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ABSTRACT

PIM Profiling and Offlading Project Report

Haoxuan Zhang

With increasingly larger data set for software workloads, data movement has become

major performance and energy bottleneck. Processing in Memory has been a hot topic

in recent years to solve this problem. The basic idea of processing in memory is to push

some computation units into the memory. Therefore, instead moving large amount of

data into the processors, PIM system can send instructions or commands to the memory

and ask the smaller processing units in the memory to do the computation near the data.

This modification can bring significant performance and energy advantage.

In this report, a design which can offload loops in programs according to their load/-

store ratio and data locality is proposed. A profiler to detect loops and their load/store

ratio is built. Based on profiling result as well as data size and cache sizes, the proposed

architecture can switch between host mode and PIM mode with non-significant overhead.

The design is simulated using Gem5 simulator. The evaluation shows that the proposed
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architecture can have 41% speedup for low locality workload, 35% speedup for high lo-

cality workload but with small cache size and 32% speedup for mixed locality workloads

against the baseline pure host processing system.
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CHAPTER 1

Introduction

This project is conducted by Haoxuan Zhang under supervision of Professor Gokhan

Memik. The goal of this project is to evaluate effect of Processing in Memory(PIM) for

data intensive workloads.

The design proposed in this project offloads loops with low time locality of data in

the program into the in-memory processor which has access to the DRAM with higher

bandwidth. The in-memory processor will have smaller functional unit pool, reorder buffer

size and caches. The goal is to offload the memory-bound, low time locality loops into

smaller CPU which has higher memory access speed while those compute-bound, high

time locality loops remains in the larger host CPU.

Gem5 simulator is used in the project. The effort in this project could be illustrated

as followings:

A profiler is firstly developed based on timing simple CPU model to identify loops in

programs and record the load/store to total operation ratio. This could be used along

with the data size and cache size to determine whether the loop has low or high time

locality and therefore should be offloaded or not. After running the profiler, a list of loops

to be offloaded is generated.

Secondly, a dynamic PIM architecture is created to offload loop workloads into memory

according to the time locality indicated by the profiling result as well as data size and

cache size.
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Thirdly, a modified O3 CPU model and a modified DRAM memory controller model

are created within Gem5 which can switch between host and PIM mode to simulate the

system running in these two different modes. The simulation system is built by connecting

these modified simulation objects with memory hierarchy system to imitate the proposed

dynamic PIM architecture behavior.

Fourthly, test programs with various locality workload are created and tested on the

simulation system. The simulation result is used in analyzing the performance of the

proposed design.

The Github repository of this project could be found at https://github.com/haoxuan1080/

gem5.git and the branch containing the works of this project is PIM Draining.

The report is organized in the following manner: In section 2, Background of PIM and

motivation of the design will be introduced. Section 3 describes the profiling process and

the profiling result generation. Section 4 present the proposed dynamic PIM offloading

architecture. Section 5 explain the simulation setup and process. Section 6 present the

evaluation results and provide analysis of the design. Section 7 summarize the project

and discuss potential future works.

https://github.com/haoxuan1080/gem5.git
https://github.com/haoxuan1080/gem5.git
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CHAPTER 2

Background

As workloads of today’s computer system becoming more and more data-intensive

with the emergence of 3D stacking integrated circuits, PIM architecture shows its great

potential to achieve better performance and power efficiency because it can significantly

reduce unnecessary data movements. The basic idea of processing in memory is to push

some computational unites into the memory. Therefore instead of moving large amount of

data into the processors, PIM system can send instructions or commands to the memory

and ask the smaller processing units in the memory to do the computation near the data.

PIM was firstly proposed in 1990s. one of the representitve design to explore pushing

computational units into memory is Intelligent RAM(IRAM)[1]. However, due to high

cost of integrating computing units into memory, PIM didn’t gain popularity until the the

last decade. In fields demanding high throughput such as parallel computing and artificial

intelligence, there has been lots of effort dedicated to transporting data to computation

units more efficiently. However, the problem of inefficiency to transport data to computing

units still remains not resolved. The gap between memory and cpu speed has been

growing every year in conventional architectures, which lead to the prevalent usage of

cache. However, in today’s big data workloads, data locality could be very hard to

utilize because of large amount of random data access as well as the larger data set size

but relatively smaller amount of computation for each data element. Thus, people are

adopting PIM again to remedy this problem.
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A number of novel PIM designs are proposed. RowClone[2] proposes to offload bulk

data copy and initialization into the memory with relatively trivial hardware modification.

In the papers selected in this survey, TOP-PIM[3] firstly proposed to build processing in

memory system based on Hybrid Memory Cube(HMC) using the same proessing units

as the host processor but with smaller size. NDA[4] places data flow processors into

the logical die of the HMC. Tesseract[5] push general-purposed core into HMC to con-

duct graph workload locally in each bank and the cores inside the memory use message

passing to cooperate with each other. PIM-Enabled Instructions[6] proposed a locality-

aware architecture which selectively offload computation into the memory based on their

locatlity. Practical Near-Data Processing for In-Memory Analytics Frameworks[7] embed-

ded general purpose processors into logic die of HMC, also utilizing flexibility of virtual

memory. PRIME[8] leverages the crossbar structure of Resistive random-access mem-

ory(ReRANM) to compute multiplication and accumulation which is the dominated com-

putation in today’s neuronetwork. Neurocube[9] places data-flow processor into logic

die of HMC and uses data-centric computation to simplify scheduling. GraphPIM[10]

spare a non-cacheable area in the virtual memory space as PIM only area and offload

any operation to the memory if the data is in the separated partition. PipeLayer[11] also

uses ReRAM for PIM Neural Network processing but added features to support train-

ing process of Neural Networks. TETRIS[12] places previous field specific accelerator

called Eyeriss[13] into logic die in HMC to process Neural Network. Neural Cache[14]

which uses bit-serial computation inside the cache to increase the parallelism of multiply

accumulation computation.
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Among the works mentioned above, the PIM-Enabled Instructions[6] can be applied

to general-purpose computing and assign PIM-enabled instructions to host CPU or PIM

processing units based on the operands’ locality. However, by doing so, extra logic for

monitoring data locality needs to be added including a table with the same size as last-

level cache to record the data locality. In addition, the tracking of locality also increase the

latency of determining whether to offload instructions to memory. Moreover, offloading

instructions on the granularity of instructions could add huge overhead because there could

be large number of consecutive PIM-enabled instructions within a chunk of program and

each of the instruction needs to check the monitor which is as slow as last level cache

before assigned to host CPU or the PIM processing units.

In this project, a PIM architecture is proposed so that it can dynamically assign

general purpose workload to PIM units without adding too many logics. The design

proposed will not determine PIM offloading on the granularity of individual instructions.

Instead, the design in this project will offload loops which has low time locality into PIM

units and utilize profiling to determine whether a loop in the program possess low time

locality with high load/store to total operation ratio and hence should be offloaded to

PIM execution.



15

CHAPTER 3

Profiling

3.1. PIM Profiling Process

In Gem5 TimingSimpleCPU model, the struct of BranchNode is created to store loop

information and a loop list is stored in each TimingSimpleCPU. Whenever the cpu sees

a branch instruction and the target is before the current PC and the result is taken, then

the list will be checked. With the current PC to be the end point and the target PC to be

the start point of the loop, if the loop already exists in the list, all the statistics related

to that loop will be incremented accordingly. Otherwise, if the loop is a newly recognized

loop, a new BranchNode will be created to track that loop and be pushed to the list.

After the simulation, all the information about the recognized loops will be shown

in m5out/stats.txt. The name of each stats of the loop will be thread name + .loop #

+ specific stats. The “specific stats” information collected for each loop are as

follows:

1. TargePC: The starting point of the loop.

2. BranchPC: The ending point of the loop.

3. iterNum: The iteration number of the loop.

4. TotalInstNum: The total operation number in the loop.

5. LoadNum: The total load operation

6. ldstRatio: The total operation to memory access ratio of the loop.
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3.2. PIM Profiling Result Generation

After profiling, the PIM loops that should be offloaded will be extracted using the

script: get pim loop. The usage of get pim loop is as follows:

ge t p im loop −f i n p u t f i l e

−t iterNum −r r a t i o

Where the input file is the stats.txt that is containing the loop information, iterNum

is the iteration number threshold above which a loop must have to be considered to be

offloaded to PIM and ratio is the total operation to memory operation ratio threshold

below which loop must have to be considered to be offloaded to PIM.

After running the script, a file called PIM loops.txt will be created containing all

the information of the loops that are supposed to be offloaded. Each offloaded loop takes

three lines in PIM loops.txt. The format is as follows:

Loop number

Sta r t PC

End PC

In PIM loops.txt, all the loops selected are having high load/store to all operation

ratio, which means the loop is memory intensive. However, in a cached system, this

doesn’t mean that the memory request will always get to the memory controller. If the

data size is small and fits in the caches and the data is reused multiple times, then the

requests to memory controller will be a lot fewer than the requests made by the CPU. Such

workload still shouldn’t be offloaded into PIM because it still possesses high time locality.
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Therefore the criteria for PIM offloading should also include low time locality. With high

memory access to total operation ratio and low locality, it will be very inefficient to bring

the data into the caches with only a few operations on it and then store it back without

accessing in the near future. Therefore, such workload should be offloaded into PIM.

The profiling data will be loaded into the CPU when the program starts. The detail

of this process will be introduced in the next section.
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CHAPTER 4

PIM Offloading Architecture

Figure 4.1 shows the architecture of the diagram of the proposed architecture. The

system has a host CPU which is a larger out-of-order CPU with first level instruction and

data cache connected to its instruction fetch port and data port. The first level caches are

connected to a bus called “L2 Bus” and then connected the unified L2 Cache(Last level

cache). The L2 Cache will be connected to the System Bus which communicates with

the memory system through the Memory Data Port. The memory hierarchy between the

host CPU and the memory system is the same as that of a conventional two-level cached

architecture.

Inside the memory system, the Memory Data Port is further connected to the Mem-

ory bus. The Memory bus master port is connected to the Memory Controller which

communicates with the DRAM blocks.

On the right side of the diagram shown in Figuire 4.1, the PIM processing system is

having a similar 2-level memory hierarchy as that in the host system. However, the caches

and CPU in PIM system will be smaller than those in the host system due to limited logic

resources. The PIM system is connected to a innerBus which is further connected to the

PIM memory controller. The PIM memory controller communicates with the DRAM

blocks. The PIM bus and the PIM memory controller is a lot faster than the system bus

and memory controller because the PIM system has the advantage of being nearer to the

data and able to access more interface resources to the Memory blocks such as through
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Figure 4.1. Architecture of Dynamic PIM System

silicon via in Hybrid Memory Cube(HMC)[15]. Therefore, PIM system has much higher

memory bandwidth but less powerful CPU with smaller caches.

The reason why PIM system still needs caches is because the workloads offloaded could

still posses some level of spacial locality. Therefore a cache which will bring in a whole

block of data from memory can speed up the processing by utilizing the spacial locality.

There is also an additional PIM control Port between the host CPU and the PIM

CPU. The host CPU can send the information needed by the PIM CPU to execute the

offloaded workloads. The information would contain the start and end program pointer

as well as the register file content.

The program run on this system will firstly start in host CPU and its memory hierarchy

by default. When the CPU encounters the offloaded loops in the program marked in the

profiling process, the host CPU will drain it’s piplines and inform all the caches including
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first level and last level caches to write back all the dirty data and invalidate all the cache

line. All the uncommitted instruction after the switching point will be squashed during

the draining. Then it will send offloaded workload information to PIM CPU and the PIM

CPU would start to execute from the start PC until it finishes the loop with the next

program counter being out of the loop enclosed by start and end PC. The cache write

back and invalidation process in this project is simulated functionally which don’t affect

the timing stats. This could be changed to include the time spent on write back and

invalidation into consideration to obtain more accurate simulation result. However, due

to the switching event not happening frequently in this project’s testbenches, we used the

functional model instead of a timing model for cache writing back and invalidation.

Here we have several assumptions for the workload offloading process:

1. The profiling information will be loaded into host CPU so the system will be

aware of the offloaded workloads. This could be achieved in the following way:

the profiling information is embedded into the binary file of the program by the

compiler so that it will be loaded into the memory when the program starts

running. Then at the begining of the program, there will be some instruction

writing the address and length of the profiling information into a set of special

registers in host CPU. Therefore the host CPU will be aware of the profiling

result. By sending these information to the PIM CPU, the PIM CPU also know

when the work is finished and it will also drain itself, write back dirty data inside

caches and invalidate all the cache lines. By doing this the ISA will be extended

with more registers but the types of instructions won’t be changed.
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2. The host CPU and PIM CPU will test the PC during commit stage where in-

structions are reordered. if the PC reaches the switching point, the subsequent

instruction will be squashed after committing the current instruction and the

CPU will be drained.

3. As mentioned before, when switch from host mode to PIM and from PIM mode to

host mode, the CPUs needs to drain themselves and write back dirty blocks and

invalidate all the cache lines before the other system will start executing. Also

given that there is only one CPU in host system and in PIM system respectively,

there won’t be multiple copies of data in the cache system across the host and

PIM system or any same level caches. Therefore, cache coherence problem is

simplified.

4. We assume that all the loops generated by the compiler will only exit at “End

PC”, which means the branching instruction that will result in getting out of

the loop can only reside at the “End PC”. Therefore, no matter what the loop

content is, the hardware will only test the loop exiting condition at the “End PC”

which could lead to switching between PIM mode and host mode. This simplifies

the logic needed to detect switching point in both host CPU and PIM CPU.

The architecture proposed in project will have following physical overheads:

1. New registers added into host CPU and PIM CPU and therefore the ISA is

extended.

2. Extra logic in host and PIM CPUs will be added to determine switching point

and do the switching from host mode to PIM mode or from PIM mode to host

mode.
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3. PIM CPU and it’s memory hierarchy including buses and caches needs to be

added into the memory logical portion.

4. additional port “PIM Control Port” should be added between the host CPU and

the memory system for communication while switching.
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CHAPTER 5

Simulation Setup

5.1. Assumptions

We have the following assumptions for setting up the simulator to evaluate the pro-

posed architecture.

1. The PIM CPU will have half the fetch size of the host CPU

2. The ROB size of the PIM CPU will be a quarter of the size of the host CPU

3. All types of functional units in PIM CPU will be reduced to only 1.

4. The PIM memory controller has all the memory timing parameter half as large

as those of memory controller

5. PIM Bus will be faster than System Bus. The system bus has front delay of 100

system cycles while the PIM bus only has delay of 10 system cycles.

6. the delay of memory bus and inner bus inside the memory system are the same

and set to 10 system cycles.

5.2. Testbench Program

We built four testbench programs which will be used to evaluate the proposed archi-

tecture.

The first one is a program with low locality loops. This testbench will be referred as

LLOC in the rest of the report. The code is shown below:
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1 #inc lude <s t d i o . h>

2 #inc lude <s t d l i b . h>

3

4 #de f i n e M (65536 ∗ 1000)

5

6 i n t main ( ) {

7 p r i n t f ( ”Low Loca l i t y loop !\n” ) ;

8 // low l o c a l i t y

9 i n t ∗ m = malloc (M∗ s i z e o f ( i n t ) ) ;

10 i n t ∗ n = mal loc (M∗ s i z e o f ( i n t ) ) ;

11 long i n t ∗ l = mal loc (M∗ s i z e o f ( long i n t ) ) ;

12

13 f o r ( i n t i = 0 ; i < M; i++) {

14 m[ i ] = i ;

15 n [ i ] = M−i ;

16 }

17

18 f o r ( i n t i =0; i < M; i++) {

19 l [ i ] = m[ i ] ∗ n [ i ] ;

20 }

21

22 p r i n t f ( ”%d ∗ %d = %ld \n” , m[ 2 ] , n [ 2 ] , l [ 2 ] ) ;

23

24 re turn 0 ;

25 }
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The second one is a program with high locality loops. This testbench will be referred

as HLOC in the rest of the report. The code is shown below:

1 #inc lude <s t d i o . h>

2 #inc lude <s t d l i b . h>

3

4 #de f i n e L 1024

5 #de f i n e N 65536

6 #de f i n e M (65536 ∗ 1000)

7

8 i n t main ( ) {

9 p r i n t f ( ”High Loca l i t y loop !\n” ) ;

10 // hgigh l o c a l i t y , not get ev i c t ed

11 i n t ∗ x = malloc (L∗ s i z e o f ( i n t ) ) ;

12 i n t ∗ y = malloc (L∗ s i z e o f ( i n t ) ) ;

13 long i n t ∗ z = mal loc (L∗ s i z e o f ( long i n t ) ) ;

14 f o r ( i n t i = 0 ; i < L ; i++) {

15 x [ i ] = i ;

16 y [ i ] = N−i ;

17 }

18

19 p r i n t f ( ” repeat %d ∗ %d times \n” , M/L , L) ;

20

21 // data w i l l be in the cache , look at the CPI ,

22 // IPC i s high then compute bounded .

23 f o r ( i n t j =0; j < (M/L) ; j++)
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24 f o r ( i n t i = 0 ; i < L ; i++) {

25 //what i f a c a l l here ?

26 // in the r epor t d i s c u s s i o n

27 z [ i ] += x [ i ]+y [ i ] ;

28 }

29

30 p r i n t f ( ”(%d + %d) ∗ %d = %ld \n” , x [ 2 ] , y [ 2 ] , M/L , z [ 2 ] ) ;

31

32 re turn 0 ;

33 }

In the HLOC program, the array size is small and can fit in the caches and the data

will be reused so that the time locality is high.

The third one is a program with high locality loops but the data array is larger than

the L2 cache capacity so the system cannot fully utilize the time locality due to eviction.

This testbench will be referred as HLE in the rest of the report. The code is shown below:

1 #inc lude <s t d i o . h>

2 #inc lude <s t d l i b . h>

3

4 #de f i n e N 65536

5 #de f i n e M (65536 ∗ 1000)

6

7 i n t main ( ) {

8 p r i n t f ( ”High Loca l i t y get ev i c t ed !\n” ) ;

9 // high l o c a l i t y , get ev i c t ed
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10 // i n c r e a s e N to get ev i c t ed

11 i n t ∗ a = mal loc (N∗ s i z e o f ( i n t ) ) ;

12 i n t ∗ b = mal loc (N∗ s i z e o f ( i n t ) ) ;

13 long i n t ∗ c = mal loc (N∗ s i z e o f ( long i n t ∗) ) ;

14 f o r ( i n t i = 0 ; i < N; i++) {

15 a [ i ] = i ;

16 b [ i ] = N−i ;

17 }

18

19 p r i n t f ( ” repeat %d ∗ %d times \n” , M/N, N) ;

20

21 // data w i l l be in the cache , look at the CPI ,

22 // IPC i s high then compute bounded .

23 f o r ( i n t j =0; j < (M/N) ; j++)

24 f o r ( i n t i = 0 ; i < N; i++) {

25 c [ i ] += a [ i ]+b [ i ] ;

26 }

27

28 p r i n t f ( ”(%d + %d) ∗ %d = %ld \n” , a [ 2 ] , b [ 2 ] , M/N, c [ 2 ] ) ;

29

30 re turn 0 ;

31 }

The last test bench will be a program which is a combination of the previous 3 test-

benches. This testbench will be referred as COMB.
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5.3. Simulator setup

Gem5 is used in the simulation of the proposed architecture. Figure 5.1 shows the

system built and run on Gem5 simulator. We used the O3CPU model to simulate both

the host and PIM CPU. The configuration file used in the repository is the modified

configs/learning gem5/part1/two level.py.

Figure 5.1. Diagram of Simulation System

There is only one CPU and memory controller in the memory system. Ports and

morphability are added to these models so that they can switch between host mode and

PIM mode. In different modes, the CPU is using different ports and hence different

memory hierarchy.

On the left side of the diagram in Figure 5.1, the CPU is connected to the host system

memory hierarchy and on the right side, it is the PIM memory hierarchy. When the

CPU detects the switching PC either to PIM mode or from PIM mode according to the
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profiling information in commit stage, the CPU will squash uncommitted instructions

after the switching point in the program order and drain the CPU.

There is a PIM Port from the CPU to the Memory controller. Note that this port isn’t

corresponding to the “PIM Control Port” in Figure 4.1 which is not needed in simulation

because the host and PIM CPU will be all run within the single Morphable CPU model

in the modified Gem5 simulator. The “PIM Port” in Figure 5.1 is only used to let the

Morphable CPU to tell the memory controller to switch when switch point is detected

after CPU itself having been drained and let the memory controller to tell the CPU

when the switch is finished. The PIM port is only used in the simulation and don’t have

physical meaning because in the real architecture, host CPU and PIM CPU are separated

and memory controller and PIM memory controller are also separated.

There is another simplification in the simulation system against the real architecture

apart from the combined CPU and memory controller model: The switching of memory

controller will happen immediately without costing any time. However, the memory

controller will delay 1000 ns after its switch before it send the response back to the CPU

telling it that the memory controller has finished switching and the CPU will be resumed.

This delay can imitate the information sending process delay from the host CPU to the

PIM CPU. The two processes are all happening after the CPU draining and they all need

some time to process. In addition, after these two processes the following workload will be

resumed in the new operating mode. Therefore, the delay of memory controller switching

in simulation system can imitate the delay for host and PIM CPU sending information

to each other.
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The baseline system(BLS) against which the proposed architecture will be compared is

a two level cached system with only the host CPU and memory controller. Apart from the

baseline system, 3 system are simulated: PIM dynamic offloading system(PDOS), PIM

dynamic offloading low time locality only system(PDOLOS) and Pure PIM system(PPS).

The configurations of the PIM dynamic offloading system are shown below:

• system clock frequency: 1 GHz

• cpu clock frequency: 1 GHz

• host cpu functional unit pool:

Functional unit count

IntALU 6

IntMulDiv 4

FP ALU 4

FP MultDiv 2

SIMT unit 4

RdWrPort 4

• PIM CPU functional unit pool:



31

Functional unit count

IntALU 1

IntMulDiv 1

FP ALU 1

FP MultDiv 1

SIMT unit 1

RdWrPort 4

• host CPU ROB size: 192 instructions

• PIM CPU ROB size: 48 instructions

• memory size: 2 GB

• L2 Bus and PIM L2 Bus front end delay: 1 cycle

• L2 Bus and PIM L2 Bus response delay: 1 cycle

• System Bus front end delay: 100 cycles

• PIM Bus front end delay: 10 cycles

• Memory Bus front end delay: 10 cycles

• L1 inst cache size: 16 kB

• PIM L1 inst cache size: 4 kB

• L1 data cache size: 64 kB

• PIM L1 data cache size: 16 kB

• L2 cache size: 256 kB

• PIM L2 cache size: 64 kB
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• all L1 caches(PIM and host) association: 2

• all L2 caches(PIM and host) association: 8

• cache line size: 64 bytes

The configurations of all other three systems(BLS, PDOLOS and PPS) are all the

same to the corresponding ones in PDOS. The BLS only have the host portion of the

PDOS system. The PDOLOS has identical architecture introduced in section 4 with

PDOS but only loops with high load/store to total operation ratio and low time locality

are offloaded, while PDOS system offload any loop with high load/store to total operation

ratio. The PPS system only has the PIM portion of the PDOS system.

To show the necessity to include PIM caches, a system was built which is the same

as PDOS but without any PIM caches nor PIM L2 Bus or PIM Bus. This system is

simulated against BLS running COMB test bench. The runtime of BLS is: 9.268701s

while the runtime of PDOS without PIM caches is: 27.138331s which is much slower

than that of BLS. This is because although COMB is dominated with loops having high

load/store instruction to total operation ratio with some of them even having low time

locality, all the loops are still possessing spacial locality. The cache line size is 64 bytes

so BLS can utilize spacial locality while PDOS without PIM caches cannot. Therefore

cached memory hierarchy in the PIM system is needed to exploit spacial locality.

5.4. Unexpected Draining Behavior in Simulation

For the draining process of CPUs in the simulation, Gem5 Drainable model and it’s

helper function are used. However, it is worth mentioning that while testing the draining

process of the modified CPU model and the Gem5 Drainable model, the simulator shows
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CPU model start to 1st 1st 1st to 2nd 2nd 2nd to 3rd 3rd 3rd to 4th 4th 4 to end

drain 9295 43(9338) 8391(17729) 8 (17737) 30691(48428) 285(48713) 2235(50948) 684 (51632) 24029922 (24081554)

no drain 9295 - 8434(17729) - 30555(48284) - 2454 (50738) - 24031964(24082702)

Table 5.1. Draining Test Result Comparison between Draining and Non-
Draining Model

the system is running faster with draining than without draining running the same work-

load. The details are as follows: A program is created in which the first two loops are

offloaded and hence should make the modified CPU model to drain and switch between

CPU and PIM mode. There should be 4 draining and switching in total. In this small

test, actual switching, cache write back and cache invalidation are not implemented except

the draining process. The system will resume immediately after completion of draining.

Table 5.1 shows the simulation result of this test comparing time line of systems with the

modified draining CPU and the unmodified CPU.

In table 5.1, first column is the CPU model with the second row being the modified

CPU model and the third row being the unmodified model. From the second column, each

column shows the tick count of each time period being either from start to first draining,

draining or the period between two drainings(switchings). The numbers in parenthesis

are the tick counts elapsed from the starting point in total.

From table 5.1, we can observe that, firstly, the draining model system is running

faster than the non-draining model system from the completion of the first drain to the

start of the second drain. Secondly, the draining model is running faster than the non-

draining model from the completion of 3rd draining to the start of 4th draining. Thirdly,

The draining model is running faster than the non-draining mdel after the completion

of the 4th draining until the end of the test program. This is not the same as expected
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draining timing behavior. Typically, after draining, the CPU need more cycles to load

the pipline before the first instruction reaches the commit stage, which will make it run

for longer time than a fully loaded CPU. However, in the test result shown in table 5.1,

within 3 in total 4 time period after draining point, the modified draining model is running

faster than the unmodified model. Due to limit of time, the reason for draining model

to be unexpectedly faster is not known. However, the difference between the runtime

of the modified draining model and unmodified model are not significant. Besides, the

draining is not happening frequently in the testbenches used in this project, therefore

such difference won’t affect the simulation result of this project significantly.

In the next section, we will demonstrate the simulation result for the four systems:

BLS, PDOS, PDOLOS and PPS.



35

CHAPTER 6

Simulation Result and Analysis

The simulation result comparison is shown in Figure 6.1. Figure 6.1a shows the run-

time of workloads with various locality running on different systems. Figure 6.1b shows

cycle per instruction of the workloads running on each system. Figure 6.1c shows the time

spent from burst creation until serviced by the DRAM in terms of number of ticks(1000

ticks equals to 1 ns).

(a) Runtime Comparison (b) CPI Comparison

(c) Latency Comparison

Figure 6.1. Comparison of Simulation Result Between Baseline system and
Dynamic PIM Offloading Systems
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From Figure 6.1a and Figure 6.1b, we can see that the baseline system BLS is only

running faster with high locality workload. While in other workloads either low locality,

high locality with data size larger than cache size and mixed locality, dynamic PIM system

PDOS is always having better performance over the baseline system BLS. For either LLOC

or HLE workloads, PDOLOS is having similar performance to PDOS. While for HLOC

workload, PDOLOS’s performance is similar to that of BLS which is only using host cpu.

When running mixed locality workload COMB, PDOLOS shows the highest performance

because it can utilize the larger CPU when all the data can fit in the caches and utilize

the higher memory bandwidths by switching to PIM mode whenever the data cannot fit

in the caches or shows low time locality.

In terms of the memory access latency, as shown in Figure 6.1c, systems with workload

offloaded always show better memory access latency. For LLOC, HLE and COMB, PDOS,

PDOLOS and PPS are having similar latency. Take COMB as an example, the memory

access latency on PDOS, PDOLOS, BLS and PPS are 19556.75, 19554.3, 42189.05 and

19475.47 ticks on average. BLS has the highest latency while PPS has the lowest. PDOS

and PDOLOS are having latency in between but very similar to that of PPS. This is

because PDOS and PDOLOS are using mix of host system and PIM system while the

majority of the memory access is dominated by the low locality workloads or the workloads

with high locality but large data size which cannot fit into the caches. Therefore the

memory accesses are dominated by PIM system memory accesses. However, for HLOC

workload, PDOS is still having latency between BLS and PPS but more similar to BLS.

This is because with the high locality workloads, the data could fit in not only host

system caches but also PIM system caches. Therefore, the memory accesses are no longer
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workload PDOS PDOLOS BLS PPS

LLOC 876710684 876710684 617674010 876751591

HLOC 56440 55993 55993 39831

HLE 547605901 547605901 406530306 547643437

COMB 558558003 595707272 452663448 558752052

Table 6.1. bandwidth utilization(bytes/s)

dominated by the offloaded workloads. For PDOS, the total number of access to the

offloaded workload data is significantly reduced compared to LLOC, HLE and COMB

while the host system memory access is not significantly reduced leading to larger portion

of the total memory accesses happening in the host system. Therefore the PDOS system

is having memory access latency similar to the BLS system.

Table 6.1 shows the bandwidth utilization of the DRAM for different workloads and

systems. It can be observed that the workload is having the largest influence on the

bandwidth utilization. For the same workload except for HLOC, PDOLOS always reveal

the highest bandwidth utilization which is also very similar to that of PPS. This is because

the PDOLOS can switch to PIM mode whenever the time locality is low and utilize the

higher bandwidth of the PIM system. However, for HLOC workload, PDOS is having the

highest bandwidth with PDOLOS very similar to it but PPS’s bandwidth is far less than

that, even lower than that of BLS. This is because the HLOC workload is no longer a

memory bounded workload with caches and the CPU speed would be the bottleneck of the

performance. The memory accesses in HLOC are not dominated by the offloaded portion

of the program because the data can fit in the caches in both host and PIM system.

However, the CPU in PPS is slower than the host CPU and cannot make memory request
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as fast as the host CPU in the workload portion which is not offloaded in PDOS. With

HLOC workload, PDOS is having the highest memory bandwidth because it also utilizes

the PIM memory hierarchy which is fast. However, the bandwidth of PDOS is not much

larger than that of BLS or PDOLOS because the memory accesses operations in HLOC

has higher time locality and majority of them don’t have to go to the memory. Thus, in

this case, the benefit of faster memory interface won’t have large influence.

Having the simulation result stated above, we can conclude that the PDOLOS design

can utilize faster host CPU when locality is high, and take advantage of higher memory

bandwidth available in PIM system when time locality is low. The proposed PDOLOS

design can have 41% speedup for LLOC workload, 35% speedup for HLE workload and

32% speedup for COMB against BLS system.
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CHAPTER 7

Conclusion and Future Work

In this project, we proposed a dynamic PIM offloading architecture which can send

the workload with high load/store to total operation ratio and low time data locality into

computing unit in memory which has faster access to the memory but slower processing

speed. We modified the Gem5 simulator to create the profiler which can identify the

loops in the workload having high load/store to total operation ratio and to simulate the

proposed architecture.

The simulation result shows that our proposed system can achieve upto 41% speedup

against the conventional architecture with two-level cached memory hierarchy.

The limitation and potential future works related to this project are listed below:

First, in the project, the PIM system only has one CPU. However, with the smaller size

of the PIM CPU, more than one CPUs could fit into the memory logic layer. Therefore

a potential future work could be to extend this design into multicore PIM system.

Second, in this project, we mainly focused on the hardware architecture, while we

didn’t discussed much about various workload with support of the compiler. For example,

the loops used in the simulation of this project are not including function calls inside.

In fact, this could be very prevalent in real-world tasks. Therefore, potential future

works could be to extend the simulation of the design with more diverse testbenches with

compiler support.
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Third, the simulation used in this project is not full system simulation. Future works

could be to extend the simulator to support full system simulation to acquire more accu-

rate simulation result.

Fourth, the simulation in this project is not using specific novel memory structures

such as HMC nor utilizing specific process library to support the simulation object timing

parameters. The parameters are set based on assumptions. Future works could be to

extend the simulator to have specific memory architecture such as HMC and real memory

controller timing parameter to acquire more accurate evaluation result.
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