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ABSTRACT

Investigating Earthquake Recurrence and Hazard Models

Leah Marschall Salditch

How well do Probabilistic Seismic Hazard Analysis (PSHA) maps forecast ground

shaking due to earthquakes? This question is central to ensuring the safety, security,

and economic well-being of citizens. PSHA maps are an important product for users

including seismologists, engineers, insurers, and policymakers. PSHA, which has been

used worldwide for almost 50 years, uses estimates of the probability of future earthquakes

and the resulting shaking to predict the shaking expected with a certain probability over

a given time (Cornell, 1968; Field, 2014). Extensive research is ongoing into how well

hazard maps perform relative to these expectations and how the maps can be improved.

This dissertation explores aspects of PSHA and its components – from the challenges

of modelling earthquake histories with temporal clusters, to the task of comparing model

predictions with observations of shaking intensity using performance metrics. The former

proposes an alternative to the traditional earthquake cycle model in which a fault’s past

influences its future likelihood of experiencing an earthquake. The latter takes advantage

of hindcasting – using past data to evaluate models which forecast the future. Ideally, we
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would compare hazard maps to data collected after the maps were made, however, due to

the long recurrence times of large earthquakes relative to post-map observation periods,

this is not typically feasible.

Part of this research involved collecting, compiling, and consistently interpreting 162

years of seismic intensity data in the California Historical Intensity Mapping Project

(CHIMP). Using CHIMP data and historical seismic intensity compilations from Italy,

France, and Nepal, I compared the maximum observed shaking in an area to that predicted

by PSHA models. Assuming the datasets to be correct, it appears that PSHA models

overpredict shaking, even correcting for the time period involved. Assuming the PSHA

models are correct, a shaking deficit exists between the model and observations. Possible

reasons for this apparent discrepancy between the model and observations are threefold:

1) the observations could be biased low; 2) the observation period has been less seismically

active than typical – either by random chance or temporal variability due to stress shadow

effects; 3) the model overpredicts, due to limitations of either the earthquake rupture

forecast or the ground motion models (GMMs).
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1.1. Introduction

In this thesis, I investigate earthquake recurrence and hazard models to identify weak-

nesses and potentially create improvements. I first propose an alternative to the tra-

ditional earthquake cycle model, which I call Long-Term Fault Memory (LTFM), that

allows a fault’s past earthquake history and present state of strain to influence its future

probability of an earthquake. This model was necessary because historical and paleoseis-

mic data show that earthquake histories are more complex than previous models could

accommodate. This thesis also assesses the performance of various PSHA models using

historical data. To do this, I compared earthquake hazard model predictions with ob-

servations of shaking intensity collected over hundreds of years, going back as far as the

historical record allows. The comparison indicates that there may be a systematic bias

either in the models or the observations. Assuming the data are without error and that

they represent long-term hazard, the hazard maps overpredict shaking. Assuming the

maps to be correct, there is a shaking deficit in the observed record.

1.2. Chapter 2: Earthquake Supercycles and Long-Term Fault Memory

Large earthquakes are known to occur in temporal clusters, also known as supercycles,

based on paleoseismic records. This implies that not all strain accumulated on a fault is

released in an earthquake, so strain can remain high, resulting in multiple earthquakes oc-

curring close in time to one another. This is a problem for the commonly used statistical

models of earthquake occurrence, which must assume that earthquakes occur indepen-

dently of one another. This independence is accomplished by asserting that all strain

built up in the inter-seismic period is completely released in each earthquake, so that the
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history of strain has no effect on future earthquakes. However, earthquake histories sug-

gest that some strain remains on a fault after an earthquake. The amount of remaining

strain depends on the complex distribution of stress in the earth’s crust and properties

of the specific source properties of an earthquake. The Long-Term Fault Memory model

successfully simulate paleo-earthquake records that exhibit temporal clusters, helping us

to understand the gross characteristics and behavior of faults in different tectonic regimes.

This chapter is published as Salditch, L., S. Stein, J. Neely, B.D. Spencer, E.M.

Brooks, A. Agnon, M. Liu (2020). Earthquake Supercycles and Long-Term Fault Memory,

Tectonophysics 774, 228289. doi: https://doi.org/10.1016/j.tecto.2019.228289.

1.3. Chapter 3: 1952 Kern County Earthquake

In chapter 3, I investigate the distribution of seismic intensity observations from the

1952 Kern County, California earthquake. I reinterpret these observations using the lat-

est interpretation standards, which have changed since the observations were originally

collected and assigned values. Using these intensity assignments and established Intensity

Prediction Equations (IPEs), I compare the distribution of seismic intensity with distance

from the White Wolf Fault, which ruptured in this earthquake. Inverting for the magni-

tude of the earthquake independently of instrumental data, which was of poor quality at

the time, yields an estimate of MW 7.2 ± 0.2, on the lower end of previous magnitude

estimates.

This chapter is published as Salditch, L., S. E. Hough, S. Stein, B. D. Spencer, E.

M. Brooks, J. S. Neely, and M. C. Lucas (2018). The 1952 Kern County, California

earthquake: A case study of issues in the analysis of historical intensity data for estimation
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of source parameters, Physics of the Earth and Planetary Interiors, 283, 140-151, doi:

10.1016/j.pepi.2018.08.007.

1.4. Chapter 4: California Historical Intensity Mapping Project (CHIMP)

Building off of the Kern County investigation, Chapter 4 details the ambitious Califor-

nia Historical Intensity Mapping Project (CHIMP). CHIMP is a dataset of reinterpreted

seismic intensity observations from 62 of the largest earthquakes in California from 1857

to 2019. CHIMP brings together intensity information from disparate and often hard

to access compilations. The result is a consistently reinterpreted history of shaking in

California. I compare the maximum observed intensities with shaking levels predicted by

the USGS 2018 seismic hazard maps using performance metrics developed by Stein et al.,

2015. The primary metric is the fractional exceedance metric, M0, which is implicit in

PSHA. I also use the M1 metric, which is akin to a visual comparison. The results show

a discrepancy indicating either that the hazard map overpredicts shaking or that there is

a shaking deficit in CHIMP.

This chapter is published as Salditch, L., M. M. Gallahue, M. C. Lucas, J. S. Neely, S.

E. Hough, and S. Stein (2020). California Historical Intensity Mapping Project (CHIMP):

A Consistently Reinterpreted Dataset of Seismic Intensities for the Past 162 Yr and

Implications for Seismic Hazard Maps, Seismological Research Letters 91(5), 1 20, doi:

10.1785/0220200065.

1.5. Chapter 5: Comparing Maps

Performance metrics are useful because they allow direct comparisons to be made

between maps of the same region. This is necessary because plausible alternative input



18

parameters and geologic assumptions, based on the limited available data, can produce

quite different maps. This chapter examines the performance of alternative maps by

looking at two examples. In Nepal, differences in seismic source and ground-motion

models impact the predicted hazard in a high seismicity region. In France, I investigate

the difference between characterizing the hazard using the mean or median of the models.

The results indicate that the median may be a better indicator of map performance than

the mean, which has important implications for hazard assessment.

1.6. Chapter 6: Conclusion

Chapter 6 summarizes the results of hazard map performance assessments to date.

Looking at regions from a variety of tectonic settings (Nepal, France, Japan, Italy, and

intraplate and plate boundary zones of the U.S.A.), we find a consistent bias between

the hazard map predictions and the historical observations of shaking. Theoretically,

the longer the observation time is relative to the map return period, the better a map

should predict observed exceedance levels. However, my results do not show this. In

fact, the best performing hazard maps, the 2016 and 2017 1-year forecasts of natural and

induced seismicity in the Central and Eastern United States, are the shortest in terms of

observation period and map return period. The cause of this bias remains unclear, but

has important implications for the future of earthquake hazard assessments.
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CHAPTER 2

Earthquake Supercycles and Long-Term Fault Memory
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2.1. Summary

Long records often show large earthquakes occurring in supercycles, sequences of tem-

poral clusters of seismicity, cumulative displacement, and cumulative strain release sepa-

rated by intervals of lower levels of these measures. Supercycles and associated earthquake

clusters are challenging to characterize via the traditionally used aperiodicity, which mea-

sures the extent that a sequence differs from perfectly periodic. Supercycles are not well

described by commonly used models of earthquake recurrence. In the Poisson model, the

probability of a large earthquake is constant with time, so the fault has no memory. In

a seismic cycle/renewal model, the probability is quasi-periodic, dropping to zero after

a large earthquake, then increasing with time, so the probability of a large earthquake

depends only on the time since the past one, and the fault has only “short-term mem-

ory.” We describe supercycles with a Long-Term Fault Memory (LTFM) model, where

the probability of a large earthquake reflects the accumulated strain rather than elapsed

time. The probability increases with accumulated strain (and time) until an earthquake

happens, after which it decreases, but not necessarily to zero. Hence, the probability of

an earthquake can depend on the earthquake history over multiple prior cycles. We use

LTFM to simulate paleoseismic records from plate boundaries and intraplate areas. Simu-

lations suggest that over timescales corresponding to the duration of paleoseismic records,

the distribution of earthquake recurrence times can appear strongly periodic, weakly peri-

odic, Poissonian, or bursty. Thus, a given paleoseismic window may not capture long-term

trends in seismicity. This effect is significant for earthquake hazard assessment because

whether an earthquake history is assumed to contain clusters can be more important than

the probability density function chosen to describe the recurrence times. In such cases,
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probability estimates of the next earthquake will depend crucially on whether the cluster

is treated as ongoing or over.

2.2. Introduction

Since the 1906 San Francisco earthquake, the dominant paradigm in earthquake seis-

mology has been the earthquake cycle, in which strain accumulates between large earth-

quakes due to interseismic motion between the two sides of a locked fault and is released

by coseismic slip on the fault when an earthquake occurs (Reid, 1910). Over time, this

process should give rise to approximately periodic earthquakes and a steady accumula-

tion of cumulative displacement (Figure 2.1a). The fact that earthquake sequences are

only approximately periodic prompted a refinement of the model with“time-predictable”

recurrence in which a specific strain level must accumulate for an earthquake, but the

strain release in the earthquake is variable (Shimazaki and Nakata, 1980).

However, long earthquake records often show more complex behavior (Figure 2.1b).

Wallace (1987) found that faults and groups of faults in the Western U.S.’s Great Basin

often showed “grouping, a series of displacement events, each being followed by a period

of quiescence. Slip rates during a group of events along a segment of fault, thus, could be

considerably greater than the long-term average slip rate. During quiescent periods, the

slip rate would be lower than the average rate and might even be zero... Additionally, if

grouping is real, the concept that accumulated elastic strain is released at some regular

interval by a single displacement event in a seismic cycle should be reexamined. Perhaps

strain that has accumulated at a more or less constant rate is released in a stuttering,

spasmodic manner in a group of displacement events.” Subsequent investigation (Friedrich
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Figure 2.1. Schematic comparison of the histories of earthquake ocurrence,
cumulative displacement, and cumulative strain for a fault without super-
cycles (a) and a fault with supercycles (b). Adapted from Wallace (1987)
and Friedrich et al. (2003).

et al., 2003) supported this analysis, finding that “seismic strain release may be clustered

on the 10-kyr timescale... with comparatively low, uniform strain accumulation rates on

the 100-kyr timescale.” They suggested calling the conventional earthquake cycles “Reid-

type” behavior and the longer period variations “Wallace-type” behavior.
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Wallace (1987) further noted that if this behavior is “common, as these preliminary

analyses suggest, care must be exercised in evaluating seismic hazard potentials. It is

crucial to determine the timing and distribution of individual faulting events because long-

term average slip rates may give grossly incorrect assessments of the hazard potential.”

For example, the estimated probability of a future large earthquake can depend crucially

on whether a cluster is treated as ongoing or over.

Such variations in earthquake behavior on timescales longer than individual cycles are

often termed “supercycles,” following Sieh et al.’s (2008) observation from corals near the

Sumatra trench that “because each of the three past episodes of emergence consists of

two or more discrete events, we refer to the broad periods of strain accumulation and

relief as supercycles rather than merely cycles” and Goldfinger et al.’s (2013) analysis

showing that large Cascadia subduction zone earthquakes reflect “strain supercycles that

transcend individual seismic cycling.”

Conceptually, the history of strain accumulation and release is the underlying process

that gives rise to patterns in the resulting earthquakes and cumulative displacement. In

the schematic example of Figure 2.1b, supercycles appear as patterns longer than individ-

ual earthquake cycles in the earthquake history, cumulative displacement, and cumulative

strain records. The fullest picture is given by the strain record. This infers the strain by

combining data about strain release via slip in earthquakes over time with the interseismic

strain accumulation inferred from the slip between earthquakes taken from present-day

geodetic, long-term geological, or other data. The cumulative displacement record shows

the dates of earthquakes and the coseismic slip in each, whereas the earthquake history

gives only the dates. The displacement record can be viewed as the time derivative of
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the strain record, and the earthquake history can be viewed as the time derivative of the

displacement record, with each differentiation involving a loss of information. Conversely,

constructing a displacement record requires supplementing an earthquake history with

coseismic slip data, and constructing the strain record then involves also including data

or assumptions about the interseismic strain accumulation. Hence the earthquake his-

tory has the least uncertainty, and the displacement and strain records have progressively

larger uncertainties.

Supercycles are difficult to define precisely. One approach is to use major minima

in the cumulative strain, which often mark the beginning of intervals during which few

large earthquakes and hence little cumulative slip occurs. However, identifying major

minima is often challenging and non-unique, especially given the assumptions needed to

construct a strain history. Moreover, because data about interseismic strain accumulation

and the slip in individual earthquakes are often unavailable, supercycles most often are

inferred from an earthquake history that shows temporal clusters of seismicity, separated

by intervals of lower seismicity or gaps without large earthquakes.

In this paper we use the term “supercycles” broadly, to describe long-term variability

shown by aspects of the earthquake record that are difficult to reconcile with commonly

used models of earthquake recurrence. The observation of supercycles, especially at plate

boundaries and in plate boundary zones, is intriguing because plate boundaries are being

loaded by steady plate motion.

We first review some proposed examples of supercycles on various faults, and show

that these arise in the full range of tectonic environments - at plate boundaries, within

plate boundary zones, and in plate interiors. We discuss the fact that supercycles and the
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sometimes-resulting earthquake clusters are not described by commonly used models of

earthquake recurrence. We then introduce a model of Long-Term Fault Memory (LTFM),

in which the probability of a large earthquake reflects the accumulated strain, and use

it to explore many aspects of supercycles. Finally, we discuss the challenges supercycles

pose for earthquake hazard assessment.

2.3. Examples of Supercycles

Supercycles and/or clustering have been observed in many tectonic environments (Fig-

ure 2.2). The best data come from earthquake histories at plate boundaries, because the

relatively rapid plate motion (typically < 5 mm/yr) gives shorter and hence easier-to-

observe cycles. In some cases, the slip and strain history also show evidence for supercy-

cles.

Weldon et al. (2004) used the dates and offset in paleoearthquakes since 500 CE across

the San Andreas fault near Wrightwood, California, together with the interseismic slip

rate observed from present-day geodesy and long-term geological rates, to reconstruct

the history of strain accumulation and release (Figure 2.2a). They argue that “it is

hard to escape the conclusion that strain accumulated over many earthquake cycles was

responsible for the flurry of large slip events.” Nearby, at Pallett Creek, Sieh et al. (1989)

find that paleoearthquakes occurred in clusters within which they were “separated by

periods of several decades, but the clusters are separated by dormant periods of two to

three centuries.” To the south, where the San Jacinto fault takes up some of the motion

between the Pacific and North America plates, Rockwell et al. (2015) find that “for much

of the past 4,000 years the fault ruptured in a quasi-periodic fashion. In the past 1,000
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Figure 2.2. Examples of reported supercycles. a) Strain accumulation and
release inferred from paleoseismic data across the San Andreas fault (Wel-
don et al., 2004). b) Supercycles on the Sumatra megathrust inferred from
corals (Sieh et al., 2008). c) Long-term energy cycling inferred from tur-
bidites on the Cascadia megathrust (Goldfinger et al., 2013). d) Schematic
earthquake history for the Japan Trench off Tohoku (Satake, 2015). e)
Earthquake history on the Dead Sea transform (Agnon, 2014). f) Schematic
earthquake history for faults and groups of faults in the Western U.S.’s
Great Basin (Wallace, 1987). g) Schematic earthquake history for faults in
Australia (Clark et al., 2012).
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years, in contrast, a flurry or cluster of four earthquakes occurred in a 150-year period,

and the overall recurrence interval is much shorter.”

Sieh et al. (2008) analyzed relative sea level changes recorded by corals from Suma-

tra, which show interseismic subsidence and coseismic uplift (Figure 2.2b). They infer

that “this 700-kilometer-long section of the Sunda megathrust has generated broadly sim-

ilar sequences of great earthquakes about every two centuries for at least the past 700

years... Because each of the three past episodes of emergence consists of two or more dis-

crete events, we refer to the broad periods of strain accumulation and relief as supercycles

rather than merely cycles.” To the north along the subduction zone, Rubin et al. (2017)

studied a 4500 year sequence of at least 11 tsunami deposits and find that “the aver-

age time period between tsunamis is about 450 years with intervals ranging from a long,

dormant period of over 2,000 years, to multiple tsunamis within the span of a century...

these variable recurrence intervals suggest that long dormant periods may follow Sunda

megathrust ruptures as large as that of the 2004 Indian Ocean tsunami.”

The dates and volumes of turbidite deposits, assumed to have been generated by great

earthquakes on the Cascadia megathrust (Adams, 1990), show evidence for supercycles.

Using these to infer the history of strain energy accumulation and release (Figure 2.2c),

Goldfinger et al. (2013) find that “the resulting sawtooth pattern reveals what we in-

terpret as a complex pattern of long-term energy cycling on the Cascadia megathrust...

Overall, what is suggested by this pattern is that some events release less energy, whereas

others release more energy than available from plate convergence (slip deficit) and may

have borrowed stored energy from previous cycles”. Although an additional event has

been identified (Goldfinger et al., 2017), the inferred strain energy history would not be
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substantially altered. Kelsey et al.’s (2005) analysis of coastal deposits that record local

tsunamis and seismic shaking finds that “over the 4600 yr period when Bradley Lake was

an optimum tsunami recorder, tsunamis from Cascadia plate-boundary earthquakes came

in clusters.”

A somewhat different style of supercycles has been proposed for the Japan Trench off

Tohoku (Figure 2d). Satake (2015) proposed that “The 2011 Tohoku earthquake source

includes the Miyagi-oki region, where M ∼ 7.5 earthquakes repeated with average interval

of 37 years. The typical slip of such large earthquakes is approximately 2 m, meaning that

the cumulative coseismic slip is about 6 m per century. Because the subduction rate of the

Pacific plate is approximately 8 m per century, 2 m slips may remain unreleased. Such a

difference was previously interpreted as aseismic slip, but can be accumulated at the plate

interface and cause a large coseismic slip of approximately 15 m with a recurrence interval

of approximately 700 years... Such [a] supercycle model can explain the unusually large

slip of the 2011 Tohoku earthquake. The term “supercycle” was first used for a seismic

cycle consisting of a series of large events, but often used for long-term cycle imposed on

shorter cycles (‘superimposed cycle’).”

The Sumatra and Tohoku records have interesting similarities and differences. In

both, supercycles reflect infrequent events that have slip much greater than typical events.

However, the Sumatra earthquake history has long gaps separating clusters, whereas for

Tohoku smaller earthquakes occur frequently between the largest events, so the supercy-

cles in the strain record do not appear in the earthquake history as gaps and clusters. It
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is worth noting that a Sumatra-type record could result if the detection limit in a pale-

oseismic record is too high to record the smaller events, or a Tohoku-type record could

result if the recent rate of smaller events could not be extrapolated into the past.

In other areas, supercycles have been inferred from the earthquake history, even though

the strain history requires data on the slip in individual events. Agnon’s (2014) analysis

of a long record of seismites, sediment records of earthquake shaking (Marco et al., 1996),

along the Dead Sea Transform in Israel (Figure 2.2e) finds “a pattern of long quiescence

periods between quasi-periodic clusters. During each cluster of seismicity the recurrence

interval is quite uniform, varying among clusters between 200 and 1,400 years. Quiescence

periods may linger 3-10,000 years.” Further north on this transform, Wechsler et al.

(2014) find that “the interevent time of surface-rupturing earthquakes varies by a factor

of two to four during the past 2 ka at our site, and the fault?s behavior is not time

predictable.”

Supercycles and/or clustering have also been identified in plate boundary zones, where

diffuse deformation is spread over multiple faults with long-term slip rates typically slower

than on the primary plate boundary faults, and in continental interiors, which typically

deform at < 1 mm/yr. As noted earlier, paleoseismic data from faults and groups of

faults in the Western U.S.’s Great Basin (Wallace, 1987), part of the broad boundary

zone that accommodates motion between the Pacific and North American plates, often

show “clustered strain release and uniform, low strain accumulation” (Friedrich et al.,

2003), shown schematically in Figure 2.2f.

Topographic data within the Australian plate, where erosion is very slow, provide

some of the best evidence available of how continental intraplate faults slip over time,
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shown schematically in Figure 2.2g. Clark et al. (2012) found that “a common character-

istic of morphogenic earthquake occurrence in Australia appears to be temporal clustering.

Periods of earthquake activity comprising a finite number of large events are separated by

much longer periods of seismic quiescence, at the scale of a single fault and of proximal

faults. In several instances there is evidence for deformation at scales of several hundred

kilometers switching on and off over the last several million years.” As result, “assigning

an ‘active/inactive’ label to a fault in a slowly deforming area based upon the occurrence

(or non-occurrence) of an event in the last few thousands to tens of thousands of years is

not a useful indicator of future seismic potential” (Clark et al., 2011) and “it is debatable

whether a ‘recurrence interval’ on individual faults applies” (Clark, 2003).

These examples illustrate that long-term variability in earthquake behavior is a com-

mon effect, although the specifics vary between different areas. Hence in this paper, we

take the view that observations of clustering likely reflect supercycles.

2.4. Earthquake recurrence models

The most easily studied aspect of supercycles is that they often - but need not always

- cause variability in earthquake recurrence interval times, notably temporal clusters (Fig-

ure 2.3), which have important consequences for hazard estimation. As a result, many

studies focus on possible clusters in a fault’s earthquake history and their implications for

the recurrence of future large earthquakes.

Neither of the commonly used classes of models for the recurrence of large earthquakes

(Stein and Wysession, 2009) includes the possible effect of supercycles. The models are

posed in terms of the conditional probability of an earthquake in a time period, based
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on a conceptual model of earthquake recurrence. The parameters for an area are inferred

from its history of large earthquakes and the rate of smaller earthquakes. The models do

not predict actual event timing, due to their stochastic nature.

One model treats earthquake occurrence as a Poisson process, in which the probability

of a large earthquake is constant with time (Figure 2.3a). This probability depends on

the mean recurrence interval µ, such that the probability of at least one event in a time

interval t that is short compared to µ is t/µ. In this model the occurrence of a large

earthquake does not reduce the probability of another. Hence the fault has no “memory,”

the dates of previous earthquakes have no effect on when the next will occur, and any

clusters resulting from short intervals between events arise purely by chance. As the

earthquake record’s length increases, the standard deviation of the recurrence intervals

approaches the mean. Equality of the mean and standard deviation of inter-event times

is a property of a Poisson process, but - as shown later in the paper - other stochastic

processes can also have this property.

Because the Poisson model is the simplest recurrence model, it is traditionally used in

earthquake hazard modeling and provides a null hypothesis against which other models

can be tested (Rundle and Jackson, 1977; Smalley et al., 1987; Kagan and Jackson, 1991;

Michael, 1997; Biasi et al., 2002).

An alternative class of probability models is based on the concept of an earthquake cy-

cle (Figure 2.1), in which strain accumulates between large earthquakes and is completely

released when one occurs (Reid, 1910; Savage and Burford, 1973; Sykes and Nishenko,

1984; Matthews et al., 2002; Field et al., 2015). In these models, the probability of a large

earthquake increases with time until one occurs, at which point the probability drops to
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Figure 2.3. Comparison of earthquake recurrence models. a) Poisson pro-
cess, in which the probability of a large earthquake is constant with time,
so the fault has no memory and any clusters resulting from short intervals
between events arise purely by chance. b) Earthquake cycle, in which the
probability of a large earthquake increases with time until one occurs, at
which point the probability drops to zero. The fault has only “short-term
memory” because the probability of a large earthquake depends only on
the time since the past one. c) Modified earthquake cycle in which after an
earthquake the probability decreases, but not necessarily to zero. The fault
has ”long-term memory” because the probability depends on the earthquake
history over previous cycles.
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zero and the cycle begins again (Figure 2.3b). This assumption corresponds to the fault

releasing all the strain accumulated on it in each cycle, so strain would not accumulate

on timescales longer than individual cycles.

The length of time between earthquakes is described by one of a number of probability

distributions (Gaussian, lognormal, Weibull, Brownian passage, etc.) for the recurrence

times. The fault “remembers” only the last event, when the probability was renewed

- reset to zero - so recurrence times in successive cycles are independent. Because the

probability of a large earthquake depends only on the time since the past one, the fault has

only “short-term memory.” Renewal models are increasingly used in earthquake hazard

analysis (WGCEP, 2003). The probability distributions describing the recurrence intervals

are peaked around the average expected interval, so much longer or shorter intervals are

rare, and earthquakes should occur quasi-periodically rather than in clusters. Thus as

an earthquake record length increases, the standard deviation of the observed recurrence

times should become small relative to their mean.

Hence clusters in an earthquake record could have various causes, each of which is

likely to apply in some cases. First, they could be apparent clusters, artifacts of the limits

of the paleoseismic record such as missing events or errors in earthquake dating (Weldon et

al., 2005; Akciz et al., 2010). Second, if recurrence is described by Poisson or earthquake

cycle models, clusters could result by chance when short recurrence intervals arise. Third,

clusters could result from interactions between nearby faults or fault segments (Ward,

1992; Goes, 1996; Rundle et al., 2006; Dolan et al., 2016).

However, the fact that strain accumulation and/or clusters are observed on many fault

systems has led to proposals that they are, at least in part, a real effect due to intrinsic
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properties of the faulting process (Ben-Zion et al., 1999). Hence in this paper, we take

the view that observations of clustering likely reflect supercycles. We thus explore the

possibility that faults have “long-term memory,” such that the occurrence of large earth-

quakes depends on earthquake history over multiple previous earthquake cycles (Figure

2.3c).

Faults having long-term memory would have important consequences. Weldon et al.

(2004) point out that “resetting of the clock during each earthquake not only is concep-

tually important but also forms the practical basis for all earthquake forecasting because

earthquake recurrence is statistically modeled as a renewal process (Cornell and Winter-

stein, 1988). In a renewal process, intervals between earthquakes must be unrelated so their

variability can be expressed by (and conditional probabilities calculated from) independent

random variables. Thus, if the next earthquake depends upon the strain history prior to

that earthquake cycle, both our understanding of Earth and our forecasts of earthquake

hazard must be modified... there can be little doubt that the simple renewal model of an

elastic rebound driven seismic cycle will need to be expanded to accommodate variations

that span multiple seismic cycles.”

2.5. Characterizing Earthquake Sequences

2.5.1. Aperiodicity

In discussing long-term fault memory, it is useful to consider how earthquake sequences

are characterized. A common characterization uses the aperiodicity, which measures the

extent that a sequence differs from perfectly periodic. Aperiodicity, also termed the

coefficient of variation (CV), is defined by α = σ/µ where µ is the mean of the recurrence
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intervals (interevent times) and σ is their standard deviation (Kagan and Jackson, 1991;

Goes, 1996; Vere-Jones 1970). An aperiodicity of zero corresponds to a perfectly periodic

sequence, because σ = 0. An aperiodicity of one could correspond to a sequence produced

by an ideal Poisson process with σ = µ but could also arise from other stochastic processes

α > 1 corresponds to a “bursty” sequence that is so strongly clustered that σ > µ.

Because the entire range between perfectly periodic and perfectly Poissonian is termed

“quasiperiodic,” we divide it into the portion with α < 0.5 as “strongly periodic” or

“weakly aperiodic” - closer to purely periodic than purely Poissonian - and that with

1 > α > 0.5 as “weakly periodic” or “strongly aperiodic” - closer to purely Poissonian than

purely periodic (Figure 4). Although sequences with α > 1 are often termed “clustered,”

we use the term “bursty” because sequences with α < 1 can be quite clustered, as discussed

shortly.

A related characterization uses the burstiness parameter

B = (α− 1)/(α + 1) = (σ − µ)/(σ + µ) (Goh and Barabasi, 2008). An ideal periodic

sequence has B = −1, a perfectly Poisson sequence has B = 0, and bursty sequences have

0 < B < 1. Goh and Barabasi (2008) also characterize sequences by a memory parameter,

M = 1
(N−1)

∑N−1
i=1 (τi−µ1)(τi+1−µ2)/σ1σ2 where N is the number of recurrence intervals

τi , µ1 and σ1 are the mean and standard deviations of τi (i = 1, 2, ..., N − 1), and µ2 and

σ2 are the mean and standard deviations of τi+1 (i = 1, 2, ..., N − 1). M ranges from -1

to 1, with M > 0 when short interevent times are generally followed by short ones, and

long interevent times are generally followed by long ones. M < 0 when short interevent

times are generally followed by long ones, and vice versa. These arise because M is a
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normalized form of the autocorrelation of lag one, i.e. the crosscorrelation between the

series of interevent times and that series shifted by one.

Figure 2.4 shows the aperiodicities for the earthquake sequences in Figure 2.2. The

Wrightwood and Cascadia (Figures 2.2a and 2.2c) sequences have α = 0.47 and 0.51, so

the time series alone do not indicate the supercycle behavior shown by the strain records.

In contrast, the Sumatra and Dead Sea transform (Figures 2.2b and 2.2e) sequences have

α = 1.05 and 1.6, indicating the supercycle behavior. The Great Basin and Australia

sequences (Figures 2.2f and 2.2g) were described schematically without specific dates, so

the aperiodicity illustrated is also schematic. Also shown is the global result from Goes

(1996), who compiled 52 earthquake sequences from the San Andreas fault and the Middle

America, Alaska, Chile, and Japan trenches. She found aperiodicities varying from 0.0

to 1.7, with “a large average aperiodicity” of 0.72± 0.36 that she interpreted as showing

that earthquake recurrence is more irregular “than often assumed in hazard analysis.”

These examples illustrate some of the issues in using aperiodicity to characterize se-

quences:

i) Sequences with the same aperiodicity can be quite different. Because the aperiodic-

ity depends only on the mean and standard deviation of the interevent times, it does not

depend on the order of events. Thus quite different sequences can have the same aperiod-

icity (Cowie et al., 2012). Figure 5a shows a sequence of paleoearthquakes composed of

clusters of events several decades apart, separated by gaps of two to three centuries. The

sequence has α = 0.79, showing strong aperiodicity. Grouping the short-interval events

together (Figure 2.5b) does not change α, but we would probably view the sequence as



37

Figure 2.4. Illustration of characterizing earthquake sequences by their ape-
riodicity, which measures the extent that a sequence differs from perfectly
periodic. α = 1 is expected for an ideal Poisson process, but can arise
from other stochastic processes. Values are shown for examples in Figure
2.2. Solid bars show sequences with dates and dashed bars show schematic
sequences with approximate aperiodicites. Also shown is the result from
Goes’ (1996) global compilation.

showing a change from longer recurrence times in the past to more recent short recur-

rence times. The memory parameter illustrates the difference, in that the more clustered

sequence has a negative value, M = −0.28, whereas the grouped sequence has M = 0.70.

This difference between the two sequences can also be seen in the interevent time plots

shown to the right of each sequence. In these, major gaps appear as interevent times

longer than the mean, which is shown by a horizontal line. In the first sequence, short

and long intervals generally alternate, giving clusters and negative values of M. In the

second sequence, short and long intervals are grouped, giving a positive memory.

ii) Sequences with “quasiperiodic” aperiodicity can be quite clustered. Earthquake

sequences that we would consider clustered can fall below the nominal burstiness criterion

of α > 1. Figure 2.6b shows that lengthening the three major gaps in Figure 2.6a by 100

years increases the aperiodicity from 0.79 to 0.92, making the clustering stronger and the
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Figure 2.5. Comparison of two sequences with the same aperiodicity. a)
Sequence with strong aperiodicity (α = 0.79) showing clustering. (b) Same
sequence with the short-interval events grouped together, which does not
show clustering.

weak periodicity even weaker. Lengthening the gaps by 300 years (Figure 2.6c) increases

the aperiodicity to 1.08. In all three panels we assume that observations begin at the

earliest observed event (at the right side of the time axis showing years before present),

so no gap is observed prior to the earliest event. This example illustrates that a sequence

must be very strongly clustered to be bursty.

iii) Sequences with aperiodicity close to 1 need not result from a Poisson process. Earth-

quake records with aperiodicity close to 1 could resemble those that would be generated

by a Poisson process. However, other stochastic processes, including the Long-Term Fault

Memory process discussed later in this paper, can also generate earthquake records with

interevent times whose mean and standard deviation are similar. Hence given the evidence

in some areas of an underlying process involving strain supercycles, we think it useful to
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Figure 2.6. Illustration of the fact that “quasiperiodic” (α < 1) sequences
can be quite clustered. a) Initial sequence with α = 0.79. b) Same sequence
with major gaps lengthened by 100 years, raising aperiodicity to α = 0.92.
c) Same sequence with major gaps lengthened by 300 years, raising aperi-
odicity further to α = 1.08. Only c) has aperiodicity above the nominal
burstiness criterion of α > 1.

consider such sequences as clustered in many senses. In particular, considering clustering

in such cases means that estimates of the probability that the next earthquake will occur

within a given time window will depend crucially on whether the cluster is treated as

ongoing or over.

iv) Aperiodicity can vary within an earthquake record. In particular, it is likely to

be underestimated by short records. Because a short record is likely to contain events



40

with recurrence times shorter than the mean of a longer record, shorter sequences un-

derestimate aperiodicity (Ellsworth et al., 1999; Mucciarelli, 2007). This effect is seen

in both synthetic catalogs (Ward, 1992) and earthquake records (Goes, 1996). Parsons

(2008a) used Monte Carlo simulations to estimate the parameters of a parent distribution

of recurrence times most likely to yield an observed time series. For example, an observed

1800-year-long earthquake record on the South Hayward fault with mean recurrence of

180 years and aperiodicity 0.48 is most likely to have arisen from a parent distribution

with mean recurrence of 210 years and aperiodicity 0.6 (Parsons, 2008b).

2.5.2. Cluster Analysis

Another way to characterize earthquake sequences is through clustering. The statistical

literature provides several criteria for defining a cluster and how many exist in a sequence.

Categorizing clusters could facilitate definition of a supercycle, for example one cluster

plus one gap. Hence we briefly review different clustering methods which either assign

events to a cluster or choose the number of clusters. Clustering algorithms are broadly

classified as either partitioning or hierarchical. To illustrate, we use Sieh et al.’s (1989)

record from Pallett Creek, California (Figure 2.7a).

Partitioning methods such as the popular k−means algorithm are used to divide a

sequence of observations, forming a given number of clusters, k, each observation assigned

to one cluster. Other methods, discussed later, are used to determine the number of

clusters for a given sequence. In our application, the observations in a sequence are the

dates, in years, of n earthquakes in an earthquake record and the clusters are defined

as time intervals encompassing the range of dates. In the Pallett Creek record, n = 10.
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Figure 2.7. Results of different methods to determine the number of clusters
in a) Pallett Creek record of Sieh et al., 1989, with event order corresponding
to the figure in part e). b) Elbow method where number of clusters is the
largest k before increasing k creates only minor improvements of TWSS. c)
Silhouette method where maximum value indicates number of clusters. d)
Gap statistic method where maximum value indicates number of clusters. e)
Hierarchical clustering method using agglomerative nesting (AGNES) with
Ward’s method; vertical axis shows the cumulative length of time between
cluster centers being merged at each step.

A k−means algorithm starts by guessing k cluster centers, which are averages of dates.

The process then alternates two steps: 1) The closest cluster center is identified for each

observation, measured by time in years between earthquakes and cluster centers, and

the observation is assigned to that cluster. 2) Each cluster center is recalculated as the

average date of its members (Hastie et al., 2009). This process repeats until it minimizes

the sum or total within-cluster sum of squares (TWSS) of distances from cluster centers,
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i.e., it minimizes the sum of within-cluster variances of clusters i = 1, ..., k multiplied by

the number of observations in that cluster, ni (Hartigan, 2006). Commonly, this analysis

is performed for a range of k and different aspects of the resulting cluster assignments

are assessed to determine the number of clusters. The choice of k will strike a balance

between too many clusters and not enough. The methods for choosing k do not always

agree, as discussed next.

Some methods, such as the Elbow method, examine the graph of TWSS versus k

(Figure 2.7b) and choose the value of k corresponding to a kink in the plot resembling

a bent elbow (Tibshirani et al., 2001). Increasing k beyond this value conveys a lesser

reduction in TWSS. By this method, Pallett Creek has 4 clusters. The Silhouette method

compares the tightness (length of clusters) and separation (distance between clusters)

to determine whether the cluster lengths are small compared to the distances between-

clusters (Rousseeuw, 1987). Each observation receives a silhouette value, ranging from

-1 to +1, indicating the extent to which the observation is well matched to its assigned

cluster and poorly matched to the others. The number of clusters k is chosen to maximize

the average values for all observations; again k = 4 for Pallett Creek (Figure 7c). The Gap

method plots two curves that are functions of k, the logarithm of TWSS and its expected

value under a uniform distribution of earthquake dates within the record (Tibshirani et

al., 2001). The Gap statistic is the distance (gap) between the curves. The chosen value

for k has the maximum Gap statistic, which again is k = 4 (Figure 2.7d).

Hierarchical methods do not rely on advance specification of the number of clusters,

k, but rather create clusters for all k = 1, ..., n possibilities. This process is illustrated

by dendrogram plots (tree diagrams), showing the order in which different clusters are



43

merged through connecting branches (Figure 2.7e). The vertical axis shows the cumulative

difference in dates (in years) between cluster centers being merged. Hierarchical methods

are of two kinds: 1) Divisive, in which all observations start in a single cluster, k = 1, and

are iteratively separated until k = n. 2) Agglomerative nesting (termed AGNES), in which

all observations start in their own cluster (k = n), with the closest clusters (defined here

by years between cluster centers) iteratively joined until k = 1 (Kaufman and Rousseeuw,

1990). AGNES may be better at identifying small clusters, while divisive methods may

be better at identifying large clusters, although this choice makes no difference for our

example. A popular AGNES algorithm, Ward’s (1963) method, minimizes the within-

cluster sum of squares using an update formula which assigns a new cluster’s height on

the vertical axis as the cumulative distance between the cluster centers being merged at

that step and each step below it (Murtagh and Legendre, 2014). We show Ward’s method

because it is intended for interval-scaled data such as the dates of earthquakes (Kaufman

and Rousseeuw,1990). Figure 2.7e shows the tree resulting from applying Ward’s method

to Pallett Creek. Clusters that merge at high levels on the vertical axis (indicating large

distances between cluster centers being merged at that step) relative to the level of the

clusters within them can be interpreted as a ‘natural’ number of clusters (Hastie et al.,

2009). This determination is subjective, so in this example one could reasonably choose

2 or 4 clusters (Figure 2.7e). The four clusters [1,2,3],[4,5,6],[7,8],[9,10] are the same as

obtained from k-means with k = 4.

Goldfinger’s (2012) hierarchical clustering analysis on the 10,000-year-long Cascadia

earthquake record found either four or five clusters, using AGNES with complete linkage

(furthest neighbor) method. Furthest neighbor defines the distance between two clusters
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as the distance between two observations, one in each cluster, that are farthest away

from one another (Tibrishani et al., 2001b). The two clusters with the shortest distance

between them are merged at each step. Applying the complete linkage method to the

Pallett Creek record yields the same tree as shown in Figure 2.7e using Ward’s method.

Goldfinger performed several tests of the statistical significance of the clusters with most

resulting in a rejection of an underlying Poisson distribution. He cautions, however, “there

is no requirement that physical systems pass statistical tests” (Goldfinger et al., 2012).

Hierarchical methods are complementary to partitioning methods such as k-means.

For example, one can use the cluster centers from Ward’s method as the initial cluster

centers in k -means. As discussed above, results from k−means for chosen k can be

compared to the results of AGNES. Our results are moderately robust to slight changes

in dates, as illustrated by comparing the slightly differing dates of Pallett Creek from

Sieh et al. (1989), Biasi et al. (2002), and Scharer et al. (2011). The tree diagrams are

the same, because they largely reflect only the events’ order. Differences in the k-means

evaluations are shown in Table 1. The Gap statistic for Scharer et al.’s dates yields 1

cluster, and the next best number is 4, with the difference between their statistics being

quite small compared to the differences between other numbers of clusters. A similar

situation occurs in the silhouette for the Sieh et al. dates (Figure 2.7c) where one could

argue for 2, 3, or 4 clusters because of the similar values. The Elbow method is the most

stable between these different records and the Gap statistic is the least.
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Table 2.1. Differences in the number of clusters indicated by three methods
for records of earthquakes at Pallett Creek with slightly differing dates.

Record Gap Statistic Elbow Silhouette
Sieh et al., 1989 4 4 4
Biasi et al., 2002 2 4 2

Scharer et al., 2011 1 4 4

2.6. Long-Term Fault Memory Model

To explore how earthquake supercycles and clusters arise, we use a simple Long-Term

Fault Memory (LTFM) model, which is a modified version of the standard earthquake

cycle model. In it, the probability of an earthquake reflects the accumulated strain. This

increases steadily with time until an earthquake happens, after which it decreases, but

not necessarily to zero (Figure 2.8). Hence, the probability of an earthquake depends

on the earthquake history over multiple prior cycles. Clusters happen because after a

gap, a period of quiescence, the probability can remain higher than the long-term average

for several cycles. The model simulates large earthquakes releasing only part of the

strain accumulated on the fault, in contrast to the standard model in which all of the

accumulated strain is released.

LTFM is a simple model with only a few parameters. The annual probability P (t)

grows with time at rate dP/dt = A = 2/τ 2, simulating steady strain accumulation. τ is

an initial mean recurrence interval, such that if no earthquake occurs during the initial

time interval t = τ , the average annual probability is 1/τ . If the probability is above

a threshold value δ, which we typically set as zero, an earthquake can occur. When an

earthquake occurs, the probability drops by ∆P = −R, simulating a partial strain release.

Hence on average R/A years of accumulated strain is released in an earthquake.
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2

Figure 2.8. Long-Term Fault Memory model. (Top) Simulated earthquake
history. (Bottom) Earthquake probability versus time.

The accumulation parameter A controls the long-term seismicity rate, and the release

parameter R controls the clustering. Small R yields long-term memory and more clus-

ters, whereas in the limit large R gives the standard earthquake cycle model with only

short-term memory because it forces the probability to zero after each earthquake. The

probability is not allowed to go below 0 or to exceed 1.

We generate earthquake histories by using the Mersenne Twister pseudo-random num-

ber generator (Matsumoto and Nishimura, 1998), sampling from a uniform distribution

between 0 and 1. If the value exceeds the probability for that year, no earthquake oc-

curs and the probability increases by A for the next year. If the value is less than that

year’s probability, an earthquake occurs and the probability drops by R for the following
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year. Linearly increasing probabilities have been used by other authors, e.g., Pinedo and

Shpilberg (1981).

The saw-tooth behavior of LTFM simulates the proposed long-term variations in stored

elastic strain or strain energy (Figure 2.2). Supercycles and clusters arise because longer

intervals between earthquakes generally begin at times of low probability, consistent with

the pattern noted in terms of cumulative strain by Weldon et al. (2004). A lower proba-

bility corresponds to the fault having less memory of previous earthquakes. Thus, as the

probability (i.e. cumulative strain) approaches zero, the corresponding supercycle can be

viewed as approaching a renewal process.

Because LTFM is a stochastic model, the resulting earthquake sequences depend on

both the model parameters and chance. As a result (Figure 2.9) sequences can appear

strongly periodic, weakly periodic, Poissonian, or bursty. The four sequences in this

example have the same probability (i.e. strain) accumulation rate (A = 2/1252) but

different release parameters (R = 200A, 175A, 80A, 50A). As shown, the aperiodicity

increases as R decreases. The strongly periodic sequence arises in a way similar to a

standard earthquake cycle model because R is so large that the probability drops to zero

after each earthquake, so the fault has no memory. The effects of fault memory increase

for successively smaller values of R, making the sequences less periodic. However, A and R

control only the overall sequence properties via the probability of earthquake occurrence,

because when earthquakes occur is random. As a result, the aperiodicity varies between

different portions of the sequence.

In some cases, we use two thresholds, δ2 > δ1 and corresponding probability drops,

R2 > R1, to describe the earthquakes with larger and smaller strain changes implied
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Figure 2.9. Sequences produced by the LTFM model can appear a) strongly
periodic, b) weakly periodic, c) Poissonian, or d) bursty, depending on the
model parameters. The four sequences shown have the same probability
accumulation rate but different release parameters, so the aperiodicity in-
creases as R/A decreases.

by some records (Figure 2.2). Hence if P (t) > δi , the probability drops by Ri. Using

two probability thresholds and probability drops to describe both rare larger and more

frequent smaller strain changes allows LTFM to simulate the range of observed supercycle

behavior (Figure 2.10). The higher threshold and probability drop simulate infrequent
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events that have slip and strain release much greater than typical events, and so end

a supercycle. Using two similar thresholds simulates a Sumatra-style earthquake history

with long gaps separating clusters, because earthquakes can occur only late in a supercycle.

This case would correspond to a very strong fault. Conversely, a low threshold for smaller

earthquakes and a much higher one for larger earthquakes simulates a Tohoku-style record

where smaller earthquakes occur frequently between the largest events, so the supercycles

in the strain record do not appear in the earthquake history as gaps and clusters. The

threshold and drop parameters can be chosen to simulate the very long gaps associated

with intraplate and plate boundary zone earthquakes. In such situations, because strain

accumulates slowly relative to plate boundaries, the lower threshold is quite low. Hence

this threshold can be used in most applications with higher strain rates (e.g., Figure

2.10b), since it would have essentially the same effect as a zero threshold (e.g., Figure

2.9).

2.6.1. Example

To explore choosing LTFM parameters to match key aspects of an earthquake history,

we simulated the record from Pallett Creek, California. Although recent studies have

reestimated the dates (Biasi et al., 2002; Scharer et al., 2011), we used Sieh et al.’s (1989)

dates because the resulting clusters provide a better test case. We ran the model 100 times

for pairs of input parameters, R and τ , and averaged the mean and standard deviation

of recurrence intervals for each pair. Contouring these averages identified regions of the

model space, and hence ranges of the input parameters, that produce simulations with

comparable mean and standard deviation to those observed in the paleoseismic record.
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Figure 2.10. Using two probability thresholds (dashed lines) and probability
drops to describe rare larger events and more frequent smaller events allows
LTFM to simulate a wide range of observed supercycle behavior.

We then searched these regions for parameters giving a memory parameter close to that

observed.
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Figure 2.11. LTFM simulation for Pallett Creek, California. Top: Paleo-
seismic record (Sieh et al., 1989). Center and bottom: Simulation giving
clustering similar to that observed. The event timing differs between the
simulation and the observed record due to the model?s stochastic nature.

A simulation with accumulation rate A = 2/2892 and release parameter R = 130A

that gives clustering behavior similar to that observed is shown in Figure 2.11. The data

have µ = 132yr, σ = 105yr, α = 0.79 and M = −0.28, and the simulation has µ = 136yr,

σ = 102yr, α = 0.75 andM = −0.33, indicating weak periodicity. The event timing differs

between the simulation and the observed record due to the model’s stochastic nature. The

longer intervals between earthquakes begin at times of low probability, consistent with

the pattern noted in terms of cumulative strain by Weldon et al. (2004).
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We used the LTFM model to explore the long-term variability of fault behavior by

creating simulations much longer than paleoseismic records, and then sampling them for

intervals corresponding to paleoseismic records. Figure 2.12 shows results for a 50,000 year

long simulation using parameters appropriate for Pallet Creek. The mean and standard

deviation of recurrence times averaged over a moving 1345-year window, corresponding

to a paleoseismic record, are relatively stable over long time periods. This stability would

be consistent with the idea of steady loading and unloading by plate motion and large

earthquakes. However the mean and standard deviation of recurrence times vary some-

what. The aperiodicity shows that the simulated paleoseismic record sometimes appears

strongly periodic (standard deviation small relative to the mean) implying a seismic cy-

cle model, while at other times it looks weakly periodic, Poissonian (standard deviation

similar to the mean), or bursty. This variability is illustrated by the earthquake history

between model years 19,000 and 22,000. Hence the recurrence variability due to long-term

fault memory can give rise to paleoseismic records that at different times appear to have

different underlying statistical distributions. Thus a given paleoseismic or instrumental

window may give a biased view of the long-term seismicity.

2.6.2. LTFM and intraplate earthquakes

Long-term fault memory may also be an important contributor to the space-time vari-

ability of continental intraplate earthquakes. Considerable recent attention (reviewed by

Liu and Stein, 2016, Calais et al., 2016, and Stein et al., 2017a) has been directed to how

and why earthquakes within continents behave differently in space and time from those

on plate boundaries. Faults at plate boundaries are loaded at constant rates by relatively
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Bursty 𝛼 > 1

Figure 2.12. a) 50,000 year LTFM simulation using Pallett Creek param-
eters. The mean and standard deviation of recurrence times are averaged
over a moving 1345-year window, corresponding to a paleoseismic record.
b, c) 3,000 year section of simulation above between dashed lines in a).
The aperiodicity shows that the simulated paleoseismic record sometimes
appears strongly periodic (α < 0.5) , while at other times it looks weakly
periodic ( 0.5 < α < 1), Poissonian (α = 1), or bursty (α > 1).
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rapid and steady relative plate motion. Consequently, earthquakes concentrate along the

plate boundary faults and show quasi-periodic (relative to intraplate earthquakes) occur-

rences, although the actual temporal patterns are often complicated. The spatial gaps

that appear are filled in over time.

However, in mid-continents, the slower tectonic loading is shared by a complex system

of interacting faults spread over a large region, such that a large earthquake on one fault

could increase the loading rates on other faults in the system. Because the low tectonic

loading rate is shared by many faults, individual faults may remain dormant for a long

time before they accumulate enough strain for a short period of activity. The resulting

earthquakes are therefore episodic, clustered, and spatially migrating (Li et al., 2009; Stein

et al., 2009). These effects can be seen in many areas, including North China (Liu et al.,

2011), Europe (Camelbeeck et al., 2007; 2014), and the central United States (Crone and

Luza, 1990; Newman et al., 1999; Holbrook et al., 2006; Tuttle et al., 2006; Gold et al.,

2018).

Topographic data from Australia, where erosion is very slow, provide some of the

best evidence available of how intraplate faults slip over time. Figure 2.2f illustrates

this pattern of clusters of activity separated by much longer and irregular intervals of

quiescence. Liu and Stein (2016) note that the pattern of displacement accumulated over

time is similar to the Devil’s Staircase function, a fractal property of chaotic dynamic

systems (Devaney et al., 1989; Turcotte, 1997). The apparent long-distance roaming

of large mid-continental earthquakes also suggests dynamic system behavior. In such

a system, change of any part of the system (such as rupture of a fault) could impact

nonlinearly the behavior of the whole system.
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Although this view of intraplate seismicity fits what is known in general terms, the

specifics are still unclear. In particular, how effectively stress can be transferred to distant

faults is unknown. We thus used the LTFM model to explore the possibility that long-term

fault memory may also contribute to the space-time variability.

A noticeable difference between the clustering in Australia and that on plate bound-

aries is that in Australia the gap durations are more than ten times as long as the clusters,

whereas on plate boundaries the gaps are only 2-3 times as long as the clusters. As shown

in Figure 2.9, LTFM can describe this effect via assuming the level of strain accumula-

tion required for an earthquake. A proposed alternative is that clusters of large intraplate

earthquakes reflect the fault weakening after the first major event, so as to permit repeated

failure (Li et al., 2009). Models have been proposed for how weakening and subsequent

healing might occur (Sibson, 1992; Lyakhovsky et al., 2001). In Lyakhovsky et al.’s model,

as the rate ratio between loading and healing increases, behavior changes from regular to

clustered. This is because healing tends to purge long-term memory. These models were

developed with a view toward describing the evolution of fault properties over multiple

earthquake cycles, i.e. a different type of long-term fault memory.

2.6.3. LTFM model discussion

Our results illustrate that a modified version of the standard earthquake cycle model can

be used to simulate and explore key features of supercycles that are observed at many plate

boundaries and in plate interiors. This is gratifying, given the model’s simplicity. LTFM

can be thought of as an idealized model like those used in many disciplines, including

physics, astronomy, meteorology, biology, and economics, that allow investigations to
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focus on some key characteristics of a complex phenomenon and explore whether they

can be explained by simple assumptions. Reutlinger et al. (2018) explain that “we

call such models ‘toy models’ - a term that is not meant to have belittling or derogatory

connotations... First, models of this type are strongly idealized... Second, such models

are extremely simple in that they represent a small number of causal factors (or, more

generally, of explanatory factors) responsible for the target phenomenon. Third, these

models refer to a target phenomenon.” A good example would be the simple analytical

model of subduction zones that extracts key aspects of sophisticated numerical models

and thus can be used how the temperature structure and resulting plate driving force

depend on the age of the subducting plate and convergence rate (Stein and Wysession,

2009).

In this spirit, we have used a simple model that simulates general properties of su-

percycles. We plan to explore its possible applicability to paleoseismic records in other

areas and in different tectonic regimes. For example, clusters have been observed in pale-

oseismic data in plate boundary zones, where diffuse deformation is spread over multiple

faults and long-term slip rates are slower than on primary plate boundary faults (which

typically move at > 10 mm/yr) but higher than in continental interiors (which typically

deform at < 1 mm/yr) (Wallace, 1987; Rockwell et al., 2000; Friedrich et al., 2003; Oskin

et al., 2008; Dolan et al., 2016; Gold et al., 2017). Some clusters seem to arise on individ-

ual faults, whereas others involve groups of faults. The Wasatch fault and adjacent faults

show a strain release and slip pattern similar to that in Australia (Figure 2.2e) (Wallace,

1987; Friedrich et al., 2003). In the Eastern California shear zone, regional strain release
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appears to occur via “distinct periods or bursts of seismic activity punctuated by peri-

ods of relative quiescence. Individual faults, however, appear to behave in a quasiperiodic

fashion, with the clustering produced by the in-phase earthquake generation of the system

of faults” (Rockwell et al., 2000). Hence LTFM may be involved in plate boundary zone

faults, but fault interactions and changes in loading across the zone may also contribute.

Additional features could be added to the model without overcomplicating it. Its

current form allows for two classes of earthquakes causing different probability decreases,

or strain releases. In some cases, only one may be needed, as motivated by observa-

tions that slip in large events on individual fault segments appears similar (Schwartz and

Coppersmith, 1984) and Weldon et al.’s (2004) observation that on the area of the San

Andreas they studied “there appears to be no relationship between strain level and the size

of earthquakes.” However, Goldfinger et al. (2013) note a “weak tendency” for clusters

to terminate with an “outsized” event, as found for the Tohoku and Sumatra records

(Figure 2.2). Moreover, some of the strain release may occur via slow slip events (Rogers

and Dragert, 2003; Jiang et al., 2017) that may not appear in the paleoseismic record.

Fault interactions could be introduced into the model by having multiple faults that

affect the probability of large earthquakes on each other. In some situations these may

increase clustering, and in others they may reduce it. This effect is likely to contribute

to the variability in earthquake size often observed at subduction zones (Thatcher, 1990;

Stein and Okal, 2007). One example is the trench segment that produced the MW ∼ 9.6

1960 Chilean earthquake. Its rupture mode must be variable because the seismic-slip rate

inferred assuming that the 1960 earthquake is this segment’s characteristic earthquake
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exceeds the convergence rate. Hence Stein et al. (1986) proposed that either the char-

acteristic earthquake is smaller than the 1960 event, the average recurrence interval is

greater than observed in the past 400 years, or both. Recent paleoseismic studies support

this analysis (Cisternas et al., 2005). Paleoseismic studies also find evidence for variable

size of thrust events, presumably due to the differences between multisegment and single-

segment rupture, in areas including the Nankai Trough (Ando, 1975) and the Kuril trench

(Nanayama et al., 2003).

Viewing supercycles as a result of long-term fault memory fits into a general framework

in the literature of complex dynamic systems. Clustered events, described as “bursts,”

are observed in many disparate systems, from the firing system of a single neuron to

the outgoing mobile phone sequence of an individual (Karsai et al., 2012). Such systems

display “...a bursty, intermittent nature, characterized by short timeframes of intense

activity followed by long times of no or reduced activity,” (Goh and Barabasi, 2008). As

a result, the system’s state depends on its history, so it has long-term memory (Beran et

al., 2013).

An additional point worth noting is that we generally limit our discussion to cases

where the supercycle is shorter than the climatic forcing cycles such as global glaciation

periods.
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2.6.4. Mathematics of the LTFM model

The LTFM model is a stochastic process, specifically a Markov chain with a finite number

of states at discrete times 0, 1, 2, .... The states correspond to possible values of accumu-

lated strain, reflected in the probability P (t), which are finite in number.1 The probability

that an earthquake occurs at time t, conditional on the full history of strain accumulation

and release at all times prior to t, depends only on the most recent level of strain, i.e., at

time t − 1 2. Given P(t), the probability does not otherwise depend on time. Thus, the

history prior to is fully captured by P(t-1). The process starts over each time accumu-

lated strain is equal to the strain at time t = 0 (or, for practical purposes, is close to that

amount). The length of time until the process starts over can be interpreted as the length

of a supercycle. The theory of Markov chains (Cinlar, 1975) allows us to directly specify

the full probability distribution for the length of a supercycle, and hence its mean and

standard deviation. The theory also allows us to specify the conditional probability of an

earthquake at a time t > s given the accumulated strain at current time s. The theory

implies that the probability at a far future time t does not depend on the accumulated

strain at time s and provides a formula for that probability. From this probability, the

1Possible values of P(t) have the form

min

{
(αA− βR1 − γ(λ− 1)R1)

+, 1

}
where

λ = R2/R1

(x+) = max{x, 0}
and α, β, γ taking non-negative integer values.
2If the probability at time s is P (s) = Cs then the conditional probability of an earthquake at time t is
equal to

min

{
(A+ Ct−1)× χpos(A+ Ct−1 − δ1), 1

}
with χpos(x) equal to 1 if x > 0 and equal to zero otherwise.
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expected number of earthquakes in a distant time span of length T can be calculated,

along with the approximate standard deviation.

LTFM can also be posed in terms of the classic probability model of drawing balls

from an urn. (Stein and Stein, 2013). If e balls are labeled “E” for earthquake, and n balls

are labeled “N” for no earthquake, the probability of an earthquake is that of drawing an

E-ball, which is the ratio of the number of E-balls to the total number of balls. If after

drawing a ball, we replace it, the probability of an event is constant or time-independent

in successive draws, because one happening does not change the probability of another

happening. Thus an event is never “overdue” because one has not happened recently, and

the fact that one happened recently does not make another less likely. LTFM corresponds

an alternative, sampling such that the fraction of E-balls and the probability of another

event change with time. We add A E-balls after a draw when an earthquake does not

occur, and remove R E-balls when an earthquake occurs. This makes the probability of

an event increase with time until one happens, after which it decreases and then grows

again. Events are not independent, because one happening changes the probability of

another.

2.7. Implications for hazard assessment

Advances in understanding supercycles would be important for seismic hazard as-

sessment. Such assessments depend heavily on assumptions about the magnitude and

recurrence rate of future large earthquakes (Stein et al., 2012), both of which are often

more variable than assumed. A larger assumed aperiodicity will cause cumulative or

conditional probabilities to decrease, all else fixed (Ward, 1992).
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Current earthquake probability estimates depend on assuming a probability density

function for the recurrence intervals with input parameters inferred from the available

earthquake history. Figure 2.13 illustrates the resulting uncertainties for Cascadia. Fig-

ure 2.13a shows the effects of additional paleoseismic data. Goldfinger et al.’s (2012)

chronology yielded a mean recurrence interval of 530 yrs and a standard deviation of 271

yrs for the entire 10,000 year record, and a mean recurrence interval of 326 yrs and a stan-

dard deviation of 88 yrs for the most recent cluster. Including a newly-identified event in

a revised chronology (Goldfinger et al., 2017) has a small effect on the 10,000-year record’s

parameters, changing the mean recurrence interval to 502 yrs and a standard deviation of

239 yrs. However, adding this event makes all events in the past 5,000 years part of the

same cluster, with a recurrence interval of 452 yrs and a standard deviation of 142 yrs.

Whether to assume that a recent cluster is continuing or has ended can lead to quite

different estimates of earthquake probabilities (Stein et al., 2017b). Figure 2.13b shows the

different distribution of recurrence intervals corresponding to the two different chronolo-

gies and various probability density functions with parameters corresponding to the two

chronologies. By far the largest difference arises from assuming either that the recent

cluster continues, or that the cluster is over so the appropriate parameters are those for

the entire record. Assuming that we are still in the cluster predicts higher probability than

using the entire record. This effect is more important than the specific probability den-

sity function assumed. The corresponding effect appears from considering the conditional

probability of a large earthquake in the next 50 years, which results from integrating the

probability density functions (Figure 2.13c).
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Figure 2.13. Illustration of earthquake probability issues for Cascadia due
to a) differing paleoseismic records of Goldfinger et al., 2012 and Goldfinger
et al., 2017, with its newly discovered event. Alternating red and blue events
highlight the different clusters individual events are assigned to. b) Various
probability density functions for inter-event times with parameters derived
from the two chronologies in a). Orange sticks show the actual inter-event
times in the corresponding records. Dashed lines use parameters of just
the most recent cluster, corresponding to the assumption that the system
is still in the recent cluster. Solid lines use the parameters of the entire
record, corresponding to the assumption that the recent cluster has ended.
c) Various conditional probabilities of an earthquake occurring in the next
50 years, using the same line designations in b). The largest difference in b)
and c) arises from the recent cluster assumption, not in the specific density
function assumed.
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More generally, if faults have long-term memory, then individual earthquake cycles,

and hence the recurrence times between successive large earthquakes, are not independent.

Hence the renewal approach of modeling their probability as a function of time since the

previous large earthquake can give misleading results. The problem is not that a renewal

model is inappropriate, but rather that the renewal depends on release of nearly all

accumulated strain, and that may occur at different times than large earthquakes. As

shown in Figure 2.12, the recurrence variability due to long-term fault memory can cause

short earthquake records to give a biased view of the long-term seismicity. As a result,

further investigation of long-term earthquake recurrence variability is important both for

understanding the nature and causes of supercycles and for improving hazard assessment.



64

CHAPTER 3

1952 Kern County Earthquake

3.1. Summary

Seismic intensity data based on first-hand accounts of shaking give valuable insight

into historical and early instrumental earthquakes. Comparing an observed intensity dis-

tribution to intensity-prediction models based on modern calibration events allows the

magnitude to be estimated for many historic earthquakes. Magnitude estimates can also

potentially be refined for earthquakes for which limited instrumental data are available.

However, the complicated nature of macroseismic data and the methods used to collect

and interpret the data introduce significant uncertainties. In this paper, we illustrate these

challenges and possible solutions using the 1952 Kern County, California, earthquake as a

case study. Published estimates of its magnitude vary from MW 7.2− 7.5, making it pos-

sibly the second largest in California during the 20th century. We considered over 1,100

first-hand reports of shaking, supplemented with other data, and inferred the magnitude

in several ways using intensity prediction equations, yielding a preferred intensity mag-

nitude MI 7.2± 0.2, where the uncertainty reflects our judgement. The revised intensity

distribution reveals stronger shaking on the hanging wall, south of the surface expression

of the White Wolf fault, than on the footwall. Characterizing the magnitude and shak-

ing distribution of this early instrumental earthquake can help improve estimation of the
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seismic hazard of the region. Such reinterpreted intensities for historic earthquakes, com-

bined with USGS Did You Feel It? data for more recent events, can be used to produce a

uniform shaking dataset with which earthquake hazard map performance can be assessed.

3.2. Introduction

In this paper, we explore issues associated with analysis of seismic intensity data using

the 21 July, 1952 Kern County, California, earthquake as a case study. Seismic intensity

characterizes the level of earthquake shaking by human perceptions and effects on made-

man structures and objects within them. The Modified Mercalli Intensity (MMI) scale

introduced by Wood and Neumann (1931), based on earlier scales widely used previously

in Europe (see Musson et al., 2010), has long been preferred in the U.S. by engineers and

seismologists. Reports of earthquake shaking have been collected and assigned intensity

levels by U.S. government agencies for over a century. From 1924 onward, postcard

questionnaires were collected by the U.S. Coast and Geodetic Survey (USCGS), who

left stacks of questionnaires with postmasters and employees of large companies to be

completed by themselves and others in the community shortly after earthquakes (Byerly

and Dyk, 1935). The questionnaires asked whether the respondents and those around

them felt the earthquake, whether it frightened or awoke them, whether small objects on

shelves shifted or overturned, whether large furniture was shifted, and whether and how

buildings were damaged or destroyed. These questions correspond directly to indicators

used in the MMI scale. Later, this information was collected via randomized telephone

surveys and mailed postcards (Dewey et al., 1995). Presently, felt reports are collected

online through the USGS Did You Feel It? (DYFI) website, making them easier to collect
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and interpret (Wald et al., 1999a). The DYFI system assigns numerical Community

Internet Intensity (CII) values using a modification of the algorithm proposed by Dengler

and Dewey (1998) to determine Community Decimal Intensities (CDI) from questionnaire

responses. DYFI intensity values characterize representative shaking in an area, and hence

differ systematically from conventionally interpreted MMI data, which tend to be based

on the most dramatic effects (Hough, 2013).

Uncertainties in intensity values arise from several sources. Human perceptions of and

reactions to shaking vary with a person’s physical sensitivity and disposition. Building

age and construction quality, on which information is often unknown or unspecified in

first-hand reports, influence the level of damage and perceived or felt shaking. Methods

of intensity data collection as well as the distribution of population relative to the epi-

center can introduce sampling biases. How questionnaires are phrased can impact the

responses. Information about the location of a damage report varies, sometimes giv-

ing only a city name or approximate location. These issues introduce uncertainties into

the intensity values assigned from the observations. Further uncertainties arise when

intensity-prediction models describing the variation of intensity with distance from the

fault are used to estimate the earthquake’s magnitude.

Despite these limitations, intensity values are important for earthquake hazard as-

sessment because they directly represent damage and because the length of macroseismic

records often far exceeds that of the instrumental catalog (e.g., Ambraseys, 1983). For

early instrumental and even recent earthquakes, intensity distributions can reveal the

shaking distribution in far greater spatial detail than is possible using instrumental data.

For historical earthquakes, macroseismic information is often the primary data available.
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Revisiting historic intensity data is worthwhile, because historically assigned intensities

are often inflated by 0.5 - 2.0 intensity units relative to modern practice (Ambraseys 1971,

1983; Hough and Page, 2011; Hough 2013, 2014). Even following modern practice, con-

ventional intensity assignments are inherently subjective, leading to differences of 0.5 -

1.0 intensity units for the same report by different interpreters (Hough and Page, 2011).

The Kern County earthquake was one of the largest in California during the 20th cen-

tury. Some of the issues discussed in our study were noted at the time. Reports from the

town of Tehachapi illustrate how historic or traditionally assigned intensities tend to be

inflated. In 1952 its main street was lined with old, weakly cemented, unreinforced brick

buildings that were highly susceptible to damage from shaking (Steinbrugge and Moran,

1954). Tehachapi (Figure 4.1) is close to the end of the surface rupture furthest from the

epicenter and therefore in the direction of rupture which focused energy towards the town

(Richter, 1958). These effects likely account for the fact that many buildings downtown

were damaged, causing most of the 12 fatalities that resulted from this earthquake, and

extensive damage occurred to the Southern Pacific Railroad due to tunnel collapse and

track warping. The shaking and damage made Tehachapi the focus of media coverage.

Richter (1958) notes, “These deaths also focused the attention of the press, the public,

and even of officials who should have been better informed, on the losses at Tehachapi

disproportionately to those elsewhere,” hinting at media’s tendency to report the most

dramatic stories rather than more representative effects. Richter also notes, “Many struc-

tures on the main street [of Tehachapi] were of this character [outdated masonry]; they

showed such damage as caused incautious observers to rate the local intensity at VIII,

though it is doubtful whether more than VII was actually indicated.” In his seminal
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Figure 3.1. Geology of the epicentral area. Open barbs represent blind
thrusts, filled barbs represent exposed thrusts. Focal mechanism is 1952
mainshock, star indicates the epicenter. (After Bawden, 1997).

volume, Richter (1958) realized that intensity data for this earthquake were susceptible

to inflation and would require careful interpretation keeping these influences in mind. In

this spirit, we reinterpret intensity reports for this earthquake.

We refine the magnitude estimate and explore the associated uncertainties by rein-

terpreting over 1,100 macroseismic intensity reports. These reports are cataloged in U.S.

Coast and Geodetic Survey Abstracts of Earthquake Reports for the Pacific Coast and
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the Western Mountain Region, hereafter referred to as ‘the primary dataset.’ This refine-

ment provides a new characterization of the shaking distribution of this early instrumental

earthquake and a new estimate of its magnitude via recent intensity-prediction models.

3.3. The 1952 Kern County Earthquake

On July 21, 1952 at 4:21 AM local time (GMT - 7 hours) the White Wolf fault (WWF)

ruptured in Kern County, California (Figure 1). This earthquake illustrates that large

earthquakes on secondary faults trending obliquely to the San Andreas fault, such as the

WWF and the nearby and similarly-oriented Garlock fault, are important contributors to

seismic hazard in California (Walls et al., 1998). The WWF is a steeply-dipping (up to

75) reverse fault located east of the restraining bend in the southern portion of the San

Andreas Fault (Bawden, 1997, 2001). It is thought to be slow-slipping, with long-term

slip rate estimated at < 10 mm/yr, with variability throughout the Quaternary (Stein

and Thatcher, 1981; Hearn et al., 2013). The Working Group for California Earthquake

Probabilities (WGCEP, 2008) estimated a long-term slip rate of 0.23 − 1.55 mm/yr for

different deformation models. Cutting the southern part of the San Joaquin Valley into

the northern Maricopa sub-basin and the southern Tejon Embayment, the WWF is blind

from the epicenter of the 1952 mainshock at its southwest end to approximately the

middle of the fault (Figure 1). From there, the 1952 earthquake ruptured the surface to

its northeastern endpoint, about 60 km from the epicenter. Bawden (2001) used geodetic

data to develop a two-segment, right-stepping fault model with nearly uniform reverse

slip of about 1.6 - 1.9 meters and additionally up to 3.6 meters of left-lateral slip in the
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epicentral patch. Stein and Thatcher (1981) developed a similar rupture model, with

three fault segments whose dip gradually decreases away from the epicenter.

It has been hypothesized that this earthquake was triggered or induced by stress

changes associated with oil production. The epicenter was within a few kilometers of

an extraction well, shortly after production started from a deep (3 km) horizon (Hough

et al., 2017). Although it is impossible to prove that the earthquake was induced by

anthropogenic activity, it may have been one of the largest induced earthquakes (Foulger

et al., 2017).

The Kern County earthquake was the most widely felt earthquake in California over

the 50 years following the 1906 San Francisco earthquake. Although the 1952 earth-

quake was studied in detail at the time (Steinbrugge and Moran, 1954; Oakeshott, 1955;

USCGS, 1966), as well as by later studies, estimates of its magnitude vary. The current

USGS estimate is MW7.5 (Hutton et al., 2010). Instrumentally derived estimates include

MS7.7 (Gutenberg and Richter, 1954; Richter, 1958), MW7.3/MS7.2 (Ben-Menahem,

1977), ML7.2 (Kanamori and Jennings, 1978), and MS7.8/mB7.3 (Abe, 1981). Bawden

(2001) geodetically determined MW7.2. Bakun (2006) used 647 reinterpreted historic

intensity assignments to estimate an intensity magnitude, a magnitude derived from in-

tensity data, of MI7.3.

3.4. Reinterpretation of Historic Macroseismic Intensity Data

Over 1,100 reports of shaking were compiled by the USCGS and assigned MMI in-

tensities (USDOC, 1966). We compared the originally assigned intensity values with our

reinterpretations of the same data. We augmented our reinterpreted intensity assignments
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with intensities derived from 12 strong motion data points, 67 retroactively-reported DYFI

data points, 12 data points for damaged electrical transformers, and observations of pre-

cariously balanced rocks. Adding these data makes the reinterpreted dataset more robust,

because many of the original intensity assignments close to the epicenter were based on

geologic indicators such as rock slides, secondary ground deformation, and groundwater

perturbations, which are now recognized to be unreliable indicators of shaking intensity

(Ambraseys, 1983). About 7 % of the primary dataset are based on such geologic indica-

tors, which disproportionately controlled the highest intensity assignments in the original

assessment. These descriptions were not considered in our reinterpretations. The pri-

mary dataset contains 1,137 reports with historically assigned intensities that we refer

to as original intensities. Our reinterpreted dataset (primary dataset minus reports de-

scribing geologic/industrial effects plus additional data) contains 1,144 reports, hereafter

referred to as reinterpreted intensities.

Latitudes and longitudes for locations in the primary dataset, which mainly gives city

names, come from the NOAA Earthquake Intensity Database. For locations where more

detail is provided, for instance a street address or named electrical substation, latitude

and longitude were found using Google Earth after confirming that street names and

locations remained unchanged since 1952 by using USGS historical topographic maps

(http://historicalmaps.arcgis.com/usgs/).

To explore the subjectivity of intensity assignments, we compared reinterpretations

of the primary dataset made by two different analysts. This allows an evaluation of

inter-rater variability and reliability. We compared intensity assignments only when both

interpreters provided an assignment, i.e. excluding reports for which either interpreter
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was unable to assign an intensity based on the information given. 34 % of assignments

were identical between interpreters, 70 % were within ± 0.5 MMI unit, and 97 % were

within ± 1 MMI unit. The absolute value of the mean difference between the interpreter’s

intensity assignments was 0.2 MMI units.

We also considered other sources of information that can constrain ground motions,

including electrical transformer damage caused by the earthquake. The toppling of trans-

formers has been investigated by earthquake engineers and can be related to Peak Ground

Acceleration (PGA) via fragility curves, which can then be used to estimate MMI (Huo

and Hwang, 1995). Detailed descriptions of transformer damage (Peers, 1955; USCGS,

1966) indicate how many transformers were toppled at a given substation. To estimate

PGA, we compared the estimated percentage of overturned transformers to fragility data

presented by Huo and Hwang (1995). Similarly, the preservation or overturn of precari-

ously balanced rocks has been used to infer PGA and intensity at a number of locations

in the near field (Brune et al., 2004).

We also considered peak ground acceleration data from 12 strong motion recordings

of the earthquake (Murphy and Cloud, 1954). These data were recorded by instruments

that operated in trigger mode, with no pre-event memory. For a large earthquake, these

instruments generally triggered on the P wave and captured the full S wave. We con-

verted PGA data to instrumental MMI using the relationship determined by Worden et

al. (2012). Instrumental PGAs range from 1 to 25 % g, corresponding to instrumental

intensity values 3.3 to 7.2.
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Table 3.1 gives examples to illustrate differences between original to reinterpreted

MMI assignments. Our reinterpretation of felt reports differed from the original in the

following ways:

(1) Taking the Ambraseys (1983) conservative approach to secondary geologic indi-

cators.

(2) Using quartile decimal (e.g. 5.0, 5.25, 5.5, etc.), rather than integer values of

MMI.

(3) Weighting our inferred intensities to give more weight to the disturbance of ob-

jects than to subjective human reactions. Originally, the disturbance of objects

and personal reactions were given about equal weight for the lower MMI intensi-

ties (USDOC, 1966).

(4) Assigning MMI 5 only when accounts describe toppling of small objects, a key

objective indicator for this intensity level (Richter, 1958).

(5) Rather than characterizing weakly felt intensities as a range of MMI 1-3, as was

the earlier practice, we differentiated between MMI 2 and 3: MMI 2 for reports

of “felt by few” without objective indicators, and MMI 3 for reports of “felt by

many” accompanied by reports of hanging objects having swung.

(6) Assigning MMI 1 for sites “Reported not felt”, following Ambraseys’ (1983) rec-

ommendation.

The reinterpreted intensity values are generally although not uniformly lower than

originally inferred values (Figures 4.2, 4.3). The absolute value of the mean difference

between original and reinterpreted intensities is 0.6 MMI units. Some of this difference
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Table 3.1. Example reports from primary dataset, comparing original and
reinterpreted MMI. Groundwater and secondary geologic indicators were
not considered in the reinterpretations.

Location Report (slightly edited for space) Orig.
MMI

Reinterp.
MMI

Pleasant
Grove, CA

Felt by several in community. One reported electric cord
swung.

1-3 3

Carmel
Valley, CA

Motion slow, lasted 30 seconds. Awakened many, fright-
ened few, felt by some outdoors. Rattled windows,
doors. Hanging objects swung

5 4

Shell
Beach, CA

The press reported a large bone fell off museum shelf. 6 6

Woody,
CA

Motion rapid, rolling, lasted l minute. Felt by and awak-
ened all in community, frightened many. Rattled win-
dows, doors, dishes. Hanging objects swung. Trees,
bushes shaken slightly. Shifted small objects. Over-
turned vases and small objects. Knickknacks, books,
pictures fell. Broke dishes and vases. Water supply and
springs milky.

7 5.5

Miracle
Hot
Springs,
CA

Motion rapid, lasted 14 seconds. Felt by, awakened,
and frightened all. Rattled windows, doors, and dishes;
house creaked. Hanging objects swung N. Trees, bushes
shaken strongly. Shifted small objects and furnishings;
overturned vases, etc., small objects and furniture. Mir-
acle Hot Springs went dry during the first shock, but re-
sumed flow during the later shocks. Temperature of wa-
ter seemed hotter. Many rock slides in canyon. Demo-
crat Springs went completely dry.

8 6

results from our assignment of quarter units rather than integral units. Reinterpreta-

tions are consistent with the retroactively-reported DYFI, instrumental, transformer and

precariously balanced rock data (Figure 4.3). Figures 4.2, 4.3, and 4.4 show locations

of individual data points, with the remainder of the map interpolated through the ?sur-

face? function of the Generic Mapping Tools, which grids data using adjustable tension

continuous curvature splines (Wessel and Smith, 1991).
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Figure 3.2. Map of original intensity assignments. Circles show individual
assignments, and the map is interpolated via continuous curvature splines
from those points. Color scheme follows USGS Shakemap convention (Wald
et al., 1999b). Thin lines are faults, thick line is 1952 WWF rupture. Star
is epicenter.
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Figure 3.3. Map of intensity assignments as reinterpreted in this study
(circles). Also included are intensities derived from strong motion
data (triangles), transformer/precariously balanced rocks (pentagons), and
retroactively-reported DYFI (diamonds) ? all consistent with reinterpreted
values. Shapes show individual intensities, and the map is interpolated via
continuous curvature splines from those points. Color scheme follows USGS
Shakemap convention (Wald et al., 1999b). Thin lines are faults, thick line
is 1952 WWF rupture. Star is epicenter.
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Based on their analysis of precariously balanced rock and toppled transformer obser-

vations, Brune et al. (2004) concluded that accelerations were higher on the hanging wall

(southern side) of the WWF, in particular along the northeastern half of the rupture,

where the rupture reached the surface (Figure 4.1). They further concluded that along

the southwestern half of the rupture, which they assume to have been blind, more signif-

icant energy was transferred to the footwall. Our reinterpreted intensity distribution also

suggests that shaking was lower on the footwall and that intensities were lower along the

southwest part of the foot wall as well, although this part of the intensity field is not well

constrained (Figure 4.4).

To further explore the distribution of shaking, we consider the distribution of resid-

uals relative to an appropriate baseline. As discussed at length in the following section,

it is not clear what the optimal baseline is for this event. We use the intensity pre-

diction equation from Atkinson and Wald (2007), hereafter AW07, assuming intensity

magnitude MI 7.2, which is found by trial-and-error to provide a good average fit to

the intensities (Figure 4.5). Because of uncertainty about the appropriate baseline, the

residuals illuminate differences in relative shaking severity, but not necessarily absolute

amplification/deamplification. Figure 5 reveals several first-order effects: 1) intensities

are modestly elevated at some but not all sediment sites, including some sites in the Los

Angeles and San Bernardino basins and in the Central Valley; 2) intensities are modestly

elevated along a swath trending northwest through the Coast Ranges; 3) near field intensi-

ties are systematically low, in particular to the north of the fault trace. The amplification

of shaking at sediment sites is an expected result (e.g., Borcherdt, 1970). Elevated shak-

ing in the Coast Ranges is more enigmatic; we cannot propose an obvious explanation for
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Figure 3.4. Map of near-field intensities as reinterpreted in this study
(circles). Also included are intensities derived from strong motion
data (triangles), transformer/precariously balanced rocks (pentagons), and
retroactively-reported DYFI (diamonds). Shapes show individual inten-
sities, and the map is interpolated via continuous curvature splines from
those points. Color scheme follows USGS Shakemap convention (Wald et
al., 1999b). Thin lines are faults, thick line is 1952 WWF rupture. Star is
epicenter. Higher intensities are observed on the hanging (southern) wall
of the fault.

this result, although it is possible that it reflects relatively low attenuation along paths

to the west/southwest of the epicenter.

In the near-field, Figure 4.5 suggests deamplification of shaking, by -0.5 to as much

as -1.5 intensity units. We suggest that this result reflects two effects. First, as discussed

above, and proposed by Brune et al. (2004), shaking was lower on the footwall than
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Figure 3.5. Map of intensity residuals, relative to the AW07 IPE assuming
an intensity magnitude of 7.2. Circles show individual points and the map
is interpolated from those points. Residuals from Nevada are masked out
due to sparse data available to constrain the interpolation there. Thin
black lines are faults, white lines are major physiographic boundaries, star
is epicenter of 1952 earthquake. SB is San Bernardino Basin, LA is Los
Angeles Basin.
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the hanging wall, all the more so because we have not assigned intensities to locations

on the hanging wall where only secondary geologic effects were reported. Secondly, we

suggest that near-field shaking was deamplified by a pervasively non-linear response of

near-surface sediments. The zone of estimated deamplification is similar to that inferred

in the Kathmandu Valley during the 2015 Gorkha, Nepal, earthquake (Adhikari et al.,

2017). Our conclusion is also consistent with the qualitative conclusion of Trifunac (2003),

who showed that near-field damage during the 1933 Long Beach, California, earthquake

was deamplified in some near-field regions by pervasively non-linear response of soft,

water-saturated sediments.

3.5. Intensity Prediction Equations

Intensity Prediction Equations (IPE) predict the decrease of shaking intensity with

distance for an earthquake of a given magnitude. To estimate the magnitude of the

Kern County earthquake, we compare published IPEs to the intensity values. These

equations are empirically determined, so uncertainties in the data used to derive them

cause uncertainty in the IPEs.

We first use an IPE from Bakun (2006), hereafter B06, who built upon the IPE

of Bakun and Wentworth (1997) by developing coefficients for historic earthquakes in

southern California based on traditionally assigned intensity data for 20th century MW

5.0 - 7.1 earthquakes. B06:

MMIT (MI , D) = C0 + C1M1 − C2D − C3log(D)
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where MMIT is a traditionally assigned intensity, MI is intensity magnitude, and

D is distance from the epicenter in km. For southern California: C0 = 1.64 ± 0.91,

C1 = 1.41±0.11, C2 = 0.00526±0.00158, C3 = 2.63±0.36. The Kern County earthquake

was not used to derive this relationship because it occurred prior to 1960 and the onset

of modern and consistently calibrated instrumentation. Bakun (2006) used 647 reports

from the 1952 Kern County earthquake and estimated its intensity magnitude as MI 7.3.

We also used an IPE from Atkinson and Wald (2007). This relation is derived from

modern DYFI data from California, so it might provide a better fit to our reinterpreted

intensities. However, it may also not be fully appropriate for our data. Although con-

servatively reinterpreted, our data are still traditional intensity values determined from

first-hand accounts. Hence they differ fundamentally from DYFI data in which intensities

assigned from individual questionnaires are averaged within ZIP codes or geocoded cells.

The AW07 relationship is:

MMIDY FI(M,R) = d1 + d2(M − 6) + d3(M − 6)2 − d4log(R)− d5R+ d6B − d7Mlog(R)

where M is moment magnitude; R = (D2 +h2)1/2; D is distance from fault in km; h is

effective depth, equal to 14 km for California; B = 0 for R ≤ Rt and B = log(R/Rt) for

R > Rt; Rt is the transition distance in the attenuation shape, Rt = 30.0 for California.

For California d1 = 12.27 ± 0.24, d2 = 2.270, d3 = 0.1304, d4 = 1.30, d5 = 0.0007070,

d6 = 1.95, d7 = 0.577.

B06 predicts higher intensities than AW07 for a given magnitude at distances less

than approximately 400 km, and lower intensities at distances more than 400 km (Figures
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4.6,4.7) (Hough, 2013). Hough (2014) concluded that these differences likely reflect sys-

tematic bias in traditionally assigned intensities relative to DYFI intensities. Both IPEs

predict negative intensities at distances greater than 400 km from the source for the low-

est magnitude (M 6) tested in this study. The distance to a negative predicted intensity

increases with increasing magnitude. For AW07, negative intensities occur over 200 km

further from the source than B06 for the same magnitude. Following Hough (2014), sites

at which B06 and AW07 predicted intensity values below 1.0 were set to 1.0, analogous

to the assignment of MMI 1 for accounts of “Reported not Felt.” Hough (2014) found

B06 was a better fit (lower Root Mean Square misfit) than AW07 for historically assigned

intensities. This is not surprising given that B06 was derived using traditionally assigned

intensity data rather than the DYFI data to which AW07 was fit.

AW07 and B06 assume different earthquake source geometries and thus use different

definitions for distance. AW07 defines D as distance from the closest point on the fault,

whereas B06 assumes a point-source and calculates D as distance from the epicenter. For

distance from closest point on fault calculations, we used a linear approximation of the

WWF (Figures 4.2 - 4.4) from the epicenter (35◦, −119◦) (for uncertainties, see discussion

in the electronic supplement to (Hough et al., 2017)), to the approximate endpoint of

surface rupture (35.3◦ , −118.6◦). The B06 point-source assumption is less appropriate

for large earthquakes, such as this one with its 60 km long fault, so we also considered a

point-source at the approximate midpoint of the surface rupture. We prefer to compute

B06 distances from the midpoint of surface rupture rather than the epicenter because of

the unilateral rupture propagation from the epicenter toward the endpoint. Considering

the midpoint of surface rupture shifts the point-source toward the region of the fault where
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Figure 3.6. Individual intensity assginments vs. log10 distance from (Top)
nearest point on fault and (Bottom) approximate midpoint of surface rup-
ture. (Left) Reinterpreted intensity assignments. (Right) Original intensity
assignments. AW07 (solid lines) and B06 (dashed lines) predictions are
shown for M 7.1 (thick lines) and M 7.3 (thin lines).

radiated waves are stronger due to directivity and thus where intensities are predicted to

be highest. The fault’s endpoint and midpoint of surface rupture were estimated using

Google Earth and the WWF trace in the USGS Quaternary fault and fold database. The

effects of these different definitions for distance are explored below.

3.6. Fitting Intensity Data

To estimate the magnitude of the earthquake from the intensity data, we computed

the Root Mean Square (RMS) misfit between intensity assignments, either original or
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Figure 3.7. Log10 bin averaged intensities one standard deviation, with
IPEs for magnitudes M 7.1 and M 7.3. AW07 (left) computed using distance
from closest point on the fault. B06 (right) computed using distance from
approximate midpoint of surface rupture.

reinterpreted, with those predicted by the two IPEs for a range of magnitudes (Figures

4.6 - 4.8). RMS was determined point by point: for every observation i, we predicted

MMI at distance di, where di = distance in km from the source. RMS misfit is often

illustrated graphically with spatial bin-averages of intensity (Figure 4.7). However, using

bin-averaged data decreased the best fit magnitude by 0.2 - 0.4 magnitude units compared

to the full dataset. We prefer the point by point RMS analysis because it utilizes more

information per point.
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Table 3.2. Magnitude, Mbest , inferred from minimum RMS for the different
data-IPE pairs. Mbest = M(min(RMS)) is assessed for distances computed
from the epicenter, from the approximate midpoint of surface rupture, from
the closest point on the fault, and using distances calculated with respect
to the IPE definition (i.e. from closest point on fault for AW07 and from
approximate midpoint of surface rupture for B06).

IPE - Data pair Mbest from
epicenter

Mbest from
midpoint

Mbest from
closest point
on fault

Mbest from
IPE source

AW07 - Reinterpreted 7.3 7.2 7.1 7.1
AW07 - Original 7.7 7.7 7.5 7.5
B06 - Reinterpreted 7.0 6.9 6.8 6.9
B06 - Original 7.4 7.4 7.3 7.4

Average 7.4 7.3 7.2 7.2

RMS misfit is defined as:

RMS(Mj) =

√√√√ N∑
i=1

(ŷi − yi)2/N

where Mj from 6.0 to 8.3 are earthquake magnitudes

yi is MMI of observation i, either originally assigned or reinterpreted

ŷi is expected MMI at di based on either IPE for the assumed Mj

N = total number of observations, 1,144 for reinterpretations and 1,137 for originals

The minimum RMS over the range of magnitudes gives the best fit magnitude,Mbest

(Figure 4.8, Table 3.2). This method uses the central value of the coefficients in B06 and

AW07, and thus ignores the uncertainty in the IPE coefficients.

Calculating distances from the closest point on the fault yields a slightly lower Mbest

across all IPE-data pairs compared to the two point-source distances, differing by up

to 0.2 magnitude units (Table 3.2). This occurs because many of the highest intensity

observations are shifted closer to the fault, where intensities are expected to be highest.
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Figure 3.8. RMS misfit between IPEs and reinterpreted or original intensity
assignments for a range of magnitudes, computed as distance from closest
point on fault for AW07, and from approximate midpoint of surface rupture
for B06. The minimum misfit gives Mbest. Thin lines are original intensity
assignments; thick lines are reinterpreted. Solid lines are for AW07; dashed
are for B06.

However, both AW07 and B06 still overpredict MMI at distances less than 20 km from

the source, regardless of how distance is defined (Figure 4.6). The final column of Table

3.2 considers a mixture of estimates, from closest point on fault for AW07 and from the

approximate midpoint of surface rupture for B06. This mixed-source method, which we

refer to as “IPE source,” is our preferred combination.
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Figure 4.8 illustrates the effect of the choice of IPEs and of reinterpreting the data.

Reinterpretation decreased the estimated magnitude by 0.4 - 0.5 magnitude units, reflect-

ing our more conservative assessment of the data compared to the original interpretations.

Differences between the IPEs result in a difference of 0.1 - 0.3 magnitude units for either

dataset, with AW07 Mbest magnitudes always higher than B06. This occurs because AW07

predicts lower shaking than B06 for a given magnitude (Figures 4.6, 4.7). Hence, to best

fit a set of data, AW07 requires a higher magnitude than B06.

The B06 relationship provides the best fit, i.e. lowest minimum RMS over all magni-

tudes, for both reinterpretations and originally assigned intensities. For reinterpretations,

the minimum RMS over all magnitudes only improves slightly from AW07 to B06. This

suggests that AW07 is almost as good a predictor as B06 for these data, and potentially

for other large historical earthquakes, if the intensities are interpreted carefully, following

modern practices, and if sufficient macroseismic information is available to characterize

the intensity distribution in detail.

This result appears to be counter to that found by Hough (2014) when analyzing

the 1868 Hayward fault intensities as reinterpreted by Boatwright and Bundock (2008a),

where B06 fit the reinterpreted historic intensity data significantly better than AW07.

Hough (2014) found the RMS to be nearly twice as large for AW07 for a given magnitude.

We find considerably better agreement between the minimum RMS values of AW07 and

B06 with reinterpreted intensity data for our preferred magnitude of the Kern County

earthquake (Figure 4.8).

The difference in which IPE best fits reinterpreted intensity data may be due to the

fact that the 1868 Hayward intensity dataset reinterpreted by Boatwright and Bundock
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(2008a) only had 160 reports, whereas the 1952 Kern County dataset is more than seven

times larger. The increased number of observations decreases spatial sampling biases. We

find Mbest is 6.9 - 7.0 using the B06 IPE with point sources and reinterpreted data, which

is lower than the MI 7.3 that Bakun (2006) obtained with the same method from 647

intensities for the Kern County earthquake using distances calculated from the epicenter.

3.7. Uncertainties in Mbest

How to address uncertainties in the IPEs and hence their suggested Mbest is a challenge

that we approached in several ways. Addressing uncertainties in IPEs requires some

assumption about correlations because the correlations between pairs of coefficients in

B06 and AW07 are not available. One approach is to entertain the extreme assumption

that the uncertainties in the coefficients, represented by the associated ± values, have

a correlation of 1, i.e. that the errors all move together in the same direction. In this

perfectly correlated errors method, consideration of the errors takes the form of a simple

upper/lower bound method by creating an upper and lower IPE for a given magnitude

based on the upper and lower range of the coefficients. We then fit the data to the upper

and lower IPEs. The Mbest magnitudes of the minimized RMS for the upper and lower

IPEs form the uncertainty ranges for the Mbest of the central minimized RMS. AW07

provides an error range for only one of its coefficients, whereas B06 provides errors for

all coefficients. Hence, the perfectly correlated errors method results in B06 having an

apparently larger uncertainty than AW07 (Table 3.3, Figure 4.9). In fact, using this

method results in B06’s Mbest uncertainty spanning the entire range of magnitudes tested
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Table 3.3. Uncertainty ranges (± SE) of best fit magnitude from different
methods for distances calculated in the same manner as the respective IPE
when derived (i.e. from closest point on fault for AW07 and from approx-
imate midpoint of surface rupture for B06). This table is summarized in
Figure 10.

IPE - Data pair Perfectly
Correlated
Errors

Uncorrelated Er-
rors

Random
Sample
Jackknife

100 km2

Spatial
Jackknife

Standard
Devia-
tion of
Residuals

AW07 - Reinter-
preted

6.9 - 7.2 7.0 - 7.2 7.0 - 7.2 6.9 - 7.3 6.5 - 7.8

AW07 - Original 7.4 -7.7 7.5 - 7.6 7.3 - 7.7 7.1 - 7.9 6.9 - 8.3
B06 - Reinter-
preted

6.0 - 8.3 6.4 - 7.5 6.8 - 7.0 6.8 - 7.0 6.5 - 7.4

B06 - Original 6.0 - 8.3 6.9 - 7.9 7.1 - 7.7 7.3 - 7.5 7.0 - 7.8

(6.0 - 8.3). Due to the difference in the number of coefficients with reported uncertainties

between the IPEs, this method is not preferred.

Another approach is to assume that the errors of the IPE coefficients are all uncor-

related. We define δi as the uncertainty for coefficient Ci, i = 0, ..., 3. For B06, the

approximate standard deviation is:

SD(MMIB06) =
1

2

√
δ20 + (δ1M)2 + (δ2D)2 + (δ3log(D))2

AW07 only provides an uncertainty for one coefficient, so if the other uncertainties are

negligible the approximate standard deviation is:

SD(MMIAW07) =
δ1
2

(Use of the factor of 1
2

is based on interpretation of the reported ± amounts as 2 stan-

dard deviations). Using these values, we again apply a simple upper/lower bound method
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Figure 3.9. Uncertainty of AW07 and B06 MMI with distance for M7.2
predictions from: (top, left) perfectly correlated errors method; (top, right)
uncorrelated errors method; (bottom) standard deviation (SD) of residu-
als method, which shows SD for the IPEs with respect to the reinterpreted
intensities. Top row methods are influenced by the different number of coef-
ficients with errors provided in the two IPEs, while bottom row is unaffected
by this and thus preferred.

to the IPEs. The upper IPE for a given magnitude is the central IPE with one standard

deviation added, whereas the lower IPE has one standard deviation subtracted (Figure

9). The results are summarized in Table 3.3. Like the perfectly correlated errors method,

this uncorrelated errors method uses an arbitrary assumption of constant correlation and
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is influenced by the different numbers of coefficients with reported errors between the

IPEs. Thus, the uncorrelated errors method is also not preferred.

An alternative approach involved assessing the uncertainty in Mbest by estimating its

variance with a jackknife method (Shao and Tu, 1995). A jackknife approach involves

repeatedly computing the desired statistic by leaving out a different subset of the data each

time. This method views the data points as coming from a random sample and takes the

coefficients in the IPEs as given (and nonrandom). This method has the advantage of not

being influenced by the different number of coefficients in the IPE for which uncertainties

were reported. We explored two different jackknife approaches, using simple random

samples and spatially clustered samples. With a simple random sample approach, each

record in the dataset was assigned a random number uniformly distributed between 0 and

1. To make the two datasets evenly divisible by 100, we took a simple random sample

of 1,100 observations selected without replacement from each. The data were sorted by

the random numbers in ascending order, and the 1,100 observations were formed into 11

groups of 100 observations (i.e. group 1 is records 1-100, group 2 is records 101-200, etc.).

Each of the 11 groups is thus a non-overlapping simple random subsample of size 100.

Using smaller subsample sizes than 100 led to subsample values of Mbest that had zero

variability. We then repeatedly compute Mbest for each jackknife replicate sample of 1,000

observations, formed by leaving out successive groups individually.

Spatial correlations are evident in the residual plot (Figure 4.5). To account for this,

we also use a spatial cluster sampling jackknife. The study area was spatially gridded

into 100 km2 blocks, which we treated as arising from cluster sampling. This resulted in

68 blocks with at least one observation. For the original dataset, the maximum number
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of observations in a block was 135, the median was 8, and the mean was 16.5. For

the reinterpreted dataset, the maximum number of observations in a block was 168, the

median was 8.5, and the mean was 16.8. We then computed Mbest by excluding successive

blocks of data individually. We did not include blocks with zero observations in the

jackknife.

The jackknife sample excluding the jth group or block yields an estimate of Mbest,

θ̂(j). Combined, they yield

θ̂(.) =
1

g

g∑
j=1

θ̂(j)

where g is the number of groups for the simple random sample approach, and the

number of blocks that contain at least one data point for the spatial clustering approach.

The jackknife estimate of variance is

V̂jack =
g − 1

g

g∑
j=1

(θ̂(j) − θ̂(.))2

and the estimate of standard error (SE) is SE =
√
V̂jack. The resulting uncertainties

are given by the range of Mbest ± SE (Table 3.3).

A final measure of uncertainty comes from the standard deviation of residuals, defined

as observed minus predicted MMI, for the different data-IPE pairs. Atkinson and Wald

(2007) used this method on the mean MMI of log10 distance binned observations (as in

Figure 4.7) and found that their model had an uncertainty of 0.4 MMI units. We followed

suit and found the standard deviation of residuals for the different data-IPE pairs. Using
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distances from IPE source, the standard deviations of the residuals computed at the IPE-

data pairs respective Mbest ranged from 0.6 for B06 - Original to 1.0 for AW07 - Original.

As done above, we created an upper and lower IPE by adding or subtracting the resulting

standard deviation from the central IPE for a given magnitude (Figure 4.9). We then

fit the full datasets to the upper and lower IPEs, giving a range of Mbest. Results are

summarized in Table3.3. This method, like the two jackknife methods, is not affected

by the number of coefficients with errors provided in the different IPEs. Of the three

preferred methods, the standard deviation of residuals yielded the largest estimate of

uncertainty in Mbest.

3.8. Results

As discussed previously, it is likely that neither the AW07 nor the B06 IPE is entirely

appropriate for a reinterpreted traditional intensity dataset like that determined in this

study. From the results in Tables 3.2 and 3.3, which are summarized in Figure 10, the

plausible range in Mbest values is 6.5 to 7.8. This range encompasses those for reinter-

preted data from B06 and AW07 via the two jackknife and standard deviation of residuals

methods. Figure 3.10 shows the uncertainty ranges from Table 3.3 and a combined sum

of the number of occurrences of specific magnitudes within these ranges. The combined

sum yields a well-defined peak at M 7.1 for distances computed with respect to the IPE

source.

The AW07 relationship was not expected to be a good predictor of originally assigned

intensities, so this pair’s outlier status for minimum RMS misfit and corresponding Mbest

is not surprising. To explore the influence of this outlier, we considered the IPE-data pairs
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with and without AW07 - original. The variance of the RMS among the four IPE-data

combinations is minimized at M 7.4 with respect to the IPE source, whereas the variance

is minimized at M 7.2 when the outlier is excluded. An unweighted average of Mbest over

all four IPE-data pairs gives M 7.2 when distance is computed from IPE source (Table

3.2). An unweighted average of Mbest using the three more consistent IPE - data pairs

(i.e. excluding AW07 - original) gives M 7.1 for distances computed from IPE source.

Using inverse-variance weighting, we estimate a combined-best magnitude for each

uncertainty method considering all four IPE-data pairs and considering the three consis-

tent pairs, i.e. excluding AW07 - original. Using weights designed to capitalize on small

uncertainties, the inverse-variance weighting method is:

M̂ =

∑n
i=1

Mi

ε2i∑n
i=1

1
ε2i

Where M̂ is the combined-best magnitude estimate i is the IPE-data combination n is

the number of IPE-data pairs considered, in this study 3 or 4 Mi is Mbest for combination

i, from Table 3.2 εi is the uncertainty range of Mbest for combination i, i.e. the ranges

from Table 3.3

Results of this analysis are summarized in Table 3.4. The unweighted average of all

four IPE-data pairs is the same as the average inverse-variance weighted Mbest of all four

pairs over the five different uncertainty methods.

Based on these results, which give single points, and those summarized in Table 3.3

and Figure 3.10, which give ranges, our best estimate of the magnitude of the Kern County

earthquake is MI7.2±0.2. Recall that intensity magnitude MI , a magnitude obtained from

intensity data, is derived in terms of moment magnitude MW and so is designed to reflect
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Table 3.4. Results of inverse-variance weighting for the different uncertainty
methods, with the average over all methods, using distances calculated in
the same manner as the respective IPE when derived (i.e. from closest point
on fault for AW07 and from approximate midpoint of surface rupture for
B06). Inverse-variance is computed using the three IPE-data pairs with the
lowest minimum RMS values (inverse-variance 3) and with all four IPE-data
pairs (inverse-variance 4).

IPE - Data
pair

Perfectly
Correlated
Errors

Uncorrelated
Errors

Random
Sample
Jackknife

100 km2

Spatial
Jackknife

Standard
Devia-
tion of
Residuals

Av.

Inverse -
variance 3

7.1 7.1 7.0 7.1 7.2 7.1

Inverse -
variance 4

7.3 7.4 7.1 7.2 7.2 7.2

the moment magnitude. Because it is not a moment magnitude in the strictest sense, we

prefer the MI terminology. The reported uncertainty of ±0.2 reflects the collective (and

consensus) judgement of the authors, based on our uncertainty analyses, that the odds

are 2:1 that the true MI is in the range 7.0 to 7.4.

In this study, AW07 combined with reinterpreted intensity data using distances com-

puted from the closest point on the fault gives Mbest that agrees most closely with this

preferred magnitude. Hence, we conclude that AW07 best describes the reinterpreted

shaking distribution of the 1952 Kern County earthquake.

3.9. Discussion

The different methods presented to infer the uncertainty in Mbest are sensitive to

different aspects of the underlying uncertainties in both the IPEs and the data. The

perfectly correlated and uncorrelated error methods account only for uncertainties in the

IPEs. The jackknife methods account for sampling errors under assumed hypothetical
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Figure 3.10. Range of Mbest magnitude estimates from the five uncertainty
methods for the four IPE-data pairs (Table 3.3), computed as distance
from closest point on the fault for AW07, and from approximate midpoint
of surface rupture for B06. The sum line is the sum of the occurrences of a
given magnitude, showing a peak at centered on M 7.1.

sampling models. The spatial jackknife additionally takes spatial correlation of data into

account. The standard deviation of residuals method is sensitive to both the IPE and,

to some extent, the data sampling. The distance-binning of the residuals method takes

some spatial correlation into account, although not to the extent that the spatial jackknife

method does, while also considering lack of fit of the data to the IPE.
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Although questions remain about the consistency of DYFI intensities and traditional

intensities assigned following modern practices (Hough, 2013, 2014), we believe that our

reinterpretation of historic intensity data for the Kern County earthquake provides an

improved characterization of both its magnitude and the ground shaking. Our preferred

magnitude estimate is slightly lower than the current catalog estimate (MW 7.5; Hutton et

al., 2010) but consistent with the geodetically determined magnitude (MW 7.2; Bawden,

2001) and the previously determined intensity magnitude ( MI 7.3; Bakun, 2006). The

earthquake generated potentially damaging ground motions (MMI 6 - 7) to distances of

over 300 km, with an overall felt extent covering most of California. Our results suggest

that shaking was stronger on the hanging (south) wall of the White Wolf fault than on

the footwall, a fortuitous result because most of the population in the near-field region

was north of the fault.

A growing body of evidence further suggests that near-field shaking in large earth-

quakes can be significantly tempered by pervasively non-linear response of soft, water-

saturated sediments (e.g., Trifunac, 2003; Adhikari et al., 2017). Non-linear effects pose a

potential challenge for the development of intensity prediction equations, in particular if

they are not well constrained for large magnitudes. Hence extrapolations that are reason-

able for relatively weak shaking levels might not be appropriate at the strongest near-field

shaking levels. A further practical caution, however, is that the extent of deamplification

will depend on the impedance and degree of water saturation of near-surface sediments.

As discussed by Trifunac (2003), non-linear effects will be less pronounced on older, more

consolidated sediments than on soft, water-saturated sediments.
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Our reinterpreted intensity distribution provides a missing puzzle piece for the larger

picture of California’s maximum historically observed earthquake intensities. Other big

pieces are already in place: intensities have been revisited in recent years for the large

events of Fort Tejon in 1857, Hayward in 1868, Owens Valley in 1872, Laguna Salada in

1892, San Francisco in 1906, and Santa Barbara in 1925, as well as many moderate his-

toric events (Meltzner and Wald, 1999; Hough and Elliot, 2004; Boatwright and Bundock,

2008a, 2008b; Hough and Hutton, 2008; Hough and Martin, 2018). These reinterpreta-

tions, combined with DYFI data for more recent events, will eventually produce a uniform

shaking dataset with which earthquake hazard map performance can be assessed.

Probabilistic seismic hazard assessment maps show the amount of shaking a site is

expected to experience in a given observation window, for an event with a given return

period, with a certain probability. Maps of intensity observations have been used to assess

earthquake hazard map performance in Japan, in Italy, and in the Central and Eastern

United States (Stein et al., 2015; Brooks et al., 2016, 2017). However, such testing has

not been possible in California due to a lack of a long record of consistently interpreted

intensity data. Further work will be needed to compile such a dataset for all moderate to

large historic and early instrumental earthquakes in California. Further studies, informed

by the discussion of uncertainties presented in this study, can also potentially improve

magnitude estimates of key events.
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CHAPTER 4

California Historical Intensity Mapping Project (CHIMP)

4.1. Summary

Historical seismic intensity data are useful for myriad reasons, including assessment of

the performance of Probabilistic Seismic Hazard Assessment (PSHA) models and corre-

sponding hazard maps by comparing their predictions to a dataset of historically observed

intensities in the region. To assess PSHA models for California, a long and consistently

interpreted intensity record is necessary. For this purpose, the California Historical In-

tensity Mapping Project (CHIMP) has compiled a dataset that combines and reinterprets

intensity information that has been stored in disparate and sometimes hard-to-access lo-

cations. The CHIMP dataset also includes new observations of intensity from archival

research and oral history collection. Version 1 of the dataset includes 46,502 intensity

observations for 62 earthquakes with estimated magnitudes ranging from 4.7 to 7.9. The

162 years of shaking data show observed shaking lower than expected from seismic haz-

ard models. This discrepancy is reduced, but persists, if historical intensity data for the

largest earthquakes are smoothed to reduce the effects of spatial under-sampling. Possible

reasons for this discrepancy include other limitations of the CHIMP dataset, the hazard

models, and the possibility that California seismicity throughout the historical period has

been lower than the long-term average. Some of these issues may also explain similar

discrepancies observed for Italy and Japan.
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4.2. Introduction

Because major earthquakes and the resulting strong shaking are rare events in any one

area, it is difficult to assess how well earthquake hazard models and the corresponding

maps describe the actual shaking that occurs. The problem is challenging both because

of limitations in the available data and because of conceptual issues in how to assess

the performance of probabilistic forecasts (Gneiting and Katzfuss, 2014; Marzocchi and

Jordan, 2014; Wang, 2015; Vanneste et al., 2018). Ideally, assessments should be prospec-

tive, i.e. use only shaking that occurred after a model was made. For example, Brooks

et al. (2017; 2019) compared intensities from (presumed) induced earthquakes in the

Central United States with predictions of a one-year hazard model. However, shaking

data recorded since PSHA began typically span a time period that is short compared to

the return period of a PSHA model, and hence rarely include data from the moderate

and large earthquakes that control hazard. The methods referenced above have therefore

been developed to allow historically observed intensities to be compared numerically to

PSHA model predictions, over the duration of the historical catalog.

Retrospective assessments, or hindcasting, using compilations of historical shaking

data spanning hundreds of years, can reduce this problem (Stirling and Peterson, 2006;

Stirling and Gerstenberger, 2010; Nekrasova et al., 2014; Mak et al., 2014; Stein et al.,

2015; Mak and Schorlemmer, 2016; Brooks et al., 2016; 2017a,b; 2019). Such assessments

compare PSHA model predictions to historically observed shaking from earthquakes that

occurred before the models were made. We use the term “historical” to mean the time

before the modern instrumental catalog, i.e. pre-1970s and going back to the earliest

available written accounts of shaking.
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In this paper, we assess the United States Geological Survey (USGS) National Seismic

Hazard Model (NSHM) for California and surroundings that uses fault rupture forecasts

from UCERF-3 and Ground Motion Models (GMMs) from the NGA-West2 project (Bo-

zorgnia et al., 2014; Field et al., 2014; Petersen et al., 2014). These models include

information about historical earthquakes, but do not explicitly use historically observed

shaking intensities, some of which had not yet been compiled when the models were made.

Because the hazard model parameters were not chosen to specifically match the past in-

tensity data, comparing the model and historic shaking data can yield insight into the

models’ performance and potential improvements.

Historical accounts of shaking by witnesses of an earthquake provide the basis for

assignment of seismic intensity, a measure based on the effects of shaking on man-made

structures and objects within them. Intensity is therefore a good tool for characterizing

the distribution of shaking at many locations both near and far from the source. The

U.S. government has been collecting first-hand accounts of shaking over the past century,

and newspaper accounts go back even further (Byerly and Dyk, 1936; Toppozada and

Branum, 2004). These reports have been collected in various government publications

and assigned individual intensity levels using the Modified Mercalli Intensity (MMI) scale

(Wood and Neumann, 1931; Richter, 1958). Best practices for assigning MMI values have

evolved over time (Ambraseys, 1971; Hough, 2014). Compiling a consistent record of

intensity data requires consistent reinterpretation of intensity assignments, a need that

motivated the development of CHIMP.

This paper presents version 1 of the CHIMP (CHIMP-1) dataset of intensity val-

ues from large and moderate earthquakes expected to control the maximum shaking in
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California over the past 162 years (Figure 1; see Supplemental Material). The dataset

includes ”Did You Feel It” (DYFI) data for recent earthquakes (∼ 1990 onward), inten-

sities reinterpreted from felt reports since about 1924 when the U.S. government began

collecting them systematically, intensities inferred from historical accounts, and for two

earthquakes, intensities from oral history collected by the authors of this study. CHIMP

contains consistently reinterpreted intensity assignments for each individual earthquake

and a map of historically observed maximum shaking intensities. We also present CHIMP

version 1A (CHIMP-1A), which includes smoothed data for the three largest and oldest

earthquakes in the dataset.

We compare the CHIMP datasets to the 2018 USGS NSHM (Rukstales and Petersen,

2019) to explore various aspects of how the models perform and possible approaches to

improving them. We use different metrics to explore how model performance varies in

space and time. The shaking dataset has been developed specifically for comparison with

hazard models, so features intrinsic to the historical data are identified and addressed in

the performance assessment.

4.3. Historical Macroseismic Intensities

CHIMP builds on past studies of historical and instrumental earthquakes in Califor-

nia, including seminal work by Toppozada et al. (1981) and Boatwright and Bundock

(2005; 2008), long-running postcard questionnaire programs by government agencies (e.g.,

Byerly and Dyk, 1936; Dewey et al., 1995), and, most recently, the USGS “Did You Feel

It?” (DYFI) system. DYFI collects macroseismic information over the web and as-

signs Community Internet Intensity (CII) values using an algorithm (Wald et al., 1999)
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Figure 4.1. Map of earthquakes included in the maximum shaking dataset,
labeled by year and scaled by moment magnitude.

adapted from the Community Decimal Intensity (CDI) algorithm developed by Dengler

and Dewey (1998). DYFI initially reported average CII values within postal ZIP codes,

and increasingly reports intensities for geocoded cells. DYFI intensities have also been
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collected retrospectively for some large earthquakes. For example, although DYFI de-

buted in 1999, DYFI intensities from the 1992 Landers and 1994 Northridge earthquakes

are available from over 300 and over 700 ZIP codes, respectively. Efforts like CHIMP and

DYFI are part of a growing effort worldwide to collect, disseminate, and analyze regional

and global seismic intensity information (Stucchi et al., 2004; Locati and Cassera, 2010;

LaMontagne and Burke, 2019), although methods and intensity scales still vary widely

(De Rubeis et al., 2019). Some intensity data for past earthquakes worldwide (1638 -

1985) are available via the National Oceanic and Atmospheric Administration (NOAA)

Earthquake Intensity Database (See Data and Resources). For U.S. earthquakes, this

database includes intensities from the United States Earthquakes report series, with some

modification. The California Geological Survey’s Historic Earthquake Online Database

(see Data and Resources) contains felt report summaries and intensity assignments for

earthquakes in California and adjoining regions, drawing from earlier work by Toppozada

et al. (1981) and others.

Combining and consistently interpreting intensity data from different sources and

times requires care, for several reasons:

(1) A large body of work, starting from Ambraseys (1971, 1983), shows that, although

environmental effects like landslides and liquefaction potentially provide useful

information about ground motions, without careful consideration they are not

reliable indicators of peak ground acceleration (PGA), as was assumed in the

initial formulation of the MMI scale. For this reason, we exclude reports that

mention only environmental effects in CHIMP.



105

(2) The assignment of intensity based on a written account is inherently subjective,

and the degree of conservatism varies among researchers.

(3) The NOAA database is especially problematic, with originally assigned intensities

of 1-3 (or 1-4) generally listed as MMI 3 (or MMI 4).

(4) Assessment of intensity values evolved significantly from the early 20th century

onward. Early assessments gave more weight to subjective human response, e.g.

if people reported being frightened by shaking. Moreover, accepted practice

was to assign a higher intensity if a single indicator corresponded to intensity

level N, even if overall effects suggested N-1 (or even N-2) (Dewey, personal

communication, 2018).

The issue of subjectivity in factor 2) has been addressed in recent work showing that

differences in intensity estimates decrease as the level of expertise increases and that

assigning intensities through numeric forms, like DYFI and equivalent systems, reduces

the difference in estimates from historical documents (Sira et al., 2019). MMI assignments

tend to vary by ±1 units between researchers (Hough and Page, 2011; Salditch et al.,

2018). Reinterpretations in CHIMP are given as the mean of two independent assignments

to help reduce uncertainty. For the 1857 Ft. Tejon earthquake, the oldest earthquake

in CHIMP and hence the most uncertain, four independent intensity assignments were

made and averaged. Although it remains difficult if not impossible to formally assign

uncertainties to intensity assignments, ±1 unit is a reasonable estimate of uncertainty for

an individual assignment (see Hough and Page, 2011).

Factor 4) is the most potentially problematic because the assessment of numerical in-

tensities evolved over time from assigning intensities based on the most dramatic reported
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effects, to assigning representative values for an area. The DYFI algorithm determines

representative intensities by averaging responses to each individual question on the ques-

tionnaire and calculating a weighted average intensity within a ZIP code or geocoded cell

(Wald et al., 1999).

Intensity values have also been colored by a reporting bias whereby the media focus on

the most dramatic damage rather than the overall level of damage (Richter, 1958; Hough,

2013; 2014). This bias tends to be strongest when written reports are short, so more

extensive accounts typically provide a better sense of overall effects. Thus, the bias tends

to be more significant for earlier earthquakes, for which newspaper and other accounts are

often especially fragmentary, than for more recent events. A reporting bias still commonly

exists in coverage of even recent earthquakes, such that care is needed if intensities are

determined from available media accounts.

Hough (2014) proposed a correction curve approach to convert conventional intensities

to DYFI intensities. This approach was developed based on older published conventional

intensity values. Over time, as noted, the assignment of traditional intensities has evolved

toward a more conservative approach, such that subjective assignments better align with

DYFI values. The reinterpretations undertaken as part of the CHIMP effort were largely

motivated by the need to address this issue for earthquakes for which a modern reinter-

pretation had not been done by studies such as Boatwright and Bundock (2005, 2008).

The CHIMP dataset itself provides an argument against applying a correction curve ap-

proach; for example, the extensive set of intensities for the 1906 earthquake (Boatwright

and Bundock, 2005) includes 23 MMI 1s (not felt) and 93 2.0-2.5 values, out of a total

of 684 locations. The correction curve would reduce these low values, in many cases to
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intensities below 2, which would be inconsistent with DYFI assignments. We recognize

that subjectively determined intensities will never be entirely consistent with those deter-

mined by an algorithm such as that used by the DYFI system, a fundamental limitation

of the CHIMP dataset. Nonetheless, the value of creating a complete dataset outweighs

the unavoidable limitations associated with use of different intensity types.

The above limitations of early intensity data, some of which persist with modern

studies, caused some researchers to denigrate the value of such “unscientific” data (Hough,

2000). Characterization of shaking severity by a single number has limitations, because

the character of ground motions depends on duration and frequency content as well as

peak velocity or peak acceleration. Overwhelmingly, shaking intensities are controlled by

frequencies between 1-8 Hz (Trifunac and Brady, 1975; Sokolev and Chernov, 1998). With

rare exception, intensity data thus cannot constrain long-period (< 1 Hz) shaking effects

(Hanks and Johnston, 1992; Hough, 2014). Accordingly, intensity magnitudes based

on macroseismic data alone provide an estimate of energy magnitude, but only limited

constraint on moment magnitude (Hough, 2014). By the same token, historically observed

intensities are not expected to provide much constraint on the levels of long-period ground

motions that will potentially affect large modern structures.

Intensity data do, however, provide an integrated measure of shaking over the main

frequency range of engineering concern, and are increasingly recognized to be of great

value, if they are interpreted carefully with an appreciation of limitations. To cover the

range of perceptible earthquake ground motions with a 10-step intensity scale, each step

in intensity must correspond robustly to a factor of approximately 2 in PGA (Hough,

2000). DYFI and other internet-based systems demonstrate that consistently interpreted
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intensity data provide surprisingly reliable indicators of ground motions (e.g., Atkinson

and Wald, 2007; Worden et al., 2012) and can provide important insights about earthquake

source parameters, site, and path effects. USGS ShakeMaps - which depict intensity

values calculated from instrumental recordings - rely on DYFI data to flesh out shaking

distributions, in particular in areas where instrumentation is sparse. As we will discuss

shortly, consistently interpreted intensity data can be used for assessing the performance

of PSHA models, in particular where PSHA models are cast in terms of intensity (e.g.,

Brooks et al., 2016; 2017a,b; 2019).

4.4. CHIMP Dataset

The CHIMP dataset encompasses 62 earthquakes occurring between 1857 and 2019

(Figure 1). Because reconsideration of all macroseismic data for California earthquakes

would be prohibitively time-consuming, we focus primarily on the set of MW > 6 earth-

quakes since 1857 that we expect will control maximum observed shaking throughout the

state (Table 4.1). We make exceptions on the magnitude cutoff for some recent, smaller

events that may control the maximum shaking in their epicentral area. Hence the data go

back 162 years but are not uniformly complete - the coverage and number of contributing

reports is heavily weighted toward the more recent DYFI end of the dataset. Earlier

earthquakes included are fewer and larger in magnitude. Including moderate earthquakes

is only possible for the recent DYFI-era events because of the better spatial coverage

overall and sensitivity to smaller events. The 1987 Whittier Narrows earthquake is the

earliest in the dataset with magnitude lower than MW 6, followed by Sierra Madre in 1991.

The final six earthquakes smaller than MW 6 occur during 2000 - 2009. Our selection
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of events for the CHIMP dataset was subjective, so we may have missed other moderate

events that controlled intensities in their local area.

Table 4.1. Example reports from primary dataset, comparing original and
reinterpreted MMI. Groundwater and secondary geologic indicators were
not considered in the reinterpretations.

CHIMP

Label

Date

(m/d/yr)

Location Moment

Magni-

tude

Epicenter

Longitude

Epicenter

Latitude

No.

IDP

1857 1/9/1857 Fort Tejon* 7.9 -120.300 35.700 71

1868 10/21/1868 Hayward 6.8 -122.100 37.700 162

1872 3/26/1872 Owens Valley 7.8 -118.100 36.700 147

1873 11/23/1873 Cali/Oregon

border

6.9 -124.200 42.000 120

1892 2/23/1892 Laguna Salada 7.8 -115.630 32.550 37

1898 4/15/1898 Mendocino* 6.9 -123.800 39.200 33

1906 4/18/1906 San Francisco 7.9 -122.550 37.750 684

1911 7/1/1911 South Bay* 6.6 -121.750 37.250 38

1918 4/21/1918 San Jacinto* 6.8 -117.000 33.750 141

1925 6/29/1925 Santa Barbara 6.8 -119.800 34.300 237

1927a 11/18/1927 Bishop* 5.5 -118.750 37.500 8

1927b 11/4/1927 Lompoc* 6.9 -120.774 34.813 160

1932 12/20/1932 Nevada* 6.8 -117.910 38.631 3

1933 3/10/1933 Long Beach 6.4 -118.000 33.631 223
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1934 12/31/1934 Colorado River* 6.4 -115.176 32.180 39

1937 3/25/1937 Buck Ridge* 6.0 -116.250 33.400 65

1940 5/18/1940 Imperial Valley* 6.9 -115.381 32.844 201

1942 10/21/1942 Fish Creek* 6.6 -115.785 32.975 143

1946 3/15/1946 Walker Pass* 6.3 -117.944 35.702 187

1947 4/10/1947 Manix* 6.5 -116.532 34.983 220

1948a 12/4/1948 Desert Hot

Springs*

6.0 -116.331 33.983 275

1948b 12/29/1948 NE California* 6.0 -120.080 39.550 81

1952a 7/21/1952 Kern County 7.5 -118.998 34.958 1,062

1952b 11/22/1952 Bryson* 6.2 -121.328 35.723 86

1954a 3/19/1954 San Jacinto 6.4 -116.081 33.299 149

1954b 7/6/1954 Nevada* 6.8 -118.530 39.420 170

1966 9/12/1966 Northern

CA/Truckee*

5.9 -120.160 39.438 62

1968 4/8/1968 Borrego* 6.6 -116.103 33.180 306

1971 2/9/1971 Sylmar 6.6 -118.370 34.416 115

1979 10/15/1979 Imperial Valley 6.4 -115.359 32.667 19

1980a 5/25/1980 Mammoth* 6.1 -118.831 37.590 23

1980b 11/8/1980 Eureka* 7.2 -124.253 41.117 18

1983 5/2/1983 Coalinga 6.7 -120.312 36.232 50

1984a 4/24/1984 Morgan Hill* 6.2 -121.679 37.310 194
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1984b 11/23/1984 Round Valley* 6.1 -118.607 37.460 33

1986a 7/8/1986 N. Palm Springs 6.0 -116.608 33.999 40

1986b 7/21/1986 Chalfant Valley* 6.4 -118.443 37.538 32

1987a 10/1/1987 Whittier Nar-

rows*

5.9 -118.079 34.061 127

1987b 11/24/1987 Superstition

Hills*

6.6 -115.852 33.015 14

1989 10/17/1989 Loma Prieta 6.9 -121.880 37.036 27

1991 6/28/1991 Sierra Madre 5.8 -117.993 34.270 31

1992a 4/22/1992 Joshua Tree* 6.1 -116.317 33.960 59

1992b 4/25/1992 Rio Dell 7.2 -124.449 40.335 1

1992c 6/28/1992 Landers 7.3 -116.437 34.200 157

1992d 6/28/1992 Big Bear 6.3 -116.827 34.203 310

1993 5/17/1993 Big Pine* 6.1 -117.774 37.165 5

1994 1/17/1994 Northridge 6.7 -118.537 34.213 351

1999 10/16/1999 Hector Mine 7.1 -116.265 34.603 721

2000 9/3/2000 Northern CA 4.9 -122.413 38.379 213

2001 8/10/2001 Northern CA 5.2 -120.617 39.811 295

2003 12/22/2003 San Simeon 6.5 -121.100 35.700 1,070

2004 9/28/2004 Shandon 6.0 -120.366 35.818 565

2005a 6/12/2005 Anza 5.2 -116.567 33.532 489

2005b 6/14/2005 Mendocino 7.2 -125.953 41.292 388
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2007 10/30/2007 San Francisco

Bay

5.5 -121.774 37.434 5,775

2008a 2/21/2008 Wells, Nevada 5.9 -114.872 41.144 997

2008b 7/29/2008 Chino Hills 5.4 -117.766 33.949 7,289

2009 5/17/2009 Lennox 4.7 -118.336 33.938 589

2010 4/4/2010 Baja 7.2 -115.295 32.286 4,170

2014 8/24/2014 Napa 6.0 -122.312 38.215 3,938

2019a 7/4/2019 Ridgecrest 6.4 -117.504 35.705 1,242

2019b 7/6/2019 Ridgecrest 7.1 -117.599 35.770 12,045

CHIMP includes the 15 April 1898 Mendocino earthquake, the only pre-1900 earth-

quake in California for which an instrumental magnitude has been determined (Abe,

1994), and several large historical earthquakes: 1857 Fort Tejon, 1868 Hayward, 1872

Owens Valley, 1873 California/Oregon border, and 1892 Laguna Salada. Intensity values

have been reinterpreted for these earthquakes (Hough and Elliot, 2004; Boatwright and

Bundock, 2008; Hough and Hutton, 2008; Brocher, personal communication 2019 (unpub-

lished USGS OFR)). Intensity distributions have been revisited for several of the largest

20th century earthquakes, including 1906 San Francisco (Boatwright and Bundock, 2008),

1925 Santa Barbara (Hough and Martin, 2018), 1933 Long Beach (Hough and Graves,

2020), and 1952 Kern County (Salditch et al., 2018). DYFI data are available for 25

earthquakes (Table 4.1), including the 1989 Loma Prieta earthquake.
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We reconsidered the intensity distributions for 29 earthquakes. For most of these earth-

quakes, summaries of postcard questionnaires are available in reports published by the

U.S. Weather Bureau, Coast and Geodetic Survey, and later by the USGS. The primary

contributors are “United States Earthquakes” and “Abstracts of Earthquake Reports.”

The latter represents an intermediate phase between the primary sources, the original

questionnaires/press reports, and the secondary summaries given in “United States Earth-

quakes.” The Abstracts document effects not commonly reported in the former, such as

effects observed in low-intensity communities for earthquakes that produced high inten-

sities elsewhere (Dewey, personal communication 2019). The Abstracts from 1929 - 1973

are available as scanned copies online through resources such as the Hathi Trust Digital

Library (see Data and Resources) and most exist as paper or digital copies in the archives

of the National Earthquake Information Center in Golden, Colorado. The summaries in

these reports required transcription and reinterpretation of the originally assigned inten-

sities. These data sources were supplemented by newspaper accounts (e.g., Toppozada et

al., 1981), which in some cases were augmented with accounts gleaned from searchable

online newspaper repositories and other sources, which again required transcription and

intensity assignments.

Full characterization of the shaking distribution of the 29 historical and early instru-

mental earthquakes would be valuable for myriad reasons, but prohibitively time consum-

ing. Because our work focuses on maximum intensities observed throughout California,

and the handful of largest earthquakes (1857, 1872, 1906, etc.) effectively establishes MMI

4 as a lower bound on maximum observed intensities anywhere in the state, we reviewed

available sources to compile information for earthquakes where MMI 5 or greater shaking
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was observed, while still including lower intensities values where described by full felt

reports. If a report contained just a location and MMI assignment without a report, we

did not include it in CHIMP. For some earthquakes, the few reports of moderately high

intensities are straightforward to compile. For more widely felt earthquakes, however,

such as the 1918 San Jacinto and 1927 Lompoc earthquakes, macroseismic information is

more plentiful, and required more time to review.

Reinterpretation methods for CHIMP differ from the original MMI classification by

Wood and Neumann (1931), updated by Richter (1958), in the following ways:

(1) Taking Ambraseys’ (1983) conservative approach to secondary geologic indica-

tors.

(2) Using quartile decimal (e.g., 5.25) rather than integer values of MMI when some

but not all indicators for a certain shaking level are present.

(3) Giving more weight to the disturbance of objects than to subjective human re-

actions. Originally, the disturbance of objects and personal reactions were given

about equal weight for the lower intensities (USDOC, 1966).

(4) Assigning MMI 5 only when accounts describe toppling of small objects, a key

objective indicator for this intensity level (Richter, 1958).

(5) Differentiating between MMI 2 (felt/felt by few) and 3 (felt by many/hanging

objects swing), rather than characterizing weakly felt intensities as MMI 1-3, as

was the earlier practice in the US Earthquake report series.

(6) Assigning MMI 1 for sites “Reported not felt”, following Ambraseys’ (1983) rec-

ommendation and generally in line with current practice (including DYFI).
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CHIMP-1 includes 46,502 intensity data points (IDPs). The final dataset reports MMI

to one decimal place, rounded up, in keeping with DYFI standards. The vast majority

(88% or 40,887 IDPs) of those points are from DYFI, although they account for just

12% of the time period covered and 48% of the earthquakes. Historical IDPs, of which

5,615 were included in this study, represent the remaining 12%. Of those 5,615 individual

historical felt reports, 2,794 were reinterpreted by two authors of this study. We give

the mean value of the two assignments in CHIMP-1. These assignments matched 38% of

the time, 72% were within ±0.5 MMI units, and 94% were within ±1 unit. Figure 4.2

shows the maximum intensities observed in 10- by 10-km grid cells for which one or more

intensity value is included in the CHIMP-1 dataset.

CHIMP can give different levels of detail depending on user needs. So that this infor-

mation can be reinterpreted later, we provide in the ‘repository’ (see Data and Resources)

the full felt report for each reinterpreted intensity assignment, and give the two assign-

ments that go into the mean. The ‘dataset’ provides CSV/txt files of longitude, latitude,

and MMI/CDI (see Supplemental Material).

4.5. Oral History Collection

In the 1990s, during the transition from postcards to the DYFI system, which went

online at the turn of the millennium, the USGS collected intensity information for only the

most damaging events, e.g. the MW 7+ 1992 Landers and 1994 Northridge earthquakes.

As a result, two minimally damaging MW 6.1 earthquakes, those of 1992 in Joshua Tree

and 1993 near Big Pine, did not have intensity data compiled in the usual systematic

way. Because these earthquakes pre-date the onset of the DYFI system but post-date the
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Figure 4.2. CHIMP-1 map of maximum observed intensities in California.
Open circles represent the causative epicenters, scaled by moment magni-
tude. SF is San Francisco, LA is Los Angeles.

collection of postal questionnaires, there is a lack of publicly available intensity information

for them.

To correct for this data gap two authors of this study, Salditch and Gallahue, gath-

ered intensity information by collecting oral history reports of shaking by local witnesses
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and newspaper accounts. This field work resulted in 13 in-person interviews with resi-

dents, several more questionnaire responses (designed after DYFI surveys), and dozens of

newspaper reports giving 61 new IDPs for Joshua Tree and 5 for Big Pine. The latter

location is much more sparsely populated and so provided fewer new IDPs. The new data

are especially useful for the Owens Valley portion of the CHIMP map, which has areas

without reports in the Sierra Nevada and Basin and Range regions.

Most interviewees learned of the study from advertisements. Local media, includ-

ing radio station Z 107.7 and The Hi-Desert Star newspaper, covering the high desert

around Joshua Tree, as well as The Inyo Register and 100.7 KIBS, covering the Owens

Valley/Eastern Sierra Nevada region around Big Pine, ran announcements and articles

about the project. The Yucca Valley, Palm Springs, and Joshua Tree Public Libraries

generously hosted drop-in interviews. Newspaper accounts came from the archives of the

Desert Sun on microfilm at the Palm Springs Public Library, and bound volumes of the

Hi-Desert Star available at their offices in Yucca Valley.

This oral history collection could be replicated for other moderate earthquakes occur-

ring during the lifetime of current generations. Memories are the most evanescent source

of intensity data available - and therefore most at risk of being lost.

4.6. Retrospective Assessment of Hazard Maps with Historical Data

We assessed the performance of two of the 2018 USGS NSHM models following ap-

proaches we have used elsewhere (Brooks et al., 2016; 2017a,b; 2019). These involve

comparing the hazard models’ forecasts to the historic shaking data using different per-

formance metrics to assess various aspects of how the models performed. Assessing a
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model’s performance can be used to improve future models and the models used to gen-

erate them, in that the factors contributing to the model’s performance (source locations,

maximum magnitude, GMM, etc.) can be evaluated. These comparisons can give insight

into current models and possible approaches to improving them.

At any point on a PSHA map, the probability p that during t years of observations

shaking will exceed the value shown in a model with a T year return period is assumed

to be described by a negative exponential distribution, p = 1 − exp(−t/T ) (Cornell,

1968; Field, 2010). We consider two of the 2018 USGS models, both with t = 50 years,

but differing in return periods. For one, p = 0.1 or 10%, giving T = 475 years. For

the other, p = 0.02 or 2%, giving T = 2475 years. Equivalently, during t years on

average 10% and 2% of the sites should experience shaking greater than shown on the

map with return period T = 475 years and T = 2475 years, respectively. Utilizing the

ergodic assumption, which states that a system has the same behavior over time as it does

over space, we assume that p also reflects the fraction of sites where observed shaking

exceeds the modeled value. This approach, introduced by Ward (1995) and used in many

subsequent analyses (e.g., Albarello and D’Amico, 2008; Fujiwara et al., 2009; Miyazawa

and Mori, 2009; Stirling and Gerstenberger, 2010; Tasan et al., 2014; Nekrasova et al.,

2014; Mak and Schorlemmer, 2016) considers many sites to avoid the difficulty that large

motions at any given site are infrequent.

Comparison between the predicted and observed maximum shaking allows the calcu-

lation of performance metrics (Stein et al., 2015). Assuming that the frequency sample es-

timates correspond to the probabilities, p, the fractional exceedance metric, M0 = |f − p|

is the absolute value of the difference between the observed fraction of points f above the
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diagonal line in Figure 4.3a - sites where the largest observed shaking exceeds prediction

- to the fraction p expected. The remaining sites plot below the line, because the model

predicted shaking higher than observed. As the ratio of the observation time to the return

period (t/T ) increases, p should also increase because an increasing fraction of the area

will have experienced larger earthquakes and thus higher shaking.

Hence the shaking shown in a model with T = 500 years should be exceeded at 22%

of the sites in 125 years (t/T = 0.25), 39% of the sites in 250 years (t/T = 0.5), and 63%

of the sites in 500 years (t/T = 1) (Figure 4.3b). M0, which is based on the definition of

PSHA, has the limitation that it counts exceedances as binary - shaking at a site either

exceeded the modeled value or did not. Hence a model with exceedances at exactly as

many sites as predicted (M0 = 0) could significantly overpredict or underpredict the

magnitude of shaking (Stein et al, 2015). Because hazard model assessment is a relatively

new enterprise and only a few cases have so far been assessed, there is currently no

threshold defined for a “good” score on the M0 metric.

The related question of how well a model could realistically be expected to describe

observations, given the uncertainties in model parameters and variability in earthquake

occurrence, has been investigated via numerical simulations of ground motion by assuming

earthquakes occur randomly within a study area (Vanneste et al., 2018). As shown by

Vanneste et al. (2018) (Figure 4.3c), some places experience shaking higher than on

the hazard map, while others experience shaking lower than shown on the map. For

example, after only 50 years some sites experienced shaking stronger than shown on the

T = 2500 year map. When large earthquakes happen, shaking often exceeds that shown

on the hazard maps. As the observation time increases, the fraction of sites exceeding the
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Figure 4.3. a) Schematic observed-vs.-predicted plot showing p, the frac-
tion of sites at which the largest shaking exceeded the mapped values. b)
p should increase as the ratio of the observation time t to the model’s
return period T increases. c) Numerical simulation of maximum shaking
over time assuming earthquakes occur randomly (with a spatially uniform
distribution) within the model area with seismicity comparable to active
plate boundaries. Top row: Hazard models for return periods of 500- and
2500- years. The models and associated maps are uniform across the area,
because the expected level of shaking is the same. Middle and bottom
rows: Maps of maximum shaking at each point after observation times of
50, 125, 250 and 500 years, for one simulation. d) Comparison between ex-
pected and “observed” fractions of sites where maximum shaking exceeds
that predicted by the 500-year hazard model as a function of observation
time. Scatter decreases for longer simulations. (Panels c) and d) modified
from Vanneste et al., 2018).
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mapped value increases. An ensemble of simulations yields shaking distributions whose

mean is consistent with the model, but individual shaking histories show large scatter

(Figure 4.3d). The scatter decreases for longer simulations (increasing t/T ), because as

observation time increases, the largest earthquakes and resulting shaking are increasingly

likely to have occurred.

We also define a squared-misfit metric M1 = 1
N

∑
si − xi2 where xi and si are the

maximum observed shaking and predicted shaking at each of the N sites (Stein et al.,

2015). Graphically, M0 reflects the fraction of sites plotting above the diagonal line in

Figure 4.3a, whereas M1 reflects how close to the line sites plot. M0 is a metric based

on the definition of PSHA, describing how well a PSHA model predicts the fractional

exceedance that occurs. M1, a metric which is not based on the definition of PSHA,

describes how spatially similar the observed shaking and hazard model are. M1 quantifies

the comparison of maps of predicted and observed shaking, similar to a visual comparison.

The two metrics characterize different aspects of map performance. Hence, together

they give a fuller picture of map performance than one measure could (Stein et al., 2015;

Brooks et al., 2017a,b; 2019). PSHA models do not predict specific shaking levels but

rather probabilities of shaking exceedance. Thus a lower M1 score does not necessarily

mean that the map has performed better - as measured by M0 - than one with a higher

M1 score. Situations may arise where decreasing M1 may produce larger M0 scores.

When comparing metric scores, it is important to be aware of potential tradeoffs in these

metrics.

Because hazard model assessment is a relatively new enterprise and only a few cases

have so far been assessed, there is currently no threshold defined for a “good” score on
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either the M0 or M1 metrics. These metrics, and others that can be used (Stein et

al., 2015), are thus most useful as a tool to compare maps to observations and assess

the performance of different maps. Future consideration of many maps and numerical

simulations should provide improved understanding of the meaning of high- and low-

metric scores (Vanneste et al., 2018; Brooks et al., 2019).

4.7. Comparison of Maps and Dataset for California

Using the performance metrics described above, we compare the CHIMP-1 dataset

with the 2018 USGS time-independent seismic hazard models for California (Rukstales

and Petersen, 2019). We limit our assessment to the state of California because the rupture

forecast model used there (Field et al., 2014) differs from the models used in surrounding

states like Nevada and Arizona (WGCEP, 2013). Figure 4.2 shows the maximum shaking

values in CHIMP-1, which are sorted into 10 x 10 km grid cells, giving 38% spatial coverage

of California. For the comparison, we use two of the 2018 hazard models which assume a

reference site condition to be National Earthquake Hazards Reduction Program (NEHRP)

site class boundary B/C, corresponding to firm rock/very dense soil and soft rock, and a

Vs30 = 760m/s (Petersen et al., 2020). One has T = 475 years and hence 10% probability

of exceedance in 50 years, and one has T = 2, 475years corresponding to a 2% probability

of exceedance in 50 years. USGS PSHA models include exceedance forecasts for a number

of ground motion parameters. Models of hazard in terms of MMI are available, calculated

using Worden et al.’s (2012) ground motion intensity conversion equations (GMICE)

to convert Peak Ground Acceleration (PGA) to MMI intensity. Mapped hazard values

(Figure 4.4) are shown for points at which CHIMP-1 has values.
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Figure 4.4. Top: Comparison of (a) CHIMP-1 maximum shaking dataset to
the 2018 USGS hazard models, for (b) 475-year return period model with
10% chance of exceedance in 50 yrs and (c) 2,475-year return period model
with a 2% chance of exceedance in 50 yrs. (d), (e) Residuals (dataset -
model values) relative to both models.

In general, the shaking data are similar spatially in trends to the models. Some

fault segments have not experienced a large earthquake since 1857, notably the southern
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San Andreas. Such effects should ideally be accounted for in the model via the PSHA

algorithm. For the 162 years of observations, p = 1− exp(−162/475) = 29% of the sites

should have experienced maximum shaking greater than shown in the 475-year model.

A smaller fraction, p = 1 − exp(−162/2475) = 6%, should have experienced maximum

shaking greater than the values in the 2475-year model, because 162 years is a much

smaller fraction (6% vs. 34%) of the model return period. The longer return period

model predicts higher shaking because the largest earthquakes and shaking are more likely

to occur during the longer return period. However, comparison of the largest observed

shaking at sites to predictions of the hazard models shows observed maximum shaking

(Figure 4.4) and fractional exceedances (Figure 4.5) less than predicted. The residual plots

of (observed - predicted) intensity in Figure 4.4 show the distribution of discrepancies.

The 475-year return period model has a mean residual of -2.3 MMI, and the 2475-year

return period model has a mean residual of -3.4 MMI. Thus, on average, the observations

are approximately 3 MMI units lower than the hazard model values. The M0 score for

the 475-year model, where f is more than four times smaller than p, is 0.2248 (Table 4.2).

M0 for the 2,475-year model, where f is an order of magnitude smaller than p, is 0.057

(again assuming that frequency sample estimates correspond to probabilities, p). The M1

score for the 475-year model is 8.800, and 15.048 for the 2,475-year model.

4.7.1. Possible Causes of Discrepancy

This apparent overprediction of intensities by the PSHA model may arise due to biases

in the dataset, the hazard model, or chance. We discuss each of these possible biases in

this section.
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Figure 4.5. Histograms of residuals for CHIMP-1 points in California rela-
tive to a) 2018 USGS hazard model for 10% in 50 yrs and b) 2018 USGS
hazard model for 2% in 50 yrs. Corresponding predicted-vs.-observed plots
for CHIMP-1 relative to c) 10% in 50 yrs model (c) and d) 2% in 50 yrs
model.

Table 4.2. Comparison of performance metrics between CHIMP-1 (max-
imum observations only) and CHIMP-1A (maximum observations plus
smoothed data for 1906, 1857, and 1872).

Return period Model Probabil-
ity Exceedance

Dataset Version p f M0 M1

475 yrs 10% in 50 yrs
CHIMP-1 0.2892 0.0644 0.2248 8.800
CHIMP-1A 0.2892 0.0989 0.1903 5.656

2475 yrs 2% in 50 yrs
CHIMP-1 0.0634 0.0063 0.0570 15.048
CHIMP-1A 0.0634 0.0048 0.0585 11.152
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4.7.2. Data Underestimation

The intensity data may be biased low. In particular, the shaking data do not capture

the full extent of shaking from large historic earthquakes in the dataset, due to lack of

population. Historical accounts, and hence historical intensity assignments, are biased

by the locations and growth of population centers through time. Other potential issues

may result from the non-uniform spatial sampling that becomes sparser the further back

in time one goes: DYFI data are denser than traditional intensity data estimated from

written or archival accounts, and values inferred from historical accounts are sparser still.

Hence, some cells do not have a reported intensity value from the large historical events.

Thus, if shaking from a more recent smaller earthquake is reported there, the maximum

observed intensity in the CHIMP-1 dataset will be too low.

To address this incompleteness due to historical population distribution, we developed

CHIMP-1A by adding intensity values interpolated from the existing historical IDPs for

the large 1857, 1872, and 1906 events. We used the Natural Neighbor interpolation method

in ArcGIS to produce a smoothed intensity map for each earthquake, which we then used

to augment the CHIMP-1 maximum shaking dataset. This algorithm assigns a value

to a query point by finding the closest subset of input samples and weighting the value

proportionally to the area of overlapping Voronoi polygons (Sibson, 1981). This method

produces an objective estimate because it locally interpolates values depending only upon

known data points and their spatial distribution. In contrast to traditional hand-drawn

isoseismal maps, it is simple and reproducible (Sirovich et al., 2002). However, because

hand-drawn isoseismal maps were created using expert judgement and knowledge of lo-

cal geology, we compared our smoothing results to them (Stover and Coffman, 1993) to
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confirm that results are reasonable. We added the smoothed data for each of the three his-

torical earthquakes to the CHIMP-1 maximum observed dataset to study their effects on

performance metrics (Figure 4.6). Addition of the smoothed data more than doubles the

total number of grid cells with observations and increases the total number of exceedances

by a factor of 2 to 3 (Figure 4.7). The residual plots now show slight underprediction in an

area reaching from the Owens Valley to the Transverse Ranges, and slight overprediction

in northernmost California.

The overall overprediction remains for CHIMP-1A but is slightly reduced. The mean

residual for the T = 475-year model improves from CHIMP-1 to -1A by 0.4 MMI units

to -1.9 MMI, and by 0.5 units to -2.9 MMI for the 2475-year model. Interestingly, M0

remains largely unchanged, improving by 0.03 for the 475-year model and by just 0.001

for the 2475-year model (Table 4.2). However, M1 improves for both models, becoming

5.656 for the 475-year model and 11.152 for the 2,475-year model.

A further possible data bias stems from the incompleteness of the CHIMP-1A dataset,

via our assumption about which events will control maximum observed intensities. Earth-

quakes smaller than MW6 can generate locally high intensities. Because they are more

common than larger earthquakes, they may control the maximum historically observed

intensity in any one location. The DYFI database itself illustrates this point. Since

the introduction of the DYFI system in 1999, 18 earthquakes, 11 of which are between

MW4.7 − 5.9, generated CDI values of 6.0 or higher. (We do not consider earthquakes

smaller than MW 4.7). Of 48 earthquakes since 1999 that have generated CDI values of

5.0 or higher, 39 are smaller than MW6. It would be possible to assess the extent to which
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Figure 4.6. Comparison of CHIMP-1A maximum shaking dataset, which
includes smoothed data for 1857, 1872, and 1906 earthquakes (a), to the
2018 USGS hazard models with (b) 475-year return period with 10% chance
of exceedance in 50 yrs and (c) 2,475 year return period with a 2% chance
of exceedance in 50 yrs. (d), (e) Residuals (dataset - model values) relative
to both models.

earthquakes smaller than MW 6.0 contribute to the PSHA map by recalculating the map

using only MW ≥ 6.0 sources.
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Figure 4.7. Comparison of CHIMP-1A, which includes smoothed data for
the 1906, 1857, and 1872 earthquakes, to hazard maps. Histograms of resid-
uals for CHIMP-1A points in California relative to a) 2018 USGS hazard
model for 10% in 50 yrs and b) 2018 USGS hazard model for 2% in 50
yrs. Corresponding predicted-vs.-observed plots for CHIMP-1A relative to
c) 10% in 50 yrs model and d) 2% in 50 yrs model.

4.7.3. Model Overprediction

The model may be biased toward higher levels of shaking by various effects. One possible

cause is that California seismicity during the historical period may have been lower than

the long-term average, either due to random variability of earthquake occurrence or a

stress-shadow due to heightened activity from 1800 - 1918 that released much of the

accumulated stress, though the latter is debated (Harris and Simpson, 1998; Felzer and
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Brodsky, 2005; Biasi and Scharer, 2019). There is compelling evidence that California

has been in a state-wide lull in seismic moment release since 1910. Biasi and Scharer,

(2019) show that, effectively, the UCERF3 map overpredicts the rate of surface-rupturing

earthquakes on the San Andreas/San Jacinto/Hayward fault systems. The most recent

earthquake rupture forecast model for California (Field et al., 2014) in fact assumes that

long-term state-wide earthquake rates are slightly higher than rates through the entire

historic period. A number of other factors could bias the models to too-high values,

including the normal tendency toward conservatism in engineering design (Vick, 2002).

4.7.4. Chance

Some of the misfit may arise purely by chance. Figure 4.3 illustrates this effect for an ideal

hazard model. Even if all parameters are perfectly known, the variability of earthquake

recurrence can give rise to a range of values. In a real case, where parameters are not

known a priori and are unlikely to be exactly estimated, the variability could be larger.

If the ideal case (Vanneste et al, 2018) is representative, then these simulation studies

indicate that the misfit is large enough that it is unlikely to have arisen purely by chance

due to variability in earthquake recurrence. Hence it likely represents, at least in part,

biases in the hazard model, data, or both. Increasing the observed shaking at all sites in

CHIMP-1 and CHIMP-1A by a constant shift (Figure 4.8), which is possible given the

uncertainty in historical intensity assignments, improves M0 and M1. Figure 4.8 shows

the uncertainty range of the metrics for each dataset-model pair given the inherent MMI

uncertainty of ±1. The minima of M0 are within the uncertainty range of the intensities

for all but the CHIMP-1 475-year model, while the minima of M1 are outside that range
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Figure 4.8. Effect of applying a uniform shift to either the map’s predictions
or the CHIMP-1 observations on performance metrics M0 (dashed grey line)
and M1 (solid black line). The uncertainty for intensity values typically
ranges ±1 unit (grey shaded region). Lines indicate how the metrics would
change given a bulk shift. Positive intensity shift values correspond to an
increase in CHIMP observations or a decrease in the map’s predictions.
Negative intensity shifts reflect a decrease in CHIMP observations or an
increase in the map’s predictions. (a) CHIMP-1 intensities compared to
the 2018 USGS 10% in 50 yr model. (b) CHIMP-1A intensities compared
to the 2018 USGS 10% in 50 yr model. (c) CHIMP-1 intensities compared
to the 2018 USGS 2% in 50 yr model. (d) CHIMP-1A intensities compared
to the 2018 USGS 2% in 50 yr model.

for all models. A similar change could result from decreasing the predicted shaking, or a

combination of both effects.
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4.7.5. Chance

Some of the misfit may arise purely by chance. Figure 4.3 illustrates this effect for an ideal

hazard model. Even if all parameters are perfectly known, the variability of earthquake

recurrence can give rise to a range of values. In a real case, where parameters are not

known a priori and are unlikely to be exactly estimated, the variability could be larger.

If the ideal case (Vanneste et al, 2018) is representative, then these simulation studies

indicate that the misfit is large enough that it is unlikely to have arisen purely by chance

due to variability in earthquake recurrence. Hence it likely represents, at least in part,

biases in the hazard model, data, or both. Increasing the observed shaking at all sites in

CHIMP-1 and CHIMP-1A by a constant shift (Figure 4.8), which is possible given the

uncertainty in historical intensity assignments, improves M0 and M1. Figure 4.8 shows

the uncertainty range of the metrics for each dataset-model pair given the inherent MMI

uncertainty of ±1. The minima of M0 are within the uncertainty range of the intensities

for all but the CHIMP-1 475-year model, while the minima of M1 are outside that range

for all models. A similar change could result from decreasing the predicted shaking, or a

combination of both effects.

4.8. Reconsideration of Significant Earthquakes

Although retrospective assessment of PSHA models motivated our creation of CHIMP-

1, a dataset of observed intensities is potentially useful for many other purposes. Intensity

datasets can be used to revisit magnitudes and locations of historic and early instrumen-

tal earthquakes, and to further explore the distribution of ground motions generated by

recent as well as historic events. As an example, Figure 4.9 presents a shaking intensity
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map for the 1987 MW5.9 Whittier Narrows earthquake. To generate this distribution,

we augmented the CHIMP-1 values with retroactively contributed DYFI (reported well

after the time of the earthquake) intensities at all shaking levels (1-km geocoded values)

and intensities estimated from available PGA data (see Data and Resources) using the

Worden et al. (2012) GMICE. The intensity distribution is constrained by intensity values

at 816 locations, revealing variability of shaking across much of the greater Los Angeles

metropolitan region. There is a suggestion, for example, of elevated intensities inland of

the Newport-Inglewood Fault, where the Los Angeles Basin deepens considerably. Simi-

lar amplification was observed in the 2008 MW5.4 Chino Hills earthquake (Hauksson et

al., 2008). The CHIMP-1 dataset will provide an opportunity to explore key questions

regarding ground motions, including the variability of site response across geologically

complex regions.

4.9. Discussion and Future Work

CHIMP illustrates the value of developing consistently-interpreted shaking datasets

and comparing them to hazard models. We see similar discrepancies, with historical

intensity data much lower than hazard model predictions, for Italy and Japan (Stein et

al., 2015; Brooks et al, 2016). This could be coincidence, or could indicate a common

bias. For example, the hazard models’ assumed seismicity and fault slip rates may be too

high, the ground motion models may predict too-high shaking, or site effects could result

in localized deamplification. We plan to investigate how well the ground motion models

fit the historical intensity data, as we did for the 1952 Kern County earthquake (Salditch

et al., 2018). Alternatively, the data may be biased low due to spatial sampling bias.
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Figure 4.9. Shaking intensity map for the 1987 MW5.9 Whittier Narrows
earthquake, generated using data from the CHIMP-1 dataset, augmented
by retroactively contributed DYFI data at all distances and intensity values
calculated from instrumentally recorded PGA data, converted to intensity
using the Worden et al. (2012) GMICE. Locations of Pasadena (PAS),
central Los Angeles (LA), and the Newport-Inglewood fault zone (N-I Fault)
are indicated. Inset shows location of map within California.
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Even after including smoothed data for the largest events, CHIMP-1A may biased low

by locally high intensities from moderate (MW4.5 − 6) earthquakes that are not in the

CHIMP dataset. A statistical modeling approach might address this by estimating how

many MW 5s and MW 6s are missing and calculating their expected MMI distribution

using Atkinson et al.’s (2014) intensity prediction equation. Another way might be to

start with the residual data, hypothesize that all of the misfit was due to small events,

infer how many are needed, and see if that makes sense relative to the b-value curve. The

DYFI dataset collected to date suggests that moderate earthquakes, i.e., MW4.7 − 5.9,

may be important in controlling hazard due to their prevalence.

To address possible bias introduced by the different intensity data sources, detailed

archival accounts of earthquake effects could be entered into the DYFI numerically coded

questionnaire and then averaged according to DYFI procedures. This would provide a

direct comparison of the consistency of subjective CHIMP intensities and DYFI values.

Preliminary experiments with the 1987 Whittier earthquake data do demonstrate consis-

tency between retroactively reported DYFI, historically assigned MMI, and instrumental

data (PGA recordings converted to MMI via Worden et al.’s (2012) method. Converting

CHIMP MMI to DYFI CDI, may not, as noted, be warranted, but if further analysis sug-

gests discrepancies, the task would generally be tractable in the U.S. given the relatively

small size of the historical catalog. The conversion would be less tractable in Europe, for

example, where the historical record is thousands of years longer than the electronic.

Discussion of the maximum observed shaking for an area leads to questions of the

second highest shaking, the third highest shaking, etc. This question usually stems from

desire to investigate the effects of removing a single earthquake from the record. Does
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the performance of the model change with the removal of a single event? By how much?

There is also a benefit in seeing how model performance changes over time. Our current

assessments involve static datasets, using the maximum shaking over an interval. It will

be useful to explore the performance of the model as time progresses and compare this

to that expected as the ratio of observation time to model return period increases. We

have a number of sites at which the modeled shaking has been exceeded several times.

These will let us explore how well examining model exceedances at many sites compares

to examining multiple exceedances at individual sites over time. In addition, we plan

to conduct simulation studies to explore the variability in the expected shaking likely to

have arisen due to variability in earthquake recurrence, and its consequences for how well

the models’ predictions should match the observed shaking.

4.10. Data and Resources

The CHIMP dataset is available https://github.com/salditch/CHIMP. Historic

earthquakes in the ‘dataset’ are .csv files formatted as LON, LAT, MMI. DYFI earth-

quakes are .txt files in their original format. The ‘repository’ contains full felt reports and

MMI assignments for earthquakes that were reinterpreted for this study.

Intensity data sources are listed in Table 4.3.

2018 USGS hazard model data are available for download from Science Base at https:

//www.sciencebase.gov/catalog/item/5cbf47c4e4b0c3b00664fdef (last accessed 30

December 2019).

NOAA intensity dataset can be accessed at https://www.ngdc.noaa.gov/hazard/

intintro.shtml, (last accessed 12 February 2020).

https://github.com/salditch/CHIMP
https://www.sciencebase.gov/catalog/item/5cbf47c4e4b0c3b00664fdef
https://www.sciencebase.gov/catalog/item/5cbf47c4e4b0c3b00664fdef
https://www.ngdc.noaa.gov/hazard/intintro.shtml
https://www.ngdc.noaa.gov/hazard/intintro.shtml
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Most of the Abstracts of Earthquakes reports can be accessed online at http://

www.hathitrust.org (last accessed 12 February 2020). Strong motion data, including

recorded peak ground acceleration values, for the 1987 Whittier Narrows earthquake are

available from (https://strongmotioncenter.org).

Table 4.3. References for earthquake data sources. * indicates events rein-
terpreted in this study.

CHIMP
Label

Date
(m/d/y)

Location Reference

1857 1/9/1857 Fort
Tejon*

S.E. Hough, L. Salditch, M.G. Gallahue,
2020. This study.

1868 10/21/1868 Hayward Boatwright, J., Bundock, H., 2008. Mod-
ified Mercalli Intensity Maps for the 1868
Hayward Earthquake Plotted in ShakeMap
Format: Spreadsheet of 1868 Intensity Sites.
Open-File Report 2008-1121.

1872 3/26/1872 Owens
Valley

Hough, S.E., Hutton, K., 2008. Revisiting
the 1872 Owens Valley, California. Earth-
quake Bull. Seismol. Soc. Am. 98 (2), 931-
949.

1873 11/23/1873 CA/OR
border

Tom Brocher, 2019. Unpublished OFR, per-
sonal communication.

1892 2/23/1892 Laguna
Salada

Hough, S.E., Elliot, A., 2004. Revisiting the
23 February 1892 Laguna Salada earthquake.
Bull. Seismol. Soc. Am. 94 (4), 1571?1578.

1898 4/15/1898 Mendocino* Toppozada, T.R., Real, C.R., Parke, D.L.,
1981. Preparation of isoseismal maps and
summaries of reported effects for pre-1900
California earthquakes, Calif. Div. Mines
Geol. Open-File Rep. 81-11 SAC, Appendix
D.

http://www.hathitrust.org
http://www.hathitrust.org
https://strongmotioncenter.org
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1906 4/18/1906 San Fran-
cisco

Boatwright, J., Bundock, H., 2005. Modi-
fied Mercalli Intensity Maps for the 1906 San
Francisco Earthquake Plotted in ShakeMap
Format. U.S. Geological Survey. Open-File
Report 2005-1135. Version 1.0. US Geolog-
ical Survey, 345 Middlefield Road, MS 977,
Menlo Park, CA 94025.

1911 7/1/1911 South
Bay*

Toppozada, T.R. 1984. History of Earth-
quake Damage in Santa Clara County and
Comparison of 1911 and 1984 Earthquakes.
In Special publications of the California Divi-
sion of Mines and Geology, Section 1, Earth-
quake Damage.

1918 4/21/1918 San Jac-
into*

Madeleine C. Lucas, 2019. This study.

1925 6/29/1925 Santa Bar-
bara

Hough, S.E., Martin, S.S., 2018. A pro-
posed rupture scenario for the 1925 MW

6.5 Santa Barbara, California, earthquake,
Tectonophysics, Volumes 747?748. P. 211-
224. https://doi.org/10.1016/j.tecto.

2018.09.012.

1927a 11/18/1927 Bishop* Frank Nuemann, U.S. Coast and Geodetic
Survey. Seismological Report July, August,
September 1927. Serial number 495. Wash-
ington: G.P.O.

1927b 11/4/1927 Lompoc* Madeleine C. Lucas, 2019. This study.
1932 12/20/1932 Nevada* Coast and Geodetic Survey, 1984. United

States Earthquakes, 1928-1935. Department
of the Interior, U.S. Geological Survey. OFR
84-928.

1933 3/10/1933 Long
Beach

Hough, S.E. and Graves, R., (2020). The
1933 Long Beach, California, earthquake:
Ground motions and rupture scenario, in re-
view, Scientific Reports.

1934 12/31/1934 Colorado
River*

Abstracts of Earthquake Reports for the Pa-
cific Coast and The Eastern Mountain Re-
gion July 1, 1934 to September 30, 1934.
Dept. of Commerce, U.S. Coast and Geo-
detic Survey Field Station 510 Custom House
San Francisco, California.

https://doi.org/10.1016/j.tecto.2018.09.012.
https://doi.org/10.1016/j.tecto.2018.09.012.
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1937 3/25/1937 Buck
Ridge*

Coast and Geodetic Survey, United States
Earthquakes, 1928-1935. Department of the
Interior, U.S. Geological Survey. OFR 84-
928.

1940 5/18/1940 Imperial
Valley*

Abstracts of Earthquake Reports for the Pa-
cific Coast and The Eastern Mountain Re-
gion April 1, 1940 to June 30, 1940. MSA-26.
Dept. of Commerce, U.S. Coast and Geo-
detic Survey, Seismological Field Survey 214,
Old Mint Building San Francisco 3, Califor-
nia.

1942 10/21/1942 Fish
Creek*

Abstracts of Earthquake Reports for the Pa-
cific Coast and The Eastern Mountain Re-
gion October 1, 1943 to December 31, 1947.
MSA-40. Dept. of Commerce, U.S. Coast
and Geodetic Survey, Seismological Field
Survey 214, Old Mint Building San Francisco
3, California.

1946 3/15/1946 Walker
Pass*

Abstracts of Earthquake Reports for the Pa-
cific Coast and The Eastern Mountain Re-
gion Jan 1, 1946 to March 31, 1946. MSA-49.
Dept. of Commerce, U.S. Coast and Geo-
detic Survey, Seismological Field Survey 214,
Old Mint Building San Francisco 3, Califor-
nia.

1947 4/10/1947 Manix* Abstracts of Earthquake Reports for the Pa-
cific Coast and The Eastern Mountain Re-
gion April 1, 1947 to June 30, 1947. MSA-54.
Dept. of Commerce, U.S. Coast and Geo-
detic Survey, Seismological Field Survey 214,
Old Mint Building San Francisco 3, Califor-
nia.

1948a 12/4/1948 Desert Hot
Springs*

Abstracts of Earthquake Reports for the Pa-
cific Coast and The Eastern Mountain Re-
gion October 1, 1948 to December 31, 1948.
MSA-60. Dept. of Commerce, U.S. Coast
and Geodetic Survey, Seismological Field
Survey 214, Old Mint Building San Francisco
3, California.
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1948b 12/29/1948 NE Cali-
fornia*

Abstracts of Earthquake Reports for the Pa-
cific Coast and The Eastern Mountain Re-
gion October 1, 1948 to December 31, 1948.
MSA-60. Dept. of Commerce, U.S. Coast
and Geodetic Survey, Seismological Field
Survey 214, Old Mint Building San Francisco
3, California.

1952a 7/21/1952 Kern
County

Salditch, L., Hough, S.E., Stein, S., Spencer,
B.D., Brooks, E.M., Neely, J.S. and Lucas,
M.C. (2018). The 1952 Kern County, Cali-
fornia earthquake: A case study of issues in
the analysis of historical intensity data for
estimation of source parameters. Physics of
the Earth and Planetary Interiors, Vol. 283,
p. 140-151, https://doi.org/10.1016/j.

pepi.2018.08.007.

1952b 11/22/1952 Bryson* Abstracts of Earthquake Reports for the Pa-
cific Coast and The Eastern Mountain Re-
gion, 1 July 1951 to 30 September, 1951.
MSA-71. 214 Old Mint Building, San Fran-
cisco 3, California.

1954a 3/19/1954 San Jac-
into

Abstracts of Earthquake Reports for the Pa-
cific Coast and The Eastern Mountain Re-
gion January 1, 1954 to March 31, 1954.
MSA-81. Dept. of Commerce, U.S. Coast
and Geodetic Survey Seismological Field Sta-
tion 14 Old Mint Building San Francisco 3,
California. MSA-83.

1954b 7/6/1954 Nevada * Abstracts of Earthquake Reports for the
Pacific Coast and The Eastern Mountain Re-
gion July 1, 1954 to September 30, 1954.
MSA-83. Dept. of Commerce, U.S. Coast
and Geodetic Survey Seismological Field Sta-
tion 14 Old Mint Building San Francisco 3,
California. MSA-83.

1966 9/12/1966 Northern
CA/Truckee*

von Hake, C.A., Cloud, M.K. 1984. United
States Earthquakes, 1966. Department of In-
terior, U.S. Geological Survey. OFR 84-966.

https://doi.org/10.1016/j.pepi.2018.08.007.
https://doi.org/10.1016/j.pepi.2018.08.007.
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1968 4/8/1968 Borrego* Abstracts of Earthquake Reports for the
United States April 1, 1968 to June 30, 1968.
MSA-137. Dept. of Commerce, Seismologi-
cal Field Survey, San Francisco, California.

1971 2/9/1971 Sylmar DYFI, DYFI intensity summary
geocoded UTM aggregated (10km spac-
ing).txt. accessed 1/21/19. https:

//earthquake.usgs.gov/earthquakes/

eventpage/ci3347678/executive

1979 10/15/1979 Imperial
Valley

DYFI, DYFI intensity summary
geocoded UTM aggregated (1km spac-
ing).txt, accessed 1/21/19. https:

//earthquake.usgs.gov/earthquakes/

eventpage/ci3352060/executive

1980a 5/25/1980 Mammoth* Stover, C. W. and von Hake, C.A. United
States Earthquakes, 1980. OFR 84-980.
Dept. of the Interior, U.S. Geological Sur-
vey.

1980b 11/8/1980 Eureka* Stover, C. W. and von Hake, C.A. United
States Earthquakes, 1980. OFR 84-980.
Dept. of the Interior, U.S. Geological Sur-
vey.

1983 5/2/1983 Coalinga DYFI, DYFI intensity summary
geocoded UTM aggregated (1km spac-
ing).txt, accessed 1/21/19. https:

//earthquake.usgs.gov/earthquakes/

eventpage/nc1091100/executive

1984a 4/24/1984 Morgan
Hill*

Stover, C.W., 1988. United States earth-
quakes, 1984. Bulletin 1862, p.26. U.S.
G.P.O. https://doi.org/10.3133/b1862.

1984b 11/23/1984 Round
Valley*

Stover, C.W., 1988. United States earth-
quakes, 1984. Bulletin 1862, p.47. U.S.
G.P.O. https://doi.org/10.3133/b1862.

1986a 7/8/1986 N. Palm
Springs

DYFI, DYFI intensity summary (city
or zip code aggregated).txt, accessed
1/21/19. https://earthquake.usgs.

gov/earthquakes/eventpage/ci700917/

executive

1986b 7/21/1986 Chalfant
Valley*

Carl W. Stover and Lindie R. Brewer. U.S.
Earthquake reports, 1986.

https://earthquake.usgs.gov/earthquakes/eventpage/ci3347678/executive
https://earthquake.usgs.gov/earthquakes/eventpage/ci3347678/executive
https://earthquake.usgs.gov/earthquakes/eventpage/ci3347678/executive
https://earthquake.usgs.gov/earthquakes/eventpage/ci3352060/executive
https://earthquake.usgs.gov/earthquakes/eventpage/ci3352060/executive
https://earthquake.usgs.gov/earthquakes/eventpage/ci3352060/executive
https://earthquake.usgs.gov/earthquakes/eventpage/nc1091100/executive
https://earthquake.usgs.gov/earthquakes/eventpage/nc1091100/executive
https://earthquake.usgs.gov/earthquakes/eventpage/nc1091100/executive
https://doi.org/10.3133/b1862.
https://doi.org/10.3133/b1862
https://earthquake.usgs.gov/earthquakes/eventpage/ci700917/executive
https://earthquake.usgs.gov/earthquakes/eventpage/ci700917/executive
https://earthquake.usgs.gov/earthquakes/eventpage/ci700917/executive
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1987a 10/1/1987 Whittier
Narrows*

Jim Dewey, 2019. US Earthquakes, 1987, un-
published. Personal communication.

1987b 11/24/1987 Superstition
Hills*

Jim Dewey, 2019. US Earthquakes, 1987, un-
published. Personal communication.

1989 10/17/1989 Loma Pri-
eta

DYFI, DYFI intensity summary
geocoded (1km spacing).txt, accessed
1/18/19. https://earthquake.usgs.

gov/earthquakes/eventpage/nc216859/

executive

1991 6/28/1991 Sierra
Madre

DYFI, DYFI intensity summary
geocoded (1km spacing).txt, accessed
3/18/19. https://earthquake.usgs.

gov/earthquakes/eventpage/ci2021449/

executive

1992a 4/22/1992 Joshua
Tree*

Salditch and Gallahue, 2019. This study.

1992b 4/25/1992 Rio Dell DYFI, DYFI intensity summary
geocoded (1km spacing).txt, accessed
3/18/19. https://earthquake.usgs.

gov/earthquakes/eventpage/nc269151/

executive

1992c 6/28/1992 Landers DYFI, DYFI intensity summary
geocoded (1km spacing).txt, accessed
1/18/19. https://earthquake.usgs.

gov/earthquakes/eventpage/ci3031111/

executive

1992d 6/28/1992 Big Bear DYFI, DYFI intensity summary aggre-
gated by city or zip code.txt, accessed
1/18/19. https://earthquake.usgs.

gov/earthquakes/eventpage/ci3031425/

executive

1993 5/17/1993 Big Pine* Salditch and Gallahue, 2019. This study.
1994 1/17/1994 Northridge DYFI, DYFI intensity summary

geocoded (10km spacing).txt, accessed
1/17/19. https://earthquake.usgs.

gov/earthquakes/eventpage/ci3144585/

executive

https://earthquake.usgs.gov/earthquakes/eventpage/nc216859/executive
https://earthquake.usgs.gov/earthquakes/eventpage/nc216859/executive
https://earthquake.usgs.gov/earthquakes/eventpage/nc216859/executive
https://earthquake.usgs.gov/earthquakes/eventpage/ci2021449/executive
https://earthquake.usgs.gov/earthquakes/eventpage/ci2021449/executive
https://earthquake.usgs.gov/earthquakes/eventpage/ci2021449/executive
https://earthquake.usgs.gov/earthquakes/eventpage/nc269151/executive
https://earthquake.usgs.gov/earthquakes/eventpage/nc269151/executive
https://earthquake.usgs.gov/earthquakes/eventpage/nc269151/executive
https://earthquake.usgs.gov/earthquakes/eventpage/ci3031111/executive
https://earthquake.usgs.gov/earthquakes/eventpage/ci3031111/executive
https://earthquake.usgs.gov/earthquakes/eventpage/ci3031111/executive
https://earthquake.usgs.gov/earthquakes/eventpage/ci3031425/executive
https://earthquake.usgs.gov/earthquakes/eventpage/ci3031425/executive
https://earthquake.usgs.gov/earthquakes/eventpage/ci3031425/executive
https://earthquake.usgs.gov/earthquakes/eventpage/ci3144585/executive
https://earthquake.usgs.gov/earthquakes/eventpage/ci3144585/executive
https://earthquake.usgs.gov/earthquakes/eventpage/ci3144585/executive
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1999 10/16/1999 Hector
Mine

DYFI, DYFI intensity summary
geocoded (10km spacing).txt, accessed
1/17/19. https://earthquake.usgs.

gov/earthquakes/eventpage/ci9108652/

executive

2000 9/3/2000 Northern
CA

DYFI, DYFI intensity summary
geocoded (10km spacing).txt, accessed
3/18/19. https://earthquake.usgs.gov/

earthquakes/eventpage/nc21123384/

executive

2001 8/10/2001 Northern
CA

DYFI, DYFI intensity summary
geocoded (10km spacing).txt, accessed
3/18/19. https://earthquake.usgs.gov/

earthquakes/eventpage/nc21188442/

executive

2003 12/22/2003 San
Simeon

DYFI, DYFI intensity summary
geocoded (10km spacing).txt, accessed
1/17/19. https://earthquake.usgs.gov/

earthquakes/eventpage/nc21323712/

executive

2004 9/28/2004 Shandon DYFI, DYFI intensity summary geocoded
(10km spacing).txt, accessed3/18/19.
https://earthquake.usgs.gov/

earthquakes/eventpage/ci14095628/

executive

2005a 6/12/2005 Anza DYFI, DYFI intensity summary
geocoded (10km spacing).txt, accessed
3/18/19. https://earthquake.usgs.gov/

earthquakes/eventpage/ci14151344/

executive

2005b 6/14/2005 Mendocino DYFI, DYFI intensity summary
geocoded (10km spacing).txt, accessed
1/17/19. https://earthquake.usgs.gov/

earthquakes/eventpage/usp000dt25/

executive

2007 10/30/2007 San Fran-
cisco Bay

DYFI, DYFI intensity summary
geocoded (1km spacing).txt, accessed
3/18/19. https://earthquake.usgs.gov/

earthquakes/eventpage/nc40204628/

executive

https://earthquake.usgs.gov/earthquakes/eventpage/ci9108652/executive
https://earthquake.usgs.gov/earthquakes/eventpage/ci9108652/executive
https://earthquake.usgs.gov/earthquakes/eventpage/ci9108652/executive
https://earthquake.usgs.gov/earthquakes/eventpage/nc21123384/executive
https://earthquake.usgs.gov/earthquakes/eventpage/nc21123384/executive
https://earthquake.usgs.gov/earthquakes/eventpage/nc21123384/executive
https://earthquake.usgs.gov/earthquakes/eventpage/nc21188442/executive
https://earthquake.usgs.gov/earthquakes/eventpage/nc21188442/executive
https://earthquake.usgs.gov/earthquakes/eventpage/nc21188442/executive
https://earthquake.usgs.gov/earthquakes/eventpage/nc21323712/executive 
https://earthquake.usgs.gov/earthquakes/eventpage/nc21323712/executive 
https://earthquake.usgs.gov/earthquakes/eventpage/nc21323712/executive 
https://earthquake.usgs.gov/earthquakes/eventpage/ci14095628/executive
https://earthquake.usgs.gov/earthquakes/eventpage/ci14095628/executive
https://earthquake.usgs.gov/earthquakes/eventpage/ci14095628/executive
https://earthquake.usgs.gov/earthquakes/eventpage/ci14151344/executive 
https://earthquake.usgs.gov/earthquakes/eventpage/ci14151344/executive 
https://earthquake.usgs.gov/earthquakes/eventpage/ci14151344/executive 
https://earthquake.usgs.gov/earthquakes/eventpage/usp000dt25/executive
https://earthquake.usgs.gov/earthquakes/eventpage/usp000dt25/executive
https://earthquake.usgs.gov/earthquakes/eventpage/usp000dt25/executive
https://earthquake.usgs.gov/earthquakes/eventpage/nc40204628/executive
https://earthquake.usgs.gov/earthquakes/eventpage/nc40204628/executive
https://earthquake.usgs.gov/earthquakes/eventpage/nc40204628/executive
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2008a 2/21/2008 Wells, NV DYFI, DYFI intensity summary
geocoded (1km spacing).txt, accessed
1/17/19. https://earthquake.usgs.gov/

earthquakes/eventpage/nn00234425/

executive

2008b 7/29/2008 Chino Hills DYFI, DYFI intensity summary
geocoded (1km spacing).txt, accessed
3/18/19. https://earthquake.usgs.gov/

earthquakes/eventpage/ci14383980/

executive

2009 5/17/2009 Lennox DYFI, DYFI intensity summary
geocoded (10km spacing).txt, accessed
3/18/19. https://earthquake.usgs.gov/

earthquakes/eventpage/ci10410337/

executive

2010 4/4/2010 Baja DYFI, DYFI intensity summary
geocoded (1km spacing).txt, accessed
1/17/19. https://earthquake.usgs.gov/

earthquakes/eventpage/usp000jhr6/

executive

2014 8/24/2014 Napa DYFI, DYFI intensity summary geocoded
(1km spacing).txt, accessed 1/13/2019.
https://earthquake.usgs.gov/

earthquakes/eventpage/nc72282711/

executive

2019a 7/4/2019 Ridgecrest DYFI, cdi geo 1km.txt, accessed
8/25/2019. https://earthquake.

usgs.gov/earthquakes/eventpage/

ci38443183/executive

2019b 7/6/2019 Ridgecrest DYFI, cdi geo 1km.txt, accessed
8/25/2019. https://earthquake.

usgs.gov/earthquakes/eventpage/

ci38457511/executive

https://earthquake.usgs.gov/earthquakes/eventpage/nn00234425/executive
https://earthquake.usgs.gov/earthquakes/eventpage/nn00234425/executive
https://earthquake.usgs.gov/earthquakes/eventpage/nn00234425/executive
https://earthquake.usgs.gov/earthquakes/eventpage/ci14383980/executive
https://earthquake.usgs.gov/earthquakes/eventpage/ci14383980/executive
https://earthquake.usgs.gov/earthquakes/eventpage/ci14383980/executive
https://earthquake.usgs.gov/earthquakes/eventpage/ci10410337/executive
https://earthquake.usgs.gov/earthquakes/eventpage/ci10410337/executive
https://earthquake.usgs.gov/earthquakes/eventpage/ci10410337/executive
https://earthquake.usgs.gov/earthquakes/eventpage/usp000jhr6/executive
https://earthquake.usgs.gov/earthquakes/eventpage/usp000jhr6/executive
https://earthquake.usgs.gov/earthquakes/eventpage/usp000jhr6/executive
https://earthquake.usgs.gov/earthquakes/eventpage/nc72282711/executive
https://earthquake.usgs.gov/earthquakes/eventpage/nc72282711/executive
https://earthquake.usgs.gov/earthquakes/eventpage/nc72282711/executive
https://earthquake.usgs.gov/earthquakes/eventpage/ci38443183/executive
https://earthquake.usgs.gov/earthquakes/eventpage/ci38443183/executive
https://earthquake.usgs.gov/earthquakes/eventpage/ci38443183/executive
https://earthquake.usgs.gov/earthquakes/eventpage/ci38457511/executive
https://earthquake.usgs.gov/earthquakes/eventpage/ci38457511/executive
https://earthquake.usgs.gov/earthquakes/eventpage/ci38457511/executive


145

CHAPTER 5

Map Comparisons: Can metrics indicate if one PSHA model is

better than another?
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5.1. Introduction

Because PSHA maps depend on assumptions about future earthquakes and how hazard

is characterized, plausible alternative input parameters for an area can yield quite different

results (Stein et al., 2018). For example, the precise locations of historical earthquakes

are not well known and may not fully show the locations of future earthquakes. Similarly,

because the area of a fault that ruptured controls the resulting earthquake’s magnitude

and distribution of shaking intensity, there are substantial uncertainties regarding past

earthquake source parameters and shaking. Hence, there are significant uncertainties in

the maps.

In the hazard curve calculations (Figure 5.1), this is accounted for via complex inter-

play between the return periods, the earthquake rates and the probabilities of exceedance

(of some ground motion), and their respective epistemic and aleatory uncertainties. The

earthquake rates are a function of the Seismic Source Characterization (SSC) which also

determines the sizes and locations of earthquakes in the model. The probabilities of ex-

ceedance are a function of the GMMs. The aleatory uncertainty is the effect of random

variability of the system, as opposed to the epistemic uncertainty which represents the

limitations of our knowledge of the system.

For shorter return periods, like the 475 yr models investigated in this chapter, the

rate of earthquakes tends to control the hazard. In order to create a longer return period

model, a low probability of exceeding the ground motion is set. Hence at longer return

periods, the aleatory variability of the GMMs tends to control the hazard, because it

influences that probability of exceedance.
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In high seismicity areas, like Nepal, we have better constraints on the rates of earth-

quakes because we have more data. Because the rate is high and the probability of

exceedance low, the result is a steep slope of the hazard curve. With a steep slope, a

change in the rates of earthquakes (corresponding to a shift in y-axis in figure 5.1) does

not make much of a change in the ground motion (corresponding to the x-axis in figure

5.1). In contrast, a small shift in the x-axis value leads to a large change in the y-axis

value (the rate). In this case, the epistemic uncertainty in the hazard is controlled by the

epistemic uncertainty in the GMM.

For low-to-moderate seismicity areas, like France, there is larger uncertainty in the

rates of earthquakes and the slope of the resulting hazard curve is flatter. In this case, a

change in the earthquake rate can have a similar effect as a change in the GMM. So, the

epistemic uncertainty in the hazard can at times be controlled by the SSC model (rates,

sizes, and locations of earthquakes).

These are important considerations when creating and evaluating hazard maps, and

leads to the question; can our metrics indicate if one map is better than another? It would

be useful to know if changes to a model constituted actual improvement.

I explore this issue using two case studies. First, for Nepal, I consider two maps

that differ in basic assumptions and parameter choices for GMMs, seismic sources, and

site effects. Both maps characterize the hazard level using the mean hazard, a weighted

average of all probabilities of exceedance and earthquake rate combinations. However,

there is reason to believe that this representation may not be the best approach. The

median hazard (50th percentile in Figure 5.1), typically smaller than the mean, may be

a better characterization for assessing a map’s performance (Abrahamson and Bommer,
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Figure 5.1. Hazard curve at a particular site with large uncertainties. The
quantiles represent different combinations of the earthquake rates and the
GMMs. Mean hazard, traditionally used in maps, is the weighted average
of combinations of GMMs and earthquake rates. Note here that the mean is
higher than median (50th percentile). Difference between mean and median
is often smaller in higher seismicity regions.

2005). This is because the median, the central estimate, is less affected by outliers and long

tails on the probability distribution which cause the mean to predict higher hazard because
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of rare events. While the median may prove most useful for assessing map performance,

there is still value in using the mean hazard, particularly for engineering concerns, because

the mean penalizes uncertainty. This suggests that the intended use of a hazard map

should be considered in performance evaluation, and that what is best for testing and

what is best for engineering applications may not always be the same thing.

Because median hazard maps for Nepal are not readily available, I turn to the sec-

ond case study, France, a region of more moderate seismicity, to assess the difference

between mean and median hazard models. The results indicate an improvement in model

performance going from mean to median hazard. For any given map, it will likely be a

combination of better hazard characterization and parameter assumptions that improves

a models’ performance.

5.2. Nepal

Nepal is an area of high hazard because the collision between the Eurasian and Indian

plates can create M 9+ earthquakes. Nepal is located directly atop the Main Himalayan

Thrust (MHT), the primary decollement (basal detachment fault) locking the interface be-

tween the Indian and Eurasian plates, which are converging at 15 ± 2 mm/yr (Wesnousky,

2020). MW > 8.5 earthquakes occurred in the past (most recently in 1200-1400 CE) and

may recur in the near future based on recurrence estimates of 500-1,000 yrs (Wesnousky,

2020). Such earthquakes would be catastrophic, possibly resulting in upwards of 300,000

casualties in Nepal and India (Wyss et al., 2018). However, the most recent damaging

event in Nepal, the 2015 Gorkha MW 7.8 earthquake that killed 9,000 people, produced

less severe ground motions than expected (Martin et al, 2015). Understanding the seismic
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hazard of the Himalayas is therefore extremely important to mitigate the consequences

of future great earthquakes.

Some hazard maps proposed for Nepal (e.g. Ram and Guoxin, 2013; Chaulagain et al.,

2015) show lower hazard for central Nepal. Other maps (e.g. Stevens et al. 2018 and GEM

2020 (a.k.a. Nath and Thingbaijam, 2012) to a lesser degree) show a more homogeneous

or constant hazard along the strike of the MHT front. The latter is consistent with the fact

that GPS data show no significant variation in plate coupling between areas of recent large

earthquakes (Avouac et al., 2015). Hence with present knowledge, the entire zone could

be regarded as equally hazardous and perhaps vulnerable to much larger earthquakes

than those currently known, with long recurrence times (Stein et al., 2018). However,

there are indications that changes in dip along strike of the MHT controlled the rupture

length of the 2015 Gorkha earthquake, hence our understanding of the MHT remains

uncertain (Bai et al., 2019). A challenge for hazard maps of Nepal is that although there

is a long record of earthquakes going back to ∼ 800 CE (Bilham, 2019), there are large

uncertainties regarding their magnitudes and locations of the the ruptures associated with

these events.

Nepal has a long record of earthquake intensity data, going back to 1636 CE (Martin

and Szeliga, 2010), and more detailed data for the largest recent earthquakes, the 2015

Gorkha MW 7.8 and the 1833 MW 7.5 events (Martin et al., 2015) (figure 5.2). However,

despite the long record, the spatial coverage of the data is not consistent along strike of

the MHT. The region surrounding Kathmandu is densely populated in Nepal and most

intensity observations are clustered there. This makes it extremely difficult to evaluate
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the differences in hazard maps in low population and uninhabited places, where there is

most disagreement between maps.
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Figure 5.2. Nepal historic intensity data, in Modified Mercalli Intensity
(MMI) units. Data are from Martin and Szeliga (2010) and Martin et
al. (2015). Population and observations are clustered around the capital
Kathmandu.

To evaluate the maps, I grid the intensity data into 10 by 10 km cells, and find the

maximum in each cell (figure 5.3). I compare this maximum shaking map to two hazard

maps, those of GEM 2020 and Stevens et al. (2018), hereafter GEM2020 and Stevens18

(figure 5.4). Both hazard maps show the estimated level of shaking with a 10% probability

of exceedance in 50 yrs time corresponding to a return period of 475 yrs. These maps

differ due to alternative parameter choices, as illustrated by subtracting the GEM2020

map from the Stevens18 map (figure 5.5).

The GEM2020 map (Nath and Thingbaijam, 2012) makes the following assumptions

and parameter choices:
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Figure 5.3. Data from Figure 1 gridded in 10 x 10 km cells to show max-
imum observed shaking in each cell. Locations and magnitudes of historic
earthquakes g back to 800 CE are plotted as open circles, with years of
occurrence labelled (Bilham, 2019).

(1) It uses four different tectonic domain-specific Ground Motion Prediction Equa-

tions (GMPEs): active shallow crust, subduction interface/intraslab, intraplate,

and intraplate margin. None of these GMPEs are region-specific, that is, they

were not made specially for use in Nepal. It is common practice to use globally

derived GMPEs, but it is unknown whether these are appropriate (Delavaud et

al., 2012; Barani et al., 2017).

(2) Areal seismogenic sources are divided into four hypocentral depth ranges (< 25

km, 25-70 km, 70-180 km, and 180-300 km).

(3) The MHT is a segmented source.
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(4) Uniform site effects from assumption of non-varying Vs30. That is, the local

geology and soil rigidity, which can amplify or deamplify ground motions, are

ignored in this model.

In contrast, the Stevens18 map:

(1) Uses two globally derived tectonic-domain specific GMPEs (subduction and ac-

tive shallow crust). That is, the GMPEs were created by combining data from a

global selection of a specific type of tectonic domain.

(2) Uses a mix of fault, area, and background seismicity sources. The MHT is mod-

eled as a planar fault surface because it is well defined; the northern grabens
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Figure 5.4. Top left: GEM 2020 hazard map, showing shaking levels ex-
pected to be exceeded at 10% of sites in the next 50 yrs. Top right: Stevens
et al., 2018 10% in 50 yr map. Bottom left: GEM 2020 map showing grid
cells only where historical observations exist. Bottom right: Stevens2018
map showing grid cells only where historical observations exist.
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are modeled as areas where earthquakes can occur anywhere within their bounds

because the faults are not well identified, but deformation is known to occur;

background seismicity allows earthquakes to occur anywhere on the map regard-

less of fault or area source.

(3) Treats the MHT as a single source that could produce M 9+ earthquakes any-

where along its length.

(4) Includes varying site effects via estimates of Vs30 inferred from topographic slope.

The slope of the topography is assumed to be related to the thickness of sediments

that have accumulated. Hence flatter slopes indicate more sediments, which can

amplify ground motions.
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Figure 5.5. Subtracting Stevens18 from GEM2020 reveals the differences
(in MMI units) between the two maps.

I converted the hazard map prediction from peak ground acceleration (PGA) to MMI

via equation 3 of Worden et al. (2012), the median Ground Motion Intensity Conversion

Equation (GMICE), excluding magnitude and distance corrections as well as aleatory
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variability of MMI. It is possible that the Worden method, which was derived using data

from California, is not entirely appropriate for this setting, and future work may improve

the conversion of PGA to MMI in Nepal using a regionally derived relationship, which

may affect the results of the performance evaluations.

To elucidate the subtle differences between the observations and the map predictions,

I examined residual plots, defined here as (observed - predicted) (figure 5.6). The residual

maps show that the maximum observed shaking is generally lower than predicted by the

hazard maps, indicated by the negative values of the residuals. The exceedances (red

areas on the residual map) tend to cluster in the Kathmandu area, as well as to the north

and south there. The histograms of residuals (figure 5.7) show that the GEM2020 map

is on average closer to the observed values than the Stevens2018 map by 0.2 MMI units,

well within the limits of the uncertainty of MMI. Consequently, the maps are practically

indistinguishable in areas where observations exist. The long negative tails on the residual

distributions indicate that the maps are more likely to overpredict shaking when compared

to observations. The performance metrics are likewise quite similar (figure 5.8). Based

on the ratio of the observation time (379 yrs) to the return period of the map (475 yrs),

55% of sites should have shaking exceeding predictions The actual percentage is 7% and

5%, a factor of 10 lower than expected, giving an M0 =0.48 and 0.5, respectively, for the

GEM2020 and Stevens2018 maps.

From figure 5.8, the M0 scores show that the GEM2020 map is on average marginally

closer to the observed values than the Stevens2018 map, indicated by the M0 being 0.0177

units lower for GEM2020, or a difference of 4%. These results indicate that current hazard

maps are consistent with one another in regions where observations currently exist. That
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is, despite the differences in GMMs, seismic sources, and site effects, the assessments do

not indicate that there is a substantial difference between the resulting maps. Both maps

overpredict ground shaking compared to historical observations by a factor of ∼ 10.
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Figure 5.6. Residuals (observed - predicted) for GEM 2020 (bottom), and
Stevens2018 (top). Blue and white colors indicate observed shaking lower
than predicted by the hazard map. Red colors indicate observed shaking
higher than predicted by the map.
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To investigate the effect of bias from a too-high map or too-low data, and considering

that historical MMI has an uncertainty of ± 1, I explore if a bulk shift of MMI values

would improve the M0 metric (Brooks et al., 2016). Figure 5.9 shows the effect on the M0

performance metric of adding or subtracting the same amount from all observed intensi-

ties, using the Nepal hazard map from GEM2020. Increasing the observed intensities by

Figure 5.7. Histograms of residuals (observed - predicted) for GEM2020
(top) and Stevens2018 (bottom).
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Figure 5.8. Performance metrics for GEM2020 (left) and Stevens2018 (right).
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Figure 5.9. Effect on the M0 performance metric of adding or subtracting
the same amount from all observed intensities, using the Nepal hazard map
from GEM2020. A bulk shift of all observed intensities of +1.5 MMI would
give a perfect M0 score of zero, however, this lies outside the uncertainty
range (grey shaded area) of MMI assignments.

+ 1.5 MMI would give a perfect M0 score of zero. However, such a large shift exceeds the

expected uncertainty range (grey shaded area) of MMI assignments.

5.3. France

France is an intraplate environment not typically associated with damaging earth-

quakes, but it is flanked by the Pyrenees and the Alps which contribute considerable

deformation. At present, only 475 yr return period maps (10% in 50 yrs) are available.

However, they are provided for different levels of hazard characterization including the
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Figure 5.10. Map of maximum observed intensity in France. MSK is the
Medvedev-Sponheuer-Karnik intensity scale.

mean and the median (Stephane Drouet, Personal Communication). This gives an oppor-

tunity to test the hypothesis that the median may predict map performance better than

the mean (Abrahamson and Bommer, 2005).

The SisFrance seismic intensity database contains over 60,000 IDPs (data provided by

and used with permission from EDF, the French electricity utility) for earthquakes back

to 217 BCE, although the dataset is only complete starting around 1500 CE (Sisfrance,

https://sisfrance.irsn.fr/; Drouet et al., 2020). The most recent event in the catalog is

from 2007, making the time covered by the reliable data equal to 507 yrs. The IDPs

are given in the MSK-64 scale (Medvedev et al., 1967), and are associated with MW

3.3 - 6.3 earthquakes. Figure 5.10 shows the maximum observed intensity. Musson et

al., 2006 determined that although there are subtle variations between different seismic
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Figure 5.11. Hazard maps of France with 475 yr return period (10% in 50
yrs). Left: mean hazard. Right: median hazard. Top row: full maps.
Bottom: maps show values only where observations exist in figure 5.9.

intensity scales, their differences are not so large as to necessitate conversions. Hence any

12-step or 10-step (the common practice today) intensity scales should be approximately

equivalent. Thus because no conversion between PGA and MSK is readily available, I

use the GMICE of Gomez-Capera et al. (2020), which was developed for conversion of

Mercalli-Cancani-Seiburg (MCS) intensity data to MMI.

I compare these observations to the mean and median 475 yr return period hazard

maps (figure 5.11). Figure 5.12 shows the difference between the maps, by subtracting

the median map from the mean map. The largest difference at any point is about half
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Figure 5.12. Mean hazard minus median hazard. Differences between the
maps are relatively small.

an intensity unit. The residual maps (figure 5.13) reveal exceedances (red areas) where

observed shaking was larger than predicted. White and blue parts of the map indicate

where the map over-predicted shaking. Histograms of the residual maps (figure 5.14)

show that the distributions for both maps are skewed slightly negative, indicating both

maps have a net over-prediction. Based on the time covered by the observations (507 yrs)

and the return period of the map (475 yrs), we expect 66% of sites to have observations

exceeding predictions. However, only 34% and 39% of sites exceed predictions for the

mean and median maps, respectively (figure 5.15). While both maps for France over-

predict, there is a 14% difference in their M0 metrics (0.3 for the mean and 0.26 for the

median).
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MEAN MEDIAN

Figure 5.13. Residuals (observed - predicted) for mean and median hazard
maps of France (10% in 50 yrs). Blue colors indicate observed shaking
lower than predicted by the map. Red colors indicate observed shaking
higher than predicted by the map.

Figure 5.14. Top: Mean hazard residual histogram. Bottom: Median haz-
ard residual histogram
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Figure 5.15. Performance metrics for French 475 yr hazard maps. Mean
hazard (left) and median hazard (right).

The results that in France f/p ∼ 0.5, can be better understood by exploring the impli-

cations of the uncertainties in Figure 1, the hazard curve for a low-to-moderate seismicity

region. In this hazard curve, the total uncertainty in the model is about 10, based on the

distance between the 5th and 95th percentiles. Considering the mean predicted shaking, p,

and its ratio with the observed, f , being p/f ∼ 2, it can be seen from Figure 5.1 that a re-

duction from the mean hazard, p, of a factor of 2 is about at the 30th fractile for any given

ground motion level. Hence, 30% of the models would produce hazard that is at or below

the observed rate, and conversely 70% would produce hazard that is above the observed

rate. This line of analysis is the current focus of the International Atomic Energy Agency

(IAEA), which focuses on the very long-term safety (tens to hundreds of thousands of

years) of nuclear reactors and waste repositories. Hence it is important to understand

how hazard maps with longer return periods (lower probabilities of exceedance) perform.
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5.4. Discussion

Using metrics to compare alternative hazard maps is a useful way to explore the

component of a hazard model that is introducing differences. The two maps I looked

at in Nepal both showed the mean hazard for a 475 yr return period but differed in

basic geologic assumptions. Adding background seismicity, treating the MHT as a single

source, and varying Vs30 in the Stevens2018 map did not improve map performance over

the GEM2020 map. M0 for Stevens2018 was a marginal 4% smaller than GEM2020. Thus

these differences in model assumptions did not produce appreciably different maps.

In France, I compared two different characterizations of the hazard - the mean and

the median - for a 475 yr hazard model. In this low-to-moderate-seismicity region, the

difference between the M0 metrics of the mean and median models is substantial, with

the median (M0=0.26) performing 14% better than the mean (M0=0.3). This suggests

that hazard characterization may have more impact than SSCs and GMMs.

In future work I will investigate these longer return period maps of France to see

if it holds that they are better assessed using median hazard. If the median continues

to improve map performance, then this may be an important implication for hazard

assessment. Furthermore, I will identify which GMMs or assumptions used in in the logic

trees are the primary sources of misfits. In this way, I will continue to use metrics to

refine models and improve map performance.
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CHAPTER 6

Conclusion
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The M0 fractional exceedance performance metric has been applied to hazard maps

across the globe (Stein et al., 2015; Brooks et al., 2018; 2019; Salditch et al., 2020). By

this metric, nearly all of these maps over-predict shaking when compared to maximum

observed historical intensities. M0 can be visualized as the distance between the predicted

(black line) and observed (triangles, circles, diamonds) fractional exceedances, where the

predicted line is the exponential CDF, p = 1 − exp(−t/T ), t is the observation time in

years, and T is the map’s return period in years (Figure 6.1). Numerical experiments

(Vanneste et al., 2018) indicate for ideal (unbiased) maps, observed shaking is equally

likely to be above and below the prediction. However, none of the maps studied under-

predict shaking, i.e. none of the observed fractional exceedances were larger than model

predictions.

These results indicate a possible systematic bias in PSHA models. Analysis of French

hazard maps implies that the median hazard may better indicate map performance than

the mean hazard. Because all other maps studied to date characterize the hazard using

the mean, this difference could be an important source of bias. If p = f (M0 = 0, a

perfect score) for the median hazard, then the GMM and seismic source models would be

“centered” on the MMI data. In practice, weights are not adjusted on the models to give

a hazard centered on the MMI data because of the question of whether the available MMI

data adequately represent the long-term shaking. It will still be uesful to look at which

models predict shaking much higher or much lower than that observed and determine if

there are good seismological reasons to reject (or down-weight) those models.
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Figure 6.1. PSHA map performance. Predictions follow the formula p =
1−exp(−t/T ) where t is the observation time, and T is the return period of
the map. Symbols represent the observed fractional exceedances, f . The M0
metric can be visualized as the distance between f and p. CEUS represents
the 2016 and 2017 USGS models for natural and induced seismicity. CA
represents the 2018 USGS seismic hazard map for California compared with
CHIMP data. Numbers following regions in legend are map return periods.

There are also issues with the completeness and length of the observed catalogs and

the influence of seismicity rate changes. The ratio of t/T is a crucial parameter for the

M0 metric. Most map-catalog pairs studied here have t/T ≤ 1, which may be too short

to reliably capture the seismicity rate of a region (Page and Felzer, 2015; Vanneste et al.,

2018). However, if there were a map-catalog pair with, for example, t/T ∼ 3, p would be

95%. That is, the expected fractional exceedance at that t/T ratio is 0.95, so exceedances

are expected in all but 5% of locations. The usefulness of a map with 95% predicted

exceedances is questionable.
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6.1. Smallest M0 Score

The best performing map is the 2016 USGS 1-yr model (100 yr return period) for

induced and natural seismicity in the Central and Eastern United States (CEUS), with an

M0=0.0073. This and one made in 2017 (M0=0.0188) are the top performing maps studied

to date. These maps differ in many ways from the others investigated in this thesis. The

most important difference is that these maps focus on induced seismicity associated with

injecting wastewater from oil and gas production deep into the ground (Petersen et al.,

2016). These maps were made several years after the beginning of the induced seismicity

increase that plagued the otherwise aseismic CEUS during the hydraulic fracturing boom

of the early 2000s (Ellsworth, 2013). This allowed map makers to include parameters like

well injection volumes into the model.

The CEUS maps are the shortest-term (only one year) maps, so it was feasible to wait

that time and compare the model with observations made after the model?s creation.

These 1-yr maps are therefore the only forecasts that I considered, with the others being

hindcasts due to their 50 yr time window.

6.2. Largest M0 Score

The Italian maps studied here have the highest M0 scores, or the poorest fit to model

predictions (Stein et al., 2015). Italy is geologically active due to the complex tectonics of

the Mediterranean region. The geological backbone of Italy is the Apennine mountains,

with normal faulting due to divergence between the Adria microplate and Eurasia (An-

derson and Jackson, 1987; Calais et al., 2002; Stein and Sella, 2005). Western extension

is the result of back-arc spreading of the migrating subduction zone in the Adriatic and
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Ionian seas to the east (Loreto et al., 2021). To the north, the Alps formed as the re-

sult of the northward collision of the African plate into the European plate, and Adria

is converging on Eurasia there today. The result is a seismically and volcanically active

country with a history of devastating earthquakes and eruptions.

Italy has a long historical record of written accounts describing the effects of earth-

quakes as well as an abundance of sites from which earthquake effects can be deciphered

from the damage to historic architecture. DBMI15v.2 is an Italian database of stan-

dardized macroseismic intensities covering the period 1000 - 2018 C.E. (Locati et al.,

2019). I compared these data to the 475 yr return period European Seismic Hazard

Model (ESHM13) (Woessner et al., 2015). Even with an observation time more than

twice the length of the return period of the map, it performs the least well of all models

studied to date with an M0 = 0.7.

6.3. Discussion

It is expected that the larger the ratio of the observation time, t, to the return pe-

riod, T , the closer the observed fractional exceedance f will be to the model prediction p

(Vanneste et al., 2018). However, in our studies this effect is not observed (Figure 6.1).

Observed exceedances do not systematically get closer to predictions with increasing t/T .

In fact, the best performing models (CEUS and the 2475 yr models of California and

Japan) have the smallest t/T ratio. Map performance does not appear to have a straight-

forward relationship with return period, as the best performing maps have the shortest

(100 yr) and longest (2475 yr) return periods. However, when a 475 yr map and a 2475

yr map are both available for the same region, the 475 yr always performs less well. This
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is likely due to the large influence of the aleatory uncertainty at shorter return periods

(Abrahamson and Bommer, 2005). The worst performing maps tend to be 475 yr models.

More map-catalog pairs with larger t/T ratios are needed to make a robust conclusion

about any kind of systematic bias.

There is another reason to pursue catalogs and maps with large t/T ratios. Page and

Felzer (2015) showed that catalogs need to be many times the length of the return period

of the largest magnitude event to accurately estimate the seismicity of a region. It should

be noted that in our calculations T is the return period of the map, which is not the same

as the return period or interevent time of the largest magnitude event. T is simply the in-

verse of the annual probability of exceedance, or the average number of years it takes to get

an exceedance (USGS Earthquake Hazards: https://www.usgs.gov/natural-hazards/

earthquake-hazards/science/earthquake-hazards-201-technical-qa). The aver-

age interevent time of the largest magnitude earthquake may be longer than the return

period of the map. That the observed catalogs are not long enough to be representative

of the average activity level is an important source of uncertainty in the results presented

here. The inherent variability of earthquake recurrence times, part of the aleatory uncer-

tainty, and the propensity of large earthquakes to cluster in time suggests that a given

observation period may not be indicative of the overall seismicity of a region (Salditch et

al., 2020). Most of the map-catalog pairs studied here have t/T ≤ 1, so the maximum

observed intensities during that time may not be representative and likely underestimate

the long-term average (Naylor et al., 2009).

Some of the issues in PSHA addressed by the performance metrics indicate that im-

provements are feasible. My next steps are to test individual branches of the logic trees,

https://www.usgs.gov/natural-hazards/earthquake-hazards/science/earthquake-hazards-201-technical-qa
https://www.usgs.gov/natural-hazards/earthquake-hazards/science/earthquake-hazards-201-technical-qa
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corresponding to specific GMMs and seismic source models, rather than the mean or me-

dian of the logic tree (a weighted combination of branches and hence multiple GMMs and

source models). In this way I can identify the logic tree branches that lead to largest

discrepancies between the observed and predicted shaking. This will provide information

needed to update hazard models and allow us to investigate whether misfits are driven

by inappropriate GMMs or inappropriate seismic sources models. I will evaluate the as-

sumptions underlying the branches of the logic tree that are inconsistent and investigate

if there is a good reason why these branches are inconsistent with the MMI data. Models

that are not consistent with observations will be identified and inappropriate aspects of

the model will be examined.
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