
NORTHWESTERN UNIVERSITY 

Advancing Computational Methods to Derive Insights from Real-world Health Data 

 

A DISSERTATION 

 

SUBMITTED TO THE GRADUATE SCHOOL 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS 

 

for the degree 

 

DOCTOR OF PHILOSOPHY 

 

Biomedical Informatics 

 

By 

Yu Deng 

EVANSTON, ILLINOIS 

 

June 2022 

 

 



 2 

 

 

 

 

 

 

 

 

 

© Copyright by Yu Deng, 2022 

All Rights Reserved 

 

 

 

 

 

 

 



 3 

Abstract 

In 2009, the Health Information Technology for Economic and Clinical Health Act (HITECH) 

promoted national use of electronic health records (EHR) in the US by giving incentives to 

providers who adopt ‘meaningful use’ of EHRs. As of 2017, nearly 86% of office-based 

physicians had adopted EHRs. EHRs have rich information including structured data like 

diagnosis, medication, patient encounters, laboratory tests, semi-structured data such as problem 

lists, and unstructured data such as patient notes. The large amount of information in EHRs 

presents abundant opportunities for clinical research but also challenges. EHRs can facilitate 

clinical research either alone or combined with other data sources including evaluating drug 

comparative effectiveness, facilitating patient recruitment for clinical trials, assessing gene-

disease associations and many others. In this work, we explored insights that researchers can 

derive from using EHR data, the challenges it presents along the way, particularly, in comparison 

to traditional registry data and cohort data, and how to overcome these challenges from a 

methodology point of view. More specifically, in the second chapter, we focused on the 

application of EHRs on drug comparative effectiveness. In this chapter, we used structured EHR 

data to assess second-line type 2 diabetes medication comparative effectiveness on renal disorder 

to provide real-world evidence for clinical trial findings. In the third chapter, we presented data 

completeness/accuracy related challenges in EHR data specifically in the context of lupus 

subtype identification; In the fourth chapter, we proposed a natural language processing-based 

approach to address some of the challenges mentioned by improving the accuracy of disease 

phenotypes. In the last chapter, we developed a method to improve cardiovascular disease 

prediction in traditional cohort studies that could potentially be applied to EHR data in the future. 

Together, this thesis highlights the insights we can derive from EHR data, the challenges EHR 
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data presents when applied in clinical research and offer ways to overcome some of the 

challenges from a methodology point of view.  

  



 5 

Acknowledgment 

This work cannot be completed without the mentorship and support from many people during 

my PhD journey. First and foremost, I would like to thank my thesis advisor Dr. Abel Kho. Abel 

once said that the key to patient care is care and this extends to all other things in life. Abel 

deeply cares about his students and their personal growth. From him, I learned not only how to 

do good research but also how to be a good person and a good leader. Through my PhD years, 

there were many times when I felt I was not good enough or I was not able to finish my projects. 

He has always been encouraging and genuinely believed in me. I want to thank my thesis 

committee member, Dr. Lihui Zhao. From him, I learned the importance of being detail-

orientated and how to generate quality work. The project I worked on with him involved editing 

over 10 times to ensure good quality of work. I want to thank my committee members Dr. 

Ramana Davuluri and Dr. Yuan Luo, both of whom provided value advice on my thesis work. I 

want to thank my close friend, Marcus Gruwell. Being an international student and studying 

abroad was not easy for me. Marcus and his family kindly treated me as their own and have been 

a huge support for both my academic and personal life. I want to thank my good friend, Susan 

Park. I can remember the days when we studied late in the library working on deadlines. Susan, 

thank you for transforming these hard times from lemons to lemonade. I want to thank my good 

friends Angel Bohannon, Eunie Cho, Ashley Haluck-Kangas, and my former roommates Yizhen 

Zhong and Shimeng Liu. Each of them have been a huge inspiration for me and I am so grateful 

to have grown together with them in this journey. Last but not the least, I want to thank my 

parents and my sister for their support and unconditional love. They made the person I am today, 

and I am forever thankful.  

 



 6 

 

Dedication 

I dedicate this thesis to my parents and sister. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 7 

  

Table of Contents 

Abstract ........................................................................................................................................... 3 

Acknowledgment ............................................................................................................................ 5 

Dedication....................................................................................................................................... 6 

List of Tables, Illustrations, Figures, and Graphs........................................................................ 9 

Chapter One: Introduction .......................................................................................................... 11 

1.1 Electronic health records overview ................................................................................................ 11 

1.2 Drug comparative effectiveness using EHRs and its recent progress ......................................... 13 

1.3 Predictive modeling using EHR data ............................................................................................. 14 

1.4 Existing Challenges using EHR data ............................................................................................. 15 

1.5 The development of Computational phenotyping ........................................................................ 17 

Chapter Two: Use of real-world evidence data to evaluate the comparative effectiveness of 

second-line type 2 diabetes medications on chronic kidney disease .......................................... 20 

Abstract .................................................................................................................................................. 20 

Keywords ................................................................................................................................................ 21 

Introduction............................................................................................................................................ 21 

Methods .................................................................................................................................................. 22 
2.1 Study population............................................................................................................................................ 22 
2.3 Renal outcomes ............................................................................................................................................. 24 
2.4 Covariates ...................................................................................................................................................... 24 
2.5 Data cleaning ................................................................................................................................................. 25 
2.6 Statistical analysis ......................................................................................................................................... 26 
2.7 Sensitivity analysis ........................................................................................................................................ 27 

Results ..................................................................................................................................................... 27 
3.1 Risk for incident CKD, CKD hospitalization, and eGFR<45mL/min outcome in primary analysis ............ 29 
3.2 Sensitivity analysis ........................................................................................................................................ 30 

Discussion ............................................................................................................................................... 31 

Conclusion .............................................................................................................................................. 34 

Chapter Three: Comparison of electronic health record data with adjudicated registry data for 

identification of systemic lupus erythematosus subtypes using unsupervised learning ............ 50 

Abstract .................................................................................................................................................. 50 

Introduction............................................................................................................................................ 51 



 8 

Methods .................................................................................................................................................. 54 

Results ..................................................................................................................................................... 59 

Discussion ............................................................................................................................................... 66 

Chapter Four: Natural language processing for lupus nephritis computational phenotyping 79 

Abstract .................................................................................................................................................. 79 

Introduction............................................................................................................................................ 80 

Methods .................................................................................................................................................. 82 

Data Source ......................................................................................................................................................... 82 
Algorithm development: lupus nephritis phenotype ........................................................................................... 83 
Model training and evaluation ............................................................................................................................. 84 
External validation .............................................................................................................................................. 84 

Results ..................................................................................................................................................... 85 

Discussion ............................................................................................................................................... 86 

Limitations.............................................................................................................................................. 87 

Conclusion .............................................................................................................................................. 87 

Chapter Five: Deep Neural Network Survival Model for Cardiovascular Disease Risk 

Prediction ..................................................................................................................................... 91 

Abstract .................................................................................................................................................. 91 

Background ............................................................................................................................................ 92 

Methods .................................................................................................................................................. 94 

Results ................................................................................................................................................... 100 

Discussion ............................................................................................................................................. 102 

Limitations............................................................................................................................................ 104 

Conclusion ............................................................................................................................................ 104 

Reference .................................................................................................................................... 111 

Appendices .................................................................................................................................. 123 

Vita .............................................................................................................................................. 147 

 

 

 

 

 



 9 

List of Tables, Illustrations, Figures, and Graphs 

Table 1. Common data elements in EHR. ................................................................................................... 11 

Table 2. Baseline characteristics of study cohort ........................................................................................ 36 

Table 3. Hazard ratio in the fully adjusted cox regression model in primary analysis ................................ 44 

Table 4. Hazard ratio in the fully adjusted cox regression model in sensitivity analysis ............................ 45 

Table 5. General study cohort and cluster characteristics using CLD data vs NMEDW data for latent class 

analysis. ....................................................................................................................................................... 70 

Table 6. Concordance table for each SLICC criteria between EDW data and CLD data. .......................... 71 

Table 7. Cluster characteristics using CLD data vs EDW data on a subset of criteria having concordance > 

70%. ............................................................................................................................................................. 72 

Table 8. Cluster characteristics using CLD data vs EDW data on a subset of individuals with concordance 

across criteria > 65% ................................................................................................................................... 73 

Table 9. Algorithm description .................................................................................................................... 88 

Table 10. Model performance ...................................................................................................................... 89 

Table 11. Baseline characteristics for each race and sex group in training/internal validation dataset and 

external validation dataset. .......................................................................................................................... 75 

Table 13. C-statistics plot by race-gender groups. In terms of calibration in 10x10 cross-validation ........ 79 

 

Figure 1. Cohort selection flowchart. .......................................................................................................... 46 

Figure 2. Unadjusted Kaplan Meier curve for incident CKD in different ADM groups. ............................ 47 

Figure 3. Unadjusted Kaplan Meier curve for CKD hospitalization in different ADM groups. ................. 48 

Figure 4. Unadjusted Kaplan Meier curve for eGFR<45mL/min outcome in different ADM groups. ...... 49 

Figure 5. Consistency comparison between CLD clustering results vs EDW clustering results; 1a: TSNE 

visualization for clustering on CLD data; 1b: TSNE visualization for clustering on EDW data; 1c: 

concordance table for patient membership from EDW clustering vs C ...................................................... 74 

Figure 6.  TSNE plot for CLD clustering results vs EDW clustering results on the subset of criteria with 

concordance>70%; Left plot: clustering on CLD data; Right plot: clustering on EDW data ..................... 75 

Figure 7. number of patients left using individual concordance cutoff from 0%-100%. ............................ 76 

Figure 8. TSNE plot for CLD clustering results vs EDW clustering results on individuals with 

concordance > 65%; Left plot: clustering on CLD data; Right plot: clustering on EDW data; bottom: 

membership concordance table .................................................................................................................... 77 

Figure 9. ESRD Kaplan Meier curve grouped by different clustering groups. A.1, B.1: cluster on whole 

dataset; A.2, B.2: cluster on criteria that have concordance > 70%; A.3, B.3: cluster on patients that have 

concordance>65%........................................................................................................................................ 78 

Figure 10. Number of patients with SLE. .................................................................................................... 90 

Figure 11. Frameworks for neural network survival models. .................................................................... 106 

Figure 12. C-statistics for PCEs, Nnet-survival, Deepsurv, Cox-nnet, and Cox PH-TWI in 10x10 cross-

validation and MESA external validation. ................................................................................................. 107 

Figure 13. Kaplan-Meier Observed Event Rate and Predicted Event Rate for the ASCVD Outcome in the 

10x10 cross-validation. .............................................................................................................................. 108 

Figure 14. Kaplan-Meier Observed Event Rate and Predicted Event Rate for the ASCVD Outcome in the 

MESA Cohort. ........................................................................................................................................... 109 



 10 

Figure 15. Kaplan-Meier Observed Event Rate and Recalibrated Predicted Event Rate for the ASCVD 

Outcome in the MESA Cohort.. ................................................................................................................ 110 

 

Table S 1. Diagnosis codes for type 2 diabetes. ........................................................................................ 123 

Table S 2. Diagnosis codes for study variables. ........................................................................................ 124 

Table S 3. Change over time in HbA1c value by second-line ADM groups. ............................................ 126 

Table S 4. Hazard ratio for CKD incidence outcome in primary analysis. ............................................... 128 

Table S 5. Hazard ratio for CKD hospitalization outcome in primary analysis. ....................................... 130 

Table S 6. Hazard ratio for eGFR < 45 mL/min outcome in primary analysis. ........................................ 132 

Table S 7. Hazard ratio for CKD incidence outcome in sensitivity analysis............................................. 134 

Table S 8. Hazard ratio for CKD hospitalization outcome in sensitivity analysis. ................................... 136 

Table S 9. Hazard ratio for eGFR < 45 mL/min outcome in sensitivity analysis...................................... 138 

Table S 10. Number of patients who were on only two medications in each second-line ADM group. .. 140 

Table S 11. Hazard ratio in the fully adjusted cox regression model among patients who took only two 

ADMs during the exposure period. ........................................................................................................... 141 

Table S 12. Regex search for Nasal/oral ulcer, arthritis, renal disorder, and lupus nephritis.................... 142 

Table S 13. CUIs and their definition. ....................................................................................................... 144 

Table S 14. C-statistics for PCEs, Nnet-survival, Deepsurv, Cox-nnet, and Cox PH-TWI in 10x10 cross-

validation and MESA external validation. ................................................................................................. 145 

 

Figure S 1. BIC varying with number of clusters. ..................................................................................... 146 

 

 

 

 

 

 

 

 



 11 

Chapter One: Introduction  

 

1.1 Electronic health records overview  

Electronic health record (EHR) systems are databases designed to store individual medical 

information recorded by health care providers during clinical care and healthcare administration 

(1). In 2009, the Health Information Technology for Economic and Clinical Health Act 

(HITECH) as part of the 2009 American Recovery and Reinvestment Act encouraged the use of 

EHRs by providing incentives to health care providers that met the “meaningful use” criteria. 

The criteria include using EHRs for relevant purposes and meeting certain technological 

requirements (2). As of 2017, nearly 86% of office-based physicians had adopted EHRs. Today, 

EHRs are in wide use and collect a broad variety of patient medical information including 

structured data, unstructured data, and semi-structured data. Structured data includes 

demographic information, diagnoses, lab results, medication use, even some environmental 

exposure data, such as smoking status (3). Unstructured data is primarily text such as clinical 

notes, while semi-structured data might be problem lists or radiology reports which, while also 

text, have consistent form or structure. The details of some common data elements and their 

description and examples in EHRs are shown in Table 1.  

Table 1. Common data elements in EHRs. 

Data elements Descriptions, examples Data structure 

Demographics Age, gender, race, sex, date of birth  Structured data  

Encounters  Encounter start date, end date, encounter types,  Structured data  
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Clinical notes Physician notes, discharge summaries, nursing 

documentation 

Unstructured data 

Diagnosis  ICD-9/ICD-10, SNOMED-CT Structured data 

Medication  RxNorm code, ATC Structured data 

Vital signs Height, weight, blood pressure Structured data 

Laboratory test LOINC  Structured data 

Problem list A list of diagnoses that allow physicians to quickly 

review a patient’s ongoing health problems 

Semi-structured data 

Others  Social economics (income, occupation), 

environmental factors (smoking) 

Structured data 

Abbreviations: ICD-9-CM: International Classification of Diseases-Tenth Revision, ICD-10: 

International Classification of Diseases-Tenth Revision, SNOMED-CT: Systemized 

Nomenclature of Medicine – Clinical Terms, ATC: Anatomical Therapeutic Chemical 

classification, LOINC: Logical Observation Identifiers Names and Codes. 

EHRs can advance healthcare research by themselves or in connection with other data sources 

such as registry data, genomic data, and socioeconomic status. Some active areas of research 

using EHRs examine drug comparative effectiveness, drug-drug interaction, drug repurposing, 

genome-disease association, disease progression modeling, and patient recruitment (1,4–6). 

Because of the scope of this work, we will focus on two areas of research: 1) Evaluating drug 

comparative effectiveness in disease outcome and 2) Predictive modeling of disease 

development.  
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1.2 Drug comparative effectiveness using EHRs and its recent progress 

Traditionally, researchers evaluate the benefits and safeties of a drug through clinical trials 

starting from patient recruitment through longitudinal follow-up patients over time until adequate 

outcome data is collected. The whole process is often complex, costly and time intensive. In 

addition, one study can measure only a limited number of drugs and endpoints. In comparison, 

data in EHRs is already collected over time which makes it efficient and cost-effective. Further, 

its longitudinal nature enables both cross-sectional and longitudinal cohort studies. Many studies 

have now (7,8) used EHRs to evaluate treatment effectiveness in various disease areas including 

cardiovascular disease, cancer (9), diabetes (10,11), Alzheimer (12), and others (13–15). Several 

large efforts aim to conduct comparative effectiveness research using EHRs, sometimes referred 

to now as real-world evidence data. The Patient Centered Outcomes Research Network (PCORI) 

launched PCORnet, a distributed research network, to support comparative effectiveness 

research using nation-wide EHR data (16). The Health Care Systems Research Collaboratory 

supported by the National Institutes of Health (NIH) Common Fund aimed to strengthen national 

capacity to implement cost-effective, large-scale pragmatic clinical trials using data from routine 

clinical care (17). Some of the projects from the Collaboratory include evaluating Chlorhexidine 

versus routine bathing on multidrug-resistant organisms and all-cause bloodstream infections 

(18). In July 2021, the FDA approved Prograf (tacrolimus) in combination with other 

immunosuppressant drugs for organ rejection among patients with lung transplantation (19). This 

action marked a new chapter for real-world evidence studies as it demonstrated that a well-

designed, observational study using real-world data (RWD) can be considered adequate under 

FDA regulations. 
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1.3 Predictive modeling using EHR data 

Predictive modeling is another popular area of application of EHR data. Studies have used EHR 

data to develop predictive models for suicide prevention (20), mortality prediction in intensive 

care unit (21), cardiovascular disease prediction (22), acute kidney disease prediction (23) and 

many others. In recent years, more non-traditional approaches, such as machine learning 

methods have been developed to make use of the high dimensional data in EHRs to improve the 

predictive accuracy (24–26). Among these machine learning models, neural networks have had 

breakthrough success especially when applied to unstructured data such as image recognition and 

text classification (27–30). Efforts have been made to improve predictive accuracy by combining 

different approaches with neural networks. This includes using data from different modules (31), 

incorporating longitudinal information (26,32), and integrating an external knowledge base (33). 

Choi et al. used a list of one-hot encodings, a way of converting categorical data to a binary 

vector, to represents a patient’s diagnosis histories. This list is then used as features for a 

recurrent neural network model (26) to predict heart failure. Ramsy et al. developed Med-Bert to 

pretrain embeddings on structured EHR data. The model took the longitudinal history of patient 

diagnoses to facilitate disease prediction (34). However, most of these models are applicable to 

binary or continuous outcomes rather than time-to-event data type. It is common in EHR studies 

that individuals are lost to follow-up (censored data) before the failure or event time and standard 

neural network models cannot train or test on these individuals, which leads to sample size 

reduction.  

In 1995, Faraggi-Simon first combined neural network architectures with the Cox PH model to 

make use of censored information as well as to model non-linear features-outcome relations (35). 

Since then, there has been increasing interest in incorporating neural network architectures in 
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survival analysis. In current literature, there are two main ways of modeling time-to-event using 

neural networks: (i) adapting Cox PH model and using partial likelihood loss, e.g., Cox-nnet (36) 

and Deepsurv (37); or (ii) discretizing survival time and using a heuristic loss function, e.g., 

Nnet-survival (38). However, there is still limited application of these neural network models to 

disease prediction to make use of information from patients who are lost-to-follow-up, despite 

this being a common problem in EHR data and other medical data. 

1.4 Existing Challenges using EHR data  

Despite the unprecedented opportunities EHRs bring for clinical research, it also carries many 

challenges. Because EHRs were primarily designed for administrative purpose, the data itself is 

of varying quality, completeness, and biased based on the population coverage, selective 

missingness of data, or fragmentation of these data across sites (39).    

Completeness 

Data is missing in EHRs for several different reasons (39). Data is missing in a sense that a 

patient who seeks care in one hospital may go for care in another which causes care 

fragmentation and discontinuity. Madden et al. investigated data missingness among patients 

with depression and bipolar disorder by comparing the data in EHRs vs more complete data from 

insurance claim (40). They found that 60% and 54% of outpatient behavioral care data were 

missing in EHRs among depression and bipolar patients respectively. Data normally expected to 

be recorded could also be missing by mistake as never captured even at the time of patient 

registration. Culbertson et al., (41) investigated the completeness of demographic information 

across 13 healthcare facilities. They found that not only the completeness of different data 

elements varied but the completeness of the same data elements also varied greatly among 
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different health institutes (41). Lastly, data is missing in the sense that EHRs only capture 

information when a patient has a care episode. This is different from rigorously designed 

experiments where information is typically collected repeatedly on predefined time points.  

Accuracy  

Data accuracy is another issue related to EHR data. Data inaccuracy can occur because of human 

recording error or systematic problems due to avoidance of liability. A review by Chan et al. in 

2010 examined the quality of the same clinical concepts across multiple institutions and found a 

great deal of variability. A study in Australia had patients review their own medical records to 

determine how many items were incorrect. They found that demographic details have high 

accuracy (94%) while allergies have low accuracy (61%) (42). In a study of evaluating data 

accuracy in EHR documentation, Weng et al. found major differences in symptom reporting 

between eye symptom questionnaire and what was documented in the EHRs (43).  

Complex  

EHR data is also highly complex. The data is often high dimensional, heterogeneous, and sparse. 

Data may also have random errors and contains a mixture of continuous variables and discrete 

variables. Different hospitals often have different terminology systems to define diagnoses, 

medications, laboratory tests and others. Some commonly used terminologies are ICD-10-CM, 

SNOMED-CT, ATC, LOINC codes. Just ICD-10-CM alone has more than 70,000 codes. Many 

efforts have been dedicated not only to define the concepts but also to the relationships and 

classification hierarchies among concepts. A lot of this data is also locked in clinical notes. 

which requires the use of sophisticated machine learning methods such as natural language 

processing to mine useful information from these notes. The data is also complex in the sense 
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that the relationship between data elements is often intertwined. For example, metformin is 

prescribed for type 2 diabetes patients who usually have high Hemoglobin A1C (HbA1c) values. 

In this case, the correlations among metformin, type 2 diabetes, and HbA1c make it harder for 

some statistical methods to model outcomes, especially when certain models (e.g., regression 

models) assume independence among covariates (45).  

Bias  

All the above-mentioned challenges with EHRs could be the sources of bias. Bias can occur 

when the selected population is not representative from the target population. In the case of EHR 

data, sicker patients who access the healthcare system frequently usually have more information 

recorded in EHRs while information is lacking on the population that are healthier (46). 

Therefore, identifying the types of bias in the study and on what stage they occur in the EHR 

system is critical to draw valid conclusions for observational or other types of studies.  

1.5 The development of Computational phenotyping  

Despite recognized limitations in the current use of EHRs, there are potential methodological 

improvements that can address some of these challenges.  As an example, one method that has 

emerged is EHR-based computational phenotyping, which can accurately capture phenotypes 

from noisy observational data for clinical research. Funded by the National Human Genome 

Research Institute in 2007, the eMERGE network aims to combine genetic data with EHRs in 

support of genomic medicine. As an important step for this process, the network has developed 

64 phenotypes.  

Traditionally, phenotype development relies primarily on approaches that are heuristic, rule-

based, and iterative which usually require domain expertise and is labor intensive. Later, more 
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and more studies adopt a supervised learning approach as reported in a review by Shivade et al. 

in 2013 (47). Many of these studies relied heavily on structured data such as ICD-9 (48), its 

successor ICD-10 (49), Systematized Nomenclature of Medicine-Clinical Terms (SNOMED CT) 

(50), RxNorm (51), and Logical Observation Identifiers Names and Codes (LOINC) (52). 

Although structured data is readily available and easy to access, a large amount of information in 

EHRs is locked in clinical notes. Natural language processing is a subfield of computer science 

that aims for machines to understand text or spoken words the way that humans can. In earlier 

studies, natural language processing algorithms usually work as feature extraction tools to mine 

useful features from clinical notes. Those features include but are not limited to key words, bag 

of words, term frequency – inverse document frequency (TF-IDF), and relationships between 

concepts. In recent years, models like Bidirectional Encoder Representations from Transformers  

(BERT) process whole notes at once for downstream tasks, which avoids feature extraction and 

information loss during the process (53,54). However, such an approach is computationally 

expensive, which may hinder its wide adoption in phenotyping. A review paper by Zeng et al. on 

computational phenotyping showed promise of using natural language processing to improve 

phenotyping accuracy (28).  

In this thesis, we first evaluated the second-line type 2 diabetes medication comparative 

effectiveness on renal disorder using only structured data to define phenotypes and covariates in 

chapter 2 (55). We then evaluated how phenotypes defined with structured EHR data compared 

with phenotypes drawn from curated registry data in chapter 3.  In chapter 4, we evaluated how 

well natural language processing-based methods for phenotyping can enhance phenotypes by 

combining structured EHR data and unstructured EHR data (56). In the last chapter, we focused 

on the value of novel  machine learning methods on disease prediction. More specifically, we 
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explored the use of novel neural network survival methods for 10-year cardiovascular disease 

risk prediction using cohort data in chapter 5 (57). While not directly using EHR data, this 

method could potentially be applied in high dimensional EHR data in the future to improve 

predictive modeling. Taken together, this thesis highlights the insights we can derive from EHR 

data, challenges that EHR data presents when applied in clinical research, and offers ways to 

overcome some of the challenges from a methodological perspective.   
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Chapter Two: Use of real-world evidence data to evaluate the comparative 

effectiveness of second-line type 2 diabetes medications on chronic kidney 

disease 

 

Abstract 

Chronic kidney disease (CKD) is a common complication of type 2 diabetes mellitus (T2DM). 

Approximately one-third of patients with T2DM also have CKD. In clinical trial studies, several 

anti-diabetic medications (ADM) show evidence of preventing the progression of CKD. 

Biguanides (e.g., metformin) are widely accepted as the first line medication. However, the 

comparativeness effectiveness of second line ADMs on CKD outcomes in T2DM is unclear. In 

addition, results from clinical trials may not generalize into routine clinical practice. In this 

study, we aimed to investigate the association of second line ADMs with incident CKD, CKD 

hospitalization, and eGFR<45mL/min in T2DM patients using real-world data from electronic 

health records. Our study found that treatment with sodium-glucose cotransporter 2 (SGLT-2) 

inhibitors was significantly associated with a lower risk of CKD incidence in both primary 

analysis (hazard ratio, 0.43; 95% CI, [0.22;0.87]; p-value,0.02) (SU) as a second-line ADM. 

Treatment with a dipeptidyl peptidase 4 (DPP-4) inhibitor was significantly associated with 

lower CKD incidence (hazard ratio, 0.7; 95% CI, [0.53;0.96]; p-value, 0.03) and lower CKD 

hospitalization events (hazard ratio, 0.6; 95% CI, [0.37; 0.96]; p-value, 0.04) in the primary 

analysis. However, both associations were not significant in the sensitivity analysis. We did not 

observe significant association between use of glucagon-like peptide 1 receptor agonists (GLP-

1RA), Thiazolidinediones (TZD), insulin and CKD incidence or hospitalization compared to use 

of SU as the second-line ADM.  
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Introduction  

Type 2 diabetes is a major risk factor for chronic kidney disease (CKD) and is the leading cause 

of end stage renal disease (ESRD) with approximately 20% - 40% of patients developing 

diabetic nephropathy (1). Sulfonylureas (SU), dipeptidyl peptidase 4 (DPP-4) inhibitor, 

glucagon-like peptide 1 receptor agonists (GLP-1RA), sodium-glucose cotransporter 2 (SGLT-

2), Thiazolidinediones (TZD), and Insulin are commonly used as second-line medication in 

addition to metformin. In the past decade, several randomized clinical trials have shown 

evidence of the newer anti-diabetic medications (ADMs) such as SGLT-2 and GLP-1RA in 

reducing risk for renal disease outcome compared to placebo (58–62)abl. However, there are few 

clinical trials (ongoing or finished) that directly compare the effectiveness of the newer AMDs to 

the older ones such as SU and DPP-4 inhibitor. Furthermore, patients in clinical trial studies are 

more compliant with therapy for a number of reasons (e.g. support from study staff), therefore, it 

is unclear how well results from clinical trials may apply to the general population in real clinical 

practice(63). Electronic health records (EHRs), a major source of real-world evidence data, can 

facilitate the understanding of treatment effectiveness in clinical practice using patient level data 

from the routine operation of the healthcare system and complement evidence on the efficacy of 

medications from randomized controlled trials (RCTs) (64). Recently, a study using real-world 

data investigated the comparative effectiveness of SGLT-2 inhibitor, GLP-1RA, DPP-4 inhibitor, 
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and SU  in type 2 diabetics for  preventing renal disease (65). This study was conducted within 

the Department of Veterans Affairs, which serves an older (mean age = 65.46), white (71.95%), 

male (94.49%) population. Therefore, additional research is required to compare the 

effectiveness on renal disease across the multitude of currently available drugs and drug classes. 

In this study, we compared the effect of commonly used second line anti-diabetic medications 

including SU, DPP-4 inhibitor, GLP-1RA, SGLT-2 inhibitor, TZD, and Insulin on renal 

outcomes using EHRs from a large integrated health delivery system.  

Methods 

2.1 Study population  

The Northwestern Medicine Electronic Data Warehouse (NMEDW) is the primary data 

repository for all the medical records of patients who receive care within the Northwestern 

Medicine system (66). Established in 2007, the NMEDW contains records for over 3.8 million 

patients, with most EHR data going back to at least 2002, and with some billing claims data 

going back to 1998 or even earlier (66). We included patients who met the following criteria: 1) 

at least one prescription to an ADM 2) at least one diagnosis code for type 2 diabetes (see  

Table S 1 for type 2 diabetes diagnosis codes)(10) 3) no excluded diagnoses: pregnancy, type 1 

diabetes mellitus 4) at least one year of records in the database before their first ADM exposure 

and 5) at least three years of continuous ADM prescription records after first ADM exposure. 

Given that the first SGLT-2 inhibitor was approved by FDA for use in the United States in 

March 2013, we only included patients who had their first ADM exposure after 2013-03-01. 

Figure 1 shows the flow chart of the patient selection process.  
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We defined an ADM sequence as the chronological series of ADM prescription orders a patient 

received from the date of their first ADM prescription to one year later (e.g., “Metformin, 

Glipizide, Glipizide, Glucophage, Sitagliptin, Glipizide”). We then mapped each generic name 

and brand name to its respective drug class in Anatomical Therapeutic Chemical Classification 

(e.g., “Biguanides, SU, SU, Biguanides, DPP-4 inhibitor, SU”) (67). Repeated listings of the 

same medication in each sequence were understood to be refilled prescription. Therefore, in this 

example, only the first occurrence of a medication is kept in the final sequence (e.g., 

“Biguanides, SU, DPP-4 inhibitor”). During the 1-year period, only patients who were treated 

with biguanides as their first line of medication and had a second medication of either DPP-4 

inhibitor, SGLT-2 inhibitor, GLP-1RA, SU, TZD, or Insulin were included in the study.  

 

2.2 Exposure  

The exposure in this study was the medication sequence during a patient one-year exposure 

period as described above. The sequences we were interested in include 'Biguanides, SU',  

'Biguanides, DPP-4 inhibitor',  'Biguanides, Insulin', ‘Biguanides, GLP-1RA’, ‘Biguanides, 

SGLT-2 inhibitor’ and ‘Biguanides, TZD’. A patient might switch to a third medication during 

the one-year exposure time, we considered them in the same group as the patients who did not. 

For example, ‘Biguanides, SU, DPP-4’ was considered in the same second-line ADM group as 

‘Biguanides, SU’. Patients who were only on Biguanides during the 1-year drug exposure period 

were excluded from the study. Index date was defined as one year after first the exposure to 

ADM.  
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2.3 Renal outcomes 

Our primary outcome is CKD incidence identified by the first appearance of an associated 

International Classification of Diseases, 9th/10th revision (ICD9/10) diagnosis code (see  

 

Table S 2)7. Patients who had CKD, ESRD or macroalbuminuria before index date were 

excluded in the analysis for this outcome. In addition to the incident CKD event, we evaluated 

ADMs’ associations with CKD hospitalization. CKD hospitalizations were identified based on 

ICD9/10 codes. Because diagnosis codes may be entered by clinicians in the EHRs only for more 

severe cases of CKD resulting in a significant delay between onset of CKD and an observable 

diagnosis or admission, we also performed analysis using laboratory value eGFR < 45 mL/min 

as an additional outcome.  We used eGFR < 45 mL/min as an indicator of patients having 

moderate or more severe CKD and more specific than using a higher threshold of < 60mL/min. 

For this outcome, patients who had eGFR < 45mL/min, CKD diagnosis, or CKDs hospitalization 

prior to index date were excluded from the analysis for this outcome. For any of the outcomes, 

patients were followed up from their index date until meeting criteria of one of the above 

outcomes, last hospital visit date, end of 5-year follow up period or end of study date (2019-10-

29) whichever comes first.  

 

2.4 Covariates  

We included 5 major categories of covariates: demographics, laboratory tests related to CKD, 

diagnoses from medical history before index date, medications that are known to affect CKD 

related outcome, insurance status and smoking status. Demographics includes age, gender, race 
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were collected at baseline (index date). Race categories included White, Black, Asian, and other 

races. We used White race as the reference group.  Insurance status categories included 

Medicaid, self-pay, Medicare, commercial insurance. Commercial insurance was used as the 

reference group. Laboratory test included hemoglobin A1C (HbA1c), high density lipoprotein 

cholesterol (HDL), total cholesterol (TOTCHL), serum creatinine, body mass index (BMI). 

Medications include angiotensin-converting enzyme (ACE) inhibitors, aldosterone receptor 

antagonists (ARA), angiotensin II receptor blocker (ARB), antiplatelet drugs, beta-blockers, 

calcium channel blockers, diuretics, statins, and other lipid modifying drugs (loop and thiazide 

diuretics). Medical history includes cardiovascular disease (CVD), congestive heart failure 

(CHF), hypertension, vascular disease, vascular complication of diabetes (including skin ulcer), 

diabetic neuropathy, diabetic oculopathy, dyslipidemia, and other diabetic complications 

(diabetic nephropathy, nephrotic syndrome, nephritis/nephropathy, lower extremity 

amputations). For CKD hospitalization outcome, prior CKD hospitalization is also included as a 

covariate.  

 

2.5 Data cleaning 

We included the medical history and medication use covariates for any time before the index 

date. For lab tests, we used the measurement closest to the index date in the prior 2 years.  We 

treated All the lab tests (HbA1c, HDL, TOTCHL, BMI, serum creatinine) as continuous 

variables. We excluded extreme values that were likely to be erroneous values (e.g. HDL > 100 

mg/dL, BMI< 8 kg/m2, BMI> 100 kg/m2, HbA1c>20% (195 mmol/mol), TOTCHL > 1000 

mg/dL) from the study. A patient may not have any laboratory test during our 2-year searching 

time window. In addition, some patients also have missing values in race and insurance status in 
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EHRs. To deal with the missing data, we used multiple imputation by chained equation (68). In 

our analysis, we used predictive mean matching as the imputation method for continuous 

variables and polytomous regression imputation for unordered categorical data. We created 10 

multiple imputed datasets. For each imputation, we set the number of iterations as 20. We fit cox 

regression model on each imputed dataset. We then used Rubin’s rule to pool coefficient 

estimates from 10 cox regression models (69). 

 

2.6 Statistical analysis  

We generated a simple statistical summary and stratified patients by second-line ADM 

medication. For categorical variables, we conducted Chi-square test for differences among 

second-line ADM classes. For continuous variables, we performed t-test to test the differences 

among second-line ADM classes at baseline. To evaluate the association of ADM drug classes 

and three different CKD-related outcomes, we developed a series of cox proportional hazard 

regression models. In our baseline model, we included only ADM class variables. In our basic 

demographic model, we included both ADM class and basic demographic information. In our 

demographic-medical history model, we included ADM class variables, basic demographics, and 

medical history. In the full model, we included all the mentioned variables in the Covariates 

section. Cox regressions were conducted using ‘survival’ package in R, version 3.6.0. Multiple 

data imputation was performed using ‘MICE’ package in R, version 3.6.0. Estimate pooling from 

10 imputed datasets were performed using ‘Hmisc’ in R, version 3.6.0. Descriptive data statistics 

were generated using ‘TableOne’ module in python, version 3.7.3. 
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2.7 Sensitivity analysis  

We conducted a sensitivity analysis to evaluate the robustness of our association findings. In the 

sensitivity analysis, we excluded patients with missing race, insurance status, HbA1c, total 

cholesterol, BMI, SBP, eGFR, and serum creatinine instead of imputing the missing data. The 

same cox regression models were performed to assess the association of ADMs with the three 

above mentioned outcomes.  

 

Results 

We identified 3403 patients in our final cohort who started with Biguanides (mainly metformin) 

as their first ADM and used either a DPP-4 inhibitor, SGLT-2 inhibitor, GLP-1RA, TZD, SU, or 

an insulin as their second line medication. Table 1 shows the baseline characteristics of patients 

stratified by second-line ADM classes. For CKD incident outcome, we further excluded patients 

who had CKD diagnosis before the index date, which left us 3216 patients in the final cohort for 

CKD incidence outcome (see Figure 1). For eGFR outcome, we further excluded patients with 

prior eGFR<45mL/min, which left us 2805 patients in the final cohort for eGFR<45mL/min 

outcome.  

Among the 3403 patients, overall, the mean age of the population is 59.8 (S.D = 12.0). Among 

these patients, 125 (3.67%) patients have missing data in race. For these who have race 

information, 2408 (73.5%) were white, 458 (14.0%) black, 178 (5.4%) Asian, 234 (7.1) % 

classified as other races; 1853 (54.5%) patients were male, and 1550 (45.5%) were female. There 

are 44 (1.29%) patients with missing insurance. Among the patients with insurance, 113 (3.5%) 

were self-pay, 1706 (50.8%) had commercial insurance, 128 (3.8%) were Medicaid, 1407 
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(41.9%) were Medicare. For laboratory test, there were 391 (11.49%) patients with missing 

HDL-C, 129 (3.79%) patients with missing HbA1c, 18 (0.5%) patients with missing BMI, and 

462 (13.6%) patients with missing TOTCHL. For those patients with available laboratory values, 

the mean of HDL-C is 46.0 mg/dL (S.D. = 12.3), the mean of HbA1c is 7.4% (57 mmol/mol) 

(S.D. = 1.5), the mean of TOTCHL is 166.5 mg/dL (S.D. = 40.4), the median of serum creatinine 

is 0.9 mg/dL ([Q1,Q3] = [0.7-1.0]). Among the 3403 patients, 1192 (35.0%) patients had DPP-4 

inhibitors as second line ADM, 208 (6.1%) patients had GLP-1RA as second line ADM, 215 

(6.3%) patients had insulin as second ADM, 1348 (39.6%) used SU as second line ADM, 355 

(10.4%) patients had SGLT-2 inhibitor as second line ADM and 85 (2.5%) patients had TZD as 

second line ADM.  

Statistical tests showed that age, race, insurance, smoking status, HDL-C, HbA1c, BMI, baseline 

serum creatinine, eGFR, CKD, CHF, diabetic neuropathy, other complications, vascular disease, 

VCD, oculopathy, CVD, use of ACE inhibitors, ARA, antiplatelet, diuretics, and statin were 

significantly different among the six second line ADM groups (see Table 2). In general, patients 

in newer medication groups (DPP-4 inhibitors, SGLT-2 inhibitors, GLP-1RA) tended to be 

younger, more likely to be white and have commercial insurance compared to patients in older 

medication groups (insulin, SU, TZD). In addition, patients in the insulin group tended to have 

higher HbA1c, lower eGFR and higher prevalence of use of renal related medications and 

comorbidities compared to other medication groups. In our regression analysis, in the full model, 

we adjusted for these differences by including demographics, medication history, diagnosis 

history, and laboratory tests as covariates.  

During the 5-year follow up, 232 of 3216 patients (7.2%) had incident CKD with median length 

of follow-up of 3.23 years. Out of 3403 patients, 109 (3.2%) patients had CKD hospitalization 
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with median length of follow-up of 3.31 years. Out of 2805 patients, 277 (9.9%) patients had 

eGFR < 45 mL/min with median length of follow-up of 3.21 years. Figure 2, Figure 3, and 

Figure 4 showed the unadjusted Kaplan Meier curves for incident CKD, CKD hospitalization, 

and eGFR<45 min/mL outcomes, respectively. We also examined the change of HbA1c during 

the 5-year follow up within each second line ADM groups. Patients in the insulin group started 

with the highest HbA1c among all groups. For this group, HbA1c remained stable during the 

first 4 years and went up during year 4 to year 5. HbA1c also went up in SGLT-2 group when 

comparing the fifth year’s value to the baseline value (first two years prior to the first ADM 

medication). For the GLP-1RA group, HbA1c in year five slightly decreased from baseline but 

remained relatively stable overall. For DPP-4, SU, TZD groups, HbA1c increased slightly during 

the 5-yearsfollow up. (Table S 3).  

 

3.1 Risk for incident CKD, CKD hospitalization, and eGFR<45mL/min outcome in 

primary analysis 

Table 2 showed the number of events and hazard ratio of all three renal outcome for each 

second-line ADM class using SU as reference group in a fully adjusted model in the primary 

analysis (see Table S 4 for hazard ratio in baseline model, basic demographics model, basic 

demographics/medical history model in primary analysis)7. For CKD incidence, both SGLT-2 

inhibitor (HR, 0.43; 95% CI, [0.22;0.87]; P=0.02) and DPP-4 inhibitor (HR, 0.71; 95% CI, 

[0.53;0.96]; P=0.03) are significantly associated with lower CKD incidence event. GLP-1RA 

was associated with reduced risk for CKD incidence (HR, 0.52; 95% CI, [0.21;1.29]; P=0.16), 

but the P-value is not significant. For CKD hospitalization outcome, DPP-4 is significantly 

associated with lower risk for CKD hospitalization (HR, 0.60; 95% CI, [0.37;0.96]; P=0.03). Use 
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of the other ADMs also did not show significant difference in CKD hospitalization outcome 

compared to use of SU. For eGFR<45mL/min outcome, we observed that SGLT-2 inhibitor was 

associated with lower risk for eGFR<45mL/min (HR, 0.58; 95% CI, [0.32, 1.07]; P=0.08). 

However, this association was not statistically significant. We did not observe significant 

association between DPP-4 inhibitor and eGFR<45mL/min.  

3.2 Sensitivity analysis  

Table 4 showed hazard ratios for ADMs relative to use of SU in the sensitivity analysis in fully 

adjusted model (see Table S 7, Table S 8, and Table S 9 for hazard ratio in baseline model, basic 

demographics model, basic demographics/medical history model in sensitivity analysis)7. Our 

sensitivity analyses included only those patients with complete data. For the incident CKD event, 

after excluding patients with missing race, insurance status, HbA1c, insurance status, HDL, total 

cholesterol, BMI, baseline serum creatinine, and baseline eGFR, 2364 patients remained. Our 

analysis showed that in the fully adjusted model, SGLT-2 inhibitor use (HR, 0.42; 95% CI, 

[0.19, 0.92], P=0.03) was significantly associated with lower incidence of CKD. DPP-4 inhibitor 

use (HR, 0.75; 95% CI, [0.52;1.08]; P=0.12) was associated with lower CKD incidence but the P 

value was not statistically significant. For the CKD hospitalization outcome, after excluding 

patients with missing values, there were 2499 patients left. we did not observe any significant 

association between a particular second line ADM class relative to SU. For eGFR<45mL/min 

outcome, use of SGLT-2 inhibitor showed lower risk for eGFR<45mL/min compared to the 

reference group, though this association was not statistically significant (HR, 0.61; CI, 

[0.31,1.18], P=0.14).  
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Discussion  

Randomized clinical trials and observational studies are two major ways to assess associations 

between medication and corresponding clinical outcomes (70). Although randomized clinical 

trials are rigorously designed, they have several limitations in testing the association between 

ADMs and renal outcomes among type 2 diabetes patients. First, the major randomized clinical 

trials compared ADM’s effect to a placebo group. To date the ongoing Glycemia Reduction 

Approaches in Diabetes: A Comparative Effectiveness Study (GRADE) (54) is the only clinical 

trial (finished or ongoing) that we are aware of that evaluates the comparative effectiveness of 

newer ADMs vs older ADMs on glucose control (71). Further, most clinical trials treated second 

line ADMs as a monotherapy (59,72). Therefore, it is unclear how the effect changes when the 

ADMs are used as add-on therapy on top of metformin, which is the most common case in the 

primary care setting. Secondly, patients in clinical trials are better positioned to adhere to 

medication and therapy than in real clinical settings. Therefore, the results drawn from clinical 

trials may not apply to real clinical settings. Observational studies using EHR data like ours 

could potentially close these gaps by providing evidence from the real-world data of general 

populations.  

 

In this study, we used EHR data to investigate the association of second-line ADMs with renal 

outcomes among 3403 type 2 diabetes patients who initiated treatment with metformin. We 

found that both the use of SGLT-2 inhibitor and DPP-4 inhibitor showed significant association 

with less incident CKD as compared to use of SU as a second-line medication. However, in the 

sensitivity analysis, only SGLT-2 inhibitor remained significantly associated. For the CKD 

hospitalization event, DPP-4 inhibitor appeared protective for CKD hospitalization in the 
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primary analysis, but the association was not statistically significant in the sensitivity analysis. 

For eGFR<45mL/min outcome, the association between use of SGLT-2 inhibitors and lower 

event rate of eGFR<45 mL/min was marginally significant (P=0.08). The different results for 

eGFR<45mL/min and ICD based CKD incidence outcome likely reflects the discrepancy of 

recording time between lab values and diagnosis code.   

 

In each second-line ADM group, around half of the patients switched to a third medication 

during the one-year exposure period (see Table S 10 for details). To evaluate the impact of 

switching to a third or more medication might have on the result, we examined patients who took 

2 medications only during the one-year exposure. We observed that the “Biguanide, DPP-4”, 

“Biguanides, SGLT-2” group had lower hazard risk for CKD incidence compared to the 

reference group (see Table S 11). However, the association was not significant (P=0.19 for DPP-

4 inhibitor group and P=0.13 for SGLT-2 inhibitor group). This is likely due to small size after 

restricting to patients taking 2 medications only. In addition, SGLT2 is a relatively new 

medication, the follow-up time might not be long enough to develop CKD.  

The above results from primary and secondary analysis are largely in line with results from 

placebo-controlled cardiovascular outcomes trials, which showed empagliflozin, canagliflozin, 

dapagliflozin, and Linagliptin all had beneficial effects on indices of CKD (73,74). For example, 

the CREDENCE (Canagliflozin and Renal Events in Diabetes with Established Nephropathy 

Clinical Evaluation) trial showed that type 2 diabetes patients with prior albuminuria assigned 

canagliflozin (a SGLT-2 inhibitor) had lower risk of composite renal events compared to placebo 

group (73). Cooper et al. found Linagliptin (a DPP-4 inhibitor) significantly reduced the risk of 

kidney disease events compared to placebo among type 2 diabetes patients (74). Groop et al (75) 
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found linagliptin on top of renin-angiotensin-aldosterone system significantly reduced 

albuminuria among patients with type 2 diabetes and renal disfunction. We did not find 

statistically significant difference between GLP-1RA and SU, Insulin and SU, TZD and SU in 

either primary analysis or sensitivity analysis regarding CKD incidence and CKD hospitalization 

event. For GLP-1RA, previous studies showed inconclusive evidence of its effect in reduction of 

renal disease (76). The LEADER (76) study showed GLP-1RA had benefit in reduction of new 

onset albuminuria while the LIRA-RENAL study showed no improvement in urine ACR, and 

eGFR change among renal impaired T2DM patients compared to the placebo group (77). For 

TZD vs SU, Insulin vs SU, we did not find evidence of one is superior to the other in renal 

disease outcome in the literature.  

Our study has several strengths. First, our clearly defined exposure time starting from first 

prescription of metformin, with additional prescription of a second line ADM within a year: this 

ensured comparison of patients who were in a clinically similar diabetes stage. Second, we only 

included patients who started ADMs after 2013-03-01 which is the time when the first SGLT-2 

inhibitor was approved by FDA for use. This ensures that patients using different second-line 

ADMs have comparable follow-up times and avoids the immortal time bias (78). Third, we used 

a rigorously defined patient cohort: we excluded any patients who had type 1 diabetes diagnosis 

or gestational diabetes. In addition, we only included patients who had 3 continuous years of 

ADM prescriptions since their first ADM exposure. This makes sure that each patient has 

sufficient and comparable data depth. Last while there could be confounders that were not 

included in the study, our list of covariates is relatively comprehensive based on a review of the 

literature. This list contains basic demographic information, laboratory tests, and a wide range of 

diagnoses that might not only be associated with renal disease, but also suggest disease severity. 
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Our study has several limitations.  Firstly, for simplicity, we could not distinguish between a 

switch of medication from an add-on medication. For example, patients who have a DPP-4 

inhibitor as the second medication in their sequence could either: 1) have switched entirely from 

metformin to a DPP-4 inhibitor, or 2) began using metformin and a DPP-4 inhibitor together. 

Secondly, while we controlled for as many variables/confounders as we could, it is possible that 

there remain other covariates we did not capture, which could affect prescription bias or are still 

associated with the renal outcomes. Therefore, conclusions drawn from our study should be 

interpreted with caution. Thirdly, as EHR data is primarily designed for administrative purpose, 

it is well known that EHRs have missing data issues. Because this is a single site study, patients 

may have sought care elsewhere. Therefore, it is likely that there were data points that we were 

unable to capture in this single site study. Additionally, this was a single center study of an 

academic hospital in a major US city, limiting its generalizability to other populations. Finally, 

diabetes duration is an important factor that affects renal outcomes. In our study, we did not 

control diabetes duration as a covariate because it was unavailable in our dataset. That said, we 

collected medication sequences at first exposure to ADMs, suggesting a clinically recent disease 

onset time.  

 

Conclusion  

In conclusion, our study assessed the association of common second-line medications with renal 

outcomes as compared to SU’s from March 2013 through October 2019 using EHRs. Similar to 

previous studies, our results showed that SGLT-2 inhibitors were consistently associated with 

lower CKD incidence in both primary and sensitivity analyses and DPP-4 inhibitor was 
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significantly associated with lower CKD incidence in primary analysis. We did not observe any 

statistical significance between Insulin and SU, TZD and SU in either primary analysis or 

sensitivity analysis regarding CKD incidence and CKD hospitalization event in our dataset. 

Unlike reported in Xie et al.’s study (65), We also did not observe significant benefit of GLP-

1RA compared to SU in CKD hospitalization and CKD incidence, possibly due to small sample 

size. Additional research using multi-site real-world data and larger sample sizes may be needed 

to confirm the generalizability of our results.  
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Table 2. Baseline characteristics of study cohort 

  Grouped by second-line medication 

  Missing  Overall DPP-4 GLP-1 Insulin SGLT2 SU TZD P-Value 

n   3403 1192 208 215 355 1348 85   

Basic Demographics 

Age, mean 

(SD) 0 59.8 (12.0) 59.8 (11.6) 54.9 (10.8) 59.5 (12.3) 56.3 (11.4) 61.2 (12.3) 63.5 (10.9) <0.001 

Gender, n 

(%)   

1853 

(54.5) 656 (55.0) 91 (43.8) 111 (51.6) 204 (57.5) 739 (54.8) 52 (61.2)   

Race, n 

(%) 

                  

Asian 125 178 (5.4) 61 (5.3) 11 (5.7) 8 (4.0) 15 (4.3) 75 (5.7) 8 (9.8) <0.001 
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Black   458 (14.0) 136 (11.9) 30 (15.5) 65 (32.2) 21 (6.1) 198 (15.1) 8 (9.8)   

Other 

races   234 (7.1) 86 (7.5) 9 (4.7) 15 (7.4) 25 (7.2) 97 (7.4) 2 (2.4)   

White 

  

2408 

(73.5) 860 (75.2) 143 (74.1) 114 (56.4) 285 (82.4) 942 (71.8) 64 (78.0)   

Insurance

, n (%) 

                  

Self-pay 44 118 (3.5) 43 (3.6) 5 (2.5) 13 (6.2) 5 (1.4) 49 (3.7) 3 (3.6) <0.001 

Commerci

al   

1706 

(50.8) 622 (52.8) 144 (70.6) 101 (48.3) 241 (68.3) 559 (42.0) 39 (46.4)   

Medicaid   128 (3.8) 34 (2.9) 8 (3.9) 6 (2.9) 11 (3.1) 69 (5.2)     

Medicare 

  

1407 

(41.9) 480 (40.7) 47 (23.0) 89 (42.6) 96 (27.2) 653 (49.1) 42 (50.0)   
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Smoking 

status, n 

(%)   475 (14.0) 167 (14.0) 31 (14.9) 47 (21.9) 36 (10.1) 186 (13.8) 8 (9.4) 0.004 

Laboratory test 

HDL-C, 

mean (SD) 391 46.0 (12.3) 45.9 (12.2) 47.0 (13.0) 46.2 (12.4) 44.6 (12.0) 45.9 (12.2) 49.8 (16.4) 0.033 

HbA1c, 

mean (SD) 129 7.4 (1.5) 7.3 (1.3) 7.2 (1.6) 7.9 (2.0) 7.3 (1.4) 7.5 (1.6) 7.0 (1.1) <0.001 

BMI, 

mean (SD) 18 34.2 (7.7) 33.4 (7.4) 37.2 (7.4) 34.3 (7.1) 35.9 (8.1) 33.9 (7.9) 33.6 (7.3) <0.001 

TOTCHL, 

mean (SD) 462 

166.5 

(40.4) 

165.3 

(39.7) 

168.0 

(35.0) 

163.4 

(48.4) 

169.2 

(38.2) 

167.9 

(41.4) 

155.3 

(31.3) 0.059 

Baseline 

serum  166 0.9 [0.7,1] 0.9 [0.7,1] 0.9 [0.7,1] 

0.9 

[0.8,1.1] 0.8 [0.7,1] 0.9 [0.8,1] 

0.9 

[0.8,1.1] 0.005 
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creatinine, 

median 

[Q1,Q3] 

eGFR, 

mean (SD) 199 76.4 (28.8) 77.1 (28.7) 62.7 (14.9) 60.3 (22.1) 82.7 (28.8) 79.2 (30.0) 73.1 (28.4) <0.001 

Diagnosis History  

CKD, n 

(%)   187 (5.5) 62 (5.2) 11 (5.3) 23 (10.7) 10 (2.8) 74 (5.5) 7 (8.2) 0.004 

CHF, n 

(%)   213 (6.3) 62 (5.2) 16 (7.7) 23 (10.7) 16 (4.5) 90 (6.7) 6 (7.1) 0.028 

Hypertensi

on, n (%)   

2761 

(81.1) 983 (82.5) 161 (77.4) 181 (84.2) 274 (77.2) 

1089 

(80.8) 73 (85.9) 0.089 

Dyslipide

mia, n (%)   

2635 

(77.4) 939 (78.8) 152 (73.1) 169 (78.6) 272 (76.6) 

1039 

(77.1) 64 (75.3) 0.534 
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Diabetic 

Neuropath

y, n (%)   332 (9.8) 105 (8.8) 19 (9.1) 45 (20.9) 29 (8.2) 127 (9.4) 7 (8.2) <0.001 

Other 

Complicat

ions, n (%)   274 (8.1) 87 (7.3) 17 (8.2) 37 (17.2) 30 (8.5) 93 (6.9) 10 (11.8) <0.001 

Vascular 

disease, n 

(%)   330 (9.7) 103 (8.6) 22 (10.6) 40 (18.6) 29 (8.2) 130 (9.6) 6 (7.1) <0.001 

VCD, n 

(%)   466 (13.7) 147 (12.3) 19 (9.1) 37 (17.2) 58 (16.3) 185 (13.7) 20 (23.5) 0.005 

oculopath

y, n (%)   128 (3.8) 28 (2.3) 11 (5.3) 24 (11.2) 13 (3.7) 47 (3.5) 5 (5.9) <0.001 
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CVD, n 

(%)   644 (18.9) 196 (16.4) 43 (20.7) 64 (29.8) 57 (16.1) 268 (19.9) 16 (18.8) <0.001 

hypoglyce

mia, n (%)   43 (1.3) 6 (0.5) 3 (1.4) 4 (1.9) 6 (1.7) 23 (1.7) 1 (1.2) 0.116 

Medication History 

ACE 

inhibitors, 

n (%)   

2162 

(63.5) 765 (64.2) 128 (61.5) 151 (70.2) 204 (57.5) 849 (63.0) 65 (76.5) 0.005 

ARA, n 

(%)   271 (8.0) 82 (6.9) 18 (8.7) 26 (12.1) 26 (7.3) 117 (8.7) 2 (2.4) 0.037 

ARB, n 

(%)   251 (7.4) 97 (8.1) 25 (12.0) 13 (6.0) 25 (7.0) 84 (6.2) 7 (8.2) 0.054 

CCBs, n 

(%)   817 (24.0) 294 (24.7) 47 (22.6) 61 (28.4) 71 (20.0) 321 (23.8) 23 (27.1) 0.274 
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antiplatele

t, n (%)   

1116 

(32.8) 376 (31.5) 83 (39.9) 99 (46.0) 99 (27.9) 431 (32.0) 28 (32.9) <0.001 

Beta 

Blocker, n 

(%)   

1098 

(32.3) 374 (31.4) 62 (29.8) 74 (34.4) 99 (27.9) 459 (34.1) 30 (35.3) 0.228 

Diuretics, 

n (%)   

1368 

(40.2) 466 (39.1) 91 (43.8) 108 (50.2) 124 (34.9) 544 (40.4) 35 (41.2) 0.011 

Lipid 

modifier, 

n (%)   541 (15.9) 190 (15.9) 38 (18.3) 37 (17.2) 50 (14.1) 204 (15.1) 22 (25.9) 0.111 

Statin, n 

(%)   

2284 

(67.1) 805 (67.5) 135 (64.9) 154 (71.6) 224 (63.1) 897 (66.5) 69 (81.2) 0.024 

 

This table shows the baseline patient characteristics for CKD hospitalization outcome before missing data imputation. For CKD 

incidence outcome, patients with prior ESRD and prior CKD were excluded from the study cohort. For composite renal outcome, 



 43 

patients with prior ESRD were excluded from the study cohort. Abbreviations: HDL, high density cholesterol, HbA1c, hemoglobin 

A1c; BMI, body mass index; TOTCHL, total cholesterol; VCD: vascular complications of diabetes; CHF, congestive heart failure; 

CVD, cardiovascular disease; ACE inhibitor, angiotensin-converting enzyme inhibitors; ARA, aldosterone receptor antagonists; ARB, 

angiotensin II receptor blocker. DPP-4, dipeptidyl peptidase 4 inhibitors; GLP-1RA, glucagon-like peptide receptor agonists; SGLT-2, 

sodium-glucose cotransporter 2 inhibitor; TZD, Thiazolidinediones. Measurement units for laboratory tests are as the following: HDL-

C, mg/dL; HbA1c, %; BMI, kg/m²; TOTCHL, mg/dL; serum creatinine, mg/dL. 

 

*Other complications include diabetic nephropathy, nephrotic syndrome, nephritis, diabetic retinopathy, cataract, lower extreme 

amputation
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Table 3. Hazard ratio in the fully adjusted cox regression model in primary analysis 

 CKD incidence 

(N=3216, E = 232) 

  

CKD hospitalization 

(N=3403, E = 109) 

eGFR < 45 

mL/min (N  = 

2805 , E = 277) 

 

 HR (95% CI) Pval HR (95% CI) Pval HR (95% CI) Pval 

DPP-4  0.71, [0.53;0.96] 0.03 0.6,[0.37;0.96] 0.04 0.95, [0.72;1.26] 0.73 

GLP-1RA 0.52, [0.21;1.30] 0.16 1.05,[0.37;3.02] 0.92 0.87, [0.46;1.65] 0.68 

Insulin 0.93, [0.54;1.59] 0.80 0.52,[0.24;1.17] 0.11 1.18 [0.71;1.95] 0.52 

SGLT-2  0.43, [0.22;0.87] 0.02 0.81,[0.31;2.09] 0.66 0.58, [0.32;1.07] 0.08 

TZD 1.03, [0.49;2.13] 0.93 1.25,[0.44;3.70] 0.65 0.96, [0.44;2.08] 0.91 

 

Abbreviations: HR, hazard ratio; DPP-4, dipeptidyl peptidase 4 inhibitors; GLP-1RA, glucagon-

like peptide receptor agonists; SGLT-2, sodium-glucose cotransporter 2 inhibitor; TZD, 

Thiazolidinediones; Pval, p-value; E, number of events.  
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Table 4. Hazard ratio in the fully adjusted cox regression model in sensitivity analysis 

 

CKD incidence 

(N=2364, E=159) 

CKD hospitalization 

(N=2499, E =75) 

eGFR < 45 mL/min  

(N =2164 , E =197 ) 

 

HR (95% CI) Pval HR (95% CI) Pval HR (95 %) Pval 

DPP-4 0.75; [0.52;1.08] 0.12 0.75;[0.42;1.32] 0.32 0.98,[0.71;1.36] 0.90 

GLP-1 0.53; [0.19;1.48] 0.23 0.94;[0.26;3.43] 0.92 0.97,[0.48;1.96] 0.93 

Insulin 0.72; [0.37;1.43] 0.35 1.00; [0.39;2.57] 1.00 1.49,[0.83;2.65] 0.18 

SGLT-2 0.42; [0.19;0.92] 0.03 1.35;[0.50;3.66] 0.56 0.61,[0.31;1.18] 0.14 

TZD 1.15; [0.49;2.71] 0.75 0.9; [0.21;3.90] 0.89 0.97,[0.42;2.27] 0.95 

Abbreviations: HR, hazard ratio; DPP-4, dipeptidyl peptidase 4 inhibitors; GLP-1RA, glucagon-

like peptide receptor agonists; SGLT-2, sodium-glucose cotransporter 2 inhibitor; TZD, 

Thiazolidinediones; Pval, p-value; E, number of events. 
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Figure 1. Cohort selection flowchart. 

 Abbreviations: T2DM, type 2 diabetes mellitus; ADM, antidiabetic medication; DX, diagnosis; 

T1D, type 1 diabetes; SU, sulfonylureas; DPP-4 inhibitor, dipeptidyl peptidase 4 inhibitors; 

GLP-1RA, glucagon-like peptide receptor agonists; SGLT-2 inhibitor, sodium-glucose 

cotransporter 2 inhibitor; TZD, Thiazolidinediones. 

 

 

 

 

 

1)≥one exposure to an ADM 2). ≥ one diagnosis code for T2DM 3)no excluded DX: pregnancy or T1DM 4). ≥one year of 
records in the database before first ADM exposure 5). ≥three years of continuous ADM prescription after first ADM

(N= 12451)

Only include patients with index date 
after 2013-03-01

(N = 10072)

Only include patients using biguanides as the first line ADM and SU, DPP-4, insulin, 
SGLT-2 inhibitor, GLP-1RA, or TZD as second line ADM 

(N= 3403) 

CKD incidence: exclude patients 
with prior CKD

(N=3216 )

CKD hospitalization

(N = 3403)

eGFR<45mL/min
(N=2805)
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Figure 2. Unadjusted Kaplan Meier curve for incident CKD in different ADM groups. 

Abbreviations: CKD, chronic kidney disease; ADM, anti-diabetic medication; DPP4, dipeptidyl 

peptidase 4 inhibitors; GLP-1, glucagon-like peptide receptor agonists; SGLT2 inhibitor, 

sodium-glucose cotransporter 2 inhibitor; TZD, Thiazolidinediones. 
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Figure 3. Unadjusted Kaplan Meier curve for CKD hospitalization in different ADM 

groups. 

Abbreviations: CKD, chronic kidney disease; ADM, anti-diabetic medication; sDPP4, dipeptidyl 

peptidase 4 inhibitors; GLP1RA, glucagon-like peptide receptor agonists; SGLT2 inhibitor, 

sodium-glucose cotransporter 2 inhibitor; TZD, Thiazolidinediones. 
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Figure 4. Unadjusted Kaplan Meier curve for eGFR<45mL/min outcome in different ADM 

groups. 

Abbreviations:  DPP4, dipeptidyl peptidase 4 inhibitors; GLP1RA, glucagon-like peptide 

receptor agonists; SGLT2 inhibitor, sodium-glucose cotransporter 2 inhibitor; TZD, 

Thiazolidinediones. 
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Chapter Three: Comparison of electronic health record data with adjudicated 

registry data for identification of systemic lupus erythematosus subtypes using 

unsupervised learning 

 

Abstract  

Objective: Precision medicine focuses on designing medical treatments by considering 

individual differences. Having rich individual patient information, electronic health record 

(EHR) data is an important foundation for precision medicine studies, however, EHR systems 

are primarily designed for administrative purposes and do not generally collect all information 

needed to define disease symptomology, particularly for complex systemic diseases.  Systemic 

Lupus Erythematosus (SLE) is an autoimmune disease with diverse manifestations and a highly 

variable and heterogeneous presentation. In this study, we used latent class analysis to identify 

SLE subtypes based on disease classification criteria using either adjudicated registry data or 

EHR data for the same patient population, compared the subpopulations of derived from the 

different data sources, and explored ways to improve cluster validity when using EHR data for 

clustering analysis.  

Materials and Methods. The Systemic Lupus International Collaborating Clinics (SLICC) 

group developed classification criteria for SLE that includes 11 clinical and 6 laboratory-defined 

manifestations. We performed latent cluster analysis using these manifestations and basic 

demographic information to identify distinct SLE clusters using EHR data and clinical registry 

data respectively. We compared the characteristics, survival curves and membership consistency 

of the clusters between the two datasets. To see if there are ways to improve the cluster 
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consistency derived from these two datasets, we further performed two sensitivity analyses by 

using a subset of features and a subset of patients respectively for clustering analysis. We 

compared the consistency of clustering results in both sensitivity analyses.  

Results Our results show that EHR and registry-based data generate distinct clusters that are 

associated with significant differences in end-stage renal disease outcomes. A comparison of 

cluster membership between the EHR and registry datasets show low concordance (53%). LCA 

performed on a subset of patients with concordant features does not improve the subpopulation 

concordance. LCA performed using a subset of features that were concordant between the EHRs 

and registry improve the concordance to 76%.  

Discussion and Conclusion Our data suggest that conclusions drawn from clustering analysis 

are data source-specific, and where possible, should be assessed relative to other data sources. If 

no other data sources are available, performing clustering analysis on a subset of features that are 

expected to have high concordance (e.g. lab values) may generate more reliable results. 

Introduction 

Precision medicine focuses on designing personalized medical treatment by considering 

individual attributes, including environmental, genetic, and lifestyle differences. Machine 

learning strategies are essential to precision medicine and help to identify subgroups within 

population that may have unique attributes or needs by analyzing large datasets of biological and 

clinical measures  (79). Unsupervised learning algorithms, which do not rely on specific 

outcomes to help identify subgroups within datasets, can cluster patients into groups based on 

specified features in order to find homogeneous sub-phenotypes within a complex disease. The 
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techniques can be used to better understand of the etiology and pathophysiology of the disease as 

well as provide a the foundation for more targeted treatment (80). Disease-focused patient 

registries are often used for unsupervised learning. Patient registries, which are organized 

systems that collect uniform data based on observational study methods to evaluate specified 

outcomes for a specific population have long been viewed as the gold standard for precision 

medicine research (81).  However, the development and maintenance of registries is laborious, 

often requiring significant effort on the part of clinical and research team members to collect and 

curate patient data.  Electronic health record (EHR) systems are databases designed to store 

individual medical information recorded by health care providers during the course of clinical 

care and healthcare administration (1). They are in wide use and collect a broad variety of 

medical information including diagnoses, lab results, medication use over time as well as 

primary demographic information and even some environmental exposure data, such as smoking 

status. Several studies have demonstrated the effectiveness of using EHR data to identify 

homogeneous groups for more targeted treatment [2, 5, 6]. However, the information in the 

EHRs is recorded primarily for billing purposes and continuity of clinical care, may not be 

collected by the same set of people with a set of defined standards as occurs for registries, and 

may be incomplete (39). It remains unclear if the conclusions drawn from EHRs are comparable 

to those drawn from more rigorously curated data sources, such as registries, for the development 

precision medicine tools.  

 To address this question, it was essential to identify a complex disease with heterogeneous 

presentation and well-defined clinical and laboratory-based classification characteristics that 

could be used for unsupervised subpopulation analysis as well as a population of people 
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experiencing this disease who had information documented in both an adjudicated registry and 

an aligned EHR system.  Systemic lupus erythematosus (SLE) is a complex autoimmune disease 

with heterogeneous presentation and a wide range of clinical outcomes which also has several 

rigorously developed classification criteria (84–86) that can be used to define disease attributes 

for machine learning. At the Northwestern University Feinberg School of Medicine, we have 

developed the Chicago Lupus Database (CLD), a registry of people with lupus with physician-

adjudicated classification criteria (87) that is linked to their electronic health record data in the 

Northwestern Medicine Enterprise Data Warehouse (NMEDW). 

Significant therapeutic breakthroughs for people with SLE have been few and far between. Only 

one therapy has been specifically approved or licensed for use in SLE in the past 60 years (88). 

The underlying heterogeneity of the disease likely contributes to the poor outcomes of clinical 

trials and makes effective clinical management of people with lupus challenging.  Care for 

people with SLE and therapeutic clinical trials may be improved by identifying subpopulations 

of people with similar clinical manifestations using unsupervised machine learning strategies. 

Clinical classification criteria are developed to describe the disease manifestations in people 

primarily for research and clinical trials The Systemic Lupus International Collaborating Clinics 

(SLICC) developed a list of classification criteria for SLE based on prevalent/important SLE 

manifestations that includes 11 clinical criteria that are primarily defined based on clinical 

observations and 6 immunological criteria that are primarily defined by laboratory test results 

(84). For each patient documented in the CLD, a clinical expert has recorded which clinical 

classification criteria describe the patient.  To determine whether it was possible to identify 

clinically relevant subpopulations of people with SLE we applied latent class analysis (LCA) to 
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SLE patient data in the CLD to identify subpopulations using SLE clinical classification criteria 

as features. LCA was chosen as our machine learning strategy because it is a non-parametric 

statistical model that identifies subpopulations based on multivariate categorical data (89). It 

assumes the independence of observations given their latent classes (i.e. subpopulation) and has 

been previously shown to works well with discrete data types (90–92), which are present in the 

CLD.  

To better understand the differences between medical record data and registry data as a 

foundation for subpopulation identification, we focused on identifying SLE subtypes for 472 

patents who had data in both the CLD and the NMEDW using the SLICC criteria and basic 

demographic information as a foundation for latent class analysis.  We compared subpopulations 

identified using registry data and EHR data by comparing their cluster characteristics, assessing 

their relationship to significant clinical outcomes, and evaluating subpopulation membership 

consistency between two datasets. We further explored two methods to improve the 

generalizability of the clustering algorithm by performing clustering on a subset of features with 

high concordance across the two data sources and a subset of patients whose clinical features 

were highly similar between both data sources respectively.  

Methods 

Data sources and study population   

Chicago Lupus Database (CLD): Established in 1991, the CLD is a physician-adjudicated 

registry of 1,052 patients with possible or definite lupus according to the revised 1982 American 

College of Rheumatology classification criteria (86). The CLD has laboratory data, symptoms, 



55 

 
 

and patient demographics based on each known visit. If a patient was referred, previous history 

information from the notes is documented. The CLD has been updated to reflect the 17 SLICC 

classification criteria. The 11 clinical criteria are acute cutaneous lupus, chronic cutaneous lupus, 

oral ulcers, nonscarring alopecia, synovitis, serositis, renal disorder, neurologic disorder, 

hemolytic anemia, leukopenia, thrombocytopenia and the 6 immunological criteria are: 

antinuclear antibody (ANA), Anti-double stranded DNA (anti-dsDNA), anti-Smith antibody 

(anti-Sm), antiphospholipid antibody (APA), low complement, and direct Coombs test. Patients 

are confirmed to have each criterion or not by physician chart review. SLE diagnosis date is the 

date a patient first met at least 4 ACR criteria.  

Northwestern Medicine Enterprise Data Warehouse (NMEDW): Established in 2002, NMEDW is 

an integrated data repository that stores observations of more than 6.6 million distinct patients. 

Everyday, more than 2.8 billion new data elements are loaded into the database, including majority 

from electronic heatlh records, part from research database and others. In our study, we collected 

our patient EHR data from NMEDW from 2002-01-01 to 2018-08-23.  

Cohort Identification:  To create a cohort for our study we identified all persons in the CLD who 

had a diagnosis of lupus and also satisfied the SLICC classification criteria for lupus and also 

had medical records in the NMEDW.  Medical record numbers are documented in the CLD and 

were used to match the same subject at NMEDW. In order to ensure sufficient and comparable 

data depth, we also required that participants in the CLD have at least 3 visits documented in 

NMEDW. Patients with missing basic demographic information and SLE diagnosis date in the 

CLD are excluded from the study. Because we evaluated the clustering results based on ESRD 
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survival outcome, patients with ESRD prior their SLE diagnosis date were also excluded from 

the study.   

Cohort Classification:   The SLICC Classification Criteria [10] includes 17 attributes, 11 clinical 

(acute cutaneous lupus, chronic cutaneous lupus, oral ulcers, nonscarring alopecia, synovitis, 

serositis, renal disorder, neurologic disorder, hemolytic anemia, leukopenia, thrombocytopenia) 

and 6 immunologic (antinuclear antibody (ANA), Anti-double stranded DNA (anti-dsDNA), 

anti-Smith antibody (anti-Sm), antiphospholipid antibody (APA), low complement, and Direct 

Coombs Test).   Within the CLD, the presence or absence of these criteria were determined by 

clinician chart review.  To determine presence or absence of each criterion in the NMEDW, we 

used diagnosis codes (ICD-9/10), procedure codes (ICD and CPT) and laboratory tests as 

appropriate. These algorithms are fully described in Walunas, et al (REF).  Several clinical 

criteria were determined to have low detection sensitivity based on these structured data 

elements alone.  Therefore,  for renal disease, arthritis and oral ulcers criteria, we used a list of 

customized regular expression patterns designed to search for positive mentions of these three 

phenotypes in patient notes (93) in addition to ICD codes and laboratory tests. Patients were 

determined to have severe SLE complication (e.g. ESRD) based on diagnoses (ICD 9/10 codes) 

in the NMEDW. The project was reviewed and approved by the Northwestern University 

Institutional Review Boards. 

Clustering analysis  

We applied LCA to the NMEDW and CLD classification criteria datasets. For both datasets, we 

used basic demographics and SLICC criteria as features for clustering analysis. Race was self-

reported from CLD data. Race was coded as Caucasian, African American (AA), Asian, and 
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others. Onset age was coded as young-onset (1-16), adult-onset (17 - 50), and late-onset (51-90). 

The Bayesian Information Criteria (BIC) was used to select from LCA-based models with a 

varying number of clusters (2 to 10). The model with the lowest BIC score was selected as the 

final model for clustering based off of each data set. We then compared differences in features 

among subgroups using chi-square tests, Fisher exact tests, or ANOVA based on the variable 

types.  

To compare clinical relevance of the subgroups, we examined the relationship between the 

subgroups ESRD, a severe comorbidity of lupus, associated with poor outcomes, as determined 

by diagnosis documented in the NMEDW. We followed patients from their SLE onset date until 

the onset of ESRD or the end of the study date (2018-08-23) whichever came first. We plotted 

the Kaplan-Meier curve for each subgroup and used the log-rank test to test the significance. 

To compare the consistency among clustering results, we calculated the concordance between 

the clustering results based on NMEDW data vs CLD data. Every cluster from NMEDW 

clustering was compared to its most similar cluster in the CLD data sets. If a patient 𝑖 belongs to 

cluster 𝑗 in NMEDW data and also belongs to cluster 𝑗’s corresponding cluster in CLD data, then 

we consider it as a concordant pair. Membership concordance is calculated using the following 

equation:  

concordant pairs 

concordant pairs + disconcordant pairs
 

To explore if there are ways to improve the clustering result consistency between the EHR data 

and CLD data, we performed two sensitivity analyses. In the first sensitivity analysis, we 
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performed LCA only on a subset of criteria that have above 70% concordance across all patients. 

The concordance for each SLICC criterion 𝑖 is calculated as the following: 

concordance(i) = (𝑁+,𝑖 + 𝑁−,𝑖)/𝑁, 

Where 𝑁 is the total number of patients, 𝑁+,𝑖 is number of patients that are positive for criteria 𝑖 

in both CLD and NMEDW, 𝑁−,𝑖 is the number of patients that are negative for criteria 𝑖 in both 

CLD and EDW, 𝑁 is the total number of patients.  

In the second sensitivity analysis, we performed LCA on a subset of patients with patient level 

concordance above 65%. To calculate patient-level concordance, for the same patient, we 

compared all of his/her criteria labels in the CLD with his/her criteria labels in the NMEDW. We 

selected the subset of patients that having concordance above 65% and performed LCA. For 

example, if patient A has criteria label [+renal, +ANA, -APA, -antiSM] in the CLD and label [-

renal, -ANA, +APA, -antiSM] (+ means positive for that criterion, - means negative for the 

criterion) in the NMEDW, the concordance for A would be 1/4 = 0.25, meaning 25% of the 

criteria identified for patient A are the same in both the CLD and NMEDW. A 65% threshold 

was used to ensure that patients in the analysis have relatively high concordance across two 

datasets, yet still leaves us relatively big sample size. More details of how the cutoff is selected is 

described in the result section.  

We evaluated the clustering results of both sensitivity analyses by comparing the characteristics 

of subtypes and the Kaplan-Meier curves for ESRD of the subtypes. We assessed the consistency 

of clustering results from the CLD and the NMEDW data using concordance statistics and 

visualized them with t-distributed stochastic neighbor embedding (TSNE) plot (94). 
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Statistical software R (Version 3.6.3) were used for the data processes and statistical analysis. 

LCA was performed using the R poLCA package (95). Tsne plot was performed using the Rtsne 

package (94) . 

 

Results 

Among 856 SLE patients in the CLD with definite lupus as defined by the SLICC classification 

criteria, 472 were identified in the NMEDW and had at least 3 visits documented since 2002. 

After excluding patients who had documented ESRD before SLE diagnosis date, and patients 

who had missing data (3 patients did not have SLE diagnosis dates), 457 patients remained in the 

final cohort. The average age of SLE diagnosis is 29.7 (S.D. = 11.5), 93% are female, 51% are 

Caucasian, 28% are African American and 8% are Asian and 13% are from other racial groups.  

 

Subtypes generated from the Complete CLD and NMEDW Datasets 

LCA performed on the CLD-based dataset shows that when the number of clusters is 2, the BIC 

score is the lowest suggesting that 2 clusters give the best performance. As shown in Error! 

Reference source not found. and Figure 5, cluster 1C (C represents CLD data) has 289 patients 

consisting of 61% of the original population; Cluster 2C has 178 patients consisting of 39% of 

the original population. In general, cluster 1C has a higher percentage of young-onset patients 

(cluster 1C = 14% vs cluster 2C = 4%, p = 0), higher percentage of male patients (cluster 1C = 

9% vs cluster 2C = 5%, p = 0.32), as well as higher percentage of non-Caucasian compared to 

cluster 2C (cluster 1C = 63% vs cluster 2C = 27%, p = 0). In terms of clinical and immunological 
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characteristics, cluster 1C has higher percentage in almost all immunological disorders including 

hemolytic anemia, leukopenia, thrombocytopenia, anti-ANA, anti-dsDNA, anti-Smith, anti-

phospholipid, as well as a higher percentage in Coombs test, while cluster 2C has a higher 

percentage of acute rash, oral/nasal ulcer and arthritis. Cluster 1C also has higher percentage in 

alopecia. Chi-square/Fisher exact test shows that among clinical criteria, age of SLE diagnosis, 

race, acute cutaneous SLE, oral ulcer, alopecia, serositis, renal, hemolytic anemia, and 

leukopenia are significantly different between these two clusters. For immunological criteria, 

anti-Sm, anti-phospholipid antibody, low complement and coombs tests are significantly 

different between the two clusters.  

LCA performed on the NMEDW-derived data shows that when the number of clusters is 3, the 

BIC score is the lowest suggesting that 3 clusters give the best performance. As shown in Table 

5, cluster 1N (N represents NMEDW data) has 189 patients, consisting of 41% of the whole 

cohort; cluster 2N has 211 patients, consisting of 46% of the cohort; cluster 3N has 57 patients, 

consisting of 13% of the cohort. Cluster 2N has the highest percentage of late-onset SLE (8%), 

and Caucasian population (65%) compared to the other two clusters. Cluster 2N has low 

percentage of skin manifestations including acute rash, chronic rash, oral ulcer and alopecia. It 

also has a low percentage in every other criterion compared to cluster 1N and cluster 3N. Cluster 

1N has the highest percentage in skin presentations (acute cutaneous, chronic cutaneous, ulcer, 

and alopecia) compared to both cluster 1 and cluster 3, while its percentage in other clinical and 

immunological criteria are in between that of cluster 1N and cluster 3N. Cluster 3N has low to 

medium percentage of skin manifestations including acute rash, chronic rash, and oral/nasal 
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ulcer. It has medium percentage of alopecia, while highest percentage in all other clinical and 

immunological criteria.  

To assess the overlap between the clusters developed from the registry and EHR-based data 

sources, we created TSNE plots labelled to demonstrate the relationship between clusters 

generated from the CLD and the NMEDW. Figure 1a shows the clustering results using CLD 

data. The color represents clustering membership from CLD clustering: green represents patients 

in cluster 1C, purple represents patients in cluster 2C. The shape represents clustering 

membership in EDW clustering: ‘+’ represents cluster 1N, ‘circle’ represents cluster 2N, and ‘  ’ 

represents cluster 3N. We observe overlap between CLD cluster 1C (green symbols) and 

NMEDW cluster 1N while CLD cluster 2C (purple symbols) has more overlap with cluster 2N 

(circles). Similar observations can be drawn from assessing the data from the perspective of the 

NMEDW results as displayed in Figure 5b. Although patient cluster membership generated from 

these two datasets overlaps, there is also disagreement. Figure 5c shows that the concordance of 

the two clustering is 52.5%.  

 

Sensitivity analysis: criteria with high concordance 

To assess the impact of the concordance of individual variables between the gold standard data 

in the CLD and the real-world clinical care data in the NMEDW we assessed concordance 

between the CLD and NMEDW datasets for each classification criteria attribute. The results of 

our concordance analysis are shown in Table 6.  Concordance ranged from 52%-94%. Notably, 

we observed higher concordance among immunologic criteria (range 75%-94%) than clinical 
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criteria (range 52%-88%). We selected all criteria with 70% concordance or higher (Coombs 

test, hemolytic anemia, thrombocytopenia, anti-dsDNA, leukopenia, anti-Sm, APA, arthritis, 

alopecia, low complement, neurologic, ANA) for a secondary cluster analysis. We used 70% 

cutoff because it ensures criteria with relatively high concordance yet leaves us a large enough 

feature set to differentiate our population.  

LCA on this subset of criteria and basic demographics and subsequent BIC analysis identified 

the optimal number of clusters for both CLD and EDW data was 2.  The characteristics of the 

clusters are shown in Table 7. Clusters generated from CLD and EDW have similar profiles. 

Both cluster 1 in the NMEDW and the CLD have more young onset patients, higher percentage 

of non-Caucasian, and higher percentage in almost every clinical and immunological disorders 

except for arthritis. In CLD data, arthritis has a lower percentage in cluster 1C, although its p 

value is not significant.  

We used TSNE plots (Figure 6) to assess overlap between clusters from the CLD and NMEDW 

data sets. Figure 6a shows the clustering results using CLD data. The color represents clustering 

membership from CLD clustering: green represents patients in cluster 1C, purple represents 

patients in cluster 2C. The shape represents clustering membership in EDW clustering: ‘+’ 

represents cluster 1N, ‘circle’ represents cluster 2N. We observe overlap between cluster 1C 

(green symbols) and cluster 1N (+) while cluster 2C (purple symbols) has more overlap with 

cluster 2N (circles). Similar observations can be drawn from assessing the data from the 

perspective of the NMEDW results as displayed in Figure 6b. Although patient cluster 

membership generated from these two datasets overlaps, there is also disagreement. Figure 6c 

shows that the concordance of the two clustering is 75.5%.  



63 

 
 

Sensitivity analysis: patients with high criteria concordance   

To assess the impact of criteria concordance for a given patient between data derived from 

registry and real-world clinical data on our subpopulation analysis, we first examined the impact 

of the level of concordance on cohort size.  The number of patients in the cohort after applying a 

range of individual concordance cutoffs is shown in Figure 7. As concordance increases, the 

cohort size available for performing the clustering analysis decreases.  Given the diversity of 

phenotypic presentations in SLE, effective clustering requires a large sample size, thus we 

selected a patient criteria concordance of 65% which provides relatively high concordance 

between the datasets at the patient level while still retaining a large enough cohort (353) on 

which to perform the analysis.  

 

The characteristics of the two subtypes are shown in Table 8. When subpopulations are identified 

based on CLD data, cluster 1C has more younger onset patients, male, non-Caucasian compared 

to cluster 2C. Cluster 1C also includes persons with a who are less likely to have acute cutaneous 

or chronic cutaneous lupus, and oral ulcers, but have a higher likelihood of an immunological 

criteria. Similar to CLD data, cluster 1N derived from the NMEDW data also has higher 

percentage of younger onset patients and higher percent of non-Caucasian. It has lower 

percentage of male, though the difference is not significant (p = 0.12).  Compared to cluster 1C 

from the CLD, cluster 1N has higher percentage in skin manifestations including acute and 

chronic cutaneous lupus, oral ulcers and alopecia.   
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We used TSNE plots (Figure 8) to assess overlap between clusters from the CLD and NMEDW 

data sets. Figure 8a shows the clustering results using CLD data. The color represents clustering 

membership from CLD clustering: green represents patients in cluster 1C, purple represents 

patients in cluster 2C. The shape represents clustering membership in EDW clustering: ‘+’ 

represents cluster 1N, ‘circle’ represents cluster 2N. We observe ‘+’ spreads across both green 

color and purple color which shows low consistency between EDW clustering result and CLD 

cluster result. Similar observations can be drawn from assessing the data from the perspective of 

the NMEDW results as displayed in Figure 8b. Although patient cluster membership generated 

from these two datasets overlaps, there is also disagreement. Figure 8c shows that the 

concordance of the two clustering membership is 44.9%.  

 

Kaplan Meier curves for compare survival outcome  

Our previous assessments of subpopulations focused on statistical comparisons of cluster 

composition but did not explore the clinical relevance of the subpopulations derived from 

registry or real-world clinical data.   To explore clinical relevance in more detail, Kaplan Meier 

comparing rate of occurrence of end stage renal disease, a serious and life-threatening outcome 

for people with SLE, were generated based on the subpopulations identified in each of our three 

clustering experiments.  The results of the Kaplan-Meier analysis are shown in Figure 9.  

 

When using the whole dataset, cluster 2C (higher prevalence in anti-dsDNA and renal disorder) 

generated from CLD data have a significantly worse outcome compared to cluster 1C (p < 
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0.0001). While in NMEDW clustering, cluster 1N and cluster 2N have similar ESRD outcomes, 

cluster 3N has a significant worse outcome.  Cluster 1N has the highest percentage of skin 

manifestations, low-medium percentage of renal disorder and low-medium percentage of 

immunological disorder, while cluster 3N has the lowest prevalence in skin manifestations, and 

highest percentage in renal disorder and immunological disorder. In the past studies, it is 

reported that renal disorder and immunological disorders including anti-dsDNA are associated 

with worse lupus nephritis outcome (96). This is consistent with our study. When clustering on 

demographics plus criteria with concordance > 70%, cluster 1 (immunological manifestation 

prevalent cluster) has significantly worse outcomes compared to cluster 2 (acute 

cutaneous/chronic cutaneous/oral ulcer/arthritis prevalent cluster) in both NMEDW- and CLD-

derived data. Finally, when assessing rate of ESRD development on clusters of individuals with 

concordance > 65%, cluster 1C has significantly worse outcome compared to cluster 2C , while 

no significant different is observed in NMEDW data.  
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Discussion 

Complex diseases, such as systemic lupus erythematosus, are often recalcitrant to the 

identification of therapies that make significant impact on disease outcomes.  It has been 

speculated that this may be due to disease heterogeneity and that identification of sub-

populations of patients with more similar disease characteristics would provide a foundation for 

research into targeted therapies and support precision medicine approaches.  Physician 

adjudicated disease-specific registries have long been the gold standard for sub-population 

development.  However, development and maintenance of these registries is laborious and 

costly.  Within the last 10 years there has been significant expansion of the use of electronic 

health records within the United States, providing an alternative source of information about 

patients that is collected in the context of their care.  In this study, we set out to understand 

similarities and differences in subpopulations of people with lupus derived from either registry or 

EHR data for the same cohort of people using unsupervised machine learning strategies.   

Using latent class analysis on the SLICC classification criteria as described in a registry and EHR-

data for a cohort of people with SLE, we saw significantly different sub-populations.   This 

discordance likely arises from the known data quality issues of EHR data such as missingness, 

misclassification and measurement errors. In our dataset, a relative high percentage of serositis 

(33%), oral ulcer (37%) and acute cutaneous (43%) recorded in the registry were not observed in 

the EHRs, which is consistent with missingness that results from certain clinical attributes not 

being included in diagnosis for billing or being regularly documented in notes. Interestingly, most 

classification criteria that were identified using laboratory results, such as the direct Coombs test, 
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hemolytic anemia, thrombocytopenia, anti-dsDNA, APA have high concordance between EHR 

and registry data.   

To better understand the differences in our initial results we evaluated two possible approaches to 

improve sub-population identification consistency: 1) clustering on a subset of patients that have 

high criteria concordance between the two data sources, and 2) clustering on a subset of features 

having high concordance between the two data sources.  In our results, clustering on high 

concordant features was able to improve the cluster consistency in patient membership (from 

52.5% to 75.5%), cluster characteristics. Considering the fact that most laboratory tests have high 

concordance in our dataset, the strategy of relying more on laboratory features may be adaptable 

for other disease type in the future study if the purpose of clustering on EHR data is to understand 

the true clusters.   

Finally, to better assess the clinical relevance of our sub-population analysis, we assessed the 

relationship of the subpopulations identified in our primary and sensitivity analyses to the 

development of end stage renal disease, a severe complication of SLE.  While sub-populations 

identified using registry data consistently demonstrated segmentation where hallmarks of severe 

disease were associated with higher likelihood of ESRD, similar results were only seen in the EHR 

data with high concordance of criteria detection in EHR data.   

 Several previous studies have applied unsupervised learning to identify sub-groups of SLE (97–

101). These studies showed different number of sub-populations ranging from 2 to 5. There are 

also variations in patient race profile, unsupervised learning algorithms applied, and types of 

features used. Among the studies, To et al. and Lanata et al. used a similar feature set (based on 

the American College of Rheumatology 1997 classification criteria for SLE) as our study 
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(101,102). Both of their studies identified two clusters: a skin/arthritis manifestation dominated 

cluster (acute cutaneous, chronic cutaneous, oral ulcer, arthritis) and a renal disorder/ds-DNA 

dominated cluster, which is similar to what we observed using CLD data. Nevertheless, this similar 

pattern is also presented in the EHR data. We identified 3 clusters when performing LCA on the 

whole dataset using EHR data. Cluster 1N has high prevalence in skin disorder (acute cutaneous, 

chronic cutaneous) and low-medium prevalence in immunological disorder and renal disorder, 

while cluster 3N has low-medium prevalence in skin disorder and high prevalence in 

immunological disorder as well as renal disorder. This shows that strong pattern may still emerge 

regardless of the noise from the data source (103). However, researchers should be extremely 

careful when assigning new subjects to subgroups based on algorithms developed using EHR data 

considering the membership inconsistency between the two datasets, which has a stronger 

emphasis on clinical attributes. 

Our study has several limitations. Firstly, we chose SLE as a study case to explore clustering results 

from EHR and CLD data. Although SLE has a spectrum of manifestations and it’s an ideal disease 

for clustering analysis, the results from SLE may not generalize to other disease type. Secondly, a 

big part of EHR information is stored in clinical notes. In our study, we incorporated regular 

expression to capture more information on features (oral/nasal ulcer, arthritis, renal disorder) that 

are expected to have relatively high missingness from structured data. We were not able to perform 

more advanced NLP (natural language processing) methods or apply them to the other features 

due to limited resource. We expect that other features will benefit from regular expression or more 

advanced NLP methods as well. Thirdly, our proposed technique of focusing on a subset of 
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features that have high concordance is at the cost of feature size reduction. If certain features are 

important to a study but also have low concordance, alternative approaches should be considered.  

In conclusion, our study shows that both NMEDW and CLD data generate distinct clusters with 

significant relationships to ESRD. However, despite using the same patient cohort, subpopulations 

identified from EHR data are different from those derived from registry data. By performing LCA 

on a subset of criteria that have concordance above 70%, we are able to reduce the differences 

including improving the cluster consistency in patient membership, cluster characteristics and 

ESRD outcome. Our proposed method of using features with relative high concordance across data 

sources can potentially improve the algorithm generalizability and help researchers to generate 

more reliable clusters when using noisy data source such as EHRs.  
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Table 5. General study cohort and cluster characteristics using CLD data vs NMEDW data 

for latent class analysis. 

  CLD data  NMEDW data 
Features General 

(%) 

Clust

er 1C 

(%) 

Cluster 

2C (%) 

Pv

al

ue 

Genera

l (%) 

Clust

er1N 

1N 

(%) 

Cluster 

2N (%) 

Clust

er 3N 

(%) 

Pva

lue 

  N=457 N=280 

(61%) 

N=

177        

(39

%) 

   N=4

57 

N=188(

41%) 

N=207(

45%)   

(46%) 

N= 

62(13

%) 

  
Age of 

SLE 

Diagnosis 

                  
<17 46(10%) 7(4%) 39(1

4%) 

0 46(10

%) 

28(15%) 12(6%) 6(9%

) 

0 
17-50 389(85%

) 

159(90

%) 

230(

82%) 

  389(8

5%) 

156(83

%) 

178(86

%) 

55(89

%) 

  
>50 22(5%) 11(6%) 11(4

%) 

  22(5

%) 

4(2%) 17(8%) 1(2%

) 

  
Sex 

   
  

    
  

Male 34(7%) 9(5%) 25(9

%) 

0.32 33(7

%) 

8(4%) 10(5%) 16(25

%) 

0 
Female 423(93%

) 

168(95

%) 

255(

91%) 

  424(9

3%) 

180(96

%) 

197(95

%) 

47(75

%) 

  
Race 

   
  

    
  

Caucasian 233(51%

) 

129(73

%) 

104(

37%) 

0 233(5

1%) 

77(41%) 135(65

%) 

21(34

%) 

  
African 

American 

127(28%

) 

27(15%) 101(

36%) 

  129(2

8%) 

70(37%) 39(19%

) 

20(32

%) 

  
Asian 37(8%) 9(5%) 28(1

0%) 

  38(10

%) 

13(7%) 17(8%) 8(13

%) 

  
Other races 60(13%

) 

12(7%) 48(1

7%) 

  58(13

%) 

28(15%) 17(8%) 13(21

%) 

  
Clinical 

criteria 

   
  

    
  

Acute 

Cutaneous  

395(86%

) 

177(100

%) 

218(

78%) 

0 227(4

9%) 

184(98

%) 

29(14%

) 

14(22

%) 

0 
Chronic 

Cutaneous  

114(25%

) 

44(25%) 70(2

5%) 

0.88 185(4

0%) 

177(94

%) 

6(3%) 2(3%

) 

0 
Oral/Nasal 

Ulcers* 

260(57%

) 

126(71

%) 

134(

48%) 

0 113(5

%) 

51(27%) 50(24%

) 

12(20

%) 

0.59 
Alopecia 95(21%) 25(14%) 70(2

5%) 

0 43(10

%) 

32(17%) 6(3%) 5(8%

) 

0 
Arthritis* 430(94%

) 

170(96

%) 

260(

93%) 

0.1 372(7

%) 

158(84

%) 

157(76

%) 

56(91

%) 

0.05 
Serositis 197(44%

) 

65(37%) 132(

47%) 

0.05 75(17

%) 

38(20%) 19(9%) 19(30

%) 

0 
Renal* 172(38%

) 

21(12%) 151(

54%) 

<2.2

e-16 

238(4

4%) 

115(61

%) 

70(34%

) 

53(85

%) 

0 
Neurologic 100(22%

) 

30(17%) 70(2

5%) 

0.06 99(22

%) 

53(28%) 29(14%

) 

17(28

%) 

0 
Hemolytic 

Anemia 

42(9%) 0(0%) 42(1

5%) 

0 23(5

%) 

9(5%) 2(1%) 11(18

%) 

0 
Leukopeni

a 

417(91%

) 

149(84

%) 

269(

96%) 

0 359(7

9%) 

156(83

%) 

143(69

%) 

60(97

%) 

0 
Thrombocy

topenia 

56(12%) 14(8%) 42(1

5%) 

0.12 86(19

%) 

36(19%) 25(12%

) 

25(41

%) 

0 
Immunolo

gical 

criteria 

   
  

    
  

ANA 393(86%

) 

152(86

%) 

241(

86%) 

0.62 381(8

4%) 

180(96

%) 

139(67

%) 

62(10

0%) 

0 
Anti-

dsDNA 

320(70%

) 

62(35%) 258(

92%) 

<2.2

e-16 

326(7

1%) 

150(80

%) 

118(57

%) 

58(93

%) 

0 
Anti-Sm 102(23%

) 

12(7%) 90(3

2%) 

0 83(18

%) 

47(25%) 10(5%) 25(41

%) 

0 
APA 124(27%

) 

28(16%) 95(3

4%) 

0 128(2

8%) 

66(35%) 25(12%

) 

38(61

%) 

0 
Low 

Compleme

nt 

315(69%

) 

74(42%) 241(

86%) 

<2.2

e-16 

339(7

4%) 

162(86

%) 

118(57

%) 

59(95

%) 

0 
Coombs 

Test 

13(3%) 2(1%) 11(4

%) 

0.03 17(4

%) 

9(5%) 0(0%) 7(12

%) 

0 
*Used both regular expression on clinical notes and ICD to identify criterion 
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Table 6. Concordance table for each SLICC criteria between EDW data and CLD data. 

SLICC Criteria Concordance 

%(N) 

Positive % only in 

CLD (N) 

Positive % only in 

NMEDW(N) 
Coombs Test 94% (430) 2% (9) 3% (14) 

Hemolytic 

Anemia 

         88% (402) 8% (37) 4% (18) 

Thrombocytopenia 86% (393) 4% (18) 10% (46) 

Anti-dsDNA  84% (384) 7% (32) 9% (41) 

Leukopenia 82% (375) 15% (69) 3% (14) 

Anti-Sm 81% (370) 12% (55) 7% (32) 

APA  80% (366) 10% (46) 10% (46) 

Arthritis* 78% (356) 17% (78) 4% (18) 

Alopecia 76% (347) 18% (82) 6% (27) 

Low Complement 76% (347) 9% (41) 14% (64) 

Neurologic 75% (343) 12% (55) 12% (55) 

ANA 75% (343) 14% (64) 12% (55) 

Renal* 73% (334) 7% (32) 20% (91) 

Chronic 

Cutaneous  

63% (288) 11% (50) 26% (119) 

Serositis 60% (274) 33% (151) 6% (27) 

Oral/Nasal 

Ulcers*  

58% (265) 37% (169) 5% (23) 

Acute Cutaneous  52% (238) 43% (197) 5% (23) 

*Used both regular expression on clinical notes and ICD to identify criterion 
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Table 7. Cluster characteristics using CLD data vs EDW data on a subset of criteria having 

concordance > 70%. 

  CLD EDW 

  General 

(%) 

Cluster 1 

(%) 

Cluster 2 

(%) 

Pval  General 

(%) 

Cluster 1 

(%) 

Cluster 2 

(%) 

Pval  

   N= 457 N = 274 

(61%) 

N = 183 

(39%) 

   N= 457 N = 238 

(53%) 

N = 219 

(47%) 

  

Age of 

SLE 

diagnosis 

                

<17 48(11%) 41(15%) 7(4%) 0.00 47(10%) 37(16%) 10(4%) 0.00 

17-50 388(85%

) 

225(82%

) 

163(89%

) 

  390(85%

) 

198(83%

) 

193(88%

) 

  

>50 21(5%) 8(3%) 13(7%)   21(5%) 4(2%) 17(8%)   

SEX 
   

  
   

  

Male 34(7%) 19(7%) 15(8%) 0.44 32(7%) 21(9%) 11(5%) 0.11 

Female 423(93%

) 

255(93%

) 

168(92%

) 

  425(93%

) 

217(91%

) 

208(95%

) 

  

Race 
   

  
   

  

Caucasia

n 

232(51%

) 

104(38%

) 

128(70%

) 

0.00 232(51%

) 

83(35%) 149(68%

) 

0.00 

AA 129(28%

) 

96(35%) 33(18%)   128(28%

) 

93(39%) 35(16%)   

Asian  39(9%) 30(11%) 9(5%)   38(8%) 23(10%) 15(7%)   

Other 60(13%) 47(17%) 13(7%)   59(13%) 40(17%) 19(9%)   

Clinical 

Criteria 

   
  

   
  

Alopecia 95(21%) 69(25%) 26(14%) 0.01 44(10%) 36(15%) 9(4%) 0.00 

Hemolyti

c Anemia 

44(10%) 44(16%) 0(0%) 0.00 24(5%) 24(10%) 0(0%) 0.00 

Leukope

nia 

418(91%

) 

266(97%

) 

152(83%

) 

0.00 359(78%

) 

212(89%

) 

147(67%

) 

0.00 

Arthritis* 431(94%

) 

255(93%

) 

176(96%

) 

0.09 369(81%

) 

207(87%

) 

162(74%

) 

0.00 

Renal* 175(38%

) 

148(54%

) 

27(15%) < 2.2e-16 236(52%

) 

164(69%

) 

72(33%) < 2.2e-16 

Neurolog

ic  

100(22%

) 

69(25%) 31(17%) 0.01 99(22%) 60(25%) 39(18%) 0.27 

Thrombo

cytopenia 

56(12%) 41(15%) 15(8%) 0.01 86(19%) 67(28%) 20(9%) 0.00 

Immunol

ogical 

Criteria 

   
  

 
0(0%) 0(0%)   

ANA 392(86%

) 

233(85%

) 

159(87%

) 

0.26 382(83%

) 

226(95%

) 

155(71%

) 

0.00 

Anti-

dsDNA 

316(69%

) 

252(92%

) 

64(35%) < 2.2e-16 324(71%

) 

214(90%

) 

110(50%

) 

< 2.2e-16 

Anti-Sm 103(23%

) 

90(33%) 13(7%) 0.00 83(18%) 74(31%) 9(4%) 0.00 

APA 125(27%

) 

96(35%) 29(16%) 0.00 129(28%

) 

112(47%

) 

18(8%) < 2.2e-16 

Low 

Complem

ent 

316(69%

) 

241(88%

) 

75(41%) < 2.2e-16 337(74%

) 

219(92%

) 

118(54%

) 

 < 2.2e-

16 
Coombs 

Test  

11(2%) 11(4%) 0(0%) 0.01139 17(4%) 17(7%) 0(0%) 0.00 

*Used both regular expression on clinical notes and ICD to identify criterion 
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Table 8. Cluster characteristics using CLD data vs EDW data on a subset of individuals 

with concordance across criteria > 65%  

  CLD EDW 

  General 

(%) 

Cluster 1 

(%) 

Cluster 2 

(%) 

Pval General 

(%) 

Cluster 1 

(%) 

Cluster 2 

(%) 

Pval 

  N=353 N = 213 

(60%) 

N = 140 (40%) N = 353  N = 160 

(45%) 

N = 193 

(55%) 

  

Age of SLE 

Diagnosis 

       
  

<17 33(9%) 28(13%) 5(4%) 0.01 33(9%) 21(13%) 12(6%) 0 

17-50 301(85%

) 

173(81%

) 

128(91%) 
 

301(85%

) 

136(85%

) 

165(86%

) 

  

>50 19(5%) 12(5%) 7(5%) 
 

19(5%) 3(2%) 16(8%)   

SEX 
      

   

Male 30(9%) 24(11%) 6(4%) 0.03 30(8%) 9(6%) 21(11%) 0.12 

Female 324(92%

) 

190(89%

) 

134(96%) 
 

322(91%

) 

150(94%

) 

172(89%

) 

  

RACE 
      

   

Caucasian 183(52%

) 

82(39%) 101(72%) 0 183(52%

) 

66(41%) 117(61%

) 

0 

African American 103(29%

) 

83(39%) 20(15%) 
 

103(29%

) 

60(37%) 43(22%)   

Asian 26(7%) 17(8%) 9(7%) 
 

26(7%) 10(6%) 16(8%)   

Other races 41(12%) 32(15%) 9(7%) 
 

41(12%) 24(15%) 17(9%)   

Clinical criteria 
      

   

Acute Cutaneous  301(85%

) 

161(76%

) 

140(100%

) 

0 181(51%

) 

154(96%

) 

27(14%) <2.2e

-16 
Chronic 

Cutaneous  

90(25%) 51(24%) 39(28%) 0.28 142(40%

) 

140(87%

) 

2(1%) <2.2e

-16 
Oral/Nasal 

Ulcers* 

189(54%

) 

91(43%) 98(70%) 0 94(27%) 45(28%) 49(26%) 0.6 

Alopecia 59(17%) 46(22%) 13(9%) 0 32(9%) 26(17%) 6(3%) 0 

Arthritis* 337(95%

) 

202(95%

) 

135(96%) 0.63 309(88%

) 

142(89%

) 

167(86%

) 

0.67 

Serositis 132(37%

) 

87(41%) 45(32%) 0.05 66(19%) 38(24%) 28(15%) 0.02 

Renal* 133(38%

) 

113(53%

) 

20(14%) 0 178(50%

) 

94(59%) 84(44%) 0 

Neurologic 70(20%) 55(26%) 15(11%) 0 71(20%) 41(25%) 30(16%) 0.02 

Hemolytic 

Anemia 

23(7%) 23(11%) 0(0%) 0 9(3%) 3(2%) 6(3%) 0.71 

Leukopenia 322(91%

) 

206(97%

) 

116(83%) 0 285(81%

) 

138(86%

) 

147(76%

) 

0.03 

Thrombocytopeni

a 

40(11%) 30(14%) 10(7%) 0.22 56(16%) 28(17%) 28(15%) 0.34 

Immunological 

criteria 

      
   

ANA 308(87%

) 

187(88%

) 

121(86%) 0.9 309(88%

) 

156(97%

) 

153(79%

) 

0 

Anti-dsDNA 247(70%

) 

197(92%

) 

51(36%) <2.2e

-16 

259(73%

) 

126(79%

) 

133(69%

) 

0.03 

Anti-Sm 70(20%) 65(30%) 5(4%) 0 53(15%) 37(23%) 16(9%) 0 

APA 95(27%) 75(35%) 20(14%) 0 95(27%) 58(36%) 37(19%) 0 

Low Complement 243(69%

) 

181(85%

) 

62(44%) <2.2e

-16 

265(75%

) 

137(86%

) 

128(66%

) 

0 

Coombs Test 7(2%) 7(3%) 0(0%) 0.07 6(2%) 3(2%) 3(1%) 1 

*Used both regular expression on clinical notes and ICD to identify criterion 
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Figure 5. Consistency comparison between CLD clustering results vs EDW clustering 

results; 1a: TSNE visualization for clustering on CLD data; 1b: TSNE visualization for 

clustering on EDW data; 1c: concordance table for patient membership from EDW clustering vs 

CLD clustering.  

 

CLD_clusters

1

2

EDW_clusters

1

2

3

Figure 1c EDW: Cluster 1  EDW: Cluster 2  EDW: Cluster 3 

Cluster 3  

CLD: Cluster 1  127 98 54 

CLD: Cluster 2  62 113 3 

Figure 1a Figure 1b 
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Figure 2c EDW: Cluster 1 EDW: Cluster 

2 

CLD: Cluster 1 204 73 

CLD: Cluster 2 39 141 

 

Figure 6.  TSNE plot for CLD clustering results vs EDW clustering results on the subset of 

criteria with concordance>70%; Left plot: clustering on CLD data; Right plot: clustering 

on EDW data 
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Figure 7. number of patients left using individual concordance cutoff from 0%-100%. 
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Figure 4c EDW: Cluster1 EDW: Cluster2 
CLD: Cluster1 111 100 

CLD: Cluster2 48 94 

Figure 8. TSNE plot for CLD clustering results vs EDW clustering results on individuals 

with concordance > 65%; Left plot: clustering on CLD data; Right plot: clustering on 

EDW data; bottom: membership concordance table 
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Figure 9. ESRD Kaplan Meier curve grouped by different clustering groups. A.1, B.1: 

cluster on whole dataset; A.2, B.2: cluster on criteria that have concordance > 70%; A.3, 

B.3: cluster on patients that have concordance>65% 
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Chapter Four: Natural language processing for lupus nephritis computational 

phenotyping 

 

Abstract  

SLE (systemic lupus erythematosus) is a rare autoimmune disorder with a repeated relapsing-

remitting course and diverse manifestations. Lupus nephritis is one of the major risk factors for 

severe outcomes and mortality and is a key component for modern lupus classification criteria. 

Thus, accurately identifying lupus nephritis in electronic health records (EHRs) would benefit 

large cohort clinical studies and clinical trials where characterization of the patient population is 

critical for study design and analysis. While lupus nephritis can be identified through procedures 

billed for in EHR data, a large number of information related to lupus nephritis such as kidney 

biopsy are generally present in histology reports and prior medical history narratives which 

require sophisticated text processing to mine information out of clinical notes. In this study, we 

developed algorithms to identify lupus nephritis with and without natural language processing 

(NLP) using EHR data from the Northwestern Medicine Enterprise Data Warehouse (NMEDW). 

We developed four algorithms: a rule-based algorithm using only structured data only and three 

algorithms using different NLP models.  These algorithms were validated on a dataset from 

Vanderbilt University Medical Center.  Our best performing NLP model improved F measure in 

both the NMEDW dataset (0.41 vs 0.79) and the Vanderbilt dataset (0.62 vs 0.96) compared to 

the baseline lupus nephritis algorithm.     

 

 



80 

 
 

Introduction 

Systemic Lupus Erythematosus (SLE) is an autoimmune disease that has diverse manifestations, 

resulting in significant morbidity and mortality (84,104).  While many autoimmune diseases, 

such as rheumatoid arthritis, have benefitted from new classes of medications, SLE has seen few 

advancements in therapy in the last 50 years (105).  It has been hypothesized that the 

heterogeneity of SLE presentations may make it challenging to understand therapeutic responses 

across the full scope of SLE presentations and that research studies and clinical trials would 

benefit from targeting subpopulations with similar disease presentations (106).  Classification 

criteria for SLE describe a broad range of evidence-based clinical and laboratory descriptors for 

SLE. There are three criteria currently in use: 1) the set developed in 1983 and revised in 1997 

by the American College of Rheumatology (ACR) (107) , 2) the set developed by the System 

Lupus International Collaborating Clinics in 2012 (SLICC) (84), and 3) the newly established 

European League Against Rheumatism / American College of Rheumatology (EULAR/ACR) 

criteria set (108).  Lupus nephritis is one of the most common and severe sequelae of SLE: 

approximately 40% SLE patients develop lupus nephritis(109), and it is represented in all three 

classification criteria. Both the SLICC and EULAR/ACR criteria define “definite lupus” as 

having a positive anti-nuclear antibody/anti-dsDNA screen in the presence of renal biopsy 

proven lupus nephritis (84,108).  Thus, it is a critical attribute to describe for clinical and 

research applications and the development of SLE subpopulations, but often it requires time 

consuming chart adjudication to identify patients who satisfy this criterion. Electronic health 

records (EHRs) are a readily available data source for describing persons with SLE that includes 

a record of clinical care and procedures performed, diagnoses, laboratory test result values, 
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medication orders, and clinical notes. However, the EHRs are primarily designed for 

administrative and clinical purposes; thus, data can be biased and incomplete (39), and important 

data for describing SLE, such as histology notes for kidney biopsies, is generally only located in 

text based notes that are challenging to extract information from using simple rules-based 

identification algorithms and text string searches.  Several prior studies developed algorithms to 

identify lupus nephritis using administrative or claim data (110). Chibnik et al. identified lupus 

nephritis in claim data and reached a positive predictive value (PPV) of 88% but sensitivity and 

specificity were not mentioned (111). Li et al. used various combinations of International 

Classification of Diseases (ICD) codes to identify lupus nephritis (112). The algorithm achieved 

good sensitivity and specificity but a low PPV of 63.4%. Most of these studies only used 

structured data (i.e. ICD codes, laboratory test value), and the algorithms were often not 

validated in an external dataset (111,112).Thus, correctly identifying lupus nephritis from EHRs 

for large cohort studies, in addition to identifying critical procedures, diagnoses and lab results, 

also requires the development of natural language processing (NLP) tools that can read histology 

reports and clinical notes, and previous studies with other lab-based concepts have demonstrated 

that NLP can significantly improve rate of identification (93).  In this study, we compared 

algorithms for the identification of lupus nephritis based on structured data alone with those that 

included three different NLP models to determine whether NLP could improve identification of 

lupus nephritis.  

We trained and evaluated the performance of all four algorithms in a dataset from Northwestern 

Medicine Electronic Data Warehouse (NMEDW) and then further validated the performance in 

an external dataset from Vanderbilt University (VU) Medical Center.  
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Methods 

Data Source 

The Chicago Lupus Database (CLD), established in 1991, is a physician validated registry of 1,052 

patients with possible or definite lupus according to the revised 1982 American College of 

Rheumatology classification criteria [4][5].The patients in the CLD were chart adjudicated for the 

ACR 1997 classification criteria and SLICC criteria . Among the 1052 patients, 878 patients had 

definite lupus according to the Systemic Lupus International Collaborating Clinics (SLICC) 

classification criteria (84). Among these patients, 178 have lupus nephritis. The presence or 

absence of lupus nephritis in patients in the CLD is verified by the physician chart review.  

The Northwestern Medicine Electronic Data Warehouse (NMEDW) is the primary data 

repository for all the medical records of patients who receive care within the Northwestern 

Medicine system (113). Established in 2007, the NMEDW contains records for over 3.8 million 

patients, with most EHR data going back to at least 2002, and with some billing claims data 

going back to 1998 or even earlier. By linking patients in the CLD to patient records in the 

NMEDW through their Medical Record Numbers, we identified 818 definite SLE patients who 

were both in the CLD and the NMEDW. To ensure our patient cohort has sufficient depth of data 

in both data sources, we excluded any patients who had less than four clinical encounters 

documented in the NMEDW, reducing the final case cohort size to 472. Our SLE study 

population selection process is described in Figure 10. All inpatient and outpatient notes from 

transplant, nephrology, and rheumatology departments were retrieved without any provider type 
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restriction. The retrieved clinical narratives included pathology reports, progress notes, consult 

notes, and discharge notes.  

Algorithm development: lupus nephritis phenotype  

Lupus nephritis is defined as “having a urine protein/creatinine ratio (or 24-hour urine protein 

collection) equivalent to 500 mg of protein per 24 hour period, or red blood cell casts in the 

urine” based on the SLICC classification criteria (84). We developed 4 algorithms (see Table 9 

for the details of the four algorithms) to identify lupus nephritis in the EHR data of SLE patients 

including a baseline algorithm that included only structured data from the EHRs and three NLP 

models that used structured data and clinical notes. In the baseline algorithm, a patient is 

predicted as lupus nephritis based on ICD9/10 diagnosis codes and laboratory test results. For the 

NLP models, we implemented an L2-regularized logistic regression classifier. We extracted 

concept unique identifier (CUI) features and regular expression features from the notes. For the 

CUI features, we first preprocessed the notes by removing duplicated records and tokenizing 

sentences. We then applied MetaMap to annotate medical concepts in each sentence (114). 

MetaMap is an NLP application that maps biomedical text to the Unified Medical Language 

System (UMLS) Metathesaurus (115) . It assigns a concept unique identifier to each word or 

term. CUIs that were tagged as negation by NegEx in MetaMap were excluded. For the regular 

expression (regex) pattern components, we used regex to search for text related to nephritis class 

II, nephritis class III, nephritis class IV, nephritis class V, and proteinuria (see Table S 12  for the 

details of regex patterns). For the NLP models, we explored three sets of features. In the first 

NLP model, the full MetaMap (binary) model, all MetaMap CUIs were used as binary type 

features. In the second NLP model, the full MetaMap (count) model, the number of occurrences 
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for every mapped CUIs were used as features. In the third NLP model, the MetaMap mixed 

model, we used a mixture of lupus nephritis related CUIs, structured data, and regex patterns as 

features. The CUIs include C0024143, C0268757, C0268758, C4053955, C4053958, C4053959, 

C4054543 (see Table S 13 for each CUI definition). There were 13 variables in total for the 

MetaMap mixed model including 7 features from CUIs, 5 features from regex patterns, and 1 

feature from structured data.   

Model training and evaluation  

We split the data from NMEDW into training and testing datasets with a size ratio of 3:1. In the 

training dataset, we used 5-fold cross-validation to find the optimal solver and the L2 ratio. 

Parameter C was selected by a grid search with C ranging from 1e-5 to 1e5 with interval spacing 

equal to 10. We selected sag method as our optimizer to find the best parameters (116). We set 

the class weight as balanced to adjust for disproportionate class frequencies. Parameters that 

generated the best accuracy were retained. We evaluated our model in the testing set based on 

sensitivity, specificity, PPV, and negative predicted value (NPV). L2-regularized logistic 

regression was conducted using ‘scikit-learn’ library in Python, version 3.7.3. Regular expression 

was performed using ‘re’ package in Python, version 3.7.3. 

External validation 

We further validated both the baseline algorithm, which included only structured data elements, 

and the best performing NLP model (based on results from the NU site), in an external validation 

dataset at Vanderbilt University. The Vanderbilt University Medical Center is a regional, tertiary 

care center (117). The VU data warehouse contains over 2.5 million subjects with de-identified 

clinical records from the EHRs collected across the past several decades. We first did a simple 
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SLE phenotyping algorithm based on SLE ICD9/10 codes to get a cohort on which to run our 

lupus nephritis algorithm. We then randomly selected 50 patients on which to evaluate our lupus 

nephritis algorithm. A rheumatologist manually reviewed the chart for these 50 patients. There 

were 16 patients with definite lupus, 1 with possible SLE, and 33 with no SLE. We evaluated the 

sensitivity, specificity, PPV, and NPV for the lupus nephritis baseline algorithm, and the lupus 

nephritis NLP model with the highest F measure based on the results from the NU dataset.  

Results 

Among the 472 SLE patients, there are 178 patients who developed lupus nephritis, consisting of 

37.7% of the cohort. The average number of notes is 68.58 (SD = 59.37). The distribution of 

number of notes for the patient cohort is shown in Figure 10.  

 

The performance for the four algorithms is shown in Table 10. All three NLP models have higher 

sensitivity, specificity, PPV, and NPV compared to the baseline algorithm with structured data 

alone. The full MetaMap (binary) model is better in sensitivity (0.63 vs 0.6), NPV (0.81 vs 0.8), 

and F measure (0.72 vs 0.41) compared to the full MetaMap (count) model. The MetaMap mixed 

model has higher sensitivity (0.74) and NPV (0.86) as well as F measure (0.79) compared to the 

other two models. Therefore, we selected the MetaMap mixed model as the final model to be 

validated at VU. In the VU dataset, which included 50 patients with SLE,  the MetaMap mixed 

model has higher sensitivity, specificity, PPV, and NPV compared to the baseline algorithm. The 

F measure improved from 0.79 to 0.96 as shown in Table 10.   
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Discussion  

In this study, we developed four algorithms to identify the lupus nephritis, a baseline algorithm 

using structured data only, a full MetaMap model with binary features, a full MetaMap model 

with count features, and a filtered MetaMap/regex/ICD mixed model. In the NU dataset, the 

MetaMap mixed model outperformed (F measures = 0.79) both baseline algorithm (0.41) and the 

other two NLP models. In the VU validation dataset, the MetaMap mixed model also improved 

the F measure (0.96) greatly compared to the baseline algorithm (0.62). 

Error analysis  

 In the MetaMap mixed model, we investigated 10 SLE patients in the training set that 

were wrongly classified by L2-regularized logistic regression. One patient was wrongly 

predicted as negative for lupus nephritis with a 0.49 probability of having lupus nephritis. In the 

feature set the algorithm identified, the patient was positive for CUI C002413 

(glomerulonephritis in the context of systemic lupus erythematosus) and was negative for all the 

other features. It was mentioned in the notes that the patient had ‘stage 2 LN’. Lupus nephritis 

class II is one of the features used in our algorithm. However, our regex did not include this 

specific variation of wording for lupus nephritis class II. This pattern could be incorporated in 

the NLP in the future to improve algorithm performance.  

 In another example, a 26-year-old female was wrongly predicted as positive for lupus 

nephritis with a probability of 0.53 of having lupus nephritis. In the feature set the algorithm 

identified, the patient was positive for C0024143 and proteinuria features both of which were 

positively associated with lupus nephritis. Our algorithm showed that patient had match for 

‘proteinuria>0.5’ in the notes which was in the context of ‘negative renal disorder: either 
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persistent proteinuria (>0.5g/day or +++) or cellular casts’. Our regex pattern was not able to 

capture the negation at the beginning of the sentence. Therefore, it falsely predicted the patient as 

positive for lupus nephritis.  

 All NLP models outperformed the baseline algorithm in the NU dataset. The baseline 

algorithm relies solely on ICD 9/10 diagnosis and laboratory test results. In the baseline rule-

based algorithm, laboratory tests missing from the EHRs greatly influenced the performance. In 

the NLP mixed model, by utilizing features from multiple data modalities (regex, CUI, and 

laboratory tests) with a penalized logistic regression model, the risk of having mislabeled data is 

shared among several features which may improve the generalizability of the model.  

Limitations  

Our study has certain limitations. We only had 50 patients in the VU validation dataset. This is 

due to limited resources for chart review. The small sample size may increase the chance of 

sample bias, which might explain the big improvement of F-measure in the external validation 

dataset. In addition, our algorithms were developed based on the SLE population, which 

significantly increases the prevalence of lupus nephritis. Our algorithms might not generalize 

well in a broader hospital population.  

Conclusion 

In conclusion, we developed four algorithms, a structured data only algorithm and three NLP 

models, to identify lupus nephritis phenotypes. We evaluated the algorithms in an internal and an 

external validation dataset. The three NLP models outperformed the baseline algorithm in both 

the NU dataset and the VU dataset. Our NLP algorithms can serve as powerful tools to 

accurately identify lupus nephritis phenotype in EHRs for clinical research.  
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Table 9. Algorithm description 

Baseline algorithm Rule-based  A patient is confirmed to have lupus 

nephritis if he/she has proteinuria>0.5mg in 

laboratory test or has ICD 9/10 diagnosis 

code for lupus nephritis. 

Full MetaMap model 

(binary) 

L2-regularized logistic 

regression  

  

Features are all the non-negative mention of 

MetaMap CUIs. We treated CUIs as binary 

variables and fitted L2-regularized logistic 

regression to predict lupus nephritis. 

Full MetaMap model 

(count)  

L2-regularized logistic 

regression 

The same as the full MetaMap model 

(binary) except that MetaMap CUIs are 

treated as numeric variables representing the 

count of instances each concept is mentioned 

in the clinical text. 

MetaMap/regex/ICD 

mixed model 

L2-regularized logistic 

regression 

There are 13 features in this model including 

7 CUI features, 5 RegEx features, and 1 

feature from structured data.   
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Table 10. Model performance 

Dataset Algorithm Sensitivity Specificity PPV NPV F Measure 

NU Baseline 0.43 0.6 0.39 0.64 0.41 

NU Full MetaMap  

(binary) 

0.63 0.93 0.85 0.81 0.72 

NU Full MetaMap 

(counts) 

0.6 0.95 0.88 0.8 0.71 

NU MetaMap 

mixed  

0.74 0.92 0.84 0.86 0.79 

VU baseline 0.92 0.61 0.46 0.96 0.62 

VU MetaMap 

mixed  

1 0.97 0.93 1 0.96 

Abbreviations: SLE, systemic lupus erythematosus; NU, Northwestern University; VU, 

Vanderbilt university; NLP: natural language processing; PPV, positive predictive value; NPV, 

negative predicted value.   
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Figure 10. Number of patients with SLE. 
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Chapter Five: Deep Neural Network Survival Model for Cardiovascular 

Disease Risk Prediction 

 

Abstract  

Background: The Pooled Cohort Equations (PCEs) are race- and sex-specific Cox PH-based models 

used for 10-year atherosclerotic cardiovascular disease (ASCVD) risk prediction with acceptable 

discrimination. In recent years, neural network models have gained increasing popularity with their 

success in image recognition and text classification. Various survival neural network models have been 

proposed by combining survival analysis and neural network architecture to take advantage of the 

strengths from both. However, the performance of these survival neural network models compared to 

each other and to PCEs in ASCVD prediction is unknown.  

Methods: In this study, we used 6 cohorts from the Lifetime Risk Pooling Project and compared the 

performance of the PCEs in 10-year ASCVD risk prediction with an all two-way interactions Cox PH 

model (Cox PH-TWI) and three state-of-the-art neural network survival models including Nnet-survival, 

Deepsurv, and Cox-nnet. For all the models, we used the same 7 covariates as used in the PCEs. We fitted 

each of the aforementioned models in white females, white males, black females, and black males, 

respectively. We evaluated models’ internal and external discrimination power and calibration. 

Results: The training/internal validation sample comprised 23216 individuals. The average age at 

baseline was 57.8 years old (SD = 9.6); 16% developed ASCVD during average follow-up of 10.50 (SD = 

3.02) years. Based on 10x10 cross-validation, the method that had the highest C-statistics was Deepsurv 

(0.7371) for white males, Deepsurv and Cox PH-TWI (0.7972) for white females, PCE (0.6981) for black 

males, and Deepsurv (0.7886) for black females. In the external validation dataset, Deepsurv (0.7032), 

Cox-nnet (0.7282), PCE (0.6811), and Deepsurv (0.7316) had the highest C-statistics for white male, 
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white female, black male, and black female population, respectively. Calibration plots showed that in 

10x10 validation, PCE had good calibration in white male and black male but was outperformed by 

neural network models in white female and black female. In external validation, all models overestimated 

the risk for 10-year ASCVD. 

Conclusions  

We demonstrated the use of the state-of-the-art neural network survival models in ASCVD risk 

prediction. Neural network survival models and PCEs have generally comparable discrimination and 

calibration.  

 

Background  

Cox Proportional Hazards (Cox PH) model is widely used to quantify the effect of covariates in relation 

to time-to-event outcomes or to predict the survival time for a new individual (118). Cox PH is a semi-

parametric model, which consists of two main components: baseline hazard and hazard ratio. The 

estimates of its coefficients are obtained through optimization of the partial likelihood function, which 

depends on both censored and uncensored individuals.  

With the availability of large datasets and high-speed computational power, neural network algorithms 

have become increasingly popular. Neural networks have been successful when applied to unstructured 

data such as image recognition and text classification (27–30). Compared to Cox PH, standard neural 

network architectures focus on predicting outcomes as a binary classification problem at a specific 

follow-up point. However, it is common in medical studies that individuals are lost to follow-up 

(censored data) before the failure or event time. Standard neural network models cannot train or test on 

these individuals, which leads to sample size reduction. In 1995, Faraggi-Simon first combined neural 
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network architectures with the Cox PH model to make use of censored information as well as to model 

non-linear features-outcome relations (35). Since then, there has been increasing interest in incorporating 

neural network architectures in survival analysis. In current literature, there are two main ways of 

modeling time-to-event using neural networks: (i) adapting Cox PH model and using partial likelihood 

loss, e.g., Cox-nnet (36) and Deepsurv (37); or (ii) discretizing survival time and using a heuristic loss 

function, e.g., Nnet-survival (38).  

Atherosclerotic cardiovascular disease (ASCVD) is the leading cause of death globally (119). Currently, 

some commonly used prediction models for ASCVD are based on Cox PH, such as the Framingham CHD 

risk score and its derivatives (120). In recent years, the American College of Cardiology (ACC)/American 

Heart Association (AHA) guidelines developed new equations, i.e., the Pooled Cohort Equations (PCEs), 

to estimate 10-year ASCVD risk in non-Hispanic whites and African Americans (121). The equations are 

developed based on datasets from several community-based epidemiology cohort studies. The PCEs are 

four race-, sex-specific and Cox PH based models. It is unclear whether neural network survival models 

can outperform PCEs for 10-year ASCVD risk prediction. In addition, it is unclear how different 

architectures of neural network survival models perform compared to each other. In this study, we 

compared the four race- and sex-specific PCEs with race- and sex-specific state-of-the-art neural network 

survival models: Nnet-survival, Deepsurv, and Cox-nnet in primary ASCVD risk prediction. For fair 

comparison, we also included Cox PH models with all significant two-way interactions since this enables 

Cox PH to capture more complex relationships. For all models, we used the same seven predictors as in 

the PCEs. Our study is the first study to compare the state-of-the-art neural network survival models with 

PCEs in incident ASCVD prediction.  
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Methods  

Model I, II: Pooled Cohort Equations, all two-way interaction Cox PH   

PCEs are four Cox PH based models, each of which is for a specific race and sex group (white male, 

white female, black male, black female). Cox PH models the probability an individual experiences the 

event during a small-time interval given the individual is free of an event at the beginning of the time 

interval (118), which is also known as hazard rate. Specifically, the hazard function can be expressed as 

the follows: 

 

                     𝜆𝑖(𝑡) = 𝜆0(𝑡) exp(𝛽1𝑋𝑖1 + ⋯ + 𝛽𝑝𝑋𝑖𝑝) = 𝜆0(𝑡) exp( 𝑿𝑖
𝑇𝜷),                              (1) 

 

where 𝑡 is the survival time, 𝜆0(𝑡) is the baseline hazard risk at time 𝑡, 𝑿𝑖  is the covariates for individual 

𝑖, 𝜷 is the regression coefficient vector. The hazard function consists of two parts: baseline hazard 𝜆0(𝑡) 

and a hazard ratio or risk function exp(𝑿𝑖
𝑇𝜷). Cox PH assumes that the relative risk for each covariate (𝜷 

in the equation) is constant over time. The estimate of 𝜷 is obtained by optimizing the Cox partial 

likelihood function as defined below: 

𝑙(𝛽) = ∑ (𝑿𝑖
𝑇𝜷 − 𝑙𝑜𝑔 ∑ exp(𝑿𝑗

𝑇𝜷) 𝑗:𝑌𝑗≥𝑌𝑖
)𝑖:𝛥𝑖=1    (2)                  

 

where ∆𝑖 is the indicator for the occurrence of event, 𝑌𝑗  is follow-up time for individual 𝑗.  

In the PCEs, seven predictors were selected based on demonstrated statistical utility using prespecified 

criteria. These predictors include age at baseline, systolic blood pressure (SBP), diabetes medical history, 
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treatment for hypertension, current smoker, high density cholesterol and total cholesterol. The interactions 

between age at baseline and the other predictors were tested based on p-values. Only interactions that had 

significant p-values (p<0.05) were kept in the model. The PCEs demonstrated acceptable performance in 

derivation samples, with C-statistics for 10-year risk prediction of 0.80 in white females, 0.76 in white 

males, 0.81 in black females, and 0.70 in black males in 10x10 cross-validation (121). 

To capture more complex non-linear relationships between predictors and ASCVD outcome, in the Cox 

PH-TWI model, we included all the two-way interactions of the 7 predictors in the model for each race 

and sex. We then retained only the interaction terms that had significant p-values for each race and sex.   

 

Models III and IV: Deepsurv and Cox-nnet  

Deepsurv and Cox-nnet are both adaptations of the standard Cox PH (37). Instead of assuming the linear 

relationship between covariates and log-hazard, the Deepsurv and Cox-nnet models can automatically 

learn the non-linear relationship between risk factors and an individual’s risk of failure by its linear (i.e., 

multi-layer perceptron) and non-linear (activation functions) transformation. Specifically, the log-risk 

function 𝑿𝑖
𝑇𝜷 in the Cox equation as shown in Eq. (1) is replaced by the output from neural network 

ℎ𝑤,𝜷′(𝑿𝑖), where 𝜷′ is the weight for the last hidden layer and 𝑤 is the weight for other hidden layers for 

neural network (see Figure 11A).  

ℎ𝑤,𝜷′(𝑿𝑖)  =  𝑮(𝑾𝑿𝑗 + 𝒃)
𝑇

𝜷′ 

The neural network optimizes the log-partial likelihood function similar to the standard Cox model by 

tuning parameters 𝑾, 𝜷′ :  

𝑙(𝑾, 𝜷′ ) = ∑ (ℎ𝑤,𝜷′(𝑿𝑖) − 𝑙𝑜𝑔 ∑ ( exp (ℎ𝑤,𝜷′(𝑿𝑗))𝑗:𝑌𝑗≥𝑌𝑖
)𝑖:∆𝑖=1   . 
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Cox-nnet was proposed to deal with high dimensional features especially in genomic studies. To avoid 

overfitting, Cox-nnet introduces a ridge regularization term and subsequently, the partial log likelihood in 

Eq. (2) is extended as the following:  

𝑙( 𝑾, 𝜷′) = ∑ (𝑮(𝑾𝑿𝑖 + 𝒃)𝑇𝜷′ − 𝑙𝑜𝑔 ∑ exp (𝑮(𝑾𝑿𝑗 + 𝒃)
𝑇

𝜷′) 𝑗:𝑌𝑗≥𝑌𝑖
)𝑖:𝛥𝑖=1 + 𝜆(∥ 𝜷′ ∥2 +∥ 𝑾 ∥2), 

In addition to L2-regularizer, Cox-nnet also allows drop-out for regularization to avoid overfitting. The 

model is based on Theano framework, therefore, Cox-nnet can be run on a Graphics Processing Unit or 

multiple threads.  

 

The Deepsurv model also allows the above-mentioned regularization techniques to avoid overfitting. In 

addition to that, Deepsurv adapted modern techniques to improve the training of the network such as 

introducing scaled Exponential Linear Units (SELU) as the activation function (37).  

Because the structure of 𝜆𝑖(𝑡)  =  𝜆0(𝑡) exp( θ) is still used in the Cox-nnet and Deepsurv, proportional 

hazard assumption still stands in the sense that the relative risk between any individual i and 𝑗 is constant 

over time. 

Model V: Nnet-survival    

Nnet-survival is a fully parametric survival model that discretizes survival time. Nnet-survival is proposed 

to improve two main aspects of the neural network model that are adapted from Cox model: 

computational speed and the violation of the proportional hazard assumption. Neural network survival 

models that adapt from Cox model (e.g., Deepsurv, Cox-nnet) use partial likelihood function as the loss 

function to optimize. The partial likelihood function is calculated based on not only the current individual 
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but also all the individuals that are at risk at the time point. This makes it difficult to use stochastic 

gradient descent or mini-batch gradient descent, both of which use a small subset of the whole dataset. 

Therefore, both Deepsurv and Cox-nnet may have slow convergence and cannot be applied to large 

datasets that runs out of memory [9]. Nnet-survival was proposed to discretize time, which transforms the 

model into a fully parametric model and avoids the use of partial likelihood as the loss function. In Nnet-

survival models, follow-up time is discretized to 𝑛 intervals. Hazard ℎ𝑗  is defined as the conditional 

probability of surviving time interval 𝑗 given the individual is alive at the beginning of interval 𝑗. Survival 

probability at the end of interval 𝑗 can be then calculated as the following:  

𝑆𝑗 = ∏ (1 − ℎ𝑖)𝑗
𝑖=1 . 

 

The loss function is defined as the following:  

 

𝐿 = ℎ𝑗 ∏(1 − ℎ(𝑖))

𝑗−1

𝑖=1

, 

for individuals who failed at interval 𝑗, and 

 

𝐿 = ∏(1 − ℎ(𝑖))

𝑗−1

𝑖=1

, 

for individuals who are censored at the second half of interval 𝑗 − 1 or the first half of interval 𝑗. 
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There are two main architectures of Nnet-survival: a flexible version and a proportional hazards version. 

In the flexible version, output layers have 𝑚 neurons, where 𝑚 is the number of intervals and each output 

neuron represents the survival probability at the specific time interval given an individual is alive at the 

beginning of the time interval. In the proportional hazard version, the final layer only has a single neuron 

representing 𝑿𝑖
𝑇𝜷: 

                                                    ℎ𝛽(𝑿𝒊) = 𝑿𝑖
𝑇 ⋅ 𝜷 ,                        

In our study, the flexible version is used, with its architecture of the flexible version shown in FigurB.  

Statistical analysis  

In this study, we used the harmonized, individual-level data from 6 cohorts in the Lifetime Risk Pooling 

Project, including Atherosclerosis Risk in Communities (ARIC) study, Cardiovascular Health Study 

(CHS), Framingham Offsprinig study, Coronary Artery Risk Development in Young Adults (CARDIA) 

study, the Framingham Original study, and the Multi-Ethnic Study of Atherosclerosis (MESA). The first 

5 cohort data were used for model development and internal validation, and the MESA data was used for 

external validation. We included individuals that meet the following criteria: (i) age between 40 to 79; 

and (ii) free of a previous history of myocardial infarction, stroke, congestive heart failure, or atrial 

fibrillation. ASCVD was defined as nonfatal myocardial infarction or coronary heart disease death, or 

fatal or nonfatal stroke (see (121) for details of selection criteria). All study individuals were free of 

ASCVD at the beginning of the study and were followed up until the first ASCVD event, loss to follow 

up, or death, whichever came first. We fit PCE, Cox PH with all two-way interactions (Cox PH-TWI), 

Nnet-survival, Deepsurv, and Cox-nnet models in white male, white female, black male, and black female 

participants. For comparison purposes, for all the models, we included the same predictors as used in the 

PCEs: age at baseline, systolic blood pressure (SBP), diabetes medical history, treatment for 

hypertension, current smoker, high density cholesterol (HDL-C) and total cholesterol. Individuals who 
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had missing data at baseline were excluded from the study. Individuals who were lost to follow-up were 

censored.  

To obtain high performance neural network survival models, we manually tuned various hyper-

parameters including learning rate, number of layers, number of neurons, number of epochs, batch size, 

momentum, optimizer, learning rate decay, batch normalization, L2 regularization, and dropout. After 

selecting the optimal hyper-parameters, we evaluated model performance through internal validation with 

10x10 cross validation and external validation with the MESA data. To perform 10x10 cross-validation, 

we randomly partitioned the pooled cohort data into 10 equal-sized subsamples. Of the 10 subsamples, 9 

subsamples were used as training data and the remaining single subsample was retained as the validation 

data for testing the model. Each of the subsamples is used in turn as the validation data. We repeated this 

process 10 times, during which 100 models were built. The average C-statistics and calibration plot of the 

100 models were used as the final 10x10 cross-validation result. In the calibration plots, the observed and 

predicted events were shown in deciles (38). For the external validation, we trained the model in the 

whole harmonized dataset (not including MESA cohort), and evaluated the model discrimination and 

calibration in the external  MESA cohort (122). To compare if the differences among C-statistics were 

significant in neural network models vs. PCE models, we performed significant test using method 

proposed by Mogensen et al (123). MESA is a more contemporary cohort that had lower CVD event rate 

compared to the earlier cohorts (121). This difference could cause models have poor calibration in 

MESA. To overcome this, we performed recalibration on all models using the method proposed by 

Pennells et al. (124). Briefly, we first calculated rescaling factors that were needed to bring predicted risks 

in line with observed risks using regression model in MESA dataset. We then applied the rescaling factors 

to the original predicted risk and got recalibrated risk estimates for all participants. 

Nnet-survival, Deepsurv, and Cox-nnet were implemented in python, version 3.7.3. Cox PH model was 

conducted using the “survival” package in R, version 3.6.0. C-statistics was calculated using the “survC1” 
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package in R, version 3.6.0 (125). Significant test was done using the “pec” package in R, version 3.6.0 

(123). Regression model for recalibration was performed using “scikit-learn” module in python, version 

3.7.3 (126).  

 

All data were de-identified, and all study protocols and procedures were approved by the Institutional 

Review Board at Northwestern University with a waiver for informed consent. All methods were 

performed in accordance with the relevant guidelines and regulations.  

 

Results  

Overall, there were 23216 participants, including 8644 white male, 1354 black male, 10719 white female, 

2499 black female individuals. The average age at baseline was 57.8 years old (SD = 9.6). Among these 

individuals, 16.0% developed ASCVD with average follow-up of 10.50 (SD = 3.02) years. The mean 

SBP value was 127.1 mmHg (SD = 21.0), the mean HDL-C value was 51.6 mg/dL (SD = 16.4), total 

cholesterol was 217.8 mg/dL (SD = 43.0). For binary predictors, 4.6% individuals had a history of 

diabetes, 26.0% individuals were current smokers, 31.6 % individuals had treatment for hypertension. The 

descriptive statistics for each race and sex group were shown in Table 1. 

In the MESA external validation dataset, there were 4259 individuals in total. The average age at baseline 

was 61.6 years old (SD = 9.6). Among the 4259 individuals, 331 (7.77%) developed ASCVD with 

average follow-up years of 10.97 years old (SD = 2.48). Among these individuals, there were 1194 white 

male, 799 black male, 1284 white female, and 982 black female. Baseline characteristics of the study 

sample were shown in Table 1, stratified by sex and race group.  
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In 10x10 cross validation, in the white male population (see Figure 12 ), Deepsurv achieved the highest 

C-statistics (0.7371) among all the models. In the white female population, Deepsurv had the highest C-

statistics (0.7972) comparable to Cox PH-TWI (0.7972). In the black male population, PCE had the 

highest C-statistics (0.6981). In the black female population, Deepsurv had the highest C-statistics 

(0.7886). The details of C-statistics for each model and race sex group were shown in Supplemental Table 

1. In the external validation dataset, in white male population, Deepsurv had the highest C-statistics 

(0.7032). In white female population, Cox-nnet had the highest C-statistics (0.7282). In black male 

population, PCE had the highest C-statistics (0.6811). In black female population, Deepsurv (0.7316) had 

the highest C-statistics and this difference was statistically significant compared to PCE (p=0.004, see 

Supplemental Table 1). In general, Deepsurv had the highest C-statistics for 4 times followed by PCE 

which had the highest C-statistics for 2 times followed by Cox-nnet and Nnet-survival. However, the 

difference between all neural network models vs. PCE are not significant except for Deepsurv in black 

female (see Supplemental Table 1). Overall, Deepsurv had the best C-statistics for 4 times followed by 

PCE which had the best C-statistics for 2 times. 

 In terms of calibration in 10x10 cross-validation (see Figure 13), the calibration plot showed that all five 

models had similar calibration compared to PCE in white male population. In white female and black 

female population, neural network models outperformed PCE. In black male population, PCE had the best 

calibration compared to all other models. In the MESA external dataset, calibration plot showed that all 

five models overestimated the event rate among all race gender groups. In the white male population, all 

five models had similar overestimation with predicted event rate ranging from 0 to 0.57 compared to 0-

0.2 in the observed event rate (see Figure 14). In the white female population, PCE, Cox-nnet, and Nnet-

survival had better calibration compared to the other groups. In the black male population, Deepsurv and 

Cox PH-TWI were closer to the Kaplan Meier estimation compared to other models. In the black female 

population, Cox-nnet had better calibration compared to the other models. After recalibrating the model 
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by fitting linear regression models, over-estimation of event risk was greatly reduced in all models among 

all race gender groups Figure 15. Overall, models in female groups had better calibration than in male 

groups. Nnet-survival had relatively good performance among all race gender groups.  

Discussion 

In this study, we implemented state-of-the-art neural network survival models in predicting 10-year risk 

for a first ASCVD event. Our results showed that overall, when using the same predictors as in the PCEs, 

neural network survival models and PCE had comparable performance. Neural network survival models 

outperformed PCE in white male, white female, and black female population by slim margin. However, 

the difference is not statistically significant expect for Deepsurv in black female. In terms of calibration, 

in internal validation dataset, PCEs had good calibration in white male and black male population. In 

white and black female population, neural network models outperformed PCEs. In external validation 

dataset, all models over-estimated the event rate in all four race-sex groups. Recalibration largely reduced 

the overestimation.   

Theoretically, among the different neural network survival models, Nnet-survival is faster in training than 

Deepsurv and Cox-nnet models. Nnet-survival’s loss function only relies on individuals in the current 

minibatch which allows mini-batch gradient descent while both Deepsurv and Cox-nnet require the entire 

dataset for each gradient descent update. On the other hand, the discretization of time-to-event in Nnet-

survival leads to a less smooth predicted survival curve compared to Deepsurv and Cox-nnet.  

In prior studies, Gensheimer et al applied Cox PH, Nnet-survival, Deepsurv, and Cox-nnet in life 

expectancy prediction using the Study to Understand Prognoses and Preferences for Outcomes and Risks 

of Treatments (SUPPORT) dataset (38). The dataset consisted of 9105 individuals and 39 predictors. The 

four neural network survival models generated similar C-statistics compared to the Cox PH model, which 
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was consistent with our findings in ASCVD prediction. Both the SUPPORT dataset and our dataset had 

low dimension number of predictors. Several studies explored other machine learning methods for CVD 

prediction. Joo et al (127) applied logistic regression, deep neural networks, random forests, and 

LightGBM to predict CVD as a binary outcome using the Korean National Health Insurance Service–

National Health Sample Cohort dataset. The authors found that deep neural network had better 

performance (C-statistics = 0.7446) compared to the PCE (C-index = 0.7381) in that cohort. However, the 

ML models used more predictors (hemoglobin level, diastolic blood pressure, presence of proteinuria, 

serum aspartate aminotransferase, serum alanine aminotransferase, and total cholesterol) compared to the 

PCE. In another study, Dimopoulos et al implemented KNN, random forest, and decision tree to predict 

CVD compared to the HellenicSCORE, a Cox regression based model (128). Their results showed that 

ML models have comparable performance compared to the HellenicSCORE (129) using 5 and 13 same 

predictors respectively but were not able to outperform the baseline model.  

Similar to other machine learning models, neural network models often show advantage in modeling non-

linear complex relationships between predictors and outcome. The explanatory variables used in our study 

are all well-studied predictors of cardiovascular disease. The biologic basis for many of these variables 

are understood, and they are known to predict independently and often linearly. In this situation, simpler 

models can be the best since they can accurately capture a linear biologic relation without sacrificing 

interpretation. Similar conclusions were reached in data comparing three machine learning methods to a 

simpler logistic regression model for predicting death after acute myocardial infarction. In the study, two 

of the 3 machine learning algorithms improved discrimination by a slim margin (130). In the follow up 

editorial by Engelhard et al. (131), they mentioned that machine learning has been most impactful with 

complex data (e.g., high dimensional, highly structured, and difficult to summarize without substantial 

loss of information). Our findings further support this hypothesis. In the future, we expect neural network 

https://bmcmedresmethodol.biomedcentral.com/articles/10.1186/s12874-018-0644-1#auth-Alexandros_C_-Dimopoulos
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based models to be a powerful tool in CVD prediction when more abundant data and more complex 

repeated measures data become available (e.g. electronic health records data). 

Limitations 

Our study has several limitations. First, the cohorts we used from the Lifetime Risk Pooling Project were 

the same cohorts used in the derivation of the PCEs. This may have led to some optimism in the 

performance of the PCEs. Second, the participants of our external validation cohort, MESA, were perhaps 

healthier than the general population. More importantly, they received intensive screening for subclinical 

CVD, which influenced health behaviors and preventive interventions including use of effective drug 

therapies; this may result in the lower event rate in MESA participants than what would have been 

predicted because of the use of effective preventive therapies selectively in higher-risk individuals. 

Conclusion  

Neural network survival models can achieve comparable discrimination if not superior performance 

compared to the PCEs in 10-year time-to-ASCVD prediction in the white female, white male, black 

female, and black male population in our dataset. In future studies, high dimensional features or 

longitudinal data should be considered to fully explore the benefits of neural network survival models.  
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Table 1. Baseline characteristics for each race and sex group in training/internal validation dataset and 

external validation dataset.  

 

  

Overall White 

male 

Black male White 

female 

Black female 

Training/internal validation dataset 

N 23216 8644 1354 10719 2499 

Number of 

Events, n (%) 

3705 (16.0) 1788 (20.7) 300 (22.2) 1217 (11.4) 400 (16.0) 

Age (year), mean 

(SD) 

57.8 (9.6) 58.0 (9.6) 57.3 (9.5) 58.0 (9.7) 56.4 (9.3) 

SBP (mm Hg), 

mean (SD) 

127.1 

(21.0) 

127.2 

(19.5) 

131.8 

(21.5) 

125.5 (21.6) 130.8 (22.7) 

HDL-C (mg/dL), 

mean (SD) 

51.6 (16.4) 43.8 (12.7) 49.7 (16.0) 56.8 (16.5) 57.5 (16.4) 

TOTCHL 

(mg/dL), mean 

(SD) 

217.8 

(43.0) 

212.1 

(39.9) 

208.6 

(44.4) 

223.9 (43.8) 216.0 (45.4) 

HXDIAB, n (%) 1069 (4.6) 295 (3.4) 175 (12.9) 294 (2.7) 305 (12.2) 

Smoker, n (%) 6035 (26.0) 2294 (26.5) 441 (32.6) 2723 (25.4) 577 (23.1) 

RXHYP, n (%) 7326 (31.6) 2226 (25.8) 707 (52.2) 2951 (27.5) 1442 (57.7) 

MESA external validation dataset 

N 4259 1194 799 1284 982 

Number of 

Events, n (%) 

331 (7.8) 104 (8.7) 85 (10.6) 79 (6.2) 63 (6.4) 

Age (year), mean 

(SD) 

61.6 (9.6) 61.9 (9.6) 61.5 (9.6) 61.5 (9.6) 61.3 (9.4) 

SBP (mmHg), 

mean (SD) 

126.3 

(21.0) 

123.7 

(18.3) 

130.0 

(19.2) 

121.8 (21.4) 132.4 (22.8) 

HDL-C (mm/dL), 

mean (SD) 

52.2 (15.5) 45.2 (12.1) 46.5 (12.5) 58.8 (15.8) 56.9 (15.6) 

TOTCHL 

(mm/dL), mean 

(SD) 

193.3 

(35.7) 

189.2 

(34.4) 

182.0 

(34.6) 

202.3 (34.4) 195.7 (36.5) 

HXDIAB, n (%) 354 (8.3) 57 (4.8) 117 (14.6) 51 (4.0) 129 (13.1) 

Smoker, n (%) 628 (14.7) 137 (11.5) 166 (20.8) 160 (12.5) 165 (16.8) 

RXHYP, n (%) 1676 (39.4) 389 (32.6) 370 (46.3) 402 (31.3) 515 (52.4) 

Abbreviations: SBP, systolic blood pressure; HDL-C, high density cholesterol; TOTCHL, total 

cholesterol; HXDIAB, history of diabetes; RXHYP, history of hypertension. 
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A. Deepsurv/Cox-nnet 

 

B. Nnet-survival 

 

 

Figure 11. Frameworks for neural network survival models. 

The framework of Deepsurv/Cox-nnet is shown in panel A. The framework of Nnet-survival is shown in 

panel B. In Figure 1A, the Deepsurv/Cox-nnet model outputs ℎ𝑤(𝑿𝑖) which is used to replace the log risk 

𝑿𝑖
𝑇𝜷 in the Cox model. In Figure 1B, in the Nnet-survival model, the output layers generate ℎ𝑗

𝑖 which is 

the hazard for individual i at time j. 
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Figure 12. C-statistics for PCEs, Nnet-survival, Deepsurv, Cox-nnet, and Cox PH-TWI in 

10x10 cross-validation and MESA external validation. 

The ‘x’ markers represent C-statistics in 10x10 cross-validation, the ‘o’ markers represent C-statistics in 

MESA external validation.  
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Figure 13. Kaplan-Meier Observed Event Rate and Predicted Event Rate for the ASCVD 

Outcome in the 10x10 cross-validation. 

For each model, we divided participants into 10 group (decile) based on their sorted predicted event 

probability. Then, for each decile, mean observed event rate (Kaplan-Meier method) was plotted against 

mean predicted event rate. In a perfectly calibrated model, the predicted event rate would be the same as 

the observed event rate in each decile. This means that all points would be clustered around the blue 

identity line. 
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Figure 14. Kaplan-Meier Observed Event Rate and Predicted Event Rate for the ASCVD 

Outcome in the MESA Cohort. For each model, we divided participants into 10 group (decile) 

based on their sorted predicted event rate. Then, for each decile, mean observed event rate 

(Kaplan-Meier method) was plotted against mean predicted event rate. In a perfectly calibrated 

model, the predicted event rate would be the same as the observed event rate in each decile. This 

means that all points would be clustered around the dotted identity line. 
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Figure 15. Kaplan-Meier Observed Event Rate and Recalibrated Predicted Event Rate for 

the ASCVD Outcome in the MESA Cohort. For each model, we divided participants into 10 

group (decile) based on their sorted predicted event rate. Then, for each decile, mean observed 

event rate (Kaplan-Meier method) was plotted against mean predicted event rate. In a perfectly 

calibrated model, the predicted event rate would be the same as the observed event rate in each 

decile. 
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Table S 1. Diagnosis codes for type 2 diabetes. 
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ICD 9 codes 250.20, 250.30, 250.40, 250.50, 250.60, 250.70, 

250.80, 250.90, 250.22, 250.32, 250.42, 250.52, 

250.62, 250.72, 250.82, 250.92 

ICD 10 codes E11.9, E13.01, E13.9, E11.00, E11.01, E13.10, 

E13.00 

SNOMED codes  44054006, 197763012, 474213016, 200951011, 

78158011, 48EB2F20-59A4-4676-A1C0-

40880362224F, 359642000, 81531005, 719216001, 

237599002, 199230006, 237627000, 9859006, 

190331003, 703138006, 314903002, 190390000, 

314902007, 190389009, 313436004 

 

 

 

 

 

 

 

 

Table S 2. Diagnosis codes for study variables. 
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Covariates  ICD 9 codes ICD 10 codes 

CHF 402.x1, 404.x1, 404.x3, 428.xx  I11.0, I13.0, I13.2, I50.x, 

I09.81 

Hypertension 401.x-405.x I10-13, I15-I16 

Hypoglycemic 

Events 

250.30, 250.32, 251.0, 251.1, 251.2 E11.64x, E16.0, E16.1, E16.2 

Other diabetic 

complications  

Diabetic Nephropathy: 250.40, 250.42 

Nephrotic Syndrome: 581.x 

Nephritis: 583.xx 

Diabetic oculopathy: 250.50, 250.52, 

362.0x, 366.41 

Diabetic Cataracts: 366.41 

Lower Extremity Amputations: 

V49.7x 

Diabetic Retinopathy: 250.50, 250.52, 

362.0x 

Diabetic Nephropathy: E11.2x 

Nephrotic Syndrome: N04.x 

Nephritis: N05.x, N08 

Diabetic oculopathy: E11.3x 

Diabetic Cataracts: E11.36 

Lower Extremity Amputations: 

Z89.4xx, Z89.5xx, Z89.6xx 

Diabetic Retinopathy: E11.31 – 

E11.35 

 

Diabetic 

neuropathy 

250.60, 250.62, 357.2, 362.01-362.06 E11.4x 

Dyslipidemia 272.0, 272.1, 272.2, 272.3, 272.4 E78.0 – E78.5, E78.00 

 

Tobacco Use 

305.1, V15.82  

 

F17.2x, Z87.891 



126 

 
 

CVD  Stroke: 430, 431, 432.x, 433.x1, 

434.x1, 435.x 

PAD: 440.x, 441.x, 443.2x, 444.x, 

445.x 

IHD: 410.x, 411.x, 414.12  

Stroke: I63.x, I60.x, I61.x, 

I62.x, I63.xxx, G45.0-G45.2, 

G45.8, G45.9 

PAD: I70.x, I71.x, I74.x, I75.x, 

I77.7x 

IHD: I20.x, I21.x, I22.x, I23.x, 

I24.x, I25.42 

Vascular Disease 440.x, 441.x, 442.x, 443.2x, 443.9, 

444.x, 445.x  

 

I70.x, I71.x, I72.x, I73.9, I74.x, 

I75.x, I77.7x 

VCD 250.70, 250.72, 607.84, 707.1x, 707.8, 

707.9 

E11.5x, E11.62x, L97.xxx 

Renal outcomes    

End stage renal 

disorder  

585.6 

 

N18.6 

Chronic kidney 

disease 

285.21, 403.x, 404.x, 582.x, 585.x, 

586.x 

 

D63.1, E11.22, I12.x, I13.x, 

N03.x, N18.x 

 

Abbreviations: CHF, congestive heart failure; CVD, cardiovascular disease; VCD: vascular 

complications of diabetes. 

Table S 3. Change over time in HbA1c value by second-line ADM groups. 
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Medication 

groups 

Baseline  Year_1 

(N=3130) 

Year_2 

(N = 3011) 

Year_3 

(N=2349) 

Year_4 

(N = 1781) 

Year_5 

(N = 986) 

DPP-4i 
7.3 (1.3)  

7.39(1.32) 7.40(1.36) 7.37(1.34) 7.49 (1.49) 7.43 (1.43) 

GLP-1RA 
7.2 (1.6) 

7.28 (1.5) 7.35 (1.69) 7.18 (1.43) 7.27(1.51) 7.17(1.51) 

Insulin 
7.9 (2.0)  

7.93 (1.93) 7.85(1.80) 7.85(1.70) 7.80(1.74) 8.23(1.94) 

SGLT-2i 
7.3 (1.4)  

7.47(1.39) 7.49(1.38) 7.43(1.41) 7.32(1.13) 7.62(1.77) 

SU 
7.5 (1.6)  

7.56(1.45) 7.63(1.54) 7.70(1.56) 7.63(1.52) 7.62(1.44) 

TZD 
7.0 (1.1) 

7.18(1.16) 7.17(1.47) 7.49(1.51) 7.33(1.23) 7.14(1.25) 

 

This table shows the mean and standard deviation of HbA1c value by year and second-line ADM 

group from two years prior two index date till the end of the fifth year follow up. Baseline: first 

two years prior to index date. Abbreviations: ADM, anti-diabetic medication; HR, hazard ratio; 

CI, confidence interval; DPP-4i, dipeptidyl peptidase 4 inhibitors; GLP-1RA, glucagon-like 
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peptide receptor agonists; SGLT-2i, sodium-glucose cotransporter 2 inhibitor; 

Thiazolidinediones, TZD 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table S 4. Hazard ratio for CKD incidence outcome in primary analysis. 
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Sequence group  HR HR 95% CI P-value 

Baseline model 

Biguanides, DPP-4 inhibitor 0.64 [0.48;0.86] 0.00 

Biguanides, GLP-1RA 0.28 [0.11;0.67] 0.00 

Biguanides, Insulin 0.91 [0.55;1.50] 0.70 

Biguanides, SGLT-2 inhibitor 0.31 [0.16;0.60] <0.001 

Biguanides, TZD 1.00 [0.49;2.04] 0.99 

Basic demographics model  
 

Biguanides, DPP-4 inhibitor 0.73 [0.54;0.98] 0.03 

Biguanides, GLP-1RA 0.45 [0.18;1.10] 0.08 

Biguanides, Insulin 1 [0.60;1.68] 0.99 

Biguanides, SGLT-2 inhibitor 0.43 [0.22;0.86] 0.02 

Biguanides, TZD 1.06 [0.52;2.17] 0.87 

Basic demographics/medical history model 

Biguanides, DPP-4 inhibitor 0.70 [0.52;0.95] 0.02 

Biguanides, GLP-1RA 0.40 [0.16;0.98] 0.05 

Biguanides, Insulin 0.81 [0.48;1.37] 0.44 

Biguanides, SGLT-2 inhibitor 0.43 [0.22;0.86] 0.02 

Biguanides, TZD 0.98 [0.47;2.04] 0.96 

Fully adjusted model 
  

Biguanides, DPP-4 inhibitor 0.71 [0.53;0.96] 0.03 

Biguanides, GLP-1RA 0.52 [0.21;1.30] 0.16 
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Biguanides, Insulin 0.93 [0.55;1.59] 0.80 

Biguanides, SGLT-2 inhibitor 0.43 [0.22;0.87] 0.02 

Biguanides, TZD 1.03 [0.50;2.15] 0.93 

Abbreviations: HR, hazard ratio; CI, confidence interval; DPP-4 inhibitor, dipeptidyl peptidase 4 

inhibitors; GLP-1RA, glucagon-like peptide receptor agonists; SGLT-2 inhibitor, sodium-

glucose cotransporter 2 inhibitor; Thiazolidinediones, TZD 

 

 

 

 

 

 

 

 

 

 

 

Table S 5. Hazard ratio for CKD hospitalization outcome in primary analysis. 
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Variable HR HR 95% CI Pval 

Baseline model 

Biguanides, DPP-4 inhibitor 0.57 [0.36;0.89] 0.01 

Biguanides, GLP-1RA 0.49 [0.18;1.34] 0.16 

Biguanides, Insulin 0.97 [0.48;1.97] 0.94 

Biguanides, SGLT-2 inhibitor 0.38 [0.15;0.95] 0.04 

Biguanides, TZD 1.02 [0.37;2.82] 0.96 

Basic demographics model  

Biguanides, DPP-4 inhibitor 0.69 [0.44;1.07] 0.10 

Biguanides, GLP-1RA 0.99 [0.35;2.77] 0.99 

Biguanides, Insulin 1.05 [0.52;2.15] 0.88 

Biguanides, SGLT-2 inhibitor 0.70 [0.28;1.77] 0.46 

Biguanides, TZD 1.06 [0.38;2.94] 0.91 

Basic demographics/medical history model 

Biguanides, DPP-4 inhibitor 0.56 [0.35;0.91] 0.02 

Biguanides, GLP-1RA 0.96 [0.34;2.71] 0.93 

Biguanides, Insulin 0.52 [0.24;1.14] 0.10 

Biguanides, SGLT-2 inhibitor 0.85 [0.33;2.16] 0.73 

Biguanides, TZD 1.27 [0.45;3.61] 0.66 

Fully adjusted model 

Biguanides, DPP-4 inhibitor 0.60 [0.37;0.96] 0.03 

Biguanides, GLP-1RA 1.05 [0.37;3.02] 0.92 
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Biguanides, Insulin 0.52 [0.24;1.17] 0.11 

Biguanides, SGLT-2 inhibitor 0.81 [0.31;2.09] 0.66 

Biguanides, TZD 1.25 [0.44;3.70] 0.65 

 

Abbreviations: HR, hazard ratio; CI, confidence interval; DPP-4 inhibitor, dipeptidyl peptidase 4 

inhibitors; GLP-1RA, glucagon-like peptide receptor agonists; SGLT-2 inhibitor, sodium-

glucose cotransporter 2 inhibitor; Thiazolidinediones, TZD 

 

 

 

 

 

 

 

 

 

 

Table S 6. Hazard ratio for eGFR < 45 mL/min outcome in primary analysis. 
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Variable HR HR 95% CI Pval 

Baseline model 

Biguanides, DPP-4 inhibitor 0.82 [0.62;1.09] 0.17 

Biguanides, GLP-1RA 0.65 [0.35;1.20] 0.16 

Biguanides, Insulin 1.22 [0.75;1.99] 0.41 

Biguanides, SGLT-2 inhibitor 0.47 [0.26;0.83] 0.01 

Biguanides, TZD 0.91 [0.42;1.94] 0.80 

Basic demographics model  

Biguanides, DPP-4 inhibitor 0.92 [0.70;1.22] 0.57 

Biguanides, GLP-1RA 1.00 [0.53;1.87] 0.99 

Biguanides, Insulin 1.42 [0.87;2.31] 0.17 

Biguanides, SGLT-2 inhibitor 0.66 [0.37;1.19] 0.17 

Biguanides, TZD 0.97 [0.45;2.07] 0.93 

Basic demographics/medical history model 

Biguanides, DPP-4 inhibitor 0.92 [0.70;1.22] 0.58 

Biguanides, GLP-1RA 0.89 [0.47;1.68] 0.72 

Biguanides, Insulin 1.19 [0.72;1.97] 0.49 

Biguanides, SGLT-2 inhibitor 0.64 [0.36;1.15] 0.14 

Biguanides, TZD 0.95 [0.44;2.07] 0.90 

Fully adjusted model 

Biguanides, DPP-4 inhibitor 0.95 [0.72;1.26] 0.73 

Biguanides, GLP-1RA 0.87 [0.46;1.65] 0.68 
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Biguanides, Insulin 1.18 [0.71;1.95] 0.52 

Biguanides, SGLT-2 inhibitor 0.58 [0.32;1.07] 0.08 

Biguanides, TZD 0.96 [0.44;2.08] 0.91 

 

Abbreviations: HR, hazard ratio; CI, confidence interval; DPP-4 inhibitor, dipeptidyl peptidase 4 

inhibitors; GLP-1RA, glucagon-like peptide receptor agonists; SGLT-2 inhibitor, sodium-

glucose cotransporter 2 inhibitor; Thiazolidinediones, TZD 

 

 

 

 

 

 

 

 

 

 

Table S 7. Hazard ratio for CKD incidence outcome in sensitivity analysis. 
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Variable HR 

HR 95% 

CI 

P-value 

Baseline model 

Biguanides, DPP-4 inhibitor 0.68 [0.48;0.97] 0.03 

Biguanides, GLP-1RA 0.35 [0.13;0.97] 0.04 

Biguanides, Insulin 0.95 [0.51;1.78] 0.87 

Biguanides, SGLT-2 inhibitor 0.35 [0.16;0.75] 0.01 

Biguanides, TZD 1.19 [0.52;2.73] 0.68 

Basic demographics  

Biguanides, DPP-4 inhibitor 0.76 [0.54;1.09] 0.14 

Biguanides, GLP-1RA 0.53 [0.19;1.47] 0.22 

Biguanides, Insulin 1.07 [0.57;2.04] 0.83 

Biguanides, SGLT-2 inhibitor 0.46 [0.21;1.00] 0.05 

Biguanides, TZD 1.13 [0.49;2.61] 0.77 

Basic demographics/medical history model  

Biguanides, DPP-4 inhibitor 0.73 [0.51;1.04] 0.09 



136 

 
 

Biguanides, GLP-1RA 0.47 [0.17;1.29] 0.14 

Biguanides, Insulin 0.85 [0.44;1.64] 0.62 

Biguanides, SGLT-2 inhibitor 0.46 [0.21;1.00] 0.05 

Biguanides, TZD 1.05 [0.45;2.44] 0.92 

Fully adjusted model 

Biguanides, DPP-4 inhibitor 0.75 [0.52;1.08] 0.12 

Biguanides, GLP-1RA 0.53 [0.19;1.48] 0.23 

Biguanides, Insulin 0.72 [0.37;1.43] 0.35 

Biguanides, SGLT-2 inhibitor 0.42 [0.19;0.92] 0.03 

Biguanides, TZD 1.15 [0.49;2.71] 0.75 

Abbreviations: HR, hazard ratio; CI, confidence interval; DPP-4 inhibitor, dipeptidyl peptidase 4 

inhibitors; GLP-1RA, glucagon-like peptide receptor agonists; SGLT-2 inhibitor, sodium-

glucose cotransporter 2 inhibitor; Thiazolidinediones, TZD 

 

 

 

Table S 8. Hazard ratio for CKD hospitalization outcome in sensitivity analysis. 



137 

 
 

Variable HR 

HR 95% 

CI 

P-value 

Baseline model 

Biguanides, DPP-4 inhibitor 0.69 [0.41;1.16] 0.16 

Biguanides, GLP-1RA 0.63 [0.20;2.06] 0.45 

Biguanides, Insulin 1.16 [0.49;2.74] 0.74 

Biguanides, SGLT-2 inhibitor 0.59 [0.23;1.51] 0.28 

Biguanides, TZD 0.83 [0.20;3.45] 0.80 

Basic demographics  

Biguanides, DPP-4 inhibitor 0.85 [0.50;1.44] 0.55 

Biguanides, GLP-1RA 1.17 [0.35;3.90] 0.80 

Biguanides, Insulin 1.21 [0.50;2.93] 0.67 

Biguanides, SGLT-2 inhibitor 1.10 [0.43;2.85] 0.84 

Biguanides, TZD 0.79 [0.19;3.28] 0.74 

Basic demographics/medical history model  

Biguanides, DPP-4 inhibitor 0.65 [0.37;1.15] 0.14 
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Biguanides, GLP-1RA 1.03 [0.30;3.57] 0.96 

Biguanides, Insulin 0.84 [0.33;2.14] 0.71 

Biguanides, SGLT-2 inhibitor 1.30 [0.49;3.48] 0.60 

Biguanides, TZD 0.92 [0.21;3.98] 0.92 

Fully adjusted model 

Biguanides, DPP-4 inhibitor 0.75 [0.42;1.32] 0.32 

Biguanides, GLP-1RA 0.94 [0.26;3.43] 0.92 

Biguanides, Insulin 1.00 [0.39;2.57] 1.00 

Biguanides, SGLT-2 inhibitor 1.35 [0.50;3.66] 0.56 

Biguanides, TZD 0.90 [0.21;3.90] 0.89 

 

Abbreviations: HR, hazard ratio; CI, confidence interval; DPP-4 inhibitor, dipeptidyl peptidase 4 

inhibitors; GLP-1RA, glucagon-like peptide receptor agonists; SGLT-2 inhibitor, sodium-

glucose cotransporter 2 inhibitor; Thiazolidinediones, TZD 

 

 

Table S 9. Hazard ratio for eGFR < 45 mL/min outcome in sensitivity analysis. 
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Variable HR 

HR 95% 

CI 

P-value 

Baseline model 

Biguanides, DPP-4 inhibitor 0.79 [0.57;1.08] 0.14 

Biguanides, GLP-1RA 0.76 [0.38;1.50] 0.43 

Biguanides, Insulin 1.39 [0.81;2.41] 0.24 

Biguanides, SGLT-2 inhibitor 0.48 [0.26;0.90] 0.02 

Biguanides, TZD 1.05 [0.46;2.41] 0.90 

Basic demographics  

Biguanides, DPP-4 inhibitor 0.89 [0.64;1.22] 0.46 

Biguanides, GLP-1RA 1.09 [0.54;2.19] 0.81 

Biguanides, Insulin 1.60 [0.92;2.79] 0.10 

Biguanides, SGLT-2 inhibitor 0.70 [0.37;1.32] 0.27 

Biguanides, TZD 1.02 [0.45;2.34] 0.96 

Basic demographics/medical history model  

Biguanides, DPP-4 inhibitor 0.95 [0.69;1.31] 0.75 
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Biguanides, GLP-1RA 0.98 [0.48;1.98] 0.96 

Biguanides, Insulin 1.44 [0.81;2.57] 0.21 

Biguanides, SGLT-2 inhibitor 0.68 [0.36;1.28] 0.23 

Biguanides, TZD 0.96 [0.41;2.23] 0.93 

Fully adjusted model 

Biguanides, DPP-4 inhibitor 

0.98 [0.71;1.36] 

. 

0.90 

Biguanides, GLP-1RA 0.97 [0.48;1.96] 0.93 

Biguanides, Insulin 1.49 [0.83;2.65] 0.18 

Biguanides, SGLT-2 inhibitor 0.61 [0.31;1.18] 0.14 

Biguanides, TZD 0.97 [0.42;2.27] 0.95 

Abbreviations: HR, hazard ratio; CI, confidence interval; DPP-4 inhibitor, dipeptidyl peptidase 4 

inhibitors; GLP-1RA, glucagon-like peptide receptor agonists; SGLT-2 inhibitor, sodium-

glucose cotransporter 2 inhibitor; Thiazolidinediones, TZD 

 

 

Table S 10. Number of patients who were on only two medications in each second-line 

ADM group. 
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Medication Groups  Overall number  Switched to 3rd Did not switch  

Biguanides, DPP-4i 1192 553 639 

Biguanides, GLP-1RA 208 106 102 

Biguanides, insulin 215 102 113 

Biguanides, SGLT-2i  355 119 236 

Biguanides, SU 1348 503 845 

Biguanides, TZD 85 40 45 

Abbreviations: DPP-4i, dipeptidyl peptidase 4 inhibitors; GLP-1RA, glucagon-like peptide 

receptor agonists; SGLT-2i, sodium-glucose cotransporter 2 inhibitor; Thiazolidinediones, TZD 

 

 

 

 

Table S 11. Hazard ratio in the fully adjusted cox regression model among patients who 

took only two ADMs during the exposure period. 
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 CKD incidence 

(N=1869, E = 38) 

  

CKD hospitalization 

(N=1913, E = 67) 

 HR (95% CI) Pval HR (95% CI) Pval 

DPP-4  0.75, [0.49;1.15] 0.19 0.69, [0.36;1.35] 0.28 

GLP-1RA 1.08, [0.32;3.64] 0.90 1.50, [0.42;5.40] 0.53 

Insulin 1.19, [0.56;2.51] 0.65 0.34, [0.10;1.10] 0.07 

SGLT-2 inhibitor 0.49, [0.20;1.23] 0.13 0.91, [0.29;2.81] 0.86 

TZD 1.00, [0.35;2.83] 0.99 0.90, [0.25;3.23] 0.87 

 

In this analysis, missing data in covariates were imputed. Abbreviations: ADMs, anti-diabetic 

medications; HR, hazard ratio; CI, confidence interval; DPP-4 inhibitor, dipeptidyl peptidase 4 

inhibitors; GLP-1RA, glucagon-like peptide receptor agonists; SGLT-2 inhibitor, sodium-

glucose 2 inhibitor; Thiazolidinediones, TZD 

 

 

 

 

 

Table S 12. Regex search for Nasal/oral ulcer, arthritis, renal disorder, and lupus nephritis. 
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SLICC criteria Concept  keywords  

Nasal/Oral ulcer Nasal/Oral ulcer Oral ulcer, nasal ulcer 

Arthritis  Arthritis Arthritis, synovitis 

 

 

Proteinuria/red cell cast 

(renal disorder) 

Proteinuria > 0.5 mg Proteinuria > 0.5 mg 

Urine/creatinine ratio > 

0.5 mg/mg 

Urine/creatinine ratio > 0.5 mg/mg 

24-hour urine 

protein >0.5gm 

24-hour urine protein > 0.5gm 

Red cell cast  Red cell cast 

lupus nephritis (renal 

disorder) 

Nephritis class II  Nephritis class II  

Nephritis class III Nephritis class III  

Nephritis class IV Nephritis class IV, mesangial 

proliferative GN 

Nephritis class V Nephritis class V, membranous 

nephritis 
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Table S 13. CUIs and their definition. 

CUIs  Definition 
C0024143 Glomerulonephritis in the context of systemic lupus erythematosus. 

 

C0268757 Lupus nephritis - WHO Class IV 

C0268758 Lupus nephritis - WHO Class V 
C4053955 Systemic lupus erythematosus nephritis, with active or inactive 

diffuse, segmental or global endo- or extracapillary 

glomerulonephritis involving greater than or equal to 50% of all 

glomeruli, typically with diffuse subendothelial immune deposits, 

with or without mesangial alterations. 

C4053958 Systemic lupus erythematosus nephritis exhibiting mesangial 

hypercellularity or mesangial expansion by light microscopy, with 

mesangial immune deposits. Isolated subepithelial or subendothelial 

deposits may be visible by immunofluorescence or electron 

microscopy, but not by light microscopy 

C4053959 Systemic lupus erythematosus nephritis with active of inactive 

focal, segmental or global endo- or extracapillary 

glomerulonephritis involving less than 50% of all glomeruli, 

typically with focal subendothelial immune deposits with or without 

mesangial alterations. 

 

C4054543 Membranous nephritis associated with systemic lupus 

erythematosus.  
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Table S 14. C-statistics for PCEs, Nnet-survival, Deepsurv, Cox-nnet, and Cox PH-TWI in 

10x10 cross-validation and MESA external validation. 

    PCE Cox PH-

TWI 

Deepsurv Nnet-

survival 

Cox-nnet 

White male 

  

10x10 CV 0.7349 0.7349 0.7371 0.7281 0.7334 

MESA 0.6959 

(-) 

0.7004 

(0.31) 

0.7032 

(0.16) 

0.7007 

(0.53) 

0.6990 

(0.59) 

 White female 

  

10x10 CV 0.7963 0.7972 0.7972 0.7849 0.7926 

MESA 0.7238 

(-) 

0.7276 

(0.26) 

0.7225 

(0.67) 

0.7187 

(0.31) 

0.7282 

(0.49) 

 Black male 

  

10x10 CV 0.6981 0.6925 0.6790 0.6554 0.6745 

MESA 0.6811 

(-) 

0.6772 

(0.66) 

0.6759 

(0.79) 

0.6672 

(0.43) 

0.6731 

(0.53) 

 

 Black female 

10x10 CV 0.7787 0.7884 0.7886 0.7774 0.7782 

MESA 0.7112 

(-) 

0.7173 

(0.64) 

0.7316 

(0.00) 

0.7188 

(0.21) 

0.7100 

(0.91) 

C-statistics for all models and p-value (in the parentheses) for the difference of PCE models vs. other 

models. The highest C-statistics for each race and sex group are bolded. Abbreviations: PCE, Pooled 

Cohort Equation; Cox PH-TWI, all two way interaction Cox Proportional Hazard Model; CV, cross-

validation; Cox PH, Cox Proportional Hazards model; MESA: Multi-Ethnic Study of Atherosclerosis. 
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Figure S 1. BIC varying with number of clusters. 
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