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ABSTRACT 

 

Data Centric Design for Microstructural Materials Systems 

 

Akshay Iyer  

 
Materials science has been central to human advancement since time immemorial. There has 

always been curiosity around studying the processes required to extract materials, examine their 

structure, and ultimately tailor their properties to meet human needs.  Over the last few centuries, 

the ability to tailor material properties was driven by design rules identified via experimentation, 

theoretical analysis, and more recently computational capabilities. It is only over the last decade 

that we have realized the immense potential of data driven materials discovery. This dissertation 

further examines this new paradigm of material discovery through the lens of design engineering. 

We show that the decision made during material design process – design representation, design 

evaluation and design synthesis are informed by the process-structure-property knowledge 

contained in material databases. Through a variety of advanced material systems, we seek to 

address some challenges arising at the intersection of design engineering and material science.  

We investigate the design representation challenges arising in microstructure design. Spectral 

Density Function (SDF), a frequency domain microstructure approach is the focus of our study. 

We present a computational microstructure design framework for Organic Photovoltaic Cells 

(OPVC) using SDF and a novel structure-property simulation model. After identifying that there 

is a lack of microstructure representation and design methodologies for anisotropic 

microstructures, we demonstrate that SDF is capable of capturing the necessary information. Since 
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design requires reconstruction of microstructures, we present a novel methodology to reconstruct 

isotropic and anisotropic microstructures. Our method is also computationally efficient than the 

existing ones. Finally, we show that this capability is useful for designing the active layer of 

OPVCs that outperform their isotropic contemporaries. 

The ability to design microstructures is useful for a wide variety of material systems, including 

polymer nanocomposites. In addition to the microstructure, the choice of constituents (polymer, 

filler and the filler’s surface modification) have a significant influence on behavior of 

nanocomposites. Consequently, we cast the nanocomposite design as a mixed variable, 

multicriteria optimization problem and leverage Latent Variable Gaussian Processes (LVGP) and 

Bayesian Optimization (BO) to identify Pareto optimal candidates for electric insulation. This 

design methodology involves usage of experimental datasets for calibrating physics models, 

training property prediction models as well identifying the bounds for design variables. 

The material properties are seldom determined completely by the composition. One such 

example is the metal insulator transition (MIT) compounds which display abrupt changes in their 

resistivity. To make them viable as next generation microelectronic devices, there is a growing 

interest in identifying compositions that simultaneously induce a large bandgap and high stability. 

We show that this combinatorial multicriteria optimization can be solved efficiently using LVGP 

and BO. LVGP allows us the circumvent the conventional feature engineering stage of design 

process which is extremely challenging for MIT due to limited understanding of the underlying 

physics. 

Although qualitative variables encountered in nanocomposite and MIT design have few levels, 

some material systems may involve high dimensional qualitative variables i.e., with many levels. 
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This scenario poses a significant increase in computational cost of initiating BO since each level 

of every qualitative variable must be observed at least once for its latent variables to be estimated 

by LVGP. To this end, we develop a descriptor aided BO methodology that allows us to initiate 

BO with a small dataset (~O(1)) and parsimoniously predict latent variables for unobserved levels. 

The method is inspired by the belief that effect of qualitative variables is described by underlying 

numerical descriptors. Through a variety of examples, we outline the efficacy of our method in 

tackling several scenarios of partial and imperfect descriptor knowledge encountered in real world 

applications. 

While the critical role of microstructure in material design is acknowledged in the research 

community, the computational Microstructure Characterization and Reconstruction techniques are 

not easily accessible. To this end, we have developed eight webtools with friendly graphical user 

interface in NanoMine to allow users to analyze their microstructural images with only a few clicks 

of the button.  

Through a variety of material systems, this thesis exemplifies the strong confluence of material 

science with design engineering as outlined in the data centric design framework. With ever 

increasing focus on large scale data collection and analysis, we believe this framework serves as a 

guide to researchers for identifying critical tasks vis-à-vis data collection, method selection and 

method development required in the materials design process. 
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1 Research Motivation and Objectives 

1.1 Data Centric Framework for Material Design 

Design Engineering can be described as an amalgamation of Design Representation, Design 

Evaluation and Design Synthesis. Design Representation encompasses methods that characterize 

the control factors i.e., the variables that influence system behavior. Design Evaluation entails 

methodology to evaluate system response from its representation. Both are heavily dependent on 

the system being studied. The knowledge gained from these tasks is utilized in the final step of 

design process - Design Synthesis. It involves navigating the design space to identify optimal 

designs. While significant developments have taken place in design engineering over the last 

century, recent interest in application of these methods for advanced materials development reveals 

new challenges.  

For most of 20th century, material science research and development were performed through 

Edisonian “trial and error” approach, which is time consuming, expensive, and often delayed the 

deployment of emerging materials in commercial applications.  To bring about changes in the way 

we design materials, there is a need to shift the focus of material science research from simply 

being an explanation of observed phenomena to development of predictive models that identify 

the underlying factors controlling the phenomena and tuning them to meet the desired objectives 

for industrial applications. This has been the theme of Material Genome Initiative (MGI) [1], which 

has revolutionized the way advanced material systems are designed with targeted performance. 

MGI strives at elucidating the relationship between Processing-Structure-Property (PSP) [2] 

paradigms for material design. It requires development of new methods within each of the three 
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domains and protocols to manage information flow across domains. A holistic design strategy for 

bi-directional traversal of PSP relations requires us to address certain key issues – cost effective 

processing techniques, microstructure representation and reconstruction, dimensionality reduction 

and tractable optimization techniques. Recently, the emergence of open-source material databases 

[3-7] and gaining popularity of machine learning techniques is accelerating our ability to address 

some of these challenges using a data-centric approach. NanoMine [3, 4], a nanocomposite 

material database with in-built data curation, exploration and analysis capabilities, represents this 

approach in the field of polymer nanocomposites. It captures the physical properties reported in 

the literature and from individual research labs including microstructure, processing conditions, 

and material properties. Ontology-enabled knowledge graph framework helps NanoMine establish 

relationship between those properties. A collection of module tools for microstructure 

characterization & reconstruction and simulation software to model bulk nanocomposite material 

response augments knowledge generated by experimental data. Integrating these different sources 

of knowledge is critical for material design. However, generating experimental or simulated data 

for the vast design space defined by the almost infinite combinations of constituents, 

microstructure morphology, and processing conditions is impractical. This signifies the need for 

data-centric methodologies that can effectively interrogate existing data and interpolate between 

them to find new high performing materials. 

To this end, we present a data centric framework for material design (Figure 1-1) where each step 

of the design process is guided by knowledge stored in databases. The choice of design 

representation is dependent on domain knowledge about factors known to influence material 

property. For example, bandgap of inorganic compounds is entirely determined by its composition 
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and thus composition is itself a suitable representation. On the other, electrical properties of 

polymer nanocomposites depends on composition as well as microstructure and necessitates the 

use of low dimensional microstructure representation methods such as Correlation Functions, 

Spectral Density Function (SDF), Physical Descriptors etc. Evaluating material property from its 

representation is heavily reliant on length & time scales at which the underlying phenomena takes 

place. For instance, Density Functional Theory calculations capture atomic level properties such 

as band gap, Molecular Dynamics simulations model an ensemble of molecules while finite 

element analysis is suitable for phenomena occurring at higher length scales. Each of these 

methods require calibration of embedded parameters & validation of property predictions, which 

is accomplished through experimental data contained in the database. 

 

Figure 1-1: Data Centric Framework for Materials Design 
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Design Synthesis involves optimizing material properties to meet the requirements for specific 

applications. The choice of optimization method depends on nature of design variables – whether 

there are qualitative & quantitative design variables, presence of uncertainty/noise in property 

evaluations and its computational cost. To account for manufacturing feasibility and consistency 

with fundamental laws governing material properties, constraints and bounds are imposed during 

optimization to ensure feasible solutions.  

1.2 Challenges in Data Centric Design 

While existing methods have been successfully applied for some material systems, extending 

these techniques for wider applicability is fraught with challenges. We underline some these 

challenges below and categorize them under three outstanding themes in field of design 

engineering. 

• Design Representation: Due to the high dimensionality of material microstructure, design 

(microstructure) representation is critical to ensure tractable design strategies. A good 

microstructure representation will (a) provide significant dimension reduction, (b) embody 

salient morphological features and (c) provide a computationally efficient reconstruction 

procedure. Given the vast diversity of microstructures observed in engineered products, 

developing an MCR technique that is universally applicable is challenging. Existing 

methods such as Correlation Functions, Physical Descriptors, SDF etc. are well suited for 

some systems while not for other, as examined in Bostanabad et al. [8]. However, we notice 

that there’s a lack of methods suitable for representing anisotropic microstructures. 

Anisotropy is highly desirable in materials whose performance depends on an underlying 

transport phenomenon such as Thermoelectric devices, batteries, water filtration 
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membranes etc. Thus, the capability to characterize and reconstruct anisotropic 

microstructures is of primary interest.  Characterization and reconstruction of multiphase 

microstructures represents another longstanding challenge in this domain. Baniassadi et al. 

[9] employed two point correlations to study relative distributions of phase and developed 

a Monte Carlo method for reconstruction. The computational expense of this reconstruction 

procedure and the inability of correlation functions to characterize complex 

microstructures displaying heterogeneity and anisotropy calls for the development of more 

robust methods. 

• Design Evaluation: Developing design evaluation techniques largely depends on the 

properties of interest as well as the time & length scale at which these properties can be 

measured. It is highly desirable to have computationally efficient tools  since the iterative 

nature of optimization algorithms requires several structure-property evaluations. 

Recently, machine learning techniques have become popular surrogates for physics driven 

structure-property models. But the requirement of sufficient amounts of training data and 

their inability to extrapolate places higher emphasis for computational efficient physics-

based models. For Organic Photovoltaics, the development of Structure-Property 

relationship is challenging due to the intermingling of several phenomena and has 

prohibited design of active layer microstructure. Accounting for uncertainties, emanating 

from various sources such as variations in design variables, lack of data, model inadequacy, 

stochasticity is material systems etc., represents another challenge in this domain.  

• Design Synthesis: Design Synthesis refers to the process of exploring the design space and 

identifying the optimum i.e., optimization. Given the highly non-linear behavior of material 
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properties and the computationally expensive simulation associated with property 

evaluation, optimization algorithms suitable to tackle these challenges are desirable. 

Depending on the nature of design variables, materials design can be cast as continuous 

variables, mixed variable or discrete variable problems. Existing methodologies are well 

suited for continuous variable problems and require significant feature engineering for 

discrete variables. Feature engineering for property prediction is challenging since 

knowledge of all influential factors is often unknown. Thus, methods to tackle discrete & 

mixed variable inputs with minimal feature engineering are sought. In addition to meeting 

performance objectives, functional materials design is multiobjective in order to satisfy 

auxiliary criterion such as manufacturing feasibility, cost, durability etc.  

1.3 Research Tasks and Accomplishments 

The objectives of this dissertation are to address some of the above-mentioned challenges in 

data centric material design highlighted in the previous section. In particular, we focus on the 

following task: 

1. Isotropic and anisotropic microstructure Design using Spectral Density Function: 

Inspired by the recent success of SDF, we seek to extend and enhance its capabilities. First, 

we examine its applicability for design of active layer morphology in Organic 

Photovoltaics. Complex interactions of several phenomena coupled with the lack of 

understanding regarding the influence of fabrication conditions and nanostructure 

morphology have been major barriers to realizing higher PCE. To this end, we propose a 

SDF based computational microstructure design framework for designing the active layer 

of P3HT:PCBM based OPVCs conforming to the bulk heterojunction (BHJ) architecture.  
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Previous efforts on microstructure mediated design using SDF mostly assume isotropy, 

which is not ideal for applications where material properties along specific directions must 

be tailored to meet performance requirements, such as those associated with transport 

phenomena. We propose an anisotropic microstructure design strategy that leverages SDF 

for rapid reconstruction of high resolution, two phase, isotropic or anisotropic 

microstructures in 2D and 3D. We demonstrate that SDF microstructure representation 

provides an intuitive method for quantifying anisotropy through a dimensionless scalar 

variable termed anisotropy index. 

2. Concurrent composition and microstructure design: With an unprecedented 

combination of mechanical and electrical properties, polymer nanocomposites have the 

potential to be widely used across multiple industries. Tailoring nanocomposites to meet 

application specific requirements remains a challenging task, owing to the vast, mixed-

variable design space that includes composition (i.e., choice of polymer, nanoparticle, and 

surface modification) and microstructures (i.e., dispersion and geometric arrangement of 

particles) of the nanocomposite material. Modeling properties of interphase, the region 

surrounding a nanoparticle, introduces additional complexity to the design process and 

requires computationally expensive simulations. As a result, previous attempts at designing 

polymer nanocomposites have focused on finding the optimal microstructure for only a 

fixed combination of constituents. To this end, we propose a data centric design framework 

to concurrently identify optimal composition and microstructure using mixed-variable 

Bayesian Optimization. This framework integrates experimental data with state-of-the-art 
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techniques in interphase modeling, microstructure characterization & reconstructions and 

Latent Variable Gaussian Process.  

3. Multicriteria optimization for combinatorial composition design: Electronic materials 

exhibiting phase transitions between metastable states (e.g., metal-insulator transition 

materials with abrupt electrical resistivity transformations) are challenging to decode. For 

these materials, conventional machine learning methods display limited predictive 

capability due to data scarcity and the absence of features impeding model training. We 

demonstrate a discovery strategy based on multi-objective Bayesian optimization to 

directly circumvent these bottlenecks by utilizing Latent Variable Gaussian processes 

combined with high-fidelity electronic structure calculations for validation in the 

chalcogenide lacunar spinel family. We directly and simultaneously learn phase stability 

and band gap tunability from chemical composition alone to efficiently discover all 

superior compositions on the design Pareto front. Previously unidentified electronic 

transitions also emerge from our featureless adaptive optimization engine.  

4. Descriptor assisted Bayesian Optimization for materials design: While Task 2 and 3 

exemplify the efficacy of LVGP based Bayesian Optimization for mixed variable 

problems, qualitative input(s) with a large number of levels pose unique challenges. First, 

in order to estimate latent variable for each level, the training dataset for LVGP must 

contain at least one observation for each level of every qualitative variable. This constraint 

consequently leads to larger training datasets (i.e., high computational cost) to initialize 

Bayesian Optimization. Second, the number of latent variables to be estimated in the LVGP 

model increases linearly with number of levels of qualitative input. This consequently 
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increases the computational cost of model fitting. To overcome these challenges, we 

propose descriptor augmented LVGP that utilizes material descriptors to (a) identify a 

subset of levels to be included in the training dataset used to initialize Bayesian 

optimization, (b) predict latent variables for unobserved levels and (c) explore the feasible 

levels in future iterations. Through a variety of examples, we showcase the ability of 

descriptor augmented LVGP to overcome the pitfalls of partial and imperfect descriptor 

knowledge encountered in materials design. 

5. User friendly microstructure analysis tools for Material Science Community: To 

provide quick & easy access to well-known microstructure analysis methods, we have 

implemented eight user-friendly webtools in NanoMine – an open source data repository 

for nanocomposites community [4]. The webtools perform all computations in the 

NanoMine server and send an email notification to users after their submissions have been 

processed. Additionally, all webtools support multiple image file formats and give users 

the freedom to analyze a single or set of images simultaneously. 

1.4 Dissertation Outline 

The outline of this dissertation and the interconnected nature of research tasks is shown in 

Figure 1-2. After laying out the challenges and research objectives in Chapter 1, Chapter 2 will 

provide technical background on essential concepts and methodologies utilized in the following 

chapters. Then, each research task is discussed separately in Chapters 3 through 6. A concise 

description of MCR webtools developed for NanoMine is provided in Appendix 9.1. The 

dissertation concludes in Chapter 7, first with a list of contributions (7.1) and then some future 

research themes identified by the author (7.2). Brief description of simulation methods used for 

https://materialsmine.org/nm#/
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material property evaluation is provided in Appendix, along with copies of journal/news 

highlighting the work accomplished in this dissertation. 

 

Figure 1-2: Outline of the dissertation 
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2 Technical Background 

This chapter provides the technical background associated with the research tasks outlined in 

the dissertation.  

2.1 Computational Microstructure Characterization and Reconstruction 

As a material’s morphology significantly influences its properties [10, 11], an essential task in 

creation of PSP linkages is analyzing the microstructure(s). The analysis is quantitative, and its 

outcome is a deep understanding of how processing conditions influence the formation of 

microstructure and how the microstructure in turn affects the properties. To analyze 

microstructures and extract useful morphological features, the following three-step strategy is 

recommended.  

i. Image binarization: Binarization is the process of converting a grayscale image to a 

black and white image (assuming there are only two phases – filler and matrix) by 

removing noise and consequently simplifying the analysis. The most widely used image 

binarization methods are Otsu’s method [12] and the Niblack algorithm [13]. 

ii. Microstructure Characterization: Several methods have been developed that can 

convert multi-dimensional microstructure morphology recorded in images into a set of 

functions (aka features/descriptors/predictors) that encode significant morphological 

details i.e., characterize the microstructure. 

iii. Microstructure Reconstruction: After characterization, one can reconstruct a 

statistically equivalent microstructure(s) [14] which embodies a prescribed set of features 

(obtained by image characterization or provided by user) and can be used as a 
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representative volume element (RVE) for simulating material behavior via finite element 

analysis (which creates the structure-property linkage) or serve as a training dataset for 

machine learning algorithms [15, 16].  

Microstructure Characterization and Reconstruction (MCR) approaches [17] for non-

deterministic systems are based on spatial correlation functions [18-20], descriptor-based methods 

[21, 22] and machine learning techniques [16, 23, 24]. Some representative methods among these 

are summarized in Figure 2-1. Among the existing methods, Physical Descriptors [21, 22] and 

Spectral Density function [10, 25, 26] have been widely adopted for design of material systems 

due to their physically meaningful characterization, relative ease of reconstruction and low 

dimensional representation. The descriptor-based methodology aims to identify a set of 

uncorrelated features i.e., descriptors that represent salient morphological features. Reconstruction 

is accomplished through a hierarchical strategy to achieve microstructures with desired 

descriptors. Xu et.al. [22] used this method to design polymer nanocomposites for vehicle tire 

application. They used four descriptors for microstructure representation that also served as design 

variables – volume fraction, number of clusters, average elongation ratio and average nearest 

neighbor distance. Multiobjective Genetic algorithm was used to optimize viscoelastic properties, 

which resulted in identification of Pareto Front. Although descriptor based MCR provides greater 

control over morphological features, it is computationally expensive for reconstruction of high-

resolution structures. Spectral Density Function (SDF) [10, 27-31], a frequency domain 

microstructure representation, has received a lot of attention for its capability to provide low 

dimensional, physically meaningful description of quasi-random material systems. For isotropic 

materials, SDF is one dimensional function of spatial frequency and represents spatial correlations 



30 

 

in the frequency domain. Although information contained in SDF is equivalent to two-point 

autocorrelation function, Yu et al. [27] have shown that SDF provides a more convenient 

representation for designing microstructures. However, all the above-mentioned studies relate to 

isotropic material systems and there are no instances of design of anisotropic microstructures to 

the best of our knowledge. This presents a major challenge since anisotropy is highly desired in 

some material systems, especially where the performance is a manifestation of an underlying 

transport phenomenon such as Organic Photovoltaic Cells (OPVCs). 

 

Figure 2-1: Representative microstructure characterization and reconstruction techniques 
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With the growing popularity of machine learning in the scientific community, several methods 

from this field have found ingenious new applications in MCR to overcome the assumptions (such 

as isotropy, stationarity) made in analytical methods.  We categorize the application of machine 

learning methods for MCR in two categories: (a) reconstruction of a microstructure that’s 

stochastically equivalent to a target and, (b) reconstruction of microstructures that mimic the  

distribution of a dataset - commonly referred to as generative modelling. The former category 

includes supervised learning [23, 32, 33], transfer learning [34, 35] and texture synthesis [36, 37] 

approaches. While these methods are extremely flexible and accurate, they do not provide an 

interpretable microstructure characterization and are not useful for microstructure design since 

they require a target microstructure. The latter category is largely dominated by generative models 

such as Variational autoencoders [38] and Generative Adversarial Networks (GAN) [39]. These 

methods are an attractive proposition for microstructure design tasks since they can be used to 

generate previously unseen microstructure and thus explore the space of feasible microstructures. 

Recent advancements in this field has seen the development of new methods that allow 

incorporation of processing parameters in the reconstruction process by conditioning the generator 

network of GANs [40, 41], thus addressing the processing-to-structure mapping that has been 

elusive in previous MCR models. However, the need of a large dataset to reliably train these 

generative models, which often include convolutional neural networks with several thousand 

parameters, remains a barrier to their universal adoption in microstructural design. 

2.2 Spectral Density Function 

The Spectral Density Function (SDF) (aka, Fourier power spectrum) is a low-dimensional 

representation of microstructure in the frequency domain where different frequencies represent 
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real space features at different length scales. It can be evaluated simply as the squared magnitude 

of the Fourier transform (FT) of a binary microstructure image 𝓜: 

 𝜌(𝒌) = |ℱ{ℳ}|2 (2-1) 

where ℱ[. ] denotes the Fourier transform operator and 𝒌 is the frequency vector. Figure 2-2 depicts 

three isotropic, quasi-random channel-type nanostructures with ring shaped SDF. Channel-type 

nanostructures originate from bottom-up processes such as phase separation [42] or thin film 

wrinkling [43]. Figure 2-2(a) contains a single dominant frequency i.e., a single ring and manifests 

in channels with uniform width and connectivity. The channel width is inversely proportional to 

ring radius. Figure 2-2 (b,c) have additional rings at lower frequencies leading to wider channels 

with variations in channel width and increased disorder in nanostructure. Note that the type of 

nanostructure (and the form of SDF) is dependent on fabrication methods and materials used. 

 

Figure 2-2: Three quasi-random nanostructures and their corresponding SDF shown in inset. 

For isotropic microstructure, radial averaging can be used to convert vector k to a scalar (like 

radial averaging of position vector for correlation functions). According to the Winner-Khinchin 

Theorem [44], the inverse FT of SDF is the two-point autocorrelation function.  Previous research 

suggests that SDF is sufficient to represent some complex heterogeneous microstructures with 
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irregular geometries.  Studies have also shown that SDF is a physics-aware MCR technique that 

can map the SDF parameters to properties which largely depend on the spatial correlations of 

microstructures, for example optical properties [45].  

Reconstructing microstructures with specified SDF can be accomplished in two distinct ways. 

Chen et.al [46] extended the Yeong-Torquato simulated annealing approach, first proposed for 

reconstruction using correlation functions, to construct disordered hyperuniform materials. Since 

this method uses pixel swapping strategy, it is computationally intensive. An alternative 

reconstruction approach assumes microstructures are realizations of a gaussian random field and 

aims to construct the field. One popular method for accomplishing this is Cahn’s Scheme [47], an 

analytical approach for generating random fields with pre-specified SDF through 

 𝑌(𝒓) = (
2

𝑁
)

1
2⁄

∑ cos(𝑘𝑖�̂�𝑖 . 𝒓 + 𝜑𝑖)

𝑁

𝑖=1

, (2-2) 

where 𝜑𝑖 and �̂�𝑖 are uniformly distributed on, respectively, [0,2𝜋] and a unit circle. 𝑘𝑖 is a random 

variable distributed according to 𝑃(𝑘) = 𝜌(𝑘)𝑘. 𝑁, the number of terms used in summation, is set 

to a large value (e.g., 10000) to ensure sufficient accuracy. The generated random field 𝑌(𝒓) is 

then level-cut to obtain binary microstructures with desired volume fraction. 

 

2.3 Latent Variable Gaussian Process 

The standard GP methods were developed under the premise that all input variables are 

quantitative, which does not hold in many real engineering applications. We recently proposed a 

Latent Variable Gaussian processes (LVGP) [48] modeling method that maps the levels of the 

qualitative factor(s) to a set of numerical values for some underlying latent unobservable 
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quantitative variable(s) as illustrated in Figure 2-3. The method is based on the belief that any 

qualitative factor must correspond to some underlying high-dimensional quantitative physical 

attributes that fully characterize that factor. Estimating the numerical latent variable values for the 

levels of the factor is essentially finding a mapping from the underlying high-dimensional space 

to the latent space, although we do not construct the mapping explicitly. The latent variables do 

not have explicit physical meanings, but they provide an inherent structure for the levels of the 

factor(s), which leads to substantial insight into the effects of the qualitative factors. For 

clarification, the latent variables are only used internally inside LVGP models. When LVGP models 

are used for predictions, they still take mixed-variable inputs in the original mixed-variable input 

spaces. 

 

Figure 2-3: Illustration of high-dimensional underlying space of an arbitrary qualitative factor and 

the mapped latent space. The factor has levels 𝑙1, 𝑙2, and 𝑙3, and is fully characterized by physical 

attributes 𝑣1, 𝑣2,…. The mapping 𝑔: 𝒗 → 𝒛 is implicitly constructed and found during the 

estimation of the latent variable values {𝒛(𝑙1), 𝒛(𝑙2), 𝒛(𝑙3)}.  

A GP model (𝑌) can be represented as 

 𝑦(⋅) = 𝜇 + 𝐺(⋅), 
(2-3) 
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where 𝜇 is the constant prior mean, and 𝐺(∙) is a zero-mean GP with covariance function 𝑘(∙,∙) =

𝜎2𝑟(∙,∙ |𝝋). 𝜎2 is the prior variance of the GP, and 𝑟(∙,∙ |𝝋) is the correlation function 

parameterized with 𝝋. In the LVGP method, the 𝑚 levels of the qualitative variable 𝑡𝑖 are mapped 

to 𝑚𝑖 latent numerical vectors {𝒛(𝑖)(𝑙1
(𝑖)

), … , 𝒛(𝑖)(𝑙𝑚𝑖

(𝑖)
)} of a latent variable 𝒛(𝑖) ∈ ℝ𝑑, where 𝑑 is 

the dimensionality of 𝒛(𝑖). A modeler is free to choose the value of 𝑑 as a modeling parameter, 

although setting 𝑑 = 2 has been shown to be advisable for most problems. The original mixed-

type input variables 𝒘 = (𝒙, 𝒕) are thus mapped to purely continuous variables 

(𝒙, 𝒛(1)(𝑡1), … , 𝒛(𝑞)(𝑡𝑞)). A correlation function can be subsequently constructed as 

 

𝑟(𝒘, 𝒘′|𝝋, 𝒁) = 𝑒𝑥𝑝 {− ∑ 𝜑𝑖(𝑥𝑖 − 𝑥𝑖
′ )

2

𝑝

𝑖=1

− ∑‖𝒛(𝑖)(𝑡𝑖) − 𝒛(𝑖)(𝑡𝑖
′)‖

2

2

𝑞

𝑖=1

}, (2-4) 

where 𝒁 is the collection of all the latent parameters denoted by 

{𝒛(1)(𝑙1
(1)

), … , 𝒛(1)(𝑙𝑚1

(1)
), 𝒛(2)(𝑙1

(2)
), … , 𝒛(𝑞) (𝑙𝑚𝑞

(𝑞)
)}. With this correlation formulation, 

hyperparameters 𝝋, 𝒁, 𝜇 & 𝜎2 can be found by maximizing the log-likelihood function (ℒ): 

 
ℒ(𝜇, 𝜎2, 𝝋, 𝒁) = −

𝑛

2
ln(2𝜋𝜎2) −

1

2
ln|𝑟(𝝋, 𝒁)| −

1

2𝜎2
(𝒚 − 𝜇𝟏)𝑇𝑟−1(𝝋, 𝒁)(𝒚 − 𝜇𝟏), (2-5) 

where 𝑛 is the dataset size, 1 is 𝑛-by-1 vector of ones, Y is a n-by-1 vector of observed responses. 

Under this formulation of likelihood function, the closed form solution of 𝜇 and 𝜎2 can be found 

as a function of correlation matrix 𝑟 which is subsequently a function of 𝝋, 𝒁 per Eq. (2-4): 

 �̂� = (𝟏𝑇𝑟−1𝟏)−1𝟏𝑇𝑟−1𝒚, (2-6) 

�̂�2 =
1

𝑛
(𝒚 − �̂�𝟏)𝑇𝑟−1(𝒚 − �̂�𝟏), (2-7) 
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Plugging the above equations in Eq. (2-5) results in a log-likelihood function which is solely a 

function of 𝝋, 𝒁. Subsequently, the optimization task devolves to identifying the optimum values 

of 𝝋, 𝒁. 

 After the optimal values of 𝝋, 𝒁 have been estimated (referred to as maximum likelihood 

estimates), the response �̂� at any new input 𝒘∗ can be found as: 

 
�̂�(𝒘∗) = �̂� + 𝑟(𝒘∗, 𝒘)𝑟−1(𝒘, 𝒘)(𝒚 − �̂�𝟏), (2-8) 

where 𝑟(𝒘∗, 𝒘) is a matrix of pairwise correlations between 𝒘∗ and each of the 𝑛 observations in 

training dataset. Additionally, it is desirable to quantify the uncertainty associated with the 

prediction in Eq. (2-8) via predictive variance: 

 
�̂�2(𝒘∗) = �̂�2{𝑟(𝒘∗, 𝒘∗) − 𝑟(𝒘∗, 𝒘)𝑟−1(𝒘, 𝒘)𝑟(𝒘, 𝒘∗)}, (2-9) 

Unlike most supervised machine learning methods, LVGP does not require hand-crafted 

features to describe qualitative variables. Rather, it learns the underlying “latent variables” (𝒁) 

influencing response (𝒚) by minimizing error in its prediction. Alleviating the need of feature 

engineering makes LVGP attractive for materials design applications. 

2.4 Bayesian Optimization 

Optimization is pervasive in academic and industrial settings since a wide variety of tasks can 

be cast as optimization problems. As pointed out in Figure 1, optimization is an eminent topic of 

research within design synthesis since all endeavors in engineering design strive to identify the 

optimal combination of design variables 𝒘∗ out of all possible combinations contained in design 

space 𝛹 such that it minimizes a predefined yet unknown objective function 𝑓 such that: 



37 

 

𝒘∗ = arg min
𝑤∈𝛹

𝑓(𝒘), (2-10) 

Among the many global optimization methods reported in literature, BO stands out due to its 

capability of locating the global optima for highly non-linear functions within tens of objective 

function (i.e., material property) evaluations. BO accomplishes this by repeating these three steps 

(illustrated in Figure 2-4)-  

 

Figure 2-4: Bayesian Optimization framework 

I. A machine learning model is trained on available data to predict material property (𝒚) of 

interest from the design variables 𝒘 = (𝑥1, . . 𝑥𝑝, 𝑡1, . . 𝑡𝑞) and supply uncertainty 

quantification over the design space. 

II. An acquisition function uses the prediction and associated uncertainty to determine the best 

design to evaluate next. The acquisition function aims for exploration, exploitation, or both 

of the design space. 

III. The design recommended by acquisition function is evaluated and added to the dataset.  
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This procedure is usually terminated after user-specified maximum iterations are completed. 

Gaussian Process modelling [49, 50] is a popular choice of ML model for BO due to its inherent 

ability for uncertainty quantification without incurring additional computational cost, although 

Random Forrest [51] and ensembles of Support Vector Machines [52] have also been used in the 

past. The acquisition function essentially gauges the benefit of evaluating a design by interrogating 

the ML model predictions and associated uncertainties. The acquisition function must decide 

between exploration and exploitation of design space, which may be contradictory goals. The best 

performing acquisition functions generally strike a balance between the two. Commonly used 

acquisition functions are probability of improvement (PI) [53] and expected improvement (EI) 

[54]: 

 
𝑃𝐼(𝒘∗) = 𝛷 (

𝜏 − �̂�(𝒘∗)

�̂�(𝒘∗)
), (2-11) 

𝐸𝐼(𝒘∗) = (𝜏 − �̂�(𝒘∗))𝛷 (
𝜏 − �̂�(𝒘∗)

�̂�(𝒘∗)
) + �̂�(𝒘∗)𝜙 (

𝜏 − �̂�(𝒘∗)

�̂�(𝒘∗)
), (2-12) 

where 𝜏 is minimum objective value observed so far, 𝛷(. ) and 𝜙(. ) are the cumulative density 

function and probability density function of the standard normal distribution, respectively. The 

review article by Shahriari et al. [55] provides detailed discussions about these and other 

acquisitions functions used in BO.  

Note that �̂� and �̂� are the predictive mean and variance at an unobserved design 𝒘∗and are 

obtained from a statistical model such as Gaussian Process (described in Eq. (2-8) & Eq. (2-9)), 

Random Forrest etc.  
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3 Isotropic and Anisotropic Microstructure Design using Spectral 

Density Function 

As noted in Chapter 2, the physics aware dimensionality reduction enabled by SDF has led to 

its adoption for microstructure design for a variety of material systems. However, all previous 

applications of SDF assume isotropy i.e., the salient microstructural features are identical across 

all directions. Consequently, the existing MCR capabilities of SDF fall short vis-à-vis anisotropic 

microstructures. Thus, there is a need to investigate the capabilities of SDF to characterize 

anisotropic microstructures and to develop a methodology for reconstruction and design. To this 

end, we seek to extend and enhance capabilities of SDF in this chapter. The challenge of designing 

high efficiency Organic Photovoltaics is used to demonstrate the efficacy of SDF based 

microstructure design. The major contributions discussed in this chapter are: 

• We implement SDF based microstructure design framework for the Organic Photovoltaics 

using a novel performance evaluation methodology to identify optimal, isotopic active 

layer.  

• Going beyond the traditional isotropic microstructure design formulations, we address the 

challenge of designing anisotropic microstructures in a computationally efficient manner. 

We develop a novel approach for fast microstructure reconstruction and quantify 

anisotropy to facilitate design of anisotropic microstructure. 

3.1 Organic Photovoltaics (OPVC)  

OPVCs are promising alternatives to traditional Silicon based solar cells due to several 

advantages – lightweight, flexibility, low production cost, short payback period [56, 57] etc. but, 
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their large-scale production and commercial usage has been plagued by problems of instability and 

batch to batch variability [58]. A typical OPVC shown in Figure 3-1 [59] consists of an active layer 

sandwiched between electrodes. Among the various electron donor/acceptor combinations 

investigated previously, phenyl-C61-Butyric-Acid-Methyl Ester (PCBM) interspersed with 

poly(3-hexylthiophene-2,5-diyl) (P3HT) has been the “best seller” [60]. There are four key 

processes taking place in the active layer during energy conversion process: (a) Exciton generation 

by light absorption; (b) exciton diffusion to donor:acceptor interface; (c) separation of charges 

from excitons to create electrons and holes and (d) movement of charges to respective electrodes. 

Owing to short mean free path of excitons [61], active layers conforming of Bulk Heterojunction 

(BHJ) architecture is key to ensure high efficiency. The morphology of BHJ, which is controlled 

by the processing method and related parameters, is crucial in deciding the performance of device 

[62, 63]. To optimize performance, one would like to maximize the donor:acceptor interfacial area 

(conversely, minimize the distance an exciton will need to travel) and ensure that the charges can 

reach their respective electrodes by traversing distance shorter than their mean free path. We 

leverage low dimensional microstructure representation enabled by SDF to optimize active layer 

morphology. 
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Figure 3-1: Schematic representation of Organic Photovoltaic cells and the energy conversion 

process. Magnified scene shows an exciton dissociating at the donor:acceptor interface, followed 

by charges migrating to respective electrodes. 

3.2 SDF based Microstructure Design Framework for OPVC Active layer 

Under the new paradigm of microstructure-sensitive material design [64, 65], materials are 

viewed as a complex structural systems that can be optimized for achieving superior properties 

(properties under consideration are subject to targeted application). Using OPVC active layer 

optimization as an example, we present here a holistic SDF based microstructure design 

framework (Figure 3-2) that can be employed for design of quasi-random nano- or microstructural 

systems based on structure-performance (S-P) relations [66]. 

The key idea of the proposed framework is to leverage SDF as the representation of OPVC 

microstructures, enabling direct and inverse S-P mappings. As shown in Figure 3-2, the framework 

is initiated by fabricating specimen of interest using a nanofabrication technique with processing 
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parameters choices based on empirical findings or literature. State-of-the-art imaging techniques 

are used to visualize the nanostructure in the available samples and the type (form) of SDF is 

identified. The main advantage of using SDF for quasi-random NMSs is that it can be easily 

parametrized and provides a more convenient representation for interpretation and design relative 

to other design methods [27]. Reconstruction is accomplished by level-cutting a Gaussian Random 

Field (GRF) governed by the required SDF. Thus, starting from a 2D XSTM/S image, SDF 

provides a reduced order microstructure representation (only three parameters required in this 

study) for creating statistically equivalent 3D microstructures which serve as Representative 

Volume Element (RVE) for performance evaluation.  

 

Figure 3-2: A framework for designing active layer nanostructure in bulk heterojunction OPVC 

via Spectral Density Function 
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To evaluate the performance of an RVE, we seek a model that accounts for structural features 

in addition to device physics and material properties. For OPVCs, the key performance parameter 

of interest is the Incident Photon to Converted Electron (IPCE) ratio. To evaluate IPCE 

computationally, a novel strategy based on device physics and nanostructure is developed here. 

This strategy explicitly states the influence of nanostructure on known physical phenomena and 

establishes the S-P relationship that forms the basis for performance optimization. However, before 

the optimization, creating a metamodel to replace the computationally expensive and time-

consuming S-P model is highly desirable. Metamodel, created by careful Design of Experiments 

(DOE) [67], is essentially a “black-box” that approximates the S-P simulations. Given the set of 

design variables and their bounds, DOE dictates the S-P simulations that must be performed to 

determine the corresponding value of objective function. A suitable machine learning model is 

chosen to interpolate between known values of response, forming a metamodel which can be 

queried at each iteration of the optimization. In this study, we use Optimal Latin Hypercube 

Sampling (OLHS) to create the metamodel based on the Kriging method, accelerating the search 

for the optimal design. 

Design optimization is performed with the pre-determined design variables obtained by 

parametrizing SDF along with the material composition. In this work, IPCE is chosen as the 

objective function with an aim of finding its maximum value and the corresponding SDF 

parameters (i.e., nanostructure). However, it should be noted that the optimum structure is limited 

to the same type of material system as the fabricated samples because the form of the SDF function 

used for optimization is determined based on the fabricated samples. In the following sections, we 

elaborate the procedure of implementing the proposed framework. 
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3.3 Structure-Performance Simulation Model 

Here, we present an equation to predict the Incident Photon to Converted Electron (IPCE) from 

a 3D active layer microstructure. Under the finite element scheme, the equation for estimating 

performance from the microstructure can start with counting the number of collected 

electrons/holes per unit time through a summation of contributions from each volume element 

(voxel) in the active layer as: 

 

𝑛(𝜆)

𝛥𝑡
= ∑ ( 

𝐼(𝜆)

ℎ 
c
𝜆

 𝑒−(t−z)𝛼(𝜆)∆𝑥∆y𝑃𝑒𝑥(𝜆)) ( 𝑒
−

𝑑
𝜉𝑒𝑥) (𝑃𝑠𝑒𝑝) (𝑒

−
𝑆𝐴
𝜉ℎ  𝑒

−
𝑆𝐶
𝜉𝑒   𝑃𝑐𝑜𝑙) , 

(3-1) 

The four parentheses in Eq. (3-1) represent the four steps illustrated in Figure 3-1: (i) light 

absorption (exciton creation); (ii) Exciton diffusion; (iii) charge separation; and (iv) charge 

diffusion & collection. Here, t is the thickness of the active layer; α(λ) is the absorption coefficient 

of active layer as function of the light wavelength, λ; P refers to probability for exciton creation 

(ex), for charge separation (sep), and for charge collection (col); d is the distance to the nearest 

interface from the location of the exciton creation; ξ the diffusion lengths of exciton (ex); of hole 

(h); and of electron (e); S are the lengths of the path to anode (A); and to cathode (C). In this 

equation, the recombination behaviors of the charges are simply assumed to follow exponential 

decay over the distance it moves. 

From previous study the value of ξₑ (diffusion length for electron) is found to be ~340 nm; the 

value of ξh (diffusion length for hole) is found to be ~90 nm [68]; the value of ξex (diffusion length 

for exciton) is found to be 5.4 ± 0.7 nm [69] and α(λ) (absorption coefficient) is measured and 

could be found in [70].  
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Among the variables in Eq. (3-1), the probability of exciton creation, 𝑃𝑒𝑥(λ), and the absorption 

coefficient, α(λ), could be related to each other through the following relationship: 

 Pex =  1 −  e−α(λ) Δz , (3-2) 

This relationship is deduced by assuming: 

 
Pex(λ) = ( 

no.  of photon absorbed 

no.  of photon incident
) ∙ (

no.  of exciton created

no.  of photon absorbed
), (3-3) 

where the second term is closely related to the internal quantum efficiency, which is very close to 

100 % in many cases [71], so it is assumed to be 1 here. On the other hand, the first term is closely 

related to the photon absorption coefficient, 𝐼(𝑧) =  𝐼𝑜 𝑒
−α(λ)z. 

Thus Eq. (3-1) could be expressed as: 

𝑛(𝜆)

𝛥𝑡
= ∑ ( 

𝐼(𝜆)

ℎ 
c
𝜆

 𝑒−(t−z)𝛼(𝜆)∆𝑥∆y(1 − e−α(λ) Δz )) ( 𝑒
−

𝑑
𝜉𝑒𝑥) (𝑃𝑠𝑒𝑝) (𝑒

−
𝑆𝐴
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−
𝑆𝐶
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We compute the IPCE, which is the number of electrons collected per incident photon, as: 

𝐼𝑃𝐶𝐸(𝜆) =
𝑛(𝜆)

𝛥𝑡

1
𝐼(𝜆)

ℎ
𝑐
𝜆

𝐴
, where A represents the area of the sample illuminated by light. In this 

simulation, it is assumed that the whole sample surface is illuminated by light, indicating the 

sample surface area is A. The final working equation for evaluating IPCE from nanostructure is 

expressed as the summation over every voxel: 

𝐼𝑃𝐶𝐸(𝜆) =
1

𝐴
∑ (( 𝑒−(t−z)𝛼(𝜆)∆𝑥∆y(1 − 𝑒−𝛼(𝜆) 𝛥z )) ( 𝑒

−
𝑑

𝜉𝑒𝑥) (𝑃𝑠𝑒𝑝) (𝑒
−

𝑆𝐴
𝜉ℎ  𝑒

−
𝑆𝐶
𝜉𝑒   𝑃𝑐𝑜𝑙)) , (3-5) 

where, z, d, SA, and SC of each voxel are determined from the nanostructure. Eq.(3-5) is used to 

evaluate the performance of the active layer nanostructures in this study.  
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3.4 Isotropic Active layer Design 

We leverage the low-dimensional structure representation enabled by SDF to formulate a design 

paradigm using a small set of variables. The active layer is represented by an RVE of size 80 x 80 

x 80 voxels; equivalent to 100nm x 100nm x 100nm. Two SDF parameters–Peak Point and Decay 

– account for structural characteristics that control the charge separation and transport phenomenon 

discussed above. Further, the assumption that exciton generation is restricted to P3HT molecules 

necessitates the inclusion of donor/acceptor composition as an additional design variable. Here, 

PCBM volume fraction is chosen as the composition design variable. Note that composition also 

plays a critical role in level cutting the GRF for the reconstruction. Thus, only three variables are 

required: two from SDF plus the PCBM volume fraction. 

The bounds for design variables are identified by analyzing the SDF of the two fabricated 

samples to estimate the three SDF parameters. Then a broad range for each of the three parameters 

is selected to ensure diverse SDF curves Previous studies, focusing only on active layer 

composition, have revealed that the ideal PCBM volume fraction (VF) is 0.37 approximately [72, 

73]. To explore a wider range of values around the optimum, we allow VF to vary between 0.15 

and 0.75. With the objective of maximizing IPCE ratio, the optimization problem can be stated as: 

max
m∈𝐌

 𝐼𝑃𝐶𝐸 (3-6) 

where M represents the set of all feasible microstructures characterized by 𝑝 (peak point) ∈ [2,10], 

𝑑 (decay) ∈ [1,12], and 𝑣𝑓 (volume fraction) ∈ [0.15,0.75].  

Since optimization is an iterative process, it requires several S-P simulations (constructing RVE 

for current value of design variables and evaluating the IPCE ratio). The computational cost 

associated with reconstructing and evaluating a 803 voxels RVE is significant. To overcome this 



47 

 

computational burden and accelerate optimization, a metamodel is used. 45 OLHS [74] design 

were used for creating the Gaussian Process (GP) metamodel with three design variables while 11 

were used for cross-validation. The R-Squared value based on validation points is 0.9792, which 

indicates a fair fit. Because of the highly nonlinear response of the metamodel, Genetic 

Algorithm(GA) is applied to obtain the global maximum IPCE. To test accuracy, multiple starting 

designs were selected. For all starting points considered in this study, the optimization routine 

converges to the design {Peak Point = 2, Decay = 12, VF = 0.2764 and IPCE = 8.41%}. This result 

relates to a 36.75% increase in IPCE ratio compared to experimental specimen which has an IPCE 

ratio of 6.15%. An RVE is reconstructed (Figure 3-3) using the optimal microstructure design 

variables and its IPCE ratio is computed. Compared to 8.41% from the metamodel, the 

reconstructed RVE results in an IPCE ratio of 8.19%, reinforcing the fact that the metamodel used 

here is sufficiently accurate.  

 

Figure 3-3: Optimal active layer microstructure 
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Although the optimized design enhanced P3HT:PCBM interfacial area; it does not represent 

optimal morphology w.r.t charge transport. This is because the tortuosity of PCBM domains forces 

electrons to traverse longer paths to reach cathode and in some instances, PCBM domains are 

isolated and do not provide any paths to cathode. Consequently, IPCE is diminished. Intuition 

dictates that orienting P3HT:PCBM domains in the direction of electrodes i.e., anisotropy will 

shorten the distance traversed by charges and enhance IPCE.  

3.5 Reconstructing Anisotropic Microstructures using SDF 

Although the optimized design enhanced P3HT:PCBM interfacial area; they do not represent 

optimal morphology w.r.t charge transport. This is because the tortuosity of PCBM domains forces 

electrons to traverse longer paths to reach cathode and in some instances, PCBM domains are 

isolated and do not provide any paths to cathode. Consequently, IPCE is diminished. Intuition 

dictates that orienting P3HT:PCBM domains in the direction of electrodes i.e., anisotropy will 

shorten the distance traversed by charges and enhance IPCE.  

The subsequent sections in this chapter address the challenge of anisotropic microstructure 

design by presenting a novel SDF based reconstruction technique for rapid microstructure 

generation. Our method is based on Inverse Fourier Transform and can be implemented 

parsimoniously in any computational package. The method enables reconstruction of anisotropic 

microstructures without modification. Further, an SDF based anisotropy index is defined to 

quantify anisotropy and serve as an additional descriptor in the design of strongly anisotropic 

OPVC active layer that outperforms isotropic designs. We first describe Linear Time Invariant 

Systems, which is the foundation for reconstruction procedure and demonstrate its applicability to 
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isotropic/anisotropic microstructure reconstruction. Further, we propose anisotropy index as a 

quantitative measure of anisotropy and present two examples to underline its significance. 

3.6 Linear Time Invariant Systems 

Linear Time Invariant (LTI) systems [75] combine two useful concepts in digital signal 

processing namely linearity & time invariance. A system is linear when adding or scaling inputs 

to the system results in adding or scaling of outputs. Time invariance implies that a time delay in 

system inputs results in an equivalent delay in the outputs, without changing the system behavior. 

With these two essential properties, powerful analysis tools have been developed to study behavior 

of LTI systems.  An important result in this domain is that an LTI system can be completely 

characterized by its impulse response, which is the output of system when input is a unit impulse. 

Once the impulse response is known, the system output (Y) to any arbitrary input (X) can be 

deduced using the relationship [76]: 

𝜌𝑌(𝑓) = |𝐻(𝑓)|2𝜌𝑋(𝑓), 
(3-7) 

where 𝜌𝑋 , 𝜌𝑌 are the SDF of input and output signals, 𝐻 is the Fourier Transform of system’s 

impulse response and 𝑓 denotes frequency. SDF (𝜌) of a signal 𝑋 is the squared magnitude of its 

Fourier Transform: 

𝜌(𝑓) = |ℱ[𝑋]|2, 
(3-8) 

where ℱ[. ] represents the Fourier Transform operator. 

The concept of LTI systems can be extended for cases where signals vary spatially rather than 

over time and generalized as Linear Shift Invariant (LSI) systems [77]. A microstructure can be 

considered a 2D signal and manipulated using LSI system as described below. 
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3.7 Fast Reconstruction using Spectral Density Function 

SDF based MCR is best suited for quasi-random microstructures that exhibit a seemingly 

random material distribution but governed by an underlying correlation function. SDF represents 

spatial correlation in the spatial frequency domain, providing a simplified and physics aware 

representation of microstructure. A homogeneous microstructure can be described as a realization 

of an underlying stationary random field and reconstruction involves finding the random field with 

a prescribed SDF. Towards this end, we propose casting the reconstruction process as an LSI 

system that takes in a random white noise image and transform it into an image (microstructure) 

with desired SDF. This is accomplished by rewriting Eq. (3-7) as: 

 

𝜌𝑅(𝒌) = 𝜌𝑇(𝒌). 𝜌𝑊(𝒌), (3-9) 

where . represents point-wise multiplication, subscripts R, T & W denote the reconstructed, target 

& white noise SDF and 𝒌 is a vector representing spatial frequency. Note that the white noise 

image and target image must have the same resolution. SDF is the squared magnitude of Fourier 

transform and hence, we can recover the reconstructed microstructure from Eq. (3-9) by level 

cutting ℳ𝑅 to the desired composition of two phases: 

 
ℳ𝑅 = |ℱ−1 {√𝜌𝑇(𝒌). ℱ{ℳ𝑊}} | = |ℱ−1{|ℱ{ℳ𝑇}|. ℱ{ℳ𝑊}} |,   (3-10) 

Here, subscripts ℳ𝑅 , ℳ𝑇  𝑎𝑛𝑑 ℳ𝑊 denote reconstructed, target and white noise 

microstructures respectively. Since a white noise image contains all frequencies in equal measure, 

Eq. (3-10) can be interpreted as follows: the reconstruction process works like an LSI system with 

impulse response ℳ𝑇 to filter out all frequencies from white noise image ℳ𝑊 except the ones 

present in ℳ𝑇. Analogously, reconstruction is a convolution between a white noise image and 
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target image. Figure 3-4 shows some examples of microstructures generated using Eq. (3-10) by 

supplying a target SDF 𝜌𝑇(𝒌). Note that ℳ𝑅 will have the same resolution as ℳ𝑇 (or 𝜌𝑇). The use 

of white noise image in Eq. (3-10) introduces stochasticity, a key feature across all MCR methods 

and leads to an ensemble of statistically equivalent reconstructions sharing a common SDF as 

shown in  Figure 3-4 (A & B). Since we have shifted the zero frequency component to the center 

of spectrum for target SDF (𝜌𝑇) shown in insets, an identical zero frequency shifting must be 

performed on ℱ{ℳ𝑊} prior to application of Eq. (3-10). 

 

Figure 3-4: SDF based microstructure reconstruction. (A & B) Two 2D microstructures (200 x 200 

pixels) generated from identical ring-type 2D SDFs shown in inset (zero frequency component 

shifted to center of spectrum). White phases volume fraction is 50% in both cases. In the plot of 

SDF, the black regions represent frequencies with zero intensity. (C) 3D microstructure (200 x 200 

x 200 voxels) generated from an equivalent 3D ring type SDF. Yellow phase volume fraction is 

50%. 

SDF based reconstruction using Eq. (3-10) has two primary advantages as compared to existing 

methods. First, the reconstruction process only involves Fourier transform and Inverse Fourier 

Transform, which can be accomplished very efficiently using Fast Fourier Transform available in 



52 

 

any computational software package. This is highly significant in terms of generating high 

resolution 3D microstructures such as those required for investigating OPVCs and performance 

optimization which will require evaluation of structure-performance model at each iteration. Table 

3-1 compares Cahn’s method against the proposed method w.r.t computational time required for 

2D and 3D reconstructions. These tests were performed on a 3.60GHz Intel ® Core™ i7 processor 

with 24GB RAM. It is quite evident that our method is significantly more efficient than existing 

methods. 

Table 3-1: Examining computational efficiency of reconstruction methods. 

Dimension Resolution Computational Time 

Our Method Cahn’s Method 

 

2D 

100 x 100 pixels 0.002 seconds 0.175 seconds 

200 x 200 pixels 0.003 seconds 0.510 seconds 

400 x 400 pixels 0.008 seconds 2.254 seconds 

 

 

3D 

50 x 50 x 50 voxels 0.039 seconds 176.511 seconds 

100 x 100 x 100 voxels 0.087 seconds 1291.499 seconds 

200 x 200 x 200 voxels 0.802 seconds 3.3 hours 

400 x 400 x 400 voxels 7.337 seconds Out of Memory 

 

 The second advantage of the proposed method is that no modifications are required for 

reconstruction of anisotropic microstructures using Eq. (3-10) since it is valid for any 

homogeneous, two-phase microstructure. This is elaborated in following section. 

3.8 Spectral Density Function based Anisotropy Index 

 

Unlike isotropy, which is an absolute state, anisotropy is a relative state and necessitates an 

appropriate quantitative measure. For example, Figure 3-4(A) & Figure 3-5(A1) are isotropic 
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microstructures and there is no meaningful notion of one being more isotropic than the other. On 

the other hand, Figure 3-5(B1 & C1) are anisotropic but, Figure 3-5 (C1) is more anisotropic than 

Figure 3-5 (B1). This example highlights the need for a metric which captures the degree of 

anisotropy in microstructure. We define an SDF based anisotropy index with the observation that 

dominant structural features in spatial domain manifest as non-zero values of frequency 

components. The pattern formed by these dominant frequencies depends on the microstructural 

features. Here we discuss two such patterns – ring and disk type SDFs but the concept can be easily 

generalized to other patterns. 

For ring type SDF, we define anisotropy index 𝛼 as the sine of polar angle 𝜔 subtended by the 

non-zero frequency component on the axis of anisotropy.  

 𝛼 = sin(𝜔), 
(3-11) 

Figure 3-5 shows three sample 2D & 3D microstructures with different degrees of anisotropy, 

quantified by 𝛼.  As noted earlier, the dimension of SDF is same as that of microstructure. Thus, 

the 2D microstructures (Figure 3-5 A1,B1,C1) have 2D SDFs while 3D microstructures (Figure 

3-5 A3,B3,C3) have 3D SDFs shown in Figure 3-5 A2,B2,C2. Microstructures were generated by 

supplying the corresponding SDFs as 𝜌𝑇(𝒌) in Eq. (3-10). We observe that SDF’s of isotropic 

microstructures possess symmetry about the center (zero frequency) while anisotropy arises from 

deteriorating symmetry.  
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Figure 3-5: (A1,B1,C1) 2D microstructures with varying degree of anistropy and their SDFs shown 

in inset.  (A3,B3,C3) 3D microstructures and their corresponding SDFs  (A2,B2,C2). A1-A3, B1-

B3 and C1-C3 represents isotropic, anisotropic and strongly ansiotropic  microstructures. Volume 

fraction of each phase is 50% in all 2D and 3D microstructures shown above. 

The angle 𝜔 captures the extent of symmetry deterioration and thus forms a suitable measure. 

Eq. (3-11) bounds 𝛼 in the interval [0,1], where 0 and 1 represent isotropy and absolute anisotropy 
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respectively and facilitates its usage as a bounded design variable in the optimization case study 

presented in the following section.  

Anisotropy Index is, in general, a measure of skewness in SDF pattern and can be extended 

beyond ring type SDFs shown in Figure 3-6 Consider the 2D microstructures in Figure 3-6 which 

exhibit disk type SDF patterns. Since there are multiple frequencies present in these 

microstructures, they appear more disordered than those in Figure 3-6 which have only one 

frequency present. A convenient measure of anisotropy i.e., anisotropy index 𝛼 for these 

microstructures would be the eccentricity of SDF patterns. Eccentricity is the ratio of the distance 

between the foci of the ellipse and its major axis length. Its value ranges from 0 (isotropic) to 1 

(strongly anisotropic). These microstructures were reconstructed from Eq. (3-10) by specifying the 

SDFs shown in inset as 𝜌𝑇(𝒌). Thus, our method generates anisotropic microstructures when 

𝜌𝑇(𝒌) is anisotropic; without any modification of Eq. (3-10). 

 

Figure 3-6: Quantifying anisotropy for micorstructures with elliptical SDF. Each microstructure is 

200 x 200 pixels with 50% white phase area fraction. Inset shows corresponding SDFs. Anisotropy 

index 𝛼 is defined as eccentricity of SDF pattern. 
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3.9 Revisiting OPVC Design Case Study 

As noted earlier, anisotropic active layer can enhance OPVC performance but, realizing such 

designs has been a challenge hitherto. Here we demonstrate how the SDF based anisotropic 

microstructure design strategy addresses this challenge. 

Given the vast space of possible active layer morphologies, microstructure optimization is 

necessary to identify active layer designs that maximize IPCE ratio. The IPCE ratio encapsulates 

the efficiencies of charge conversion and transport processes which are strongly influenced by 

active layer microstructure. The procedure to evaluate IPCE is provided in Appendix. Ideally, we 

desire an active layer that maximizes interfacial area and provides short, well-connected pathways 

for charge transport; but realizing both objectives simultaneously is a challenging task. The low-

dimensional microstructure representation enabled by SDF is leveraged to formulate the active 

layer design as follows: 

 max
m∈ℳ

 IPCE, 
(3-12) 

𝓜: 𝑚𝑖𝑐𝑟𝑜𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠 𝑤𝑖𝑡ℎ 0% ≤ 𝑉𝐹𝑃𝐶𝐵𝑀 ≤ 100%, 0.01𝑛𝑚−1 ≤ 𝑘𝑖 ≤ 2.23𝑛𝑚−1, 0 ≤ 𝛼 ≤ 1 

where ℳ is the set of all feasible microstructures, 𝑉𝐹𝑃𝐶𝐵𝑀 denotes the PCBM concentration by 

volume (𝑉𝐹𝑃𝐶𝐵𝑀 + 𝑉𝐹𝑃3𝐻𝑇 = 1). Here we assume SDF follows a ring type pattern with radius 𝑘𝑖, 

ring thickness 0.01𝑛𝑚−1 and anisotropy index 𝛼. 𝑘𝑖 controls width of PCBM domains; large 

values lead to narrower PCBM domains and vice-versa. Bayesian Optimization [78, 79], which 

adaptively samples designs to efficiently identify global optimum, was applied to solve the 

formulation presented in Eq. (3-12). In each iteration, a high-resolution 3D microstructure (450 x 

450 x 450 voxels), embodying a 100nm x 100nm x 100nm Representative Volume Element, is 

generated using the SDF based reconstruction method discussed previously and its IPCE is 
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evaluated. To show the benefits of anisotropy, we also present results from optimization of 

isotropic microstructure with design variables 𝑉𝐹𝑃𝐶𝐵𝑀 and 𝑘𝑖 bounded in the range specified by 

Eq. (3-12) but 𝛼 fixed to 0. We performed 100 iterations of Bayesian optimization with expected 

improvement [54] acquisition criterion.  

 

Figure 3-7: (A) Bayesian Optimization history for IPCE maximization, depicting superior 

perfomance of anisotropic design as compared to isotropic design. (B1) SDF of Optimized 

anistropic microstructure (B2) displaying perfect anisotropy along Z – direction. (C1) SDF of 
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Optimized istropic microstructure (C2). Red and yellow phase represents P3HT & PCBM 

respectively.  

Figure 3-7A indicates that anisotropic design yield higher IPCE and  optimized anisotropic design 

has an anisotropy index of one; implying that perfect anisotropy is favored. This design is 

characterized by narrow, wire-like PCBM clusters aligned in the direction of electrodes. These 

features contribute to a significant reduction in distance traversed by charges to respective 

electrodes and compensates the reduction in interfacial area. In contrast, the optimized isotropic 

design maximizes interfacial area, but its effect is subdued by tortuous paths for charge transport, 

leading to lower IPCE. Figure 3-7(B2 & C2) shows 150 x 150 x 150 voxel segments from the 

optimized anisotropic and isotropic microstructures and their corresponding SDFs. Anisotropic 

design, which is isotropic in XY plane but exhibits strong anisotropy along Z-axis, leads to an 

IPCE of 42.74% as compared to 41.58% of isotropic design. As suggested by Table 3-2, the 

difference in IPCE can be attributed to drastic reduction in distance traversed by electron to 

cathodes (𝑆𝐶), a consequence of strong anisotropy of PCBM domains. The reduction in 𝑆𝐶 

dominates the minor increase in distance to nearest interface (𝑑) observed in anisotropic design 

w.r.t isotropic design. 

Table 3-2: Optimum design variables and resulting microstructural features 

  Optimized Anisotropic 

Design 

Optimized Isotropic 

Design 

Optimum 

Design 

Variables 

𝑉𝐹𝑃𝐶𝐵𝑀 0.275 0.292 

𝑘𝑖 1.45 𝑛𝑚−1 1.80 𝑛𝑚−1 

𝛼 1 0 

 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑑 0.28 𝑛𝑚 0.24 𝑛𝑚 
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Microstructural 

Features 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑆𝐴 50.00 𝑛𝑚 50.21 𝑛𝑚 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑆𝐶 50.00 𝑛𝑚 60.82 𝑛𝑚 

 

 

3.10 Summary 

The new SDF based microstructure reconstruction methodology proposed is capable of 

reconstructing high resolution, isotropic/anisotropic microstructures to enable computational 

microstructure design in a wide range of materials systems. The representation is applicable for 

both isotropic and anisotropic microstructures with a small set of parameters that can serve as 

design variables in microstructure design. To quantify the level of anisotropy, we introduced 

anisotropy index, a scalar value bound in the interval [0,1] with 0 and 1 representing purely 

isotropic & anisotropic microstructures respectively. Meeting the need to reduce charge transport 

distances in the active layer, we formulated a design case study that pivots on SDF to find the 

optimal active layer microstructure with an aim to maximize IPCE. Only three design variables – 

PCBM volume fraction, anisotropy index and one SDF parameter were sufficient to represent 

microstructure, thus making optimization tractable. Optimization results reinforced our intuition 

that microstructures exhibiting strong anisotropy (anisotropic index ~ 1) in the direction of 

electrodes provide shorter paths for charges to travel towards respective electrodes; thus, 

delivering an enhancement in IPCE as compared to isotropic microstructures.  

The dimensionality reduction and fast microstructure reconstruction afforded by SDF makes it a 

valuable tool in material design. In the next chapter, we shall once again leverage this method for 

the design of polymer nanocomposites microstructure but with an additional task of identifying 

the optimal composition concurrently.ng 
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4 Data Centric Design for concurrent composition and microstructure 

optimization 

The launch of the Material Genome Initiative (MGI) [1] has revolutionized the way advanced 

material systems are designed with targeted performance. MGI strives to elucidate the Processing-

Structure-Property (PSP) relationships [2] for material design. A holistic design strategy for bi-

directional traversal of PSP relationships requires us to address some key issues – cost effective 

processing techniques, microstructure representation and reconstruction, dimensionality reduction 

and tractable optimization techniques, to name a few. In the field of polymer nanocomposites, 

goal-oriented design has proven to be a difficult task due to several reasons. 

First, limited understanding of complex polymer(matrix)-nanoparticle(filler) interactions and 

their influence on properties hinders the selection of the optimal combination from the vast space 

possible combinations. While finite element analysis (FEA) models have been developed to 

simulate structure-property relationships for polymer nanocomposites [80-82], modeling 

interphase behavior remains a prominent challenge. Researchers have investigated interphase 

behaviors and their origin both analytically and experimentally [82-84]. Recent experiments have 

demonstrated that the local polymer properties significantly change near the polymer surface via 

measurement of properties in  model nanocomposites [84, 85]. While direct measurement of 

interphase properties in nanocomposites is challenging experimentally, one method to calculate 

the interphase properties is to inversely tune the parameters in micro-scale model constitutive 

equations or finite elements analysis using the bulk composite properties [80, 86-88]. However, 
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this tuning procedure is very time-consuming given the complexity of experimental data and the 

simulation cost of FEA.  

Second, the high dimensionality of nanocomposite microstructure requires specialized 

techniques for characterization of micrographs with reduced dimensionality and establish its 

relationship with processing conditions and properties. To this end, computational Microstructure 

Characterization and Reconstruction (MCR) [8] techniques provide a quantitative representation 

of microstructures and the ability to reconstruct realizations with desired features. Among the 

existing methods, Physical Descriptors [21, 22] and Spectral Density Function (SDF) [10, 27, 46, 

66] have been widely adopted for design of material systems due to their physically meaningful 

characterization, relative ease of reconstruction and low dimensional representation. The selection 

of MCR method for a material system and ascertaining associated parameters is accomplished by 

analyzing the micrographs obtained from different processing conditions.  

Third, calibration of interphase parameters and selection of MCR technique requires a database, 

where each nanocomposite sample is labelled by processing conditions, microstructure, and 

properties. NanoMine [3, 4] - a online database with built-in data curation capabilities provides 

access to several nanocomposites reported in the literature. However, articles seldom report all the 

aforementioned labels which hinders the development of PSP relationships necessary for targeted 

design of nanocomposites.  

Fourth, the high computational cost of physics-based property evaluation methods prohibits 

their direct usage in the iterative design process that could require hundreds of property 

evaluations. To alleviate this problem, Bayesian Optimization (BO) [55, 89] has emerged as a 

viable proposition in material design [90-94]. However, these applications of BO involve only 
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quantitative design variables in the form of descriptors (aka features) known to influence material 

properties; while mixed-variable problems containing both qualitative and quantitative variables 

is common in material design. Choice of constituents in any material system can be treated as 

qualitative variables, while microstructure descriptors, processing, and operating parameters 

(temperature, RPM, wavelength etc.) are quantitative variables. For example, nanocomposite 

design involves concurrent optimization of qualitative (choice of polymer, nanoparticle, surface 

modification) and quantitative (microstructure descriptors) variables. The Latent Variable 

Gaussian Process (LVGP) [95] provides an intuitive way to predict material properties from 

mixed-variable inputs and improves the performance of single criterion BO as compared to 

existing GP methods [96]. However, materials design requires mixed-variable multicriteria BO 

since suitability for commercial application relies heavily on multiple criteria. 

These factors hinder the establishment of a comprehensive methodology to fully incorporate 

processing, structure, and property information for nanocomposite materials into the design 

process. Combinations of experimental, theoretical, and simulated investigations [97-102] have 

improved our understanding of the influence of materials and processing conditions on 

nanocomposite morphology and properties. These studies are typically guided by researcher’s 

knowledge and intuition. In recent years, there has been a push toward the “fourth paradigm” of 

science [103] which seeks to leverage the increasing data availability to develop tools that can 

effectively extract knowledge to guide a data-driven search of optimal materials. However, 

previous attempts at data-driven nanocomposite design have been limited to design of 

microstructure for a prespecified combination of polymer, nanoparticle and surface modification 

[104-106].    
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In this chapter, we present a data-centric design framework and the associated techniques to 

leverage existing data for multicriteria nanocomposite design. The framework is flexible to 

incorporate data generated by experiments as well as simulations or machine learning to overcome 

existing challenges in establishing structure-property relationships. Nanocomposite design is cast 

as a mixed-variable optimization problem to concurrently identify optimal composition and 

microstructure. Central to the design strategy is integration of LVGP, which enables mixed-

variable machine learning and uncertainty quantification, with multicriteria BO to navigate 

complex, non-linear design space and identify a diverse Pareto frontier. While discussions on data 

and modeling tools are centered on polymer nanocomposites, the concept of data centric design is 

generic and applicable to any material system. 

 

4.1 Data Centric Nanocomposite Design Framework 

Despite their attractive mechanical and electrical properties, commercial application of polymer 

nanocomposites is plagued by a lack of goal-oriented design methodology. In this context, we 

present the data-centric design framework, guided by the philosophy that integrating curated 

databases with physics-based simulations and machine learning expedites nanocomposite design. 

Figure 4-1 depicts the mixed-variable BO framework exemplified by the design of insulating 

materials, indicating the various modules involved and information flow between them. The 

framework is initiated from a materials database (Module 1) comprising nanocomposite samples 

with varying compositions, corresponding microstructures and measurement of properties such as 

dielectric loss. Composition is defined by the choices of polymer, nanoparticle and surface 

modification. Microstructure descriptors influenced by composition and processing conditions, 
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e.g., nanoparticle dispersion, are quantified from micrographs using the MCR techniques. The 

identified range of microstructure descriptors will be used as bounds in the design process.  

 

Figure 4-1: Data centric design framework for polymer nanocomposites 

The database also contains experimental measurements of nanocomposite properties, which can 

be used to calibrate simulation models (Module 2) and train machine learning models for situations 

where finite element simulations (Module 3) are expensive, or simulation models are premature 

(Module 4). For example, experimental measurements of bulk nanocomposites data are used for 

calibrating the nanoparticle-polymer interphase parameters necessary to accurately predict 

properties via FEA. With bounds for design variables identified and models to predict dielectric 

properties, BO (Module 5) expedites the search for high-performing nanocomposites designs. 

While GP are frequently used in BO, existing GP models were developed for quantitative variables 

and the associated correlation functions cannot accommodate qualitative inputs. We overcome this 

limitation by leveraging the recently developed LVGP approach [95, 96]  which implicitly converts 

qualitative variables to continuous latent variables for evaluating correlations. Since functional 
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materials must satisfy multiple performance criteria, we extend the LVGP based BO for 

multicriteria optimizations. 

We demonstrate the data-centric design process for electrically insulating polymer 

nanocomposites, with potential application in high voltage rotating machines [107]. Three major 

electrical properties to be optimized are breakdown strength, dielectric permittivity and dielectric 

loss. Breakdown strength (𝑈𝑑) is the minimum voltage at which current flows through an 

insulating material. Dielectric permittivity (𝜖) characterizes the degree of electrical polarization 

experienced by the material and dielectric loss (𝑡𝑎𝑛𝛿) is related to the amount of heat generated 

under an alternating electric field. High 𝑈𝑑, low 𝜖 and low 𝑡𝑎𝑛𝛿 are ideal but tradeoffs between 

𝑈𝑑 vs 𝜖 and 𝜖 vs 𝑡𝑎𝑛𝛿 have been observed [108, 109].  

For the design of insulating materials, these properties are known to be influenced by 

composition (choice of filler, polymer, surface modification) and nanoparticle dispersion. We 

consider nanocomposites with two types of polymers - polystyrene (PS) and 

polymethylmethacrylate (PMMA) containing silica nanoparticles with three choices of surface 

modifications– Chloro-, Amino- and Octyl-silanes. Nanoparticle dispersion is quantified from 

Transmission Electron Microscopy (TEM) images using the Spectral Density Function (SDF) [10, 

27, 46, 66]. Dielectric permittivity 𝜖 and loss 𝑡𝑎𝑛𝛿 are evaluated using FEA, where interphase 

properties are characterized by a shift in the nanocomposite properties w.r.t pure polymer 

properties and obtained by calibration (Module 2) based on the bulk properties from experiments. 

In Module 3 SDF based microstructure reconstruction [59] is used to generate 2D Representative 

Volume Elements (RVEs) with desired filler area fraction and dispersion for FEA. Module 4 is an 

empirical machine learning model employing Random Forrest technique [51] which is trained on 
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experimental data present in nanocomposite database to predict the breakdown strength 𝑈𝑑 as a 

function of both qualitative and quantitative material design variables.  

In Module 5, the mixed-variable BO problem is performed by leveraging the built-in 

uncertainty quantification of LVGP models for performing single and multicriteria optimization 

using the expected improvement [54] and expected maximin improvement [110] acquisition 

functions respectively. At each iteration, the LVGP model is updated with a new design whose 

dielectric properties are evaluated using Modules 3 and 4. 

The design framework presented here has two significant benefits. First, its modularity allows 

for selection, replacement, and customization of methods within each module without affecting 

the rest of the framework. For example, the machine learning model used for 𝑈𝑑 can be replaced 

by a physics-based simulation model in the future. The microstructure characterization & 

reconstruction method can be selected based on the nature (nanoparticle or nanotube) of the filler. 

Second, diverse applications can be explored using the same framework by modifying the 

objectives. For example, we can design nanodielectrics by maximizing 𝜖 and minimizing 𝑈𝑑, 𝑡𝑎𝑛𝛿 

in Module 5 without modifying the rest of the framework. 

 

4.2 Implementing Data centric design framework 

In the following subsections, we describe the techniques that are used to support the 

implementation of the proposed materials design framework, using the design of insulating 

polymer composites as an example. 
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4.2.1 Nanocomposite Database Preparation (Module 1) 

A database comprising nanocomposite samples labelled by their composition, processing 

conditions, microstructures and dielectric properties is essential for identifying design variables 

and developing the structure-property relations. For design of insulating nanocomposites, we 

developed a database of samples with varied composition and dispersions.  

Silica nanoparticles (diameter 14 nm) in methyl ethyl ketone were procured from Nissan Inc. 

The surface of the nanoparticles was modified using three monofunctional silane coupling agents: 

aminopropyledimethylethoxysilane (Amino), chloropropyledimethylethoxysilane (Chloro) and 

octyldimethylmethoxysilane (Octyl), from Gelest Inc. Polystyrene (PS) from Goodfellow 

Corporation and polymethylmethacrylate (PMMA) from Scientific Polymer Products Incorporated 

is used as the polymer. Surface modification of the nanoparticles is carried out in accordance to 

the procedure outlined by Natarajan et al. [111]. The choice of polymer and surface modification 

determine nature of interactions between nanoparticle and polymer matrix. Our analysis [112] has 

shown that nanoparticle-polymer compatibility, quantified by ratio of work of adhesion, 

determines the likelihood of deagglomeration during extrusion. Incompatible systems such as 

amino modified silica in PMMA matrix experienced less deagglomeration as compared to 

compatible systems. 

Nanocomposites with 2wt% filler loading were prepared in a Thermo Haake Minilab, co-

rotating twin screw extruder. Mixing parameters such as screw speed and specific energy input 

were varied to obtain a range of different dispersion states. A JEOL 2010 transmission electron 

microscope (TEM) was used to characterize the dispersion state of the nanocomposites. The TEM 

images were binarized using the Niblack algorithm [13, 113]. Dielectric spectroscopy 
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measurements was carried out for each nanocomposites sample prepared for this study, details of 

which is available in ref. [112, 114]. 

4.2.2 Microstructure Characterization and Reconstruction (Modules 1 & 3) 

MCR enables extraction and quantitative representation of nanoparticle dispersion from TEM 

images of nanocomposites. The extracted representation will serve as microstructure parameters 

in PSP mapping and design optimization. In this article, dispersion is extracted using SDF, a 

frequency domain microstructure representation capable of capturing spatial correlations of 

complex heterogeneous materials. Although it is known to be the Fourier transform of  a two-point 

autocorrelation function and hence encapsulates equivalent morphological information, Yu et al. 

[27] have shown that SDF is a more convenient representation to parametrize and design 

microstructures. These features are also evident from the analysis of nanocomposite 

microstructures in our database (Module 1). After binarizing TEM images using the Niblack 

algorithm [13] and assuming isotropy, SDF 𝜌(𝑘) was evaluated using Eq. (2-1). We noticed that 

the SDF of all microstructures approximately follows an exponential distribution that can be 

parametrized with two variables – shape parameter 𝛼 and scale parameter 𝜃: 

 𝜌(𝑘) =  𝛼 ∗ exp (−
𝑘

𝜃
) . (4-1) 

TEM images gathered from samples subjected to different processing conditions were 

characterized using SDF and parameters 𝛼 and 𝜃 were ascertained by curve fitting using Eq. (4-1). 

The average 𝑅2 value for fitting was 0.90. Images with exceptionally large nanoparticle 

agglomerates are not considered for this analysis as they do not significantly impact bulk 

nanocomposite response for loss or permittivity.  Figure 4-2 shows three microstructures along 

with their one-dimensional SDF and curve fitting. Filler dispersion increases through Figure 
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4-2(A-C) and is reflected in a slower decay rate of SDF which can be quantified by 𝜃. Each 

nanocomposite sample is represented by the average values of  𝛼 and 𝜃 estimated from the analysis 

of TEM images. It was noticed that 𝛼 varies in a narrow interval [0.39, 1.84] and has very little 

influence on the SDF profile. On the other hand, scale parameter 𝜃 varies between [1.49, 46.85], 

changing the rate of decay of SDF and consequently characterizing the dispersion of the filler 

aggregates. Thus, we will consider 𝜃 as a microstructure design variable and fix 𝛼 to its mean 

value 1.1. The range of 𝜃 identified here will be used to define bounds for these variables in design 

formulation. 

 

Figure 4-2: Three representative microstructures with varying dispersions and their SDF (blue 

curve) and corresponding curve fit using Eq. (4-1) (red dashed curve). The design variable 𝜃′s 

value for each image shown in inset. 

Microstructure reconstruction is an integral part of material design framework, since material 

properties must be evaluated for the microstructure represented by design variables at each 
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iteration of optimization (Module 3). In this study, we are using the fast Fourier transform based 

reconstruction method developed by Iyer et al. [59] and described in Chapter 3.  

 

4.2.3 Interphase Calibration and Finite Element Analysis for Dielectric Permittivity and Loss 

(Modules 2 and 3) 

Each objective function evaluation (Module 3) is accomplished via finite element (FE) 

computation of the effective dielectric permittivity and loss of an RVE constructed using 

microstructure descriptor (dispersion) and composition (polymer type and surface modification 

type) recommended by BO. Incorporating interphase material properties into each FE simulation 

corresponding to the given combination of polymer type and surface modification type is a 

necessary intermediate step between constructing an RVE and computing its dielectric response 

[88]. Generally, we specify the permittivity and loss of the interphase in the form of five shifting 

factors that are applied to the polymer properties in the frequency domain to generate the complete 

frequency domain interphase properties [80, 115]. Calibration of these scale factors is performed 

once for each of the six possible material combinations in Module 2. A detailed explanation of the 

calibration protocols is provided in Appendix 9.2. 

 The RVE construction for the FE simulation is based on a microstructure constructed by 

averaging microstructure descriptors across all processing conditions (30 TEM images per 

processing condition) for that composition. Since a single interphase property is expected for each 

material combination, we select the most representative experimental response (from data across 

multiple processing conditions) for tuning the scale factors. These assumptions, while necessarily 

containing approximations on material response, are sufficient to demonstrate the nanocomposite 

design process. Notably, this study does not attempt to calibrate the interphase separately for each  
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processing condition although we acknowledge such calibration across processing conditions or a 

predictive model of interphase properties should be explored in the future, towards the physical 

validation of a predicted design and can possibly be done using data available in NanoMine 

(Module 1). Table 4-1 lists dielectric properties of pure polymers obtained in spectroscopy 

experiments and scaled interphase properties obtained by manual tuning for each material 

combination. These calibrated interphase properties are then used in the design process to assign 

appropriate interphase values for each design iteration according to material composition.  

 

Table 4-1: Dielectric properties (relative to vacuum permittivity of 8.85x10-12 F/m) of interphase 

and pure polymer at 60Hz 

Polymer – Surface 

Modification 
Permittivity Loss 

PMMA 3.44 0.170 

PS 2.02 0.001 

PMMA-Chloro 3.10 0.120 

PS-Chloro 6.00 0.010 

PMMA-Nitro 2.70 0.050 

PS- Nitro 4.80 0.023 

PMMA-Octyl 4.20 0.250 

PS-Octyl 5.70 0.035 

 

4.2.4 Machine Learning for Breakdown Strength Prediction (Module 4) 

Dielectric breakdown of nanocomposites is a complex phenomenon and requires atomic scale 

simulations to decode the complex interactions occurring in the interphase. As current atomistic 

models are immature, we use a random forest [51] model trained on experimental data for rapid 
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evaluation of 𝑈𝑑 as a function of material design variables during optimization. Random forest 

technique was chosen due to its ability to handle mixed-variables, superior computational 

efficiency and minimal possibility of overfitting. Training data comprised 𝑈𝑑 measurement 

(expressed in kV/mm) of 51 samples at 60 Hz. Predictors used for predicting 𝑈𝑑 are the two 

qualitative (polymer type, surface modification type) and one quantitative (𝜃) design variables. A 

10-fold cross validation study revealed that the random forest model with 500 trees predicts 𝑈𝑑 

accurately with a relative root mean square error of 0.38 and re-substitution 𝑅2 = 0.92 (Figure 4-3 

(A)). We observe the dataset to form two clusters; a PMMA based low 𝑈𝑑 cluster and a PS based 

high 𝑈𝑑 cluster. The strong influence of polymer is also confirmed by its large predictor importance 

estimate derived from the random forest model as shown in Figure 4-3(B).  

 

Figure 4-3: (A) Prediction accuracy of the random forest trained to predict breakdown strength. 

(B) Estimate of predictor importance deduced by random forest model. The larger the importance 

estimate for a predictor, the stronger its influence on breakdown strength. 
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4.2.5 Latent Variable GP Modelling for Mixed-Variable Problems (Module 5) 

One of the key components of BO is a statistical model that predicts the material properties 

from design variables and quantifies lack-of-data uncertainty. While Gaussian Processes (GP) are 

frequently used in BO, the standard GP methods were developed under the premise that all input 

variables are quantitative, which does not hold for the nanocomposite design problem under study 

which has one quantitative variable (dispersion parameter 𝜃), while the choice of polymer and 

surface modification are modeled as two qualitative variables with two (PMMA, PS) and three 

(Octyl, Chloro, Amino) levels respectively.  

Consequently, we leverage LVGP as the machine learning model predicting the optimization 

objective(s) from the mixed design variables i.e., Step I of the BO procedure described in Chapter 

2.4. We use LVGP models with two-dimensional latent space representation for all optimization 

results reported in Section 4.3. Uncertainty quantification provided by LVGP is used to accomplish 

Step II of the BO procedure as described below. 

4.2.6 Bayesian Optimization (Module 5) 

To meet the demand for electrical insulation, our goal is to identify nanocomposites with high 

𝑈𝑑, low 𝜖 and low 𝑡𝑎𝑛𝛿. The design space consists of three variables, two qualitative and one 

quantitative, as summarized in Table 4-2. The choice of polymer and surface modification are 

qualitative variables with two (PS, PMMA) and three (Octyl, Chloro, Amino) levels respectively. 

Dispersion is a quantitative variable with bounds identified using SDF in Section 4.2.2. We present 

both single and multicriteria BO strategies for this case study, using the same set of design 

variables with different objective formulations.  

Table 4-2: Summary of design variables used in case study 
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Variable Type Range/Levels 

Polymer Type (𝑷) Qualitative {𝑃𝑀𝑀𝐴, 𝑃𝑆} 

Surface Modification Type (𝑺) Qualitative {𝐶ℎ𝑙𝑜𝑟𝑜, 𝑂𝑐𝑡𝑦𝑙, 𝐴𝑚𝑖𝑛𝑜} 

Filler Dispersion (𝜽) Quantitative [1.49,46.85] 

 

For single criterion BO, we formulate an objective function that weighs all three normalized 

properties (indicated by *) equally and adds/subtracts each property depending on whether it needs 

to be minimized (maximized):  

 

min
s∈S,p∈P,m∈M

tanδ∗ + ϵ∗ − Ud
∗   

𝑆: {𝐶ℎ𝑙𝑜𝑟𝑜, 𝑂𝑐𝑡𝑦𝑙, 𝐴𝑚𝑖𝑛𝑜} 

𝑃: {𝑃𝑀𝑀𝐴, 𝑃𝑆} 

𝑀: 𝑚𝑖𝑐𝑟𝑜𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠 𝑤𝑖𝑡ℎ 1.49 ≤ 𝜃 ≤ 46.85, 

(4-2) 

where objective is to be minimized over a design space consisting of all possible combinations of 

surface modification (𝑆), polymers (𝑃) and microstructures (𝑀). LVGP modeling is used to model 

the objective function with design variables 𝑆, 𝑃 & 𝑀 as inputs. Expected improvement [54] is 

used as the acquisition function due to its ability to balance exploration and exploitation of design 

space, thus converging to optimum rapidly. Eq. (4-2) can be modified by adding weights to each 

property expressing designer’s priority for optimizing one property over the others. For example, 

maximizing 𝑈𝑑 can be prioritized by assigning a weight factor of 10 in the objective function: 

 min
s∈S,p∈P,m∈M

tanδ∗ + ϵ∗ − 10Ud
∗   (4-3) 

where 𝑆, 𝑃 and 𝑀 are the same as in Eq. (4-2). The modification of objective function subsequently 

affects the location of optimum in mixed-variable design space and will be discussed in Section 

4.3. 
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Multicriteria optimization aims to find candidate designs lying on the Pareto frontier [116] – a 

characteristic boundary comprising designs where no criteria can be improved without the 

deterioration of others. The general multicriteria optimization problem can be formulated as 

 𝑚𝑖𝑛
𝒘∈𝑊

{𝑦1(𝒘), 𝑦2(𝒘), . . . , 𝑦𝑠(𝒘)}, 
(4-4) 

where 𝒘 is the design input, 𝑊 is the design space, 𝑠 is the number of criteria, and 

{𝑦1(∙), 𝑦2(∙), … , 𝑦𝑠(∙)} is the set of the criterions that share the same design inputs. To identify the 

Pareto frontier for Eq. (4-4) numerically, the criteria are evaluated at a certain number of design 

inputs. Of all the evaluated design points, one selects the set of design points that are not dominated 

by any others. Here, a design point 𝒘 is not dominated by another one 𝒘′ if there exists at least 

one 𝑖 ∈ {1,2, … , 𝑠} such that 𝑦𝑖(𝒘) < 𝑦𝑖(𝒘′). This set of design points is regarded as a 

representation of the true Pareto set. 

To implement the BO approach for the multicriteria problem in Eq.(4-4), we use the expected 

maximin improvement (EMI) [110] acquisition function described as follows. Let the current 

Pareto set be composed of input set 𝑃𝑊 = {𝒘1, 𝒘2, … , 𝒘𝑘} and output set 𝑃𝑌 = {𝒚1, 𝒚2, … , 𝒚𝑘}, 

where 𝑘 is the number of points in the Pareto set and 𝒚𝑖 = [𝑦1(𝒘𝑖), 𝑦2(𝒘𝑖), … , 𝑦𝑠(𝒘𝑖)]𝑇, 𝑖 =

1,2, … , 𝑘. For any given new input 𝒘0, the corresponding outputs are predicted by the LVGP 

models as 𝒀0(𝒘0) = [𝑌1(𝒘0), 𝑌2(𝒘0), … , 𝑌𝑠(𝒘0)]𝑇, where 𝑌𝑗(𝒘0), 𝑗 = 1,2, … , 𝑠 is a random 

variable. To quantify how much the random outputs 𝒀0(𝒘0) would improve the current Pareto set, 

we use the minimax improvement metric: 

 𝐼(𝒀0(𝒘0)) = 𝑚𝑖𝑛
𝒘𝑖∈𝑃𝑊

{𝑚𝑎𝑥 ({𝑦𝑗(𝒘𝑖) − 𝑌𝑗(𝒘0)}
𝑗=1

𝑠
∪ {0})}, (4-5) 
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which is also a random variable. The larger the value of 𝐼(𝒀0(𝒘0)) is, the more improvement the 

output 𝒀0(𝒘0) is considered to make. 

With this formula, if the output 𝒀0(𝒘0) would be dominated by at least one point in the current 

Pareto set, then 𝐼(𝒀0(𝒘0)) = 0, which means no improvement. Otherwise, 𝐼(𝒀0(𝒘0)) would be 

a positive value quantifying the improvement. The value of 𝐼(𝒀0(𝒙0)) is illustrated by a two-

criteria example case in Figure 4-4, with one of the candidate points being 𝐼(𝒀0) = 0 and the other 

two points with a positive value 𝐼(𝒀0). 

 

Figure 4-4: Values of the improvement metric 𝐼(𝒀0) in a sampling process with two criteria. 

The criterion for choosing the new evaluation input 𝒘0
∗  is to maximize the expected value of 

improvement given in Eq. (4-5), i.e., 

 𝒘0
∗ = 𝑎𝑟𝑔𝑚𝑎𝑥

𝒘0∈𝑊
𝐸(𝐼(𝒀0(𝒘0))). 

(4-6) 

When the original problem in Eq. (4-4) has mixed-variable input space 𝑊, Eq. (4-6) is a mixed-

variable optimization problem. To solve Eq. (4-6), we use a zero-order optimization strategy, where 

we generate a large set of candidate points in the input space, and then choose the one with the 

largest EMI as 𝒘0
∗ . For evaluating the expectation in Eq. (4-6), we use Monte Carlo simulation, as 
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the analytical formula for EMI is too complex when 𝑠 ≥ 3, which is the case for nanocomposite 

design problem discussed here. 

With three dielectric properties of interest, Eq. (4-4) is adapted for multicriteria nanocomposite 

design as follows: 

 

 

min
s∈S,p∈P,m∈M

tanδ, ϵ, −Ud 

𝑆: {𝐶ℎ𝑙𝑜𝑟𝑜, 𝑂𝑐𝑡𝑦𝑙, 𝐴𝑚𝑖𝑛𝑜} 

𝑃: {𝑃𝑀𝑀𝐴, 𝑃𝑆} 

𝑀: 𝑚𝑖𝑐𝑟𝑜𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠 𝑤𝑖𝑡ℎ 1.49 ≤ 𝜃 ≤ 46.85, 

(4-7) 

where the variables have the same meaning as in Eq. (4-2). We use three independent LVGP models 

to predict the three dielectric properties from design variables 𝑆, 𝑃 and 𝑀. 

4.3 Optimization Results and Discussion 

We performed 35 and 70 iterations of BO for single and multicriteria formulations respectively, 

as specified by Eq. (4-2) and Eq. (4-7) respectively. Each BO is initiated with 30 random initial 

samples where the values of quantitative variable {𝜃} are generated by Latin hypercube design and 

qualitative variables, polymer and surface modification type are sampled uniformly.  

4.3.1 Results from single criterion Bayesian Optimization 

We performed ten replicates of single criterion BO and each replicate is initiated with 30 

random samples. We observed that all replicates consistently converge to optimal design with the 

objective value being −0.562, which corresponds to the design { 𝜃 = 1.49, 𝑃 = 𝑃𝑆, 𝑆 = 𝑂𝑐𝑡𝑦𝑙} 

with material properties 𝑡𝑎𝑛𝛿 = 0.0018, 𝜖 = 2.211 and 𝑈𝑑 = 127.67
𝑘𝑉

𝑚𝑚
. Figure 4-5(A) shows 

optimization history for one replicate and depicts evolution of design during optimization. We 

observe that octyl-modified Silica nanoparticles in PS with low dispersion is ideal to meet our 
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requirements of high 𝑈𝑑, low 𝑡𝑎𝑛𝛿 and 𝜖. These findings are consistent with our previous 

investigations that found 𝑡𝑎𝑛𝛿 and 𝜖 increase with dispersion. Not surprisingly, the choice of 

polymer has a significant impact on the objective as indicated by Figure 4-5 (B). All PMMA based 

designs have large objective values compared to PS based designs. As a consequence, only 16 

PMMA designs were evaluated in total (15 of which were provided in the dataset used for 

initialization) and BO strongly favored evaluation of PS based designs. We also notice that the 

objective value of optimum design (-0.562) shows a 75.9% improvement over pure PS properties 

(-0.319). 

To demonstrate the efficacy of BO in identifying the optimal designs for problems with limited 

computational budget, we compare its performance against Genetic Algorithm (GA) [117]. 

MATLAB’s implementation of GA for mixed integer optimization was used in this study and 

applied to problem formulation defined by Eq. (4-2). For a fair comparison with BO, GA was 

configured to terminate after 65 objective function evaluations (seven generations with a 

population size of eight). Figure 4-5(C) compares the optimal designs identified by 10 replicates 

of GA versus BO. We see that regardless of initial samples provided, BO can consistently converge 

to the optimum design while GA is highly susceptible to the initial population. This shows that the 

BO strategy of utilizing LVGP model uncertainty quantification to intelligently select new designs 

for evaluation makes it robust and faster at approaching global optimum compared with other 

algorithms that do not use this information.  
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Figure 4-5: (A) Optimization history for single criterion BO that converged to objective = -0.562 

along with three designs evaluated in the process (B) Distribution of evaluated designs, grouped 

by polymer type. Dashed lines denote objective values for PS & PMMA polymers (C) Comparison 

of ten replicates of BO and GA for single criterion optimization. 

We also performed optimization using Eq. (4-3) where 𝑈𝑑 is assigned a weight factor of 10. In 

this case, BO converged to design { 𝜃 = 13.52, 𝑃 = 𝑃𝑆, 𝑆 = 𝐴𝑚𝑖𝑛𝑜} with material properties 

𝑡𝑎𝑛𝛿 = 0.0055, 𝜖 = 2.888 and 𝑈𝑑 = 134.601
𝑘𝑉

𝑚𝑚
 . In comparison to optimal design found using 

Eq. (4-2), this design has higher 𝑈𝑑 at the expense of higher 𝑡𝑎𝑛𝛿 and 𝜖 due to more disperse 
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nanoparticles. This exercise demonstrates that approaching a multicriteria design problem using a 

single criterion optimization technique is sensitive to formulation of objective function. 

4.3.2 Results from Multicriteria Bayesian Optimization (MBO) 

70 iterations of MBO were performed starting with 30 random initial samples. Three independent 

LVGP models are used to evaluate the three criteria. Figure 4-6 displays the 2D latent space for 

two categorical variables – choices of polymer and surface modification for the LVGP models used 

in multicriteria optimization. LVGP constrains the first category (PMMA for polymers, Octyl for 

surface modification) to the origin and second category (PS for polymer, Chloro for surface 

modification) to the z1 axis. The Euclidean distance between categories is used to calculate the 

correlation function as indicated in Eq. (2-4). 
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Figure 4-6: Visualization of latent variables for polymer and surface modification variables. Each 

row represents the latent variables estimated by the LVGP model used for corresponding property. 

Figure 4-7 plots the random initial samples and 16 designs that were identified on the Pareto 

front. A noticeable feature in this plot is that the initial samples create two clusters corresponding 

to two polymers under consideration. The cluster located in the low 𝑈𝑑, high 𝑡𝑎𝑛𝛿 and 𝜖 region 

(top left corner in Figure 4-7) exclusively contains PMMA based samples and is not favorable to 

meet the design criteria. This is consistent with the findings in Figure 4-7 (B). On the other hand, 

PS-based samples have higher 𝑈𝑑, lower 𝑡𝑎𝑛𝛿 and 𝜖; suggesting that they are better suited for 

electrical insulation application compared to PMMA samples. This is also reflected in the fact that 

designs evaluated by MBO are predominantly PS based. Notice that the Pareto front obtained by 
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MBO shows significant improvement with regard to random initial samples and thus underlines 

the capability of uncertainty driven MBO to locate improved designs.  The two optimal designs 

identified by single criterion BO are located in different regions of the Pareto front. While we had 

to repeat single criterion BO with different objective formulations, one simulation of MBO 

discovers these designs automatically to present the modeler with a diverse set of designs for 

consideration. 

 

Figure 4-7: Summary of 70 iterations of Multicriteria Bayesian Optimization. SC12 and SC13 

denote optimal single criterion solutions identified from Eq. (4-2) and Eq. (4-3) respectively.  

The influence of design variables on dielectric properties is studied via Figure 4-8, which displays 

the properties of 16 Pareto front identified by MBO. Compared to pure PS properties, PS based 

nanocomposites have higher dielectric properties values. These properties are also positively 

correlated to 𝜃; they increase as dispersion increases. However, the rate of increases decreases 

beyond 𝜃~15. While Chloro modification is ideal for minimizing 𝑡𝑎𝑛𝛿, it also contributes to 
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higher 𝜖. On the other hand, designs with Octyl and Amino surface modifications have lower 𝜖 but 

higher 𝑡𝑎𝑛𝛿 as compared to those with Chloro surface modification. Thus, we see a tradeoff 

between the three properties of interest. Selecting one among the several Pareto front designs for 

detailed analysis and testing depends on the modeler’s preference based on the application, how 

the material is deployed, and device level performance.   

 

Figure 4-8: Influence of design variables on dielectric properties of nanocomposites on Pareto 

front. Dashed lines indicate property of polymer only system. 

Once the optimal design is identified, the corresponding processing condition can be obtained 

by mapping the optimized design variables to processing energy using the PS relationship 

established in our previous work [113]:  
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 If̅iller = f(matrix) sinh2(2 WPF WFF − 1)log (Eγ + 1) + ⁄ 𝐶0, (4-8) 

where If̅iller is the normalized interphase area, f(matrix) and C0 are polymer dependent constants, 

WPF WFF⁄  is the filler-matrix compatibility descriptors and Eγ is the processing energy descriptor 

that we seek.  For illustration, we choose the design (b) in Figure 4-7, favoring high breakdown 

strength, as our optimal solution. Microstructure reconstruction corresponding to 𝜃 = 11.92 was 

performed and 𝐼�̅�𝑖𝑙𝑙𝑒𝑟 was found to be 0.189. For PS, 𝑓(matrix) and C0 are 0.00995 and 0.08798 

respectively. For octyl-modified silica nanoparticles dispersed in PS,  WPF WFF⁄ = 1.15. Plugging 

these values in Eq. (4-8) leads to Eγ = 32.77 𝐽/𝑔. Thus, we can identify designs satisfying 

application specific material properties and deduce processing parameter necessary for 

manufacturing. 

4.4 Summary 

 The efficacy of our data-centric framework was demonstrated through a case study focused 

on insulating nanocomposite design. The design formulation for single and multicriteria BO was 

presented using two qualitative (types of polymer and surface modification) and one quantitative 

(filler dispersion) variables. Modifying the weight assigned to breakdown strength demonstrated 

that single criterion BO is sensitive to objective formulation and does not have a unique solution 

when applied to multicriteria problems. On the other hand, multicriteria BO provides a variety of 

designs representing tradeoffs among dielectric properties, allowing the modeler to select a 

solution based on their preference. Processing energy required for fabrication of optimal design 

was evaluated using processing to structure mapping, to complete the bi-directional traversal 

across PSP paradigms and demonstrate the material genome approach to material design. While 
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LVGP based BO is applicable to any engineering design problem, the unique ability to facilitate 

concurrent optimization of composition and microstructure w.r.t. one or more properties, makes it 

a powerful tool for materials design. This is further exemplified in the next chapter where we show 

that that BO with LVGP is ideally suited to tackle the combinatorial composition optimization 

problems arising in microelectronics design. 
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5 Featureless Combinatorial Optimization for Composition Design 

In the previous chapter, we saw that concurrent design of composition and microstructure can 

be cast as a mixed variable optimization problem. LVGP allowed us to map the mixed variable 

inputs to the response and quantify uncertainty while BO used this information from LVGP to 

guide the search for promising designs efficiently. In some situations, the material properties may 

be entirely determined by the composition and thus materials design reduces to a combinatorial 

optimization problem which seeks to identify the best composition. Since the composition can be 

represented by a set of qualitative variables, we can once again leverage LVGP capability to map 

the qualitative inputs to the material properties and perform BO. In this chapter, we demonstrate 

one such example of composition optimization for discovery of novel metal-insulator-transition 

(MIT) compounds that are touted as promising alternatives to silicon for microelectronic devices. 

Through this example, we demonstrate a specific advantage that LVGP modelling provides for 

material design – a featureless machine learning approach that does not require domain expertise. 

5.1 Introduction to Metal-Insulator-Transition compounds and design challenges 

Upon traversing a critical temperature, the electrical resistivity of a MIT material can change 

by orders of magnitude [118]. Athermal approaches may also trigger the electronic transitions, 

including (chemical) pressure, variable carrier-densities, and applied electromagnetic fields. The 

transformations can be used to encode, store, and process information for beyond von-Neumann 

microelectronics and overcome performance limits of conventional field-effect transistors [119] 

for advanced logic/memory technologies [120].  Because macroscopic MITs occur in materials 
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with diverse chemistries and structures (Figure 5-1(a)1), various microscopic mechanisms – 

electron-lattice interactions, electron-electron interactions, or a combination thereof – lead to large 

variations in critical temperatures and accessible resistivity changes [121, 122]. This diversity 

exacerbates the efficient discovery and optimization challenge of achieving multiple property 

requirements to outperform silicon-based devices [123], including stability, large reversible 

resistivity changes (~105), and above room-temperature operation. 

The aforementioned complexity is ubiquitous in formulating atomic scale material chemistry 

and macroscopic functionality relationships to guide property optimization. Presently, the 

principal solution relies on a better understanding of the underlying materials physics. Numerous 

data-driven machine learning models, however, have shown promising results in deciphering 

nonlinear relationships between materials structure and properties when sufficient training data is 

available [103, 124-128]. The predictive performance (error and efficiency) of these approaches is 

limited by the quality and quantity of the data, typically > O(102), which poses a severe challenge 

to MIT materials design owing to the relatively small size of available dataset of ~ O(101). The 

suitability of the machine learning model is determined by the input dimensionality and dataset 

size, which for high dimensional inputs necessitates large datasets and complex models for good 

predictive performance. A number of sequential materials design strategies have recently emerged 

[78, 128-130] to rescue the lack of data problem. Mostly being based on the Bayesian approach, 

these methods utilize knowledge extracted from existing data to infer properties of unknown 

materials following a step-by-step discovery manner. This sequential optimization method fits well 

 
1 All figures in this chapter are reproduced from Wang, Y., Iyer, A., Chen, W., & Rondinelli, J. M. (2020). Featureless 

adaptive optimization accelerates functional electronic materials design. Applied Physics Reviews, 7(4), 041403, with 

the permission of AIP Publishing. 
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with the regular materials discovery procedure both experimentally and computationally, since 

property evaluations are usually time and effort consuming (e.g., synthesis and simulations). 

Nevertheless, these sequential learning models typically rely on numerical materials descriptors 

(features) whose selection may be informed by domain knowledge or trial-and-error approaches. 

For MIT materials systems which lack of microscopic understanding in how different 

compositions influence the phase transitions, this leads to ambiguity in feature formulation for 

discovery of MIT materials from structure and composition alone rather than through effective 

Hamiltonians [122]. 

 

Figure 5-1: Metal-insulator transition materials and design objectives for the lacunar spinel family. 

(a) The range in resistivity accessible (length of bar) across the MIT and transition temperature for 

a variety of MIT materials. (left inset) The crystal structure of 𝐺𝑎𝑇𝑎4𝑆𝑒8. (right inset) Candidate 

elements on each site of the lacunar spinel structure. (b) DFT-simulated phonon dispersion curves 
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of GaMo4S8 in the rhombohedral ground state, the blue curve corresponds to the Jahn-Teller 

active cluster distortion mode. (inset) The transition-metal cluster with a single apical 𝑀𝑎  atom 

and three basal 𝑀𝑏 atoms. The arrows indicate displacements characterizing the Jahn-Teller active 

phonon mode. The intra-tetrahedral cluster angle 𝜃𝑚  formed by 𝑀𝑏1 − 𝑀𝑎 − 𝑀𝑏2. (c) Electronic 

band structures and projected density of states (DOS in units of states/eV/spin/f.u.) of 𝐺𝑎𝑀𝑜4𝑆8 

in its (right) semiconducting ground state and (left) metallic metastable phase with 𝜃𝑚. The two 

𝑅3𝑚 phases are connected by the Jahn-Teller-type structural distortion with a 𝐹4̅3𝑚 intermediate 

state. (insets) Molecular orbital diagrams of the M4 cluster with different local geometries. (d) 

Design Objective 1 is decomposition enthalpy change and the graphical decomposition pathways 

of two lacunar spinels is shown. The DFT-simulated temperature-dependent log ratio of the 

resistivity in the insulating and metallic phases of lacunar spinels serves as design Objective 2.  

What could we do when there is little data available while the governing materials physics is 

not abundantly clear? Here we demonstrate a generic strategy to overcome the data scarcity as 

well as the feature engineering problems. We utilize multiobjective Bayesian optimization 

(MOBO) with latent-variable Gaussian processes (LVGP) to simultaneously optimize the band 

gap tunability and thermal stability in a family of candidate MIT materials – the lacunar spinels 

(introduced in the next section). With the goal to identify the optimal compositions, among 

hundreds of possible chemical combinatorics with both high functionality as well as 

synthesizability, we successfully retrieved all 12 superior compositions on the Pareto front by 

searching through a small fraction of the total design space. Notably, the chemical compositions 

(i.e., element on each crystallographic site) are all the model requires to guide this discovery 

procedure. No handcrafted features are required in this method, hence featureless learning, making 
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our methodology easily generalizable to other materials design problems. We also showcase how 

this model could offer helpful guidance on making better decisions towards the optimal design—

selecting the next candidate compound to synthesize or simulate. Our adaptive optimization engine 

(AOE) frees researchers from exclusively relying on their chemical intuition, which can require 

an entire career to accumulate, and is particularly valuable when the research budget is limited. 

 

5.2 Design Objectives 

The complex lacunar spinel family 𝐴M𝑎M3
𝑏𝑄8 with trivalent main group 𝐴, transition metal M, 

and chalcogenide 𝑄 ions demonstrate the complexity active in MIT materials design. The structure 

comprises transition-metal clusters (TMC) with M𝑎 and M𝑏 cations at the apical and basal positions 

of the tetrahedra (Figure 5-1(b) inset). Although there are hundreds of possible elemental 

combinations on the four lattice sites in the crystal structure (Figure 5-1(a)), only tens of the 

lacunar spinels have been experimentally reported [131, 132]. For example, GaV4S8 (M𝑎 =M𝑏 =V) 

exhibits a MIT [133], exotic spin textures [134], and multiferroism [135] while GaVTi3S8 shows 

negative magnetoresistance and half-metallic ferromagnetism [136]. Most lacunar spinels are 

narrow-bandwidth semiconductors in their ground states [131, 137]; these electronic properties are 

governed by distortions of the local TMC from the ideal 𝑇𝑑 geometry [138], which manifest as 

low-frequency phonons as shown for GaMo4S8 (Figure 5-1(b), blue curve). Jahn-Teller-type 

distortions, which correspond to elongation along the [111] direction alter the TMC geometry, are 

particularly important; they transform the insulating GaMo4S8 ground state into a metastable 

metallic phase (Figure 5-1(c)). The MIT arises from a redistribution of electrons among the 

structure-driven orbital hierarchy (Figure 5-1(c) insets). Furthermore, these phases host low energy 
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electronic structures, discernible from the projected density of states (pDOS) in Figure 5-1(c), that 

arise from the different M𝑎 and M𝑏 sites. This capability to exhibit distinct and tunable electronic 

phases poses a challenge in the design of lacunar spinels from physics-based models while also 

making them an ideal system for MIT performance optimization. 

In pursuit of novel MIT materials with superior performance, we specifically seek lacunar 

spinels that exhibit high thermodynamic stabilities and large resistivity-switching ratios, which we 

formulate as two design objectives for our materials discovery task. We reduce the approximately 

O(103) compositional space to 270 candidates that maintain a 1M𝑎 to 3M𝑏 ratio. (𝐴M2
𝑎M2

𝑏𝑄8 

compositions are excluded as they remove the 𝐶3𝑣 symmetry fundamental to the MIT; Cr is also 

excluded from occupying the M𝑏 site, because it destabilizes [139] the cluster.) This design space 

extends the known composition space that have been experimentally synthesized; therefore, it is 

important to determine the crystal stability, i.e., whether the selected chemical combination forms 

a thermodynamically stable lacunar spinel structure. To that end, we define the first design 

objective as the decomposition enthalpy change (Δ𝐻𝑑, Figure 5-1(d)) and use density functional 

theory (DFT) simulations to evaluate formation energies (see Chapter 9.3). Materials with larger 

Δ𝐻𝑑  are expected to be more synthesizable [140] and stable during operation, making it a useful 

filter to prioritize compounds for subsequent theoretical analysis and synthetic processing. The 

second design objective is the ground state band gap (𝐸𝑔). We use it as a proxy for the resistivity-

switching ratio since 𝐸𝑔 is positively correlated with the resistivity change between different 

electronic states (Figure 5-1(d)). A larger 𝐸𝑔 also allows for greater band-gap tunability through 

control over the 𝐶3𝑣 distortion, which is a desirable feature for programmable electronics. 

Importantly, because 𝐸𝑔 is small for most MIT materials, stability is expected to be lower and more 
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difficult to achieve than that of nonpolymorphous compounds with majority ionic or covalent 

bonding [141].  

5.3 Adaptive Optimization Engine 

The nonlinear responses of both design objectives bring severe challenges to compound 

optimization beyond those amplified by chemical combinatorics using data-driven models. We 

overcome these obstacles by implementing a cyclic adaptive optimization engine shown in Figure 

5-2, which consists of four iterative tasks (vide infra): property evaluation, aggregation of data (in 

a repository), featureless learning, and composition optimization. Beyond returning a predictive 

model capable of predicting properties from compositions alone, our iterative AOE leverages 

earlier approaches [78, 128, 129] to deliver materials with superior performance by design of 

composition-based solutions. In contrast to single objective design which often has a unique 

solution, multiobjective design aims to uncover the Pareto front—a set of non-dominated designs 

where no individual objective can be improved without deterioration in other objectives. In other 

words, the Pareto front represents the optimal trade-offs that can be achieved amongst competing 

objectives. There is no relative importance of multiple objectives in the process of identifying the 

Pareto front, which simply offers the designer several options from which to select the subset of 

compositions for further investigation and development. Since the designer’s preference may be 
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subjective or informed by other criteria (e.g., cost), herein we present only the framework for 

Pareto front discovery and its comprising compositions. 

 

Figure 5-2:  Comparison of conventional (feature-required) machine learning with the featureless 

adaptive optimization engine. Upper panel: The workflow of a conventional feature-based 

machine learning model typically involves data acquisition, feature engineering, model 

construction, and property prediction. Lower panel: The adaptive materials discovery scheme. 

The AOE has the important advantage of bypassing the feature engineering procedure as in 

conventional ML methods; it learns properties directly from the chemical composition at each site 

(i.e., 𝐴, M𝑎, M𝑏, 𝑄). Gaussian Process (GP) is ideally suited for this problem, because (a) it 

interpolates data and hence is ideal for surrogating deterministic responses such as DFT results, 

and (b) it provides a principled statistical representation for uncertainty quantification, which is 

essential for Bayesian optimization. Latent-variable methods provide a fundamentally different 
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approach to modelling categorical design variables by alleviating the need for handcrafted 

features. It transforms categorical variables (i.e., elemental compositions) into a continuous 

numerical space. Utilizing these approaches in the AOE, we achieve featureless learning and then 

perform composition optimization under the multiple objectives through LVGP. 

We start the MIT-materials AOE for the lacunar spinel family through an initial design of 

experiment (DoE) consisting of four experimentally known compounds within the family (i.e., 

GaMo4S8, GaV4S8, GaNb4Se8, and GaTa4Se8) and eight new compositions generated by 

discretized Latin Hypercube Design (LHD) [142] (Figure 5-3). A four-dimensional Latin 

Hypercube Design of size eight is generated, where each dimension corresponds to a crystal site 

(e.g. A, Ma, etc.). Since the four known compounds are all gallium-based, we only consider Al and 

In for the A site design. (b, c) Each dimension is evenly divided into a number of grids, each grid 

represents one candidate elemental composition at that crystal site. For instance, the Q site is 

divided into three grids because there are three candidate elements (S, Se, Te) on that site. The 

designed composition could then be determined using the grid-composition correspondence. For 

example, Design ID Number 1 (D1) resides in the grid corresponding to {Al, Mo, V, S}; therefore, 

its composition is AlMoV3S8. This procedure ensures a variety of elemental combinations within 

the initial DoE set, where each candidate element will appear at least once, so that the model has 

knowledge about different elemental contributions to the design objectives. 
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Figure 5-3: Design of experiment (DoE) for the complex lacunar spinel family. (a) A four 

dimensional LHD of size eight and its mapping to crystal sites for the lacunar spinel problem. (b,c) 

Location of designs listed in (a) in the four dimensional space which is discretized based on number 

of levels to be allocated along each dimension. 

Next, we use high-fidelity DFT simulations to evaluate Δ𝐻𝑑 and 𝐸𝑔 (see Chapter 9.3). This is 

the most resource-intensive step among the four tasks; therefore, it is desirable to iterate through 

the AOE (property evaluation) step as few times as possible. Although it is application dependent, 

AOE can be terminated if a compound with target properties is discovered, or the budget 

(computational/experimental) has been exhausted. Then, we create a data repository that contains 

entries for both composition and the evaluated properties. Unlike other ML methods, we do not 

rely on a large number of existing data at either the onset or later in the learning process. 
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We then construct a LVGP model by mapping the elemental compositions (e.g., Al, Ga, In) into 

a two-dimensional (2D) latent space (Figure 5-2 lower right inset) where the relative positions of 

elements are obtained using maximum likelihood estimation (MLE). This latent space 

representation enables us to construct Gaussian process surrogate models for the unknown 

underlying design objectives, Δ𝐻𝑑 and 𝐸𝑔, as a function of composition. The MOBO step then 

begins, and we use the LVGP models to predict Δ𝐻𝑑 and 𝐸𝑔 of the unexplored compositions in our 

design space; we choose the next candidate composition for evaluation using the expected 

maximin improvement (EMI) as the acquisition function, which quantitatively describes the 

performance gain compared against the compositions at the current Pareto front. The EMI is 

defined in such a way that both objectives have equal weighting, and the objective properties are 

normalized with respect to the current min-max values. This acquisition function considers both 

exploration of compositions with high uncertainty (Figure 5-2, shaded ellipses, lower left inset) as 

well as exploitation of candidates with high performance gain. The composition with highest EMI 

is then selected for DFT simulation (property evaluation), at which point another AOE cycle 

commences. 

The aforementioned iterative optimization procedure progresses and explores the available 

design space. One new lacunar spinel composition is evaluated and added to repository after each 

AOE iteration. The LVGP models are also updated in each iteration as more knowledge becomes 

available. Owing to the high computational cost of the property evaluation process, we terminate 

the optimization process after searching through 1/3 of the entire design space. In order to validate 

the effectiveness of this method, we ultimately evaluated Δ𝐻𝑑 and 𝐸𝑔 with DFT calculations of all 

270 compositions within the design space by expending approximately 3 × 106 CPU hours. 
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5.3.1 Adaptive Optimization Engine Implementation 

The adaptive materials discovery scheme starts from an initial set of design of experiments (DoE), 

where system variables, design objectives, and design space are first defined for the problem, 

providing a few O(101) candidate materials to initialize the discovery procedure. The target 

material properties (design objectives) are evaluated either by experimental measurement or 

theoretical simulations. Candidate composition and its evaluated properties are then added to a 

data repository, which initially may either be empty or only contains entries for existing materials 

within the design space. Its size grows as more candidate materials are evaluated during the 

adaptive optimization process. Featureless learning involves directly learning from the chemical 

composition of materials comprising the data repository by mapping each compositional variable 

into a two-dimensional latent space (spanned by 𝑧1 and 𝑧2) using maximum likelihood estimation, 

which enables the construction of a LVGP surrogate model. Two independent LVGP models with 

Gaussian correlation function are fit at each iteration to predict 𝐸𝑔 and Δ𝐻𝑑, respectively. In each 

LVGP model, categorical variables 𝐴, M𝑎, M𝑏 and 𝑄 are represented by a 2D numerical latent 

variable vector to evaluate their correlation. Note that each categorical variable resides in its unique 

latent space. For the LVGP model predicting 𝐸𝑔, let 𝒛𝐴  =  [𝑧1
𝐴, 𝑧2

𝐴] denote the latent variable for 

the 𝐴 site. Similarly, 𝒛Ma, 𝒛M𝑏 and 𝒛𝑄 denote the latent variables for M𝑎, M𝑏 and 𝑄 site, respectively. 

Then, the Gaussian correlation (𝑟) between 𝐸𝑔 of two compounds, e.g., GaMoV3S8 and 

AlNbW3Se8, is: 
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𝑟(𝐸𝑔
𝐺𝑎𝑀𝑜𝑉3𝑆8 , 𝐸𝑔

𝐴𝑙𝑁𝑏𝑊3𝑆8)

= exp (−||𝑧𝐺𝑎 − 𝑧𝐴𝑙||
2

2

− ||𝑧𝑀𝑜 − 𝑧𝑁𝑏||
2

2

− ||𝑧𝑉 − 𝑧𝑊||
2

2

− ||𝑧𝑆 − 𝑧𝑆𝑒||
2

2
), 

(5-1) 

 

where ||. ||2
2  represents the Euclidean 2-norm. This procedure is used to compute the correlation 

matrix for properties of all evaluated compositions. The positioning of latent variables 𝒛𝐴, 𝒛M𝑎, 

𝒛M𝑏, and 𝒛𝑄 in their corresponding latent space are estimated via MLE as described in Chapter 2.3. 

The LVGP model for Δ𝐻𝑑 also utilizes the 2D latent variable representation 𝜿𝐴, 𝜿M𝑎, 𝜿M𝑏, and 𝜿𝑄 

as previously defined to evaluate the correlation 𝑟(𝛥𝐻𝑑
𝐺𝑎𝑀𝑜𝑉3𝑆8 , 𝛥𝐻𝑑

𝐴𝑙𝑁𝑏𝑊3𝑆𝑒8) in a similar manner. 

Multi-objective Bayesian optimization is then performed with the LVGP models to obtain the next 

candidate material composition with the highest expected maximin improvement (EMI) value. 

Multiobjective Bayesian optimization includes first defining the lacunar spinel family 𝐴M𝑎M3
𝑏𝑄8 

with 𝐴 ∈ {Al, Ga, In}, M𝑎 ∈ {V, Nb, Ta, Cr, Mo, W}, M𝑏 ∈ {V, Nb, Ta, Mo, W} and 𝑄 ∈ {S, Se, 

Te}. The design space (𝑪) comprises 270 compounds, each compound is represented by four 

design variables 𝐴, M𝑎
, M𝑏 and 𝑄 with three, six, five, and three choices, respectively. Our 

objective is to maximize 𝐸𝑔 and Δ𝐻𝑑, which is represented in standard optimization formulation 

as: 

 min
𝒄∈𝑪

−𝐸𝑔(𝒄), −∆Hd(𝒄), 
(5-2) 

Starting from the initial dataset, the AOE evaluates new candidate compounds by gauging their 

improvement in the design objectives. Here, we use the expected maximin improvement (EMI) 
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metric [110] to guide the adaptive sampling framework. The Maximin Improvement (𝐼𝑀) for 

compound 𝒄 is: 

 𝐼𝑀(𝒄) =  min
𝒄𝒊∈𝑪𝑷𝑭

{max(𝐸�̃�(𝒄) − 𝐸�̃�(𝒄𝒊), ∆𝐻�̃�(𝒄) − ∆𝐻�̃�(𝒄𝒊), 0)}, (5-3) 

where 𝑪𝑃𝐹 is the current set of Pareto front compositions. To facilitate the comparison of objectives 

in Eq. (5-3), we scale the value of each design objective 𝑃 using the scheme 𝑃(·) =
𝑃(·)– 𝑃𝑚𝑖𝑛

𝑃𝑚𝑎𝑥 – 𝑃𝑚𝑖𝑛
 

where 𝑃max and 𝑃min are the maximum and minimum value of property observed so far. By scaling 

the properties, we ensure all design objectives are comparable and viewed equally. The EMI of 

compound 𝒄 is defined as the expected value of 𝐼𝑀: 

 EMI(𝒄)  = 𝔼[𝐼𝑀(𝒄)] , 
(5-4) 

We evaluate the EMI through Monte Carlo sampling with 500 trials. At each AOE iteration, the 

EMI is calculated for all compositions that are not yet present in the data repository. The 

composition with largest EMI will be sampled next in property evaluation and then added to the 

data repository. Figure 5-2 highlights these steps. The model accounts for uncertainty with the 

95% confidence interval shown as the shadowed area around the new compositions (the green 

symbols). In the lower left inset, the green star composition outperforms the green circle 

composition, and will be passed to the next property evaluation procedure. The iterative 

optimization step continues until all compounds satisfying the objectives are discovered, forming 

the Pareto front, or computational resources expire. 

 

5.3.2 Adaptive Optimization Engine Performance 

Figure 5-4(a) displays the results of the AOE. We successfully identify all 12 materials at the 

true Pareto front within 53 iterations (red asterisks, upper panel)—compositions and objective-
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related properties are enumerated in Figure 5-4. Combined with the 12 compounds from our initial 

DoE, we explored less than 25% of the entire design space before identifying all lacunar spinels 

on the Pareto front. Interestingly, Pareto-front compositions are mostly found with high EMI 

values, showing that our model makes beneficial recommendations on which composition to 

evaluate next. High prediction uncertainty likely explains why a Pareto-front composition is not 

identified for some iterations with a large EMI. The EMI values reduce to nearly zero after all 

Pareto front compositions are identified (blue, upper panel) since all candidates not sampled are 

dominated by the Pareto front compounds. We also show the absolute error in the LVGP-predicted 

Δ𝐻𝑑 (pink) and 𝐸𝑔 (orange) values of the evaluated composition at each iteration to further 

demonstrate the effectiveness of our model (Figure 5-4 (a)). We find a general decreasing trend in 

error and therefore better model predictability as it becomes aware of more composition-property 

knowledge. 

 

Figure 5-4:The results of adaptive optimization on the lacunar spinel family. (a), Upper panel: 

Evolution of the highest expected maximin improvement (EMI, blue line) and percentage of true 
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Pareto front compounds identified (green line) as a function of iteration number. Results of the 

first 60 iterations are shown here. The red asterisks represent sampling points where a true Pareto 

front design is successfully identified. Lower panel: The moving average of absolute error in the 

predicted 𝐸𝑔  and 𝛥𝐻𝑑  values for a compound selected by the acquisition function for property 

evaluation. (b), The distribution of initial design of experiment and the first 60 evaluated 

compounds. Compounds evaluated in earlier stages have darker colors. True Pareto front designs 

are marked with red stars. (c), Distribution of Bayesian optimization-sampled elemental 

compositions for the first 60 iterations. (d, e), Latent space representation of elemental composition 

at different crystal structure sites in the 𝛥𝐻𝑑   and 𝐸𝑔   surrogate model, respectively. Results 

obtained after 60 iterations. 

Figure 5-4 (b) shows the history of composition explored by the AOE for the first 60 iterations. 

The initial DoE sets are relatively scarcely distributed away from the true Pareto front (marked as 

red asterisks), yet the model explores regions far from that covered by the DoE sets and is able to 

identify 75% of Pareto front compositions within the first 40 iterations. First, we begin to 

understand this performance by examining the distribution of elements sampled by the MOBO 

(Figure 5-4 (c)). Our model does not exhibit much compositional bias upon sampling elements for 

the 𝐴 site; however, it shows clear preferences for choosing certain elements on other sites. V and 

Mo are sampled more frequently on the basal M𝑏 site, while Nb and Ta are less favored on the 

apical M𝑎 site. Se is also preferred over S and Te for the 𝑄 site. 

Then we examine the 2D latent space representations for both design objectives obtained after 

60 iterations of AOE (Figure 5-4 (d) and (e)). The relative positioning of elements in the latent 

space reflects correlations in their influence on properties; elements in close proximity exhibit 
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similar impact. Interestingly, different transition metals exhibit distinct correlation patterns across 

various sites and objective properties. This variation leads us to conclude that (𝑖) the transition 

metals contribute to stability and band gap in different and unexpected ways, and (𝑖𝑖) the lack of 

any resemblance in element positioning in the site-dependent latent spaces, except for the M𝑎 site, 

to the periodic table indicates that chemical-intuition-based MIT design within the lacunar spinels 

is highly nontrivial. For example, chromium is located far from the other elements in the M𝑎 latent 

space, indicating that its influence on properties is distinct. Indeed, Cr containing compounds have 

significantly lower 𝐸𝑔 and higher Δ𝐻𝑑 (Figure 5-5). 

 

Figure 5-5: Composition-property relationships at the transition-metal sites. Distribution of DFT-

evaluated properties of the complex lacunar spinel family with 12 initial DoE sets and 60 iterations 

of AOE. This data presents the impact different elemental compositions at the transition metal sites 
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(i.e., M𝑎 and M𝑏) have on the two design objectives (i.e., 𝛥𝐻𝑑  𝑎𝑛𝑑 𝐸𝑔). (a, b) decomposition 

enthalpy change distribution at M𝑎, M𝑏 site. (c, d) band gap distribution at M𝑎, M𝑏 site. 

The aforementioned performance is robust as revealed by our multi-trial results (Figure 5-6(a)), 

where we find the AOE successfully identifies 90% of the true Pareto-front compositions by 

exploring 30% of the design space with different initial DoE sets. In each trial, the initial DoE set 

consists of the same four known lacunar spinel compounds and eight new compositions designed 

by the DoE procedure.  Since LHD is inherently random, repeating the DoE procedure will lead 

to another randomly generated DoE set. Therefore, we use this method to run multiple trials of 

AOE with different DoE sets. The size of DoE is another parameter for the designer to select in 

the AOE framework. Since the computational budget is often the bottleneck in discovery, the 

designer must allocate it wisely between the DoE and AOE. We investigated this problem using a 

set of four DoE sizes: 6, 12, 18, and 24, because there are six elements admissible at the M𝑎 site 

(Figure 5-6 (b)). In each case, the computational budget is fixed to 40 and 60 simulations, and they 

are split between DoE size and AOE iterations. For example, 40 simulations can be split into DoE 

of size 6 and 34 iterations of AOE whereas a DoE of size 12 corresponds to 28 iterations of AOE, 

etc. Here, the four known gallium based compounds were not explicitly included in the DoE. We 

find that using a small DoE to initialize AOE (conversely, allocating more simulations to the AOE) 

is advisable, as its uncertainty guided exploration is more likely to discover Pareto compositions 

(Figure 5-6 (b)). 



104 

 

 

Figure 5-6:  Robustness of the Adaptive Optimization Engine (AOE). (a) The optimization history 

for 10 replicates of AOE, each initialized with a distinct set of 12 initial DoE compounds. Solid 

line shows the median percentage of true Pareto front compounds discovered at each iteration. The 

shaded area represents the median absolute deviation across 10 trials. (b) The fraction of Pareto 

front compounds discovered when the computational budget is fixed to 40 and 60 simulations. 

Filled circles and their corresponding error bars represent the median and median absolute 

deviation respectively. (c,d) The optimization history of 10 replicates of single-objective Bayesian 

optimization, targeting maximum band gap (𝐸𝑔) and stability (∆𝐻𝑑), respectively. The 

initialization method is the same as described in (a). Global optimum (𝐸𝑔
∗  =  0.626 𝑒𝑉, 𝛥𝐻𝑑

∗  =

 3.167 𝑒𝑉) is identified within 10 % exploration of design space. 
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Single-objective Bayesian optimization on both band gap (𝐸𝑔) and stability (Δ𝐻𝑑) are also 

performed using Expected Improvement acquisition criterion [54], as shown in Figure 5-6 (b, c), 

respectively. Unsurprisingly, the model shows much higher efficiency in identifying the optimal 

composition than in the multi-objective task, where less than 10% of the entire design space is 

explored. We also notice that the model is always able to quickly infer the compound with highest 

stability, as depicted by the steep curve in Figure 5-6 (c). Intuitively, thermodynamic stability is 

straightforward to linearize from elemental reference states whereas the band gap is determined 

by the valence electronic structure and multiple interactions. Therefore, it might be easier for the 

model to decode the relationship between composition and stability, while learning the band gap 

dependency requires accumulating more knowledge. 

5.3.3 Pareto Compound Analysis 

We use DFT simulations to examine the properties of the identified Pareto-front compositions, 

focusing on 𝛥𝐻𝑑 , 𝐸𝑔 and the Jahn-Teller active phonon 𝜈𝐽𝑇  involved in the MIT (Table 5-1). We 

find most Pareto-front compositions consist of two different cations on the M𝑎 and M𝑏 site, only 

three have M𝑎 = M𝑏, with 75% of the optimized materials being selenides. GaV4Se8 is the only 

Pareto front compound previously synthesized, and verified to exhibit resistive-switching behavior 

under an applied electric pulse [143]. All compounds exhibit 𝑅3𝑚 symmetry and are dynamically 

stable in their ground state (𝜈𝐽𝑇  > 0). The phonon frequencies of the selenides, including 𝜈𝐽𝑇  are 

lower than those of the sulfides. All of the designed lacunar spinels also exhibit semiconducting 

gaps with semilocal exchange correlation and static Coulomb interactions and exhibit nonzero 

electric polarizations. Compositions with larger band gaps tend to have lower stability as 

determined by 𝛥𝐻𝑑: 2/3 are stable (𝛥𝐻𝑑  > 0, indicating decomposition is endothermic), whereas 
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four of the 12 compounds comprising Mo have small values of 𝛥𝐻𝑑  < 0, which could nonetheless 

be stable and synthesizable [140, 144]. Typically, highly ionic materials with large electronic band 

gaps are also quite stable (e.g., NaCl). However, we find a clear trade-off between these two 

properties for the Pareto front compositions. One possible reason is because all of these candidate 

materials are small-gap semiconductors (with 𝐸𝑔  <  0.65𝑒𝑉) due to metal-metal and 

semiconvalent bonding while also being polymorphous; therefore, these lacunar spinels are 

unlikely to follow the general trend. In addition, Figure 5-7 shows that the transition metals 

contribute to 𝐸𝑔  and 𝛥𝐻𝑑  in quite different ways, which could lead to this functionality-stability 

trade-off. The AOE, however, does not possess knowledge of chemistry beyond the lacunar spinel 

family; yet it is able to resolve the 𝛥𝐻𝑑 − 𝐸𝑔  relationship regardless of whether there is a trade-off 

or positive correlation. These findings reinforce the effectiveness of this model. Although the 

ground states of these materials are all semiconducting, we find two different electronic transitions 

upon traversing the ideal TMC geometry (𝜃𝑚  =  60°): the expected (Type I) metal-to-insulator 

transition and an unexpected (Type II) semiconductor-to-insulator transition (SIT). Figure 5-7(a) 

shows the changes to the electronic structure for the MIT lacunar spinels AlTaV3Se8 and 

InWMo3Se8 with the insulating state (lower panel) always lower in energy than the metastable 

metallic phase (upper panel) after the Jahn-Teller-type distortion (𝜃𝑚  ≠  60°, Figure 5-7). The 

pDOS of these compounds show that the metallic state in the Type I transition arises from cluster 

distortion-triggered orbital ordering and occupancy changes, similar to the mechanism depicted in 

Figure 5-7(b). However, the metallic states are different owing to the chemistry of the metals 

comprising the TMCs. We also find that the basal M𝑏 site plays a more decisive role near the Fermi 

level with minor contribution from the apical M𝑎 site. The M𝑎 site on the other hand, plays an 
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active role in the Jahn-Teller-active phonon owing to differences in atomic mass (Figure 5-7). The 

remaining lacunar spinels in Figure 5-7(a), InNbMo3Se8, InTaMo3Se8, InCrV3S8, and InWV3S8, 

exhibit a Type II transition. The lower and upper panel show their ground and metastable state 

pDOS, respectively. Interestingly, some compounds undergo singlet formation and transform into 

a nonmagnetic phase (e.g., InNbMo3Se8) while others remain ferromagnetic after the cluster 

distortion (e.g., InCrV3S8) owing to competition between spin-pairing and magnetic interactions 

[145]. 

 

Figure 5-7: DFT-simulated electronic properties of selected lacunar spinel compositions at the 

Pareto front. (a) The projected electronic density of-states (DOS) of AlTaV3Se8, InWMo3Se8, 

InNbMo3Se8, InTaMo3Se8, InCrV3S8, and InWV3S8. The lower panel of each composition shows 

the ground state electronic structure and the upper panel shows the DOS of the metastable phase 
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after the Jahn-Teller distortion. Both panels are normalized and span a range of 15 states per 

formula unit for each spin channel (vertical axis). AlTaV3Se8, InWMo3Se8 exhibit metal-insulator 

transitions whereas the other compounds show semiconductor-to-insulator transitions. (b) The 

DFT relative energies and band gaps of InWMo3Se8 and InTaMo3Se8 as a function of the cluster 

distortion angle 𝜃𝑚. InTaMo3Se8 undergoes a semiconductor-to-insulator transition with a metallic 

intermediate state for 𝜃𝑚  =  60°. (c) Simulated DC resistivity of the compounds in (b) for their 

corresponding metallic, semiconducting, and intermediate states. 

Last, we model the switching process and resistivity upon structural distortion for InWMo3Se8 

(Type I) and InTaMo3Se8 (Type II) by modulating the amplitude of the 𝜈𝐽𝑇  atomic displacements 

for each material in both the (insulating) ground and (metallic or semiconducting) metastable 

states. The DFT simulated energy and corresponding band gap at different cluster angles (𝜃𝑚) are 

shown in Figure 5-7 (b). Both compounds show first-order transitions. Owing to the small changes 

in the TMC geometry required for switching, readily available external stimuli could be used to 

trigger the transitions [133, 146, 147]. The simulated DC resistivity of InWMo3Se8 and 

InTaMo3Se8 clearly shows the promising functionality of these newly discovered compositions in 

the lacunar spinel family (Figure 5-7(c)). Since we successfully identify all 12 Pareto-front 

compositions by searching through less than 25% of the design space, our work demonstrates the 

efficiency of featureless adaptive materials discovery for electronic materials design. The 

featureless AOE is particularly useful when data availability and physical understanding of the 

target materials system is limited at either the atomic or microstructural scale. 

Our multiple property objectives of high stability and large insulating band gaps were achieved 

by using Bayesian optimization (BO) for MIT materials-composition design without explicitly 



109 

 

constructing features (descriptors) via latent-variable Gaussian process implemented in our 

adaptive optimization engine. We successfully identified all 12 Pareto-front lacunar spinel 

compositions by searching through less than 25% of the design space. Since the Utopian 

composition with both high functionality and stability (i.e., the upper right corner of Figure 5-4(b)) 

cannot be realized, the Pareto front illustrates the trade-offs among objectives. This information is 

beneficial to materials scientist as it aids in the selection of candidate materials to further 

investigate or deploy. The selection rules will depend on the designer’s preferences and whether 

to favor one property over others as well as their willingness to compromise. Therefore, we report 

the steps needed to identify all Pareto designs to quantify our model efficiency. Because these 

materials have garnered much research attention in recent years owing to the richness of their 

fascinating physical behaviors (e.g., MITs, skyrmion lattices, and superconductivity), we 

anticipate the newly identified lacunar spinels will be pursued experimentally in search of these 

phenomena. 

Table 5-1: DFT-evaluated ground state properties of the Pareto front compounds. NOI is the 

number of iterations taken to discover the compound during the adaptive optimization process. 

Values of Δ𝐻𝑑 > 0 (units of eV f.u.−1) indicate an endothermic reaction occurs and the stable 

compound disfavors decomposition. 𝐸𝑔 is the DFT band gap in eV. 𝜈𝐽𝑇 is the frequency (THz) of 

the Jahn-Teller-type phonon involving the TMC. 𝑃 is the electric polarization in 𝜇C cm−2. The 

value of 𝜃𝑚   in the insulating ground state and transition type, Type I (MIT) or Type II (SIT), are 

also specified. 

Compound NOI Δ𝐻𝑑 𝐸𝑔 𝜈𝐽𝑇 𝑃 𝜃𝑚 Type 

InWV3S8 4 0.09 0.58 5.83 0.56 65.0 II 

AlCrV3Se8 8 3.17 0.19 3.77 1.87 56.4 II 

InMo4Se8 14 -0.69 0.62 4.55 1.08 63.4 I 
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InWMo3Se8 19 -0.99 0.63 4.43 0.24 63.8 I 

InCrV3S8 20 2.59 0.40 4.75 0.28 56.6 II 

AlCrV3S8 21 2.63 0.39 5.81 1.02 57.0 II 

InCrV3Se8 25 3.10 0.22 3.45 0.58 56.0 II 

InTaMo3Se8 28 -0.88 0.62 4.25 1.38 54.8 II 

AlTaV3Se8 38 0.56 0.56 3.90 0.15 57.3 I 

AlV4Se8 47 1.06 0.46 4.08 2.80 54.9 I 

InNbMo3Se8 49 -0.66 0.59 4.44 0.75 55.2 II 

GaV4Se8 53 1.18 0.44 4.09 2.37 55.0 I 

 

5.4 Summary 

Although we have seen an increasing emphasis on using Bayesian optimization for materials 

design, previous work relied heavily upon handcrafted features, which is a challenging task, or 

single objective optimization. The former usually requires either knowledge of influential features 

based on theory and literature or large datasets to perform sensitivity analysis and correlation 

analysis to identify features that influence properties of interest. In the lacunar spinel MIT 

materials design, the scientific community is limited by chemical intuition as well as large datasets 

to identify appropriate features. This hinders the application of traditional BO implementations for 

MIT design. The propensity to use features arises mainly due to a lack of accurate and efficient 

machine learning methods to model categorical inputs. Here we showed LVGP can circumvent 

feature identification by directly modelling elements as categorical variables. The mapping of the 

categorical variables into low-dimensional quantitative latent variables provides an inherent 

ordering for the categories and physics-based dimensionality reduction. Like conventional 

Gaussian process models, the LVGP model provides uncertainty quantification, which is crucial 
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for employing the BO strategy for material composition optimization. LVGP enables featureless 

learning and subsequently featureless BO, making it a generic step forward in machine learning 

and materials design. 

The AOE we demonstrated is theoretically more efficient than evolutionary algorithms for 

identifying the Pareto frontier in a complex, combinational design space. Although designing 

materials under a single criterion is more efficient, such efforts may not meet the requirements of 

deployment. For lacunar spinels investigated here, maximizing 𝐸𝑔  exclusively leads to an unstable 

composition while maximizing Δ𝐻𝑑  exclusively leads to a composition with a small bandgap. In 

contrast, MOBO identifies the Pareto front to delineate the trade-off between materials properties 

and allows the designer to choose compositions for detailed study. In this context, the need to 

perform more iterations of MOBO within the AOE is justified. Indeed, it is typically not the sole 

goal to find all Pareto front designs, but rather to identify the best candidates within a limited 

research budget. The AOE clearly provides an efficient way to minimize the effort towards a better 

design by suggesting the next experimental design. 

Similar to forward materials design demonstrated here, inverse materials design [148] can be 

cast as an optimization problem and tackled via the AOE framework. Although forward design is 

achieved with the objective of maximizing the desired properties, inverse design can be 

accomplished by redefining the objective as the minimization of the difference between the 

predicted and target properties. The design space, i.e., the choice of admissible elements, must be 

defined appropriately to ensure the target properties are achieved. To that end, our work advances 

materials innovation for forward and inverse design of both inorganic (as shown herein) and 

organic materials, such as identification of new quantum materials, design of protein sequence in 
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biomaterials, and monomer sequence in polymeric materials. It is particularly useful when data 

availability and physical understanding of the target materials system is limited at either the atomic 

or microstructural scale. This methodology could be further extended to mixed-variable 

optimization problems, e.g., co-design of composition and chemical stoichiometry through 

doping, which we are now actively developing. 
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6 Descriptor Aided Bayesian Optimization for Mixed Variable Materials 

Design 

 In Chapters 4 and 5, we have shown the effectiveness of Bayesian Optimization for mixed 

variable material design. Using LVGP to model the design objectives and quantify uncertainty 

allows us to seamlessly integrate qualitative variables in the design process. As noted previously, 

the featureless approach to material design enabled by LVGP is an extremely advantageous owing 

to the general lack of knowledge of all underlying numerical variables – commonly referred as 

features / descriptors, that distinguish the behavior of levels.  However, there are often situations 

when domain knowledge may help deducing some of the descriptors that influence material 

property. For example, Balachandran et al. [90] deduced orbital radii of M, A and X-atoms as 

features for designing the elastic properties of M2AX compounds. Their decision to use these 

features were guided by prevalent domain knowledge indicating a fundamental relationship 

between the electronic charge density and elastic response of materials. Similarly, Herbol et al. 

[149] utilized relative dielectric constant and density as descriptors for solvent in their effort to 

identify optimal combinations of perovskite. Although these descriptors only represent a small 

fraction of all descriptors that influence the behavior of levels, they could be beneficial in BO 

which relies on a small dataset to estimate the objective behavior over the design space. In this 

context, it behooves us to examine the benefits of using descriptors when they are available, in 

conjunction with the LVGP for BO.  

In this chapter, we investigate the utility of descriptors under two major themes: 
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i. For mixed variable optimization problems with low dimensional qualitative variable (~ 

<15 levels for all qualitative variables), we will investigate whether the inclusion of 

descriptors can expedite the convergence.  

ii. For mixed variable optimization problems with least one high dimensional qualitative 

variable (at least one qualitative variable >15 levels), we will investigate new methods to 

leverage the knowledge possessed by descriptors to inform LVGP of the influence of levels 

which have not been observed. For such problems, initiating BO is computationally 

expensive since we require the training dataset to contain at least one observation per level 

per qualitative variable. Consequently, the ability to initiate BO with a small dataset 

containing a subset of selected levels presents a significant advancement. 

6.1 Review of descriptor based Bayesian Optimization 

Descriptor based machine learning and material design has been prominent in the age of data-

driven material science. The motivation to use descriptors are twofold: (a) descriptors with strong 

correlation with material properties can lead to machine learning model with high accuracy for 

small/medium sized datasets and, (b) using descriptors as inputs to machine leaning model can 

circumvent the design representation issues encountered when dataset contains observations from 

multiple materials families (for e.g., binary, ternary, quaternary etc.). While the latter is important 

and justifies further examination, we will limit our discussions to the first motivation in this 

chapter. 

Identifying informative descriptors can be accomplished in two ways: (i) domain knowledge 

provided by experts or collected from literature, (ii) employing feature engineering techniques to 

identify a small set of uncorrelated descriptors using available dataset. Balachandran et al. [90] 
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used domain knowledge to select orbital radii of M, A and X-atoms as features for designing the 

elastic properties of M2AX compounds. Yuan et al. [150] utilized common feature engineering 

techniques such as Pearson Correlation (to remove correlated descriptors) and Gradient Boosting 

(for ranking descriptors based on their importance) to identify seven descriptors from a pool of 37 

for BO based discovery of piezoelectric. In a similar spirit, Shields et al. [151] used Pearson 

correlation to prune the set of descriptors for chemical reaction optimization. More examples of 

feature based BO applied for material design can be found in the review article by Lookman et al. 

[78]. 

In some cases, a large number of descriptors are required to fully capture the effects of design 

variables on the objective. A high-dimensional input subsequently adds to the complexity of 

modelling the objective with a small dataset. Researchers have devised new methodologies to 

tackle such scenarios. The COMBO (Common Bayesian Optimization Library) proposed by Ueno 

et al. [152] suggested using random feature maps to approximate a gaussian process with Bayesian 

linear model to reduce computational cost. Ling et al. [129] proposed the FUELS (Forrest with 

Uncertainty Estimates for Learning Sequentially) framework by Random Forrest for tackling high 

dimensional inputs and presented a method for quantifying uncertainty via jackknife-style variance 

estimates. They demonstrated the FUELS framework to outperform COMBO for a variety of 

materials design problems. 

Another interesting approach to utilizing descriptors for mixed variable design problems was 

recently presented by Hase et al. [153] via their GRYFFIN framework. The essence of GRYFFIN 

is to project each qualitative variable on a simplex and quantify the similarity between levels by 

measuring the Euclidean distance on the simplex. While the idea of projecting qualitative variable 
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to a continuous space is analogous to LVGP, GRYFFIN differs due to the fact that it explicitly 

learns the transformation from descriptor space to the simplex whereas LVGP does the projection 

implicitly. The learnt projections are then used to predict the optimization objective using a 

Bayesian Linear Regression model. Three versions of GRYFFIN – Naïve, Static and Dynamic 

were presented and compared on a variety of benchmark optimization problems. Dynamic 

GRYFFIN, with its ability to update the projections learnt using Bayesian Neural Network as more 

data is observed during BO, outperformed other GRYFFIN variants as well as open-source BO 

packages. 

These examples of descriptor based BO for materials design encourage us to examine the benefits 

of using descriptors in conjunction with LVGP. The dimension of qualitative variable(s), defined 

here by the number of levels it can assume, will play an important role in determining how the 

descriptors are used. Thus, we shall study the role of descriptors for low and high-dimensional 

qualitative variables separately in the following sections. 

6.2  Problems with low dimensional qualitative variables 

In this section, we examine the benefits of using descriptors to expedite the convergence of BO 

using LVGP when qualitative variables are low dimensional (~ <15 levels for all qualitative 

variables). These problems can be solved by current LVGP capabilities, and our goal is to 

investigate whether inclusion of descriptors is advantageous. 

The first question that arises is how to incorporate descriptors for qualitative variables in a LVGP 

model? As noted in Chapter 2.3, LVGP uses latent variables 𝒛(𝑙1), 𝒛(𝑙2). . , 𝒛(𝑙𝑚) to capture 

similarity between levels 𝑙1, 𝑙2, . . , 𝑙𝑚. In theory, the difference between these levels can be 

completely described by a set of underlying physical descriptors 𝑣1, 𝑣2 … 𝑣𝑝. The challenge arises 
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due to the fact that we seldom know the full set of descriptors. For several problems in material 

design, we only have knowledge of a handful of important descriptors based on domain 

knowledge. Thus, for a practical approach, we desire the ability to incorporate the known 

descriptors as well as to use latent variables to estimate the effects of unknown descriptors on the 

levels of each qualitative variable. One way to accomplish this task is to include the descriptors as 

an auxiliary numerical input (along with any quantitative variables) to the LVGP model and 

constrain the levels to be closer to each other in the latent space. The constraint is applied in the 

form of a penalty, which is formulated as the sum of all inter-level distance in the latent space. The 

motivation for this penalty is simple – if the incorporated descriptors explain the similarities 

between levels, then there are no effects to be captured in the latent space and consequently the 

inter-level distance must be small. Note that inter-level distances ||𝒛(𝑖)(𝑡𝑖) − 𝒛(𝑖)(𝑡𝑖
′)||

2
 is used in 

the computation of correlation matrix (Eq. (2-4)). The penalty term is subtracted from the 

loglikelihood term and minimized using optimization routines during model fitting: 

 
ℒ(𝜇, 𝜎2, 𝝋, 𝒁) = −

𝑛

2
ln(2𝜋𝜎2) −

1

2
ln|𝒓(𝝋, 𝒁)| −

1

2𝜎2
(𝒚 − 𝜇𝟏)𝑇𝒓−1(𝝋, 𝒁)(𝒚 − 𝜇𝟏)

− 𝑛 ∗ 𝜆 ∑ (∑ ∑ ||𝒛𝑖(𝑡𝑗) − 𝒛𝑘(𝑡𝑗)||
2

𝑚𝑗

𝑘=𝑖+1

𝑚𝑗

𝑖=1

)
𝑞

𝑗=1
. 

(6-1) 

The hyperparameter λ determined the severity of penalty and can have values ranging from 0 (no 

penalty) to 1 (severe penalty). We recommend using Leave-One-Out-Cross Validation (LOOCV) 

to identify the optimal value of  λ. It is important to include λ=0 in the LOOCV search for optimal 

λ  since there may be situations when the descriptors do not provide meaningful information about 
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the similarity of levels and thus the latent variables must be used to learn them. In such case, 

application of a penalty is counterproductive and  models with λ=0 must be the most accurate. 

6.2.1 Numerical tests 
 

In this section, we shall use a set of optimization test functions to examine the benefits of using 

descriptors as auxiliary inputs to LVGP for BO. For a preliminary study, we use two 2D functions 

– Branin Hoo function (Eq.(6-2)) and Goldstein Price function (Eq. (6-7)). In their original form, 

both functions have two quantitative variables. We modify both functions such that one of the 

variables can only assume discrete values and thus transformed to a qualitative variable. It can 

assume four and five levels for Branin Hoo and Goldstein Price function, respectively. 

 

𝑓𝐵𝐻(𝑥1, 𝑡) = (𝑡 −
5.1

4𝜋2
𝑥1

2 +
5

𝜋
𝑥1 − 6)

2

+ 10 (1 −
1

8𝜋
) cos(𝑥1) + 10 

−5 ≤ 𝑥1 ≤ 10,  𝑡 ∈ {0,5,10,15} 

(6-2) 

 𝑓𝐺𝑃(𝑥1, 𝑡) = [1 + (𝑥1 + 𝑡 + 1)2(19 − 14𝑥1 + 3𝑥1
2 − 14𝑡 + 6𝑥1𝑡 + 3𝑡2)][10

+ (2𝑥1 − 3𝑡)2(18 − 32𝑥1 + 12𝑥1
2 + 48𝑡 − 36𝑥1𝑡 + 27𝑡2)] 

−2 ≤ 𝑥1 ≤ 2, t ∈ {−2, −1,0,1,2} 

(6-3) 

 

As pointed out previously, selecting the appropriate value of penalty parameter λ is not possible 

since its rarely known how well the descriptors describe differences between levels. Thus, at each 

BO iteration, we fit models with 𝜆 = 0,0.01,0.1,1 and then select the best model using LOOCV. 

We use this wide range of values for 𝜆 to account for cases when descriptors are not informative 

(𝜆 = 0), descriptors are highly informative (𝜆 = 1) and all intermediate scenarios.  In addition to 

testing the proposed method with LVGP regularization, we consider two additional approaches. 

First, we consider the case when no descriptors are available for the qualitative variable, and we 
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use the original LVGP model (no regularization). Second, we consider the situation where a 

conventional GP model (with quantitative inputs) is used along with the descriptors and the 

qualitative variable is neglected. This approach assumes that the descriptors accurately explains 

the differences between levels of qualitative variable and thus, are sufficient to train an accurate 

model. For the two test functions studied here, we know the true descriptors and thus consider the 

approach with conventional GP model with descriptors as the benchmark. In Figure 6-1 we plot 

the history of objective function values observed throughout BO. We notice that all three 

approaches converge to the optimum solution at approximately the iteration number. A significant 

observation to be drawn here is that the performance of BO with LVGP model (does not include 

descriptors) is as good as BO with GP model which we consider as the benchmark. This indicates 

that there is little room for improvement in BO with the inclusion of descriptor.  

 

Figure 6-1: Comparing performance of three different approaches in BO for Branin-Hoo and 

Goldstein Price functions. Red curve represents the original LVGP model (no descriptors 

included), blue curve represents penalized LVGP model with descriptors and green curve shows 
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conventional GP model with descriptors only. The dashed lines show the median and the 

corresponding envelop represents median absolute deviation. 

To examine whether the dimensionality of descriptors influences convergence of these three 

modelling approaches, we use the n-dimensional Levy function: 

 𝑓𝐿𝑒𝑣𝑦(𝒙) = sin2(𝜋𝑤1) + ∑ (𝑤𝑖 − 1)2[1 + 10 sin2(𝜋𝑤𝑖 + 1)] + (𝑤3 − 1)2[1 +3
𝑖=1

sin2(2𝜋𝑤3)] 

𝑤𝑖 = 1 +
𝑥𝑖 − 1

4
; 𝑖 = 1,2. . 𝑛 

(6-4) 

We consider two versions of the Levy function – 7D and 12D. In both versions, the first two 

dimensions are treated as two independent quantitative variables while the remaining dimensions 

are assigned to a qualitative variable with five levels. Thus, for the Levy 7D and 12D functions, 

the qualitative variable has five and ten underlying descriptors, respectively. The descriptors for 

each level were assigned using a Latin Hypercube sampling. Based on the convergence history 

shown in Figure 6-2, we notice no significant difference in the convergence history of the three 

approaches considered here.  



121 

 

 

Figure 6-2: Comparing performance of three modelling approaches in BO for Levy function with 

5 and 10 descriptors for qualitative variable. Red curve represents the original LVGP model (no 

descriptors included), blue curve represents penalized LVGP model with descriptors and green 

curve shows conventional GP model with descriptors only. The dashed lines show the median and 

the corresponding envelop represents median absolute deviation.  

Finally, we compare the three approaches for a materials design application inspired by 

Balachandran et al. [90]. The objective is to identify M2AX compounds with optimal mechanical 

properties. There are three qualitative design variables corresponding to the choice of chemical 

elements that could occupy the M, A and X sites in the M2AX crystal. There are 10,12 and two 

levels for the M, A and X qualitative variables. The authors of the dataset recommend s, p and d-

orbital radii of M site and s, p orbital radii of  A & X sites as descriptors based on their knowledge 

of this material system. Out of the 240 possible combinations, only 223 have non-negative 

mechanical properties are part of the design space. Three mechanical properties considered here 

are the Bulk, Shear and Young’s modulus and BO was performed to maximize each property 

individually as shown in  
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Figure 6-3. For the Bulk and Shear Modulus optimization, we notice that the LVGP approach 

which does not involve use of descriptors performs better than the approaches that use descriptors. 

The conventional GP model using only the descriptors performs the worst suggesting that the 

descriptors do not capture all differences between levels.  However, for the optimization of Young’s 

modulus, we notice the two approaches using descriptors perform better than the original LVGP 

model, with the penalized LVGP model with descriptors performing the best. These results indicate 

that the atomic orbital descriptors do indeed provide valuable information for Young’s modulus. 

 

Figure 6-3:  Mechanical property optimization history for MAX dataset. The dashed lines show 

the median and the corresponding envelop represents median absolute deviation. 
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6.3 Problems with high dimensional qualitative variable 

In this section, we examine the use of descriptors for problems where at least one qualitative 

variable is high dimensional i.e., has a large number of levels. We loosely define large number of 

levels in this context as more than 20 levels. We encounter unique challenges in performing BO 

when one or more qualitative variable is high dimensional. A large dataset, containing at least one 

observation for every level of each qualitative variable, is required to initiate BO. It follows from 

the fact that LVGP requires at least one observation for every level to estimate its corresponding 

latent variables. This requirement significantly increases the computational overhead of BO. 

Here we propose a new methodology that leverages domain knowledge to tackle high 

dimensional qualitative variables. Based on the observation that latent space estimated by LVGP 

model has an inherent structure with levels closer to each other having similar effect on response, 

we argue that that only a subset of levels are sufficient to initiate BO and that the effect of 

unobserved levels can be deduced based on their similarity w.r.t the chosen levels. Shown in Figure 

6-4, our modified BO approach differs from the conventional approach in two significant ways. 

First, we use the descriptors to select a diverse subset of levels which will be evaluated to start 

BO. Second, at every iteration we identify the levels that have not been observed yet and predict 

their latent variables using a Multi-response Gaussian Process (MRGP) model. In essence, the 

MRGP model learns the mapping from descriptor space to latent space (𝑔: 𝜈 → 𝑧) and helps us 

account for the effects of unobserved levels. Note that latent variables for levels with at least one 

observation in the dataset will be estimated during LVGP model fitting procedure and will be used 

to train the MRGP model. Thus, latent variable prediction is only performed for levels which have 

not been observed yet. This is a critical step in our methodology since it allows us to account for 
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all feasible levels for a qualitative variable and evaluating the acquisition function for a previously 

unobserved level.  

 

Figure 6-4: Bayesian Optimization framework for high dimensional qualitative variables. 

6.3.1 Selecting a diverse subset of levels 

In this section, we describe the procedure used to select a diverse subset of levels required for 

initiating BO. In this context, diversity is defined w.r.t the set of descriptors 𝝂 (𝜈1, 𝜈2, … , 𝜈𝑝) that 

delineate the differences between influence of levels on the response. Since these descriptors are 

essential numerical values, the problem of selecting a diverse subset of levels is analogous to the 

task of design of experiments i.e., selecting a diverse set of designs in a p-dimensional space. Here 

we use the concept of D-optimality for selection. The procedure starts by calculating a similarity 

matrix S for a set of levels such that: 

 
𝑆𝑖,𝑗 = exp(−0.5 ∗ 𝑑𝑖,𝑗), (6-5) 

where 𝑑𝑖,𝑗 is Euclidean distance between levels i and j measured in the descriptor space. The 

similarity matrix S is positive semi-definite, and its determinant represents the volume spanned by 
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the set of levels in the descriptor space. Thus, our task of selecting a diverse subset of levels B 

from the set of all feasible levels A can be accomplished via an iterative process where the level 

leading to the largest determinant of S is selected. This method of level selection of a qualitative 

variable is summarized as Algorithm 1 below. When there are multiple qualitative inputs, this 

method is applied for each qualitative variable independently. 

Algorithm 1: Selection levels for a qualitative variable 𝑡 using descriptors 

A: set of all levels for qualitative variable 𝑡 

B: set of selected levels qualitative variable 𝑡 

User Inputs: Number of levels to select 𝑁𝑠𝑒𝑙𝑒𝑐𝑡, Descriptors 𝝂 = ( 𝜈1, 𝜈2. . , 𝑣𝑝) 

Initialize B as empty set : 𝐵 = ∅ 

Add a randomly selected level 𝑙 from A to B: 𝐵 =  𝐵 ∪ {𝑙} 

Remove 𝑙 from A 

for 𝑖 = 1 :  𝑁𝑠𝑒𝑙𝑒𝑐𝑡 − 1 

for 𝑗 =  1: 𝑠𝑖𝑧𝑒(𝐴) 

C: B ∪ 𝐴𝑗 

Calculate interlevel distance 𝑑𝑙𝑚𝑙𝑛
= √∑ (𝜈𝑘

𝑙𝑚 − 𝜈𝑘
𝑙𝑛)

2𝑝
𝑘=1  for all levels in C 

Calculate similarity matrix as 𝑆𝑙𝑚𝑙𝑛
= 𝑒𝑥𝑝 (−0.5 ∗ 𝑑𝑙𝑚𝑙𝑛

) 

𝐷𝑗  =  𝑑𝑒𝑡(𝑆) 

end 

Select level 𝑙𝑠𝑒𝑙𝑒𝑐𝑡 with largest 𝑫 

Add selected level to B (𝐵: 𝐵 ∪ 𝑙𝑠𝑒𝑙𝑒𝑐𝑡) 

Remove selected level from A (𝐴 :  𝐴 − 𝑙𝑠𝑒𝑙𝑒𝑐𝑡) 

end 

 

Figure 6-5 illustrates the algorithm for selection of levels based on a two-dimensional descriptor 

space. The task is to identify a diverse set of 10 levels out of a possible 111 levels. Each level can 

be described by two descriptors 𝜈1 and 𝜈2 which are numerical values spanning [0,1] and used for 
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evaluating the similarity matrix S in Algorithm 1. Based on the sequence of level selection, it is 

evident that the algorithm selects levels that are distant for those already selected. While the 

algorithm is initiated by a randomly selected level which influences subsequent level selection, we 

note that the levels on the extremities of the descriptor space have a higher probability of being 

selected. 

 

Figure 6-5: An illustration of level selection using descriptors. Out of 111 feasible levels (blue 

dots) described using two descriptors 𝜈1 and 𝜈2, 10 are selected to form a diverse subset (black 

dots). Each selected level is associated with a number indicating the order of selection. 

6.3.2 Descriptor aided latent variable prediction 

BO is initiated by collecting observations (experiments / simulations) for the selected levels.  

These observations are used in LVGP model fitting, and their latent variables are estimated in the 

process. What latent variable values should we assign to the level that were not selected and hence 

are unobserved? These levels are still part of design space and must be considered for exploration 
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in the subsequent BO iterations. A naïve approach would be to assign these levels random latent 

variable values by drawing them from, for e.g., the uniform distribution 𝑈 

𝒛𝒎 ~ 𝑈(−3,3), 
(6-6) 

These specific values for bounds of the distribution correspond to the optimization bounds 

assigned to latent variables during LVGP model fitting. This approach draws upon the ideology 

that we do not possess any knowledge about the behavior of levels. However, the descriptors used 

in level selection represents knowledge regarding the behavior of levels i.e., their similarities / 

dissimilarities. This information can be leveraged to estimate latent variable for levels lacking data 

for we believe that levels with similar values of descriptors (closer to each other in the descriptor 

space) will have similar influence on the material property. One approach of utilizing this 

knowledge is to learn the mapping from the descriptor space to the latent space of LVGP model. 

Since the latent space is two-dimensional, we seek to use a Multi-response Gaussian Process model 

to learn this mapping : 

 𝒛𝒎 = 𝐺2 (𝝁, 𝜮 ⊗ 𝑟(𝝂, 𝝂′)), (6-7) 

where 𝐺2 is a two dimensional Gaussian Process with mean 𝝁 = [𝜇1, 𝜇2]. The covariance function 

of an MRGP involves the Kronecker product ⊗ between the correlation function, here chosen to 

be gaussian 𝑟(𝝂, 𝝂′) = exp(− ∑ 10𝜔𝑖(𝜈𝑖 − 𝜈𝑖
′)2𝑝

𝑖=1 ), and a 2x2 symmetric positive definite matrix 

Σ. Specifically, the diagonal and off-diagonal entries of Σ capture the marginal variances and 

covariances between outputs respectively. Analogous to the single response GP model, the 

additional hyperparameters introduced by Σ are estimated during model fitting using maximum 

likelihood estimation. Thus, the role of MRGP is to learn the mapping from descriptor to latent 
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space using the observed levels and subsequently predict the latent variables 𝒛𝒎 for the unobserved 

levels. These predicted latent variables are used as proxies for unobserved levels to calculate the 

acquisition function and gauge the benefit of sampling them in future objective evaluations. This 

method, in essence, uses the knowledge possessed by descriptors to augment the LVGP model by 

predicting the latent variables for levels lacking data. Consequently, we denote this approach as 

Descriptor Augment LVGP.  

 

Figure 6-6 compares the random and descriptor augmented LVGP approaches for Branin-Hoo 

function which has a qualitative variable with four level as defined in Eq. (6-2). In a training dataset 

of 60 observation (15 per level), all observation involving level 2 was excluded from the dataset 

used to train a LVGP model. Thus, LVGP identified latent variables for levels 1, 3 and 4 (black 

dots) while level 2 was assigned latent variables using the latent space interpolation (blue star) and 

random (red star). We notice that descriptor augmented technique yields a rather accurate 

representation of the effects of level 2 while random assignment is highly inaccurate. The 

magnitude of the error bars suggests that uncertainty is low in the regions of latent space closer to 

existing levels, and it increases as we move away from them. This observation is akin to a 

conventional GP model where the model uncertainty increases as we move away observed data 

points. 
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Figure 6-6: Comparing latent variable assignment techniques (left figure) and its impact the 

predictive performance (right figure) for Branin-Hoo function. The error bars show the predicted 

standard deviation. 

 

6.3.3 Mathematical Benchmarks 

In this section, we test the efficacy of our approach for test functions specifically designed to 

have a high dimensional qualitative variable. We revisit the Levy function described in Eq. (6-4). 

Here, we consider 4D Levy function with the third and fourth dimension mapped to a single 

qualitative variable. Figure 6-7 shows the uniform distribution of levels in these two dimensional 

descriptor spaces defined by 𝑥3 and 𝑥4 when there are 26 and 56 levels. To perform BO using the 

conventional LVGP model (Vanilla LVGP in Figure 6-7), we require 26 and 56 observations (i.e., 

one observation per levels) for these scenarios respectively. The excessive computational cost 

incurred due to linear scaling of dataset size with the number of levels emphasizes the limitation 

of LVGP method for BO in presence of high dimensional qualitative variables. On the other hand, 

modifications to LVGP described in Sec. 6.3.2 enable initiation of BO with a smaller dataset 

containing seven levels selected via Algorithm 1. The values for quantitative variables 𝑥1 and 𝑥2 

are generated using Latin hypercube design. We compare the performance of two proposed 
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approach – LVGP-Descriptor Augmented and LVGP-random against the conventional GP model 

that uses the numerical descriptors as input. When the true underlying descriptors for the 

qualitative variables are known, as in this example, we expect the GP model using descriptors to 

have superior performance and serve as a benchmark. The convergence history shown in Figure 

6-7 corroborates this belief, as the GP approach has better convergence characteristics followed by 

Descriptor Augmented LVGP approach. In fact, for the scenario with 26 levels, Descriptor 

Augmented LVGP and GP approaches have comparable performance beyond 20 iterations. The 

LVGP-Random approach, where latent variables are sampled from a uniform distribution without 

any consideration for descriptor-based similarity, underperform as compared to the other two 

approaches initially.  
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Figure 6-7: Comparing performance of different approaches for Bayesian Optimization of 4D 

Levy function when qualitative variable has 26 (first row) and 56 levels (second row). The scatter 

plots show the distribution of levels and the black boxes with dashed lines indicate levels selected 

in one replicate. The optimization history is shown using median and median absolute deviation 

computed over 30 replicates. 

To better understand the differences between these three competing modelling approaches, we now 

examine the designs sampled in the first 20 iterations of BO for each model. We consider this 

initial BO phase for examination as it will be affected the most by the assumptions made by 
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models. Figure 6-8 shows the sampling history along with contours of Levy 4D function. We 

observe that levels in the vicinity of origin typically have lower objective values as compared to 

the to the other levels and are more likely to be sampled during BO. This is corroborated by the 

sampling histories for GP and LVGP approaches leading to the significant improvements in 

objective values observed in BO.  The GP model using the true underlying descriptors strongly 

favors level 26 which contains the optimum. On the other hand, the LVGP-Random approach 

samples all levels uniformly. This could be due to the high uncertainty associated with randomly 

assigned levels especially when they are located far away for the observed levels (depicted in  

Figure 6-6).  

 

Figure 6-8: Upper row: distribution of levels in the two dimensional descriptor space (left) and  

contour of objective function in this space (right). For contour plot, quantitative variables were set 

to their mean values. Lower row: Sampling history for qualitative variable in Levy 4D function 
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during the first 20 iterations of BO. Histograms show the consolidated history over 30 replicates 

for each model.  

Effect of incorrect descriptor knowledge 

In the above comparisons for Levy function, we assumed to have perfect knowledge regarding the 

two underlying descriptors (𝑥3 and 𝑥4) for qualitative variables. However, this is far from the 

scenario encountered in practice where we only have knowledge of some descriptors, or the 

descriptors are incorrect and hence not informative at all. To simulate the latter scenario, we 

reconsider the Levy function with 26 levels with the descriptors assigned randomly for each level 

as shown in the lower scatter plot in Figure 6-9. For example, while the true descriptors for level 

13 are {0,0}, it is assigned {-10,-5}. This discrepancy between the true and assigned descriptors 

has a significant impact on the GP model which is dependent on the descriptors for modelling the 

objective function. On the other hand, Descriptor augmented LVGP utilizes descriptors only for 

unobserved levels. Once a level is observed, it becomes part of the LVGP model fitting and does 

not depend on descriptors. Consequently, we observe that its performance is not affected 

significantly, and it converges to a better design as compared to GP based model. 
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Figure 6-9: Comparing convergence history for BO when the knowledge of descriptors is perfect 

(first row) and imperfect (second row) across 30 BO replicates. The scatter plots on the left show 

the distribution of levels in descriptor space. Descriptors were assigned to levels randomly in each 

replicate of BO to simulate the imperfect knowledge scenario. 

Effect of partial descriptor knowledge 

Another common situation encountered in practice is that the designer has partial knowledge of 

descriptors i.e., not all descriptors are known. To study this scenario and the performance of 

different modelling approaches in BO, we consider the six-dimensional Levy function. The first 

two dimensions are treated as independent quantitative variables while the other four dimensions 



135 

 

are combined into a single qualitative variable with 26 levels. Hence, the effect of each level can 

be deduced from its four descriptors {𝜈1, 𝜈2, 𝜈3, 𝜈4}. The levels were constructed using Latin 

hypercube design so that they located in different regions of the four dimensional spaces. Based 

on the Sobol total sensitivity indices listed in Table 6-1, it is evident that the objective function is 

most and least sensitive to 𝜈3 and 𝜈1 respectively. BO was performed by systematically pruning 

the set of descriptors and its convergence history plotted in Figure 6-10. For the GP model relying 

entirely on the knowledge of descriptors, we notice the performance deteriorate progressively as 

more descriptors are dropped with a drastic deterioration when only one descriptor is used. In 

contrast, the descriptor augmented LVGP approach is only affected significantly when one 

descriptor is used and shows no change in other scenario. This can be attributed to the fact that 

LVGP relies on the descriptors only for levels unobserved. Once the level is observed, it’s latent 

variables are estimated during model fitting and is unaffected by descriptors.  

 

Figure 6-10: Effect of sequential descriptor pruning on BO for Levy 6D function. Lines show 

median objective values observed across 30 replicates. 
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Table 6-1: Total sobol sensitivity indices for Levy 6D function 

𝑥1 𝑥2 𝜈1 𝜈2 𝜈3 𝜈4 

0.198 0.199 0.203 0.179 0.2174 0.007 

 

Varied effect of descriptors on objective 

Since the amount of influence asserted by each descriptor on the objective function may vary, the 

impact of leaving out a descriptor from the pool of all descriptors can be different. To demonstrate 

this assertion, we again consider the Levy 6D function with one qualitative variable whose effect 

is determined by four underlying descriptors. We simulate two BO scenarios by only considering 

descriptors 1 & 2 and 3&4. Figure 6-11 shows the comparative performance of Descriptor 

augmented LVGP and GP models. We notice that the GP model which relies on descriptors to 

model the objective, has a significant deterioration in performance in comparison to the descriptor 

augmented LVGP model. Specifically, we notice that GP model with descriptors 1&2 is impacted 

more significantly indicating that either descriptor 3 or 4 (or both) have a greater influence on the 

objective function. To further delineate the sensitivity of these descriptors, we examine the values 

of roughness (scale) parameters and Sobol sensitivity indices for each descriptor as shown in Table 

6-2. Rather than examining the effect of descriptors globally, we specifically examine the effect of 

descriptors around the global optimum defined by 𝑥1, 𝑥2 ∈ [0,2]. The roughness parameters are 

derived from the correlation function of a GP trained on 781 observations, 30 observations for 

each of the 26 levels plus the optimum design. Larger value of roughness parameter for a descriptor 

indicates effect on objective.  Among the four descriptors, the third descriptor has highest 
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roughness parameter and sensitivity index, indicating its strong influence on the objective in the 

vicinity of global optimum.    

 

Figure 6-11: Comparison of modelling approaches using a subset of descriptors for Levy 6D 

function. Lines show median objective values observed across 30 replicates. 

Table 6-2: Roughness parameters and Sobol sensitivity index for four descriptors governing effect 

of qualitative variable in Levy 6D function. 

 ν𝟏 ν𝟐 ν𝟑 ν𝟒 

GP Roughness parameters -0.458 -3.261 0.534 -11.164 

Total Sensitivity Index 0.335 0.297 0.360 0.012 

 

6.3.4 Design of ABO3 Perovskite 
 

We shall next consider a materials design example involving high dimensional qualitative 

variables. The task is to identify ABO3 perovskite which are candidate materials for next 

generation thermochemical water splitting applications and were explored in detail by Emery et 

al. [154]. In the ABO3 crystal structure, O represent Oxygen atoms while the A and B crystal sites 

are occupied by anion and cation respectively. There are 73 elements from the periodic table that 
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can possibly occupy these sites. Our task is to find the optimal combination of A and B site 

elements to maximize Stability and minimize Formation energy. The material properties are 

evaluated using Density Function Theory calculations which constitutes a predominant portion of 

the computational cost of design process. Thus, it is highly desirable to optimize properties with 

the least number of simulations.  

To initiate BO using a subset of levels, we identify some descriptors for the A and B crystals sites. 

Since each level represents a chemical element in periodic table, we refer to a pool of commonly 

used chemical descriptors used to characterize chemical elements. The cheminformatics Matminer 

was used to extract this feature pool which included a set of eight descriptors – Atomic Number, 

Atomic Weight, Covalent Radius, Melting Temperature, Mendeleev Number, Electronegativity, 

Row Number and Number of Valence electrons. Strongly correlated descriptors can lead to poor 

machine learning models since they obscure the effect of each descriptor. To circumvent this issue, 

descriptor pairs with strong correlations (|𝜌𝑃𝑒𝑎𝑟𝑠𝑜𝑛| > 0.8) were identified and selectively pruned. 

For e.g., Atomic Number and Row Number were removed for the descriptor pool due to their 

strong correlations with Atomic Weight. Similarly, Mendeleev Number was removed due to its 

strong correlation with Covalent Radius and Electronegativity. Thus, the final set of descriptors 

used for the A and B crystals site are – Atomic Weight, Electronegativity, Melting Temperature, 

Covalent Radius and Number of valence electron. Figure 6-12 shows the optimization history 

using the three modelling approaches, applied for optimizing Stability and Formation Energy 

individually. Table 6-3 lists the number of objective evaluations required for the median to match 

the global optimum for the three models. BO with each model was initiated using nine compounds 

selected via the procedure outlined in Section 6.3.1. In both cases, model utilizing descriptors 
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identify the optimum faster than LVGP-Random, indicating the benefits of domain knowledge 

inclusion in BO. Descriptor Augmented LVGP outperforms GP model with descriptors for 

Formation energy optimization, in contrast to Stability optimization where the latter performs 

better. The faster convergence of the two descriptor based models in Stability optimization 

suggests that the descriptors are informative and aid in capturing the salient effect of each crystal 

site on Stability.  

 

Figure 6-12: BO history for Formation Energy minimization (left) and Stability maximization 

(right) for ABO3 perovskites. The dashed lines and envelope represent median and median 

absolute deviation calculated over 13 replicates. 

Table 6-3: Number of objective evaluations required for median objective value to match global 

optimum 

 
LVGP – Descriptors 

Augmented 
LVGP – Random GP with descriptors only 

Formation Energy 156 - 187 

Stability 31 151 90 
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6.4 Summary 

In contrast to Chapters 4 and 5 which highlighted the benefits of featureless machine learning 

enabled by LVGP, this chapter was dedicated to study the benefits of incorporating domain 

knowledge in the form of numerical descriptors. Problems were classified based on the 

dimensionality of qualitative variables since they necessitate different approaches for fusion of 

domain knowledge. 

For low dimensional qualitative variables, we proposed using descriptors as auxiliary inputs to 

the LVGP model and addition of a penalty term. The motivation for penalty term was to regularize 

the latent space when descriptors partially or completely explain the effect of levels on the 

response. The penalty weight was determined using leave-one-out-cross-validation. Through a 

combination of numerical test functions and curated material datasets, we observed that our 

proposed approach did not improve BO convergence to any noticeable extent. In fact, the 

featureless LVGP approach is as good as, if not better, than the benchmark GP model using the 

descriptors as inputs. Thus, we recommend utilizing the featureless LVGP modelling approach for 

best BO performance when the qualitative variables are low dimensional. 

For high dimensional qualitative variables with many levels, we realized the large dataset size 

required to initiate BO using LVGP imposed a severe computational cost. To this end, we proposed 

descriptor augmented LVGP for BO that starts with a carefully selected subset of levels and 

leverages descriptors to predict the effect of unobserved levels. Specifically, a Multiresponse GP 

(MRGP) model was used to learn the mapping between descriptors and latent space to predict the 

effect of unobserved levels. The decoupled nature of MRGP and LVGP model ensures that effect 

of observed levels is learnt from the data and not reliant on descriptors. This ability is critical in 
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many practical scenarios where the designer may have partial or incorrect knowledge of 

descriptors as demonstrated through a set of test cases. While discussion in this chapter have been 

limited to single criteria optimization, descriptor augmented LVGP can be extended for 

multicriteria optimization in the future. 



142 

 

7 Conclusions and Future Work 

This chapter summarizes the contributions of this dissertations and describe opportunities for 

future work. 

7.1 Contributions  

By addressing design challenges in a diverse set of materials systems, the overarching contribution 

of this dissertation is to exhibit the ubiquity of data centric design framework presented in Chapter 

1. We have developed (i) a computational structure – property model to estimate OPVC 

performance (ii) methodology to characterize and reconstruct anisotropic microstructures, (iii) data 

centric polymer nanocomposite design framework by assimilating experimental and simulated 

data, (iv) adaptive optimization engine for composition design of MITs and, (v) webtools to 

provide rapid access to computational MCR tools via NanoMine. 

The prominent research contributions made in each chapter are summarized as follows: 

a) The salient contributions of Chapter 3 are twofold. First, we developed a novel design 

evaluation methodology to evaluate the performance of Organic Photovoltaics from its 

active layer microstructure. This was subsequently used to implement SDF based 

microstructure design framework to identify optimal, isotopic active layer. Second, we 

go beyond the traditional isotropic microstructure design formulations to address the 

design representation limitations plaguing the characterizing and designing anisotropic 

microstructures in a computationally efficient manner. We developed a novel approach 

for fast microstructure reconstruction and quantify anisotropy to facilitate design of 



143 

 

anisotropic microstructure. Through a case study, we further demonstrated that 

anisotropic active layer morphology outperforms its isotropic counterpart.  

b) In Chapter 4, we presented a data-centric mixed-variable Bayesian Optimization 

framework for concurrent design of composition and microstructure, which is 

inherently a mixed variable optimization problem. The framework integrated modules 

for (i) low dimensional microstructure design representation, (ii) calibration and 

training of design evaluation models using experimental dataset and, (iii) BO in tandem 

with LVGP for mixed variable design synthesis. The efficacy of this framework is 

exemplified by a polymer nanocomposites case study. Initiated by a nanocomposite 

database, the framework integrated empirical data with state-of-the-art techniques in 

interphase calibration, SDF based MCR for dimensionality reduction, and FEA-based 

structure-property simulations. Experimental property measurements are also 

leveraged for training machine learning models to predict material properties when 

theory based simulation models are lacking. Since functional materials must often meet 

multiple performance criteria, we extended LVGP based BO to multicriteria 

optimization using the expected maximin improvement acquisition function. 

c) In Chapter 5, we developed an adaptive optimization engine which learns directly from 

elemental compositions to accelerate the co-design of functional electronic materials. 

Since all design variables involved in this problem are qualitative with varying number 

of levels, we developed a method to perform design of experiments by discretizing 

Latin Hypercube design. Our method is particularly helpful in the data and knowledge 

of materials descriptors is limited. This featureless learning method is readily 
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applicable to other complex materials design problems. For instance, the same 

workflow can be utilized for inverse design, where the objective is to minimize the 

difference to the target value.  

d) In Chapter 6, we investigated the design synthesis challenges arising in mixed variable 

optimization with high dimensional qualitative variable(s). Realizing that the effect of 

qualitative variables arising in materials design can be described by some underlying 

chemical descriptors, we proposed a new descriptor augmented LVGP modelling 

approach for BO. Descriptors are utilized to select a diverse subset of levels to initiate 

BO as well as predict the latent variables for unobserved level. The decoupled nature 

of GP models used in the approach enables superior performance in BO even when the 

knowledge of descriptors is incomplete or imperfect. 

e) To provide access to some popular MCR techniques, Appendix 9.1 discusses the 

current MCR capabilities in NanoMine. A total of eight webtools were created that 

allow users to binarize images and subsequently use the spatial correlation functions, 

SDF and physical descriptor based MCR methods. All webtools incorporate some core 

user-friendly features such as email alerts, multiple image input formats. 

7.2 Future Work 

The are several open-ended questions and opportunities identified during the formulation this 

dissertation. Some of them are described below: 

a) The design strategy for anisotropic microstructures proposed in Chapter 3 can be extended 

to design any material systems where anisotropy could potentially enhance performance. 

While perfect anisotropy was optimal for IPCE maximization, the proposed methodology 
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is also applicable for multiobjective design formulation where objective behavior could be 

conflicting w.r.t anisotropy, such as design for high charge conversion and mechanical 

stiffness. In such cases, the designer will have to select a design from the Pareto front based 

on his willingness to compromise. Challenges in fabrication of strongly anisotropic 

morphologies with desired domain size and distribution represent opportunities for future 

work. In this regard, recent work by Jiali et al. [155] shows that controlled solvent vapor 

treatment on a highly oriented polyethylene substrate improves crystallization ability and 

induces strong anisotropy in P3HT films. An alternative approach to induce anisotropy is 

through application of electric field during annealing, as demonstrated by Dulal et al. [156]. 

A holistic design approach requires PSP relationships for OPVCs, which is part of our 

ongoing initiative. Due to expensive, time-consuming nature of P3HT:PCBM film 

preparation and imaging, one could employ Coarse Grained Molecular Dynamics (CGMD) 

simulations to mimic film preparation and study effects of key processing parameters such 

as P3HT chain length, weight ratio of constituents [157], thermal annealing [158] and 

polydispersity [159]. The stochastic nature of CGMD simulations calls for methods that 

account of noise and its dependence on simulation inputs, as shown recently by Beek et al. 

[160, 161]. In future, SDF based microstructure analysis of equilibrated CGMD structures 

can be used to reveal the SDF pattern and a suitable parameterization. Identifying links 

between process parameters and SDF parameters will create the process-structure 

relationship, which can be integrated with structure-performance model used in Chapter 

3.3, to complete the PSP chain for OPVC design. 
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b) Characterization and Reconstruction of multiphase materials remains challenging since 

one must identify features specific to each phase as well as correlation among different 

phases. Metal alloys [162] used in a variety of applications and extensively studied recently 

for additive manufacturing processes [163, 164]  are a prominent example of multiphase 

microstructure systems.  Transfer learning approaches that use pretrained convolutional 

neural networks have been successful in reconstruction from a target [34, 35], but these 

methods fall short for microstructure design which requires the ability to reconstruct 

unseen microstructures (no target specified). When a large dataset is available, deep 

learning techniques such as Generative Adversarial Networks [165] are a viable candidate. 

Recent works have used this approach for steel microstructure reconstruction [40, 41]. 

However, these methods do not provide meaningful characterization of microstructures 

and are not applicable for small datasets. 

c) Existing approaches for polymer nanocomposite design has focused on systems with 

spherical nanoparticles. However, there is a need to investigate the benefits of elongated 

(i.e., high aspect ratio) nanoparticles which may induce local variation in properties by 

virtue of their shape. Recent investigations [166, 167] have shown that fillers with high 

aspect ratio are able to meet targeted electrical property requirements at a lower filler 

volume fraction than that of spherical particle filled composites. Additionally, development 

of accurate simulation models based on Molecular Dynamics and Density Functional 

Theory is necessary for understanding and evaluating material properties such as dielectric 

breakdown strength and interphase behavior.  
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d) DFT simulations are one of the most pervasive computational tools to predict structure, 

energetics, and study atomic scale interactions in material science. Selection of an 

exchange-correlation functional is one of the critical decisions that DFT practitioners have 

to make due to its significant impact on the accuracy of calculations. A naïve yet common 

practice within this field involved trying different exchange-correlations and simulation 

settings to assess their validity and quantify uncertainty in predicted properties. Given the 

computationally inefficiency of this approach, Bayesian Error Estimation Functional 

(BEEF) approach [168, 169] for uncertainty quantification has been developed and widely 

adopted. BEEF approach leverage ideas from Bayesian statistics to estimate a distribution 

for the parameters used in exchange-correlations and thus, deduce the distribution of 

model’s predictions. Given the complexity of simulating lacunar spinels (Chapter 5) and 

the subsequent use of predicted properties in design, it will be beneficial to quantify the 

uncertainty associated with the DFT simulations and integrate this knowledge in BO. 

e)  Descriptor assisted BO described in Chapter 6 primarily utilized numerical descriptors 

(scalar values) to distinguish the effect levels on response. However, descriptors could be 

formulated in other forms. First, descriptors can be ascribed to the overall design rather 

than individual qualitative variables. For example, the differences between Metal – Organic 

– Frameworks compounds is often characterized by geometrical descriptors such as 

Gravimetric Surface Area, Volumetric Surface Area etc. The methods for level selection 

and descriptor augmentation must be modified to tackle such problems. Second, data 

obtained from low fidelity simulations could also contain valuable information regarding 

the effect of levels. While converting this data into physically interpretable numerical 
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descriptors as described in Chapter 6 may be challenging, a multi-fidelity BO scheme to 

extract knowledge from this data could be beneficial.  

f) Incorporation of new webtools in NanoMine by introducing standardized data curation 

workflows, data visualization capability, sophisticated interphase calibration and, FEA 

tools is necessary to drive the widespread adoption of data centric design methodology in 

the nanocomposite community. Recently, the Graphical User Interface (GUI) for MCR 

tools has been updated to allow users to provide additional information regarding images 

they upload such as scale, resolution. Some additional features that are highly desirable 

are: 

• It will be beneficial to create workflows to process a collection of images (aka batch 

processing) when each image has a different scale.  

• Currently, the MCR webtools act as standalone tools for expedited image 

processing. However, tapping into NanoMine’s ontology enabled knowledge graph 

requires a framework for storing the information generated by creating protocols 

for (a) seeking user consent for providing open access to their datasets (images, 

property measurements, processing conditions)  (b) creating a web infrastructure 

that inserts/deletes/edits the knowledge graph as needed (c) creation of an agent 

that will periodically process all images uploaded to NanoMine without explicit 

instructions. 

• Similar to other Materials / Cheminformatics packages, it is beneficial to provide 

an Application Programming Interface (API) in addition to GUI to promote 

acceptance of NanoMine in the data science community. 
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This thesis identifies data-centric design methodology as a framework to elucidate the 

interconnections between the major themes in design engineering and materials science. 

Discussions on a variety of material systems presented here reinforce the generality of this 

framework and also shows the unique, system specific challenges encountered in its 

implementation. We believe the data-centric materials design framework will be the backbone of 

data driven  exploration and development of advancement material systems to meet the challenges 

facing us in the 21st century.  
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9 Appendix 

9.1 One-Click Microstructure Characterization and Reconstruction via NanoMine 

An important component in the recent push towards data-driven design of materials has been 

the emergence of open-source material databases [3-7] providing quick access to materials’ data 

in a machine readable format. NanoMine [3, 4], a nanocomposite material database with in-built 

data curation, exploration and analysis capabilities, exemplifies this approach in the field of 

polymer nanocomposites. It captures the physical properties reported in the literature and from 

individual research labs including microstructure, processing conditions, and material properties. 

Ontology-enabled knowledge graph framework helps NanoMine establish relationship between 

those properties. A collection of module tools for microstructure characterization & reconstruction 

and simulation software to model bulk nanocomposite material response augments knowledge 

generated by experimental data. Integrating these different sources of knowledge is critical for 

establishing PSP relationships and subsequently material design. 

Commonly used MCR tools have been incorporated in NanoMine to provide parsimonious 

microstructures analysis workflow for researchers as shown in Figure 9-1. As mentioned in 

Chapter 2.1, microstructure binarization is a precursor to MCR and has thus been included in 

NanoMine. We provide two popular binarization tools namely, Otsu and Niblack’s Method and 

three microstructure characterization and reconstruction techniques applicable for two-phase 

nanocomposites.  

https://materialsmine.org/nm#/
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Figure 9-1: Summary of microstructure binarization, characterization and reconstruction tools 

offered by NanoMine. 

Each tool is accompanied by detailed instruction to users regarding how to interact with the tool 

as well as recommendations for how to select tools best suited for their microstructure. Some user-

friendly features that make these tools attractive for researchers are summarized below: 

• All computations are performed on the NanoMine server. Thus, users can have full access 

to webtools via their web browser and do not need to install any software packages. 

• All tools support commonly used image file formats such as Joint Photographic Exchange 

Group (JPEG) / Portable Network Graphics (PNG) / Tagged Image File Format (TIFF) as 

well as MATLAB’s native .mat file format.  

• If the user wants to analyze a batch of images, NanoMine provides the option of uploading 

a ZIP file containing several images. The images must belong to one of the supported file 
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formats mentioned above. NanoMine tools process each image separately and then 

compute pertinent statistics over the entire batch. It is essential that all images have the 

same scale and resolution for accurate computation of batch statistics.  All data (statistics 

for each image as well as aggregated statistics for the batch) is returned to the user for in 

comma-separated values (CSV) file format for inference and further analysis. 

• Every tool request made by the user is assigned a unique Job ID, which can be used to 

retrieve results. The Job ID is a 22 character alphanumeric code generated upon receiving 

the job request and is used to store all files created during tool execution. 

• Since some tools are computationally intensive and require substantial time for completion, 

NanoMine provides E-mail alerts to users upon completion of their requests. This feature 

alleviates the need for users to stay connected with NanoMine server during processing of 

their requests. An E-mail containing the status of request (successful completion/failure), 

the Job ID and a hyperlink to results page is sent to address provided by user during 

registration on NanoMine website. The results page provides a summary of results 

obtained. For example, Figure 9-2 shows the result page for microstructure characterization 

using correlation webtool. The uploaded image & its correlation are shown on screen and 

also available for download for further analysis. 

• The outputs from each tool are returned to users in a machine-readable format, helpful for 

further analysis. 
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Figure 9-2: Snapshot of result obtained from Correlation function characterization tool in 

NanoMine  

 

9.2 Interphase Calibration for Polymer Nanocomposites 

Frequency dependent dielectric properties, real (휀′(𝜔)) and imaginary (휀"(𝜔)) permittivity, of 

a polymer are expressed as superposition of independent Debye functions with different relaxation 

time (𝜏𝑖) and intensity (∆휀𝑖)  

 휀′(𝜔) = 휀∞ + ∑
∆휀𝑖

1 + (𝜔𝜏𝑖)2

𝑛

𝑖=1

 , (9-1) 
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휀"(𝜔) = ∑
∆휀𝑖𝜔𝜏𝑖

1 + (𝜔𝜏𝑖)2

𝑛

𝑖=1

, (9-2) 

Shift factors 𝐶, 𝑀𝛼 , 𝑆𝛼, 𝑀𝛽 , 𝑆𝛽 (𝛼 and 𝛽 relaxation modelled separately) scale polymer 

relaxation time (𝜏𝑖) and intensity (∆휀𝑖) to generate interphase relaxation time (𝑆𝛼𝜏𝑖, 𝑆𝛽𝜏𝑖) and 

interphase intensity (𝑀𝛼∆휀𝑖,  𝑀𝛽∆휀𝑖 ). Superposition of Debye functions, as shown below, gives 

frequency dependent interphase properties.  

 휀′
𝑖𝑛𝑡(𝜔) = 휀∞ + 𝐶 + 𝑀𝛼 ∑

∆휀𝑖

1 + (𝜔𝑆𝛼𝜏𝑖)2

𝜏𝑖>𝜏0

+  𝑀𝛽 ∑
∆휀𝑖

1 + (𝜔𝑆𝛽𝜏𝑖)2
,

𝜏𝑖<𝜏0

 (9-3) 

휀"
𝑖𝑛𝑡(𝜔) = 𝑀𝛼 ∑

∆휀𝑖𝜔𝑆𝛼𝜏𝑖

1 + (𝜔𝑆𝛼𝜏𝑖)2

𝜏𝑖>𝜏0

+  𝑀𝛽 ∑
∆휀𝑖𝜔𝑆𝛽𝜏𝑖

1 + (𝜔𝑆𝛽𝜏𝑖)2

𝜏𝑖<𝜏0

, (9-4) 

where 𝜏0, relaxation time corresponding to critical frequency, is used to make distinction between 

low frequency (𝛼) and high frequency (𝛽) regime. More details can be found in [47,48]. 

In our study, we focus on the design problem at a specific frequency target, 60Hz. Therefore, 

the calibration problem reduces from the task of finding five shifting factors to finding two scale 

factors. These scale factors (𝑆𝐹𝑟𝑒𝑎𝑙, 𝑆𝐹𝑖𝑚𝑎𝑔) simply scale the polymer permittivity(휀′) and loss (휀") 

at 60Hz to generate the corresponding interphase properties (휀′𝑖𝑛𝑡, 휀"𝑖𝑛𝑡) at 60Hz. 

 휀′
𝑖𝑛𝑡(𝜔 = 60𝐻𝑧) = 𝑆𝐹𝑟𝑒𝑎𝑙 ∗  휀′(𝜔 = 60ℎ𝑧), (9-5) 

 휀"𝑖𝑛𝑡(𝜔 = 60𝐻𝑧) = 𝑆𝐹𝑖𝑚𝑎𝑔 ∗  휀"(𝜔 = 60ℎ𝑧),  (9-6) 

Calibration of these scale factors (Module 2, Chapter 4) is performed to minimize difference 

between the dielectric spectroscopy response of the FE simulation and that measured in 

experiments at 60Hz, for each of the six material combinations that span the design space. This 

calibration can be accomplished either with manual tuning by trial and error iterations [80, 115] or 
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using black-box optimization methods, for instance, adaptive sampling using Bayesian approach 

[170], the former being used here. The trial and error calibration approach begins with simulation 

of the two phase microstructure (no interphase) to obtain the initial error with respect to the 

composite values at 60Hz. Based on this error, an initial assumption on the scaling factors for the 

interphase is made and used as input in a three phase model (with interphase) and the new output 

properties are predicted in FE. The values of the scale parameters are then varied iteratively until 

the error between the FE predicted properties for the three phase composite and the experimental 

data is less than the target acceptable error. A similar manual procedure can be followed, with some 

additional considerations, while tuning frequency dependent interphase description as explained 

in [47].  

 

9.3 Density Functional Calculation Details for Lacunar Spinels 

We perform DFT simulations as implemented in the Vienna Ab initio Simulation Package 

(VASP ) [171, 172]. The projector augmented-wave (PAW) potentials [173] are used for all 

elements in our calculations with the following valence electron configurations: Al (3𝑠23𝑝1), Ga 

(3𝑑104𝑠24𝑝1), In (4𝑑105𝑠25𝑝1), V (3𝑠23𝑝63𝑑44𝑠1), Nb (4𝑠24𝑝64𝑑45𝑠1), Ta (5𝑝65𝑑46𝑠1), Cr 

(3𝑠23𝑝63𝑑54𝑠1), Mo (4𝑠24𝑝64𝑑55𝑠1), W(5𝑠25𝑝65𝑑56𝑠1), S (3𝑠23𝑝4), Se (4𝑠24𝑝4), and Te 

(5𝑠25𝑝4). We use exchange correlation potentials (𝑉𝑥𝑐) as implemented by Perdew-Burke-

Ernzerhof (PBE) [174]. The effect of on-site Coulomb interactions (PBE+𝑈) is considered with a 

𝑈 value of 2.0eV for all 6 transition metals. Previous studies have shown that such settings could 

nicely capture the complex electronic structures within the lacunar spinel family [175, 176]. 

Numerous spin configurations are evaluated to ensure the global ground state is achieved and that 
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those states are consistent with available experimental magnetic data [177]. Spin-orbit interactions 

(SOI) are not considered in our calculations. Although it has been shown that SOI leads to 

interesting molecular 𝑗𝑒𝑓𝑓 states [176], this order does not strongly affect the size of the ground 

state electronic band gaps, even 5𝑑  transition metals lacunar spinels [175]. A Γ-centered 6 × 6 × 

6 𝑘-point mesh with a 500eV kinetic energy cutoff is used. We employ Gaussian smearing with a 

small 0.05eV width. For density-of-state calculations, we use the tetrahedron method with Blöchl 

corrections [178]. Electric polarizations along the [111] direction are simulated using the Berry 

phase method [179]. 

The crystal structures of the existing lacunar spinels are obtained from our previous DFT 

studies2, structures of new compositions are obtained by replacing the elements on the 

corresponding crystallographic sites from existing structures. We perform full lattice relaxations 

until the residual forces on each individual atom are less than 1.0meVÅ−1. The DFT relaxed crystal 

structures of the Pareto front compositions are available on GitHub3. We initialize the relaxation 

with various magnetic moment configurations, the converged configuration with the lowest energy 

is reported as the DFT ground state. Zone center (k=0) phonon frequencies and eigendisplacements 

are obtained using the frozen-phonon method with pre and post-processing performed with the 

Phonopy package [180]. The decomposition pathways are automatically generated using Grand 

Canonical Linear Programming [181]  from the Open Quantum Materials Database [182]. 

Resistivity simulations are performed using electronic structures computed from VASP as 

previously described, but with an increased 24 × 24 × 24 𝑘-point mesh and the BoltzTrap2 package 

 
2 GitHub Repository 

 
3 GitHub Repository  

https://github.com/MTD-group/lacunar_spinel_structures
https://github.com/MTD-group/Pareto_font_lacunar_spinel
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[183]. We also assume that all M𝑎 sites have the same orientation within the crystal. In order to 

validate this model, we simulated a 2 × 2 × 2 supercell of InNbMo3Se8 with one Nb atom oriented 

in a different direction from the other seven. We find that the ground state 𝐸𝑔  as well as Δ𝐻𝑑 

exhibit negligible changes from the homogeneous description. We also compared the change in 

properties with the anti-ferromagnetic spin configuration using a doubled simulation cell with the 

ferromagnetic ground state. As before, we find there are no significant changes in the 

aforementioned properties. These results are reasonable because the local structure of the transition 

metal cluster dictates the low-energy band structure near the Fermi level. 
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9.4 Cover art for Data Centric Nanocomposite Design article 

The article describing data-centric polymer nanocomposite design using Bayesian Optimization 

was highlighted on the cover of Molecular System Design and Engineering journal [184]. A copy 

of the published cover art is shown in Figure 9-3.  

 

Figure 9-3: Copy of Molecular System Design and Engineering journal cover highlighting our 

article 

9.5 Metal Insulator Transitions design article in the news 

The article describing features optimization of Metal Insulator Transition compounds was 

highlighted on the cover of Applied Physics Review [185] journal (Figure 9-4a) and covered by 



176 

 

Northwestern University’s McCormick School of Engineering in their weekly newsletter (Figure 

9-4b). 

 

Figure 9-4: (a) Copy of Applied Physics Review journal cover (b) A screenshot of news article 

published by McCormick School of Engineering. 

 

https://www.mccormick.northwestern.edu/news/articles/2020/11/optimizing-the-design-of-new-materials.html?utm_source=northwestern&utm_medium=email&utm_campaign=mccormick-internal-newsletter&utm_content=internal_students_11-09-20_
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