3) and is 

lowest in April 2019 (μ = 4.5 μ/m3), which mirrors the pattern of emissions of PM and its precursors 

(Figure S1.6). Both stationary and mobile sources of PM2.5 typically co-emit NOx emissions, as such 

simulated PM2.5 hotspots tend to co-occur with NO2 hotspots over urban areas, highways, and stationary 

sources (Figure 2.3a-e and k-o). However, compared to NO2, PM2.5 concentrations are more spatially 

diffuse due to the longer atmospheric lifetime of PM species (Laughner & Cohen, 2019; Pinto et al., 

2004). Further, the urban-rural concentration disparity is lower, i.e., PM2.5 concentrations are 22% higher 

in urban v. rural areas, compared to 60% for NO2 (Table S1.7). Simulated grid cells with the highest 

concentration of PM2.5 occur outside of urban areas and are primarily associated with emissions from 

industrial and manufacturing point sources.  

2.3.3 Neighborhood-Scale Characterization of WRF-CMAQ Simulated Pollutants 
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Our domain-wide analysis demonstrates the ability of the 1.3 km WRF-CMAQ simulations to 

characterize differences in urban-rural regimes and identify pollutant hotspots, however it does not 

highlight the ability of the model to resolve and characterize neighborhood-scale air quality. To 

demonstrate this ability, we provide an in-depth analysis of a sub-region of the 1.3 km modeling domain, 

i.e., the city of Chicago (Figure 2.4a), a city with ~2.7 million people (American Community Survey, 

2018). At the 1.3 km model resolution, there are on average ~5 grid cells in each of the 77 neighborhoods 

that comprise the city (Figure 2.4). Chicago sits close to the center of our 1.3 km domain, and in Figure 

2.3 is identifiable as both an NO2 and PM2.5 hotspot at the southwest corner of Lake Michigan. Major 

sources of emissions within Chicago include transportation, industry, and buildings. The city has 6 major 

interstate highways (I-290, I-294, I-90, I-94, I-55, I-57) that loosely outline the City’s lakeside central 

business district or “Loop”. There are two airports within City limits, O’Hare in the northwest and 

Midway in the south central. Most industrial activities occur on the west and southwest sides of the city.  

In Figure 2.4b-d, we show the city’s average annualized concentrations of NO2, O3, and PM2.5. 

Simulated concentrations of criteria pollutants are higher within Chicago than the domain average, so 

Figure 2.4 has a different color bar than that used in Figure 2.3. For all pollutants, the 1.3 km WRF-

CMAQ simulations reveal substantial spatial heterogeneity amongst neighborhoods. Spatial gradients are 

particularly substantial for simulated NO2, with concentrations in some neighborhoods double those in 

others. The predominant spatial pattern of simulated pollutants strongly corresponds to the interstate 

highway system (Figure 2.4a), although the highest concentrations of NO2 and PM2.5 are simulated where 

the lowest concentrations of O3 are simulated. O3 concentrations are elevated in neighborhoods that abut 

Lake Michigan, consistent with the influence of the lake breeze, and in neighborhoods without interstate 

highways. In the following paragraphs we discuss annualized pollutant pattern details across Chicago, as 

well as patterns of individual months. We determine ‘highest’ or ‘lowest’ values of pollutant 

concentrations by computing the 95%ile or 5%ile values, respectively. 
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Figure 2.4 Chicago geography and simulated pollutants. (a) Neighborhoods and highways within the city 

of Chicago. Inset at lower left depicts the location of Chicago (black) within the 1.3 km domain. In the 

right column, we provide annualized WRF-CMAQ simulated (b) NO2, (c) O3, and (d) PM2.5 

concentrations over Chicago and average concentrations within city limits (μ). 

In Figure 2.4b-d, we show the city’s average annualized concentrations of NO2, O3, and PM2.5. 

Simulated concentrations of criteria pollutants are higher within Chicago than the domain average, so 

Figure 4 has a different color bar than that used in Figure 2.3. For all pollutants, the 1.3 km WRF-CMAQ 

simulations reveal substantial spatial heterogeneity amongst neighborhoods. Spatial gradients are 

particularly substantial for simulated NO2, with concentrations in some neighborhoods double those in 

others. The predominant spatial pattern of simulated pollutants strongly corresponds to the interstate 

highway system (Figure 2.4a), although the highest concentrations of NO2 and PM2.5 are simulated where 
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the lowest concentrations of O3 are simulated. O3 concentrations are elevated in neighborhoods that abut 

Lake Michigan, consistent with the influence of the lake breeze, and in neighborhoods without interstate 

highways. In the following paragraphs we discuss annualized pollutant pattern details across Chicago, as 

well as patterns of individual months. We determine ‘highest’ or ‘lowest’ values of pollutant 

concentrations by computing the 95%ile or 5%ile values, respectively. 

The highest annualized concentrations of NO2 (where μannual > 19.5 ppb) are simulated on the 

West side of Chicago and in the Loop, where highways are prevalent (e.g., I-90, I-290, and I-55) and 

simulated NOx emissions are high (Figure S1.6). The lowest NO2 concentrations (where μannual < 11.3 

ppb) are simulated in the lake-front neighborhoods, with the exception of those in the Loop. Lakefront 

neighborhoods are east of the main interstate highways, where lower NOx emissions and ventilation 

contribute to the relatively low simulated NO2 (Figure S1.6). Across seasons, NO2 concentrations within 

Chicago remain highest over the 3 most-trafficked inter-state highways: I-290, I-90, and I-94 (Figure 

2.4b). Simulated NO2 concentrations are lowest in April 2019 (μ  = 14.2 ppb) and highest in October 2018 

(μ  = 18.7 ppb), although the greatest NO2 bias was also found in October 2018. Compared to the full 

model domain (μdomain  =  2.4-3.2 ppb; Figure 2.3a-d), average NO2 over Chicago is nearly 5 times higher 

(μChicago  = 14.2-18.7 ppb) across seasons (Figure 2.5a-d). Unlike the NOx-NO2 emission-concentration 

relationship found over the full domain, we find that average NO2 concentrations over Chicago do not 

correspond with emission magnitude differences, as Chicago NOx emissions are lowest in August 2018 

and highest in January 2019 (Figure S1.6), while NO2 concentrations are highest in October 2018 and 

lowest in April 2019. We discuss this disconnect further in our discussion of model performance in 

section 2.4.1. 

Simulated annualized and individual month O3 concentrations within Chicago tend to be the 

spatial inverse of simulated NO2 concentrations (Figures 2.4 & 2.5). The lowest concentrations (μannual < 

28.5 ppb) of O3 are simulated on the West side of the city, near the interstates. These locations are also 
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simulated to have the highest NO2 concentrations, i.e., O3 is suppressed via titration by NO. O3 

concentrations are highest in the warm months, with August 2018 (μ = 35.7 ppb) and April 2019 

concentrations (μ = 41.1 ppb) nearly double October 2018 (μ = 23.3 ppb) and January 2019 

concentrations (μ = 22.7 ppb). Average annualized O3 concentrations in Chicago (μannual = 30.7 ppb) are 

simulated to be significantly lower than the domain average because of the lake reservoir of O3 (μ = 40.0 

ppb). Even when land-only O3 concentrations are isolated, Chicago has concentrations that are slightly 

lower than the rest of the full model domain (μland,domain,annual = 38.8 ppb). Warm-season O3 is highest near 

Northern lake-front neighborhoods, which are distant from the major interstates, have low NOx emissions 

(Figure S1.6), and subject to lake breeze advection of the reservoir of O3 over Lake Michigan. In the cool 

months, O3 concentrations are simulated to be highest on the western edges of the city. However, the 

cooler months have a lower range of O3 concentrations (±8.9 ppb) than warmer months (±15.5 ppb). 

Annualized PM2.5 concentrations in Chicago correspond well with the spatial patterns of the 

interstate system, though the PM2.5 footprint is spatially more extensive than that of NO2 (Figure 2.4). 

PM2.5 concentrations in Chicago are simulated to be 2 times higher than the average concentration of the 

full model domain (μdomain,annual = 5.5 μg/m3, μChicago,annual = 10.2 μg/m3). PM2.5 concentrations peak on the 

west side of Chicago near Midway airport and the intersection of I-290 and I-55 with I-90 (μ  = 12 – 13 

μg/m3). The lowest concentrations of PM2.5 occur on the lakefront (μ  = 8 – 10 μg/m3). Similar to O3, 

Chicago PM2.5 levels show strong seasonal variations, though the simulated concentrations of PM2.5 are 

highest in the seasons when O3 is lowest. As such, simulated PM2.5 peaks in the cooler months (Figure 5j-

k) and is lowest in April 2019 (μ = 8 μg/m3). Areas of high PM2.5 in Chicago are consistent across 

seasons, in particular on the west side of the city and within the Loop.  
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Figure 2.5 Monthly average NO2 (a-d), O3 (e-h) and PM2.5 (i-l) concentrations over Chicago, as simulated 

in the 1.3 km domain. Columns depict August 2018, October 2018, January 2019, and April 2019 

simulations. Chicago-average concentrations are annotated (μ). 

2.3.4 Benefits and Disbenefits of Increased Model Resolution 

Our nested modeling framework facilitates assessment of the potential benefits and/or disbenefits 

of attempting to resolve neighborhood scale meteorology and air pollutants with a CTM. That is, given 

that our methodology simulates atmospheric chemistry and meteorology at both 4 km and 1.3 km 

resolutions, an assessment of increased spatial resolution on model performance is possible.  However, 

our chosen methodology does not provide a pure spatial resolution sensitivity analysis, i.e., while the 

underlying emissions data of each simulation is the same (NEI 2016v1), the meteorologically informed 

emissions are slightly different due to differences in the 4 km and 1.3 km WRF simulations. Further, we 

compare stations to grid cells in each domain, and the 1.3 km grid cells cover a smaller area than the 4 km 

grid cell. Despite this imperfect sensitivity analysis, we compare model performance at both resolutions. 

We restrict our comparison to model performance over the 1.3 km domain. As such, we use the same 10 
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NCDC meteorological observing stations and the ~125 EPA AQS stations shown in Figure 2.1 and 

discussed in the WRF-CMAQ simulation comparison. After this performance comparison, we investigate 

spatial changes in simulated pollutants over Chicago at the different resolutions. 

For the simulated meteorology, we find that the increase in resolution benefits the performance of 

WS and WD, has no influence on RH, and has disbenefits for T2 (Table 2.1 & Table S1.8). Higher 

resolution provides the greatest benefit to simulated WD as MB and ME are lower at 1.3 km and 

correlations are higher. In contrast, we find that observed T2 is better captured in the 4 km simulation, as 

lower bias and error and higher correlations are found compared to the 1.3 km simulation. Within 

Chicago (with just one NCDC station) the 1.3 and 4 km simulations perform similarly to their domain-

wide performance, with WD showing slightly lower biases in the 4 km domain (Table S1.9). 

For simulated pollutant concentrations we find higher model-observation correlations in the 

higher resolution (1.3 km) simulation, though this improvement is coupled with increased ME (Table 

S10).  The 1.3 km simulation showed higher correlations than the 4 km simulation for all criteria 

pollutants, though this increase was marginal (Δr < 0.1, Table S1.10). The 1.3 km simulation of NO2 has 

a closer agreement to the EPA stations, but this comes with slightly higher normalized errors (+0.25%; 

Table S1.10). On average, the 1.3 km simulation NMB was lower than that of the 4 km model simulation 

for each season, which came at a trade-off, as NME was only lower in the 1.3 km simulation in April 

2019. The correlation between AQS observation and model outputs for NO2 were similar for the 1.3 km 

and 4 km simulations. The 1.3 km simulation lowered the NMB by 8% in August 2018 and January 2019, 

with marginal bias improvement in April 2019 and January 2019. In contrast, the 1.3 km simulation of O3 

showed higher NMB and NME than the 4 km simulation. For PM2.5, we find that the 1.3 km resolution 

simulation has a lower NMB than the 4 km simulation for 3 out of 4 seasons, but the NME is marginally 

higher (0.9%) in the higher resolution simulation. Simulated SO2 showed the largest improvement with 

finer model resolution (ΔNMB = 10%, Δr = 0.03), however this was also the pollutant with the lowest 
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performance in both the 1.3 km and 4 km domains. CO had slightly better performance in the 4 km 

domain, as the NME and NMB were 0.5% to 1% higher, respectively, in 1.3 km simulation.  

These meteorological and pollutant performance analyses are limited due to the low number of 

sensors relative to the number of grid cells simulated in our modeling domain (125 EPA stations and 10 

NCDC stations vs 90,720 grid cells). In addition, the finer resolution creates opportunities for local-scale 

meteorological processes to influence agreement, particularly for pollutants which are not well mixed in 

the atmosphere (Zhang et al., 2014). The measurement-prediction relationship can be greatly influenced 

by model grid cell size, plumes, and wind speeds and directions. For example, while the relative amount 

of SO2 simulated in a plume may be correct, due to the increase in the number of grid cells in a higher 

resolution simulation, the potential for an erroneously simulated wind direction to adversely influence 

model grid cell-observation fidelity increases.  

While model performance when assessed against very limited station observations demonstrates  

improvement (albeit marginal) when the model resolution increases from 4 km to 1.3 km, we note that a 

key advantage of our higher resolution simulation is the ability to characterize neighborhood-scale air 

quality, particularly within intra-urban environments. As Chicago is the densest metropolitan area in our 

modeling domain, we focus our analysis on air quality differences between the 1.3 and 4 km simulations 

within city limits. We find that over Chicago the 1.3 km simulation has higher average NO2, PM2.5  and 

O3 concentrations than the 4 km simulation (Figure 2.6) . Differences in pollutant concentrations at 

different model resolutions can be caused by a number of factors, including differences in the underlying 

emissions data, differences in simulated micro-scale meteorology, and/or the nuances of emission-

chemistry interactions at the grid cell level. In the following, we provide examples of each. 
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Figure 2.6 Average annualized NO2 (a), O3 (c), and PM2.5 (e) within Chicago city limits as simulated in 

the 4 km simulation. (b,d,f). Relative pollutant differences between 1.3 km and 4 km resolution 

simulations. Average Chicago concentrations (μ) and average differences between model resolutions (Δμ) 

are annotated. 

The overall higher concentrations of NO2 and PM2.5 simulated over Chicago at 1.3 km are in part 

due to differences in the underlying meteorologically-informed emissions. In the case of NO2, the 

difference in domain average emissions over the 1.3 km domain and the corresponding subset of the 4 km 

domain is 0, as the net flux of emissions is the same between the two. However, isolating subsets of the 
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domains does not result in the same balance, as shown in the Chicago subset of emissions (Figure S6) and 

resulting pollutant concentration differences (Figure 2.6). Emissions are different between the 1.3 km and 

4 km domains because the WRF-simulated  temperatures and relative humidity are different at the grid 

cell level which affects the emissions processing (Figure S1.7). These differences are particularly 

apparent near the lake shore, where the level of detail afforded by the 1.3 km grid (Figure S1.8) results in 

notable emission differences (Figure S1.7). Specifically, we find that over Chicago, emission rates of 

NOx, organic and elemental carbon, and VOCs are 7.5%, 6.2%, and 1.5% higher in the 1.3 km emissions 

relative to the 4 km emissions. These higher emission rates, in part, explain the higher average 

concentration of pollutants over Chicago. For example, elevated NOx and PM species emissions over the 

city center and highways (Figure S1.7), contribute to higher NO2 and PM2.5 concentrations in the 1.3 km 

simulation (Figure 2.6). For O3, it is likely that higher relative NOx emissions at 1.3 km suppress O3 

concentrations via enhanced NO titration compared to the 4 km simulation.  

Despite the above, we find that differences in emissions do not always result in corresponding 

and co-located changes in pollutant concentrations. As an example, we highlight near-lake grid cells on 

the north side of Chicago where 1.3 km NOx emissions are lower than at 4 km, but the resulting NO2 

pollutant concentrations are higher (Figure S1.7 g-j). Similarly, on the south side of Chicago we note grid 

cells with higher NOx emissions at 1.3 km, but lower NO2 concentrations than simulated at 4 km. This 

finding is notable because it suggests that fine-scale differences in simulated meteorology drive nonlinear 

outcomes that affect the production and destruction of pollutants, and is indicative of the value added by 

fine-scale, fully-coupled CTMs. This finding also suggests caution should be taken when assessing health 

and justice outcomes at neighborhood scales, particularly if the methods employed do not include 

dynamic meteorological processes.      

2.3.5 O3 Regimes over the Domain  
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One notable feature of our 1.3 km simulation is the ability to characterize the O3 regime at fine 

spatial resolutions. Localized formation of tropospheric O3 is a nonlinear process that depends on the 

relative abundances of precursor emissions, the transport of O3 and other precursor emissions from 

upwind areas, and the scale and magnitude of local sinks. Despite this complexity, O3 production 

environments are often simplified as either NOx- or VOC-limited regimes (Sillman et al., 1990; 

Kleinman, 1994). An area is considered “NOx-limited” when VOCs are more available than NO2, and as 

such, O3 production is limited by the radical termination of NO2 by OH. O3 production is “VOC-limited” 

when NOx is abundant, and O3 production is limited by the availability of peroxy radicals from VOC 

oxidation (Schroeder et al., 2017). To determine if areas are NOx- or VOC-limited, VOC concentrations 

can be compared to NOx concentrations  (Ashok & Barrett, 2016). The resultant ratio serves as a proxy to 

describe the chemical loss of HO2 + RO2 (LROx) over the chemical loss of NOx (LNOx) (Schroeder et 

al., 2017). Given limited surface observations, researchers often turn to columnar ratios of HCHO to NO2 

from remotely sensed instruments like TropOMI to provide spatially continuous estimates of O3 regimes 

(Ashok & Barrett, 2016). While there are not definitive VOC:NOx or HCHO:NO2 ratio values to 

delineate whether an area is NOx- or VOC-limited, it is generally accepted that very low ratios (e.g., < ~1) 

indicate an area is VOC-limited, very high ratios (e.g., > ~2 for column, >~7 for surface over Chicago) 

indicate an area is NOx-limited, and values between the high and low range are considered “transitional” 

(Ashok & Barrett, 2016; Jin et al., 2017). Despite the above context, regime thresholds are uncertain and 

can be influenced by a number of factors, including local meteorology and VOC species composition 

(Rethinking the Ozone Problem in Urban and Regional Air Pollution, 1991; Seinfeld & Pandis, 2016).  

     Several previous studies using a variety of methods have attempted to characterize the Chicago 

region’s O3 regime. These studies have arrived at different conclusions over the years, including some 

that have found Chicago to be NOx-limited (Laughner & Cohen, 2019), VOC-limited (Blanchard et al., 

2008; Koplitz et al., 2022), or in a transitional state (Jin et al., 2020; Jing & Goldberg, 2022). In Figure 

2.7 and Table S1.12, we provide WRF-CMAQ simulated annualized daytime (7 am - 7 pm) surface 
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VOC:NOx and column HCHO:NO2 ratios. We find substantial detail and heterogeneity in simulated 

surface-level VOC:NOx ratios (Figure 2.7a), although the simulated column average HCHO:NO2 ratio 

shows similar spatial patterns (Figure 2.7b). The more diffuse spatial gradients in the column are due to 

the integration of the chemicals through the simulated troposphere. The greatest difference between the 

surface-level and column ratios are shown in the finer characterization of highways and population 

centers, which show high NOx saturation at the surface (Figure 2.7). Both the domain average annualized 

VOC:NOx and HCHO:NO2 ratios are higher over the full 1.3 km domain than over Chicago, indicating 

that while the full domain is NOx limited, the annualized city regime is VOC-limited to transitional.  To 

provide finer temporal detail, we characterize the O3 regime for each simulated month. Similar to Ashok 

& Barrett (2016), we find that the surface and column ratios change with the season (Figure S1.9, Figure 

S1.10). Domain-average surface ratios range from ~7.0-18.5 suggesting a NOx-limited regime in all 

months (Figure S1.9), while column average ratios range from ~0.6 to 4.3, indicative of a more seasonally 

dynamic environment (Figure S11.0). Over Chicago, the surface ratios range from ~3.0-4.6, firmly in the 

transitional regime (Figure S1.9), while column ratios span ~0.2-1.3 indicative of a VOC-limited to 

transitional regime (Figure S1.10).  Given the diversity of previous findings and fundamental 

uncertainties in regime thresholds, it is perhaps not unexpected that our regime determinations are 

somewhat sensitive to methodological choice. Despite these uncertainties, the detail afforded by the 1.3 

km surface ratio plots is notable (Figures 2.7a & S1.9), both for its contrast with column-based 

characterizations and its potential in O3 abatement investigations. We find that the simulated surface O3 

ratio has a spatial gradient that changes over relatively short distances. The consequence of this finding, 

and its effect on policy design for O3 precursor control alludes to the complexity of the system and the 

benefits of resolving atmospheric chemistry and pollutants at the neighborhood-scale.    
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Figure 2.7 Daytime (7 am  - 7 pm) annualized average of the (a) VOC:NOx surface ratio and (b) 

HCHO:NO2 column ratios over the 1.3 km domain.  

4 Discussion 

In the above we present the first neighborhood-scale (1.3 km) two-way coupled WRF-CMAQ 

simulations focused on the southern Lake Michigan-Chicago region. We perform hindcast simulations of 

individual months from each season and assess the model’s performance against meteorological and 

pollutant station observations, as well as against coarser resolution (4 km) simulations. Below we 

summarize our results and discuss notable findings and experimental caveats. 

2.4.1 Summary of Model Performance 

In our WRF-CMAQ simulations, we show that the WRF-simulated meteorological variables WD, WS, 

and T2 meet performance criteria suggested by Emery et al. (2001). The lowest performing simulated 

meteorological variable is WD, a variable that models have historically struggled to reproduce with high 

fidelity and which has previously been shown to be sensitive to model resolution, boundary layer 

parameterization, and land cover schemes (Carvalho et al., 2012). In our simulations, we find that WRF-

CMAQ best-captures observed WD in January 2019 and October 2018, but struggles in August 2018 and 

April 2019, likely due to more diffuse warm season winds, similar to findings presented in Zhang et al. 

(2014). In addition, recent WRF simulations have demonstrated the influence of different lake 

temperature datasets on meteorology, particularly air temperatures and convection, in domains near to 
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Lake Michigan (Wang et al., 2022). Future work should assess the role of lake temperatures, and 

uncertainties therein, on the simulation of pollutants.  

In the CMAQ portion of our two-way coupled WRF-CMAQ simulation, NO2 concentrations 

show the best performance when compared against EPA criteria pollutant AQS station observations, 

including high correlations and low biases and errors. However, we note that over Chicago (Figure 2.6) 

and at EPA stations (Table 2.2), the highest concentration of NO2 is simulated in October 2018, in 

contrast with NOx emissions which peak in January 2019 (Figure S1.6). This mismatch is likely a 

consequence of model biases. In January 2019, the NO2 bias over the domain and at the nearest Chicago 

AQS Station (17-031-3103) is highest and negative (NMB = -26%). The relatively large negative January 

NO2 bias is likely driven by an anomalously large negative bias in simulated RH compared to other 

months (i.e., domain-average RH mean bias is -7.5% and Chicago RH mean bias is -15%). The January 

NO2 negative bias is found to be largest in the early morning hours, which is coincident with the 

simulated RH bias maximum (Figures S1.1-S1.3). Previous studies have demonstrated that lower RHs are 

associated with lower concentrations of NO2 (Harkey et al., 2015). It is also notable that October 2018, 

the month with the highest simulated concentration of NO2 over Chicago, and lowest, but positive NMB 

(2.6% over all stations, 4.2% at station 17-031-3103), shows the largest night-time buildup of NO2 and O3 

(Figure S1.3), which is likely caused by low night-time titration (Sharma, et al., 2017). Low night-time 

titration has previously been demonstrated to be a consequence of weak vertical mixing in the ACM2 

PBL scheme (Zhao et al., 2018). 

Similar to NO2, we find high correlations between observed and simulated O3 concentrations, 

which reflects the strong anticorrelated relationship between O3 and NO2. However, unlike NO2, O3 is 

biased high across all seasons, with the largest biases occurring at night (except for January 2019). 

Previous studies have found that applying the ACM2 PBL scheme may contribute to excess nighttime 

vertical mixing, which can dilute NO concentrations at the surface and reduce O3 titration as well as 
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transport ozone from the residual layer to the surface, both of which contribute to higher nighttime O3 

concentrations (J. Hu et al., 2016; Sharma et al., 2017). Transport from boundary conditions likely 

contribute to the high bias as well. We find that surface-level O3 in CAM-Chem is consistently biased 

high, particularly at night (Table S13) which would contribute excess O3 transport into our d02 (4km) 

simulation domain. Previous studies have found that an overestimation of NOx emissions can contribute 

to excess O3 (Qin et al., 2019; Travis et al., 2016), however in our simulations NO2 is biased low or 

negative on average (Table 2.2). Future studies could address the simulated O3 biases by running 

sensitivities which target boundary layer physics (X.-M. Hu et al., 2012) or by modifying the urban 

mixing parameterizations, such as percentage of urban area (PURB) (Wang et al., 2021). 

Compared to NO2 and O3, simulated PM2.5 has a lower correlation with EPA AQS station 

observations, though our model performance is comparable to results reported by many previous studies 

(e.g., Wang et al. 2021 and Torres-Vazquez et al., 2022). Given that SO2 contributes to secondary PM 

formation, the relatively poor performance of WRF-CMAQ simulated SO2 likely influences the PM2.5 

model-observation agreement. Previous studies have reported that model-station agreement of PM2.5 can 

be strongly influenced by wind direction, wind speed, transport, and emissions inventories (Hughes et al., 

2021; Zhang et al., 2014) and it is likely that these factors also play a role here. For instance, in the results 

presented here, we employ MOVES2014a which does not account for emissions from off-network idling 

of vehicles. MOVES3, released in 2020 (Eyth, 2021), does include these processes, which may be critical 

for more accurate simulation of PM, particularly in high heavy-duty truck trafficked warehouse 

environments common within urban settings.      

Since the two-way coupled WRF-CMAQ methodology employs nested domains of increasing 

spatial resolution, we take the opportunity to discuss differences, advantages, and disadvantages of 

neighborhood-scale (1.3 km) simulations versus those performed at coarser resolutions (4 km). By and 

large, when model results are assessed against meteorological and pollutant station observations, we find 
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incremental performance improvements at the higher simulation resolution. We do note a few occurrences 

of slightly degraded model-observation fidelity at higher-resolution (e.g., T2 and O3), but primarily find 

that higher resolution simulations marginally improve hindcast simulations of both meteorology and 

atmospheric chemistry, like previous thematically similar studies (e.g., Torres‐Vazquez et al., 2022).  

We note that our 1.3 km to 4 km simulation comparison is not a pure resolution-focused 

sensitivity experiment. For example, MOVES emissions processing influences on-road sector emissions, 

and due to differences between the 1.3 km and 4 km WRF-simulated meteorology, on road emissions 

differ over roadways (Figure S1.6). However, total emissions are the same within the 1.3 km domain 

subset of the 4 km domain. Despite emissions differences of 1-6% over Chicago (Figure S1.6), pollutant 

concentrations differ by only 1-2% between the 1.3 km and 4 km simulations (Figure 2.6). Ultimately, we 

find that the most valuable feature of increasing model resolution comes from the finer characterization of 

emission sources, meteorology, and subsequent pollutant concentrations. To quantitatively demonstrate 

differences in pollutant gradients between model resolutions, we plot the spatial variogram of the model 

at EPA AQS observation sites and across random points in the model domain (Figure S1.11). We use the 

methods described in Marzban & Sandgathe, 2009 and Touma et al., 2018, which show that variograms 

can be used to identify atmospheric features in model simulations and validate model simulations with 

limited point-observations. Here we use variograms to (a) validate observed spatial pollutant gradients, 

(b) compare spatial gradients at observation points to simulated pollutants at different model resolutions, 

and (c) assess differences in simulated spatial variability at different model resolutions. We note that the 

observation-based variogram is noisy due to the unequal placement of stations over the domain and the 

low number of stations (n = 9, 63, 12 for NO2, O3, and PM2.5) relative to the size of the domain (n = 

90,720) (Figure S10a). At EPA observation sites, we find that the spatial variances of simulated NO2 and 

O3 are closer to observed variances at fine scales (<50 km) in the 1.3 km resolution simulation (Figure 

S1.10b).  We also compute a “synthetic” variogram (as described in the Supplemental Discussion) 

computing the variogram at 75 random grid cells across the domain to grid cells within a 50 km radius. 
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We use this analysis to show that at short distances (<70 km), the 1.3 km simulation has higher pollutant 

variances across the domain (Figure S1.10c). As such, we show that at finer spatial scales (Figure 2.7) 

and across the domain (<70 km, Figure S1.11), the spatial gradients achieved in the 1.3 km output are 

measurably steeper and have greater fidelity to EPA observations. The ability to resolve air pollution 

gradients at neighborhood-scale resolutions, using physics- and chemistry-based numerical models, is 

critical for a number of air quality-relevant disciplines, and continued efforts should be made to both 

improve model performance and apply these tools to fundamental research queries in the fields of 

atmospheric chemistry, health, policy, and environmental justice. 

2.4.2 Summary of Chicago Pollutant Findings  

Characterizing neighborhood-scale spatial heterogeneities in pollutant concentrations over urban 

settings, such as Chicago, is critical for better understanding health impacts and constraining the 

contribution of pollutants to inequitable impacts across population subgroups. In our simulations, we find 

that Chicago has 2 to 5 times higher NO2 and PM2.5 concentrations than neighboring rural areas (Figure 

2.2), and within city limits annualized pollutant concentrations between neighborhoods can vary by a 

factor of 1.8 (Figure 2.4). To highlight the utility of high resolution spatially resolved model simulations 

and intra-city pollutant differences, we analyze zonally averaged annualized pollutant concentrations from 

Chicago’s western suburbs to Lake Michigan in the east (Figure 2.8). In both 1.3 km and 4 km 

simulations, pollutants over this zonal swath display a distinct west-to-east profile, with NO2 and PM2.5 

peaking over the core of the city, and relatively high O3 concentrations over the lake and in the western 

suburbs. In general, zonal patterns of O3 concentrations are the inverse of simulated NO2 concentrations, 

which is consistent with the NOx-saturated regime identified in the core of the city (Figure 2.7). This 

inverse pattern is replicated when comparing PM2.5 to O3, albeit with lesser fidelity. In addition to 

elevated NO2 over the city center, a western peak is simulated near O’Hare International Airport (Figure 

2.8a). Despite the inverse NO2-PM2.5-O3 zonal pattern, some sections of the city do see relatively high co-

occurring concentrations of NO2, O3, and PM2.5. For example, Chicago’s west side, near -87.8°W, has 



 

 

60 

relatively high concentrations of each pollutant (Figure 2.8a), likely due to the confluence of highways 

and industrial areas. The 4 km output shows 0.5 ppb NO2 and -0.5 ppb lower O3 in the suburbs (west of -

87.8W), though the 1.3 km simulation shows slightly higher NO2, O3, and PM2.5 over Chicago. Results 

such as these suggest that summarizing city-wide air quality using limited observations could be 

problematic as it does not capture the substantial spatial heterogeneity. 

 

Figure 2.8 (a) Zonal average of pollutants over Chicago region, from suburbs to city center to lake. Mean 

pollutant concentrations of NO2, PM2.5, and O3 are provided in and (b) the footprint of the averaging 

domain is depicted around Chicago. Solid line shows the 1.3 km output, while the dotted line shows the 4 

km output. Concentrations are plotted across longitudes and stretch from the western suburbs to Lake 

Michigan in the east.  

Neighborhood-scale simulations may also prove useful for health, environmental justice, and 

targeted abatement strategy investigations. Our finding of elevated west side pollutants (Figure 2.4 & 

Figure 2.7) is consistent with previous health-focused work that has identified elevated clusters of air 
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quality related diseases on Chicago’s west side (Gupta et al., 2008). Beyond identifying locations of 

elevated pollutants, high-resolution CTMs may be used to design and test effective mitigation and 

abatement strategies. For example, given Chicago’s current EPA O3 non-attainment status, designing 

strategies that effectively target O3 precursors requires foreknowledge of the City and region’s chemical 

regimes (Figure 2.7). Simulations capable of characterizing neighborhood-scale O3 and background 

VOC:NOx conditions can provide critical insights into amelioration strategies and can be used to predict 

and/or avert unintended consequences, such as localized O3 increases due to NOx or VOC control 

measures. High resolution CTMs are particularly suited to this task, given their ability to constrain 

changes in secondary pollutants, a capability not available in reduced complexity models.  

2.4.3 Limitations 

Despite the promising neighborhood-scale results reported here, there are several caveats to bear in mind 

when considering our two-way coupled WRF-CMAQ results. Chief amongst these considerations is the 

use of four individual months and their annualized means to characterize the region’s air quality and 

atmospheric chemistry regime. Neighborhood-scale CTM simulations are computationally expensive, 

which has limited our ability to simulate full seasons or multiple years. Previous studies have 

demonstrated that internal meteorological variability can have profound consequences on pollutant 

concentrations (Fiore et al., 2022; Garcia-Menendez et al., 2017), and this facet should be remembered 

when considering our results. A key example from our study is the high O3 concentration in our April 

2019 simulation. Typically, O3 in this region peaks in July, however April of 2019 (our chosen simulation 

month) had higher O3 concentrations than the typical summer O3 season. A second key consideration of 

our study is that the EPA air quality monitoring system was not designed with CTM-validation in mind. 

AQS sensors are relatively sparse and very often not within urban settings. As such, we use EPA data 

here, but advocate for the use of hyper-local observing networks to operationally monitor neighborhood-

scale air quality and perform model validation. 
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Further, we note limitations with our model configuration. To perform two-way WRF-CMAQ 

simulations, we use the default nudging coefficients for the FDDA process above the boundary layer to 

encourage model-station agreement. This choice has been shown to dampen fine-scale meteorological 

processes and alter aerosol feedbacks in higher resolution simulations, i.e., 4-12 km (Gan et al., 2016; 

Hogrefe et al., 2015). Future studies should explore the effects of nudging at even finer neighborhood-

scale resolutions. 

5 Conclusions 

In the above, we present the first neighborhood-scale two-way coupled WRF-CMAQ simulations 

to be performed over a Chicago-centric southern Lake Michigan domain. Both the meteorological and 

chemical components of our model largely perform at or above recommended standards. We note that our 

1.3 km simulation incrementally outperforms our 4 km simulation with respect to most air quality-

relevant meteorological variables. In terms of chemical performance, we observe that the 1.3 km 

simulation outperforms the 4 km simulation with respect to grid cell-to-observation station comparisons 

for NO2, O3, PM2.5, and CO concentrations. SO2 is the only pollutant that showed higher model-

observation fidelity at the coarser model resolution, but this was also the chemical with the lowest model-

station agreement at both the 1.3 km and 4 km resolutions. Consideration of these performance 

assessments should be tempered by knowledge that both meteorological and pollutant observing networks 

allow for model-to-observation comparisons at a maximum of 0.1% of simulated grid cells.     

Neighborhood-scale, 1.3 km simulations, are made possible by spatial surrogates curated for the 

region by LADCO. These surrogates facilitate the simulation of fine-scale features and processes, none 

more evident than the effect of resolving on-road emissions within urban settings, where we simulate 

anomalously high roadway-adjacent NO2 and PM2.5 concentrations, and anomalously low O3 

concentrations. Over our full simulation domain, we find that the highest concentrations of O3 are found 

over Lake Michigan during warm season months, where concentrations are simulated to be a full 30% 

higher than the domain average. In the largest urban area simulated in our domain, Chicago, IL, we find 
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that concentrations of NO2 are five times higher than the domain average, PM2.5 three times higher, and 

O3 slightly lower. We also note spatiotemporal O3 regime variability within the full model domain, where 

simulated surface and column average VOC:NOx and HCHO:NO2 ratios differ by season and location. 

Over the full domain, surface conditions are simulated to be NOx-limited, however over Chicago, 

conditions are simulated to be transitional – with column average ratios adding further nuance. Likewise 

over Chicago, our higher resolution simulations show higher average concentrations of NO2 and PM2.5 

than our coarser model simulations, suggesting that coarser models may underestimate exposure to these 

pollutants and their associated health impacts. Lastly, within Chicago city limits, we find that pollutants 

can vary by a factor of ~2 between neighborhoods, a finding potentially corroborated by observed 

inequitable health outcomes.  
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Abstract 

High-resolution air quality data products have the potential to help quantify inequitable 

environmental exposures over space and across time by enabling the identification of hotspots, or areas 

that consistently experience elevated pollution levels relative to their surroundings. However, when 

different high-resolution data products identify different hotspots, the spatial sparsity of “gold-standard” 

regulatory observations leaves researchers, regulators, and concerned citizens without a means to 

differentiate signal from noise. This study compares NO2 hotspots detected within the city of Chicago, IL, 

USA using three distinct high-resolution (1.3 km) air quality products: (1) an interpolated surface from 

Microsoft Research’s Project Eclipse – a dense network of over 100 low-cost sensors; (2) a two-way 

coupled WRF-CMAQ simulation; and (3) a down-sampled surface using TropOMI satellite instrument 

observations. We use the Getis-Ord  statistic to identify hotspots of NO2 and stratify results into high-, 

medium-, and low-agreement hotspots, including one consensus hotspot detected in all three datasets. 

Interrogating medium- and low-agreement hotspots offers insights into dataset discrepancies, such as 

sensor placement, model physics, data retrieval caveats, and the potential for missing emission 

inventories. When treated as complements rather than substitutes, our work demonstrates that novel air 

quality products can enable researchers to address discrepancies in data products and can help regulators 

evaluate confidence in policy relevant insights. 

3.1 Introduction 

Disparate exposures to ambient air pollution contribute to racial and economic inequities in 

disease burdens (Hajat et al., 2015; Tessum et al., 2021). Despite the considerable progress of the U.S. 
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Clean Air Act in contributing to population-wide reductions in air pollution exposure (Currie & Walker, 

2019), neighborhoods with the highest historic pollution exposure remain subject to relatively higher 

pollution levels (Colmer et al., 2020). Although both regional and intraurban gradients contribute to 

observed differences in exposures across population subgroups (Chambliss et al., 2021), localized 

hotspots—areas that consistently experience elevated air pollution levels relative to their surroundings—

can identify important and often modifiable local emissions sources (Hajat et al., 2015; Clark et al., 2014; 

Chambliss et al., 2021). Contemporary U.S. zoning policies ensure that land use and emissions sources 

are clustered in space (Hirt, 2015), and local regulations like cumulative impacts ordinances (Lee, 2020) 

or federal policies like JUSTICE40 (The White House, 2021) increasingly seek to target areas where 

marginalized communities experience disproportionate pollution burdens. Yet sparse regulatory 

monitoring systems, such as the US EPA AQS network, are designed for regional monitoring and cannot 

provide insights on neighborhood-scale variations in pollutants or exposure. As such, better ways of 

identifying hotspots are needed to ensure that mitigation efforts serve the most affected communities. 

There are many pollutants in the urban air; among these is nitrogen dioxide (NO2), which is implicated in 

premature mortality (Song et al., 2023) and morbidities including asthma (Hansel et al., 2008; Liu et al., 

2019), impaired prenatal development (Huang et al., 2015; van den Hooven et al., 2012), and 

cardiovascular disease (Stieb et al., 2020). NO2 also contributes to the formation of other health-hazardous 

pollutants and can exhibit steep intraurban spatial gradients (Chambliss et al., 2021). NO2 concentrations 

are highest near emissions sources like power plants (Liu et al., 2016) and roadways (Karner et al., 2010), 

with concentrations accumulating during stagnant meteorological conditions (Goldberg et al., 2020) or 

during high-emitting periods like morning rush hour (Zhang & Batterman, 2013). Due to the pollutant’s 

short lifetime, NO2 hotspots can be difficult to observe unless monitoring instruments are collecting data 

when and where NO2 is emitted. 

To address the need for routine monitoring of NO2 at intraurban scales, researchers have taken a 

variety of approaches including: using high-density, low-cost sensor networks (Jain et al., 2021; Weissert 
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et al., 2020), conducting high-resolution chemical transport modeling (Di et al., 2019), and over-sampling 

satellite imagery (Goldberg et al., 2021; Dressel et al., 2022). The resulting data products have the 

potential to improve the characterization of NO2 in urban environments, but they are also subject to 

important limitations with respect to spatial and temporal data availability or data validity. 

Dense citywide sensing networks provide insights in real time, capturing important diurnal and spatial 

variation in NO2 concentrations. To enable sampling at the scales needed for adequate coverage, sensors 

must be affordable and easily replaceable—but ensuring low cost requires important tradeoffs with 

respect to accuracy (Morawska et al., 2018; Larkin et al., 2017). Even with dense coverage, gaps remain, 

and thus researchers must apply interpolation schemes that contribute additional uncertainty (Schneider et 

al., 2017; Gressent et al., 2020). 

Chemical transport models (CTMs) exploit scientific understandings of chemical and physical 

processes to provide spatially and temporally fine-scale estimates of air quality, so calibration and 

validation of these models can lead to new insights, in addition to reducing errors. However, outside of 

large-scale airborne monitoring campaigns (e.g., Abdi-Oskouei et al. 2020; Torres-Vazquez et al. 2022), 

researchers are limited in their ability to adequately validate and calibrate CTMs at fine spatial scales. The 

most commonly available validation data are spatially-limited regulatory networks or temporally-limited 

satellite observations (Wong et al., 2012; Kuhlmann et al., 2015), and thus researchers face challenges 

when attempting to routinely calibrate CTMs at fine spatiotemporal scales. Reduced complexity models 

(RCMs) can also produce high spatial resolution air quality products by simplifying or forgoing chemistry 

and physics, but instead leveraging statistical or machine learning relationships between emitting 

activities and pollutants (Wang et al., 2023; Burke et al., 2021; Tessum et al., 2021). These RCMs reduce 

chemical and meteorological output to achieve their gains and are shown to be less accurate in simulating 

secondary pollutants compared to CTMs, but these products are likewise challenged to validate their 

output on the scales at which they resolve pollutants. 
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Like CTMs, satellite observations can produce air pollution estimates across geographies. To 

create intraurban estimates of NO2, satellite data products are oversampled (i.e., averaged from native-

resolution observations to a regularly spaced grid) to provide high-resolution insights (Goldberg et al., 

2021; Dressel et al., 2022). A limitation of satellite observations is that it measures the entire vertical 

column, rather than the “nose-level” pollution that affects human health. Moreover, existing observing 

systems provide just one or two daily snapshots, which excludes important diurnal variation (Penn & 

Holloway, 2020), as well as large swaths of data due to cloud cover and other meteorological conditions 

(Van Geffen et al., 2020). However, new geostationary satellites promise to ameliorate some of these 

issues, indicating these new data sources are likely to play a critical role in diversified intraurban 

observatories. In this paper, we apply a hotspot detection algorithm to identify clusters of elevated NO2 

pollution in each of three state-of-the-science datasets. We refer to post-processed data from each product 

as a surface, i.e., (1) a machine learning-interpolated surface built from a dense, citywide low-cost sensing 

network, (2) a high-resolution CTM simulated surface, and (3) an over-sampled satellite-observation 

derived surface. We compare the location, extent, and temporal persistence of hotspots across data 

surfaces, and identify intra-urban areas of high-, medium-, and low-agreement. We find one high-

agreement Consensus hotspot and interrogate disagreements between datasets for additional insights. 

Through this work, we offer a method to amplify signal and better understand noise across multiple novel 

high resolution air quality data products. 

3.2 Study Domain 

Our study focuses on Chicago, Illinois, which is located on the southwest coast of Lake Michigan 

in the central United States (Figure 3.1). Our motivation to focus on Chicago is two-fold: (1) Chicago is a 

large source of NOx emissions in the Great Lakes Region, contributing to elevated NO2 and secondary 

pollutant concentrations such as O3, both locally and regionally. (2) Chicago also has several innovative 

data sets for neighborhood-scale air pollution research, including a dense, citywide low-cost sensing 
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configuration (Daepp et al., 2022) and a recently validated, high-resolution WRF-CMAQ simulation 

configuration (Montgomery et al., 2023). 

Given seasonal differences in emissions and meteorology, we analyzed data from one warm 

month and one cool month (August 2021 and February 2022). Chicago’s August 2021 mean temperature 

was +1.7°C warmer than average (NWS) and the Eclipse sensing network, which was deployed in July 

2021, had largely stabilized, with relatively few devices needing to be relocated or replaced after initial 

adjustments during the first month of the deployment (Daepp et al., 2022). In winter, we selected 

February 2022 due to its low average temperatures (-0.8°C from climate normal, NWS) as well as 

evidence of similar or fewer Eclipse sensors with missing data (n = 89) compared to other cool months (n 

= 92 for December, 82 for January). 

 

Figure 3.1 The city of Chicago, IL with major geographic features such as airports, highways (navy), and 

neighborhood boundaries (black) delineated. The locations of the NO2 Eclipse sensors used in this study 

are marked as black circles. In the lower left corner, Chicago is marked as a red star within the map of the 

United States. 

3.3 Methods  
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3.3.1 Air Quality Data Products 

To create the Eclipse Network surface, we obtain ground-level measurements of NO2 from the Microsoft 

Research Eclipse sensor network. The Eclipse network is comprised of over 100 low-cost air quality 

sensors around Chicago, deployed through a collaboration between Microsoft Research and JCDecaux 

Chicago— the local subsidiary of the world’s largest outdoor advertising agency, JCDecaux SA— which 

maintains over 1,000 bus shelters across all geographic sectors of the city. The sensing hardware and 

network design are described in (Daepp et al., 2022). Devices were allocated to 80 sites using a stratified 

random sampling approach following Matte et al. (2013) and 26 additional sites recommended by local 

and community partner organizations. Because low-cost sensors are subject to error and noise, the 

network additionally included co-locations with EPA regulatory monitors (Clements et al., 2022). We 

used the ongoing co-location data to develop a calibration algorithm that improved accuracy relative to 

gold-standard EPA regulatory monitoring data (Table C1). To create a 1.3 x 1.3 km-gridded high-

resolution daily and monthly gridded product for this study, we tested several machine-learning and 

geostatistical methods for spatial data interpolation and selected the best performing approach, a random 

forest (RF) model (Table C2). Further details on the calibration approach and the interpolation methods 

can be found in Appendix C. 

To create the CTM data surface, we run the two-way coupled Community Multi-scale Air Quality 

(CMAQ, v5.2; Byun & Schere, 2006) and Weather Research and Forecasting (WRF, v3.8; Skamarock et 

al., 2008) modeling system (WRF-CMAQ, Wong et al. 2012). We created a custom emissions dataset 

using the EPA 2017 Sparse Matrix Operating Kernel of Emissions (SMOKE) Modeling product (Eyth et 

al., 2019), with which we downscaled the National Emissions Dataset using 1.3 km spatial surrogates 

from LADCO (LADCO, 2020). Further configuration and validation of our August 2021 and February 

2022 WRF-CMAQ are described in Appendix A. 

To create the TropOMI surface, we obtained geospatially continuous NO2 observations from the 

Tropospheric Monitoring Instrument (TropOMI) aboard the Sentinel-5p satellite. The Sentinel-5p satellite 
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is a geo-orbiting satellite, so the TropOMI instrument provides daily retrievals of atmospheric species at 

13:30 local time with a nadir resolution of 5.5 x 3.5 km for each grid cell. We used the L2 NO2 product, 

processed by the Royal Netherlands Meteorological Institute (KNMI), which applies the DOMINO 

algorithm to convert Level-1b irradiance measurements in the 405 – 465 nm range into NO2 vertical 

column density (VCD) (Van Geffen et al., 2020). To create a cross comparable product against our other 

air quality data sets, we regridded the L2 daily observations of NO2 from TropOMI to the 1.3 km x 1.3 km 

WRF-CMAQ grid. Full satellite processing information and ground-based comparison is available in 

Appendix B. 

3.3.2 Land Use and Social Characteristics of Hotspots 

To provide additional context and discussion for the detected hotspots, we analyze land use characteristics 

and socioeconomic variables that prior research has shown are commonly associated with NO2 pollution 

(Larkin et al., 2017). We assess hotspot relationships with zoning footprints, highway locations, and 

traffic speeds using data from the Chicago Data Portal (https://data.cityofchicago.org/); greenspace using 

MODIS normalized difference vegetation index (NDVI) obtained from the Planetary Computer 

(https://planetarycomputer.microsoft.com/); and census tract-level income and demographic data from the 

2016-2020 American Community Family Survey (Manson et al., 2022). We regrid datasets using area-

weighted averages (zoning, traffic, and socioeconomic data) or bilinear interpolation (NDVI). To assess 

the relationship of each characteristic to each hotspot, we compare the distribution of characteristics 

within hotspots to the city. Relationships are considered statistically robust at the 95th percentile 

confidence level (p < 0.05) when their t-test with Bonferroni adjustment for multiple testing yields 

pBonferroni < 0.0167. 

3.3.3 Hotspot Detection 

We define NO2 hotspots using the Getis-Ord G∗
i statistic (hereafter, G∗

i ), which is used to identify areas 

where significantly high or low values are spatially clustered (Getis & Ord, 1992; Ord & Getis, 1995). 

The G∗
i statistic uses z-scores to identify areas where a grid cell and its neighbors’ values are significantly 
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higher or lower than would be expected if values were distributed randomly across space. In this study, 

we focus on areas of high NO2 concentrations and assign hotspot status when significance testing exceeds 

the 95% confidence level (p < 0.05). Because we cross-compare 3 data products, we alter our significance 

screen with a Bonferroni adjustment for multiple testing such that pBonferroni < 0.0167. We conduct our G∗
i 

analysis using the Python package ESDA (Rey & Anselin, 2007). To compute the Gi∗ statistic for a given 

grid cell i: 

  (1) 

where xj is the NO2 concentration for grid cell j and n is the total number of grid cells. We calculate 

the spatial weight between grid cells i and j using the Queen’s Contiguity method (wij = 1 if two cells are 

adjacent and 0 otherwise). Moreover, 

  (2) 

and 

  (3) 

We compute the G∗
i statistic on each high-resolution data product’s NO2 surface to identify hotspots for 

each month considered (Figure S2.1). We then assess agreement across product surfaces (Figure S2.2). 

We define high-agreement hotspots as areas whose grid cells meet G∗
i hotspot criteria in all 3 datasets. 

Medium-agreement hotspots are areas whose grid cells meet hotspot criteria in 2 of the 3 surfaces, and 

low-agreement hotspots meet criteria in just one. We conduct this agreement analysis for each surface-

pairing and each month (Figure 3.4). As an additional meteorological robustness screen, we test the effect 

of wind direction on identified hotspots by determining daily average wind direction, and then binning 

days according to quadrant, i.e., northeast, southeast, southwest, and northwest. For each data product, we 
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then average daily NO2 concentrations and apply the G∗
i statistic to determine if wind direction 

substantially influences a hotspot’s location or spatial extent (Figures S2.5, S2.6). 

3.4 Results 

3.4.1 Comparison of High-Resolution NO2 Surfaces 

To demonstrate the relative abundance of NO2 concentrations across the city and differences therein, we 

begin by normalizing each NO2 data product independently (Figure 3.2). We also compute the weighted 

area average of the normalized surfaces (µ) to demonstrate the relative difference in concentration 

magnitudes between products. Each surface provides a distinct spatial pattern of NO2 pollution over 

Chicago, although pollutant patterns are not necessarily congruous. All data surfaces show relatively high 

NO2 on the western edge of the city. However, over the remainder of the city elevated NO2 concentration 

footprints do not consistently overlap across the three datasets. Our Eclipse surface has the greatest 

normalized city-wide mean concentration, with distinct areas of elevated NO2 whose locations differ 

across months (Figure 3.2a,d). In contrast, the WRF-CMAQ NO2 surface has lesser month-to-month 

variation, with elevated concentrations largely coincident with highways and the city center, a.k.a., “The 

Loop” (Figure 3.2b,e). Lastly, the TropOMI surface indicates elevated NO2 concentrations on the west 

side of the city during both months, but few elevated areas nearer Lake Michigan (Figure 3.2c,f). 

To quantitatively assess dataset similarity, we conduct pairwise grid cell-to-grid cell comparisons 

and compute Pearson correlation coefficients (r) and mean biases (mb) between surfaces. The datasets 

show positive linear relationships across surfaces, with correlation coefficients ranging from 0.1 to 0.7 

(Figure S2.1). Eclipse-derived and WRF-CMAQ surfaces are consistently positively correlated (r ≥ 0.5), 

though concentration estimates from Eclipse are on average 0.7 ppb higher in February and 4.8 ppb lower 

in August (Figure S2.1c). Consistency between the TropOMI surface and other surfaces varies by month 

(Figure S2.1a, b). The TropOMI-derived surface is strongly positively correlated with the other data 

products in August (r = 0.6), but in February correlations are considerably less (r = 0.1 for WRF-CMAQ 

and r = 0.3 for Eclipse). From a mean bias perspective, TropOMI concentration magnitudes show greater 
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similarity to Eclipse than to WRF-CMAQ (Figure S2.1a, b), although it should be reiterated that 

TropOMI captures columnar average NO2, rather than the nose-level conditions captured by Eclipse and 

WRF-CMAQ. 

 

Figure 3.2 Normalized NO2 concentrations for 1-month average August 2021 and February 2022 from 

the (a,d) interpolated Eclipse sensor network, (b,e) WRF-CMAQ simulations, and (c,f) TropOMI satellite 

observations. In the lower left, we provide the weighted city-wide area average (µ) of normalized NO2 

concentrations for each data product. 

3.4.2 Identification of Hotspots 

Given the comparisons above, we conclude that while each high-resolution surface shows distinct intra-

urban variation, concentration estimates have varying levels of consistency at a grid-cell level. To identify 

high-impact areas of agreement despite the datasets’ differences, we apply the G∗
i hotspot identification 

statistic to each data surface (Figure S2.2) and assess levels of agreement between datasets according to 

overlapping hotspot footprints (Figure S2.3). We primarily focus our results on high- to medium-

agreement hotspots (i.e., 3/3 and 2/3 datasets in agreement), but discuss low-agreement hotspots (1/3) 

where appropriate. 
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Figure 3.2. High-, medium-, and low-agreement NO2 concentration hotspots. Agreement is based on the 

number of datasets with overlapping footprints that meet G∗i hotspot criteria, i.e., 3/3 = high, 2/3 = 

medium, and 1/3 = low. Datasets include the Eclipse sensor network, WRF-CMAQ model, and TropOMI 

satellite. The black dot in panels (b, c) is the location of the I-90/94 Kennedy Expressway EPA monitor 

discussed in Figure 3.4. 

3.4.3 Consensus Hotspot 

We identify one high-agreement region of the city – a corridor on the west-central margin of the city – in 

which all three data products indicate statistically significant high NO2 (Figure 3.3a). This Consensus 

hotspot is found in both months considered, but the spatial footprint of the August hotspot is twice the 

area of the February hotspot due to a contraction of the TropOMI February hotspot (Figure S2.2). For 

each dataset, the average NO2 concentrations that comprise the identified hotspot range from 16 to 31% 

higher than the Chicago area average in August and 18 to 22% higher in February (Table S2.1, S2.2). We 

find that this Consensus hotspot is robust to wind direction, as G∗
i criteria are met in all three datasets 

regardless of wind direction or month of consideration (Figures S2.4, S2.5). 

3.4.4 Medium-Agreement Hotspots 

While there is high agreement amongst datasets on the Consensus hotspot depicted in Figure 3.3a, the 

datasets differ on its spatial extent. In the Eclipse and TropOMI datasets, we find an adjoining medium-

agreement hotspot that extends further north and west of the Consensus hotspot (Figure 3.3b; yellow grid 

cells). Given the two underlying data sources, we refer to this area as an Observational hotspot. We note 
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that the Observational hotspot is only found in August. In the August observational datasets, we observe 

NO2 concentrations that are 14 to 27% higher than the city-wide average (Table S1). While NO2 

concentrations in this area of our August WRF-CMAQ simulation do not meet  hotspot criteria, they 

are modestly (4%), but insignificantly, higher than the city average (Table S1, S2). Due to the missing 

data in TropOMI coverage on a daily basis, we are unable to systematically analyze the persistence of 

TropOMI hotspots across wind directions. 

A second medium-agreement hotspot is found in February and is identified in both the WRF-

CMAQ and Eclipse datasets (Figure 3.3b, green hatched grid cells). As this area straddles DuSable Lake 

Shore Drive (LSD) and I-94 and I-290 (consult Figure 2.1 for roadway labels), we refer to it as the 

Highway hotspot. Grid cells in the Highway hotspot have NO2 concentrations that are 26% greater than 

the Chicago average (Table S2.1). The February Highway hotspot meets criteria regardless of wind 

direction (Figures S2.4, S2.5). In addition, we note that in August, WRF-CMAQ simulates an NO2 

hotspot with a similar spatial footprint, with concentrations that are 35% higher than the city-wide 

average (Figure 3.3c; purple grid cells). However,  hotspot criteria are not met in either observational 

dataset in August, thus the area only attains low-agreement hotspot status in our analysis. We note that 

this area includes Eclipse and EPA monitors fortuitously located in close proximity, allowing us to 

explore potential reasons for this model-observation disagreement below. 

3.4.5 Highway Hotspot Interrogation 

To identify factors that contribute to the Highway hotspot disagreement between WRF-CMAQ and 

Eclipse, we compare diurnal WRF-CMAQ and Eclipse variability to observations from an on-road EPA 

monitor on the hotspot’s northern edge (Figures 3.5a, b). The EPA monitor is located on an elevated 

stretch of the I-90/94 Kennedy Expressway and is fortuitously located less than 150 m from an Eclipse 

monitor (Figures 3.4c, 5c). Hourly time-series data at this location in February 2022 reveal relatively 

strong agreement between the EPA sensor observations and both WRF-CMAQ (NMB = -1.1%) and 

Eclipse data (NMB = -8.1%) (Table S2.2). However, product agreement with the EPA sensor is lesser in 
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August 2021. In August, both Eclipse and WRF-CMAQ have higher magnitude biases compared to 

February, with Eclipse bias higher and negative (NMB = -32.3%) and WRF-CMAQ bias higher but 

positive (NMB = 39.6%) (Figure 3.5a, Table S2.3). We note that WRF-CMAQ’s bias is largely 

attributable to the model’s nighttime bias (NMB = 65.1% v. 16.0% during the day; Table S2.3), a finding 

discussed in Montgomery et al. (2023) and Zhao et al. (2019) related to low model-simulated nighttime 

titration due to weak vertical mixing in our chosen planetary boundary layer scheme. In contrast, 

Eclipse’s biases are similar at night (NMB = -30.8%) and during the day (NMB = -34.3%) (Table S2.3). 

We explore Eclipse’s consistent bias below. 

 One potential explanation for the difference in NO2 hotspot classifications at this location is 

related to the placement of the Eclipse sensor relative to the primary pollution source i.e., highway traffic. 

Previous work has demonstrated that pollution measurements near highways can be substantially 

influenced by both the distance of the sensor from the highway and the sensor height (Salmond et al., 

2013; Gilbert et al., 2003). At this location, the EPA sensor is on an elevated highway 7 m above ground 

level, while the Eclipse sensor is 150 m distant and 2.4 m above ground level on a nearby bus station 

(Figure 3.4c). Given previous reports of sensor distance/height impacts on pollutant concentration 

measurements, we explore distance/height relationships between highways and Eclipse sensors across our 

city-wide network. In Chicago, uncovered Class-1 roadways, i.e., highways with heavy-duty vehicle 

traffic, exist at three elevations: ground-level (g.l.), below-grade open cut (a.k.a. recessed, 3 m below g.l.), 

and elevated ( 4 m above g.l.) (City of Chicago). Only one Class 1 highway in the city is mostly (> 90% 

length) at ground-level, DuSable Lake Shore Drive, however, heavy-duty vehicle and commercial traffic 

are restricted. We therefore exclude the ground-level highway from this analysis. We first examine the 

relationship between Eclipse sensors within 2.5 km of Class-1 highways and monthly average NO2 

concentrations. Within 2.5 km of Class-1 roads, there are 20 sensors near recessed highways and 15 near 

elevated highways (Figure S2.6a). We find no robust relationships (r < 0.05) between an Eclipse sensor’s 
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distance from a highway and its average reported monthly NO2 concentration regardless of highway 

elevation or month (Figure S2.6 b,c). Next, we assess the relationship between highway elevation and 

 

Figure 3.3 Highway hotspot discrepancy investigation. (a) August 2021 and (b) February 2022 average 

diurnal NO2 concentration variations from an Eclipse sensor(blue), an EPA sensor (orange), and the co-

located WRF-CMAQ grid-cell (green). (c) Precise locations of the EPA and Eclipse sensors relative to the 

I-90/94 Kennedy Expressway. The Eclipse sensor is at ground-level (i.e., mounted on a bus stop 

enclosure) while the EPA sensor is on an elevated highway 7 m above ground level. In (d) we compare 

normalized NO2 concentrations from all near-highway (< 2.5 km) Eclipse sensors (n = 35), grouped by 

highway heights, i.e., recessed (n = 20) or elevated (n = 15). The asterisk indicates statistically robust 

distribution differences while diamonds show outliers. Co-located CMAQ grid cell data are presented in 

Figure S2.1, S2.2. 

Eclipse reported NO2 concentrations. We find that in August, mean NO2 concentrations at Eclipse sensors 

near elevated highways are 12% lower in magnitude (-1.2 ppb) than concentrations reported by sensors 

near recessed highways (Figure 3.3d), a difference that is statistically robust (p = 0.03, Table S2.4). A 

similar, although muted and not significant pattern holds in February (13%, -1.9 ppb, p = 0.19, Table 
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S2.4). We hypothesize that systemic differences in NO2 concentrations reported by Eclipse sensors, such 

as differences driven by highway elevation, contribute to the high negative Eclipse bias we find at the co-

located EPA and Eclipse sensors near the I-90/94 Kennedy Expressway (Figure 3.3c), and speculate that 

this systemic bias may be the reason that Eclipse data near this location does not meet G∗
i criteria in 

August. 

Highway elevations are not explicitly modeled in the WRF-CMAQ. We note that this model 

limitation likely contributes to the NO2 concentration differences noted between the Eclipse sensors and 

WRF-CMAQ simulations. We perform a highway elevation analysis with WRF-CMAQ (Figure S2.7), 

like the Eclipse analysis reported in Figure 3.3d. That is, we bin model grid cells that contain the Eclipse 

sensors assigned to the recessed and elevated highway categories used above. We find small (3-5%) and 

insignificant (p > 0.05, Table S2.4) differences in mean NO2 concentrations for both highway elevations 

in WRF-CMAQ. Given the lack of differentiated highway elevations in WRF-CMAQ, the lack of 

simulated NO2 concentration differences near highways is expected, however this WRF-CMAQ-Eclipse 

contrast may help explain some of the model-sensor mismatch inherent to dataset comparisons and 

hyperlocal topographies. 

3.4.6 Land-use and Social Characteristics of Hotspots 

In the high-agreement Consensus hotspot, we find that compared to the city-wide average, this area is 

characterized by significantly higher industrial zoning (2.5 times higher), lower greenness (NDVI, -23%), 

and a significantly high proportion of Hispanic or Latino residents (2 times higher) relative to the Chicago 

average. No other attributes pass our robustness screening. The population of the Consensus hotspot 

consists of 332,000 – 501,000 people, depending on the month. We do note that the Consensus hotspot 

has a non-significant though high population density (+12%), with lower income (-9%) and lower public 

assistance (-5%) per capita, though not robustly different than the city on average (Table S1, S2). 

In the medium-agreement Observational hotspot, we find no significant relationships with land use 

characteristics. In contrast with the high-confidence hotspot, the Observational hotspot has more 
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residential zoning (+17%), but similar industrial zoning to the city-wide average. Given that emissions 

data in WRF-CMAQ is partially determined by land-use characteristics, it is perhaps not surprising that 

NO2 concentrations are not higher in this area in the model output; if the Observational evidence reflects a 

true signal, there may be an additional emissions source not currently captured in the emissions data. 

Notably, the medium-agreement Observational hotspot has a significantly higher Black population 

relative to the other hotspots and to the Chicago average (i.e., 3.2 times higher). The population of the 

Observational hotspot is approximately 58,000 people. Other nonsignificant attributes include a high 

population density (+34%), lower income (-20%) and higher public assistance (-13%) per capita, though 

not significantly different than the city on average (Table S2.1, S2.2). 

In the medium-agreement Highway hotspot, the grid cells share just one robust land use 

characteristic with the Consensus hotspot, low NDVI (-25%). The Highway hotspot does not contain 

significant industrial zoning; instead, compared to the city-wide average it has significantly higher 

population density (+63%), more highway coverage (3.3 times higher), higher commercial zoning (+25%) 

and lower residential zoning (-50%) (Table S2.1, S2.2). Due to the high population density, this area also 

has a high population (244,000 – 1.1 million). Importantly and somewhat obviously, the Highway hotspot 

has significantly more traffic than the city-wide average, with 61% more arterials and 3.4 times the 

average bus speeds. The income and assistance in this hotspot are significant, as the Highway hotspot 

corresponds to an affluent part of the city (with income per capita nearly 3 times higher than the city 

average), though there is also high public assistance in this area (+50% public assistance, Table S2.1, 

S2.2). 

3.6 Discussion 

Each of our identified hotspots can offer insights for researchers and regulators. To provide 

additional context and discussion for the detected hotspots, in the discussion we include land use 

characteristics and socioeconomic variables that prior research has shown are commonly associated with 

NO2 pollution (Larkin et al., 2017).  
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First, the high-agreement Consensus hotspot identifies a large, contiguous region with high NO2 

concentrations relative to the city-wide average. The Consensus hotspot affects between 332,000 – 

501,000 people (Table S1, S2). The Consensus hotspot is evident across different wind directions and the 

affected area has significantly higher industrial zoning and low greenness – factors commonly associated 

with higher NOx emissions. Taken together, this evidence suggests that local sources, rather than regional 

transport, contribute to the elevated NO2 concentrations. Further, the Consensus hotspot comprises an area 

that is majority Hispanic or Latino (54%; Table S1, S2). Although the estimates from each data product, 

separately, are subject to concerns regarding potential sources of bias and noise, the consistency of results 

across data sources as well as the urgency of EJ-related health inequities suggests that this area should be 

prioritized for clean air interventions. 

Second, the medium-agreement Observational hotspot may identify an area where model 

simulations could be improved, whether through emissions inputs or model physics. In the Observational 

hotspot, land-use characteristics do not indicate a source of high-emissions. However, since both 

Observational datasets support its presence, an emission source may be missing in the underlying 

emissions data. Previous studies have used Observational datasets to constrain NOx emissions (Goldberg 

et al., 2022) and to identify specific NO2 emission sources  (Georgoulias et al., 2020; Zhang et al., 2022). 

However, low data coverage from TropOMI could impact the identification of the Observational hotspot, 

particularly in the winter when meteorological conditions are not conducive to TropOMI observations. 

This data scarcity highlights the utility of upcoming remote sensing technologies like TEMPO (Naeger et 

al., 2021) that will provide higher spatiotemporal coverage, which in turn could better identify hotspots 

and help constrain NOx emission sources. Beyond emission uncertainties, the choice of model physics and 

parameterizations in WRF-CMAQ can bias simulated NO2 concentrations due to poorly simulated 

meteorological processes and/or challenges associated with urban settings (Gilliam et al., 2015; 

Montgomery et al., 2023; Pleim et al., 2014). The Observational hotspot identifies an intra-urban area 

wherein the causes of model-observation mismatch should be thoroughly investigated, so as to determine 
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whether a NOx emission source is missing or if a modification of model physics better captures the 

observed build-up of NO2. 

Since the Observational hotspot is comprised of twice the average Black population compared to 

the city average (Table S2.1, S2.2) and sits at the northern edge of the high-agreement Consensus hotspot, 

determining the validity of the Observational hotspot is an important question with environmental justice 

and regulatory implications. The affected area has relatively more Black residents, lower incomes, and 

more residents receiving direct public assistance compared to the city average or the other identified 

hotspots, and thus may again indicate an area where excess emissions constitute an environmental justice 

burden. Given only medium agreement amongst air quality data products, this area would be well-served 

by additional routine monitoring specifically for NO2 or a mobile monitoring campaign that could better 

evaluate the hotspot’s “true” bounds under a variety of ambient conditions (Chambliss et al., 2021). 

Third, the medium-agreement Highway hotspot highlights an area where both the model and Eclipse data 

indicate an NO2 hotspot associated with significantly higher traffic for 1 of the 2 months considered 

(Table S2.1, S2.2). In August, the Eclipse sensor network does not identify this hotspot. We show that in 

August, sensors placed below elevated highways report less NO2 relative to their counterparts near 

recessed highways (Figure 3.4). While the low-cost sensor network has consistent placement with respect 

to height and location at ground-level, the placement of sensors near high-emitting sources like highways 

were not standardized, which complicates the model-sensor comparison. This finding is not discussed in 

the literature when creating high-density, intra-urban sensor-model comparisons, and this study highlights 

the importance of this hyperlocal interface for model-sensor comparison. However, in February, we 

identify a hotspot in the Eclipse data in this area. We note that in February, differences between elevated 

and recessed Eclipse NO2 concentrations are less pronounced than in August, potentially related to the 

lower boundary layer and lesser dilution in the cool season, a phenomenon that is apparent in both Eclipse 

and CMAQ data (Figure 3.2d,e). 
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Whether the observed difference in NO2  across elevated and recessed highways reflects an actual 

difference in exposure depends on the research question: for regulators seeking to quantify traffic 

emissions, our findings highlight the importance of placing sensors at the level of elevation at which 

emissions occur. But for public health researchers and practitioners who are concerned with the pollution 

levels where people breathe, ground-level sensing captures a meaningful difference in the adverse effects 

associated with highway heights and shows that CTM output may need to be adjusted for use in 

hyperlocal pollutant exposure and health impact quantification. This finding further shows the benefit of 

comparatively evaluating multiple different air quality data products for producing new and valuable 

insights. 

The work reported here is subject to several important limitations. First, we examine just two 

months of data due to the computationally intensive requirements of running WRF-CMAQ; although we 

chose these months to be representative of one summer and one winter month based on meteorological 

conditions, further investigation is needed to evaluate the persistence of observed hotspots over other 

periods. Our ability to identify hotspots in either Observational dataset is further limited by missing data, 

particularly in the winter. Eclipse sensors, which are solar-powered reported proportionally fewer days at 

fewer locations in February compared to August. Likewise, February TropOMI retrievals had 

significantly fewer valid grid cells (-60%) than the August retrieval, with no significant clustering in valid 

grid cells (Fig. B1(b)). This highlights the utility of using CTMs to fill gaps in observational networks. 

However, new geostationary satellites will mitigate some data coverage issues by enhancing the number 

of retrievals per day. As such, our hotspot identification research could be used as a foundation for future 

work preparing for new data sources and the role they could play in diversified intra-urban air quality 

characterization efforts. Second, the boundaries of the hotspots in each of the different affected areas are 

sensitive to the interpolation scheme. As shown in Appendix B and C, the interpolation of TropOMI and 

Eclipse to the 1.3 km grid do not integrate additional meteorological or land-use information that 

influences the spatial heterogeneity of NO2. Future work could further enhance the spatial 
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representativeness of the observational data products by explicitly considering these characteristics (Jain 

et al., 2021; Yu & Liu, 2021). Given that the interpolation schemes affect the representation of the data on 

the grid, changing interpolation schemes would affect the resulting clustering output of the model. 

Finally, we examined data for just one city; however, our method would easily generalize to other cities 

as dense, urban-scale sensing networks continue to proliferate. 

3.7 Conclusion 

In this paper, we construct high-resolution surfaces estimating NO2 pollution across a major U.S. 

city from three different data products. Although all three datasets exhibit positive correlations, 

associations are subject to noise. However, when we apply a hotspot detection algorithm to each of these 

three surfaces, we identify a region where all three data products show significantly elevated NO2 

concentrations in both summer and winter months, suggesting with high confidence the presence of a 

large contiguous area with elevated NO2 pollution. We estimate that this hotspot affects as many as 

501,000 people, who are exposed to NO2 concentrations that are 16 to 32% higher than the city-wide 

average. Moreover, this Consensus hotspot is evident regardless of wind direction suggesting a need to 

interrogate contributions from local sources. 

We also identify two regions where hotspots are detected in either the model-derived or the 

remote sensing and ground sensor-derived surfaces. While disagreement across data products limits our 

confidence in the use of these regions for targeted interventions, further interrogation of product 

differences suggest clear strategies to improve our confidence in each dataset. Future work could adapt 

our approach to detect areas of concern systematically and automatically, either with high confidence — 

indicating the need for targeted intervention — or with lower confidence indicating priority areas for 

expanded monitoring and evaluation. Through this work, we show how multiple novel high-resolution 

data products can act as complementary components of a diversified urban monitoring and modeling 

framework. 
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Chapter 4 

Exposure and health disparities in Chicago Air Pollution 

Abstract 

Exposure to ambient air pollutants contributes to hundreds of thousands of deaths over the US, 

with harms concentrated in urban areas. Here, we use neighborhood-scale (~1 km) CTM-based estimates 

of air quality to quantify air pollution exposure and health outcome inequalities over Chicago, IL using 

three pollutants (NO2, PM2.5, and MDA8O3) and three health outcomes (premature morality, asthma, and 

pediatric asthma hospitalizations). We perform this analysis with an environmental justice framework, so 

our analysis is performed focusing on the 4 major racial and ethnic groups in Chicago: Non-Hispanic 

White, Black, Hispanic and Latino, and Asian populations. We look to 1) quantify exposure inequalities, 

2) quantify the inequalities in pollution-attributable health outcomes, and 3) develop a framework to 

address exposure and health inequalities. We find that exposure inequalities differ depending on the 

pollutant, with no population subgroup consistently unequally impacted. The Hispanic/Latino population 

have the highest population-weighted average exposure to NO2 and PM2.5 (+4% compared to Chicago 

average), while Black and White populations have the highest population-weighted average exposure to 

MDA8O3 (+1-2% compared to Chicago average). In analyzing population-weighted exposure across 

household incomes, we find that increasing incomes do not change the average population-weighted 

concentration of pollutants across racial and ethnic groups. In contrast, we find that health outcomes from 

pollution exposure consistently and negatively impact Chicago’s Black and low-income populations, 

mainly driven by baseline health incidence rates. Increasing household incomes decrease the pollution-

attributable mortality across all racial and ethnic groups, even though exposure is similar across incomes, 

further highlighting the importance of baseline health incidence rates. As exposure and health impacts are 

not always collocated, we pose integrating social, health, and exposure information to best target 

pollution in Chicago to promote more widespread and equitable outcomes. 
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4.1 Introduction 

Air pollution is a major environmental and public health concern worldwide, particularly in urban 

areas where high levels of pollutants such as nitrogen dioxide (NO2), fine particulate matter (PM2.5), and 

ozone (O3) interact with high density populations. Exposure to these pollutants can lead to a range of 

adverse health effects, including respiratory (Hoek et al., 2013) and cardiovascular diseases (B. A. 

Franklin et al., 2015), as well as premature mortality (M. Franklin et al., 2007). Due to the known health 

impacts of pollution, regulations have been set in place to limit pollution emissions, with an estimated 

230,000 lives saved from the Clean Air Act (U.S. EPA, 2011). 

However, air pollution-attributable health impacts are not equally distributed across the US 

population. Children and elders are particularly susceptible to the negative health outcomes of air 

pollution (Zheng et al., 2015). Additional external social factors exacerbate health outcomes, which result 

in racial and ethnic minorities experiencing poor health outcomes relative to the White population 

(Southerland et al., 2021). These health outcome inequalities are partially explained by age, lifestyle, and 

comorbidities (Sørensen et al., 2023), though there is increasing evidence of environmental contributors. 

Previous research shows that in the US, racial minorities and low-income people are overexposed to 

pollution relative to the White population (Clark et al., 2014; Morello-Frosch & Jesdale, 2006; Paolella et 

al., 2018; Tessum et al., 2021). Systemic factors such as historical patterns of segregation, discriminatory 

housing policies, and the siting of industrial facilities and highways have contributed to the unequal 

distribution of pollution and its associated health risks (Tessum et al., 2021). Environmental justice (EJ) is 

a critical framework that can be used to address the disproportionate burden of air pollution on 

marginalized and vulnerable communities. 

The majority of federal monitoring is set up to analyze pollution on a regional scale, but there is a 

growing body of evidence highlighting the systemic inequalities in long-term air pollution exposure at 

local scales (Southerland et al., 2022). High resolution air pollution data is necessary to capture the true 
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breadth of exposure and health inequalities, as otherwise, health outcomes are underestimated (Mohegh et 

al., 2021; Gan et al., 2016; Paolella et al., 2018). However, urban exposure and pollution studies are 

limited by the spatial scale of air pollution data (Gardner-Frolick et al., 2022), as well as baseline disease 

incidence rates (Southerland et al., 2021).  

To move EJ forward on a local scale, high-resolution air pollution data and high-resolution public 

health data should be combined. By isolating city boundaries, this analysis is more representative of how 

jurisdictions operate and can focus on city-wide practices that enhance unequal pollution outcomes (Lane 

et al., 2022). Further, this removes the suburban and urban demographic bias, which influences the 

exposure inequality calculation (Clark). 

In this study, we focus on Chicago. Chicago has a long history of segregation (Sandoval, 2011) 

and environmental hazards which disproportionately affect marginalized communities due to the 

resident’s proximity to industrial facilities, transportation infrastructure, and waste disposal sites (EPA, 

2022; Baden & Coursey, 2002). Further, there are inequitable health outcomes related to baseline health 

incidence over Chicago, particularly for the Black population (R. S. Gupta et al., 2008). Previous 

national-scale studies have shown that in Chicago, there is outsized air pollution exposure for people of 

color regardless of race/ethnicity, independently of income (Goodkind et al., 2019; Kerr et al., 2021; 

Tessum et al., 2021), though these studies use a broader definition of Chicago (the metropolitan statistical 

area). Local, shorter-term studies of Chicago pollution have shown inequalities for PM2.5 are greatest for 

the Hispanic/Latinx community (Esie et al., 2022). Furthermore, no studies have computed the Chicago 

marginalized community’s health burden due to NO2, PM2.5, or O3 using high-resolution air quality data.   

Our study aims to quantify the inequalities in air pollution exposure and air pollution-attributable 

health impacts, as the inequalities relate to race, ethnicity, and incomes.  By computing inequalities in 

exposure and health impacts across these demographics, we can analyze the EJ implications of pollution 

and pollutant-outcome patterns in Chicago. We will further advance the research into health inequalities 

by focusing on multiple pollutants and multiple health outcomes, including mortality, adult asthma 
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incidence rates, and pediatric asthma hospitalizations. By analyzing outcomes for adults and children, we 

can further highlight outcomes across multiple vulnerable demographic populations.  

To perform this analysis, we use a high-resolution WRF-CMAQ simulation and census-level 

baseline health incidence rates. We calculate the attributable mortality, asthma, and pediatric asthma 

hospitalizations from NO2, PM2.5, and maximum-daily 8-hour O3 (MDA8O3) over Chicago. We examine 

the exposure inequalities through a socioeconomic and racial and ethnic lens. We further use the 

inequality analysis to develop a hypothetical framework to target pollutants in an equitable fashion to 

maximize social and health impacts. By identifying and analyzing these disparate outcomes, we seek to 

shed light on the complex interplay between air pollution exposure, demographic factors, and health, 

ultimately highlighting the need for targeted interventions and policy measures to address environmental 

injustices and promote equitable health outcomes for all population subgroups. 

4.2. Data and Methods 

4.2.1 Air Quality Data 

We use simulated annualized air pollution data from two-way coupled WRF-CMAQ 1.3 km simulations 

whose set up, performance, and validation are described in full in Montgomery et al (2023). We use 1.3 

km output from a coupled, two-way WRF-CMAQ computational fluid dynamics model simulation 

(CMAQ, v5.2, Byun & Schere, 2006; WRFv3.8, Skamarock et al., 2008; WRF-CMAQ, Wong et al., 

2012). We create high-resolution input emissions by using the Sparse Matrix Operating Kernel of 

Emissions (SMOKE) Modeling Platform (2016beta version, Eyth et al., 2019), using 1.3 km spatial 

surrogates from LADCO (LADCO, 2022). The spatial surrogates enable the downscaling of coarser land-

use and activity information, such as vehicle activity. To briefly describe the model simulation, we 

performed the simulations based off the Wong et al. (2012) methodology, which has three steps. First, we 

run a stand-alone WRF simulation to generate meteorology for emissions processing and boundary 

conditions at 12 km, 4 km, and 1. 3 km, using boundary conditions from the North American Regional 

Reanalysis (NARR) dataset for the 12 km domain. Second, we use the 4 km and 1.3 km WRF output to 
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process emissions in SMOKE, creating 4 and 1.3 km emissions. Finally, we run the coupled WRF-

CMAQ model at 4 km to create meteorological and chemical boundaries for the 1.3 km simulation, using 

WACCM for chemical boundary conditions and the 12 km WRF run for meteorological boundaries. 

Finally, to create the 1.3 km two-way WRF-CMAQ output, we use the 1.3 km emissions from SMOKE 

and the 4-km WRF-CMAQ output as chemical and meteorological conditions. We isolate the data from 

the 1.3 km domain to Chicago to perform this analysis. 

To create an annualized air quality data set, we run the model for August 2018, October 2018, 

January 2019, and April 2019. We average the 4-months of data to create a representative ‘annualized’ 

average concentration of pollutants. We isolate NO2, PM2.5, and maximum 8-hour average daily ozone 

(MDAO3) concentrations from the CTM output. We then regrid these pollutants from the 1.3 km native 

grid to the census-tract by using area-weighting, 

𝑃𝑜𝑙𝑙𝑢𝑡𝑎𝑛𝑡𝑐𝑡 =
∑ (𝑥𝑛 ∗ 𝑎𝑟𝑒𝑎𝑛)𝑛

1

∑ 𝑎𝑟𝑒𝑎𝑛
𝑛
1

 

where the pollution value in a census tract (𝑃𝑜𝑙𝑙𝑢𝑡𝑎𝑛𝑡𝑐𝑡) depends on the pollution concentration (𝑥𝑛), the 

area of intersection between the census tract and the 1.3 km pixel (𝑎𝑟𝑒𝑎𝑛), across the number of grid-cells 

of intersection (𝑛).  

4. 2.2 Population and income data  

 We use demographic information from the American Family Survey, using the 2015-2019 5-year 

average, downloaded from IPUMS NHGIS (Manson, Steven et al., 2022). We separate the racial and 

ethnic groups over Chicago for this analysis as follows: non-Hispanic White (White), non-Hispanic Black 

(Black), and non-Hispanic Asian (Asian) populations. We combine all races of Hispanic and Latino 

populations to identify the Hispanic/Latino population. All other racial and ethnic groups are combined 

under Other. To analyze income, we use the median per capita income and household income stratified by 

race from the 2015-2019 American Family Survey (Manson, Steven et al., 2022). We classify census 

tracts with the lowest quintile (<20%ile) of median income in Chicago as low-income, while the census 

tracts with the highest quintile (>80%ile) median income are categorized as high-income. 
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4.2.3 Health Metrics and Calculations 

Table 4.1. Baseline health incidence rates used in this study. 

Health Outcome Pollutant 𝜷 (CI) Age 

Group 

Study 

All-Cause 

Mortality 

NO2 1.040 (1.011 – 1.069) 30 – 99 Atkinson and Butland, 2018 

PM2.5 1.060 (1.040 – 1.080) 30 – 99 Krewski et al., 2009 

MDAO3 1.020 (1.010 – 1.040) 30 – 99 Turner et al., 2019 

Asthma NO2  1.110 (1.060 – 1.260) 18 – 99 Anderson et al., 2013 

PM2.5  1.160 (0.980 – 1.370) 18 – 99 Anderson et al., 2013 

MDAO3 1.009 (1.006 – 1.011) 30 – 99  Li et al., 2019 

Pediatric Asthma 

Hospitalizations 

NO2  1.018 (1.014 - 1.022) 1 – 18 Orellano et al., 2017 

PM2.5  1.048 (1.028 - 1.067) 1 – 18 Lim et al., 2016 

MDAO3 1.011 (1.007 – 1.014) 1 – 18 Zheng et al., 2015 

 

We derive the attributable NO2, PM2.5, and O3 mortality and morbidity outcomes using 

epidemiologically derived health response functions (Table 4.1). We use all-cause baseline mortality rates 

from Industrial Economic, Incorporated with rates for each 5-year age group (IEc 2010-2015) 

(USALEEP, 2022) derived from the USALEEP abridged life tables for use in national health analysis 

(Arias et al., 2018), asthma-incidence rates from the Illinois Department of Public Health (IDPH, 2017), 

and pediatric asthma emergency room (ER) visits from the Illinois Department of Public Health (IDPH, 

2017). We calculate health outcomes for each census tract (CT) by calculating the attributable fraction 

(AF, 1) and resulting health outcomes (HI, 2): 

 

𝐴𝐹 = 1 − exp(−𝛽𝑥𝑐𝑡) 

 

𝐻𝐼𝑐𝑡 = 𝐵𝐼𝑅𝑐𝑡 ∗ 𝑃𝑂𝑃𝑐𝑡 ∗ 𝐴𝐹𝑐𝑡 

 

The attributable fraction calculates the relationship between the pollutant (𝑥𝑐𝑡) in a census tract and the 

health outcome, as related by the 𝛽 coefficient. 𝛽 values are determined by epidemiological studies which 

quantify the relationship between air pollution concentrations and specified health outcome, with the 

values outlined in Table 1. Values reported in 10 µg/m3 are converted to ppb equivalents at standard 

temperature and pressure. The health impact is then computed by taking the baseline incidence rate (𝐵𝐼𝑅) 
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of the health outcome, the population of the census tract which is affected by 𝛽, and the 𝐴𝐹. To create the 

health impact rates, we divide the health impact in a census tract (𝐻𝐼𝑐𝑡) by the number of people in the 

census tract (𝑃𝑜𝑝𝑐𝑡), such that: 

𝐻𝐼𝑅𝑐𝑡 =
𝐻𝐼𝑐𝑡

𝑃𝑜𝑝𝑐𝑡
 

 

4.2.4 Spatial Variability and Attribute Correlations 

As both demographics characteristics and pollutants are highly spatially variable, we quantify the quartile 

coefficient of variation (QCV) of the attributes.  

𝑄𝐶𝑉 =
𝑥75%𝑖𝑙𝑒 − 𝑥25%𝑖𝑙𝑒

𝑥̅
 

Where 𝑥75%𝑖𝑙𝑒 and 𝑥25%𝑖𝑙𝑒 is the 75%ile and 25%Ile value of the attribute 𝑥, with 𝑥̅ representing the 

average values of the attribute 𝑥 over Chicago. The QVC allows for us to compare variation across 

attributes with different units, so larger QVCs indicate more variation of that attribute across the city, 

which we interpret as a greater degree of segregation of values. 

We further analyze the correlation (Pearson’s r) between pollutant concentrations and social 

characteristics to quantify the strength of association across variables. Highly correlated variables indicate 

a strong linear relationship between demographics and outcomes, we would consider this relationship as a 

basis for an EJ intervention. 

4.2.5 Exposure Inequality 

We use two metrics to quantify the exposure and health disparities across Chicago. First, we 

compute the population-weighted average exposure to create the average disparity across Chicago, such 

that: 

 

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 − 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 =
∑ (𝑥𝑛 ∗ 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑛)𝑛

1

∑ 𝑝𝑜𝑝𝑢𝑙𝑎𝑐𝑡𝑖𝑜𝑛𝑛
𝑛
1
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where the pollutant (𝑥𝑛) in a census tract is multiplied against the total population or population subgroup 

in a census tract (𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑛) over Chicago (n = 756 census tracts). This provides one value to identify 

the average exposure of a demographic group over all of Chicago, but cannot identify spatial patterns.  

To calculate the inequalities of attributes (e.g., pollution, BMR) of any specific demographic 

group, we calculate the mean difference of the group from the Chicago average, such that: 

𝐼𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦 =
𝑥𝑑 −  𝑥̅

𝑥̅
 

Where 𝑥𝑑 is the population-weighted average value of a demographic group, and 𝑥̅ is the Chicago 

average of that attribute. We use this inequality value to make assessments about EJ, such that the largest 

inequalities across demographics in exposure or pollution-related health impacts are identified as an EJ 

issue. 

Second, we bin census tracts into quintiles using the concentration of each pollutant so that we 

can analyze the average demographic makeup for areas with increasing pollutant concentrations. This 

allows for us to look at nonlinear outcomes of inequalities and highlight how disparities change across 

distributions. For each quintile, we perform descriptive statistics (e.g.: calculating the mean and 

interquartile range). We then identify how social and demographic characteristics vary across pollutant 

groupings. We also test the inverse by grouping census tracts into quintiles based off the demographic 

makeup to test how pollution concentrations change with increasing racial and ethnic proportions.  

4.3. Results 

4.3.1 Pollution and sociodemographic spatial patterns over Chicago 

In this section, we will discuss the specific spatial patterns of pollutants and demographics over 

Chicago. The patterns of pollution (Figure 4.1 a-c) and patterns of demographics (Figure 4.1 d-h) have 

high numerical variability (Figure 4.1i). In general, the pollution patterns are not strongly linearly 

associated with demographic patterns, as shown by the weak correlation across pollutants and 

demographics (r < 0.3, Supplementary Figure 3.1). The primary focus of this analysis is to quantify the 

segregated spatial patterns and analyze the concurrence of demographic and pollution patterns. 
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Figure 4.1 Annualized air pollutant concentrations (a-c), proportion of racial groups (d-g), median 

household income (h), and distribution of values (i) over Chicago. Note, in (i), NO2, PM2.5, MDA8O3, and 

median income are normalized to for comparison across all values. 

The spatial patterns of pollutants mirror locations of major emissions sources in Chicago, with NO2 

and PM2.5 high over highways and industrial areas while MDAO3 is depleted. The average NO2 

concentration is simulated to be 16.4 ppb, PM2.5 is simulated to be 10.4 ppb, and MDA8O3 is simulated to 

be 30.8 ppb. For NO2, concentrations are highest over highways and in the central and western parts of the 

city (Figure 4.1a). The spatial gradient for NO2 is steep, as the interquartile range (IQR) for NO2 is 3.7 

ppb with a QVC of 23%. PM2.5 concentrations are simulated to be more spatially diffuse, though 

concentrated in the center of the city and West side (Figure 4.1b). PM2.5 has an IQR of 1.0 µg/m3, with a 

spread of 9%. MDA8O3 concentrations are highest near the lakeshore and lowest along the highways 

(Figure 4.1c). The IQR of MDA8O3 is 2.8 ppb, with a QCV of 9%. Compared to NO2, PM2.5 and 
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MDA8O3 is more spatially diffuse. The highest concentrations of PM2.5 coincide with the highest NO2 

concentrations, while MDAO3 is highest outside of those regions.  

The spatial patterns of racial and ethnic groups over Chicago are distinct for each racial and ethnic 

groups, with few areas of overlap (Figure 4.1d-g), highlighting the high degree of segregation in the city. 

For the major racial and ethnic groups of Chicago, the largest demographic population are non-Hispanic 

White (33%), Black (29%), Hispanic and Latino (28%), and Asian (7%). The most spatially-varying 

racial and ethnic group is the Black population (865%), which indicates the strength of separation of the 

Black population within Black census tracts. In contrast, the White population (with the lowest QVC = 

263%) is more spread across the city. Spatially, the highest proportion of White residents are located 

along the Northern lakefront and near O’Hare airport (Figure 4.1d). The highest proportion of Black 

residents occur on the South and Northwest side of the city (Figure 4.1e). The highest proportion of the 

Hispanic and Latino population is located on the West side of Chicago, with pockets in the North and 

South of the city as well (Figure 4.1f). The highest proportion of the Asian population in a small area in 

the center of the Chicago (Figure 4.1g). Other races and ethnicities account for less than <2% of Chicago 

population, so our analysis focuses on the White, Black, Hispanic and Latino, and Asian populations. 

In analyzing the income distribution over Chicago, we find that income, like the racial and ethnic 

clustering, is similarly spatially variable. The highest incomes are clustered in the central and Northeast 

regions of the city, with lower incomes on the West and South sides of the city.  

In comparing the socioeconomic characteristics to the pollution patterns, we show that there is higher 

spatial variability in social characteristics than in pollutants. Comparing the highest QVC across 

pollutants, racial and ethnic groups, and median incomes, we see that NO2 is far more spatially diffuse 

(23%) than income (93%) and any racial or ethnic group (263% - 865%). Most obviously, the spatial 

patterns of pollutants show where the highest pollution emitting sources are, but no single demographic 

group perfectly mirrors that pattern. Through this analysis, we highlight high concentrations of NO2 and 

PM2.5 on the West side of Chicago and in the central city, which have high Hispanic and Latino 
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populations. However, given the weak correlations between census-level pollution and demographic, 

additional analysis must be done to identify inequalities for EJ, which is done in the following sections.  

4.3.2 Average exposure and health rates over Chicago 

 

Figure 4.2 Differences (%) compared to Chicago average of population-weighted average exposure (a: 

NO2, PM2.5, O3) and the baseline health incidence rates (b: baseline mortality rates (BMR), asthma 

incidence, pediatric asthma ER visits) and (c) pollutant attributable health outcomes. 

In this section, we will examine the inequalities across population-weighted average 

concentrations, baseline health incidence rates, and pollution-attributable health outcomes across race, 

ethnicity, and income. With high inequalities, we will interpret this group and health or exposure outcome 

as a priority for EJ intervention. To highlight inequalities, we will calculate the population-weighted 

average values for each attribute and compare it to the Chicago average across subgroups. The primary 

focus of our analysis is to identify which population group experiences the greatest and smallest 

disparities. 

4.3.3 Pollution Exposure Disparities 
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Figure 4.3 Population-weighted average exposure to pollutants (a-c) and health incidence (d-f) across 

incomes stratified by racial and ethnic groups. 

To analyze the inequalities in exposure across racial and ethnic groups, we compute the 

population weighted average exposure to NO2, PM2.5, and MDA8O3 for each major racial and ethnic 

groups. We find that the average population-weighted exposure across racial and ethnic groups vary by 

less than 5% for NO2, PM2.5, and MDA8O3. For NO2, the highest population-weighted average exposure 

over racial and ethnic groups occurs with the Hispanic & Latino population (4% greater than Chicago 

population weighted average). The lowest NO2 exposure occurs with the Black population (-4%). For 

PM2.5, the highest population-weighted average exposure occurs with the Hispanic/Latino population 

(3%), while the lowest exposure is with the Asian population (-2%). For MDA8O3, the highest 

population-weighted average exposure occurs with the Black population (1%), while the lowest exposure 

occurs in the Hispanic & Latino population (-2%). As such, we find that there are small (±5%) exposure 

inequalities across racial and ethnic groups, with no single racial or ethnic group experiencing outsized 

exposure disparity for NO2, PM2.5, and MDA8O3. 

To analyze the inequalities in exposure across high-income and low-income neighborhoods, we 

compute the population weighted average exposure to NO2, PM2.5, and MDA8O3 for the high- and low-
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income areas in Chicago. The high-income area has the highest NO2 exposure and slightly above-average 

PM2.5 exposure (4.5%, 0.5% higher than Chicago average, Figure 4.2a). This area experiences low NO2 

and PM2.5 exposure (-2%, -0.5% from Chicago average), and slightly elevated MDA8O3 exposure (0.5% 

from Chicago average, Figure 4.2a). To summarize, we find that the highest income areas are exposed to 

higher NO2 and PM2.5 while the lower income areas are exposed to higher MDA8O3. 

To analyze the effect of income on exposure across racial and ethnic groups, we further compute 

the population weighted average exposure across household incomes stratified by race and ethnicity 

(Figure 4.3a-c). We find that the Hispanic and Latino population experience the highest exposure to PM2.5 

and lowest MDA8O3 at every income level (Figure 4.3a,c). Further, the Hispanic and Latino population 

experience higher NO2 until the income of $150,000 (Figure 4.3b). No other demographics experience 

consistently elevated or depressed exposure across incomes, the exposure disparity depends on the 

pollutant and the median household income. For example, in identifying the population which 

experiences the highest MDA8O3 across incomes, we show that the Black population is simulated to be 

exposed to the highest relative MDA8O3 concentration at incomes higher than $60k, though below that 

income threshold, the White and Asian population experiences the highest MDA8O3 (Figure 4.3c). 

Further, identifying which population subgroup experiences the lowest NO2, we find that at low incomes 

(<$20k), the White population is estimated to experience the lowest NO2, though above $20k, the Black 

population is estimated to experience the lowest NO2 (Figure 4.3a). In general, there are no robust trends 

in increasing incomes and population weighted average exposure across subgroups, meaning that there 

are no robust differences in exposure at low and high incomes across population subgroups. 

To further test the effect of income on exposure across racial an ethnic groups, we separate the 

White population and compare to a combination of Black, Hispanic and Latino, and Asian population 

together (i.e., people of color of POC, as done in Tessum et al., 2021). Through this recombination, we 

find that POCs consistently experience higher NO2 and PM2.5 exposure than the White population, 

regardless of income (Figure 4.2a,b, grey). We also find that the white population is simulated to be 
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exposed to the highest levels of MDA8O3 across all household incomes (Figure 4.2c). As shown in the 

racial and ethnic breakdown across exposures, the higher exposure to NO2 and PM2.5 is driven by the 

outsized pollutant exposure by the Hispanic and Latino population.  

To summarize the results of the exposure analysis, we find that over Chicago, there are small (+-

5%) exposure disparities across racial and ethnic groups, though no single racial or ethnic group shows a 

consistent exposure inequality for NO2, PM2.5, and MDA8O3. The Hispanic and Latino population is 

exposed to the highest NO2 (+4%) and PM2.5 (+3%), while the Black population is exposed to the highest 

MDA8O3 (1%). In high-income areas, these areas are simulated to have higher NO2 and PM2.5, while low-

income areas are simulated to have higher MDA8O3. However, household income does not vastly change 

exposure inequalities for NO2 and PM2.5 across race, so as shown in Chicago average concentrations, the 

Hispanic and Latino population is exposed to the highest PM2.5, highest NO2 (up to $150k), and lowest 

MDA8O3. As such, this analysis highlights the outsized exposure inequality to NO2 and PM2.5 for the 

Hispanic and Latino population in Chicago, indicating that these pollutants should be prioritized for 

intervention to lower exposures in areas of high Hispanic and Latino population. 

4.3.4 Baseline Health Incidence Inequalities 

To analyze the inequalities in baseline health incidence rates across racial and ethnic groups, we 

compute the population weighted average incidence rates of mortality, adult asthma, and pediatric asthma 

hospitalizations (Figure 4.2b). The highest baseline health incidence rates are less heterogeneous across 

population subgroups, as Chicago’s Black population experiences the highest population-weighted 

baseline mortality rates (+45%), asthma incidence rates (+32%), and pediatric asthma hospitalizations 

rates (+48%, Figure 4.2b). As the low end, the disparities vary across subgroups: The Hispanic and Latino 

population have the lowest average mortality rate, the Asian population has the lowest adult asthma 

incidence rate (-18%), and the White population has the lowest pediatric asthma ER hospitalizations (-

30%, Figure 4.2b). In contrast to exposure, baseline health rates show greater disparities across racial and 
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ethnic groups than the average pollution exposure (±5% vs. ±50%), though the Black population 

consistently experiences the highest mortality, asthma, and pediatric asthma ER incidence rates. 

  To analyze the inequalities in exposure across high-income and low-income neighborhoods, we 

compute the population weighted average incidence rates of mortality rates, adult asthma rates, and 

pediatric asthma hospitalization rates over high-income and low-income areas. The low-income area 

experiences higher-than-average baseline health incidence rates of mortality, adult asthma, and pediatric 

asthma hospitalizations (22% – 37%). The high-income area experiences lower-than-average baseline 

health incidence rates, with the high-income area having lower mortality rates than any racial or ethnic 

group  (-18% – -38%).  

  To analyze the effect of income on baseline health incidence rates across racial and ethnic groups, 

we compute the population weighted average exposure across household incomes stratified by race and 

ethnicity (Figure 4.3d-c). At higher incomes, all racial and ethnic groups experience lower mortality rates, 

asthma incidence rates, and pediatric asthma hospitalizations than the low-income counterparts. At all 

incomes, the Black population experiences higher mortality rates, adult asthma rates, and pediatric asthma 

hospitalization rates.  

To summarize, the baseline health incidence rates have high inequalities that mainly are driven by 

disparate health incidence of the Black population. The Black population has the highest rates of 

mortality, asthma, and pediatric asthma hospitalizations (32 – 45%). The lowest baseline health incidence 

rates depend on the racial or ethnic group. With increasing income, all racial and ethnic groups show 

lower rates of mortality, asthma, and pediatric asthma hospitalizations, though the Black population has 

the highest health incidence rates across all incomes.  

4.3.5 Pollution-Attributable Health Outcomes and Inequalities 

To quantify the total mortality burden from Chicago pollution exposure, we compute the 

attributable all-cause mortality for NO2, PM2.5, and MDA8O3. We find that the highest health-attributable 

mortality comes from MDAO3 concentrations. We estimate that the attributable mortality in Chicago is 
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17 (8 – 33, 5%ile to 95%ile range) for NO2, 12 (4 - 16) for PM2.5, and 24 (6 - 33) for MDA8O3  (Table 

3.2). Spatially, the highest pollution-attributable mortality for all pollutants is located on the South side of 

Chicago (Supplementary Figure 3.2). Further, the Black population contributes to highest proportion of 

the total NO2- PM2.5, and MDA O3-attributable mortality (41%, Supplementary Table 3.1, Figure 4.2c). 

The lowest average attributable mortality rates for all pollutants occurs in the White population (Figure 

4.2c, Supplementary Table 3.1).  

To quantify the total adult asthma burden from Chicago pollution exposure, we compute the 

attributable adult asthma for NO2, PM2.5, and MDA8O3. The highest adult asthma is attributed to 

MDA8O3 exposure. We compute 7,500 (4100 – 16,500) for NO2, 12,500 (0 – 26,100) for PM2.5, and 

31,800 (0 – 55,500) for MDA8O3 (Table 4.2). Spatially, the highest pollution-attributable asthma for all 

pollutants is located on the South and West side of Chicago (Supplementary Figure 3.3). The Black 

population has the highest rates of attributable asthma for all pollutants (6.3 – 18.2 per 1000 adults), 

accounting for 43% of total asthma cases (Supplementary Table 3.2). The lowest attributable asthma rates 

occurs in the Asian population (Supplementary Table 3.2).  

To quantify the total pediatric asthma hospitalization burden from Chicago pollution exposure, 

we compute the attributable pediatric asthma hospitalization for NO2, PM2.5, and MDA8O3. The highest 

pediatric asthma hospitalization burden is from MDA8O3. We compute 13 (13 - 13) for NO2, 16 (16 – 16) 

for PM2.5, and 45 (44 – 45) for MDAO3 pediatric asthma hospitalizations(Table 4.2). Spatially, the highest 

pollution-attributable asthma for all pollutants is located on the South and West side of Chicago 

(Supplementary Figure 3.4). The Black population has the highest rates of attributable pediatric asthma 

hospitalizations (1.2 – 4.2 per 10,000 children), accounting for 46% of total pediatric asthma 

hospitalizations (Supplementary Table 3.3). The lowest attributable pediatric asthma hospitalization rate 

occurs in the Asian population (0.1 – 0.3 per 10,000 children, Supplementary Table 3.2).  

To summarize, the pollution-attributable health impacts have high inequalities that mainly are 

driven by disparate health outcomes in the Black population. The Black population has the highest 
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attributable of mortality, asthma, and pediatric asthma hospitalization for all three pollutants. The high-

income areas have the lowest pollution-attributable health outcome, and the low-income areas have the 

highest pollution-attributable health outcomes. Even with increasing incomes, the Black population 

consistently experiences the highest pollution-attributable health outcomes. From this health analysis, we 

identify the Black population as an EJ priority to reduce pollution-attributable health outcomes. 

Table 4.2 Total attributable mortality, asthma, and pediatric asthma hospitalizations over Chicago. Rates 

for mortality and hospitalizations are per 100k, rates for asthma are per 10k. The 5%-95%ile confidence 

intervals are included in parenthesis. 

 
Total Cases per Year over Chicago Average Rate over Chicago 

Pollutant NO2 PM2.5 MDAO3 NO2 PM2.5 MDAO3 

Mortality 17 (8, 33) 12 (4, 16) 24 (6, 33) 1 (0.6, 

2.1) 

0.8 (0.3, 

1) 

1.5 (0.4, 

2.2) 

Asthma 7466 (4163, 

16533) 

12541 (0, 

26110) 

31780 (0, 

55492) 

18 (10, 

40) 

30 (0, 63) 78 (0, 

135) 

Pediatric 

Asthma 

ER 

13 (12.5, 12.6) 16 (15.4, 16) 45 (44.3, 

44.6) 

2.3 (2.3, 

2.4) 

2.9 (2.8, 

2.9) 

8.2 (8.1, 

8.2) 

 

4.3.6 Proportional demographic exposure and health outcomes 

To understand the variations in pollutant exposure among different population subgroups in 

Chicago, we conducted a detailed analysis of the proportional demographic exposure to increasing levels 

of pollutants. Broadly, the exposure (Figure 4.4a-c) and pollution-attributable health outcomes (Figure 

4.4d-f) do not result in similar proportional demographic outcomes. We focus on mortality in the main 

text (Figure 4.4d-f), but similar health outcomes are observed in asthma and pediatric asthma ER 

hospitalizations (Supplementary Figure 3.2). By using the proportional exposure, we can analyze broad 

trends of exposure or health impacts given the demographics, so an increasing demographic group with 

increasing pollutant would indicate that this group is an EJ priority.  
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Figure 4.4 Exposure across demographic groups, grouped by levels of (a) NO2, (b) PM2.5, and (c) 

MDAO3. Mortality related to each pollutant, grouped by levels of mortality rates. The lowest exposure or 

mortality rates occur in Q1, while the highest occur in Q5.  

The exposure and health effects of NO2 and PM2.5 affect racial and ethnic groups in similar 

proportions. As the average concentration of NO2 or PM2.5 increases in an area (Figure 4.4 a,b), there is a 

higher proportion of Hispanic and Latino population and a lower proportion of Black population. 

However, the Hispanic and Latino populations only make up the majority of population in areas with the 

third quintile (Q3, 10.4 – 10.7 ppb) of NO2 concentration and the fourth quintile (Q4, 0.8 – 1.2 µg/m3) of 

PM2.5 concentration. In areas with the highest NO2 levels (Q5, 18.9 – 27.9 ppb in Figure 4.4a), the largest 

demographic group by fraction (i.e., proportional demographic group) are White people (40%), while in 

areas with the lowest NO2 concentrations (Q1, 8.8 – 14.2 ppb in Figure 4.3a), the largest demographic 

group is the Black population (80%). The mortality effects related to NO2 and PM2.5 do not mirror the 

exposure patterns: in areas with the highest NO2- or PM2.5-attributable mortality, the Black population is 
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overwhelmingly represented (80%), whereas in areas with low NO2- or PM2.5-attributable mortality, the 

White population is disproportionately represented (62%, Figure 4.4a,b and Figure 4.3d,e). 

For MDA8O3, both the highest and lowest MDA8O3 areas have similar proportions of White 

populations (Figure 4.4c,f). However, increasing concentrations of MDA8O3 have increasing proportion 

of Black population and decreasing proportion of Hispanic and Latino populations. The proportional 

demographic share of mortality follows a similar pattern to that observed for mortality related to NO2 and 

PM2.5: as MDA8O3 mortality increases, there is a corresponding increase in the proportional 

representation of the Black population.  

The overarching pattern we observe is that areas with high pollution do not necessarily result in 

similarly high health outcomes (Supplementary Figure 3.4-3.6, Supplementary Table 3.4). This is because 

the highest health impacts are calculated to occur in areas of poorest health, as opposed to areas of highest 

exposure. Areas with the highest NO2 and PM2.5 have, on average, 20 - 25% lower BMR, 4 – 8% lower 

asthma incidence rates, and 1 – 4% lower pediatric asthma hospitalizations (Supplementary Table 3.4). In 

contrast, areas with highest MDA8O3 have high mortality (12% higher than Chicago average) and high 

pediatric asthma hospitalizations (4% higher than Chicago average), though lower adult asthma incidence 

(-8%). This phenomenon of opposing exposure and underlying health incidence rates result in the non-

linear outcomes of exposure and impact. As such, the EJ priority for this analysis shows that targeting 

high-pollution areas for the purpose of health may not always result in the highest health outcomes. 

4.3.7 Combining exposure and health incidence rates to target pollution 

As shown in the exposure and health analysis, the exposure and health inequalities are not necessarily 

always collocated. In this section, we test a hypothetical policy outcome which attempts to lessen 

inequalities by halving pollution in areas which target the pollutants in areas of high pollution (NO2, 

PM2.5, or MDAO3) and in areas of high underlying mortality rates. By halving the pollution in each target 

area, we show how different policies would contribute to lessening or increasing inequalities of pollution 

exposure and attributable health outcomes. 



 

 

104 

 

Figure 4.5 Baseline mortality compared to (a) NO2, (b) PM2.5, and (c) MDAO3. Areas with high BMR 

and high pollution (>50%ile) are in purple, areas with high BMR are blue – purple (>75%ile), areas with 

high pollution are pink – purple (>75%ile).  

To do this, we isolate areas with high pollution, high BMR, or high BMR and high pollution, and 

calculate the Chicago-wide implications of halving the concentration of pollutants in each area. We 

present the areas of inequality in Figure 4.5, which shows a bivariate plot with pollution concentrations 

and baseline mortality to highlight the underlying health data which informs the health outcomes. The 

areas of high baseline mortality and high pollutants are purple (with >50%ile BMR + >50%ile pollution), 

areas with high exposure are pink (>75%ile pollution), and high mortality are blue (>75%ile BMR). Each 

area of interest has roughly the same number of census tracts (~200) and cover a similar area (~200 km2).  

By reducing pollution by half in the high BMR and high exposure areas (Purple, Figure 4.5), we reduce 

exposure by 4 – 7% and mortalities 6 – 12% over Chicago (Supplementary Table 3.5). By decreasing 

pollution by half in the high pollution and high BMR areas, we reduce annual mortality by 6 – 12% over 

Chicago (Supplementary Table 3.6). Further, average population exposure is decreased by 4 – 7% 

(Supplementary Table 3.6). Regardless of pollutant, reducing pollution in this area benefits the Black, 
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Hispanic and Latino, and Low-income populations the most. As such, we alleviate some exposure 

inequalities, as the Hispanic, Latino and Black populations reduce their average NO2 and PM2.5 exposure 

by 7 – 17% (Supplementary Table 3.5). Even though there are no areas of overlap between areas of high 

MDAO3 and areas of high NO2 or PM2.5, the benefits of this policy outcome still overlap, as the highest 

BMR occur in areas with high proportions of Black residents, and this policy outcome targets populations 

with overburdened exposure, e.g., the Hispanic and Latino population (on average 50% and 30%, 

respectively; Table 3.6).  

Reducing pollution in areas of high pollution (Pink, Figure 5) results in greater reductions for 

population-weighted average concentrations for pollutants (9 – 12%, Supplementary Table 3.7 – 3.8), 

though a smaller reduction in mortality outcomes (7 – 9%, Supplementary Table 3.7 – 3.8 ). By 

decreasing pollution by half in the high pollution areas, we reduce mortalities by 6 – 10% (Supplementary 

Table 3.8). Further, the population-weighted average exposure over Chicago results in an average 

reduction of 10 – 12% in concentration (Supplementary Table 3.8). By targeting only high pollution areas 

for PM2.5 and NO2, the Hispanic and Latino population decrease exposure most (17 – 19%, 

Supplementary Table 3.7), though the Black population reduces exposure the least (8 – 9%), resulting in 

relative exposure and mortality inequalities to increase for the Black population for NO2 and PM2.5. For 

MDA8O3, reducing MDA8O3 by half in the highest MDA8O3 areas result in the Black and Asian 

populations to reduce their exposure the most (18 -- 19%, Supplementary Table 3.7), though Black 

mortality from MDA8O3 is still high (17% above Chicago average). The modest change in mortality from 

this policy outcome is because the areas of high NO2 and PM2.5 areas have BMR that are 20 – 25% lower 

than the Chicago average, which results in the lower health benefits than what is shown in targeting the 

high BMR and high pollution areas (8 – 11% vs. 7 – 8%, Supplementary Table 3.6 vs. 3.8).  

Reducing pollution in areas of high BMR (Blue, Figure 4.5) results in the greatest reductions of 

mortality (16 – 18%), and moderate changes in pollutants (8 – 10%, Supplementary Table 3.9 – 3.10). By 

decreasing pollution by half in the high pollution areas, we reduce mortalities by 16 – 18% 



 

 

106 

(Supplementary Table 3.10). Further, the population-weighted average exposure over Chicago results an 

average reduction of 8 – 10% in concentration (Supplementary Table 3.10). By targeting pollution in 

areas of high BMR, the the Black population experiences the greatest change in NO2, PM2.5, and 

MDA8O3 (-25%) and mortality (-30%). This results in exposure inequalities increasing for all other 

subgroups, though only the mortality increases significantly for the Asian population (6% for all three 

pollutants, Supplementary Table 3.9). The high BMR area is simulated to have NO2 and PM2.5 that is 5% 

and 1% lower than the Chicago average, though MDA8O3 is 1% higher. Because pollution is already 

lower than the Chicago average in this area, there may be further challenges in reducing pollution. 

In summary, targeting high BMR and high pollution areas result in different outcomes with 

respect to health and exposure equity. By targeting areas with both high BMR and high pollution, we 

show that there are more equitable health outcomes across the most exposed and most health-impacted 

groups. When targeting only exposure or health, we reduce the average exposure or health more than the 

combined policy, but there are equity tradeoffs that deepen inequalities for the groups who are affected. 

4.4 Discussion 

We estimated the exposure and health inequalities due to concentrations of NO2, O3, and PM2.5 

over Chicago. By analyzing the underlying the spatial distribution of both health and exposure outcomes, 

we show that inequalities can be characterized and addressed through a variety of methods.  

First, we show that air pollution exposure varies within Chicago across racial and income groups. No 

single group experiences outsized pollution exposure for all three pollutants analyzed, so inequalities in 

exposure depend on the pollutant (Figure 4.2). Further, exposure does not change significantly for any 

population subgroup as income increases (Figure 4.3). Given this, we see the highest exposure to NO2 and 

PM2.5 affect the Hispanic and Latino population and high-income population (Figure 4.2). Proportionally, 

areas of high NO2 and high PM2.5 are majority White and Hispanic and Latino, while areas of low NO2 

have high Black populations and areas of low PM2.5 have high White populations (Figure 4.3). This is 

similar to other studies, which show high NO2  affecting Black and Hispanic communities (Kerr et al., 
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2021), however this contrasts to other studies (Jbaily et al., 2022) which show high PM2.5 affects low-

income communities more in Chicago. Some of these differences are due to different definitions of 

Chicago (city-limit vs. MSA) and exposure comparison (national vs. intraurban). Further, we find that 

areas of high (>80%ile) MDAO3 are mostly White with significant Black populations (Figure 4.2), while 

areas of low (<20%ile) MDAO3 are mostly White and Hispanic and Latino.    

Second, while air pollution patterns are spatially distinct, the air pollution related health outcomes 

can be similar across the city, regardless of pollutant. This is due to the contribution of baseline health 

incidence rates, which vary to a larger degree than the pollution exposure (Figure 4.1). This is 

exemplified by NO2 and O3, which have opposite spatial patterns over Chicago (Figure 4.1a vs c), but the 

spatial patterns in mortality, adult asthma, and pediatric asthma hospitalizations are similar 

(Supplementary Figures 3.2 – 3.4). Similarly, regardless of pollutant, there is an over-representation of 

the Black population in experiencing the worst health outcomes (Figure 4.3), even though simulated 

pollution exposure is highest for Hispanic and Latino populations for NO2 and PM2.5 (Figure 4.2). We also 

note that when organizing across proportional racial groups, there is no strong relationship between 

increasing proportional demographics and increased pollution exposure (Supplementary Figure 3.9), e.g. 

areas with majority Black populations experience similar levels of pollutants as areas with majority 

White, Hispanic, or Asian populations (Supplementary Figure 3.9a vs. b).  

As such, while disproportionate air pollution exposure exacerbates pollution inequalities in the 

city, baseline health rates show greater racial and ethnic disparities than the average pollution exposure 

(Figure 4.2). The baseline health disparities highlight the complex interplay of socioeconomic factors, 

systemic inequalities, and environmental conditions that contribute to health inequities. Factors such as 

access to healthcare, quality of housing, educational opportunities, and employment play significant roles 

in shaping baseline health rates (Feinglass et al., 2007). Therefore, addressing pollution disparities alone 

may not be sufficient in achieving health equity, and comprehensive strategies that address both the social 
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determinants of health and environmental justice are crucial for reducing disparities and promoting 

equitable health outcomes for all communities (Jbaily et al., 2022). 

That exposure and the resulting health impacts are not necessarily collocated highlights the issue 

with addressing pollution vs. pollution related harms. Policies which target elevated pollution may 

consider remediating pollution over the highest pollution areas though this may not result in high health 

benefits or result in a more equitable distribution of pollution. Previous studies have shown that 

integrating social demographic information and exposure can alleviate exposure inequalities (Goodkind et 

al., 2019; Nguyen & Marshall, 2018b; Wang et al., 2022), though these studies do not consider the 

baseline health incidence of the population. Policies which target areas with high baseline health 

incidence rates will provide significant health reductions, though these areas may already experience 

relatively low pollution. As such, when developing policy outcomes which targets the health outcomes of 

elevated pollutants, consideration of the underlying health may better support targeted policies which 

alleviate pollution exposure inequalities and their resulting health impacts. As previous studies have 

noted, both spatial resolution of air quality data and health data affects the outcomes of equity and health 

studies, though the underlying health characteristics are constituting a greater share of health outcomes 

(Southerland et al., 2021).  

Our study is impacted by several limitations. First, baseline health incidence rates greatly modify 

the health outcomes, so there is a need for high-resolution, high fidelity health data to aid in the 

development of targeted interventions for exposure and heath disparities, as discussed in (Alexeeff et al., 

2018; Nguyen & Marshall, 2018b). Second, the attributable mortality changes when applying different 

relative risks, which we try to mitigate by using meta-analysis values for the relative risks. Third, our 

study was limited by available health data and studies, for example, the RR for NO2 and PM2.5 asthma 

incidence in Anderson et al., 2013 are reported for all ages, but we do not have asthma incidence rates for 

pediatric asthma, so we limit our analysis to adult-only. Thirdly, we use CTM model output, which has 

biases and is limited with observations at the intraurban scale to provide ground-truthing. There are 
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known O3 biases in the WRF-CMAQ model, in our simulation we have a high MDA8O3 bias (27%, as 

shown in Montgomery et al., 2023), which may cause the reported MDA8O3 -attributable outcomes to be 

higher than observed. This is important, because MDA8O3 also shows the highest attributable health 

outcomes. 

4.5 Conclusion 

With high resolution air pollution output, we find that pollution exposure across demographic 

groups can vary widely and impact low-income and minority communities within Chicago. Combined 

with even higher disparities in baseline health incidence rates, the pollution-related health impacts result 

in disparities larger than what is found with just exposure. As such, simply relying on air pollution 

exposure or baseline health incidence rates cannot sufficiently identify areas of pollution impacts. In 

combining heath and exposure information and targeting neighborhoods with poor health incidence and 

high pollution exposure, we show that there can be more equitable exposure and health outcomes across 

the city.  

Future work may use this framework to analyze exposure and health disparities within a city to 

analyze how to best craft exposure disparities. Further, we show how there is a need for more detailed 

exposure assessments and the integration of social factors in exposure modeling and health data for 

developing policy outcomes to mediate health-related harms. 
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Chapter 5 

Conclusions 

The establishment of environmental laws, advancements in technology, and the transition to 

cleaner energy sources have gradually improved urban air quality in many cities. The research presented 

in this dissertation encapsulate the latest advancements of applying chemical transport models for use at 

intraurban scales. However, the complex interplay between urbanization, industrial activities, 

transportation, and climate change continues to pose challenges, necessitating ongoing research and 

innovative solutions to ensure sustainable and healthy cities for future generations.  

In the following paragraphs, I will discuss ongoing developments which relate to and advance the 

research established in this dissertation. Finally, I will discuss questions which are motivated by 

outstanding questions in this dissertation and are inspired by the advancements in the field. 

Continued development into chemical transport modeling holds great promise in further 

improving our understanding of urban air quality dynamics. Currently, chemical transport models 

(CTMs) play a crucial role in simulating and predicting the dispersion of pollutants in urban 

environments, but future work should improve the efficiency and accuracy of CTMs. As described in 

Chapter 2, we use novel spatial surrogates and brute computational power to create a high-resolution 

simulation of air quality over the Southern-Lake Michigan region, which complements research which 

use reduced complexity models to create similar results for use in health studies (K. M. Foley et al., 2014; 

Tessum et al., 2017). A benefit of the reduced complexity model is shown from the lower computational 

costs, resulting in longer periods of study (>1 year) and engendering confidence in results for long-term 

exposure.  

Other CTM developments have increased the resource intensiveness and complexity of the 

model. Large eddy simulations (LES) use mathematical models to simulate turbulence, using direct 

numerical simulations of the Navier-Stokes equation to solve for fluid flow. This method is significantly 
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more computationally expensive than a CTM, as CTMs decrease computational costs by relying on 

parametrizations to simulate fluid flow. The most recent advancement in fine-resolution modeling are 

CTM-LES, which have been applied to model pollutant build-up in urban canyons (Chan & Butler, 

2021), canopies (Clifton et al., 2022), and urban areas (Wang et al., 2023), though these studies typically 

simulate a short time periods (24-hours). CTM-LES are better at simulating atmospheric mixing and 

concentrations of pollutants near emission sources. However, the application of operational CTM-LES to 

create serviceable forecasts are limited by the computational costs. 

An important advancement that can increase efficiencies in CTMs, CTM-LES and reduced 

complexity modeling comes from advancements in physical modeling techniques utilizing machine 

learning (ML), artificial intelligence (AI), and neural networks (NN). These approaches have the potential 

to revolutionize CTMs by reducing computation expenses, increasing accuracies, and allowing for more 

extensive studies in attribution, health impact, and policy (Cabaneros et al., 2019; Cordova et al., 2021; 

Zhong et al., 2023). As it stands, the research outlined in Chapter 2 currently encapsulates the state-of-

the-science air quality simulations, and these data are used to train NN models that are not based in first 

principles (Schneider et al., 2017; Schultz et al., 2021). Research into hybrid modeling approaches which 

incorporate physical process models (CTMs, CTM-LES) with ML/AI have been able to improve the 

simulation of flows in atmospheric boundary layer (McCandless et al., 2022) and increase the 

computational efficiency of CTMs (Reichstein et al., 2019; Schultz et al., 2021). With proper application 

of ML and AI, these modeling enhancements will enable researchers to quickly investigate complex 

interactions between pollutant sources, atmospheric conditions, and urban morphology. With these 

advancements, we can enhance our ability to develop targeted and effective mitigation strategies for 

improving air quality in cities.  

In addition to the advancements in CTMs, the future of intraurban pollution monitoring is poised 

for significant progress. These sensor networks, coupled with advances in data analysis and integration, 

enable real-time monitoring of pollutant levels at finer spatial scales within urban areas (Kumar et al., 
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2015). Furthermore, the emergence of geostationary satellite instruments presents an unprecedented 

opportunity for intraurban monitoring and the identification of spatial pollution patterns at new temporal 

scales (Zoogman et al., 2017). Future work may use a combination of low-cost sensors and satellites to 

enhance air quality alerts (P. Gupta et al., 2018), particularly as wildfires grow more frequent and models 

cannot capture missing emissions.  However, as more data becomes available, it will be crucial to address 

the challenges of data mismatch and integrate heterogeneous datasets effectively. The research conducted 

in Chapter 3 provides valuable insights into the development of methodologies and tools to handle such 

data discrepancies, ensuring the reliability and usefulness of future intraurban pollution monitoring 

systems.  

An additional benefit to continue to refine satellite data products and low-cost sensors is that 

areas lacking reference-grade monitors will increase information and this advancement will support 

environmental justice (EJ) on a global scale. While the context of the EJ movement in this dissertation has 

focused on US environmental racism, the global EJ movement has highlighted how countries such as the 

US has benefitted from exploiting less-developed regions and contributed directly to their environmental 

degradation. Currently, most attributable air pollution mortalities are concentrated in the global south 

(Southerland et al., 2022; Vohra et al., 2021). In the future, the global south and Africa are poised to 

experience substantial population growth, increased urbanization, and increased pollutant-attributable 

mortality (Chowdhury et al., 2018; Yang et al., 2022). However, despite these trends, these regions still 

have significantly fewer monitoring resources compared to more developed regions like the US. One way 

for the US to support global EJ movements is to develop and freely share technological advancements in 

satellite data products and low-cost sensors. This path benefits the US and global community further by 

improving emissions inventories (Geng et al., 2017), informing climate policy (Finer et al., 2018; G. Pan 

et al., 2021), and by improving CTM simulations (Murray et al., 2012) in areas which are understudied.  

Further, future research should continue to establish the critical link between air quality and public health, 

particularly in the context of climate change and changing emissions. Climate change poses a significant 
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threat to air quality, as rising temperatures and changing weather patterns can exacerbate pollution 

episodes (Horton et al., 2014) and introduce new challenges in controlling pollutants. Moreover, changing 

demographics, such as urbanization and population shifts, will lead to variations in health outcomes even 

if air quality improvements are achieved (Yang et al., 2022). As highlighted in Chapter 4, the underlying 

health of the population significantly contributes to inequalities for minority racial and ethnic and low-

income groups, with this effect apparent regardless of pollutant species or exposure. High-fidelity health 

data is essential for accurately assessing the impact of air pollution on human health and developing 

effective policies to safeguard public well-being. By leveraging comprehensive health data, policymakers 

can make informed decisions to mitigate health risks associated with air pollution and promote equitable 

health outcomes for all members of society. This necessitates the development of country-wide (or 

global) high-resolution health datasets. 

Given the direction of the field, I will close this dissertation by discussing the outstanding 

questions that this research inspires and a brief description of how to address the questions. 

(i) What inputs should be modified optimize the WRF-CMAQ configuration over Chicago? 

In Chapter 2, I hypothesize that some of the model-observation mismatch can be attributed to poor 

boundary layer simulation. To address this, the physics in the model could benefit from integrating 

observed lake surface temperatures (like Abdi‐Oskouei et al., 2020) and modifying urban 

parameterizations, such as land-use and buildings (De La Paz et al., 2016; Xu & Chen, 2021). In Chapter 

3, I also identify regions of northwest Chicago which have elevated in NO2 in observations but not 

simulations. In conjunction with complaints about increased warehousing (Waddell, 2021), input 

emissions can be modified to consider off-network idling at warehouse locations, thus perhaps better 

reflecting the changing emitting behaviors [project currently underway in collaboration with V. Lang]. 

(ii) What are the benefits of running a CTM vs. CTM-LES vs. reduced complexity model vs. 

NN? Beyond obvious computational tradeoffs, there are no studies which provide direct comparison of 

output across model types. In part this is limited by data validation, but continued advancements in 
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observations and computation makes this a question worth revisiting. Using a Chicago case study during 

the Eclipse campaign could provide interesting information about surface-level concentrations, though a 

full air campaign would be the best benchmark for column performance.  

(iii) Is Chicago unique in the pattern observed for EJ exposure vs. health impacts? In 

Chapter 4, we find that Chicago has smaller exposure disparities across racial and ethnic groups than the 

exposure disparities reported by national-scale studies, though there are several methodological 

differences that make direct comparisons difficult. Future work should create national-scale high 

resolution CTM simulation and analyze the EJ implications of exposure vs. impact disparities across all 

major cities. By clarifying where health outcomes are driven by exposure vs. baseline health incidence, 

then better policies can be enacted to address the racist outcomes of environmental pollution.  

(iv) How do we structure climate policy outcomes to maximize exposure, health, and justice 

benefits across the US? There are many concerns about changing our current infrastructure into greener 

alternatives, such as localized pollution increases from increased vehicle electrification, environmental 

degradation due to raw materials, and the cost associated with changing anything. Applying CTMs with 

life-cycle analysis can address these concerns and test out numerous policies. With increased 

computational efficiencies, many policy iterations could be performed, and policies could be selected 

which maximize benefits.  

In conclusion, by advancing CTM development to become more efficient and accurate, we can 

facilitate more comprehensive studies on pollutant dispersion in high-impact urban areas. Additionally, 

the use of low-cost sensor networks and geostationary satellites holds great potential for enhanced 

intraurban pollution monitoring and spatial pattern identification. However, it is essential to address data 

mismatch challenges and develop robust methodologies for data integration. Lastly, a deeper 

understanding of the intricate relationship between air quality and health, supported by high-quality health 

data, is crucial for developing policies that prioritize public health and promote sustainable and healthy 

cities for future generations.  
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Simulation of Neighborhood-Scale Air Quality with two-way coupled WRF-CMAQ over Southern 

Lake Michigan-Chicago Region 
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Figure S1.1. Diurnal profiles of meteorological variables averaged over all 10 NCDC stations or nearest 

pixels in the 1.3 km domain for the 1.3 km (d03, green), 4 km (d02, orange), and observations (NCDC, 

blue dash). 
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Figure S1.2. Diurnal profiles of meteorological variables at the O’Hare NCDC station or nearest pixel for 

the 1.3 km (d03, green), 4 km (d02, orange), and observations (NCDC, blue dash). 
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Figure S1.3. CMAQ (blue for 1.3 km and orange for 4 km) and EPA (green dash) average hourly 

estimates of pollutants to show the diurnal prediction of pollutants as compared to observations.  
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Figure S1.4. Monthly WRF-CMAQ simulation with EPA AQS observations overlaid. 

 

Figure S1.5. Shaded areas highlight urban zones in the urban vs. rural analysis. Urban counties were 

chosen by identifying areas with the highest (>95%ile) number of residents within the 4 states in the 1.3 

km domain. Population was taken from the 2018 American Community Survey. The shaded area 

represents the area mask used to calculate the values for urban areas in Table 4, and land-based areas 

outside of the shade are considered rural. Counties defined as urban include: Cook County, IL, DuPage 

County, IL, Kane County, IL, Lake County, IL, McHenry County, IL, Will County, IL, Allen County, IN, 

Lake County, IN, Marion County, IN, Genesee County, MI, Kent County, MI, Macomb County, MI, 

Oakland County, MI, Washtenaw County, MI, Wayne County, MI, Dane County, WI, Milwaukee 

County, WI, Waukesha County, WI. 
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Figure S1.6. Seasonal emissions of NOx, PM (EC + OC), and VOCs over Chicago region, with 

Chicago neighborhoods outlined in black. Average emission rates (μ; in g/s or moles/s) within 

Chicago city limits are annotated on each panel. 
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Figure S1.7. Difference (%) in annualized emissions of (a) NOx, (b) VOCs, (c) PM (EC+OC) and WRF 

meteorological variables (d-f) between 1.3 km and 4 km simulations. The 1.3 km emissions dataset is 

scaled up to the 4 km grid to create a cell-by-cell comparison. The differences in emissions are due to the 

finer-scale characterization of emission sources and meteorological processing, rather than differences in 

the spatial surrogates. As shown by example for NOx and NO2, the difference in input emissions (g) in 

the 1.3 km and 4 km datasets do not necessarily result in similar changes in concentrations (h) in the 

resulting WRF-CMAQ output, with grid cell mismatches highlighted in (j). 
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Figure S1.8. Mask of Chicago grid cells, with grid cells outlined over Chicago (gray), showing 4 km 

(black) and 1.3 km (blue) grid cells.

 

Figure S1.9. Daytime VOC:NOx surface ratios for each month of simulation. 
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Figure S1.10. Daytime HCHO:NO2 column ratios for each month of simulation. 
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Figure S1.11. We compute the empirical variogram by using the methods-of-moments estimator 

(Marzban & Sandgathe, 2008). We compute the variogram function at NO2, O3, and PM2.5 EPA AQS 

observation sites (a,d,g) and the nearest grid-cell output at each model resolution. By subtracting the EPA 

AQS variogram from the model variogram (b,e,h), we identify which model resolution better captures the 

observed variance. We then create a synthetic variogram to expand the analysis beyond the limitations of 

the EPA observation sites (c,f,i). To compute the synthetic variogram, we randomly sample 75 grid cells 

over the 1.3 km domain and the overlapping 4 km grid cells. We compute the variogram for the 

surrounding pixels within a 150 km radius. This analysis does not provide verification, but instead 

provides information on the relative variance across model resolutions, and as such, the relative steepness 

of spatial gradients across the two resolutions. When one model resolution shows higher variogram values 

than the other at the same distance 𝒚, we interpret the spatial gradients to be steeper in that model. 
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Table S1.1.  Boundary condition chemical species mapping from CAM-CHEM chemical species to 

CMAQ chemical species. 

CMAQ 

Species 
CAM-Chem Species 

Mozart2CM

AQ Factors  

CMAQ 

Species 
CAM-Chem Species 

Mozart2CM

AQ Factors 

NO NO 1 
 

ISPD MACR,MVK 1.0, 1.0 

NO2  NO2 1 
 

TERP MTERP 1 

O3 O3 1 
 

TOL TOLUENE 1 

H2O2 H2O2 1 
 

XYL XYLENES 1 

N2O5 N2O5 1 
 

BENZ BENZENE 1 

HNO3 HNO3 1 
 

CRES CRESOL,PHENOL 1.0, 1.0 

PNA HO2NO2 1 
 

SO2 SO2 1 

PAN PAN 1 
 

NH3 NH3 1 

OPAN MPAN 1 
 

MECN CH3CN 1 

CO CO 1 
 

HCN HCN 1 

PAR 
C3H6,BIGENE,BIG

ALK,HYAC,MEK 

1.0, 1.0, 5.0, 

2.0, 3.0  
TOLA TOLUENE 1 

OLE C3H6,BIGENE 1.0, 0.5 
 

XYLA XYLENES 1 

IOLE BIGENE 0.5 
 

BNZA BENZENE 1 

FORM CH2O 1 
 

ISP ISOP 1 

ALD2 CH3CHO 1 
 

TRP MTERP 1 

MGLY CH3COCHO 1 
 

CH4 CH4 1 

ETHA C2H6 1 
 

DMS DMS 1 

ETH C2H4 1 
 

GLY GLYOXAL 1 

ETHY C2H2 1 
 

ASO4J so4_a1,so4_a2 
0.30208, 

0.30208 

PRPA C3H8 1 
 

ASO4K NH4 1.61111 

ACET CH3COCH3 1 
 

ANO3J 
soa3_a1,soa3_a2,soa4_a1,so

a4_a2,soa5_a1,soa5_a2 

0.22308 (for 

all) 

ETOH C2H5OH 1 
 

ANO3K 
soa1_a1,soa1_a2,soa2_a1,so

a2_a2 

0.22308 (for 

all) 

MEOH CH3OH 1 
 

ANH4J pom_a1,pom_a4 
0.13182, 

0.13182 

MEPX CH3OOH 1 
 

ATRP1

J 
bc_a1,bc_a4 0.29, 0.29 

FACD HCOOH 1 
 

ATRP2

J 
dst_a1,dst_a2 0.29, 0.29 

AACD CH3COOH 1 
 

APNCO

MJ 
dst_a3 0.29 

KET HYAC,MEK 1.0, 1.0 
 

APOCJ ncl_a1,ncl_a2 
1.26087, 

1.26087 

ISOP ISOP 1 
 

AECJ ncl_a1,ncl_a2 
0.82857, 

0.82857 
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Table S1.2. Definition of performance metrics used in this study. 

Metrics Definition 

Mean (𝝁) 𝝁 =
𝟏

𝒏
∑

𝒏

𝒋=𝟏

𝑷𝒋 

 

Mean Bias (MB) 𝑴𝑩 =  
𝟏

𝒏
∑

𝒏

𝟏

(𝑷𝒋 − 𝑶𝒋) 

Mean Error (ME) 𝑴𝑬 =  
𝟏

𝒏
∑

𝒏

𝟏

|𝑷𝒋 − 𝑶𝒋| 

Root Mean Squared Error (RMSE) 
𝑹𝑴𝑺𝑬 = √∑

𝒏

𝟏

(𝑷𝒋 − 𝑶𝒋)
𝟐

𝒏
  

Normalized Mean Bias (NMB) 𝑵𝑴𝑩 =
∑𝒏

𝟏 (𝑷𝒋 − 𝑶𝒋)

∑𝒏
𝟏 𝑶𝒋

 

 

 

Normalized Mean Error (NME) 𝑵𝑴𝑬 =
∑𝒏

𝟏 |𝑷𝒋 − 𝑶𝒋|

∑𝒏
𝟏 𝑶𝒋

 

 

Correlation Coefficient (r) 𝒓 =
∑ [(𝑷𝒋 − 𝑷) × (𝑶𝒋 − 𝑶)]

√∑ (𝑷𝒋 − 𝑷)
𝟐

× ∑ (𝑶𝒋 − 𝑶)
𝟐

)

× 𝟏𝟎𝟎 

 

 

Note: Subscript j represents the pairing of N observations (O) and predictions (P) by site 

and time.  
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Table S1.3. Emery et al. 2001 recommendations for WRF-CMAQ meteorological performance  

 

  Unit MB RMSE ME IOA 

T °C ±0.5 n/a ±2 >0.7 

WS m/s ±0.5 2 n/a >0.6 

WD ° ±10 n/a ±30 n/a 

RH n/a n/a n/a n/a n/a 
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Table S1.4. Comparison of two-way coupled WRF-CMAQ simulated hourly meteorological 

variables with O’Hare Meteorological station (n = 1) for 1.3 km (d03) and 4 km (d02) grid cells. 

The average observed value is μd, while the predicted value is as μp. 
  O'Hare 1.3 km  4 km  

 Month μd μp MB ME RMSE r μp MB ME RMSE r 

T2  

(°C) 

08/2018 23.4 23.9 0.5 1.9 2.5* 0.8 296.5 0.1 1.7 2.2* 0.8 

10/2018 11 10.5 -0.5 1.7 2.1* 0.9 283.7 -0.3 1.7 2.1* 0.9 

01/2019 -5.7 -6.1 -0.4 1.5 1.9 1.0 266.3 -1.1* 1.7 2.2* 1.0 

04/2019 8.1 7.9 -0.2 1.8 2.5* 0.9 281.0 -0.1 1.8 2.5* 0.9 

Average 9.2 9 -0.2 1.7 2.3 0.9 281.9 -0.1 1.7 2.3 0.9 

RH 

(%) 

08/2018 75.3 69.8 -5.5 11.7 15.8 0.7 71.7 -3.6 11.0 14.9 0.7 

10/2018 71.0 74.8 3.8 12.5 15.5 0.7 74.1 3.1 13.1 16.1 0.7 

01/2019 66.7 75.9 9.3 12.2 13.9 0.7 79.1 12.4 14.4 16.2 0.7 

04/2019 63.6 72.0 8.4 13.4 16.9 0.8 67.1 3.4 12.9 16.0 0.8 

Average 69.1 73.1 4.0 12.5 15.5 0.7 73.0 3.8 12.9 15.8 0.7 

WS 

(m/s) 

08/2018 7.5 5.7 -1.9* 3.2 4.1* 0.6 5.8 -1.7* 3.2 4.2* 0.5 

10/2018 9.6 6.9 -2.7* 3.7 4.7* 0.6 7.4 -2.2* 3.3 4.2* 0.7 

01/2019 10.9 8.9 -2.0* 3.0 4.1* 0.8 9.2 -1.7* 2.9 3.9* 0.8 

04/2019 11.1 7.5 -3.5* 4.1 5.1* 0.8 7.9 -3.2* 3.9 4.9* 0.8 

Average 9.7 7.2 -2.5 3.5 4.5 0.6 7.6 -2.2 3.3 4.3 0.7 

WD  

(°) 

08/2018 162.8 194.5 31.7* 78.9 128.1* 0.3 184.8 22.0* 74.3 122.4* 0.3 

10/2018 197.5 244.0 46.4* 61.1 111.9* 0.3 241.4 43.9* 58.2 107.8* 0.4 

01/2019 219.4 238.2 18.7* 33.2 76.8* 0.7 229.6 10.2 34.5 77.3* 0.7 

04/2019 152.4 163.2 10.7 45.4 88.8* 0.7 159.1 6.6 45.8 88.2* 0.6 

Average 183.0 209.9 26.9 54.7 101.4 0.5 203.7 8.4 53.2 98.9 0.5 
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Table S1.5. Studies for the WRF-CMAQ comparison and reported metrics of performance. Values are 

pulled from tables, text, or figures in the published works. Star (*) denotes daytime O3 analysis. 
Study Pub. 

Year 

Area Length  Res. Var MB RMSE NMB 

(%) 

NME 

(%) 

r 

Zhang et 

al., 2014 

2014 Eastern 

US, 

Chicag

o 

7-yr 12, 4 

km 

O3 - - <15 <35 - 

Abdi-

Oskouei 

et al., 

2020* 

2020 Great 

Lakes 

Region 

Summer 4 km O3 -4.4 12.3 – 

14.1 

-8 – -

4.4 

- - 

Qin et 

al, 2019 

2019 Great 

Lakes 

Region 

1 mo., 

July 

12, 4 

km 

MDA

O3 

1.1 10.6 2.0 15.1 - 

Odman 

et al., 

2019* 

2019 Midwe

st 

July 12, 4 

km 

MDA

O3 

6 - - - - 

Torres-

Vazquez 

et al., 

2021 

2021 NYC-

Long 

Island 

Summer 12, 4, 

1.3 km 

O3 0.2 11.2 - - 0.7 –

0.8 

NOx 6.8 21 - - 0.5 –

0.6 

PM2.5 3.7 8.8 - - 0.5 –

0.6 

Lawal et 

al., 2022 

2022 Atlanta

, GA 

1 mo., 

Summer 

24, 4 

km 

NOx - 1.5 45 - 0.9 

Hogrefe 

et al., 

2015 

2015 CONU

S 

1-yr 12 km PM2.5 - - 1.4 – 

59.8 

34.1 – 

81.4 

0.45 – 

0.69 

Pan et 

al., 2017 

2017 Housto

n, TX 

2-weeks 4 km, 1 

km 

NOx -0.6 – 

0.1 

- - - 0.6 – 

0.7 

O3 10 – 

11.4 

- - - 0.8 – 

0.9 

Campbe

ll et al., 

2018 

2018 Eastern 

US, 

CONU

S 

Summer 12 km O3 - - 53 – 60 49 – 53 0.7 

SO2 - - 59 – 62 69 – 72 0.3 

Liu et 

al., 2010 

2010 North 

Carolin

a 

2 mo., 

Summer 

Winter 

12, 4 

km 

PM2.5 - - -48.4 – 

34.9 

34.9 – 

49.2 

- 

Harkey 

et. al, 

2015 

2015 CONU

S 

Winter, 

Summer 

36 km NO2 - - - - 0.12 – 

0.24 

Bickford 

et al., 

2014 

2013 Midwe

st 

2 mo., 

Summer 

& Winter 

12 km NO2 - - -25.5 – 

-3.1 

52.3 –

44.8 

0.5 

SO2 - - -48.8 65-80 0.3 –

0.4 

PM2.5 - - -39.3 – 

-34.3 

43.4 –

46.1 

0.6 

O3 - - 7.4 18 0.7 
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Table S1.6. O3 performance in the 1.3 km domain (d03) assessed against EPA AQS station observations 

using different O3 thresholds. The average observed value is noted as μd, while the predicted value is 

noted as μp. 

O3 Filter Month μd μp NMB% NME% r 

1-hr O3 > 60 ppb Aug. 2018 67.7 64.1 -5.4 16.8 0.2 

Apr. 2019 63.0 58.4 -7.2 8.9 0.1 

8-hr MDAO3 > 60 ppb Aug. 2018 65.9 66.7 1.2 12.9 0.2 

Apr. 2019* 61.0 59.5 -2.5 2.7 - 

1-hr O3 > (50%ile Observed O3) Aug. 2018 35.9 42.6 18.7 21.4 0.2 

Oct. 2019 24.5 34.5 40.9 42.9 0.4 

Jan. 2019 29.7 35.3 19.0 21.6 0.2 

Apr. 2019 40.8 49.8 22.1 23.1 0.4 

Average 32.7 40.6 25.2 27.3 0.3 

8-hr MDAO3 Aug. 2018 42.8 53.6 25.1 26.8 0.5 

Oct. 2019 28.0 39.0 39.3 40.8 0.4 

Jan. 2019 29.7 37.3 25.4 27.0 0.6 

Apr. 2019 44.2 55.2 24.8 25.6 0.4 

Average 36.2 46.3 28.7 30.1 0.5 
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Table S1.7. Differences in urban–rural concentrations of pollutants over the 1.3 km domain (d03). 

Differences are described using absolute difference (Δ) or percent (%). Visual depiction of urban vs. rural 

is provided in Figure S2. 

 

 Aug. 2018 Oct. 2018 Jan. 2019 April 2019 Average 

 units Δ % Δ % Δ % Δ % Δ % 

NO2 ppb 3.3 60.2 4.2 61.7 3.4 54.9 3.3 62.5 3.5 59.8 

O3 ppb -2.5 6.4 -4.1 -13.1 -3.7 -12.2 -2.8 -5.9 -3.3 -9.4 

PM2.5 ug/m3 1.5 23.1 1.6 22.8 1.9 22.1 1.1 20.4 1.5 22.1 

SO2 ppb 0.2 31.9 0.1 23.8 0.1 22.4 0.1 36.5 0.1 28.6 

CO ppb 42.3 25.9 46.5 31.6 35.2 22.1 34.9 22.5 39.7 25.5 
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Table S1.8 Comparison of two-way coupled WRF-CMAQ simulated hourly meteorological variables 

with NCDC observations for 4 km (d02) simulations using only NCDC stations within the 1.3 km 

domain. The average predicted value is noted as μp, while the average observed value is noted as μd. 

*Denotes model performance within Emery et al., 2001 guidelines. 

Var Month μd μp MB ME RMSE r 

T2  

(°C) 

08/2018 23.2 23.4 0.3 1.7 2.2 0.9 

10/2018 10.8 11.0 0.2 1.7 2.1 0.9 

01/2019 -5.8 -4.9 0.9* 2.1* 2.7 1.0 

04/2019 9.2 9.3 0.1 1.9 2.5 0.9 

Average 9.4 9.7 0.4 1.9 2.4 0.9 

RH 

(%) 

08/2018 76.6 73.8 -2.8 10.4 13.7 0.7 

10/2018 74.8 78.3 3.5 12.0 15.2 0.7 

01/2019 74.6 81.2 6.5 10.6 13.0 0.7 

04/2019 66.1 66.5 0.5 13.2 16.6 0.8 

Average 73.0 75.0 1.9 11.6 14.6 0.7 

WS 

(m/s) 

08/2018 6.9 6.0 -0.9* 3.0 3.8* 0.6 

10/2018 8.8 7.5 -1.3* 2.9 3.8* 0.7 

01/2019 10.2 10.4 0.2 3.6 5.0* 0.6 

04/2019 10.6 8.5 -2.1* 3.5 4.5* 0.7 

Average 9.1 8.1 -1.0 3.3 4.3 0.7 

WD  

(°) 

08/2018 166.0 191.4 25.4* 75.7* 123.4 0.3 

10/2018 190.6 204.4 13.8* 50.9* 97.6 0.5 

01/2019 192.8 208.5 15.7* 43.2* 91.7 0.6 

04/2019 166.8 171.8 5.0 50.2* 97.3 0.6 

Average 179.1 194.0 15.0 55.0 102.5 0.5 

 

 

  



 

 

146 

Table S1.9. Comparison of two-way coupled WRF-CMAQ simulated hourly meteorological 

variables with O’Hare NCDC station for 1.3 km (d03) and 4 km (d02) grid cells. The average 

observed value is noted as μd, while the predicted value is noted as μp. *Denotes model 

performance within Emery et al., 2001 guidelines. 

    O'Hare 1.3 km Domain 4 km Domain 

  Month μd μp MB ME RMSE r μp MB ME RMSE r 

T2  (°C) 08/18 296.4 296.9 0.5 1.9 2.5* 0.8 296.5 0.1 1.7 2.2* 0.8 

10/18 284.0 283.5 -0.5 1.7 2.1* 0.9 283.7 -0.3 1.7 2.1* 0.9 

01/19 267.3 266.9 -0.4 1.5 1.9 1.0 266.3 -1.1* 1.7 2.2* 1.0 

04/19 281.1 280.9 -0.2 1.8 2.5* 0.9 281.0 -0.1 1.8 2.5* 0.9 

Avg. 282.2 282.0 -0.2 1.7 2.3 0.9 281.9 -0.1 1.7 2.3 0.9 

RH (%) 08/18 75.3 69.8 -5.5 11.7 15.8 0.7 71.7 -3.6 11.0 14.9 0.7 

10/18 71.0 74.8 3.8 12.5 15.5 0.7 74.1 3.1 13.1 16.1 0.7 

01/19 66.7 75.9 9.3 12.2 13.9 0.7 79.1 12.4 14.4 16.2 0.7 

04/19 63.6 72 8.4 13.4 16.9 0.8 67.1 3.4 12.9 16.0 0.8 

Avg. 69.1 73.1 4.0 12.5 15.5 0.7 73.0 3.8 12.9 15.8 0.7 

WS (m/s) 08/18 7.5 5.7 -1.9* 3.2 4.1* 0.6 5.8 -1.7* 3.2 4.2* 0.5 

10/18 9.6 6.9 -2.7* 3.7 4.7* 0.6 7.4 -2.2* 3.3 4.2* 0.7 

01/19 10.9 8.9 -2.0* 3.0 4.1* 0.8 9.2 -1.7* 2.9 3.9* 0.8 

04/19 11.1 7.5 -3.5* 4.1 5.1* 0.8 7.9 -3.2* 3.9 4.9* 0.8 

Avg. 9.7 7.2 -2.5 3.5 4.5 0.6 7.6 -2.2 3.3 4.3 0.7 

WD  (°) 08/18 162.8 194.5 31.7* 78.9 128.1* 0.3 184.8 22.0* 74.3 122.4* 0.3 

10/18 197.5 244.0 46.4* 61.1 111.9* 0.3 241.4 43.9* 58.2 107.8* 0.4 

01/19 219.4 238.2 18.7* 33.2 76.8* 0.7 229.6 10.2 34.5 77.3* 0.7 

04/19 152.4 163.2 10.7 45.4 88.8* 0.7 159.1 6.6 45.8 88.2* 0.6 

Avg. 183.0 209.9 26.9 54.7 101.4 0.5 203.7 8.4 53.2 98.9 0.5 
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Table S1.10. Performance of 4 km simulation over the 1.3 km (d03) domain, compared to the 1.3 km 

simulation performance using EPA AQS station data as the observational standard. Positive values in the 

Δ columns indicate that the 1.3 km simulation has higher fidelity to observations than the 4 km 

simulation. Values in the Δμ and Δr column are the subtracted differences. 

    4 km Δ (1.3 km - 4 km) 

Var Season μd NMB% NME% r  Δμ(1.3 – 4) ΔNMB% ΔNME% Δr 

SO2 08/18 0.7 -1.9 89.6 0.1 0.1 -6.7 -2.8 0.07 

10/18 0.7 43.5 124.2 0.2 0.1 -24.8 -17.4 -0.07 

01/19 1.2 30.3 105.0 0.3 0.1 -10.7 5.1 -0.08 

04/19 1.3 71.7 145.5 0.2 0.0 -0.4 16.1 -0.09 

NO2 08/18 11.3 10.9 54.1 0.6 1.0 -8.9 1.0 0.00 

10/18 11.3 5.3 56.7 0.5 0.2 -1.4 7.6 -0.02 

01/19 10.7 -18.2 43.5 0.6 1.2 -8.8 1.9 0.02 

04/19 10.1 -4.5 53.1 0.6 0.4 -4.0 -1.3 0.02 

O3 08/18 39.7 31.2 39.0 0.7 -0.5 1.6 1.0 0.00 

10/18 31.9 56.8 61.4 0.6 -0.2 0.8 1.1 0.00 

01/19 30.9 25.8 33.0 0.7 -0.5 2.0 1.0 0.00 

04/19 46.9 29.0 33.5 0.6 -0.4 1.3 1.0 0.00 

CO 08/18 204.4 -18.4 43.0 0.2 -0.1 0.0 0.2 0.02 

10/18 178.9 -22.0 44.5 0.3 -9.8 4.3 2.4 -0.02 

01/19 188.3 -33.6 40.0 0.5 1.5 -0.5 0.5 0.01 

04/19 180.5 -36.2 45.4 0.4 -3.0 1.5 -0.8 0.03 

PM2.5 08/18 7.7 -35.8 53.8 0.3 0.5 -3.5 1.1 0.00 

10/18 7.7 14.3 64.6 0.4 -0.1 1.6 2.3 -0.02 

01/19 9.8 4.4 51.7 0.5 0.2 -1.6 -1.2 0.01 

04/19 6.1 -19.1 52.6 0.5 0.1 -0.3 1.4 -0.01 
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Table S1.11. Comparison of early daytime (8 am – 12 pm) and late night (10 pm – 4 am) 

concentrations of key pollutants with the normalized mean bias. 
  Day Average Night Average Day NMB Night NMB 

 Month EPA 4km 1.3km EPA 4km 1.3km 4km 1.3km 4km 1.3km 

NO2 8/18 7.9 5.2 6.2 12.7 9.5 12.8 -34% -21% -25% 0% 

10/18 9 8.1 9.9 10.9 9.3 10.3 -10% 9% -15% -6% 

1/19 12.4 7.3 8.4 13.1 7.6 8.4 -41% -32% -42% -36% 

4/19 9.2 6 7.8 11.5 8.4 9.1 -35% -15% -27% -20% 

O3 8/18 36.6 46.7 47.7 20.7 31.4 31.5 28% 30% 52% 53% 

10/18 22.8 35.2 34.6 16.8 30.1 29.9 54% 52% 79% 79% 

1/19 24.6 33.1 32.3 23.6 30.5 30.7 35% 31% 29% 30% 

4/19 37.7 49.2 49.3 31.7 40.7 43.1 30% 31% 28% 36% 

PM2.

5 

8/18 11.6 6.4 6.9 12.5 6.8 7.2 -44% -41% -46% -42% 

10/18 6.3 5.9 7.3 7.2 6 7.2 -7% 16% -16% 0% 

1/19 9.5 8.2 9.2 9.7 9.2 9.8 -13% -3% -5% 1% 

4/19 7.1 5 5.8 8 5.7 6.3 -29% -18% -28% -21% 

SO2 8/18 0.9 1.8 1.9 0.7 1 1.1 105% 119% 42% 54% 

10/18 0.9 1.1 1.5 0.9 0.9 0.7 13% 61% 1% -18% 

1/19 1 1.1 1.3 0.9 1 0.9 3% 26% 6% -2% 

4/19 0.9 1.2 1.5 0.7 0.9 0.9 38% 79% 24% 29% 

CO 8/18 237.5 188.6 208.2 246.2 142.6 158.6 -21% -12% -42% -36% 

10/18 215.9 194 204.1 219.3 126.9 128.8 -10% -5% -42% -41% 

1/19 292.5 187.9 204.8 271.5 146.5 146.7 -36% -30% -46% -46% 

4/19 273.1 183 190.9 278.3 150.1 151.5 -33% -30% -46% -46% 
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Table S1.12. Performance of surface O3 in the CAM-Chem simulation compared to EPA AQS 

stations near the edge of the 4 km (d02) domain, shown in the embedded figure.  

Locations of Stations: 

  
Temporal 

Average 

Month Year 
EPA CAM 

NMB

% 

NME

% 
MB 

RMS

E 
r 

6-Hourly 8 2018 27.0 33.1 22.4 47.1 6.1 15.4 0.2 

10 2018 22.2 33.2 49.2 56.3 10.9 15.1 0.4 

1 2019 24.5 36.7 49.8 53.5 12.2 16.2 0.0 

4 2019 35.3 35.2 -0.1 26.3 -0.1 11.8 0.2 

Daily 8 2018 26.8 33.1 23.3 23.5 6.3 7.0 0.0 

10 2018 22.0 33.2 50.7 50.7 11.2 11.4 0.3 

1 2019 24.3 36.7 50.8 50.8 12.4 13.2 -0.4 

4 2019 35.2 35.2 0.0 7.1 0.0 3.2 0.0 

Daily Max 

(Daytime) 

8 2018 77.5 36.4 -53.0 53.0 -41.1 42.8 0.2 

10 2018 56.2 36.5 -35.1 35.1 -19.7 21.7 -0.2 

1 2019 47.1 46.7 -0.7 10.6 -0.3 6.4 0.0 

4 2019 67.4 39.2 -41.9 41.9 -28.2 29.3 0.2 

Daily Min 

(Night 

time) 

8 2018 0.5 30.8 6491 6491 30.3 30.3 1.0 

10 2018 0.9 30.2 3296 3296 29.3 29.3 0.7 

1 2019 1.8 33.8 1784 1784 32.0 32.1 0.3 

4 2019 1.2 33.5 2655 2655 32.3 32.3 0.1 

Monthly 8 2018 26.9 33.1 23.0 28.1 6.2 9.1 -0.4 

10 2018 21.7 33.0 52.2 53.1 11.3 12.3 0.3 

1 2019 24.3 36.7 50.8 50.8 12.4 13.0 0.2 

4 2019 35.2 35.2 0.1 7.7 0.0 3.4 0.2 
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Appendix 2  

Supplement for Chapter 3 

Supporting Information for 

Intraurban NO2 Hotspot Detection across Multiple Air Quality Products 
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Fig. S2.1. Grid cell to grid cell comparison of NO2 products from (a) CMAQ and TropOMI, (b) Eclipse 

and TropOMI, and (c) CMAQ and Eclipse. Monthly August data are shown with blue circles and 

February with green triangles. The best-fit linear regression is shown as a dashed line (blue for August, 

green for February), while the 1:1 line is solid black. Note that the 1:1 line is not necessarily the expected 

relationship between the datasets, particularly for ground-based (Eclipse + CMAQ) to columnar 

(TropOMI) comparisons. For each month, the Pearson correlation coefficient (r) and mean bias (mb) 

between datasets are annotated. 

 

 
Fig. S2.2. Individual NO2 hotspot results for (a) WRF-CMAQ, (b) TropOMI, and (c) Eclipse over 

Chicago for August 2021 and February 2022. 
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Fig. S2.3. Visual of hotspot intersection definitions for high-agreement hotspot, medium-agreement 

hotspots (2 out of 3 datasets), and low-agreement hotspots (only 1 dataset identifies hotspots). This 

follows the color scheme in Figure 1. 

 

 
Fig. S2.4. The intersection of WRF-CMAQ and Eclipse hotspots over Chicago given each dominant wind 

directions for August 2021. The number of days with each dominant wind direction are noted. The extent 

of the consensus hotspot is outlined in black. 



 

 

153 

 

 

 
Fig. S2.5. The intersection of WRF-CMAQ and Eclipse hotspots over Chicago given each dominant wind 

directions for February 2021. The number of days with each dominant wind direction are noted. The 

extent of the consensus hotspot is outlined in black, the extent of the highway hotspot is in green. 

 

 
Fig. S2.6. (a) Locations of Eclipse sensors colored by highway heights: Recessed (purple, n = 20), 

ground-level (green, n = 1), and elevated (red, n = 15). (b) The average NO2 at near-highway (< 2.5 km) 

sensors stratified by highway heights for (a) August and (b) February. Sensors are grouped by elevation: 

yellow shows average Eclipse measurements at stations near recessed highways and blue are sensors near 

elevated highways. The line of regression comparing average NO2 to distance are drawn for each highway 

type. 

( b) August NO 2 Near Highways ( c) February NO 2 Near Highways 
( a ) 

Recessed 
Ground Level 
Elevate d 
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Fig. S2.7. WRF-CMAQ normalized NO2 concentrations near elevated and recessed highways. 

Differences are not statistically significant. 

 
Table S2.1. Average values of NO2 concentration, land-use, and social characteristics within hotspots and 

for all of Chicago for August 2021. Statistically significant characteristics relative to the Chicago average 

are indicated by an asterisk (*) and determined using a t-test with Bonferroni adjustment. 

Type Characteristics Units Consensus Observational Modeled Chicago 

NO2 Eclipse ppb 11.0* 10.4* 9.4 9.1 

CMAQ ppb 18.3* 14.5 18.2* 14.0 

TropOMI molecules/cm2 9.3* 9.3* 8.1 8.0 

Green Space ndvi - 0.3* 0.4 0.3* 0.4 

Traffic Highway Count 0.4 0.1 0.7* 0.3 

Arterials Count 20.0 23.4 27.9* 17.3 

Bus Speeds m/s 6.9 6.2 13.7* 4.0 

Zoning Industrial Area 0.3* 0.1 0.2 0.1 

Residential Area 0.4 0.5 0.2* 0.4 

Commercial Area 0.1 0.1 0.2* 0.1 

Demographics Total 

Population 

People 8385 10004 12202* 7472 

White People 1485 1089 7288* 2543 

Black People 1949 4610* 1023 2115 

Hispanic/Latino People 4488* 4109 1378* 2175 

Asian People 364 85 2196* 478 

Income + 

Assistance 

Income $ per person 65336 57235 209428* 71828 

Public 

Assistance 

$ per recipient 2748 3270 5945* 2893 
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Table S2.2. Average values of NO2 concentration, land-use, and social characteristics within hotspots and 

for all of Chicago for August 2022. Statistically significant characteristics relative to the Chicago average 

are indicated by an asterisk (*) and determined using a t-test with Bonferroni adjustment. In comparing 

this table to August 2021, demographic, traffic, zoning, and income characteristics change because of the 

extent of the hotspots in February 2022, as opposed to people moving; which contrasts to NDVI and NO2, 

which also change due to seasonality. 

Type Characteristics Units Consensus Highway Chicago 

NO2 Eclipse ppb 16.8* 15.3 14.2 

CMAQ ppb 16.4* 15.9* 13.5 

TropOMI molecules/cm2 21.4* 16.7 17.5 

Green Space ndvi - 0.1* 0.1* 0.2 

Traffic Highway Count 6.4 7.1* 4.1 

Arterials Count 19.7 27.3* 17.4 

Bus Speeds m/s 6.4 7.1* 4.0 

Zoning Industrial Area 0.4* 0.1 0.1 

Residential Area 0.4 0.4 0.4 

Commercial Area 0.1 0.1* 0.1 

Demographics Total Population People 8574 9830* 7472 

White People 680* 2770* 2543 

Black People 531 1417* 2115 

Hispanic/Latino People 6961* 3566 2175 

Asian People 363 1883* 478 

Income + 

Assistance 

Income $ per person 34668 80610* 71828 

Public Assistance $ per recipient 2325 3770* 2893 

 

 

Table S2.3. February 2022 near I-290 Highway. Units are in ppb unless otherwise noted. EPA 

measurements in the table reflect the average EPA values when compared to observations, so missing 

observations affect the average EPA measurement. 

Data Time EPA Prediction mb nmb 

(%) 

rmse nrmse 

(%) 

r 

CMAQ All Day 17.9 17.7 -0.2 -1.1 10.5 2.5 0.5 

Morning (6:00 – 9:00 

CT) 

20.5 20.3 -0.2 -0.9 12.6 2.8 0.3 

Afternoon (16:00 – 

19:00 CT) 

17.7 27.8 10.1 56.9 12.5 3.0 0.8 

Eclipse All Day 18.0 16.5 -1.5 -8.1 9.3 2.2 0.4 

Morning (7:00 – 9:00 

CT) 

19.9 17.0 -2.9 -14.3 8.5 1.9 0.7 

Afternoon (16:00 – 

19:00 CT) 

17.9 19.2 1.4 7.6 7.0 1.7 0.2 
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Table S2.4. August 2021 near I-90 Highway. Units are in ppb unless otherwise noted. EPA 

measurements in the table reflect the average EPA values when compared to observations, so missing 

observations affect the average EPA measurement. 

Data Time EPA Prediction mb nmb (%) rmse nrmse (%) r 

CMAQ All Day 13.7 19.2 5.4 39.6 12.7 3.4 0.5 

Morning (6:00 – 9:00 

CT) 

21.2 28.9 7.6 36.0 15.1 3.3 0.4 

Afternoon (16:00 – 

19:00 CT) 

9.3 9.6 0.3 3.1 6.6 2.2 0.4 

Eclipse All Day 13.8 9.4 -4.5 -32.3 10.6 2.8 0.3 

Morning (7:00 – 9:00 

CT) 

21.2 12.1 -9.1 -42.9 13.0 2.8 0.6 

Afternoon (16:00 – 

19:00 CT) 

9.2 8.5 -0.7 -7.3 6.0 2.0 -0.1 

 

 

 

Table S2.5. Average NO2 concentrations from Eclipse and overlaid WRF-CMAQ grid cell, grouped by 

recessed and elevated highways. Units are in ppb unless otherwise noted. 

Month Data Recessed Elevated Difference Difference (%) p-value 

August 2021 Eclipse 10.3 9.2 1.2 12% 0.03 

WRF-

CMAQ 

14.8 15.2 -0.4 -3% 0.65 

February 2022 Eclipse 15.3 13.4 1.9 13% 0.19 

WRF-

CMAQ 

14.2 14.9 -0.8 -5% 0.21 
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Appendix A: WRF-CMAQ Specifications and Model Performance. 

WRF-CMAQ Model Specifications.  

To create the coupled Weather Research Forecast and Community Multiscale Air Quality (WRF-

CMAQ) model simulations, we follow the guidance outlined in Byun & Schere, 2006, such that we 1) run 

a stand-alone WRFv3.2 simulation, 2) create meteorologically-informed emissions using the 2017 

SMOKE platform, and 3) run the coupled WRF-CMAQ model. In this study, we only use the 1.3 km 

output (Figure A1(b)). 

We run standalone WRF with 3 nested domains at a horizontal resolution of 12 km, 4 km, and 1.3 

km resolution Figure A1(a). The WRF simulation is run with 35 vertical layers from the surface to 30 

hPA. We use the 12 km WRF output to create initial and boundary conditions for the 4 km domain and 

we use the 4 km model output to create the same for the 1.3 km domain. The WRF physics options are 

described in Table A1. The initial conditions and 3 hourly lateral boundary conditions for the 12 km 

domain are sourced from the North Atlantic Regional Reanalysis (NARR; (5)). 

We use the 2017 NEI Modeling Platform (3) to create emissions for August 2021 and February 

2022. We update the PTEGU and marine shipping sector to integrate the historical reported emissions: for 

the PTEGU sector, we use the Continuous Emissions Monitoring data (CEM) from the EPA and for the 

marine shipping sector, we time-shift the most recently available marine shipping emissions data (2019) 

from the EPA. We use WRF output to create meteorologically informed emissions for the onroad sector 

using MOVE2014 output in the 2017 platform. To ultimately create emissions, we use the 2017 platform 

to create emissions for the onroad, point-source, and non-road sectors. We calculate biogenic emissions 

(BEIS), lightning NOx emissions, and windblown dust inline during the CMAQ simulation. 

The final WRF-CMAQ simulations were performed at the 4 km and 1.3 km domain. We use the same 

WRF physics option as described in Table A1. For the 4 km outer-simulation, Like the standalone WRF 

simulation, we use NARR (5) for meteorological boundary conditions. We use WACCM (6) for chemical 

initial and time-evolving boundary conditions. We then use the chemical and meteorological output from 
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4 km simulation to provide boundaries for the 1.3 km simulation. Both the 4 km and 1.3 km domain use 

the Carbon Bond Mechanism version 6 and aerosol module version 2016 with aqueous chemistry 

(cb6r3_ae6_aq) to create atmospheric constituents. 

WRF-CMAQ Model Performance.  

We analyze the 1.3 km WRF-CMAQ performance over the full and cropped Chicago domain 

(Figure 1b) and within Chicago (Figure 1). To evaluate the statistical performance of the WRF-CMAQ 

simulation, we calculate the mean bias (MB), normalized mean bias (NMB), root-mean squared error 

(RMSE), normalized root-mean squared error (NRMSE), and Pearson’s correlation coefficient (r). We 

calculate the performance of observations (x) to model output (y), with pixel locations indicated by index 

locations (i,j). Within Chicago, there is only one EPA NO2 station within city limits, with 2 located near 

the city (Figure 3.1). The EPA COM-ED station, just south of city limits, is used to calibrate the Eclipse 

sensor network, but we choose to expand the model performance to the other 2 nearby EPA stations as the 

EPA COM-ED station does not report NO2 for August 2021. 

Given this, we find that WRF-CMAQ simulated NO2 in Chicago is biased high in August 2021 

(6.1 ppb, 39.8%), but biased low in February 2022 (-0.1 ppb, -0.5%), though the hourly variation is 

similarly captured in summer and winter (r = 0.5) (Table S2.1). The bias in the August 2021 is driven by 

nighttime (10 pm - 5 am CST) concentrations of NO2 (Augustnight MB = 9.2 ppb, NMB = 57%, r = 0.33). 

For posterity, we include the full 1.3 km modeling domain performance in Table A2. 

 

Fig. A1. (a) The nested WRF domains with (b) full domain EPA NO2 coverage for the 1.3 km simulation. 
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Table A1. Model physics options 

Model Domain Time 

Period 

Option Value 

WRF 12 km, 4km, 

1.3 km 

Full run Microphysics Morrison 2-Moment 

12 km, 4 km Full run Cumulus 

Parameterization 

Kain-Fritsch v2 (KF2) 

12 km, 4km, 

1.3 km 

Full run Planetary Boundary 

Layer 

Asymmetric Convective Model v2 

12 km, 4km, 

1.3 km 

Full run Shortwave Radiation Rapid Radiative Transfer Model for 

GCMs (RRTMG) 

12 km, 4km, 

1.3 km 

Full run Longwave Radiation Rapid Radiative Transfer Model for 

GCMs (RRTMG) 

12 km, 4km, 

1.3 km 

Spin-Up Soil Moisture On 

12 km, 4km, 

1.3 km 

Full run Temperature Nudging On 

12 km, 4km, 

1.3 km 

Full run FDDA Nudging: 

Temperature 

0.0003 

12 km, 4km, 

1.3 km 

Full run FDDA Nudging: 

Winds 

0.0001 

12 km, 4km, 

1.3 km 

Full run FDDA Nudging: 

Water Vapor 

0.0001 

12 km, 4km, 

1.3 km 

Full run Timestep (s) 60, 20, 6 

CMAQ 4 km, 1.3 km Full run Radiation Timestep 

(min) 

10, 5 

4 km, 1.3 km Full run Coupling (steps) 8 

 

Table A2. Model performance of NO2 (in ppb) in Chicago and over 1.3 km Domain. 

Domain Stations Month µEPA µCMAQ MB NMB RMSE NRMSE r 

Chicago 2 08/21 15.3 21.4 6.1 0.4 14.0 0.9 0.5 

3 02/22 16.5 16.4 -0.1 0.0 11.2 0.7 0.5 

d03 7 08/21 11.8 13.7 1.9 0.3 10.8 0.9 0.5 

7 02/22 16.9 14.3 -2.6 -0.2 11.4 0.7 0.5 

 

  



 

 

160 

Appendix B: TropOMI Satellite Processing and Validation 

TropOMI Processing 

 We retrieved daily, level-2 observations of NO2 from TropOMI using the SentinelSat Python 

package. In order to create a product which we can directly compare to the interpolated eclipse surface 

and CMAQ grid, we down-scaled the L2 data (3.5 km x 7 km) to the WRF-CMAQ grid (1.3 km x 1.3 

km). We use a three step approach to create the monthly average NO2 from the L2 retrievals. First, we 

apply the bilinear interpolation function to regrid the daily retrievals (with pixel area of 3.5 km x 7 km) to 

the 1.3 km x 1.3 km grid. Second, we mask for missing or low-quality pixels, where qavalue < 0.75. 

Finally, we average the daily retrievals to create a monthly average. We repeat this process to create a 

surface for August 2021 and February 2022. As shown in B1, the number of valid, 1.3 km pixels are 

significantly higher in August 2021 compared to February 2022, with an average data retention of 78% 

per pixel in August compared to 16% in February. 

We do not create “ground-level” NO2 from the TropOMI satellite by implementing an averaging 

factor, and this may contribute to biases in the VCD values within urban areas (7). As our domain for 

clustering exclusively centers on Chicago, we assume all Chicago pixels would contain the same urban 

bias, though caution should be taken interpreting the absolute values from the TropOMI satellite for this 

reason. Further, in testing our interpolation of TropOMI pixels against EPA values, we find a linear 

relationship between the column and ground-based measurements (r = 0.3 - 0.7; Figure B1), which is also 

supported by previous studies (cite), so we omitted further processing. 

TropOMI Product Performance against EPA stations  

We then compare the regridded satellite product to EPA stations, as previous studies have used 

this as a check for spatial representativeness. Due to the limited EPA station coverage in Chicago, we 

expand the testing set to include the full Eclipse sensor network. As such, we show that the satellite re-

gridding algorithm shows a weakly linear relationship with the Eclipse and EPA measurements of NO2 

(0.3 < r < 0.7; B1). While the absolute values cannot be directly compared across the TropOMI and 
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ground-based data sets, the mb and rmse further highlight the strength of the linearity of the column and 

ground-based data. 

 

Fig. B1. The (a) August 2021 and (b) February 2022 valid pixel counts over Chicago to show the valid 

NO2 retrievals within Chicago. 

 

Table B1. TropOMI column NO2 compared to EPA and Eclipse ground-based NO2 measurements. 

Date Observation N Ground-

Based 

TropOMI r 

*August EPA 2 13.7 6.9 -1 

Eclipse 115 9.4 7.6 0.4 

*February EPA 3 16.8 16.3 0.25 

Eclipse 89 14.7 17.9 0.34 
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Appendix C: Eclipse Sensor Network Specifications and Interpolation Performance 

Hardware and Network Design. 

 This paper uses data from Project Eclipse, a dense citywide network of low-cost sensing devices 

(“Eclipse nodes”) first deployed in Chicago in July of 2021. Eclipse nodes comprise four electrochemical 

gas sensors (NO2, CO, O3, and SO2) from the Alphasense B4-series; a Sensirion SPS30 optical particle 

sensor collecting readings on PM2.5; and temperature, humidity, and pressure sensors. The citywide 

network included (1) 80 locations selected across the city following a stratified random sampling 

approach adapted from the design of the New York City Community Air Survey (8); (2) 23 locations 

selected by local community-based organizations; and (3) 6 additional locations recommended by local 

partner organizations based on their observations of gaps in the overall network. An additional nine 

devices were collocated at three EPA regulatory monitoring stations (see Calibration Section for details). 

Devices collected and communicated readings every five minutes via an LTE-m network. For further 

details on the hardware and network design, see (9) and (10). 

Quality Assurance/Quality Control 

The raw data included 902,133 readings covering 3,363 device-days across 123 locations in 

August 2021 and 717,274 readings over 2,702 device-days from 106 locations in February 2022. We 

cleaned and processed the data following a QA/QC approach adapted from (10). First, 5-minute readings 

were aggregated to hourly averages. We applied a 75% completeness criterion, excluding sensor-hours 

whenever we observed fewer than 9/12 expected readings (2.7% of sensor-hours in August 2021 and 

3.6% of sensor-hours in February 2022). We then aggregated to daily averages, excluding sensor-days 

with greater than 18/24 expected readings (2.6% of sensor-days in August 2021 and 4.4% of sensor-days 

in February 2022). We further excluded any devices that, after QA/QC, reported for fewer than 5 days 

(14% of locations in August 2021 and 2.8% of locations in February 2022). Finally, to exclude 

malfunctioning sensors, we further implemented a nearest-neighbor check in which we calculated the 

correlation between daily averages from a given device with the overall daily average values of all 



 

 

163 

neighbor devices within 5km. After examining the distribution of correlations observed in the data, we 

excluded a small number of additional devices that diverged from nearby devices so clearly as to suggest 

a potential malfunction or device issue rather than true hyperlocal variation (ρ > 0.5). This cutoff led to 

the exclusion of N = 1 location in August and N = 10 locations in February. We further exclude Eclipse 

nodes that were co-located with EPA stations from our training set to ensure that these data do not lead us 

to overestimate performance in comparison with EPA. 

The final data set included 2,923 device-days from 95 locations in August 2021 and 2,073 device-

days from 85 locations in February 2022. The relatively higher fraction of short-lived locations in August 

is largely attributable to communications issues with locations that emerged in the first several months of 

the deployment and then stabilized; relatively higher hourly and daily data loss was observed in February 

versus in August, however, because devices switched automatically into power-saving mode when limited 

sunlight reduced solar charging to below a specified threshold. Throughout the project, incorporation into 

existing infrastructure maintenance routines and a replace-reset-relocate protocol minimized data 

missingness (9). 

Calibration 

As has been well-documented, low-cost sensors are subject to inaccuracies due to drift and 

interference in field deployments (11). To address these concerns, the Eclipse project developed a 

calibration function to improve the accuracy of the sensor readings following previous research (12, 13). 

Briefly, 3 additional devices were co-located at an EPA regulatory monitoring station in Chicago that 

collected hourly readings of NO2 using a ThermoScientific monitor (method 074).∗. Using all available 

data until the period of this study (May 12th, 2021 - February 28th, 2022), we developed a machine 

learning calibration model as follows. 

First, we split the data into training (70%) and test sets (30%). To account for dependencies in the 

data—both temporal autocorrelation and the similarities between multiple devices at the same location, 

reading at the same time—we grouped our data by day before conducting the split. Within the training 
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set, we further used 5-fold cross validation, grouped by day, to train and tune models. We then evaluated 

model accuracy on our test set. 

We considered input features including relative humidity (RH), absolute humidity (AH), 

temperature in Fahrenheit (TempF), pressure (P), gas readings (NO2, O3, CO, SO2) and fine particulate 

matter (PM2.5). We also included the meteorological parameters of wind speed (WS) and wind direction 

(WD) obtained from the National Oceanic and Atmospheric Administration weather station at Chicago 

O’Hare airport. Given prior evidence of nonlinear relationships with relative humidity (11), we further 

assessed whether using exponential transformations, b-splines (BS0, BS1, BS2), or interactions with other 

variables improved the models’ fit. To increase robustness to outliers, gas readings were winsorized at the 

0.001 and 0.999 percentiles. 

We experimented with a variety of possible models; we then focused on developing a smaller 

subset that performed well on the initial training data. These included linear regression, random forest 

regression, gradient boosting regression, and categorical boosting regression. Linear regression, random 

forests, and gradient boosting are among the most common models used for calibration in prior literature 

(11); gradient boosting, in particular, is a leading method for learning problems in which data are noisy, 

features are heterogenous, and relationships are complex. However, because boosting algorithms estimate 

gradients at each step using the same data points with which the model was built, they can be subject to 

prediction shift, a bias in the residual errors that affects generalizability on unseen data (14). Categorical 

boosting uses ordered boosting, which enables the calculation of residuals on a different sample from the 

data with which each model is trained on, to mitigate the problem of prediction shift (14, 15). 

After finding the top regression methods using an initial set of all features, we evaluated all 

possible input feature combinations to find the best performing model. We then iterated through the 

regression methods once more to confirm that the top methods remained the best-performing using the 

new predictors. We investigated additional adjustments to further improve our models. These included 

scaling, polynomial regression, and hyperparameter tuning; we tested these adjustments using AzureML 
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automated ML model-training jobs. Results were ultimately comparable with models using default 

hyperparameters. Finally, we selected and evaluated the calibration model with the best overall 

performance. 

The best-performing model for NO2 was the categorical boosting regression. Table C1 presents 

the performance metrics for our model; included variables and their importance are detailed in Figure C1. 

The NRMSE is slightly higher than thresholds recommended by EPA for hotspot detection (NRMSE = 

42% versus 30%) but the relatively low RMSE and high R2 suggest that the readings provide meaningful 

signal. Also important is the low coefficient of variation (CV), suggesting high inter-device reliability. 

The CV is high even when data is not calibrated, suggesting that the problems of interference and drift 

affect different devices in similar ways – bolstering our confidence that a calibration algorithm developed 

at one location and for one device would generalize to another device located elsewhere. Unfortunately, 

we were not able to secure a second location, during the study period, at which to validate this hypothesis; 

however, recent evidence from the Breathe London network similarly offers evidence of reliability in 

calibration results across locations (16). 

Figure C1 shows the relative importance of the parameters included in the final model. 

Electrochemical gas sensors are highly and non-linearly sensitive to temperature, which is likely a reason 

that boosting approaches outperform simpler, linear methods (11). As expected, the NO2 sensor is an 

important input; however, it is relatively less important than CO, suggesting that the CO sensors—which 

tend to be more long-lasted that NO2 sensors (17)—may be driving up accuracy through the detection of 

combustion-related sources that are correlated with NO2. The inclusion of the remaining gas sensors and 

WS further contribute small but meaningful performance improvements. These results highlight the 

benefits of multi-sensor devices for enabling more robust calibration functions, but we also note that 

results should be treated with caution – and compared with other sources of data, as is done here – given 

the importance of proxy and correlational factors as contributors to the calibrated estimate. 
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Table C1. Evaluation of Calibration Models for NO2. Metrics are calculated following EPA 

guidelines for performance protocols and metrics. 

 RMSE NRMSE R2 CV SD 

Raw 

Data 

74.5 100% -2.35 14.7% 10.8% 

5-Fold 

CV 

4.3 41.5% 0.70 11.9% 1.2 

Test Set 4.58 42% 0.71 11.3% 1.2 

 

 

Fig. C1. Importance Score of Input Features of NO2 Calibration Model 

Interpolation  

We investigated several methods of interpolating data from the Eclipse node locations to the 

1.3km grid. In particular, we compared a commonly-used geostatistical method (inverse distance 

weighting)† as well as machine learning approaches (random forests and support vector machines). For 

each method, we modeled the calibrated NO2 readings as a function of distance only; although researchers 

also commonly interpolate using more data-intensive methods such as land-use regression, we did not 

include other predictive variables because we were seeking to evaluate the value of a “sensor-only” 

approach—which would be more manageable for e.g. a government agency seeking to routinely monitor 

hotspots, particularly in contexts where land use variables are poor quality or difficult to obtain. 

We trained and evaluated our models using a machine learning approach. First, for each month, 

we split our data by location—allocating approximately 80% of device locations to a training set and 20% 
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of device locations to the test set. Within the training set, we then used leave-one-out cross validation 

(LOOCV) to tune the hyperparameters of each model. Because our interest was in the spatial variation, 

rather than in the temporal variation, we conducted LOOCV for each day and then used the parameters 

that performed best, on average, across all days (as evidenced by producing the lowest RMSE). We used 

each model to interpolate all training data to each grid cell for each day, and then averaged across the grid 

cell estimates to obtain monthly estimates. Finally, we evaluated the models’ predictions in comparison 

with the locations in the test data as well as in comparison with the readings at all EPA stations in 

Chicago for which gold-standard data were available (One station in August and 2 stations in February). 

Table C2 presents the performance of each of the three interpolation models. All models perform 

relatively better, compared to the test set, in August versus in February with relatively lower RMSE and 

higher ρ—although NRMSE are similar. The random forests model performs best in comparison with the 

EPA sites as well as on the test set for August, although the inverse distance weighted model does 

perform slightly better in predicting test set estimates for February. Notably, all three models produce 

similar surfaces (Figures C2 and C3). Nevertheless, given the slightly better performance enabled by the 

machine learning approach, we choose to use random forest interpolation on the complete data set for the 

analyses in this study. 
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Table C2. Evaluation of Interpolation Models for Eclipse NO2. 

 

 

Fig. C3. Monthly average estimated NO2 by interpolation model for February, 2022 
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Appendix 3 

Supplement for Chapter 4 

Supporting Information for 

Exposure and health disparities in Chicago Air Pollution 

 

Contents of Appendix 3: 

Supplementary Figures and Tables for Main Text 

 Figures S3.1 – S3.9  

Tables S3.1 – S3.10 
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Figure S3.1. Correlation between demographic variables and pollutants. 
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Figure S3.2. Average demographics per quantile of adult asthma (a-c) and pediatric asthma 

hospitalizations (d-f) attributed to NO2, PM2.5, and MDAO3. Quantile bounds are annotated below the x-

axis. 
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Figure S3.3. Attributable mortality rate per 100k adults from NO2, PM2.5, MDAO3. Annotated are the 

total attributable cases (cases) and the average rates (µ). 
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Figure S3.4. Attributable asthma rates from NO2, PM2.5, and MDAO3. PM2.5, MDAO3. Annotated are the 

total attributable cases (cases) and the average rates (µ). 
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Figure S3.5. Pediatric asthma ER visits as rates per 100k children from NO2, PM2.5, MDAO3. Annotated 

are the total attributable cases (cases) and the average rates (µ). 
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Figure S3.6. Baseline mortality rates (blue) comparted to exposure of pollutants (purple), with 

attributable mortality rate plotted as a black circle. For a-c, quantiles are ordered by pollution exposure 

levels (Q1 = lowest pollution, Q5 = highest pollution). For d-f, groups are ordered by baseline mortality 

rates (BMR), with Q1 having the lowest BMR and Q5 having the highest BMR. 

 

 

 
Figure S3.7. Baseline adult asthma incidence rates (blue) compared to exposure of pollutants (purple), 

with asthma rate plotted as a black circle. Groups are ordered by asthma incidence rates (AIR), with Q1 

having the lowest (AIR), and Q5 having the highest AIR.  
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Figure S3.8. Baseline pediatric asthma ER hospitalization rates (blue) compared to exposure of pollutants 

(purple), with asthma ER hospitalization rates plotted as a black circle. Groups are ordered by pediatric 

asthma hospitalization rates (ER), with Q1 having the lowest ER and Q5 having the highest ER. 
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Figure S3.9. Demographic makeup of quintiles increasing pollutants of NO2, PM2.5, and MDAO3. The 

ranges of pollutant concentrations are annotated at the bottom x axis. 

 



 

 

178 

 
Figure S3.10. Average pollution concentrations organized by increasing proportions of White, Black, 

Hispanic and Latino, and Asian populations. The ranges of demographics are annotated at the bottom x 

axis.
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Table S3.1. Mortality from pollutants, divided by population subgroup. 

Pollutant Population Mortality Mortality 

(5CI) 

Mortality 

(95CI) 

Mortality RT Mortality RT 

(5CI) 

Mortality RT 

(95CI) 

NO2  Chicago 17.0 8.7 32.6 1.1 0.6 2.1 

White 6.0 3.0 11.4 0.3 0.2 0.6 

Hispanic/ Latino 2.9 1.5 5.6 0.2 0.1 0.3 

Black 7.0 3.6 13.5 0.6 0.3 1.1 

Asian 0.9 0.5 1.8 0.0 0.0 0.1 

High Income 3.5 0.9 5.1 1.0 0.25 1.43 

Low Income 5.3 1.4 7.5 2.3 0.6 3.3 

PM2.5  Chicago 12.4 4.2 16.4 0.8 0.3 1.1 

White 4.2 1.4 5.6 0.2 0.1 0.3 

Hispanic/ Latino 2.2 0.8 3.0 0.1 0.0 0.2 

Black 5.2 1.8 6.8 0.4 0.1 0.5 

Asian 0.7 0.2 0.9 0.0 0.0 0.0 

High Income 1.8 0.6 2.4 0.4 0.2 0.7 

Low Income 2.8 0.9 3.7 0.9 0.3 1.2 

MDAO3  Chicago 24.1 6.1 33.8 1.6 0.4 2.2 

White 8.2 2.1 11.5 0.4 0.1 0.6 

Hispanic/ Latino 4.5 1.1 6.3 0.3 0.1 0.4 

Black 9.9 2.5 13.9 0.8 0.2 1.1 

Asian 1.3 0.3 1.9 0.1 0.0 0.1 

High Income 2.5 1.3 4.8 0.7 0.4 1.3 

Low Income 3.4 1.7 6.5 1.5 0.8 3.0 
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Table S3.2. Attributable adult asthma from pollutants, divided by population subgroup. 
Pollutant Population Asthma Asthma 

(5CI) 

Asthma 

(95CI) 

Asthma RT Asthma RT 

(5CI) 

Asthma RT 

(95CI) 

NO2  Chicago 7466.3 4163.6 16533.0 17.9 10.0 39.6 

White 2103.1 1172.9 4655.3 5.8 3.3 13.0 

Black 3213.9 1791.2 7129.0 6.3 3.5 14.0 

Hispanic/ Latino 1694.8 946.0 3743.4 4.4 2.5 9.8 

Asian 380.5 212.3 841.3 1.1 0.6 2.4 

High Income 2737.3 1527.2 6051.2 7.9 4.3 17.4 

Low Income 2612.5 1456.7 5786.5 12.2 6.8 27.0 

PM2.5  Chicago 12541.0 0.0 26110.8 30.2 0.0 63.0 

White 3490.7 0.0 7274.9 9.8 0.0 20.4 

Black 5504.2 0.0 11466.3 10.9 0.0 22.7 

Hispanic/ Latino 2798.4 0.0 5810.6 7.4 0.0 15.3 

Asian 621.6 0.0 1295.5 1.8 0.0 3.8 

High Income 4466.2 0.0 9302.1 12.7 0.0 26.6 

Low Income 4498.9 0.0 10425.3 16.8 0.0 35.1 

MDAO3  Chicago 31780.5 0.0 55492.0 77.6 0.0 135.3 

White 8997.4 0.0 15678.3 25.6 0.0 44.6 

Black 14055.0 0.0 24517.3 28.2 0.0 49.2 

Hispanic/ Latino 6792.9 0.0 11924.7 18.1 0.0 31.6 

Asian 1599.0 0.0 2788.4 4.7 0.0 8.2 

High Income 11403.0 0.0 19899.0 32.1 0.0 56.1 

Low Income 11121.0 0.0 19434.6 51.4 0.0 89.5 
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Table S3.3. Pediatric asthma hospitalizations from pollutants, divided by population subgroup.  
Pollutant Population Pediatric ER Pediatric ER 

(5CI) 

Pediatric ER 

(95CI) 

Pediatric ER 

RT 

Pediatric ER 

RT (5CI) 

Pediatric ER 

RT (95CI) 

NO2  Chicago 12.6 12.5 12.6 2.3 2.3 2.4 

White 1.8 1.8 1.8 0.4 0.4 0.4 

Black 5.9 5.9 5.9 1.2 1.2 1.2 

Hispanic/ Latino 4.2 4.1 4.2 0.6 0.6 0.6 

Asian 0.4 0.4 0.4 0.1 0.1 0.1 

PM2.5  Chicago 15.7 15.4 16.0 2.9 2.8 2.9 

White 2.2 2.2 2.3 0.5 0.5 0.5 

Black 7.5 7.3 7.6 1.5 1.4 1.5 

Hispanic /Latino 5.1 5.0 5.2 0.7 0.7 0.8 

Asian 0.5 0.5 0.5 0.1 0.1 0.1 

MDAO3 Chicago 44.5 44.3 44.6 8.2 8.1 8.2 

White 6.5 6.4 6.5 1.4 1.4 1.4 

Black 21.5 21.4 21.6 4.2 4.2 4.2 

Hispanic/ Latino 14.0 14.0 14.1 2.0 2.0 2.0 

Asian 1.5 1.5 1.5 0.3 0.3 0.3 
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Table S3.4. Difference (%) of average exposure, baseline mortality (BMR), adult asthma incidence rate (AIR), pediatric asthma hospitalization 

rate (PAIR), and attributable mortality rate, asthma rate, and pediatric asthma hospitalization rate for NO2, PM2.5, and MDAO3 in quantiles, 

grouped by pollutant levels from lowest (Q1) to highest (Q2). 
Pollutant Quantile Range Exposure BMR AIR PAIR Mortality Rate Asthma 

Rate 

Ped. ER 

Rate 

NO2 (ppb) Q1 8.8 - 14.2 -23.4 15.5 -4.0 11.4 -8.8 -20.4 -14.1 

Q2 14.2 - 15.9 -8.6 16.6 -2.2 4.1 7.6 -4.6 -4.0 

Q3 15.9 - 17.1 -0.7 -3.1 -1.9 -10.8 -2.2 -1.1 -10.6 

Q4 17.1 - 18.9 9.1 -3.1 7.6 -0.4 8.0 10.3 9.6 

Q5 18.9 - 27.9 23.6 -25.9 0.6 -4.4 -4.6 15.9 19.1 

PM2.5 (µg/m3)  Q1 7.5 - 9.9 -13.0 3.2 -8.1 1.2 -8.1 -14.3 -11.8 

Q2 9.9 - 10.4 -2.6 7.5 -5.0 -2.7 3.4 -1.4 -5.1 

Q3 10.4 - 10.7 1.1 16.4 2.2 8.5 15.6 6.9 10.0 

Q4 10.7 - 11.1 4.7 -6.7 10.8 1.2 -1.3 4.6 6.0 

Q5 11.1 - 11.3 9.8 -20.3 -0.6 -8.2 -9.5 4.3 0.9 

MDAO3 (ppb) Q1 35.1 - 40.4 -9.5 -19.9 5.1 0.1 -21.6 -10.2 -9.3 

Q2 40.4 - 41.9 -4.2 1.6 9.1 1.6 -1.0 -1.2 -2.7 

Q3 41.9 - 42.6 -0.3 3.2 -1.3 0.3 0.9 1.8 -0.3 

Q4 42.6 - 45.1 3.1 10.6 -3.9 -6.6 9.4 4.0 -3.7 

Q5 45.1 - 48.5 11.0 4.5 -8.9 4.6 12.4 5.7 15.9 
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Table S3.5. Exposure and mortality inequalities of the baseline (X0) and when reducing pollution by half (Xn) in the high pollution, high BMR 

areas (census tracts with pollution >50%ile & BMR >50%ile). Exposure or mortality inequalities are computed by taking the % difference of the 

average pollution across Chicago, e.g., positive values mean the value is higher than Chicago average. 
 

      
Chicago Population 

Weighted Averages 

Exposure 

Inequality 
Mortality 

Mortality 

Inequality 
Mortality Rates 

Pollutant Group n X0 Xn 
Δ 

(unit) 

Δ 

(%) 
X0 (%) Xn (%) Xn New 

Δ 

(%) 
X0 Xn X0 Xn 

Δ 

(%) 

PM2.5 

(µg/m3) 

Black 168 10.3 8.5 1.8 17.2 -0.8 -9.8 2.3 1.9 18.2 18.2 8.3 0.9 0.8 19.3 

White 168 10.2 9.8 0.4 4.1 -1.1 4.2 1.8 1.7 5.7 -5.9 -0.7 0.5 0.5 6.2 

Hispanic/ 

Latino 
168 10.7 9.6 1.1 10.2 3.3 1.8 1.8 1.5 12.8 -8.7 

-

10.9 
0.6 0.5 14.3 

Asian 168 10.2 9.8 0.4 4 -1.5 3.8 1.9 1.8 4.3 -3.5 3.3 0.5 0.5 5.8 

High Income 6 10.4 10.1 0.3 2.9 0.5 7.2 1.9 1.7 11.4 0.6 -0.3 0.7 0.6 13.3 

Low Income 71 10.4 8.2 2.2 21.4 0.8 -13 1.9 1.7 11.4 0.6 -0.3 0.7 0.6 13.3 

MDAO3 

(ppb) 

Black 228 31.3 23.7 7.6 24.1 0.9 -10.5 8.3 6.2 26.1 18 9.3 3.4 2.5 25.2 

White 228 31.2 27.3 3.9 12.6 0.7 2.8 6.8 5.4 20.3 -3.4 -3.7 1.9 1.5 20.5 

Hispanic/ 

Latino 
228 30.3 27.5 2.8 9.3 -2.2 3.7 6.1 5.2 14.4 

-

13.8 
-7.6 2 1.7 13.3 

Asian 228 31.2 27.6 3.6 11.5 0.6 4 7 5.7 17.9 -0.8 2 2 1.6 17.8 

High Income 29 30.8 27.9 2.9 9.5 -0.8 5 7.1 5.6 20.9 0.5 -0.5 2.4 1.9 20.8 

Low Income 65 30.7 23.8 6.9 22.5 -0.9 -10.3 7.1 5.6 20.9 0.5 -0.5 2.4 1.9 20.8 

NO2 (ppb) 

Black 157 15.6 13.1 2.6 16.6 -4.3 -12.7 1.2 1 16.9 15.1 6.2 0.5 0.4 19.4 

White 157 16.3 15.7 0.6 3.7 -0.2 5.1 0.9 0.9 5.1 -5.8 -0.8 0.3 0.3 6 

Hispanic/ 

Latino 
157 17 15.7 1.3 7.7 3.7 4.7 0.9 0.8 9 -8.1 -7.2 0.3 0.3 11 

Asian 157 16.5 15.4 1.1 6.7 0.8 2.9 1 0.9 7.2 -1.3 1.7 0.3 0.3 10.5 

High Income 5 17.1 16.8 0.3 1.6 4.3 12.2 1 0.9 10.1 0 -0.1 0.3 0.3 12.8 

Low Income 70 16.4 12.6 3.8 22.9 0.3 -15.4 1 0.9 10.1 0 -0.1 0.3 0.3 12.8 
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Table S3.6. Population-weighted average concentrations and mortality changes over Chicago for reducing pollution in half where pollutants are 

high and BMR is high(>50%ile). Units for NO2 and MDAO3 are in ppb; PM2.5 is µg/m3; units for mortality rate is mortality per 100k residents. 

 
Average in Target Area Population-weighted Average  

over Chicago 

Avg. Mortality  

over Chicago 

Avg. Mortality Rate  

over Chicago 

Pollutant Original New Difference Original New Difference Original New Difference Original New Difference 

NO2  18.2 9.1 50% 14.3 13.3 7% 19.6 17.3 12% 1.1 1.0 11% 

PM2.5  11.0 5.5 50% 9.4 8.9 5% 10.7 9.9 8% 0.6 0.5 9% 

MDAO3  32.6 16.3 50% 28.8 27.7 4% 11.2 10.6 6% 0.6 0.6 8% 
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Table S3.7. Exposure and mortality inequalities of the baseline (Original) and when reducing pollution by half (New) in the high pollution areas 

(census tracts with pollution >75%ile). Exposure or mortality inequalities are computed by taking the % difference of the average pollution 

across Chicago. 

      
Chicago Population 

Weighted Averages 

Exposure 

Inequality 
Mortality 

Mortality 

Inequality 
Mortality Rates 

Pollutant Group n X0 Xn 
Δ 

(unit) 

Δ 

(%) 
X0 (%) Xn (%) Xn New 

Δ 

(%) 
X0 Xn X0 Xn 

Δ 

(%) 

PM2.5 

(µg/m3) 

Black 200 10.3 9.5 0.8 7.8 -0.8 5.3 2.3 2.1 5.5 18.2 23.2 0.9 0.9 6.5 

White 200 10.2 8.9 1.3 12.7 1.1 -0.6 1.8 1.6 8.8 -5.9 -5.3 0.5 0.5 9.6 

Hispanic/ 

Latino 
200 10.7 8.7 2.0 19.0 

-3.3 -3.6 
1.8 1.5 16.3 -8.7 

-

15.6 
0.6 0.5 17.7 

Asian 200 10.2 8.9 1.3 12.8 1.5 -1.1 1.9 1.7 8.3 -3.5 -2.3 0.5 0.5 10.0 

High Income 43 10.4 8.7 1.7 16.4 -0.5 -3.2 1.9 1.8 9.3 0.6 0.7 0.7 0.6 10.1 

Low Income 43 10.4 9.1 1.4 13.1 -0.8 0.9 1.9 1.8 9.3 0.6 0.7 0.7 0.6 10.1 

MDAO3 

(ppb) 

Black 200 31.3 25.7 5.6 17.9 -0.9 -2.0 8.3 6.8 18.3 18.0 16.9 3.4 2.8 16.3 

White 200 31.2 25.8 5.5 17.5 -0.7 -1.7 6.8 5.5 19.9 -3.4 -6.2 1.9 1.6 18.3 

Hispanic/ 

Latino 
200 30.3 28.2 2.1 7.0 

2.2 7.6 
6.1 5.6 8.5 

-

13.8 
-4.4 2.0 1.8 7.8 

Asian 200 31.2 25.2 6.0 19.2 -0.6 -3.8 7.0 5.5 22.0 -0.8 -6.3 2.0 1.6 19.5 

High Income 41 30.8 25.7 5.1 16.5 0.8 -2.0 7.1 5.9 17.1 0.5 0.9 2.4 2.0 15.3 

Low Income 33 30.7 26.9 3.8 12.3 0.9 2.7 7.1 5.9 17.1 0.5 0.9 2.4 2.0 15.3 

NO2 (ppb) 

Black 200 15.6 14.3 1.4 8.7 4.3 1.5 1.2 1.1 5.3 15.1 19.6 0.5 0.4 7.1 

White 200 16.3 13.9 2.4 14.9 0.2 -1.4 0.9 0.9 8.9 -5.8 -5.9 0.3 0.2 10.1 

Hispanic/ 

Latino 
200 17.0 14.1 2.8 16.6 

-3.7 0.5 
0.9 0.8 12.2 -8.1 

-

11.5 
0.3 0.3 14.4 

Asian 200 16.5 14.0 2.5 15.1 -0.8 -0.6 1.0 0.9 9.7 -1.3 -2.2 0.3 0.3 11.7 

High Income 52 17.1 13.8 3.3 19.3 -4.3 -2.2 1.0 0.9 8.5 0.0 0.4 0.3 0.3 9.9 

Low Income 45 16.4 14.1 2.3 14.3 -0.3 -0.1 1.0 0.9 8.5 0.0 0.4 0.3 0.3 9.9 
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Table S3.8. Population-weighted average concentrations and mortality changes over Chicago for reducing pollution in half where pollutants are 

high (>75%ile). Units for NO2 and MDAO3 are in ppb; PM2.5 is µg/m3; units for mortality rate is mortality per 100k residents. 

 
Average in  

Target Area 

Population-weighted Average 

over Chicago 

Avg. Mortality  

over Chicago 

Avg. Mortality Rate  

over Chicago 

Pollutant Original New Difference Original New Difference Original New Difference Original New Difference 

NO2  20.0 10.0 50% 14.3 12.9 10% 19.6 17.7 10% 1.1 1.0 8% 

PM2.5  11.4 5.7 50% 9.4 8.3 12% 10.7 9.8 9% 0.6 0.5 9% 

MDAO3  33.9 17.0 50% 28.8 26.1 9% 11.2 10.5 6% 0.6 0.6 7% 
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Table S3.9. Exposure and mortality inequalities of the baseline (Original) and when reducing pollution by half (New) in the high BMR areas 

(census tracts with BMR >75%ile). Exposure or mortality inequalities are computed by taking the % difference of the average pollution across 

Chicago. 

      
Chicago Population 

Weighted Averages 

Exposure 

Inequality 
Mortality 

Mortality 

Inequality 
Mortality Rates 

Pollutant Group n X0 Xn 
Δ 

(unit) 

Δ 

(%) 
X0 (%) Xn (%) Xn New 

Δ 

(%) 
X0 Xn X0 Xn 

Δ 

(%) 

PM2.5 

(µg/m3) 

Black 200 10.3 7.7 2.6 25.3 -0.8 -18.2 2.3 1.6 30.9 18.2 -3.6 0.9 0.6 32.3 

White 200 10.2 9.8 0.4 4.4 -1.1 4.4 1.8 1.6 10.1 -5.9 -0.2 0.5 0.5 10.6 

Hispanic/ 

Latino 
200 10.7 10.3 0.4 3.8 

3.3 9.7 
1.8 1.6 7.3 -8.7 -0.1 0.6 0.5 7.8 

Asian 200 10.2 9.8 0.4 4.3 -1.5 4.1 1.9 1.7 8.8 -3.5 3.9 0.5 0.5 10.0 

High Income 7 10.4 10.2 0.2 1.8 0.5 8.9 1.9 1.6 16.4 0.6 -0.8 0.7 0.5 18.9 

Low Income 95 10.4 7.5 3.0 28.4 0.8 -20.3 1.9 1.6 16.4 0.6 -0.8 0.7 0.5 18.9 

MDAO3 

(ppb) 

Black 200 31.3 23.4 7.9 25.1 0.9 -16.3 8.3 5.9 29.4 18.0 -1.9 3.4 2.3 30.7 

White 200 31.2 29.7 1.5 4.9 0.7 6.2 6.8 6.1 10.4 -3.4 1.8 1.9 1.7 10.9 

Hispanic/ 

Latino 
200 30.3 29.1 1.3 4.2 

-2.2 3.9 
6.1 5.6 7.6 

-

13.8 
-6.3 2.0 1.8 8.0 

Asian 200 31.2 29.7 1.5 4.7 0.6 6.3 7.0 6.4 8.9 -0.8 6.3 2.0 1.8 10.1 

High Income 7 30.8 30.2 0.6 2.0 -0.8 7.8 7.1 5.9 16.1 0.5 -0.8 2.4 1.9 18.4 

Low Income 95 30.7 21.9 8.8 28.7 -0.9 -21.8 7.1 5.9 16.1 0.5 -0.8 2.4 1.9 18.4 

NO2 (ppb) 

Black 200 15.6 11.7 3.9 25.2 -4.3 -21.3 1.2 0.8 31.0 15.1 -6.7 0.5 0.3 32.6 

White 200 16.3 15.7 0.7 4.1 -0.2 5.2 0.9 0.9 9.6 -5.8 0.0 0.3 0.2 10.2 

Hispanic/ 

Latino 
200 17.0 16.4 0.6 3.6 

3.7 9.9 
0.9 0.9 6.9 -8.1 0.5 0.3 0.3 7.5 

Asian 200 16.5 15.8 0.7 4.1 0.8 6.2 1.0 0.9 8.4 -1.3 6.2 0.3 0.3 9.7 

High Income 7 17.1 16.8 0.3 1.7 4.3 12.7 1.0 0.8 16.0 0.0 -1.3 0.3 0.3 18.6 

Low Income 95 16.4 11.8 4.6 28.1 0.3 -20.8 1.0 0.8 16.0 0.0 -1.3 0.3 0.3 18.6 
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Table S3.10. Population-weighted average concentrations and mortality changes over Chicago for reducing pollution in half where BMR is high 

(>75%ile). Units for NO2 and MDAO3 are in ppb; PM2.5 is µg/m3; units for mortality rate is mortality per 100k residents. 

 
Average in Target Area Population-weighted Average  

over Chicago 

Avg. Mortality  

over Chicago 

Avg. Mortality Rate  

over Chicago 

Pollutant Original New Difference Original New Difference Original New Difference Original New Difference 

NO2  15.7 7.8 50% 14.3 13.1 8% 19.6 16.4 16% 1.1 0.9 19% 

PM2.5  10.3 5.4 50% 9.4 8.5 10% 10.7 8.8 18% 0.6 0.5 21% 

MDAO3  31.2 15.6 50% 28.8 26.0 10% 11.2 9.2 18% 0.6 0.5 21% 
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Appendix 4 

Air quality and health implications of electrifying heavy-duty vehicles assessed at equity-

relevant neighborhood-scales 

Sara Camilleri, Anastasia Montgomery, Maxime Visa, Jordan Schnell, Zac Adelman, Mark Janssen, 

Emily Grubert, Susan Anenberg, Daniel Horton 

 

Available as: Camilleri, S., Montgomery, A., Visa, M., Schnell, J., Adelman, Z., Janssen, M., Grubert, E., 

Anenberg, S. and Horton, D., 2023. Air quality and health implications of electrifying heavy-duty 

vehicles assessed at equity-relevant neighborhood-scales. (2023). Nature Sustainability (Accepted, as of 

08/01/2023). 

Abstract 

Heavy-duty vehicles (HDVs) disproportionately contribute to the creation of air pollutants and emission 

of greenhouse gases – with marginalized populations unequally burdened by the impacts of each. Shifting 

to non-emitting technologies, like electric HDVs (eHDVs) is underway, however, the associated air 

quality and health implications have not been resolved at equity-relevant scales. Here, we use a 

neighborhood-scale (~1km) air quality model to evaluate air pollution, public health, and equity 

implications of a 30% transition of predominantly diesel HDVs to eHDVs over the region surrounding 

North America’s largest freight hub, Chicago, Illinois. We find decreases in NO2 and PM2.5 but O3 

increases, particularly in urban settings. NO2  and PM2.5 decreases reduce premature deaths/yr by ~580 

and ~70, respectively, while O3 increases add ~50 deaths/yr. We find the largest pollutant and health 

benefits in “least White” communities, highlighting the potential for eHDVs to reduce air pollution and 

health burdens, especially in marginalized communities. 

 

  



 

 

190 

Appendix 5 

Neighborhood-scale air quality, public health, and equity implications of multi-modal 

vehicle electrification 

Maxime, Visa Sara F. Camilleri, Anastasia Montgomery, Jordan L. Schnell, Mark Janssen, Zachariah E. 

Adelman, Susan C. Anenberg, Emily A. Grubert, and Daniel E. Horton. 

 

Available as: Visa, M., Camilleri, S.F., Montgomery, A., Schnell, J.L., Janssen, M., Adelman, Z.E., 

Anenberg, S.C., Grubert, E.A. and Horton, D.E., 2023. Neighborhood-scale air quality, public health, and 

equity implications of multi-modal vehicle electrification. Environmental Research: Infrastructure 

(Under review, 08/01/2023). 

 

Abstract 

Electric vehicles (EVs) constitute just a fraction of the current U.S. transportation fleet; however, EV 

market-share is surging. EV adoption reduces on-road transportation greenhouse gas emissions by 

decoupling transportation services from petroleum, but impacts on air quality and public health depend on 

the nature and location of vehicle usage and electricity generation. Here, we use a regulatory-grade 

chemical transport model and an electricity dispatch algorithm to characterize neighborhood-scale (~1 

km) air quality and public health benefits and tradeoffs associated with a multi-modal EV transition. We 

focus on a Chicago-centric regional domain wherein 30% of the on-road transportation fleet is 

instantaneously electrified and changes in on-road, refueling, and power plant emissions are considered. 

We find decreases in annual population-weighted domain mean NO2 (-11.84%) and PM2.5 (-2.56%) with 

concentration reductions of up to-5.1 ppb and-0.97 µg m-3 in urban cores. Conversely, annual population-

weighted domain mean MDA8O3 concentrations increase +0.65%, with notable intra-urban changes of up 

to +2.3 ppb. Despite mixed pollutant concentration outcomes, we find overall positive public health 
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outcomes, largely driven by NO2 decreases that produce mortality reductions that are ~5 times greater in 

census tracts with disproportionately large non-white populations. 
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Appendix 6  

Potential of breadfruit cultivation to contribute to climate-resilient low latitude food 

systems 

Lucy Yang, Nyree Zerega, Anastasia Montgomery, Daniel E. Horton 

 

Available as: Yang, L., Zerega, N., Montgomery, A., & Horton, D. E. (2022). Potential of breadfruit 

cultivation to contribute to climate-resilient low latitude food systems. PLoS Climate, 1(8), e0000062. 

https://doi.org/10.1371/journal.pclm.0000062 

 

Abstract 

The number of people in food crisis around the world is increasing, exacerbated by COVID-19, conflict, 

and climate change. Major crop yields are projected to decrease in low-latitude regions, making tropical 

and sub-tropical food systems particularly vulnerable. Increased cultivation of breadfruit (Artocarpus 

altilis), a neglected and underutilized species (NUS), has the potential to enhance climate resilience and 

overall sustainability of low-latitude agricultural systems. To better understand breadfruit’s cultivation 

suitability and geographic range in current and future climates, we use breadfruit presence data collected 

from previous studies and a global citizen science database, and a selection of bioclimactic variables, to 

build an ensemble of 6 species distribution models that delineate the current climatically viable breadfruit 

range. We then assess the climatically viable future breadfruit range (2061–2080) under stabilization and 

high emission scenarios using an ensemble of 8 global circulation model (GCM) projections. The area of 

suitable breadfruit range within the global tropics and subtropics is projected to decrease ~4.4% in the 

stabilization scenario and ~4.5% in the high emission scenario. In Southeast Asia and the Pacific Islands, 

yield quality and consistency show minimal decreases under the high emission scenario, with increases in 

total suitable area under both. In contrast, in Latin America and the Caribbean, the current suitable 
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breadfruit range is projected to contract ~10.1–11.5% (stabilization-high emission). Present and future 

model suitability outputs suggest opportunities to successfully expand breadfruit cultivation over the next 

decades in sub-Saharan Africa, where food insecurity is coincidentally high. However, in all regions, high 

emission scenario conditions reduce the overall consistency and quality of breadfruit yields compared to 

the stabilization scenario. Our results have the potential to inform global food security adaptation 

planning, highlighting breadfruit as an ideal NUS to incorporate in food security adaptation strategies. 
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Appendix 7 

The COVID-19 lockdowns: a window into the Earth System 

Noah S Diffenbaugh, Christopher B Field, Eric A Appel, Ines L Azevedo, Dennis D Baldocchi, Marshall 

Burke, Jennifer A Burney, Philippe Ciais, Steven J Davis, Arlene M Fiore, Sarah M Fletcher, Thomas W 

Hertel, Daniel E Horton, Solomon M Hsiang, Robert B Jackson, Xiaomeng Jin, Margaret Levi, David B 

Lobell, Galen A McKinley, Frances C Moore, Anastasia Montgomery, Kari C Nadeau, Diane E Pataki, 

James T Randerson, Markus Reichstein, Jordan L Schnell, Sonia I Seneviratne, Deepti Singh, Allison L 

Steiner, Gabrielle Wong-Parodi 

 

Available as: Diffenbaugh, Noah S., et al. "The COVID-19 lockdowns: a window into the Earth System." 

Nature Reviews Earth & Environment (2020): 470-481. https://doi.org/10.1038/s43017-020-0079-1 

 

Abstract 

Restrictions to reduce human interaction have helped to avoid greater suffering and death from the 

COVID-19 pandemic, but have also created socioeconomic hardship. This disruption is unprecedented in 

the modern era of global observing networks, pervasive sensing and large-scale tracking of human 

mobility and behaviour, creating a unique test bed for understanding the Earth System. In this 

Perspective, we hypothesize the immediate and long-term Earth System responses to COVID-19 along 

two multidisciplinary cascades: energy, emissions, climate and air quality; and poverty, globalization, 

food and biodiversity. While short-term impacts are dominated by direct effects arising from reduced 

human activity, longer-lasting impacts are likely to result from cascading effects of the economic 

recession on global poverty, green investment and human behaviour. These impacts offer the opportunity 

for novel insight, particularly with the careful deployment of targeted data collection, coordinated model 

experiments and solution-oriented randomized controlled trials, during and after the pandemic. 
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Appendix 8 

Coronavirus disease 2019 (COVID-19) mortality and neighborhood characteristics in 

Chicago 

Molly Scannell Bryan, Jiehuan Sun, Jyotsna Jagai PhD, Daniel E. Horton, Anastasia Montgomery, Robert 

Sargis, Maria Argos 

 

Available as: Bryan, M. S., Sun, J., Jagai, J., Horton, D. E., Montgomery, A., Sargis, R., & Argos, M. 

(2021). Coronavirus disease 2019 (COVID-19) mortality and neighborhood characteristics in Chicago. 

Annals of Epidemiology, 56, 47-54. https://doi.org/10.1016/j.annepidem.2020.10.011 

 

Abstract 

Purpose: To describe coronavirus disease 2019 (COVID-19) mortality in Chicago during the spring of 

2020 and identify at the census-tract level neighborhood characteristics that were associated with higher 

COVID-19 mortality rates. 

Methods: Using Poisson regression and regularized linear regression (elastic net), we evaluated the 

association between neighborhood characteristics and COVID-19 mortality rates in Chicago through July 

22 (2514 deaths across 795 populated census tracts). 

Results: Black residents (31% of the population) accounted for 42% of COVID-19 deaths. Deaths among 

Hispanic/Latino residents occurred at a younger age (63 years, compared with 71 for white residents). 

Regarding residential setting, 52% of deaths among white residents occurred inside nursing homes, 

compared with 35% of deaths among black residents and 17% among Hispanic/Latino residents. Higher 

COVID-19 mortality was seen in neighborhoods with heightened barriers to social distancing and low 

health insurance coverage. Neighborhoods with a higher percentage of white and Asian residents had 
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lower COVID-19 mortality. The associations differed by race, suggesting that neighborhood context may 

be most tightly linked to COVID-19 mortality among white residents. 

Conclusions: We describe communities that may benefit from supportive services and identify traits of 

communities that may benefit from targeted campaigns for prevention and testing to prevent future deaths 

from COVID-19. 


