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Abstract

A General Matching Theory of Ride-hail

Hongyu Chen

Mobile internet has brought a disruptive innovation to the ride-hail industry. The

technology introduced by Uber, referred to as e-hail, matches passengers with drivers

through their smart phones, while integrating transaction and feedback in a single

app. In comparison to taxis hailed off street, or street-hail (s-hail hereafter), e-hail

has been widely praised for not only improving user experience, but also boosting

productivity. This dissertation focuses on deepening our understanding on the nature

and limit of both ride-hail modes by proposing a general matching theory of ride-hail.

This theory, along with calibration methods and empirical evidences, not only

shows that the passenger-driver matching process in ride-hail is indeed dictated by

two primary physical limitations: the passengers’ ability to access distant vacant ve-

hicles and the drivers’ (or the platform’s) preference for certain locations, but further

discovers that the revolution of e-hail is a tale of two markets:
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On the one hand, by expanding passengers access to vacant vehicles and vice

versa, e-hail dramatically improves matching efficiency. In low-density markets partic-

ularly, where both demand and supply for ride-hail are low, this advantage substan-

tially lowers the likelihood of unpleasantly long waits. On the other hand, connecting

a large number of waiting passengers to the same pool of unmatched vacant vehi-

cles induces competition among passengers, which severely limits e-hail’s ability to

exploit economies of scale in matching. The impact of this loss in scalability with

e-hail will become more prominent in high-density markets, where arguably efficiency

matters the most.
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CHAPTER 1

Introduction

Thanks to the advance of mobile technology, activities that once depended on

physical interactions can now be accomplished at one’s fingertips. This innovation

enables consumers and providers of a service to match on a digital platform in real-

time with a reduced transaction cost (Coase, 1937; Davis, 2015). The launch of Uber

set in motion the rapid adoption of this new business model—known as uberiza-

tion (Daidj, 2018)—in many aspects of our daily life (Zervas et al., 2017; Caldieraro

et al., 2018). Users are attracted to an uberized service platform by the prospect of

greater convenience and efficiency, and their accumulation on the platform triggers

a cross-side network effect; that is, a larger number of users on one side of the market

makes the service more appealing to users on the other side (Yao and Mela, 2008;

Rysman, 2009; Tucker and Zhang, 2010; Halaburda et al., 2017). In turn, this effect

creates a positive feedback that keeps growing the platform and projects a prospect of

“winner-take-all.” Blessed with this virtuous cycle, uberization is expected to trans-

form and even dominate the way many services are provided and consumed, which

would have a far-reaching societal impact (Davis, 2015).

Although uberization continues to gain momentum around the world, whether

and when it will deliver on the promises aforementioned remain unclear. Uber has
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yet to turn a profit,1 and has so far failed to secure dominance over its competitors

around the world. Uber’s much smaller domestic rival, Lyft, actually went public a

few months earlier and had steadily gained market share at Uber’s expense.2 Even

the seemingly antiquated taxi service are still roaming on streets in big cities, and

despite substantial losses, are able to hold on to certain market segments (Nie, 2017;

Kim et al., 2018). In this dissertation, we attempt to find out if these troubles for

uberization are growing pains of a new economic paradigm, or come from some

fundamental limitation of the ride-hail matching mechanism itself.

Our study in this dissertation shows the revolution of e-hail is a tale of two mar-

kets. On the one hand, by expanding passengers access to vacant vehicles and vice

versa, e-hail dramatically improves matching efficiency. Particularly in low-density

markets, where both demand and supply for ride-hail are low, this advantage substan-

tially lowers the likelihood of unpleasantly long waits. On the other hand, connecting

a large number of waiting passengers to the same pool of unmatched vacant vehicles

induces competition among passengers, which severely limits e-hail’s ability to ex-

ploit economies of scale. Indeed, based on our empirical analysis we find that overall

e-hail displays a third less returns to scale than s-hail. The impact of this loss is most

prominent in high-density markets, where arguably efficiency matters the most.

The findings summarized above was made by developing and empirically validat-

ing a general theory of the ride-hail matching mechanism. The theory seeks to link

the spatiotemporal features of a local market to the density of vacant vehicles ready

1In 2019 alone, it lost $8.5 billion, see e.g., https://www.theverge.com/2020/2/6/21126965/

uber-q4-earnings-report-net-loss-revenue-profit-2019 (accessed on July 2, 2020).
2See e.g., https://secondmeasure.com/datapoints/rideshare-industry-overview/ (accessed on
July 2, 2020).

https://www.theverge.com/2020/2/6/21126965/uber-q4-earnings-report-net-loss-revenue-profit-2019
https://www.theverge.com/2020/2/6/21126965/uber-q4-earnings-report-net-loss-revenue-profit-2019
https://secondmeasure.com/datapoints/rideshare-industry-overview/
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to be matched with a ride request (called matchable vacant vehicles). The model yields

the wait time distribution, including the expected wait time of a request, as well as

the relationship between the number of the trips produced and the densities of vacant

vehicles and passengers. For s-hail, the model relies on two key parameters: effective

hail distance (EHD)—the maximum distance from which a passenger can see and hail

a vacant taxi, and local area attractiveness (LAA)—a scalar that measures the attrac-

tiveness of a given area to nearby vacant taxis. For e-hail, the competition among

passengers dictates the proportion of matchable vacant vehicles. This competition is

regulated by the matching algorithm used by e-hail, whose efficiency is incorporated

into the model as the key parameter. The models are calibrated using taxi and e-hail

operational data collected in Shenzhen, a megacity in China. A comparative study of

the calibrated models suggests that our theory satisfactorily explains why the success

of e-hail is a tale of two markets, as supported by the data.

When specifying the street-hail (s-hail) model, a peculiar difficulty has to do with

reliably estimating the average wait time of s-hail passengers. Even though the pickup

time and location may be observed (e.g., from taxi GPS trajectory data), there seems no

way to find out when the passenger began to wait. As a result, we cannot even answer

such basic questions as whether and (if so) by how much e-hail outperforms s-hail in

a given local market. To address this open question, we propose to extract maximum

possible wait time, defined as the maximum time the passenger could have waited

given EHD of the local market, by tracking the movements of vacant vehicles cruising

around the pickup location. We then prove that, for a given EHD, the extracted
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maximum possible wait time follows the same distribution as the real passenger wait

time, which enables the construction of reliable estimators for EHD and LAA.

For the remainder, the next chapter reviews related studies. Part 1 presents the

general matching theory and derives the main analytical results, with Chapter 3 look-

ing into microscopic matching mechanisms for both ride-hail modes, and Chapter 4

focusing on macroscopic system performances including wait time distribution and

scalability formulas. Part 2 proceeds to discuss calibration method developed for

the matching theory using real-world operational data for both ride-hail modes, with

Chapter 5 describing the data sets and Chapter 6 showing the detailed calibration

procedure. Part 3 provides empirical evidences supporting the proposed theory from

various aspects. Chapter 7 provides microscopic evidences on the spatiotemporal pa-

rameters in s-hail, observing their changes during natural experiments such as metro

station opening and road closure. Chapter 8 validates the statistical properties of

those parameters with empirical evidences. Chapter 9 compares and explains the rel-

ative performance of e-hail and s-hail revealed in empirical data, and completes the

tale of two markets through a regression analysis. The last chapter concludes with a

summary of findings, limitations and possible directions for future research.
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CHAPTER 2

Literature review

The matching problem in ride-hail is often studied along with the demand-supply

equilibrium of the overall market (e.g., Douglas, 1972; De Vany, 1975; Beesley and

Glaister, 1983; Cairns and Liston-Heyes, 1996; Arnott, 1996; Castillo et al., 2018). The

two well-known studies are Douglas (1972) and Arnott (1996), who analyze street-

hail (s-hail) and radio-dispatch taxi service markets, respectively. To establish market

equilibrium, they propose simple models to describe the relationship between pas-

senger wait time and vehicle supply. For s-hail, Douglas (1972) argues the expected

passenger wait time should be inversely proportional to the line density of vacant vehi-

cles. In the case of radio-dispatch, Arnott (1996) shows that the expected wait time for

radio-dispatch is inversely proportional to the square root of spatial density of vacant

vehicles. The matching theory proposed in this dissertation will lead to expected wait

time functions consistent with these known results, while offering a sound physical

foundation for interpretation, calibration and refinement.

Matching in ride-hail services has been modeled using different approaches. Some

studies (e.g., Lagos, 2000, 2003; Bimpikis et al., 2019) simply assume it is frictionless,

i.e., the number of pickups always equals to the demand or the supply, whichever is

smaller. Some others prefer to describe the relationship between inputs (vacant vehi-

cles and waiting passengers) and outputs (e.g., pickups) using an aggregate matching

function, such as the Cobb-Douglas function (e.g., Yang et al., 2010; Yang and Yang, 2011;
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He and Shen, 2015; Wang et al., 2016; Zha et al., 2016), the urn-ball matching function

(e.g., Shapiro, 2018; Buchholz, 2019), or an empirical function estimated from simula-

tions (e.g., Frechette et al., 2019). The urn-ball function treats matching as Bernoulli

trials, whereas the Cobb-Douglas function draws an analogy between matching and

production.

Another popular approach is to view the matching process as a queuing system

(e.g., Banerjee et al., 2015; Afeche et al., 2018; Xu et al., 2019). Most models based on

the queuing theory implicitly assume: (i) passengers are picked up immediately after

being matched with a vacant vehicle, and (ii) passengers are first-come-first-served.

Of course, neither is true in the case of general spatial matching. To address (i),

Besbes et al. (2018) and Feng et al. (2017) modify M/M/n queue by incorporating

the pickup time into the service time and having it determined by the time-varying

supply-demand relationship. However, both studies rely on the assumption that the

total number vehicles in the system remains constant. In this way, the number of va-

cant vehicles, which directly determines pickup time, can be simply replaced with the

difference between the number of waiting passengers and the fleet size. In addition,

the model proposed by Feng et al. (2017) only applies to a stylish circular road.

A few recent studies start to pay closer attentions to the nuances of matching pro-

cess in ride-hail. Zha et al. (2018) propose a geometric matching model to estimate the

average matching and pickup time, though it is still relied on equilibrium conditions

and a presumed matching function. Yang et al. (2020) propose a physical matching

model based on the notion of the “dominant-zone”, within which there is only one

waiting passenger, and thus he is always matched to the closest vacant vehicle. Since
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their model includes detailed matching strategy (e.g., matching radius and matching

interval), applying it to traditional ride-hail services may not be easy.

Empirical analysis of ride-hail markets have received much attention recently. Us-

ing the taxi data collected in New York City, Frechette et al. (2019) and Buchholz (2019)

study the impact of regulations on search frictions in the taxi market. While Frechette

et al. (2019) adopt an aggregate model of the taxi market, Buchholz (2019) develops

a network model to analyze the spatial allocation of the labor supply. The entry of

e-hail is discussed as a hypothetical scenario in both studies. Frechette et al. (2019)

argues, although e-hail is more efficient in terms of matching, its competition with

taxis would reduce the effective market density, and thus negatively affect the overall

service performance. Buchholz (2019) compares the welfare improvement under dy-

namic pricing and frictionless matching (the best-case scenario). The study concludes

that location-based pricing can fix the inefficiency created by the spatial imbalance of

supply and demand. With scraped Uber data, Shapiro (2018) further investigates the

competition between taxi and e-hail, concluding that the advantage of e-hail in high-

density areas mostly attributes to its lower price and less regulatory burden, rather

the matching technology.

A salient feature of the traditional taxi service is that a portion of the supply has

to be “wasted,” in the form of vacant vehicle time, in order to maintain a desired level

of service (often measured by the average wait time) (e.g., Douglas, 1972; Arnott,

1996). Ride-hail is widely considered as an industry with decreasing-average-cost

because it reduces such wasted supply when demand increases. It subsequently im-

plies that ride-hail should display increasing returns to scale and thereby is subject
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to natural monopoly (Hotelling, 1938; Arnott, 1996). Few, however, had empirically

demonstrated this property. Schroeter (1983) calibrated a Cobb-Douglas matching

function using the data of a radio-dispatch taxi service in Minneapolis. Although the

results support increasing returns to scale, they fail to reject the hypothesis of con-

stant returns to scale statistically. Calibrating a Cobb-Douglas function using yearly

aggregate taxi data in Hong Kong, Yang et al. (2014b) concludes the taxi service (s-

hail) displays a mild increasing return to scale (with an elasticity of 1.14 > 1). Based

on simulated data, Frechette et al. (2019) find the returns to scale of s-hail depends

on the market density: it is strongly increasing in low-density markets but constant

in high-density ones.

Since the launch of e-hail service, a growing number of empirical studies have been

conducted to examine its impact on ride-hail markets and traffic congestion (e.g., Nie,

2017; Kim et al., 2018; Erhardt et al., 2019), to compare its efficiency with that of tra-

ditional taxis (e.g., Cramer and Krueger, 2016; Castillo et al., 2018), and to analyze

its operational strategies (e.g., Hall et al., 2015; Chen et al., 2015; Chen and Sheldon,

2016; Hall et al., 2019). Using Uber data, Yan et al. (2019) estimate a number of pa-

rameters that measure the matching efficiency and demand and supply sensitivities.

Specifically, they find the pickup time is proportional to the vacant vehicle time to the

power of -0.515. This last empirical finding agrees well with the prediction based on

our spatial matching theory described in this dissertation.

Özkan and Ward (2020) formulates a matching queue for ride-sharing and pro-

poses an optimal matching policy that maximizes the total number of pickups. How-

ever, their model relies on some critical assumptions, including the exogenous vehicle



20

arrival rate over the space and pickup time, without a comprehensive consideration

of the interactions between supply and demand. Hu and Zhou (2018) proposes a

more general dynamic matching model that optimizes the bipartite matching in each

period anticipating the future demand and supply. Again, they assume the matching

cost is exogenous and the current matching does not affect the distribution of sup-

ply and demand in future periods, thus fail to capture the impact of passenger wait

time on the system performance. It is worth noting that we are not dealing with de-

tailed matching policy in this dissertation. Yet, the proposed theory should capture

the dominating characteristics of matching among ride-hail services that ultimately

determine their economic properties.
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Part 1

The theory
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CHAPTER 3

Matching mechanism

In this chapter, we look into the matching mechanism of ride-hail and describe

it with a simple model that captures all the key factors. We will first setup the

model with several mild assumptions, then incorporate spatiotemporal factors into

the matching process for both ride-hail modes. These analyses will lay the founda-

tion for better understanding of the passenger-driver dynamics in matching, and for

further investigation of the system performance in Chapter 4.

3.1. Matchable vacant vehicle

Consider a passenger who enters a ride-hail market where vacant vehicles are

cruising around, see Figure 3.1. Upon his entry, let Λ denote the density of vacant

vehicles and Π denote the density of waiting passengers in the market.1 The following

assumptions apply to both s-hail and e-hail markets.

Assumption 1. Vacant vehicles and waiting passengers are all uniformly distributed in

space. In addition,

(1) all vacant vehicles are cruising at the same speed v, and

(2) passengers keep waiting at the same location before pickup.

1To avoid notation cluttering, we omit the subscription index for market throughout the dissertation.
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Waiting passenger Vacant vehicle

N(r1)=0
~

r1

N(r2)=3
~

r2

Figure 3.1. Vacant vehicles around a waiting passenger in a ride-hail market

Let Ñ(r) be the number of vacant vehicles within a distance r from the passenger

(see Figure 3.1). With Assumption 1, the following result is obtained.

Proposition 1. The counting process Ñ(r) is an Inhomogeneous Poisson Process with an

intensity function of η(r) = 2πΛr.

Proof: First, we have Ñ(0) = 0 by definition. Since vacant vehicles are uniformly

distributed over the area, Ñ(r) has independent increments. Consider a ring as the

intersection of two concentric circles with radii r and r + ∆r. Equally cut the ring into

n small pieces with area ∆s, then the number of vacant vehicles in the ring follows

binomial distribution with the probability of one vacant vehicle in each piece being

p = Λ∆s. As n approaches infinity, such a binomial distribution can be approximated

by a Poisson distribution with rate

np =
π(r + ∆r)2 − πr2

∆s
Λ∆s = πΛ(2r + ∆r)∆r.(3.1)
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Hence,

lim
∆r→0

Pr{Ñ(r + ∆r)− Ñ(r) = 1}
∆r

= lim
∆r→0

πΛ(2r + ∆r) exp[−πΛ(2r + ∆r)∆r]

(3.2)

= 2πΛr,

lim
∆r→0

Pr{Ñ(r + ∆r)− Ñ(r) ≥ 2}
∆r

= lim
∆r→0

1 − exp[−πΛ(2r + ∆r)∆r]
∆r

− 2πΛr

(3.3)

≈ lim
∆r→0

1 − [1 − πΛ(2r + ∆r)∆r + o(∆r)]
∆r

− 2πΛr

= 0,

which are equivalent to

Pr{Ñ(r + ∆r)− Ñ(r) = 1} = 2πΛr∆r + o(∆r),(3.4)

Pr{Ñ(r + ∆r)− Ñ(r) ≥ 2} = o(∆r).(3.5)

Therefore, the counting process Ñ(r) is an Inhomogeneous Poisson Process with in-

tensity function η(r) = 2πΛr. 2

At the core of the matching model is to determine which vacant vehicle will be

matched with the passenger. To this end, we introduce matchable vacant vehicles as a

subset of vacant vehicles. Whether or not a vehicle is matchable is independent from

other vehicles. Thus, the counting process Ñ(r) can be split into two subprocesses,

and the one corresponding to the matchable vacant vehicles, denoted as Ñmv(r), has
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intensity function ηmv(r) = 2πΛrp(r), where p(r) is the fraction of matcheable vehi-

cles. Below we analyze the matching mechanism and derive p(r) for s-hail in Section

3.2 and e-hail in Section 3.3.

3.2. Spatial matching in an s-hail market

In an s-hail market, “matching” between a waiting passenger and a vacant vehicle

occurs when they are in close proximity so that they can see each other. In light of

this observation, we define effective hail distance (EHD, denoted as d) as the threshold

distance beyond which the driver and the passenger cannot see each other and thus

cannot be matched. Accordingly, an EHD area is the circle defined by the passenger’s

waiting location (center) and the EHD (radius). To simplify the analysis, we further

assume

Assumption 2. After the passenger enters the market, all vacant vehicles will continue on

their respective straight-line path defined by their current heading until one of them is matched

with the passenger.

This assumption, however, requires mitigation because, instead of driving in straight

lines, vacant vehicles tend to turn towards areas where they are more likely to meet

waiting passengers. To this end, we introduce another parameter to measure the at-

tractiveness of the passenger’s waiting location to the surrounding vacant vehicles.

Hereafter, this parameter will be referred to as the local area attractiveness (LAA) and

denoted as σ. We standardize σ such that σ = 1 if the passenger’s waiting location

does not affect vacant vehicles’ directions and they continue on their current paths;
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Figure 3.2. Illustration of matchable vacant vehicle in an s-hail market

and σ > 1 (< 1) if vacant vehicles are more likely to move towards (away from) the

passenger’s waiting location. Both d and σ are key parameters of the spatial matching

model for s-hail and will be calibrated from data.

With the above settings, we can see that matching could only take place if a vacant

vehicle would eventually enter the passenger’s EHD area. The criteria of matchable

vacant vehicle in s-hail is formally given as follows.

Definition 1 (Matchable vacant vehicle in s-hail). A vacant vehicle in an s-hail market

is matchable for the waiting passenger if (1) it is cruising towards the passenger; i.e., its

heading has an acute angle with its direction to the passenger (α < π/2 in Figure 3.2A); (2)

it is traveling on the same side of the road as the passenger; i.e., its heading has an acute angle

with the passenger’s travel direction (β < π/2 in Figure 3.2A); and (3) either it is in the

passenger’s EHD area (Figure 3.2D), or it will eventually enter the passenger’s EHD area if

it continues on its current path (Figure 3.2E).

Figure 3.2 illustrates: (A) A vehicle that satisfies conditions (1) and (2) in Def. 1;

(B) A vehicle that violates condition (1) in Def. 1; (C) A vehicle that violates condition

(2) in Def. 1; (D) A matchable vehicle inside EHD area; (E) A matchable taxi outside

EHD area.
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Lemma 1. Given Assumption 2 and Definition 1, the fraction of matchable vacant vehicles

at a distance r from the passenger can be approximated as p(r) = σd
2πr .

Proof: We consider two cases.

(1) Distance r smaller than or equal to EHD

Let θ be the angle between the passenger’s travel direction and the line con-

necting the taxi and the passenger (Figure 3.3A). The probability that the

taxi’s heading satisfies both directional conditions of matchable taxis is thus

θ
2π . Due to the symmetry of such probability for θ ≤ π and θ > π, the fraction

of matchable taxis within the passenger’s EHD area is given by

p(r) =

∫ π
0

θ
2π dθ

π
=

1
4

.(3.6)

(2) Distance r larger than EHD

Let ϕ be the angle between the taxi heading direction and the line connecting

the taxi and the passenger. Given the passenger’s travel direction, there are

two critical values θ1 and θ2 (Figure 3.3B), such that: (1) when θ < θ1, all taxis

with ϕ ∈ [− arcsin(d/r), arcsin(d/r)] are matchable taxis; (2) when θ > θ2,

there is no matchable taxi; and (3) when θ1 ≤ θ ≤ θ2, the fraction of matchable

taxis is 2 θ−θ1
θ2−θ1

arcsin(d/r).

Let ϕ0 = arcsin(d/r), then

θ1 =
π

2
− ϕ0, θ2 = π + ϕ0,(3.7)
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Figure 3.3. Fraction of matchable taxis at distance r

which yields

2
θ − θ1

θ2 − θ1
ϕ0 = θ − (

π

2
− ϕ0).(3.8)

Since the symmetry holds as in the case of taxis within EHD area, the

fraction of matchable taxis outside EHD area is given by

p(r) =
1
π

[
2ϕ0(

π
2 − ϕ0)

2π
+

1
2π

∫ π
2 +ϕ0

π
2 −ϕ0

θ − (
π

2
− ϕ0)dθ

]
=

1
4π2 [(

π

2
+ ϕ0)

2 − (
π

2
− ϕ0)

2]

=
ϕ0

2π
=

1
2π

arcsin(d/r).(3.9)

To get a well-behaved analytical model, we further assume that all vacant vehicles

are outside the EHD area when a passenger arrives. Our analysis of empirical data

show that EHD ranges between 15 to 40 meters. Supposing that the EHD is 30 m and

the vacant-taxi density is 50 /km2 (close to the highest value observed in the data),

the probability that a matchable vacant vehicle is inside the passenger’s EHD area at a

given time is around 0.035 (computed by p(r)Λπd2 for r ≤ d). Hence, it is reasonable
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to ignore these low probability events for the sake of analytical tractability. Hence, we

focus on the second case above (r > d). For this case, arcsin(d/r) ≈ d/r based on the

first-order Taylor expansion, which leads to p(r) = d/(2πr).

Finally, the above result is derived based on Assumption 2. As vacant taxis may

not continue on their current path, we propose to correct p(r) by scaling it with LAA,

which leads to p(r) = σd/(2πr). 2

We are now ready to present a main result concerning the distribution of match-

able vacant vehicles around the focal passenger.

Proposition 2. In an s-hail market, the counting process of the number of matchable vehi-

cles Ñs
mv(r) (superscript ‘s’ denotes ‘s-hail’) can be approximated by a Homogeneous Poisson

Process with intensity ηs
mv = σΛd.

Proof: Per Lemma 1, a vacant vehicle at a distance r from the passenger has a

probability p(r) = σd
2πr of being matchable. Accordingly, the intensity function of

Ñs
mv(r) is given by ηs

mv(r) = p(r)η(r) = (σd/2πr) · (2πΛr) = σΛd, which no longer

depends on r. Hence, Ñs
mv(r) is reduced to a Homogeneous Poisson Process with a

constant intensity ηs
mv = σΛd. 2

It is reasonable to expect that, of all the matchable vacant vehicles, the one that is

closest to the passenger when he enters the market would finally be matched with her.

This assertion, however, rules out the possibility that the closest matchable vehicle

may first enter the EHD area of another waiting passenger. If such a competition

between passengers is taken into consideration, we may have to either further reduce

p(r) with another parameter or assign a “pickup probability” to each of the matchable
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vehicles. Neither approach, however, is analytically tractable. For simplicity, inter-

passenger competitions are ignored in s-hail markets. While this simplification tends

to overestimate the performance of s-hail, the magnitude of the overestimation is

expected to be small. Specifically, we note that the highest pickup rate observed in our

data ranges between 600 and 800 per hour per km2. At any given moment, the number

of passengers waiting within an area of 1 km2 is likely no more than 50 (assuming an

average wait time of 3 - 5 minutes). If d = 0.03 km (based on the calibration results

discussed below), the total EHD area of 50 passengers amounts to about 0.14 km2

(14% of all space). Thus, the probability that the closest matchable vehicle runs into

another passenger’s EHD area is an event with relatively low likelihood, even in such

an extremely high density area.

3.3. Spatial matching in an e-hail market

The e-hail market brings two notable differences. First, matching between the pas-

senger and the driver no longer relies on physical proximity. Rather, it is arranged

online through the e-hail platform, which assigns a vacant vehicle to the passenger ac-

cording to certain matching algorithm. This means that theoretically the passenger’s

effective hailing distance d → ∞. Second, in e-hail vacant vehicles consist of unmatched

ones, with a density Λ0 = bΛΛ, and matched ones, with a density Λ1 = (1 − bΛ)Λ.

Similarly, waiting passengers can be divided into unmatched passengers, with a den-

sity Π0 = bΠΠ, and matched passengers, with a density Π1 = (1 − bΠ)Π. An un-

matched passenger (vehicle) is waiting to be matched, whereas a matched passenger
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(vehicle) is waiting to be picked up (en-route to pick up the passenger). In contrast,

for s-hail, bΛ = bΠ = 1.

Assumption 3. In an e-hail market, waiting passengers and vacant vehicles, matched or

unmatched, are all uniformly distributed in space.

Accordingly, the number of unmatched vacant vehicles within distance r from the

passenger is a Poisson Process with intensity function 2πΛ0r. At first glance, one

is inclined to consider all these vehicles matchable, since theoretically, any of them

can indeed be assigned to the passenger by the platform. However, a moment of

reflection suggests that the platform can not reserve all unmatched vehicles for the

passenger, precisely because it also has to take care of other unmatched passengers in

the market. While e-hail increases d dramatically, it also intensifies the inter-passenger

competitions so much that they can no longer be ignored. To capture the impact of

such competitions, we first introduce the following assumption.

Assumption 4. The unmatched vacant vehicles are evenly distributed among unmatched

waiting passengers.

Assumption 4 implies that any unmatched passenger has an equal access to vacant

vehicles around her. Specifically, because the waiting passengers and vacant vehicles

are uniformly mixed, the expected number of vacant vehicles allocated to each pas-

senger would be roughly the same. Thus, each passenger should receive an equal

share (1/(Π0 × 1)) of unmatched vacant vehicles. Note here we convert the passenger

density Π0 to the number of the passengers in a unit area by multiplying the density

by 1.
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We can now characterize matchable vacant vehicles in an e-hail market as follows.

Proposition 3. For the waiting passenger in an e-hail market, the counting process of the

number of matchable vacant vehicles Ñe
mv(r) (superscript ‘e’ denotes ‘e-hail’) can be approxi-

mated by an Inhomogeneous Poisson Process with the intensity function

ηe
mv(r) =

2πΛ0r
Π0 × 1

=
2πrbΛΛ
bΠΠ × 1

, 2πrkΛ
Π

.(3.10)

.

Proof: The result directly follows from Assumptions 3 and 4. 2

The parameters bΛ and bΠ are closely related to how the platform manages the

matching process in real time. Accordingly, k , bΛ/(bΠ × 1) in Eq. (3.10) is essen-

tially a measure of the matching efficiency of the platform’s algorithm. It is worth

emphasizing here that the unit of k is the reciprocal of area. Like d and σ for s-hail, k

is treated as a model parameter to be calibrated from data.
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CHAPTER 4

System performance

Based on the matching mechanism, we derive important system performances

including passenger wait times and matching rates for different ride-hail modes. Our

theory predicts the key differences between taxi and e-hail in terms of passenger wait

time distributions, expected wait time and stationary state pickup rate, and discovers

a tale of two markets in economies of scale.

4.1. Distribution of passenger wait time

The following assumption is necessary to simplify the analysis of passenger wait

time (see e.g. Arnott, 1996).

Assumption 5. In both s-hail and e-hail markets, the passenger would always be picked

up by the closest matchable vacant vehicle.

Hereafter the closest matcheable vacant vehicle will be simply referred to as the

pickup vehicle. Let the line distance between the pickup vehicle and the waiting lo-

cation be denoted as D̃. The actual distance travelled by the pickup vehicle before

meeting the passenger is likely longer than D̃. The ratio between the traveled dis-

tance and D̃ is known as the detour factor (denoted as δ) in quantitative geography

(see e.g., Fairthorne, 1964; Boscoe et al., 2012; Yang et al., 2018). For simplicity, we

assume that δ is a constant. Hence, the passenger’s wait time w̃ is given by δD̃/v.
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The probability that w̃ is longer than t equals the probability that there is no

matchable vacant vehicles within r = vt/δ from the passenger (i.e., Ñ1(vt/δ) = 0).

Thus, we have

Pr(w̃ ≤ t) = 1 − Pr(Ñmv(r) = 0) = 1 − exp
[
−
∫ r

0
ηmv(x)dx

]
.(4.1)

For s-hail, recall that ηs
mv(x) = σdΛ (Proposition 2) and let x = vw/δ. Accordingly,

we have the cumulative distribution function (CDF) of w̃ as

Fs(t) = Pr(w̃ ≤ t) = 1 − exp
[
−
∫ t

0
σdΛ

v
δ

dw
]
= 1 − exp

(
−σdΛv

δ
t
)

.(4.2)

The above result shows that under the given assumptions the passenger wait time in

an s-hail market follows a standard exponential distribution with a rate

λ =
σdΛv

δ
.(4.3)

For e-hail, ηe
mv(x) = 2πxkΛ/Π (Proposition 3). Thus, the CDF of passenger wait time

is

Fe(t) = 1 − exp
[
−
∫ t

0

2πkΛv2

Πδ2 wdw
]
= 1 − exp

(
−πkΛv2t2

δ2Π

)
;(4.4)

that is, the wait time in e-hail follows a Rayleigh distribution with a mode

θ =
δ

v

√
Π

2πkΛ
.(4.5)
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Consequently, the expected passenger wait time for s-hail is

E[w̃s] = w̄s =
1
λ
=

δ

σdΛv
.(4.6)

For e-hail, the expected passenger wait time is

E[w̃e] = w̄e = θ

√
π

2
=

δ

2v

√
Π
kΛ

.(4.7)

Eq. (4.6) indicates that the mean passenger wait time is inversely proportional to

the product of the vacant vehicle density and the cruising speed for taxis. While

Douglas (1972) proposes a similar relationship, his matching model does not allow

for location-specific parameters such as LAA and EHD. In comparison, Eq. (4.7) bears

similarities with the formula give by Arnott (1996) for radio-dispatch taxi service. This

is not surprising given e-hail can be viewed as a more sophisticated form of radio-

dispatch service. Notably, they both state the mean wait time is inversely proportional

to the square root of the vacant vehicle density. The features added in Eq. (4.7) are the

parameters accounting for the passenger competition (Π) and the matching efficiency

(k). Thus, the models of Douglas (1972) and Arnott (1996) may be viewed as special

cases of the generalized spatial matching model proposed herein.

4.2. Stationary state pickup rate

A ride-hail market reaches a stationary state when the vacant vehicle density and

waiting passenger density are held constant over time. At this state, the passenger

arrival rate (demand) equals the pickup rate (the number of successful matching per
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unit time), denoted as m in this dissertation. We note this dissertation does not inves-

tigate how the market arrives at the stationary state. Instead, our focus is to compare

the performance of e-hail and s-hail services after each has reached their respective

stationary state. To this end, the spatial matching model will be calibrated against

data collected when the stationary conditions are approximately satisfied in various

local markets.

Focusing on the stationary state allows us to establish useful relationships between

the key variables using queuing theory. In particular, as per Little’s formula (Little,

1961), we have

Π = mw̄,(4.8)

where Π is the number of waiting passenger per unit area (analogous to the queue

length), m is the passenger arrival rate (i.e., the pickup rate) and w̄ is the mean wait

time.

For s-hail, Eq. (4.8) yields

Π = mw̄s = m
δ

σdΛv
,(4.9)

which implies the vacant vehicle density Λ should increase proportional to the arrival

rate m to hold Π constant. Moreover, when an increase in m draws more vacant

vehicles to the market, the wait time ws always improves as per Eq. (4.6), even if the

increase in Λ is unable to keep up with that of m.
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For e-hail, we have

Π = mw̄e = m
δ

2v

√
Π
kΛ

⇒ Π = m2 δ2

4v2
1

kΛ
.(4.10)

That is, when m doubles, Λ has to be quadrupled in order to prevent waiting passen-

gers accumulate in the system indefinitely. Eq. (4.10) further yields

w̄e =
δ2

4v2
m
kΛ

.(4.11)

Hence, when m doubles but Λ fails to increase as much, the wait time worsens. In

other words, a surge in m could in theory lead to a longer wait time, if it does not

attract enough vacant vehicles. This feature is markedly different from s-hail.

Finally, by replacing w̄ in Eq. (4.8) using Eq. (4.6) and Eq. (4.7), we arrive at a

relationship between m, Π and Λ as follows:

s-hail: m =
σdv

δ
ΠΛ,(4.12)

e-hail: m =
2v
√

k
δ

√
ΠΛ.(4.13)

Following the literature (see e.g., Yang et al., 2010; Yang and Yang, 2011; Yang et al.,

2014a; He and Shen, 2015; Wang et al., 2016; He et al., 2018; Nourinejad and Ramezani,

2019; Wang and Yang, 2019), we interpret the above relationship as the classical Cobb-

Douglas production function (Cobb and Douglas, 1928). Specifically, the pickup rate

m is analogous to the total production, Λ and Π are inputs, and their exponents

are output elasticities. The coefficient independent of Λ and Π (σdv/δ for s-hail
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and 2v
√

k/δ for e-hail) is interpreted as the total factor productivity (TFP), which is

determined by the respective production technology of s-hail and e-hail.

4.3. Economies of scale: a tale of two markets

The classic economic theory states that a production displays constant/increasing/

decreasing returns to scale, when the sum of the two output elasticities is equal

to/greater than/less than 1. Based on Eqs. (4.12)–(4.13), s-hail displays a strong in-

creasing returns to scale (with the sum of the output elasticities equal to 2) and e-hail

displays a constant returns to scale (with the sum equal to exactly 1). Thus, our

spatial matching model suggests, quite unexpectedly, it is s-hail that enjoys greater

economies of scale.

How do we make sense of e-hail’s disappointing economies of scale? The answer

hinges on the very technology that has enabled passengers to reach faraway vacant

vehicles that are “invisible” to them in the s-hail context.

Figure 4.1 tells a tale of two markets about the performances of s-hail and e-

hail. In a low density s-hail market (Figure 4.1(A)), a passenger surrounded by five

vacant vehicles may end up meeting none, because his relatively small EHD (the red

circle) may not intercept the trajectory of any vehicle (dotted lines in the figure). In

a low density e-hail market (Figure 4.1(B)), e-hail’s matching technology expands the

passenger’s hail area dramatically (the small red cycle now can be seen as filling the

entire space). Hence, of the five vacant vehicles, the four unmatched ones can all be

matched with the passenger. As the density in the market increases, however, the tide

begins to turn. Figure 4.1(C) shows high density improves s-hail passengers’ matching
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Figure 4.1. A tale of two markets

probability through the cross-side network effect. That is, although each passenger’s

EHD remains small, the proximity ensures a high level of successful matching. In

the figure, only two out of nine passengers fail to find a matched vehicle. Yet, e-hail

passengers in a high density environment (Figure 4.1(D)) find themselves locked in

intense competitions with each other for the same set of vacant vehicles. As a result,

each can only be matched with a small subset of all vacant vehicles. As illustrated in

the figure, the nine e-hail passengers compete for eight unmatched vacant vehicles,

and one of them eventually failed to find a match.
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Thus, as the market scales up, s-hail benefits from rising density in general while

e-hail does not, an insight consistent with Eqs. (4.12) and (4.13). This is not to say that

s-hail markets are completely immune to negative impact of inter-passenger compe-

tition. Beyond certain threshold (e.g., at a so-called hot spot), when passengers’ EHD

areas begin to move closer to or even overlap with each other, the efficiency of s-hail

would suffer too. However, those extremely dense scenarios are rare, and when they

do occur, they tend to concentrate narrowly in space and time.
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Part 2

Calibration methodology
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CHAPTER 5

Data

We proceed to empirically calibrate the spatial matching theory put forth in Part 1.

In this chapter, we first describe the data sets (Section 5.1), then define local markets

(Section 5.2) and explain how key input parameters are approximated for each market

(Section 5.3).

5.1. Description

The s-hail taxi data used in this dissertation were collected in Shenzhen, China for

a full week in 2011, 2012 and 2016, respectively. The e-hail data were for the same

week and city in 2016 as in the s-hail case. We will focus on the five weekdays in our

analysis. Shenzhen is a megacity in China with more than 13 million residents and a

dense urban core surrounded by an expansive metropolitan area. In addition to the

ride-hail data, we also obtain the map data of traffic analysis zones (TAZ) that define

the basic spatial unit in this dissertation.

The s-hail data consist of GPS trajectories of all registered taxis in the city with an

average inter-record interval of 20 seconds. Each GPS record contains, among other

information, taxi license ID, time stamp, coordinates, instantaneous speed, heading,

and passenger occupancy status (0/1 variable). Following the procedure described in

Nie (2017), trajectories are segmented into occupied and vacant trips. Each occupied

trip defines a pickup event with a timestamp and location.
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The e-hail data contains a random sample of trips collected by a large e-hail

provider operating in the city, in the same week as the taxi data. At a 6% sam-

pling rate, the data set includes about 45K trips per day. Each trip record includes

coordinates of the trip origin and destination, order placement time, driver arrival

time, trip starting and ending time, pickup distance, etc. Besides the trip records, the

e-hail data also include the cruising time of unmatched vacant vehicles aggregated in

each time period and local markets (see Section 5.2).

5.2. Local ride-hail market

In this dissertation, we focus on the five weekdays. A local ride-hail market, or

a local market in short, is defined by a combination of a core area and a time period.

In sum, 245 core areas, each corresponding to one or several TAZs, and two time

periods, a morning off-peak period (9 AM–12 PM) and an evening peak period (5

PM–8 PM), are selected. Hence, there are a total of 490 local markets each for s-hail

and e-hail. Figure 5.1 illustrates the selected core areas. These core areas belong to six

municipal districts of the city. Based on the population density and urban function,

the six districts are further classified as downtown (D-1 and D-2), urban (U-1 and U-

2), and suburban (S-1 and S-2). The two periods introduced to define local markets are

selected so that the travel pattern within each would be relatively stable. Accordingly,

when averaged over the five weekdays, the observed market conditions can be viewed

as approximately satisfying the definition of the stationary state discussed in Section

4.2. Table 5.1 shows the counts and sizes of these local markets in each region.
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Region # core areas Min. area (km2) Max. area (km2) Med. area (km2)
D-1 81 0.0409 1.6540 0.2664
D-2 47 0.0607 0.7113 0.1301
U-1 51 0.0712 1.5247 0.1673
U-2 21 0.1147 0.6709 0.2567
S-1 26 0.0955 1.5614 0.4111
S-2 19 0.1546 0.8746 0.3337

Table 5.1. Counts and sizes of local markets

U-2

U-1
D-1

D-2

S-1

S-2Shenzhen Bao'an
International 
Airport

Figure 5.1. Selected core areas in Shenzhen

Important measures such as pickup rate and passenger wait time are computed

based on observed pickup events in each local market. However, it should be noted

that the demand and supply associated with each local market are not necessarily con-

fined by the physical boundary of the core area. Instead, they are specified differently

for s-hail and e-hail, according to the operational characteristics of these services.

For s-hail, we consider the demand as all pickups in the core area. and for each

pickup, we define a “supply area” centered at the pickup location. The size of the



45

Π

Λ#

Core area

Supply area

Trajectory contributed

Trajectory not contributed

Figure 5.2. Supply area and trajectories associated with s-hail pickup i

supply area is selected to cover matchable vehicles within a reasonable distance, thus

often extending beyond the core area. For simplicity, in this study we set the supply

area to be a square centered at the pickup location with an area of about 1 km2.

Accordingly, the vacant vehicle density is computed using the trajectories of vacant

taxis within the supply area. Figure 5.2 illustrates the supply area and trajectories

associated with an s-hail pickup observed in a core area.

To define the supply area for e-hail, we first find the centroid of all pickup locations

recorded inside the core area, and then, centering at that point, draw a circle with a

radius equal to 90th percentile of all pickup distances (the green circle in Figure 5.3).

Defining the demand is more complicated, because a passenger waiting in the core

area may compete with those both inside and outside the supply area. Figure 5.3(B)

portrays a passenger outside the supply area competing with passengers in the study

area as he is close to a vacant vehicle inside the supply area. Consequently, we need to

consider waiting passengers in an even larger area, called the “competing area” (the
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Figure 5.3. Supply area and competing area associated with an e-hail
local market

orange circle in Figure 5.3). The competing area is defined as a circle that is concentric

with the supply area but doubles its radius. Accordingly, waiting passengers in the

competing area who compete for vacant vehicles in the supply area contribute to the

demand in this local market.

5.3. Constructing input parameters from data

In each local market, we extract four input parameters directly from data for the

matching models of s-hail and e-hail, respectively. The four input parameters are

pickup rate, vacant vehicle density, cruising speed, and waiting passenger density.

We note these parameters are important inputs to the model calibration considered

in the next chapter. They themselves are also key performance metrics of ride-hail

services, and will be discussed further in Part 3.
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5.3.1. Pickup rate

Let A be the area of the core area, T be the length of the analysis horizon, N be the

number of pickups observed in the core area within T, and µ be the sample rate.

Then, for both taxi and e-hail, the pickup rate associated with the core area is given

by

mcore =
N

µAT
.(5.1)

As mentioned in Section 5.2, the demand associated with an e-hail local market

goes beyond the core area. We propose to approximate the pickup rate by

msupply =
1

µÃT

Ñ

∑
i=1

pi,(5.2)

where Ã and Ñ are the supply area and the number of pickups observed within the

supply area, respectively, and pi the probability that pickup i contributes to the de-

mand in the local market. Specifically, Ã is evaluated as πR2 according to Figure 5.3,

and pi will be specified in Section 5.3.4.

For taxi local market, mcore = msupply due to the limited matching radius.

5.3.2. Vacant vehicle density and cruising speed

For s-hail, the vacant vehicle density is computed from GPS trajectories. For pickup i,

we query the trajectories within the supply area and a time window [ti − t, ti], where

ti is the timestamp of pickup and t0 is an upper bound of passenger wait time (set to

be 1000s in this study). Let m be the number of vacant vehicles passing through the
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supply area during [ti − t, ti], τj and lj be the time and distance traveled by vehicle j.

The vacant vehicle density and cruising speed with respect to pickup i are respectively

approximated by

Λi =
1

µat

m

∑
j=1

τj, vi =
∑m

j=1 lj

∑m
j=1 τj

,(5.3)

where a in the definition of Λi is the supply area (the larger square in Figure 5.2).

Accordingly, the vacant vehicle density and cruising speed for the local market are

Λ = Λ0 =
1
N

N

∑
i=1

Λi, v =
1
N

N

∑
i=1

vi.(5.4)

For e-hail, the unmatched vacant vehicle density Λ0 is directly obtained from the

data. Approximating the matched vacant vehicle density Λ1, however, has to be

addressed in the competing area. For each pickup observed in the competing area,

we need to determined how much the pickup distance contribute to Λ1. Let wi be

the pickup time, Pi be the pickup distance and P̃i be the pickup distance associated

with the local market (see Section 5.3.4). Then the matched vacant vehicle density is

approximated by

Λ1 =
1

µÃT

Ñ

∑
i=1

P̃i

Pi wi.(5.5)

Finally, the cruising speed for e-hail is computed as the average speed of pickup

trip, i.e.,

v =
1
N

N

∑
i=1

Pi

wi .(5.6)
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5.3.3. Waiting passenger density

Since the exact passenger wait time is not available from the s-hail data, we simulate

the waiting process of all pickups in the local market based on the calibrated model

(see Section 6.1). For each simulation, we compute the waiting passenger density as

Π =
1

µAT

N

∑
i=1

ŵi,(5.7)

where ŵi is the simulated wait time of pickup i. The final approximation is taken as

the average among multiple simulations.

As for e-hail, again, the waiting passenger density need to be computed in the

competing area, which requires the probability of each pickup being associated with

the local market, i.e.,

Π =
1

µÃT

Ñ

∑
i=1

piwi.(5.8)

5.3.4. Competing passengers in e-hail local markets

Consider a pickup i in the competing area. Let Pi be the pickup distance, Li be the

distance from the pickup location to the center of the local market, and R be the radius

of the supply area. Our goal is to derive the probability that the pickup belongs to the

local market, pi, and the pickup distance contributing to the matched vacant vehicle

density P̃i. We will drop the subscript i from Li, Pi and pi to simplify notation. Two

scenarios are considered, each having three subcases, as illustrated in Figs. 5.4 and

5.5.

(1) The pickup is located inside the supply area, i.e., L ≤ R.
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(a) P ≤ R − L (Figure 5.4(A)): In this subcase, the pickup vehicle must start

inside the supply area. Hence, the passenger associated with the pickup

is definitely part of the demand in the market and the entire pickup

distance should be counted in the matched vacant vehicle density, i.e.,

p = 1 and P̃ = P.
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(b) P > R + L (Figure 5.4(B)): In this subcase, the pickup vehicle starts out-

side the supply area. Hence, the passenger did not compete for the sup-

ply inside the supply area of the market. Then pickup event has no

contribution to either demand or supply. p = 0 and P̃ = 0.

(c) R − L < P ≤ R + L (Figure 5.4(C)): In this subcase, the pickup may

or may not start inside the supply area. The probability that it starts

inside can be computed as p = θ/π, where θ can be solved by the law of

cosine (i.e., R2 = L2 + P2 − 2LP cos θ). Accordingly, the contribution of

the pickup distance to the matched vacant vehicle density is P̃ = Pθ/π.

(2) The pickup is located outside the supply area, i.e., L ≤ R.

(a) P ≤ L − R (Figure 5.5(A)): In this subcase, the pickup vehicle must start

outside the supply area. As per the argument in 1(b), p = 0 and P̃ = 0.

(b) P > L + R (Figure 5.5(B)): p = 0 and P̃ = 0 for the same reason as in 1(b).

(c) L − R < P ≤ L + R (Figure 5.5(C)): Similar to 1(c), the probability that

the pickup vehicle starts inside the supply area is θ/π. However, only

a fraction of the pickup distance is covered by the supply area. To be

consistent with the matched vacant vehicle density, we count a cropped

distance P′ = P − L cos θ +
√

R2 − (L sin θ)2, and approximate the aver-

age of P′ by

P̄′ =
1
π

∫ θ

0

(
P − L cos u +

√
R2 − (L sin u)2

)
du(5.9)

≈ θ

π
P − sin θ

π
L +

1
π

√
θ2
(

R2 − L2

2

)
+

θ sin 2θ

4
L2.
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Hence, the contribution of the pickup distance to the matched vacant

vehicle density is given by P̃ = P̄′θ/π.
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CHAPTER 6

Calibration methods

In this chapter, we describe the procedure developed to empirically calibrate a set

of key input variables from data for the matching models of both s-hail (Section 6.1)

and e-hail (Section 6.2). These input variables are crucial for empirically testing the

matching models in Part 3.

6.1. Calibration for s-hail

For each taxi local market, four variables need to be calibrated, namely, the vacant

vehicle density Λ, the cruising speed v, EHD d, and LAA σ. Obtaining Λ and v is

straightforward as they are directly observed in the data as described in Chapter 5.

The other two parameters, however, are more difficult to calibrate because neither is

directly observable from the data.

Because the matching model ties EHD d and LAA σ to the wait time distribution

(see Section 4.1), we may estimate them using observed passenger wait time. How-

ever, passenger wait time is not directly observable either. To tackle this difficulty, we

define the maximum possible passenger wait time of each pickup event, denoted as

w̃M, as the maximum time the passenger could have waited given d of the local mar-

ket. It can be proved that, conditional on d, w̃M follows exactly the same distribution

as the passenger wait time.
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Proposition 4. Assume that (1) the EHD is fixed in the local taxi market, and (2) passen-

gers enter the market randomly. Then, the distribution of passengers’ wait time is the same as

that of their maximum possible wait time.

Proof: The key observation is that, given a fixed d, the maximum possible wait

time extracted from Figure 6.3 is essentially the second last appearance of vacant

vehicle inside the hail area (the last one is the pickup vehicle). Recall that Ñ1(r)

is the number of matchable vehicles within a distance of r from a passenger upon

his arrival. Since Ñ1(r) follows a Homogeneous Poisson Process for r > d and the

cruising speed is a constant shared by all vacant vehicles, the number of matchable

vehicles entering the passenger’s effective hail area (EHA) is also a Homogeneous

Poisson Process. Accordingly, the inter-arrival time of matchable vehicles into that

area follows exponential distribution.

Figure 6.1 illustrates four key time points on the reverse time axis in a pickup

event: the pickup time (t = 0); the time when the pickup vehicle enters the passen-

ger’s EHA (t = d/v); the time when the passenger begins to wait (t = w); and the

time when the last matchable vehicle enters the EHA (t = wM).

Let s be the inter-arrival time of matchable vehicles entering EHA and s′ be the

time elapsed from the second last appearance of matchable vehicle in EHA to the

passenger’s arrival. Then, s follows exponential distribution. The passenger wait

time and maximum possible wait time can be represented as

w = d/v + s − s′, wM = d/v + s.(6.1)
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Figure 6.1. Relationship between maximum possible wait time and pas-
senger wait time

Therefore, wM follows exponential distribution as per the Memoryless Property.

Since the passenger’s arrival is independent of the movements of matchable vehicles

(i.e., s ⊥ s′), w and wM follow the same distribution as per the Strong Memoryless

Property. The proof is completed. 2

6.1.1. Empirical mapping between maximum possible wait time and EHD

The maximum possible wait time w̃M is defined as the maximum time the passenger

could have waited given the EHD d of the local market. In what follows, we em-

pirically construct a function Gi : d → wM, which, for each pickup event i, builds a

one-to-one mapping between d and wM (an observation of w̃M).

The queried vacant vehicle trajectories (see Figure 5.2) contain both trajectories of

the pickup vehicle and other vacant vehicles. For the pickup vehicle, we compute the

line distance from each GPS point to the pickup location and plot it against the time

before the pickup. As for other vacant vehicles, we first extract the segments in their

trajectories when they are matchable (see criteria in Section 3.2), and then compute
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the minimum distance among them to the pickup location, again, backtracking the

time from the pickup time. Figure 6.2 illustrates the derived line charts of two pickup

events. From these charts we could identify two important timestamps: (1) t1, beyond

which the pickup vehicle is no longer monotonically approaching the pickup location,

and (2) t2, beyond which the pickup vehicle is no longer the closest vacant vehicle to

the pickup location.
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Figure 6.2. Distance from pickup location against time before pickup

Let t = min(t1, t2) and for each pickup event i define

gi(t) = min(l1(t), l2(t), ∀t ∈ [t, t],(6.2)

where t is the maximum backtracking time, l1(·) and l2(·) represent the two curves

corresponding to the “pickup vehicle” (green dashed line) and “other matchable ve-

hicle” (red solid line) in Figure 6.2, respectively. Accordingly, gi(t) is the bold blue

line in Figure 6.2.

We claim that, if a passenger starts to wait at t before the pickup time, EHD must

be smaller than gi(t). To see this, note that if d ≥ gi(t), either the pickup vehicle or
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another vacant vehicle would have picked him up earlier than t as per the definition

of gi(t). Therefore, gi(t) gives the maximum d, denoted as dM, corresponding to a

wait time t. Conversely, for each feasible d, gi(t) also bounds the maximum possible

wait time, which enables the construction of Gi(d).

Figure 6.3 illustrates the empirical function Gi(d) for two pickup events. To avoid

unrealistic results, we bound the feasible range of d between d and d̄, resulting two

boundary points for G(d). Take Event 1 as example. First, point (d1, w1
M) corresponds

to the left end of g(t) (see Figure 6.2). Since we cannot further bound the passenger

wait time beyond d1, w1
M will be set as the maximum possible wait time for all d ∈

[d1, d̄]. The second boundary condition corresponds to d. If we find, within the

feasible range of gi(t), a point such that d ≤ d, then the corresponding wait time is set

as the maximum possible wait time for all d ∈ [0, d]. This is what happens in Event

1 (see Figure 6.3). Otherwise, we set the maximum possible wait time as the time

associated with d̄, denoted as t (see pickup event 2 in Figure 6.3).

6.1.2. Calibration algorithm

Another challenge encountered in the calibration is that d and σ interact in the distri-

bution of passenger wait time (see Eq. (4.2)). To decouple them, we propose to iterate

between estimating one of the two while hold the other fixed until convergence is

achieved. The procedure is formally described as follows.

Given v and Λ and a set of empirically constructed functions Gi(·), ∀i ∈ P , where

P is the set of pickup events used in calibration, Proposition 4 implies that, for each
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d, we have

fw̃M(G
i(d)) = fw̃(Gi(d)) =

σdΛv
δ

exp
[
−σdΛv

δ
Gi(d)

]
.(6.3)

Suppose we have an estimate of EHD, denoted as d̂, σ can be estimated by maxi-

mizing the following objective function

L(σ) = log

[
N

∏
i=1

(
fw̃(Gi(d̂))

)bi
(1 − Fw̃(t̄))

1−bi

]
,(6.4)

where t̄ is a limit on how far back in time we trace vehicle movements to determine the

maximum wait time, and bi is 1 if Gi(d̂) is less than t̄, or equals 0 otherwise. Because

of t̄ (which is exogenously selected), the samples with maximum possible wait time

longer than t̄ would not be observed. Therefore, the likelihood of these samples is
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represented by P(t̃w > t̄) = 1 − Fw̃(t̄). This leads to the form of Eq. (6.4), which has

been widely used in the statistical estimation with censored survival data (Aitkin and

Clayton, 1980; Kay, 1977; Laird and Olivier, 1981).

The estimator of LAA is thus σ̂ = arg maxσ L(σ), which is obtained by setting

∂Lσ

∂σ
= 0 ⇒ σ̂ =

δ ∑N
i=1 bi

∑N
i=1

(
d̂Λv

[
biGi(d̂) + (1 − bi)t

]) .(6.5)

To estimate d based on σ̂, we construct the following objective function:

P(d) = log

[
N

∏
i=1

P(w̃ ≤ Gi(d))

]
(6.6)

= log

[
N

∏
i=1

Fw̃(Gi(d))

]

=
N

∑
i=1

log
[

1 − exp
(
− σ̂dΛv

δ
Gi(d)

)]
.

Technically, P(d) is not a log-likelihood function, but may be considered as a surro-

gate for the fitness of the model with the observations. The best estimate of d should

maximize the fitness, or formally, d̂ = arg maxd P(d). Unlike Eq. (6.4), maximizing

Eq. (6.6) does not yield a closed form solution. Rather, a one-dimensional search is

needed to locate the maximum. Algorithm 1 below describes in detail how the above

iterative procedure is executed.
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Algorithm 1 Calibration of d and σ

1: Input: a given set of pickup events P , v, Λ, ϵσ and ϵd.

2: Output: d̂, σ̂.

3: Initialization. Set k = 0, σ̂k = 1, d̂k = 0, gσ = ∞, gd = ∞.

4: while k < M and (gσ > ϵσ or gd > ϵd) do

5: for each feasible d ∈ [d, d] do

6: Compute P(d) by Eq. (6.6), using v, Λ and σ̂k as inputs.

7: end for

8: Set d̂k+1 = argmaxd{P(d)}.

9: Update σ̂k+1 by solving Eq. (6.5), using v, Λ and d̂k+1 as inputs.

10: Update gσ = |σ̂k − σ̂k+1| and gd = |d̂k − d̂k+1|. Set k = k + 1.

11: end while

12: Return: d̂ = d̂k, and σ̂ = σ̂k

6.1.3. Moving waiting passengers

Besides missing data, another practical issue arises when we consider moving waiting

passengers: it is unclear if the calibration method will still provide unbiased estima-

tion for wait times if the passenger was moving before he was picked up and recorded

in our dataset. The following proposition deals with this issue with a positive answer.

Proposition 5. Eq. 4.6 offers an unbiased estimator for the expected wait time of a pas-

senger who moves before being picked up, provided that there exists a time t0 before the pickup

time, after which the probability of meeting a vacant taxi is always equal to or higher than that

at time t0.
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Proof: Since the passenger wait time follows negative exponential distribution in a

street-hail taxi market, for any location (x, y), Eq. 4.6 implies that a location-specific

intensity rate

h(x, y) = σ(x, y)v(x, y)Λ(x, y)d(x, y)/δ.(6.7)

Without loss of generality, we assume the detour ratio δ ≡ 1 to simplify notation.

Suppose that the passenger starts waiting at time t = 0 and then moves on the tra-

jectory (x(t), y(t)) before pickup. In the process, the distribution of passenger’s wait

time changes over time with a time-varying rate parameter

h(t) ≡ h(x(t), y(t))(6.8)

= σ(x(t), y(t))v(x(t), y(t))Λ(x(t), y(t))d(x(t), y(t))

= σ(t)v(t)Λ(t)d(t).

Assume that within a small time interval ∆t, the rate parameter remains the same.

Then the probability that the passenger fails to meet a vacant taxi in the time interval

[t, t + ∆t] is given by

p̄(t) = exp(h(t)∆t).(6.9)

Hence, the probability of the passenger’s wait time w̃m = t is the product of the

probability of failing to meet a vacant taxi within [0, t] and the probability of meeting
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a vacant taxi within [t, t + ∆t], i.e.,

P(w̃m = t) = h(t) exp(h(t)∆t)
n−1

∏
i=1

exp(h(i∆t)∆t) = h(t) exp

(
n

∑
i=1

h(i∆t)∆t

)
,(6.10)

where ∆t = t/n. As n → ∞, the PDF of moving passenger wait time is given by

fw̃m(t) = h(t) exp
(
−
∫ t

0
h(x)dx

)
.(6.11)

Let H(t) =
∫ t

0 h(x)dx. Given the second condition in the proposition statement, H(t)

is bounded from below for all t ≥ t0, which reads

H(t) =
∫ t0

0
h(x)dx +

∫ t

t0

h(x)dx(6.12)

≥
∫ t0

0
h(x)dx +

∫ t

t0

h(t0)dx

= C0 + h(t0)(t − t0) = C + h(t0)t;

where C0 and C are both constants. Eq. 6.12 means H(t) is at least linearly increasing

with positive rate h(t0) after t0, which further yields

lim
t→+∞

{t exp(−H(t))} = 0.(6.13)

Finally, the expected moving passenger wait time is given by

E[w̃m] =
∫ +∞

0
t fw̃m(t)dt =

∫ +∞

0
t[h(t) exp(−H(t))]dt = −

∫ +∞

0
td[exp(−H(t))]

(6.14)

= −t exp(−H(t))|+∞
0 +

∫ +∞

0
exp(−H(t))dt =

∫ +∞

0
exp(−H(t))dt.
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We are now ready to show that Eq. 4.6 offers an unbiased estimator for E[w̃m]. As per

the proposition, w̃m can be estimated by the intensity rate at the pickup location, i.e.,

ŵm =
1

h(x(w̃m), y(w̃m))
=

1
h(w̃m)

.(6.15)

The expectation of the estimator is obtained by integrating over its support ∈ [0, ∞),

i.e.,

E[ŵm] =
∫ +∞

0

1
h(x(t), y(t))

fw̃m(t)dt =
∫ +∞

0

1
h(t)

h(t) exp(−H(t))dt(6.16)

=
∫ +∞

0
exp(−H(t))dt = E[w̃m].

This completes the proof. 2.

6.2. Calibration for e-hail

Since the passenger wait time is directly observable for each pickup event in e-hail,

it is much easier to calibrate the model for e-hail.

The matching efficiency k is the only parameter that requires estimation in Eq. (4.7).

Denote the observed passenger wait time for each pickup as wi, then we can construct

the following log-likelihood function with respect to k using the PDF of passenger

wait time for e-hail derived from Eq. (4.4):

L(k) =
N

∑
i=1

log f (wi) =
N

∑
i=1

log
{

2πkΛv2wi

δ2Π
exp

[
−πkΛv2

δ2Π
(wi)2

]}
.(6.17)
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Maximizing Eq. (6.17) yields a closed form estimator for k as

k̂ =
δ2Π

πΛv2
N

∑N
i=1(wi)2

.(6.18)
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Part 3

Empirical evidences
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CHAPTER 7

Microscopic evidences

In this chapter, a full sample of continuous taxi trajectory data collected in 2011

and 2012 Nie (2017) is used. We consider microscopic road environmental changes as

natural experiments in 11 local markets in this evidence finding (Figure 7.1). Table 7.1

shows a more detailed description for these local markets. Four models are calibrated

for each local market, corresponding to two time windows in each of the two data

collection periods.

Table 7.1. Description of the eleven markets selected in microscopic val-
idation for s-hail

Market District Description
A downtown Close to Shenzhen Convention Center and a metro sta-

tion
B1 downtown Well-developed residential area with a metro station
B2 downtown Well-developed residential area
C1 downtown Employment center with a cluster of technology com-

panies, adjacent a metro station opened between 2011
and 2012

C2 downtown Same as C1
C3 downtown Commercial area, adjacent a metro station opened be-

tween 2011 and 2012
C4 downtown Same as C3
D downtown Residential area with two metro stations
E urban Major residential area with a regional long-distance

bus station and close to interstate expressway.
F1 suburban Mix land use area in the northern suburb of Shenzhen,

with a new terminal metro station opened in June of
2011

F2 suburban Mix land use area in the north suburb of Shenzhen
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Figure 7.1. Selected local markets for microscopic validation for s-hail

We first validate the assertion that the maximum possible wait time (w̃M) follows

the same distribution as passenger wait time (w̃). Figure 7.2 compares the distribu-

tions of observed w̃M and calibrated w̃ in six local markets. The six cases presented

here cover the best and the worst results in all 44 tests. In each case, the top figure

presents the cumulative distribution function (CDF) of the calibrated model and em-

pirical observations; the bottom figure shows PDFs of the calibrated model, empirical

observations and an exponential distribution directly fitted from the observations (i.e.,

“Fitted PDF”). A statistical test is performed to evaluate the model fitness in Table 7.2.

Overall, the calibrated model matches the empirical observations reasonably well. The

most notable deviation exists on the tails: the observed distribution tends to display
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a longer tail than the calibrated distribution. Note that, for some pickup events, the

maximum possible wait time cannot be correctly determined, due largely to errors in

the trajectory data (e.g., missing GPS points, mislabeled passenger status). Whenever

this failure occurs, the maximum possible wait time is always set to the predefined

upper bound T, which contributes to a longer tail in the empirical distribution.

Table 7.2. Statistics of wait time results for the six markets

Market Year Time µobs σobs µcal µ f it K-S
A 2012 9:00–12:00 296.9828 304.9441 327.1559 297.4828 0.0312
B2 2012 9:00–12:00 363.7376 343.7217 426.8684 364.2376 0.0612
C1 2011 9:00–12:00 157.5464 210.3421 162.7242 158.0664 0.0567
D 2012 17:00–20:00 284.7222 304.1247 313.1092 285.2222 0.0728
E 2011 17:00–20:00 143.0136 214.8127 147.8147 143.5136 0.1020
F1 2012 17:00–20:00 159.5759 239.5378 169.1387 160.0760 0.1378

Note: ‘obs’, ‘cal’, ’fit’ denote empirical, calibrated and fitted values, respectively;
K-S refers to Kolmogorov-Smirnov statistic.
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Figure 7.2. Results of wait time validation for s-hail

Figure 7.3 reports parameter estimates for all 44 cases (11 markets in four time

periods): (A) average cruising speed; (B) vacant-taxi density; (C) LAA; (D) EHD; (E)

pickup rate; and (F) expected passenger wait time. Temporal variations in vacant-

taxi density and cruising speed are noticed across all 11 markets. As expected, the
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estimated EHD values are generally small, ranging from 15 to 40 m. EHD estimates

in downtown (e.g., local markets A, B1, B2) are consistently below 20 m, lower than

those in other districts. This finding supports our hypothesis that well-developed

urban areas with higher road densities and shorter block lengths may shorten the

effective sighting distance for taxi hail. Furthermore, the estimates remain relatively

stable across all time periods in each market.

Unlike those of EHD, estimates of LAA appear to be sensitive to both spatial

and temporal influences. In particular, they highlight the appeal of metro stations to

nearby vacant taxis. An interesting case involves local markets F1 and F2: they are

next to each other, and a metro station was opened in F1 in June of 2011. The results

reveal the dramatic impact of the new metro station in the peak period. In particular,

LAA in F1 almost doubled from 2011 to 2012 in the evening peak. In contrast, F2

became much less attractive in the same period, having its LAA cut in half. Hence, in

this case the gains in F1 appear to come at the expense of the loss in F2 (highlighted

in Figure 7.3C). On the other hand, the metro opening seems to have little influence

on estimated LAAs in the off-peak period.

More significant discrepancies are found in the pickup rate and the expected pas-

senger wait time across the markets (Figs. 7.3E and F). The markets located in the

urban and suburban districts (e.g., E, F1, and F2) enjoy a shorter expected wait time,

whereas passengers in downtown (e.g., B2, C3, and C4) suffer the worst experience,

sometimes having to wait more than 15 min. This finding may be surprising at first

glance, especially for those who live in countries with a much lower taxi density in

the suburbs. However, the suburban areas in Shenzhen, though far away from the
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Figure 7.3. S-hail parameter estimates for validation

city center, are densely developed with a high level of commercial activities. There-

fore, these areas still enjoy an adequate supply of vacant taxis (see Figure 7.3B). More

importantly, they tend to have a larger EHD and better traffic conditions compared to

downtown areas (see Figs. 7.3A and D).

Another interesting observation arises from the downtown markets C1–C4. From

2011 to 2012, there was a dramatic increase in the pickup rate accompanied by a sig-

nificant drop in the expected wait time, particularly in the peak period. Moreover,

substantial variations are found in the LAA estimates. Together, these observations

indicate that some major change must have occurred between January 2011 and Jan-

uary 2012. Our search for news revealed that a main road (Zhenhua Road) in this

region was closed for the construction of Shenzhen Metro Line 2 in 20081 and re-

mained closed until June 20112. Clearly, the surge in pickup rates is likely related

1See e.g., http://jt.sz.bendibao.com/news/2008519/69944.htm (in Chinese and accessed on July 2,
2020).
2See e.g., http://ditie.mapbar.com/shenzhen/news/124939.html (in Chinese and accessed on July
2, 2020).

http://jt.sz.bendibao.com/news/2008519/69944.htm
http://ditie.mapbar.com/shenzhen/news/124939.html
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to passengers brought by the new metro line. The reduction in the expected passen-

ger wait time can be attributed to two factors: (i) improved traffic conditions; and

(ii) a growing number of vacant taxis attracted by more potential passengers as well

as less traffic congestion. These two effects contribute to a 30% and 50% increase in

the cruising speed and vacant-taxi density during the evening peak, respectively (see

Figs. 7.3A and B).

C2 C4

C1 C3

Legend

Metro

Road

Leisure

Metro station opened 

Closed road

before 2011

Metro station opened 
in June 2011

200m

Figure 7.4. Zoom-in map of local markets C1-C4

The results also show that, after the new metro line opened, C1 and C3—located

on the south side of Zhenhua Road—became more attractive to vacant taxis, whereas

those on the north side of the road became much less attractive (see Figure 7.3C).

We conjecture that this has to do with the direction of the one-way road. Because

passengers generated by the metro line must travel east, they could only board a

taxi on the south side of Zhenhua Road. Figure 7.4 shows a zoom-in map of these

local markets. The bold dash line illustrates the road closed from 2008 to 2012. The

two orange hexagons indexed metro stations opened in 2012 when the road was also

reopened. As a result, it is considerably easier for taxis to get passengers exiting from
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the metro station if they cruise on the south side (i.e., in C1 and C3). After the metro

line opens, therefore, surrounding taxis are more likely to cruise towards C1 and C3

than towards C2 and C4. This seemingly rather microscopic behavior is captured

remarkably well by the LAA, in a way that is consistent with its physical meaning.
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CHAPTER 8

Statistical evidences

In this chapter, the calibration methods discussed are applied to all local markets

in the six districts for both ride-hail modes in the 2016 data. Figs. 8.1 and 8.2 report the

distribution, median and variance of EHD and LAA corresponding to each area type

and period in 2016. The probability density functions (PDFs) are constructed using

kernel density estimation. EHD values mostly fall in the range between 15 m and 60

m, with a peak around 25–45 m and a median around 32 - 41 m. While the shape of

the PDFs of EHD does vary with spatial (area type) and temporal (peak vs. off-peak)

features, the variations are modest, indicating relatively strong regularity, which is

in line with their physical meaning in the theory. In addition, the distributions of

EHD during the peak period tend to have greater variances than those in the off-

peak period, an indication that different local markets are subject to more uneven

conditions during the peak period than during the off-peak period.

LAA in downtown and urban areas concentrates around 1.2, with a quite strong

peak. This means the vacant vehicles do not have preference on the selected local mar-

kets for passenger search in these areas. In contrast, the distribution in suburban areas

has a quite distinctive shape, with much larger median (almost twice as much) and

variances. Thus, the selected suburban local markets seem much more “attractive”

to nearby vacant vehicles than downtown and urban markets. This also meets the

physical meaning of LAA since most suburban local markets are constructed around
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locations where ride-hail pickup events are concentrated. These location stand out

precisely because they are activity hot spots that attract both passengers and vacant

vehicles. In downtown and urban areas, there are more and closely spaced hot spots,

and thus the competition reduces the average attractiveness of each individual hot

spot. Moreover, while the PDFs of LAA in the two periods are largely similar, it
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is worth noting, in all three areas, the median is lower in the peak period than the

off-peak period. This trend is likely related to drivers’ tendency to avoid traffic con-

gestion.

Figure 8.3 shows the matching efficiency k in the off-peak period generally peaks

around 0.35 in all three areas, though the variance is much greater in downtown areas.

Unlike EHD and LAA, which seem relatively insensitive to the peaking effect, the

distribution of k looks very different in the peak period. In urban and suburban areas,

the distributions have a considerable rightward shift, almost doubling the medians. In

downtown areas, the median slightly increases, accompanied with a quite significant

drop in variance. Overall, the e-hail operator appears to perform better in the peak

period than in the off-peak period, but it evidently has greater success outside the

downtown area. We speculate that the greater efficiency observed from data may be

attributed to various rewarding schemes designed to boost productivity in the peak

period.
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Figure 8.4 compares the estimated and observed average passenger wait times for

the purpose of validation. 8.4(A) is for s-hail and 8.4(B) for e-hail. Points on the

diagonal dash line mean the model make correct predictions. The color of each point

represents the sample rate. It shows that e-hail models tend to have better goodness-

of-fit, likely because the data used in their calibration are of higher quality (they are

actual observations of passenger wait time). As expected, a lower sample rate leads

to worse goodness-of-fit; see Figure 8.4(B).
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CHAPTER 9

System performance evidences

Below, Section 9.1 reports the relative performance of the two services by district,

and compares it against the qualitative prediction of the spatial matching model. In

Section 9.2, a regression analysis is performed to find an empirical relationship be-

tween the pickup rate, vacant vehicle density and waiting passenger density for each

service. The results are then compared with the analytical Cobb-Douglas functions

derived in Section 4.2.

9.1. Service performance

Figure 9.1 reports the average pickup rate1 and vacant vehicle density averaged

over six different districts (see Section 5.2) during (A) morning off-peak and (B)

evening peak. D-1 and D-2 are downtown districts, U-1 and U-2 are urban dis-

tricts and S-1 and S-2 are suburban districts. In the two suburban districts, e-hail

holds a clear advantage over s-hail, in terms of both the number of pickups and va-

cant vehicle density. Notably, a substantial portion of the vacant e-hail vehicles are

matched—meaning they are no longer available to take orders—and more so in the

peaking period than the off-peak period. In fact, the number of unmatched vacant

e-hail vehicles is similar to that of vacant s-hail vehicles, even though the total supply

1The pickup rate associated with core area; see Eq. (5.1) in Section 5.3.
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of vacant e-hail vehicles is significantly higher in these two districts. In the two down-

town districts, where the densities of both passengers and vehicles are supposedly

higher, e-hail still outperforms s-hail in terms of the total supply. Yet, the disadvan-

tage of having to spend much of that supply on picking up passengers becomes an

even greater burden for e-hail here, especially during the peak-time. In D-2 during

the peak-time, for example, almost 80% of the total supply are stuck in the pickup

phase. Consequently, the pickup rate by e-hail falls behind in both D-1 and D-2. Re-

sults in the urban districts, where the vehicle supply ranges between downtown and

suburban districts, are mixed: e-hail serves more passengers in district U-1 but s-hail

has the upper hand in U-2.

The above observations indicate the relative performance of the two services in-

deed varies substantially with market locality. Specifically, the density seems to hurt

the productivity of e-hail but benefit that of s-hail. This finding is consistent with our

analytical result that asserts e-hail has a lower returns to scale than s-hail. We shall

see more direct empirical evidence on this point in the next section.

Figure 9.2(A) compares the average passenger wait time of the two services in the

six districts. We can see that the district-level average wait time ranges between 4 and

6 minutes in most cases. A notable exception is U-2, in which the average wait time
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Figure 9.1. Average pickup rate and vacant vehicle density

for s-hail exceeds 8 minutes in both periods2. In the urban and suburban districts, e-

hail has a small (with the exception of U-2) but consistent lead over s-hail in average

wait time. Yet, it falls behind again in downtown districts in both periods, with a

discrepancy up to 2 minutes, which amount to roughly a third or half of the total wait

time. Another trend from Figure 9.2(A) is that wait time for e-hail is more sensitive

to peaking than that for s-hail. In D-1, D-2 and U-1, in particular, e-hail experiences

2A closer look at the data indicates s-hail’s struggle in this district is related to its substantially lower
attractiveness to vacant vehicles. The median of LAA in U-2 is 1.09 for the off-peak and 0.70 for the
peak. In contrast, in U-1, the median is around 1.4 in both periods. The local markets in U-2 are less
attractive likely because it is fairly close to Shenzhen’s Baoan International airport. As a result, not
only are many vacant vehicles observed in the data more likely to move towards the airport direction
(the northwestern corner, see Figure 5.1), they might be actually heading towards the airport in the
first place.
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Figure 9.2. Passenger wait time of s-hail and e-hail in the six districts

a significantly higher wait time (up to 30%) in the peak period than in the off-peak

period. In contrast, the discrepancy between the two periods is largely negligible for

s-hail.

Again, the rising density seems to impact s-hail and e-hail in different manners.

Whereas e-hail outperforms s-hail in almost all metrics in less dense areas, it strug-

gles to keep up with s-hail in downtown areas where the density is the highest. In

downtown districts, not only does s-hail produce more trips with less vacant vehicles

than e-hail, it also lowers passengers’ average wait time.

E-hail is often praised for providing a consistent level of service (e.g., Cramer and

Krueger, 2016). That is, it largely avoids excessively long wait that taxi passengers

often experience. Our empirical analysis uncovers evidence supporting this claim.

As shown in Figure 9.2(A), at the aggregate level, s-hail has greater cross-district

variations than e-hail. Recall that the distribution of passenger wait time for s-hail
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Figure 9.3. Passenger wait time against unmatched vacant vehicle den-
sity and pickup rate for s-hail and e-hail

has a longer and fatter tail than that for e-hail (see Eqs. (4.2) and (4.4)). This is

also demonstrated in Figure 9.2(B), which plots the empirical distribution of 90th

percentile passenger wait time in all local markets. Specifically, a maximum wait time

of 10 minutes for e-hail is guaranteed in 88% of local markets with 90% confidence,

while this is only ensured in 40% of local market for s-hail.

We further explore the relationships between average wait time w̄, unmatched

vacant vehicle density Λ0, and pickup rate m at the local market level 3. Figure 9.3

shows passenger wait time (w̄) against (A) unmatched vacant vehicle density (Λ0) and

3The pickup rate associated with the supply area; see Eq.(5.2) in Section 5.3.
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(B) pickup rate (m) for s-hail (top) and e-hail (bottom). Each data point represents one

local market in a period. The dark-gray areas denote 1st and 3rd quartiles, while the

light-gray areas represent 1.5 IQR (interquartile range).

Figure 9.3(A) shows, as expected, an increase in Λ0 tends to reduce average wait

time for both s-hail and e-hail. The plot also confirms that s-hail wait time has a

much wider range than e-hail does across different levels of Λ0. It also reveals another

trend: w̄ seems to decrease more sharply for s-hail than for e-hail as unmatched vacant

vehicle density increases. This finding agrees with the predictions of expected wait

time formula, Eqs. (4.6) and (4.7), derived in Section 4.1. Specifically, Eq. (4.6) asserts

that w̄ is proportional to 1/Λ0 (recall Λ0 = Λ for s-hail) whereas Eq. (4.6) indicates w̄

is proportional to 1/
√

Λ0 (recall Λ0/Π0 = kΛ/Π from Eq. (3.10)).

The top plot of Figure 9.3(B) shows w̄ for s-hail tends to decrease as the pickup rate

increases. In other words, the service gets better as more people use it. This seemingly

counter-intuitive phenomenon is known in mass transit systems as the Mohring effect

(Mohring, 1972), which states that an increase in demand may shorten passenger wait

time because it drives up service frequency. As explained in Section 4.2, if increasing

demand attracts additional vacant vehicles, then it is bound to reduce s-hail wait time.

Interestingly, e-hail demonstrates an almost opposite trend in this relationship: As the

pickup rate grows, w̄ becomes slightly longer; see the bottom panel of Figure 9.3(B).

Again, our model anticipates this empirical finding. According to Eq. (4.11), as the

pickup rate m rises, the vacant vehicle density Λ must increase in proportion in order

to hold the wait time constant. If vacant vehicles fail to keep up with the pickup rate,

the wait time may actually trend up, as revealed in the plot.
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9.2. Returns to scale: verified tale of two markets

In this section we further examine the economies of scale for s-hail and e-hail.

Our approach is to conduct regression on the Cobb-Douglas production function that

describes the relationship between trip production (m) and inputs (Λ and Π). Our

matching model (Eqs. (4.12) and (4.13)) suggests that the output elasticities of both

Λ and Π are identical in both services (1 for s-hail and 0.5 for e-hail). Below, Section

9.2.1 keeps this structure in the regression. In Section 9.2.2, we relax this assumption

and further control the impact of location (districts) and time (peak vs. off-peak).

9.2.1. Identical elasticity

Under the assumption that the output elasticities are identical for Λ and Π, the Cobb-

Douglas function takes the following form

m = β(ΠΛ)α,(9.1)

where β is the total factor productivity (TFP), interpreted as the pickup rate when

Λ = Π = 1/km2; and α is the output elasticity of the two inputs. Note that the pickup

rate used in this section is associated with the supply area of each local market; see

Appendix 5.3 for more details.

To validate Eq. (9.1), we build a regression model of the following linear form:

log m = a0 + a1(log Λ + log Π) + ϵ,(9.2)

where ϵ is a statistical error term that follows normal distribution.
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Eq. (9.2) is fitted using observed m, Λ and Π in all 490 local markets and two

periods for both s-hail and e-hail. Figure 9.4 reports both the original data and the

fitted linearized Cobb-Douglas functions. Each data point represents one local market

at a given time period. The fitted linear equations are reported at the lower-right

corner, along with their goodness-of-fit R2. The intercept of a fitted line a0 essentially

measures the logarithm of TFP. For s-hail, â0 = 0.266 and for e-hail, it is 1.112. Hence,

with unit densities of waiting passengers and vacant vehicles, the pickup rate in an

e-hail market is 6 times of that in an s-hail market (i.e., βe/βs ≃ 10âe
0−âs

0 = 7.015).

Thus, in areas with very low density, e-hail produces much more trips than s-hail,

thanks to its technological superiority.

The slope of a fitted line represents the output elasticity. For s-hail, â1 = 0.707

whereas for e-hail, it is 0.461. The returns to scale of a production depends on the sum

of the two elasticities. With the assumption of identical elasticity, the sum (2α ≃ 2â1) is

1.413 and 0.922 for s-hail and e-hail respectively. According to the standard economic

theory, therefore, s-hail displays strong increasing returns to scale (2α ≫ 1) and e-hail

displays near-constant returns to scale (2α ≃ 1). Therefore, while e-hail’s technological

superiority significantly boosts TFP (hence the performance in low density areas), it

hurts economies of scale (hence the performance in high density areas).

We next compare the above finding with our analytical results. Eq. (4.12) suggests

that s-hail display increasing returns to scale with 2α = 2 (compared to 1.413 obtained

from regression), and Eq. (4.13) suggests that e-hail display constant returns to scale

with 2α = 1 (compared to 0.922 obtained from regression). Thus, the theory not only

broadly agrees with the underlying message that s-hail enjoys stronger economies
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Figure 9.4. Regression results of the Cobb-Douglas function with the
identical elasticity for both inputs

of scale than e-hail, it actually predicts the magnitude of returns to scale reasonably

well, especially for e-hail (the error is within 10%). The model seems to overestimate

s-hail’s returns to scale by a relatively large margin (about 30%), likely because it com-

pletely ignores inter-passenger competition in s-hail. As to TFP, our model predicts

that the value of TFP for e-hail is 2
√

k/(σd) times of that for s-hail (see Eqs. (4.12)

and (4.13)). Using the mean values reported in Chapter 8 for these parameters, We

estimate 2
√

k/(σd) ≃ 23.4 (d ≃ 0.036 km, σ ≃ 1.5 and k ≃ 0.4). In other words, our

model predicts that, with unit densities of vacant vehicles and waiting passengers, the

pickup rate of e-hail is about 22 times greater than that of s-hail, compared to about

6 times obtained from regression. Considering this prediction is based on the three

calibrated parameters (k, d and σ) that are themselves subject to substantial variances

across local markets, this large discrepancy is not particularly surprising. However,

the model prediction and the regression results still agree with each other that the
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productivity of e-hail, as measured by TFP in the Cobb-Douglas function, is about an

order of magnitude higher than that of s-hail.

9.2.2. Heterogeneous elasticity and fixed effects

In this section, we relax the assumption that Λ and Π share the same output elasticity

and consider spatial and temporal impacts on the matching. Using the same data set,

we fit the following model:

log m = a0 + a1 log Π + a2 log Λ + xTb + ϵ,(9.3)

where a1 and a2 are output elasticity corresponding to Π (waiting passenger density)

and Λ (vacant vehicle density) and thus the returns to scale is computed as a1 + a2;

x is a vector of dummy variables introduced to account for the time- and location-

specific fixed effect (FE) with coefficients b. Specifically, we consider six different

districts and two time periods (peak and off-peak). In total we fit six models in this

section, three for each service: a model with heterogeneous elasticity but without FE

(model (1)), a model with both heterogeneous elasticity and FE (model (2)), and a

model that considers the interactions between the time and location FE, in addition to

heterogeneity (model (3)).

Table 9.1 reports the main results of the above six regressions models. For com-

parison, the results with identical elasticities are also reported (model (0)). All models

agree with the main conclusion of the analytical result: e-hail has a substantially

lower returns to scale, compared to s-hail. Models with highest adjusted R2 values

concludes taxi service yields a1 + a2 = 1.314 > 1 and e-hail yields a1 + a2 = 0.957 ≃ 1.
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Table 9.1. Main results of regression

Taxi E-hail
model (0) (1) (2) (3) (0) (1) (2) (3)

log m log m log m log m log m log m log m log m
a0 0.266*** 0.392*** 0.488*** 0.506*** 1.112*** 1.201*** 1.114*** 1.097***

(0.048) (0.054) (0.070) (0.065) (0.030) (0.024) (0.027) (0.027)
a1 0.707*** 0.821*** 0.842*** 0.851*** 0.461*** 0.676*** 0.758*** 0.779***

(0.018) (0.029) (0.034) (0.034) (0.008) (0.014) (0.022) (0.022)
a2 0.541*** 0.474*** 0.463*** 0.205*** 0.185*** 0.178***

(0.038) (0.043) (0.044) (0.016) (0.021) (0.021)
a1 + a2 or 2a1 1.414 1.362 1.316 1.314 0.922 0.881 0.943 0.957
Df. model 1 2 8 13 1 2 8 13
R2 0.759 0.770 0.800 0.802 0.853 0.911 0.921 0.930
Adj. R2 0.759 0.769 0.796 0.796 0.853 0.910 0.920 0.929
Time FE No No Yes No No Yes
Location FE No No Yes No No Yes
Interaction Yes Yes

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Introducing FEs has minor influence on the estimates of elasticities but substantially

changes the intercept of s-hail model. This finding implies the matching process of

s-hail is more sensitive to spatial and temporal properties of the local market.

Notably, the estimates of a1 and a2 are quite different in all six models. For both s-

hail and e-hail, the waiting passenger density seems to contribute more to the pickup

rate, and this discrepancy is more pronounced in the case of e-hail (the ratio between

the two elasticities is about 4:1, rather than 1:1 suggested by the model). While this

disagreement between the model prediction and empirical results does not affect the

main findings and insights, it does suggest that our parsimonious modeling effort may

be unable to capture the physics of the matching process to its full extent. To close this

section, it may be useful to speculate some of the reasons behind the inconsistency.

On the one hand, precisely measuring the “production inputs” (i.e., Π and Λ) in each
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local market is difficult because of the interactions beyond the arbitrarily selected

market boundaries (see Chapter 5). Miscounting either of the inputs from data could

distort the elasticities. On the other hand, some of the simplifying assumptions that

are introduced for analytical tractability may also play a role. For s-hail, as we have

mentioned above, the low elasticity on the vacant vehicle density may be caused

by inter-passenger competition that is ignored in the model. For e-hail, a potential

caveat is the assumption that the matching efficiency k is independent of Λ and Π.

Given the complex relationship between matched and unmatched inputs in reality,

this assumption may not always hold. However, to eliminate this assumption would

require explicitly modeling the matching and pickup phases, which is beyond the

scope of the dissertation.
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CHAPTER 10

Conclusions

In this dissertation, we have proposed a general matching theory to describe the

passenger–driver matching process in various ride-hail markets. It uncovers the un-

derlying mechanism that governs the passenger–driver matching process and iden-

tifies the key parameters required to fully specify it. Novel calibration methods are

developed to extract empirical information about passenger wait time from available

data. Such information is critical for appropriate comparison of various ride-hail

modes. Reliable estimates of key parameters and system performance metrics further

helps better understand the relative performance of various ride-hail services.

Our results reveal, both analytically and empirically, why the ride-hail industry

is such a tale of two markets. Essentially, there are two opposing forces at work. On

the one hand, e-hail reduces the search friction by increasing the number of vacant

vehicles that a passenger can reach. In low-density markets, this advantage helps

dramatically improve the productivity (by as much as one order of magnitude) and

lower the likelihood of unpleasantly long waits. On the other hand, the seemingly

unlimited connectivity between passengers and drivers also leads to an unintended

consequence. By enabling a large number of waiting passengers to compete for the

same pool of vacant vehicles, e-hail induces a congestion effect that results in a much

lower returns to scale than s-hail. The impact is most prominent in high-density

markets, where e-hail holds no clear advantage over s-hail. Most importantly, unlike
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s-hail, e-hail does not enjoy increasing returns to scale, a feature that would support

the theory of “winner-take-all”.

What lessons could we learn from the findings above? First, simply scaling up may

not help an e-hail operator become more efficient, because the industry displays near-

constant returns to scale. This finding may be good news for small operators, because

scale is hardly a barrier to entry. Second, limiting connectivity may be beneficial

sometimes. For example, an e-hail operator could intentionally limit the matching

radius to avoid excessive competitions among passengers, or simply price some out

((known as surge pricing in practice, see e.g., Castillo et al., 2018).

Our analysis focuses on the relationship between the output (the pickup rates)

and the inputs (the waiting passenger density and the vacant vehicle density) in the

matching at some already-formed equilibrium. This approach allows us to obtain key

insights about the market as a whole while staying agnostic on some factors (e.g.,

pricing, inter-mode competition). These factors, however, are integral to the market

equilibrium and future research should definitely explore how they affect the forma-

tion of the equilibrium. We have also discussed some limitations of the proposed

matching model in the previous section. Of these, the most noteworthy are the lack of

demands-side congestion in s-hail and the constant matching efficiency in e-hail. To

account for the congestion effect in s-hail, one must consider the possibility that the

closest matchable vehicle of one passenger is “intercepted” by another passenger. Al-

lowing the matching efficiency to vary is more complicated and a future study could

pursue different paths to address the issue. One possibility, as mentioned before, is

to separate the matching and the pickup phases. That is, instead of letting the wait
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time depend only on Λ and Π, we could instead assume it is also affected by Λ0 and

Π0. Alternatively, we could make exponents on Λ and Π as parameters, rather than

fixing them at 1. Which approaches prevails likely depends on what data is available,

and how the model is calibrated. Finally, our model is validated using data collected

in one city. It would be interesting to test whether the main findings can be gener-

alized to other cities in other countries. Given the limited availability of similar data

elsewhere, this effort is also left to future research.

We close by noting ride-hail is unlikely the only industry prone to the impact of

the efficiency paradox. After all, the key insight here is simple and universal: Unless

the service itself can be rendered more efficiently (e.g., by capacity sharing), quick

match may only bring competition that undermines the overall efficiency. Uberization

is continuing to reshape our everyday life, from grocery shopping (e.g., InstaCart),

fund raising (e.g., GoFundMe) to education (e.g., VipKid). Therefore, it is important

to understand which industries the paradox is likely to affect, the extent to which

they are affected, and in what manner. We hope this dissertation motivates others to

examine this issue further, and that our theory finds applications beyond its domain.



92

References

, 2008. Zhenhua road closure for construction (in Chinese). http://jt.sz.bendibao.
com/news/2008519/69944.htm, accessed: 2018-01-23.

, 2017. Introduction of shenzhen metro line 2 (in Chinese). http://ditie.mapbar.
com/shenzhen/news/124939.html, accessed: 2018-01-23.

Afeche, P., Liu, Z., Maglaras, C., 2018. Ride-hailing networks with strategic drivers:
The impact of platform control capabilities on performance. Columbia Business
School Research Paper, 18–19.

Aitkin, M., Clayton, D., 1980. The fitting of exponential, weibull and extreme value
distributions to complex censored survival data using glim. Applied Statistics, 156–
163.

Arnott, R., 1996. Taxi travel should be subsidized. Journal of Urban Economics 40 (3),
316–333.

Banerjee, S., Riquelme, C., Johari, R., 2015. Pricing in ride-share platforms: A
queueing-theoretic approach, available at: SSRN 2568258 (Accessed: 2018-11-12).

Beesley, M. E., Glaister, S., 1983. Information for regulating: the case of taxis. The
Economic Journal 93 (371), 594–615.

Besbes, O., Castro, F., Lobel, I., 2018. Spatial capacity planning, available at SSRN
3292651 (Accessed: 2019-10-23).

Bimpikis, K., Candogan, O., Saban, D., 2019. Spatial pricing in ride-sharing networks.
Operations Research.

Boscoe, F. P., Henry, K. A., Zdeb, M. S., 2012. A nationwide comparison of driving dis-
tance versus straight-line distance to hospitals. The Professional Geographer 64 (2),
188–196.

Buchholz, N., 2019. Spatial equilibrium, search frictions and efficient regulation in the
taxi industry, available at https://scholar.princeton.edu/sites/default/files/
nbuchholz/files/taxi_draft.pdf (Accessed: 2020-03-04).

Cairns, R. D., Liston-Heyes, C., 1996. Competition and regulation in the taxi industry.
Journal of Public Economics 59 (1), 1–15.

Caldieraro, F., Zhang, J. Z., Cunha Jr., M., Shulman, J. D., 2018. Strategic information
transmission in peer-to-peer lending markets. Journal of Marketing 82 (2), 42–63.

Castillo, J., Knoepfle, D. T., Weyl, E. G., 2018. Surge pricing solves the wild goose
chase, available at SSRN 2890666 (Accessed: 2018-05-03).

http://jt.sz.bendibao.com/news/2008519/69944.htm
http://jt.sz.bendibao.com/news/2008519/69944.htm
http://ditie.mapbar.com/shenzhen/news/124939.html
http://ditie.mapbar.com/shenzhen/news/124939.html
https://scholar.princeton.edu/sites/default/files/nbuchholz/files/taxi_draft.pdf
https://scholar.princeton.edu/sites/default/files/nbuchholz/files/taxi_draft.pdf


93

Chen, L., Mislove, A., Wilson, C., 2015. Peeking beneath the hood of Uber. In: Pro-
ceedings of the 2015 Internet Measurement Conference. ACM, pp. 495–508.

Chen, M. K., Sheldon, M., 2016. Dynamic pricing in a labor market: Surge pricing and
flexible work on the Uber platform. In: Ec. p. 455.

Coase, R. H., 1937. The nature of the firm. economica 4 (16), 386–405.
Cobb, C. W., Douglas, P. H., 1928. A theory of production. American Economic Review

18, 139–165.
Cramer, J., Krueger, A. B., 2016. Disruptive change in the taxi business: The case of

uber. American Economic Review 106 (5), 177–82.
Daidj, N., 2018. Uberization (or uberification) of the economy. In: Advanced Method-

ologies and Technologies in Digital Marketing and Entrepreneurship. IGI Global,
pp. 116–128.

Davis, G. F., 2015. What might replace the modern corporation: Uberization and the
web page enterprise. Seattle UL Rev. 39, 501.

De Vany, A. S., 1975. Capacity utilization under alternative regulatory restraints: an
analysis of taxi markets. The Journal of Political Economy, 83–94.

Douglas, G. W., 1972. Price regulation and optimal service standards: The taxicab
industry. Journal of Transport Economics and Policy, 116–127.

Erhardt, G. D., Roy, S., Cooper, D., Sana, B., Chen, M., Castiglione, J., 2019. Do trans-
portation network companies decrease or increase congestion? Science advances
5 (5), eaau2670.

Fairthorne, D., 1964. The distance between pairs of points in towns of simple geomet-
ric shape. In: Proceedings 2nd International Symposium on the Theory of Traffic
Flow, Paris, 1964. OECD.

Feng, G., Kong, G., Wang, Z., 2017. We are on the way: Analysis of on-demand ride-
hailing systems, available at SSRN 2960991 (2019-5-23).

Frechette, G. R., Lizzeri, A., Salz, T., 2019. Frictions in a competitive, regulated market:
Evidence from taxis. American Economic Review 109 (8), 2954–92.

Halaburda, H., Jan Piskorski, M., Yıldırım, P., 2017. Competing by restricting choice:
The case of matching platforms. Management Science 64 (8), 3574–3594.

Hall, J., Kendrick, C., Nosko, C., 2015. The effects of ubers surge pricing: A case study.
The University of Chicago Booth School of Business.

Hall, J. V., Horton, J. J., Knoepfle, D. T., 2019. Pricing efficiently in designed markets:
The case of ride-sharing, available at http://john-joseph-horton.com/papers/

uber_price.pdf (Accessed: 2019-05-31).
He, F., Shen, Z.-J. M., 2015. Modeling taxi services with smartphone-based e-hailing

applications. Transportation Research Part C: Emerging Technologies 58, 93–106.
He, F., Wang, X., Lin, X., Tang, X., 2018. Pricing and penalty/compensation strategies

of a taxi-hailing platform. Transportation Research Part C: Emerging Technologies
86, 263–279.

http://john-joseph-horton.com/papers/uber_price.pdf
http://john-joseph-horton.com/papers/uber_price.pdf


94

Hotelling, H., 1938. The general welfare in relation to problems of taxation and of
railway and utility rates. Econometrica: Journal of the Econometric Society, 242–
269.

Hu, M., Zhou, Y., 2018. Dynamic type matching, available at SSRN 2592622 (Accessed:
2019-8-4).

Kay, R., 1977. Proportional hazard regression models and the analysis of censored
survival data. Applied Statistics, 227–237.

Kim, K., Baek, C., Lee, J.-D., 2018. Creative destruction of the sharing economy in
action: The case of uber. Transportation Research Part A: Policy and Practice 110,
118–127.

Lagos, R., 2000. An alternative approach to search frictions. Journal of Political Econ-
omy 108 (5), 851–873.

Lagos, R., 2003. An analysis of the market for taxicab rides in New York City. Inter-
national Economic Review 44 (2), 423–434.

Laird, N., Olivier, D., 1981. Covariance analysis of censored survival data using log-
linear analysis techniques. Journal of the American Statistical Association 76 (374),
231–240.

Little, J. D., 1961. A proof for the queuing formula: L= λ w. Operations research 9 (3),
383–387.

Mohring, H., 1972. Optimization and scale economies in urban bus transportation.
The American Economic Review 62 (4), 591–604.

Nie, Y. M., 2017. How can the taxi industry survive the tide of ridesourcing? evidence
from shenzhen, china. Transportation Research Part C: Emerging Technologies 79,
242–256.

Nourinejad, M., Ramezani, M., 2019. Ride-sourcing modeling and pricing in non-
equilibrium two-sided markets. Transportation Research Part B: Methodological.
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