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ABSTRACT

Models and Approaches to Multiobjective Arc Tour Problems with an Application to

Marathon Course Design

Mehmet Başdere

Marathons are long distance running events with many participants, often organized

in heavily populated cities. A key component in marathon planning operations is the

design of the marathon course to be followed during the race. In addition to the technical

requirements regarding length and incline change, marathon courses must satisfy two

additional requirements: (i) courses must visit certain neighborhoods in the city and (ii)

they must be designed in such a way that access to the facilities that provide critical public

service (e.g. hospitals) is not blocked by the tour. Motivated by marathon course design,

this study develops models and approaches to solve multiobjective arc tour problems.

The underlying tour finding problem, the Lock-Free Arc Tour Problem (LFATP), visits a

predetermined set of edges while ensuring that the resulting tour does not block access to

certain critical vertices. Apart from these restrictions, marathon course design involves

a range of unique objective functions which we are classified under three categories: (i)



4

arc-additive, (ii) sequence-dependent and (iii) time-dependent objective functions. In arc-

additive functions, the objective contribution of each arc has a constant coefficient. In

sequence-dependent ones, each arc’s contribution to the objective depends on the other

arcs used in the route and in time-dependent ones, each arc’s contribution depends on

when that arc is visited.

Initial efforts focus on the LFATP with arc-additive objectives as these objectives are

relatively less complex compared to sequence- and time-dependent ones. The underlying

problem is formulated as a mixed integer linear program. Structurally, the LFATP suf-

fers from excessive subtour formation, especially when the corresponding objective aims

to minimize proximity to certain locations in the network, causing the standard branch-

and-cut approach to perform poorly even with valid inequalities derived from locking

properties of the LFATP. For this reason, we introduce path-based reformulations arising

from a provably stronger disjunctive program, where disjunctions are obtained by fixing

the visit orders in which must-visit edges are visited. In computational tests, the refor-

mulations are shown to yield up to 100 times improvement in solution times. Additional

tests demonstrate the benefits of using lock elimination inequalities and the value of re-

formulations for more general tour finding problems with visit requirements and length

restrictions. Then, we extend the arc-additive model and its reformulations to handle

objectives involving sequence- and time-dependent properties.

As marathon course design involves various objectives related to health, safety, per-

formance and experience, LFATP needs to be solved in a multiobjective environment to

identify the best course design for race organizers. For this reason, we introduce an Inter-

active Weight Region-Based approach (IWRA) that reaches a most preferred solution of
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the decision maker (DM) in multiobjective optimization. IWRA is an iterative approach

which iterates between solution generation and comparison phases: At each iteration,

IWRA presents a new solution to the DM by using weight diversification, obtained by

solving an integer program. The DM’s preference information is used to refine the unex-

plored weight region. We provide finitely converging algorithms solving the weighted sum

problem for multiobjective linear programs and multiobjective integer programs. Differ-

ent from existing approaches, IWRA separates weight generation and solution generation

efforts, and provides a systematic weight generation scheme which is capable of exploring

the entire weight region. We empirically demonstrate the effectiveness of IWRA under

various settings and assumptions through comparisons with related methods from the

literature which also ensure identification of optimal decisions. IWRA is also extended to

the weighted Tchebycheff problem setting to handle unsupported nondominated solutions.

Finally, both tour finding and multiobjective projects are combined to generate a se-

ries of course designs for the Bank of America Chicago Marathon which serves the race

organizers as a catalog of options. At this stage, we select the underlying LFATP for-

mulation based on the dominant structure of the aggregated objective. The experiments

show that significant improvements can be obtained by making relatively small changes

to the existing course.
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CHAPTER 1

Introduction and Motivation

Motivated by marathon course design, this study introduces models and approaches

to solve multiobjective arc tour problems. Proposed models and approaches generalize to

a wide variety of tour finding problems and multiobjective optimization problems. The

study is carried out in collaboration with the researchers in the Department of Industrial

Engineering and Management Sciences and in the Department of Emergency Medicine

at Northwestern University, and the organizers of Bank of America Chicago Marathon

(BACM) and Shamrock Shuffle (BASS).

This introductory chapter describes the scope of our study while focusing on the

details of the underlying application of marathon course design. The rest of the chapter

is organized as follows: Section 1.1 provides a brief description of marathons and marathon

planning activities and introduces marathon course design problem in detail. Section 1.2

describes the focus and the scope of this study. Section 1.3 briefly describes the BACM’s

response to marathon planning activities, the Chicago Model, and summarizes related

studies carried out by our research team.

1.1. Marathons and Marathon Course Design

A marathon is a long-distance running event with an official distance of 26.22 miles.

More than 500 marathons are organized worldwide every year; larger marathons have tens

of thousands of participants. The annual running of a marathon is a test of preparedness
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for mass gathering events, involving a host of significant planning and implementation

challenges, particularly in heavily populated cities. Given the scale of participation and

the diversity of entities involved, planning for an event often begins immediately after

completion of the prior year’s event. The bombings at the 2013 Boston Marathon brought

a tragic new dimension to the issue of planning and managing mass participation events,

and highlighted the extreme challenges.

Marathon planning involves decisions and activities regarding course design, commu-

nication and resource management (Chiampas and Jaworski, 2009). Specifically, course

design focuses on the route to be followed during the race and the locations of runner

resources on the course. Related decisions include adjustments to the existing course

due to potential constructions or alterations, locations of diversion points, aid stations,

medical tents and volunteers on the course. From communication perspective, the aim is

to develop communication channels between the participating agents such as race orga-

nizers, medical doctors, volunteers, police and fire departments, and to disseminate race

related information to runners and spectators in a fast and clear way. Related activities

include developing communication hierarchies between the agents and designing commu-

nication tools to disseminate information effectively. Lastly, resource management focuses

on estimating and securing necessary amounts of medical and other race related supplies.

Among other planning activities, course design is a key component in marathon plan-

ning since almost all decisions in planning and implementation phases are naturally af-

fected by the route to be followed during the race. Despite its importance, most of the

marathon courses in the world take their current shape as a consequence of traditional

events, lacking a scientific or systematic design. Although some minor changes occur from
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one year to another due to causes such as road constructions, the race organizers try to

keep the course the same over the years. However, this brings up the following question:

‘How good are the existing marathon courses in terms of many factors such as public

safety, runner experience, and runner and spectator health?’

A marathon course is record eligible if finishing times of the runners are ratified as a

world record by International Association of Athletics Federations (IAAF). Record eligi-

bility is an important concept in marathon course design since record eligible marathons

attract many talented runners across the world. In addition to distance requirement of

26.22 miles (42.195 kms), there are two technical requirements enforced by IAAF for a

marathon to be considered record eligible (IAAF, 2015):

• The start and finish points of a course, measured along a theoretical straight line

between them, shall not be further apart than 50% of the race distance.

• The overall decrease in elevation between the start and finish shall not exceed

1:1000; i.e., 1m per km.

The first requirement eliminates straight courses which can potentially benefit from

consistent tailwind support and the second one eliminates courses with downhill slope.

As most marathons take place in heavily populated cities, they block access to some

districts over a five-to-seven hour span. Thus, cities generally enforce accessibility restric-

tions to ensure public access to critical facilities during the race. These critical facilities

commonly include hospitals since blocking access to hospitals is undesirable from public

health perspective. They can also include main churches in cities since most marathons

occur on Sundays. Accessibility restrictions make the resulting tour finding problem

unique as such restrictions have not been studied in the literature before.
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Apart from technical requirements and accessibility restrictions, marathon courses

are expected to visit certain locations in the city due to several reasons. First of all,

many marathons have been organized for decades, generating their own traditions. Some

neighborhoods or street segments are traditionally important and they must be visited

by the designed courses. Secondly, some districts are visited to increase diversity along

the course. Thirdly, marathons need large-space areas near the course to build medical

tents and to store runner resources; therefore, the underlying courses must pass near such

locations. Lastly, courses pass through some city landmarks to attract more runners and

provide a more enjoyable experience. Visit requirements are less formal compared to the

technical ones; however, they play a key role in satisfying the expectations of various

groups such as runners, spectators and sponsors.

1.2. Research Focus

This study focuses on designing a record eligible marathon course which satisfies the

technical requirements while visiting predetermined set of street segments and not block-

ing access to the critical facilities in the region of interest. While the presented models

find ‘tour-type’ marathon courses with start and finish lines that are very close to each

other, they can be generalized to find marathon courses with distant start and finish

lines by using artificial arcs. In this setting, the problem can be modeled as a standard

Arc Routing Problem (ARP) where the tour must visit a certain subset of arcs in the

network as in Rural Postman Problem; however, the requirement to maintain access to

critical facilities changes the problem significantly. We call this problem Lock-Free Arc

Tour Problem (LFATP).
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A critical component to marathon course design problem is measuring the quality of

the course. In order to construct the correct objective function, it is necessary to answer

the following question: ‘What makes a course design better than the other?’. Quality

can be measured by various performance metrics related to safety, medical access and

runner experience leading to various objective function types. These types include (i)

arc-additive ones for which the objective can be represented as the sum of coefficients

of arcs used in the solution, (ii) sequence-dependent ones for which the contribution of

each arc depends on the other arcs used in the solution, and (iii) time-dependent ones for

which the coefficients of the arcs are functions of time and vary depending on the time

the corresponding arcs are used.

Our research consists of three parts which are explained in detail in the following chap-

ters: The first part models and solves the LFATP with arc-additive objective functions

which are relatively more straightforward compared to sequence- and time-dependent

ones. Initially, a mixed integer linear programming (MILP) formulation is proposed to

solve this problem; however, the proposed MILP is found to be underperforming for some

arc-additive objectives as it suffers from excessive subtour formation. Therefore, we intro-

duce path-based reformulations of the initial formulation arising from a provably stronger

disjunctive programming formulation which is obtained by exploiting visit requirements.

These formulations greatly enhance our capability to solve arc-additive LFATPs, yielding

up to 100 times improvements in solution times.

The second part introduces an interactive methodology to find a most preferred so-

lution of a decision maker (DM) in a multiobjective setting. As marathon course design
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involves multiple objectives, LFATP needs to be solved in a multiobjective setting. How-

ever, objective functions considered in marathon course design are generally related to

intangible concepts such as health, safety and experience; therefore, it is not easy for

a DM to compare or prioritize these objective functions. For this reason, we develop

an interactive weight region-based approach (IWRA) that iteratively asks the DM to

compare solutions rather than objective functions and indirectly translates these compar-

isons to preference information. Different from existing approaches, our design separates

preference refinement and solution generation processes completely, scaling IWRA to op-

timization problems with large number of objectives. While we develop IWRA to solve

multiobjective LFATP, proposed algorithms are applicable to a wide range of optimization

problems.

The third part has two main contributions. First, it extends the initial LFATP mod-

els and approaches to more complex sequence- and time-dependent objectives. Extend-

ing arc additive objectives to sequence-dependent ones is relatively straightforward as

it requires introducing a new set of variables and the corresponding linking inequali-

ties. For time-dependent functions, the models can differ significantly depending on how

time-dependence is interpreted. Second, it combines IWRA with LFATP to generate an

interactive marathon course catalog for the race organizers. To achieve this, general-

ized versions of LFATP formulations are constructed and the formulation to be solved is

determined based on the dominant structure of the aggregated objective.
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1.3. The Chicago Model and Related Studies

The Bank of America Chicago Marathon is one of the largest marathons worldwide.

Hosted in a city of 2.7 million residents, the marathon has 45,000 runners and 1.7 mil-

lion spectators. See Suozzo (2002) for a detailed discussion on the evolution of Chicago

Marathon and its course. The BACM has been described by organizers as a ‘planned

disaster’: over a five-to-seven hour span, a minimum of 1,000 people seek medical treat-

ment. Extreme heat forced the cancellation of the 2007 BACM in the middle of the

race. As a result, the organizers, Chicago Event Management (CEM), developed a holis-

tic approach to mass participation event planning and management, referred to as the

Chicago Model (CM), which has become a standard for medical coverage for such events.

The Chicago Model brings together all major organizations (e.g., race organizers, fire and

police departments, emergency management, Red Cross) to coordinate preparation and

response for the event and the surrounding areas impacted by the event. This integrated

organizational structure is complemented with a comprehensive medical tracking system

to monitor medical coverage in real time. This approach is being adopted by similar

events in other cities, and lessons learned from the marathon experience can be applied

to disaster response in general, see (McCarthy et al., 2011).

The CM creates an environment where all participating agencies contribute to preplan-

ning and execution operations so that the agencies agree to their responsibilities in such

chaotic environments and achieve a shared mental model of responsibilities (McCarthy

et al., 2011; Stout et al., 1999). The CM has three key components: organizational struc-

ture, information systems, and communication. Organizational structure of the CM is

based on Incident Command System (ICS) which is a top-down structure used to manage
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incidents and large-scale disasters. Races are managed from a single command center

(Forward Command). During the race, the CM uses multiple sources of information and

collectively shares it in the command center with effective communication systems and

hierarchies. See Başdere et al. (2014) for a detailed description of the CM.

Apart from marathon course design, our research team worked on several projects in

collaboration with the race organizers to improve the capabilities of the CM further. These

projects include field observations, patient (runner) tracking analysis and a comprehensive

data visualization tool, and they lead to multiple publications in medical journals. While

these studies are not directly related to marathon course design, experience from the field

observations and insights from collaborations with the marathon organizers helped us in

defining marathon course design problem clearly and precisely.

The first project is a case report from the field observations at 2013 BASS (Başdere

et al., 2014). It explains the details of the CM and describes how the organizers used

different components of the CM to respond to an acute incident caused by a man who

was threatening to jump off the State Street Bridge approximately one and a half hours

before the race starts. Originally State Street Bridge was on the race course; therefore, the

organizers decided to reroute the course. With the help of the CM, rerouting operations

were handled very efficiently, causing only 2-minute delay to the planned race start. The

incident shows the dynamic nature of marathon planning and execution operations as well

as the importance of the CM.

The second project examines the potential value of developing real-time patient track-

ing systems at marathons by using the data collected by the Chicago Medical Patient

Tracking System (CMPTS) during the 2012 BACM (pilot race) and the 2013 BASS (Ross
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et al., 2015). The study provides a summary of descriptive statistics for common diagnoses

and admission trends at medical facilities along with a comparison between the current

data collection system, which is based on paper forms, and the CMPTS. The results

show that medical patient tracking systems such as the CMPTS improve data accuracy,

which can potentially lead to improvements in operational decisions during planning and

execution stages.

The third project is an evolving situational awareness tool based on a comprehensive

data visualization system for marathons and other mass participation endurance events.

This project is a collaboration of a large number of students through various student

projects over the last five years. The system incorporates critical data into a user-friendly

dashboard to serve as a centralized source of information during the events. It uses

historical and real-time data to provide pre-event and on-site analytics via descriptive,

predictive and prescriptive models. These models help race organizers and relevant stake-

holders effectively manage and oversee all participants, monitor the dynamic location of

race participants, and manage health and safety resources throughout the event. The

system has been successfully deployed at 2014-2017 Chicago Marathon, 2014-2018 Sham-

rock Shuffle and 2016-2018 Houston Marathon. See Hanken et al. (2016) and Başdere

et al. (2018) for detailed discussions of early and recent versions of the data visualization

system, respectively.
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CHAPTER 2

Lock-Free Arc Tour Problem with Arc-additive Objectives and

Path-based Reformulations

This chapter introduces the Lock-Free Arc Tour Problem (LFATP), a novel tour find-

ing problem which ensures that the resulting tour does not block access to certain critical

vertices. This problem is motivated by our work in marathon course design. The quality

of a course can be measured by various performance metrics related to safety, health and

race experience, leading to different objective function forms. This chapter focuses on

arc-additive objective functions where the objective function is an additive function of

the arcs in the tour, based on our motivating metric of average distance to the nearest

medical facility. The proximity to medical care (i.e. hospitals) throughout the race is

a critical consideration given the number of injuries and the risk of exercise related col-

lapse (Chiampas and Jaworski, 2009). Equally important, the course itself should not

lock hospitals and other critical facilities within the course, thereby reducing access for

the general public. In this chapter, we introduce a new arc routing problem to design

marathon courses with both factors in mind. While the discussion throughout the chapter

focuses on arc-additive objectives, Chapter 4 discusses extensions to sequence-dependent

metrics for which the objective contributions of arcs are dependent on adjacent arcs in

the tour (e.g., incline change or number of sharp turns) and time-dependent metrics for
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which the objective contributions of arcs change over time (e.g., shade intensity along the

course).

Marathon courses often are expected to visit certain neighborhoods for the benefit

of runners and the host city. As such, the course design problem resembles arc routing

problems (ARPs) where the route must visit a predefined subset of edges in the net-

work (Corberán and Laporte, 2015). ARPs find a minimum cost (or length) route which

traverses a specified arc subset M , which we call must-visit arcs, of the corresponding net-

work. In our marathon setting, the course can be considered as a tour as one of the arcs

in M contains the start and the finish lines of the race. For record-eligible marathons, the

distance between the finish and the start lines, measured along a theoretical straight line

between them, cannot be more than 50% of the race length (IAAF, 2015). Further, orga-

nizers often prefer a short distance between the start and the finish lines to consolidate

resources and personnel. Generally, ARP-related studies differ based on the underlying

network structure, vehicle restrictions and time dependence. In this study, we introduce

a new ARP variant, the Lock-Free Arc Tour Problem (LFATP), which considers the ver-

tices locked by the resulting tour. Unlike many ARPs, the LFATP does not allow multiple

traversals of the arcs and vertices of the network; i.e., the LFATP finds a simple tour.

The LFATP is defined on a directed graph G(V,A) with border vertex subset B ⊂ V ,

defining the region. We define border vertices on boundaries of the network (see Figure

2.1), yet they can be anywhere depending on the corresponding problem. A critical vertex

q ∈ V \ B is said to be locked by a tour T if no q − b path exists for any vertex b ∈ B

without passing through at least one vertex in T . In other words, q is locked if there is no

connectivity between vertex q and set B once the vertices in T and associated outgoing
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and incoming arcs are removed from the network. The LFATP finds a minimum cost

simple tour of specific length that visits arcs in a subset M ⊂ A while not locking critical

vertices in the subset Q ⊂ (V \B).

(a) (b) (c) 

: Border vertex 

: Lock-free critical vertex 

: Locked critical vertex 

1 1 1 

2 2 2 

Figure 2.1. Sample LFATP solutions: (a) Feasible LFATP tour; (b) Infea-
sible LFATP tour due to internal locking; (c) Infeasible LFATP tour due to
blocked access.

Figure 2.1 provides examples of LFATP solutions. Vertices in B are represented with

white circles; the two critical vertices are represented with diamonds. In the feasible

tour in Figure 2.1a, both critical vertices can be connected to a border vertex without

intersecting the vertices of the tour. In the infeasible tour in Figure 2.1b, there is no

feasible path to connect critical vertex 2 to any vertex in B without intersecting the

vertices on the tour. In the infeasible tour in Figure 2.1c, both critical vertices are outside

the inner region of the tour, yet all paths for critical vertex 2 are blocked by the tour.

The contributions of this study are twofold. First, a new ARP variant is introduced.

Although the LFATP is similar to the prize-collecting arc routing problem, it is a novel

tour finding problem with constraints which impose restrictions on the elements blocked
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by the tour. To the best of our knowledge, such restrictions have not been studied. Valid

inequalities are derived from the locking properties in subgraphs. A heuristic separation

algorithm is developed to identify these valid inequalities since the proposed separation

is shown to be NP-Hard. Second, in exploring ways to solve this challenging problem,

we develop path-based reformulations which arise from a provably stronger disjunctive

programming (DP) formulation that exploits the tour length bounds to efficiently solve

the LFATP by enforcing visit orders of must-visit arcs. We demonstrate our ability to

generalize this approach for similar tour finding problems which share some characteristics

of the LFATP through a series of computational experiments.

The remainder of the chapter is organized as follows: In Section 2.1, related ARP

studies are discussed. In Section 2.2, the mixed integer linear programming (MILP)

formulation of the LFATP is presented. In Section 2.3, the path-based formulation of

the LFATP is proposed along with a discussion of reformulations. In Section 2.4, valid

inequalities are derived for the LFATP and their separation is described. In Section 2.5,

numerical experiments from test instances and the Bank of America Chicago Marathon

(BACM) are provided and the study is concluded with a discussion on future research

directions in Section 2.6.

2.1. Literature Review

The LFATP falls into the broader class of ARPs; see Dror (2000), Corberán and Prins

(2010) and Corberán and Laporte (2015) for comprehensive reviews of ARP literature.

To the best of our knowledge, there is no study which considers vertex connectivity issues

such as the vertex access restrictions of the LFATP. Furthermore, the LFATP differs
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from classical ARPs since its tour length is bounded from below and above, and the

tour must be a simple cycle. Ignoring these restrictions, the LFATP can be classified as

a variant of prize-collecting (or profitable) arc routing problems (PARP) (Aráoz et al.,

2006). These problems maximize the profit obtained by traversing arcs, subject to various

operational constraints. Unlike classical ARPs, prize-collecting versions do not impose

visit requirements.

Aráoz et al. (2006) introduces the PARP as an arc routing counterpart of the prize-

collecting traveling salesman problem (e.g. Golden et al. (1987); Laporte and Martello

(1990)) in the context of the Privatized Rural Postman Problem (PRPP). The authors

show that the PRPP is NP-Hard and establish relationships among arc routing and other

related problems. Their ILP formulation is solved in Aráoz et al. (2009b) with both

branch-and-cut (B&C) and heuristics. In a similar study, Aráoz et al. (2009a) consider a

clustered PARP, visiting all or none of the edges in a cluster. This problem, again, is solved

with B&C using newly identified cuts along with the cuts derived in Aráoz et al. (2006).

Corberán et al. (2011) analyze the polyhedral structure of the PARP with direction-

dependent costs and provide valid inequalities along with heuristic and exact separation

algorithms. They solve the problem by using cut-and-branch iteratively where cuts are

identified either at the root node or at the end of branch-and-bound (B&B) solution.

Aráoz et al. (2013) propose greedy randomized adaptive search procedure (GRASP) and

path relinking heuristics for the clustered PARP.

Tour length restrictions are often considered in capacitated ARPs (CARP) in multiple

vehicle settings as in capacitated VRPs (Corberán and Prins, 2010; Bartolini et al., 2013b).

Feillet et al. (2005) focus on a PARP that finds a set of cycles to maximize profit with a
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restriction on the maximum cycle length. The authors propose an exact solution procedure

which uses branch-and-price (B&P) with a novel branching method that branches on

short sequences of arcs. Archetti et al. (2010) use a similar B&P algorithm and provide

heuristics in the context of undirected CARP with profits. Bartolini et al. (2013a) study a

version of CARP with capacity consumption caused by deadheading and provide an exact

algorithm which uses cut and column generation. Black et al. (2013) consider PARP with

a time-dependent objective function and propose metaheuristics; tour length is restricted

implicitly through a restriction on the interval the vehicles can travel.

The node counterpart of the LFATP is closely related to the Orienteering Problem

(OP). In the OP, each vertex has a specific score and the aim is to find a tour which

maximizes the total score collected by visiting those vertices without exceeding the time

limit (Golden et al., 1987). See Vansteenwegen et al. (2011) for a recent review. Many

ARP studies utilize node transformations of ARPs: After solving the node counterpart

problem, the solutions are transformed back to solutions for the original problem; see

Laporte (1997). The studies of Deitch and Ladany (2000), Clossey et al. (2001), Corberán

et al. (2002), and Irnich (2008) consider operational restrictions in ARPs using node

transformations. Corberán et al. (2002) report that node transformation is outperformed

by a direct heuristic approach on large instances. Feillet et al. (2005) also advise against

node transformations, given the size of the resulting graph in their profitable ARP setting.

Souffriau et al. (2011) define the OP in the arc routing setting, the Arc OP (AOP). In

AOP, each arc has an associated cost and score and, similar to the OP, the aim is to find

the most profitable simple path (or cycle) without exceeding the cost limit. Archetti et al.

(2013) introduce the Team Orienteering ARP (TOARP) extends AOP to multi-vehicle
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setting. Archetti et al. (2013) and Archetti et al. (2015) propose exact and heuristic

solution methods for TOARP while Archetti et al. (2014) investigate split deliveries in

the node counterpart of TOARP. Cost limit restrictions of these problems and simple

cycle restriction of AOP are similar to those of the LFATP; however, the LFATP has

additional visit and length requirements and, most importantly, locking considerations.

The LFATP has a unique structure among ARPs because of its locking property;

therefore, its classification is not trivial. We exploit the unique locking properties of the

LFATP to obtain valid inequalities, and the visit and length requirements common in

many ARPs to develop path-based reformulations.

2.2. Standard MILP Formulation

In this section, we provide an MILP formulation of the LFATP for a general arc-

additive objective function. The constraints of the LFATP can be classified with two sets:

Tour feasibility and lock prevention. Tour feasibility constraints ensure that the model

finds a single subtour which satisfies the length and visit requirements. Lock prevention

constraints ensure that each critical vertex q ∈ Q is connected to one of the border

vertices b ∈ B with a feasible q − b path. In Model 1, M is not an arc subset since

traversal direction does not matter here; therefore, M is a set of edges (arc pairs) and eij

is the edge representing the arc pair between nodes i and j. Let A(S) and V (S) denote

the arcs and vertices within a given set S, respectively. δ(S) denotes the arcs with one

vertex in S and one outside S.

Let cij and dij be the objective contribution and length of arc (i, j) ∈ A, respectively.

Let xij be a binary variable which takes value 1 if arc (i, j) ∈ A exists in the tour. We
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introduce two sets of auxiliary variables. The first set is used to represent the subtour

elimination inequalities in the LFATP setting. A feasible LFATP solution is a single

subtour in the network; for a solution which uses k arcs, a subtour of less than k arcs

is infeasible. Let hk variables take value 1 if more than k arcs are used to construct the

tour, k ∈ {2, 3, 4, ..., |V | − 1}. The second variable set is used to construct q − b paths.

Let yij be a nonnegative continuous variable representing the amount of flow, called lock

feasibility flow, sent through arc (i, j) ∈ A on q−b paths. An arc (i, j) ∈ A can be used in

multiple connecting q− b paths and flow on the arc can be fractional, indicating multiple

paths from a critical vertex to border vertices. The LFATP is formulated as follows:

min
∑

(i,j)∈A
cijxij(2.1a)

s.t. ∑
j:(j,i)∈A

xji =
∑

j:(i,j)∈A
xij i ∈ V,(2.1b)

L ≤
∑

(i,j)∈A
dijxij ≤ L+ ε,(2.1c)

xij + xji = 1 eij ∈M,(2.1d) ∑
(i,j)∈A

xij ≤ |V |hk + k k ∈ {2, 3, 4, ..., |V | − 1},(2.1e)

∑
i∈S, j∈S
(i,j)∈A

xij ≤ |S| − h|S| S ⊂ V, |S| ≥ 2,(2.1f)

∑
j:(q,j)∈A

yqj −
∑

j:(j,q)∈A
yjq = 1 q ∈ Q,(2.1g)



32

∑
b∈B

( ∑
i:(i,b)∈A

yib −
∑

i:(b,i)∈A
ybi

)
= |Q|,(2.1h)

∑
j:(j,i)∈A

yji =
∑

j:(i,j)∈A
yij i ∈ V \ (Q ∪B),(2.1i)

∑
j:(i,j)∈A

yij +
∑

j:(j,i)∈A
yji ≤ 2|Q|

(
1−

∑
l:(l,i)∈A

xli

)
i ∈ V,(2.1j)

xij ∈ {0, 1} (i, j) ∈ A,(2.1k)

hk ∈ {0, 1} k ∈ {2, 3, ..., |V | − 1},(2.1l)

yij ≥ 0 (i, j) ∈ A.(2.1m)

We refer to Model 2.1 as LFATP-S to distinguish this [S]tandard formulation from

reformulations in Section 2.3. The objective function (2.1a) is a minimization over a

general arc additive measure.

Constraints (2.1b)-(2.1f) are tour feasibility constraints. Constraints (2.1b) guarantee

incoming and outgoing arc balance at each vertex. Constraints (2.1c) and (2.1d) ensure

that tour length and visit requirements are satisfied, respectively. Setting the tour length

equal to a single target value results in a highly restricted feasible region with few (if

any) solutions. Therefore, we set an acceptable interval [L,L + ε] where L is the target

length and ε is the maximum allowed positive deviation from this target length. In the

motivating marathon setting, ε represents the allowable distance between start and finish

lines which is assumed to be smaller than the length of the edge in M which contains these

lines. Constraint (2.1c) can be generalized to maximum tour length or maximum duration

constraints in OP by setting L = 0 and ε to the limit value, and constraints (2.1d) can be

generalized to single direction requirements. Constraints (2.1e) and (2.1f) together ensure
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that the solution is a single subtour. The left-hand side of constraints (2.1e) represents the

number of arcs in the solution. For a solution of k′ arcs,
∑

(i,j)∈A xij = k′ and constraints

(2.1e) set hk = 1 for all k < k′. Constraints (2.1f) form classical subtour elimination

constraints for any subset S with |S| < k′.

Constraints (2.1g)-(2.1j) are lock prevention constraints. Constraints (2.1g) guarantee

that one unit of net lock feasibility flow is sent from each q ∈ Q and constraint (2.1h)

ensures that all lock feasibility flow paths arrive to a border vertex in B. Constraints

(2.1i) are the flow balance constraints for lock feasibility flow paths creating connected

paths from each q ∈ Q to border vertices. Constraints (2.1j) are linking constraints which

link tour and lock feasibility flow path variables. If vertex i is in the tour, then there

exists an incoming arc to vertex i, say (l̂, i), with xl̂i = 1. Then, the right-hand side of

(2.1j) is 0 and no lock feasibility flow can enter or leave i. If vertex i is not on the tour,

the right-hand side takes value of 2|Q| and corresponding yij variables can be used in q−b

paths.

Proposition 2.1. The LFATP is NP-Hard.

Proof of Proposition 2.1. Consider the NP-Hard quota traveling salesman prob-

lem (quota TSP) with arc traversal cost c′ij, (i, j) ∈ A, and vertex prize s′i, i ∈ V , with no

penalty for unvisited vertices (Awerbuch et al., 1998). The quota TSP finds the minimum

cost simple tour such that total prize of the vertices in the tour exceeds a predetermined

level of P ′. This problem can be transformed to the LFATP in polynomial time, letting

Q = ∅, M = ∅, L = P ′, ε =
∑

i∈V s
′
i, cij = c′ij and dij =

s′i+s
′
j

2
. Constraints (2.1d), (2.1m)

and (2.1g)-(2.1j) are trivially satisfied since Q = ∅ and M = ∅. The right-hand side of
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constraint (2.1c) is trivially satisfied as ε is set to
∑

i∈V s
′
i and a simple tour cannot visit

a vertex more than once. Letting A(T ) and V (T ) be the arcs and vertices of LFATP

solution T ,
∑

(i,j)∈A(T ) dij =
∑

i∈V (T ) s
′
i since each vertex in the solution has exactly one

incoming and one emanating active arc. The optimal solution of the LFATP is the min-

imum cost simple subtour whose total vertex prize is greater than P ′; i.e., the optimal

solution of quota TSP. Thus, the LFATP is NP-Hard. �

2.3. Disjunctive Programming Formulation and Path-based Reformulations

The LFATP can be solved with a standard B&C approach on the standard model,

LFATP-S, utilizing valid inequalities designed for the locking constraints (see Section

2.4.2). Even with these valid inequalities, excessively many subtour elimination inequal-

ities can be required. We exploit the fundamental idea that the edges in M can be

connected with paths to form optimal tours and we develop provably stronger path-based

reformulations to solve LFATP. These reformulations are shown to have promise for many

similar arc tour problems.

Our initial path-based reformulation is constructed as a DP where each disjunction

imposes a visit order on the must-visit edges and connects these edges with paths satisfying

the order. Importantly, these paths consume a large portion of the length budget specified

by constraint (2.1c). Let OM be the set of visit orders. An element o ∈ OM is an ordered

set of edges in M , o(1), ..., o(|M |+1), where o|M |+1 = o(1). Letting Lo be the length of the

shortest tour that connects edges in M in visit order o, the remaining length budget for

arcs that are not used to connect edges in M reduces to L+ε−Lo, significantly restricting

the potential for subtours in the solution.
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Let uo(m) and vo(m) be the endpoints of edge o(m) for visit order o ∈ OM (for easier

representation, we abuse notation slightly and use um and vm instead of uo(m) and vo(m)).

Let Ā be the set of arcs constructed by removing arcs A(M) from A. Similarly, let V̄ be

the set of vertices constructed by removing V (M) from V . Let zij be a binary variable

that takes value 1 if edge eij ∈ M is traversed in the direction of i to j and 0 otherwise.

Let x̄ijm be a binary variable that takes value 1 if arc (i, j) ∈ Ā is on the path between

o(m) and o(m+1).

The path-based model, LFATP-P, is formulated as a DP where the selection of visit

order o specifies the disjunction. In the model below, constraint (2.2k) is the disjunctive

constraint which ensures that a visit order o from the set of all visit orders is selected and

the model respects selected order when constructing the paths:

min
∑
eij∈M

(cijzij + cjizji) +
∑

(i,j)∈Ā

|M |∑
m=1

cijx̄ijm(2.2a)

s.t. ∑
j:(j,i)∈Ā

x̄jim =
∑

l:(i,l)∈Ā
x̄ilm i ∈ V̄ , m ∈ {1, ..., |M |},(2.2b)

∑
j:(j,i)∈A(M)

zji +
∑

j:(j,i)∈Ā

|M |∑
m=1

x̄jim(2.2c)

=
∑

l:(i,l)∈A(M)

zil +
∑

l:(i,l)∈Ā

|M |∑
m=1

x̄ilm i ∈ V \ V̄ ,

∑
j:(vm,j)∈Ā

x̄vmjm +
∑

j:(um,j)∈Ā
x̄umjm = 1 m ∈ {1, ..., |M |},(2.2d)

∑
i:(i,u(m+1))∈Ā

x̄iu(m+1)m +
∑

i:(i,v(m+1))∈Ā
x̄iv(m+1)m = 1 m ∈ {1, ..., |M |},(2.2e)
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zij + zji = 1 eij ∈M,(2.2f)

L ≤
∑

(i,j)∈Ā

|M |∑
m=1

dijx̄ijm +
∑

(i,j)∈A(M)

dijzij ≤ L+ ε,(2.2g)

∑
eij∈M

(zij + zji) +
∑

(i,j)∈Ā

|M |∑
m=1

x̄ijm ≤ |V |hk + k k ∈ {2, 3, ..., |V | − 1},(2.2h)

∑
i∈S, j∈S
eij∈M

(zij + zji) +
∑

i∈S, j∈S
(i,j)∈Ā

|M |∑
m=1

x̄ijm ≤ |S| − h|S| S ⊂ V, |S| ≥ 2,(2.2i)

∑
j:(i,j)∈A

yij +
∑

j:(j,i)∈A
yji(2.2j)

≤ 2|Q|
(

1−
|M |∑
m=1

∑
l:(l,i)∈Ā

x̄lim −
∑

l:(l,i)∈A(M)

zli

)
i ∈ V,

(2.1g)− (2.1i), (2.1m), (2.1l),

o ∈ OM ,(2.2k)

x̄ijm ∈ {0, 1} (i, j)∈Ā,m∈{1, ..., |M |},(2.2l)

zij, zji ≥ 0 eij ∈M.(2.2m)

Objective (2.2a) minimizes arc-additive costs of edges in M (either direction) and

paths connecting these edges. For the vertices in V̄ , the balance constraints (2.2b) are

similar to constraints (2.1b), further requiring that the incoming and emanating arcs

must belong to the same path. The balance constraints (2.2c) ensure arc balance for the

endpoints of the edges in M relating x̄ and z variables. Constraints (2.2d) guarantee

that the mth path starts from an endpoint of mth must-visit edge in visit order o and
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constraints (2.2e) guarantee that the mth path ends at an endpoint of (m+1)st must-visit

edge in visit order o. With balance constraints (2.2c), one endpoint of (m+1)st must-visit

edge becomes the terminal point for mth path whereas the other endpoint becomes the

initial point for (m + 1)st path. Similar to constraints (2.1d), constraints (2.2f) ensure

that the edges in M are traversed in one direction. Constraint (2.2g) is the tour length

constraint. Similar to constraints (2.1e) and (2.1f), constraints (2.2h) and (2.2i) eliminate

subtour formation. Lock prevention constraints (2.1g)-(2.1i) are added directly and xli

variables in the linking constraints (2.1j) are replaced with zli and
∑|M |

i=1 x̄lim for the edges

in set M and arcs Ā, respectively.

Theorem 2.2. LFATP-P is a stronger formulation than LFATP-S.

Proof of Theorem 2.2. Let PS and PP be the polytopes representing the linear

relaxations of LFATP-S and LFATP-P, in affine spaces of (x, y, h) and (x̄, y, z, h) variables,

respectively. Note that the solution spaces of PS and PP are not the same; we define P+
P

as follows:

P+
P =

{
(x, x̄, y, z, h)

∣∣∣(x̄, y, z, h) ∈ PP ;

xij =

|M |∑
m=1

x̄ijm, (i, j) ∈ Ā; xij = zij, xji = zji, eij ∈M
}
.

P+
P extends polytope PP into the affine space of (x, x̄, y, z, h) variables relating x vari-

ables with x̄ and z variables with affine transformations. Let Projx,y,h(P
+
P ) be the pro-

jection of P+
P onto the affine space of (x, y, h) variables. Constructed this way, comparing

PS with PP reduces to comparing PS with Projx,y,h(P
+
P ) (Balas, 2005).
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To prove that LFATP-P is a stronger formulation than LFATP-S, we need to show

that Projx,y,h(P
+
P ) ⊆ PS and there exists an instance for which the inclusion is proper.

First, we show that Projx,y,h(P
+
P ) ⊆ PS. Consider (x̄s, ys, zs, hs) ∈ PP for an arbitrary

o ∈ OM and let (xs, ys, hs) ∈ Projx,y,h(P
+
P ) be the projected solution corresponding to

(x̄s, ys, zs, hs). We now show that (xs, ys, hs) ∈ PS. Since (x̄s, ys, zs, hs) ∈ PP , it satisfies

all constraints defining PP . Replacing
∑|M |

m=1 x̄ijm and zij variables with xij variables

in constraints (2.2g), (2.2f), (2.2h), (2.2i) and (2.2j), these constraints reduce to (2.1c),

(2.1d), (2.1e), (2.1f) and (2.1j) of PS, respectively, ensuring that (xs, ys, hs) satisfies (2.1c),

(2.1d), (2.1e), (2.1f) and (2.1j). Summing up constraints (2.2b) over m = 1, ..., |M |

and applying the same variable replacement to the resulting expression together with

constraints (2.2c) ensure that (xs, ys, hs) satisfies constraints (2.1b) of PS. (xs, ys, hs)

also satisfies constraints (2.1g)-(2.1i) since these constraints are already considered when

defining PP . In terms of variable restrictions, it is clear that ys ≥ 0 and 0 ≤ hs ≤ 1

since (x̄s, ys, zs, hs) ∈ PP . Furthermore, we know that xs ≥ 0 since x̄s ≥ 0 and xs ≤ 1

as constraints (2.2i) ensure that the sum of active variables for subsets of size 2 cannot

be greater than 1. (xs, ys, hs) satisfies all constraints defining PS, i.e., (xs, ys, hs) ∈ PS

indicating that Projx,y,h(P
+
P ) ⊆ PS.

Since Projx,y,h(P
+
P ) ⊆ PS, constructing a fractional solution (xf , yf , hf ) ∈ PS such

that (xf , yf , hf ) /∈ Projx,y,h(P+
P ) is sufficient to prove that inclusion is proper. Consider

(x̄s, ys, zs, hs) ∈ PP for an arbitrary visit order o ∈ OM and let ekl ∈ M be the (m′)th

must-visit edge in o. Considering constraint (2.2d) for m′, the following equality can be
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written for ekl (note that u(m′) and v(m′) are indices k and l respectively):

∑
j:(l,j)∈Ā

x̄sljm′ +
∑

j:(k,j)∈Ā
x̄skjm′ = 1.(2.3)

For any visit order o, there exists an m′ ∈ {1, ..., |M |} such that equality (2.3) holds

for each ekl ∈ M . Therefore, the following must hold for any ekl ∈ M for any visit order

o ∈ OM :

|M |∑
m=1

∑
j:(l,j)∈Ā

x̄sljm +

|M |∑
m=1

∑
j:(k,j)∈Ā

x̄skjm ≥ 1, ekl ∈M.(2.4)

Considering the affine transformation for (i, j) ∈ Ā,
∑|M |

m=1 x̄ijm = xij, any solution

(xs, ys, hs) ∈ Projx,y,h(P+
P ) must satisfy the following inequalities:

∑
j:(l,j)∈Ā

xslj +
∑

j:(k,j)∈Ā
xskj ≥ 1, ekl ∈M.(2.5)

Using the same arguments for constraints (2.2e), the following must also hold for

(xs, ys, hs) ∈ Projx,y,h(P+
P ):

∑
i:(i,l)∈Ā

xsil +
∑

i:(i,k)∈Ā
xsik ≥ 1, ekl ∈M.(2.6)

Therefore, constructing a fractional solution (xf , yf , hf ) ∈ PS such that at least one

of the inequalities (2.5) and (2.6) is violated is sufficient to show proper inclusion. Such

solutions can be constructed by isolating an arbitrary must-visit edge ekl ∈M as follows:

Set zkl = zlk = 0.5 and find a fractional LFATP solution which does not use the arcs
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in δ({k} ∪ {l}). Constructed this way
∑

j:(l,j)∈Ā x
f
lj +

∑
j:(k,j)∈Ā x

f
kj =

∑
i:(i,l)∈Ā x

f
il +∑

i:(i,k)∈Ā x
f
ik = 0 violating both (2.5) and (2.6) for ekl. (See Figure 2.2). �

: Active arc with a solution value of 0.5

(a) (b)

: A must-visit edge

1

2

1

2

Figure 2.2. Example for proper inclusion: (a) The underlying network with
unit arc length and two must-visit edges, (b) A fractional solution with
disconnected must-visit edges.

Figure 2.2 provides an example for proper inclusion. Consider the network in Figure

2.2a with unit arc length and two must-visit edges. For simplicity, the network does not

include any critical vertices. Assuming that an LFATP solution of 12 units is feasible with

respect to length requirements, the fractional solution provided in Figure 2.2b is feasible

for LFATP-S as it satisfies constraints (2.1b)-(2.1f). However, the same fractional solution

is infeasible for LFATP-P as inequalities (2.5) and (2.6) are not satisfied for must-visit

edge 1.

Theorem 2.2 indicates that connecting edges in M with paths potentially eliminates a

subset of fractional solutions from LFATP-S polytope, PS. LFATP-P uses a large fraction

of the length budget when connecting the edges in M , tightening both left and right hand-

sides of constraint (2.1c). Therefore, LFATP-P results in a stronger formulation for the

LFATP as constraints (2.2b)-(2.2e) guarantee that the edges in M are connected to each

other even at fractional solutions. This indicates that the DP-based idea show promise for
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a broader range of arc routing problems with length budget restrictions, including those

without locking constraints as the locking property is not a key feature of path-based

reformulations. Additionally, tour length minimization problems without explicit bounds

on tour length (i.e., without Constraints (2.1c)) have an implicit length budget in the

decision problem which broadens the applicability further.

2.3.1. Solving LFATP-P

2.3.1.1. Reformulation Basics. As a disjunctive program, LFATP-P can be parti-

tioned into subproblems with fixed visit orders. Once the visit order o is fixed, the result-

ing subproblem, LFATP-P(o), is Model 2.2 without constraint (2.2k) which is a standard

MILP. A straightforward approach to solve LFATP-P would be to solve these subprob-

lems sequentially while benefiting from previously found bounds on the objective function.

Each (feasible) subproblem returns an optimal LFATP solution over the corresponding

partition of the original feasible region, yielding an upper bound for the LFATP. When

solving the subproblems, we can add a constraint which ensures that the objective func-

tion value of the subproblem to be solved is bounded by the best upper bound obtained

from the previous subproblems. This way, the current subproblem is solved to optimality

only if it improves the best upper bound (not necessarily strictly); otherwise, it becomes

infeasible and is pruned faster as the added constraint is not satisfied. Once all subprob-

lems are solved, the LFATP solution yielding the best upper bound is an optimal solution

for the LFATP. An alternative approach to avoid enumerating all subproblems would be

to solve the MILP representation of LFATP-P resulting from a (big-M, Beaumont or con-

vex hull) relaxation of the disjunctive set O in constraints (2.2k) (Vecchietti et al., 2003).
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Both approaches can be impractical due to potentially large number of disjunctions as

|OM | increases faster than exponential rate as |OM | = 1
2
(|M | − 1)! for |M | > 2 for sym-

metric cost structure. For instance, when |M | = 6, |M | = 12 and |M | = 24, the number

of disjunctions are |OM | = 60, |OM | ≈ 2.00× 107 and |OM | ≈ 1.29× 1022, respectively.

To eliminate the dependence on the number of must-visit edges, LFATP-P can be

reformulated by using a g-edge subset of must-visit edges Mg ⊆ M , 1 ≤ g ≤ |M | when

|M | is high. In this case, visit orders are replaced by partial visit orders where the latter

contain only the edges from subset Mg. When using partial visit orders, the following

constraints must be satisfied for edges in M \Mg:

g∑
m=1

(x̄ijm + x̄jim) = 1, eij ∈M \Mg,(2.7)

which ensures that each edge in M \Mg is visited by one path that connects the edges

in Mg. Constructed this way, the resulting reformulation is a hybrid between LFATP-P

and LFATP-S which connects edges in Mg with paths as in LFATP-P and ensures that

the remaining edges in M \Mg are visited by the resulting tour as in LFATP-S. Using

a relatively small Mg instead of M reduces the number of disjunctions to be considered

as complete visit orders are replaced with partial ones. Letting o′ ∈ OMg be a partial

visit order formed by edges in Mg where OMg is the set of all partial orders constructed

from edges in Mg, solving subproblem LFATP-P(o′) with constraints (2.7) finds the best

solution among the set of complete visit orders where o′ is respected.

With partial visit orders, the total number of subproblems to be solved is reduced from

|OM | to |OMg |, which is significant for large |M |. Apart from solving fewer subproblems,

the size of each subproblem is smaller since x̄ variables are used to form |Mg| = g paths
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instead of |M |. However, using subsets of M decreases length budget consumption which

creates a trade-off between the size of the disjunctive set and the strength of the resulting

reformulations: Large subsets of M yield stronger reformulations with large disjunctive

sets while smaller subsets yield weaker reformulations with smaller disjunctive sets.

Since using partial visit orders potentially decreases the strength of the resulting for-

mulation, we can increase the strength of small subsets by strategically choosing (i) the

edges in Mg and (ii) the order in which to solve the resulting subproblems. Selecting

farthest g edges is a promising option since connecting such edges consumes a relatively

large portion of the length budget. This strategy is based on results for TSPs in lower

dimensional spaces in which the optimal tour lengths of the worst case problems increase

at a relatively slow rate in the number of edges (vertices) to be visited (Few, 1955; Karloff,

1989). Unless the length budget is notably larger than the minimum tour length of the

underlying problem, significant reductions in subtour formation can be achieved even with

few edges from M . In terms of solving order, choosing partial orders which potentially

yield quality solutions with tight upper bounds can decrease solution times significantly,

pruning the subsequent problems quickly. With these insights, we first develop a general-

ized DP-based B&C approach which takes the desired cardinality of Mg as an input and

uses a high-level fixed-depth B&C tree that branches on must-visit edges to include in

the tour, imposing visit orders with these edges at the nodes of the tree.

2.3.1.2. DP-based B&C Approach. The DP-based B&C approach is a high-level

fixed depth B&C tree which branches on must-visit edges to include in the tour, imposing

visit orders to these edges at the nodes. Figure 2.3 presents an example. The root node

begins with the maximum number of edges from M that result in a single tour permutation
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of visit orders for these edges. In the example, the root node of B&C tree contains three

edges since they yield a single order when cost structure is symmetric, similar to following

the vertices of a triangle from any start point to any direction. Let Mg denote the set

of must-visit edges that must be in the tour where g is the number of edges in set Mg.

For the root node, we have M3 = {e1, e2, e3}. Furthermore, one edge can be fixed as the

starting and ending edge since we are finding circular permutations. W.l.o.g. we assume

that e1 is the fixed edge for the rest of the discussion.

e1-e2-e3-e1

Lo & LB obtained.
UB=∞.

M3 = {e1, e2, e3}

e1-e2-e4-e3-e1

Lo obtained, UB=∞.

e1-e4-e2-e3-e1

Lo obtained. Lo > L+ ε.
Fathomed.

e1-e2-e3-e4-e1

Lo & LB obtained.
UB=∞, best Lo of M4.

M4 = {e1, e2, e3, e4}

e1-e2-e3-e5-e4-e1

Lo obtained. Lo > L+ ε.
Fathomed.

e1-e2-e5-e3-e4-e1

Lo & LB obtained.
UB=∞, best Lo of M5.

e1-e5-e2-e3-e4-e1

Lo obtained, UB=∞.

e1-e2-e3-e4-e5-e1

Lo obtained, UB=∞.

M5 = {e1, e2, e3, e4, e5}

e1-...-e2-...-e5-
...-e3-...-e4-...-e1

Lo obtained. Best Lo

of M|M|. UB obtained.

M|M| =M = {e1, e2, e3, e4, e5, ..., e|M|}

Figure 2.3. Sample DP-based B&C tree.

The DP-based B&C approach branches on must-visit edges; a new edge from M \Mg is

selected during branching to join the set Mg+1. The selected edge enew is used to generate

all visit orders which contain edge enew and Mg, and satisfy the visit order of the parent

node. For example, branching on e4 from the root node in Figure 2.3 generates three

child nodes with visit orders e1-e4-e2-e3-e1, e1-e2-e4-e3-e1 and e1-e2-e3-e4-e1 which satisfy

the visit order of the root node, e1-e2-e3-e1. The branching edge is selected by finding the
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edge from M \Mg which maximizes the average distance to the edges in Mg. As with

the choice of edges at the root node, these edges become farther from each other and the

paths connecting them become longer using a larger portion of the length budget and

yielding a stronger subproblem. At the root node, the most distant two edges are selected

first and then the edge which is farthest away from them is added to construct the initial

visit order.

The branching continues until |Mg| = g = ϕ where ϕ is a predetermined fixed depth

parameter. When |Mg| < ϕ, the subproblem at the corresponding node is LFATP-P(o′)

without constraints (2.7) where o′ ∈ OMg . In this case, the edges in M \ Mg are not

required and LFATP-P(o′) yields a lower bound. If this lower bound exceeds the global

upper bound, the node can be fathomed. To speed up fathoming due to length infeasibility,

before solving the subproblem, we first solve a tour length feasibility problem (Model 2.8)

which checks whether current (partial) visit order yields a feasible length tour:

L∗o = min
∑

(i,j)∈Ā

|Mo|∑
m=1

dijx̄ijm +
∑

eij∈Mg

(dijzij + djizji)(2.8a)

s.t.
∑

(i,j)∈Ā

|Mo|∑
m=1

dijx̄ijm +
∑

eij∈Mg

(dijzij + djizji) ≤ L+ ε,(2.8b)

(2.2b)− (2.2f), (2.2j), (2.2l), (2.2m).

Tour length feasibility model is a simplified version of Model 2.2 without subtour

elimination constraints (2.2h) and (2.2i), finding the minimum length tour connecting the

edges in Mg while ignoring locking considerations. If L∗o is greater than L+ ε, that node
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can be fathomed as the corresponding visit order cannot yield a feasible solution (see

Figure 2.3).

When |Mg| = ϕ, we solve LFATP-P(o′) with constraints (2.7) to get an upper bound

unless the subproblem is infeasible. In this case, the subproblem finds the best solution in

the subtree emanating from the node with order o′. To obtain an early upper bound, the

branching strategy is set to depth-first that favors promising partial visit orders: From a

parent node, we select the child node with minimum L∗o′ : low L∗o′ values have more length

capacity to accommodate the additional must-visit edges (M \ Mg) further down the

tree. Branching from such nodes increases the chance of finding feasible solutions sooner.

Once a feasible solution (an upper bound) is obtained, the search strategy switches to

breadth-first to fathom unpromising nodes at higher levels.

Subproblems with constraints (2.7) enable us to solve the DP formulation at various

fixed depth levels of B&C, including the root node. As we go down in the tree of DP-based

B&C approach, there is a trade-off between the size of formulation and the structure added

to the subproblem. At deeper levels, subproblems are larger in size since the number of

constraints and variables increases by g. On the other hand, the problems become easier

to solve as there is more structure in terms of order.

In the experiments with DP-based B&C approach (see Appendix A.1), fixed depth

levels of ϕ = 2 and ϕ = 3 are found to be the more effective compared to larger fixed

depth levels. Note that the path-based reformulations constructed when ϕ = 2 and ϕ = 3,

LFATP-R2 and LFATP-R3, are special reformulations as M2 and M3 subsets yield a

single partial visit order (|OM2| = |OM3| = 1). This eliminates the need for disjunctive

visit order constraint (2.2k), resulting in a single MILP formulation to be solved without



47

any disjunctions. In other words, reformulations LFATP-R2 and LFATP-R3 are MILP

formulations that benefit from length budget consumption at the cost of increased number

of constraints and variables. We consider these two special reformulations for the rest of

the chapter as they outperform their counterparts with larger fixed depth levels.

2.4. Valid Inequalities and Separation for the LFATP

In this section, we introduce valid inequalities for the LFATP. For simplicity, we use

LFATP-S notation throughout the section; however, all inequalities are valid for path-

based reformulations with appropriate transformations of x variables to x̄ and z variables.

We first consider three trivial valid inequalities for LFATP. In a feasible LFATP solu-

tion, the degree of a vertex on the tour is two, making the following inequalities valid for

all vertices in V :

∑
j:(i,j)∈A

xij +
∑

l:(l,i)∈A
xli ≤ 2, i ∈ V.(2.9)

Using linking constraints (2.1j) and basic locking arguments, specific subsets of x and

y variables can be eliminated. The following inequalities are valid for arcs incoming to or

outgoing from q ∈ Q:
xqj ≤ 0, (q, j) ∈ A; xiq ≤ 0, (i, q) ∈ A.(2.10)

From the definition of the LFATP, it is clear that q ∈ Q is locked when all q− b paths

intersect with the tour and this trivially holds when q itself is on the tour.

Let VM ⊂ V be the set of vertices where i, j ∈ VM if eij ∈M . The following inequalities

hold for lock feasibility flow path variables passing through v ∈ VM :

yvj ≤ 0, (v, j) ∈ A; yiv ≤ 0, (i, v) ∈ A.(2.11)
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Since a feasible LFATP tour visits each edge in M , each vertex in VM must be on the

tour. From constraints (2.1j), incoming and outgoing arcs for vertices in VM cannot carry

lock feasibility flow. All trivial inequalities are added to the initial model at the root node

of the branching tree and they are never separated during branching.

2.4.1. Subtour Elimination and Matching Inequalities

Subtour elimination and 2-matching inequalities from the OP literature are adapted to the

LFATP. Since the adaptation of these inequalities is straightforward, we refer the reader

to Fischetti et al. (1998) for details. We focus on the inequalities from OP literature

rather than those from ARP literature as the restriction of a simple tour in the LFATP

and OP have shown more promise.

2.4.1.1. Separation. Subtour elimination inequalities are identified with the parametric

connectivity heuristic (Applegate et al., 2011) with a small modification. The heuristic

is designed to identify subtour elimination inequalities in classical TSP; in the LFATP,

subtour elimination inequalities are not valid for connected components that are large

enough to contain a feasible LFATP solution. At an integer solution, it is trivial to

identify whether a subtour is a feasible solution or not: If the subtour length is smaller

than L, eliminate the subtour. For fractional solutions, a more conservative approach is

taken. Given a connected component induced by vertex set, S ⊆ V , the length of the

longest |S| arcs within the connected component is denoted LS. If LS < L, this connected

component cannot contain a feasible LFATP solution, and a subtour elimination inequality

can be written for S. 2-matching inequalities are identified with the heuristic procedure

introduced by Fischetti et al. (1998).
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2.4.2. Vertex Degree Lock Elimination Inequalities

Vertex Degree Lock Elimination Inequalities (VDLEIs) are derived by identifying neces-

sary conditions for a subset of vertices to be lock-free. VDLEIs limit the total number

of arcs that can be used from A(S) and δ(S) for a subset of vertices S ⊆ V by using

basic vertex degree arguments to maintain free vertices for lock feasibility flow paths. Let

ω(S) represent a lower bound on the number of required free vertices in S, which can be

obtained from the following free vertex minimization (FVM) problem for S:

ω(S) ≤ min
pq∈Pq ,∀q∈Q

∣∣∣( ⋃
q∈Q

V (pq)
)
∩ S
∣∣∣,(2.12)

where Pq is the set of all feasible q − b paths for vertex q ∈ Q and V (pq) is the set of

vertices in path pq ∈ Pq. Therefore, ω(S) is the minimum number of vertices from set S

needed to construct q − b paths. A tour using more than |S| − ω(S) vertices from set S

is not feasible as the lock feasibility flow paths intersect with the vertices in the tour.

Lemma 2.3. The following VDLEIs are valid for the LFATP:

2
∑

(i,j)∈A(S)

xij +
∑

(i,j)∈δ(S)

xij ≤ 2
(
|S| − ω(S)

)
, |S| ≥ 2, S ⊆ V.(2.13)

Proof of Lemma 2.3. Let β(v) be the number of active arcs incoming to and em-

anating from vertex v ∈ V in solution x. For a tour T corresponding to feasible solution

x, β(v) = 2 if v ∈ V (T ) and β(v) = 0 otherwise. From the definition of ω(S), a feasible

tour can have at most |S| − ω(S) vertices from set S. Therefore, the following must hold

for any feasible solution:

∑
v∈S

β(v) ≤ 2
(
|S| − ω(S)

)
.(2.14)
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Each arc in A(S) contributes to vertex degrees of two vertices in S and each arc in δ(S)

contributes to one vertex from S. Therefore,
∑

v∈S β(v) can be written as follows:

∑
v∈S

β(v) = 2
∑

(i,j)∈A(S)

xij +
∑

(i,j)∈δ(S)

xij.(2.15)

Combining (2.14) and (2.15), 2.13s are valid for the LFATP. �

The lock-free subset requirement is also used to derive two additional sets of valid

inequalities. The first set strengthens subtour elimination inequalities for vertex subsets

containing critical vertices and the second set imposes lock-free restrictions on arc subsets

instead of vertex subsets. However, these additional set of inequalities are not found to

be effective; thus, they are not discussed in detail.

2.4.2.1. Complexity of Separation. Identification of vertex degree lock elimination

inequalities has two components: (1) Finding set S that potentially violates lock elimina-

tion inequalities and (2) determining the corresponding value of ω(S). Assuming that S is

identified, ω(S) can be found by solving FVM. When there is no critical vertex in the un-

derlying network; i.e. |Q| = 0, ω(S) is trivially 0. When |Q| = 1, ω(S) can be calculated

in polynomial time with a slight modification of Dijkstra’s algorithm as the underlying

problems are vertex-weighted shortest path problems. For instances with |Q| ≥ 2, finding

ω(S) through FVM is NP-Hard as these problems become strongly related to the Steiner

Tree Problem (STP). In an undirected graph G(V,E), the STP finds a minimum cost tree

which connects a subset of terminal vertices, U ⊆ V , by using the edges in E. For |U | = 1

the problem is trivial, for |U | = 2 it becomes the shortest path problem and for U = V

it is the minimum spanning tree problem, all of which can be solved in polynomial time.

For subsets 3 ≤ |U | < |V |, the problem is NP-Hard (Karp, 1972). Consider a STP variant
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where vertices in U and edges in E have no cost and vertices in V \U have unit cost. The

Unit Vertex-Weighted Steiner Tree Problem (UVWSTP) finds a tree connecting vertices

in U by using the minimum number of vertices from V \ U .

Theorem 2.4. For a given vertex subset S, FVM is NP-Hard when |Q| ≥ 2.

Proof of Theorem 2.4. In order to prove Theorem 2.4 we first show that UVW-

STP is NP-Hard, then transform UVWSTP to FVM.

Lemma 2.5. UVWSTP is NP-Hard.

Proof of Lemma 2.5. See the set covering transformation discussed by Klein and

Ravi (1995). �

Let FVMU be the undirected version of FVM for undirected graphs. Consider a

UVWSTP instance in undirected graph G(V,E) for a subset U , 3 ≤ |U | < |V |. Let G∗ST

be the subgraph representing the optimal UVWSTP solution with the optimal value of

f ∗ST . The UVWSTP instance can be transformed into an FVMU instance as follows:

Let u ∈ U be an arbitrary vertex chosen from U . Let B = {u} be the set of border

vertices and Q = U \ {u} be the set of critical vertices for FVMU. Solve FVMU for

S = V \ (Q ∪ B) = V \ U . With this transformation, FVMU constructs q − u paths for

q ∈ Q with the minimum number of vertices from S. Let G∗Ω be the subgraph formed by

the union of q − u paths used in the optimal FVMU solution with the optimal value of

ω(S).

We first show that f ∗ST = ω(S). Note that both f ∗ST and ω(S) represent the number

of vertices from S in subgraphs G∗ST and G∗Ω, respectively. Assume that ω(S) > f ∗ST .
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Since G∗ST is a connected graph, one can find paths connecting each pair of vertices in

G∗ST including the vertices in U = Q ∪ B. Therefore, G∗ST contains a feasible solution to

FVMU with at most f ∗ST vertices from S, contradicting the optimality of G∗Ω. Therefore,

ω(S) ≤ f ∗ST . Now, assume that ω(S) < f ∗ST . Since G∗Ω is the union of paths connecting

each q ∈ Q to the single border vertex u ∈ B, G∗Ω is a connected graph which contains

vertices in Q∪{u} = U ; therefore, G∗Ω contains a Steiner tree solution with at most ω(S)

vertices from S, contradicting the optimality of G∗ST . Therefore, ω(S) ≥ f ∗ST . Since both

ω(S) ≤ f ∗ST and ω(S) ≥ f ∗ST hold, ω(S) = f ∗ST .

ω(S) = f ∗ST indicates that both FVMU and UVWSTP use the same number of ver-

tices. Furthermore, a solution to FVMU can be converted to a UVWSTP solution by

using a polynomial time spanning tree algorithm on G∗Ω. Thus, FVMU is NP-Hard. Since

FVMU is NP-Hard, the directed version, FVM, is NP-Hard. �

2.4.2.2. Heuristic Separation Algorithm. The heuristic separation algorithm is only

used at fractional solutions, as integer feasible solutions at nodes cannot contain violated

VDLEIs (see constraints (2.1j)). The heuristic separation algorithm identifies sets Sq (if

any) that lock q, for each critical vertex q ∈ Q. The algorithm simultaneously calculates

lower bounds for the optimal value of ω(Sq), denoted ω(Sq). Let V ∗ be the set of active

vertices at a fractional solution and δout(W ) be the set of outgoing arcs from vertex set

W ⊆ V . Algorithm 2.1 iteratively attempts to push flow from critical vertex q to available

adjacent vertices until the flow reaches a border vertex or identifies a lock. Let Vcon be

the set of already considered vertices, Vav be the set of available vertices at the beginning

of a loop and Vnew be the set of new available vertices identified in the loop.
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Algorithm 2.1 Heuristic Separation Algorithm for Fractional Solutions.

Sq ← ∅, ω(Sq)← 0, Vcon ← {q}, Vnew ← {q}
while Vnew 6= ∅ do
Vav ← Vnew, Vnew ← ∅
for each arc (i, j) ∈ δout(Vav) do

if j ∈ Vcon then
SKIP.

else if j ∈ B and j /∈ V ∗ then
STOP. q has a feasible connection.
return Sq ← ∅, ω(Sq)← 0

else
Vcon ← Vcon ∪ {j}
if j ∈ V ∗ then

Sq ← Sq ∪ {j}
else
Vnew ← Vnew ∪ {j}

end if
end if

end for
end while
return Sq, ω(Sq)← 1

In Algorithm 2.1, vertices adjacent to critical vertex q are searched to identify new

available vertices that can be used to form lock feasibility flow paths in the current

fractional solution. A vertex v is available if v /∈ V ∗ and unavailable otherwise. The

exploration procedure is repeated for newly identified available vertices until one of two

stopping conditions is satisfied: (1) the algorithm identifies an available vertex v ∈ B such

that a feasible q − b path exists or (2) the algorithm cannot identify any new available

vertices indicating that set Sq locks critical vertex q. When Sq locks critical vertex q,

at least one vertex in Sq must be inactive in a feasible solution; therefore, the algorithm

reports ω(Sq) = 1 as a valid lower bound for ω(Sq). If the algorithm terminates in

the second condition, the following valid inequality is added if violated by the fractional

solution:
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2
∑

(i,j)∈A(Sq)

xij +
∑

(i,j)∈δ(Sq)

xij ≤ 2(|Sq| − ω(Sq)).(2.16)

Proposition 2.6. Algorithm 2.1 is polynomial with O(|A||V |) time.

Proof of Proposition 2.6. In the worst case, the while loop is repeated for each

vertex v ∈ V and the algorithm treats each arc (i, j) ∈ A, thus the inner for loop is

repeated O(|A|) times. The operations within the for loop require searches over vertex

sets which are subsets of V , which can be completed in O(|V |) time, thus the algorithm

takes O(|A||V |) time for each critical vertex. �

Corollary 2.7. Since Algorithm 2.1 is repeated for each critical vertex q ∈ Q, the

separation procedure is completed in O(|Q||A||V |) time.

2.5. Numerical Experiments

We conduct three sets of numerical experiments. The first set compares formulations

LFATP-S, LFATP-R2 and LFATP-R3 on randomly generated LFATP instances along

with a discussion of the effects of VDLEIs. The second set compares these three formu-

lations under more generalized settings. The last set derives practical insights on course

design based on BACM, using a more detailed network. The experiments are conducted

on a computer with a 2.50 GHz CPU and 8 GB memory running under 64-bit Windows

10 operating system. MILP models are solved by using Gurobi 5.6 (Gurobi Optimization,

2013) in C# environment of Microsoft Visual Studio 2010. In all experiments, formula-

tions are given a 2-hour time limit.
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2.5.1. Formulation Comparisons on the LFATP Instances

In this section, we compare LFATP-S and reformulations on LFATP instances and discuss

the effectiveness of VDLEIs. We choose average medical distance minimization as our arc-

additive objective function for two reasons. First, with this objective, the LFATP finds

a tour whose arcs are closest to medical facilities (critical vertices) in the network while

satisfying visit, locking and length budget requirements which is critical in marathon

setting as runners seeking medical treatment may be transported to medical facilities.

Second, average medical distance is a challenging arc-additive objective function from

optimization perspective due to its clustered cost structure in the network and its trade-

off with locking restriction, which will be discussed shortly.

The experiments are carried out on two sets of 12 × 20 grid networks which consist

of 240 vertices and 896 arcs. The first set, M12Q4, contains |M | = 12 must-visit edges

and |Q| = 4 critical vertices, and the second, M24Q4 contains |M | = 24 must-visit edges

and |Q| = 4 critical vertices. Each arc has a unit length. The locations of edges in M

and vertices in Q are assigned randomly. Since having critical vertices near the center

of must-visit edges makes instances notably difficult or infeasible, endpoints of must-visit

edges are chosen at least 2 units away from the rectangular perimeter of grid networks

and critical vertices are chosen within 3 units from the perimeter. Instances with varying

difficulties are introduced when testing VDLEIs (see Section 2.5.1.2). The vertices on

perimeters of grid networks are considered border vertices. The objective contribution for

arc (i, j), cij, is calculated as follows:

cij =
mijdij
L

(i, j) ∈ A,(2.17)
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where mij is the rectilinear distance from the midpoint of arc (i, j) to the closest medical

facility (critical vertex). cij represents the length-weighted contribution of arc (i, j) to the

average medical distance. In this case, arcs near critical vertices are more preferable than

those that are far away, resulting in clusters of preferable arcs around critical vertices,

encouraging subtour formation near these vertices. Furthermore, the tour tries to pass

as close as possible by the critical vertices without locking them which creates a conflict

between the objective and the locking restriction. As the length budget increases, the

problem is more challenging as there is more room for subtour and lock formations. We

consider three tour length restrictions where the length of a feasible tour must be within

[95%, 110%], [110%, 125%] and [125%, 140%] of the minimum tour length (calculated by

the tour length minimization problem, see Section 2.5.2.1). Restriction [95%, 110%] is

effectively [100%, 110%] since the length of a feasible tour cannot be less than minimum

tour length; however, 95% is provided as a weak lower bound on the length budget.

2.5.1.1. Reformulation Analysis. Table 2.1 provides a summary of the results. The

first five columns report the average values over 10 instances of the corresponding network.

These columns include counts on subtour elimination inequalities (Sbtr) and VDLEIs,

time spent (in seconds) generating the cuts (CutGen) and solving the formulation (Total),

and the optimality gap (Gap). The last three columns provide a breakdown of 10 instances

where Opt, Feas and NoSn denote the number of instances for which an optimal solution

is found (Opt), a feasible solution is found but not proven to be optimal (Feas) and no

solution is found (NoSn), respectively. Table 2.1 does not include 2-matching inequality

counts as these inequalities rarely identified in our experiments.
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Table 2.1. Results for LFATP instances.

Setting Formulation
Count Duration (s) Performance

Sbtr VDLEI CutGen Total Gap (%) Opt Feas NoSn

M12Q4
[95% - 110%]

LFATP-R2 23 0 4 9 0.0 10 0 0
LFATP-R3 27 1 4 8 0.0 10 0 0
LFATP-S 3369 39 555 1727 0.5 9 1 0

M12Q4
[110% - 125%]

LFATP-R2 105 8 16 25 0.0 10 0 0
LFATP-R3 107 11 18 26 0.0 10 0 0
LFATP-S 3209 70 360 1349 0.5 9 1 0

M12Q4
[125% - 140%]

LFATP-R2 411 67 63 140 0.0 10 0 0
LFATP-R3 496 58 69 227 0.0 10 0 0
LFATP-S 4632 179 684 2459 1.0 7 3 0

M24Q4
[95% - 110%]

LFATP-R2 294 6 51 153 0.0 10 0 0
LFATP-R3 214 5 32 147 0.0 10 0 0
LFATP-S 2125 20 313 955 0.5 9 1 0

M24Q4
[110% - 125%]

LFATP-R2 1053 36 223 958 0.0 10 0 0
LFATP-R3 1108 37 221 1831 0.1 8 2 0
LFATP-S 3460 118 506 1591 0.7 9 1 0

M24Q4
[125% - 140%]

LFATP-R2 3100 274 826 5192 0.6 4 6 0
LFATP-R3 2123 182 428 4198 0.4 5 5 0
LFATP-S 7598 400 1203 5474 1.1 5 5 0

In network M12Q4 experiments, reformulations are significantly faster, and require

fewer subtour elimination inequalities and VDLEIs compared to LFATP-S. Each refor-

mulation solves all instances to optimality whereas only 83% are solved optimally by

LFATP-S. In network M24Q4 experiments, reformulations outperform LFATP-S when

length budget is [95%, 110%]. For higher length budgets, reformulations still yield lower

optimality gaps and fewer valid inequalities than LFATP-S ; however, solution times are

closer as more instances reach the time limit of 2 hours. The number of instances solved

to optimality by LFATP-R2, LFATP-R3 and LFATP-S are 24, 23 and 23 out of 30, re-

spectively and approximately 10% of VDLEIs are binding at these solutions. The results

of M24Q4 indicate that reformulations start to lose their effectiveness when the length
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budget is high. This is an expected result as the portion consumed by reformulations

decreases with increasing length budget.

2.5.1.2. Effects of using VDLEIs. In Section 2.5.1.1, formulations are tested on ran-

domly generated LFATP instances where the locations of critical vertices are within 3

units from the perimeter. In this section, we vary restrictions on the locations of crit-

ical vertices to test the effectiveness of VDLEIs. We generate five sets of instances as

follows: For Set-γ the critical vertices must be within γ units of the perimeter where

γ ∈ {1, 2, 3, 4, 5}. As γ increases, instances become more difficult to solve as critical

facilities are allowed to be closer to the center. Each set contains 10 instances with 12

must-visit edges and 4 critical vertices.

Table 2.2. Solution time averages (in seconds) for VDLEI experiments.

Reformulation Budget VDLEI Set-1 Set-2 Set-3 Set-4 Set-5

LFATP-R2

[-5% - 10%]
N 11 12 24 30 756
Y 13 13 14 39 776

[10% - 25%]
N 75 27 46 123 805
Y 57 39 44 126 791

[25% - 40%]
N 191 805 188 683 1672
Y 365 586 299 568 1563

Average
N 93 281 86 279 1078
Y 145 213 119 244 1043

LFATP-R3

[-5% - 10%]
N 6 11 6 48 744
Y 6 13 7 66 754

[10% - 25%]
N 23 46 28 207 658
Y 95 66 37 108 775

[25% - 40%]
N 204 1151 1026 1035 1452
Y 183 355 434 846 1236

Average
N 77 403 353 430 952
Y 95 145 159 340 922
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We use reformulations to test the effectiveness of VDLEIs as LFATP-S is found to

be underperforming in Section 2.5.1.1. Table 2.2 provides average solution times (in

seconds) for each set of instances and length-budget pair. As expected, solution times

tend to increase from Set-1 to Set-5 and from low length budget to high. VDLEI column

specifies whether these inequalities are used (Y ) or not (N ). Between N and Y rows of

the same setting, better solution times are written in bold. Average multirows provide

reformulation averages of all instances solved with and without VDLEIs for each set. As

seen in Table 2.2, it is not trivial to claim that using VDLEIs improves or deteriorates

solution procedure. Looking at the solution times in detail, when we use VDLEIs we

either have a significant improvement in the solution time or a slight deterioration. In

these experiments, there are 26 instances with a solution time of more than 20 minutes.

Among these 26 instances, solution times of 13 instances can be improved more than 25%

by using VDLEIs whereas the solution times of only 3 instances can be improved more

than 25% without using VDLEIs. For the remaining 10 instances the difference between

using and not using VDLEIs is not significant.

In summary, the experiments in this section indicate that VDLEIs are effective in

many instances, especially in more challenging ones. Even though using VDLEIs increases

solution times of some instances slightly, benefits outweigh such drawbacks.

2.5.2. Formulation Comparisons on Other ARPs

This section provides numerical experiments that compare formulations LFATP-S, LFATP-

R2 and LFATP-R3 on two additional problems. The first problem is a tour length min-

imization problem where the length budget constraints are removed. The aim is to find
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a minimum length tour which satisfies visit and locking requirements. In this setting,

we compare formulations when the lower and upper bounds of length budget are not ex-

plicitly stated and come implicitly from the objective function. The second problem is a

random coefficient minimization problem where the additive coefficients of the objective

function are assigned randomly and the aim is to find a minimum cost tour which satisfies

visit and length requirements while ignoring locking. In this setting, we compare formula-

tions when solving a generic tour finding problem with respect to various length budgets.

These two problems are less structured compared to the LFATP and capture a majority

of arc routing problems with budget and visit requirements, potentially generalizing the

results to those problems.

For these runs, we introduce two additional sets of 12 × 20 grid networks with no

critical vertices, M12Q0 and M24Q0, which consist of |M | = 12 and |M | = 24 must-visit

edges, respectively.

2.5.2.1. Tour Length Minimization Problem. In this problem, we remove con-

straints (2.1c) and (2.2g) from LFATP-S and reformulations, respectively. Each arc has

a unit length and the aim is to find the minimum length tour which visits all edges in M .

All networks are used in these experiments and Table 2.3 summarizes the results.

In network M12Q0, M24Q0 and M12Q4 experiments, reformulations significantly

outperform LFATP-S both in solution times and in the number of subtour elimination

inequalities needed to converge. M12Q4 and M24Q4 are relatively easier to solve in this

problem setting since must-visit edges are clustered around the center and the objective

is to minimize the tour length. LFATP-S becomes competitive against reformulations in

the instances of M24Q4 ; however, when all instances are considered, both reformulations
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Table 2.3. Results for tour length minimization problem.

Setting Formulation
Count Duration (s) Performance

Sbtr VDLEI CutGen Total Gap (%) Opt Feas NoSn

M12Q0
LFATP-R2 369 - 23 40 0.0 10 0 0
LFATP-R3 349 - 20 59 0.0 10 0 0
LFATP-S 10951 - 1480 4949 9.4 4 6 0

M24Q0
LFATP-R2 609 - 68 227 0.0 10 0 0
LFATP-R3 833 - 57 432 0.0 10 0 0
LFATP-S 8813 - 988 4284 3.3 5 5 0

M12Q4
LFATP-R2 59 1 5 9 0.0 10 0 0
LFATP-R3 100 2 11 21 0.0 10 0 0
LFATP-S 2037 21 289 905 0.4 9 1 0

M24Q4
LFATP-R2 509 23 53 162 0.0 10 0 0
LFATP-R3 399 14 39 223 0.0 10 0 0
LFATP-S 1049 24 72 166 0.0 10 0 0

converge to optimal solutions in 40 out of 40 instances whereas this number reduces to 28

out of 40 for LFATP-S with varying optimality gaps. Between the reformulations, LFATP-

R2 performs slightly better than LFATP-R3, implying that using two farthest edges is

sufficient in consuming the length budget. These results suggest that reformulations are

extremely effective in reducing the solution efforts even in the absence of explicit length

budget constraints.

2.5.2.2. Random Coefficient Minimization Problem. In random coefficient objec-

tive, each arc has a random objective contribution between 0 and 1. The aim is to

minimize the random objective contribution while visiting all edges in M and satisfying

the tour length restrictions. In this problem, we ignore locking restrictions to test the

effect of budget constraints on a more generic routing setting; therefore, the experiments

are carried out on networks without critical vertices, M12Q0 and M24Q0. The same tour

length restrictions from Section 2.5.1 are used. Table 2.4 summarizes the results. Since
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locking restrictions are not considered, VDLEIs are not used and Table 2.4 does not have

the corresponding VDLEI column.

Table 2.4. Results for random coefficient minimization problem.

Setting Formulation
Count Duration (s) Performance
Sbtr CutGen Total Gap (%) Opt Feas NoSn

M12Q0
[95% - 110%]

LFATP-R2 123 14 35 0.0 10 0 0
LFATP-R3 162 33 83 0.0 10 0 0
LFATP-S 8593 1131 3633 1.7 5 3 2

M12Q0
[110% - 125%]

LFATP-R2 198 18 60 0.0 10 0 0
LFATP-R3 153 14 47 0.0 10 0 0
LFATP-S 5695 835 2644 1.2 7 2 1

M12Q0
[125% - 140%]

LFATP-R2 224 18 59 0.0 10 0 0
LFATP-R3 250 21 120 0.0 10 0 0
LFATP-S 3771 512 1889 1.1 8 2 0

M24Q0
[95% - 110%]

LFATP-R2 193 35 119 0.0 10 0 0
LFATP-R3 305 70 501 0.0 10 0 0
LFATP-S 3293 901 2407 1.2 7 3 0

M24Q0
[110% - 125%]

LFATP-R2 364 64 261 0.0 10 0 0
LFATP-R3 662 97 730 0.0 10 0 0
LFATP-S 3068 723 2167 0.7 8 2 0

M24Q0
[125% - 140%]

LFATP-R2 313 49 232 0.0 10 0 0
LFATP-R3 580 73 552 0.0 10 0 0
LFATP-S 3156 544 1816 0.5 8 2 0

Unsolved cases are not considered when calculating the average gaps.

Similar to the results in the tour length minimization problem, reformulations signif-

icantly outperform LFATP-S in the number of subtour elimination inequalities needed

and in solution times. Both reformulations converge to optimal solutions in 60 out of

60 instances, whereas this number reduces to 43 out of 60 for LFATP-S. Furthermore,

LFATP-S fails to find a feasible solution within 2-hour time limit in 3 of the remaining

17 instances. Between reformulations, LFATP-R2 performs better than LFATP-R3. As
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the length budget increases, the difference between solution times of LFATP-S and re-

formulations decreases; however, reformulations are still significantly better compared to

LFATP-S.

In summary, reformulations effectively reduce solution times and subtour formations

when compared to LFATP-S under all problem settings tested here which is promising as

these settings cover a broad range of arc routing variants with length budget and locking

restrictions.

2.5.3. Case Study - BACM

This section provides details regarding the application of the LFATP to BACM with the

aim of minimizing average medical distance. The underlying network is generated within

City of Chicago street centerline map to include all streets whose width is greater than 30

feet (City of Chicago, 2013). The network is reduced in size by eliminating dead-ends and

merging ‘two-neighbor’ intersections. If a vertex j has only two incident vertices i and k,

then arcs (i, j) and (j, k) can be merged to arc (i, k) with cik = cij+cjk and dik = dij+djk.

The resulting graph consists of 435 vertices and 1492 arcs. The edges in M are specified

by the race organizers of BACM. The organizers identify 7 such street segments. Some

segments correspond to a sequence of multiple edges in the underlying network, in which

case, the edges are merged into a single edge. The network includes 17 critical vertices

which represent the hospitals in the region. The vertices on the perimeter of the network

are considered border vertices. Figure 2.4a shows the locations of the identified street

segments in M and the hospitals in the network (Google Maps, 2015). Two hospitals are

outside the figure boundaries. The objective contribution of each arc is calculated with
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equation (2.17). L is set to 26.22 miles plus an additional distance for after race events

and ε is set to 2000 feet.

(a) Set M and hospitals. (b) Current BACM course. (c) The best LFATP result.

Figure 2.4. Locations of must-visit edges and hospitals, original course and
the best LFATP solution.

The LFATP is solved by LFATP-R2 formulation. Using VDLEIs we obtain a solution

within 1.31% optimality within 2-hour time limit. The original course and the best LFATP

solution are shown in Figure 2.4b and 2.4c, respectively. Thin lines in Figure 2.4c represent

the street segments common to both courses; thicker lines show the deviations of the best

course from the original. The average distance from a point on the course to the closest

medical facility is 5927.5 feet for the original course and the best solution found by LFATP

reduces this distance to 4852.7 feet. This translates to a travel distance reduction of two

city blocks in the city of Chicago (Chicago uses double block size; therefore, the reduction
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is approximately four ‘typical’ city blocks). According to BACM medical director, Dr.

George Chiampas, ‘While we know on scene management is critical, we also know during

the Boston Marathon bombing that rapid transports to local trauma centers led to lives

being saved’. Therefore, such a reduction is critical for course design. Even though this

reduction has significant effects, the resulting tour deviates from the original one, bringing

noticeable operational challenges at the application level. The question then arises if we

can get significant reductions by changing the course in a minimal way. For this reason,

the LFATP is applied to BACM with a similarity constraint. This constraint ensures

that at least a specified percent of the resulting course is the same as the current course.

Specifically, K% similarity is defined as follows: The total length of the common arcs

must be at least K% of the original course length. The experiments are carried out under

0, 10, 20, ..., 90% similarity levels. The resulting problems are again solved by LFATP-R2

with a time limit of 2 hours.

Table 2.5. Results with different similarity requirements.

Similarity Duration Gap Best LB Improvement
(%) (s) (%) (feet) (feet) (%)

100 2.5 0.0 5927.5 5927.5 0.0
90 714.3 0.0 5620.3 5620.3 5.2
80 531.3 0.0 5295.1 5295.1 10.7
70 TILIM 1.1 5140.8 5085.0 13.3
60 TILIM 0.9 4963.8 4920.3 16.3
50 TILIM 1.0 4855.2 4805.5 18.1
40 TILIM 1.2 4852.7 4792.2 18.1
30 TILIM 1.3 4852.7 4791.5 18.1
20 TILIM 1.4 4852.7 4786.2 18.1
10 TILIM 1.4 4852.7 4785.1 18.1
0 TILIM 1.3 4852.7 4789.8 18.1

Table 2.5 summarizes time spent by the solution approach along with the gap, the best

objective function value and the lower bound before termination for each similarity level.
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(a) 90% similarity
5.2% decrease.

(b) 70% similarity
13.3% decrease.

(c) 60% similarity
16.3% decrease.

(d) 0− 40% similarity
18.1% decrease.

Figure 2.5. Tours with different similarity requirements.

The last column shows the improvement over the current course. Figure 2.5 provides

plots of the best courses on Google Maps (2015) for similarity levels 90%, 70%, 60% and

0− 40%.

The average distance from a point in the current course to the nearest medical fa-

cility is 5927.5 feet. As expected, objective function values decrease as the similarity

requirement is relaxed. The best objective value of 4852.7 is observed when the similarity

requirement is below 40%, indicating that the average distance to the nearest medical

facility can be decreased by 18.1%. Considering the lowest lower bound among the sim-

ilarity levels that are not solved to optimality, the maximum improvement that we can

achieve is only slightly higher at 19.3%. The largest improvements are obtained around

90 − 70% similarity levels, indicating that changing 10 − 30% of the course is sufficient
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to obtain a large portion of the potential improvement. For instance, the objective func-

tion value decreases by 13.3% with 70% similarity. As seen in Figure 2.5, the courses at

similarity levels 90− 70% only increase the number of arcs that are used near a medical

district in the southwest part and expand to north in order to get closer to the hospitals.

On the other hand, the course shape changes dramatically around 60% by expanding

towards west to reach the hospitals in that region. Being able to obtain significant bene-

fits without changing the streets and overall structure significantly is an important result

from practical perspective.

2.5.4. Summary

The results of the experiments can be summarized from two different perspectives. From

methodological side, standard approaches may fail to solve arc routing problems when

there is a lower bound on tour length or when the cost structure encourages subtour

formation. In such cases, path-based reformulations perform significantly better since

they consume a large portion of length budget and reduce the room for subtour formation.

These reformulations make use of visit requirements and length/budget restrictions and,

therefore, offer promise to many ARPs with similar requirements as suggested by our

numerical experiments. Furthermore, the vertex degree lock elimination inequalities lead

to improvements in solution times. From an application side, the LFATP can be used

to design new courses and to improve existing courses while satisfying similarity levels.

Our results show that significant improvements can be achieved even with relatively small

changes.
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2.6. Final Remarks

As this study represents the first step towards a comprehensive modeling framework

for course design, there are several lines of future research. The LFATP is valid for any

arc-additive objective function such as average width of the course and number/intensity

of surveillance cameras along the course. However, the quality of a course is a com-

posite of multiple factors; future work focuses on generalizing the LFATP and solution

approaches to incorporate objective functions that are not arc-additive. Many objective

functions can be classified as either time- or sequence-dependent. An objective function

is time-dependent if the objective coefficients of the decision variables vary over time. For

example, decreasing medical distance at later stages of the race can be more important

compared to early stages as the medical incident density increases over time (Kim et al.,

2012). Similarly, an objective function is sequence-dependent if the objective contribu-

tion of each decision variable depends on whether another set of variables is used in the

solution. Examples of sequence-dependent objective functions can be number of turns

and incline change along the course. These objectives are more complex than arc-additive

counterparts as time tracking and sequence identification bring an additional level of dif-

ficulty in terms of modeling and solving the problem. Extensions to these more complex

objectives are discussed in Chapter 4.

Even though 2-edge and 3-edge subsets of M reduce solution efforts significantly for

arc-additive objective functions, there may be instances which require more detailed visit

orders with larger number of edges which can be handled by the DP-based B&C approach.

Currently, the DP-based B&C approach cannot identify a feasible solution until it reaches

the deepest branching level; therefore, new tour finding heuristics which are capable of
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finding tours respecting a given visit order is another promising future direction to improve

the quality of solutions and solution times of the DP-based B&C approach.
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CHAPTER 3

An Interactive Method for Multiobjective Optimization using

Weight Diversification

As discussed in Chapter 1 and 2, marathon course design involves multiple objectives

as the course is a composite of multiple factors related to safety, health and experience.

Standard approaches for multiobjective problems require decision makers (DMs) to assess

the importance of each objective to find a compromise solution. In course design, a

correct assessment of objectives can be extremely difficult since the underlying objectives

significantly differ from standard tour finding objectives that minimize travel costs or

maximize collected profits.

Similar to marathon course design, many optimization problems involve multiple ob-

jectives which may lead to conflicting solution recommendations with no unique solution

which optimizes all objectives simultaneously. Consequently, it is only possible to iden-

tify a set of nondominated (efficient, Pareto) solutions (Miettinen, 2008) and the DM

chooses a most preferred solution among the nondominated solutions. A straightforward

approach to achieve this goal is to provide all nondominated solutions to the DM and let

the DM choose. This approach is often not possible for two reasons: (i) generating all

nondominated solutions is generally impractical and (ii) DMs prefer to evaluate a small

number of solutions instead of the entire nondominated solution set. This chapter intro-

duces an interactive weight region-based approach (IWRA) to address these challenges.
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The algorithms proposed throughout the chapter are not specific to marathon course

design as they are developed for general multiobjective linear programs (MOLPs) and

multiobjective integer programs (MOIPs).

The weighted sum problem (WSP) is a commonly used problem in multiobjective

optimization. It assigns a weight to each objective, depending on its importance, and

optimizes the resulting weighted sum objective (Chankong and Haimes, 1983). WSP

requires the optimal weight information of the DM. Many early studies focus on rating

and weighting methods to elicit the DM’s weight vector. Examples include the multi-

attribute rating technique (Edwards, 1977), the point allocation approach (Edwards and

von Winterfeldt, 1986), swing weighting (Edwards and von Winterfeldt, 1986), trade-off

weighting (Keeney and Raiffa, 1993) and the analytic hierarchy process (Saaty, 1990).

In many real-life applications, DMs face difficult-to-quantify objective trade-offs. In such

cases, the weights provided by the DMs may not represent true priorities. Interactive

approaches circumvent this problem.

Exisiting work in multiobjective optimization methods is divided into two categories

based on the role of the DM during the solution process: noninteractive methods and in-

teractive methods, see Figure 3.1. In noninteractive methods, the DM either does not take

part in the solution process (no-preference methods) or provides preference information

before (a priori methods) or after (a posteriori methods) the solution process (Miettinen,

2008). While the DM is able to provide her preference information to some extent in a

priori and a posteriori methods, these methods do not allow preferential updates during

the solution process. These methods require a global understanding of the specifications

and trade-offs for the underlying problem, which can be challenging.
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DM provides
preference information

Generate nondominated
solution(s) accordingly

TERMINATE

(a) noninteractive:
a priori method

Generate diverse
nondominated solutions

DM chooses from
provided solutions

TERMINATE

(b) noninteractive:
a posteriori method

Generate a set of
nondominated solutions

DM compares
provided solutions

Update preference
information

Stopping
criteria?

Generate new
nondominated

solutions according to
preference information

TERMINATE

no

yes

(c) interactive method

6

Figure 3.1. Schematic representation of noninteractive (a) & (b), and in-
teractive (c) methods for multiobjective optimization problems.

Interactive methods iterate between a comparison phase and a solution generation

phase to collect and refine preference information (Miettinen et al., 2008). In the liter-

ature, comparison phase and solution generation phase are also referred to as decision

phase and optimization stage, respectively. In the comparison phase, the DM provides

local preference information by answering questions regarding provided nondominated so-

lutions. In the solution generation phase, new solutions are generated satisfying existing

preference information. This process is repeated until a satisfactory solution is found or

the DM chooses to terminate the process (see Figure 3.1c). The DM controls the pro-

cess, guiding towards the most preferred solutions with local preference information. A

successful interactive approach should generate solutions that enable the DM to clearly

perceive the trade-offs among solutions. An ideal approach should also limit the number

of interactions with the DM.
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This study introduces an Interactive Weight Region-Based Approach (IWRA) to find

a most preferred solution of a DM for MOLPs and MOIPs. At each iteration of IWRA,

the DM is provided a new nondominated solution. The DM either compares this new

solution with the current most preferred solution or inserts it in a sorted list of existing

solutions based on individual preferences. This comparison/insertion step defines a set of

constraints on the DM’s optimal weight region. When generating the new nondominated

solution for the decision maker, IWRA first finds a most diverse weight vector in the

remaining weight region via a mixed integer linear programming (MILP), then solves a

WSP for this vector to obtain a new nondominated solution.

The contributions of this study are threefold. First, different from existing approaches,

we propose a weight diversification model which is capable of exploring the entire weight

region. IWRA uses this model to identify the next weight vector and the corresponding

nondominated solution. Obtained this way, the solutions are potentially diverse, making

comparisons easier for the DM. Second, we provide two finitely converging algorithms

based on WSP, IWRA-MOLP and IWRA-MOIP, for MOLPs and MOIPs respectively.

Both algorithms terminate after finding a most preferred solution. With simulated exper-

iments, we show that the algorithms find a most preferred solution with a reasonably small

number of comparisons. For example, typically the DM’s most preferred solution can be

found after exploring just 35-45 solutions in 10-objective linear programming instances

with more than a half million nondominated solutions and 20-30 solutions in 5-objective

integer programming instances with more than thirty thousand nondominated solutions.

We empirically show that IWRA-MOLP is computationally more efficient than the Zionts-

Wallenius (ZW) method (Zionts and Wallenius, 1976) in terms of the required number of
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solutions and comparisons to converge. Similar results are shown for IWRA-MOIP when

compared with the cone-based method of Lokman et al. (2016) for the tested problems

that use linear weighted sum. Furthermore, IWRA provides reliable results when the

DM makes imperfect comparisons yielding incorrect preference information. One issue

with WSP-based approaches is WSP’s inability to generate unsupported nondominated

solutions in nonconvex problems such as integer programs. Therefore, we extend IWRA

to weighted Tchebycheff problem (WTP) setting and introduce IWRA-WTP to handle

instances with unsupported nondominated solutions.

The chapter is organized as follows: Section 3.1 summarizes related work on interactive

approaches with a focus on elicitation of the DM’s preference information and Section 3.2

provides problem setting details. Section 3.3 introduces IWRA, and Sections 3.4 and 3.5

introduce IWRA-MOLP and IWRA-MOIP algorithms, respectively. Section 3.6 presents

a detailed computational study. Section 3.7 extends IWRA to WTP setting. Section 3.8

concludes the study.

3.1. Literature Review

Toubia et al. (2003) introduce an interactive approach for multiobjective optimization

which iteratively reduces the polyhedral region representing additive weights. The DM

compares a pair of solutions x and y, and provides a rating a, which represents choice

strength. Assuming that there is no response error and the DM prefers x to y, this

comparison defines an equality constraint, F (x)Tu − F (y)Tu = a, on the corresponding

polyhedral region U , where F is the vector representing the objective function values and

u ∈ U . Toubia et al. (2004) extend this idea for the choice-based setting where the DM
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only expresses preference without specifying rating information. Prefering x to y defines

an inequality constraint, F (x)Tu − F (y)Tu ≥ 0. These inequalities are used in the early

interactive studies of Zionts and Wallenius (1976) and Zionts and Wallenius (1983) which

solve MOLPs under linear and nonlinear value functions, respectively. The studies of

Toubia et al. (2007) and Bertsimas and O’Hair (2013) extend the ideas of Toubia et al.

(2003) further to handle response errors and inconsistencies.

Another way of reflecting the solution comparisons in the weight region is to focus

on the neighborhoods around weight vectors that correspond to DM’s most preferred

solutions (see Steuer and Choo, 1983; Steuer et al., 1993; Köksalan and Karahan, 2010;

Hassanzadeh et al., 2014). Underlying weight regions in these studies consist of weight

vectors for WTP instead of WSP. In a related study, Hu and Mehrotra (2012) develop

multicriteria robust weighted sum approach to minimize the worst-case weighted sum of

objectives over a given weight region.

The quality of the preference information obtained during the comparison phase

strongly depends on the selection of solution pairs (or sets) in the solution generation

phase. Comparison of quality solution pairs reveals more information on the weight re-

gion providing faster convergence with fewer iterations. Zionts and Wallenius (1976) and

Zionts and Wallenius (1983) use adjacent nondominated solution pairs, ensuring that the

difference between the objective function values are above a threshold. This can be chal-

lenging due to potential similarity of adjacent solutions. Toubia et al. (2003, 2004) and

Bertsimas and O’Hair (2013) find solution pairs whose comparison yields a hyperplane

that passes through or near analytic center of the remaining weight region. In Toubia et al.

(2003), the solution pair yields a hyperplane that is almost perpendicular to the longest
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axis of the bounding hyper-ellipsoid around the remaining region. This idea is extended in

Toubia et al. (2004) to generate k solution pairs using the longest k axes of the bounding

hyper-ellipsoid: They identify the longest k axes, obtain 2k weight vectors by taking the

intersection of each axis and the weight polytope, and solve WSP with those weights to

generate solution pairs. The corresponding hyperplanes pass approximately through the

analytic center. In their setting, the objective function values are clearly determined as

they directly come from solution features whose levels are known a priori; therefore, those

hyperplanes may not reduce the weight region efficiently in a more general multiobjective

setting. Bertsimas and O’Hair (2013) develop a similar approach for problems with a

fixed number of known solutions: Instead of selecting a pair with a nearly perpendicular

hyperplane to the longest axis, they choose the pair whose hyperplane is closest to the

analytic center. Although this approach is promising in reducing the polytope efficiently,

direct application to general multiobjective optimization problems is challenging for two

reasons: (i) nondominated solutions are not known a priori and (ii) all possible solution

pairs must be enumerated.

Another way of obtaining high quality information is to provide diversified solutions

to the DM from different parts of the solution space. Many studies focus on generating

diversified nondominated solutions by using various measures of cardinality, region cov-

erage and solution spacing (see Faulkenberg and Wiecek (2010) for a detailed review).

A common diversification approach is the filtering approach (Steuer and Harris, 1980)

which filters similar solutions from a large set of nondominated solutions, yielding a small

subset of diverse solutions. In many cases, generating large sets of nondominated so-

lutions is impractical, making the filtering approach inefficient. In addition to filtering
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approaches, Das and Dennis (1998), Messac and Mattson (2002), Kim and De Weck (2006)

and Masin and Bukchin (2008) develop various approaches with the aim of generating a

well-distributed set of nondominated solutions in the objective space. Note that the aim

of our study is neither to generate the entire efficient frontier nor a well-distributed rep-

resentation of it. Rather, we focus on finding nondominated solutions whose comparison

reveals more information on the DM’s preferences, reducing the remaining weight region

faster. Diversification efforts are centered in the remaining weight region instead of the

solution or objective spaces commonly used in the literature. We refer the reader to An-

tunes et al. (2016) and Alves and Cĺımaco (2007) for reviews of interactive approaches on

MOLPs and MOIPs, respectively.

IWRA finds the most diverse weight vector in the remaining weight region to generate

a new nondominated solution. As discussed in Das and Dennis (1997), generating evenly

distributed weight vectors in the weight region does not necessarily yield well-distributed

nondominated solutions. Therefore, instead of finding the most diverse weight vector

w.r.t. explored weight vectors, we find it w.r.t. weight sets of explored nondominated

solutions which contain all weight vectors for which the nondominated solution is optimal

to the corresponding WSP. This way, the optimal bases of WSP in previous iterations

cannot be optimal in subsequent iterations, providing a finite convergence to algorithms

and a methodology to explore all nondominated solutions. For MOLPs, these weight

sets are obtained using optimal bases; for MOIPs, an approximation approach is used

since the bases are not trivially available. To the best of our knowledge, diversification

w.r.t. weight sets has not been considered in the literature. In this study, we show this
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approach has significant value in limiting the number of solutions explored and in finding

high quality solutions even when the DM is inconsistent in comparisons.

3.2. Problem Setting

Consider the following multiobjective optimization problem (MOP) with k objectives:

max
x∈X

F (x) = [f1(x), f2(x), ..., fk(x)]T ,(MOP)

where X ⊂ Rn is the feasible solution set and F : Rn → Rk represents the objective

functions.

Definition 3.1. A solution x∗ ∈ X is a strict nondominated solution if there does not

exist x̄ ∈ X such that fi(x̄) ≥ fi(x
∗) for all i ∈ 1, 2, ..., k with at least one strict inequality.

Definition 3.2. A solution x∗ ∈ X is a weak nondominated solution if there does not

exist x̄ ∈ X such that fi(x̄) > fi(x
∗) for all i ∈ 1, 2, ..., k.

We consider MOLPs and MOIPs with the assumption that the problems are bounded,

i.e., trade-offs between the objectives are finite. This is a reasonable assumption since

most practical problems are intrinsically bounded. For both settings, F (x) = CTx where

C is a n×k real valued matrix. The ith column of C matrix, ci, represents the coefficients

of ith objective function, i.e., fi(x) = cTi x. The feasible solution set of an MOLP is defined

by a linear system of equalities Ax = b and inequalities x ≥ 0, where A is an m× n real-

valued matrix and b is an m-dimensional real-valued vector. The feasible solution set of

an MOIP is defined with an additional restriction x ∈ Z.
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3.2.1. The Weighted Sum Problem

Assuming that the DM is interested in optimizing a weighted combination of objectives,

all nondominated solutions of interest can be generated by the following weighted sum

problem (WSP):

g(w) = max
x∈X

wTF (x) = max
x∈X

k∑
i=1

wifi(x),(WSP)

where w is a k-dimensional vector in weight region W := {w|∑k
i=1wi = 1; wi ≥ 0,

i = 1, 2, ..., k} or its polyhedral subset.

Proposition 3.3. (Geoffrion, 1968) Letting x∗w be an optimal solution to WSP for

a given weight vector w ∈ W, x∗w is a nondominated solution when w is strictly positive

(wi > 0, i = 1, 2, ..., k).

Note that x∗w can be a weak nondominated solution when w is not strictly positive.

WSP can generate all nondominated solutions when the underlying problem is convex

as in MOLPs; it overlooks unsupported nondominated solutions for nonconvex problems

such as MOIPs. A nondominated solution x∗ is unsupported if there does not exist any

w ∈ W such that the optimal solution of WSP is x∗. We first assume that unsupported

nondominated solutions are not of interest to the DM, then relax this assumption in

Section 3.7. We also assume that WSP is solved by the simplex method for MOLPs; i.e,

the bases corresponding to identified nondominated solutions are available.
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3.2.2. Weight Sets of Nondominated Solutions

A nondominated solution can be optimal for multiple weight vectors. Let weight set

Wx∗ be the set of weight vectors such that nondominated solution x∗ is optimal to the

corresponding WSP:

Wx∗ = {w ∈ W | x∗ ∈ argmax
x∈X

wTF (x)}.(3.1)

The weight set of a nondominated solution is a crucial component in IWRA to diversify

the weight region. Next, we show the convexity of weight sets independent of problem

setting and then prove that these sets are polyhedral for MOLPs and MOIPs.

Proposition 3.4. Wx∗, as defined in (3.1), is a convex set for a nondominated solution

x∗.

Proof of Proposition 3.4. Consider w1, w2 ∈ Wx∗ and assume that there exists

a λ ∈ [0, 1] such that (λw1 + (1− λ)w2) /∈ Wx∗ . For g(λw1 + (1− λ)w2), there must exist

a nondominated solution x̄ such that:

(λw1 + (1− λ)w2)TF (x̄) > (λw1 + (1− λ)w2)TF (x∗),

which is a contradiction since wT1 F (x∗) ≥ wT1 F (x̄) and wT2 F (x∗) ≥ wT2 F (x̄), thus Wx∗ is

a convex set. �

Proposition 3.5. Let x∗ be a nondominated extreme point solution of an MOLP where

X := {Ax = b, x ≥ 0}. Then, Wx∗, as defined in (3.1), is a polytope for a nondominated

solution x∗.
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Proof of Proposition 3.5. For MOLPs, nondominated solution x∗ is an extreme

point of polyhedron X for any w ∈ W . We first assume that x∗ has a unique basis, then

generalize the proof for solutions with multiple bases. Assuming that x∗ has a unique

basis Bx∗ , Wx∗ can be obtained from the dual of WSP, D-WSP:

min πb(D-WSP)

s.t. πA ≥ wTCT .

where π is an m-dimensional row vector representing the dual variables. Letting CT
Bx∗

be the submatrix formed from the objective coefficient columns corresponding to basic

variables from CT , the dual optimal solution π∗ can be written as π∗ = wTCT
Bx∗B

−1
x∗ . From

duality, x∗ is optimal and Bx∗ is the corresponding optimal basis if D-WSP is feasible for

π∗:

π∗A ≥ wTCT ,

wTCT
Bx∗B

−1
x∗ A ≥ wTCT ,

wT (CT − CT
Bx∗B

−1
x∗ A) ≤ 0,(3.2)

which define inequalities for weight vectors for which x∗ is optimal. Similar inequalities

are derived by using reduced cost and duality arguments in Zeleny (1974) and Isermann

(1974). Constraints (3.2) along with
∑k

i=1wi = 1 and w ≥ 0 specify weight set Wx∗ ⊆ W ,

indicating thatWx∗ is a polytope for MOLPs when x∗ has a unique basis. If x∗ has multiple

bases, Wx∗ is the union of finitely many polytopes representing the weight regions for each
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basis. From Proposition 3.4 we know that this union is convex which implies that it is

a polytope (see Theorem 3 and Remark 1 of Bemporad et al. (2001) for details). This

indicates that Wx∗ is a polytope for MOLPs when x∗ has multiple bases, which completes

the proof. �

Proposition 3.6. Let x∗ be a supported nondominated solution of an MOIP where

X := {Ax = b, x ∈ Z+}. Then, Wx∗, as defined in (3.1), is a polytope for a nondominated

solution x∗.

Proof of Proposition 3.6. Ignoring unsupported nondominated solutions, the fea-

sible set of solutions of any MOIP, X = {Ax = b, x ∈ Z+}, can be replaced with an equiv-

alent linear programming formulation, X̃ = {Ãx = b̃, x ≥ 0} (Wolsey and Nemhauser,

1999), by transforming the MOIP to its integer hull representation as an equivalent MOLP.

Therefore, Proposition 3.5 holds for MOIPs. �

3.3. Interactive Weight Region-Based Approach

IWRA is an iterative algorithm which alternates between comparison phase (Section

3.3.1) and solution generation phase (Section 3.3.2). The comparison phase allows the DM

to communicate preferences by comparing nondominated solutions. These comparisons

define a set of inequalities on the weight region eliminating weight vectors that do not align

with the DM’s preferences. We translate preference information into the weight region

as in Toubia et al. (2004): A preference of x over y defines an inequality constraint,

wTF (x) − wTF (y) ≥ 0, in the weight region. In the solution generation phase, the

algorithm finds a new nondominated solution by solving the WSP for the most diverse

weight vector which is obtained by solving an MILP that maximizes the distance of new
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weight vector from already explored weight sets. Both phases are repeated until the

iterative algorithm satisfies termination conditions.

3.3.1. Comparison Phase: Comparison Settings

We consider two comparison settings: (i) pairwise comparison and (ii) insertion. In pair-

wise comparison, the DM compares the new nondominated solution x∗t with her current

most preferred nondominated solution x∗∗. If x∗t is preferred to x∗∗, then wTF (x∗t ) −

wTF (x∗∗) ≥ 0 must hold for the DM’s optimal weight vector and x∗t becomes x∗∗; else,

the direction of the constraint is reversed and x∗∗ remains unchanged.

In insertion, the DM maintains an ordered list of nondominated solutions based on

preference, {x∗(1), x
∗
(2), ..., x

∗
(t−1)}, where x∗(1) is the most preferred and x∗(t−1) is the least.

At iteration t, the DM inserts x∗t into the list based on her preference. Insertion yields a

single constraint when x∗t is inserted at the beginning of the list:

wTF (x∗t )− wTF (x∗(1)) ≥ 0,(3.3)

or at the end of the list:

wTF (x(t−1))− wTF (x∗t ) ≥ 0.(3.4)

When x∗t is inserted between i and i+ 1, 1 ≤ i ≤ (t− 2), two constraints are obtained:

wTF (x∗(i))− wTF (x∗t ) ≥ 0,(3.5)

wTF (x∗t )− wTF (x(i+1)) ≥ 0.(3.6)
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Only the immediate constraints reveal information as the rest are redundant given

the constraints from previous iterations. For example, when x∗t is inserted into beginning

of the list, x∗t is also preferred to x∗(2), making the constraint wTF (x∗t ) − wTF (x∗(2)) ≥ 0

valid for the remaining weight region. This constraint is redundant when the immedi-

ate constraints of x∗t and x∗(1) are considered together: wTF (x∗t ) − wTF (x∗(1)) ≥ 0 and

wTF (x∗(1))−wTF (x∗(2)) ≥ 0 implies wTF (x∗t )−wTF (x∗(2)) ≥ 0. The DM does not need to

compare the new solution with all solutions in the list. The new solution can be inserted

after a logarithmic number of comparisons with a bisection search.

LetWt be the remaining weight region representing the set of feasible weight vectors at

the tth iteration. For a k-objective problem, IWRA starts with weight region W0 = {w ∈

Rk | ∑k
i=1 wi = 1, w ≥ 0} which is a unit (k−1)-simplex. Note thatW0 contains all weight

vector combinations since any weight vector can be optimal when there is no preference

information. Wt is obtained by appending inequalities resulting from comparisons during

the tth comparison phase to Wt−1.

3.3.2. Solution Generation Phase: Diverse Weight Vector Generation

In the solution generation phase, we generate the most diverse weight vector in the re-

maining region which is farthest from the explored weight sets. Generating the most

diverse weight vector in a systematic way enables us to explore different parts of the re-

maining weight region. Furthermore, the corresponding nondominated solution for newly

generated weight vector is potentially diverse from those already generated since newly
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generated weight vector is far from explored weight sets. Comparison of such a nondom-

inated solution with the existing nondominated solutions has potential to decrease the

size of the remaining weight region significantly.

We use constraint violation as a measure of diversification. Constraint violation be-

tween vector w and polytope Wx∗ returns a nonpositive value if w does not violate the

constraints of Wx∗ (w ∈ Wx∗) and returns the maximum of shortest l2-norm distances

between w and the hyperplanes that define the violated constraints of Wx∗ otherwise. We

refer to the violated constraint of Wx∗ for which the maximum distance is realized as the

farthest constraint of Wx∗ . Constraint violation enables us to model the diversification

problem as an MILP.

Let Wx∗ := {Qx∗w ≤ rx∗} where Qx∗ is an mx∗ × k coefficient matrix and rx∗ is mx∗-

dimensional right-hand side (r.h.s.) vector. Let qzx∗ be the zth row of Qx∗ matrix and rzx∗

be the zth element of rx∗ vector. W.l.o.g. assume that these constraints are normalized,

i.e., ||qzx∗|| = 1 for z = 1, 2, ...,mx∗ . Letting X be the set of nondominated solutions

identified by WSP up to and including iteration t, the most diverse weight vector for

iteration (t+ 1) is found by the following constraint violation model (CVM):

CVM: max d(3.7a)

s.t.

d ≤ (qzx∗)
Tw − rzx∗ +Mpzx∗ , ∀x∗ ∈ X, z = 1, 2, ...,mx∗(3.7b)

mx∗∑
z=1

pzx∗ ≤ mx∗ − 1, ∀x∗ ∈ X(3.7c)

pzx∗ ∈ {0, 1}, ∀x∗ ∈ X, z = 1, 2, ...,mx∗(3.7d)
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w ∈ Wt,(3.7e)

where d is a continuous variable representing the distance, M is a sufficiently large number

and pzx∗ is a binary variable which takes value of 0 if zth constraint of Wx∗ is the farthest

and 1 otherwise. CVM maximizes the minimum constraint violation between w and

weight sets of explored nondominated solutions in X. Inequalities (3.7c) ensure that at

least one pzx∗ variable is zero for each x∗ ∈ X, indicating that at least one constraint

from each Wx∗ polytope must be violated. When pzx∗ = 0, the r.h.s. of (3.7b) calculates

the distance between w and the hyperplane defining the zth constraint of Wx∗ . If the zth

constraint is satisfied by w, then the r.h.s. becomes nonpositive; thus, the maximization

model always sets p variables to 0 for the farthest constraint of each weight set Wx∗ .

Proposition 3.7. CVM is always feasible when Wt 6= ∅.

Proof of Proposition 3.7. Consider a w′ which satisfies (3.7e) and an arbitrary

selection of p′zx∗ variables such that (3.7c) and (3.7d) are satisfied (which can be done as

follows: For each x∗ ∈ X, choose an arbitrary z′ from {1, 2, ...,mx∗}, set p′z′x∗ = 0 and

p′zx∗ = 1 for z = {1, 2, ...,mx∗} \ {z′}). Setting d′ = minz,x∗{(qzx∗)Tw′ − rzx∗ + Mp′zx∗},

triplet (w′, p′, d′) is feasible for CVM. �

Theorem 3.8. CVM yields a strictly positive objective value if and only if remaining

weight region is not fully explored; i.e., d∗ > 0 if and only if Wt \
(⋃

x∗∈XWx∗

)
6= ∅.

Proof of Theorem 3.8. First, we show that d∗ > 0 ⇒ Wt \
(⋃

x∗∈XWx∗

)
6= ∅.

Let w∗ be the optimal solution of CVM. For any x∗ ∈ X, there exists at least one index
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z̄ such that pz̄x∗ = 0 (due to constraints (3.7c)). In this case, constraint (3.7b) for z̄

becomes:

d∗ ≤ (qz̄x∗)
Tw∗ − rz̄x∗ ⇒ (qz̄x∗)

Tw∗ − rz̄x∗ ≥ d∗ > 0,(3.8)

indicating that W ∗ violates z̄th constraint of Wx∗ . Since this argument can be repeated for

any Wx∗ , w
∗ /∈

(⋃
x∗∈XWx∗

)
. On the other hand, w∗ ∈ Wt since it is a feasible solution

to CVM. Therefore, d∗ > 0⇒Wt \
(⋃

x∗∈XWx∗

)
6= ∅.

Second, we show that Wt \
(⋃

x∗∈XWx∗

)
6= ∅ ⇒ d∗ > 0. Consider a feasible solution

w̄ ∈ Wt \
(⋃

x∗∈XWx∗

)
. Since w̄ /∈ Wx∗ , then x∗ ∈ X, w̄ violates at least one constraint

of Wx∗ strictly. Letting d̄ be the objective value of w̄, d̄ > 0 can be obtained by setting

the p variables for the violated constraints to 0 for each Wx∗ , indicating that d∗ ≥ d̄ > 0.

Hence, Wt \
(⋃

x∗∈XWx∗

)
6= ∅ ⇒ d∗ > 0, which completes the proof. �

Corollary 3.9. CVM yields a nonpositive objective value if and only if remaining

weight region is fully explored by the weight sets, i.e., d∗ ≤ 0 if and only if Wt ⊆(⋃
x∗∈XWx∗

)
.

Proof of Corollary 3.9. Directly follows from Theorem 3.8. �

Theorem 3.8 and Corollary 3.9 enable us to check if there is a weight vector to explore,

providing termination conditions for the algorithms discussed next.

The basic idea in CVM is to spread exploration of the weight region and to obtain

potentially diverse solutions to compare. An alternative way to obtain new solutions

is to explore adjacent weight regions to the current weight region which translates into

exploration of the efficient adjacent solutions as in ZW method. In our experiments, we
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compare IWRA-MOLP with ZW method to assess the value of diversification in weight

region exploration when the DM makes perfect and imperfect comparisons.

3.4. IWRA-MOLP

Implementing IWRA for MOLPs is straightforward as the polyhedral representation

of weight sets of nondominated solutions can be identified from the dual by using the

optimal basis corresponding to that solution (see Proposition 3.5). Before we discuss the

algorithm in detail, we first show that explored optimal bases of WSP cannot be optimal

again for weight vector w as long as w is selected outside the weight sets defined by those

bases.

Theorem 3.10. Consider the exploration of the nondominated solutions of WSP. Let

B be the set of known optimal bases corresponding to explored nondominated solutions

until some iteration. Let W (B) be the weight set corresponding to basis B ∈ B, defined by

inequalities (3.2),
∑k

i=1wi = 1 and w ≥ 0. A basis B ∈ B cannot be optimal for weight

vector w ∈ W \
(⋃

B∈BW (B)
)

.

Proof of Theorem 3.10. The weight vector w ∈ W\
(⋃

B∈BW (B)
)

satisfies both∑k
i=1wi = 1 and w ≥ 0. Therefore, w must violate at least one of the inequalities (3.2)

for each basis B ∈ B . In this case, D-WSP becomes infeasible for all the bases in B

implying that a basis B ∈ B cannot be optimal when w ∈ W \
(⋃

B∈BW (B)
)

. �

Theorem 3.10 does not guarantee that a new weight vector yields a new nondominated

solution. In case of degeneracy, a nondominated solution may appear multiple times as

multiple bases may correspond to the same solution; however, this cannot repeat infinitely

many times since the number of bases of a polytope is finite.
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Considering Theorem 3.10, one can design an iterative exploration algorithm which

generates the entire efficient frontier formed by nondominated solutions of interest in finite

number of iterations with a model generating weight vectors outside already explored

weight sets. At each iteration of the exploration, WSP is solved for the new weight vector

yielding a new optimal basis and the weight set for the corresponding optimal basis is

constructed by using inequalities (3.2) with
∑k

i=1 wi = 1 and w ≥ 0. Since the number

of bases is finite, this algorithm terminates after finite number of iterations. To this

end, weight sets and optimal bases are used in multiobjective linear optimization (Zeleny,

1974) and ADBASE (Steuer, 2006) algorithms when enumerating the efficient frontier by

generating adjacent nondominated solutions to already explored ones.

Algorithm IWRA-MOLP

Algorithm 3.1 summarizes IWRA for MOLPs. In the algorithm, t represents the iteration

number, wt is the weight vector used in iteration t to identify nondominated solution x∗t

and W is the set of explored weight regions.

IWRA-MOLP starts by initializing t = 0, Wt as unit (k − 1)-simplex and wt as

a k-dimensional random initial vector. The first nondominated solution x∗t is obtained

by solving WSP for wt and set X is initialized as {x∗t}. The weight set of x∗t , Wx∗t , is

constructed by D-WSP and set W is initialized as {Wx∗t }. Weight vector wt+1 is the

optimal solution of CVM over Wt with an optimal value of d∗t+1. The while loop repeats

until the optimal solution of CVM is nonpositive. At the start of each iteration, WSP

returns a nondominated solution x∗t for the weight vector wt. New nondominated solutions

are shown to the DM for preference information to update x∗∗ and to reduce the weight
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Algorithm 3.1 IWRA-MOLP

Initialize t = 0, Wt and wt. Solve WSP for wt to obtain x∗t .
Set x∗∗ = x∗t . Initialize set X← {x∗t }.
Construct Wx∗

t
using D-WSP. Set W← {Wx∗

t
}.

Solve CVM over Wt to obtain wt+1, which is at least d∗t+1 from W ∈W.
while d∗t+1 > 0 do

t← t + 1.
Solve WSP for wt to obtain x∗t .
Construct Wx∗

t
using D-WSP. W←W ∪ {Wx∗

t
}

if x∗t ∈ X then
Wt ←Wt−1.

else
Update X← X ∪ {x∗t }. Ask the DM to provide preference information.
if x∗t is preferred to x∗∗ then

x∗∗ ← x∗t .
end if
Update Wt−1 with the DM’s preference information to obtain Wt.

end if
Solve CVM over Wt to obtain wt+1, which is at least d∗t+1 away from W ∈W.

end while
Return x∗∗ as the most preferred nondominated solution of the DM.

region Wt. The loop breaks when there are no more weight vectors (and nondominated

solutions of interest) to explore and the algorithm returns x∗∗ as the most preferred

nondominated solution for the DM.

Theorem 3.11. IWRA-MOLP terminates after finite number of iterations.

Proof of Theorem 3.11. Theorem 3.10 states that the same basis cannot be re-

peated in subsequent iterations as long as the new weight vector is chosen from the

unexplored region. From Theorem 3.8, we know that the new weight vector returned by

CVM belongs to the unexplored region iff d∗ > 0. Since there are finitely many bases for

WSP, which are never revisited, the while loop of IWRA-MOLP cannot repeat infinitely

many times. �
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3.5. IWRA-MOIP

The fundamental challenge in solving MOIPs with IWRA is the identification of weight

sets for which a given nondominated solution is optimal. Since duals are not easily avail-

able for MOIPs (e.g. when WSP is solved using branch & bound), the weight sets cannot

be identified immediately unless the local polyhedral information around the nondomi-

nated solution is known. For this reason, we introduce the concept of partial weight sets

which are subsets of the exact weight sets of nondominated solutions.

First, we discuss an important property of the extreme points of the remaining weight

region which enables finite termination for IWRA-MOIP even though the weight sets are

known partially.

Theorem 3.12. Given the set of explored solutions X, current most preferred solu-

tion x∗∗ and the remaining polyhedral weight region of Wt, exploring the weight vectors

corresponding to the extreme points of Wt either yields an unexplored solution or results

in complete exploration of Wt.

In order to prove Theorem 3.12, we first introduce Lemma 3.13.

Lemma 3.13. Given remaining weight region Wt at iteration t and current most

preferred solution x∗∗, any weight vector w ∈ Wt satisfies wTF (x∗∗) ≥ wTF (x∗) for

x∗ ∈ X.

Proof of Lemma 3.13. The polytope representing Wt satisfies the following in-

equalities (some may be redundant) as the DM prefers x∗∗ to all solutions in X \ {x∗∗}:

wTF (x∗∗) ≥ wTF (x∗), x∗ ∈ X \ {x∗∗}.(3.9)
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Since wTF (x∗∗) = wTF (x∗∗) holds trivially, set X\{x∗∗} can be extended to X, indicating

that explored nondominated solutions cannot yield a larger WSP objective value than

wTF (x∗∗) for w ∈ Wt. �

Proof of Theorem 3.12. Letting we be a weight vector which corresponds to one

of the extreme points of Wt and xe be the corresponding nondominated solution of WSP

for we, xe must satisfy wTe F (xe) ≥ wTe F (x∗∗). Otherwise x∗∗ is a better solution than xe

for weight vector we, which contradicts the definition of xe. When wTe F (xe) = wTe F (x∗∗),

we ∈ Wx∗∗ since x∗∗ is an optimal solution of WSP at we. If this condition holds for

all extreme points, x∗∗ is optimal for all weight vectors in the convex hull of Wt since

Wx∗∗ is known to be a convex set from Proposition 3.4. This indicates that there are no

more weight vectors to explore in Wt. When wTe F (xe) > wTe F (x∗∗), xe is an unexplored

solution, i.e., xe /∈ X, since each explored solution x ∈ X satisfies wTe F (x∗∗) ≥ wTe F (x)

from Lemma 3.13. �

With Theorem 3.12, one can introduce a basic algorithm: Explore the extreme points

of the remaining weight region iteratively starting from the initial unit simplex. From

Theorem 3.12, at each iteration the algorithm either explores the vertices of the remaining

region completely or finds a new solution which yields an update in the remaining weight

region. Such an algorithm terminates in finite time since the number of nondominated

solutions is finite and the algorithm identifies at least one new nondominated solution

at each iteration until termination. The algorithm can be inefficient since generating all

extreme points of the remaining region is a difficult task. For this reason, we propose
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Algorithm 3.3 which explores the extreme points of the remaining weight region only if it

cannot find a new nondominated solution for certain number of trial iterations.

Algorithm IWRA-MOIP

From Proposition 3.6, the weight sets of supported nondominated solutions are polytopes

for MOIPs. If nondominated solution x∗ is optimal for weight vectors w1, w2, ..., ws, then

x∗ is also optimal for any weight vector in conv(w1, w2, ..., ws) where conv(.) represents

the convex hull. With this observation, IWRA-MOIP uses partial weight sets which

are updated at each iteration. Letting Sx∗ be the partial weight set which contains the

explored weight vectors for which the nondominated solution x∗ is optimal, conv(Sx∗) is an

approximation of exact weight set Wx∗ at a given iteration. As IWRA-MOIP progresses,

existing partial weight sets are updated and new ones are introduced for newly identified

nondominated solutions. The weight sets of explored solutions are not identified exactly

and IWRA-MOIP can return an already explored solution.

Consider a weight vector w̄ with a corresponding solution x̄. Weight vector w̄ can

be added to partial weight set Sx∗ if w̄TF (x̄) = w̄TF (x∗) holds. This condition holds

trivially when x̄ = x∗. If the equality holds when x̄ 6= x∗, then WSP has multiple

optimal solutions for w̄. In this case, w̄ can be added to both Sx̄ and Sx∗ since w̄ is

an element of a face touched by both polytopes representing exact weight sets of x̄ and

x∗. Algorithm 3.2 formally presents the method for updating set of partial weight sets

S, UpdatePartialWeightSets(S,X, w̄, x̄), for a given set of explored solutions X, current

solution x̄ and current weight vector w̄.
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Algorithm 3.2 UpdatePartialWeightSets(S, X, w̄,x̄)

if x̄ ∈ X then
Sx̄ ← Sx̄ ∪ {w̄}.

else
Construct new partial weight set Sx̄ = {w̄}. S← S ∪ Sx̄.
for each x∗ ∈ X do

for each w ∈ Sx∗ do
if wTF (x̄) = wTF (x∗) then

Sx̄ ← Sx̄ ∪ {w}.
end if

end for
end for

end if
for each x∗ ∈ X do

if w̄TF (x̄) = w̄TF (x∗) then
Sx∗ ← Sx∗ ∪ {w̄}.

end if
end for

Algorithm 3.3 summarizes IWRA for MOIPs. In addition to the parameters and sets

defined in Section 3.4, let s be the number of consecutive iterations during which no new

nondominated solution is found. IWRA-MOIP starts by initializing t = 0, Wt as unit

(k − 1)-simplex and wt as a k-dimensional random initial vector. The first solution x∗t is

obtained by solving WSP for wt and X is initialized as {x∗t}. Initial partial weight set

is constructed and CVM returns the most diverse weight vector wt+1 with an optimal

value of d∗t+1. At each iteration, the algorithm finds a solution, updates the partial weight

sets and initiates a comparison if the current solution is a new nondominated solution.

Instead of exact weight sets used in IWRA-MOLP, CVM finds the most diverse weight

vector with respect to polytopes obtained by projecting conv(S), S ∈ S via Fourier-

Motzkin elimination onto k-dimensional weight space. In order to have finite convergence

in this algorithm, the extreme points of the remaining weight regionWt are checked when

the algorithm returns existing nondominated solutions for smax consecutive iterations.

Theorem 3.14. IWRA-MOIP terminates after finite number of iterations.
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Algorithm 3.3 IWRA-MOIP

Initialize t = 0, Wt and wt. Initialize s = 0 and set S = ∅.
Solve WSP for wt to obtain x∗t .
Set x∗∗ = x∗t . UpdatePartialWeightSets(S,X, wt, x

∗
t ).

Initialize set X = {x∗t }.
Solve CVM over Wt to obtain wt+1, which is at least d∗t+1 from conv(S),∀S ∈ S.
while d∗t+1 > 0 do

t← t + 1.
Solve WSP for wt to obtain x∗t .
UpdatePartialWeightSets(S,X, wt, x

∗
t ).

if x∗t ∈ X then
s← s + 1, Wt ←Wt−1.

else
Update X← X ∪ {x∗t }. Ask the DM to provide preference information.
if x∗t is preferred to x∗∗ then

x∗∗ ← x∗t .
end if
Update Wt−1 with the DM’s preference information to obtain Wt.

end if
if s > smax then

s← 0.
for each w corresponding to an extreme point of Wt do

Solve WSP to obtain x∗. UpdatePartialWeightSets(S,X, w, x∗).
if x∗ /∈ X then

Update X← X ∪ {x∗}. Ask the DM to provide preference information.
if x∗ is preferred to x∗∗ then

x∗∗ ← x∗.
end if
Update Wt−1 with the DM’s preference information to obtain Wt.
break

end if
end for

end if
Solve CVM over Wt to obtain wt+1, which is at least d∗t+1 away from conv(S), ∀S ∈ S.

end while
Return x∗∗ as the most preferred nondominated solution of the DM.

Proof of Theorem 3.14. IWRA-MOIP controls the extreme points of the remain-

ing weight region when it cannot find a new nondominated solution for (smax + 1) itera-

tions. Theorem 3.12 guarantees that exploring the extreme points identifies a new non-

dominated solution unless all the solutions are explored in the remaining region. Since a

bounded MOIP has finitely many nondominated solutions, IWRA-MOIP cannot exceed

φ(smax + 1) iterations where φ is the number of nondominated solutions; indicating that

IWRA-MOIP terminates after finite number of iterations. �
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3.6. Numerical Experiments

This section presents experiments to evaluate the performance of IWRA in randomly

generated instances and benchmark instances from the literature. Section 3.6.1 presents

results on simulated test instances: Section 3.6.1.1 introduces our simulated test instances,

Sections 3.6.1.2 and 3.6.1.3 present results of IWRA-MOLP (in comparison with ZW

method) and IWRA-MOIP on these instances, respectively. Section 3.6.1.4 presents re-

sults when the DM makes imperfect comparisons. Lastly, Section 3.6.2 compares IWRA-

MOIP with the cone-based interactive approach of Lokman et al. (2016) using benchmark

instances. All experiments are conducted on a 64-bit computer with Windows 7 OS with

Intel Core2 Duo E6600 2.40GHz processor and 8.00 GB RAM.

3.6.1. Performance on Simulated Test Instances

In experiments with simulated test instances, comparisons are made by a simulated DM

(sDM) with a randomly generated optimal weight vector. Guided by this weight vector,

the sDM compares given solutions and returns the comparison result. Experiments in

Sections 3.6.1.2 and 3.6.1.3 do not consider response errors; therefore, sDM’s comparisons

are correct and consistent with its optimal weight vector. This assumption is relaxed in

Section 3.6.1.4 where the sDM is allowed to make mistakes during comparisons. Without

knowing the optimal weight vector, IWRA algorithms find the most preferred nondom-

inated solution of the sDM (or a high quality solution when the sDM makes imperfect

comparisons). Corresponding instances are replicated 25 times for randomly initialized

optimal weight vectors of sDM and random starting weight vectors for the algorithm. The
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same initial weight vectors are used in both comparison settings for consistent evaluations.

The results presented are the average values of 25 replications for each instance.

From Corollary 3.9, IWRA algorithms must terminate when d∗t ≤ 0 to guarantee that

the remaining region is explored completely; during the experiments, IWRA-MOLP and

IWRA-MOIP terminate when d∗t ≤ 10−4 to avoid precision issues. If CVM cannot return

the optimal solution within the first five seconds, the current best solution is accepted

as the next weight vector if its objective function value is greater than 10−4. Otherwise,

the optimization procedure continues until CVM yields a feasible solution with objective

value greater than 10−4. IWRA-MOIP checks the extreme points of the remaining region

if the algorithm cannot find a new nondominated solution for k consecutive iterations

where k is the number of objectives of the underlying instance.

3.6.1.1. Instance Generation. Simulated test instances include nine MOLP instances

where MOLP-k is an instance with k = 2, 3, ..., 10 objectives and four MOIP instances

where MOIP-k is an instance with k = 2, 3, 4, 5 objectives. To generate a test instance

with n variables we first generate the following cube constraints defining the n-dimensional

hypercube with edge length of l:

0 ≤ xi ≤ l i = 1, 2, ..., n.(3.10)

We add a set of tangential constraints which are tangential to the n-dimensional

hypersphere inscribed in the hypercube defined by inequalities (3.10). The radius of

this hypersphere is l
2
. Letting α be a randomly generated n-dimensional row vector, the

hyperplane defining the following inequality is tangential to the inscribed hypersphere:
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αTx ≤ l

2

( n∑
i=1

αi + (αTα)
1
2

)
.(3.11)

For MOLP-k instances, we set n = 100 and l = 2; the edge length of hypercube

is 2 units and the inscribed hypersphere has a radius of 1. For MOIP-k instances, we

set n = 50 and l = 10. The edge length is increased by a factor of 5 to include more

integer solutions in the feasible region. We generate n tangential constraints for each

problem instance. The elements of the row vectors representing tangential constraints

are assigned randomly from a continuous uniform distribution on the interval [−1, 1].

Lastly, k additional row vectors representing objective coefficients are created similar to

row vectors of tangential constraints.

In order to assess the difficulty of the generated instances, each instance is solved

for arbitrary weight vectors for five hours and a lower bound on the number of unique

nondominated solutions is obtained. Table 3.1 provides a summary of the lower bounds

for each instance. The number of unique nondominated solutions in MOLP-k instances

for k > 5 grows quickly reaching an approximate limit over 600, 000 due to time limit on

solution generation. This indicates that the lower bounds become looser as the number

of objectives increases. For IP instances with 4 and 5 objectives, the number of unique

nondominated solutions is over 10, 000 and 30, 000 respectively.

3.6.1.2. IWRA-MOLP Runs. Table 3.2 summarizes the results for IWRA-MOLP on

MOLP-k instances, k = 2, 3, ..., 10, for pairwise comparison and insertion settings. Each

cell reports the average and the standard deviation of the corresponding metric over 25

replications. Count columns provide the number of comparisons made by the DM, Comp,
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Table 3.1. Lower bounds on the number of unique nondominated solutions.

Instance Lower Bound Instance Lower Bound

MOLP-2 193 MOLP-9 640961
MOLP-3 13981 MOLP-10 620060
MOLP-4 320438
MOLP-5 541499 MOIP-2 51
MOLP-6 600204 MOIP-3 1269
MOLP-7 626218 MOIP-4 10580
MOLP-8 630553 MOIP-5 30806

and the number of total solutions presented, TSoln. Duration columns provide the Total

time spent by the algorithm along with the portions of time spent on solving WSPs and

weight generation models, WGen. The last column provides an upper bound on the ratio

of the number of explored solutions to the number of nondominated solutions, R. Since

the actual number of nondominated solutions is unknown, the ratio is overestimated by

using the lower bounds in Section 3.6.1.1. In both comparison settings, IWRA-MOLP

finds a most preferred solution of the sDM for each instance at each replication. In

insertion, a most preferred solution is found by exploring 35-45 solutions in 10-objective

linear programming instances with more than a half million nondominated solutions. The

number of solutions for the same instances increases to 90-200 in pairwise setting since

comparisons yield less information.

Table 3.2. IWRA-MOLP results in ‘avg (stdev)’ form.

Pairwise Comparison Insertion

Count Duration (s) Count Duration (s)

Problem Comp TSoln Total WSP WGen R (avg) Comp TSoln Total WSP WGen R (avg)

MOLP-2 9 (2) 10 (2) 3 (1) 1 (0) 0 (0) 5.2E-02 22 (4) 9 (1) 3 (0) 1 (0) 0 (0) 4.8E-02
MOLP-3 19 (4) 20 (4) 5 (1) 1 (0) 1 (0) 1.5E-03 45 (6) 15 (2) 4 (0) 1 (0) 0 (0) 1.1E-03
MOLP-4 33 (8) 34 (8) 16 (9) 2 (1) 8 (7) 1.1E-04 69 (10) 21 (2) 7 (1) 1 (0) 2 (1) 6.4E-05
MOLP-5 43 (11) 44 (11) 95 (85) 3 (1) 83 (83) 8.2E-05 89 (10) 25 (2) 13 (4) 2 (0) 7 (3) 4.6E-05
MOLP-6 59 (13) 60 (13) 241 (95) 4 (1) 226 (92) 9.9E-05 108 (12) 29 (2) 36 (15) 2 (0) 28 (14) 4.8E-05
MOLP-7 84 (26) 85 (26) 467 (249) 6 (2) 444 (242) 1.4E-04 132 (14) 33 (3) 78 (19) 2 (0) 69 (18) 5.3E-05
MOLP-8 91 (19) 92 (19) 570 (205) 6 (1) 546 (201) 1.5E-04 142 (14) 35 (2) 102 (23) 2 (0) 92 (23) 5.6E-05
MOLP-9 115 (21) 116 (21) 837 (196) 8 (1) 804 (191) 1.8E-04 159 (17) 38 (3) 152 (36) 3 (0) 141 (35) 6.0E-05
MOLP-10 145 (33) 146 (33) 1119 (350) 10 (2) 1077 (343) 2.4E-04 177 (16) 42 (3) 190 (36) 3 (0) 177 (35) 6.7E-05
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The number of comparisons needed to find a most preferred solution increases with

the number of objectives, as expected since the dimension of the weight region is directly

correlated to the number of objectives and higher dimensional regions are more difficult

to explore. The total number of unique solutions is one more than the total number of

comparisons as the new solution is compared to the most preferred one at each iteration.

Similarly, the total algorithm duration increases with the number of objectives. While

WSP uses a small portion of total time, more than 90% of the total time is spent on

solving CVMs for instances with 5 or more objectives. CVM duration increases with the

number of explored solutions since the underlying MILP size depends on the number of

explored solutions. R values in the last columns show the effectiveness of IWRA-MOLP,

requiring exploration of a small fraction of all solutions. The increasing trend in this

measure for instances with 5 or more objectives does not represent the real behavior since

the upper bounds are weaker due to loose lower bounds on the number of nondominated

solutions.

In insertion, the total number of comparisons is larger than the pairwise setting while

the total number of unique solutions is significantly smaller. During the comparison phase,

sDM requires multiple comparisons to find the location of the new solution in the sorted

list and this procedure yields tighter constraints on the remaining weight region compared

to those obtained by pairwise comparison. With insertion, IWRA-MOLP is able to find

the most preferred solutions by exploring a smaller fraction of all solutions at the expense

of more comparisons, which is beneficial when obtaining a new nondominated solution

is challenging. Having fewer unique solutions results in smaller size CVMs that can be
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solved more efficiently. This is reflected in time spent on CVMs and on the algorithm as

seen in Table 3.2.

The average number of comparisons and the average number of unique solutions follow

a linear trend in both pairwise comparison and insertion settings, indicating that IWRA

scales well for the linear case. Although the number of comparisons does not increase

drastically in instances with many objectives, the DM may decide to stop IWRA before

making all necessary comparisons for a provable most preferred solution. We explore the

progression of IWRA and evaluate the quality of explored solutions by using the follow-

ing metric which measures the percentage deviation (% Dev) of current nondominated

solution x∗t from the actual most preferred solution x∗ as follows:

(w∗)TF (x∗)− (w∗)TF (x∗t )

|(w∗)TF (x∗)| ,(3.12)

where w∗ is the actual unknown weight vector of the DM. In IWRA, w∗ is the optimal

weight vector provided to the sDM at the beginning of the algorithm. Figure 3.2 provides

percentage deviations of nondominated solutions identified at each iteration of a sample

IWRA-MOLP replication under pairwise comparison and insertion settings for an MOLP-

10 instance. In both graphs, the solutions found in the first half of the comparisons

converge to a percentage deviation less than 5% and most solutions in the second half

have nearly 0% deviation. This indicates that the DM can obtain high quality solutions

with half the effort: ∼ 70 comparisons in the pairwise setting and ∼ 20 unique solutions

in insertion which takes approximately 70 to 80 comparisons to sort. The replication
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provided in Figure 3.2 is representative of other replications; half of the iterations are

spent closing the last 1− 2% deviation in most replications.
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Figure 3.2. Progression of percentage deviation.

The rest of this subsection compares IWRA-MOLP with ZW method. Similar to

IWRA-MOLP, ZW method is an interactive method which iteratively shrinks the re-

maining weight region. At each iteration, ZW method generates a new solution by using

a weight vector which is obtained by finding an arbitrary basic feasible solution of the

polytope representing the remaining weight region. The newly generated solution is com-

pared with all of its efficient adjacent solutions in a pairwise manner. In order to decrease

the number of such pairwise comparisons, we follow the suggestion of Zionts and Walle-

nius (1976) and eliminate efficient adjacent solutions whose comparisons yield redundant

inequalities for the remaining weight region.

Before discussing the results in detail, we note that the original implementation of

ZW method generates trade-offs between the current solution and its efficient adjacent

solutions rather than generating the efficient adjacent solutions explicitly. In theory, there

is no difference between generating trade-offs and efficient adjacent solutions since each
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trade-off is obtained by taking the difference between the objective function values of the

current solution and one of its efficient adjacent solutions. The total number of efficient

adjacent solutions (trade-offs) in ZW method is equivalent to the number of comparisons

since the DM makes a comparison for each efficient adjacent solution (each trade-off).

Table 3.3 summarizes the results for ZW method on the same instances. Different from

Table 3.2, Table 3.3 does not report WGen since the weight generation time is almost

zero for all the replications; instead, Table 3.3 reports the total time spent on generating

efficient adjacent solutions, EAGen.

Table 3.3. ZW method results in ‘avg (stdev)’ form.

Count Duration (s)

Problem Comp TSoln Total WSP EAGen R (avg)

MOLP-2 68 (53) 136 (106) 43 (33) 14 (11) 5 (4) 3.5E-01
MOLP-3 48 (23) 66 (32) 15 (7) 4 (2) 3 (2) 3.4E-03
MOLP-4 77 (21) 93 (26) 15 (5) 3 (1) 5 (2) 2.4E-04
MOLP-5 80 (21) 92 (25) 13 (4) 2 (1) 5 (1) 1.5E-04
MOLP-6 107 (29) 119 (32) 15 (4) 2 (1) 7 (2) 1.8E-04
MOLP-7 122 (23) 132 (24) 15 (3) 2 (0) 8 (2) 1.9E-04
MOLP-8 143 (20) 153 (22) 16 (3) 2 (0) 9 (2) 2.3E-04
MOLP-9 148 (32) 157 (34) 17 (4) 2 (0) 10 (2) 2.3E-04
MOLP-10 184 (25) 194 (26) 22 (4) 2 (0) 13 (2) 3.0E-04

The results of ZW method are compared with those of IWRA-MOLP in pairwise

comparison setting (see pairwise comparison columns of Table 3.2) since both methods

use pairwise comparisons rather than inserting the solutions to a sorted list. As seen in

Table 3.3, ZW method requires significantly more solutions and comparisons compared to

IWRA-MOLP. This is an expected result since the comparisons between efficient adjacent

solutions are likely to yield less information compared to the comparisons between the

diverse solutions generated via CVM in IWRA-MOLP. For example, in a 2-objective

setting, ZW method generates all nondominated solutions corresponding to the weight

sets along the line segment connecting the initial weight vector to the DM’s optimal weight
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vector. On the other hand, the total algorithm duration of IWRA-MOLP is significantly

larger, mainly due to the time spent on solving CVMs when generating diverse weight

vectors. In summary, the large gap between the two methods indicates that diversification

efforts in the weight region have significant benefits in reducing the number of comparisons

and solutions in interactive approaches at the cost of increasing overall algorithm time. We

have also carried out experiments with a slightly modified version of ZW method where

the current solution is compared with a subset of efficient adjacent solutions instead of

all; however, the results are not reported here as they are not significantly different from

those presented in Table 3.3.

3.6.1.3. IWRA-MOIP Runs. Table 3.4 summarizes the results for IWRA-MOIP on

MOIP-k instances, k = 2, 3, 4, 5. In addition to comparison and total solution count, Table

3.4 includes the number of unique solutions found during the algorithm, USoln, as the

same solution can be found multiple times. The table also includes the number of times

extreme points of the remaining region are checked, ExtChk. For extreme point checks,

smax is set to the number of objectives. In some replications, IWRA-MOIP reaches the

distance precision limit to terminate before checking the extreme points. IWRA-MOIP

finds a most preferred solution of the sDM for each instance at each replication in both

comparison settings.

In both comparison settings, the number of unique solutions presented to the DM

increases with increasing number of objectives; however, the increase in the number of

unique solutions is significantly smaller than the increase in the number of nondominated

solutions as reflected by R column. In instances with 4 and 5 objectives, both settings

converge after exploring less than 0.3% of all nondominated solutions. Between the two
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Table 3.4. IWRA-MOIP results in ‘avg (stdev)’ form.

Count Duration (s)

Problem Comp USoln TSoln ExtChk Total WSP CVM R (avg)

P
a
ir
w
is
e

C
om

p
. MOIP-2 6 (2) 7 (2) 12 (2) 0.9 (0.5) 3 (2) 3 (2) 0 (0) 1.5E-01

MOIP-3 16 (3) 17 (3) 29 (7) 1.3 (0.6) 4 (2) 3 (1) 1 (1) 1.3E-02
MOIP-4 28 (9) 29 (9) 66 (25) 2.9 (1.3) 56 (57) 18 (17) 28 (43) 2.7E-03

In
se
rt
io
n

MOIP-2 13 (4) 7 (1) 10 (1) 0.8 (0.4) 2 (1) 2 (1) 0 (0) 1.3E-01
MOIP-3 33 (5) 12 (1) 20 (2) 0.9 (0.4) 2 (1) 2 (1) 0 (0) 9.6E-03
MOIP-4 47 (10) 16 (2) 32 (6) 1.1 (0.3) 11 (8) 7 (8) 2 (1) 1.5E-03
MOIP-5 69 (10) 21 (2) 52 (8) 1.3 (0.5) 69 (64) 15 (9) 18 (11) 6.8E-04

comparison settings, insertion requires a smaller fraction of all solutions in concordance

with the results for unique solution count.

In the pairwise setting of IWRA-MOIP, the number of unique solutions and the number

of total solutions increase with objective function count similar to the linear case. Values

in ExtChk column show that IWRA-MOIP needs a few extreme point checks to converge

to a most preferred solution. Both WSP and CVM become significant components in

total algorithm times as opposed to linear case where CVM is dominant.

MOIP-5 is not included in the runs with pairwise comparison since the algorithm

does not terminate within one hour. Similar to IWRA-MOLP, pairwise comparisons

require more nondominated solutions to converge which also increases the number and

the size of partial weight sets in the algorithm. Partial sets containing large number of

weight vectors require more effort when projecting their convex hull to k-dimensional

weight space and slow down the overall algorithm significantly. This issue becomes more

visible in instances with large number of objectives, increasing the duration of the overall

algorithm significantly.
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In insertion, the behavior of IWRA-MOIP is similar to the linear case. Compared to

the pairwise setting, the algorithm finds a most preferred solution with fewer nondom-

inated solutions; however, it requires more comparisons. For IWRA-MOIP, converging

with fewer solutions is critical since increased number of solutions decreases the efficiency

of projections. As seen in Table 3.4, IWRA-MOIP with insertion takes 69 seconds on av-

erage to find a most preferred solution of the sDM for MOIP-5 while the pairwise setting

cannot converge within an hour. In addition, IWRA-MOIP requires fewer extreme point

checks in insertion, yielding a faster convergence. Similar to the pairwise setting, both

WSP and CVM are dominant components in the total duration.

The scalability of IWRA-MOIP strongly depends on the effectiveness of the projection

of convex hulls to the weight region and extreme point generation. Between projections

and extreme point generation, the former requires more effort as the projection of a

weight set needs to be reevaluated once a weight vector (which is not an element of

existing projection) is added to the weight set. Since the dimension of the weight space

increases with the number of objectives, the projections and extreme point generation

become more challenging for instances with more objectives. Furthermore, finding 20-30

unique solutions might be challenging when the underlying MOIP is difficult to solve. In

this case, approaches designed to carry over information during the iterations of solution

procedure may help (Alves and Cĺımaco, 2000).

3.6.1.4. Imperfect Comparisons. Experiments in the previous subsections assume

that the DM makes perfect comparisons; i.e., given two solutions, she always sorts them

correctly. This section provides empirical results on the performance of IWRA when

the DM’s comparisons are imperfect. We compare the performance of IWRA and ZW
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method in MOLPs to evaluate the effect of the diversification model in the imperfect

setting. Imperfect comparisons are simulated by adding Gaussian noise, ε ∼ N (0, σ2), to

the calculated value function where σ is a preset parameter (López-Ibáñez and Knowles,

2015). For a given solution pair, x and y, in the imperfect comparison setting, sDM

compares (w∗)TF (x) + εx and (w∗)TF (y) + εy instead of (w∗)TF (x) and (w∗)TF (y) and

occasionally makes mistakes. Additional preference non-idealities occur when objective

functions are not modeled correctly (Stewart, 1999); however, we assume this is not the

case in our setting.

In the experiments, the standard deviation of the error, σ, is set to 5% and 10% of

the best value function (w∗)TF (x∗) where x∗ is a most preferred solution obtained by

using the optimal weight vector w∗. Table 3.5 reports average percentage deviations as

calculated by (3.12) over 25 replications of IWRA-MOLP and ZW method on MOLP-k

test instances, and IWRA-MOIP on MOIP-k test instances under both error settings.

Table 3.5. Percentage deviations of IWRA solutions with imperfect comparisons.

MOLP MOIP

Setting
σ

perc k
=

2

k
=

3

k
=

4

k
=

5

k
=

6

k
=

7

k
=

8

k
=

9

k
=

10

k
=

2

k
=

3

k
=

4

k
=

5

IW
R

A

Pairwise
Comp.

5% 0.8 1.3 2.6 3.1 4.3 4.5 5.1 5.2 5.3 1.0 2.0 2.3 -

10% 2.2 4.6 5.8 6.2 6.9 6.7 7.9 12.6 10.3 2.5 3.4 3.8 -

Insertion
5% 0.8 2.9 4.2 3.9 7.1 4.1 5.5 6.0 7.7 1.1 1.9 2.9 2.3

10% 2.2 5.7 7.0 9.3 9.3 7.9 8.6 11.6 15.2 2.8 5.6 5.4 7.3

Z
W -

5% 12.1 20.1 36.3 28.7 21.8 22.3 32.5 20.4 26.0

10% 12.1 23.3 36.7 28.7 22.8 22.3 32.0 20.4 26.1

Statistics regarding comparison, unique and total solution counts are not reported in

Table 3.5 since the behavior of IWRA algorithms does not change: These counts increase

with more objectives and the insertion setting requires fewer unique and total solutions

compared to pairwise comparison setting to converge. Interestingly, IWRA algorithms
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converge faster as the standard deviation of error increases. As discussed earlier, in

the runs with perfect comparisons almost half the search effort is spent eliminating the

last 1 − 5% deviation from the optimal value function. Since the solutions in 1 − 5%

neighborhood have relatively similar objective function values, comparisons tend to be

more random during this stage; leading to early terminations.

With IWRA, percentage deviations from the optimal value function increase with

increasing σ and more objectives. Percentage deviations are within 10− 15% of the most

preferred solutions in settings with large number of objectives and relatively large σ values,

indicating that IWRA is a successful approach even when comparisons are imperfect. As

seen in Table 3.5, the pairwise comparison setting yields better percentage deviations

compared to the insertion. This is expected since insertion requires clearer comparisons

to insert the solution to the correct position in the list. Comparisons become more difficult

as solutions near the correct position are generally similar to the new solution. In the

pairwise comparison setting, the new solution is compared to the current best solution,

which is relatively easier particularly in the early stages of the algorithm. This indicates

that pairwise comparisons yield better results when comparisons are imperfect despite

requiring more solutions to be identified.

IWRA outperforms ZW method in finding high-quality solutions. The percentage

deviations of IWRA-MOLP increases linearly, reaching 10 − 15% for MOLP-10 whereas

using ZW method increases the deviations rapidly to 25−35% starting from MOLP-3. In

these experiments, ZW method prematurely converges to a potentially low-quality solu-

tion after a few comparisons as efficient adjacent solutions yield almost identical objective

values due to the proximity of underlying weight sets, causing the DM to make incorrect
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comparisons more frequently and at the early stages of the algorithm. This indicates that

diversification provides significant benefits in percentage deviations when the DM makes

imperfect comparisons.

3.6.2. Performance on Benchmark Instances

In a recent study, Lokman et al. (2016) propose a cone-based interactive method which

utilizes 2-point cones. These cones are obtained from pairwise comparisons of the DM

and are added to the original formulation iteratively, restricting the solution space by

eliminating cone-dominated solutions. The cone-based method is a more general method

which is capable of handling any value function as long as the function is nondecreasing

and quasiconcave (Ramesh et al., 1989). This method does not assume a specific value

function as the actual value function does not have an impact on the way 2-point cones

are defined: preferring solution x to y yields the same cone irrespective of the value

function. In IWRA, however, the assumption on the value function determines how the

preferences are reflected in the remaining weight region: for WSP setting with a linear

value function, the preferences define a set of linear inequalities and for WTP setting with

a Tchebycheff value function, the preferences define a union of polytopes (see Section 3.7).

Therefore, the results provided in this subsection should be considered as a comparison

of how IWRA-MOIP and the cone-based method perform under the assumption that the

value function is a weighted sum rather than an overall comparison of both methods.

Lokman et al. (2016) tests the cone-based method on multiobjective assignment prob-

lems (MOAP), knapsack problems (MOKP) and shortest path problems (MOSSP) with
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varying instance sizes. In our experiments, we use the same generation schemes as Lok-

man et al. (2016): For MOAP and MOKP instances, we follow the random generation

scheme of Özpeynirci and Köksalan (2010); and for MOSPP instances, we follow the

random generation scheme of Köksalan and Lokman (2009) on special random graphs

(Lokman, 2007). We generate three-objective MOAP instances with sizes 10, 20 and 30

where assignment costs are randomly selected integers from the interval [1, 20]; three-

objective MOKP instances with 25, 50 and 100 items where profit and weight coefficients

are randomly selected integers from the interval [10, 100]; and three-objective MOSSP

instances on 25, 50, 100 and 200-node graphs where arc costs are selected as integers

from the interval [10, 100]. Similar to Lokman et al. (2016), ten instances are generated

for each problem-size pair and these instances are solved for three optimal weight vectors

w∗1 = (0.7, 0.2, 0.1), w∗2 = (0.1, 0.6, 0.3) and w∗3 = (0.333, 0.333, 0.333).

Table 3.6 summarizes the comparisons for weighted sum value function. We use pair-

wise comparisons for IWRA-MOIP as in the cone-based method. Our computing envi-

ronment is similar (slightly slower) to that of Lokman et al. (2016); therefore, the results

(solution times) are comparable. Table 3.6 provides averages of the number of compar-

isons until termination (Comp), the total time spent by the algorithm (Time) and the

number comparisons until the best solution is reached (CuB) over ten instances for each

problem-size pair and weight configuration. The first three columns summarize the results

of IWRA-MOIP and columns 4, 5 and 6 are directly taken from Lokman et al. (2016).

The last three columns provide the ratio of cone-based method results to IWRA results

where values greater than 1 indicate that our findings are better for the corresponding

metric and values less than 1 favors Lokman et al. (2016).
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Table 3.6. Comparison of IWRA and cone-based method under weighted
sum assumption.

IWRA-MOIP Cone-based Ratio

Problem Size Weight Comp
Time
(s)

CuB Comp
Time
(s)

CuB Comp
Time
(s)

CuB

MOAP

10x10
w1 7.5 1.3 4.3 21.5 3.6 4.4 2.9 2.8 1.0
w2 7.2 0.9 4.5 30.2 7.5 4.4 4.2 8.3 1.0
w3 9.8 1.8 3.8 41.3 22.4 2.9 4.2 12.4 0.8

20x20
w1 9.7 2.0 5.5 50.1 53.8 6.9 5.2 26.9 1.3
w2 11.9 2.3 6.7 50.2 74.6 7.1 4.2 32.4 1.1
w3 12.8 2.1 7.4 82.0 1296.1 5.9 6.4 617.2 0.8

30x30
w1 14.8 6.6 7.6 74.1 536.5 8.4 5.0 81.3 1.1
w2 13.5 5.8 8.3 76.2 621.7 8.8 5.6 107.2 1.1
w3 14.7 4.4 11.8 113.6 9490.7 5.7 7.7 2157.0 0.5

MOKP

25 items
w1 6.4 1.1 2.4 12.5 1.6 3.0 2.0 1.5 1.3
w2 7.5 1.1 3.7 17.2 2.7 1.6 2.3 2.5 0.4
w3 8.8 1.4 1.0 22.6 3.6 2.5 2.6 2.6 2.5

50 items
w1 7.2 1.3 5.1 32.2 19.2 4.4 4.5 14.8 0.9
w2 9.1 1.3 5.9 33.9 26.0 3.7 3.7 20.0 0.6
w3 11.6 2.0 5.2 57.0 139.4 4.8 4.9 69.7 0.9

100 items
w1 9.7 1.8 5.6 50.4 233.6 5.2 5.2 129.8 0.9
w2 10.8 2.0 5.5 69.2 723.9 8.0 6.4 362.0 1.5
w3 14.2 2.4 8.2 93.1 3894.2 6.4 6.6 1622.6 0.8

MOSSP

25 nodes
w1 7.0 1.2 1.3 13.6 1.3 2.6 1.9 1.1 2.0
w2 6.9 0.8 3.2 19.6 2.4 3.9 2.8 3.0 1.2
w3 8.0 1.0 3.5 22.7 2.9 0.9 2.8 2.9 0.3

50 nodes
w1 7.1 1.4 3.3 26.7 12.9 4.1 3.8 9.2 1.2
w2 8.2 1.3 5.6 28.1 13.4 3.4 3.4 10.3 0.6
w3 9.1 1.7 5.3 40.2 31.2 4.8 4.4 18.4 0.9

100 nodes
w1 9.3 9.7 4.9 36.5 83.9 2.7 3.9 8.6 0.6
w2 8.6 9.1 5.1 43.2 117.9 6.1 5.0 13.0 1.2
w3 10.0 9.2 6.7 53.5 359.9 4.6 5.4 39.1 0.7

200 nodes
w1 9.5 162.9 4.8 47.3 626.4 5.1 5.0 3.8 1.1
w2 9.4 160.6 5.3 48.6 850.3 6.1 5.2 5.3 1.2
w3 12.7 186.2 4.6 62.2 2957.7 3.6 4.9 15.9 0.8

The results in Table 3.6 show that IWRA-MOIP is able to find a most preferred solu-

tion with fewer comparisons, providing around 49 − 87% improvement. The inequalities

on the remaining weight region, derived from the comparisons of the DM throughout

IWRA-MOIP, restrict larger portions of the objective space compared to 2-point cones

in the cone-based method. In terms of total duration, IWRA-MOIP significantly outper-

forms cone-based method (up to 99% improvement) due to their difference in solution

generation phase. At each iteration, IWRA-MOIP uses the new weight vector to form the
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aggregated objective function of the WSP and solves the same problem with a different

objective while cone-based method appends 2-point cones to the solution space of the

original problem making solution generation potentially more difficult in later iterations.

Furthermore, IWRA’s performance improves more with increasing problem size. Both

approaches reach the best solution after a few comparisons, where the cone-based method

slightly outperforms IWRA, and spend the remaining iterations to prove optimality.

3.7. Weighted Tchebycheff Problem Setting

As noted earlier, WSP does not necessarily generate all nondominated solutions for

nonconvex problems. Thus, we extend our approach using the weight region of augmented

Tchebycheff problem which is capable of generating the entire nondominated solution set

(Steuer and Choo, 1983). A commonly used weight-based approach to generate nondom-

inated solutions of multiobjective problems is the method of weighted norm (Miettinen,

2008). This approach finds the nondominated solution that is closest to some reference

point, α∗, based on the specified weighted norm. Assuming all the objectives are maxi-

mized, the method of weighted norm solves the following problem for 1 ≤ p <∞:

min
x∈X

(
k∑
i=1

wi

(
α∗i − fi(x)

)p) 1
p

,(3.13)

where w ∈ W . Problem (3.13) minimizes the weighted distance of the objective function

values from the reference point. Among potential norms, Tchebycheff metric (l∞-norm)

is commonly used since it can be modeled as a single MILP and is capable of generating

all nondominated solutions (including unsupported ones) when α∗ is set to be a utopian

objective vector whose entries are the maximum values of each objective function plus a
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small nonnegative constant. The weighted Tchebycheff problem (WTP) can be written

as follows:

min
x∈X

max
i=1,...,k

wi|α∗i − fi(x)|(WTP)

WTP minimizes the maximum weighted deviation from α∗. In this setting, WTP is

capable of generating all nondominated solutions and weakly nondominated solutions can

be avoided by the augmented Tchebycheff problem (ATP) with a slight modification to

WTP:

min
x∈X

max
i=1,...,k

(
wi|α∗i − fi(x)|

)
+ ρ

k∑
i=1

(α∗i − fi(x))(ATP)

where ρ is a sufficiently small scalar. Constructed this way, ATP can find any nondom-

inated solution with finite trade-off, as we assume here. The absolute value sign can be

removed in WTP and ATP since α∗i ≥ fi(x) for any nondominated solution x in our

maximization setting.

3.7.1. IWRA-WTP Decision Phase: Comparison Settings

The decision phase of IWRA-WTP uses the same comparison settings with WSP-based

IWRA: Pairwise comparison and insertion. The main difference is the way the preference

information is translated into the weight region. In WSP-based algorithms, preferring

x to y yields an inequality constraint wTF (x) − wTF (y) ≥ 0. In IWRA-WTP, a more

preferred solution yields a lower objective value; therefore, preferring x to y indicates the

following:
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max
i=1,...,k

wi(α
∗
i − fi(x)) ≤ max

i=1,...,k
wi(α

∗
i − fi(y))(3.14)

Equivalently, inequality (3.14) can be represented as k inequalities of the following type:

wj(α
∗
j − fj(x)) ≤ max

i=1,...,k
wi(α

∗
i − fi(y)), j ∈ {1, ..., k}(3.15)

Since maxi=1,...,k wi(α
∗
i −fi(y)) depends on the weight vector, we can represent inequalities

(3.15) with k disjoint cases where case j assumes that maxi=1,...,k wi(α
∗
i −fi(y)) = wj(α

∗
j−

fj(y)); i.e., the maximum weighted distance of the r.h.s. is realized for the jth objective

function. Let Pj be the polytope representing the weight vectors satisfying the preference

information when the weighted distance of jth objective is maximum for nondominated

solution y. Pj can be written as follows:

Pj : wi(α
∗
i − fi(y)) ≤ wj(α

∗
j − fj(y)) i ∈ {1, ..., k}(3.16)

wi(α
∗
i − fi(x)) ≤ wj(α

∗
j − fj(y)) i ∈ {1, ..., k}(3.17)

w ∈ W(3.18)

Inequalities (3.16) indicate that the weighted distance of jth objective of nondominated

solution y is the maximum of the weighted distances of the remaining objective functions

for the same solution and inequalities (3.17) ensure that this value is greater than or equal

to the maximum weighted distance of nondominated solution x. Using Pj polytopes,
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preferring x to y can be represented as
⋃k
j=1 Pj which is a union of finite number of

polytopes (Dell and Karwan, 1990).

For IWRA-WTP, as the DM completes the decision phase of the tth iteration, the

remaining weight region, Wt, is constructed with the intersection of Wt−1 with
⋃k
j=1 P

t
j .

Since the intersection of two polytope unions is a polytope union, the remaining weight

region at a given iteration is always a polytope union (initial weight region, W0, is a

unit (k − 1)-simplex which is a polytope union with a single element). As the remaining

weight regions are represented as polytope unions, they are not necessarily convex for

IWRA-WTP.

3.7.2. IWRA-WTP Optimization Stage: Diverse Weight Vector Generation

The optimization stage of IWRA-WTP uses CVM to identify the most diverse weight

vector where CVM becomes a disjunctive program since constraint (3.7e) is a polytope

union instead of a single polytope. The most diverse weight vector can be found by solving

CVM separately for each polytope in the union and taking the weight vector for which

the objective is maximum.

3.7.3. IWRA-WTP Implementation

We implement a heuristic algorithm for IWRA-WTP, shown in Algorihtm 3.4, since the

weight sets of nondominated solutions are not convex. There are three main differences

between IWRA-WTP and WSP-based IWRA algorithms: (i) IWRA-WTP does not con-

struct exact or approximate weight sets and treats the singletons of each explored weight
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vector as a separate set, (ii) the weight region updates involve the intersection of poly-

tope unions as opposed to introducing constraints, and (iii) CVM is solved over all the

polytopes in the remaining weight region to find the most diverse weight vector. IWRA-

WTP can be terminated early if the same solution is repeated for a certain number of

consecutive iterations.

Algorithm 3.4 IWRA-WTP

Initialize t = 0, s = 0, Wt and wt. Solve WTP for wt to obtain x∗t .
Set x∗∗ = x∗t . Initialize sets X← {x∗t } and W← {wt}.
Solve CVM over W0 to obtain wt+1, which is at least d∗t+1 away from w ∈W.
while d∗t+1 > dmin do

t← t + 1.
Solve WTP for wt to obtain x∗t . Update W←W ∪ {wt}.
if x∗t ∈ X then

s← s + 1, Wt ←Wt−1.
else

s← 0. Update X← X ∪ {x∗t }. Ask the DM to provide preference information.
if x∗t is preferred to x∗∗ then

x∗∗ ← x∗t .
end if
Update Wt−1 with the DM’s preference information to obtain Wt.

end if
if s > smax then

break
end if
Solve CVM for each polytope in Wt to obtain wt+1, which is at least d∗t+1 away from w ∈W.

end while
Return x∗∗ as an approximate to a most preferred nondominated solution of the DM.

Algorithm 3.4 starts by initializing the counters and the weight region as unit (k− 1)-

simplex. It finds the first nondominated solution for an arbitrary weight vector, w0 and

initializes W = {w0}. CVM is solved over W0 to obtain the most diverse weight vector.

For the rest of the algorithm, CVM is solved individually for all polytopes within the

polytope union representing Wt to obtain the most diverse weight vector, wt+1, for the

next iteration. At each iteration, the nondominated solution, x∗t , corresponding to wt

is identified and wt is added to W as a singleton. If x∗t is an unexplored solution, it

is shown to the DM for comparison, otherwise a new iteration starts. There are two
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termination conditions for Algorithm 3.4: (i) no new nondominated solution is found in

smax consecutive iterations, where smax is set to the number of objectives, or (ii) CVM’s

optimal value d∗t+1 is not greater than a predetermined minimum distance dmin = 10−4.

When one of these termination conditions hold, the algorithm terminates returning x∗∗

as an approximate most preferred solution.

3.7.4. IWRA-WTP Experiments

IWRA-WTP experiments are conducted on test and benchmark instances with an sDM

which provides perfect comparisons.

3.7.4.1. Performance on Simulated Test Instances. This section summarizes the

results for IWRA-WTP on MOIP-k instances, k = 2, 3, 4, for insertion and pairwise

comparison settings in Table 3.7. Table 3.7 reports averages and standard deviations of

count, duration and performance related metrics over 25 replications. Since IWRA-WTP

is a heuristic algorithm, we report average percentage deviation of the resulting solution

from a most preferred solution. Letting α∗ be the fixed utopian vector, w∗ be the optimal

weight vector of sDM, f ∗ be the objective vector of a most preferred solution of the sDM

and f be the objective vector of returned solution, the percentage deviation is calculated

as follows:

D = 100× maxi{w∗i (α∗i − fi)} −maxi{w∗i (α∗i − f ∗i )}
|maxi{w∗i (α∗i − fi)}|

(3.19)

We report the average number of feasible polytopes (Feas Poly) in polytope unions

throughout the iterations of IWRA-WTP.
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Table 3.7. IWRA-WTP results in ‘avg (stdev)’ form.

Count Duration (s) Performance

Setting Problem Comp USoln TSoln Feas Poly Total WTP CVM % Dev R

Pairwise
Comp.

MOIP-2 11 (2) 12 (2) 14 (2) 1.0 (0.0) 5 (2) 4 (2) 0 (0) 0.0 (0.0) 2.4E-01
MOIP-3 21 (7) 22 (7) 26 (7) 3.2 (0.9) 16 (9) 9 (7) 4 (3) 0.1 (0.3) 1.7E-02
MOIP-4 34 (9) 35 (9) 42 (9) 18.3 (13.7) 335 (281) 81 (96) 120 (102) 0.1 (0.2) 3.3E-03

Insertion
MOIP-2 30 (4) 11 (1) 13 (1) 1.0 (0.0) 4 (2) 3 (1) 0 (0) 0.0 (0.0) 2.2E-01
MOIP-3 56 (16) 18 (4) 22 (3) 2.2 (0.5) 12 (6) 7 (5) 2 (1) 0.0 (0.1) 1.4E-02
MOIP-4 77 (26) 22 (6) 29 (7) 4.0 (1.3) 89 (83) 62 (76) 13 (10) 0.2 (0.5) 2.1E-03

As with the WSP results, IWRA-WTP with insertion requires fewer solutions as sDM

makes more comparisons each time the algorithm finds a new nondominated solution.

Since the comparisons in pairwise setting may not reveal quality information, the number

of polytopes in the union representing the remaining weight region increases faster. This

slows down the process of finding the next weight vector significantly as we solve CVM

for each polytope in the union. IWRA-WTP yields high quality solutions within 2.2%

(with an average of 0.2%) of the actual most preferred solution in MOIP-2, MOIP-3 and

MOIP-4 instances.

3.7.4.2. Performance on Benchmark Instances. Table 3.8 provides a comparison of

IWRA-WTP with the cone-based method of Lokman et al. (2016) under the assumption

that the value function is weighted Tchebycheff. Table 3.8 uses the same format with Table

3.6 of Section 3.6.2 in which we report Comp, Time and CuB values over ten instances for

each problem-size pair and weight configuration. Similar to the results in Section 3.6.2,

IWRA-WTP is capable of finding a most preferred solution with fewer comparisons and

significantly shorter amount of time under Tchebycheff setting as accumulation of 2-point

cones makes solution generation more difficult at later stages of the cone-based method.

Note that IWRA-TCH is a heuristic procedure and 17 out of 300 instances are solved
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near optimally with 2-3% deviation from the optimal Tchebycheff function value whereas

the results from the cone-based method are optimal for all the instances.

Table 3.8. Comparison of IWRA and cone-based method under weighted
Tchebycheff metric.

IWRA-WTP Cone-based Ratio

Problem Size Weight Comp
Time
(s)

CuB Comp
Time
(s)

CuB Comp
Time
(s)

CuB

MOAP

10x10
w1 8.8 2.4 4.9 24.1 4.3 5.7 2.7 1.8 1.2
w2 7.0 1.4 4.6 34.0 7.4 14.1 4.9 5.3 3.1
w3 13.1 6.4 9.1 42.3 14.0 14.5 3.2 2.2 1.6

20x20
w1 14.1 6.4 11.2 46.0 42.3 19.9 3.3 6.6 1.8
w2 13.7 5.4 9.5 48.6 43.2 25.2 3.5 8.0 2.7
w3 16.5 8.8 13.1 82.6 647.3 29.1 5.0 73.6 2.2

30x30
w1 20.2 18.1 11.9 61.4 130.2 26.1 3.0 7.2 2.2
w2 17.5 13.4 14.4 59.8 105.5 28.6 3.4 7.9 2.0
w3 21.2 28.1 17.7 102.9 4766.6 21.8 4.9 169.6 1.2

MOKP

25 items
w1 7.0 1.9 4.3 13.7 1.6 3.2 2.0 0.8 0.7
w2 7.8 2.3 4.8 18.1 2.5 5.0 2.3 1.1 1.0
w3 9.3 5.4 6.7 21.6 3.7 5.8 2.3 0.7 0.9

50 items
w1 11.0 3.7 6.3 30.0 14.9 11.0 2.7 4.0 1.7
w2 11.0 3.8 7.2 30.6 13.8 11.6 2.8 3.6 1.6
w3 13.4 7.2 10.0 59.9 100.6 18.8 4.5 14.0 1.9

100 items
w1 12.4 3.9 9.7 46.3 116.5 22.2 3.7 29.9 2.3
w2 12.6 5.9 9.6 63.4 438.1 33.2 5.0 74.3 3.5
w3 20.3 13.8 17.2 87.6 4938.0 39.6 4.3 357.8 2.3

MOSSP

25 nodes
w1 7.7 2.3 5.3 15.6 1.6 2.8 2.0 0.7 0.5
w2 8.4 3.7 3.9 17.5 1.8 7.0 2.1 0.5 1.8
w3 10.1 10.0 5.1 21.0 2.8 5.1 2.1 0.3 1.0

50 nodes
w1 9.1 3.1 5.4 27.7 13.7 13.7 3.0 4.4 2.5
w2 8.9 2.9 5.9 25.8 11.6 12.2 2.9 4.0 2.1
w3 12.1 5.3 8.3 41.7 30.7 13.2 3.4 5.8 1.6

100 nodes
w1 12.4 15.0 9.4 31.4 58.8 14.8 2.5 3.9 1.6
w2 10.4 11.6 6.3 35.6 55.5 21.1 3.4 4.8 3.3
w3 14.3 16.4 10.9 48.4 171.6 18.2 3.4 10.5 1.7

200 nodes
w1 12.4 167.9 9.2 47.8 530.7 18.0 3.9 3.2 2.0
w2 13.5 181.2 9.6 39.8 399.1 13.8 2.9 2.2 1.4
w3 16.5 198.4 13.9 60.5 2999.5 19.7 3.7 15.1 1.4

3.8. Concluding Remarks

In this study, we develop an interactive approach, IWRA, to find the DM’s most pre-

ferred solution for multiobjective optimization problems. In WSP setting, we develop two

finitely converging algorithms, IWRA-MOLP and IWRA-MOIP, for MOLPs and MOIPs,

respectively. The numerical experiments show that both algorithms require the DM to
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compare a reasonable number of nondominated solutions to find her most preferred solu-

tion. The experiments with perfect and imperfect comparisons show that diversification

efforts in the weight region provide significant benefits in reducing this number. Further-

more, the number of comparisons increases linearly with the number of objectives. We

extend IWRA to WTP setting and provide a heuristic algorithm, IWRA-WTP, which is

capable of yielding solutions within 0− 3% of the actual most preferred solution.

Further research on diversification models can provide additional benefits for IWRA.

Currently, IWRA uses the weight vectors returned by CVM to find the new nondomi-

nated solutions. CVM slows down as the algorithms progress, mainly due to increased

number of weight sets. Two potential directions are replacing CVM with heuristic models

or introducing more efficient diversification models with different distance metrics. A di-

versification model which does not require projections of convex hulls of partial sets to the

weight space can eliminate one of the most critical bottlenecks in IWRA-MOIP enabling

it to solve instances with more objectives.
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CHAPTER 4

Lock-Free Arc Tour Problem with Complex Objectives in a

Multiobjective Setting

This chapter has two main purposes: First, we revisit the LFATP formulations pro-

vided in Chapter 2 and discuss various extensions to solve the marathon course design

problem for more ‘complex’ objectives. The term ‘complex’ refers to sequence- and time-

dependent objectives where the objective contribution of an arc cannot be represented

in additive format with constant coefficients. Second, we apply IWRA to multiobjec-

tive LFATP to design an interactive catalog of solutions that can be presented to race

organizers of the Bank of America Chicago Marathon.

In Chapter 2, a standard formulation, LFATP-S, and a family of reformulations de-

rived from a disjunctive programming (DP) formulation, LFATP-P, have been introduced

to solve the LFATP. We refer to these formulations as arc-additive formulations through-

out this chapter. The numerical experiments in Section 2.5 show that the reformulations

generally outperform the standard formulation in the arc-additive setting. In this chap-

ter, we extend arc-additive formulations to solve sequence- and time-dependent objectives

and compare their performances to analyze their strengths and weaknesses further. Be-

tween sequence- and time-dependent objectives, extending arc-additive formulations to

sequence-dependent objectives is relatively straightforward as it involves introduction of
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additional variables and linking constraints. On the other hand, extensions to time-

dependent objectives depend on the level of granularity required in terms of timekeeping.

When discussing the new formulations, we use the same notations from Chapter 2 unless

otherwise is stated.

After developing the extensions for complex objectives, we solve LFATP in a multiob-

jective setting in order to design a catalog of solutions for the race organizers. We develop

two combined formulations, one based on LFATP-S and the other based on LFATP-P,

which are capable of solving problems with all types of objectives and their weighted

sum combinations. These combined formulations are used within IWRA-MOIP in gen-

erating nondominated solutions based on the weights provided by the algorithm. In the

interactive setting, we prepopulate an extensive set of solutions which cover all preference

scenarios for multiple iterations instead of interacting with the race organizers at each

iteration of IWRA-MOIP. The rest of the chapter is organized as follows: Section 4.1

provides extensions of arc-additive LFATP formulations to sequence- and time-dependent

objectives. Section 4.2 tests provided formulations under various objectives. Section 4.3

combines LFATP and IWRA to solve marathon course design problem of BACM in a

multiobjective setting. Section 4.4 concludes the chapter.

4.1. LFATP Extensions

4.1.1. Extending LFATP Formulations to Sequence-dependent Objectives

In tour finding problems, sequence-dependent objectives measure the contribution resulted

from the sequence of the arcs used in the solution. The most common examples of

such objectives are the turn related ones where the aim is to minimize the total number
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of certain type of turns (sharp turns, U-turns, left turns or all turns) and the incline

related ones where the aim is to minimize the absolute incline change throughout the

route. Different from the arc-additive objectives, sequence-dependent objectives require

the knowledge of the sequence; i.e., the adjacent arcs in the solution. Figure 4.1 provides

a turn detection example by using two paths, path1 (represented by solid arcs) and path2

(represented by dashed arcs), that start from vertex s and end at vertex t. Both paths use

arc a1; however, a1 leads to a 90 degree turn in path1 due to arc a2 whereas the same does

not hold for path2 due to arc a6. Thus, each arc’s contribution depends on the sequence

it creates with arcs that emanate from its terminal vertex.

Figure 4.1. Two sequences with the same length and different number of turns.

s

t

a1

a2

a3 a4

a5

a6 a7

a8

Sequence-dependent objectives are generally considered in the scope of shortest route

finding problems with turn penalties or turn prohibition. These problems are commonly

addressed by three solution approaches (Vanhove and Fack, 2012): (i) line graph trans-

formation, (ii) node splitting and (iii) specialized algorithms. The first two approaches

transform the original network so that the resulting problem can be solved by using ex-

isting route finding algorithms while the last approach focuses on developing problem
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specific algorithms. In the line graph transformation, the vertices of transformed network

represent the arcs of the original network and the arcs of the transformed network rep-

resent the sequences. For example, arcs (i, j) and (k, l) form a sequence in the original

network when j = k; therefore, the transformed network includes an arc from the vertex

representing (i, j) to the vertex representing (k, l). Examples of line graph transforma-

tions can be found in the studies of Caldwell (1961), Anez et al. (1996), Winter (2002)

and Fidler and Einhoff (2004). In node splitting, the vertices in the original network are

split for each of their incoming and emanating arcs, and the split vertices in the trans-

formed graph are connected to represent the sequences. Examples of node splitting can

be found in the studies of Kirby and Potts (1969) and Speičvcys et al. (2003). Between

the two transformations, Winter (2002) advises against node splitting as it increases the

network size significantly. Apart from node transformations, studies of Ziliaskopoulos

and Mahmassani (1996), Boroujerdi and Uhlmann (1998) and Gutiérrez and Medaglia

(2008) develop algorithms for shortest path problems with turn restrictions while studies

of Clossey et al. (2001), Micó and Soler (2011) and Bräysy et al. (2011) develop methods

that are applicable to more general routing problems such as Chinese Postman Problem.

See Vanhove and Fack (2012) for a computational comparison of routing algorithms with

turn costs and restrictions.

In order to extend the arc-additive LFATP formulations to sequence-dependent objec-

tives, we introduce a new set of variables that mimic line graph transformation. Let vijk

be a binary variable which takes value 1 if arcs (i, j) ∈ A and (j, k) ∈ A are used together

and let θijk be the objective contribution when the arcs (i, j) and (j, k) are used together.

The standard sequence-dependent formulation LFATP-S-SD can be written as follows:
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min
∑
i,j,k

(i,j),(j,k)∈A

θijkvijk(4.1a)

s.t.

vijk ≥ xij + xjk − 1 (i, j), (j, k) ∈ A,(4.1b)

vijk ≤ xij (i, j), (j, k) ∈ A,(4.1c)

vijk ≤ xjk (i, j), (j, k) ∈ A,(4.1d)

0 ≤ vijk ≤ 1 (i, j), (j, k) ∈ A,(4.1e)

(2.1b)− (2.1m).

LFATP-S-SD is obtained by adding constraints (4.1b) - (4.1e) to the feasible region

of arc-additive standard formulation, LFATP-S, which is defined by constraints (2.1b) -

(2.1m). Constraints (4.1b) - (4.1e) ensure that vijk takes value 1 when arcs (i, j) and

(j, k) are used together. Although we do not transform the underlying network explicitly,

considering vijk as an arc that connects node transformations of arcs (i, j) and (j, k),

these constraints mimic line graph transformation. Note that the binary restriction on

vijk variables are relaxed in constraints (4.1e) as vijk variables can only take values 0

or 1 for any combination of xij and xjk variables. Furthermore, when θijk ≥ 0 for all

(i, j), (j, k) ∈ A, constraints (4.1c) and (4.1d) become redundant. These constraints

ensure that vijk is set to 0 when any one of xij or xjk variables is 0; i.e., arcs (i, j) and

(j, k) are not used together in the solution. However, with θijk ≥ 0, the problem sets the

value of vijk variables to 0 due to the minimization setting, making constraints (4.1c) and
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(4.1d) redundant. Note that when θijk = 0 and these redundant constraints are ignored,

the optimal value of vijk can be set to 1 even if both arcs (i, j) and (j, k) are not used

together; however, this does not affect the optimization problem as the corresponding

coefficient θijk = 0.

Similar to LFATP-S-SD, sequence-dependent extension of disjunctive programming

formulation, LFATP-P-SD, can be written as follows:

min
∑
i,j,k

(i,j),(j,k)∈A

θijkvijk(4.2a)

s.t.

vijk ≥
|M |∑
m=1

x̄ijm +

|M |∑
m=1

x̄jkm − 1 (i, j) ∈ Ā, (j, k) ∈ Ā,(4.2b)

vijk ≥ zij +

|M |∑
m=1

x̄jkm − 1 (i, j) ∈ A \ Ā, (j, k) ∈ Ā,(4.2c)

vijk ≥
|M |∑
m=1

x̄ijm + zjk − 1 (i, j) ∈ Ā, (j, k) ∈ A \ Ā,(4.2d)

vijk ≥ zij + zjk − 1 (i, j) ∈ A \ Ā, (j, k) ∈ A \ Ā,(4.2e)

vijk ≤
|M |∑
m=1

x̄ijm (i, j) ∈ Ā, (j, k) ∈ A,(4.2f)

vijk ≤ zij (i, j) ∈ A \ Ā, (j, k) ∈ A,(4.2g)

vijk ≤
|M |∑
m=1

x̄jkm (i, j) ∈ A, (j, k) ∈ Ā,(4.2h)

vijk ≤ zjk (i, j) ∈ A, (j, k) ∈ A \ Ā,(4.2i)
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(4.1e), (2.2b)− (2.2m),

(2.1g)− (2.1i), (2.1m), (2.1l),

where constraints (4.2b)-(4.2i) replace xij variables with
∑|M |

m=1 x̄ijm when (i, j) ∈ Ā and

with zij when (i, j) ∈ A \ Ā in constraints (4.1b) - (4.1d). Similar to the standard

formulation case, these constraints and constraints (4.1e) are added to the feasible region

of LFATP-P which is defined by constraints (2.2b)-(2.2m), (2.1g)-(2.1i), (2.1m) and (2.1l).

4.1.2. Extending LFATP Formulations to Time-dependent Objectives

Finishing a marathon generally takes around 2 hours for elite runners and 4 to 7 hours

for runners with average to low speeds. As marathons span over a long period of time,

the objective coefficients for certain objective functions can differ significantly throughout

the race. Considering the medical proximity objective mentioned in Chapter 2, a decision

maker may prefer to minimize the distance to medical facilities at the later stages of the

race rather than the earlier stages since the likelihood of hospital transfers is significantly

higher at the later stages of the race (Kim et al., 2012). In this case, the objective

contribution of each arc depends on ‘when’ the arc is visited, which we refer to as time-

dependent objectives.

With recent developments in technology and availability of historic data, time-dependent

routing problems have gained increasing interest over the last few decades. While time-

dependence has been considered in a wide range of routing problems such as traveling

salesman problem and vehicle routing problem (see Picard and Queyranne (1978), Fox

et al. (1980), Malandraki and Daskin (1992) for early examples), we briefly summarize
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time-dependence from orienteering problem (OP) and arc routing problem (ARP) per-

spective as these problems are more relevant to the LFATP setting. We refer the reader

to the recent review paper by Gendreau et al. (2015) for a broader discussion on time-

dependent routing problems.

Time-dependent problems can be divided into four categories based on the type of

dependency on travel times and profit (or cost) functions. The first category is time-

windowed problems with constant travel times and profits. In these problems, the vertices

in the network must be visited during a specific time window, otherwise, the system

incurs a penalty (can be infinity when the time window is strict). While time tracking

is necessary in these problems, they are weakly time-dependent since system attributes

do not change over time. Kantor and Rosenwein (1992), Vansteenwegen et al. (2009),

Labadie et al. (2011) and Gunawan et al. (2017) develop heuristics to solve OP and

team OP (TOP) with time windows. The second category consists of studies with time-

dependent travel times and constant profit functions. In these studies, the time spent

when traversing an arc depends on the arrival/departure times or periods. Li et al.

(2010) and Li (2011) use time discretization to keep track of time-dependent travel times

when solving OPs and TOPs. Similarly Gunawan et al. (2014) use multiple time periods

with constant travel times where travel time is a constant that depends on the period

during which the arc is traversed. Verbeeck et al. (2014) and Verbeeck et al. (2017)

assume piecewise linear travel times with varying slopes and intercepts. Mei et al. (2016)

consider a general travel time function for their multiobjective OP and solve the resulting

nonlinear model with evolutionary algorithms. The studies of Garcia et al. (2010) and

Gavalas et al. (2015) combine the first two categories to solve TOPs with time-dependent
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travel times and time windows. The third category includes studies with constant travel

times and time-dependent profits. The studies of Erkut and Zhang (1996) and Ekici and

Retharekar (2013) utilize time-dependent profit functions which decrease linearly with

time when solving OP and TOP, respectively. Tagmouti et al. (2007) and Tagmouti

et al. (2011) consider piecewise linear service costs in the scope of standard and dynamic

capacitated ARPs. The study of Erdoğan and Laporte (2013) can also be considered in

this category as it assumes that the collected profit depends not on the arrival time but the

amount of time spent on a vertex. The last category combines second and third categories

with time-dependent travel times and time-dependent profits. The study of Jossé et al.

(2016) is the only example in this category where the authors develop an approximate

dynamic programming algorithm to solve twofold time-dependent arc OP. In terms of

solution approaches, most time-dependent studies focus on developing efficient heuristics,

evolutionary algorithms or approximation schemes since exact solution approaches do not

scale for networks with more than a few hundred vertices.

In our setting, a time-dependent objective replaces the arc-additive objective coeffi-

cient cij with a time-dependent cost function cij(τij) where τij represents the arrival time

to arc (i, j) ∈ A (or departure time from arc (i, j) ∈ A). Without loss of generality,

we assume that τij represents the arrival time to arc (i, j) for the rest of the discussion.

Thus, time-dependent formulations must (i) keep track of arrival times and (ii) effectively

calculate the cost function value at a given time. In the next subsections, we first dis-

cuss common time tracking and cost calculation practices which can be utilized to extend

arc-additive LFATP formulations to time-dependent ones. As the formulations obtained

via these common practices are found to be remarkably difficult to solve, we take a less
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granular approach in time tracking and cost calculation to develop a relatively simplified

LFATP formulation for time-dependent objectives.

4.1.2.1. Time Tracking. Before discussing the details of time tracking, we must note

that time tracking discussions in this section assume ‘no-waiting’ due to the underlying

marathon setting. In some routing problems, the moving entity is allowed to wait before

traveling to the next destination in the network; i.e., the arrival time to the next destina-

tion must be greater than or equal to the arrival time to the current destination plus the

travel time. Considering our marathon setting where the runners do not wait between

destinations, we enforce the arrival time to the next destination to be equal to the arrival

time to the current destination plus the travel time, leaving no room for waiting.

For general travel time functions on the arcs of the network, the resulting time track-

ing constraints involve nonlinearities which further complicate the underlying optimization

problem. Therefore, most studies in the literature assume that travel times are either con-

stant or linear functions of arrival time. Since linear travel time functions cover constant

travel times as well, we assume that the travel time through arc (i, j) is a linear function

of the arrival time to (i, j) and it is represented by the following expression:

ζijτij + ηij (i, j) ∈ A.(4.3)

Given linear travel time functions as in (4.3), time tracking constraints for the routing

problems can be written in two different ways: (i) node-based time tracking and (ii) arc-

based time tracking. In the node-based time tracking, the arrival time is tracked by sj

variables where sj > 0 is a continuous variable representing the time of arrival to vertex

j. Assuming that the route starts from vertex 0 ∈ V at start time s̄, the arrival times
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can be tracked with the following constraints:

s0 = s̄,(4.4)

−M(1− xij) + ζijsi + ηij ≤ sj ≤M(1− xij) + ζijsi + ηij (i, j 6= 0) ∈ A.(4.5)

where M is a large number. Time balance constraints (4.5) ensure that sj = ζijsi + ηij

when xij = 1; i.e., when arc (i, j) ∈ A is traversed.

In the arc-based time tracking, the arrival time is tracked by wjk variables where

wjk > 0 is a continuous variable representing the time of arrival to vertex j when arc

(j, k) is traversed. Again, assuming that the route starts from vertex 0 ∈ V at start time

s̄, the arrival times can be tracked as follows:

w0k = s̄x0k (0, k) ∈ A,(4.6) ∑
k:(k,j)∈A

(
wkj + ζkjwkj + ηkjxkj

)
=

∑
k:(j,k)∈A

wjk j 6= 0 ∈ V,(4.7)

wjk ≤Mxjk (j, k) ∈ A.(4.8)

In constraints (4.7), sj variables are replaced with
∑

k wjk variables while constraints

(4.8) ensure that wjk = 0 when arc (j, k) ∈ A is not visited. Different from node-based

time tracking, variable restrictions (Big-M restrictions) are not embedded in time balance

constraints as they are specified separately in constraints (4.8).

4.1.2.2. Cost Calculation. Similar to time tracking, the cost calculation strongly de-

pends on the properties of the cost function. As general cost functions lead to nonlinear-

ities, most studies in the literature assume that cost functions are either linear functions
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or continuous piecewise linear functions of arrival time. When discussing the details of

cost calculations, we use node-based time tracking from Section 4.1.2.1 with sj variables

satisfying constraints (4.4) and (4.5); however, the results can be generalized to arc-based

time tracking as well.

Letting the objective function of the underlying routing problem be the following:

min
∑

(i,j)∈A
cij(t)xij,(4.9)

where cij(t) is a linear function defined as:

cij(t) = πijt+ ρij (i, j) ∈ A,(4.10)

and assuming that cij(t) ≥ 0 for t ∈ [0, Tmax] where Tmax is the upper limit on time, the

cost contribution of arc (i, j), fij, can be calculated by using the following constraints:

fij ≥ −M(1− xij) + πijsi + ρij (i, j) ∈ A,(4.11)

fij ≥ 0,(4.12)

where M is a large number. When xij = 1; i.e., arc (i, j) is used in the solution, constraint

(4.11) indicates that fij ≥ πijsi + ρij and fij is set to πijsi + ρij due to minimization

setting. Otherwise, this constraint becomes redundant. With these constraints, the time-

dependent objective function (4.9) can be replaced by an arc-additive function
∑

(i,j)∈A fij.

When cij(t) is a continuous piecewise linear function with nmax ∈ Z+ time intervals

where the start and end times for interval n ∈ {1, 2, ..., nmax}, are Tn−1 and Tn respectively,
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cij(t) can be written as follows:

cij(t) =
{
πnijt+ ρnij, t ∈ [Tn−1, Tn], n ∈ {1, 2, ..., nmax}, (i, j) ∈ A,(4.13)

where πnij and ρnij are interval-dependent coefficients. In this case, if cij(t) is also convex for

each (i, j) ∈ A, cost calculation can be achieved by repeating constraints (4.11) over each

time interval as the value of a convex piecewise linear function is the pointwise maximum

of the linear functions representing the pieces:

fij ≥ −M(1− xij) + πnijsi + ρnij (i, j) ∈ A, n ∈ {1, 2, ..., nmax},(4.14)

(4.12).

For a general continuous piecewise linear function, the time interval during which arc

(i, j) is visited needs to be tracked for accurate cost calculation. Thus, xij variables are

replaced with x̃nij variables where x̃nij takes value 1 when arc (i, j) is traversed during time

interval n. With xij =
∑nmax

n=1 x̃nij, the cost contribution can be calculated as follows:

∑
(i,j)∈A

nmax∑
n=1

Tn−1x̃
n
ij ≤ si ≤

∑
(i,j)∈A

nmax∑
n=1

Tnx̃
n
ij i ∈ V,(4.15)

fij ≥ −M(1− x̃nij) + πnijsi + ρnij (i, j) ∈ A, n ∈ {1, 2, ..., nmax},(4.16)

(4.12).

Constraints (4.15) link si and x̃nij variables to ensure Tn−1 ≤ si ≤ Tn is satisfied when

(i, j) is traversed during interval n and constraints (4.16) become binding if and only if

arc (i, j) is traversed during interval n. Note that constraints (4.12), (4.15) and (4.16)



134

can be used in piecewise functions with jump discontinuities such as step functions when

the function value is equal to the minimum of the one-sided limits at the point of jump

discontinuity.

4.1.2.3. Simplified LFATP Formulation for Time-Dependent Objectives. We

have obtained various time-dependent formulations by using the time tracking and cost

calculation constraints discussed in Sections 4.1.2.1 and 4.1.2.2; however, these formula-

tions are found to be expectedly difficult to solve even in relatively small instances. For

this reason, we take a less granular approach and introduce ‘segment-based’ formulations

which imitate the time-dependent behavior. In these formulations, the route is divided

into segments of specific lengths and the objective contribution of each arc depends on the

segment it is used in. For example, a marathon course can be divided into four equal seg-

ments, representing quarters of the race, and each arc can be assigned four cost coefficients

where nth coefficient specifies the objective contribution of that arc when it is used during

nth quarter of the race. This way, the time notion is embedded to length-based segments

which do not require detailed time tracking at the cost of losing granularity; however, this

level of granularity is appropriate in this setting as marathon related objectives do not

require precise time tracking.

Let c̃nij be the objective contribution of arc (i, j) ∈ A if (i, j) is used within segment

n ∈ {1, 2, ..., nmax} where nmax specifies the number of segments. Let Lnmin and Lnmax
be the minimum and maximum segment lengths for segment n. Similar to tour length,

specifying a fixed segment length leads to infeasibilities in most cases; therefore, segment

length is specified by interval [Lnmin,Lnmax]. Letting x̃nij be a binary variable which takes

value 1 when (i, j) is used within segment n, the standard time-dependent formulation,
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LFATP-S-TD, can be written as follows:

min
∑

(i,j)∈A

nmax∑
n=1

c̃nijx̃
n
ij(4.17a)

s.t.

xij =
nmax∑
n=1

x̃nij (i, j) ∈ A,(4.17b)

Lnmin ≤
∑

(i,j)∈A
dijx̃

n
ij ≤ Lnmax n ∈ {1, 2, ..., nmax},(4.17c)

∑
j:(j,i)∈A

x̃1
ji ≥

∑
j:(i,j)∈A

x̃1
ij i ∈ V \ {0},(4.17d)

∑
j:(j,i)∈A

(
x̃n−1
ji + x̃nji

)
≥

∑
j:(i,j)∈A

x̃nij i ∈ V \ {0}, n ∈ {2, 3, ..., nmax},(4.17e)

x̃nij ∈ {0, 1} (i, j) ∈ A, n ∈ {1, 2, ..., nmax},(4.17f)

(2.1b)− (2.1m).

LFATP-S-TD is obtained by adding constraints (4.17b) - (4.17f) to the feasible region

of arc-additive standard formulation, LFATP-S, which is defined by constraints (2.1b)

- (2.1m). Constraints (4.17b) link the original routing variables xij to x̃nij. Note that

these constraints are introduced for notational convenience as xij variables in constraints

(2.1b) - (2.1m) can be replaced by
∑nmax

n=1 x̃nij and removed from the current formulation.

Constraints (4.17c) ensure that the length restrictions are satisfied for each segment.

Constraints (4.17d) and (4.17e) guarantee segment balance; i.e., if the incoming arc to a

vertex (except the start vertex 0) belongs to segment n, then emanating arc must belong

to either segment n or n+ 1.
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Similar to LFATP-S-TD, LFATP-P-TD can be written as follows:

min
∑

(i,j)∈A

nmax∑
n=1

c̃nijx̃
n
ij(4.18a)

s.t.

|M |∑
m=1

x̄ijm =
nmax∑
n=1

x̃nij (i, j) ∈ Ā,(4.18b)

zij =
nmax∑
n=1

x̃nij (i, j) ∈ A \ Ā,(4.18c)

(4.17c)− (4.17f), (2.2b)− (2.2m),

(2.1g)− (2.1i), (2.1m), (2.1l),

where constraints (4.17b) are replaced by constraints (4.18b) and (4.18c) to link x̄ijm

and zij variables to x̃nij variables. The remaining segment constraints (4.17c)-(4.17f) stay

the same and are directly taken from LFATP-S-TD. Similar to the standard formulation

case, these constraints are added to the feasible region of LFATP-P which is defined by

constraints (2.2b)-(2.2m), (2.1g)-(2.1i), (2.1m) and (2.1l).

4.2. Numerical Experiments

This section compares standard and DP formulations under arc-additive, sequence-

dependent and time-dependent objective functions for marathon course design. When

solving DP formulations, we use LFATP-R2 reformulation which utilizes 2-edge subsets

of must visit edges in M . While the formulations have already been tested in Chapter 2 for

some of the arc-additive objective functions, we rerun those experiments in this chapter

due to changes in computational settings. The experiments are conducted on a computer
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with a 2.30 GHz CPU and 16 GB memory running under 64-bit Windows 8 operating

system. MILP models are solved by using Gurobi 7.5 (Gurobi Optimization, 2018) in C#

environment of Microsoft Visual Studio 2010. In all experiments, formulations are given

a 2-hour time limit.

The experimental setting in this section is the same as that of the case study in Section

2.5.3. The formulations are applied to BACM instance with 7 must-visit edges and use

the network generated from City of Chicago street centerline map to include all streets

whose widths are greater than 30 feet (City of Chicago, 2013). In Sections 4.2.2, 4.2.3

and 4.2.4, each formulation and objective pair is solved with an additional K% similarity

constraint which ensures that the total length of the common arcs, used in the current

solution and in the original course, must be at least K% of the original course length.

In this case, 100% similarity becomes the original course and 0% similarity becomes the

unrestricted case from similarity perspective. When solving for different similarity levels,

we start from the highest similarity level and solve for the instances in a descending order

of similarity levels. This way, the optimal/near optimal solution of the current instance

can be used as a starting solution for the subsequent instance. Details of the BACM case

and similarity discussions can be found in Section 2.5.3.

4.2.1. Objective Functions for Marathon Course Design

In the numerical experiments, we consider several objective functions related to marathon

course design to compare the standard and DP formulations under various settings.

• Average medical proximity is an arc-additive objective function which aims to

shorten travel times for hospital transports by minimizing the average distance from a
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point on the course to a nearest hospital. Letting mij be the rectilinear distance (in feet)

from the midpoint of arc (i, j) to the closest hospital, the objective contribution of each

arc is constructed as:

cij =
mijdij
L

(i, j) ∈ A.(4.19)

where cij represents the length-weighted contribution of arc (i, j) to average medical

proximity. Note that this objective function has been explored in Chapter 2 in detail;

however, the experiments are rerun due to changes in the computational setting.

• Average transport proximity is an arc-additive objective function which aims

to maximize accessibility of the course from spectator perspective by minimizing the

average distance from a point on the course to the nearest public transport station. The

objective contribution of arc (i, j) is calculated similar to that of average medical proximity

objective:

cij =
tijdij
L

(i, j) ∈ A.(4.20)

where tij is the rectilinear distance (in feet) from the midpoint of arc (i, j) to the closest

public transport station. cij represents the length-weighted contribution of arc (i, j) to

average transport proximity.

• Average street width is an arc-additive objective function which aims to reduce

runner congestion by maximizing the average width of the road segments used in the

course. Similar to the previous arc-additive objectives, the objective contribution of arc
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(i, j) is calculated as:

cij =
wijdij
L

(i, j) ∈ A.(4.21)

where wij is the width of arc (i, j) (in feet). cij represents the length-weighted contribution

of arc (i, j) to average street width.

• Total turn angle is a sequence-dependent objective function which aims to increase

runner speed and decrease runner congestion by minimizing total turn angle along the

course. Letting β∠ij be the total turn angle (in degree) within arc (i, j) and θ∠ijk be the

turn angle (in degree) when moving from arc (i, j) to (j, k), the total turn angle of a route

can be written as follows:

∑
(i,j)∈A

β∠ijxij +
∑
i,j,k

(i,j),(j,k)∈A

θ∠ijkvijk(4.22)

Note that β∠ij coefficients are needed since the road segments are not necessarily straight

lines and preprocessing operations may merge some road segments into a single arc.

• Total sharpness count is a sequence-dependent objective function which aims to

increase runner speed and decrease runner congestion by minimizing the sharp turns along

the course. For this purpose, each turn in the network is assigned an integer sharpness
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count. At a given point:

sharpness count =



0, 0◦ ≤ turn angle < 30◦

1, 30◦ ≤ turn angle < 60◦

2, 60◦ ≤ turn angle < 120◦

3, 120◦ ≤ turn angle ≤ 180◦

Letting β̄ij be the total sharpness count within arc (i, j) and θ̄ijk be the sharpness count

when moving from arc (i, j) to (j, k), the total sharpness count of a route can be written

as follows:

∑
(i,j)∈A

β̄ijxij +
∑
i,j,k

(i,j),(j,k)∈A

θ̄ijkvijk(4.23)

• Time-dependent average medical proximity is a time-dependent objective

function which aims to minimize average medical proximity of a marathon course based

on cardiac arrest incidence rates. The study of Kim et al. (2012) investigates outcomes of

59 cardiac arrest incidents during marathon / half-marathon races in the United States

between 2000 and 2010, and their study indicates that 10 out of 59 cardiac arrests occurred

within the first two quarters of the race while the remaining 49 occurred within the third

and last quarters. Thus we divide the marathon course into two equal segments and

update the cij values from equation (4.19) with incident rates of 10
59

and 49
59

for the first

and second segment, respectively. This objective function favors courses whose later stages

are closer to the hospitals.
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• Time-dependent average street width is a time-dependent objective function

which aims to maximize average street width in order to minimize early stage congestion.

The runner density on the streets decreases with time as the spread of runner speeds leads

to a greater geographic dispersion of runners; therefore, maximizing average street width

at the earlier stages is more important. For this reason, the course is divided into two

equal segments and cij values from equation (4.21) are updated in such a way that the

width contribution of an arc in the first segment is twice as much as its width contribution

in the second segment.

4.2.2. Numerical Experiments for Arc-additive Objectives

Tables 4.1, 4.2 and 4.3 summarize the LFATP-S and LFATP-P results at similarity levels

0%, 10%, ..., 90%, 100% for average medical proximity, average transport proximity and

average street width objectives, respectively. The tables report the number of subtour

elimination inequalities (SBTR) and VDLEI inequalities (VDLEI ), time spent on cut

generation (CutGen) and solving the instance (Total), optimality gap (% Gap) and the

objective value for the optimal/near-optimal solution for each formulation and similarity

pair. Figure 4.2 shows the locations of hospitals and public transport stations along

with the current marathon course. For public transport stations, we use Chicago Transit

Authority’s train stops data which consists of 300 station locations, obtained from City

of Chicago (2017).

For all objectives, instances with high similarity levels (70− 100%) are easier to solve

as they are more restricted compared to instances with lower similarity levels. For average

medical proximity, the formulations fail to prove optimality when similarity level is below
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Figure 4.2. Locations of hospitals (red squares) and public transport sta-
tions (black circles) along with the current BACM course.

70 − 80%. The same behavior is observed for average transport proximity and average

street width objectives when similarity levels are below 40% and 70%, respectively. Similar

to the results of the BACM case study in Section 2.5.3, changing around 30% of the course

is sufficient to achieve more than 65− 70% of maximum improvement.

For average medical and transport proximity objectives, LFATP-P performs signifi-

cantly better than LFATP-S in terms of optimality gaps. While both formulations fail
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Table 4.1. Results of LFATP-S and LFATP-P for average medical proxim-
ity objective.

LFATP-S LFATP-P

Sim. Count Duration (s) Performance Count Duration (s) Performance

% SBTR VDLEI CutGen Total % Gap ObjVal SBTR VDLEI CutGen Total % Gap ObjVal

100 0 0 0.0 0.1 0.0 5928 0 0 0.0 1.7 0.0 5928
90 1076 17 29.4 112.2 0.0 5620 176 18 4.8 44.0 0.0 5620
80 1162 79 60.8 259.4 0.0 5295 336 51 13.1 135.4 0.0 5295
70 5012 1061 452.4 TILIM 2.6 5141 1305 430 100.3 1574.8 0.0 5132
60 8244 1549 410.8 TILIM 4.1 5017 3535 2237 236.0 TILIM 0.5 4964
50 9407 1070 371.7 TILIM 6.7 4929 2995 2581 325.7 TILIM 0.7 4855
40 6284 2219 397.3 TILIM 6.3 4853 3498 3815 257.5 TILIM 1.1 4853
30 6420 1323 580.9 TILIM 6.1 4853 3381 3858 272.0 TILIM 1.1 4853
20 4676 1664 470.6 TILIM 6.5 4853 3550 2641 293.1 TILIM 1.3 4853
10 4622 1643 460.6 TILIM 6.5 4853 3151 3782 264.8 TILIM 1.1 4853
0 4528 1619 445.6 TILIM 6.5 4853 3225 4464 246.2 TILIM 1.1 4853

Table 4.2. Results of LFATP-S and LFATP-P for average transport prox-
imity objective.

LFATP-S LFATP-P

Sim. Count Duration (s) Performance Count Duration (s) Performance

% SBTR VDLEI CutGen Total % Gap ObjVal SBTR VDLEI CutGen Total % Gap ObjVal

100 0 0 0.0 0.1 0.0 2669 0 0 0.0 1.8 0.0 2669
90 254 4 4.7 21.7 0.0 2511 68 3 1.7 17.0 0.0 2511
80 301 11 4.3 32.5 0.0 2314 121 13 2.7 31.3 0.0 2314
70 1571 26 47.3 246.0 0.0 2196 156 12 4.2 28.5 0.0 2196
60 2678 52 87.2 637.1 0.0 2119 66 9 1.5 12.7 0.0 2119
50 9148 140 352.5 4266.3 0.0 2074 195 68 11.0 65.4 0.0 2074
40 9958 294 390.7 TILIM 3.2 2060 2803 415 297.2 TILIM 1.0 2053
30 13445 282 384.8 TILIM 2.6 2050 3201 387 337.3 TILIM 1.1 2043
20 11699 330 598.5 TILIM 2.9 2050 4142 365 302.3 TILIM 1.1 2043
10 11616 325 594.1 TILIM 2.9 2050 5298 183 291.4 TILIM 1.2 2043
0 11473 318 580.5 TILIM 2.9 2050 4373 474 440.3 TILIM 1.0 2043

to prove optimality at low similarity levels, optimality gaps of LFATP-P are around

0.5 − 1.2% whereas they are around 2.5 − 6.5% for LFATP-S, indicating that LFATP-P

is a better choice for these two objectives. As expected, LFATP-P uses fewer subtour

elimination inequalities than LFATP-S ; however, the former uses more VDLEIs than the

latter. In terms of cut generation times, LFATP-P spends less time when searching for
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Table 4.3. Results of LFATP-S and LFATP-P for average street width objective.

LFATP-S LFATP-P

Sim. Count Duration (s) Performance Count Duration (s) Performance

% SBTR VDLEI CutGen Total % Gap ObjVal SBTR VDLEI CutGen Total % Gap ObjVal

100 0 0 0.0 0.2 0.0 47.9 0 0 0.0 1.9 0.0 47.9
90 1278 21 35.1 144.1 0.0 49.7 1320 21 45.2 621.3 0.0 49.7
80 856 12 32.9 150.2 0.0 51.6 1426 26 53.8 869.1 0.0 51.6
70 6630 846 420.5 TILIM 0.5 53.2 4557 226 219.6 TILIM 1.4 53.1
60 6696 616 468.6 TILIM 0.9 54.9 5482 306 244.7 TILIM 3.2 54.1
50 3031 1668 458.9 TILIM 0.9 56.1 4196 592 239.7 TILIM 1.3 56.1
40 2989 1709 429.6 TILIM 1.0 56.1 3610 644 329.7 TILIM 1.3 56.1
30 3254 1512 490.2 TILIM 1.1 56.1 3852 594 345.6 TILIM 1.2 56.1
20 3432 1646 511.9 TILIM 1.1 56.1 3502 480 297.9 TILIM 1.2 56.1
10 3369 1613 500.8 TILIM 1.1 56.1 2256 1155 272.7 TILIM 1.1 56.1
0 3263 1555 486.6 TILIM 1.1 56.1 3322 898 341.3 TILIM 1.1 56.1

the cuts but the difference is not significant especially in instances for which the time

limit is reached.

For average street width objective, LFATP-S becomes competitive with faster solution

times for instances that are solved to optimality and slightly better optimality gaps for

instances that reach the time limit. The main difference between proximity objectives

and average street width objective is the structure of arc costs. In proximity objectives,

the aim is to be as close as possible to a predetermined set of vertices in the network;

therefore, the preferable arcs are clustered around those vertices, resulting in excessive

subtour formation. In such cases, LFATP-P is expected to perform better as it leaves a

small length budget for subtour formation. In width maximization, on the other hand,

wide streets are stretched along the entire map and these streets are not clustered. Thus,

LFATP-P loses its benefit and standard formulation performs relatively better.
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4.2.3. Numerical Experiments for Sequence-dependent Objectives

Tables 4.4 and 4.5 summarize the LFATP-S-SD and LFATP-P-SD results at similarity

levels 0%, 10%, ..., 90%, 100% for total turn angle and total sharpness count objective,

respectively. For total turn angle objective, LFATP-S-SD performs better than LFATP-

P-SD as it solves each instance significantly faster. LFATP-P-SD fails to solve 60%

similarity instance to optimality with a 3.3% gap and terminates at a sub-optimal solution.

The results for total sharpness count objective are similar: Both formulations solve each

instance to optimality while the standard formulation is significantly faster.

Table 4.4. Results of LFATP-S-SD and LFATP-P-SD for total turn angle
objective.

LFATP-S-SD LFATP-P-SD

Sim. Count Duration (s) Performance Count Duration (s) Performance

% SBTR VDLEI CutGen Total % Gap ObjVal SBTR VDLEI CutGen Total % Gap ObjVal

100 0 0 0.0 0.1 0.0 3691 0 0 0.0 1.8 0.0 3691
90 14 0 1.5 35.7 0.0 3194 12 3 4.5 156.3 0.0 3194
80 81 6 7.5 201.5 0.0 2920 46 9 12.0 830.6 0.0 2920
70 262 50 44.1 986.1 0.0 2708 272 45 36.1 4229.3 0.0 2708
60 304 92 38.8 906.9 0.0 2454 344 113 67.6 TILIM 3.3 2503
50 87 24 11.4 245.9 0.0 2322 77 32 19.9 2111.5 0.0 2322
40 92 26 13.0 321.7 0.0 2314 39 20 11.7 1166.6 0.0 2314
30 94 31 15.4 363.2 0.0 2314 53 33 33.8 2993.1 0.0 2314
20 109 27 15.2 318.2 0.0 2314 37 30 13.2 1361.4 0.0 2314
10 109 27 15.1 316.1 0.0 2314 60 44 31.6 2692.3 0.0 2314
0 109 27 14.8 313.8 0.0 2314 40 25 16.6 1916.4 0.0 2314

Despite having an additional set of (vijk) variables and additional sets of constraints,

sequence-dependent formulations are found to be easier to solve than arc-additive ones

for turn related objectives as these objectives implicitly discourage subtour formation. In

a standard routing problem, relaxations generally favor subtour formation as subtours

tend to decrease total travel distances or increase collected profit. This is not the case

in a turn minimization setting as subtours introduce more turns, worsening the objective
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Table 4.5. Results of LFATP-S-SD and LFATP-P-SD for total sharpness
count objective.

LFATP-S-SD LFATP-P-SD

Sim. Count Duration (s) Performance Count Duration (s) Performance

% SBTR VDLEI CutGen Total % Gap ObjVal SBTR VDLEI CutGen Total % Gap ObjVal

100 0 0 0.0 0.1 0.0 70 0 0 0.0 1.9 0.0 70
90 8 0 0.8 20.2 0.0 60 6 1 2.6 97.7 0.0 60
80 20 1 1.6 76.8 0.0 52 9 4 5.1 395.0 0.0 52
70 62 13 9.2 308.8 0.0 49 75 12 19.1 1953.9 0.0 49
60 99 13 12.4 307.8 0.0 45 94 23 20.9 1935.6 0.0 45
50 39 11 3.1 108.4 0.0 43 5 7 7.7 1007.1 0.0 43
40 217 50 34.7 971.3 0.0 43 48 14 12.1 1355.0 0.0 43
30 241 55 35.0 914.3 0.0 43 15 22 14.6 1085.6 0.0 43
20 240 64 39.6 1116.1 0.0 43 27 27 14.3 1753.7 0.0 43
10 240 64 40.1 1120.5 0.0 43 72 34 20.6 1972.1 0.0 43
0 240 64 39.8 1127.1 0.0 43 18 14 12.1 1286.3 0.0 43

value. Thus, sequence-dependent formulations with turn related objectives do not require

extensive efforts to eliminate subtours (as seen in SBTR columns of Tables 4.4 and 4.5)

and converge to optimal solutions faster.

4.2.4. Numerical Experiments for Time-dependent Objectives

Tables 4.6 and 4.7 summarize the LFATP-S-TD and LFATP-P-TD results at similarity

levels 0%, 10%, ..., 90%, 100% for time-dependent average medical proximity and average

street width objectives, respectively. As the results in Tables 4.6 and 4.7 indicate, time-

dependent objectives are the most difficult to optimize even with the simplified segment-

based formulations. For time-dependent average medical proximity objective, LFATP-

S-TD reaches up to 30% optimality gaps while LFATP-P-TD reaches up to 14%. This

is an expected result since the underlying ordering logic behind DP formulation reflects

the time notion better. While LFATP-P-TD is significantly better in reducing optimality

gaps, the objective values for low similarity levels are slightly worse than those of the
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standard formulation. The results for time-dependent average street width objective

are very similar to those of medical proximity; however, the optimality gaps for both

formulations are significantly better.

Table 4.6. Results of LFATP-S-TD and LFATP-P-TD for time-dependent
average medical proximity objective.

LFATP-S-TD LFATP-P-TD

Sim. Count Duration (s) Performance Count Duration (s) Performance

% SBTR VDLEI CutGen Total % Gap ObjVal SBTR VDLEI CutGen Total % Gap ObjVal

100 0 0 0.0 2.1 0.0 5641 0 0 0.0 4.5 0.0 5641
90 3135 21 122.4 3680.2 0.0 5145 622 14 25.9 1360.5 0.0 5145
80 3917 76 227.2 TILIM 6.7 4729 2050 190 112.0 TILIM 4.2 4729
70 3696 151 156.9 TILIM 18.4 4629 1451 220 135.1 TILIM 7.4 4599
60 4248 243 153.4 TILIM 23.6 4573 297 84 97.4 TILIM 9.4 4554
50 3972 379 128.8 TILIM 29.1 4529 272 108 102.4 TILIM 12.9 4534
40 4124 349 133.4 TILIM 29.6 4481 371 61 88.3 TILIM 13.7 4534
30 5021 508 172.2 TILIM 29.0 4481 412 124 145.8 TILIM 13.1 4501
20 4220 260 177.2 TILIM 30.5 4481 402 95 103.9 TILIM 13.1 4501
10 4149 258 170.0 TILIM 30.5 4481 293 87 141.1 TILIM 11.0 4501
0 4042 257 164.7 TILIM 30.5 4481 320 53 85.0 TILIM 13.8 4501

Table 4.7. Results of LFATP-S-TD and LFATP-P-TD for time-dependent
average street width objective.

LFATP-S-TD LFATP-P-TD

Sim. Count Duration (s) Performance Count Duration (s) Performance

% SBTR VDLEI CutGen Total % Gap ObjVal SBTR VDLEI CutGen Total % Gap ObjVal

100 0 0 0.0 2.2 0.0 48.4 0 0 0.0 10.2 0.0 48.4
90 2867 26 140.0 TILIM 2.0 49.6 1830 15 88.7 TILIM 2.3 49.6
80 4716 46 207.8 TILIM 4.9 51.2 1384 18 117.8 TILIM 4.1 51.1
70 4940 94 176.5 TILIM 6.6 52.6 1590 83 118.1 TILIM 3.3 53.6
60 3623 189 164.6 TILIM 5.5 54.2 1972 105 111.3 TILIM 4.0 54.7
50 2763 205 136.3 TILIM 6.8 54.6 1179 154 93.4 TILIM 3.0 55.9
40 2944 240 154.6 TILIM 7.8 54.6 854 101 83.3 TILIM 3.0 56.1
30 2447 216 161.3 TILIM 4.9 56.2 1005 103 92.3 TILIM 2.9 56.1
20 1900 224 170.5 TILIM 4.6 56.2 1011 58 87.6 TILIM 2.7 56.1
10 1892 224 168.2 TILIM 4.6 56.2 1321 82 108.7 TILIM 2.8 56.1
0 1882 223 165.8 TILIM 4.6 56.2 1195 126 98.2 TILIM 2.2 56.1

Among all the objectives tested in this section, time-dependent average medical prox-

imity objective is the most difficult one as it combines the time-dependence with the clus-

tered cost structure. To improve optimality gaps, we used the DP-based B&C method
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to solve LFATP-P with higher fixed depth levels as visit orders with more must-visit

edges provide a better understanding of when the route visits certain parts of the map.

However, this approach could not improve the optimality gaps for most of the instances.

In summary, performances of LFATP-P and LFATP-S depend strongly on the degree

of subtour formation imposed by the underlying objective function. When the subtour

formation is encouraged, as in average medical proximity, average transport proximity and

time-dependent average medical proximity objectives, LFATP-P outperforms LFATP-S

since path-based approach exploits length restrictions to reduce the length budget for

subtour formation. When subtour formation is not necessarily encouraged, as in average

street width and time-dependent average street width objectives, the performances of

LFATP-P and LFATP-S do not differ significantly. When subtour formation is discour-

aged, as in total turn angle and total sharpness degree objectives, LFATP-S outperforms

LFATP-P since the latter loses its strength when subtours are not prevalent.

4.3. Case Study - Multiobjective LFATP for Bank of America Chicago

Marathon

This section combines our findings from Chapters 2, 3 and 4 to generate a catalog of

guided solution sets for the Bank of America Chicago Marathon. The solution sets, rep-

resenting a wide range of marathon course designs, are generated by using IWRA-MOIP

on the multiobjective version of LFATP. Instead of conducting real-time interactive ses-

sions with race organizers in which new constraints are added through comparisons at

each iteration of IWRA-MOIP, we generate diverse solution sets that cover all possible
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outcomes of the first four IWRA iterations. The rest of the section is organized as fol-

lows: Section 4.3.1 introduces two combined formulations, standard and DP, which are

capable of solving LFATP for any combination of arc-additive, sequence-dependent and

time-dependent objective functions. Section 4.3.2 provides the details of objective func-

tions used in the case study. Section 4.3.3 discusses the application of IWRA-MOIP to

multiobjective LFATP and evaluates the generated solutions.

4.3.1. Combined Formulations

In order to solve LFATP in a multiobjective setting, a combined formulation which is ca-

pable of finding optimal solutions for any combination of arc-additive, sequence-dependent

and time-dependent objectives is needed. This section provides two such combined for-

mulations, LFATP-S-C and LFATP-P-C, based on standard and DP formulations, re-

spectively. LFATP-S-C and LFATP-P-C are comprehensive formulations that integrate

all variables and constraints from arc-additive, sequence-dependent and time-dependent

formulations.

Without loss of generality, let cij, c̃
n
ij and θijk be the weighted sum objective coefficients

of standard routing (xij), sequence (vijk) and segment-based routing (x̃nij) variables, re-

spectively, for a weight vector w. Then the combined standard formulation, LFATP-S-C,

can be written as follows:

min
∑

(i,j)∈A
cijxij +

∑
i,j,k:

(i,j),(j,k)∈A

θijkvijk +
nmax∑
n=1

∑
(i,j)∈A

c̃nijx̃
n
ij(4.24a)

s.t.
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(2.1b)− (2.1m), (4.1b)− (4.1e), (4.17b)− (4.17f).

Constraints (2.1b) - (2.1m) define the feasible region of LFATP-S formulation for

arc-additive objectives, and constraints (4.1b) - (4.1e) and (4.17b)-(4.17f) are added for

sequence- and time-dependent extensions, respectively.

Similar to LFATP-S-C, combined DP formulation, LFATP-P-C, can be written as

follows:

min

|M |∑
m=1

∑
(i,j)∈Ā

cijx̄ijm +
∑

(i,j)∈A\Ā
cijzij +

∑
i,j,k:

(i,j),(j,k)∈A

θijkvijk +
nmax∑
n=1

∑
(i,j)∈A

c̃nijx̃
n
ij(4.25a)

s.t.

(2.2b)− (2.2m), (2.1g)− (2.1i), (2.1m), (2.1l),

(4.2b)− (4.2i), (4.1e),

(4.18b), (4.18c), (4.17c)− (4.17f).

Constraints (2.2b)-(2.2m), (2.1g)-(2.1i), (2.1m),(2.1l) define the feasible region of

LFATP-P formulation for arc-additive objectives, and constraints (4.2b)-(4.2i), (4.1e) and

(4.18b), (4.18c), (4.17c)-(4.17f) are added for sequence- and time-dependent extensions,

respectively.

4.3.2. Objective Functions

In the case study, we focus on solving 4-objective LFATP which optimizes: (i) average

medical proximity, (ii) average transport proximity, (iii) similarity and (iv) total sharpness
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count objectives. Different from Section 4.2, similarity to the existing course is no longer

a constraint but an arc-additive objective function to be maximized: the higher the

similarity, the easier to implement the new solution. Thus, the multiobjective setting

includes three arc-additive and one sequence-dependent objective function. Note that

time-dependent objective functions are not included in this case study considering the

results discussed in Section 4.2.4. Street width related objectives are not included either

since the BACM organizers are able to control runner density (and congestion) with

staggered starts by corral.

From the results in Section 4.2, the optimal/best objective values for average medical

proximity, average transport proximity, similarity and total sharpness count objectives are

4853 feet, 2050 feet, 100% and 43, respectively. Among these four objectives, similarity

is the only maximization-type objective, therefore, its coefficients are multiplied by −1

to make all objectives minimization-type. Furthermore, to have a more uniform weight

representation in the weight space, the objective functions are normalized with their

optimal values; i.e., their coefficients are divided by their individual optimal values and

the LFATP is solved for these normalized values. For example, if the normalized LFATP

yields the objective value vector (1.10, 1.12,−0.73, 2.21) for a given weight vector w, then

the actual objective value vector is:

(1.10× 4853, 1.12× 2050,−0.73× 100× (−1), 2.21× 43) = (5338, 2296, 73, 95).
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4.3.3. Multi-Iteration Comparison Set Generation with IWRA-MOLP

As discussed in Chapter 3, IWRA-MOIP iterates between solution generation and com-

parison phases. During the solution generation phase, we first generate diverse weight

vectors via constraint violation model (see Section 3.3.2) and solve the resulting weighted

sum problem with an aggregated objective function to find a potentially diverse nondomi-

nated solution. Note that this case study ignores unsupported nondominated solutions as

LFATP is not a convex problem and IWRA-MOIP is not capable of finding unsupported

solutions. Letting weight vector w = (w1, w2, w3, w4) represent the weights correspond-

ing to normalized average medical proximity, average transport proximity, similarity and

total sharpness count objectives, respectively, we use the following logic when solving the

resulting weighted sum problem: When w1 + w2 ≥ w3 + w4, we assume that the average

proximity objectives are the dominant structure in the resulting weighted sum problem;

therefore, the problem is solved by using LFATP-P-C as the DP formulation performs bet-

ter for average proximity objectives (see Section 4.2.2). Otherwise, we use LFATP-S-C as

the standard formulation performs better for similarity objective and sequence-dependent

objectives (see Section 4.2.3).

During the comparison phase, the decision maker (DM) is presented a set of solutions

and asked to compare these solutions. Chapter 3 discusses two comparison methods: (i)

pairwise comparison of the new solution with the current best and (ii) inserting the new

solution to the preference-sorted list of already identified solutions. After the comparison

phase, the weight region is updated based on the preference information of the decision

maker and a new iteration starts with solution generation phase. In this case study, we

have generated all possible comparison sets for the first four iterations of IWRA. This
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way, a single interaction with the DM (the race organizers in this case) enables us to

iterate IWRA for multiple iterations, reducing the number of interactions at the cost of

enumerating the solutions for all possible scenarios.

4.3.3.1. Comparison Set Generation. In our setting, comparison sets consist of four

LFATP solutions and the DM is asked to choose the best solution of a given comparison

set. Based on her selection, a new set is shown to DM and the process is repeated for four

iterations. In order to be able to provide these sets offline (without solving LFATP in real

time), all preference scenarios are considered and the subsequent sets are generated ac-

cordingly. Let Sκ represent solution set κ and `κi be the ith solution in Sκ. The initial set

S (without κ index) consists of four solutions `1, `2, `3 and `4, which are constructed by

minimizing each objective individually; i.e., by using weight vectors (1, 0, 0, 0), (0, 1, 0, 0),

(0, 0, 1, 0) and (0, 0, 0, 1) – corners of unit 3-simplex. At the end of iteration 1, there

are four possible scenarios where the DM selects `i, i = 1, 2, 3, 4, as the most preferred

solution. For the second iteration, we generate four solution sets S1 = {`11, `12, `13, `14},

S2 = {`21, `22, `23, `24}, S3 = {`31, `32, `33, `34} and S4 = {`41, `42, `43, `44} where Si as-

sumes that solution `i is selected as the most preferred solution from comparison set S.

Therefore, the weight region of set Si satisfies wTF (`i) ≤ wTF (`j), j = 1, 2, 3, 4, j 6= i,

where F (`) is the objective value vector of the normalized LFATP for solution `. The first

solution at each Si is set to `i, (`i1 ← `1), then, three additional solutions `i2, `i3 and `i4

are generated by using weight vectors obtained via the constraint violation model using

the weight region of Si. The same procedure is repeated once more for 16 scenarios to

generate sets Sij = {sij1, sij2, sij3, sij4}, 1 ≤ i, j ≤ 4, and finally for 64 scenarios to gener-

ate sets Sijk = {sijk1, sijk2, sijk3, sijk4}, 1 ≤ i, j, k ≤ 4. For example, in a scenario where
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the DM stops with a final solution s1413 at the end of the fourth iteration, the iteration

progression for that DM is as follows: In iteration 1, the DM chooses the first solution s1

from set S and is directed to comparison set S1. In iteration 2, the DM chooses the fourth

solution s14 from set S1 and is directed to comparison set S14. In iteration 3, the DM

chooses the first solution s141 from set S14 and is directed to comparison set S141. Lastly,

in iteration 4, the DM chooses the third solution s1413 from set S141, which becomes her

most preferred solution at the end of four IWRA-MOIP iterations. See Figure 4.3 for a

schematic of comparison sets and the iteration progress for solution s1413.

The process of generating all comparison sets requires solving LFATP 256 times. For

this reason, we limit the maximum solution time to 60 minutes; however, terminate the

optimization if optimality gap is below 1.5% and more than 20 minutes is spent already.

The solutions are generated in 76 hours with an average optimality gap to 0.60% and

maximum optimality gap of 2.53%. Out of 256 problems, 112 are solved to optimality,

131 are terminated as they reach 1.5% optimality gap between minute 20 and 60 (time

limit), and 13 is terminated due to time limit of 60 minutes. Note that some solutions

are found multiple times; therefore, the total number of unique solutions is 140. Table

4.8 provides the details of solutions for sets S, S1, S2, S3 and S4 (see Appendix B.1 for a

list of all sets and solutions). Figure 4.4 provides the comparison page for set S.

4.3.3.2. Quality of the Comparison Sets. The quality of the comparison sets are

tested by using 50 random weight vectors. For each randomly generated weight vector, we

first calculate the actual most preferred solution, x∗ (see Appendix B.2 for details). Then,

the same weight vector is provided to a simulated DM which completes four IWRA-MOIP

iterations by using generated comparison sets and converging to best IWRA solution,
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Table 4.8. List of LFATP solutions for sets S, S1, S2, S3 and S4.

Set Solution Weight Objective Values

S

`1 (1.0000, 0.0000, 0.0000, 0.0000) (4852.7, 2534.1, 49.7, 95)

`2 (0.0000, 1.0000, 0.0000, 0.0000) (5787.6, 2043.1, 33.3, 114)

`3 (0.0000, 0.0000, 1.0000, 0.0000) (5927.5, 2669.3, 100.0, 70)

`4 (0.0000, 0.0000, 0.0000, 1.0000) (6370.3, 2617.1, 57.4, 43)

S1

`11 (1.0000, 0.0000, 0.0000, 0.0000) (4852.7, 2534.1, 49.7, 95)

`12 (0.3889, 0.3889, 0.2222, 0.0000) (5334.6, 2260.2, 72.3, 95)

`13 (0.6578, 0.0467, 0.2956, 0.0000) (5295.1, 2568.1, 80.2, 88)

`14 (0.7044, 0.2956, 0.0000, 0.0000) (4982.3, 2272.1, 41.1, 97)

S2

`21 (0.0000, 1.0000, 0.0000, 0.0000) (5787.6, 2043.1, 33.3, 114)

`22 (0.3561, 0.4306, 0.2133, 0.0000) (5334.6, 2260.2, 72.3, 95)

`23 (0.0240, 0.6680, 0.3080, 0.0000) (5947.5, 2164.4, 67.7, 95)

`24 (0.2847, 0.7153, 0.0000, 0.0000) (5450.0, 2066.2, 33.8, 108)

S3

`31 (0.0000, 0.0000, 1.0000, 0.0000) (5927.5, 2669.3, 100.0, 70)

`32 (0.2643, 0.2643, 0.2643, 0.2070) (5417.8, 2502.3, 64.5, 49)

`33 (0.0000, 0.3678, 0.6322, 0.0000) (5927.5, 2669.3, 100.0, 70)

`34 (0.1136, 0.6322, 0.1771, 0.0771) (5741.6, 2261.5, 75.1, 63)

S4

`41 (0.0000, 0.0000, 0.0000, 1.0000) (6370.3, 2617.1, 57.4, 43)

`42 (0.2500, 0.2500, 0.2500, 0.2500) (5417.8, 2502.3, 64.5, 49)

`43 (0.2505, 0.6250, 0.0000, 0.1245) (5344.7, 2207.7, 40.3, 62)

`44 (0.3750, 0.0000, 0.0000, 0.6250) (5406.8, 2582.5, 58.3, 47)

xIWRA. Table 4.9 reports the objective function values of the actual most preferred

solution and the corresponding IWRA-MOIP solution along with element-wise percentage

deviations between these objective vectors for each instance. As seen in Table 4.9, 4-

iteration IWRA-MOIP converges to the actual most preferred solution for 28 out of 50

instances and provides solutions with low deviations in most cases. Only 7 out of 50

instances include a percentage deviation greater than 15%.
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(a) Solution s1.
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(b) Solution s2.
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(c) Solution s3.

MED:   31.3%
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(d) Solution s4.

Figure 4.4. Comparison page for set S = {s1, s2, s3, s4}.

Table 4.9. Comparison of actual solutions and 4-iteration IWRA solutions.

F (x∗) F (xIWRA) % Deviations

(5952, 2659, 98.2, 66) s3124: (5952, 2659, 98.2, 66) (0.0, 0.0, 0.0, 0.0)

(5652, 2174, 44.2, 61) s2441: (5735, 2186, 44.4, 59) (1.5, 0.6, 0.5, 3.3)

(6500, 2511, 59.6, 43) s4141: (6500, 2511, 59.6, 43) (0.0, 0.0, 0.0, 0.0)

(5174, 2589, 50.7, 52) s1123: (5174, 2589, 50.7, 52) (0.0, 0.0, 0.0, 0.0)

(5413, 2594, 60.5, 47) s4211: (5418, 2502, 64.5, 49) (0.1, 3.5, 6.6, 4.3)

(6500, 2511, 59.6, 43) s4141: (6500, 2511, 59.6, 43) (0.0, 0.0, 0.0, 0.0)

(5927, 2669, 100, 70) s3111: (5927, 2669, 100, 70) (0.0, 0.0, 0.0, 0.0)

(5229, 2562, 54.9, 51) s4424: (5411, 2491, 62.3, 49) (3.5, 2.8, 13.5, 3.9)

(5709, 2333, 79.0, 61) s3413: (5709, 2333, 79.0, 61) (0.0, 0.0, 0.0, 0.0)

(5927, 2669, 100.0, 70) s3111: (5927, 2669, 100, 70) (0.0, 0.0, 0.0, 0.0)

(5869, 2307, 64.9, 53) s4212: (5709, 2333, 79.0, 61) (2.7, 1.1, 21.7, 15.1)

(5204, 2606, 56.1, 51) s4421: (5293, 2597, 58.9, 49) (1.7, 0.3, 5.0, 3.9)

(5927, 2669, 100, 70) s3111: (5927, 2669, 100, 70) (0.0, 0.0, 0.0, 0.0)

(6503, 2493, 56.2, 43) s4131: (6503, 2493, 56.2, 43) (0.0, 0.0, 0.0, 0.0)

(5719, 2430, 77.2, 55) s3213: (5752, 2554, 82.2, 55) (0.6, 5.1, 6.5, 0.0)

(5138, 2475, 62.6, 61) s1321: (5228, 2523, 63.0, 53) (1.8, 1.9, 0.6, 13.1)

(6099, 2189, 45.7, 57) s4343: (5807, 2132, 46.9, 65) (4.8, 2.6, 2.6, 14.0)

continued . . .
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. . . continued

F (x∗) F (xIWRA) % Deviations

(5878, 2680, 93.0, 60) s3121: (5878, 2680, 93.0, 60) (0.0, 0.0, 0.0, 0.0)

(5300, 2608, 61.1, 49) s4423: (5300, 2608, 61.1, 49) (0.0, 0.0, 0.0, 0.0)

(5418, 2502, 64.5, 49) s4211: (5418, 2502, 64.5, 49) (0.0, 0.0, 0.0, 0.0)

(6500, 2511, 59.6, 43) s4141: (6500, 2511, 59.6, 43) (0.0, 0.0, 0.0, 0.0)

(5949, 2661, 96.6, 64) s3121: (5878, 2680, 93.0, 60) (1.2, 0.7, 3.7, 6.3)

(5927, 2669, 100, 70) s3111: (5927, 2669, 100, 70) (0.0, 0.0, 0.0, 0.0)

(5008, 2293, 55.0, 89) s1444: (5034, 2390, 52.4, 65) (0.5, 4.2, 4.7, 27.0)

(5709, 2333, 79.0, 61) s3413: (5709, 2333, 79.0, 61) (0.0, 0.0, 0.0, 0.0)

(5418, 2502, 64.5, 49) s4211: (5418, 2502, 64.5, 49) (0.0, 0.0, 0.0, 0.0)

(5927, 2669, 100, 70) s3111: (5927, 2669, 100, 70) (0.0, 0.0, 0.0, 0.0)

(5407, 2583, 58.3, 47) s4411: (5407, 2583, 58.3, 47) (0.0, 0.0, 0.0, 0.0)

(5162, 2515, 64.6, 61) s3234: (5228, 2523, 63.0, 53) (1.3, 0.3, 2.5, 13.1)

(5220, 2577, 56.5, 51) s4421: (5293, 2597, 58.9, 49) (1.4, 0.8, 4.2, 3.9)

(5571, 2501, 56.8, 47) s4411: (5407, 2583, 58.3, 47) (2.9, 3.3, 2.6, 0.0)

(5539, 2467, 77.1, 57) s3221: (5878, 2680, 93.0, 60) (6.1, 8.6, 20.6, 5.3)

(5120, 2365, 58.8, 64) s1221: (5014, 2305, 57.2, 89) (2.1, 2.5, 2.7, 39.1)

(5719, 2430, 77.2, 55) s4211: (5418, 2502, 64.5, 49) (5.3, 3.0, 16.5, 10.9)

(5927, 2669, 100, 70) s3111: (5927, 2669, 100, 70) (0.0, 0.0, 0.0, 0.0)

(5418, 2502, 64.5, 49) s4211: (5418, 2502, 64.5, 49) (0.0, 0.0, 0.0, 0.0)

(6500, 2511, 59.6, 43) s4141: (6500, 2511, 59.6, 43) (0.0, 0.0, 0.0, 0.0)

(5878, 2680, 93.0, 60) s3121: (5878, 2680, 93.0, 60) (0.0, 0.0, 0.0, 0.0)

(5418, 2502, 64.5, 49) s4211: (5418, 2502, 64.5, 49) (0.0, 0.0, 0.0, 0.0)

(5348, 2198, 62.1, 81) s2231: (5370, 2241, 71.3, 89) (0.4, 2.0, 14.8, 9.9)

(5368, 2329, 62.7, 57) s4211: (5418, 2502, 64.5, 49) (0.9, 7.4, 2.9, 14.0)

(6500, 2511, 59.6, 43) s4141: (6500, 2511, 59.6, 43) (0.0, 0.0, 0.0, 0.0)

(5695, 2403, 57.5, 49) s4213: (6503, 2493, 56.2, 43) (14.2, 3.7, 2.3, 12.2)

(6503, 2493, 56.2, 43) s4131: (6503, 2493, 56.2, 43) (0.0, 0.0, 0.0, 0.0)

(5418, 2502, 64.5, 49) s4211: (5418, 2502, 64.5, 49) (0.0, 0.0, 0.0, 0.0)

(5202, 2503, 71.9, 71) s3234: (5228, 2523, 63.0, 53) (0.5, 0.8, 12.4, 25.4)

(6500, 2511, 59.6, 43) s4213: (6503, 2493, 56.2, 43) (0.0, 0.7, 5.7, 0.0)

(6500, 2511, 59.6, 43) s4214: (6526, 2552, 69.2, 47) (0.4, 1.6, 16.1, 9.3)

(5952, 2659, 98.2, 66) s3113: (5952, 2659, 98.2, 66) (0.0, 0.0, 0.0, 0.0)

(5878, 2680, 93.0, 60) s3121: (5878, 2680, 93.0, 60) (0.0, 0.0, 0.0, 0.0)
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The results of Table 4.9 can be evaluated from various angles. Low objective deviations

for a random weight vector w indicate that the generated solution list contains a nondom-

inated solution corresponding to a weight set near w. Therefore, we can empirically claim

that IWRA-MOIP generates diverse solutions which provide a good representation of the

solution space. The results also show the success of IWRA-MOIP in solving multiobjec-

tive optimization problems as the DM evaluates only 13 solutions in four iterations to

reach her most preferred/near most preferred solution. Considering the results in Section

3.6.1.3, running IWRA-MOIP for a few additional iterations, after including the prefer-

ence information obtained during the first four iterations, must be sufficient to terminate

the algorithm with a guaranteed most preferred solution.

4.4. Conclusions and Future Work

This chapter provides extensions to the arc-additive LFATP formulations to solve

marathon course design problem for sequence- and time-dependent objective functions.

The standard and DP formulations for arc-additive objectives and their extensions to

sequence- and time-dependent objectives are tested by using a wide range of objective

functions. The numerical experiments indicate that DP formulations perform better for

average proximity objectives as these formulations are better in eliminating excessive

subtour formation caused by proximity objectives. For sequence-dependent objectives,

which focus on minimizing turns along the route, standard formulations perform better

since turn minimization implicitly discourages subtour formation. Both formulations show

a relatively poor performance for time-dependent objectives despite our simplification

efforts in time tracking and cost calculation. While DP formulations are remarkably
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better in reducing the optimality gaps for time-dependent objectives, they are still far from

proving optimality. Considering the time-dependent studies in the literature, these results

are not surprising as time-dependence becomes more difficult to handle with increasing

network and tour size.

The extensions are integrated to develop combined standard and DP formulations

which are capable of solving any combination of arc-additive, sequence-dependent and

time-dependent objectives. These formulations are used jointly with IWRA-MOIP to

solve the marathon course design problem in a multiobjective setting. Different form

standard iteration-based application of IWRA-MOIP, we generate comparison sets (and

solutions) corresponding to all possible preference scenarios within the first four iterations

of IWRA-MOIP. Additional experiments with a simulated decision maker show that even

four iterations can be sufficient to find the DM’s most preferred solutions in more than half

of the instances and the generated solutions provide a good representation of the solution

space. One potential direction to speed up the multi-iteration set generation procedure is

to share solutions and cut information when solving the combined LFATP formulations for

different weight vectors. Currently, the system treats each problem individually; however,

already identified solutions and valid inequalities can be used to warm start subsequent

problems.
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CHAPTER 5

Conclusions

This study develops models and solution approaches to design marathon courses with

various objectives. As courses must visit certain neighborhoods in the city due to tradi-

tions and/or sponsorship restrictions, marathon course design problem is considered as

a tour finding problem which visits a predetermined set of street segments in the city.

Marathon routes differ from standard vehicle routes as they stay in the network over a

five-to-seven hour span. While a standard vehicle route does not affect the underlying

network (apart from its contribution to traffic congestion), marathon routes block access

to certain districts in the city for a relatively long period of time. For this reason, we

introduce a novel tour finding problem, LFATP, which takes access related restrictions

into account, and develop standard and disjunctive programming formulations to solve

the LFATPfor a wide range of objectives.

The study also focuses on the multiobjective nature of the marathon course design

and introduces an interactive multiobjective optimization approach (IWRA) to find a

most preferred solution of a decision maker in the presence of multiple objectives. IWRA

differs from existing interactive methods as it provides a systematic way of generating

diverse weight vectors via a mixed integer linear programming formulation and separates

weight diversification and solution generation efforts. In Chapter 4, we combine LFATP

formulations and IWRA to successfully generate a guided set of marathon course de-

signs for the Bank of America Chicago Marathon in a 4-objective setting with medical
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proximity minimization, public transport proximity minimization, similarity (ease of im-

plementation) maximization and sharp turn minimization objectives. The rest of this

chapter briefly summarizes our contributions to routing, multiobjective optimization and

marathon course design literature.

5.1. Advancements in Routing and Future Work

This study contributes to the routing literature from various perspectives. From the

application perspective, access related restrictions have never been considered in the rout-

ing literature and the LFATP is the first problem to address this issue. In addition to this

unique restriction, LFATP is solved to optimize a novel class of proximity minimization

functions which aim to minimize the average distance to a predetermined set of vertices

in the network. With proximity minimization objectives, the underlying cost structure

becomes clustered, leading to excessive subtour formation.

When solving standard routing formulations with exponentially many subtour elimi-

nation constraints, the standard B&C approach relaxes most of these constraints at the

beginning of the optimization and reintroduces them to the formulation when they are vi-

olated during the optimization process. However, when the problem encourages excessive

subtour formation, the standard B&C approach has difficulty in finding feasible solutions

and converging to optimality. To overcome this issue, we introduce a disjunctive program-

ming formulation for the LFATP that exploits the tour length bounds to efficiently solve

the LFATP by enforcing visit order of must-visit arcs. The proposed DP formulation is

found to be effective in various tour finding problems with similar requirements.
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The study extends the standard and disjunctive programming formulations to solve

tour finding problems for a wide range of objective functions including sequence- and

time-dependent ones. While the extensions are remarkably successful in solving problems

with sequence-dependent objectives, solving those with time-dependent objectives remains

a challenge. In our preliminary experiments with different time-dependent models, we

observe that the underlying models become more difficult to solve when costs depend on

time rather than travel times. Considering ease of access to historic data and technology,

further efforts on time-dependent problems, especially those with time-dependent service

costs/times are needed.

5.2. Advancements in Multiobjective Optimization and Future Work

This study contributes to multiobjective optimization literature by introducing a novel

interactive weight region based approach, IWRA, which is capable of finding the decision

maker’s most preferable solution for multiobjective linear problems up to 10 and multi-

objective integer problems up to 5 objectives. Different from existing approaches, IWRA

separates the weight diversification and solution generation efforts, and provides a mixed

integer linear programming formulation which is capable of exploring the entire weight re-

gion in a systematic way. Separating weight diversification and solution generation efforts

enables us to scale IWRA to a large number of objectives.

The numerical experiments in Chapter 3 and the case study in Chapter 4 show that

IWRA requires a reasonably small number of comparisons to identify the most preferred

solution of the decision maker. Multi-iteration results from Chapter 4 show that IWRA

is successful not only in identifying the most preferred solutions but also generating a
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guided set of diverse solutions in the absence of preference information. Furthermore,

IWRA provides reliable results when the decision maker makes imperfect comparisons

yielding incorrect preference information. Considering its success in various multiobjective

problems, extending IWRA to more general utility settings (currently supports weighted

sum and weighted Tchebycheff functions) is a promising future direction. Furthermore,

considering the results of multi-iteration comparison set generation experiments in Section

4.3.3, exploring the applicability of IWRA in generating representative solution sets via

guided solution set logic is another promising future direction.

5.3. Advancements in Marathon Course Design and Future Work

This study, to the best of our knowledge, is the first optimization-based attempt to

design marathon courses. Our optimization-based approach to marathon course design

has two key benefits. First, as marathons are increasing in popularity, this approach

allows race organizers to design new marathon courses and test a wide range of objectives

when designing a course. Second, it allows race organizers to evaluate the quality of

existing marathon courses and provides improvement suggestions while ensuring ease of

implementation with similarity constraints and objectives.

Our case studies from the Bank of America Chicago Marathon indicate that slight

changes in the existing courses may lead to significant improvements for objectives related

to safety, health and experience. A potential future direction in marathon course design is

to develop more comprehensive models that integrate various aspects of marathon plan-

ning, such as manpower planning and resource management operations, when designing

a course.
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APPENDIX A

Appendix for Chapter 2

A.1. Numerical Results for DP-based B&C Approach

This section provides numerical experiments for DP-based B&C approach with varying

fixed depth level, ϕ, values from 2 to 5. When |Mg| < ϕ, we solve subproblems without

constraints (2.7) with a time limit of 5 seconds to obtain quick lower bounds and detect

infeasibilities. When |Mg| = ϕ, we solve subproblems with constraints (2.7) with a time

limit of 2 hours to obtain a feasible solution at that level, and never go below ϕth level

in the tree. When ϕ ≥ 3, the root note starts with M3 as three edges form a single order

when costs are symmetric. We also test ϕ = 2 to see the effect of having fewer edges than

the unique order. Note that for ϕ = 2 and ϕ = 3, we solve a single formulation at the

root node and this formulation is LFATP-R2 when ϕ = 2 and LFATP-R3 when ϕ = 3.

We use problem settings and instances from Section 2.5.1 and 2.5.2 to compare DP-

based B&C with varying levels of ϕ and LFATP-S. Tables A.1, A.2 and A.3 summarize

the results for the LFATP, tour length minimization and random coefficient minimization

instances, respectively. In the tables, each row provides a summary of 10 instances for

a given problem setting. Sbtr and VDLEI columns represent the average number of

subtour elimination inequalities and VDLEIs identified during B&C. For a given ϕ ≥ 3,

the total number of orders at ϕth level is (ϕ− 1)!/2 and the maximum number of nodes

the corresponding B&C tree can have is
∑ϕ

i=3(ϕ − 1)!/2 (if ϕ = 2, then both values are
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Table A.1. DP-based B&C results for LFATP instances.

Setting Count Duration Performance
Network ϕ Sbtr VDLEI Orders Nodes CutGen Total Gap (%) Opt Feas NoSn

M12Q4
[95% - 110%]

2 23 0 1 / 1 1 / 1 4 9 0.0 10 0 0
3 27 1 1 / 1 1 / 1 4 8 0.0 10 0 0
4 14 6 2 / 3 3 / 4 1 10 0.0 10 0 0
5 33 12 4.1 / 12 7.1 / 16 5 28 0.0 10 0 0
-S 3369 39 - - 555 1727 0.5 9 1 0

M12Q4
[110% - 125%]

2 105 8 1 / 1 1 / 1 16 25 0.0 10 0 0
3 107 11 1 / 1 1 / 1 18 26 0.0 10 0 0
4 106 12 2.2 / 3 3.2 / 4 18 35 0.0 10 0 0
5 203 41 5.5 / 12 8.7 / 16 38 89 0.0 10 0 0
-S 3209 70 - - 360 1349 0.5 9 1 0

M12Q4
[125% - 140%]

2 411 67 1 / 1 1 / 1 63 140 0.0 10 0 0
3 496 58 1 / 1 1 / 1 69 227 0.0 10 0 0
4 351 48 2.7 / 3 3.7 / 4 58 150 0.0 10 0 0
5 1189 92 6.6 / 12 10.3 / 16 266 1309 0.1 9 1 0
-S 4632 179 - - 684 2459 1.0 7 3 0

M24Q4
[95% - 110%]

2 294 6 1 / 1 1 / 1 51 153 0.0 10 0 0
3 214 5 1 / 1 1 / 1 32 147 0.0 10 0 0
4 137 8 3 / 3 4 / 4 22 102 0.0 10 0 0
5 178 22 10.2 / 12 14.2 / 16 35 208 0.0 10 0 0
-S 2125 20 - - 313 955 0.5 9 1 0

M24Q4
[110% - 125%]

2 1053 36 1 / 1 1 / 1 223 958 0.0 10 0 0
3 1108 37 1 / 1 1 / 1 221 1831 0.1 8 2 0
4 714 35 3 / 3 4 / 4 109 851 0.0 10 0 0
5 988 55 11.9 / 12 15.9 / 16 160 1834 0.1 8 2 0
-S 3460 118 - - 506 1591 0.7 9 1 0

M24Q4
[125% - 140%]

2 3100 274 1 / 1 1 / 1 826 5192 0.6 4 6 0
3 2123 182 1 / 1 1 / 1 428 4198 0.4 5 5 0
4 2108 162 3 / 3 4 / 4 367 4500 0.3 5 5 0
5 1783 203 12 / 12 16 / 16 352 4596 0.3 6 4 0
-S 7598 400 - - 1203 5474 1.1 5 5 0

1). When solving the DP-based B&C, not all visit orders or nodes are processed due

to fathoming. Orders column provides the ratio of average number of visit orders for

which the subproblems are solved to the total number of visit orders and Nodes column

provides the ratio of average number of explored nodes to the maximum number of nodes.

CutGen and Total columns present average cut generation and solution times in seconds.

Gap column reports the average optimality gaps of solved instances in percentages while

Opt, Feas and NoSn provide a breakdown of optimally solved, sub-optimally solved and

unsolved instances, respectively.
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Table A.2. DP-based B&C results for tour length minimization problem.

Setting Count Duration (s) Performance
Network ϕ Sbtr VDLEI Orders Nodes CutGen Total Gap (%) Opt Feas NoSn

M12Q0

2 369 0 1 / 1 1 / 1 23 40 0.0 10 0 0
3 349 0 1 / 1 1 / 1 20 59 0.0 10 0 0
4 286 0 2.9 / 3 3.9 / 4 136 248 0.0 10 0 0
5 133 0 5.8 / 12 9.7 / 16 13 101 0.0 10 0 0
-S 10951 0 - - 1480 4949 9.4 4 6 0

M24Q0

2 609 0 1 / 1 1 / 1 68 227 0.0 10 0 0
3 833 0 1 / 1 1 / 1 57 432 0.0 10 0 0
4 2168 0 3 / 3 4 / 4 177 1475 0.7 9 1 0
5 1617 0 10.8 / 12 14.8 / 16 102 1378 0.0 10 0 0
-S 8813 0 - - 988 4284 3.3 5 5 0

M12Q4

2 59 1 1 / 1 1 / 1 5 9 0.0 10 0 0
3 100 2 1 / 1 1 / 1 11 21 0.0 10 0 0
4 13 0 3 / 3 3.9 / 4 2 16 0.0 10 0 0
5 26 1 7.6 / 12 9.7 / 16 7 64 0.0 10 0 0
-S 2037 21 - - 289 905 0.4 9 1 0

M24Q4

2 509 23 1 / 1 1 / 1 53 162 0.0 10 0 0
3 399 14 1 / 1 1 / 1 39 223 0.0 10 0 0
4 382 9 3 / 3 4 / 4 43 222 0.0 10 0 0
5 342 8 10.8 / 12 14.8 / 16 49 390 0.0 10 0 0
-S 1049 24 - - 72 166 0.0 10 0 0

In most instances, ϕ = 2 and ϕ = 3 yield the best solution times and gaps. As the

length budget increases in random coefficient and average medical distance minimization

problems, ϕ = 4 and ϕ = 5 start to lose their competitiveness. In two instances of random

coefficient minimization, ϕ = 4 and ϕ = 5 fail to find a solution to the problem whereas

this is never the case for ϕ = 2 and ϕ = 3. Even though ϕ = 4 and ϕ = 5 are almost

always better than LFATP-S, they cannot compete against ϕ = 2 and ϕ = 3 when the

solution times and the sizes of the underlying subproblems are considered.
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Table A.3. DP-based B&C results for random coefficient minimization problem.

Setting Count Duration Performance
Network ϕ Sbtr Orders Nodes CutGen Total Gap (%) Opt Feas NoSn

M12Q0
[95% - 110%]

2 123 1 / 1 1 / 1 14 35 0.0 10 0 0
3 162 1 / 1 1 / 1 33 83 0.0 10 0 0
4 148 2.1 / 3 3.1 / 4 33 103 0.0 10 0 0
5 36 4.6 / 12 7.7 / 16 9 33 0.0 10 0 0
-S 8593 - - 1131 3633 1.7 5 3 2

M12Q0
[110% - 125%]

2 198 1 / 1 1 / 1 18 60 0.0 10 0 0
3 153 1 / 1 1 / 1 14 47 0.0 10 0 0
4 237 2.7 / 3 3.7 / 4 25 104 0.0 10 0 0
5 228 6.8 / 12 10.5 / 16 23 117 0.0 10 0 0
-S 5695 - - 835 2644 1.2 7 2 1

M12Q0
[125% - 140%]

2 224 1 / 1 1 / 1 18 59 0.0 10 0 0
3 250 1 / 1 1 / 1 21 120 0.0 10 0 0
4 361 2.9 / 3 3.9 / 4 37 220 0.0 10 0 0
5 207 7.9 / 12 11.8 / 16 27 118 0.0 10 0 0
-S 3771 - - 512 1889 1.1 8 2 0

M24Q0
[95% - 110%]

2 193 1 / 1 1 / 1 35 119 0.0 10 0 0
3 305 1 / 1 1 / 1 70 501 0.0 10 0 0
4 453 2.9 / 3 3.9 / 4 143 1443 0.3 9 1 0
5 415 9.6 / 12 13.5 / 16 105 1034 0.4 9 1 0
-S 3293 - - 901 2407 1.2 7 3 0

M24Q0
[110% - 125%]

2 364 1 / 1 1 / 1 64 261 0.0 10 0 0
3 662 1 / 1 1 / 1 97 730 0.0 10 0 0
4 536 3 / 3 4 / 4 123 1227 0.3 9 1 0
5 648 11.7 / 12 15.7 / 16 108 1420 0.2 9 1 0
-S 3068 - - 723 2167 0.7 8 2 0

M24Q0
[125% - 140%]

2 313 1 / 1 1 / 1 49 232 0.0 10 0 0
3 580 1 / 1 1 / 1 73 552 0.0 10 0 0
4 1434 3 / 3 4 / 4 544 3371 0.4 8 1 1
5 1793 12 / 12 16 / 16 1504 8821 0.2 9 0 1
-S 3156 - - 544 1816 0.5 8 2 0
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APPENDIX B

Appendix for Chapter 4

B.1. List of Multiobjective LFATP Solutions

Table B.1 lists sets of solutions generated for the first 4 iterations of IWRA when

solving the multiobjective LFATP. The list includes 85 sets and 340 solutions (including

the repeated ones in multiple sets). For each solution, the table provides the weight vector

(corresponding to the normalized problem) and the objective values of the corresponding

solution for average medical proximity, average transport proximity, similarity and total

sharpness count objectives, respectively.

Table B.1. List of LFATP solutions for the first 4 iterations of IWRA.

Set Solution Weight Objective Values

S

`1 (1.0000, 0.0000, 0.0000, 0.0000) (4852.7, 2534.1, 49.7, 95)

`2 (0.0000, 1.0000, 0.0000, 0.0000) (5787.6, 2043.1, 33.3, 114)

`3 (0.0000, 0.0000, 1.0000, 0.0000) (5927.5, 2669.3, 100.0, 70)

`4 (0.0000, 0.0000, 0.0000, 1.0000) (6370.3, 2617.1, 57.4, 43)

S1

`11 (1.0000, 0.0000, 0.0000, 0.0000) (4852.7, 2534.1, 49.7, 95)

`12 (0.3889, 0.3889, 0.2222, 0.0000) (5334.6, 2260.2, 72.3, 95)

`13 (0.6578, 0.0467, 0.2956, 0.0000) (5295.1, 2568.1, 80.2, 88)

`14 (0.7044, 0.2956, 0.0000, 0.0000) (4982.3, 2272.1, 41.1, 97)

S2

`21 (0.0000, 1.0000, 0.0000, 0.0000) (5787.6, 2043.1, 33.3, 114)

`22 (0.3561, 0.4306, 0.2133, 0.0000) (5334.6, 2260.2, 72.3, 95)

`23 (0.0240, 0.6680, 0.3080, 0.0000) (5947.5, 2164.4, 67.7, 95)

`24 (0.2847, 0.7153, 0.0000, 0.0000) (5450.0, 2066.2, 33.8, 108)

continued . . .
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. . . continued

Set Solution Weight Objective Values

S3

`31 (0.0000, 0.0000, 1.0000, 0.0000) (5927.5, 2669.3, 100.0, 70)

`32 (0.2643, 0.2643, 0.2643, 0.2070) (5417.8, 2502.3, 64.5, 49)

`33 (0.0000, 0.3678, 0.6322, 0.0000) (5927.5, 2669.3, 100.0, 70)

`34 (0.1136, 0.6322, 0.1771, 0.0771) (5741.6, 2261.5, 75.1, 63)

S4

`41 (0.0000, 0.0000, 0.0000, 1.0000) (6370.3, 2617.1, 57.4, 43)

`42 (0.2500, 0.2500, 0.2500, 0.2500) (5417.8, 2502.3, 64.5, 49)

`43 (0.2505, 0.6250, 0.0000, 0.1245) (5344.7, 2207.7, 40.3, 62)

`44 (0.3750, 0.0000, 0.0000, 0.6250) (5406.8, 2582.5, 58.3, 47)

S11

`111 (1.0000, 0.0000, 0.0000, 0.0000) (4852.7, 2534.1, 49.7, 95)

`112 (0.7395, 0.0351, 0.0351, 0.1902) (5204.2, 2606.5, 56.1, 51)

`113 (0.8098, 0.1054, 0.0847, 0.0000) (4879.7, 2490.5, 53.1, 95)

`114 (0.6168, 0.2002, 0.0180, 0.1651) (5189.6, 2560.4, 51.0, 52)

S12

`121 (0.3889, 0.3889, 0.2222, 0.0000) (5334.6, 2260.2, 72.3, 95)

`122 (0.5770, 0.2348, 0.1881, 0.0000) (5014.4, 2304.7, 57.2, 89)

`123 (0.4306, 0.3748, 0.0755, 0.1191) (5225.0, 2281.0, 53.1, 61)

`124 (0.5316, 0.2308, 0.0987, 0.1389) (5227.8, 2523.4, 63.0, 53)

S13

`131 (0.6578, 0.0467, 0.2956, 0.0000) (5295.1, 2568.1, 80.2, 88)

`132 (0.6252, 0.1094, 0.1094, 0.1559) (5227.8, 2523.4, 63.0, 53)

`133 (0.5542, 0.1814, 0.2432, 0.0212) (5317.0, 2387.5, 77.4, 77)

`134 (0.5272, 0.2316, 0.1037, 0.1375) (5227.8, 2523.4, 63.0, 53)

S14

`141 (0.7044, 0.2956, 0.0000, 0.0000) (4982.3, 2272.1, 41.1, 97)

`142 (0.4847, 0.3773, 0.0000, 0.1380) (5335.5, 2220.3, 45.8, 61)

`143 (0.6352, 0.1941, 0.0000, 0.1708) (5189.6, 2560.4, 51.0, 52)

`144 (0.6307, 0.2267, 0.1426, 0.0000) (5011.1, 2305.5, 57.0, 93)

S21

`211 (0.0000, 1.0000, 0.0000, 0.0000) (5787.6, 2043.1, 33.3, 114)

`212 (0.1399, 0.8601, 0.0000, 0.0000) (5688.6, 2044.7, 34.9, 102)

`213 (0.1163, 0.7675, 0.1163, 0.0000) (5651.0, 2063.5, 43.2, 113)

`214 (0.0775, 0.8450, 0.0775, 0.0000) (5677.9, 2050.8, 38.5, 132)

S22

`221 (0.3561, 0.4306, 0.2133, 0.0000) (5334.6, 2260.2, 72.3, 95)

`222 (0.3661, 0.5076, 0.0156, 0.1107) (5335.5, 2220.3, 45.8, 61)

`223 (0.1901, 0.5493, 0.2606, 0.0000) (5370.4, 2241.3, 71.3, 89)

`224 (0.2135, 0.5727, 0.1181, 0.0957) (5394.6, 2224.2, 56.8, 61)

continued . . .
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. . . continued

Set Solution Weight Objective Values

S23

`231 (0.0240, 0.6680, 0.3080, 0.0000) (5947.5, 2164.4, 67.7, 95)

`232 (0.1130, 0.7346, 0.0225, 0.1299) (5735.2, 2185.6, 44.4, 59)

`233 (0.1770, 0.6475, 0.1755, 0.0000) (5574.3, 2130.9, 57.6, 101)

`234 (0.0000, 0.8635, 0.0075, 0.1289) (6105.8, 2158.6, 36.9, 61)

S24

`241 (0.2847, 0.7153, 0.0000, 0.0000) (5450.0, 2066.2, 33.8, 108)

`242 (0.5551, 0.4449, 0.0000, 0.0000) (5064.1, 2204.7, 39.9, 117)

`243 (0.3651, 0.5199, 0.0000, 0.1150) (5335.5, 2220.3, 45.8, 61)

`244 (0.1104, 0.7534, 0.0000, 0.1362) (5735.2, 2185.6, 44.4, 59)

S31

`311 (0.0000, 0.0000, 1.0000, 0.0000) (5927.5, 2669.3, 100.0, 70)

`312 (0.0000, 0.0000, 0.5957, 0.4043) (5877.7, 2679.6, 93.0, 60)

`313 (0.3733, 0.0000, 0.6267, 0.0000) (5927.5, 2669.3, 100.0, 70)

`314 (0.6322, 0.0838, 0.2512, 0.0329) (5150.4, 2442.7, 69.7, 73)

S32

`321 (0.2643, 0.2643, 0.2643, 0.2070) (5417.8, 2502.3, 64.5, 49)

`322 (0.0742, 0.0000, 0.5451, 0.3807) (5877.7, 2679.6, 93.0, 60)

`323 (0.6244, 0.0000, 0.1697, 0.2059) (5299.8, 2608.5, 61.1, 49)

`324 (0.0000, 0.3408, 0.4010, 0.2582) (6299.0, 2473.0, 73.9, 51)

S33

`331 (0.0000, 0.3678, 0.6322, 0.0000) (5927.5, 2669.3, 100.0, 70)

`332 (0.0000, 0.0000, 0.5957, 0.4043) (5877.7, 2679.6, 93.0, 60)

`333 (0.3733, 0.0000, 0.6267, 0.0000) (5927.5, 2669.3, 100.0, 70)

`334 (0.6322, 0.0838, 0.2512, 0.0329) (5150.4, 2442.7, 69.7, 73)

S34

`341 (0.1136, 0.6322, 0.1771, 0.0771) (5741.6, 2261.5, 75.1, 63)

`342 (0.5622, 0.1717, 0.2406, 0.0254) (5317.0, 2387.5, 77.4, 77)

`343 (0.0000, 0.3476, 0.3971, 0.2553) (6299.0, 2473.0, 73.9, 51)

`344 (0.3477, 0.4548, 0.0986, 0.0989) (5386.0, 2226.4, 56.8, 61)

S41

`411 (0.0000, 0.0000, 0.0000, 1.0000) (6370.3, 2617.1, 57.4, 43)

`412 (0.0000, 0.0000, 0.5813, 0.4187) (6652.1, 2677.0, 80.0, 52)

`413 (0.0000, 0.5710, 0.0000, 0.4290) (6503.1, 2493.5, 56.2, 43)

`414 (0.0000, 0.2219, 0.3313, 0.4468) (6499.9, 2511.2, 59.6, 43)

S42

`421 (0.2500, 0.2500, 0.2500, 0.2500) (5417.8, 2502.3, 64.5, 49)

`422 (0.0742, 0.0000, 0.5451, 0.3807) (5877.7, 2679.6, 93.0, 60)

`423 (0.6264, 0.0268, 0.1530, 0.1937) (5299.8, 2608.5, 61.1, 49)

`424 (0.4604, 0.3498, 0.0000, 0.1898) (5242.1, 2335.3, 46.1, 58)

continued . . .
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. . . continued

Set Solution Weight Objective Values

S43

`431 (0.2505, 0.6250, 0.0000, 0.1245) (5344.7, 2207.7, 40.3, 62)

`432 (0.5730, 0.2697, 0.0000, 0.1572) (5112.4, 2436.9, 46.6, 58)

`433 (0.0000, 0.6880, 0.0000, 0.3120) (6498.0, 2345.0, 48.6, 49)

`434 (0.3577, 0.4097, 0.0957, 0.1369) (5386.0, 2226.4, 56.8, 61)

S44

`441 (0.3750, 0.0000, 0.0000, 0.6250) (5406.8, 2582.5, 58.3, 47)

`442 (0.6181, 0.1389, 0.0000, 0.2431) (5293.4, 2597.0, 58.9, 49)

`443 (0.1441, 0.4641, 0.0000, 0.3918) (6503.1, 2493.5, 56.2, 43)

`444 (0.4654, 0.0000, 0.2403, 0.2943) (5413.2, 2594.0, 60.5, 47)

S111

`1111 (1.0000, 0.0000, 0.0000, 0.0000) (4852.7, 2534.1, 49.7, 95)

`1112 (0.8946, 0.0000, 0.1054, 0.0000) (4861.6, 2531.1, 53.0, 91)

`1113 (0.9049, 0.0951, 0.0000, 0.0000) (4868.9, 2466.2, 42.7, 101)

`1114 (0.9121, 0.0072, 0.0175, 0.0632) (4925.7, 2762.5, 50.9, 73)

S112

`1121 (0.7395, 0.0351, 0.0351, 0.1902) (5204.2, 2606.5, 56.1, 51)

`1122 (0.6739, 0.1203, 0.1597, 0.0460) (5012.2, 2434.6, 58.3, 69)

`1123 (0.8698, 0.0000, 0.0000, 0.1302) (5173.8, 2589.4, 50.7, 52)

`1124 (0.7275, 0.0000, 0.1538, 0.1187) (5140.5, 2561.8, 58.9, 55)

S113

`1131 (0.8098, 0.1054, 0.0847, 0.0000) (4879.7, 2490.5, 53.1, 95)

`1132 (0.6643, 0.1856, 0.1501, 0.0000) (4999.0, 2306.1, 55.7, 101)

`1133 (0.7866, 0.0000, 0.2134, 0.0000) (4932.5, 2639.9, 58.9, 90)

`1134 (0.7071, 0.1929, 0.0474, 0.0527) (5005.8, 2423.1, 56.2, 69)

S114

`1141 (0.6168, 0.2002, 0.0180, 0.1651) (5189.6, 2560.4, 51.0, 52)

`1142 (0.8632, 0.0130, 0.0000, 0.1237) (5099.2, 2806.7, 51.2, 57)

`1143 (0.6941, 0.1640, 0.0901, 0.0518) (5040.2, 2401.9, 54.5, 65)

`1144 (0.7968, 0.1081, 0.0000, 0.0951) (5068.0, 2399.6, 46.9, 62)

S121

`1211 (0.3889, 0.3889, 0.2222, 0.0000) (5334.6, 2260.2, 72.3, 95)

`1212 (0.4936, 0.3395, 0.1669, 0.0000) (5328.6, 2263.3, 72.3, 99)

`1213 (0.4932, 0.2561, 0.2507, 0.0000) (5293.3, 2318.2, 74.4, 103)

`1214 (0.4359, 0.4364, 0.1277, 0.0000) (5207.1, 2208.0, 58.8, 103)

S122

`1221 (0.5770, 0.2348, 0.1881, 0.0000) (5014.4, 2304.7, 57.2, 89)

`1222 (0.5080, 0.3808, 0.1112, 0.0000) (5004.2, 2288.6, 53.6, 97)

`1223 (0.4130, 0.4513, 0.1117, 0.0241) (5297.9, 2178.3, 55.4, 82)

`1224 (0.4830, 0.2772, 0.2040, 0.0359) (5331.6, 2285.1, 68.6, 69)

continued . . .
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. . . continued

Set Solution Weight Objective Values

S123

`1231 (0.4306, 0.3748, 0.0755, 0.1191) (5225.0, 2281.0, 53.1, 61)

`1232 (0.3429, 0.4999, 0.0553, 0.1019) (5364.2, 2207.2, 51.4, 62)

`1233 (0.5246, 0.3288, 0.1106, 0.0360) (5144.5, 2262.7, 53.4, 69)

`1234 (0.4354, 0.4490, 0.0890, 0.0266) (5126.1, 2250.6, 52.2, 73)

S124

`1241 (0.5316, 0.2308, 0.0987, 0.1389) (5227.8, 2523.4, 63.0, 53)

`1242 (0.5919, 0.1878, 0.1486, 0.0717) (5131.8, 2397.1, 58.5, 60)

`1243 (0.5064, 0.2481, 0.1817, 0.0639) (5261.8, 2335.8, 62.2, 60)

`1244 (0.5771, 0.1808, 0.2026, 0.0395) (5150.4, 2442.7, 69.7, 73)

S131

`1311 (0.6578, 0.0467, 0.2956, 0.0000) (5295.1, 2568.1, 80.2, 88)

`1312 (0.7703, 0.0000, 0.2297, 0.0000) (4981.3, 2529.4, 62.5, 91)

`1313 (0.6988, 0.0855, 0.2101, 0.0056) (4986.0, 2523.6, 63.0, 89)

`1314 (0.6289, 0.1134, 0.2578, 0.0000) (5171.9, 2394.3, 72.2, 89)

S132

`1321 (0.6252, 0.1094, 0.1094, 0.1559) (5227.8, 2523.4, 63.0, 53)

`1322 (0.6747, 0.0981, 0.1831, 0.0441) (5012.2, 2434.6, 58.3, 69)

`1323 (0.7290, 0.0000, 0.1975, 0.0735) (5003.0, 2800.5, 58.9, 65)

`1324 (0.6005, 0.1816, 0.1561, 0.0618) (5012.2, 2434.6, 58.3, 69)

S133

`1331 (0.5542, 0.1814, 0.2432, 0.0212) (5317.0, 2387.5, 77.4, 77)

`1332 (0.6721, 0.1038, 0.1857, 0.0384) (5012.2, 2434.6, 58.3, 69)

`1333 (0.7475, 0.0140, 0.2075, 0.0309) (4954.2, 2756.1, 58.9, 75)

`1334 (0.6307, 0.1152, 0.2541, 0.0000) (5171.9, 2394.3, 72.2, 89)

S134

`1341 (0.5272, 0.2316, 0.1037, 0.1375) (5227.8, 2523.4, 63.0, 53)

`1342 (0.6747, 0.0981, 0.1831, 0.0441) (5012.2, 2434.6, 58.3, 69)

`1343 (0.7290, 0.0000, 0.1975, 0.0735) (5003.0, 2800.5, 58.9, 65)

`1344 (0.6005, 0.1816, 0.1561, 0.0618) (5012.2, 2434.6, 58.3, 69)

S141

`1411 (0.7044, 0.2956, 0.0000, 0.0000) (4982.3, 2272.1, 41.1, 97)

`1412 (0.5688, 0.3714, 0.0597, 0.0000) (4996.5, 2268.5, 49.2, 107)

`1413 (0.8277, 0.1723, 0.0000, 0.0000) (4878.8, 2436.2, 43.2, 98)

`1414 (0.7306, 0.1985, 0.0158, 0.0551) (5033.8, 2390.5, 52.4, 65)

S142

`1421 (0.4847, 0.3773, 0.0000, 0.1380) (5335.5, 2220.3, 45.8, 61)

`1422 (0.5990, 0.3225, 0.0372, 0.0413) (5144.5, 2262.7, 53.4, 69)

`1423 (0.5004, 0.3551, 0.1038, 0.0406) (5144.5, 2262.7, 53.4, 69)

`1424 (0.4750, 0.4503, 0.0498, 0.0249) (5126.1, 2250.6, 52.2, 73)

continued . . .
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Set Solution Weight Objective Values

S143

`1431 (0.6352, 0.1941, 0.0000, 0.1708) (5189.6, 2560.4, 51.0, 52)

`1432 (0.7652, 0.1793, 0.0000, 0.0554) (5033.8, 2390.5, 52.4, 65)

`1433 (0.6770, 0.2073, 0.0543, 0.0614) (5005.8, 2423.1, 56.2, 69)

`1434 (0.6081, 0.2203, 0.1027, 0.0689) (5131.8, 2397.1, 58.5, 60)

S144

`1441 (0.6307, 0.2267, 0.1426, 0.0000) (5011.1, 2305.5, 57.0, 93)

`1442 (0.5674, 0.3637, 0.0689, 0.0000) (4996.5, 2268.5, 49.2, 107)

`1443 (0.4543, 0.4430, 0.0951, 0.0077) (5001.4, 2274.3, 50.6, 91)

`1444 (0.7453, 0.1851, 0.0157, 0.0539) (5033.8, 2390.5, 52.4, 65)

S211

`2111 (0.0000, 1.0000, 0.0000, 0.0000) (5787.6, 2043.1, 33.3, 114)

`2112 (0.0000, 0.9524, 0.0476, 0.0000) (5719.6, 2043.6, 35.9, 110)

`2113 (0.0315, 0.9604, 0.0081, 0.0000) (5720.3, 2043.5, 35.2, 106)

`2114 (0.0047, 0.9732, 0.0208, 0.0013) (5720.3, 2043.5, 35.2, 106)

S212

`2121 (0.1399, 0.8601, 0.0000, 0.0000) (5688.6, 2044.7, 34.9, 102)

`2122 (0.0056, 0.9225, 0.0000, 0.0719) (5686.8, 2078.7, 38.4, 76)

`2123 (0.0000, 0.8558, 0.1320, 0.0122) (5666.9, 2069.1, 42.4, 87)

`2124 (0.0000, 0.9279, 0.0721, 0.0000) (5800.7, 2051.8, 39.9, 124)

S213

`2131 (0.1163, 0.7675, 0.1163, 0.0000) (5651.0, 2063.5, 43.2, 113)

`2132 (0.0000, 0.8529, 0.1471, 0.0000) (6036.1, 2069.0, 49.1, 113)

`2133 (0.0582, 0.8062, 0.1357, 0.0000) (6000.1, 2062.5, 47.0, 112)

`2134 (0.0288, 0.8712, 0.0985, 0.0016) (5739.2, 2051.0, 38.8, 105)

S214

`2141 (0.0775, 0.8450, 0.0775, 0.0000) (5677.9, 2050.8, 38.5, 132)

`2142 (0.0000, 0.9225, 0.0775, 0.0000) (6007.9, 2060.5, 45.9, 116)

`2143 (0.0208, 0.8658, 0.1134, 0.0000) (6000.1, 2062.5, 47.0, 112)

`2144 (0.1282, 0.8145, 0.0573, 0.0000) (5634.8, 2048.7, 36.2, 114)

S221

`2211 (0.3561, 0.4306, 0.2133, 0.0000) (5334.6, 2260.2, 72.3, 95)

`2212 (0.4737, 0.4391, 0.0873, 0.0000) (5040.9, 2233.9, 45.8, 109)

`2213 (0.4030, 0.4628, 0.1342, 0.0000) (5207.1, 2208.0, 58.8, 103)

`2214 (0.2940, 0.4750, 0.2310, 0.0000) (5370.4, 2241.3, 71.3, 89)

S222

`2221 (0.3661, 0.5076, 0.0156, 0.1107) (5335.5, 2220.3, 45.8, 61)

`2222 (0.4414, 0.4633, 0.0567, 0.0386) (5126.1, 2250.6, 52.2, 73)

`2223 (0.3902, 0.4982, 0.0516, 0.0600) (5364.2, 2207.2, 51.4, 62)

`2224 (0.3554, 0.5219, 0.0482, 0.0745) (5364.2, 2207.2, 51.4, 62)
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Set Solution Weight Objective Values

S223

`2231 (0.1901, 0.5493, 0.2606, 0.0000) (5370.4, 2241.3, 71.3, 89)

`2232 (0.4799, 0.4407, 0.0777, 0.0017) (5146.8, 2193.0, 47.1, 108)

`2233 (0.3823, 0.5129, 0.0959, 0.0089) (5265.9, 2156.2, 51.1, 97)

`2234 (0.2425, 0.6196, 0.1379, 0.0000) (5478.0, 2117.5, 52.6, 101)

S224

`2241 (0.2135, 0.5727, 0.1181, 0.0957) (5394.6, 2224.2, 56.8, 61)

`2242 (0.4675, 0.4480, 0.0709, 0.0136) (5103.4, 2236.1, 49.6, 86)

`2243 (0.3775, 0.4942, 0.1078, 0.0205) (5222.4, 2201.8, 54.3, 79)

`2244 (0.2955, 0.5742, 0.0981, 0.0322) (5551.4, 2119.8, 50.4, 75)

S231

`2311 (0.0240, 0.6680, 0.3080, 0.0000) (5947.5, 2164.4, 67.7, 95)

`2312 (0.0000, 0.8364, 0.1636, 0.0000) (6013.2, 2069.9, 49.2, 111)

`2313 (0.0146, 0.7254, 0.1969, 0.0631) (6055.9, 2166.2, 62.8, 65)

`2314 (0.1067, 0.6352, 0.2582, 0.0000) (5702.2, 2211.4, 71.7, 91)

S232

`2321 (0.1130, 0.7346, 0.0225, 0.1299) (5735.2, 2185.6, 44.4, 59)

`2322 (0.0000, 0.8171, 0.1351, 0.0478) (6055.9, 2162.9, 62.1, 65)

`2323 (0.0146, 0.7054, 0.1963, 0.0838) (6055.9, 2166.2, 62.8, 65)

`2324 (0.2125, 0.6227, 0.0509, 0.1139) (5364.2, 2207.2, 51.4, 62)

S233

`2331 (0.1770, 0.6475, 0.1755, 0.0000) (5574.3, 2130.9, 57.6, 101)

`2332 (0.0200, 0.8301, 0.1499, 0.0000) (6036.1, 2069.0, 49.1, 113)

`2333 (0.1160, 0.7435, 0.1405, 0.0000) (5678.4, 2063.8, 43.8, 113)

`2334 (0.1683, 0.6801, 0.1121, 0.0395) (5569.8, 2131.9, 51.6, 71)

S234

`2341 (0.0000, 0.8635, 0.0075, 0.1289) (6105.8, 2158.6, 36.9, 61)

`2342 (0.0000, 0.8360, 0.1201, 0.0438) (6019.4, 2156.0, 61.5, 67)

`2343 (0.0000, 0.8144, 0.0746, 0.1110) (5807.2, 2132.3, 46.9, 65)

`2344 (0.0497, 0.8058, 0.0045, 0.1400) (6098.7, 2188.9, 45.7, 57)

S241

`2411 (0.2847, 0.7153, 0.0000, 0.0000) (5450.0, 2066.2, 33.8, 108)

`2412 (0.1346, 0.8499, 0.0143, 0.0013) (5688.6, 2044.7, 34.9, 102)

`2413 (0.4111, 0.5889, 0.0000, 0.0000) (5165.1, 2165.2, 35.8, 117)

`2414 (0.2346, 0.6439, 0.1216, 0.0000) (5475.5, 2116.0, 52.3, 109)

S242

`2421 (0.5551, 0.4449, 0.0000, 0.0000) (5064.1, 2204.7, 39.9, 117)

`2422 (0.4404, 0.4725, 0.0871, 0.0000) (5062.1, 2218.1, 44.2, 113)

`2423 (0.4680, 0.5320, 0.0000, 0.0000) (5405.7, 2081.2, 33.6, 112)

`2424 (0.3663, 0.5265, 0.1073, 0.0000) (5265.6, 2147.7, 51.3, 105)
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Set Solution Weight Objective Values

S243

`2431 (0.3651, 0.5199, 0.0000, 0.1150) (5335.5, 2220.3, 45.8, 61)

`2432 (0.2144, 0.6547, 0.1014, 0.0294) (5551.4, 2119.8, 50.4, 75)

`2433 (0.4556, 0.4560, 0.0693, 0.0191) (5222.4, 2201.8, 54.3, 79)

`2434 (0.3479, 0.6170, 0.0000, 0.0351) (5370.9, 2106.9, 37.4, 82)

S244

`2441 (0.1104, 0.7534, 0.0000, 0.1362) (5735.2, 2185.6, 44.4, 59)

`2442 (0.0067, 0.8809, 0.0461, 0.0663) (5674.5, 2103.9, 42.0, 70)

`2443 (0.1101, 0.8411, 0.0000, 0.0488) (5674.4, 2068.3, 38.4, 80)

`2444 (0.0764, 0.7854, 0.1036, 0.0346) (5645.9, 2080.1, 42.8, 79)

S311

`3111 (0.0000, 0.0000, 1.0000, 0.0000) (5927.5, 2669.3, 100.0, 70)

`3112 (0.1091, 0.4853, 0.4055, 0.0000) (5666.2, 2331.0, 81.5, 81)

`3113 (0.0000, 0.0000, 0.7791, 0.2209) (5951.7, 2659.4, 98.2, 66)

`3114 (0.4273, 0.0414, 0.4224, 0.1089) (5880.3, 2678.3, 94.6, 62)

S312

`3121 (0.0000, 0.0000, 0.5957, 0.4043) (5877.7, 2679.6, 93.0, 60)

`3122 (0.0000, 0.2421, 0.4997, 0.2582) (5877.7, 2679.6, 93.0, 60)

`3123 (0.3200, 0.0000, 0.4343, 0.2458) (5877.7, 2679.6, 93.0, 60)

`3124 (0.0000, 0.0000, 0.7689, 0.2311) (5951.7, 2659.4, 98.2, 66)

S313

`3131 (0.3733, 0.0000, 0.6267, 0.0000) (5927.5, 2669.3, 100.0, 70)

`3132 (0.1091, 0.4853, 0.4055, 0.0000) (5666.2, 2331.0, 81.5, 81)

`3133 (0.0000, 0.0000, 0.7791, 0.2209) (5951.7, 2659.4, 98.2, 66)

`3134 (0.4273, 0.0414, 0.4224, 0.1089) (5880.3, 2678.3, 94.6, 62)

S314

`3141 (0.6322, 0.0838, 0.2512, 0.0329) (5150.4, 2442.7, 69.7, 73)

`3142 (0.4485, 0.2680, 0.2836, 0.0000) (5311.7, 2330.3, 75.6, 99)

`3143 (0.4989, 0.1347, 0.2965, 0.0699) (5514.4, 2477.4, 79.0, 61)

`3144 (0.6546, 0.0000, 0.3454, 0.0000) (5295.1, 2568.1, 80.2, 88)

S321

`3211 (0.2643, 0.2643, 0.2643, 0.2070) (5417.8, 2502.3, 64.5, 49)

`3212 (0.3786, 0.4164, 0.0995, 0.1055) (5386.0, 2226.4, 56.8, 61)

`3213 (0.4092, 0.0000, 0.3508, 0.2400) (5751.5, 2554.5, 82.2, 55)

`3214 (0.4641, 0.1998, 0.2707, 0.0655) (5483.9, 2431.7, 80.2, 67)

S322

`3221 (0.0742, 0.0000, 0.5451, 0.3807) (5877.7, 2679.6, 93.0, 60)

`3222 (0.3196, 0.0000, 0.4336, 0.2468) (5877.7, 2679.6, 93.0, 60)

`3223 (0.4627, 0.1984, 0.2729, 0.0660) (5483.9, 2431.7, 80.2, 67)

`3224 (0.1741, 0.1741, 0.4158, 0.2360) (5877.7, 2679.6, 93.0, 60)
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Set Solution Weight Objective Values

S323

`3231 (0.6244, 0.0000, 0.1697, 0.2059) (5299.8, 2608.5, 61.1, 49)

`3232 (0.4249, 0.0000, 0.3058, 0.2693) (5413.2, 2594.0, 60.5, 47)

`3233 (0.6987, 0.0000, 0.2613, 0.0399) (5065.8, 2776.3, 63.3, 67)

`3234 (0.5512, 0.0722, 0.2860, 0.0906) (5227.8, 2523.4, 63.0, 53)

S324

`3241 (0.0000, 0.3408, 0.4010, 0.2582) (6299.0, 2473.0, 73.9, 51)

`3242 (0.1362, 0.3306, 0.3330, 0.2003) (5719.0, 2429.6, 77.2, 55)

`3243 (0.0750, 0.2556, 0.3985, 0.2709) (5751.5, 2554.5, 82.2, 55)

`3244 (0.0681, 0.3600, 0.3436, 0.2284) (5719.0, 2429.6, 77.2, 55)

S331

`3311 (0.0000, 0.3678, 0.6322, 0.0000) (5927.5, 2669.3, 100.0, 70)

`3312 (0.1091, 0.4853, 0.4055, 0.0000) (5666.2, 2331.0, 81.5, 81)

`3313 (0.0000, 0.0000, 0.7791, 0.2209) (5951.7, 2659.4, 98.2, 66)

`3314 (0.4273, 0.0414, 0.4224, 0.1089) (5880.3, 2678.3, 94.6, 62)

S332

`3321 (0.0000, 0.0000, 0.5957, 0.4043) (5877.7, 2679.6, 93.0, 60)

`3322 (0.0000, 0.2421, 0.4997, 0.2582) (5877.7, 2679.6, 93.0, 60)

`3323 (0.3200, 0.0000, 0.4343, 0.2458) (5877.7, 2679.6, 93.0, 60)

`3324 (0.0000, 0.0000, 0.7689, 0.2311) (5951.7, 2659.4, 98.2, 66)

S333

`3331 (0.3733, 0.0000, 0.6267, 0.0000) (5927.5, 2669.3, 100.0, 70)

`3332 (0.1091, 0.4853, 0.4055, 0.0000) (5666.2, 2331.0, 81.5, 81)

`3333 (0.0000, 0.0000, 0.7791, 0.2209) (5951.7, 2659.4, 98.2, 66)

`3334 (0.4273, 0.0414, 0.4224, 0.1089) (5880.3, 2678.3, 94.6, 62)

S334

`3341 (0.6322, 0.0838, 0.2512, 0.0329) (5150.4, 2442.7, 69.7, 73)

`3342 (0.4485, 0.2680, 0.2836, 0.0000) (5311.7, 2330.3, 75.6, 99)

`3343 (0.4989, 0.1347, 0.2965, 0.0699) (5514.4, 2477.4, 79.0, 61)

`3344 (0.6546, 0.0000, 0.3454, 0.0000) (5295.1, 2568.1, 80.2, 88)

S341

`3411 (0.1136, 0.6322, 0.1771, 0.0771) (5741.6, 2261.5, 75.1, 63)

`3412 (0.1437, 0.4632, 0.3931, 0.0000) (5661.5, 2332.9, 81.6, 81)

`3413 (0.1586, 0.4736, 0.2169, 0.1509) (5708.7, 2332.8, 79.0, 61)

`3414 (0.0000, 0.6099, 0.3901, 0.0000) (5966.3, 2237.5, 74.8, 75)

S342

`3421 (0.5622, 0.1717, 0.2406, 0.0254) (5317.0, 2387.5, 77.4, 77)

`3422 (0.4092, 0.2931, 0.2977, 0.0000) (5311.7, 2330.3, 75.6, 99)

`3423 (0.2001, 0.4270, 0.3728, 0.0000) (5641.3, 2304.2, 79.8, 81)

`3424 (0.2778, 0.4851, 0.2371, 0.0000) (5370.4, 2241.3, 71.3, 89)
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Set Solution Weight Objective Values

S343

`3431 (0.0000, 0.3476, 0.3971, 0.2553) (6299.0, 2473.0, 73.9, 51)

`3432 (0.1390, 0.2979, 0.3797, 0.1833) (5831.3, 2537.0, 84.5, 57)

`3433 (0.1006, 0.3985, 0.2993, 0.2015) (5719.0, 2429.6, 77.2, 55)

`3434 (0.0648, 0.3535, 0.4071, 0.1745) (5952.5, 2491.2, 85.2, 59)

S344

`3441 (0.3477, 0.4548, 0.0986, 0.0989) (5386.0, 2226.4, 56.8, 61)

`3442 (0.2144, 0.4989, 0.1643, 0.1223) (5401.0, 2235.7, 59.0, 61)

`3443 (0.4263, 0.2731, 0.2180, 0.0826) (5385.6, 2317.0, 66.8, 59)

`3444 (0.3792, 0.3765, 0.1993, 0.0451) (5355.8, 2275.2, 66.8, 65)

S411

`4111 (0.0000, 0.0000, 0.0000, 1.0000) (6370.3, 2617.1, 57.4, 43)

`4112 (0.0773, 0.0000, 0.0955, 0.8273) (6370.3, 2617.1, 57.4, 43)

`4113 (0.2225, 0.0000, 0.2751, 0.5024) (5420.0, 2594.3, 60.5, 47)

`4114 (0.2261, 0.0000, 0.0237, 0.7502) (6370.3, 2617.1, 57.4, 43)

S412

`4121 (0.0000, 0.0000, 0.5813, 0.4187) (6652.1, 2677.0, 80.0, 52)

`4122 (0.0000, 0.1683, 0.4996, 0.3322) (5877.7, 2679.6, 93.0, 60)

`4123 (0.1184, 0.0319, 0.4449, 0.4048) (5751.5, 2554.5, 82.2, 55)

`4124 (0.0142, 0.0723, 0.4772, 0.4363) (6525.9, 2551.8, 69.2, 47)

S413

`4131 (0.0000, 0.5710, 0.0000, 0.4290) (6503.1, 2493.5, 56.2, 43)

`4132 (0.0000, 0.3149, 0.0806, 0.6046) (6493.5, 2499.7, 57.4, 43)

`4133 (0.0521, 0.1170, 0.0289, 0.8021) (6493.5, 2499.7, 57.4, 43)

`4134 (0.1858, 0.2872, 0.0000, 0.5270) (6503.1, 2493.5, 56.2, 43)

S414

`4141 (0.0000, 0.2219, 0.3313, 0.4468) (6499.9, 2511.2, 59.6, 43)

`4142 (0.0000, 0.0000, 0.3032, 0.6968) (6499.9, 2511.2, 59.6, 43)

`4143 (0.0000, 0.1968, 0.0532, 0.7500) (6499.9, 2511.2, 59.6, 43)

`4144 (0.0000, 0.4586, 0.2367, 0.3047) (6273.0, 2432.4, 64.3, 47)

S421

`4211 (0.2500, 0.2500, 0.2500, 0.2500) (5417.8, 2502.3, 64.5, 49)

`4212 (0.0000, 0.5390, 0.2877, 0.1733) (5708.7, 2332.8, 79.0, 61)

`4213 (0.1428, 0.4645, 0.0031, 0.3896) (6503.1, 2493.5, 56.2, 43)

`4214 (0.0064, 0.2954, 0.3784, 0.3198) (6525.9, 2551.8, 69.2, 47)

S422

`4221 (0.0742, 0.0000, 0.5451, 0.3807) (5877.7, 2679.6, 93.0, 60)

`4222 (0.0000, 0.4751, 0.3242, 0.2007) (5708.7, 2332.8, 79.0, 61)

`4223 (0.0000, 0.2414, 0.4578, 0.3008) (5834.1, 2590.1, 86.2, 57)

`4224 (0.2959, 0.0000, 0.3939, 0.3103) (5751.5, 2554.5, 82.2, 55)
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Set Solution Weight Objective Values

S423

`4231 (0.6264, 0.0268, 0.1530, 0.1937) (5299.8, 2608.5, 61.1, 49)

`4232 (0.4157, 0.0000, 0.2992, 0.2851) (5413.2, 2594.0, 60.5, 47)

`4233 (0.4668, 0.1303, 0.1361, 0.2668) (5413.2, 2594.0, 60.5, 47)

`4234 (0.5324, 0.2306, 0.0295, 0.2075) (5411.4, 2490.8, 62.3, 49)

S424

`4241 (0.4604, 0.3498, 0.0000, 0.1898) (5242.1, 2335.3, 46.1, 58)

`4242 (0.3166, 0.4520, 0.0000, 0.2314) (5576.1, 2229.4, 53.4, 57)

`4243 (0.3596, 0.4052, 0.1188, 0.1164) (5386.0, 2226.4, 56.8, 61)

`4244 (0.4553, 0.3265, 0.0956, 0.1226) (5334.6, 2332.9, 60.6, 57)

S431

`4311 (0.2505, 0.6250, 0.0000, 0.1245) (5344.7, 2207.7, 40.3, 62)

`4312 (0.0705, 0.7696, 0.0279, 0.1320) (5807.2, 2132.3, 46.9, 65)

`4313 (0.1880, 0.5435, 0.0000, 0.2685) (5826.8, 2207.3, 42.7, 56)

`4314 (0.4760, 0.3880, 0.0000, 0.1361) (5344.7, 2207.7, 40.3, 62)

S432

`4321 (0.5730, 0.2697, 0.0000, 0.1572) (5112.4, 2436.9, 46.6, 58)

`4322 (0.4654, 0.3463, 0.0000, 0.1884) (5411.4, 2490.8, 62.3, 49)

`4323 (0.5245, 0.3288, 0.0000, 0.1467) (5217.5, 2285.6, 53.1, 61)

`4324 (0.4983, 0.3161, 0.0493, 0.1363) (5217.5, 2285.6, 53.1, 61)

S433

`4331 (0.0000, 0.6880, 0.0000, 0.3120) (6498.0, 2345.0, 48.6, 49)

`4332 (0.0000, 0.6551, 0.1610, 0.1839) (5900.2, 2265.3, 63.2, 55)

`4333 (0.1539, 0.5677, 0.0000, 0.2784) (5826.8, 2207.3, 42.7, 56)

`4334 (0.0000, 0.8060, 0.0204, 0.1736) (6098.7, 2188.9, 45.7, 57)

S434

`4341 (0.3577, 0.4097, 0.0957, 0.1369) (5386.0, 2226.4, 56.8, 61)

`4342 (0.0000, 0.6461, 0.2265, 0.1274) (5741.6, 2261.5, 75.1, 63)

`4343 (0.0668, 0.7622, 0.0428, 0.1283) (5807.2, 2132.3, 46.9, 65)

`4344 (0.1738, 0.5297, 0.1745, 0.1220) (5741.6, 2261.5, 75.1, 63)

S441

`4411 (0.3750, 0.0000, 0.0000, 0.6250) (5406.8, 2582.5, 58.3, 47)

`4412 (0.3811, 0.3456, 0.0000, 0.2733) (5411.4, 2490.8, 62.3, 49)

`4413 (0.4108, 0.1384, 0.0330, 0.4177) (5406.8, 2582.5, 58.3, 47)

`4414 (0.5839, 0.0000, 0.0000, 0.4161) (5406.8, 2582.5, 58.3, 47)

S442

`4421 (0.6181, 0.1389, 0.0000, 0.2431) (5293.4, 2597.0, 58.9, 49)

`4422 (0.7945, 0.0000, 0.0000, 0.2055) (5173.8, 2589.4, 50.7, 52)

`4423 (0.6308, 0.0000, 0.1654, 0.2038) (5299.8, 2608.5, 61.1, 49)

`4424 (0.5070, 0.2808, 0.0000, 0.2122) (5411.4, 2490.8, 62.3, 49)

continued . . .
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. . . continued

Set Solution Weight Objective Values

S443

`4431 (0.1441, 0.4641, 0.0000, 0.3918) (6503.1, 2493.5, 56.2, 43)

`4432 (0.2188, 0.2659, 0.0000, 0.5153) (6503.1, 2493.5, 56.2, 43)

`4433 (0.2655, 0.1329, 0.0155, 0.5861) (6493.5, 2499.7, 57.4, 43)

`4434 (0.1597, 0.3168, 0.1136, 0.4099) (6499.9, 2511.2, 59.6, 43)

S444

`4441 (0.4654, 0.0000, 0.2403, 0.2943) (5413.2, 2594.0, 60.5, 47)

`4442 (0.1960, 0.0000, 0.3507, 0.4534) (5413.2, 2594.0, 60.5, 47)

`4443 (0.4208, 0.1973, 0.0775, 0.3044) (5406.8, 2582.5, 58.3, 47)

`4444 (0.5103, 0.0063, 0.0493, 0.4341) (5413.2, 2594.0, 60.5, 47)

B.2. List or Random Weight Vectors and Corresponding Solutions

Table B.2 lists the random weight vectors used in Section 4.3.3.2 along with corre-

sponding normalized and actual objective function values for average medical proximity,

average transport proximity, similarity and total sharpness count objectives, respectively.

Table B.2. List of random weight vectors and corresponding objective values.

Weight Normalized Obj. Values Actual Obj. Values

(0.1708, 0.2201, 0.5, 0.1402) (1.23, 1.30, 1.0, 1.53) (5952, 2659, 98.2, 66)

(0.1592, 0.7073, 0.0, 0.1210) (1.16, 1.06, 0.4, 1.42) (5652, 2174, 44.2, 61)

(0.0306, 0.0530, 0.4, 0.5278) (1.34, 1.23, 0.6, 1.00) (6500, 2511, 59.6, 43)

(0.8111, 0.0193, 0.0, 0.1550) (1.07, 1.27, 0.5, 1.21) (5174, 2589, 50.7, 52)

(0.3454, 0.1018, 0.2, 0.3170) (1.12, 1.27, 0.6, 1.09) (5413, 2594, 60.5, 47)

(0.0252, 0.4579, 0.1, 0.3782) (1.34, 1.23, 0.6, 1.00) (6500, 2511, 59.6, 43)

(0.1878, 0.2406, 0.5, 0.0746) (1.22, 1.31, 1.0, 1.63) (5927, 2669, 100.0, 70)

(0.5229, 0.2571, 0.0, 0.2134) (1.08, 1.25, 0.6, 1.19) (5229, 2562, 54.9, 51)

(0.1421, 0.4120, 0.3, 0.1710) (1.18, 1.14, 0.8, 1.42) (5709, 2333, 79.0, 61)

(0.3206, 0.2232, 0.4, 0.0695) (1.22, 1.31, 1.0, 1.63) (5927, 2669, 100.0, 70)

(0.0531, 0.4847, 0.2, 0.2259) (1.21, 1.13, 0.7, 1.23) (5869, 2307, 64.9, 53)

(0.6743, 0.0593, 0.0, 0.2333) (1.07, 1.28, 0.6, 1.19) (5204, 2606, 56.1, 51)

(0.3749, 0.0437, 0.5, 0.0999) (1.22, 1.31, 1.0, 1.63) (5927, 2669, 100.0, 70)

(0.1377, 0.4116, 0.0, 0.4283) (1.34, 1.22, 0.6, 1.00) (6503, 2493, 56.2, 43)

continued . . .
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. . . continued

Weight Normalized Obj. Values Actual Obj. Values

(0.2621, 0.2555, 0.3, 0.1830) (1.18, 1.19, 0.8, 1.28) (5719, 2430, 77.2, 55)

(0.6794, 0.0495, 0.2, 0.0627) (1.06, 1.21, 0.6, 1.42) (5138, 2475, 62.6, 61)

(0.0596, 0.7254, 0.1, 0.1634) (1.26, 1.07, 0.5, 1.33) (6099, 2189, 45.7, 57)

(0.2039, 0.0379, 0.5, 0.2766) (1.21, 1.31, 0.9, 1.40) (5878, 2680, 93.0, 60)

(0.6212, 0.0239, 0.1, 0.2334) (1.09, 1.28, 0.6, 1.14) (5300, 2608, 61.1, 49)

(0.2584, 0.2517, 0.2, 0.3241) (1.12, 1.22, 0.6, 1.14) (5418, 2502, 64.5, 49)

(0.0976, 0.1120, 0.3, 0.5397) (1.34, 1.23, 0.6, 1.00) (6500, 2511, 59.6, 43)

(0.0456, 0.1301, 0.6, 0.2281) (1.23, 1.30, 1.0, 1.49) (5949, 2661, 96.6, 64)

(0.1993, 0.2927, 0.4, 0.0586) (1.22, 1.31, 1.0, 1.63) (5927, 2669, 100.0, 70)

(0.5775, 0.2898, 0.1, 0.0327) (1.03, 1.12, 0.6, 2.07) (5008, 2293, 55.0, 89)

(0.3350, 0.3425, 0.3, 0.0693) (1.18, 1.14, 0.8, 1.42) (5709, 2333, 79.0, 61)

(0.3754, 0.2386, 0.2, 0.2038) (1.12, 1.22, 0.6, 1.14) (5418, 2502, 64.5, 49)

(0.1670, 0.3063, 0.5, 0.0371) (1.22, 1.31, 1.0, 1.63) (5927, 2669, 100.0, 70)

(0.5005, 0.2063, 0.0, 0.2780) (1.11, 1.26, 0.6, 1.09) (5407, 2583, 58.3, 47)

(0.6602, 0.0471, 0.2, 0.0681) (1.06, 1.23, 0.7, 1.42) (5162, 2515, 64.6, 61)

(0.5996, 0.1673, 0.0, 0.1952) (1.08, 1.26, 0.6, 1.19) (5220, 2577, 56.5, 51)

(0.2671, 0.2678, 0.1, 0.3990) (1.15, 1.22, 0.6, 1.09) (5571, 2501, 56.8, 47)

(0.3879, 0.1842, 0.3, 0.1201) (1.14, 1.21, 0.8, 1.33) (5539, 2467, 77.1, 57)

(0.5700, 0.2477, 0.1, 0.0379) (1.06, 1.16, 0.6, 1.49) (5120, 2365, 58.8, 64)

(0.1670, 0.3448, 0.3, 0.2251) (1.18, 1.19, 0.8, 1.28) (5719, 2430, 77.2, 55)

(0.1826, 0.0326, 0.8, 0.0278) (1.22, 1.31, 1.0, 1.63) (5927, 2669, 100.0, 70)

(0.2103, 0.2117, 0.2, 0.3346) (1.12, 1.22, 0.6, 1.14) (5418, 2502, 64.5, 49)

(0.0527, 0.1355, 0.1, 0.7388) (1.34, 1.23, 0.6, 1.00) (6500, 2511, 59.6, 43)

(0.1913, 0.2165, 0.4, 0.1888) (1.21, 1.31, 0.9, 1.40) (5878, 2680, 93.0, 60)

(0.3390, 0.1056, 0.3, 0.2947) (1.12, 1.22, 0.6, 1.14) (5418, 2502, 64.5, 49)

(0.2465, 0.5758, 0.2, 0.0207) (1.10, 1.08, 0.6, 1.88) (5348, 2198, 62.1, 81)

(0.4156, 0.3154, 0.1, 0.1539) (1.11, 1.14, 0.6, 1.33) (5368, 2329, 62.7, 57)

(0.0013, 0.0244, 0.4, 0.5544) (1.34, 1.23, 0.6, 1.00) (6500, 2511, 59.6, 43)

(0.1778, 0.4906, 0.0, 0.3044) (1.17, 1.18, 0.6, 1.14) (5695, 2403, 57.5, 49)

(0.1238, 0.3534, 0.0, 0.4939) (1.34, 1.22, 0.6, 1.00) (6503, 2493, 56.2, 43)

(0.4191, 0.1063, 0.2, 0.2618) (1.12, 1.22, 0.6, 1.14) (5418, 2502, 64.5, 49)

(0.6120, 0.0747, 0.3, 0.0543) (1.07, 1.23, 0.7, 1.65) (5202, 2503, 71.9, 71)

(0.1423, 0.2782, 0.2, 0.3646) (1.34, 1.23, 0.6, 1.00) (6500, 2511, 59.6, 43)

(0.0518, 0.3209, 0.3, 0.3205) (1.34, 1.23, 0.6, 1.00) (6500, 2511, 59.6, 43)

(0.0193, 0.1491, 0.6, 0.1916) (1.23, 1.30, 1.0, 1.53) (5952, 2659, 98.2, 66)
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