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ABSTRACT

Dominance and Spatiotemporal Behavior in Cyclic Ecological Systems

Thomas Isaac Stiadle

Deterministic models are used to explain and predict the dynamics of ecosystems fea-

turing cyclic competition schemes. The models are systems of reaction-diffusion partial

differential equations that account for species mobility via Fickian diffusion and inter-

species interactions according to the competition scheme. Length and temporal scales are

chosen to be appropriate for an experimental bacterial community, qualitatively modeling

observed E. coli bacterial systems, and behaviors reported from relevant experiments are

reproduced by the models. Systems of two, three, and four species are examined and it

is shown that direct interspecies competition, mobility, and initial spatial structure are

relevant factors in the determination of the dominant species and long-term dynamics of

cyclic systems. One- and two-dimensional domains are considered, modeling a community

confined to a thin annulus and a petri dish, respectively.

For three-species symmetric systems, when coexistence of all three species is unstable

and interspecies competition is relatively weak, spatiotemporal chaotic behavior generally

occurs. A mechanism for the development of chaos, patch splitting, is proposed. On the
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other hand, when interspecies competition is sufficiently strong, ordered patterns are often

found. In 1D, traveling arrays of single-species patches, as well as modulated traveling

waves, consisting of patches which periodically expand and contract (breather modes),

can be found. In 2D, spirals, as well as localized patches that chase each other, can occur.

In three-species asymmetric systems, the “survival of the weakest” phenomenon is often

reproduced by the model.

In three- and four-species systems with an exceptionally strong or weak competitor,

behavior is dominated by transcritical bifurcations between (i) the coexistence state and

(ii) partial alliance states involving competing species. Although the three- and four-

species models admit very different solutions when all species are strong competitors, these

transcritical bifurcations unify the behavior of the two systems in the case of a strong or

weak exceptional species. The displacement of one state by another is discussed in the

context of an invasion. For the displacement of unstable states, speeds of displacement

are computed and compared to analytical estimates for pulled fronts. Finally, it is shown

that for a one-dimensional three-species system involving a species that is less mobile than

the others, the dynamics of the system become more complicated as the mobility of the

exceptional species decreases.
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CHAPTER 1

Introduction

Cyclic competition networks are considered to be important contributors to natural

biodiversity [1]. The term “cyclic competition” refers to a scheme by which N species

ui, where 1 ≤ i ≤ N , compete such that u2 has a competitive advantage over u1, u3 has

an advantage over u2, and so on, with uN having an advantage over u1 to complete the

cycle. Thus, each species wins exactly one competition and loses exactly one competition.

In ecological communities governed by such a scheme, there is no a-priori winner (unlike

in a transitive system, where, say, the advantages of u3 over u2 and u2 over u1 would

imply that u3 has an advantage over u1). Cyclic competition schemes with three species

are sometimes referred to as “rock-paper-scissors” (RPS) schemes, due to the obvious

analogy with the classic game. Ecosystems governed by these schemes (cyclic ecosystems)

have been observed naturally and experimentally, though detailed observations of the

population dynamics are difficult.

Cyclic ecosystems can be modeled by systems of reaction-diffusion partial differential

equations (PDEs). These systems, though relatively straightforward to write down, can

give rise to a variety of complex spatiotemporal behaviors. Studying these models an-

alytically and numerically can give insight to the mechanisms driving the dynamics of

physical ecosystems. Indeed, some behaviors predicted by such models have been directly

observed in real ecosystems, while others may be helpful in inferring dynamics that have

not yet been observed.
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CHAPTER 2

Background

2.1. Ecological Literature

2.1.1. E. Coli Ecosystems

Escherichia coli (E. coli) is a bacterial species commonly found in the intestines of warm-

blooded animals. Its availability, simplicity, and rapid growth rate make it an excellent

candidate for ecological and biochemical research [2]. Natural or artificial variants of

these bacteria can form cyclically competitive ecosystems, and such systems have been

observed in laboratory settings.

One such ecosystem is formed among toxin-producing, toxin-resistant, and toxin-

sensitive variants. In particular, colicinogenic E. coli produce the toxin colicin, which

is released via stress-induced cell lysis. These bacteria are also immune to colicin. Bac-

teria that are not colicinogenic are generally killed by colicin, though certain mutations

(commonly those that inhibit the ability of the cell membrane to bind the toxin) grant

resistance. Calling the colicinogenic variant C, the sensitive variant S, and the resistant

variant R, C has a competitive advantage over S (since C kills S), S has a competitive

advantage over R (since S has an advantage in nutrient uptake, due to R having an altered

protein in its cell membrane), and R has a competitive advantage over C (since C pays an

energy cost in synthesizing the toxin and also kills itself upon releasing it) [3, 4]. Thus,
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C “wins” over S, S wins over R, and R wins over C, such that the ecosystem exhibits a

rock-paper-scissors competition scheme.

In [3], liquid suspensions of the three variants were prepared and maintained in a flask

such that the environment within the flask was essentially spatially homogeneous. The

abundance of each strain was determined approximately once per day. It was found that

C quickly killed off S and was subsequently driven to extinction by R, so that at the

end of the week, only R remained in the flask. Thus, the three variants were not able

to coexist; rather, one variant was selected over the others. On the other hand, when

single-variant patches were placed randomly on an agar plate (so that the environment

was not spatially homogeneous), the patches were observed chasing each other (C chased

S, S chased R, and R chased C). Over the observation period, no variant was driven

to extinction and, in fact, the abundance of each variant remained relatively unchanged.

Therefore, in this case, diversity was maintained, even though the three species were not

observed coexisting in any localized region of the plate. In [5], similar experiments were

conducted, with the variants initially placed at the center of the plate and the growth

rates of the variants genetically controlled, so that expansion of the territory occupied by

each of the variants could be studied. For these experiments, transient coexistence of the

C and R variants was reported.

In [4], mice were orally inoculated with one of the three variants and the bacteria

were allowed to colonize over a four-week period. Following this, the mice were permitted

to interact with each other and the bacterial populations present in each mouse were

monitored over twelve weeks. It was found that C tended to displace S, R displaced C, and

S displaced R, as hypothesized. Moreover, each mouse was nearly always dominated by a
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singular variant at any given time; mixed populations were rarely seen. For each mouse,

the identity of the dominant variant changed several times throughout the experiment.

In [6], three strains of E. coli were engineered such that each strain was able to

synthesize a unique toxin. Each strain was immune to its own toxin. Each strain also

received immunity to one of the other toxins, so that it controlled exactly one strain and

was controlled by the other strain, forming a cyclic ecosystem. The strains were added

to culture medium and the abundance of each strain was determined periodically. Fresh

cells were occasionally introduced to limit the effect of mutations on the system dynamics.

Similarly to the observations in [4], it was found that the strains took turns dominating

the culture, with each strain taken over by its controlling strain.

2.1.2. Other Ecosystems

Cyclic competition schemes can be found in non-bacterial ecosystems as well. In [7], male

reproductive strategies among side-blotched lizards are analyzed. Males with orange

throats (variant O) take an aggressive approach, preferring to defend large territories.

Those with blue throats (variant B) are less aggressive and generally choose to defend

small territories. Finally, those with yellow throats (variant Y ) do not defend territories

at all and, in fact, look very similar to female side-blotched lizards. A population of these

lizards was observed over a period of six years. The identity of the dominant variant

changed three times over the observation period, with O replacing B, Y replacing O, and

B replacing Y , indicating, for example, that the aggressive strategy of O was effective

over the less aggressive strategy of B, but not over the alternative strategy of Y (similar

statements can be made for the other strategies). Populations of side-blotched lizards can
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thus be considered cyclic ecosystems, with changes in dominance analogous to those seen

in cyclic bacterial ecosystems.

Finally, cyclic competition has been observed among aquatic invertebrates [8] and

grasses [9, 10], with several of these ecosystems consisting of more than three species.

2.2. Model Development

For an ecosystem containing only a single species U , the logistic equation,

(2.1)
du

dt
=
ru(M − u)

M
,

may be used to model the population u ≥ 0 of the species, where M is the carrying

capacity of the species (i.e., the maximum population that can be supported by the

ecosystem) and r is its natural birthrate (the reciprocal of the doubling time). It is clear

that the equation has two fixed points: u = 0 (linearly unstable) and u = M (linearly

stable). Thus, as t→∞, u→ M , so the model predicts that, in the absence of external

competition, a species will approach its carrying capacity over time, rather than go extinct,

provided u is initally nonzero. For completeness, the general solution to (2.1) is

(2.2) u(t) =
M

Ce−rt + 1
,

where C is a constant determined by the population u0 at time t = 0 (specifically, C =

M
u0
− 1, assuming u0 > 0).

Suppose now that the ecosystem contains two species, U1 and U2, with U1 competing

for resources with U2. The populations of the species (u1 and u2, respectively) can be
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modeled by a natural extension of the logistic equation (2.1); namely,

du1

dt
=
r1u1(M1 − u1 − α1,2u2)

M1

,(2.3a)

du2

dt
=
r2u2(M2 − u2 − α2,1u1)

M2

,(2.3b)

where α1,2, α2,1 ≥ 0 are interaction parameters quantifying the effects of interspecies

competition. In keeping with the logistic equation, the fixed point (u1, u2) = (0, 0) is

unstable for all physical choices of the interaction parameters, so that extinction of both

species will not occur, provided at least one of the initial populations is nonzero. The

relationship between U1 and U2 is purely competitive; that is, the presence of U1 does not

benefit U2, and vice versa. This is in contrast to the Lotka-Volterra predator-prey model,

where the presence of, say, U1 benefits U2, while the presence of U2 adversely affects U1

(i.e., U2 is a predator of U1).

System (2.3) can be made spatially explicit by introducing the spatial variable x,

with −L ≤ x ≤ L. This allows for incorporation of species motility, modeled as Fickian

diffusion, resulting in the system

∂u1

∂t
= d1

∂2u1

∂x2
+
r1u1(M1 − u1 − α1,2u2)

M1

,(2.4a)

∂u2

∂t
= d2

∂2u2

∂x2
+
r2u2(M2 − u2 − α2,1u1)

M2

(2.4b)

on the domain [−L,L], where d1, d2 ≥ 0 are diffusivities (quantifying the capability of the

species to spread with units of area over time). Introducing a second spatial variable y,
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with −L ≤ y ≤ L, gives the 2D system

∂u1

∂t
= d1

(
∂2u1

∂x2
+
∂2u1

∂y2

)
+
r1u1(M1 − u1 − α1,2u2)

M1

,(2.5a)

∂u2

∂t
= d2

(
∂2u2

∂x2
+
∂2u2

∂y2

)
+
r2u2(M2 − u2 − α2,1u1)

M2

(2.5b)

on the square domain [−L,L]×[−L,L]. This system can be nondimensionalized by taking

(2.6) t̃ =
t

tref
, x̃ =

x

xref
, ỹ =

y

yref
, ũ1 =

u1

u1ref

, ũ2 =
u2

u2ref

,

where tref , xref , yref , u1ref , and u2ref are reference quantities. Plugging these into the

system and rearranging yields

∂ũ1

∂t̃
= d1

(
tref
x2
ref

∂2ũ1

∂x̃2
+
tref
y2
ref

∂2ũ1

∂ỹ2

)
+ trefr1ũ1

(
1−

u1ref ũ1

M1

−
α1,2u2ref ũ2

M1

)
,(2.7a)

∂ũ2

∂t̃
= d2

(
tref
x2
ref

∂2ũ2

∂x̃2
+
tref
y2
ref

∂2ũ2

∂ỹ2

)
+ trefr2ũ2

(
1−

u2ref ũ2

M2

−
α2,1u1ref ũ1

M2

)
.(2.7b)

Setting

tref =
1

r1

, xref = yref =

√
d1

r1

, u1ref = M1, u2ref = M2,(2.8)

d̃ =
d2

d1

, K =
r2

r1

, α̃1,2 =
α1,2M2

M1

, α̃2,1 =
α2,1M1

M2

,

leads to the nondimensional system

∂ũ1

∂t̃
= ∇2ũ1 + ũ1(1− ũ1 − α̃1,2ũ2),(2.9a)

∂ũ2

∂t̃
= d̃∇2ũ2 +Kũ2(1− ũ2 − α̃2,1ũ1)(2.9b)
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on the domain [L̃, L̃] (for a 1D problem; the nondimesionalization of (2.4) clearly also

leads to (2.9)) or [−L̃, L̃]× [−L̃, L̃] (2D), where ∇2 is the Laplacian and

(2.10) L̃ =
L

xref
= L

√
r1

d1

.

Nondimensionalized systems will be considered from this point forward, and the tildes

will be dropped from all symbols.

Ecosystems with N species can be modeled by the generalized form of (2.9):

∂u1

∂t
= ∇2u1 + u1(1− u1 − α1,2u2 − α1,3u3 − · · · − α1,NuN),(2.11a)

∂u2

∂t
= d2∇2u2 +K2u2(1− u2 − α2,1u1 − α2,3u3 − · · · − α2,NuN),(2.11b)

...

∂uN
∂t

= dN∇2uN +KNuN(1− uN − αN,1u1 − αN,2u2 − · · · − αN,N−1uN−1).(2.11c)

If N = 3 and K2 = K3 = 1, then the May-Leonard model with diffusion is recovered (the

original May-Leonard model [11] is a system of ordinary differential equations; i.e., there

is no spatial dependence).

Since the present interest is in purely cyclic interspecies competition, as described in

the ecological literature discussed in Section 2.1, the model is modified to enforce the

criteria that each species (i) controls exactly one species and (ii) is controlled by exactly

one species. It is also assumed that the natural birthrates of the species are the same.

This is accomplished by setting αi,j = 0 for j 6= (i mod N) + 1 and Ki = 1 for 2 ≤ i ≤ N :
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∂u1

∂t
= ∇2u1 + u1(1− u1 − α1u2),(2.12a)

∂u2

∂t
= d2∇2u2 + u2(1− u2 − α2u3),(2.12b)

...

∂uN
∂t

= dN∇2uN + uN(1− uN − αNu1),(2.12c)

where α1 = α1,2, α2 = α2,3, and αN = αN,1. For this system, it is straightforward to show

that extinction of all species is linearly unstable, as was the case for Equation (2.1) and

System (2.3).

2.2.1. Parameter Selection

One of the primary objectives in deriving (2.12) was to develop an appropriate model for

cyclic ecosystems consisting of variants of E. coli, as previously discussed. When a model

of such a system is desired, the domain half-length L must be chosen such that it reflects

the properties of both E. coli and the physical domain. Recalling the relationship (2.10),

the nondimensional half-length depends on the size of the physical domain, as well as the

birthrate and diffusivity of the species U1. For reference, the doubling time of E. coli is

approximately 20 minutes in a laboratory setting (corresponding to a birthrate of 1
1200

s−1)

[12] and the diffusivity of wild-type E. coli in liquid media is roughly 5× 10−6 cm2/s [13]

(though differences in cell concentration can have marked effects on this parameter [14]).

In agar, the diffusivity is decreased by a factor of about 30, subject to the concentration

of the agar [15].
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When considering an ecosystem confined to the walls of a petri dish, the domain can

be thought of as a thin annulus and, provided this annulus is sufficiently thin, the system

can be approximately described by the 1D model. In this case, the relevant physical

half-length is half the circumference of the petri dish. Given that a typical petri dish has

a diameter between 3 and 20 cm (so that half the circumference ranges from 1.5π to 10π

cm), it is easy to see from (2.10) that the model domain’s half-length should be between

60 and 410, provided the modeled system is a liquid suspension. If the E. coli are in agar

instead (as in, e.g., [3]), the range should be multiplied by a factor of approximately 5.5

(i.e., the range should be roughly 330 to 2255).

If the species are allowed to spread across the entire petri dish, a two-dimensional

domain is necessary. Although many (but not all) petri dishes are circular, the shape

of the model domain need not be circular. If a square model domain is used, solutions

near the boundary may be distorted, but this generally does not have an effect on the

qualitative nature of the solution. For this reason, the domain [−L,L] × [−L,L] will be

used for 2D models, as described above. Taking the radius of the petri dish as the relevant

physical half-length gives a model half-length between 20 and 130 for a liquid suspension,

with the range again multiplied by about 5.5 in the case of an agar environment.
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CHAPTER 3

Fixed Points and Stability

3.1. Two Species

System (2.12) with two species can be written as

∂u

∂t
= ∇2u+ u(1− u− αv),(3.1a)

∂v

∂t
= dv∇2v + v(1− v − βu).(3.1b)

The associated ordinary differential equation (ODE) system is

du

dt
= u(1− u− αv),(3.2a)

dv

dt
= v(1− v − βu).(3.2b)

The physicality and stability of the fixed points of the ODE system are unchanged by the

introduction of diffusive terms (see, e.g., [16]); thus, the fixed points will be discussed in

the context of the ODE system. This will also be the case for the three- and four-species

systems discussed below. Clearly, System (3.2) has four fixed points (u, v):

• Extinction state b0 = (0, 0)

• Single-species states bu = (1, 0) and bv = (0, 1)

• Coexistence state buv = (u∗, v∗)
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The components of the coexistence state satisfy the system of equations

u∗ + αv∗ = 1,(3.3a)

v∗ + βu∗ = 1,(3.3b)

which, assuming αβ 6= 1, has the unique solution

(3.4) u∗ =
1− α

1− αβ
, v∗ =

1− β
1− αβ

.

The extinction state b0 and the single-species states bu and bv are physical for any selection

of α and β. On the other hand, the coexistence state buv is not physical (i.e., u∗ or v∗ is

negative) if either α < 1 and β > 1 or α > 1 and β < 1.

The linear stability of a fixed point of a system can be determined by analyzing the

eigenvalues of the Jacobian matrix of the system evaluated at the fixed point. If the real

parts of all eigenvalues are negative, then the fixed point is stable. On the other hand, if

at least one eigenvalue has a positive real part, the fixed point is unstable. The Jacobian

matrix of (3.2) is

(3.5) J(u, v) =

1− 2u− αv −αu

−βv 1− 2v − βu

 .

The matrix J(0, 0) has the repeated eigenvalue 1, meaning that the extinction state b0

is an unstable node. J(1, 0) has eigenvalues −1 and 1 − β, so that bu is stable if β > 1

and is unstable (specifically, it is a saddle point unstable to perturbations in v) if β < 1.

Similarly, J(0, 1) has eigenvalues 1−α and −1, so that it is stable if α > 1 and is a saddle
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point (unstable to perturbations in u) if α < 1. Finally, J(u∗, v∗) has eigenvalues −1 and

(α−1)(β−1)
αβ−1

, so that the coexistence state buv is stable if α, β < 1 and unstable if α, β > 1

(recall that the state is not physically relevant otherwise; if either α or β is exactly 1, the

state coincides with one of the single-species states).

Further analysis of the two-species model can be found in [17].

3.2. Three Species

System (2.12) with three species can be written as

∂u

∂t
= ∇2u+ u(1− u− αv),(3.6a)

∂v

∂t
= dv∇2v + v(1− v − βw),(3.6b)

∂w

∂t
= dw∇2w + w(1− w − γu).(3.6c)

As previously mentioned, this system is sometimes referred to as a rock-paper-scissors

(RPS) system. For reference, the associated ODE system is

du

dt
= u(1− u− αv),(3.7a)

dv

dt
= v(1− v − βw),(3.7b)

dw

dt
= w(1− w − γu).(3.7c)

System (3.7) has eight fixed points (u, v, w):

• Extinction state c0 = (0, 0, 0)

• Single-species states cu = (1, 0, 0), cv = (0, 1, 0), and cw = (0, 0, 1)

• Two-species states cuv = (1− α, 1, 0), cuw = (1, 0, 1− γ), and cvw = (0, 1− β, 1)
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• Coexistence state cuvw = (u∗, v∗, w∗)

The components of the coexistence state are given by

(3.8) u∗ =
1 + α(β − 1)

1 + αβγ
, v∗ =

1 + β(γ − 1)

1 + αβγ
, w∗ =

1 + γ(α− 1)

1 + αβγ
.

As in the two-species case, the extinction state c0 and the single-species states cu, cv, and

cw are physical for any selection of α, β, and γ. The two-species state cuv is not physical

if α > 1 (similarly, cuw and cvw are not physical if γ > 1 and β > 1, respectively). The

coexistence state cuvw is not physical if α < 1− 1
γ
, β < 1− 1

α
, or γ < 1− 1

β
.

The Jacobian matrix of (3.7) is

(3.9) J(u, v, w) =


1− 2u− αv −αu 0

0 1− 2v − βw −βv

−γw 0 1− 2w − γu

 .

As in the two-species case, the matrix J(0, 0, 0) has the repeated eigenvalue 1, so that

the extinction state c0 is an unstable node. The single-species state cu is a saddle, with

the matrix J(1, 0, 0) having eigenvalues −1, 1, and 1 − γ, so that the state is stable to

perturbations in u, unstable to perturbations in v, and unstable to perturbations in w

if γ < 1 (i.e., when cuw is physical). Similarly, cv is unstable to perturbations in w and

unstable to perturbations in u if α < 1, while cw is unstable to perturbations in u and

unstable to perturbations in v if β < 1. A heteroclinic cycle connects the single-species

saddle points such that cu is displaced by cv, cv by cw, and cw by cu. It can be shown

[16, 18, 19] that the heteroclinic cycle is asymptotically stable, and attracting for all
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physical initial conditions, if

(3.10) (α− 1)(β − 1)(γ − 1) > 1.

The interaction coefficients α, β, and γ can be expressed in terms of the components of

the coexistence state by manipulating the relationships (3.8):

(3.11) α =
1− u∗
v∗

, β
1− v∗
w∗

, γ =
1− w∗
u∗

.

Plugging these expressions into (3.10) leads to an equivalent condition for the stability of

the heteroclinic cycle; namely,

(3.12) u∗ + v∗ + w∗ < 1.

The matrix J(1 − α, 1, 0) has eigenvalues α − 1, −1, and 1 + γ(α − 1), so that the

two-species state cuv is stable if γ > 1 and α < 1− 1
γ
. Similarly, cuw is stable if β > 1 and

γ < 1− 1
β
, while cvw is stable if α > 1 and β < 1− 1

α
. Finally, the coexistence state cuvw

is stable (see Appendix A; an alternative proof is given in [16]) if

(3.13) u∗ + v∗ + w∗ > 1,

which is equivalent to the condition

(3.14) (α− 1)(β − 1)(γ − 1) < 1.

It is thus clear that the heteroclinic cycle and the coexistence state cannot both be stable.
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3.3. Four Species

The four-species version of System (2.12) where three species have identical properties

and all species have identical diffusivities can be written as

∂u

∂t
= ∇2u+ u(1− u− αv),(3.15a)

∂v

∂t
= d∇2v + v(1− v − βw),(3.15b)

∂w

∂t
= ∇2w + w(1− w − αz),(3.15c)

∂z

∂t
= ∇2z + z(1− z − αu).(3.15d)

The associated ODE system is

du

dt
= u(1− u− αv),(3.16a)

dv

dt
= v(1− v − βw),(3.16b)

dw

dt
= w(1− w − αz),(3.16c)

dz

dt
= z(1− z − αu).(3.16d)

System (3.16) has sixteen fixed points (u, v, w, z):

• Extinction state e0 = (0, 0, 0, 0)

• Single-species states eu = (1, 0, 0, 0), ev = (0, 1, 0, 0), ew = (0, 0, 1, 0), and ez =

(0, 0, 0, 1)

• Two-species competing states euv = (1 − α, 1, 0, 0), euz = (1, 0, 0, 1 − α), evw =

(0, 1− β, 1, 0), and ewz = (0, 0, 1− α, 1)

• Two-species non-competing states euw = (1, 0, 1, 0) and evz = (0, 1, 0, 1)
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• Three-species states euvw = (1−α(1−β), 1, 1−β, 0), euvz = (1−α, 1, 0, 1−α(1−

α)), euwz = (1, 0, 1− α(1− α), 1− α), and evwz = (0, 1− β(1− α), 1− α, 1)

• Coexistence state euvw = (u∗, v∗, w∗, z∗)

The components of the coexistence state are given by

u∗ =
(1− α) + αβ(1− α)

1− α3β
, v∗ =

(1− β) + αβ(1− α)

1− α3β
,(3.17)

w∗ =
(1− α) + α2(1− α)

1− α3β
, z∗ =

(1− α) + α2(1− β)

1− α3β
.

As in the previous cases, the extinction state e0 and the single-species states eu, ev, ew,

and ez are physical for any selection of α and β. Moreover, the non-competing two-species

states euw and evz are always physical. The two-species competing states euv, euz, and

ewz are not physical if α > 1, while evw is not physical if β > 1.

The following summarizes the conditions for physicality of the three-species states:

• euvw is not physical if β > 1 or if α > 1 and β < 1− 1
α

• euvz and euwz are not physical if α > 1

• evwz is not physical if α > 1 or if β > 1 and α < 1− 1
β

The coexistence state euvwz is not physical if one of the following is true:

• α < 1 and β > 1
1−α+α2

• α > 1 and β < α2−α+1
α2
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The Jacobian matrix of (3.16) is

(3.18) J(u, v, w, z) =



1− 2u− αv −αu 0 0

0 1− 2v − βw −βv 0

0 0 1− 2w − αz −αw

−αz 0 0 1− 2z − αu


.

The matrix J(0, 0, 0, 0) has the repeated eigenvalue 1, so that the extinction state e0 is

unstable. The matrix J(1, 0, 0, 0) has eigenvalues −1, 1, 1, and 1− α, so that the single-

species state eu is unstable to perturbations in v and w and, if α < 1, to perturbations

in z. The other single-species states have analogous stability properties. The two-species

competing states are also always unstable. On the other hand, the two-species non-

competing state euw is stable if α, β > 1, while evz is stable if α > 1.

The stability properties of the three-species states are as follows:

• euvw is stable if α > 1 and 1−a+a2

a2 < β < 1

• euvz and evwz are unstable when physical

• euwz is stable if α < 1 and β > 1
1−α+α2

Finally, the coexistence state is stable if α3β < 1 and unstable if α3β > 1 [20].
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CHAPTER 4

Analytical Methods and Previous Results

4.1. Fisher-KPP Equation

4.1.1. Existence of Traveling Wave Solutions

Taking (2.12) in one spatial dimension with N = 1 over R gives

(4.1)
∂u

∂t
= d

∂2u

∂x2
+Ku(1− u),

where d,K > 0 are constants (note that, as shown above, the equation describing the

population of a single species can be nondimensionalized such that d = K = 1; however,

the more general form of the equation will be considered here). This equation is known as

Fisher’s equation or the Kolmogorov-Petrovsky-Piskunov (KPP) equation, and it is well

known that it admits a class of traveling wave solutions u(z) = u(x− st) (where s > 0 is

the speed of the wave) [21]. Making this transformation gives

(4.2)
∂

∂t
= −s d

dz
,

∂

∂r
=

d

dz
,

so that (4.1) can be written as

(4.3) d
d2u

dz2
+ s

du

dz
+Ku(1− u) = 0,
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or, as a first-order system,

du

dz
= v,(4.4a)

dv

dz
= −s

d
v − K

d
u(1− u).(4.4b)

It is easy to see that (4.4) has two fixed points: (u, v) = (0, 0) and (u, v) = (1, 0). Noting

that the Jacobian matrix of (4.4) is

(4.5) J(u, v) =

 0 1

−K
d

(1− 2u) − s
d

 ,

it is readily found that the eigenvalues of J(0, 0) are

(4.6) λ±0 =
−s±

√
s2 − 4dK

2d

and that the eigenvalues of J(1, 0) are

(4.7) λ±1 =
−s±

√
s2 + 4dK

2d
.

Recalling that d,K, s > 0, it is always true that λ+
1 is positive and λ−1 is negative, so that

the point (u, v) = (1, 0) is a saddle. On the other hand, λ+
0 and λ−0 are always negative,

so that the point (u, v) = (0, 0) is a stable spiral if s2 < 4dK, and a stable node otherwise.

Thus, there is a heteroclinic orbit from (1, 0) to (0, 0), corresponding to traveling wave

solutions u(z) such that u→ 1 as z → −∞ and u→ 0 as z →∞. If s2 < 4dK, however,

such a solution is unphysical with respect to a population, since, in this case, any approach

to the point (0, 0) in u-v space will always require that u is negative at some point on
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the trajectory, given that (0, 0) is a spiral sink. For this reason, relevant traveling wave

solutions of the Fisher-KPP equation have a minimum speed of 2
√
dK. It has been shown

that traveling wave solutions will have the minimum speed when the initial condition has

compact support [21]. This is also the case when the initial interface between the areas

where u = 1 and u = 0 is sufficiently steep (e.g., if the initial condition is a Heaviside

function).

4.1.2. Approximation of Traveling Wave Solutions

Although there is only one known closed-form traveling wave solution to the Fisher-KPP

equation [21], approximations to these solutions exist. Letting ε = 1
s2

, ξ = z√
ε
, and

u(z) = g(ξ), (4.3) may be rescaled [22] to give

(4.8) εd
d2g

dξ2
+
dg

dξ
+Kg(1− g) = 0,

where, for the reason discussed above, the conditions

g(ξ)→ 1, ξ → −∞,(4.9a)

g(ξ)→ 0, ξ →∞(4.9b)

are imposed. Furthermore, the point ξ = ξ0 = z0√
ε

is defined such that g(ξ0) = 1
2
. For

a continuous solution, such a point is guaranteed to exist. Expanding g(ξ) such that

g(ξ) = g0(ξ) + εg1(ξ) + ε2g2(ξ) + . . . results in the leading order problem

(4.10)
dg0

dξ
= −Kg0(1− g0),
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which has the general solution

(4.11) g0(ξ) =
1

1 + AeKξ
,

where conditions (4.9) are automatically satisfied and the condition g(z0) = 1
2

requires

A = e−Kz0/s. Thus,

(4.12) u(z) ∼ 1

1 + eK(z−z0)/s
.

Although this approximation is most accurate for large s, it turns out to still be a good

approximation for s ≈ 2. This is shown in Figure 4.1, where the approximation (with

K = 1 and z0 = 0) is compared to the exact solution for s = 5√
6
≈ 2.04, which is (for

K = 1) [21]

(4.13) u(z) =
1

(1 + (
√

2− 1)ez/
√

6)2
.

4.1.3. Curvature-Speed Relationship

Consider the two-dimensional Fisher-KPP equation

(4.14)
∂u

∂t
= d

(
∂2u

∂x2
+
∂2u

∂y2

)
+Ku(1− u)

on R2. Suppose the initial condition is

(4.15) u(x, y, 0) =


1, x ≤ 0,

0, x > 0.
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(a) (b)

Figure 4.1. a) Approximation (4.12) versus exact traveling wave solution
with speed 5/

√
6 to the Fisher-KPP equation with K = 1. b) Absolute

error of the approximation.

It is clear that the solution will be independent of y; thus, the problem can be treated

as a one-dimensional problem. Since the initial interface has a steep gradient (it is the

Heaviside function H0), the solution will be a traveling wave with speed 2
√
dK. Solutions

of this type are referred to as plane waves because the interface between the regions where

u = 1 and u = 0 remains flat in x-y space (i.e., has zero curvature) for all time (see Figure

4.2).

It turns out, however, that curvature has an effect on wave speed. Transforming this

equation into polar coordinates and assuming a solution independent of polar angle gives

(4.16)
∂u

∂t
= d

(
∂2u

∂r2
+

1

r

∂u

∂r

)
+Ku(1− u),
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(a) (b)

Figure 4.2. a) Initial condition (4.15). b) Solution to the 2D Fisher-KPP
equation with d = K = 1 at t = 20 for this initial condition. Dark red
regions mark where u ≥ 0.5, light red where u ≥ 0.05, and orange where
u ≥ 0.01.

where r =
√
x2 + y2. Suppose the initial condition is

(4.17) u(r, 0) =


1, r ≤ R0,

0, r > R0;

i.e., a circular patch of radius R0 where u = 1 surrounded by empty space (Figure 4.3a).

It is intuitive that the patch should expand over time, but it is not obvious how quickly

the expansion should happen. The dependence of the wave speed on the curvature of the

interface can be found for small curvature (i.e., large R, with R(t) the radius of the patch)

by assuming a solution of the form u(r, t) = u(z), where z = r − S(R)t. The analysis in

[23] reveals that the speed of the traveling wave should be

(4.18) S(R) ∼ s0 −
d

R(t)
,
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valid for large R, with s0 the speed of the corresponding planar wave (i.e., the speed that

would be expected if there were no curvature). In this case, s0 = 2
√
dK, since the initial

interface has a steep gradient. Formula (4.18) is also valid, without restriction on R, for

small diffusivities d [21, 24, 25].

(a) (b)

Figure 4.3. a) Initial condition (4.17) with R0 = 10. b) Solution to the 2D
Fisher-KPP equation with d = K = 1 at t = 20 for this initial condition.
Color scheme is as in Figure 4.2.

4.2. Estimated Propagation Speed of a Pulled Front

4.2.1. Methodology

Consider the displacement of an unstable state p of the one-dimensional version of System

(2.12) by some other state via propagation of a pulled front. The term “pulled” here

means that propagation of the front is dictated by properties of the displaced state. A

procedure for estimating the speed of such a front is described in great detail in [26] and

is summarized below.
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To find possible speeds, System (2.12) is linearized about the point p in state space

and solutions of the form

(4.19) ~u(x, t) ≈ eΛte−kxũ = e−k(x−
Λ
k
t)ũ,

are sought, where ~u =

(
u1, u2, . . . , uN

)
. The speed of displacement is clearly given

by s = Λ
k
. Assuming the interface between the displacing and displaced states (i.e., the

front) is sufficiently steep, the expected speed of the front is the minimal possible speed

smin [27]. Letting J be the Jacobian matrix of the spatially-homogeneous (ODE) version

of System (2.12) evaluated for the state p and looking for solutions of the form (4.19)

gives

(4.20) Λũ = (k2D + J)ũ,

where D is the diagonal matrix containing the diffusivities of the species; i.e.,

(4.21) D =


1

d2

. . .
dN

 .

This implies Λ is an eigenvalue of the matrix k2D + J . The minimal speed can then be

obtained via simple calculus.

For the expansion of a two-dimensional circular patch (which is independent of the

polar angle θ), an approximation to the minimal speed for large R (with R(t) the radius

of the patch) can be found by looking for a solution of the form

(4.22) ~u(r, θ, t) ≈ eΛte−krũ = e−k(r−
Λ
k
t)ũ



50

to the system

∂u1

∂t
=
∂2u1

∂r2
+ u1(1− u1 − α1u2),(4.23a)

∂u2

∂t
= d2

∂2u2

∂r2
+ u2(1− u2 − α2u3),(4.23b)

...

∂uN
∂t

= dN
∂2uN
∂r2

+ uN(1− uN − αNu1);(4.23c)

i.e., the Laplacian ∇2u = ∂2u
∂r2 + 1

r
∂u
∂r

(the independence from θ implies ∂2u
∂θ2 is zero every-

where) is approximated by ∂2u
∂r2 . Note that this is just the one-dimensional problem with

the spatial variable x replaced by r. The approximate minimal speed sp is then deter-

mined via the procedure described above. Supposing that all the diffusivities are identical

(i.e., equal to 1), a trivial extension of the analysis in [23] reveals that the correction to

the minimal speed due to curvature is just − 1
R(t)

, so that the estimated minimal speed

is smin = sp − 1
R(t)

. For a contraction of a circular patch, the minimal speed is then

approximately smin = sp + 1
R(t)

(see also Section 6.1.2).

4.2.2. Examples

Below are two simple examples of the application of the above methodology to one-

dimensional problems.

4.2.2.1. One Species. Consider System (2.12) with N = 1; i.e.,

(4.24)
∂u

∂t
=
∂2u

∂x2
+ u(1− u).
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The speed of displacement of the unstable state u = 0 by the (stable) state u = 1 is of

interest. The Jacobian “matrix” of the ODE version of (4.24) is J = 1 − 2u, so that at

u = 0, J = 1. Moreover, D = 1 in this case, so that the eigenvalue Λ of k2D+J is k2 + 1.

Thus, possible speeds of displacement are given by the expression

(4.25) s(k) =
Λ

k
= k +

1

k
,

which attains its minimum value at k = 1 (note that speed is required to be nonnegative).

In this case, then, smin = 2, which is consistent with the minimal speed of a traveling

wave to the Fisher-KPP equation with d = K = 1 (see Section 4.1.1).

4.2.3. Two Species

Consider System (3.1) with α > 1 and β < 1 so that the single-species state bu is unstable,

while bv is stable. The speed of displacement of the unstable state bu by bv is of interest

here. The Jacobian matrix of (3.2) evaluated for the bu state is

(4.26) J =

−1 −α

0 1− β

 ,

so that

(4.27) k2D + J =

k2 − 1 −α

0 k2dv + 1− β

 ,

whose eigenvalues are clearly k2− 1 and k2dv + 1−β. The first of these eigenvalues is not

always positive, so it is irrelevant in determining the speed of displacement [27] (indeed,
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it is clear that there is no finite minimum of the function s(k) = k − a
k
, where a > 0).

Thus, Λ = k2dv + 1− β, so that

(4.28) s(k) =
Λ

k
= kdv +

1− β
k

.

This function has a minimum at k =
√

1−β
dv

. Thus, the speed of propagation is expected

to be smin = 2
√
dv(1− β).
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CHAPTER 5

Numerical Methods

5.1. One-Dimensional Problem

5.1.1. Discrete Fourier Transform (DFT)

Consider a real-valued function f(x) periodic on the interval 0 ≤ x ≤ 2π. The function

can be approximated as a sum of N Fourier modes; i.e.,

(5.1) f(x) ≈
N−1∑
k=0

Ake
ikx,

where N is assumed to be even and the coefficients Ak are given by

(5.2) Ak =
1

2π

∫ 2π

0

f(x)e−ikx dx.

Since f(x) is real-valued, it must be true that

(5.3) AN−k = Āk

for 1 ≤ k ≤ N−1. If the values of f(x) are known at the discrete points (nodes) Xj = 2πj
N

,

0 ≤ j ≤ N − 1, the Fourier coefficients Ak can be approximated via Riemann sums; i.e.,

(5.4) Ak ≈
1

2π

[
N−1∑
j=0

f(Xj)e
−ikXj

](
2π

N

)
,
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which reduces to

(5.5) Ak ≈
1

N

[
f(0) +

N−1∑
j=1

f

(
2πj

N

)
e−2πijk/N

]
.

This is the discrete Fourier transform (DFT) of f(x), with the inverse (IDFT) given by

(5.1) at the nodes Xj:

(5.6) f(Xj) ≈
N−1∑
k=0

Ake
2πijk/N .

Using the relationship (5.3) and the facts that eikx = cos (kx)+i sin (kx) and e2πij(N−k)/N =

e−2πijk/N reduces the IDFT to

(5.7) f(Xj) ≈ A0 + (−1)jAN/2 + 2

N/2−1∑
k=1

<(Ak) cos

(
2πjk

N

)
−=(Ak) sin

(
2πjk

N

)
,

so that it is only necessary to compute N/2+1 coefficients Ak. Note that the formulation

of the IDFT enforces the condition f(0) = f(2π), making the DFT a natural tool for

solving problems with periodic boundary conditions.

The transform (5.5) can be split into two transforms of size N/2:

Ak =

N/2−1∑
m=0

f(X2m)e−2π(2m)ki/N +

N/2−1∑
m=0

f(X2m+1)e−2π(2m+1)ki/N(5.8)

=

N/2−1∑
m=0

f(X2m)e−2πmki/(N/2) + e−2πki/N

N/2−1∑
m=0

f(X2m+1)e−2πmki/(N/2).(5.9)

The advantage of doing this is that since the complex exponentials in both sums are

identical, the computational cost of the transform is lowered. The transforms of size N/2

can then be further split into transforms of size N/4, and so on. Algorithms that reuse
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parts of previous computations to calculate a DFT are known as fast Fourier transforms

(FFT) (this case is the radix-2 FFT), which reduce the cost of the computation of the

DFT from O(N2) to O(N log (N)) [28]. A similar procedure can be used to calculate the

IDFT.

5.1.2. Derivatives and Scaling

If the domain of interest is not [0, 2π] (i.e., if a function is not 2π-periodic), the formulation

of the DFT can be rescaled. The change of variable

(5.10) x̃ =
L

π
(x− π)

transforms the domain from [0, 2π] to [−L,L]. The series (5.1) becomes

(5.11) f̃(x̃) ≈
N−1∑
k=0

Ãke
πik(1+x̃/L),

with

(5.12) Ãk =
1

2L

∫ L

−L
f̃(x̃)e−πik(1+x̃/L) dx̃.

Additionally, the new nodes are X̃j = L
(

2j
N
− 1
)
. Note that the complex exponentials are

therefore exactly the same as before, since

(5.13) eπik(1+X̃j)/L) = eπik(1+L( 2j
N
−1)/L) = e2πijk/N .
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Thus, the DFT is now

(5.14) Ãk ≈
1

N

[
f̃(−L) +

N−1∑
j=1

f̃

(
L

(
2j

N
− 1

))
e−2πijk/N

]
,

while the IDFT is just

(5.15) f̃(X̃j) ≈ Ã0 + (−1)jÃN/2 + 2

N/2−1∑
k=1

<(Ãk) cos

(
2πjk

N

)
−=(Ãk) sin

(
2πjk

N

)
.

From (5.11), the second derivative of the function f̃(x̃) is

(5.16) f̃ ′′(x̃) ≈
N−1∑
k=0

−π
2k2

L2
Ãke

πik(1+x̃/L),

so that the second derivative of the function f̃ can be evaluated from the DFT of f̃ .

Letting Ãk be defined as in (5.14),

(5.17)

f̃ ′′(X̃j) ≈ s2
x

−(N
2

)2

(−1)jÃN/2 + 2

N/2−1∑
k=1

−k2<(Ãk) cos

(
2πjk

N

)
+ k2=(Ãk) sin

(
2πjk

N

) ,
where sx = π

L
. It is also straightforward to show that d2Ãk

dx̃2 ≈ −k2s2
xÃk, so that it is

possible (and sometimes more convenient) to introduce the factors s2
x and −k2 in the

coefficients Ãk themselves (see Section 5.1.3.1).

5.1.3. 1D Solver

For concreteness, consider the one-dimensional version of System (3.1). The numerical

method for solving the system consists of two stages: a predictor stage and a corrector

stage. The solution is advanced by half of a time step in the predictor stage and then
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advanced the full time step in the corrector stage. To begin, N nodes (with N even) Xj

are chosen such that Xj = L
(

2j
N
− 1
)
, with 0 ≤ j ≤ N − 1. Thus, the leftmost node X0

corresponds to the point x = −L, whereas the rightmost node XN−1 corresponds to the

point x = L − 2L
N

. The node XN/2 corresponds to the point x = 0. At each time, the

values of v at the nodes, Vj = v(Xj), can be grouped into a vector V. Obviously, the

same can be done for u (grouped into the vector U).

5.1.3.1. Predictor. The derivative of v with respect to time at time step n can be

approximated as

(5.18)
∂Vn

∂t
≈ Vn+1 −Vn

∆t
,

where ∆t is the time step size and the notation Vn means “V at time step n.” For this

method, the time steps are fixed, so ∆t is a constant. In the predictor stage, the solution

is advanced by only half a time step, so

(5.19)
∂Vn

∂t
≈ Vn+1/2 −Vn

∆t/2
.

Plugging this into the second equation in System (3.1) gives

(5.20)
Vn+1/2 −Vn

∆t/2
≈ dv

∂2Vn+1/2

∂x2
+ Vn · (1−Vn − βUn),

where the spatial second derivative is computed at time step n+ 1/2 for stability. Trans-

forming the equation into Fourier space gives

(5.21)
F(Vn+1/2)k −F(Vn)k

∆t/2
≈ dv

∂2F(Vn+1/2)k
∂x2

+ F(NLVn)k,
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where F(Vn)k denotes the kth component of the DFT of v at time step n (i.e., the

coefficient Ãk in (5.14)) and

(5.22) NLVn = Vn · (1−Vn − βUn).

As discussed in 5.1.2,

(5.23)
∂2F(Vn+1/2)k

∂x2
= −s2

xk
2F(Vn+1/2)k,

where sx = π
L

, so that (5.21) can be written as

(5.24)
F(Vn+1/2)k −F(Vn)k

∆t/2
≈ −dvs2

xk
2F(Vn+1/2)k + F(NLVn)k.

Solving for F(Vn+1/2) gives

(5.25) F(Vn+1/2)k ≈
F(Vn)k + ∆t

2
F(NLVn)k

1 + ∆t
2
dvs2

xk
2

.

In a similar way,

(5.26) F(Un+1/2)k ≈
F(Un)k + ∆t

2
F(NLUn)k

1 + ∆t
2
s2
xk

2
,

where

(5.27) NLUn = Un · (1−Un − αVn).

The physical solutions Vn+1/2 and Un+1/2 are then found simply by taking the IDFT of

F(Vn+1/2) and F(Un+1/2), respectively.
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5.1.3.2. Corrector. In the corrector stage, the solution at time step n+ 1/2 is used to

evaluate the nonlinear terms and the diffusion operator is split into implicit and explicit

components. The second equation of System (3.1) is then

(5.28)
Vn+1 −Vn

∆t
≈ dv

2

[
∂2Vn+1

∂x2
+
∂2Vn

∂x2

]
+ Vn+1/2 · (1−Vn+1/2 − βUn+1/2).

Transforming into Fourier space and evaluating the spatial derivative gives

(5.29)
F(Vn+1)k −F(Vn)k

∆t
≈ −dvs

2
xk

2

2

[
F(Vn+1)k + F(Vn)k

]
+ F(NLVn+1/2).

Solving for F(Vn+1)k results in

(5.30) F(Vn+1)k ≈
(1− ∆t

2
dvs

2
xk

2)F(Vn)k + ∆tF(NLVn+1/2)k

1 + ∆t
2
dvs2

xk
2

.

Similarly,

(5.31) F(Un+1)k ≈
(1− ∆t

2
s2
xk

2)F(Un)k + ∆tF(NLUn+1/2)k

1 + ∆t
2
s2
xk

2

and the physical solutions Vn+1 and Un+1 are found by taking the inverse IDFT of

F(Vn+1) and F(Un+1), respectively.

This method is second order in time. Time steps were chosen to be small enough

that solution behavior was qualitatively unaffected by a doubling of the step size. The

method was implemented in Fortran and routines from the free FFTW library [29] were

sometimes used to compute the discrete Fourier transforms and the inverse transforms.

5.2. Two-Dimensional Problem
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5.2.1. 1D Discrete Cosine Transform (DCT)

In Section 5.1.1, it was shown that a real-valued function f(x) that is periodic on the

interval [0, 2π] can be represented by a series of Fourier modes. If f(x) is also even with

respect to the point x = π (i.e., f(x) = f(2π−x), then f(Xj) = f(XN−j), where Xj = 2πj
N

,

0 ≤ j ≤ N − 1. Thus,

(5.32) f(XN−j)e
−2πik(N−j)/N = f(Xj)e

−2πie2πijk/N = f(Xj)e
2πijk/N ,

so that the approximation of the Fourier coefficients (5.5) becomes

(5.33) Ak ≈
1

N

f(0) + (−1)kf(π) + 2

N/2−1∑
j=1

f(Xj) cos

(
2πjk

N

) .
Note that all of the coefficients are real; thus,

(5.34) f(Xj) ≈ A0 + (−1)jAN/2 + 2

N/2−1∑
k=1

Ak cos

(
2πjk

N

)
.

The properties of f imply that its derivative vanishes at the points x = 0 and x = π.

Thus, (5.33) can be used to transform a function g(x) defined on the interval [0, π] with

g′(0) = g′(π) = 0 as follows:

(5.35) Ak ≈
1

2(M − 1)

[
g(0) + (−1)kg(π) + 2

M−2∑
j=1

g(Xj) cos

(
πjk

M − 1

)]
,
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where M = N/2 + 1 and the nodes thus Xj = πj
M−1

, 0 ≤ j ≤ M − 1 (note that the

locations of the nodes are unchanged). The values g(Xj) can then be recovered by

(5.36) g(Xj) ≈ A0 + (−1)jAM−1 + 2
M−2∑
k=1

Ak cos

(
πjk

M − 1

)
.

The transform (5.35) is known as a discrete cosine transform (DCT); specifically, it is the

DCT-I. A useful feature of this transform is that it is nearly its own inverse; the form

of the inverse (IDCT) (5.36) is identical to that of the DCT except for the absence of

the scaling factor 1
2(M−1)

. Note that the formulation of the IDCT enforces the condition

g′(0) = g′(π) = 0, making the DCT a natural tool for solving problems with no-flux

boundary conditions.

5.2.2. 2D DCT

Consider first a function of two variables, f(x, y), on the domain [0, 2π] × [0, 2π] with

f(0, y) = f(2π, y) and f(x, 0) = f(x, 2π) (i.e., f is 2π-periodic in both x and y). Then f

can be approximated by the nested series

(5.37) f(x, y) ≈
Nx−1∑
k=0

Ny−1∑
l=0

Ak,le
ikxeily,

where

(5.38) Ak,l =

(
1

2π

)2 ∫ 2π

0

∫ 2π

0

f(x, y)e−ikxe−iky dydx.
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As in the 1D case (see Section 5.1.1), the coefficients Ak,l can be approximated by Riemann

sums, which gives

Ak,l ≈
1

4π2

∫ 2π

0

Ny−1∑
p=0

(
f(x, Yp)e

−ilYp
)( 2π

Ny

)
dx(5.39)

≈ 1

4π2

Nx−1∑
j=0

[
Ny−1∑
p=0

(
f(Xj, Yp)e

−ilYp
(

2π

Ny

))
e−ikXj

(
2π

Nx

)]

=
1

NxNy

Nx−1∑
j=0

[
Ny−1∑
p=0

(
f(Xj, Yp)e

−ilYp
)
e−ikXj

]
,

where Xj = 2πj
Nx

and Yp = 2πp
Ny

. Requiring that f is real-valued and even with respect to

the lines x = π and y = π and following the same procedures discussed in Sections 5.1.1

and 5.2.1 simplifies (5.39) and (5.37) to

(5.40) Ak,l ≈
1

NxNy

B0,l + (−1)kBNx/2,l + 2

Nx/2−1∑
j=1

Bj,l cos

(
2πjk

Nx

) ,
where

(5.41) Bj,l = f(Xj, 0) + (−1)lf(Xj, π) + 2

Ny/2−1∑
p=1

f(Xj, Yp) cos

(
2πpl

Ny

)

and

(5.42) f(Xj, Yp) ≈ C0,p + (−1)jCNx/2,p + 2

Nx/2−1∑
k=1

Bk,p cos

(
2πjk

Nx

)
,

where

(5.43) Ck,p = Ak,0 + (−1)pAk,Ny/2 + 2

Ny/2−1∑
l=1

Ak,l cos

(
2πpl

Ny

)
.
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Similarly to the 1D case, a function g(x, y) defined on the domain [0, π]× [0, π] with the

homogeneous Neumann conditions

(5.44)
∂g

∂x
(0, y) =

∂g

∂x
(π, y) =

∂g

∂y
(x, 0) =

∂g

∂y
(x, π) = 0

(i.e., vanishing normal derivatives on the boundary) can be transformed as follows:

(5.45) Ak,l ≈
1

4(Mx − 1)(My − 1)

[
B0,l + (−1)kBMx−1,l + 2

Mx−2∑
j=1

Bj,l cos

(
πjk

Mx − 1

)]
,

where

(5.46) Bj,l = g(Xj, 0) + (−1)lg(Xj, π) + 2

My−2∑
p=1

g(Xj, Yp) cos

(
πpl

My − 1

)
,

with Mx = Nx/2 + 1 and My = Ny/2 + 1. The values g(Xj, Yp) can then be recovered by

(5.47) g(Xj, Yp) ≈ C0,p + (−1)jCMx−1,p + 2
Mx−2∑
k=1

Ck,p cos

(
πjk

Mx − 1

)
,

where

(5.48) Ck,p = Ak,0 + (−1)pAk,My−1 + 2

My−2∑
l=1

Ak,l cos

(
πpl

My − 1

)
.

The expressions (5.45) and (5.47) are the 2D DCT-I and its inverse. As for the 1D DCT-I,

the 2D DCT-I is nearly its own inverse. Another useful property of the 2D DCT-I is that
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it is really a composition of two 1D DCTs. Indeed, letting

(5.49) G =



g(X0, Y0) g(X0, Y1) . . . g(X0, YMy−1)

g(X1, Y0) g(X1, Y1) . . . g(X1, YMy−1)

...
...

...
...

g(XMx−1, Y0) g(XMx−1, Y1) . . . g(XMx−1, YMy−1)


,

the 2D DCT-I is equivalent to first performing the 1D DCT-I along the rows of G and

then along the columns of the matrix of the resulting coefficients.

If the domain of interest is instead [−L,L]× [−L,L], the change of variables

(5.50) x̃ =
2Lx
π

(
x− π

2

)
, ỹ =

2Ly
π

(
y − π

2

)
and the procedure described in Section 5.1.2 leads to the transform

(5.51) Ãk,l ≈
1

4(Mx − 1)(My − 1)

[
B̃0,l + (−1)kB̃Mx−1,l + 2

Mx−2∑
j=1

B̃j,l cos

(
πjk

Mx − 1

)]
,

where

(5.52) B̃j,l = g̃(X̃j,−Ly) + (−1)lg̃(X̃j, Ly) + 2

My−2∑
p=1

g̃(X̃j, Ỹp) cos

(
πpl

My − 1

)
,

with Xj = Lx

(
2j

Mx−1
− 1
)

and Yp = Ly

(
2p

My−1
− 1
)

, while the function g̃ can be recovered

by

(5.53) g̃(Xj, Yp) ≈ C̃0,p + (−1)jC̃Mx−1,p + 2
Mx−2∑
k=1

C̃k,p cos

(
πjk

Mx − 1

)
,
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where

(5.54) C̃k,p = Ãk,0 + (−1)pÃk,My−1 + 2

My−2∑
l=1

Ãk,l cos

(
πpl

My − 1

)
.

Finally, the second derivative of g̃ with respect to x̃ at the point (Xj, Yp) is given by

(5.55)
∂2g̃

∂x̃2
(Xj, Yp) ≈ s2

x

[
(−Mx − 1)2(−1)jC̃Mx−1,p + 2

Mx−2∑
k=1

−k2C̃k,p cos

(
πjk

Mx − 1

)]
,

where the C̃ are defined as in (5.54). Similarly, the second derivative of g̃ with respect to

ỹ at the point (Xj, Yp) is given by (5.53) with

(5.56) C̃k,p = s2
y

[
−(My − 1)2(−1)pÃk,My−1 + 2

My−2∑
l=1

−l2Ãk,l cos

(
πpl

My − 1

)]
.

As for the 1D DFT, it is sometimes more convenient to introduce the factors k2, l2, s2
x,

and s2
y in the coefficients Ãk,l themselves.

5.2.3. 2D Solver

For concreteness, consider the two-dimensional version of System (3.1). As for the 1D

problem, the numerical method consists of a predictor stage and a corrector stage. First,

NxNy nodes (Xj, Yp) are chosen such that Xj = Lx

(
2j

Nx−1
− 1
)

and Yp = Ly

(
2p

Ny−1
− 1
)

,

with 0 ≤ j ≤ Nx − 1, 0 ≤ p ≤ Ny − 1, and Nx, Ny odd (preferably of the form 2n + 1

for computational reasons; see the discussion of the FFT in Section 5.5). Thus, the

nodes (X0, Yp) are on the left boundary x = −Lx and the nodes (XNx−1, Yp) on the right

boundary x = Lx. Similarly, the nodes (Xj, Y0) are on the bottom boundary y = −Ly

and the nodes (Xj, YNy−1) on the top boundary y = Ly. At each time, the values of u at
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the nodes, Uj,p = u(Xj, Yp) can be grouped into a matrix U such that

(5.57) U =



u(X0, Y0) u(X0, Y1) . . . u(X0, YNy−1)

u(X1, Y0) u(X1, Y1) . . . u(X1, YNy−1)

...
...

...
...

u(XNx−1, Y0) u(XNx−1, Y1) . . . u(XNx−1, YNy−1)


and, analogously, the values of v at the nodes can be grouped into a matrix V. Using the

notation F(U)k,l to denote the coefficient Ãk,l of the DCT-I of u (see (5.51)) and taking

advantage of the facts that

∂2F(Un)k,l
∂x2

= −s2
xk

2F(Un)k,l,(5.58a)

∂2F(Un)k,l
∂y2

= −s2
yl

2F(Un)k,l,(5.58b)

the predictor step is

F(Un+1/2)k,l ≈
F(Un)kl + ∆t

2
F(NLUn)k,l

1 + ∆t
2

(s2
xk

2 + s2
yl

2)
,(5.59a)

F(Vn+1/2)k,l ≈
F(Vn)kl + ∆t

2
F(NLVn)k,l

1 + ∆t
2
dv(s2

xk
2 + s2

yl
2)

,(5.59b)

where

NLUn = Un ◦ (1−Un − αVn),(5.60a)

NLVn = Vn ◦ (1−Vn − βUn),(5.60b)
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with the symbol ◦ denoting the Hadamard (element-wise) product (i.e., (A ◦ B)k,l =

(Ak,l)(Bk,l)). The corrector step is

F(Un+1)k,l ≈
[1− ∆t

2
(s2
xk

2 + s2
yl

2)]F(Un)k,l + ∆tF(NLUn+1/2)k,l

1 + ∆t
2

(s2
xk

2 + s2
yl

2)
,(5.61a)

F(Vn+1)k,l ≈
[1− ∆t

2
dv(s

2
xk

2 + s2
yl

2)]F(Un)k,l + ∆tF(NLUn+1/2)k,l

1 + ∆t
2
dv(s2

xk
2 + s2

yl
2)

.(5.61b)

The method was implemented in Fortran and run in parallel on Quest, Northwestern

University’s high performance computing cluster, with communication between processes

facilitated by the Message Passing Interface (MPI). Routines from the FFTW library

[29] were used to compute the discrete cosine transforms and their inverses. Table 5.1

summarizes the efficiency of the program with respect to the number of processors.

Processors
N 4 8 16

513 5.36 3.03 1.62
1025 26.13 11.08 6.06
2049 99.85 62.85 25.58
4097 371.58 169.81 116.60

Table 5.1. Approximate time (in seconds) required to compute the two-
dimensional solution to System (3.6) over 100 time steps on an N ×N grid,
including initialization. The initial conditions were the same for all runs.
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CHAPTER 6

Two-Species Model and Curvature Advantages

6.1. Strong Interspecies Competition

6.1.1. One Dimension

Consider System (3.1) in one dimension with α, β > 1, so that the coexistence state buv is

unstable and the single-species states bu and bv are stable. Suppose the initial conditions

are

u(x, 0) = 1−H0(x),(6.1a)

v(x, 0) = H0(x),(6.1b)

where H0(x) is the Heaviside function centered at x = 0; i.e.,

(6.2) H0(x) =


0, x < 0

1, x ≥ 0.

Suppose dv = 1 so that the diffusivities of the species are the same. The only difference

in the properties of the species is then the strength of interspecies competition. If α > β,

then u is more susceptible to competition from v than v is from u and the bv state displaces

bu (i.e., v reaches its carrying capacity across the domain and u goes extinct). On the

other hand, if β > α, bu displaces bv. In the special case α = β, neither species, in general,
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dominates the domain (see Section 6.2 for the exception to this general rule). Instead, the

solution is a standstill, with neither u nor v expanding its territory. There is, of course, a

smoothing of the solution near the interface between the bu and bv states due to diffusion,

similar to that shown in Figure 6.5.

Similarly, if α = β but dv > 1, v has a mobility advantage over u and the bv state

is able to displace the bu state. Unsurprisingly, if dv < 1, the bu state displaces bv. The

situation is substantially more complicated if either dv < 1 and α > β or dv > 1 and

α < β. In these cases, an advantage in mobility may or may not overcome a disadvantage

in direct interspecies competition and there is no clear rule for determining which species

dominates. Note also that the above observations still hold when the initial conditions

are not symmetric (e.g., if there is initially more of, say, species u in the domain).

6.1.2. Two Dimensions

Predictions of dominance can be even more difficult in two dimensions. Consider System

(3.1) in two dimensions with the initial conditions given by

u(r, θ, 0) = 1−HR0(r),(6.3a)

v(r, θ, 0) = HR0(r);(6.3b)

i.e., a disc of u of radius R0 surrounded by v (note that HR0(r) = H0(r−R0)). Solutions

to the analogous 1D problem suggest that if u has an overall advantage over v (due

to mobility or competitiveness), the disc should expand until u kills off v and fills the

domain, whereas if v has the advantage, the disc should contract (so that u goes extinct).

If u and v have identical properties, then the disc should remain at approximately its
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original size. It turns out that in this final case, the disc actually contracts, as if v has an

advantage. Letting R(t) be the radius of the disc at time t, the linear speed of contraction

is approximately 1
R(t)

for large R (see the end of Section (4.2.1); although bu is a stable

state, the curvature correction is not dependent on the stability of the displaced state),

so that the rate of displacement increases as the disc contracts (and when R is no longer

large, the correction becomes more extreme; see, e.g., [21]). Thus, for two-dimensional

problems, there are three ways one species can gain an advantage over the other: direct

competition (α vs. β), mobility (dv), and positioning (curvature). Indeed, in some cases,

a curvature advantage can overcome a disadvantage; Figure 6.1 shows the impact of

curvature and mobility on the determination of a winner.

It should be noted that the curvature advantages are point-wise advantages; i.e., the

local curvature at a point on an interface impacts the propagation speed of that point,

rather than of the interface as a whole. For a disc, the interface has the same curvature

everywhere, so the disc expands or contracts uniformly. For more complicated interface

curves, however, this is not the case. Consider, for example, the initial conditions shown in

Figure 6.2a. A section of the interface is curved in such a way that the curve is convex with

respect to v (red). Over time, portions of the interface with greater curvature propagate

more slowly than the flat portions, causing an overall flattening of the interface (Figure

6.2; for interpretation of this figure and all similar two-species color maps, refer to Table

6.1). On the other hand, if the curved section is initially concave with respect to v (Figure

6.3a), the parts of the interface with greater curvature (in terms of magnitude; note that

curvature may be considered negative in the case of a concave curve) propagate more

quickly than the flat portions, again causing an overall flattening of the interface (Figure
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Figure 6.1. Radius of the disc of u over time (initially, a disc of u of radius
30 was surrounded by v). An increase in radius indicates an overall advan-
tage of u, while a decrease indicates an overall disadvantage. The relative
diffusivity of v is the parameter dv. For all runs, α = β = 4.

6.3). Although the solutions shown in Figures 6.2 and 6.3 are for the case β = 0, so that

v is not impacted by u, the same phenomenon occurs when β > 1. This choice of β is

for the purposes of illustration. Finally, these behaviors have been described for other

ecological models [30] and for the Potts model [31].
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Color State
Black Strong u Dominance

Dark Gray Moderate u Dominance
Light Gray Weak u Dominance
Dark Red Strong v Dominance
Light Red Moderate v Dominance

Orange Weak v Dominance
White Extinction

Magenta Coexistence
Cyan Transition Region

Table 6.1. Color map key for two-species problems. A species is considered
to be strongly, moderately, or weakly dominant if its density is at least 0.6,
0.3, or 0.05 greater, respectively, than the density of the other species.

(a) t = 0. (b) t = 10.

(c) t = 20. (d) t = 90.

Figure 6.2. Propagation of an interface with a convex curve (with respect
to v). Red regions indicate dominance by v, while black regions represent
dominance by u (see Table 6.1). Note the flattening of the interface over
time.
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(a) t = 0. (b) t = 10.

(c) t = 20. (d) t = 90.

Figure 6.3. Propagation of an interface with a concave curve (with respect
to v).

6.1.3. Connection with the Four-Species Model

System (3.15) where all four species have identical properties (referred to as a symmetric

system) can be written as

∂u

∂t
= ∇2u+ u(1− u− αv),(6.4a)

∂v

∂t
= ∇2v + v(1− v − αw),(6.4b)

∂w

∂t
= ∇2w + w(1− w − αz),(6.4c)

∂z

∂t
= ∇2z + z(1− z − αu).(6.4d)
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In the regime α > 1, the two-species non-competing states euw and evz are stable, while

all other states are unstable or unphysical (recall from Section 3.3). In this regime, then,

the species are expected to self-segregate into these two states (this happens as long as

the species are able to mix), after which the interplay between the euw and evz states is

analogous to the interplay between the species in the two-species model. Indeed, adding

the equation for u to that for w and adding the equation for v to that of z gives

∂(u+ w)

∂t
= ∇2(u+ w) + u(1− u− αv) + w(1− w − αz),(6.5a)

∂(v + z)

∂t
= ∇2(v + z) + v(1− v − αw) + z(1− z − αu).(6.5b)

Since u and w are expected to have the same densities (similarly for v and z), the above

becomes

2
∂u

∂t
= 2∇2u+ 2u(1− u− αv),(6.6a)

2
∂v

∂t
= 2∇2v + 2v(1− v − αu),(6.6b)

which, of course, reduces to the two-species problem. Thus, the states euw and evz can

be treated as directly competing species. In particular, the results in Sections (6.1.1) and

(6.1.2) apply to the interactions between these states.
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6.2. Non-Unique Coexistence State

The symmetric version of System (3.1) can be written as

∂u

∂t
= ∇2u+ u(1− u− αv),(6.7a)

∂v

∂t
= ∇2v + v(1− v − αu).(6.7b)

The coexistence state buv = (u∗, v∗) satisfies the system

u∗ + αv∗ = 1,(6.8a)

v∗ + αu∗ = 1,(6.8b)

which, as discussed in Section 3.1, has a unique solution for α 6= 1, which is linearly stable

for α < 1 and unstable for α > 1. Conversely, the single-species states bu and bv are stable

for α > 1 and unstable for α < 1.

Consider first the one-dimensional problem on the interval [−50, 50] with initial con-

ditions

u(x, 0) = 1−Hb(x),(6.9a)

v(x, 0) = Hb(x).(6.9b)

Taking b = 40 results in an initial 9:1 ratio of u to v. If α = 0.99, the solution approaches

the coexistence state, as expected by the stability analysis. On the other hand, if α = 1.01,

one could expect the solution to be a standstill, as discussed in Section 6.1. However, this

does not occur. Instead, the relative weakness of the interspecies competition combined
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with the size of the domain allows for an appreciable amount of species u to diffuse

to both boundaries, causing the solution to approach the spatially-homogeneous single-

species state bu (Figure 6.4a; note that if either α or the domain were significantly larger,

the solution would be a standstill).

If α = 1, System (6.8) does not have a unique solution; i.e., the coexistence state is

not unique. Instead, states for which u+ v = 1 are stable, though not asymptotically so.

The solution, therefore, is spatially homogeneous with u = 0.9 and v = 0.1, so that the

ratio of u to v is preserved from the initial conditions (Figure 6.4b). This result holds for

other initial ratios (other values of b) as well.

(a) α = 1.01. (b) α = 1.

Figure 6.4. Solution to System (6.7) at t = 4800. Initial conditions given by
(6.9) with b = 40. Black curves indicate the density of u, while red curves
indicate the density of v.

In general, then, for this type of initial condition, it should be expected that taking

α ≈ 1 leads to a spatially homogeneous solution, with α = 0.99 leading to the coexistence

state, α = 1 leading to a state consistent with the initial ratios of the species, and α = 1.01
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leading to a single-species state (assuming a suitably small domain), with the dominant

species determined by the initial conditions. The obvious exception to this general point

about α = 1.01 is the case where b = 0. Here, the solution is a standstill (Figure 6.5).

However, taking α = 1 in this case leads to the expected solution u(x, t) = v(x, t) = 0.5.

Figure 6.5. Solution at t = 4800 for α = 1.01 and b = 0, illustrating a
standstill.

Now, consider the two-dimensional problem on the domain [−50, 50]× [−50, 50] with

initial conditions

u(r, θ, 0) = HR0 ,(6.10a)

v(r, θ, 0) = 1−HR0 .(6.10b)

As in the 1D case, taking α = 0.99 and any choice of R0 leads to a spatially homogeneous

solution that approaches the coexistence state. Additionally, taking α = 1 leads to a

spatially homogeneous solution respecting the criterion u + v = 1, with the ratio of u

to v determined by the initial condition. In particular, taking R0 = R∗ = 5000/π (so
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that the area initially covered by v is equal to the area initially covered by u) leads to

the solution u(x, t) = v(x, t) = 0.5. Thus, it can reasonably be said that curvature does

not have an impact on the steady-state solution when α ≤ 1. However, it does have

a significant impact on the transient behavior of the solution. Consider, for example,

the initial condition shown in Figure 6.6a, in which the curvature of the species-species

interface is positive (with respect to v) at some points and negative at others. As discussed

in Section 6.1.2 for stronger interspecies competition, there is a flattening of the interface

(although the “interface” is somewhat ill-defined) during the approach to the spatially

homogeneous steady state (Figure 6.6b).

(a) t = 0. (b) t = 400.

Figure 6.6. Initial condition and transient solution for α = 1.

On the other hand, taking α = 1.01 and the initial conditions (6.10) with R0 = R∗

leads to different solution behavior than what would be expected for the analogous planar

problem. Based on the 1D results, the argument could be made that virtually nothing

should happen, since the initial ratio of u to v is 1:1. Instead, the disc of v collapses
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(Figure 6.7) and the solution approaches the spatially homogeneous single-species state

bu, as occurs for larger values of α (recall Section 6.1.2).

(a) t = 300. (b) t = 1000.

Figure 6.7. Transient solution for α = 1.01 with R0 = R∗.
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CHAPTER 7

Introduction to Ordered and Disordered Behavior in RPS

Systems

Note: much of the content in Chapters 7 through 11 was co-authored by A. Bayliss and

V. A. Volpert and published in [32]. Used with permission.

In Chapters 7 through 11, the three-species RPS system (3.6) is analyzed to discern

the conditions that lead to ordered versus disordered solution behavior. As discussed in

Section 2.2.1, parameters appropriate for a model of a community of E. coli variants (call

the variants u, v, and w) are chosen, so that the spatiotemporal patterns found may be

experimentally observable.

As described in Section 2.1.1, two behaviors have been observed in spatially homo-

geneous experiments. In some cases, there is a time interval during which one species is

dominant, followed by an interval for which its controlling species is dominant, and so

on, with the cycle repeating for some time. In other cases, the system settles to a state

in which only one species is detectable. When there is spatial dependence, single-species

patches chase each other according to the RPS sequence (i.e., w chases v, v chases u, and

u chases w). While the observed dynamics have not been analyzed in detail, no regular

spatiotemporal structures were reported in the patch behavior [3].

Three-species cyclic ecosystems have been previously modeled using stochastic game

theory on both a lattice [33, 34, 35] and on a continuous interval [36]. PDE models
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have been derived from a stochastic game and shown to allow for spiral solutions in two

dimensions [35, 37, 38, 39, 40], many of which account for effects on a species by both of

the other species (e.g., u is affected by v and w). The fully deterministic model (3.6) was

shown to reproduce some reported observations [16]; in particular, for certain parameter

regimes, the system admits an asymptotically stable heteroclinic cycle among the three

single-species states cu, cv, and cw, modeling periods of dominance by each species in

turn, as well as traveling waves in which single-species patches chase each other in the

RPS sequence. Since the inclusion of stochastic effects, interspecies overcrowding, and

predation is not necessary to describe the dynamics reported in the relevant ecological

literature, System (3.6) is a suitable (and relatively simple) model to employ.

The focus in the following chapters is to analyze the nonlinear dynamics of RPS

schemes; in particular, to demonstrate that several ordered solutions to System (3.6)

exist in both 1D and 2D, and to determine and describe the mechanisms that lead to

ordered as opposed to disordered structures. The 1D model represents an ecosystem

confined to a ring (realistically, a thin annulus; e.g., the region near the walls of petri

dish), while the 2D model represents an ecosystem in a petri dish. Thus, the 1D system is

considered on the interval [−L,L] with periodic boundary conditions (since the ecosystem

should be thought of as being on a circle), while the 2D system is considered on the square

[−L,L]× [−L,L] with no-flux boundary conditions (since there should be no movement

of the species into or out of the petri dish). The boundary conditions are automatically

enforced by the numerical methods used to solve the systems (see Chapter 5). Note

also that although square petri dishes do exist, the square domain is largely chosen for
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convenience; general solution behaviors are largely unaffected by the shape of the domain

(there is, of course, some distortion near the boundary).

In the following chapters, the interaction parameters α, β, and γ are chosen such that

(7.1) α, β, γ > 2,

so that the two-species equilibria cuv, cuw, and cvw are not physical, while the coexistence

state cuvw is always physical, but unstable. Under this assumption, the heteroclinic cycle

cu → cv → cw → cu is asymptotically stable (see Section 3.2).

The mechanisms leading to ordered and disordered solutions to System (3.6) in the

unstable coexistence regime are not well understood, though experimental observations

strongly suggest that the E. coli system does operate in this regime, since stationary

coexistence of the variants has not been reported in the ecological literature. Previous

computational results have shown that spatiotemporal chaos can occur in this regime

[16]. Spatiotemporal chaos has also been found numerically for systems of competing

species [41, 42, 43], predator-prey systems [44], cyclic systems with five species [20],

and various other ecological systems [45]. Nevertheless, ordered spatiotemporal patterns

have also been shown computationally in some cases. A simple ordered structure occurs

in 1D with periodic boundary conditions. If all diffusivities are equal and the initial

conditions are just three equal patches of the individual species, then it has been shown

that if the domain size is sufficiently large, the patch array will propagate rigidly in

the RPS order with speed close to 2
√
d, where the common diffusivity is d, provided

that the patches are sufficiently wide [16, 46] (the pattern fails to persist if one of the

patches is thin enough that diffusive leakage of the other two species brings substantial
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amounts of the three species together, leading to the destruction of the patch’s integrity).

However, this pattern, while stable [46], is primarily a result of the spatial structure of the

initial conditions (i.e., the species are initially separated). Computations in the regime

of unstable coexistence that do not have such an initial spatial structure often devolve

into spatiotemporal chaos for RPS systems, as well as for systems with more than three

species [20, 16], consistent with the computations for other ecological systems referenced

above.

Although chaotic behavior has been observed in competitive models, the actual causes

of the chaos have not been previously determined. Thus, a primary focus of the following

chapters is to provide support to the proposition that a mechanism for the onset of chaos

is repeated patch splitting due to diffusion of competitors when a patch is sufficiently

large. Other major findings include:

(1) Chaos tends to occur when interspecies competition is generally weak, while

ordered patterns are favored when interspecies competition is strong, due to the

ability of the species to self-segregate.

(2) Breather modes, where patches expand and contract in an ordered periodic fash-

ion, can be found in some parameter regimes. Similar modes were found in [40]

in a different context. For other choices of parameters, an asymmetric traveling

array of single-species patches can be found (i.e., patches with different widths

propagate rigidly).

(3) For fixed parameters, different initial conditions can lead to different steady-state

behaviors.
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(4) The associated ODE system (with appropriate initial conditions) can often be

used to predict whether the solution to the PDE system is ordered or not.

(5) In 2D, spiral solutions are predominant. Different types of spiral structures can

form, depending on the parameters and initial conditions.
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CHAPTER 8

Solution Behavior for 1D Symmetric RPS Systems

8.1. System Setup and Discussion

Consider the one-dimensional symmetric version of System (3.6) on the domain [−L,L];

i.e.,

∂u

∂t
=
∂2u

∂x2
+ u(1− u− σv),(8.1a)

∂v

∂t
=
∂2v

∂x2
+ v(1− v − σw),(8.1b)

∂w

∂t
=
∂2w

∂x2
+ w(1− w − σu),(8.1c)

so that dv = dw = 1, u∗ = v∗ = w∗ = A, and α = β = γ = σ = 1−A
A

. The coexistence

state (u∗, v∗, w∗) = (A,A,A) is unstable if A < A∗ = 1/3 (equivalently, σ > σ∗ = 2).

The only way to distinguish the three species is by the initial conditions and the model

depends on only two parameters: A (or σ) and L. The majority of the results that follow

are for L = 60, appropriate for bacterial colonies in liquid media, but larger values of

L, appropriate for colonies in agar, are also considered (see Section 2.2.1). Note that

as A decreases from A∗, σ increases from σ∗. Thus, interspecies competition increases

as A decreases, making it more difficult for different species to cohabit a region. In

general, strong interspecies competition promotes ordered states, while weaker interspecies
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competition promotes chaos. In all cases, of course, the interspecies competition coefficient

σ is larger than the intraspecies competition coefficient (normalized to unity).

All 1D computations were run with either mixed or patch initial conditions. The

mixed conditions were taken to be perturbations of the unstable coexistence state cuvw,

so that all three species were initially present throughout the domain. For patch initial

conditions, there was no initial cohabitation; rather, each species was contained in its own

patch, though mixing immediately occurs to a small degree due to diffusion. The general

form of the mixed initial conditions is

u(0, x) =
(

1 + ηu0 + ε cosn
(mπx

L

))
A,(8.2a)

v(0, x) =

(
1 + ηv0 + ε cosn

(
mπx

L
+

2π

δ

))
A,(8.2b)

w(0, x) =

(
1 + ηw0 + ε cosn

(
mπx

L
+

4π

δ

))
A,(8.2c)

where m = n = 1, η = ε = 0.3, and δ = 3, unless otherwise stated. These mixed

conditions are symmetric in the mean if and only if u0 = v0 = w0 or η = 0. Patch initial

conditions always consist of three single-species patches (one of each species), with the

degree of asymmetry quantified by the parameter R, the ratio of the width of the widest

patch to that of the thinnest patch. The initial patch array is always chosen so that the

patches of v and w are equal in extent, while the patch of u, surrounded by the other

two patches, may be thinner. Patch initial conditions are symmetric if and only if R = 1.

It is shown below that symmetry in the initial conditions (or the lack thereof) can be

important in the ultimate evolution of the solution.

The principal results that have been found are as follows:



87

(1) For all mixed initial conditions, clusters dominated by an individual species are

rapidly formed (referred to as self-segregation). Clusters that do not include

significant quantities of the other two species are called patches. In order to be

considered a patch, the dominant species must have a density of at least 0.9.

(2) Some solutions exhibit spatiotemporal chaos and, in some cases, this chaos is

transitory. There are many examples where the chaos persists for an extremely

long time (especially with respect to any realistic experimental timescale); how-

ever, it is unclear whether or not chaotic behavior always eventually terminates.

In a chaotic solution, clusters form over the entire domain. When a cluster is

surrounded by controlling clusters (e.g., a cluster of u surrounded by clusters of

v), it is subsequently eliminated (referred to as coarsening). The transition from

chaotic to laminar behavior always occurs when coarsening occurs more rapidly

than clusters are generated. When chaotic behavior terminates, the solution is

reduced to a spatially homogeneous heteroclinic cycle.

(3) Symmetric traveling waves (TW ), consisting of single-species patches of equal

extent propagating around the domain, are found in some cases. This type of

solution has been found for more general models allowing for competitive effects

on a species by both of the remaining species [37, 43] and the stability properties

of these solutions were analyzed in [46]. Additionally, this solution behavior was

observed for the present model in [16]. Such solutions can only be obtained with

symmetric or near-symmetric initial conditions (i.e., symmetry in the mean for

mixed initial conditions or R ≈ 1 for patch initial conditions).
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(4) Solutions can exhibit pseudo asymmetric traveling waves (PATW ). For these

solutions, there is an asymmetric patch array (consisting of three patches of dif-

ferent widths) that propagates nearly rigidly. The term “pseudo” is used because

computations indicate there can be very slow changes in patch widths over very

long times (of the order 105 units of time, corresponding to roughly 3.8 years of

physical time - substantially larger than reported observations of relevant bacte-

rial communities). These changes are usually not noticeable graphically, though

they are apparent through detailed analysis of the numerical data.

(5) Solutions can be “breathers.” These solutions are characterized by propagating

patches that expand and contract in succession. The breathing can be periodic

in time, in which case they are steady-state breathers. When the breathing is

not periodic, the breathers are transitory, and the ratio of an expanded patch to

a compressed patch increases over time. Transitory breathers ultimately evolve

to chaotic solutions, while steady-state breathers are ordered states (they are

modulated traveling waves).

(6) Patch splitting results in the onset of chaos. Consider a three-patch array with

a wide patch of u and a thin patch of w. For any patch, there is always diffusion

from the neighboring patches to some extent, so that v diffuses through the

trailing edge of the patch of u, while w back-diffuses through the leading edge

of the patch of u. If the patch of w is sufficiently thin, there can also be back-

diffusion of v through the patch of w and into the leading edge of the patch of

u. Thus, the controlling species v enters the patch of u from both edges. There
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is then a reinforcement of v within the patch of u, resulting in the patch being

split by a growth of v.

(7) In general, chaos is more prevalent for large A (near A∗) than for small A due to

the role of interspecies competition. When A is large, interspecies competition

is relatively weak and patch splitting predominates, leading to a transition to

chaos. On the other hand, when A is small, interspecies competition is strong,

making self-segregation of the species likely. In this case, ordered solutions are

favored.

8.2. ODE System

The system of ODEs associated with the PDE system (8.1) is

du

dt
= u(1− u− σv),(8.3a)

dv

dt
= v(1− v − σw),(8.3b)

dw

dt
= w(1− w − σu).(8.3c)

Consider this system with the initial conditions

u(0) = (1 + ε)A,(8.4a)

v(0) =
(

1− ε

2

)
A,(8.4b)

w(0) =
(

1− ε

2

)
A,(8.4c)

where ε = 0.3 and A = 1−σ
σ

, as usual. The solution for A = 0.3 (σ ≈ 2.33) is shown in

Figure 8.1a. In the figures presented throughout, the basic color scheme of black for u, red
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for v, and green for w is employed. The species will often be referred to by these colors,

for clarity. In Figure 8.1b, the time intervals for which the trajectory is in a neighborhood

of the cu state are shown. The trajectory is considered to be in this neighborhood when

u > 0.99999.
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Figure 8.1. (a) ODE solution for A = 0.3 and the initial conditions (8.4).
Black, red, and green curves represent the densities of u, v, and w, respec-
tively. Data at early times has been excluded. (b) Lengths of intervals
where the trajectory is near the cu equilibrium state. The vertical axis is
the log (base 10) of visit duration, resulting in a roughly linear dependence
on visit number. Visits are marked by points; the dotted connections are
present to show the linear relationship.

This is a typical solution (a heteroclinic cycle) for the ODE system in the regime of

unstable coexistence (in the regime of stable coexistence, the solution generally approaches

the coexistence state). The solution can be described as follows:
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(1) One species dominates for an interval of time until it is displaced by its controlling

species - w displaces v (green displaces red), v displaces u (red displaces black),

and u displaces w (black displaces green) (Figure 8.1a).

(2) These intervals become progressively longer as the trajectory gets closer to one

of the single-species saddles; i.e., the duration of successive visits increases. More

specifically, the log of the visit duration is a roughly linear function of the visit

number (Figure 8.1b).

(3) While not readily discernible from the figures, as the trajectory moves closer to

any one saddle (say, cu), the two non-dominant species (v and w, in this case)

get progressively closer to zero.

Points 1 and 2 describe ecological ramifications of ODE solutions. Point 1 is fully consis-

tent with observations of variants E. coli and variants of side-blotched lizards [3, 7] (see

Section 2.1). On the other hand, Point 2 has not been observed in ecological systems, at

least based on published data. Indeed, such long observations may not be feasible; more-

over, the property of progressively longer visits is inhibited by noise, as is demonstrated

below.

Point 3 means that there is a limit to how long a trajectory approaching a heteroclinic

cycle can be computed, which has significant computational ramifications. There are

limits to how close a floating-point number of fixed precision can get to zero. Any compu-

tation of a heteroclinic cycle will inevitably fail when the trajectory is sufficiently close to

one of the single-species states. If nothing is done, the final state will be a single-species

state (mathematically unstable, as discussed in Section 3.2, but computationally stable
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under these conditions). It is also possible that for sufficiently small numbers, discretiza-

tion and roundoff errors will dominate the number. However, discretization and roundoff

errors typically decrease when a trajectory approaches a single-species state. More impor-

tantly, such behavior is not accurate from an ecological perspective, since the continuum

approximation for population densities is not valid at sufficiently small densities.

The issue from Point 3 can be addressed in a number of ways:

(1) Do nothing. In this case, the solution for some species will hit machine zero,

there will be no further changes, and the computation will incorrectly predict

one unstable single-species state as the steady state. The accuracy of computa-

tions of trajectories approaching a stable heteroclinic cycle can be improved by

writing System (8.3) in terms of logs of the dependent variables [16]. In fact,

this procedure was used to generate Figure 8.1a. However, the computed hete-

roclinic cycle will still terminate at some point and the issue that the continuum

approximation is not valid at such low densities is not resolved. Furthermore, an

effective way to implement this procedure remains elusive for the PDE system.

The transformation to logs introduces a nonlinear coefficient in each diffusion

term, thereby making semi-implicit temporal integration much more expensive.

(2) Introduce a cutoff variable uc and set species densities to zero when they fall

below uc. This procedure also predicts an unstable single-species state as the

ultimate steady state, but gives control over the cutoff, unlike in the previous

method, where the final state is determined by computer hardware and compiler

design.



93

(3) Introduce a floor uf and set species densities to uf when they fall below that value.

Thus, none of the densities are ever zero, so the computation never terminates

with an unstable single-species state. The effect of this procedure is shown in

Figure 8.2a (solid black curve) with uf = 1× 10−20. For comparison, Figure

8.2a also includes the results from the computation that generated Figure 8.1a

(thick cyan curve), illustrating the differences from a trajectory approaching the

heteroclinic cycle without any control over low densities. The solution is now

clearly periodic. Handling low-level densities in this way converts the heteroclinic

cycle into a limit cycle. Note that uf (or uc in the previous method) can be chosen

such that the minimum density is consistent with reasonable carrying capacities,

thus addressing the issue with the continuum approximation.

(4) Introduce low-level additive noise, so that after every time step, each density is

subject to noise of the form ∆tεnr, where ∆t is the time step size, εn is a specified

magnitude, and r is a random number varying between ±1. This works similarly

to the floor, as effectively no species can remain at zero for a substantial amount

of time. Figure 8.2a also shows u for a computation with noise (dotted curve the

figure) with ∆tεn = 1× 10−20. The result with noise is what has been termed

a “statistical limit cycle,” and it appears from the figure that its average period

is very close to the period of the limit cycle obtained using a floor, provided

uf = ∆tεn.

Noise has been identified as a mechanism to prevent infinitely long intervals

of residence near a saddle for systems with an attracting heteroclinic cycle [47].

The average period for a noise-induced statistical limit cycle in the case when
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the noise-free problem has an attracting heteroclinic cyle has been shown to scale

linearly with the magnitude of the log of the noise amplitude [48]. Instead of the

period, consider the durations of visits of the trajectory to the neighborhood of

the cu saddle, as described above. Figure 8.2b shows the average visit duration

against log (∆tεn) for a computation with noise (black circles) and the average

visit duration against log (uf ) for a computation with a floor (cyan crosses).

The results show good agreement with the theoretical noise scaling, as well as

agreement between the visit durations for the floor limit cycle and the statistical

limit cycle over almost 20 orders of magnitude. Thus, the floor and additive

noise procedures (on average) give very similar results, provided the floor and

noise level are comparable. Large amplitude effects on the solution have also

been observed when the noise was such that trajectories could leave an invariant

space [49] (in this case, the physical space u, v, w ≥ 0); however, no species

density is allowed to become negative due to the noise, so no O(1) amplitude

effects are observed.

All PDE computations make use of a floor (method 3) to deal with small densities, since

this (i) allows the computations to be fully deterministic, (ii) reproduces behavior reported

in spatially homogeneous ecological systems, (iii) is consistent with the idea of a minimum

density, and (iv) does not admit bias toward any particular species in symmetric systems

(as in method 2).
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Figure 8.2. (a) ODE solution (u only) for A = 0.3 and the initial conditions
(8.4) computed with a floor (uf = 1× 10−20, solid black curve) and with
additive noise (∆tεn = 1× 10−20, dotted curve). The thick cyan curve is the
solution shown in Figure 8.1a. (b) Average residence times of the trajectory
near the cu state for a computation with a floor (cyan crosses) and for a
computation with noise (black circles). For visualization purposes, the data
points are connected by dots and dashes.

8.3. Illustrations of 1D Solution Behavior

In this section, one-dimensional solution behaviors are illustrated and described in

detail.

8.3.1. Chaos

Consider System (8.1) where A = 0.3 (σ ≈ 2.33) with the mixed initial conditions (8.2),

where (u0, v0, w0) = (1.4, 1, 0.6). Figure 8.3 shows the solution at t = 700 (solid curves),

t = 701 (dotted curves), and t = 702 (dashed curves). Note that the time t = 700 cor-

responds to a physical time of approximately 10 days. All three species exhibit spatial
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oscillations; however, there is no apparent order to these oscillations. In fact, the most

positive Lyapunov exponent, estimated numerically by the method discussed in [50], is

greater than zero, indicating that the solution is indeed chaotic. For the same parameters

except with A = 0.34 (so that the coexistence state is stable), there is no positive Lya-

punov exponent and the solution simply approaches the stable coexistence state. Similar

solutions have been computed by others from comparable models [38, 43].

Despite the disordered nature of the solution, and the very significant changes over

short periods of time, the solution still respects the RPS dynamics; i.e., there should

be (and is) some predictable behavior within the disordered structure. The organizing

principles for RPS dynamics are very simple - each species tries to eliminate its victim

species and is eliminated by its controlling species. These principles are manifested for

the solution shown in Figure 8.3 in two ways: the motions of clusters of a species toward

clusters of the victim species and the rise of a species initially at low levels when it

is surrounded by its victim species (coinciding with the decline of the victim species).

The figure shows four clear examples of the former behavior, while the latter behavior is

shown in the regions labeled R1, R2, and R3. The results indicate that RPS-dictated

motions, when combined with disordered spatial profiles, can sustain chaotic behavior.

The mechanism leading to chaos is patch splitting, described in detail in Section 8.3.4.

Over the time period considered in the figure, none of the species are ever essentially

eliminated; i.e., all three species coexist at all spatial points, allowing for the RPS in-

teractions illustrated in the figure. For this value of A, interspecies competition is weak

enough that the species cannot self-segregate. Because of this, it is more appropriate to

refer to regions where a species dominates as clusters, rather than patches. Moreover,
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Figure 8.3. Solution at t = 700 (solid curves), t = 701 (dotted curves), and
t = 702 (dashed curves) as a function of x . Parameters given in the text.
The labels indicate regions where RPS motions are apparent.

it should be noted that this solution remains chaotic for a very long time, though it is

unclear whether it eventually collapses into a spatially-homogeneous solution. For smaller

values of A, chaos often collapses within a reasonable amount of time (see Section 8.3.4).

Chaotic solutions can also be computed from other mixed initial conditions, as well as

from patch conditions (see Table 9.1).

Finally, letting ū(t), v̄(t), and w̄(t) be the spatial means of the mass fractions of u, v,

and w, respectively (henceforth referred to as the species fractions); i.e.,

ū(t) =
1

uvw(t)

∫ L

−L
u(t, x) dx,(8.5a)

v̄(t) =
1

uvw(t)

∫ L

−L
v(t, x) dx,(8.5b)

w̄(t) =
1

uvw(t)

∫ L

−L
w(t, x) dx,(8.5c)
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where

(8.6) uvw(t) =

∫ L

−L
u(t, x) + v(t, x) + w(t, x) dx,

and then finding the temporal averages

E[ū(t)] =
1

t2 − t1

∫ t2

t1

ū(t) dt,(8.7a)

E[v̄(t)] =
1

t2 − t1

∫ t2

t1

v̄(t) dt,(8.7b)

E[w̄(t)] =
1

t2 − t1

∫ t2

t1

w̄(t) dt(8.7c)

with t1 = 500 and t2 = 700 reveals that E[ū(t)] ≈ E[v̄(t)] ≈ E[w̄(t)] ≈ 1/3 to a very

close approximation, so that on average (in space and time), the three species are close

to being evenly distributed.

8.3.2. Patch Traveling Waves

Here, two types of patch traveling waves are illustrated: (i) symmetric traveling waves

(TW ) where there are three patches of equal width (as described in, e.g., [16], [37],

and [46]) and (ii) pseudo asymmetric traveling waves (PATW ), where the widths of

the patches differ, but propagation is still rigid to a close approximation over the time

intervals considered.

For L = 60 and larger, symmetric traveling waves are always found when using sym-

metric patch initial conditions (R = 1), provided that A is sufficiently small, which is

consistent with the stability analysis in [46]. However, if A is too large (close to A∗),

chaotic solutions are found instead. For larger domains, symmetric traveling waves with
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larger A may, in fact, be stable, since chaos arises when the patches are too thin and in-

terspecies competition is too weak to prevent the three species from accumulating within

a patch, thus destroying the integrity of the patch. Furthermore, for sufficiently small A

(e.g., A = 0.215 for L = 60), symmetric patch traveling waves can arise from mixed initial

conditions, provided the conditions are symmetric in the mean. Conversely, symmetric

patch traveling waves never arise from asymmetric patch initial conditions (R > 1) or

from mixed conditions that are not symmetric in the mean.

Consider the mixed initial conditions with A = 0.215, δ = 3, and η = 0, which are

symmetric in the mean. After a brief transient, during which the species self-segregate

due to the strength of interspecies competition, the solution consists of three rigidly-

propagating patches. The solution at t = 4000 is shown in Figure 8.4a (dotted curves),

with the direction of propagation indicated. The species chase each other in the RPS

order; i.e., u (black) chases w (green), w chases v (red), and v chases u. The same

solution can be computed from symmetric patch initial conditions. Symmetric patch

traveling waves are computationally stable when interspecies competition is sufficiently

strong, with the required strength dependent on L, in agreement with previous results

[37, 43]. Specifically, lengthening the domain allows for stable traveling wave solutions

with weaker interspecies competition. Assuming the domain is long enough to allow for

substantial separation of the species-species interfaces (as is the case for L ≥ 60), the

patches propagate with speed s ≈ 2, as predicted by the analysis described in Section

4.2.1 (note also the connection to the Fisher-KPP equation). Note that it is only possible

to compute a truly symmetric traveling wave using the method described in Section 5.1.3

if the number of grid points is divisible by 3. This was generally not the case, since the
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FFT implementation used is most efficient when the number of grid points is a power

of 2; however, the grids were sufficiently fine that symmetric traveling waves could be

computed within discretization error.

Now, consider the asymmetric mixed initial conditions with

(u0, v0, w0) = (1.02, 1, 0.98), η = 0.3, and all other parameters the same as above. The

solution is shown in Figure 8.4a (solid curves). The array is noticeably no longer symmet-

ric. For these initial conditions, the red patch has expanded at the expense of the green

and black patches. PATW solutions can also be found using asymmetric patch initial

conditions.

The computed patch widths for the symmetric TW (dashed and dotted curves), the

PATW from mixed initial conditions (solid curves), and the PATW from patch initial

conditions with R ≈ 1.038 (solid curves with circles) are shown in Figure 8.4b. The patch

widths are computed for species u by determining the spatial extent for which u ≥ 0.9.

As previously mentioned, the patch widths are not perfectly steady over very long periods

of time (much longer than what is shown in the figure). For realistic ecological timescales,

however, it is clear from the figure that propagation of the array can be treated as rigid.

Figure 8.4c compares the means of the PATW from mixed initial conditions (solid

curves) to those of the symmetric TW from mixed initial conditions (dashed and dot-

ted curves). For the symmetric TW , the means equilibrate over the time period shown,

whereas the means for the PATW do not (though they do equilibrate to within graphical

accuracy after an additional 50 units of time). After a complex initial stage, red estab-

lishes superiority (point R in the figure). For early times with smooth initial conditions,

the competition kinetics are dominant over diffusion (i.e., diffusion operates on a slower
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timescale). As a result, the qualitative behavior of the initial stages of the solution can be

modeled by the solution to the associated ODE system with the initial conditions given

by the means of the PDE initial conditions. The ODE solution is shown over the same

interval for the asymmetric mean (solid curves) and the symmetric mean (dotted curves)

in Figure 8.4d. For the symmetric initial conditions, the ODE solution does not approach

the heteroclinic cycle (even though it is attracting); rather, it approaches the coexistence

state. On the other hand, for the asymmetric initial conditions, there is first a complex

oscillatory pattern as the solution approaches the heteroclinic cycle. The first species that

is completely dominant is v, and it rises to near its carrying capacity around t = 50. For

smooth mixed initial conditions, the widest patch in the PATW PDE solution appears

to be determined by the initially dominant species in the ODE solution. In the PDE

solution, after the initial transient, diffusion becomes operable and the solution becomes

increasingly spatially homogeneous, creating a rigidly propagating patch structure (as op-

posed to the heteroclinic cycle for the ODE). From Figure 8.4d, it is clear that although

the ODE system is not chaotic, it is very sensitive to the initial conditions.

8.3.3. Steady-State Breather Solutions

Consider patch initial conditions with R ≈ 2.002, so that the initial ratio of the width of

the widest patch to that of the thinnest patch is significantly greater than for the initial

conditions that led to the PATW solution in the previous section. There is no longer

rigid propagation of asymmetric patches. Instead, after an initial transient, each patch

expands (inhales) and contracts (exhales) as the array propagates. Note that the same

solution (with a shift in time) is obtained from mixed initial conditions. These solutions
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Figure 8.4. (a) Snapshot of PATW (solid curves) and TW (dotted curves)
at t = 4000 . Parameters given in the text. (b) Patch widths as a function
of time for PATW solution with mixed initial conditions (solid curves),
PATW solution with patch initial conditions and R ≈ 1.038 (solid curves
with circles), and TW solution with mixed initial conditions (dashed and
dotted curves). (c) Means at early times of PATW (solid) and TW (dashed
and dotted) solutions in Figure 8.4a. (d) ODE solution at early times with
initial conditions determined by the mean values of the PATW (solid) and
TW (dotted) solutions in Figure 8.4a.
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are termed “breathers” and, for steady-state breathers, the breathing is periodic. There

are two timescales associated with these solutions: the time required to propagate across

the domain and the period of the breathing.

In order to illustrate the nature of the solution, Figure 8.5a shows the patch widths

over approximately two breathing periods. The figure also includes the speeds (scaled by

a factor of 5 for clarity) of the leading edge (dotted curve) and the trailing edge (dashed

curve) of the patch of u. The speeds are computed by searching for the point where

u = 0.9 and is decreasing (for the leading edge) and where u = 0.9 and is increasing (for

the trailing edge). These points are obtained by linear interpolation after being bracketed

by the grid point data (and adjusted for periodicity). Numerically approximating the

spatial derivative at these points gives the two interface speeds. Note that there will

always be only one point characterizing the leading edge and one point characterizing the

trailing edge, since the integrity of the patch is maintained through the breathing.

Figures 8.5b and 8.5c show the spatial profiles of the densities u, v, and w at points C

and E from Figure 8.5a, respectively. Both figures include additional copies of the profiles

scaled by 1× 106 in order to show diffusive penetration of the species into neighboring

patches. At point C, the black patch is at its maximum extent. The controlling species

red can diffuse into the black patch uncontrolled by green, since the black patch is wide

enough and A is small enough to prevent interaction of red and green within the black

patch. As a result, the red patch can expand at the expense of the black patch, leading

to the contraction of the black patch. Similarly, at point E, the green patch is at its

maximum extent and the black patch will now expand at the expense of the green patch

due to diffusive leakage. As A decreases (interspecies competition becomes stronger),
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the breathing slows down, since diffusive penetration becomes more difficult (it is harder

for two species to cohabit the same spatial region). Steady-state breather solutions can

be computed for 0.195 ≤ A ≤ 0.215. It is prohibitively expensive to compute breather

solutions for smaller values of A, due to the extraordinarily long breathing periods. As A

increases, diffusive penetration is easier, so the breathing periods are shorter. Additionally,

smaller minimal patch widths are possible, since interspecies competition is weaker. As

a result, breather solutions cannot be maintained. Instead, there is patch splitting and,

ultimately, a transition to chaos.

8.3.4. Transitory Breathers, Patch Splitting, and Chaos

Consider now the case A = 0.225 with patch initial conditions such that R = 1.167. A

plot of the patch widths against time is given in Figure 8.6a. The patches still expand and

contract in the RPS order; however, the maxima of the patch widths are monotonically

increasing, while the minima are monotonically decreasing. Additionally, the period of

the breathing shortens over time (i.e., the breathing becomes more rapid). For this value

of A, the breathing does not stabilize. Thus, this behavior is referred to as a transitory

breather, and it will be shown immediately below that it is a prelude to chaos. Note that

the same behavior occurs for mixed initial conditions.

After t ≈ 4000, the breathing pattern collapses. Recall that the definition of patch

used here is a region for which the density of the dominant species exceeds 0.9. In the

collapse seen in the figure, clusters (in which the dominant species does not have time

to grow to the density required for a patch) are rapidly generated, and the solution thus

becomes chaotic.
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Figure 8.5. (a) Patch widths and interface speeds for steady-state breather
solution. Parameters given in the text. The speeds of the leading edge
(dotted curve) and the trailing edge (dashed curve) of the patch of u are
scaled by a factor of 5. (b) Spatial profiles at point C in Figure 8.5a. The
dotted curves are the same profiles scaled by 1× 106 . (c) Spatial profiles
at point E in Figure 8.5a. The dotted curves are the same profiles scaled
by 1× 106 .
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Figure 8.6b shows the patch widths over a restricted time interval, during which the

black patch collapses and the red patch expands. The qualitative behavior is similar to

that of the steady-state breather in that the speed of the leading edge is greatest when

the red patch first starts to expand and then decreases throughout the expansion (note

that it is well above 2).
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Figure 8.6. (a) Patch widths for transitory breather with A = 0.225 . Other
parameters given in the text. (b) Patch widths and speeds for the leading
edge of the v-patch (dotted curves) and the trailing edge of the v-patch
(dashed curves). Speeds are scaled by a factor of 10 .

In Figures 8.7-8.9, the spatial profiles at the points labeled a - g in Figure 8.6b are

shown. At point a, (Figure 8.7a), red has substantially diffused into the black patch and

is just beginning to split it. In order to clearly show the diffusive leakage into the patches,

the figure includes copies of the spatial profiles scaled by a factor of 1× 102 (dotted

curves) and an additional copy of red scaled by 1× 103 (dashed curve). Red, as usual,

diffuses forward into the black patch (i.e., through the trailing edge of the black patch),
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but, since the green patch is thin, red also back-diffuses into the black patch through the

leading edge of the black patch. Within the black patch, green is confined to a small area

near the leading edge, so red is not controlled by green in the interior of the wide black

patch. A disturbance in red (labeled RB in the figure) of the order 1× 10−3 signifies the

beginning of the splitting of the black patch. At point b (Figure 8.7b), the disturbance

RB is visible without scaling, leading to a dip in black - the initial stage in the splitting

of the black patch into two smaller patches (denoted D and S in the figure). Patch D is

doomed, as it will be surrounded by red, while patch S will survive. At point c (Figure

8.7c), there are two clearly visible red patches (RB and the original red patch, RO). The

doomed black patch D has shrunk, while black patch S has survived.

At point d (Figure 8.8a), the two red patches have consumed the black patch D and

have merged into one large red patch, creating a three-patch array with the red patch the

largest. At this time, the red patch is expanding at the expense of the surviving black

patch. At point e (Figure 8.8b), green has back-diffused through the thin black patch and

is ready to split red (GB; see the dashed profile in the figure, which shows the density of

green scaled by 1× 103).

At point f (Figure 8.9a), two clearly-defined green patches are visible - the patch that

formed as a result of the split (GB) and the original patch GO. The red patch has been

split into a doomed patch (D) and a surviving patch (S). At point g (Figure 8.9b), green

is the dominant species and the two green patches GB and GO are about to merge. The

doomed red patch D is barely visible.

Thus, over the time interval considered, dominance has been transferred from black

to red to green via patch splitting. There is no such splitting for steady-state breather
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Figure 8.7. (a) Spatial profiles at point a in Figure 8.6b. The dotted curves
are the same profiles scaled by 1× 102 . The dashed curve is just red scaled
by 1× 103 . (b) Spatial profiles at point b. The disturbance RB will split the
black patch into two patches: D (doomed) and S (surviving). (c) Spatial
profiles at point c. There are now two clearly defined red patches, RB and
RO (original red patch). Black patch D is shrinking, as it is doomed, while
black patch S survives.
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Figure 8.8. (a) Spatial profiles at point d in Figure 8.6b. The three patch
breather array has been restored with red as the largest patch. (b) Spa-
tial profiles at point e. The dotted curves are the same profiles scaled by
1× 102 . The dashed curve is just green scaled by 1× 103 .

solutions - there is only expansion and contraction, at least on a macroscopic level. The

splitting is the result of weaker interspecies competition (larger A), allowing multiple

species to cohabit the same space to an appreciable extent. Because of this, large patches

have to be sufficiently large so as to allow for separation of the three species. This leads to

a corresponding decrease in the thin patches, as seen in Figure 8.6a. The splitting occurs

increasingly more rapidly, due to the thinness of the small patches. As shown in the figure,

the splitting does not stabilize. This is a spatial analogy to the temporal heteroclinic cycle

in that each species is dominant over larger and larger spatial regions. However, unlike

the temporal heteroclinic cycle, the spatial interval is bounded. The spatial regions of

dominance cannot increase indefinitely, causing the solution to collapse into chaos.
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Figure 8.9. (a) Spatial profiles at point f in Figure 8.6b. The rising green
patch RB is now visible without any scaling. It is splitting the red patch
into a doomed patch (D) and a surviving patch (S). The original green
patch (GO) is also marked in the figure. (b) Spatial profiles at point g.
The green patches GB and GO are about to merge. The doomed red patch
D is barely visible, so that red has essentially been split by green.

Finally, spatial profiles of the solution in the late stages of this process (times t1 =

4012.5, t2 = 4018.75, and t3 = 4025) are shown in Figure 8.10. At time t1, the green patch

has just been split by black into a doomed patch D and a surviving green patch S. In the

normal course of events, the two black patches B1 and B2 would merge. However, since

the green patch S is so thin, red is about to split black before the merger (RR). Since the

original red patch RO is still present, there are now five clear patches with an incipient

sixth patch (RR). At time t2, the the black patch B2 has been split into B21 and B22 by

the growing red patch RR. Thus, there are now three black patches, since patch B1 is still

present. There are also two red patches, RR and the original red patch RO. Moreover,

there are two green patches, D (not yet eliminated) and S. Finally, at time t3, the doomed
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green patch D has been eliminated. Furthermore, B21 has merged with B1; however, the

resulting patch (labeled B21 in Figure 8.10c) is shrinking, since it is now surrounded

by two red patches due to the demise of D. Red’s dominance is short-lived, however,

since RR is in the process of being split by green (GR). The successive splittings become

increasingly complicated, leading to the onset of chaos; i.e., chaotic behavior arises due

to successively more rapid splittings before the elimination and consolidation of patches,

as described above, can occur.

For this value of A, the chaotic behavior itself is transient. When run for a longer time,

the solution becomes spatially homogeneous. There are two competing processes: (i) the

generation of new clusters and (ii) coarsening due to destruction of doomed clusters that

are surrounded by competitors. In this case, the elimination of doomed clusters prevails,

and the solution becomes a spatially-homogeneous heteroclinic cycle. An illustration of

the coarsening is shown in Figure 8.11, where the solution is shown at times t = 5593.5

(solid curves), t = 5595 (dotted curves), and t = 5596.5 (dashed curves). Coarsening

processes are indicated by arrows in the figure. The short time interval shown allows for

the elimination of a doomed red cluster (labeled D) while red is exhibiting dominance

in other parts of the spatial domain. The coarsening process is complex and relatively

prolonged; however, this solution becomes effectively spatially homogeneous around t =

6000. As mentioned above, it may be that all chaotic solutions eventually succumb to

coarsening, but it is not practical to resolve this issue computationally.

Note that for this value of A, symmetric patch initial conditions and symmetric (in

the mean) mixed initial conditions give rise to a simple symmetric patch traveling wave
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Figure 8.10. Spatial profiles at time (a) t1 = 4012.5, (b) t2 = 4018.75, and
(c) t3 = 4025.

that is stable for this value of L. The results described here indicate that much more

complicated dynamics can occur when the symmetry in the initial condition is broken.
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Figure 8.11. Spatial profiles at times t = 5593.5 (solid), t = 5595 (dotted)
and t = 5596.5 (dashed), illustrating the coarsening of a chaotic solution
leading to spatial homogeneity.
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CHAPTER 9

Predictions of 1D Solution Behavior

9.1. Initial Conditions

Here, the results of a set of computations with different initial conditions are tab-

ulated, with a focus on the degree of asymmetry in the initial conditions, the strength

of interspecies competition, and the length of the domain. For mixed initial conditions,

δ = 3, m = n = 1, and η = ε = 0.3, as described immediately below (8.2). Furthermore,

(9.1) u0 = 1 + κ, v0 = 1, w0 = 1− κ,

so that the degree of asymmetry is characterized by the parameter κ for mixed initial

conditions and by the parameter R for patch initial conditions.

Table 9.1 provides the types of solutions that are obtained as A, L, and the degree

of initial asymmetry are varied. The trends are summarized as follows (note that many

computations not tabulated here support these trends):

(1) For fixed A and L, increasing the degree of initial asymmetry leads to progres-

sively more complex dynamics (TW to PATW to breather solutions to chaos).

It is actually rare to obtain a TW solution. As discussed in Section 8.3.2, for

a grid with 2n points, truly symmetric patch initial conditions are impossible to

define - the most symmetric possible conditions for an 8192-point grid, the size

used here, have R = 1.0033 (starred entry in the table). To compensate for this,
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however, rigidly propagating solutions with differences in patch widths of size

O(1× 10−3) were taken to be symmetric patch traveling waves.

(2) For fixed initial asymmetry and fixed L, chaotic behavior is more prevalent as A

increases.

(3) For L = 360, breather solutions have not been found computationally from mixed

initial conditions, but they can be found from patch initial conditions.

(4) For fixed A, chaos is inhibited by increasing L. In all cases examined, chaos

ultimately arises due to patch splitting, but patch splitting requires the formation

of narrow patches, which is more difficult on large domains.

Finally, the roles of δ, m, and n in (8.2) have been examined. Varying δ and n makes

no qualitative change in the types of solutions that can occur. In the case A = 0.215,

n = 1, L = 60, κ = 0.05, and m = 2 (doubling the frequency of the mixed conditions),

the solution becomes chaotic (for m = 1, it is a steady-state breather). This is likely due

to the fact that for early times, thinner patches form than for the m = 1 case. Note that

in order to test stability, a small perturbation of the form cos
(
πx
L

)
was included, since

odd modes could not otherwise be introduced to the computation.

9.2. Order Versus Disorder and the Associated ODE System

In this section, it will be shown that patch splitting is a fundamental driver of chaos,

even when patches are not well defined (i.e., when they are really clusters). It will further

be shown that for mixed initial conditions, this behavior can result from the behavior of

the associated ODE system.
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A L IC κ R Type

0.215 60 M 0 NA TW
0.225 60 M 0 NA TW
0.235 60 M 0 NA C
0.235 360 M 0 NA PATW
0.215 60 M 0.01 NA PATW
0.225 60 M 0.01 NA C
0.215 60 M 0.05 NA B
0.215 60 M 0.2 NA B
0.215 60 M 0.4 NA B
0.215 360 M 0.4 NA PATW
0.235 360 M 0.4 NA PATW
0.265 360 M 0.4 NA PATW
0.275 360 M 0.4 NA C
0.215 60 M 0.5 NA C
0.215 60 M 0.6 NA C
0.215 360 M 0.6 NA PATW
0.215 60 P NA 1.0033∗ TW
0.215 60 P NA 1.038 PATW
0.215 60 P NA 1.166 PATW
0.225 60 P NA 1.166 C
0.215 60 P NA 2.002 B
0.225 360 P NA 2.002 C
0.215 60 P NA 4.523 C

Table 9.1. Tabulation of solution types as initial asymmetry (κ or R),
A, and L are varied. The initial conditions (IC) can be either mixed
(M) or patch (P ). Solution types are symmetric traveling waves (TW ),
pseudo asymmetric traveling waves (PATW ), steady-state breathers (B),
or chaotic (C).

Consider A = 0.3, so that interspecies competition is relatively weak. For this value

of A with L = 60, all solutions that have been computed are chaotic. First, suppose

there are symmetric patch initial conditions (technically near-symmetric, as previously

discussed). In Figure 9.1a, the patch widths for the resulting solution are shown. The

solution is a transitory breather, although instead of each species breathing in turn, the
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species breathe simultaneously (compare with Figure 8.6a). This can be attributed to

the fact that the species can cohabit the same space with relative ease, due to the weak

interspecies competition.

The simultaneous breathing breaks down at t ≈ 175, leading to irregular behavior in

the patch widths. Recall that the patch widths are defined as the spatial extent over which

a species density exceeds 0.9. Thus, a near-zero patch width does not necessarily imply

that a species is largely absent across the domain - just that it does not generally exceed

0.9. The transition to chaos is still via patch splitting. This is illustrated at t = 175, near

the start of the chaotic behavior (Figure 9.1b).
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Figure 9.1. (a) Patch widths for transitory simultaneous breather and tran-
sition to chaos. A = 0.30 with patch initial conditions and R = 1.0033 . (b)
Spatial profiles at t = 175 for transitory simultaneous breather, showing
incipient patch splitting, the mechanism leading to chaos.

Next, consider mixed initial conditions with asymmetric means,

(u0, v0, w0) = (1.4, 1, 0.6) (the initial conditions used to generate Figure 8.3). For A =
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0.215, a breather solution is found (see Table 9.1). For A = 0.3, the solution becomes

chaotic around t = 50. Chaos occurs before true patches can form; there are just clusters

in which one species dominates, but all species are present. However, the onset of chaos

still occurs via cluster splitting as a consequence of diffusive leakage. This is illustrated

in Figure 9.2a, where the solution is plotted at t = 47.5 (solid curves) and t = 50 (dashed

curves). This is early in the transition to chaos, but the figure shows red splitting a large

black cluster into two regions: a region marked D, which is surrounded by red (and thus

doomed) and a region marked S, which can survive. The origin of chaotic behavior can

be traced to cluster or patch splitting in many other computations as well.

For comparison, Figure 9.2b shows the solution at t = 55 with the same initial condi-

tions, but with A = 0.215. By this time, true patches have formed and the system is in

the early stages of breather formation (not yet equilibrated). Patches can form because

it is difficult for all three species to occupy the same spatial region due to the stronger

interspecies competition. The patches are more easily maintained not only because of

the large coefficient σ, but also because the dominant species is at or near its carrying

capacity (unity), thus making it more effective in killing off its victim species (note the

form of the interspecies competition terms in System (8.1)).

Now, consider the relationship between the chaotic solution and the associated ODE

computation. For the ODE computation, the initial conditions are taken as the means of

(8.2); i.e.,

(9.2) u(0) = (1 + ηu0)A, v(0) = (1 + ηv0)A, w(0) = (1 + ηw0)A.
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In Figure 9.3a, the time-dependent spatial means of u, v, and w from the PDE compu-

tation are plotted (solid curves) along with the ODE solution with (9.2) as the initial

conditions (dashed curves) for early times. The dark circles in the figure correspond to

the times of the spatial profiles in Figure 9.2a and are the times when there is a transition

to chaos via cluster splitting.

Both the PDE means and the ODE solution are oscillatory and exhibit similar quali-

tative behavior up to the time of the transition to chaos (dark circles in the figure). For

very early times (e.g., t ≈ 10), the two solutions are very close. For t > 10, the solutions

drift apart. The drift can be attributed to the impact of diffusion on the oscillations;

i.e., diffusion causes the time between successive oscillations to increase because it cou-

ples neighboring spatial regions. Since the ODE solution will approach the attracting

heteroclinic cycle, the oscillations in the ODE solution do not stabilize; rather, they in-

crease monotonically (note that for this initial condition, the oscillations approach unity

and exhibit the characteristic behavior of a heteroclinic cycle at t ≈ 125). On the other

hand, the slow increase of the oscillations in the means of the PDE solution inhibits the

formation of patches because the dominant species in the clusters that form are slow to

approach carrying capacity. The relatively small dominant species densities, along with

the relatively small interspecies competition coefficient σ, create a situation in which each

species is not very effective in controlling its victim species. This allows the species to

share the same spatial regions, leading to the cluster splitting shown in Figure 9.2a and

ultimately to chaos.

Conversely, consider the PDE and ODE solutions with the initial conditions described

above, but with A = 0.215 (Figure 9.3b). As before, both solutions are similar up until
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t ≈ 10, at which point they drift apart as the periods of the oscillations in the means of

the PDE solution increase relative to those of the ODE oscillations (again, diffusion slows

down the oscillatory motion). However, for these initial conditions, the approach of the

ODE solution to the heteroclinic cycle is much more rapid (at t ≈ 60, the ODE solution

already has the characteristics of a heteroclinic cycle). The PDE solution means also grow

much more rapidly than in the A = 0.3 case and are able to stabilize in amplitude (recall

that since the PDE solution is a breather, all of the spatial means are necessarily below

unity and greater than zero). The fact that the PDE oscillations stabilize at a relatively

high level, combined with the interspecies competition coefficient σ, enables the formation

of patches, since each species is efficient in expelling its victim species from its patch. Said

another way, the species self-segregate, there is no patch splitting and thus no transition

to chaos; instead, the solution is an ordered steady-state breather. For both values of A,

the behavior of the PDE solution is associated with the behavior of the associated ODE

system. This relationship has been observed for many other parameters as well.
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Figure 9.2. (a) Cluster splitting for transition to chaos using mixed initial
conditions. The solution is plotted at times t = 47.5 (solid curves) and
t = 50 (dashed curves). A = 0.30 and other parameters given in the text.
The splitting motion is shown via arrows and the resulting split clusters are
denoted by D and S. (b) Spatial profiles for breather solution, A = 0.215
at t = 55 . Other parameters the same as for Figure 9.2a.
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Figure 9.3. (a) ODE solution with (9.2) as initial condition (dashed curves)
and the means of the PDE solution for early times (solid curves). The circles
indicate the times for the spatial profiles shown in Figure 9.2a. A = 0.30
(chaotic PDE solution). Other parameters given in the text. (b) ODE
solution using (9.2) as initial condition (dashed curves) and the mean of
the PDE solution for early times (solid curves). A = 0.215 (breather PDE
solution). Other parameters the same as for Figure 9.3a.
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CHAPTER 10

Solution Behavior for 2D Symmetric RPS Systems

10.1. System Setup

The two-dimensional symmetric version of System (3.6) on the domain [−L,L] ×

[−L,L] is

∂u

∂t
=
∂2u

∂x2
+
∂2u

∂y2
+ u(1− u− σv),(10.1a)

∂v

∂t
=
∂2v

∂x2
+
∂2v

∂y2
+ v(1− v − σw),(10.1b)

∂w

∂t
=
∂2w

∂x2
+
∂2w

∂y2
+ w(1− w − σu),(10.1c)

so that, as in the symmetric 1D system, dv = dw = 1, u∗ = v∗ = w∗ = A, and α = β =

γ = σ = 1−A
A

. The coexistence state is again unstable if A < A∗ = 1/3 (equivalently,

σ > σ∗ = 2).

In two dimensions, four general types of solutions have been found in the unstable

coexistence regime, three of which are ordered. As in 1D, the ordered solutions are

primarily composed of single-species regions. The four categories are as follows:

(1) Chaotic solutions - exhibiting spatiotemporal chaos

(2) Spiral solutions - composed of spirals with each arm comprised of mainly one

species
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(3) Single-species dominance - spatially-homogeneous solution that approaches the

heteroclinic cycle

(4) Traveling fluid patches - propagation of non-rigid patches

Throughout this chapter, mixed initial conditions are defined as

u(x, y, 0) =
(

1 + ε cos
(πx
L

)
cos
(πy
L

))
A,(10.2a)

v(x, y, 0) =

(
1 + ε cos

(
πx

L
+

2π

3

)
cos
(πy
L

))
A,(10.2b)

w(x, y, 0) =

(
1 + ε cos

(
πx

L
+

2π

3

)
cos

(
πy

L
+

2π

3

))
A,(10.2c)

where ε = 0.3 as before and L is taken to be 60 unless otherwise specified. Other com-

putations have been run with many different initial conditions, but qualitatively different

behaviors have not been found.

10.2. Illustrations of 2D Solution Behavior

Here, the four types of 2D solutions are illustrated.

10.2.1. Chaos

Consider System (10.1) with the mixed initial conditions (10.2). The solution is shown

at time t = 2400 in Figure 10.1. Refer to Table 10.1 for the key to this plot and all

similar plots in this chapter. As in the analogous 1D computation, the solution appears

disordered and shows no recognizable pattern. Additionally, there is no clear separation

of the species, due to weak interspecies competition (small σ).
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Color State
Black Strong u Dominance

Dark Gray Moderate u Dominance
Light Gray Weak u Dominance
Dark Red Strong v Dominance
Light Red Moderate v Dominance

Orange Weak v Dominance
Dark Green Strong w Dominance
Light Green Moderate w Dominance

Yellow Weak w Dominance
White Extinction

Magenta Coexistence
Cyan Transition Region

Table 10.1. Color plot key. A species is considered to be strongly, moder-
ately, or weakly dominant if its density is at least 0.6, 0.3, or 0.05 greater,
respectively, than the densities of the other two species.

Figure 10.1. Chaotic solution at t = 2400 for A = 0.3. Color scheme defined
in Table 10.1.

10.2.2. Spirals

It has long been known that reaction-diffusion systems, particularly those that model

biological and chemical processes, can have spiral solutions [51]. Often, these spirals are

associated with excitable media [52]. While System (10.1) does not model an excitable
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medium, spirals are perhaps the most readily computable two-dimensional ordered pat-

tern. As with the ordered patterns found in 1D, spirals are only found when there is

sufficiently strong interspecies competition. As with 1D traveling wave solutions, the

strength of competition required varies inversely with the size of the domain, in agree-

ment with the results presented in [37] and [46]. In this case, spirals can be found for

many different initial conditions. Below, two examples of spirals are given.

Single spirals can be found for both mixed and patch initial conditions, as long as

the patches are such that diffusion can bring all three species together in non-negligible

concentrations (see [53] for details of spiral formation). Given an array of small, randomly-

placed single-species patches, if A is sufficiently small, spiral formation is generally (but

not exclusively) expected. The patch initial conditions shown in Figure 10.2a gives rise

to a single spiral solution (shown at t = 2400 in Figure 10.2b) when A = 0.16. The spiral

is composed of three essentially single-species arms, and the rotation about the center is

such that the different species chase each other in the RPS sequence. At this time, the

spiral encompasses the entire computational domain, although the arms are truncated

at the boundaries due to the no-flux boundary conditions. The solution persists for as

long as it was computed (certainly for a length of time beyond what is experimentally

relevant).

Figure 10.2c shows the behavior at the center of the spiral (bracketed as closely as

possible). The solution at this point is oscillatory (graphically periodic), with low-level

oscillations about some value B close to, but greater than, A. The existence of a small

gap between A and B is not entirely surprising; it has been previously shown, for a related
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model, that the average species densities are not, in general, exactly A within a spiral

core [54].

(a) (b)

(c)

Figure 10.2. (a) Patch initial conditions that give rise to a single spiral. (b)
Single spiral solution at t = 2400 for A = 0.16. (c) u, v, and w near the
center of the spiral for 5400 ≤ t ≤ 5600.

Spiral pairs [55] are also possible for different initial conditions. The solution for A =

0.16 from the mixed initial conditions at t = 2000 is shown in Figure 10.3. This solution is
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not a steady-state solution. For longer times, the spiral pairs separate and eventually, one

spiral in each pair is disrupted by the boundary and is destroyed, a behavior reminiscent of

the spiral annihilation discussed in [56] (and indeed, such solutions were found to occur in

the regime of strong interspecies competition). There is then a collection of single spirals

which are sufficiently separated so that they do not interact, a configuration that persists

for as long as it was computed.

Figure 10.3. Multiple spiral structure from mixed initial conditions at t =
2000 for A = 0.16.

10.2.3. Single-Species Dominance

Consider the patch initial condition shown in Figure 10.4a. The solution for A = 0.1 is

shown in Figures 10.4b-10.4d at times t = 100, t = 120, and t = 140. By t = 120, due

to coarsening, species u is effectively no longer present in the domain. This essentially

creates a two-species system consisting of v and w. Since v is susceptible to w, w quickly

kills off v, and thus a state very close to the single-species state cw is attained by t = 140

(corresponding to less than two days in physical time). As in other cases of coarsening,
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the solution becomes (graphically) spatially homogeneous and approaches the heteroclinic

cycle.

(a) (b)

(c) (d)

Figure 10.4. (a) Patch initial conditions that give rise to a single-species
solution. (b) Solution at t = 100 for A = 0.1. (c) t = 120. (d) t = 140,
where essentially only w remains.
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10.2.4. Traveling Fluid Patches

Slightly modifying the patch initial condition used previously (see Figure 10.5a), again

taking A = 0.1, and increasing L to 165 leads to a solution in which single-species patches

consistently develop in regions dominated by victim species. The solution is shown over

a short time interval in Figures 10.5b - 10.5d. In this interval, black patches develop in

regions dominated by green. These patches, which expand at the expense of green, will

later be disrupted in a similar manner by red. These processes continue for as long as the

solution was computed.

As in analogous 1D computations, diffusion allows species to leak into patches of their

victim species. If this leakage is allowed to occur virtually unchecked, a dominant species

will be able to grow within a patch of its victim species, displacing the victim species

from within. Additionally, note the effect of curvature on the speed of the species-species

interfaces: as the signed curvature of the interface increases, its speed decreases, which is

consistent with analysis of the Fisher-KPP equation (see Sections 4.1.3 and 4.2.1). This

causes a “flattening” of the interface over time; i.e., the curvature at each point of the

interface tends to zero. Thus, though the shapes of the patches are initially not fixed, on

a sufficiently large domain, the patches may eventually be treated as constant in shape.

Other configurations of traveling curved patches are also possible. One such example is

a pacemaker, as illustrated in Figure 10.6. The initial conditions consist of a small circular

(unstable) coexistence region within an ambient environment of only black. A circular

red patch (which can be thought of as a circular ripple) is ejected from the coexistence

region, propagating outward as it displaces the ambient species u. This is followed by

a circular green patch displacing v, and so forth. Coexistence does not directly displace
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(a) (b)

(c) (d)

Figure 10.5. (a) Patch initial conditions that give rise to a fluid patch so-
lution. (b) Solution at t = 2421 for A = 0.1. (c) t = 2424. (d) t = 2431.

a single species; rather, the displacement occurs via a succession of ripples propagating

outward from the coexistence region in the RPS sequence. Such behavior also occurs in

1D, as shown in [16]. Note that the pacemaker pattern does not persist forever, in this

case, as coarsening eventually leads to spatial homogeneity.
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(a) (b)

Figure 10.6. (a) Pacemaker pattern at t = 4. (b) t = 8.
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CHAPTER 11

Survival of the Weakest Phenomenon

Recall that for the symmetric RPS system, the only way to distinguish the three

species is via the initial conditions. If the initial conditions for all three species in a 1D

symmetric system are identical, then

(11.1) lim
t→∞

(u(t, x), v(t, x), w(t, x)) = (A,A,A),

where A = 1
σ+1

with σ = α = β = γ as before; i.e., when there is no mechanism

to distinguish any of the species, the solution converges to the coexistence state. In

particular, this is true in the regime of unstable coexistence (A < 1/3). To see this,

consider that if the initial conditions are identical for all three species, then

(11.2) u(t, x) = v(t, x) = w(t, x),

so that any one species (say, u) satisfies the scalar equation

(11.3)
∂u

∂t
=
∂2u

∂x2
+ u(1− u− σu),

for which u = A is a stable fixed point (the only stable equilibrium). It has been verified

that computations respect the symmetry u = v = w and that the numerical solutions

approach (A,A,A) as t→∞ when the initial conditions are the same for all species.
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Although breaking the symmetry of the problem via the initial conditions allows the

solution to evolve to either an ordered or chaotic state, the resulting solutions often still

inherit some form of symmetry. As described in Section 8.3.1, the temporal averages of

the species fractions ū(t), v̄(t), and w̄(t) (spatial means of the mass fractions of u, v, and

w) are very close to 1/3 over a sufficiently long period of time for chaotic solutions to the

symmetric problem. For steady-state breather solutions (Section 8.3.3), as shown by the

solid curves in Figure 11.1, the average species fraction over a period is clearly the same for

each species and it is, in fact, 1/3 to a very close approximation. Finally, for a symmetric

patch traveling wave, the solution is three equally-spaced patches and the species fraction

is clearly 1/3 for each species (species fractions shown with dots, circles, and crosses

in Figure 11.1). Furthermore, note that for the 2D solutions discussed in Chapter 10,

average species fractions over a sufficiently long period of time are also 1/3 to within a

close approximation. In these cases, no species enjoys sustained overall dominance. Note

that there is a dominant species in pseudo asymmetric traveling wave solutions, though

the identity of the dominant species is determined by the initial conditions.

Asymmetry can be introduced to the RPS system through unequal diffusivities or

unequal interaction coefficients. Clearly, in many E. coli systems (e.g., the one described

in [3]), the interaction coefficients would be unequal, since the mechanisms of competi-

tion are different. A few representative results are discussed below (mainly in terms of

species fractions, since the primary effect of breaking the symmetry of the problem is the

introduction of a hierarchy of dominance), while a more detailed discussion in the context

of an exceptional species is given in the following chapters.
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Figure 11.1. Species fractions for breather solution (solid curves) and sym-
metric patch traveling wave (dotted curve, circles, and crosses) for the sym-
metric RPS system with A = 0.215.

Throughout this chapter, System (3.6) will be considered on the interval [−L,L] (1D)

or on the square [−L,L]× [−L,L] (2D) with the mixed initial conditions

u(0, x) =
(

1 + ε cos
(πx
L

))
u∗,(11.4a)

v(0, x) =

(
1 + ε cos

(
πx

L
+

2π

δ

))
v∗,(11.4b)

w(0, x) =

(
1 + ε cos

(
πx

L
+

4π

δ

))
w∗(11.4c)

in 1D and

u(0, x, y) =
(

1 + ε cos
(πx
L

)
cos
(πy
L

))
u∗,(11.5a)

v(0, x, y) =

(
1 + ε cos

(
πx

L
+

2π

3

)
cos
(πy
L

))
v∗,(11.5b)

w(0, x, y) =

(
1 + ε cos

(
πx

L
+

2π

3

)
cos

(
πy

L
+

2π

3

))
w∗(11.5c)
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in 2D, with ε = 0.3 and u∗, v∗, and w∗ the components of the coexistence state.

11.1. Unequal Diffusivities

Consider (3.6) with α = β = γ = σ and dw = 1, but with dv = 1.1. The solution

to the 1D symmetric problem (i.e., with dv = 1) with the initial conditions (11.4), u∗ =

v∗ = w∗ = A = 1
σ+1

= 0.215, δ = 3, and L = 60 is a symmetric patch traveling wave,

due to the symmetry in the initial conditions. With dv = 1.1, however, the solution is a

breather. Unlike the breathers found for the symmetric problem, the temporal oscillations

in the species fractions are not identical (Figure 11.2a). Overall, it is clear that w is the

most dominant species overall, with the more mobile species v second. This perhaps

surprising result is explained by overcompensation: the increased effectiveness of v in

penetrating patches of u reduces the presence of u, allowing growth of w beyond what

would normally be expected. For this system, it is very often the controlling species of

the most advantaged species that is dominant. This phenomenon, termed “survival of the

weakest” [57] has been observed in other models of RPS competition and experimentally

in ecosystems of E. coli variants [58].

In two dimensions, with L = 60, A = 0.16, and dv = dw = 1, a spiral solution arises

from the initial conditions (11.5). With dv = 1.1, the spirals are not disrupted (at least,

not on any ecologically-relevant timescale), but the species fractions (Figure 11.2b) again

show a clear hierarchy of dominance (w > v > u).

11.2. Unequal Interaction Coefficients

Consider now System (3.6) with dv = dw = 1, but α 6= β 6= γ, so that the effect

of interspecies competition is not uniform among the species. The 1D problem with
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(a) (b)

Figure 11.2. Species fractions for (a) a 1D breather solution with dv = 1.1
and (b) a 2D spiral solution with dv = 1.1. Other parameters given in the
text.

the initial conditions (11.4), L = 60, δ = 4, and (α, β, γ) ≈ (4.36, 3.28, 3.49) results in

a breather solution with species fractions as shown in Figure 11.3a. As in the case of

unequal diffusivities, it is not the most advantaged species (in this case, v, since β is the

smallest coefficient) that dominates; instead, it is its controlling species (w). In fact, v is

actually the least dominant species here. In 2D, using the same interaction parameters

and value of L, a spiral solution arises from the initial conditions (11.5). As in the 1D

case, there is clear dominance by species w (Figure 11.3b).
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(a) (b)

Figure 11.3. Species fractions for (a) a 1D breather solution with asym-
metric interaction coefficients and (b) a 2D spiral solution with asymmetric
interaction coefficients. Parameters given in the text.
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CHAPTER 12

Introduction to Systems with an Exceptional Species

Note: Much of the content in Chapters 12 through 15 was co-authored by A. Bayliss and

V. A. Volpert and submitted to Applied Mathematics and Computation in a manuscript

entitled “Cyclic Ecological Systems with an Exceptional Species.” Used with permission.

In Chapters 12 through 15, N -species cyclic ecological models with an exceptionally

weak or strong competitor are considered. The primary cases of interest are N = 3 and

N = 4, though many results are also valid for larger N . The three-species model is

∂u

∂t
= ∇2u+ u(1− u− αv),(12.1a)

∂v

∂t
= d∇2v + v(1− v − βw),(12.1b)

∂w

∂t
= ∇2w + w(1− w − αu);(12.1c)

i.e., species v is exceptional in terms of its diffusivity or interaction coefficient. The four-

species model is System (3.15), where v is again the exceptional species, reproduced here
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for convenience:

∂u

∂t
= ∇2u+ u(1− u− αv),(12.2a)

∂v

∂t
= d∇2v + v(1− v − βw),(12.2b)

∂w

∂t
= ∇2w + w(1− w − αz),(12.2c)

∂z

∂t
= ∇2z + z(1− z − αu).(12.2d)

For both systems, d will generally be taken as 1, so that all diffusivities are equal. This

assumption will be relaxed in Chapter 16.

Systems (12.1) and (12.2) are appropriate for modeling the impact of an invasive

species (this is done in [59] with a related six-species model), and the results presented

here will be discussed in this context. However, these models may also be readily applied

to explain certain social phenomena, as an alternative to models based on agents [60] or

stochastic ODEs [61]. The interplay among alliances in these models has clear relevance

to, for example, the formation of political alliances. In particular, the existence of an

opinion or party that is exceptional in some way can have a notable effect on the viability

of political strategies (see, e.g., [62]).

In the following chapters, the focus will be on invasion problems; i.e., situations in

which one equilibrium state displaces an unstable or less robust equilibrium (see also

Section 6.1 for a discussion of the N = 2 case). In some cases, this displacement occurs

via a rigidly-propagating traveling wave, while in others, the propagation is dynamically

evolving. The dominant feature in all considered exceptional species parameter regimes

is some manifestation of a transcritical bifurcation, where there is a transfer of stability
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from an alliance state, generally involving N−1 species, to the coexistence state, in which

all species are present (see Chapter 13). Although the term “alliance” is sometimes used

in the literature to refer to partnerships among species that are resistant to invasion (see,

e.g., [63, 64]), the term is used here to describe any partnership, regardless of whether

it can be disrupted. The behaviors that are described arise from patch initial conditions;

mixed initial conditions could give rise to other behaviors (see, e.g., [65, 66]).
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CHAPTER 13

State Stability in the Exceptional Species Regime

Two parameter regimes are considered for Systems (12.1) and (12.2) in the case d = 1.

13.1. Weak Exceptional Species

In this case, α < 1 and β > 1, so that v is more vulnerable than the other species.

13.1.1. Three Species

The stability analysis for the three-species system in Section 3.2 shows the following:

(1) The extinction state (c0) and the single-species states (cu, cv, cw) are unstable.

(2) The two-species state cvw = (0, 1− β, 1) is never physical, since the density of v

is negative.

(3) The two-species state cuv = (1−α, 1, 0) is always physical, since α < 1. However,

it is unstable and disrupted by growth in w, since perturbations in w satisfy

(13.1)
dw̃

dt
= w̃R, R = 1− α(1− α) > 0

where w̃ denotes the linearized perturbation in w. Note that this state would be

stable in a two-species community (excluding w).
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(4) The two-species state cuw = (1, 0, 1−α) is also always physical, with the linearized

equation in v given by

(13.2)
dṽ

dt
= ṽS, S = 1− β(1− α),

so that c13 is stable if S < 0 and unstable if S > 0. The stability bound is then

S = 0 or βS = 1
1−α . If β > βS, then species v cannot survive in combination with

the other two species and the u-w alliance is stable.

(5) When β < βS, v is strong enough to survive with the other two species, so

that the coexistence state cuvw = (u∗, v∗, w∗) is stable. The coexistence state

is also physical under these circumstances (when β = βS, the coexistence state

and the cuw state coalesce; on the other hand, when β > βS, the component v∗ is

negative). As mentioned in Section 3.2, the stability condition for the coexistence

state is (α−1)2(β−1) < 1; thus, as β decreases through βS, there is a transfer of

stability from cuw to the coexistence state. In other words, βS is a transcritical

bifurcation point. Analogous transcritical bifurcations occur in the N = 4 case,

as well as when the exceptional species is less vulnerable than the others, as

discussed below.

13.1.2. Four Species

The stability analysis for the four-species system in Section 3.3 shows the following:

(1) The extinction state (e0), single-species states (eu, ev, ew, ez), non-competing

alliances (euw, evz), and alliances of two competing species (euv, euz, evw, ewz) are

unstable (and evw is not physical).
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(2) The three-species alliances euvw, euvz, and evwz are either unstable or nonphysical

(or both).

(3) The three-species alliance euwz = (1, 0, 1−α(1−α), 1−α) is physical. Its stability

depends on the linearization of the v equation,

(13.3)
dṽ

dt
= ṽQ, Q = 1− β(1− α(1− α)).

The stability bound for the euwz state is thus Q = 0 or β = βQ = 1
1−α+α2 . The

state is stable for β > βQ.

(4) As β decreases through βQ, the component v∗ of the coexistence state euvwz =

(u∗, v∗, w∗, z∗) transitions from negative to positive; when β = βQ, the coexistence

state coalesces with the euwz state. Furthermore, the coexistence state is stable

for β < βQ, so that there is a transfer of stability from the euwz state to the

coexistence state (i.e., βQ is a transcritical bifurcation point). In other words,

when β > βQ, species v is too vulnerable to exist in alliance with the other three

species. When β < βQ, v is strong enough to exist stably with the other three

species.

13.2. Strong Exceptional Species

In this case, α > 1 and β < 1, so that v is less vulnerable than the other species.

13.2.1. Three Species

For the three-species system, the states c0, cu, cv, and cw are unstable, while cuv and cuw

are not physical. The relevant two-species state is cvw, which is always physical, and can
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only be disrupted by growth in u. The linearized equation for u is

(13.4)
dũ

dt
= ũT, T = 1− α(1− β).

The stability bound is T = 0 or αT = 1
1−β . When α decreases through αT , u becomes

strong enough to exist together with the other two species. When α = αT , there is

a transcritical bifurcation leading to the transfer of stability from the cvw state to the

coexistence state.

13.2.2. Four Species

For the four-species system, the extinction state, single-species states, and two-species

states are unstable or nonphysical (or both). The only possibly physical three-species

state is the euvw state, which excludes species z. The following hold:

(1) The euvw state is physical if and only if

(13.5) βPH < β < 1, βPH =
α− 1

α
=
α2 − α
α2

.

When β = βPH , the euvw state coincides with the two-species evw state, which is

unstable. On the other hand, when β = 1, the euvw state coincides with the euw

non-competing alliance state, which is stable for β > 1; i.e., there is a transfer

of stability from the euvw state to the euw state at the transcritical bifurcation

point β = 1.

(2) The euvw state is stable if and only if

(13.6) β > βP =
a2 − α + 1

α2
.
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Additionally, the evz alliance state is always stable for 0 < β < 1 and α > 1.

Thus, for any α > 1, there is bistability between the evz and euvw states if

βP < β < 1.

(3) For α > 1 and β > βP , the coexistence state is unstable when it is physical. On

the other hand, coexistence is nonphysical for β < βP .
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CHAPTER 14

Three-Species Systems with an Exceptional Species

As in previous chapters, illustrations of spatial profiles employ the color scheme black

for u, red for v, and green for w. In this chapter, the three-species system (12.1) is

considered.

14.1. Weak Exceptional Species

First, consider the case of a stable u-w alliance (the cuw state) displacing the v-only

state (cv) on a one-dimensional domain with α = 0.5 and β = 2.5. The initial conditions

are shown in Figure 14.1a. There is a small patch of the u-w alliance embedded in a

community of v (note that the initial condition is independent of β, given the definitions of

the cuw and cv states). As usual, the computation assumes periodic boundary conditions;

however, the domain is sufficiently large that steady-state displacement speeds can be

obtained before wraparound effects can occur.

The solution at t = 1200 is shown in Figure 14.1b. The solution is a rigidly-propagating

traveling wave with the cuw state displacing the cv state with a speed very close to 2, as

predicted by the methodology described in Section 4.2.1. Species v is actually displaced

by a ripple of species w drawn out from the cuw state (labeled GR in the figure). While it

may look like a cw buffer state, it is more appropriate to consider this region as a ripple

that is just part of a non-monotone traveling wave, as discussed below.
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In two dimensions, surrounding a circular patch of the cuw state with a region of the cv

state results in an expansion of the cuw patch (see Figure 14.2; refer to Table 14.1 for the

key to this plot and all similar plots in Chapters 14 and 15). Note that this computation, as

with other two-dimensional computations, was run with no-flux boundary conditions. As

in the analogous one-dimensional computation, the c2 state is directly displaced by a ripple

of species w drawn out from the cuw state (the light green ring in the figure). According

to the analysis in Section 4.2.1, the linear speed of expansion should be approximately

2 − 1
R(t)

, with R(t) the radius of the inner patch at time t. Indeed, the computed speed

(1.98− 0.98
R(t)

) is very close to this approximation.

Color State
Black Strong u Dominance
Red Strong v Dominance

Light Green Strong w Dominance
Blue Strong z Dominance (N = 4 only)

Dark Green c13 state (N = 3 only)
Yellow d1010 state (N = 4 only)
Purple d0101 state (N = 4 only)
Orange d321 state (N = 4 only)
White Extinction

Magenta Coexistence
Gray Transition Region

Table 14.1. Color key for visualizations of two-dimensional solutions in
Chapters 14 and 15. A species is considered to be strongly dominant if
its density is at least 0.5 greater than the densities of the other species.

Next, consider the same one-dimensional problem as before, but with β = 1.5, so that

the cuw state is now unstable, while the coexistence state is stable (i.e., v is sufficiently

strong that it can exist in combination with the other two species). The initial conditions
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Figure 14.1. (a) Initial condition for displacement of the cv state by the cuw
state. β = 2.5 and α = 0.5 so that v is too vulnerable to allow for a stable
coexistence state. (b) Solution at t = 1200 over a subdomain. The green
ripple GR directly displaces v.

Figure 14.2. Expansion of a circular patch of cuw into a region of cv (dark
green - cuw state, gray - transition region, light green - strong domination
by w, red - strong domination by v

.
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are as shown in Figure 14.1a, so that the coexistence state is not initially present. For

early times, diffusion of v into the cuw state leads to formation of the cuvw coexistence

state. This state then expands to displace both the unstable cuw state and the unstable

cv state. Thus, the incipient cuvw patch propagates in both directions. The early-time

behavior is shown in Figure 14.3a.

For later times (Figure 14.3b), the cuw state has been completely displaced and the

cuvw state displaces the residual cv state. As before, the actual displacement of v is due

to ripples (in this case, a leading green ripple (GR) followed by a smaller amplitude black

ripple (BR). This profile propagates rigidly with a speed very close to 2 and the solution

is a non-monotone traveling wave.
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Figure 14.3. (a) Solution at t = 50 over a subdomain for displacement of
the cuw and cv states by the cuvw state (α = 0.5, β = 1.5). Ripples GR
and BR represent the leading edge of the cv displacement. (b) Solution
at t = 1200 over a subdomain. The initial cuw state has been completely
displaced. The green and black ripples effect the displacement of the cv
state.
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In order to determine the speed at which the cuvw state displaces the cuw state, a

separate computation was run without the cv state. The initial conditions are shown in

Figure 14.4a. The solution at t = 1400 is shown in Figure 14.4b. There are now no ripples

since such ripples would be ineffective in displacing an alliance state. The solution is a

monotone traveling wave and its speed should be given by

(14.1) s = 2
√

1 + β(α− 1)

(see Appendix B.1) and should be just 1 for the parameters considered here. This fits the

computed speed (0.992) well. Speeds were also computed for different values of β, all of

which showed good agreement with (14.1).
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Figure 14.4. (a) Initial conditions for displacement of the cuw state by the
cuvw state (α = 0.5, β = 1.5). (b) Solution at t = 1400 over a subdomain.

Consider now the onset and structure of the displacing ripples. To simplify the inter-

pretation of the ripples, a related computation was run where the cuvw coexistence state
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directly displaced the cv state with β = 1.5 (there was no initial cuw state). The long-time

results are very similar to the computation with the cuw state adjacent to the cv state (see

Figure 14.3b).

A snapshot of the solution is shown in Figure 14.5a. Observe that the cv state is

displaced by a ripple of w (GR), which is in turn displaced by a ripple of u (BR), after

which the cuvw coexistence state appears. Note that these ripples are not single-species

states. They are composed of a mixture of all three species, albeit with one species clearly

dominating. This whole structure is a rigidly-propagating non-monotone traveling wave

propagating with speed very close to 2, the speed associated with the displacement of the

cv state.

The origin of the ripples can be explained as follows. Consider the trailing edge of

the retreating cv state (point A in Figure 14.5a). At this point, v is large and, since v

kills u in the competition scheme, u has been essentially eliminated. Since u controls w,

this means that w is effectively uncontrolled, and a bubble of w rises from the coexistence

mixture. This bubble increases until it settles on the pseudo-equilibrium of the unstable

cw state (GR in the figure), all the while killing off species v. The decline of v then allows

u to increase and, since u kills w, this is accompanied by a decrease in w. The process

continues until the solution settles near the pseudo-equilibrium of the unstable cuw state

(BR in the figure). The reduction in u then allows v to resurge and, with all three species

present, the solution then settles on the stable cuvw coexistence state.

This process is a consequence of the RPS dynamics. Diffusion regulates the speed

of propagation (i.e., the propagation speeds of the ripples); however, the structure of the

ripples is controlled by the dynamics (i.e., the kinetics of the system). In order to see
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this, Figure 14.5b shows the solution as a function of t at the point A (trailing edge of

the retreating cv state). Contrast this figure with Figure 14.5c, which is the solution

to the associated three-species ODE system with initial conditions corresponding to the

PDE solution at the same point A at the time shown in Figure 14.5a (note that in Figure

14.5b, the initial time is set to zero to facilitate comparision with Figure 14.5c). Both

solutions exhibit the same qualitative structure, though the timescales are of course dif-

ferent, since the timescales for Figure 14.5b involve the propagation speed of the traveling

wave (close to 2), while the timescales for Figure 14.5c are completely controlled by the

RPS dynamics.

14.2. Strong Exceptional Species

Consider the displacement of the cu state by the cvw state in one dimension with

α = 2.5 and β = 0.5 (note that the only stable state is the v-w alliance cvw). The initial

conditions consist of a small patch of the v-w alliance embedded in a u-only environment

(Figure 14.6a). The solution at t = 800 is shown in Figure 14.6b. As before, ripples (in

this case, a ripple of v (RR)) have developed to actually effect the displacement of u. Also

as before, this ripple is only an approximation to the cv state - a pseudo-equilibrium region

rather than a true buffer state. The solution is again a rigidly-propagating non-monotone

traveling wave with a speed of propagation very close to the predicted value 2.

Now, consider the same problem as above except with α = 1.5, so that the cvw

state is now unstable, while the cuvw coexistence state is stable. The initial conditions

are the same as in Figure 14.6a. As before, for early times, the stable coexistence state

displaces both unstable states (Figure 14.7a). For long times, the cvw state has completely
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Figure 14.5. (a) Solution over a subdomain for the displacement of the
unstable cv state by the stable cuvw state at t = 1200 (α = 0.5, β = 1.5).
(b) Solution at point A in (a) as a function of time (initial time set to zero).
(c) Solution of the associated ODE problem with the PDE solution at point
A as the initial conditions.

disappeared and the cu state is displaced by ripples emanating from the coexistence state
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Figure 14.6. (a) Initial conditions for displacement of the cu state by the
cvw state (α = 2.5, β = 0.5). Species u is too vulnerable to competition
from v to allow for a stable coexistence state. (b) Solution at t = 800 over
a subdomain. The red ripple RR effects the displacement of u.

(Figure 14.7b; ripples labeled RR and GR). The entire structure is a rigidly-propagating

non-monotone traveling wave propagating with speed very close to 2.

This process is again primarily a consequence of the RPS dynamics. As before,

diffusion regulates the speed of propagation (i.e., the timescale of the ripples); however,

the structure of the ripples is controlled by the kinetics of the system. In order to see

this, Figure 14.7c shows the solution at point A as a function of t. Contrast this figure

with Figure 14.7d, which is the solution to the associated ODE system with the initial

conditions given by the solution to the PDE solution at pointA at the time shown in Figure

14.7b (as before, the initial time is set to zero in Figure 14.7c to facilitate comparison

with Figure 14.7d). Both solutions exhibit the same qualitative structure, demonstrating

the dominance of kinetic effects (competition) over diffusion. The results illustrate how
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a simple ODE model can shed light on the structure of traveling waves for the invasion

problem (indeed, the diffusion terms can be thought of as a perturbation to the ODE

problem, as shown in [67]).
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Figure 14.7. (a) Solution at t = 50 over a subdomain for the displacement
of the cvw and cu states by the cuvw state (α = 1.5, β = 0.5). The ripples
RR and GR represent the leading edge of the cu displacement. (b) Solution
at t = 1200 over a subdomain for the displacement of the unstable cu state
by the cuvw state. (c) Solution at point A as a function of time (initial time
set to zero). (d) Solution of the associated ODE system using the PDE
solution at point A as the initial conditions.
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CHAPTER 15

Four-Species Systems with an Exceptional Species

In the figures of spatial profiles presented in this chapter, the color scheme is extended

to include blue for species z. Here, the four-species system (12.2) is considered.

15.1. Weak Exceptional Species

Consider the one-dimensional invasion of the euwz state into a patch of only v in the

case where α = 0.85 and β = 1.5, so that the euwz state is stable (the v-only state dv is

unstable, as always). The initial conditions are shown in Figure 15.1a. There is a small

patch of the euwz alliance embedded in an extensive v-only environment.

The euwz state does not displace the ev state directly, as shown in Figure 15.1b. This

is presumably because u is killed by v and cannot survive in a stable configuration with

species v near its carrying capacity. Instead, an unstable v-w-z alliance (the evwz state)

forms and actually effects the displacement of v by incorporating v into the three-species

alliance. This unstable buffer state expands against the ev state at a speed close to 2, as

previously described in [20]. The speed of displacement of the unstable evwz state by the

stable euwz state is estimated to be approximately 1.16 (Appendix B.2). Thus, the region

occupied by the unstable evwz state is continually expanding, a process termed dynamical

stabilization [68, 69], and the solution is not a traveling wave (note the clear contrast with

the three-species model). Similar behavior has been observed for predator-prey models

[27], where it was shown that expansion of the unstable state would ultimately stop due
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to noise (roundoff error in terms of computation and stochastic perturbations in physical

systems). In this case, the computation was not run long enough for roundoff effects to

manifest and the unstable state is thus clear, well-defined, and expanding in time.

The solution for β = 1.1 (so that euwz is unstable and euvwz is stable) at t = 800

is shown in Figure 15.1c. Even though the initial conditions involve only the euwz state

(as in Figure 15.1a), the euwz state is rapidly displaced by the euvwz coexistence state.

Again, an expanding buffer region of the evwz state forms, except now it is displaced by

the coexistence state.

Finally, consider the case where the target (displaced) state is the evz alliance state.

The initial conditions are shown in Figure 15.2a and the solution with β = 1.5 is shown

in Figure 15.2b. There is now no buffer state. This is due to the fact that species u must

be present in order to displace species z in the alliance state. The estimate for the speed

of displacement of the evz alliance state by the euwz state is 0.77 (see Appendix B.3), and

the computed speed is very close to this value.

15.2. Strong Exceptional Species

15.2.1. Solutions

Here, only the three relevant states euvw (stable for βP < β < 1), euw (unstable for β < 1),

and evz (stable) are considered. For all computations in this section, α = 3 and β < 1.

Under these conditions, the evz state displaces the other two states. This is not surprising,

since v is the strongest species and the evz alliance state contains the largest population

of v. In particular, the evz alliance displaces the euw alliance.
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Figure 15.1. (a) Initial conditions for displacement of the ev state. (b)
Solution at t = 800 over a subdomain (α = 0.85, β = 1.5). The unstable
buffer state is expanding since it displaces the ev state more quickly than
it is displaced by the euwz state. (c) Solution at t = 800 over a subdomain
(α = 0.85, β = 1.1). The advancing stable state is the coexistence state.

The initial conditions for all one-dimensional computations in this section are shown

in Figure 15.3. There is a small patch of the evz state embedded in a region of the euw

state.
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Figure 15.2. (a) Initial conditions for displacement of the evz state. (b)
Solution at t = 800 over a subdomain, illustrating displacement of the evz
state by the euwz state (α = 0.85, β = 1.5). There is now no buffer state;
the euwz state effects the displacement directly.
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First, consider the nature of the displacement of the euw alliance. The two allied

species v and z both will penetrate the euw alliance; however, they will not progress at
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the same rate. Species v should progress ahead of z because it is less vulnerable to the

competition. This allows for v to mix with the already available u and w in the euw region.

As a consequence, if β is such that the three-species euvw state is stable, the u-v-w alliance

can form as a buffer state ahead of the advancing evz alliance. When this happens, there

are then two displacements: (i) euvw displaces euw with speed suvw and (ii) evz displaces

euvw with speed svz. However, this will not occur for all values of β. The conditions

for the buffer state to form are (i) the euvw state must be stable and (ii) the speed euvw

needs to be greater than the speed evz. If both these conditions hold, then the euvw buffer

state is continually increasing and the solution will not be a rigidly-propagating traveling

wave. Conversely, if either of these conditions is false, then no buffer state forms and the

solution is expected to be a rigidly-propagating traveling wave.

For α = 3, βP ≈ 0.77. Consider the case β = 0.85 so that the euvw state is stable. Fig-

ure 15.4a shows the formation of a buffer region of the euvw state between the two alliance

states euw and evz. The points A and C in the figure are where u and w, respectively,

first rise above 0.9999, scanning from left to right. The points B and D are where v and

z, respectively, first drop below the same threshold (also scanning from the left). Point A

is taken as the trailing edge of the retreating u-w alliance. Thus, in this case, the velocity

of point A represents the speed of displacement of the euw state by the euvw buffer state

(i.e., suvw). Similarly, the point C represents the trailing edge of the euvw buffer state,

while the points B and D represent the leading edge of the advancing evz alliance state.

Points B, C, and D propagate with the same velocity svz. When a buffer state forms,

point A propagates faster than the other three points and the extent of the buffer state

increases in time. The solution, in this case, is a dynamically-evolving wave. This can be
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seen in Figure 15.4b, where the solution is shown for a later time. The region occupied

by the euvw buffer state has now greatly increased in extent.
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Figure 15.4. (a) Buffer euvw state at t = 800 (β = 0.85). Solution shown
over a subdomain. (b) Buffer state at t = 1600.

In two dimensions, taking β = 0.85 and initial conditions consisting of a circular patch

of the evz alliance surrounded by the euw alliance (Figure 15.5a) also leads to the formation

and expansion of a euvw buffer region, as shown in Figures 15.5b and 15.5c.

Going back to the one-dimensional problem, when point A propagates with the same

speed as the other three points, there is no buffer state. The entire spatial profile prop-

agates rigidly in time. There is, of course, a transition region between the advancing evz

state and the retreating euw state, and the solution shows some semblance of trying to

form a buffer state, but no such state forms and the transition region does not change

over time. Figure 15.6a shows the solution when svz is greater than suvw (β = 0.95) so

that there is no intermediate buffer state.
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Figure 15.5. (a) Initial conditions for 2D computation resulting in buffer
state formation (purple - evz alliance, yellow - euw alliance). (b) Formation
of euvw buffer state (orange region). (c) Buffer state at a later time.

Another example where the buffer state does not form is shown in Figure 15.6b. In

this case β = 0.76 so that the euvw state is unstable. Note that in this case, the transition

region is more complicated than in Figure 15.6a because there are more signs of the failed

attempt at formation of the euvww state; i.e., v (red) and u (black) appear to be trying

to form the state, but they fail. However, the four points A, B, C, and D all travel
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with the same speed, the transition region is unchanged in time, and the solution is a

rigidly-propagating traveling wave.
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Figure 15.6. (a) Traveling wave solution without euvw buffer state at t =
2400 (β = 0.95). (b) Traveling wave solution without euvw buffer state at
t = 1600 (β = 0.76).

15.2.2. Speeds

For β < 1, there are two situations in which a stable state displaces an unstable state: (i)

evz directly displaces euw (no buffer state forms) and (ii) euvw displaces euw. Application

of the methodology discussed in Section 4.2.1 leads to the prediction (see Appendix B.4)

(15.1) s = 2
√

1− β;

i.e., the estimate is the same in both cases (recall that the propagation speed of a pulled

front depends only on the properties of the displaced state). The computed and estimated

front speeds as a function of β are shown in Figure 15.7a. The buffer euvw state exists
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for 0.77 < β < 0.95 and in this regime, the solution is a dynamically-evolving wave,

rather than a traveling wave. In general, the estimate agrees well with the computed

speeds, though it fails near β = 1, since the front is not pulled in this regime. In order to

confirm that the presence of the evz state did not impact the speed of the displacement

of euw by euvw, additional computations were run without the evz state (i.e., the initial

conditions involved just a small patch of the euvw state embedded in the euw state) in

the regime where euvw is stable. In this case as well, the estimate agrees very well with

the computed speeds (Figure 15.7b). The displacement of euw by euvw appears to be

completely unaffected by the presence of a trailing evz state.

Finally, Figure 15.7c shows the front speed for β > 0.95 up to β = 3. In this case,

the solution is a traveling wave and the front speed appears to be continuous as β passes

through unity, where the euw state becomes stable (dashed vertical line in the figure).

In two dimensions, speeds of displacement of an unstable state by an expanding circular

patch show a clear dependence on the radius as discussed in Section 4.2.1.
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Figure 15.7. (a) Speeds associated with the displacement of the euw alliance
state for β < 1. For those values of β where there are two such speeds, an
expanding euvw state forms. (b) Speeds for the direct displacement of the
euw state by the euvw state. (c) Speeds associated with the displacement of
the euw alliance state for β < α = 3. The retreating euw state is unstable
to the left of the dashed vertical line and stable to the right.
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CHAPTER 16

Exceptional Mobility

Note: Much of the content in this chapter was co-authored by A. Bayliss. Used with

permission.

Here, the three-species system (3.6) is considered with all interaction coefficients equal,

but with a difference in mobility for species v. Specifically,

(16.1) α = β = γ = 9, u∗ = v∗ = w∗ = 0.1, dw = 1, dv = d.

All computations described in this chapter were run on the domain −L ≤ x ≤ L, where

L = 360, with initial conditions

u(0, x) =
(

1 + ε cos
(πx
L

))
u∗,(16.2a)

v(0, x) =
(

1 + ε cos
(πx
L

+
π

2

))
v∗,(16.2b)

w(0, x) =
(

1 + ε cos
(πx
L

+ π
))

w∗,(16.2c)

where ε = 0.3. Thus, the only variable is the diffusivity of species v (d). As before, the

color scheme of black for u, red for v, and green for w is employed, with the species often

referred to by these colors.
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16.1. Single Patch Splitting

Consider the case d = 0.9. According to analysis of patch propagation in [16], for a

three-patch array, the red/black interface should propagate with speed 2
√
d < 2, while

the black/green and green/red interfaces should propagate with speed 2. As a result, the

black patch is expected to expand at the expense of the red patch, while the green patch

remains constant in extent.

The species fractions ū(t), v̄(t), and w̄(t) (refer to Section 8.3.1 for the definitions

of these fractions) for this case are shown in Figure 16.1a. After a brief initial period

during which the species self-segregate to form three patches (not shown in the figure),

the expected behavior does occur for some time; however, it terminates when the red patch

becomes sufficiently thin, at which point the analysis in [16] is no longer valid. Next, the

red patch abruptly expands and the black patch abruptly contracts, which is collectively

referred to as an “event.” Following the event, the black patch again begins expanding

at the expense of the red and the process repeats. A total of five events are depicted in

Figure 16.1a. The events are due to patch splitting (see Section 8.3.4); specifically, red

splits the black patch at each event. There is one splitting per cycle and the behavior is

periodic with a period of approximately 7000 units of time.

Figure 16.1b is a blowup of Figure 16.1a around the first event. The spatial profile

at point 1 (t = 9800) is shown in Figure 16.2a. At this time, the solution is a three-

patch array with the black patch expanding at the expense of the red. The solution at

point 2 (t = 9873) is shown in Figure 16.2b. Here, red has split the black patch via

back-diffusion through the green. The previously large black patch is being split into two

patches, labeled D and S in the figure. Patch D is doomed, as it will be surrounded by
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red. Patch S will survive and ultimately expand. Note that the splitting is preceded by

a slight weakening of the green patch (compare Figures 16.2a and 16.2b), allowing red to

back-diffuse through green and effect the split.

At point 3 (t = 9880, Figure 16.2c), the split is complete. There are now five patches:

the doomed and surviving black patches, the newly formed red patch (r in the figure),

the original red patch (R), and the green patch. At this time, the red patch is expanding,

despite the mobility disadvantage of species v.

At point 4 (t = 10000, Figure 16.3a), the doomed black patch D is on the verge of

being eliminated. There are still two red patches, but they will merge upon elimination

of D. This is in the final stages of red’s expansion. At point 5 (t = 10500, Figure 16.3b),

D has been eliminated and the red patches have merged, restoring the three-patch array.

This is at the beginning of the expansion of the surviving black patch S. Finally, at point

6 (t = 11500, Figure 16.3c), the expansion of the black patch at the expense of the red is

clearly visible as the cycle approaches completion.

16.2. Cyclic Patch Splitting

Consider the case d = 0.88. The species fractions are shown in Figure 16.4a. There is

again an early transient during which the species self-segregate and form a patch array.

There is then a period of time for which the patches propagate as expected (i.e., the

black patches expand at the expense of the red). However, a transition to a periodic

solution occurs around t = 2500 and the behavior persists as long as it was computed.

The dynamics of the solution can best be ascertained by looking at the spatial behavior
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Figure 16.1. (a) Species fractions with d = 0.9. (b) Blowup of species
fractions around an event.

of the points marked on Figure 16.4b, which depicts the species fractions over roughly

two periods.

At point 1 (t = 3000), red is dominant, followed by black, and then green. The spatial

profiles are shown in Figure 16.5a. There are five patches, rather than three: two red, two

black, and one green. This is generally the case in the regime 0.8 < d ≤ 0.88. The large

black patch (labeled D in the figure) is doomed, as it is surrounded by its controlling

species red (refer to the arrows in the figure signaling the direction of motion). Note

that this is consistent with Figure 16.4b, since at point 1, the species fraction of red is

increasing, while that of black is decreasing.

At point 2 (t = 3020), the doomed black patch (D) has shrunk considerably, as it

is being consumed by its red neighbors (Figure 16.5b). At point 3 (t = 3040), D has

been completely consumed and green has begun to split the (now wide) red patch (Figure
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Figure 16.2. (a) Solution for d = 0.9 at t = 9800 (point 1 in Figure 16.1b).
(b) t = 9873 (point 2). (c) t = 9880 (point 3).

16.5c). This is the first of three patch splitting events in a cycle. Shortly after, when red

is split (point 4, Figure 16.5d), the five-patch array will be restored, this time with two

red patches, two green patches, and one black patch. The red patch marked D in the
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Figure 16.3. (a) Solution for d = 0.9 at t = 10000 (point 4 in Figure 16.1b).
(b) t = 10500 (point 5). (c) t = 11500 (point 6).

figure is doomed, since it is surrounded by green neighbors. The species fraction of green

will subsequently increase as it consumes the doomed red patch.

For 3050 ≤ t ≤ 3180, the species fractions of both green and black are increasing. The

fraction of green increases rapidly as green consumes the doomed red patch, while that of
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black increases slowly as a result of its mobility advantage over red (see points 4 through

6 of Figure 16.4b). At point 6 (t = 3190), the black patch has broadened and black has

begun to split the wide green patch (Figure 16.6a - second patch splitting event). Two

green patches will be formed, one of which is doomed (green D). Thus, when the split is

completed, there will be a short period of time for which there are seven patches. This is

not the case when green splits a red patch (refer to Figure 16.5c) and it is likely due to

the mobility bias leading to the expansion of black patches relative to the red. The slow

growth of black (point B in Figure 16.6a), in turn, reduces the growth of the green patch

it pursues (G). This delays the elimination of the doomed red patch (red D). Moreover,

the fraction of red is slowly decaying due to its mobility disadvantage with respect to

black.

At point 7 (t = 3250), the five-patch array has been restored, as the doomed red patch

has been completely consumed. There is now explosive growth in black and rapid decay

in green as black eliminates the doomed green patch. The splitting of a black patch by

red, the third and final splitting event in the cycle, begins at point 8 (t = 3310). As can

be seen in Figure 16.4b (around point 8), there are differences in the decline of black as

compared to the declines of the other two species:

(1) Black begins its decline at a lower level than the other two species at a time when

the amount of green is still considerable. Indeed, at this time, the doomed green

patch (green D in Figure 16.6b) is still of considerable extent.

(2) In the early stages of black’s decline, the decline is gradual. There is subsequently

a rapid decline due to patch splitting by red.
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These effects are likely also a result of the mobility bias of black over red. The black

patch that has not been split (B in Figure 16.6b) is still expanding due to its mobility

advantage over red. As a a result, the red patch (R) is squeezed into a small spatial region,

enhancing its back-diffusion into the large black patch, thus accelerating the splitting of

the black patch by red. Notice that the peaks of green and red between the black patches

S and B are considerably lower than the other peaks.

At point 9 (t = 3400), the five-patch array has been restored. The fraction of black

is rapidly declining as the doomed black patch is consumed by its red neighbors. The

surviving black patch is labeled S in Figure 16.6c. When D is eliminated, red will be

dominant, completing the cycle, as a red patch will then be split by green (Figure 16.6d).

This process appears to be strictly periodic, having been run for many more cycles than

what is shown here. The fact that the interval of black’s dominance is smaller than the

dominance interval for the other two species, as well as the fact that black’s decline occurs

at a lower level than that of the other two species, leads to the ostensibly advantaged

species (black) being the least dominant of the three species (see Table 16.1). Similarly,

the fact that red’s peak occurs at a higher level (recall from Figures 16.5b and 16.5c

that red is the only species that can eliminate its victim’s doomed patch prior to being

split) leads to red being the most dominant species on average, indicating survival and

dominance of the weakest, as discussed in Chapter 11.
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Figure 16.4. (a) Species fractions with d = 0.88. (b) Species fractions over
the interval 3000 ≤ t ≤ 4000.

16.3. Increased Spatial Complexity

As d decreases, the spatiotemporal patterns become more complex, eventually leading

to chaos (chaos has been found for d = 0.7, for example). For d = 0.8, the solution is or-

dered and the species fractions are periodic, although the spatial profiles are substantially

more complex than for larger values of d.

The species fractions for the steady-state behavior in this case are shown in Figure

16.7a. The species fractions are periodic and the temporal profiles are relatively simple

compared to those seen when d = 0.88. As for larger values of d, the species initially

self-segregate and form an array of patches, with black patches expanding at the expense

of the red ones (Figure 16.7b).

The dynamical behavior can be understood by considering the 7 points indicated in

Figure 16.7a. Points 1 and 7 are intended to illustrate the periodicity of the solution
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Figure 16.5. (a) Solution for d = 0.88 at t = 3000 (point 1 in Figure 16.4b).
(b) t = 3020 (point 2). (c) t = 3040 (point 3). (d) t = 3050 (point 4).

(disregarding a phase shift in space). At point 1 (t = 9763.5), the fraction of red has

reached a maximum. At this time, the solution consists of a nine-patch array, which is

the general state of the solution outside of interruptions due to events. The nine-patch

array does not adhere to the rock-paper-scissors order (e.g., a red patch followed by black
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Figure 16.6. (a) Solution for d = 0.88 at t = 3190 (point 6 in Figure 16.4b).
(b) t = 3310 (point 8). (c) t = 3400 (point 9). (d) t = 3490 (point 10).

followed by green, and son on), as shown in Figure 16.8a. Proceeding from left to right

(and considering the periodicity of the domain), the fourth patch is black, rather than

the expected green, causing the cyclic order to switch from green-black-red to black-red-

green. As a result, the red patch labeled B in the figure is bi-directional, pushing in both
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directions against its black neighbors. As a consequence, another red patch (labeled D in

the figure) is doomed, since it is surrounded by two green neighbors.

The general situation is a nine-patch array with a dominant species (in terms of the

species fractions) having both a bi-directional patch and a doomed patch. The specific

preferred species switches from red to green to black due to brief events, where the bi-

directional patch is split by its controlling species while the doomed patch is consumed.

At point 2 (t = 9780), red’s time as the preferred species ends, as the former B patch

is split by green (Figure 16.8b). In addition, the doomed red patch (D), while not yet

consumed, is rapidly shrinking. This is the first of the three events that occur in each cycle.

At point 3 (t = 9830), a nine-patch array has again been established, but with green as the

dominant species (Figure 16.8c). A second event occurs around point 4 (t = 9840), where

the green patch B is split by black, while green patch D is almost entirely consumed. At

point 5 (t = 9880), a nine-patch array has once again been established, but this time with

black as the dominant species. Black’s time as the preferred species is terminated by the

third event (point 6, t = 9895), in which black patch B is split by red, while the doomed

patch D is on track to be eliminated (Figure 16.9a). The elimination of the doomed patch

is delayed, relative to the first two events. This is a direct consequence of red’s mobility

disadvantage - it takes more time for red to eliminate the doomed black patch because

red/black interfaces propagate more slowly than the other types of interfaces. Finally, at

point 7 (t = 9920.57), the original nine-patch array has been restored, with red as the

preferred species (Figure 16.9b). Comparison with Figure 16.8a shows the periodicity of

the solution modulo a shift in space.
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Figure 16.7. (a) Species fractions with d = 0.8. (b) Species fractions over
the interval 0 ≤ t ≤ 2000.

16.4. Timescales and Dominance

In Table 16.1, the computed periods and temporal averages of the species fractions are

tabulated for selected values of d. For simplicity, let U , V , and W denote the temporal

averages of the species fractions over a cycle for u, v, and w, respectively, and let T

denote the period of the cycle. The species fractions in the neighborhood of d = 0.88

clearly indicate the boundary between the regimes of single patch splitting and cyclic

patch splitting.

Increasing d leads to longer periods. Black grows because of the difference in the

speeds of red/black and black/green interfaces. As d increases, this difference decreases,

and it takes longer for black patches to reach their maximum extents. While this is not

surprising, increasing d (making red more mobile) leads to a more pronounced advantage

of black over red. It may be that as red becomes more mobile, it becomes harder for red
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Figure 16.8. (a) Solution for d = 0.88 at t = 9763.5 (point 1 in Figure
16.7a). A nine-patch array is established with a bi-directional red patch.
(b) t = 9780 (point 2). First event, where red is split by green. (c) t = 9830
(point 3). The nine-patch pattern has been re-established, but now with a
bi-directional green patch.

to back-diffuse through green patches, since there is more red to be consumed within the

green patch. Thus, splittings of black patches are delayed, leading to a greater advantage



182

-360 -240 -120 0 120 240 360
x

0

0.25

0.5

0.75

1

u
,v

,w

D Former 
B

(a)

-360 -240 -120 0 120 240 360
x

0

0.25

0.5

0.75

1

u
,v

,w

D B

(b)

Figure 16.9. (a) Solution for d = 0.8 at t = 9895 (point 6 in Figure 16.7a).
Third event, where black is split by red. (b) t = 9920.57 (point 7). The
nine-patch array has been re-established with a bi-directional red patch.
The solution is the same as in Figure 16.8a except for a phase shift in
space, demonstrating the periodicity of the species fractions.

of black in terms of temporal averages of the species fractions. For 0.98 ≤ d < 1, splitting

does not occur at all - after black crests, the patch widths stabilize and the solution is an

asymmetric traveling wave (i.e., a propagating three-patch array with the patches having

differing, but constant, widths; see Section 8.3.2). To demonstrate this, Figure 16.10a

shows the species fractions over a long interval for d = 0.97 (for which splitting occurs)

and Figure 16.10b shows the species fractions for d = 0.98. In this second figure, the

fraction of black initially increases and then levels off after the black patch reaches its

maximum extent.
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d U V W T

0.80 0.403 0.245 0.352 157
0.83 0.361 0.288 0.351 216
0.85 0.319 0.286 0.395 285
0.87 0.296 0.352 0.352 384
0.88 0.298 0.384 0.318 449
0.89 0.480 0.480 0.0393 6338
0.90 0.481 0.479 0.0400 6963
0.92 0.484 0.476 0.0406 8668
0.95 0.488 0.470 0.0420 13735
0.97 0.495 0.462 0.0430 22781
0.98 0.945 0.0275 0.0275 NA
0.99 0.935 0.0326 0.0326 NA
1.00 0.454 0.403 0.144 NA

Table 16.1. Periods and spatial averages as a function of d. Periods rounded
to the nearest whole number. Temporal averages rounded to three signifi-
cant figures.
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Figure 16.10. (a) Species fractions for d = 0.97. (b) Species fractions for
d = 0.98.



184

16.5. More Mobile Exceptional Species

If d > 1, then v is more mobile than the other two species. Consider the case d = 1.1. A

three-patch array forms, at which point it should be expected that the red/black interface

move with speed 2
√
d > 2, while the black/green and green/red interfaces propagate with

speed 2. Thus, the red patch should grow at the expense of the black, while the green

patch should remain constant. Based on the results for d < 1, this should happen until the

black patch is sufficiently thin, at which point some form of patch splitting (starting with

green splitting red) should occur. The solution initially behaves as expected, as shown in

Figure 16.11a. Red collapses around t = 3200, accompanied by explosive growth in green.

However, in this case, there are no further splittings. The final steady-state solution is an

asymmetric traveling wave with green dominant, followed by red and black. Even though

red could be considered the most advantaged species and black the most disadvantaged,

it is in fact green that is dominant, since there is no further patch splitting. Recall that

the same problem on the domain −60 ≤ x ≤ 60 leads to a breather solution, in which the

three patches periodically expand and contract, with green again the dominant species

(see Section 11.1).

In order to see what happens, consider the points 1, 2, and 3 indicated in Figure

16.11a. Point 1 (t = 3245) is very close to the peak in the fraction of red. At this time,

the splitting of the red patch by green has started (Figure 16.11b). Green splits the red

patch into two patches, labeled S and D in the figure. Patch D is doomed, since it is

surrounded by green, and S will survive at its shrunken level. At point 2 (t = 3350), red is

nearly finished with its decline, while the green patch has expanded significantly. At point

3 (t = 3450), a three-patch array has again been established (Figure 16.11c). This array
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propagates rigidly around the domain. It may be that it is too difficult for black to back-

diffuse through the red patch to split the green patch, since red is so mobile compared

to black; i.e., it could be that the more mobile red can inhibit the initial penetration of

black into its patch.
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Figure 16.11. (a) Species fractions with d = 1.1. (b) Solution at t = 3245
(point 1 in the previous figure). The splitting of red by green has just
initiated. (c) Solution at t = 3450 (point 3). The three-patch array has
been restored and an asymmetric traveling wave has formed.
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CHAPTER 17

Exceptionality in 2D: Expanding Coexistence Patch

In this chapter, the expansion of a disc of the coexistence state into an uninhabited

region is considered for the three-species system (3.6) with species v an exceptional species.

For all computations presented here, the domain is the square [−60, 60]× [−60, 60] with

no-flux boundary conditions and the initial conditions are given by

u(0, r, θ) = (1−HR(r))u∗,(17.1a)

v(0, r, θ) = (1−HR(r))v∗,(17.1b)

w(0, r, θ) = (1−HR(r))w∗,(17.1c)

where u∗, v∗, and w∗ are the components of the coexistence state cuvw (see Section 3.2)

and R is taken to be 10 (i.e., the initial patch of the coexistence state is a disc of radius

10, as shown in Figure 17.1). See Table 17.1 for the key to all 2D plots in this chapter

(same as Table 10.1, but reproduced here for convenience). For all 1D plots, the usual

color scheme of black for u, red for v, and green for w is employed.
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Color State
Black Strong u Dominance

Dark Gray Moderate u Dominance
Light Gray Weak u Dominance
Dark Red Strong v Dominance
Light Red Moderate v Dominance

Orange Weak v Dominance
Dark Green Strong w Dominance
Light Green Moderate w Dominance

Yellow Weak w Dominance
White Extinction

Magenta Coexistence
Cyan Other

Table 17.1. Color plot key. A species is considered to be strongly, moder-
ately, or weakly dominant if its density is at least 0.6, 0.3, or 0.05 greater,
respectively, than the densities of the other two species.

Figure 17.1. Initial conditions for all computations in this chapter. The
purple disc is the coexistence state and the white region is uninhabited (see
Table 17.1).
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17.1. Exceptional Mobility

Consider first the case where all interaction coefficients are equal, but v is more diffu-

sive than the other two species, as in the previous chapter. Specifically,

(17.2) α = β = γ = 4, u∗ = v∗ = w∗ = 0.2, dw = 1, dv = d.

In all of the computations that were run, for which d varied from 0.5 to 2, the solution

approached the spatially-homogeneous heteroclinic cycle, regardless of whether d < 1 or

d > 1. This also occurs when the domain is expanded to [−360, 360] × [−360, 360]. The

mechanism leading to this state is as follows (described for d = 0.8, but similar in the

other cases):

(1) All three species expand outward, but u and w expand more quickly than v, due

to the decreased mobility of v (Figure 17.3a). The difference in rate allows for

the formation of rings dominated by a species.

(2) The species dominating the inner disc (e.g., u) is disrupted by its controlling

species (v). This causes a black ring to propagate outward, while a new red inner

disc is formed (the 2D analogue of patch splitting; see Figures 17.2a and 17.3b).

(3) The inner disc is next disrupted by the third species (w). A number of similar

disruptions occur later on (with the disrupting species eventually traveling to the

inner disc via back-diffusion; see, e.g., Figure 17.3c). After each disruption, the

maximum extent of the inner disc increases (compare Figures 17.2a and 17.2b).
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(4) At some point, the inner disc becomes so large that the disruptive species (e.g.,

v) does not travel to the center of the disc before growing substantially, creat-

ing a new black ring as before, but also creating a new red ring and leaving u

temporarily in control of the inner disc (Figure 17.4a). The black inner disc,

surrounded by a red ring, is overtaken by v.

(5) Subsequent patch splittings occur further outside the inner disc (Figure 17.4b).

Eventually, since the domain is finite, there are no more splittings, and coarsening

ensues (Figures 17.2c and 17.4c).

17.2. Exceptional Competition

Here, System (3.6) is considered with dv = dw = 1 and α = γ = 4, with β 6= 4, so that

v has a competitive advantage when β < 4 and a disadvantage when β > 4. For some

values of β, the solution approaches the spatially-homogeneous heteroclinic cycle, as in

the case of exceptional mobility (see Figure 17.5). For other values of β, spiral solutions

are found (Figure 17.7). In both cases, the coexistence state initially expands to cover the

domain. At this point, along the edges of the domain, the species densities are perturbed

from their coexistence values, allowing for patches dominated by a single species to form

(Figures 17.5a and 17.6a). In the first case (e.g., β = 3.9), coarsening decreases the spatial

heterogeneity of the solution. In the second (e.g., β = 3.3), collisions of ringed structures

lead to spiral structures, which appear to be stable (certainly persistent over ecologically

relevant lengths of time). The time-average species fractions for the spiral solutions are

qualitatively as expected (i.e., w is dominant overall, followed by v; see Section 11.2). It

appears that in order to obtain a spiral solution, the difference between α and β cannot
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(a) (b)

(c)

Figure 17.2. (a) Solution with d = 0.8 at t = 15. Formation of rings and
first disruption of inner (gray) disc. (b) t = 45. (c) t = 100. Around the
time, coarsening ensues.

be either too small or too large in magnitude, though further research is needed in this

area.



192

(a) (b)

(c)

Figure 17.3. (a) Solution along x-axis with d = 0.8 showing the formation
of rings (t = 10). (b) Disruption of inner disc by v (t = 15). (c) Disruption
of inner disc by u following back-diffusion of u (t = 45).
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(c)

Figure 17.4. (a) Solution along x-axis with d = 0.8 showing disruption away
from the center of the inner disc by v (t = 60). (b) Disruption by u outside
inner disc (t = 75). (c) Solution near the point where disruptions cease
(t = 100).
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Figure 17.5. (a) Solution with β = 3.9 at t = 100. (b) t = 150. (c) t = 200.
(d) t = 250, where the solution is approaching spatial homogeneity.
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Figure 17.6. (a) Solution with β = 3.3 (eventually a spiral solution) at
t = 100. (b) t = 150. (c) t = 200.
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(a) (b)

(c)

Figure 17.7. (a) Solution with β = 3.3 at t = 250. (b) t = 350, where spiral
structures are beginning to form. (c) t = 600, where clear, persistent spirals
are present.
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CHAPTER 18

Discussion and Conclusions

Cyclic ecosystems can be modeled by systems of reaction-diffusion partial differential

equations. As demonstrated above, a number of interesting spatiotemporal patterns can

arise in the solutions to these systems and the dominant species is not always obvious.

Direct interspecies competition, mobility, and positioning all play a role in the dynamics

of cyclic systems, even in a qualitative sense.

In two-species systems, one species can kill off the other, the species can coexist, or

the species can exist in separate colonies. A disadvantage in mobility can be offset by a

positional or direct competitive advantage, while a disadvantage in direct competition can

be offset by a positional or mobility advantage and a positional disadvantage can be offset

by a mobility or direct competitive advantage. On two-dimensional domains, positional

advantages can be due to curvature in species-species interfaces. Parts of an interface

with negative curvature (with respect to the direction of propagation) will travel more

quickly than those with zero or positive curvature (Chapter 6).

In three-species systems, a number of solution types are possible. For symmetric sys-

tems (i.e., systems in which all species have identical properties) with strong interspecies

competition (so that coexistence is unstable) and spatially-inhomogeneous initial condi-

tions, chaotic solutions predominate when interspecies competition is relatively weak. In

contrast, when interspecies competition is sufficiently strong, ordered solutions are gen-

erally found. Whether or not a solution to the PDE problem will be ordered can often
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be predicted from the solution to the associated ODE problem with appropriate initial

conditions (Chapter 9).

One-dimensional ordered states generally involve single-species patches propagating

via diffusion. Such states can involve rigidly-propagating arrays of patches (traveling

waves) or breathers, in which individual patches periodically expand and contract (mod-

ulated traveling waves). The patches in rigidly-propagating arrays can all have the same

width (symmetric traveling waves, arising from symmetric or near-symmetric initial con-

ditions) or not (pseudo asymmetric traveling waves). For symmetric traveling waves and

breathers, each species is, on average, distributed equally throughout the domain. This

is obviously not true for asymmetric patch traveling waves, in which a dominant species

is determined by the initial conditions.

Chaotic solutions still exhibit some facets of order. Additional clusters of each species

arise via patch splitting, which has been shown to be a mechanism for the development of

the spatiotemporal chaos. Once generated, these clusters propagate according to the RPS

relationships, with clusters of a species chasing clusters of its victim species. Furthermore,

in at least some cases, the chaos is only transient. Coarsening occurs when a cluster is sur-

rounded by controlling clusters and is subsequently eliminated from the system. In these

cases, spatial heterogeneity can ultimately be lost, leading to a spatially-homogeneous

heteroclinic cycle (Chapter 8).

Ordered states on two-dimensional domains generally contain spirals or fluid single-

species patches chasing patches of their victim species. In particular, spirals are very

prevalent when interspecies competition is strong. All ordered states in one and two
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dimensions that have been found involve a large degree of self-segregation of the species

(Chapter 10).

Although the parameters of the PDE systems were chosen to be in line with experi-

mental ecosystems consisting of variants of E. coli, not all of the spatiotemporal patterns

found in solutions to the two-dimensional PDE system have been observed experimen-

tally. In particular, neither chaos nor spiral patterns have been reported in the ecological

literature. This could be for a number of reasons:

(1) The deterministic models used here do not account for stochastic effects. The

spiral solutions described here, however, are quite robust to additive noise (and

chaotic solutions subjected to noise are generally still chaotic), so it is unlikely

that this is a significant factor.

(2) The species involved in an ecosystem generally do not have identical properties,

so a symmetric system of PDEs is unrealistic to some extent. While this is true,

spirals and chaos can still occur when the symmetry of the system is broken

(Chapter 11).

(3) The model only permits purely cyclic interspecies competition (i.e., some sources

of competition are neglected). In a physical ecosystem, all species generally

compete with each other to some extent. It could be argued that neglecting

these small competition terms could lead to substantial qualitative differences in

the dynamics. It turns out, however, that both chaos and spiral solutions are

readily found in models that do consider these extra terms (see, e.g., [37]).

(4) It is difficult to see such detailed spatial patterns experimentally. For example,

in the static plate experiment discussed in [3], the dominant species at various
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spatial locations, rather than the relative concentrations of all the species, was

determined. Thus, chaotic dynamics could not possibly be observed. Moreover,

experiments may not be run long enough to see clear steady-state behavior. It

should also be noted that the main goals of the ecological literature do not usually

include pattern recognition.

(5) The strength of interspecies competition or initial conditions in experiments may

not be conducive to these behaviors.

Nevertheless, many reported behaviors are captured by the model, including single-species

patches chasing other patches, approaches to spatial homogeneity, cycles of dominance in

spatially-homogeneous ecosystems, and speeds of propagation (including positional ad-

vantages). The model also predicts that the controlling species of an ostensibly dominant

species in an asymmetric system is often the true overall dominant species, as observed

in systems of E. coli [58] (Chapter 11).

The predominant feature of three- and four-species models with an exceptionally com-

petitive (or uncompetitive) species is the prevalence of partial alliances (two-species al-

liances for three-species systems and three-species alliances for four-species systems) that

exclude the most vulnerable species. These partial alliances transition to full coexistence

when the system parameters are such that the most vulnerable species is strong enough to

coexist with the others. The transition is via a transcritical bifurcation where the partial

alliances lose stability to the appropriate coexistence state.

The exceptional species regime was studied in the context of the invasion problem,

where a partial alliance displaces other (generally unstable) states such as single-species

states. When the partial alliance states are unstable, the stable coexistence state forms
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and displaces all unstable states (though perhaps not directly). Speeds associated with

these displacements were computed and shown to agree with speeds expected for pulled

fronts.

In many instances, the coexistence state does not directly displace other states; in-

stead, a complex intermediate region forms between the advancing and retreating states.

For three-species systems, the displacement is characterized by ripples of individual species

being drawn out of the coexistence mixture. In this case, the solution is a non-monotone

rigidly-propagating traveling wave. For four-species systems, there is also a complex in-

terface between the advancing and retreating states, but in this case, intermediate buffer

states can form. When this occurs, there may not be a traveling wave; rather, the buffer

state will continually expand due to a mismatch between the speed of its leading edge

and its trailing edge.

Solutions of the three- and four-species models in the regime where all species are

strong competitors show very different behaviors. For the three-species model, the be-

havior is dominated by complex (possibly chaotic) dynamics (Chapters 7 - 10), whereas

for the four-species model, the behavior is dominated by stable alliances of noncompeting

species (see [20] and Section 6.1.3). In contrast, solution behaviors in the exceptional

species regime show unity between the two models.

Additionally, one-dimensional three-species systems in which a species is exception-

ally mobile can have a variety of types of solutions. Chaos can occur, as can steady-state

patch splitting and asymmetric traveling waves. In general, as the exceptional diffusivity

decreases from 1, the dynamics of the system become more complicated (Chapter 16).
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In two dimensions with an initial disc of the coexistence state surrounded by uninhab-

ited space, the presence of an exceptionally mobile species leads a spatially-homogeneous

heteroclinic cycle. On the other hand, the presence of an exceptionally competitive or

uncompetitive species often leads to a spatially-homogeneous heteroclinic cycle, but it

can, in some parameter regimes, lead to a persistent spiral pattern (Chapter 17).
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APPENDIX A

Stability of Coexistence State of Three-Species System

Using the relationships (3.11), the Jacobian matrix of System (3.7) evaluated at the

point (u∗, v∗, w∗) simplifies to

(A.1) J =


−u∗ −αu∗ 0

0 −v∗ −βv∗

−γw∗ 0 −w∗

 .

The characteristic polynomial of J is

(A.2) P (λ) = −(λ3 + (u∗ + v∗ +w∗ − 1)λ2 + (u∗v∗ + u∗w∗ + v∗w∗)λ+ (1− αβγ)u∗v∗w∗,

which has a factor of (λ+ 1) and can thus be rewritten as

(A.3) P (λ) = −(λ+ 1)[λ2 + (u∗ + v∗ + w∗ − 1)λ+ (αβγ + 1)u∗v∗w∗].

The remaining two eigenvalues λ2 and λ3 (recall that one eigenvalue is λ1 = −1) can be

found via the quadratic formula to be

(A.4) λ2,3 =
1

2

(
1− u∗ − v∗ − w∗ ±

√
(u∗ + v∗ + w∗ − 1)2 − 4(αβγ + 1)u∗v∗w∗

)
.
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Since α, β, γ, u∗, v∗, w∗ > 0, it is clear that

√
(u∗ + v∗ + w∗ − 1)2 − 4(αβγ + 1)u∗v∗w∗ <

√
(u∗ + v∗ + w∗ − 1)2(A.5)

= |1− u∗ − v∗ − w∗|,

so that λ2 < 0 and λ3 < 0 if and only if u∗ + v∗ + w∗ > 1. Thus, the coexistence state is

stable if and only if

(A.6) u∗ + v∗ + w∗ > 1.
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APPENDIX B

Estimated Propagation Speeds of Pulled Fronts

Here, propagation speeds of pulled fronts are estimated via the method described in

Section 4.2.1. In these cases, all diffusivities are assumed to be 1, so that the diagonal

matrix D is just the identity matrix I.

B.1. Displacement of Unstable cuw State by cuvw

Let α < 1 and 1 < β < 1
1−α , so that the cuw state is physical, but unstable, and the

cuvw state is physical and stable. The Jacobian matrix of System (12.1) evaluated for the

cuw state is

(B.1) J =


−1 −α 0

0 1 + β(α− 1) 0

α(α− 1) 0 α− 1

 .

Thus, the matrix k2D + J has eigenvalues k2 − 1, k2 + 1 + β(α− 1), and k2 + α− 1. Of

these, only the eigenvalue k2 + 1 + β(α − 1) is always positive in the regime of interest.

Thus, Λ = k2 + 1 + β(α− 1) so that

s(k) =
Λ

k
= k +

1 + β(α− 1)

k
(B.2)

=⇒ s′(k) = 1− 1 + β(α− 1)

k2
.
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Setting s′(k) = 0 and solving for k gives k =
√

1 + β(α− 1), so that the minimum speed

is smin = 2
√

1 + β(α− 1) (see Section 14.1). This is the speed that is expected for a

sufficiently steep interface, as discussed in Section 4.2.1.

B.2. Displacement of Unstable evwz State by euwz

Let α < 1 and 1 < β < 1
1−α+α2 , so that the evwz state is physical, but unstable, and

the euwz state is physical and stable. The Jacobian matrix of System (12.2) evaluated for

the evwz state is

(B.3) J =



(1− α)(1 + αβ) 0 0 0

0 β(1− α)− 1 β((1− α)β − 1) 0

0 0 α− 1 α(α− 1)

−α 0 0 −1


.

Thus, the matrix k2D+J has eigenvalues k2 +(1−α)(1+αβ), k2 +β(1−α)−1, k2 +α−1,

and k2 − 1. Of these, only the eigenvalue k2 + (1 − α)(1 + αβ) is always positive in the

regime of interest. Thus, Λ = k2 + (1− α)(1 + αβ) so that

(B.4) s(k) =
Λ

k
= k +

(1− α)(1 + αβ)

k
.

The minimum of s(k) occurs at k =
√

(1− α)(1 + αβ), which gives

smin = 2
√

(1− α)(1 + αβ) (see Section 15.1).
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B.3. Displacement of Unstable evz State by euwz

Let α < 1 and 1 < β < 1
1−α+α2 , so that the evz state is unstable and the euwz state is

physical and stable. The Jacobian matrix of System (12.2) evaluated for the evz state is

(B.5) J =



1− α 0 0 0

0 −1 −β 0

0 0 1− α 0

−α 0 0 −1


.

Thus, the matrix k2D+J has eigenvalues k2 +1−α (repeated) and k2−1 (also repeated).

In the regime of interest, k2 + 1− α is always positive. Thus, Λ = k2 + 1− α so that

(B.6) s(k) =
Λ

k
= k +

1− α
k

.

The minimum of s(k) occurs at k =
√

1− α, which gives

smin = 2
√

1− α (see Section 15.1).

B.4. Displacement of Unstable euw State

Let β < 1, so that the euw state is unstable. The Jacobian matrix of System (12.2)

evaluated for the duw state is

(B.7) J =



−1 −α 0 0

0 1− β 0 0

0 0 −1 −α

0 0 0 1− α


.
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Thus, the matrix k2D + J has eigenvalues k2 − 1 (repeated), k2 + 1− β, and k2 + 1− α.

In the regime of interest, k2 + 1− β is always positive. Thus, Λ = k2 + 1− β so that

(B.8) s(k) =
Λ

k
= k +

1− β
k

.

The minimum of s(k) occurs at k =
√

1− β, which gives

smin = 2
√

1− β, regardless of the displacing state (e.g., euvw or evz; see Section 15.1).
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