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ABSTRACT

Deciding Under Duress: Motor Decisions of Larval Zebra�sh Under Attack

Kiran Bhattacharyya

We perform many movements every day without much deliberation. However, moving can

be seen as a form of decision-making since one of many possible movements must be selected

and executed. The decision-making processes that underlie movements are in�uenced by

various factors, including sensory perception, energetics, time, perceived rates of failure along

with uncertainty in the accuracy of sensory information and the movements themselves. The

computations needed to evaluate these factors and make motor decisions are known to occur

within the nervous system but the processes of movement selection and execution are still

not well understood. Simpler organisms, such as �sh at early developmental stages, are

important model systems to investigate the neurobiology of motor decisions.

Speci�cally, the escape responses of larval �sh can be mapped to a �nite number of

neurons that are identi�able under microscopy, allowing for an analysis of the neural sub-

strate underlying the behavior. Moreover, selecting and executing the appropriate escape

movement is critical for survival. Therefore, escape behaviors are simple models of decision-

making where the biomechanics of locomotion and the associated neural circuitry are under
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severe evolutionary pressure. This thesis investigates both the kinematics and the neurobiol-

ogy of the movements made by larval zebra�sh during escape behaviors initiated in response

to real and simulated predators.

Through this work, I aim to answer four main questions about the evaluations and motor

decisions relevant to the escape maneuvers of larval zebra�sh:

(1) Do larval zebra�sh perform a graded assessment of the threat posed by a predatory

attack?

(2) How is the assessed threat used to make motor decisions about deploying speci�c

escape movements or strategies as a response?

(3) What are the utilities of speci�c escape movements and their associated neural

activations in producing maneuvers that successfully evade predators?

(4) Since escape behaviors must be optimally timed while being resistant to false neg-

atives and false positives, how are the recruitment of escape circuits in�uenced by

noise or uncertainty in sensory information?

By showing larval zebra�sh visual stimuli of virtual predators approaching at di�erent speeds,

I interrogated how larval �sh evaluate threat. Through these experiments, I found that the

�sh performed a graded assessment of threat and responded by deploying escape maneuvers

with characteristic patterns of neural activation.

To understand the utility of speci�c escape maneuvers in producing successful evasive

responses, I studied the escape responses of larval zebra�sh from the attacks of a natural

predator, the dragon�y nymph. By combining extensive analysis of the predator-prey inter-

action with computational methods, I found that the intersection of the reachable spaces of

predator and prey plays a crucial role in determining escape success.
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Lastly, I studied how noise in the visual percept of an approaching predator in�uenced the

recruitment of escape circuits and the resulting escape behavior. Through a computational

framework, I demonstrate that the sources of sensory noise and the methods of compensating

for them may interact to serve functional roles in producing the resulting behavior.

Overall, these results draw a continuous thread through the sub-processes relevant to

making escape decisions. The �ndings provide insight into sensory reception, sensory evalu-

ation, neural recruitment, and movement generation in larval zebra�sh under attack. While

the four main questions presented above are an atomistic deconstruction of escape behav-

ior, the investigation traverse scales of analysis�from the neural, to the organismal and the

ecological.
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CHAPTER 1

Introduction

1.1. Evolving to escape

The rise of predation among mobile animals may have been the central mechanism driv-

ing the Cambrian radiation�an event 540 million years ago when most major animal phyla

appeared in the fossil record Sperling et al. (2013). This suggests that the selection pres-

sure on predator-prey interactions has played a signi�cant role in shaping the morphology,

biomechanical performance, and neural circuitry of animals Sillar et al. (2016). Speci�cally

for prey�for whom the cost of failure is death�the ability to execute the appropriate escape

maneuver to a given attack is a vital determinant of �tness. Therefore, escape responses of

animals can be studied to understand how severe selection pressure shaped the sensorimotor

performance and neural execution of movements.

Historically, studies of escape behaviors were guided by the command-neuron hypothesis

where the escape response was considered a fast, stereotyped behavior initiated by a single

or small group of neurons Carew (2000). This is supported by the existence of large diameter

command-like neurons in many animals devoted to producing the shortest latency escapes

with the fastest speeds Tanouye and Wyman (1980); Will (1991); Libersat (1994); Edwards

et al. (1999); Korn and Faber (2005). Recruitment of these giant neurons alone is generally

su�cient to produce an escape maneuver Edwards et al. (1999); Korn and Faber (2005).
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1.2. The Mauthner neuron

The Mauthner neuron (M-cell), found in mirror-symmetric pairs in the hindbrain of

teleost �sh, tadpoles and some adult anurans, is a widely known example of a giant command-

like neuron which is involved in shortest latency escapes to hydrodynamic and tactile stimuli

Gahtan and Baier (2004); Kohashi and Oda (2008). Each M-cell projects an axon to the

contralateral side of the body down the length of the spinal cord while synapsing onto primary

motoneurons and descending interneurons Fetcho (1991); Eaton et al. (2001). A single spike

of the M-cell is able to rapidly and massively excite musculature on one side of the body

which creates a forceful bend of the tail in �sh and starts the escape maneuver Eaton et al.

(1981) .

This initial bend orients the �sh in a new heading direction and is followed by propulsive

swimming Korn and Faber (2005); Nair et al. (2015). Unidirectional connections from the M-

cell to other reticulospinal neurons suggests that M-cell activation constitutes the recruitment

of an escape circuit in the hindbrain Neki et al. (2014). Studies have shown that the heading

direction change initiated by an M-cell mediated escape response can be tuned through the

parallel activation of other motor programs as well Eaton et al. (1988, 1991); Eaton and

Emberley (1991). However, this tunable directionality may still be predictable since the

tentacled snake is innately able to predict the trajectory of an escaping �sh by using a feint,

a hydrodynamic stimulus, to startle �sh into it's approaching jaws Catania (2009, 2010).

1.3. Escape as a decision

The fast, short latency escape responses to behaviorally urgent stimuli may be su�ciently

stereotyped to be predictable due to the biomechanical constraints on high accelerations and

velocities Hitchcock et al. (2015). However, the hypothesis of protean defence, grounded
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in the occurrence of variable and non-stereotyped escapes observed across many animals

in their natural environment, argues that a variable escape response diminishes a preda-

tor's ability to predict the position of the prey�conferring a selective advantage Driver and

Humphries (1970). Moreover, animals with giant command-like neurons can also generate

escape responses that do not require the recruitment of the giant neuron Eaton et al. (1984);

Edwards et al. (1999); von Reyn et al. (2014). These escapes that are not mediated by

the giant neuron tend to be more variable in timing and kinematics Edwards et al. (1999);

Domenici et al. (2011a); Eaton and Emberley (1991); Gahtan and Baier (2004); von Reyn

et al. (2014). Additionally, instead of moving in response to an attack, many animals are

also known to freeze which may help evade detection or feign death subsequently causing

the predator to lose interest Edut and Eilam (2004); Chelini et al. (2009); Herberholz and

Marquart (2012); Misslin (2003).

Therefore, animals can deploy a variety of evasive strategies based on the context of the

predator-prey interaction. This suggests that animals must determine whether, when, and

how to perform an escape movement and if they should do so with or without giant neuron

recruitment. However, it is unclear how these decisions are made and what the utility of a

speci�c escape movement is in producing a successful evasive maneuver.

1.4. The larval zebra�sh as a vertebrate model

In this thesis, I study the sensory evaluations and motor decisions relevant to the escape

responses of larval zebra�sh. Just 3 days after hatching, larval zebra�sh are about 4 mm

long and have a complex motor repertoire including goal-directed behaviors, like the abil-

ity to capture small prey and escape from predators Budick and O'Malley (2000). Both

prey-capture and predator-evasion require complex sensorimotor transformations where the
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animal must perform either �ne and graded movements to orient towards an appetitive stim-

ulus Patterson et al. (2013); Trivedi and Bollmann (2013) or large and fast movements away

from an aversive stimulus O'Malley et al. (1996). Additionally, the larval zebra�sh is a verte-

brate with brain regions and structures analogous to humans while having a nervous system

with a similar number of neurons as Drosophila's (�100,000) Lieschke and Currie (2007);

Ahrens et al. (2012). This combination of reduced complexity but conserved anatomy makes

the larval zebra�sh a powerful model animal.

The larval zebra�sh has about 200 reticulospinal neurons which mediate all motor be-

haviors �including escape responses�and are identi�able under microscopy after retrograde

labeling with dye Metcalfe et al. (1986); Gahtan and O'Malley (2003); Orger et al. (2008).

There is evidence of functional modularity in the reticulopsinal neurons and other descending

neurons of larval zebra�sh since speci�c nuclei have been implicated in producing turns or

steering as opposed to propulsive swimming Orger et al. (2008); Huang et al. (2013); Severi

et al. (2014); Wang and McLean (2014). Moreover, previous in vivo calcium imaging of neu-

ral activity indicates that a subset of these brainstem neurons, including the M-cell, tend to

be active during the escape response Liu and Fetcho (1999); Gahtan et al. (2002). While the

role of the M-cell in the escape maneuver has been studied, it is not clear how the activity

of the other reticulospinal cells correlate to each other or contribute to the kinematics of the

escape response.

Studies have shown that fast and slow swimming movements of the larval zebra�sh are

mediated by di�erent subsets of spinal interneurons and motoneurons McLean et al. (2008);

McLean and Fetcho (2009); Kishore et al. (2014). Moreover, others have shown that even

di�erent types of muscles are recruited for di�erent swimming speeds in larval zebra�sh Buss

and Drapeau (2002). These functional groups in the reticulospinal neurons, spinal neurons,
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and even the musculature of larval zebra�sh have implications about the neural substrate

underlying the selection and execution of di�erent escape movements and strategies.

1.5. Contribution

Here, I investigate how larval zebra�sh evaluate the threat posed by an attacking predator

in order to make escape decisions. I demonstrate how escape timing, direction, speed and the

recruitment of the M-cell depend upon parameters of the predatory attack. Furthermore,

I analyze the escape responses of larval zebra�sh from the attacks of a natural predator

to understand how speci�c escape movements and recruitment of the M-cell contributes to

survival. Using these results, I propose a computational approach that can estimate the

utility of speci�c movements in predator-prey interactions. Finally, to better understand

the role of uncertainty in escape decisions, I look at how recruitment of the M-cell may be

in�uenced by noise in the sensory percept of the threat.

In the Chapter 2, I show larval zebra�sh visual stimuli of virtual predators approaching

at di�erent speeds while simultaneously monitoring the escape behavior of larval �sh and the

recruitment of neurons in their hindbrain. Through innovative high-speed volumetric neural

activity imaging techniques in conjunction with behavioral experiments, I demonstrate that

larval zebra�sh perform a graded assessment of threat for di�erent predator approach rates.

The results demonstrate how larval �sh stochastically deployed speci�c escape strategies

requiring di�erential recruitment of the M-cell and other reticulospinal neurons as a function

of the predator approach rate.

In Chapter 3, I study the escape maneuvers of larval zebra�sh in response to attacks of

dragon�y nymphs to assess the utility of speci�c escape maneuvers in producing successful

evasive responses. An analysis of this interaction reveals that the intersection of the reachable



20

spaces of the dragon�y nymph and the larval �sh within the duration of the predatory strike is

crucial in determining the likelihood of survival. Using this �nding, I perform computational

experiments to estimate the change in survival probability due to the changes in the reachable

space of larval zebra�sh from the recruitment of the M-cell.

In Chapter 4, I study how noise in the sensory percept of a threat in�uences the recruit-

ment of escape circuits and the resulting escape behavior. I use computational methods to

gain insight into how larval zebra�sh may estimate relevant stimulus parameters from a se-

quence of noisy sensory data in real-time. By combining these �ndings with existing models

of sensory processing and excitatory drive to motor circuits, I propose a mechanism that

explains the variability in the timing of escape responses and the probabilistic recruitment

of escape circuits in response to an approaching predator.

Collectively, the �ndings shed light on 1) how animals evaluate threat to deploy speci�c

escape maneuvers that require characteristic patterns of neural recruitment, 2) how these

escape movements and recruitment of circuits contribute to survival by shaping the reachable

space of the animal and 3) how uncertainty in sensory information might in�uence neural

recruitment and, subsequently, the escape behavior. More broadly, this thesis explores the

mechanisms of sensory processing, movement selection and movement generation while in-

vestigating the selection pressure on that sensorimotor performance. All of these individual

principles constitute di�erent aspects of how motor decisions are made by the animal and

shaped by its ecology. Not only do these principles apply to larval zebra�sh but may extend

to other vertebrates who share an underlying structural and functional patterning of the

nervous system and axial morphology Kinkhabwala et al. (2011); Burke et al. (1995).
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CHAPTER 2

Visual threat assessment and reticulospinal encoding of calibrated

responses in larval zebra�sh

2.1. Overview

All visual animals must decide whether approaching objects are a threat. Our current

understanding of this process has identi�ed a proximity-based mechanism where an evasive

maneuver is triggered when a looming stimulus passes a subtended visual angle threshold.

However, some escape strategies are more costly than others, and so it would be bene�cial

to additionally encode the level of threat conveyed by the predator's approach rate to select

the most appropriate response. Here, using naturalistic rates of looming visual stimuli while

simultaneously monitoring escape behavior and the recruitment of multiple reticulospinal

neurons, we �nd that larval zebra�sh do indeed perform a calibrated assessment of threat.

While all �sh generate evasive maneuvers at the same subtended visual angle, lower approach

rates evoke slower, more kinematically variable escape responses with relatively long latencies

as well as the unilateral recruitment of ventral spinal projecting nuclei (vSPNs) implicated

in turning. In contrast, higher approach rates evoke faster, more kinematically stereotyped

responses with relatively short latencies, as well as bilateral recruitment of vSPNs and uni-

lateral recruitment of giant �ber neurons in �sh and amphibians called Mauthner cells. In

addition to the higher proportion of more costly, shorter-latency Mauthner-active responses

to greater perceived threats, we observe a higher incidence of freezing behavior at higher
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approach rates. Our results provide a new framework to understand how behavioral �exibil-

ity is grounded in the appropriate balancing of trade-o�s between fast and slow movements

when deciding to respond to a visually perceived threat.

2.2. Introduction

When an animal perceives an oncoming predator, it is critical to correctly choose whether,

when, and how to move to survive the impending attack. Looming visual stimuli, simulating

an approaching predator, provide an opportunity to investigate the underlying mechanism of

threat assessment involved in this set of decisions Fotowat and Gabbiani (2011); Card (2012).

The current consensus across avariety of vertebrate and invertebrate organisms is that an

approaching predator triggers a ballistic escape response once it reaches a certain subtended

angle threshold Fotowat and Gabbiani (2007); Oliva et al. (2007); de Vries and Clandinin

(2012); Yamamoto et al. (2003); Dunn et al. (2016).Given the constraints on predator size,

this angle threshold is equivalent to a proximity threshold.

Within vertebrates, this theory of a proximity-based response aligns well with �ndings

from a bilateral pair of giant �ber interneurons in the brainstem of �sh, called Mauthner cells

Medan and Preuss (2014); Korn and Faber (2005). Mauthner cells collect sensory information

from one side of the body and transmit it to the other side via a large caliber axon Fetcho

(1991); Faber et al. (1989), resulting in a strong contraction of body muscles opposite to

the stimulus that generates a short-latency evasive turn. Mauthner cells respond to visual,

tactile, vestibular, auditory, lateral-line and electric �eld stimuli Tabor et al. (2014); Zottoli

(1977); Casagrand et al. (1999); Mirjany et al. (2011); Kohashi and Oda (2008); O'Malley

et al. (1996); Eaton et al. (1981); Preuss et al. (2006); Chang et al. (1987) and are di�cult

to excite Nakayama and Oda (2004); Hatta and Korn (1998); Fukami et al. (1965); Furshpan
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and Furukawa (1962). The conclusion from these studies across various modalities is that

the decision to escape is a result of reaching the Mauthner cell �ring threshold due to strong

sensory input, as would arise from an approaching predator that has traversed the proximity

threshold.

However, with a proximity mechanism there is no way to distinguish between an ob-

ject that passes the proximity threshold rapidly versus slowly, corresponding to threats of

di�ering urgency. Moreover, while Mauthner cells expedite signal propagation and ensure

quick re�exes, the power and relatively stereotyped reactions they produce can exact ener-

getic costs and be exploited by predators Domenici et al. (2011a); Ydenberg and Dill (1986);

Catania (2009). It would therefore be bene�cial to encode speed of approach as an addi-

tional means to decide whether to engage the giant �ber escape systems or alternate, less

costly strategies, such as no response or a less rapid, more �exible response. Currently it is

unknown whether animals use approach rate to inform the trade-o� between short-latency,

ballistic movements and long-latency, more variable movements.

Here, we test the hypothesis that approach rate modulates escape behavior by using vir-

tual looming stimuli with naturalistic sizes and approach rates, combined with high-speed

kinematic analysis and in vivo calcium imaging of Mauthner cells, their homologs, and other

reticulospinal nuclei in larval zebra�sh. While zebra�sh larvae did evade looming stimuli at

a �xed subtended angle and distance, markedly di�erent behaviors occurred as a function

of approach rate. Lower approach rates were more likely to elicit a non-Mauthner, more

kinematically variable escape response with longer latency. Surprisingly, evasive maneu-

vers were more reliably elicited by slowly approaching objects than by rapidly approaching

objects, which we interpret as evidence of a freezing response to rapid predators. Even

though fast approaches produced fewer evasive movements, these were much more likely to
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be Mauthner-active evasions. Between Mauthner-active and Mauthner-silent responses, we

found a drop in recruitment probabilities of reticulospinal nuclei known to be involved in

turning. However, speci�c changes in recruitment of MiD3, RoV3, MiV1, and MiR2 nuclei

suggest circuit level di�erences in their involvement in generating the kinematics of these

two distinct maneuvers. Critically, when Mauthners were recruited, escapes occurred with

shorter latency than non-Mauthner escapes�regardless of approach rate�and were more

stereotyped.

Collectively, our �ndings support a graded assessment of threat based on approach rate

in addition to the previously described threshold based on the subtended angle of the ap-

proaching object. In this threat assessment logic, the approach rate (proportional to threat

urgency) sets the probability of movement, its latency, speed, and variability, while the sub-

tended angle threshold determines the timing of the movement. We discuss the implications

of our �ndings for the neural processing of threat, how threat level is conveyed to the motor

system, and the evolution of escape behavior.

2.3. Results

2.3.1. Timing and kinematics of looming evoked responses

Larval �sh (3.5�5 mm, N�sh = 21) at 5�7 days post fertilization (dpf) were placed in a

smaller dish within a larger dish (Fig. 2.1A) and shown looming stimuli projected onto

di�usive paper around the edges of the larger dish. The virtual looming stimulus was a

black square expanding on a blue background of stationary, low contrast rectangles Trivedi

and Bollmann (2013) (Fig. 2.1B2).
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Figure 2.1. Timing and kinematics of looming evoked responses.

Figure 2.1 details: A) Larval zebra�sh (N�sh = 21) were placed in a smaller dish (shown in red) within a

larger dish and presented virtual looming stimuli projected onto the larger dish as shown. Responses were

recorded with high speed videography at 250 fps from above. B1) Virtual looming stimuli were de�ned
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by L, the size of the square, V, the velocity, and the apparent distance covered by the object (50 mm in

this study). The time-varying subtended angle θ is determined by the parameter L/V. The azimuth of the

stimulus with respect to the �sh's head depends on the orientation of the �sh, and therefore ranged from

�180X, with left being negative and right being positive. B2) The stimulus was a black square expanding

over time on a stationary blue background of low contrast rectangles. C) A representative looming evoked

response with the time of response de�ned by time being negative before virtual collision at 0 seconds. This

response is typical in that the largest directional change happened by the end of the initial bend�marked

with asterisk�followed by undulatory swimming. D) Fish respond at a speci�c subtended angle of the

looming object regardless of looming rate. By binning time of responses according to particular constant

values of L/V, corresponding to speci�c curves of θ versus time, and marking the mean response time relative

to time of virtual collision for each group (blue dots) we �nd that �sh responded on average when θ = 35X �

15X (std, Ntrials = 246). E) The average onset time of the looming evoked response increased with increasing

L/V as found with other model animals, with larger L/V s having more variable response times. F) The

response latency from stimulus onset and the variability of the latency also increased with increasing L/V.

G) The virtual distance from the looming stimulus at the time of �sh response did not change with L/V.

H) Fish (N�sh = 21) were more likely to respond to slow looming stimuli (higher L/V s) than fast looming

stimuli (low L/V s). I) Fish manipulated both the duration of the initial bend and the yaw velocity of the

initial bend to control the total head yaw achieved by the end of the initial bend. Horizontal bands are due

to the 4 ms interval between video frames.

The looming stimulus (Fig. 2.1B) is de�ned by the size of the approaching object of equal

width and height (L), the approach velocity (V ), and the apparent distance covered (d),

with the subtended angle θ to the snout being determined by these parameters (Fig. 2.1B1).
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The combined term L/V is an indicator of the expansion of θ with time and is used as a

stimulus parameter as it allows comparison to looming-evoked responses in other animals

quanti�ed with the same parameter Card (2012); Oliva et al. (2007); Santer (2013). The

L/V term was psuedorandomly selected with uniform probability between 0.1�1.2 seconds

(s), since prior studies have shown this to be naturalistic Stewart et al. (2013). L was

psuedorandomly selected with uniform probability between 10�25 mm (also naturalistic:

Stewart et al. (2013)), with the apparent starting distance of the stimulus d held constant at

50 mm. The relative azimuthal angle of the stimulus depended on the freely swimming �sh

position, but varied between �180X (left negative, right positive) and sampling was veri�ed

to be uniform (see Appendix A.1 for details).

High speed videography at 250 frames-per-second (fps) was used to record the looming-

evoked response from above. Figure 2.1C depicts a representative looming evoked response

to a looming stimulus with L/V = 0.4 s and azimuth 43X. The response starts at �1.2 s since

time is negative before the virtual collision at 0 s. During the looming evoked response, the

�sh re-oriented with an initial bend (Fig. 2.1C, end of initial bend marked with asterisk)

and swam away with undulatory swimming during a propulsive stage.

Figure 2.1D plots 6 curves of di�erent expansions of θ with time which correspond to 6

di�erent values of L/V. These 6 L/V values are the centers of 6 equally-spaced bins in the

range of L/V s tested (0.1�1.2 s) in this study (Bin 1: center L/V = 0.19 s, Ntrials = 29, Bin

2: center L/V = 0.38 s, Ntrials = 34, Bin 3: center L/V = 0.56 s, Ntrials = 45, Bin 4: center

L/V = 0.74 s, Ntrialsn = 49, Bin 5: center L/V = 0.93 s, Ntrials = 44, Bin 6: center L/V

= 1.11 s, Ntrials = 44,). The curve drawn with the darkest line represents the smallest L/V

bin center�a fast looming stimulus�and the lightest curve represents the largest L/V bin

center�a slow looming stimulus. When all of the responses are grouped into the 6 equally
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spaced bins and the average response time for each bin is plotted on the curves describing

the expansion of θ with time, we found that the �sh respond at approximately θ = 35X (Fig.

2.1E), for di�erent values of L/V. The dashed line is the average θ (35X � 15X, µ�std, N�sh

= 21, Ntrials = 246) at the time of response for all recorded responses for the continuum of

L/V s tested. The similarity between the population average and the average of each bin

demonstrates that the average θ at the time of response deviated little for di�erent L/V s or

looming rates, as has been recorded for looming evoked responses from other model animals

Fotowat and Gabbiani (2007); Oliva et al. (2007); Card (2012); Santer (2013).

The existence of this critical subtended angle in�uenced both the timing of the �sh

response and the apparent distance from the virtual object when the �sh responded. The

length of time to collision from the onset of the �sh's response increased with increasing

L/V (Fig. 2.1E), also found to be true for larval zebra�sh by other researchers Dunn et al.

(2016); Temizer et al. (2015). The response latency increased with increasing L/V (Fig.

2.1F). However, the mean reactive distance�the apparent distance from the virtual object

at the time of �sh response�did not change with L/V, suggesting the existence of a critical

reactive distance of �25 mm.

While Fig. 2.1D and G indicate that the �sh were performing looming evoked responses

at some angular or distance threshold, Fig. 2.1H shows that �sh were much more likely

to respond to larger L/V s�slow looming stimuli�than smaller ones�fast stimuli, demon-

strating that response probability is modulated by the approach rate of the stimulus. When

analyzing the kinematics of the initial bend, we found that �sh used the duration of the

initial bend and the head yaw velocity during the initial bend to produce di�erent total

changes in orientation for all of recorded responses (Fig. 2.1I, N�sh = 21, Ntrials = 246).
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Figure 2.2. Directionality of looming evoked responses.

2.3.2. Directionality of looming evoked responses

An analysis of the kinematics of each looming evoked response was performed to investigate

their relationship to the approach rate of the stimulus. In order to quantify the escape
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trajectory, we measured the initial bend angle for all responses (de�ned as in Fig. 2.2A,

N�sh = 21, Ntrials = 246). We also measured the �nal heading angle (Fig. 2.2A) in the same

manner for a subset of responses (N�sh = 21, Ntrials = 149) where the entire looming evoked

response was not obstructed by the wall of the smaller dish. Figure 2.2B shows that the

initial bend angle was a good predictor of the �nal heading angle. Therefore, the initial bend

angle was used as an indirect measure of the �nal heading angle. Changes in elevation were

not measured since the dish was only 4 mm deep (Fig. 2.1A).

Figure 2.2 details: A) The initial bend angle was measured for all responses (N�sh = 21, Ntrials = 246) and

the �nal heading angle was measured for a subset of responses (N�sh = 21, Ntrials = 149) where the looming

evoked response was not obstructed by the wall of the smaller dish. B) The initial bend angle was a strong

predictor of the �nal heading angle and largely determined the escape direction, as evidenced by R = 0.95.

C) The direction and translation of the head after the initial bend of responses grouped by the quadrant

of the looming stimulus azimuth and by fast (small L/V s) or slow looming (large L/V s) stimuli showed

stimulus dependent response patterns � front-fast looming: Ntrials = 19, front-slow looming: 22, right-fast:

18, right-slow: 32, back-fast: 12, back-slow: 16, left-fast: 16, left-slow: 22. D) The stimulus azimuth and

the initial bend angle for fast looming stimuli (Ntrials = 65) were highly correlated with the lines of `perfect

avoidance' which correspond to a turn which directs the �sh exactly 180X away from the stimulus. E) The

stimulus azimuth and the initial bend angle for slow looming stimuli (Ntrials = 92) were modestly correlated

with the lines of `perfect avoidance' due to increased variance. F) The boxplots of the absolute value of the

initial bend angle for responses grouped according to azimuthal angle of the stimulus and slow or fast stimuli

show a signi�cant increase in variability of the initial bend angle when fast and slow looming stimuli were

compared. This was true within each quadrant of looming stimulus azimuth, except for stimuli approaching
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from the back. Bottom and top of each box indicate the 25th and 75th percentiles, respectively; white line

is median, whiskers extend to the last point that is not an outlier (an outlier is de�ned as more than 1.5

times the interquartile range beyond the median). Asterisks signify the p-value range for statistical tests. �:

0.01 @ p B 0.05, ��: 0.001 @ p B 0.01, ���: p B 0.0001

Figure 2.2C shows the vector from the center of the eyes in the starting frame to the

center of the eyes at the end of the initial bend for a subset of responses grouped by small

L/V s�fast stimuli (0.1 B L/V B 0.47)�and large L/V s�slow stimuli (0.83 B L/V B 1.2).

The boundaries for the small and large L/V groups were determined by using the smallest

one-third and the largest one-third of the range of L/V s tested in this study. Additionally,

the responses are also grouped into four quadrants representing the azimuthal angle of the

looming stimulus: Front (�45X � 45X], Right (45X � 135X], Back (135X � 180X and �180X �

�135X], and Left (�135X � �45X]. Directionality di�erences in the initial bend between fast

and slow stimuli are immediately evident.

Figure 2.2D shows the initial bend angles of responses to fast looming stimuli plotted

against the azimuthal angle of the stimulus with each response color-coded to correspond

to the grouping in Fig. 2.2C. The initial bend angles were highly correlated with lines

of `perfect avoidance' � a turn which directs the �sh's head 180X away from the stimulus.

The �sh tended to head away from the aversive approaching visual stimulus. The initial

bend angles to slow looming stimuli were modestly correlated with `perfect avoidance' which

indicates that the �sh still tended to head away from the approaching stimulus but with

increased variability (Fig. 2.2E).
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Figure 2.2F demonstrates that there was a signi�cant increase in the variability of the

initial bend angle when comparing responses to fast looming stimuli with those to slow

looming stimuli, except for cases where the stimuli approached from the back. (Levene's

test, Front: Ntrials, fast = 19, Ntrials, slow = 22, p = 0.007, Right: Nfast = 18, Nslow = 32, p =

0.011, Back: Nfast = 12, Nslow = 16, p = 0.372, Left: Nfast = 16, Nslow = 22, p = 0.021).

The absolute value of the initial bend angle was used to compute statistical signi�cance of

the variance since the discontinuity between �180X and �180X could introduce erroneously

large values for variance. The results in Fig. 2.2F indicate that angle of escape to slow

stimuli (large L/V ) is more variable than the angle of escape to fast stimuli (small L/V ),

suggesting that the variability in the direction of evasive response involves an assessment of

the approach rate of the threat.

2.3.3. Tail kinematics of partially restrained looming evoked responses

Further experiments were performed in a partially restrained preparation (Fig. 2.3A) since

it permitted strict control over the environment, made detailed automated tracking of tail

kinematics during the initial bend possible, and enabled calcium imaging at single neuron

resolution during behavior. These experiments were also motivated by the need to investigate

the kinematic underpinnings of the increase in the variability of the initial bend angle when

comparing fast and slow looming stimuli.

Figure 2.3 details: A) Fish (N�sh = 18) were partially-restrained in agar with their tails free to move and

positioned to view virtual looming stimuli projected onto a screen and approaching from the front. High

speed videography was used to record tail movement at 1000 fps. B) The entire tail was tracked and the tail
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Figure 2.3. Tail kinematics of partially-restrained looming evoked responses.

angle was computed for all responses to quantify the looming evoked response. The agar restraint stopped

at the end of the swim bladder marked with a dashed white line. C) Tail kinematics during the initial bend

(in black) and the propulsive stage (in cyan) were extracted from the responses. D) The progression of the

tail angle during the initial bend grouped by responses to fast stimuli (small L/V s, Ntrials = 25) and E)

slow stimuli (large L/V s, Ntrials = 63) showed qualitative di�erences. F) Fish controlled absolute tail angle

velocity and initial bend duration di�erently under each stimulus paradigm. G) Responses to fast stimuli

had a shorter and less variable initial bend duration but H) a faster and equally variable tail angle velocity

when compared to responses to slow stimuli. I) Responses to fast stimuli also had a higher and less variable

frequency of swimming with J) higher and less variable average absolute tail angle velocities during the

propulsive stage.

Individual larvae (N�sh = 18) at 5�7 dpf were partially restrained in agarose (Fig. 2.3A)

and positioned to view looming stimulus projections on a di�usive screen. Looming stimuli

were psuedorandomly selected from the same range of L/V s used previously (0.1�1.2 s)
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but the azimuthal angle of the stimulus varied uniformly between �45X and �45X. Stimuli

were restricted within this azimuthal range since responses to stimuli approaching from the

front provided the highest con�dence (smallest p-value) in their being a di�erence between

responses to fast and slow stimuli (Fig. 2.2F). High speed videography at 1000 fps was used

to capture body movements through a 4X objective below the transparent dish in which the

�sh was placed. The shape of the body from the caudal swim bladder to the end of the tail

was tracked with a custom Matlab program (Fig. 2.3B). The tail angle, which is the angle

between the heading vector and a vector from the caudal edge of the swim bladder to the

end of the tail (Fig. 2.3B), was quanti�ed over the course of a swim bout (Fig. 2.3C). The

initial bend is easily identi�ed (drawn in black, Fig. 2.3C) in the progression of the tail angle

over time during the �rst unilateral contraction of the tail with the propulsive stage (drawn

in cyan, Fig. 2.3C) directly following.

Figures 2.3D and E show the tail angle for all recorded responses during the initial bend

grouped by fast (small L/V s, N�sh = 18, Ntrials = 25) and slow stimuli (large L/Vs, N�sh

= 18, Ntrials = 63) where the same L/V boundaries as in the free swimming experiments

were used for grouping. The di�erences of the tail angles between the two groups visible

in Figs. 2.3D and E is quanti�ed in Fig. 2.3F. This shows that the �sh controlled the

duration of the initial bend and the absolute average tail angle velocity during the initial

bend di�erently across stimulus paradigms. The absolute value was used to group right and

left turns together as was done in the free swimming case (Fig. 2.1D and Fig. 2.2F). The

initial bend duration and the tail angle velocity together allow for inferences about the initial

bend angle because the tail angle velocity of free swimming �sh were strongly correlated with

the head yaw velocity during the initial bend (refer to Appendix A.1).
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The data in Fig. 2.3F is further analyzed in Figs. 2.3G and H which demonstrate

that the responses to slow stimuli had initial bend durations which were signi�cantly longer

(Mann-Whitney U test, p = 0.005) and more variable (Levene's test, p @ 0.001) than those

to fast stimuli. Moreover, the absolute tail angle velocities of responses to slow stimuli were

lower (Mann-Whitney U test, p = 0.002) but had a non-signi�cant di�erence in variability

(Levene's test, p = 0.177) from responses to fast stimuli. The results in Fig. 2.3G and H

together show that the looming-evoked response kinematics vary with L/V and the increase

in variability of the duration is the largest contributor to variability in the initial bend.

Although both fast and slow stimuli had on average 3 tail cycles in the propulsive stage

(Fig. 2.3C) there were signi�cant di�erences in the kinematics during the propulsive stage

for the two stimulus paradigms (Fig. 2.3I and J). Responses to slow stimuli had average

tail cycle frequencies (Fig. 2.3I) in the propulsive stage which were lower (Mann-Whitney

U test, p = 0.002) and more variable (Levene's test, p = 0.034). Additionally, the average

absolute tail angle velocity of responses to slow stimuli during the propulsive stage was lower

(Mann-Whitney U test, p = 0.021) and more variable (Levene's test, p = 0.032). These

results together demonstrate signi�cant stimulus dependent changes in the kinematics of the

looming evoked response based on the looming rate�the threat posed by the stimulus.

Figure 2.4 details: A) Partially restrained �sh (N�sh = 15) were shown a fast (L/V = 0.4 s) and a slow

(L/V = 1.0 s) looming stimulus at an azimuth of �30X, which consistently produced rightward looming

evoked turns. B) The M-cell (within yellow square) is in the larval zebra�sh hindbrain with contralateral

axonal projections (yellow arrow) known to mediate rightward turns. Calcium imaging of the left M-cell was

performed in all �sh at 30 fps. High speed videography of the tail movement was simultaneously performed
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at 1000 fps. C) A representative M-cell active response with the frame corresponding to the start of the

looming evoked response marked with a star and a motion artifact immediately following. This montage

demonstrates the increase in �uorescence during neuronal activity and the quality of signals acquired with

the imaging assay. D) Calcium imaging �uorescence traces for all responses ordered by response time and

grouped by fast looming M-cell active (Ntrials = 19) and silent (Ntrials = 8) or slow looming M-cell active

(Ntrials = 19) and silent (Ntrials = 21). M-cell activity was determined by a threshold of ∆F/F = 5%. E)

In both stimulus paradigms, M-cell active responses occurred signi�cantly earlier (more negative time) than

M-cell silent responses with mean � std as follows: FastM-cell active: �0.80 � 0.17 s, FastM-cell silent: �0.52

� 0.27 s, SlowM-cell active: �1.80 � 0.44 s, SlowM-cell silent: �1.27 � 0.59 s. F) The progression of the tail

angle during the initial bend of responses to fast and slow stimuli grouped by M-cell active or silent showed

immediate di�erences. G) M-cell active responses under di�erent stimuli had similar initial bend durations

and tail angle velocities but were di�erent from M-cell silent responses. H) M-cell active responses had a

shorter and less variable distribution of initial bend durations than M-cell silent responses. I) M-cell active

responses had a higher and less variable distribution of tail angle velocities during the initial bend than

M-cell silent responses. J) Fish (N�sh = 15) were much more likely to produce an M-cell active response to

a fast stimulus than to a slow stimulus.

2.3.4. Mauthner cell activity to varying approach rates

To investigate how the approach rate of looming stimuli in�uenced the likelihood of Mau-

thner cell (M-cell) activation, calcium imaging was performed while larval �sh responded to

looming stimuli. A previously established protocol was used to back�ll the reticulospinal

network neurons of anesthetized 4 dpf zebra�sh with Calcium Green dextran Liu and Fetcho
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(1999). In the partially restrained looming stimulus assay, we simultaneously measured neu-

ral activity in the M-cell from above with a 40X objective and body kinematics from below

with a 4X objective (Fig. 2.3A). Fish were shown a slow stimulus (L � 11 mm, V � 11

mm
sec

, L/V = 1.0, d � 50 mm) and a fast stimulus (L � 11 mm, V � 27.5 mm
sec

, L/V = 0.4,

d � 50 mm), both at an azimuth of 30X from the left (Fig. 2.4A). Only these two approach

rates were used rather than the full set because investigating the variability of Mauthner

recruitment to a �xed stimulus requires a large sample size; thus surveying the full set of

approach rates is impractical.

Fig. 2.4B shows a representative maximum-intensity z-projection �uorescent image (col-

lected with an epi�ourescent microscope) of a portion of the reticulospinal network with the

left M-cell inscribed within a green rectangle. The left M-cell has one commissural axon

(green arrow) which is known to mediate escape turns to the right Gahtan and Baier (2004).

Since z-stacking was too slow in this case for neural activity imaging during behavior, the

M-cell was imaged at 30 fps in a single plane in a small region that just encompassed the

neuron (Fig. 2.4C).

Figure 2.4C shows a montage of �uorescence images from a single trial where the �sh

performed an M-cell active looming evoked response. The looming evoked response occurs at

�2.34 s and is immediately followed by a motion artifact in the imaging due to the vigorous

nature of the aversive response. This is followed by increased �ourescence due to neural

activity.

Figure 2.4D shows all of the �uorescence traces from all recorded responses grouped by

fast (N�sh = 15, Ntrials, active = 19, Ntrials, silent = 8) and slow (N�sh = 15, Ntrials, active = 19,

Ntrials, silent = 21) stimuli. Fluorescence traces from the M-cells of �sh performing looming

evoked responses were compiled into M-cell active and silent groups based on a decision
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threshold at ∆F/F = 5% (justi�ed in Appendix A.3). All �uorescence traces show a sharp

drop at the time of response due to the motion artifact (Fig. 2.4C) in �uorescence imaging.

M-cell active responses happened signi�cantly earlier (more negative response times) than

M-cell silent responses for both fast (Mann-Whitney U test, p = 0.014, 284 ms di�erence in

medians) and slow (Mann-Whitney U test, p = 0.006, 563 ms di�erence in medians) stimuli

(Fig. 2.4E). The mean � std responses times for the groups were the following: FastM-cell active:

�0.80 � 0.17 s, FastM-cell silent: �0.52 � 0.27 s, SlowM-cell active: �1.80 � 0.44 s, SlowM-cell silent:

�1.27 � 0.59 s. The tail angle during the initial bend of M-cell active and silent responses

grouped by the fast and slow stimuli also showed di�erences (Fig. 2.4F). These di�erences

are further quanti�ed in Fig. 2.4G which demonstrate that the M-cell active responses had

di�erent initial bend durations and tail angle velocities from M-cell silent responses for the

both fast and slow looming stimuli. Figure 2.4H shows that the initial bend duration for

M-cell active responses were signi�cantly smaller (Mann-Whitney U test, p R 0.001) and

less variable (Levene's test, p R 0.001) than M-cell silent responses. The tail angle velocity

during the initial bend for M-cell active responses was also signi�cantly higher (Fig. 2.4I,

Mann-Whitney U test, p @ 0.001) and less variable (Levene's test, p @ 0.001) than M-cell

silent responses. The proportion of M-cell active responses is far higher for fast stimuli than

for slow stimuli (Fig. 2.4J). These results together indicate that the approach rate of the

looming stimuli modulates the probability of M-cell recruitment, which is correlated with

speci�c kinematic outcomes.

2.3.5. Reticulospinal recruitment during Mauthner active and silent responses

To study recruitment di�erences in the reticulospinal network between Mauthner cell active

and silent looming-evoked responses, volumetric calcium imaging was performed on a subset
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Figure 2.5. Reticulospinal recruitment during Mauthner silent and active responses.

of the reticulospinal neurons in conjunction with high-speed behavior imaging while larval

zebra�sh responded to the same fast or slow looming stimuli described above. Light �eld

microscopy was used to acquire volumetric calcium �uorescence data (70 µm � 100 µm �

100 µm) at 15 fps from the Mauthner cells (M-cells) and its homologs, MiD2 and MiD3,

along with other ventral spinal projecting neurons (vSPNs) that have been identi�ed in

previous literature to be involved in turning behavior Orger et al. (2008). These vSPNs

include RoV3, MiR1, MiM1, MiV1, MiR2, and MiV2, listed here in rostro-caudal order of

anatomical occurrence (Fig. 2.5A).

Figure 2.5 details: A) Compares the maximum intensity z-projection of a volume acquired with confocal

microscopy (top, acquisition time: 10 mins) with a single plane from epi�uorescence microscopy within

the same volume (middle, acquisition time: 50 ms) and a max intensity z-projection of the same volume

reconstructed from a light �eld image (bottom, acquisition time: 50 ms) demonstrating the utility of light
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�eld imaging as a fast volumetric imaging system able to resolve the neurons of interest. In this study, we

speci�cally focused on the Mauthner cell and its homologs (M-array, top, in black) along with the ventral

spinal projecting neurons (vSPNs, top, in blue). B) Plots show the average calcium signals with upper and

lower SEM boundaries from each nucleus during M-cell silent looming-evoked responses across all trials (25

B Ntrials B 35, for exact values please refer to Appendix A.4) and C) The same is shown for M-cell active

looming evoked responses (34 B Ntrials B 50). Nuclei names are color-coded in black or blue in accordance

with their membership in either the M-array or the vSPNs. Red traces denote nuclei for which the mean

of the calcium signal reached above the ∆F/F threshold (5%) for activation. D) Shows the average �SEM

recruitment probability of nuclei for M-cell active and silent cases grouped by �sh (5 B N�sh B 17). E)

Demonstrates the similarity of angular velocity and bend duration distributions within M-cell active and

M-cell silent cases regardless of approach rate (M-cell active: NFast = 24, NSlow = 26, M-cell silent: NFast

= 11, NSlow = 24). F) Shows the di�erences in latency of M-cell active and M-cell silent responses from

the onset of the stimulus for each approach rate. The latency of the responses from stimulus onset are the

following: M-cell Activefast: 0.99 � 0.17 s, M-cell Activeslow: 2.47 � 0.38 s, M-cell Silentfast: 1.3 � 0.25,

M-cell Silentslow: 3.31 � 0.51.Short black bars at 1.82 s and 4.54 s mark the latency at which each stimulus

would collide with the �sh.

Light �eld imaging was �10,000 times faster than confocal imaging (confocal image ex-

ample Fig. 2.5A top) for acquiring the volume of interest. A standard epi�uorescence image

at a single plane (Fig. 2.5A, middle) is insu�cient to reconstruct the entire volume. How-

ever, a modi�ed epi�uorescence scope with a microlens array provides a light �eld with

su�cient information to reconstruct the volume (Fig. 2.5A, bottom)Broxton et al. (2013).

After post-processing, segmenting, and anatomically labeling volumes reconstructed from



42

light �eld microscopy (refer to Appendix A.4), time-varying calcium signals were extracted

from volumes acquired during looming-evoked escapes and grouped into M-cell silent or M-

cell active response categories. The signals from these bilaterally symmetric nuclei were also

grouped according to their relative location to the stimulus, either on the same side as the

stimulus (ipsilateral), or on the opposite side of the stimulus (contralateral). All turns from

looming stimuli were away from the stimulus direction; thus the contralateral nuclei are on

the same side that the �sh turns toward.

The average calcium signals from all trials for each nucleus (Fig. 2.5B and C) show

immediate di�erences in recruitment between M-cell active (34 B Ntrials B 50) and silent (25

B Ntrials B 35, for exact values please refer to Appendix A.4) responses. Red traces denote

nuclei for which the mean of the calcium signal reached above the ∆F/F threshold (5%)

for activation. These recruitment patterns are further explored in Figure 2.5D which plots

the average probability � SEM of recruitment grouped by �sh for each of the reticulospinal

nuclei investigated (5 B N�sh B 17). The statistical results demonstrate signi�cant di�erences

in the mean recruitment probability between bilaterally symmetric nuclei pairs within and

across M-cell active and silent responses (Student's two-tailed t-test).

The MiD3 Mauthner homolog and the RoV3 nuclei contralateral to the stimulus were

frequently recruited (MiD3: 55 � 15% recruitment probability, RoV3: 77 � 18% recruitment

probability) during M-cell active responses but were rarely or never active during M-cell

silent ones. Other nuclei such as MiV1, MiR2, and MiM1 showed prominent changes in

the symmetry of bilateral recruitment. While the M-cell silent responses had signi�cant

recruitment of MiV1 and MiR2 nuclei contralateral to the stimulus (Fig. 2.5B and D, pMiV1

= 0.0006, pMiR2 = 0.023), M-cell active responses had increased recruitment of both nuclei
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but no signi�cant di�erence in recruitment of bilateral pairs (Fig. 2.5C and D). However, M-

cell active responses had signi�cant unilateral recruitment of the MiM1 nuclei contralateral

to the stimulus (p = 0.003) while M-cell silent responses show a reduced recruitment of

MiM1 nuclei but non-signi�cant di�erences between recruitment of bilateral pairs. Some

nuclei, like MiR1 and MiV2 have an overall drop in recruitment probability when comparing

M-cell active to silent but no changes in symmetry or asymmetry of activation in the bilateral

pairs.

Figure 2.5E demonstrates that angular velocity and bend duration distributions of Stage

1 were not signi�cantly di�erent within M-cell active responses for each approach rate or

within M-cell silent responses for each approach rate (M-cell active: NFast = 24, NSlow = 26,

M-cell silent: NFast = 11, NSlow = 24). These results suggest that M-cell active responses

and M-cell silent responses are two di�erent behavioral responses that are consistent in their

kinematics regardless of the stimulus parameters. Despite the similarity of kinematics of

M-cell active responses across both stimuli and M-cell silent responses across both stimuli,

there are signi�cant di�erences in the latency from stimulus onset of the responses ranging

from 1.5�2.5 s between the two approach rates (Fig. 2.5F). The latency of the responses for

the groups are the following: M-cell Activefast: 0.99 � 0.17 s, M-cell Activeslow: 2.47 � 0.38 s,

M-cell Silentfast: 1.3 � 0.25, M-cell Silentslow: 3.31 � 0.51. The same behaviors in response to

di�erent stimuli are being activated at very di�erent time scales. Nonetheless, M-cell active

responses still precede M-cell silent ones for a given stimulus, as also seen in Figure 2.4E.

2.4. Discussion

Our goal here was to evaluate how larval zebra�sh assess threat of looming predators to

determine the utility of short latency, ballistic responses over longer latency, more variable
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and less energetically costly behaviors. While previous literature suggested a proximity

mechanism of threat assessment which is insensitive to varying levels of threat, we found

that �sh perform a graded assessment of threat where the approach rate of the looming

stimulus modi�es the likelihood of an evasive maneuver, its kinematics, and the proportion

of evasive responses that involve Mauthner cell activation (Fig. 2.6).

Mauthner-mediated escapes are both energetically costly, as they rapidly engage muscles

along the entire body Fetcho (1991), and behaviorally costly, as they produce predictable

escape responses Catania (2009); Eaton et al. (1991). Therefore, we hypothesized that

Mauthner cell recruitment would be reserved for the more urgent threats. This hypothesis

was supported by our kinematic analysis combined with in vivo imaging of Mauthner cell

recruitment which con�rmed that Mauthner-active responses are the most powerful and

stereotyped, and were more likely to occur in response to faster looming stimuli (Fig. 2.6).

Figure 2.6 details: The looming-evoked response of a larval zebra�sh is modulated by the approach rate

of the looming stimulus. As a predator nears the critical subtended angle threshold, �sh decide to either

move or freeze in a probabilistic manner based on the approach rate. If the �sh moves, it must decide

between Mauthner active and Mauthner silent responses�the probability of which is also determined by the

approach rate. Mauthner active and Mauthner silent circuitry have di�erent neural recruitment patterns and

produce kinematically distinct behaviors. Mauthner active responses recruit the Mauthner cell along with

Mauthner homologs, and other ventral spinal projection neurons to produce a short latency, more stereotyped

maneuver, which is generally directed 180X away from the stimulus approach direction (in black). Meanwhile,

Mauthner silent responses almost exclusively recruit the ventral spinal projecting neurons to produce longer

latency responses with more variable kinematics and escape directions (in blue).
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Figure 2.6. The looming-evoked response of a larval zebra�sh.

However, our �ndings also indicate that the decision to recruit Mauthner neurons is

occurring in parallel with another decision: whether to move at all (Fig. 2.6). We observed

more responses to slowly expanding stimuli than rapidly expanding stimuli. A possible

explanation for this di�erence in response probability is that the faster visual stimulus is

too rapid to be perceived. However, we �nd that �sh were able respond to the shortest
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duration stimuli presented in this study, suggesting that the duration of the stimulus was

su�cient to drive visually guided responses for all approach rates. It is therefore more likely

that this lack of response is evidence of `freezing' behavior, a common reaction to highly

threatening visual stimuli in a variety of species Blanchard and Blanchard (1988); Chelini

et al. (2009); Herberholz and Marquart (2012), including zebra�sh Egan et al. (2009). Others

have suggested that freezing can reduce vibrational and visual cues that a predator may rely

on, loosing interest if such stimulation ceases Misslin (2003). Here we argue that the choice

between freezing or escaping in larval zebra�sh is modulated by the approach rate of a

looming stimulus.

Slower approach rates were more likely to produce Mauthner-silent escapes which are

more delayed and more variable in their kinematics than Mauthner-active responses (Fig.

2.6). The behavioral utility of more variability in response to slowly approaching objects is

supported by modeling studies, which suggest that slower predators allow for a wider range of

escape directions that maximize distance Soto et al. (2015). In addition, more variable escape

trajectories are arguably less predictable, which would be advantageous when responding to

slower and more maneuverable predators MacIver et al. (2004); Bandyopadhyay et al. (1997).

While there are clear di�erences in the timing and variability of escape turns to slow and

fast looming stimuli, almost all responses were evasive, in that zebra�sh made a �180X turn

away from the perceived threat. One notable exception was responses to fast approaching

objects from the rear, in which case larvae did not move forward, but rather turned �90X to

the left or right. Although we did not monitor Mauthner cell recruitment in this situation,

the deviation from the expected escape direction is most likely due to the higher probability

of Mauthner cell �ring, which guarantees a turning maneuver. Indeed, electrical stimulation

of the Mauthner cell alone yields a stereotyped tail bend that can reach 85X Nissanov et al.
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(1990). In this speci�c case, the commensurate neurobiological and biomechanical constraints

may actually be bene�cial, since the optimal strategy is to dart to the side when escaping

predators which are much faster than prey and rapidly approaching from behind Weihs and

Webb (1984); Corcoran and Conner (2016).

Notwithstanding this observation, for all other looming evoked responses, zebra�sh move

directly away from the perceived threat. This necessitates a means of directional coding.

Our work suggests variations in escape trajectory can be explained largely by the duration of

the initial bend, and to a lesser extent by tail angle velocity. This observation is congruent

with studies in the spinal cord that have revealed a mechanism of turn angle encoding

through modulating the number of spikes in participating excitatory premotor interneurons

and motor neurons Bhatt et al. (2007). Such a mechanism could manipulate changes in

duration by modulating �ring frequency of the interneurons and motor neurons. Given

that Mauthner cells typically �re only once during the initial bend Korn and Faber (2005),

the modulation of spike rate and bend duration necessary for direction control must arise

elsewhere. The most likely sources for modulation of spike rate and bend duration are other

identi�ed reticulospinal neurons, which have been implicated in directional coding of more

abrupt sensory stimuli Eaton et al. (1988); Gahtan et al. (2002) along with routine turning

Orger et al. (2008); Huang et al. (2013).

Moreover, di�erences in the recruitment of these nuclei during Mauthner-active and

Mauthner-silent responses may speak to their roles in these kinematically distinct behav-

iors. Speci�cally, the frequent recruitment during Mauthner-active responses of the MiD3

nucleus and the RoV3 nucleus contralateral the stimulus�on the opposite side of the active

Mauthner cell�suggests they play a critical role in this evasive maneuver. The recruitment

of the MiD3 nucleus on the opposite side of the active Mauthner cell aligns well with �ndings
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from other researchers Neki et al. (2014). Moreover, both the MiD3 and RoV3 nuclei may

be providing excitatory input in conjunction with the Mauthner cell during Stage 1 since

studies have suggested that ipsilaterally projecting MiD3 cells are excitatory Kinkhabwala

et al. (2011); Kimura et al. (2013) and the RoV3 nucleus is integral for turning behaviors

Orger et al. (2008); Huang et al. (2013).

This rationale also applies to the MiM1 nuclei which had strong unilateral recruitment

during Mauthner-active responses. This �nding aligns with previous results which demon-

strate that the activation of one Mauthner cell leads to the recruitment of the MiM1 nucleus

on the opposite side Neki et al. (2014). Our results further support the hypothesis that the

MiM1 nucleus may be contributing to the lateralized activation of the spinal neurons during

Stage 1 of the escape maneuver.

Meanwhile, the MiV1 and MiR2 nuclei largely undergo changes in the symmetry of

recruitment between the bilateral pairs when comparing Mauther-active and Mauther-silent

responses. Others have reported that there are two functional groups of neurons within

the MiV1 nucleus: one group with strong directional turning that is only active during

turns, and a second group with weak directional turning that is more active during turns

but also active during forward swimming behaviors Huang et al. (2013). This suggests

that the more bilateral recruitment of MiV1 nuclei during Mauther-active responses tend

to activate both functional groups while the unilateral recruitment during Mauther-silent

responses may only activate the group with strong directional tuning. The similar trend in

the symmetry of recruitment seen in the MiR2 nuclei could potentially be explained by a

congruent mechanism of recruiting di�erent functional groups. Previous literature suggests

that there are MiR2 neurons active during forward swimming Orger et al. (2008), but the
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strong unilateral recruitment of one of the bilateral pairs during Mauther-silent responses in

our �ndings indicates involvement of this nucleus in turning behaviors as well.

The MiR1 and MiV2 nuclei undergo a drop in recruitment probability when comparing

Mauthner-active and Mauthner-silent responses but do not have changes in the symmetry of

recruitment between bilateral pairs. There is some evidence that the MiR1 nucleus is active

during forward swimming Orger et al. (2008) which is further corroborated in this study by

the bilateral recruitment seen in both Mauther-active and Mauthner-silent responses. The

signi�cant unilateral recruitment of MiV2 nuclei aligns well with previous �ndings which

show that they have strong directional tuning Orger et al. (2008); Huang et al. (2013).

The consistent di�erences in the kinematics of the Mauther-active and Mauthner-silent

responses across approach rates suggests that these clear changes in the recruitment of nuclei

are correlated to the distinct changes in the motor aspects of these behaviors. Overall, our

results indicate that during Mauthner-active responses MiD3, RoV3, MiM1, and MiV2 nuclei

have input into the turning portion of an evasive maneuver�Stage 1. Meanwhile, MiV1 and

MiR2 nuclei have input both into the turning portion and forward swimming�the propulsive

stage. However, during Mauthner-silent responses, only a subset of these, namely MiM1,

MiV1, MiR2, and MiV2 are still involved in turning. The reduced probability of recruitment

for these nuclei could explain the longer Stage 1 duration and lower median tail angle velocity

during Stage 1, since this would translate into weaker, presumably less synchronous drive to

the spinal interneurons and motor neurons responsible for escapes, as described above.

In both types of responses, the bilateral activation of MiR1 implicates its involvement

in forward swimming. Our kinematic analysis suggests that forward swimming during the

propulsive stage of the responses to rapidly expanding stimuli are produced at higher fre-

quencies and tail angle velocities, and are less variable. This may be due to the increased
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recruitment of MiR1 nuclei along with the recruitment of functional subgroups responsible

for forward swimming within the MiV1 and, potentially, MiR2 nuclei. Studies of spinal net-

works in the larval zebra�sh suggest that premotor excitatory interneurons active at lower

frequencies of swimming�which comprise longer, more variable bend durations�are inhib-

ited as those active at higher frequencies of swimming are engaged Kishore et al. (2014). It

is unclear whether the reticulospinal neurons responsible for higher swimming frequencies

are organized hierarchically according to speed as in the spinal cord. One interpretation of

our results is that the MiR1 nuclei provide excitatory drive for forward swimming while the

functional subgroups for forward swimming within MiV1 and MiR2 select for spinal networks

mediating higher frequency swimming.

The mechanisms responsible for recruiting Mauthner versus non-Mauthner escape circuits

are still unclear, but presumably arises from a combination of their integrative properties

and the nature of input from upstream visual processing centers Wang and McLean (2014).

One possibility is that visual inputs are evenly distributed among spinal projecting neurons.

In this case rapidly expanding objects resulting in strong, coincident activation of a shared

source visual drive would favor recruitment of large Mauthner cells, while weaker stimuli

provided by slowly expanding objects would be more likely to recruit only smaller non-

Mauthner circuitry. This aligns with our �nding of probabilistic Mauthner cell recruitment

with respect to approach rate. A coincidence detection mechanism would also predict that

the protracted summation of stimuli from more slowly approaching predators would lead to

a more delayed activation of Mauthner neurons, which is what we observe for responses to

slow looming stimuli.

However, the changes in symmetry of recruitment of the bilateral pairs of MiV1 and

MiR2 nuclei between Mauthner-active and Mauthner-silent responses are more di�cult to
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explain with an even distribution of visual input. In this case, the Mauthner cell, once

activated, could be providing additional excitatory drive to other reticulospinal cells, which

is consistent with previous studies Neki et al. (2014). Moreover, the excitatory visual input

to the ventral spinal projecting neurons may also be biased to the nuclei contralateral to

the stimulus. In addition, functional subgroups of neurons which recruit spinal circuits for

faster swimming within reticulospinal nuclei may have higher activation thresholds. The

combination of contralateral bias and heterogenous activation thresholds in nuclei could also

explain circuit level di�erences in Mauthner-active and Mauthner-silent escapes.

Another potential argument against an even distribution of visual input to reticulospinal

neurons is provided by our observation that responses involving Mauthner neurons occur

consistently earlier than non-Mauthner responses, by as much as half a second for slowly

looming objects (Fig. 2.4E). The delay of the non-Mauthner response in these cases cannot

be explained by di�erences in reticulospinal conduction velocity alone and instead suggests

the existence of a lower threshold, biased source of visual input to Mauthner neurons. This

would be consistent with studies of auditory escape re�exes, where the early recruitment of

Mauthner neurons is ensured by stronger drive from XIIIth nerve a�erents Curti and Pereda

(2004). Nonetheless, the large di�erences in latency from stimulus onset for Mauthner-active

responses when comparing fast and slow looming stimuli suggests that the critical subtended

angle threshold is modulating the timing of this biased input to the Mauthner neurons.

Furthermore, the reduced responsiveness�freezing response�we observe with increas-

ing probability as speed of approach increases could be evidence of an independent network.

However, the descending control of freezing behavior in larval zebra�sh is not well under-

stood. While the sources of input to the reticulospinal cells likely include looming respon-

sive neurons in the optic tectum and/or extratectal areas Temizer et al. (2015); Dunn et al.
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(2016), future work examining di�erences in the response of visual processing centers and

their output with changing looming rate will help distinguish between these possibilities.

Our results illustrate that larval zebra�sh performed a graded assessment of threat when

responding to aversive stimuli, producing di�ering behavioral outcomes based on the threat

posed by the stimulus. More broadly, the story of the role of Mauthner versus non-Mauthner

mediated behavior is a microcosm of a larger logic at play. That logic o�ers a trade-o�

between deciding to execute fast and relatively stereotyped responses or slower and more

�exible responses. While the Mauthner cell and other giant-�ber pathways are a window

into this decision-making process, the balance between fast and slow responses to stimuli is

maintained by the relationship between the sensory range of the animal, the reaction time

of animal, and the speed of the approaching object. Limited sensory range�due to sensory

modality, like mechanosensation, and ecology, like murky water�or very rapidly approaching

predators would tip the balance in the favor of fast, in�exible responses. Conversely, slowly

moving predators or increased sensory range�as would have happened starting around 385

million years ago when certain �sh evolved into land animals and were able to see targets

from a far greater distance MacIver et al. (2017)�may tip the balance in favor of slower

and more �exible responses, as these are more likely to challenge the predator by their lack

of predictability. This in�uence of increased sensory range on reducing the bene�t of short

latency responses is further supported by the fact that Mauthner cells are only known to be

present in vertebrates up through amphibians, including frogs Bierman et al. (2009). While

our study investigates this trade-o� and the decision-making process involving a giant-�ber

system in a relatively simple aquatic vertebrate, similar mechanisms may be at play in higher
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vertebrates with their increased luxury of time and more numerous behavioral options af-

forded by larger sensing range.
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CHAPTER 3

Intersection of motor volumes determines outcome of predator-prey

interactions

3.1. Overview

In predator-prey interactions, the escape maneuvers of prey animals are crucial in deter-

mining their chances of survival. Therefore, these maneuvers and the neural circuits that

execute them are shaped by sti� selection pressure. Our current understanding suggests that

a number of escape maneuver parameters contribute to survival, including response latency,

escape speed, and direction. However, existing studies present contradictory evidence about

the impact of these parameters on escape success. Speci�cally, the value of rapid responses

and fast speeds in producing successful escapes has been disputed, even while many animals

have specialized circuits devoted to producing the shortest latency and fastest escapes. These

contradictions obscure an understanding of the selection pressure on escape maneuvers and

the functional bene�t of specialized escape circuits. To clarify these issues, we have investi-

gated the determinants of successful escape maneuvers by studying the responses of larval

zebra�sh to the ballistic attacks of a natural predator, the dragon�y nymph. We found that

the strongest predictor of outcome was the time needed for the nymph to reach the �sh after

the �sh had initiated an escape. We show how this result is a consequence of the intersection

of the volume containing all possible escape trajectories of the �sh and the swept volume of

the nymph's attack. By analyzing the interaction of these volumes, we estimated the survival

bene�t conferred to larval zebra�sh by recruiting the Mauthner cell, the giant neuron in �sh
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devoted to producing escapes. Our approach provides a new perspective on the selection

pressure on movements during predation by presenting a general framework that uni�es the

in�uence of many escape maneuver parameters in shaping the motor volumes of predator

and prey.

3.2. Introduction

An escalating �arms race" in predator-prey interactions is considered a major driving force

behind the evolution of nervous systems Sperling et al. (2013). Within these interactions, the

escape maneuvers of prey are under signi�cant selection pressure since they directly a�ect

survival. The evolutionary pressure shaping escape maneuvers selects for those parameters

of the maneuver and the underlying neural circuitry that contribute to evasion success Sillar

et al. (2016). Studies have suggested that response latency, speed, and direction of an

escape maneuver are all relevant contributors to success Howland (1974); Dangles et al.

(2006); Stewart et al. (2013). However, di�erent studies have produced contradictory results

about the in�uence of these parameters on the outcome.

Opposing parameters, like the optimality of a single escape direction for increasing dis-

tance Weihs and Webb (1984); Eaton et al. (1991); Domenici (2002) and the unpredictability

of variable escape directions Driver and Humphries (1970); Edut and Eilam (2004); Domenici

et al. (2011b), are both hypothesized to increase escape success. Moreover, in many animals,

escapes can be initiated with or without the activation of large diameter command neurons

devoted to generating the shortest latency escapes with the fastest speeds Edwards et al.

(1999); Korn and Faber (2005); Card (2012). In �shes and amphibians, these giant neurons,

called the Mauthner cells, are found as a bilateral pair in the brainstem Korn and Faber

(2005). However, the utility of fast speeds for increasing evasion success in �sh have been
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both disputed and supported by existing results Webb (1986); Katzir (1993); Walker et al.

(2005); Fuiman et al. (2006); Soto et al. (2015); Nair et al. (2017), obscuring the role of

recruiting the Mauthner cells. Therefore, it is unclear how the recruitment of specialized

escape circuits or the selection of speci�c motor parameters for an escape maneuver increase

chances of escape success.

To better understand the determinants of successful escapes, we have studied the preda-

tion of larval zebra�sh (Danio rerio) by one of their known ambush predators, the dragon�y

nymph (Sympetrum vicinum). Dragon�y nymphs hunt by remaining motionless and wait-

ing for prey to come within ambush distance Snodgrass (1954); Pritchard (1965) (Fig. 3.1).

Once in striking range, the nymphs attack prey with their hydraulically-powered prehensile

labial masks Olesen (1972); Tanaka and Hisada (1980); Parry (1983); Busse and Gorb (2018)

which extend outward to grasp the prey with palps and con�ne them in a spoon-shaped bowl

Olesen (1978); Blanke et al. (2015), hereafter referred to as a mask. Studying responses to

an ambush predator better explicates the impact of escape maneuver parameters on the out-

come than a similar analysis with a pursuit predator. This is because responses to pursuit

predation involves a series of movements where it is di�cult to determine which parameter

ultimately led to successful escape. Conversely, ambush predation, which involves sudden

strikes by predators on unsuspecting prey deVries et al. (2012), does not provide time for a

series of movements. Consequently, we focused on single escape responses of larval �sh to the

ballistic strikes of dragon�y nymphs to �nd the parameters most predictive of the outcome.

Using the time needed to extend the mask to a position in space, we created a model

of the mask motor volume�the volume swept by the appendage over a given amount of

time Snyder et al. (2007). The �uid perturbations caused by the extending mask modulated

timing and kinematics of the �sh escape response. Upon analysis of various parameters
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de�ning the escape response, we found that the time remaining for the mask to reach the

�sh position from the initiation of the �sh's escape response was most predictive of escape

success. Ultimately, our �ndings are a consequence of the intersection of the swept volume

of the mask and the volume containing all possible trajectories of the �sh within the time

remaining to mask arrival�the �sh's motor volume Snyder et al. (2007). We show how the

interaction between the prey motor volume and the predator swept volume accounts for the

in�uence of various escape maneuver parameters and provides a new approach to analyze the

utility of speci�c escape movements. Additionally, we use the analysis of motor volumes to

computationally estimate the survival bene�t of recruiting the Mauthner cell for the escape

maneuver since there are known di�erences in kinematics for Mauthner and non-Mauthner

mediated escapes Liu and Fetcho (1999); Burgess and Granato (2007); Kohashi and Oda

(2008); Bhattacharyya et al. (2017). We discuss how our conclusions generalize to other

predator-prey interactions and extend the existing understanding of the selection pressure

on escape responses along with their neural execution.

3.3. Results

3.3.1. Dragon�y nymph prehensile mask motor volume and attack outcome

To evaluate predator-prey interactions, we �lmed strikes of dragon�y nymphs upon 5�7 day

old larval zebra�sh using high-speed videography at 250 frames per second (fps) with top

and side view perspectives (Figure 3.1A).

Figure 3.1 details: A) Top and side view of a strike. Scale bar: 2.5 mm. B) Top, front, and side view

orthographic projections of prehensile mask strike positions colored to represent the time duration of the
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Figure 3.1. Dragon�y nymph prehensile mask motor volume.

strike. (Number of nymphs = 5, nymph body length mean � std = 14.5 � 1.3 mm, number of attacks =

159). C) Top, front, and side view cross-sections of surfaces representing isochrones for the duration of the

strike from the time of initial movement detected thru high-speed videography. The 3-dimensional isochronic

surfaces de�ne the prehensile mask motor volume.
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First, to quantify the biomechanical performance of the attack, we studied the duration

of the predatory strike with respect to the furthest point reached by the prehensile mask

in 3-dimensional (3D) space. The mask extension times ranged from 24�176 ms depending

upon the location of the strike. The time needed for the mask to reach speci�c positions

in space (Figure 3.1B) was well described by a k-nearest neighbor (k-NN) model (R2 = 0.7,

Figure 3.1C, see also Appendix) which served as a representation of the motor volume of the

mask�the volume swept by the appendage over all strikes within a given amount of time

Snyder et al. (2007). As seen in the cross-sections of the isochronic surfaces of the motor

volume (Figure 3.1C), strikes directed towards lateral and caudal positions took more time

than strikes directed medially and rostrally. This model represented the maneuverability of

the mask, providing insight about the time-scale and directional bias of predatory strikes.

Next, to see how the outcome of the attack was in�uenced by aspects of the predatory

encounter, we categorized the interactions. Successful and failed captures had distinct spatial

distributions of the position of the �sh before the attack (Figure 3.2A), where nymphs were

more likely to capture larvae in closer proximity. Upon further examination, we found

di�erent kinds of failed and successful captures (Figure 3.2B). A failed capture could occur

either due to an error in the predatory attack or an e�ective escape executed by the �sh.

A successful capture occurred either due to a �sh not responding or an ine�ective escape

attempt by the �sh. A formalization of these scenarios is illustrated as a process diagram of

the predatory encounter in Figure 3.2B, which depicts the occurrence of these speci�c events

that either terminate the process or lead to other events.



60

Failed capture
Successful captureA

B
Targeting error

Failed captures

Failed 
capture

Successful
capture

Successful
capture

Failed 
capture

Fish does not respond

Escape failure

Successful captures

3 mm

Visual delay Escape success

Escape success?

Fish responds?

Accurate attack?

No

Yes

No

Yes

Tactile delay
No

Yes

Figure 3.2. Causes of successful or failed captures by the nymph.

Figure 3.2 details: A) Top (x-y), front (y-z), and side (x-z) view orthographic projections of 3D initial �sh

positions before the start of the nymph's strike with points colored to represent the outcome of a successful

or failed capture by the nymph. B) Process diagram demonstrating the sequence of events and causes of

a successful or failed capture by the nymph with representative examples of each branching event in the

process.

The �rst of these events is the attacking strike by the nymph. This can lead to a

failed capture when the strike is inaccurate. This happened in some instances when the

�sh performed spontaneous swimming movements before the start of a predatory strike. In

these cases, the dragon�y nymph would strike at positions where the �sh was no longer
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Figure 3.3. Likelihood of larval zebra�sh response to an accurate strike.

present (Figure 3.2B, Tactile delay, Visual delay). This suggests that the nymph is not

ballistically intercepting the prey by predicting its future location, but rather striking at the

position of the prey before the attack began. Sometimes, the nymph also made targeting

errors where the �sh was stationary through the entire strike but the strike was aimed

inaccurately (Figure 3.2B, Targeting error). While attack errors provide information about

the sensorimotor limitations of the dragon�y nymph, they cannot help determine the relevant

escape decisions of the �sh that confer success. Thus, we focused the remainder of our

analysis on the instances where the mask was correctly aimed at the position of the �sh

prior at the initiation of the attack.

3.3.2. Likelihood of a response from zebra�sh larvae to accurate strikes

To investigate the sensorimotor performance of the �sh in this predatory context, we studied

the likelihood of a �sh initiating an escape response given an accurate strike.
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Figure 3.3 details: A) Top (x-y), front (y-z), and side (x-z) view orthographic projections of 3D initial �sh

positions before the start of an accurate strike with points colored to represent whether the �sh responded.

B�D) Heights of each bar represent the count of strikes within that bin (right y-axis) and the color represents

whether the �sh responded or not. The line plot shows the mean � sem �sh response probability for each bin

(left y-axis, number of nymphs = 5 for all points with error bars). B) Fish response probability based on the

azimuthal position of the nymph head with respect to the �sh. There are no signi�cant di�erences between

response probabilities for each azimuthal quadrant (One-way anova, p = 0.94). C) Fish response probability

based on the elevation of the nymph head with respect to the �sh. There are no signi�cant di�erences

between response probabilities for each elevation quadrant (One-way anova, p = 0.75). D) Fish response

probability based on the mask extension time to the �sh position. The �sh is signi�cantly more likely to

respond for longer extension times (One-way anova, p = 0.01). E) Compares overall response probability of

neomycin treated �sh with untreated �sh (untreated �sh: number of trials = 109, untreated �sh: number of

nymphs = 5, treated �sh: number of trails = 61, treated �sh: number of nymphs = 4). Neomycin treated

�sh are far less likely to respond to a strike than untreated �sh (Mann-Whitney U test, p = 0.003).

The spatial distributions of the �sh positions before the start of the predatory strike were

di�erent for scenarios where the �sh responded or did not respond (Figure 3.3A). Fish with

initial positions closer to the nymph mouth were less likely to produce a response (Figure

3.3A). The azimuthal or elevation position of the nymph mouth with respect to the �sh had

little or no in�uence over the response probability of the �sh (Figure 3.3B and C). However,

the �sh was more likely to respond given longer mask extension times (Figure 3.3D). The

reduced likelihood of responding to short extension times may be because �sh were captured



63

before the initiation of a response could begin. Regardless, since the response probability is

consistently above 50%, �sh were always more likely to respond than not respond.

To understand whether the larval �sh were initiating escape responses only on the basis

of �ow stimuli or a combination of visual and �ow stimuli, we tested the role of �ow sensing

by compromising the lateral line in a group of larvae with exposure to neomycin sulphate

(see Appendix). This technique induces cell death in lateral line hair cells while leaving inner

ear hair cells intact Harris et al. (2003); McHenry et al. (2009). To ensure recovery of larval

zebra�sh, we waited for 3 hours after neomycin treatment. Additionally, we monitored

larvae to con�rm that they performed spontaneous swimming movements and responded

with escape maneuvers to touch stimuli before placing them in the arena with the nymph.

All neomycin treated �sh (n = 61) failed to respond to any strikes and were eventually

successfully captured by accurate strikes (Figure 3.3E). These data suggest that �sh generate

escapes in this scenario largely on the basis of �ow sensing and do so with high likelihood

regardless of relative orientation and position with respect to the nymph.

To better understand how the perturbed �uid movement due to the strike in�uenced

the larval zebra�sh response (Figure 3.4A), we next tracked the 3D position of the mask

for all strikes that produced an escape response in �sh. The perturbed �uid velocity in

water around a moving body, such as a sphere, is a function of the velocity of the body

and the distance from the body (Figure 3.4B, see Appendix). To account for both velocity

and distance when estimating the �uid �ow experienced by �sh, we used the mask velocity

(Figure 3.4C) to estimate the perturbed �uid velocity over time at the initial �sh position

(Figure 3.4D). Since the distance to the initial �sh position from the mask reduced over

time as it extended, the perturbed �uid velocity at the initial �sh position approached the

velocity of the mask (Figure 3.4D).



64

A Fluid velocity near
a moving sphere

0
0

B
V

L

V

0.8V

0.6V

0.4V

0.2V

L 2L 3L
Distance from sphere

Mask velocity
during strikeC

0 8 16 24 32
Time (ms)

0

100

200

300

Ve
lo

ci
ty

 (m
m

/s
ec

)

Fluid velocity at
�sh positionD

0 8 16 24 32
Time (ms)

100

200

300

Ve
lo

ci
ty

 (m
m

/s
ec

)

0

E

12 24 36 600 48
Time (ms)

Strike ≤ 28 ms

100

200

300

Ve
lo

ci
ty

 (m
m

/s
ec

)

400

12 24 36 600 48

28 ms < Strike ≤ 44 ms

100

200

300

Ve
lo

ci
ty

 (m
m

/s
ec

)

400

Time (ms)
12 24 36 600 48

Time (ms)

44 ms < Strike

100

200

300

Ve
lo

ci
ty

 (m
m

/s
ec

)

400

G H

I J
Slow Fast

Initial fluid velocity

Response latency

0

20

40

60

Median **
Variability ***Fluid velocity

Mask velocity

0

20

40

60

In
iti

al
 fl

iu
d 

ve
lo

ci
ty

(m
m

/s
ec

)

Initial bend duration
≤ 8 ms > 8 ms

Median**

Initial bend duration

Initial fluid velocity

Ve
lo

ci
ty

 (˚
/m

s)

Slow Fast

Initial bend velocity

20

15

10

5

0

Median *

Ti
m

e 
(m

s)

Initial fluid velocity
Slow Fast0

A
ng

le
 (˚

)

Initial bend angleEscape response

F

50

150

100

Initial bend
angle

K L

Fish response

Figure 3.4. Larval zebra�sh responding to �uid movement from the strike.

Figure 3.4 details: A) The mask velocity (in cyan) and the perturbed �uid velocity at the �sh position

(in orange) both change over the duration the strike. B) The perturbed �uid velocity at some distance from

the edge of a sphere with diameter L moving at velocity V was estimated with the analytical solution for

potential �ow around a sphere. The �uid velocity at the �sh position depends on both the mask velocity and

the distance from the mask. C) A representative example of mask velocity during an accurate strike. D) The

corresponding estimated �uid velocity at the initial �sh position computed from the measured mask velocity

and the potential �ow approximation. E�G) Mask (cyan) and �uid velocity (orange) pro�les of di�erent
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strikes grouped by the mask extension time with the mean � std of larval zebra�sh response times (green).

Lighter lines represent individual velocity pro�les while bold lines represent the mean for each group. The

bold green line is the mean response latency of larval zebra�sh while the dashed green lines are one standard

deviation above and below the mean (Strike B 28 ms n = 27, 28 ms @ Strike B 44 ms n = 24, 44 ms @ Strike n

= 15). H) Larval zebra�sh response latencies grouped by slow (�rst quartile) and fast (fourth quartile) �uid

velocities at the �sh position 0�4 ms after onset of the attack (n = 18 for both groups). Slow initial �uid

velocities produced escape responses with signi�cantly longer latencies (Mann-Whitney U test, p = 0.002)

and more variable latencies (Levene's test, p = 0.0003). I) During the escape response, the �sh changed

heading direction with an initial bend and then swam away with propulsive swimming. The initial bend

angle is the angle between the heading vector of the �sh before the start of the escape response and the

heading vector at the end of the initial bend. Responses where it was unclear whether the �sh completed

the initial bend before being captured were excluded from analysis of initial bend parameters. J) Initial

bend angles of responses grouped by slow (�rst quartile) and fast (fourth quartile) �uid velocities at the

�sh position 0�4 ms after onset of the attack (n = 15 for both groups). There is no signi�cant di�erence

between the two groups (Mann-Whitney U test and Levene's test, all p A 0.3). K) The initial bend velocity

of responses grouped by slow (�rst quartile) and fast (fourth quartile) �uid velocities at the �sh position

0�4 ms after onset of the attack (n = 15 for both groups). Initial bend velocities of responses to fast �uid

velocities are signi�cantly higher than those to slow �uid velocities (Mann-Whitney U test, p = 0.02). L)

Fluid velocity at the �sh position 0�4 ms after onset of the attack grouped by initial bend durations B 8 ms

and A 8 ms (B 8 ms n = 33, A 8 ms n = 24). Initial bend durations B 8 ms occur in response to signi�cantly

higher initial �uid velocities at the �sh (Mann-Whitney U test, p = 0.008).
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Di�erent mask extension times had di�erent velocity and associated �uid velocity pro-

�les (Figure 3.4E�G). The mean response latency of the �sh and the variance of response

latency both increased with increasing mask extension times (Figure 3.4E�G). We further

investigated how larval zebra�sh escape responses di�ered in response to the earliest �uid

perturbations caused by the prehensile mask. Fish responded with shorter and less variable

response latencies to the fastest quartile of �uid velocities computed between 0�4 ms after

the onset of the attack (Figure 3.4H), hereafter referred to as the initial �uid velocity.

During the escape response, the �sh changed heading direction with an initial bend and

then swam away with propulsive swimming. To test whether the initial �uid velocities

experienced by the �sh in�uenced the kinematics of the escape response, we measured the

bend angle (Figure 3.4I) for all responses where the �sh clearly �nished the initial bend.

The bend angle was not signi�cantly di�erent between the fastest and slowest quartile of

initial �uid velocities (Figure 3.4J). However, the fastest initial �uid velocities did produce

responses with signi�cantly faster bend velocities (Figure 3.4K). Since we recorded video at

250 fps (4 ms resolution), all initial bend durations recorded fell between 4�8 ms (n = 33),

8�12 ms (n = 22), or 12�16 ms (n = 2) after the onset of the escape. Escapes with shorter

bend durations (B 8 ms) tended to be in response to signi�cantly higher initial �uid velocities

(Figure 3.4L). These data suggest that �sh modulate their escape responses by deploying

maneuvers with di�erent latencies and kinematics based on the magnitude of the preturbed

�uid velocity.

3.3.3. Larval zebra�sh position, orientation, and escape direction

We next examined how the position and orientation of the �sh at the start of the attack,

along with its escape direction, in�uenced escape success. The spatial distribution of the
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�sh positions before the start of the predatory strike for successful and failed escapes largely

overlapped but failed escapes tended to happen closer to the nymph (Figure 3.5A). The

azimuthal quadrant of the attack with respect to the �sh had no signi�cant in�uence on

escape success probability (Figure 3.5B). However, �sh were signi�cantly more likely to

execute successful escapes when responding to attacks from below (ventral, V) than from

above (dorsal, D, Figure 3.5C). Moreover, �sh were more likely to execute successful escape

maneuvers in response to longer mask extension times (Figure 3.5D), which is consistent

with the higher probability of escaping at further distances or with more time.

Figure 3.5 details: A) Top (x-y), front (y-z), and side (x-z) view orthographic projections of 3D initial

�sh positions before the start of an accurate strike with points colored to represent whether the �sh escape

response failed or succeeded in evading capture. B�D) Heights of each bar represent the count of strikes

within that bin (right y-axis) and the color represents whether the �sh escape failed or succeeded. The line

plot shows the mean � sem �sh escape success probability for each bin (left y-axis, number of nymphs = 5 for

all points with error bars). B) Fish escape success probability based on the azimuthal quadrant of the strike

with respect to the �sh. There are no signi�cant di�erences in escape success probability with respect to

attack azimuth. C) Fish escape success probability based on the elevation quadrant of the strike with respect

to the �sh. Fish escapes are signi�cantly more likely to succeed when responding to attacks from quadrant

V than from quadrant D (One-way anova, p = 0.001, Mann-Whitney U test, p = 0.005). D) Histogram

demonstrating the �sh escape success probability based on the mask extension time to the �sh position.

Fish escapes are more likely to succeed as mask extension times increase (One-way anova, p @ 0.001). E)

The azimuthal direction of �sh escape represented by green lines and grouped by the azimuthal quadrant

of the strike. F) Escape azimuth of �sh relative to the azimuthal quadrant of the attack. The height of
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the bars represent the mean � sem probability of �sh escaping away to the opposite azimuthal hemisphere

from the attack quadrant (number of nymphs = 5 for all groups). Asterisks represent signi�cant di�erence

from 50% (dashed line). G) The azimuthal direction of �sh escapes grouped by whether the response was

directed towards the opposite azimuthal hemisphere or towards the same azimuthal hemisphere containing

the azimuthal quadrant of attack (mean � sem, number of nymphs = 5 for both groups). There is no

signi�cant di�erence in escape success between responses with azimuthal directions towards or away from

the strike azimuth (Mann-Whitney U Test, p = 0.5). H) The elevation direction of �sh escape represented

by green lines and grouped by the elevation quadrant of the strike. I) Escape elevation of �sh relative to

the elevation quadrant of the attack (number of nymphs = 5 for all groups). Asterisks represent signi�cant

di�erence from 50% (dashed line). J) The elevation of �sh escapes grouped by whether the response was

directed away from or towards the elevation direction of the strike (mean � sem, number of nymphs = 5 for

both groups). There is no signi�cant di�erence in escape success between responses with elevation directions

towards or away from the strike (Mann-Whitney U Test, p = 0.73).

We then analyzed escape direction with respect to the attack to determine whether �sh

escaped away from the attack and how it in�uenced escape success. Escape directions in

the opposite hemisphere of the attack quadrant were considered to be away from the attack.

When escape directions were grouped by the azimuthal or elevation attack quadrants (Figure

3.5E, H), �sh did not consistently move away from the attacks. Escapes in response to attacks

from the right (R), posterior (P), and left (L) azimuthal quadrants were not signi�cantly

biased away from the attack (Figure 3.5F). Similarly, escape directions in response to attacks

from the dorsal (D) and posterior (P) elevation quadrants were not signi�cantly biased away

from the attack (Figure 3.5I). While �sh did signi�cantly bias their escape directions away
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from attacks in the anterior (A) azimuthal and elevation quadrants, this could be because

escape movements typically involve a turn Bhattacharyya et al. (2017), especially those in

response to attacks directed at the head O'Malley et al. (1996). The lack of consistent

directional control was also illustrated by the fact that larvae would often escape in the

direction of attacks occurring in the ventral (V) elevation quadrant (Figure 3.5I). Critically,

whether �sh escaped away or towards the attack had no signi�cant in�uence on escape success

probability (Figure 3.5G, J). However, escape trajectories toward the attack can occur along

pitch or yaw angles that take the �sh around the mask, thereby keeping the �sh out of the

capture zone.

Together these data suggest that the attack azimuth and the escape direction relative

to the attack direction were not signi�cantly related to escape success probability and, in

some cases, escapes toward the attack were successful. Thus it seems more important that

zebra�sh move quickly rather than in the opposite direction.

3.3.4. Importance of time remaining at escape

Having found that the escape direction of the larval �sh had no discernible in�uence on

escape success, we next explored how the �sh's response latency may have in�uenced the

escape outcome. Surprisingly, the response latencies of successful and failed attacks were not

signi�cantly di�erent (Figure 3.6A). To investigate how this discrepancy might be explained,

we examined in more detail how response latency may interact with mask extension time.

To do so, we de�ned the time left from the initiation of the �sh escape response until the

mask reaches the initial position of the �sh as the time remaining at escape (Figure 3.6B).

The time remaining at escape was dramatically di�erent for successful and failed escapes
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Figure 3.6. Importance of time remaining at escape.

(Figure 3.6C). Additionally, the escape success probability increased with increasing time

remaining at escape (Figure 3.6D).

Figure 3.6 details: A) There is no signi�cant di�erence between response latencies of failed and successful

�sh escapes (Escape fail n = 43, Escape success n = 37, Mann-Whitney U test, Levene's test, all p A 0.8).

B) The time remaining at escape is the time at the start of the �sh escape response (t = R) subtracted

from the mask extension time (t = T). C) The time remaining at escape is signi�cantly longer for successful

escapes than for failed escapes (Escape fail n = 43, Escape success n = 37, Mann-Whitney U test, p R

0.0001). D) Escape success probability as a function of time remaining at escape binned into quartiles (mean

� std). Escape success probability increases with time remaining at escape (One-way anova, p R 0.001). E)

Classi�cation accuracy (mean � sem) of random forest classi�ers in predicting escape outcome when trained
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on only one parameter with 10-fold cross validation. The gray dashed line is the naive classi�cation accuracy

of 0.55 and the pink dashed line at 0.79 is classi�cation accuracy of a random forest classi�er trained on

all of the parameters to predict the escape outcome. The classi�er using only time remaining at escape

signi�cantly outperformed classi�ers trained on any of the other parameters (pairwise Mann-Whitney U

tests with Bonferroni correction, all p @ 0.005) and is not signi�cantly di�erent from a classi�er trained on

all of the parameters together (Mann-Whitney U test, p = 0.4). F) The relative importance of parameters

in a random forest classi�er trained to predict escape outcomes using all parameters. Time remaining at

escape is dramatically more important than other parameters.

To further investigate the interaction of escape maneuver parameters and which single

parameter, if any, had the most in�uence on the outcome we trained di�erent random forest

classi�ers with each parameter to predict escape success or failure (see Appendix). The

parameters were the following: 1) attack azimuth; 2) attack elevation; 3) mask extension

time; 4) bend duration; 5) bend velocity; 6) response latency; 7) time remaining at escape.

Parameters known not to be related to escape outcome (attack azimuth and response latency)

were included as controls along with kinematic parameters (bend duration and bend velocity)

which had not yet been tested. Ten di�erent classi�ers were trained for each parameter by

selecting 85% of the dataset (n = 68) each time for training and testing accuracy with the

remaining 15% of the dataset (n = 12). This allowed for an estimate of the mean � sem of

accuracy for a classi�er trained on each parameter.

A naive estimator which predicted that all escapes failed had a classi�cation accuracy of

0.55 (grey dashed line Figure 3.6E). Any classi�er trained on one of these parameters with a

signi�cantly higher classi�cation accuracy suggested that the parameter had some in�uence



73

on the outcome. The classi�ers trained on attack elevation, mask extension time, bend ve-

locity, and time remaining at escape had classi�cation accuracies signi�cantly di�erent from

the naive estimate. However, the classi�er trained on time remaining at escape dramatically

outperformed all other classi�ers and was not signi�cantly di�erent from a classi�er trained

on all of the parameters together (pink dashed line Figure 3.6E). As a further test, a random

forest classi�er trained on all of the parameters together was used to determine which pa-

rameter was the most important in determining the model prediction (see Appendix). The

importance of time remaining at escape as a parameter was dramatically higher than all

other parameters in determining the model prediction (Figure 3.6E).

These data suggest that even though various parameters were correlated with escape

outcome, the time remaining at escape was the best and most important predictor of the

escape outcome (Figure 3.6E and F). Consistent with our real observations, in both models

escape response latency had no discernible in�uence on escape outcome in this predatory

interaction.

3.3.5. Fish motor volume in the time remaining

The time remaining at escape limits the volume of space that contains all possible trajectories

of the �sh (Figure 3.7A) before the mask reaches the initial position of the �sh. This is the

time-limited �sh motor volume that quanti�es the maneuverability of the �sh Snyder et al.

(2007). The visualization of the �sh motor volume in Figure 3.7A was generated compu-

tationally (see Appendix) using the average bend velocity measured in this study (14X/ms)

during the initial bend and the average swimming velocity during propulsion (0.12 mm
ms

)

measured in this study of and con�rmed by others Budick and O'Malley (2000); Dunn et al.

(2016). Using this model, we visualized the portions of the �sh motor volume not engulfed
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Figure 3.7. Fish motor volume in the time remaining.

by the swept volume of the mask (Figure 3.7B). The non-engulfed fraction of the �sh motor

volume represents the regions of space visited during a successful escape. We hypothesized

that the importance of the time remaining at escape in determining the outcome was due
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to its direct in�uence on the �sh motor volume and its intersection with the mask swept

volume.

Figure 3.7 details: A) Top, front, and side view cross sections of surface isochrones of the larval zebra�sh

motor volume for times within the range of values for time remaining at escape. This larval zebra�sh volume

was computationally generated using the average initial bend velocity (14X/ms) in this study and a propulsive

velocity of 0.12 mm

ms
. B) Top, front, and side view perspectives visualizing the intersection of the mask swept

volume with the larval zebra�sh motor volume for the time remaining at escape of 30 ms. C) The darker

line represents the proportion of the larval zebra�sh motor volume not engulfed by the mask swept volume

for di�erent values of time remaining at escape (mean � std). The lighter line represents the proportion of

successful escape responses as a function of time remaining at escape binned into quartiles (mean � std).

The non-engulfed fraction of the motor volume increases with time remaining at escape (One-way anova, p

R 0.001). An analysis of covariance test did not �nd a signi�cant di�erence between the proportion of the

motor volume not engulfed and the proportion of successful escape responses (slope p = 0.4, intercept p =

0.2). D) Visualization of the estimated larval zebra�sh motor volume at di�erent times remaining at escape

for the Mauthner-silent and Mauthner-active responses. The initial bend velocity used to generate the motor

volumes were di�erent for Mauthner silent (10 X

ms
) and active (18 X

ms
) responses but the same propulsive

velocity (0.12 mm

ms
) was used for both. E) The relative increase in motor volume for di�erent values of time

remaining at escape when comparing Mauthner-silent to Mauthner-active volumes (mean � sem). Larval

zebra�sh motor volumes were generated by pseudo-randomly sampling di�erent initial bend velocities with

uniform likelihood for Mauthner silent (10 � 5 X

ms
) and active (18 � 5 X

ms
) responses with 0.12 mm

ms
propulsive

velocity for both. The increase in volume is greatest for shorter values of time remaining at escape. F) The

proportion of the larval zebra�sh motor volume not engulfed by the mask swept volume for di�erent values
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of time remaining at escape for Mauthner silent and active responses (mean � std). There is a signi�cant

di�erence in the proportion of the �sh motor volume not engulfed for Mauthner active responses (Two-way

anova, Mauthner recruitment p @ 0.001, Time remaining at escape p @ 0.001, Interaction = 0.2). G) The

percent change in the proportion of the �sh motor volume not engulfed when comparing Mauthner silent to

active responses. The most dramatic increases are seen for mid-range values of time remaining at escape. H)

Suction feeding: larval �sh motor volume and predator ingested volume interaction during suction feeding.

The ingested volume is similar to mask capture volume. Pursuit predation: predator and prey motor volume

interaction during pursuit predation.

We used simulations to investigate how the fraction of the �sh motor volume not en-

gulfed by the mask volume corresponded to the escape success probability (Figure 3.6D).

Fifty virtual larval zebra�sh motor volumes were generated by pseudo-randomly sampling

initial bend velocities measured in this study and using a propulsive velocity of 0.12 mm
ms

for values of time remaining at escape from 7�50 ms. These virtual motor volumes were

intersected with virtual mask swept volumes attacking from di�erent directions with respect

to the �sh to measure the proportion of the motor volume not engulfed by the mask (see

Appendix). The increase in the proportion of the �sh motor volume not engulfed with in-

creasing time remaining at escape corresponded well to the increase in the measured escape

success probability (Figure 3.7C). Moreover, an analysis of covariance demonstrated that the

fraction of the motor volume not engulfed and the proportion of successful escape responses

as a function of the time remaining at escape were not signi�cantly di�erent (slope p = 0.4,

intercept p = 0.2).
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We used the proportion of the �sh motor volume not engulfed to computationally investi-

gate the utility of recruiting the Mauthner cell in generating a response. Since the recruitment

of the Mauthner cell is known to produce the fastest bend velocities Liu and Fetcho (1999);

Burgess and Granato (2007); Bhattacharyya et al. (2017), we generated virtual Mauthner-

active and Mauthner-silent �sh motor volumes using di�erent ranges of initial bend velocities

but the same propulsive velocity, as used earlier (Appendix). The virtual Mauthner-active

motor volumes were consistently larger than the virtual Mauthner-silent motor volumes for

all times remaining at escape (Figure 3.7D). The greatest di�erence between the Mauthner-

active and Mauthner-silent motor volumes were seen for the shortest times remaining at

escape (Figure 3.7E). This is because the parameters for the Mauthner-active motor volume

allowed the virtual �sh to �nish the initial bend earlier and start propelling away, which

more rapidly increases the size of the motor volume.

Mauthner-active and Mauthner-silent motor volumes were also intersected with the swept

volume of the nymph mask to compute the proportion of the �sh motor volume not engulfed

(Figure 3.7F, refer Appendix). The proportion of the Mauthner-active �sh motor volume

not engulfed was signi�cantly di�erent from the proportion of the Mauthner-silent motor

volume not engulfed (Two-way anova, Mauthner recruitment p @ 0.001, Time remaining at

escape p @ 0.001, Interaction p = 0.2).

To quantify the bene�t of Mauthner cell recruitment at di�erent times remaining at

escape, we calculated the percent change in the proportion of the motor volume not engulfed

from Mauthner-silent to Mauthner-active volumes (Figure 3.7G). Our simulations showed

that Mauthner activation increased the proportion of the �sh motor volume not engulfed by

the mask by 30�100% on average for times remaining at escape of 15�25 ms. Times remaining

at escape longer than 40 ms showed a reduced bene�t of Mauthner cell recruitment since
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slower escapes would be equally e�ective in evading the mask's swept volume. Moreover,

times remaining at escape shorter than 7 ms also had reduced bene�t from recruiting the

Mauthner cell since that amount of time is inadequate for the �sh to move out of the mask

swept volume.

This analysis demonstrates how simulations of prey motor volume and predator swept

volume can be used to estimate the utility of recruiting specialized escape circuits in response

to an attack. Moreover, the intersection of these volumes provides insight into how the time

remaining at escape shapes the outcome of the predatory interaction. Also, it may clarify

the lack of impact of response latency on escape success, since similar response latency values

can be associated with di�erent values of time remaining at escape.

3.4. Discussion

Our goal was to evaluate the determinants of successful escape maneuvers and the utility

of recruiting the Mauthner neuron by analyzing the escape responses of larval zebra�sh to

attacks from dragon�y nymphs. We identify the time remaining for the dragon�y mask to

reach the �sh from the onset of the �sh's escape response as the most predictive parameter

for escape success. We call this parameter the time remaining at escape and explain its role

in determining the volume of space that contains all possible trajectories of the �sh�the

�sh motor volume. Using a computational approach, we estimate the �sh motor volume for

di�erent times remaining at escape to quantify the �sh's ability to evade the capture volume

of the nymph�the volume swept by the mask. Additionally, we use this approach to calculate

the utility of recruiting the Mauthner neuron for generating the escape by estimating the

relative increase in escape success probability.
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We argue that the time remaining at escape robustly determines the outcome since it

serves as a limiting constraint on the possible trajectories of the �sh, as visualized by the

time-limited �sh motor volume Snyder et al. (2007). This framework clari�es the in�uence

of response latency, speed, and direction of an escape maneuver on evasion success. For

the same time remaining at escape, faster escape speeds would increase the size of the �sh

motor volume and therefore, increase the proportion of the motor volume not engulfed by the

capture volume of the predator. This explains the existing evidence in support of the bene�t

of fast speeds during escape Webb (1986); Walker et al. (2005). However, escape responses

to slower predators that leave more time remaining at escape may not require fast escape

speeds for successful evasion. This explains the evidence found in other studies against the

need for fast escape speeds Fuiman et al. (2006); Soto et al. (2015); Nair et al. (2015).

Similarly, shorter escape response latencies for the same dragon�y mask extension times

would increase the time remaining at escape. This would also increase the �sh motor volume

and thus, the non-engulfed fraction. Unexpectedly, we �nd that the response latency of

larval �sh was not signi�cantly di�erent for failed and successful escapes. We argue that

this is due to the variability of dragon�y mask extension times where the same �sh response

latency can produce a successful escape in the case of longer extension time and a failed

escape in the case of the shorter extension time. However, for scenarios where the duration

of predatory strikes are more consistent, changes in the latency of escapes would produce

measurable changes in evasion success, as seen in other studies Fuiman et al. (2006); Stewart

et al. (2013); Nair et al. (2017).

Finally, speci�c escape directions that lead the �sh out of the mask swept volume would

lead to successful escapes. In our study, for longer times remaining at escape, we �nd that a

number of directions in the nearly spherical motor volume of the �sh led out of the capture
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volume of the dragon�y nymph. This result aligns with studies which �nd that successful

escape trajectories are not required to follow a single optimal trajectory Domenici et al.

(2011b). However, scenarios where the predator capture volume engulfs a large portion of

the prey motor volume may leave only a subset of directions that successfully evade the

attack. For such cases, the appropriate choice of escape direction would be vital to survival,

as shown in modeling studies Howland (1974); Weihs and Webb (1984). In our data, when

the mask engulfed a large portion of the �sh motor volume for shorter times remaining at

escape, �sh had low survival rates possibly because their escapes were not directed away

from the attacks.

Di�erent predatory scenarios may change the relative importance of response latency,

speed, direction, or even other parameters in producing successful escapes. However, here

we unify the in�uence of these parameters on the escape outcome by clarifying their role in

the generation of the critical non-overlapping regions of the predator and prey volumes.

We found that escapes were initiated in response to the �ow stimulus of the mask exten-

sion as suggested by the dramatic reduction of response after neomycin treatment of �sh.

Even though the �uid �ow caused by mask movement was critical in the initiation of the

escape response, �sh did not consistently escape away from the direction of the attack. The

lack of correlation between the attack direction and escape direction aligns with existing

�ndings of larval zebra�sh escapes initiated by �ow sensing Stewart et al. (2014).

However, our �ndings do indicate that the magnitude of the �uid perturbation in�uenced

the escape response. Faster �uid velocities due to mask movement produced shorter latency

escape responses, with faster initial bends, and shorter initial bend durations. These escape

kinematics suggest that �sh were more likely to recruit the Mauthner cell in response to
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higher magnitude �uid perturbations. The argument for di�erential Mauthner cell recruit-

ment based on stimulus parameters is well supported by previous �ndings which show that

�sh perform a graded assessment of threat Bhattacharyya et al. (2017).

Using simulations of �sh motor volume and mask swept volume intersections, we were

also able to estimate the utility of recruiting the Mauthner cell for an escape maneuver.

Since the recruitment of the Mauthner cell generates responses with the highest initial bend

velocities Liu and Fetcho (1999); Burgess and Granato (2007); Bhattacharyya et al. (2017),

we compared Mauthner-active with Mauthner-silent motor volumes generated with di�erent

bend velocities. Our simulations showed that Mauthner activation dramatically increased

the proportion of the �sh motor volume not engulfed by the mask for a speci�c range of times

remaining at escape from 15�25 ms. Since this range composes a signi�cant proportion of

the experimentally observed range of times remaining at escape, there is a clear functional

bene�t of recruiting the Mauthner neuron in this predatory context.

However, our simulations also suggested a reduced bene�t from recruiting the Mauth-

ner cell for larger values of time remaining at escape because motor networks producing

slower movements would be equally e�ective. This result aligns with existing �ndings which

demonstrate that �sh are less likely to deploy a Mauthner active escape in response to

slower approaching predators that will take longer to reach the �sh Eaton et al. (1984);

Bhattacharyya et al. (2017). Surprisingly, there was also reduced bene�t from recruiting the

Mauthner cell for very small values of time remaining at escape since these values do not

allow for enough time to maneuver out of the predator capture volume. This potentially

explains freezing behavior in cases where there is not enough time to escape Chelini et al.

(2009); Egan et al. (2009); Herberholz and Marquart (2012); Bhattacharyya et al. (2017).
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Our results extend directly to aquatic suction feeding (Figure 3.7H) since the volume

ingested by the predator is analogous to the mask swept volume. Moreover, the ingested

volume changes in time Higham et al. (2006) creating a �ow stimulus that initiates the

escape response Stewart and McHenry (2010) and leaves some time remaining after escape

until the total volume is ingested. The prevalence of suction feeding in a wide variety of �sh

Wainwright et al. (2007) indicates that the framework presented here �ts a wide array of

aquatic predatory interactions.

For prey, the time remaining at escape is related to the speed of the predatory attack

at the moment the attack is sensed. Though it is unclear whether animals estimate this

parameter for �ow stimuli, studies using looming objects suggest that animals do estimate the

time remaining to capture for visual stimuli Rind and Simmons (1999); Santer et al. (2006);

Liu et al. (2011b). Conceivably, faster attacks that produce more intense sensory stimuli push

the estimates of time remaining to lower values. These estimates of time remaining directly

correspond to the utility of deploying di�erent escape maneuvers. This aligns with existing

evidence of more intense stimuli producing shorter latency and higher speed escape responses

in other animals Edwards et al. (1999); von Reyn et al. (2014). Given the importance of time

remaining in predicting the escape outcome, the evidence that prey estimate this parameter,

and its ability to determine the utility of di�erent escape responses, we expect that time

remaining at escape is a major driver of decision-making and a source of signi�cant selection

pressure.

More generally, comparing predator and prey motor volumes provides a method to quan-

tify the maneuverability of each agent through the predatory interaction. This also applies

to pursuit predation (Figure 3.7H) where the motor volumes change over time as predator

and prey attempt to outrun and out-maneuver each other Moore and Biewener (2015). The
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regions of the prey motor volume not intersecting with the predator engul�ng volume denote

the subset of movements and corresponding neural circuits that constitute successful evasive

strategies. This subset has clear implications for decision-making during escape and the

evolutionary pressure on the selection of appropriate maneuvers to increase survival. The

approach presented here provides a uni�ed vision of predatory interactions and the utility of

speci�c maneuvers by connecting the interplay of many temporal and kinematic parameters

to their in�uence in shaping the reachable spaces of predator and prey.
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CHAPTER 4

The consequences of visual acuity on the looming-evoked response

4.1. Overview

An unpredictable environment, the resolution limits of sense organs, and the molecular

mechanics of neural sensors make noise an inescapable part of the sensorimotor transforma-

tions animals use to choose appropriate behavioral responses. Since the selection pressures

on choosing the appropriate response is severe when escaping from predators, investigating

escape responses may provide important insight into the in�uence of noise on behavior. Here,

we computationally investigated the consequences of the uncertainty introduced by the vi-

sual acuity limit on escape behaviors in response to looming predators. The principal thesis

of the mechanism mediating looming-evoked responses speci�es that animals use the angular

size of the looming object on the eye and its expansion rate to compute a higher-order vari-

able called η that approximates the excitatory drive to premotor circuits. Using the larval

zebra�sh as a model, we calculated η from the estimates of angular size and expansion rate

computed from noisy measurements representing the limits of visual acuity for the larval

�sh. We demonstrate how considering the impact on η from the uncertainty due to visual

acuity can include previously unexplained results of behavioral variability and graded re-

sponses in looming-evoked escapes. Furthermore, since η is hypothesized to approximate the

excitatory drive to premotor regions, we used our calculations of η as the current injection

to a computational model of the Mauthner cell, the specialized neuron in these �sh devoted

to producing escape responses. Through this approach, we found that we could replicate
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the experimentally observed timing and patterns of Mauthner cell recruitment to varying

predator approach rates. Based on our �ndings, we argue that mechanistic models of animal

behavior can be expanded by understanding of how ineliminable noise in the nervous system

might serve a functional role in producing behavioral responses.

4.2. Introduction

Animals must frequently act on uncertain and noisy sensory data. Conceivably, the

pressure to act is highest when responding to an attack. In many animals, the decision to

escape from an attack can be attributed to the activation of large diameter command-like

neurons devoted to producing the shortest latency escapes with the fastest speeds Tanouye

and Wyman (1980); Will (1991); Libersat (1994); Edwards et al. (1999); Korn and Faber

(2005). To generate successful escapes, the recruitment of these specialized neurons needs to

be optimally timed, resistant to false positives, and false negatives Yager (2012). However,

it is unclear how uncertainty and noise in the sensory percept of a threat in�uences the

recruitment of these giant neurons and the resulting escape behavior.

Here we investigated this question using the looming stimulus�the expansion of an image

simulating a predator approaching at a constant velocity Fotowat and Gabbiani (2011).

Animals with giant neurons are known to recruit these neurons when escaping in response

to the looming stimulus Santer et al. (2006); von Reyn et al. (2014); Bhattacharyya et al.

(2017). Studies of looming-evoked responses have shown that animals initiate escapes when

the looming object reaches a certain angular size on the eye regardless of the approach rate

Rind and Simmons (1999); Yamamoto et al. (2003); Oliva et al. (2007); Card (2012). The

current understanding of the mechanism driving this behavior is that the brains of animals

use the angular size and expansion rate of the stimulus to compute a higher-order variable
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called η Hatsopoulos et al. (1995); Sun and Frost (1998); Gabbiani et al. (1999); Wu et al.

(2005). This variable reaches its maximum at the same time with respect to the critical

angular size at response regardless of the approach rate and approximates the excitatory

drive to motor circuits when animals are presented with looming stimuli Sun and Frost

(1998); Gabbiani et al. (1999); Preuss et al. (2006); de Vries and Clandinin (2012).

However, responses to looming stimuli have some results that cannot be explained under

this paradigm. Repeated presentations of the same looming stimulus in controlled settings

produces escape responses at di�erent times Fotowat and Gabbiani (2007); von Reyn et al.

(2014); Temizer et al. (2015); Dunn et al. (2016). This variability in the timing of responses

increases for looming stimuli with slower approach rates von Reyn et al. (2014); Dunn et al.

(2016); Bhattacharyya et al. (2017). Furthermore, the same looming stimulus can stochasti-

cally produce escape responses with or without the activation of giant neurons von Reyn et al.

(2014); Bhattacharyya et al. (2017) resulting in escape maneuvers with distinct kinematics

for each case. The probability of a giant neuron mediated escape is graded and decreases for

escapes in response to slower looming stimuli von Reyn et al. (2014); Bhattacharyya et al.

(2017). Moreover, in larval zebra�sh, escapes with giant neuron activation tend to happen

closer to the onset of the stimulus than escapes without giant neuron activation for repeated

presentations of the same looming stimulus Bhattacharyya et al. (2017).

Here, we used computational methods to extend the calculation of η to include these

unexplained results by taking into account the noise in the measurement of angular size.

With the larval zebra�sh as an example, we modeled the uncertainty in the measurement

of angular size due to the visual acuity limit, as measured in a previous study Haug et al.

(2010). We performed recursive Bayesian inference to estimate the angular size and expan-

sion rate of looming stimuli from noisy measurements and used these estimates to compute
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η. By only considering the impact on calculations of η from the uncertainty due to visual

acuity limits, we computationally reproduced 1) the variability in the timing of responses to

looming stimuli, 2) the changing probabilistic recruitment of the giant neurons in �sh�called

Mauthner cells�as a function of the looming rate and 3) the earlier recruitment of Mau-

thner cell mediated responses to the same looming stimulus. We found our computational

results to be in good agreement with existing data on looming-evoked responses from larval

zebra�sh Bhattacharyya et al. (2017).

Surprisingly, we show that accounting for noise in the sensory input can resolve previ-

ously unexplained results of behavioral variability�a feature of behavior that is thought to

contribute to �tness Driver and Humphries (1970); Riechert (1978); Edut and Eilam (2004);

Domenici et al. (2011a); Jones et al. (2011); Hitchcock et al. (2015). Our �ndings provide

suggest that the sources of noise and the methods of compensating for them might interact

to serve functional roles in producing behavior Faisal et al. (2008). We discuss future exper-

iments to test and extend our computational �ndings. Finally, we argue that inclusion of

environmental noise and systemic noise in the sensorimotor transformations of the organism

can expand neuro-ethological models.

4.3. Results

4.3.1. The parameters of the looming stimulus

Figure 4.1 details: A) The looming stimulus is the expansion of an object of length L and velocity V

over time simulating an approaching predator. B) The angular size of the expanding object increases with

time where the rate of expansion depends upon the length and velocity of the virtual object ( L
V
, Eq. 4.1).

Animals are known to escape near a critical angular size (horizontal dashed line) which occurs at di�erent
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Figure 4.1. The looming stimulus.

times to collision (vertical dashed lines) for di�erent expansion rates corresponding to L
V

values. C) The

higher order variable η�t� computed from the instantaneous angular size and the expansion rate (Eq. 4.2)

reaches its maximum value for all expansion rates at the time when the object reaches the critical angular

size.

Before understanding how a looming-evoked response may be changed by noisy sensory

data, we must start by characterizing the parameters of the looming stimulus incident upon

the sensory organs of the animal. The looming stimulus is an expanding image simulating an

approaching object of size L and velocity V on a collision course with the animal (Fig. 4.1A)

Hatsopoulos et al. (1995); Sun and Frost (1998). The angular size of the looming object on

the eye increases with time as a function of the looming rate, L
V (Eq. 4.1, Fig. 4.1B) Sun

and Frost (1998); Gabbiani et al. (1999).

(4.1) θ�t� � 2 � arctan�L
V

� �

1

2t
�

Under this paradigm, higher values of LV produce more gradual expansion rates with time

t = 0 being the time of virtual collision (Fig. 4.1B). Studies have found that animals initiate
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escapes in response to looming stimuli when the object reaches a certain angular size on the

eye (e.g. blue horizontal dashed line Fig. 4.1B) Rind and Simmons (1999); Yamamoto et al.

(2003); Oliva et al. (2007); Card (2012). This critical angular size threshold corresponds

to di�erent times remaining to collision for each curve of angular expansion representing

di�erent values of L
V (Fig. 4.1B).

The brains of animals are thought to compute a value named η that is calculated from

the angular size θ�t� and expansion rate θ̇�t� (Equation 4.2) Hatsopoulos et al. (1995); Sun

and Frost (1998); Gabbiani et al. (1999).

(4.2) η�t� � C � θ̇�t� � e�αθ�t�

The maximum value of η�t� is reached at the time corresponding to the same angular

size for all looming rates L
V (Fig. 4.1C) Gabbiani et al. (1999); Fotowat and Gabbiani (2011).

The speci�c angular size of the looming stimulus at the maximum value of η�t� is determined
by the constant α (Fig. C.1). The other constant C has no in�uence over the timing of the

maximum value but instead, serves to scale the entire function by a multiple. Hereafter,

we will always have C = 1 for simplicity. Studies have found neural correlates of η�t� Sun
and Frost (1998); Fotowat and Gabbiani (2011); Dunn et al. (2016) which are thought to

constitute the excitatory drive to premotor regions in animals presented with looming stimuli

Gabbiani et al. (1999); Preuss et al. (2006); de Vries and Clandinin (2012). The framework

and the equations provided above de�ne the parameters of the looming stimulus relevant to

the sensory processing and escape decisions of an animal.
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Figure 4.2. Estimating the looming stimulus properties.

4.3.2. Perceptual inference of looming stimulus parameters

Even though we have de�ned the parameters of the looming stimulus with mathematical

accuracy, the perception of the changing angular size of the stimulus is mediated through

the eye which has limits of spatial and temporal resolution. To account for this discrepancy

between the analytical and measured signals, we used the angular visual acuity of the eye

as a measure of the spatial resolution and the �icker fusion frequency as a measure of the

temporal resolution. The eyes of the larval zebra�sh at 5�7 days-post-fertilization (dpf)

are known to have a visual acuity of 3.1X Haug et al. (2010) and a �icker fusion frequency

of 25 Hz Seeliger et al. (2002). Therefore, we represented the angular size of the looming

stimulus as measured by the eye of the larval zebra�sh by sampling the true angular size (Eq.

4.1) at the �icker fusion frequency and added Gaussian noise with �3.1X standard deviation

(Fig. 4.2A). We call this the measured angular size and treated it as a representation of the

sensory information available to the larval zebra�sh. This computationally approximated

the perception of the looming stimulus as a succession of noisy measurements of angular size

(Appendix).
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Figure 4.2 details: A) Comparison of the true angular size of an expanding object at L
V
= 0.8 s with the

measured angular size sampled at the �icker fusion frequency of larval zebra�sh (25 Hz) with added noise

(�3.1X) to represent limits of visual acuity. This noisy measured angular size is used to compute a less noisy

estimate of angular size through Kalman �ltering (Appendix). B) Comparison of the true expansion rate

with the measured expansion rate computed by taking the di�erence of successive noisy measured angles

and the estimated expansion rate through Kalman �ltering. The Kalman-�ltered expansion rate is far more

stable than the measured expansion rate. C) Comparison of the true η(t) with the estimated η(t) computed

with Kalman-�ltered angular size and expansion rate. The calculation of η(t) with directly measured noisy

values of angular size and expansion rate are not included due to the high level of noise (orders of magnitude

in scale) in the resulting function.

Arguably, the nervous system of the larval zebra�sh uses this stream of noisy sensory

information to compute stable estimates of angular size and expansion rate in real-time.

Though the neural implementation of this computation remains to be discovered, recursive

Bayesian estimation provides the general mathematical framework for computing an esti-

mate of the most likely value of a variable in real-time from a sequence of noisy incoming

measurements Särkkä (2013). Furthermore, Bayesian estimation has been implicated and

explored extensively within the context of sensorimotor decision-making Doya et al. (2007);

Kording (2007). Speci�cally, we use a Kalman �lter, which is a Bayes optimal estimator Kov-

vali et al. (2013), to compute estimates of the angular size and expansion rate in real-time

(Appendix).

The Kalman-�ltered estimate of angular size was far less noisy than the measured angular

size and was in good agreement with the true angular size (Fig. 4.2A). The expansion rate
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computed with a forward di�erence between successive values of the noisy measured angular

size was far too unstable to be useful is any downstream calculations (Fig. 4.2B). Conversely,

the estimated expansion rate from Kalman �ltering was a lot less noisy (Fig. 4.2B). We take

this as further evidence for the need of recursive estimation to compute stable estimates of

variables.

Nonetheless, the Kalman-�ltered estimate of the angular size and the expansion rate

did underestimate the true values for both measures (Fig. 4.2B). The underestimation of

the expansion rate is due to the di�culties of numerically estimating derivatives from noisy

signals, especially those of an in�nitely di�erentiable function like that in Equation 4.1 Liu

et al. (2011a) (Appendix). Underestimation of the expansion rate led to underestimation of

the angular size as well.

To see how η was in�uenced by the recursive estimation from noisy data, we calculated

η�t� (Eq. 4.2) from the Kalman-�ltered estimates of angular size and expansion rate. The

value for the constant α�needed to compute η�t��was �t using behavioral data from larval

zebra�sh Bhattacharyya et al. (2017) so that η�t� reached its maximum value corresponding

to the critical angular size when larval zebra�sh initiated escape responses (Fig. C.1, Ap-

pendix). We compared the calculation of η�t� from the Kalman-�ltered estimates of angular

size and expansion to the η�t� calculated from the true angular size and expansion rate,

hereafter referred to as the true η�t�. The calculation of η�t� from the estimates reaches its

maximum value at a di�erent time but is in fair agreement with the true η�t� (Fig. 4.2C).
A calculation of η�t� directly from the noisy measured angular size and expansion rate was

not included in the �gure since the resulting function was extremely unstable and agreed

poorly with the true η�t�.
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Figure 4.3. Maximum values of η�t�.

Overall, these results show how the noisy measured angular size can be used to compute

far less noisy estimates of angular size and expansion rate in real-time. Moreover, the

calculation of η�t� from recursive estimates of angular size and expansion rate is in fair

agreement with the true η�t�. Conversely, a calculation of η�t� from the noisy measured

values is not feasible due to the severe instability of the expansion rate computed directly

from the measured angular size (Fig. 4.2B).

4.3.3. Time at maximum η�t� and comparison to looming-evoked responses
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Figure 4.3 details: A) Multiple simulated presentations of a looming stimulus with L
V

= 0.8 s produced

estimates of η�t� that reached their maximum value at di�erent times to collision (vertical scale: = 1). B)

One thousand simulated presentations of L
V
= 0.8 s provided the distribution of times to collision when the

corresponding estimates of η�t� reached their maxima. The times at maximum estimated η are distributed

over the duration of the looming stimulus but the peak of the distribution coincides with the time of maximum

for the true η�t� (arrow) as expected from responses of larval zebra�sh. C) Maximum values of η plotted

against the time at maximum η. Maxima happening earlier in time tended to have higher maximum η

values (Pearson's correlation, p-value @ 0.0001, n = 1000) D) Multiple simulated presentations of a set of L
V

values provided the distribution of times at maxima η for each value. The variability in times at maximum

η increased for increasing L
V
values but the peaks of the distributions coincided with the times of maximum

for the true η�t� for each L
V

value (arrows). E) The pattern of higher maximum η values occurring earlier

from collision held true for all L
V

values except one (Pearson's correlation, L
V

= 0.2 s p-value = 0.21 , L
V

=

0.4 s p-value @ 0.001 , L
V
= 0.6 s p-value @ 0.001 , L

V
= 0.8 s p-value @ 0.001 , L

V
= 1.0 s p-value @ 0.001, L

V

= 1.2 s p-value @ 0.001, n = 1000 for all L
V
values).

Since the time when η�t� reaches its maximum value is thought to have a direct con-

sequence on the timing of the looming-evoked response, we sought to understand how cal-

culating η�t� from estimates of θ�t� and θ̇�t� would in�uence the time at maximum η. To

this end, we used multiple simulated presentations of L
V = 0.8 s as a representative looming

rate to compute η�t�. For di�erent presentations of the same looming rate, estimates of

η�t� reached their maximum values at di�erent times (Fig. 4.3A). The histogram of times at

which estimates of η�t� reached their maxima ranged over the entire duration of the stimulus
presentation (Fig. 4.3B). We estimated the density of the distribution using kernel density
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estimation (purple solid line, Appendix). Critically, the peak of the distribution coincided

with the time when the true η�t� reached the maximum value�the time at the critical angu-

lar size (arrow Fig. 4.3B). This suggests that the Kalman �ltering process before computing

η�t� still produces maxima of η near the expected value.

To examine if there was a trend between the maximum value of η and the time when

it reached that maximum value, we plotted the time at maximum η against the maximum

value of η (Fig. 4.3C). The maximum value of η tended to be larger when η�t� reached its

maximum earlier from collision (Fig. 4.3C). Since η�t� corresponds to the excitatory drive

to premotor circuits, higher maxima occurring earlier from collision may have implications

for the timing and recruitment of escape circuits.

We repeated these simulations over an ethologically relevant range of L
V looming rates

for larval zebra�sh from 0.2�1.2 s Stewart et al. (2013); Dunn et al. (2016); Bhattacharyya

et al. (2017) to test if we could observe similar patterns. The time at maximum had some

variability for all L
V values (Fig. 4.3D) but the peak of the distributions coincided with the

time when the true η�t� reached the maximum value for each L
V looming rate (arrows Fig.

4.3D). The variability in the timing of maximum η increased for more slowly looming stimuli.

Moreover, the pattern of higher maxima of η tending to happen earlier from collision held

across all L
V values except one�L

V = 0.2 s (Fig. 4.3E). Notably, lower L
V value tended to

reach larger maximum η values than higher L
V values but there was a lot of overlap (Fig.

4.3E). These patterns of occurrence for higher maximum η may have implications for the

recruitment of specialized escape circuits.
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Figure 4.4. Comparison to real looming-evoked responses.

Figure 4.4 details: A) Timing of real looming-evoked responses of larval zebra�sh compared to timing of

maximum estimated η�t� for a range of L
V

values. B) Response latencies of real looming-evoked responses

of larval zebra�sh compared to time of maximum estimated η�t� after onset of looming. A�B) Lines of

best �t for response and simulation are not signi�cantly di�erent for each pair (ANCOVA, Time to collision

p-value = 0.92 , Response latency p-value = 0.91, Response n = 246, Simulation n = 6000). The residuals

of each model describing the spread of points around the line are also not signi�cantly di�erent for real

responses and simulations (F-test, Time to collision p-value = 0.75 , Response latency p-value = 0.82) . C)

The distribution of angular size at the time of response and at the time of maximum η across all L
V

values

are in good agreement (mean � std, Response 35X � 15X, Simulation 35X � 11X).

Next, we compared the computed variability in the times of maximum η to the experi-

mentally observed variability in the timing of the looming-evoked responses of larval zebra�sh

from behavioral data collected in a di�erent study Bhattacharyya et al. (2017). We found

that the time of looming-evoked responses and the time at maximum η with respect to col-

lision were in good agreement (Fig. 4.4A). Speci�cally, the pattern of increasing variability
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with increasing L
V values held for both simulation and behavioral data (Fig. 4.4A). More-

over, we found that this agreement extended to time of the looming-evoked responses and

the time at maximum η from the onset of the stimulus, referred to as response latency (Fig.

4.4B). Finally, we compared the distributions of angular size of the object at the time of

looming-evoked response and the angular size at the time of maximum η across all L
V values

to �nd that they were in good agreement as well (Fig. 4.4C).

Overall, these results demonstrate that the calculations of η�t� from estimates of angular

size and expansion rate have di�erent distributions of times at maximum η for each L
V value.

Moreover, the variability in the times at maximum η increases with increasing L
V values.

For a given L
V value, occurrences of maximum η further from collision tended to have higher

η values than maxima occurring closer to collision. However, lower L
V values tended to

have higher maximum η values. Most importantly, the computational results regarding the

distribution of times at maximum η and the distribution of angular sizes at maximum η

align well with existing behavioral results for those values from looming-evoked responses in

larval zebra�sh.

4.3.4. Timing and probability of Mauthner cell recruitment

Larval zebra�sh can escape from looming stimuli with or without the recruitment of the

Mauthner cells�the giant �ber neurons responsible for the shortest latency and fastest

escapes. Therefore, we next investigated how calculating η�t� from estimates of angular size

and expansion rate might in�uence the recruitment of the Mauthner cell (M-cell).

M-cells are found in a bilaterally symmetric pair in the hindbrain of larval zebra�sh (Fig

4.5A) Korn and Faber (2005). Each M-cell projects an axon to the contralateral side of the

body and with only one spike initiates an escape by recruiting downstream motoneurons and
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spinal interneurons Fetcho (1991). Since η�t� is hypothesized to be the excitatory drive to

premotor circuits, we scaled η�t� by a constant and used it as the current injection, Ie�t�, to
a leaky-integrate-and-�re model of the M-cell (Fig. 4.5B, Appendix) Koyama et al. (2016).

Here we only model the recruitment of one M-cell since the pair of M-cells mutually inhibit

one another and recruitment of either results in an escape Shimazaki et al. (2019). By

numerically solving the neuron model, we computed Vm�t� which represented the membrane

voltage of the M-cell (Appendix).

To remain consistent with previous sections, we used multiple simulated presentations

of L
V = 0.8 s as a representative looming rate to compute multiple estimates of η�t�. We

multiplied each estimate of η�t� by a constant β to compute Ie�t� (Eq. 4.3) such that the

M-cell model would spike during the looming stimulus for some Ie�t� (Active cases, Fig.

4.5C) and not for others (Silent case, Fig. 4.5C, Appendix).

(4.3) Ie�t� � βη�t�

Figure 4.5 details: A) The Mauthner cells (M-cells) exist as a bilaterally symmetric pair (shown in red)

in the larval zebra�sh hindbrain. Activation of one cell within the pair initiates an escape response to the

contralateral side of the activated cell. B) A leaky integrate-and-�re model of the M-cell (Ie: current input,

Rm: membrane resistance, Cm: membrane capacitance, Vm: membrane voltage) received linearly scaled

η�t� as excitatory current input, Ie(t), which drove the membrane voltage, Vm(t) (vertical scale bars, Ie(t):

0.2 nA, Vm(t): 10 mV). C) Multiple simulated excitatory current inputs from estimates of η�t� for the same

value of L
V
= 0.8 s produced M-cell spikes at di�erent times or no spike at all (vertical scale bar: 10 mV). D)

The time of maximum current input, Ie, for cases where the M-cell is recruited tend to occur earlier before
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Figure 4.5. Timing and probability of Mauthner cell (M-cell) recruitment.

collision (Mann-Whitney U Test, p-value @ 0.001, M-cell active n = 745, M-cell silent n = 255). E) The

maximum current input, Ie, for cases where the M-cell is recruited is higher (Mann-Whitney U test, p-value

@ 0.001). F) The maximum current and time of maximum current for M-cell active and silent cases are

separable by a boundary (dashed line) with a near-zero slope. G) The probability of recruiting the M-cell

reduces with increasing L
V

values (n = 1000 for each L
V

value) . H) For L
V

values that produce both M-cell

active and silent cases, the time of maximum current input for M-cell active cases tend to occur earlier from
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collision than those for silent cases for each L
V
(Mann Whitney U tests, all p-values @ 0.001). I) Comparison

of simulated M-cell spike times to L
V

values of 0.4 s and 1.0 s with actual M-cell responses to the same L
V

values shows a high degree of similarity (mean � std, L
V
= 0.4 s response: -0.8 � 0.17 s, simulation: -0.81 �

0.17 s, L
V
= 1.0 s, response: -1.8 � 0.44 s, simulation: -1.82 � 0.5 s).

A range of β values stochastically produced spikes in the M-cell model for Ie�t� calculated
from L

V = 0.8 s (Fig. C.2, Appendix). Since this result computationally reproduced the

probabilistic recruitment of M-cells to the same looming rate, we picked a single value of β

(Fig. C.2, Appendix) and investigated further the di�erences in Ie�t� for M-cell active and

silent cases.

We compared the times at maximum Ie for M-cell silent and active cases to �nd that they

were signi�cantly di�erent (Fig. 4.5D). M-cell active cases had maximum current values that

occurred earlier from collision than M-cell silent cases (Fig. 4.5D). Moreover, the maximum

values of the current input (Ie max.) for M-cell active and silent cases were also signi�cantly

di�erent (Fig. 4.5E). As may be expected, M-cell active cases had higher maxima of current

than M-cell silent cases (Fig. 4.5E).

When M-cell active and silent cases were plotted by their maximum value of Ie and the

time of maximum Ie, the two groups were separable with high accuracy (A90%) by a linear

boundary (dashed line Fig. 4.5F, Appendix). The near-zero slope of the boundary suggests

that a threshold value of maximum Ie e�ectively separates the two groups. Since Ie�t� is

produced by multiplying η�t� by a constant, the previous result regarding the occurrence

of higher maximum values of η earlier from collision (Fig. 4.3C) also apply to maximum

values of Ie. Thus, the likelihood of higher maximum Ie occurring earlier from collision
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and the association of higher maximum Ie with M-cell active cases is largely responsible for

producing the di�erence in times between M-cell active and silent cases.

To test whether we could computationally reproduce the experimental result of the de-

creasing probability of M-cell recruitment with increasing L
V Bhattacharyya et al. (2017), we

repeated these simulations for a range of LV values using the same value of β. From 1000 sim-

ulations for each L
V value, we found that the likelihood of producing an M-cell spike dropped

with increasing L
V (Fig. 4.5G). This decrease in the likelihood of M-cell active cases is due to

the decreasing value of maximum η and, therefore, maximum Ie for higher
L
V values, as seen

earlier (Fig. 4.3E). Since higher L
V values produce lower maximum Ie, they are less likely to

produce M-cell active cases.

Moreover, the time of maximum Ie for M-cell active cases was always earlier from collision

than the time of maximum Ie for M-cell silent cases across all L
V values that produced both

cases (Fig. 4.5H). This aligns with experimental �ndings which show that M-cell active

looming-evoked responses tend to occur earlier from collision than M-cell silent looming

evoked responses for the same L
V value Bhattacharyya et al. (2017). Critically, the constant

multiplied to η�t� to create Ie�t� produced M-cell spikes to L
V = 0.4 s and L

V = 1.0 s that

agreed very well with timing of M-cell active looming-evoked responses from larval zebra�sh

for the same L
V values (Fig. 4.5I) Bhattacharyya et al. (2017).

These results show that when η�t� is scaled by a constant and used as current input to

a M-cell model, the model can stochastically produce M-cell spikes for the same L
V value.

M-cell active and silent cases were largely di�erentiated by the maximum value of Ie�the

current input. M-cell active cases also tended to happen earlier than M-cell silent cases

for the same L
V value. Moreover, the probability of M-cell recruitment reduced with higher
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L
V values. The decreasing probability of M-cell spikes with increasing L

V and the timing of

simulated M-cell spikes both agreed well with experimentally observed data.

4.4. Discussion

Our goal was to account for previously unexplained behavioral results in looming-evoked

responses by considering how noise in sensing the angular size of the looming object would

in�uence the timing of escape behavior and the recruitment of specialized escape circuits.

By taking the larval zebra�sh as an example, we used the visual acuity as well as the �icker

fusion frequency to approximate the percept of the looming stimulus as a sequence of noisy

measurements of angular size. We used estimates of angular size and expansion rate inferred

from the noisy measurements to compute η�t� and showed how the variability in the time of

maximum η corresponded to the variability in the timing of real looming-evoked responses

in larval zebra�sh. Furthermore, we scaled η�t� by a constant and used it as the current

injection to a computational model of the Mauthner neuron (M-cell) to demonstrate how

the same looming stimulus could stochastically recruit the M-cell. Moreover, we computa-

tionally reproduced the timing of M-cell recruitment and the decreasing likelihood of M-cell

recruitment in response to slower looming stimuli.

However, there are some discrepancies between our computational results and experi-

mental data. For instance, our results suggest that the M-cell has a 100% likelihood of being

recruited for fast looming stimuli�lower L
V values. Conversely, experimental data from larval

zebra�sh shows that lower L
V values do produce some escape responses that are not medi-

ated by the M-cell Bhattacharyya et al. (2017). Moreover, researchers have found that some

animals will freeze when responding to rapidly approaching predators Chelini et al. (2009);

Herberholz and Marquart (2012); Misslin (2003); Bhattacharyya et al. (2017) which would
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suggest an inhibition of movement Shang et al. (2018). This discrepancy between experi-

mental data and our computational results may be due to the calculation of other optical

variables beyond η�t�, as seen in �ies von Reyn et al. (2017); Ache et al. (2019) and pigeons

Sun and Frost (1998). However, the calculation of these additional optical variables in other

animals and their use in escape decisions is yet to be veri�ed.

We propose that larval zebra�sh use noisy measurements to produce more stable esti-

mates of angular size and expansion rate for computing η�t�. We demonstrate how this can

be done with a Kalman �lter, a Bayes optimal recursive estimator. Bayesian estimation

has provided a formalism for exploring and shaping important questions in neuroscience

about sensory evaluation and motor behavior Doya et al. (2007); Kording (2007); Petzschner

et al. (2015); Meyniel et al. (2015). While direct evidence of recursive Bayesian �ltering

has not been found in the nervous systems of animals, researchers have found experimental

evidence that aligns with hypotheses of Bayesian predictive coding Aitchison and Lengyel

(2017). Speci�cally, population coding in the brains of animals is hypothesized to represent

the probability distributions necessary for recursive estimation Knill and Pouget (2004);

Zemel et al. (1998). Relevant to this point, there is evidence that the optic tectum of lar-

val zebra�sh uses population coding to represent the looming rate of a looming stimulus

Dunn et al. (2016). Moreover, the information processing in the tectum of larval zebra�sh is

necessary for producing looming-evoked responses Temizer et al. (2015). The Kalman �lter

computed estimates in our study serve as an analog of what may be achieved by the nervous

system.

Our work shows how the visual acuity of larval zebra�sh has consequences on the timing

and recruitment of escape circuits for looming-evoked responses. The computational �ndings

presented here can be tested and extended further by performing experiments with looming
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stimuli on adult zebra�sh since they have approximately 3-fold better visual acuity (�1X)

than their larval counterparts Tappeiner et al. (2012). This increase in visual acuity should

produce far better estimates of the angular size and the expansion rate which would further

improve the estimate of η�t�. When the estimates of η�t� are in better agreement with the

true η�t�, there would be lower variability in the timing of maximum η and, hence, the timing

of looming-evoked responses to the same L
V value. Furthermore, this change in the timing

of maximum η would also in�uence the probability and variability of M-cell recruitment

across L
V values. An existing study on adult gold�sh does suggest that there is di�erential

excitatory drive to the M-cell based on looming stimulus parameters Preuss et al. (2006),

but systematic di�erences in the variability of timing and probability of M-cell recruitment

in adult �sh responding to looming stimuli are not known.

Beyond experiments with adult �sh, changing the parameters of the looming stimulus

may also help further test the paradigm presented here. For instance, recent results have

shown that looming stimuli with linear rates of angular expansion produce escape responses

in �ies with some latency from the onset of expansion von Reyn et al. (2017). We would

expect the time of maximum η to coincide with or occur near the time of the escape response.

However, for linearly expanding stimuli, η�t� reaches its maximum value at the onset of

expansion since, in this case, the expansion rate θ̇�t� is a constant and the term e�αθ�t�

decreases monotonically with time (Eq. 4.2). This inconsistency can potentially be resolved

by the paradigm presented here since we propose that η�t� is computed from smooth Kalman-

�ltered estimates of the expansion rate. Therefore, from the onset of linear expansion, the

estimate of the expansion rate would change smoothly until it reached the true constant

value making the maximum of η�t� occur some time after stimulus onset. While one study

has shown that larval zebra�sh respond to linearly expanding looming stimuli Dunn et al.
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(2016), di�erences in the timing of responses to di�erent rates of linear expansion have not

been studied systematically.

The results presented here propose a mechanism to explain the variability in the timing

of responses to the same looming rate as described by L
V . Not just larval zebra�sh, but

also �ies, locusts, and crabs are known to escape at di�erent times in response to repeated

presentations of the same L
V looming rate von Reyn et al. (2014); Fotowat and Gabbiani

(2007); Oliva and Tomsic (2012). This suggests that our results regarding the variability in

the timing of η�t� extends to these animals as well. The evidence for variability in time of

maximum η is also found in studies investigating the pigeon brain where the �ring frequency

of neurons that are hypothesized to encode η�t� reach their peak �ring rate at di�erent times
in response to the same looming stimuli Sun and Frost (1998); Wu et al. (2005).

Furthermore, we propose a mechanism for the di�erential recruitment of the M-cell, the

giant neuron in �sh, in response to di�erent looming stimuli. Escapes that are generated

without the recruitment of giant neurons have been found to be more variable in their

timing and kinematics Edwards et al. (1999); Domenici et al. (2011a); Eaton and Emberley

(1991); Gahtan and Baier (2004); von Reyn et al. (2014); Bhattacharyya et al. (2017). This

ability to generate variable escape maneuvers is thought to confer a selective advantage since

it diminishes a predator's ability to predict the response of the prey Driver and Humphries

(1970). However, there may be trade-o�s between performance and variability in escapes due

to the biomechanical constraints on high velocities and accelerations Hitchcock et al. (2015).

Therefore, the changing probability of giant neuron recruitment with predator approach rate

can be interpreted as a changing escape strategy to di�erent predator speeds Meager et al.

(2006). Here, by replicating the graded recruitment of a giant neuron, we present a possible

mechanism for deploying di�erent escape strategies stochastically.
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More broadly, the Mauthner cell and other giant neurons have been studied as neuro-

biological models of decision-making and action selection Edwards et al. (1999); Korn and

Faber (2005); Herberholz and Marquart (2012); von Reyn et al. (2014); Roberts et al. (2019).

Consequently, our computational framework demonstrates how noise and uncertainty in the

sensory input might in�uence decision-making and the selection of motor programs. Through

this approach, we argue that the sensory noise, the methods of compensating for it, and

the neural computations combine to produce functional behavior composed of variable and

graded responses to stimuli. Not only do these �ndings apply to looming-evoked responses

but likely extend to other behaviors since noise is inescapable and, beyond being a nuisance,

may be useful to the nervous system Traynelis and Jaramillo (1998); Faisal et al. (2008).

Since the neural substrate subserving the mechanisms of decision-making evolved under the

constraints imposed by noise, noise may have been incorporated as an essential element into

the sensorimotor architecture of the animal.
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CHAPTER 5

Deciding under duress

The main objective of this thesis was to investigate the escape decisions of larval zebra�sh

in order to understand how they are implemented by the sensorimotor system and shaped

by the selection pressures of predation. These escape decisions included whether, when, and

how to perform an escape maneuver given a predatory attack. To this end, over the course

of this thesis, I studied the timing, kinematics, and neurobiology of the escape movements

in response to both real and simulated predators through experimental and computational

approaches.

5.1. Summary of primary results

Y Larval zebra�sh perform a graded assessment of the threat posed by a looming preda-

tor based on the looming rate and stochastically deploy di�erent escape strategies.

Y These escape strategies include 1) freezing, 2) performing an escape with Mauthner

cell recruitment (Mauthner-active), or 3) performing an escape without Mauther

cell recruitment (Mauthner-silent).

Y Mauthner-active and Mauthner-silent escapes have distinct kinematics and patterns

of neural recruitment for spinal projecting neurons in the hindbrain of larval ze-

bra�sh. These patterns correspond to the role of speci�c nuclei in producing motor

aspects of the escape maneuver.
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Y When escaping from the predator's strike, the time remaining at escape is a critical

determinant of survival since it limits the motor volume of the prey.

Y The non-overlapping regions of predator and prey motor volumes within the time

remaining at escape determines the utility of escape movements and the recruitment

of corresponding neural circuits, including the Mauthner cell.

Y Incorporating the uncertainty due to the limit of visual acuity into the hypothesized

neural computations for looming-evoked responses explains the increasing variability

in the timing of escape responses with slower looming rates and the patterns of

Mauthner cell recruitment.

Overall, I examine how the balance between Mauthner-active and Mauthner-silent es-

capes is modulated by the percept of the attack, is executed through the spinal projecting

neurons in the hindbrain, and produces graded responses with distinct kinematics. Further-

more, I develop an approach that models predator-prey interactions to explore the implica-

tions for survival due to the di�erential recruitment of the Mauthner cell. Finally, I propose a

mechanism that explains how graded and variable responses may be initiated in response to a

predator by considering the in�uence of sensory noise on the neural computations subserving

the escape response.

5.2. Recommendations for future work

In Chapter 2, I found that Mauthern-active and Mauthner-silent responses have char-

acteristic signatures of neural recruitment in the hindbrain and, in Chapter 4, I propose a

mechanism for how the Mauthner cell may be recruited di�erentially based on the looming
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stimulus. However, the mechanism of graded recruitment for the other reticulospinal neu-

rons is still unclear. Existing work suggests that additional reticulospinal neurons may be

recruited by the Mauthner cell once it is recruited Neki et al. (2014). While this may be

the case, I also �nd that �sh escape directionally away from the looming stimulus indicating

that motor circuits which perform graded initial bends are recruited in parallel. Therefore,

based on the azimuthal location of the approaching predator, there may be biased visual

input from the optic tectum into the reticulospinal nuclei contributing to turning. Since spe-

ci�c reticulospinal nuclei of the larval zebra�sh have been identi�ed to contribute to turning

movements Orger et al. (2008); Huang et al. (2013), the excitatory drive to these nuclei could

be tested in response to looming stimuli approaching from di�erent azimuthal angles. This

would also investigate whether the spinal projecting neurons in the hindbrain contributing

to turning have patterns of recruitment relating to the retinotopic map found in the optic

tectum of larval zebra�sh Niell and Smith (2005).

Beyond turning, I also �nd changes in the frequency of propulsive swimming movements

in response to di�erent predator approach speeds. This suggests that there is modulation

of the excitatory drive to the reticulospinal nuclei contributing to forward swimming. The

drive to these nuclei Huang et al. (2013); Severi et al. (2014); Wang and McLean (2014)

could be tested in response to di�erent predator approach speeds to see how recruitment

changes. Furthermore, due to the shifts in the subset of spinal interneurons McLean et al.

(2008), motoneurons Kishore et al. (2014), and musculature Buss and Drapeau (2002) of

larval zebra�sh related to di�erent frequencies of swimming, the consequences of this graded

excitatory drive may be tested downstream of the reticulospinal neurons. These experiments

will also help clarify how the time-limited motor volume of larval zebra�sh, presented in

Chapter 3, is shaped by and corresponds to the sensorimotor architecture of the animal.
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Additionally, in Chapter 3, I argue that larval zebra�sh di�erentially recruit the Mauthner

cell in response to �uid perturbations due to the dragon�y nymph strike. Furthermore, using

a computational approach, I estimate the utility of Mauthner cell recruitment for increasing

the survival probability. However, it is not known whether the actual recruitment of the

Mauthner cell corresponds to the estimated utility. This can be tested by performing calcium

imaging of the Mauthner cell of partially-restrained larval zebra�sh while presenting �ow

stimuli of di�erent magnitudes to track the probability of Mauthner cell recruitment. Beyond

testing the recruitment of the Mauthner cell, its in�uence on survival can be measured

through Mauthner cell ablation experiments Liu and Fetcho (1999); Burgess and Granato

(2007). The escape success rate of larval zebra�sh with ablated Mauthner cells in response to

dragon�y nymph attacks should be lower. However, the results in this thesis would suggest

that this di�erence would be highest for a speci�c range of attacks that left more than 7 ms

but less than 35 ms of time remaining at escape.

Furthermore, the relevance of the time remaining at escape in driving the decision to

recruit the Mauthner cell can also be tested. While animals are known to estimate the time

remaining to capture for visual stimuli Rind and Simmons (1999); Santer et al. (2006); Liu

et al. (2011b), proof of this estimation has not been shown from �ow stimuli. Similar exper-

iments to Preuss et al. (2006) could be carried out, except using ramping �ow stimuli. The

excitatory drive to the Mauthner cell in response to increasing pro�les of �ow velocities�like

those found for dragon�y nymph attacks�could provide insight into whether an estimation

of the time remaining at escape is driving the recruitment of the Mauthner cell.

The �ndings in the Chapter 4 suggest that noise, the methods of compensating for it, and

neural computations in�uence the recruitment of the Mauthner cell and together generate

the patterns of recruitment observed in response to looming stimuli. This computational
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work can be subject to further experimental veri�cation in adult zebra�sh which have 3-fold

better visual acuity than their larval counterparts. The timing and kinematics of looming-

evoked responses of adult zebra�sh to varying looming rates should be less variable and

the patterns of Mauthner cell recruitment should be distinct from larval �sh. In addition to

experiments with adult zebra�sh, further experiments testing the responses of larval zebra�sh

to linearly expanding stimuli can also clarify if the assumptions in the computational work

hold across di�erent experimental scenarios. Finally, accounting for the noise due to visual

acuity on the looming-evoked responses of other animals with giant neurons, especially �ies,

could verify whether the �ndings apply across animals. This would also require performing

additional experiments with other animals to determine the speci�c patterns of giant neuron

recruitment with changing looming rates.

5.3. Concluding remarks

Evidence from this thesis and previous work suggests that motor decisions of larval

zebra�sh are executed by reticulospinal and spinal microcircuits organized into modules

for e�cient control and coordination of movement. Researchers have found similar spinal

microcircuits in limbed vertebrates for modular control of the joints, limbs, and trunk of the

animal Hägglund et al. (2013). Furthermore, comparative experiments of development across

vertebrate animals have found that the axial expression boundaries of Hox genes speci�es

the identity and morphology of individual vertebrae Kessel and Gruss (1990); Burke et al.

(1995). This speci�cation of segmental identity extends beyond the spinal cord and into the

hindbrain Tümpel et al. (2009) where the structural patterning of neurons crosses segment

boundaries Kinkhabwala et al. (2011). In combination, these results about the homology of

regional di�erentiation and functional organization in the vertebrate nervous system suggest
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that the �ndings in this thesis about the selection and execution of motor decisions by larval

zebra�sh and the ecological pressures shaping those decisions extend to other vertebrate

animals.
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APPENDIX A

Visual threat assessment and reticulospinal encoding of calibrated

responses in larval zebra�sh

A.1. Free swimming looming stimulus assay

Larval zebra�sh were placed in a smaller dish �lled with system water within a larger dish

(Figure 2.1) and allowed to acclimate for 15 min before any experiments were performed.

A cap made from a microscope coverslip (United Scope, Irvine, CA) was placed on the

smaller dish to contain the �sh and the larger dish was also �lled with system water. A

di�usive �lter (Anchor Optics, Barrington, NJ) was a�xed to the wall on one-half of the

larger dish to create a projection screen. Looming stimuli were generated with Psychtoolbox

Kleiner et al. (2007) within MATLAB and projected onto the di�usive �lter with a 500 lumen

portable LED projector (Optoma USA, Freemont, CA, USA) placed 40 cm from the dish.

The actual looming object was always projected onto the center of the projection screen.

However, the relative azimuthal angle of the stimulus depended upon the orientation of the

freely swimming �sh within the smaller dish (Figure A.1). Any deviations in the percept

of the subtended angle of the looming stimulus from the intended due to �sh position and

orientation were found to be B 10% for the large majority of cases (Figure A.2).
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Figure A.1. Fish were equally likely to be oriented �180X from stimulus.

Figure A.1 details: Related to Figure 2.1. A) After an acclimation period, the azimuth was measured for

15 di�erent instances of stasis during free swimming for 21 �sh. Not to scale. B) The azimuth is e�ectively

distributed uniformly from �180X.

We veri�ed that the �sh were equally likely to be oriented in any direction �180X from

the center of the screen. To do so we placed a larval �sh in the smaller dish of the dish-

within-dish design while projecting uniform illumination onto the curved screen and allowed

the �sh to acclimate for 15 min. After this period, the large majority of larval �sh would

perform free swimming at a rate of about 1 swim bout every 1 � 2 s. During this time, a

single image was taken approximately every 1 min when the �sh was stationary and repeated

15 times. This was repeated with 21 �sh to acquire a total of 315 images.

The relative azimuthal angle to the center of the screen was measured (Figure A.1A)

from these 315 images. The distribution of relative azimuthal angle between �180X was not

signi�cantly di�erent from a uniform distribution (Figure A.1B, Kolmogorov-Smirnov test,

p = 0.8). The �sh orientation and therefore, this relative azimuthal angle was hand-tracked

with the aid of MATLAB for all looming evoked-responses.
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The �sh was placed within a smaller dish since the looming stimulus was quanti�ed with

respect to the center of the larger dish (Figure 2.1B). As seen in Figure A.2A, based on the

position of the larval �sh within the smaller dish, there can be a small error in determining

the angular size of the looming stimulus. This error was quanti�ed for the geometry of the

speci�c case used in this study of a smaller 10 mm dish within a larger 65 mm dish.

(A.1) PE � 100 �
θ� � θ

θ

We used MATLAB to generate 1000 random positions within the smaller dish with

uniform likelihood. Then we used basic trigonometry to determine θ� for those positions for

speci�c �xed θs. Therefore, for each θ, we did Monte Carlo sampling of 1000 θ�s. We can

de�ne a term called percent error (PE) using Equation A.1 which is a measure of percent

di�erence from the actual intended angular size.

As can be inferred from Figure A.2B the mean percent error for all object sizes was nearly

zero. The distribution of percent error was very similar for objects of di�erent angular sizes.

From these distributions, we found that the angular estimation percent error was within

�10% for 95% of all positions randomly generated within the smaller dish. Additionally, the

standard deviation of percent error can provide insight into the extent of the estimation error

due to �sh position (Figure A.2C). The largest standard deviation of 6.13% in percent error

was for the smallest object simulated with angular width of 3X. Figure A.2B shows that the

standard deviation in percent error reduces slightly but obviously with increasing angular

size indicating a small overall reduction in angular estimation error with larger objects.

The looming object was a black expanding square on a blue background of stationary, low-

contrast rectangles. The position and size of the low contrast rectangles in the background

were randomly generated for each trial. A blue background was used instead of a white
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Figure A.2. Error in determining angular size of the stimulus.

background, since a white background would introduce ambient green light creating an issue

when similar stimuli were used later during �uorescence imaging of Calcium Green Dextran

in the Mauthner cell (M-cell). Therefore, all virtual looming stimuli presented in this study

were black expanding squares on a blue background for the sake of consistency.

Figure A.2 details: Related to Figure 2.1. A) The looming stimulus (θ), on the walls of the larger dish,

expands at a rate determined by the looming stimulus parameters with respect to the center of both dishes.

However, the position of the �sh within the smaller dish (dashed circle) can alter angular size estimation (θ�).

Not to scale. B1 - 3) Histograms demonstrating the distribution of PE for objects of di�erent angular sizes.

The distributions are very similar. C) Plot showing that the standard deviation of percent error reduces

slightly with increasing angular size with the largest being less than 6.15%.

After 15 min of acclimation in the free swimming assay, a leftward moving grating and

a rightward moving grating were each presented for 12 s to elicit visually-evoked turning

behavior to ensure that the �sh was performing visuo-motor behaviors. If a �sh did not

respond to these gratings with leftward and rightward turns, then it was not used for further

experimentation. After successful preliminary testing with the moving grating, each �sh was

shown 10 randomly generated looming stimuli with at least 2 min intervals between each
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stimulus presentation during which a static dot-�eld was projected onto the screen. Dur-

ing a given stimulus, a static black square appeared on a blue background of low-contrast

rectangles and started expanding after 2 s. Fish rarely swam during the 2 s of static black

square presentation; if they did, that trial of the looming stimulus was discarded. The rel-

evant ranges for looming stimulus parameters were determined from prior work by other

researchers Stewart et al. (2014) who performed high-speed imaging of juvenile and adult

zebra�sh hunting larval zebra�sh (see text for details). Since L (Figure 2.1B) was pseudoran-

domly selected to be between 10 � 25 mm, this determined the initial size of the projection of

the black square on the dish surface. For instance, a 10 mm virtual looming stimulus which

is at a virtual distance of 50 mm would be a 6.5 mm projection on the dish surface that is

32.5 mm away. After 2 s to static presentation, this square then expanded to simulate the

percept of the virtual looming object.

To observe the looming-evoked behavior of zebra�sh larvae in our assay, videos were

recorded using a high-speed camera (FASTCAM 1024 PCI; Photron, San Diego, CA, USA)

attached to a dissection microscope (Stemi-2000; Carl Zeiss Microscopy, Thornwood, NY,

USA). Images were collected at 250 fps at 2X magni�cation. Even though we were limited

to 250 fps as the fastest sampling rate due to the size of our imaging bu�er, the tail angle

velocities (Figure 2.3F) suggest that the 3 ms of missing kinematics data in-between frames

could produce at most a 12 � 18 degree error in measuring heading direction. This upper

bound of error is well within the spread of the heading directions observed to looming stimuli

(Figure 2.2C) and produces a binning e�ect on the data which does not in�uence the main

conclusions of the study. Illumination was provided from above with 850 nm infrared light

from two LED arrays each composed of 30 LEDs with each LED at a brightness of 50 mcd

(SparkFun, Niwot, CO, USA). At the start of the looming stimulus expansion, MATLAB
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Figure A.3. Stimulus correction for uncentered �sh under partial restraint.

triggered the start of acquisition by the high-speed imaging system. Total head yaw during

the initial bend was measured by hand-tracking heading vectors with the aid of MATLAB

for all looming-evoked responses. The head yaw velocity was computed by dividing the total

change in angular orientation of the �sh head during the initial bend by the duration of the

initial bend.

A.2. Partially-restrained looming stimulus assay

Figure A.3 details: Related to Figure 2.3. A) Demonstrates the parameters relevant to make corrections

for the uncentered �sh in the partially restrained looming stimulus set up. Not to scale. B) Plots the

relationship between x and α for the speci�c geometry in this study. Note that it is near linear.

Larval �sh at 5�6 dpf were restrained by embedding them in �2% low melting point

agarose (Invitrogen, Carlsbad, CA, USA). Larvae were mounted in a 38 mm Petri dish with
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their anterior-posterior axis aligned to the radius of the dish and the center of their head 8

mm from the wall. Once the agarose had set, it was covered with system water and a scalpel

was used to dissect sections of the agar away so as to permit free movement of the eyes and

the tail. The only part of the larvae that remained embedded in agarose was from the otic

vesicle to the posterior end of the swim bladder. Larvae were acclimated in the agarose for

24 hr at 28.5°C and tested at 5 � 7 dpf. A di�usive �lter (Anchor Optics, Barrington, NJ,

USA) was a�xed to the wall of the Petri dish to produce a projection screen directly in

front of the �sh. The dish was placed on a microscope stage and illuminated from below

with 850 nm infrared light from two LED arrays mentioned earlier (SparkFun, Niwot, CO,

USA). Larvae were imaged from below through a lowpass infrared �lter (>720 nm, FM03,

Thorlabs, Newton, NJ, USA) and 4 Ö microscope objective (AmScope, Irvine, CA, USA) at

1000 fps using a high-speed camera (FASTCAM 1024 PCI; Photron, San Diego, CA, USA).

Looming stimuli were generated with Psychtoolbox Kleiner et al. (2007) within MATLAB

and projected onto the di�usive �lter with a 500 lumen portable LED projector (Optoma

USA, Freemont, CA, USA) placed 15 cm from the dish. Since the �sh was placed 8 mm

from the dish wall, the azimuthal angle of the looming stimuli and its angular size were not

as would be expected for a �sh placed at the center of the dish (19 mm from the dish wall).

This was corrected for computationally when generating the looming stimuli by deriving a

formula to make the azimuthal angle and looming rate comparable to the free swimming

assay (Figure A.3).

In the partially restrained assay, the �sh was placed �8 mm (D in Figure A.3A) from the

screen � the edge of the 38 mm (2R in Figure A.3A) dish � since this greatly increased the

likelihood of responding to visual stimuli as opposed to being at the center (19 mm away).
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Due to this placement closer to the screen, the azimuthal angle of the looming stimuli and

its angular size were not as would be expected for �sh placed at the center of the dish.

We found the mathematical relationship between α, the azimuthal angle of the stimulus,

and x, its radial position along the centerline (Figure A.3A). Looming stimuli generated

at a certain x position would then have a known azimuthal position from the perspective

of the �sh. This calculation was completed with simple trigonometry by determining the

dimensions of the green triangle in Figure A.3A. One of the legs of that right-angled triangle

is already known to be x but the other leg, hereafter referred to as k, can also be determined.

h can be rewritten as -

h �
º
R2

� x2

D is composed of k, the unknown leg of the green triangle, and a smaller piece, u

D = k + u

where,

u = R - h

restated,

u � �R �

º
R2

� x2�

k can be written as

k � D � u

restated,

k � D � �R �

º
R2

� x2�
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Therefore, the azimuthal angle α can be stated as

α � arctan x

k

restated,

α � arctan x

D��R�
º
R2

�x2�

Figure A.3B, plots the relationship between α and x as stated in the previous equation

for the speci�c geometry in this study of R = 19 mm and D = 8 mm. Fish were only

shown stimuli with azimuthal angle between �60X. This relationship is very well explained

by simple linear relationship between where α = 6.27x (R2 = 0.99). Additionally, the plots

for D = 7 mm and 9 mm are also shown to demonstrate that the changes with errors in �sh

placement are not large. The existence of a linear relationship between x and α signi�cantly

simpli�ed the azimuthal angle positioning of looming stimuli. The looming expansion rate

was also corrected for the partially restrained assay using this linear relationship between x

and α.

Partially restrained �sh were shown randomly generated looming stimuli within the same

parameter ranges as used for freely swimming �sh. This was done to compare the statis-

tics of stimuli e�ective in producing looming-evoked responses and the time remaining to

collision. Only responses to rostrally-approaching looming stimuli (within �45X) from the

freely swimming case were used since this was the range within which virtual stimuli were

presented.

MANOVA (multivariate analysis of variance) testing of L/V, L, azimuth of approach, and

time remaining to collision from the partially restrained (n = 143) and freely swimming (n =

85) groups produced p = 0.43 indicating that the two groups are not signi�cantly di�erent.
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Figure A.4. Initial bend tail angle velocity and head yaw velocity are highly
correlated.

Therefore, partial restraint does not signi�cantly change the e�ective looming stimuli, the

timing of the looming-evoked response, or the correlations between the di�erent variables.

Since MANOVA assumes normality, the univariate non-parametric two sample Kolmogorov-

Smirnov (KS) test was also used to test each variable separately from the partially restrained

and freely swimming categories. As seen in the list below, the KS tests of individual vari-

ables did not produce signi�cant results either. All of these non-signi�cant p-values seem

to suggest that the partially restrained �sh are performing a naturalistic looming-evoked

response.

KS Test Results Comparing Free Swimming and Partially Restrained Fish

Y Time Remaining to Collision: p = 0.53

Y Azimuth of Approach: p = 0.17

Y L/V: p = 0.5586

Y L: p = 0.84
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Figure A.4 details: Related to Figure 2.3. A) Overlay of the �sh body at the start of the escape response

and at the end of the initial bend. B) Demonstrates the linear correlation between the tail angle velocity

and the average head yaw velocity during the initial bend.

The correlation between head yaw velocity and tail angle velocity was veri�ed in free-

swimming �sh by performing automated body tracking with a MATLAB image processing

code of 19 free swimming escape responses of larval zebra�sh out of the 246 collected. Not

all escape responses could be successfully tracked in entirety since the fast moving tail would

sometimes be blurred in the videos recorded at 250 fps. From these 19 fully tracked responses,

the tail angle was measured and the average tail angle velocity during the initial bend was

computed. The average head yaw velocity of the free swimming �sh during the initial bend

was also computed. As seen in Figure A.4B, the average tail angle velocity is highly correlated

with average head yaw velocity during the initial bend (R = 0.94, p R 0.001). Furthermore,

the tail angle velocities measured for partially restrained �sh were within the range of tail

angle velocities found in free swimming �sh indicating a congruency in the kinematics of the

response.

Fish were similarly tested with a leftward and then rightward moving grating to ensure

they were performing visuomotor behaviors before any presentations of looming stimuli.

After successful preliminary testing with moving gratings, �sh were shown 10 randomly gen-

erated looming stimuli with at least 2 min between each stimulus presentation. The speci�c

stimulus parameters were randomly chosen to be within the same range as in the free swim-

ming case. We noted that partially-restrained �sh were half as likely to respond to looming
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stimuli than free swimming �sh. However, the range of looming stimulus parameters e�ective

in producing a response and the timing of the response were not signi�cantly di�erent from

the free swimming case, as shown above.

MATLAB triggered the start of high-speed imaging acquisition at the start of looming

stimulus expansion. A custom MATLAB program was used to track 22 points along the �h

body. Of the 22 points, 1 point was positioned between the two eyes and 21 points ranged

from the caudal end of the swim bladder to the end of the tail. These points were then

used to determine the tail angle. The absolute average tail angle velocity was also computed

which is the absolute value of the total change in the tail angle over the course of the initial

bend divided by the duration of the initial bend. The average tail angle velocity during the

initial bend was measured since it was found to be highly correlated to head yaw velocity in

freely swimming �sh (Figure A.4).

Features from the propulsive stage were also extracted for the partially restrained �sh.

Average tail beat frequencies were computed by measuring the duration of each tail cycle

in the propulsive stage, calculating the frequency for each cycle, and taking the average for

each response. The average absolute tail angle velocity was computed by measuring the

absolute total change in tail angle for each tail beat (half of a tail cycle) in the propulsive

stage, dividing by the duration of the tail beat, and taking the average for each response.

A.3. Calcium imaging in the Mauthner cell

Figure A.5 details: Related to Figure 2.4. Overlaid histograms of DF/F values from �uorescence traces of

M-cells from all looming-evoked responses separated into the portion of the trace before the time-of-response

and the portion after. The arrow points at the decision threshold used in this study.
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Figure A.5. ∆F/F threshold for neuron recruitment.

Four-day-old larval zebra�sh were anesthetized with 0.02% 3-aminobenzoic acid ethyl

ester (Sigma Aldrich, St. Louis, MO). The M-cell was retrogradely labeled by pressure

injection via a glass microelectrode of a 10% solution of Calcium Green Dextran (10,000 MW;

Molecular Probes, Eugene, OR) dissolved in intracellular patch solution into the spinal cord

O'Malley et al. (1996). Injections were targeted to the ventral cord to selectively label the

M-cell without disrupting more dorsal sensory pathways. Since any injection would disrupt

local circuits, injections were also targeted to the section of the spinal cord just caudal of the

anus. After injection, the �sh were allowed to recover in system water maintained at 28.5°C

for 24�36 hr. The cell labeling was veri�ed under a SteREO Discovery.V20 �uorescent stereo

microscope (Carl Zeiss, Dublin, CA, USA). The best-labeled animals were retained in system

water and used for behavioral trials. Before embedding in agar, the animals were examined
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to ensure they performed free swimming movements and tested with tactile stimuli to the

head and to the end of the tail to ensure they had fully recovered from spinal injection.

Fish were partially restrained in agar and tested with looming stimuli as described pre-

viously at 5 � 7 dpf. However, during these experiments �uorescence imaging of the M-cell

was performed simultaneously through a 40 Ö water immersion objective from above with

a 4 mm working distance (Olympus, Lombard, IL, USA). Fluorescence excitation was pro-

vided by an Xcite Series 120Q lamp (Quebec City, QC, Canada) and sent through a GFP

�uorescence �lter (Olympus, Lombard, IL, USA). A limited aperture was used to restrict

�uorescent excitation to a region around the M-cell to reduce the background �uorescence

signal from adjacent areas. The �uorescence image was captured with a Q-imaging Rolera

Bolt camera (Surry, BC, Canada) controlled with the µManager software Edelstein et al.

(2014).

Each �sh (N = 15) was shown 10 slowly approaching looming stimuli, 10 rapidly ap-

proaching looming stimuli, 5 rightward moving gratings, and 5 leftward moving gratings

ordered randomly. The grating stimuli were not used for analysis but were presented only

to make sure �sh were responding appropriately to visual stimuli. The tail was tracked from

the high-speed imaging as described earlier. A custom MATLAB program was used to track

the mean pixel value of the �uorescence signal from the M-cell. A threshold was determined

to classify M-cell active and M-cell inactive traces (Figure A.5).

M-cell �uorescence traces from all responses were pooled and broken into two sections �

the portion of the trace before the time-of-response (t B Time-of-Response) and the portion

of the trace 210 ms after the time-of- response (t C Time-of-Response + 210 ms). A 200 ms

window during the response was left out to avoid including motion artifacts in the following
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analysis. The histograms of ∆F/F for these two portions for all traces are shown in Figure

S5.

Since the M-cell was sometimes recruited for the response and sometimes not, the his-

togram of ∆F/F values after the time-of-response has values from M-cell active and inactive

traces. The long tail extending to the right of larger ∆F/F values in the �t C Time-of-

Response + 210 ms� histogram is due to increased calcium activity in the M-cell active

traces. The decision threshold used in this study is marked with an arrow in Figure A.5.

This value was visually determined since there are no occurrences of ∆F/F values above this

threshold for the �t B Time-of-Response,� when the M-cell is assumed to be inactive. This

threshold provided a quantitative method of selecting M-cell active and silent responses.

The likelihood of recruiting the M-cell based on stimulus paradigm was computed by

measuring the proportion of M-cell active responses from each �sh (N = 15) according to

fast or slow approach and averaging across all �sh.

A.4. Light �eld microscopy of reticulospinal neurons

Figure A.6 details: Related to Figure 2.5. A) microlens array �xed to a �ip mount was placed at the

imaging plane of the microscope camera port and a CMOS camera imaged the back focal plane of the array.

The �ip mount allowed switching between light �eld and epi�uorescence imaging. B1) Example of a light �eld

image acquired through the system demonstrating the image of microlenses. B2) Volume reconstruction was

performed by computing multiple focal planes using the light�eld reconstruction algorithm. B3) Striping

artifacts were removed from the planes near the center of the reconstructed volume using an established

algorithm. B4) Time-varying light �eld volumes were registered to a single epi�uorescence volume collected

before the start of the experiments. B5) Segmentation and blob detection via thresholding was used to
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Figure A.6. Light �eld microscopy of reticulospinal neurons.

identify cellular regions within speci�c focal planes. These regions were anatomically labeled by hand.

B6) The mean pixel value within these regions were calculated over time and normalized to arrive at the

time-varying calcium signals from each cell.

Fish larvae were injected with Calcium Green Dextran and partially restrained in agar

as previously described. The same microscope objective, �uorescence excitation lamp, and

camera were used but a microlens array (RPC Photonics, Rochester, NY) with 125 µm pitch,

f/25, and a focal length of 3040 µmwas placed in the imaging plane of the camera port (Figure

S6). The back focal plane of the microlens array was then imaged with the camera through a

0.5X telecentric lens (Edmund Optics, Barrington, NJ). This is the standard construction of

the light �eld microscope as described in previous literature Broxton et al. (2013); Prevedel

et al. (2014).
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A light �eld microscope allows for the computational reconstruction of entire volumes

from an image taken at a single plane (Figure A.6), making it possible to perform volumetric

imaging at the frame rate of the camera. This comes at a loss in spatial resolution over

standard epi�uorescence microscopy. The spatial resolution of a light �eld microscope can be

estimated by dividing the microlens pitch diameter with the magni�cation of the microscope

objective, 3.125 µm in our case. A full discussion of the limitations and possibilities of

the light �eld microscope is outside of the scope of this study but can be found in existing

literature Prevedel et al. (2014).

In the design used in this study, the microlens array was �xed to a �ip mount allowing

for simple alternation between light �eld and standard epi�uorescence imaging. This made

it possible to take a higher spatial resolution epi�uorescence focal stack of the volume of

interest before collecting light �eld movies during behavior. A single epi�uorescence focal

stack was taken of the reticulospinal array at 2 µm steps for a total of a 100 µm depth (51

images total) before the start of every experiment.

Light �eld movies were collected at 15 fps at the center of the volume of interest dur-

ing the looming-evoked response. Already existing post-processing software developed by

other researchers Prevedel et al. (2014) was modi�ed to automate reconstruction of full vol-

umes from light �eld movies (Figure A.6). Computational volume reconstruction was also

performed at 2 µm steps for a total of a 100 µm depth (51 total reconstructed planes).

Volume reconstructions were only computed for light �eld images collected �1 s around the

looming-evoked response due to the computationally expensive nature of the reconstruction

method.

Light �eld reconstruction of volumes produces striping artifacts in the planes near the

center of the volume where the light �eld is collected Broxton et al. (2013). We addressed this
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by not using the central reconstructed plane of the volume for any analysis. Furthermore,

we used a highly e�ective and previously established combined wavelet and Fourier �ltering

method for stripe removal in images Beat et al. (2009) for the other reconstructed planes

�14 µm around the center of the volume (Figure A.6).

These lower spatial resolution time-varying volumes were then registered with the single

higher spatial resolution epi�uorescence focal stack taken before the start of the experiment

(Figure A.6). This volume registration was performed with MATLAB code and volume

registration functions native to MATLAB. Results of the volume registration were veri�ed

by comparing locations of reticulospinal nuclei in the planes of the epi�uorescence focal stack

as determined from image segmentation via thresholding with the locations of the same nuclei

in the planes of the reconstructed volume from light �eld imaging.

Segmented regions representing reticulospinal nuclei in the planes of the reconstructed

volume were identi�ed and labeled by hand (Figure A.6). The mean pixel value of the

�uorescence signal in these segmented regions was calculated over time (Figure A.6). One

threshold was determined to classify active versus inactive traces for all nuclei in the same

way as previously described just for Mauthner cells. Calcium signal traces from all nuclei

were grouped together and split into regions before and after the timing of the looming

evoked response. The histograms of ∆F/F for these two portions were used to determine the

activity threshold. The Mauthner cell activity dependent probability of recruiting a given

reticulospinal nucleus was computed by measuring the proportion of responses for which the

∆F/F reached above threshold for each �sh, grouping them according to Mauthner-active

and Mauthner-silent looming-evoked escapes, and then averaging across �sh.

Due to the large number of samples and di�erent categories for Figure 2.5, the sample

number for each group is listed in the tables below.
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Ntrials for Figure 2.5B and C

M-cell silent M-cell active

Nucleus name Ipsilateral Contralateral Ipsilateral Contralateral

M-cell 35 35 50 50

MiD2 30 30 41 41

MiD3 32 33 44 46

RoV3 25 25 34 34

MiR1 28 31 36 38

MiM1 33 31 47 43

MiV1 27 27 39 39

MiR2 26 26 35 35

MiV2 33 32 45 42
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N�sh for Figure 2.5D

M-cell silent M-cell active

Nucleus name Ipsilateral Contralateral Ipsilateral Contralateral

M-cell 17 17 17 17

MiD2 13 13 13 13

MiD3 14 15 14 15

RoV3 8 5 8 5

MiR1 10 11 10 11

MiM1 16 15 16 15

MiV1 14 14 14 14

MiR2 9 9 9 9

MiV2 16 15 16 15
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APPENDIX B

Intersection of motor volumes determines outcome of predator-prey

interactions

B.1. Behavior recordings

All recordings of behavior were performed at room temperature (24XC) system water.

Five dragon�y nymphs of approximately the same size were selected (nymph body length

mean � std = 14.5 mm � 1.3 mm) for all experiments since dramatic di�erences in size

could change the size of the mask and the locomotor performance of the strike. For each

experiment, a single dragon�y nymph was selected and placed into an arena within a square

plastic dish (25 mm width, 100 mm length, 15 mm height, Thomas Scienti�c, Swedesboro,

NJ, USA) with room temperature system water and allowed to acclimate for 15 minutes.

The arena constrained the dragon�y nymph to move within the �eld of view of the dissection

microscope (Stemi-2000; Carl Zeiss Microscopy, Thornwood, NY, USA). After acclimation,

1�5 larval zebra�sh were introduced into the arena. To observe the strikes and �sh escape

responses in our assay, videos were recorded using a high-speed camera (FASTCAM 1024

PCI; Photron, San Diego, CA, USA) attached to the microscope. Images were collected at

250 fps at 1X magni�cation. A 100 mm long equilateral acrylic prism (Carolina Biological

Supply Company, Burlington, NC) was placed at the edge of square petri dish to provide a

side view perspective into the dish within the same image (Figure B.1). The orientation of

the nymph and the position of the mask in top and side view were hand-tracked with the

aid of MATLAB. The orientation and total head yaw for the �sh during the initial bend was
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Top view Side view

Figure B.1. Top and side view of strikes.

also hand-tracked in both top and side view with the aid of MATLAB. The �sh was tracked

during the propulsive stage with an automated tracker to estimate swimming velocity for the

subset of escape responses that remained within the �eld of view. Combining corresponding

points in the top and side views into a single 3D point was trivial since both top and side

views were in the same image and shared a spatial axis.

B.2. Mask motor volume model

The relative 3D position of each strike to the orientation of the dragon�y nymph body

was computed with vector mathematics. Each point in the 3D point cloud of strike positions

was associated with a mask extension time. Native functions in MATLAB (Mathworks,

Natick, MA) were used to train a k-nearest neighbor model to predict the mask extension

time given a 3D position. We performed 10-fold cross validation of integer values for k

neighbors ranging from 1 to 10 using 90% of the dataset for training and 10% for testing to
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Visual delay

Figure B.2. Dragon�y nymphs do not intercept larval zebra�sh.

�nd that k = 5 provided the best overall accuracy in prediction. This model trained with 5

nearest neighbors was used to generate the mask motor volume seen in Figure 3.1C.

B.3. Dragon�y nymphs do not intercept larval zebra�sh

For cases where the �sh was already swimming before the initiation of a strike, the nymph

would strike at positions where the �sh was no longer present. This was true for attacks

initiated due to tactile and visual stimuli produced by swimming �sh. Each case allowed for

a measurement of the sensorimotor delays of the nymph by measuring the time from when

the �sh last inhabited the targeted position to the initiation of the strike. Sensorimotor
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Figure B.3. Targeting errors of the dragon�y nymph

delays of the nymph for tactile stimuli: 75.5 � 30 ms (n = 16), visual stimuli: 278 � 110 ms

(n = 5).

B.4. Targeting errors by the dragon�y nymph

A) Top (x-y), front (y-z), and side (x-z) view orthographic projections of 3D initial �sh

positions before the start of the strike with points colored to represent an accurate attack
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or a targeting error by the nymph. Legend provided in the �gure. B) Diagram describing

angles α and β measuring the �sh swim bladder position with respect to the nymph eye.

C) Scatter plots of α and β on both eyes for �sh positions not in physical contact with the

nymph (number of nymphs = 5, accurate attack n = 65, targeting error n = 28). D) Box-

and-whisker plots demonstrating the distribution of α and β values for accurate attacks and

targeting errors just for both eyes. Accurate attacks and targeting errors have signi�cantly

di�erent variability of α values (Levene's test p = 0.01) but no signi�cant di�erence in the

medians. There is no signi�cant di�erence in β values for accurate attacks and targeting

errors. E) Targeting error probability based on the azimuthal position of the nymph head

with respect to the �sh. Azimuthal positions of the nymph were grouped by quadrants shown

in the panel. Heights of each bar represent the count of strikes within that quadrant (right

y-axis) and the color represents accurate attacks or targeting errors. The line plot shows the

mean � sem targeting error probability for each quadrant (left y-axis, number of nymphs

= 5 for all quadrants). Nymphs are signi�cantly more likely to make a targeting error

when in azimuthal quadrant P and signi�cantly less likely to make a targeting error when

in azimuthal quadrant A (one-way anova: p @ 0.001, pairwise Mann-Whitney U tests with

Bonferroni correction: all p @ 0.01). F) Targeting error probability based on the elevation of

the nymph head with respect to the �sh. Elevation positions of the nymph were grouped by

quadrants shown in the panel. Heights of each bar represent the count of strikes within that

quadrant (right y-axis) and the color represents accurate attacks or targeting errors. The line

plot shows the mean � sem targeting error probability for each quadrant (left y-axis, number

of nymphs = 5 for all quadrants). Nymphs are signi�cantly more likely to make a targeting

error when in elevation quadrant P (one-way anova: p @ 0.001, pairwise Mann-Whitney U

tests with Bonferroni correct: all p @ 0.001). G) Histogram demonstrating the probability of



148

the nymph making a targeting error based on the mask extension time to the �sh position.

Measured mask extension times are shown for accurate attacks but mask extension times

for targeting errors were estimated with the mask motor volume model. Heights of each bar

represent the count of strikes within that bin (right y-axis) and the color represents accurate

attacks or targeting errors. The line plot shows the mean � sem targeting error probability

for each bin (left y-axis, number of nymphs = 5 for all points with error bars). Nymphs

are signi�cantly more likely to make a targeting error for strikes longer than 44ms (one-way

anova: p < 0.001, pairwise Mann-Whitney U tests with Bonferroni correction: all p < 0.01).

Analysis of targeting errors provided insight into the sensory performance of the nymph.

While dragon�y nymphs are reported to have foveal ommatidia Sherk (1978), our results do

not clearly show evidence of a foveal region. However, there are regions in the �eld of view

that have very few or no �sh positions (Figure B.3C) suggesting that the location density

of �sh positions encountered may itself be a characterization of the foveal region. We do

identify a speci�c region in the ventral portion of the �eld of view that is more likely to

produce targeting errors (Figure B.3C-D).

Moreover, the increased likelihood of making a targeting error when in the posterior

azimuthal and elevation quadrant with respect to the �sh (Figure B.3E-F) suggests that

looking at the tail of the �sh was more likely to cause a targeting error. We speculate that

this disadvantage of looking at the tail is due to the reduced view of the eyes of the larval

�sh which contain high concentrations of melanin Kelsh et al. (1996) and provide contrast.

The probability of targeting errors also mapped to the mask motor volume since increased

mask extension times were more likely to produce errors (Figure B.3G). However, nymphs

were also less likely to strike where they were more likely to make an error (Figure B.3G)

suggesting an internal model of sensorimotor coordination.
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B.5. Neomycin treatment of larval zebra�sh

We tested the role of �ow sensing in �sh escape responses by compromising the lateral

line in a group of larvae by exposure to a 250 µmol solution of neomycin sulphate (Sigma

Aldrich, St.Louis, MO) for a 30 min period, followed by a 3 h recovery prior to experiments.

This technique was developed in previous studies Harris et al. (2003); McHenry et al. (2009),

where it was shown to induce cell death in lateral line hair cells while leaving inner ear hair

cells intact. After recovery, larval �sh were monitored to ensure they performed spontaneous

swimming behaviors and responded to touch stimuli delivered with a tungsten �lament.

These larvae were then introduced into the dish with the dragon�y nymph.

B.6. Approximating �uid velocity at the �sh due to mask extension

To gain further insight into the role of the perturbed �uid in generating the escape

response, we used a potential �ow approximation to estimate the �uid velocity at the �sh

due to mask extension. Mask velocity alone was not a good proxy for the perturbed �uid

�ow at the �sh position since it does not take into account the distance of the �sh from the

mask.

We started with an established analytical solution to the �ow velocity �eld expressed in

spherical coordinates around a sphere of radius a moving through an incompressible, inviscid

�uid at a time dependent velocity V �t� Fitzpatrick (2017).

(B.1) vr�r, θ, t� � V �t�a3
r3
cosθ

(B.2) vθ�r, θ, t� � 1

2
V �t�a3

r3
sinθ
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(B.3) v2 � v2r � v
2
θ

Where v is the �ow velocity expressed in terms of the radial and angular components�vr

and vθ�for a position at some distance r C a and angle θ from the sphere with respect to

its velocity vector at some time t. We expect the �ow pattern around the sphere to be

axisymmetric around the velocity vector (i.e. independent of φ). In this set of equations, we

can verify that when r �ª then v � 0, as we would expect. We used these equations with

the velocity of the tracked mask as the value for V �t� to estimate the �ow velocity v at the

�sh which was some distance r C a and angle θ. The value of a was set to 1.6 mm which

approximated the radius of the mask (average diameter of 3.2 mm from all specimen).

We used this potential �ow approximation to estimate the �ow velocity at the �sh over

other methods, like computational �uid dynamics, due to its simplicity. Our intention was

not to compute exact magnitudes of �ow velocities but rather to have relative estimates for

scenarios so we could investigate how higher and lower �ow velocities may have in�uenced

the �sh escape response di�erently.

B.7. Predicting escape outcome with each parameter

To determine which parameter had the most in�uence on the �sh escape outcome, we

trained random forest classi�ers using the native TreeBagger function within MATLAB on

each of the following parameters to predict the binary outcome of escape failure (0) or success

(1).

(1) Attack azimuth

(2) Attack elevation

(3) Mask extension time
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(4) Bend duration

(5) Bend velocity

(6) Response latency

(7) Time remaining at escape

Ten di�erent classi�ers were trained for each parameter by pseudo-randomly selecting

85% of the dataset each time for training and testing accuracy with the remaining 15% of

the dataset allowing for an estimate of the mean � sem of accuracy for a classi�er.

The parameter importance was computed with a �ag within the native TreeBagger MAT-

LAB function which calculates the out-of-bag estimates of variable importance by permuting

the values of one of the variables to see how dramatically it changes the model predictions.

For more information on the implementation and use of random forest classi�ers, please refer

to the MATLAB documentation for TreeBagger. Random forest classi�ers were chosen over

other classi�ers due to their simplicity, their ability to perform non-linear classi�cation while

reducing variance through bagging/bootstrapping models and provide importance values for

each predictor.

B.8. Larval zebra�sh motor volume

During an escape response, larval zebra�sh reorient with an initial bend with little or

no movement of their center of mass and swim away with undulatory swimming during a

propulsive stage Nair et al. (2015); Bhattacharyya et al. (2017). In this study, the �sh motor

volume was computationally generated to mimic this movement using a bend velocity (in

X

sec
) and a propulsive velocity (in mm

ms
). The bend velocity was �rst used to compute the time

needed for reorientation and then the propulsive velocity was used to compute the distance

traveled. In this manner, the bend velocity and propulsive velocity together could de�ne
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the positions in 3D space that the center of mass of the larval zebra�sh could reach given a

certain amount of time.

For all simulations of �sh motor volumes, the propulsive velocity used was 0.12 mm
ms

which

is supported by our own measurements and existing literature Dunn et al. (2016); Budick

and O'Malley (2000). We assumed that the �sh could reorient in any direction by changing

pitch and yaw as necessary, which is supported by our own data (Figure 3.5E and H) and

existing literature Nair et al. (2015). For Figures 3.7A and B, the �sh motor volume was

generated using the average bend velocity of 14 X

sec
found in this study.

For Figure 3.7C, �fty �sh motor volumes were generated by pseudo-randomly sampling

with replacement the initial bend velocities measured in this study (Figure 3.4K) for 6

increments of time remaining at escape (7, 15, 20, 25, 35, and 50 ms). These volumes were

then used to compute the proportion not engulfed by the swept volume of the prehensile

mask. The swept volume of the mask was represented by a hemi-ellipsoid (major axis:

3.2 mm and minor axis 2.8 mm) attached to the end of a half-cylinder (diameter: 3.2 mm and

length: 6 mm, Figure 3.7B) whose dimensions were determined by measuring the prehensile

masks of specimens in this study. To intersect the mask swept volume with the �sh motor

volume, the center of the hemi-ellipsoid of the mask swept volume was placed at the starting

position of the �sh motor volume. We simulated attacks from di�erent directions with

combinations of attack azimuths (front, side, and behind) and elevations (in-plane, above,

and below) by moving the mask swept volume with respect to the �sh motor volume. Ten

thousand points were pseudo-randomly generated within the �sh motor volume and the

proportion of points not within the mask swept volume provided a measure of the proportion

of the �sh motor volume not engulfed. This was carried out for each �sh motor volume for
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each increment of time remaining at escape to �nd the mean � std proportion not engulfed

for Figure 3.7C.

There seem to be some di�erences between the non-engulfed fraction of the motor volume

and the measured proportion of successful escapes for small values of time remaining at

escape below 10 ms (Figure 3.7C). This di�erence at small times remaining at escape may

be because the propulsive velocity of �sh is fastest at the beginning of the escape Danos and

Lauder (2012); Dunn et al. (2016). However, we use a constant average propulsive velocity

to generate the �sh motor volume which may underestimate the size of the motor volume

for small times remaining at escape.

Fish motor volumes representing Mauthner active and silent responses were generated

by pseudo-randomly sampling di�erent uniform distributions of initial bend velocities. The

range of bend velocities for Mauthner silent motor volumes was 10 � 5 X

sec
and Mauthner

active motor volumes was 18 � 5 X

sec
. These ranges are supported by previous studies that

investigate bend velocities of free swimming larval zebra�sh before and after Mauthner abla-

tion Liu and Fetcho (1999); Burgess and Granato (2007). The ranges were also constructed

to have some overlap since studies have found that Mauthner active and silent responses

can on occasion produce similar kinematics Kohashi and Oda (2008); Bhattacharyya et al.

(2017). Furthermore, the initial bend velocities measured in this study (Figure 3.4K) are

well described by the combination of these two ranges. Even though there is some evidence

that Mauthner cell recruitment leads to faster propulsive velocities, the simulated propulsive

velocity was not changed for Mauthner active motor volumes since this in�uence is not clear

Nissanov et al. (1990); Eaton and Emberley (1991); Neki et al. (2014); Dunn et al. (2016).

Intersections of the Mauthner active and silent motor volumes with the prehensile mask

swept volume was carried out in the way described above.
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The MATLAB code used to generate and visualize larval zebra�sh motor volumes and

the mask swept volume can be found in the GitHub repository associated with this study.
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APPENDIX C

The consequences of visual acuity on the looming-evoked response

C.1. Fitting α with experimental data

The parameter α in Equation 4.2 determines when η�t� reaches its maximum value.

Notably, η�t� reaches its maximum value at the same angular size regardless of the expansion

rate L
V . We �t the parameter α such that η�t� reached its maximum value corresponding

the critical angular size of 35X for larval zebra�sh looming-evoked responses Bhattacharyya

et al. (2017).
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Figure C.1. Angular size at the maximum of η�t�.

Figure C.1 details: A) As α changes the angular size at the maximum of η�t� as computed from Equation

4.2 changes. We chose the α that corresponded to the angular size of 35X (dashed lines).
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As seen in Figure C.1, increasing values of α produce the maximum of η�t� at at decreas-
ing values of angular sizes. We chose an α value of 0.055 which corresponded to the angular

size of 35X (dashed lines Figure C.1). While using a di�erent value for α would change the

angular size at maximum η, it would not change the general �ndings in this study.

C.2. Generating the noisy measured angular size

The sensory information available to the larval zebra�sh about the angular size of the

looming object was approximated by a sequence of noisy measurements of the true angular

size. This sequence of measurements was created by sampling Equation 4.1 for each L
V value

at 25 Hz�every 0.04 seconds�to �nd the true angular size of the object at the time and

then adding Gaussian noise with �3.1X.

We tested the following looming rates: L
V = 0.2 s, L

V = 0.4 s, L
V = 0.6 s, L

V = 0.8 s, L
V =

1.0 s, LV = 1.2 s. These rates fall within an ethologically relevant range Stewart et al. (2013);

Dunn et al. (2016); Bhattacharyya et al. (2017). All simulated looming objects started out

at 10X and stayed at the that size for 5 seconds before starting angular expansion at the

speci�ed rate. This was done to imitate similar experimental practices commonly followed

in behavioral studies of the looming-evoked responses von Reyn et al. (2014); Bhattacharyya

et al. (2017); Fotowat and Gabbiani (2007). Therefore, all generated sequences of noisy

measured angular size in this study included an initial 5 seconds when the object was sta-

tionary and then expanded according the speci�ed L
V until it was less than 0.04 seconds from

collision. This sequence of measurements was then used by the Kalman �lter to estimate

the angular size and expansion rate in real-time.
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C.3. Basic design and speci�c implementation of the Kalman �lter

The Kalman �lter is a Bayes optimal recursive estimator for sequentially estimating the

state of a linear Gaussian dynamical system Kovvali et al. (2013). The recursive algorithm

of the Kalman �lter has low computational complexity and memory requirements making

it ideal for real-time applications of target and object tracking Bay (1991); Feder et al.

(1999); Lebastard et al. (2012); Bar-Shalom et al. (2004). Moreover, Kalman �ltering has

found broad application in motor and computational neuroscience Wolpert and Ghahramani

(2000); Wu et al. (2006); Schi� and Sauer (2008); Wilson and Finkel (2009). While a full

derivation and review of the Kalman �lter is outside the scope of this manuscript, here we

present the basic design and our implementation of the Kalman �lter for estimating angular

size and expansion rate.

Consider the state evolution and measurement process of a linear and Gaussian dynamical

system of the form

(C.1)
xn � Fnxn�1 � vn

yn �Hnxn �wn

The �rst line of Equation C.1 de�nes the state evolution where xn is a D�1 dimensional

vector representing the state of the system at time step n, Fn is the D�D state-transition

matrix, xn�1 is the state of the system at the previous time step, and vn is a D�1 Gaussian

random state noise vector with zero mean and covariance Qn. The second line de�nes

the measurement process where yn is a M�1 dimensional vector representing the current

measurement, Hn is the M�D measurement matrix, and wn is the M�1 Gaussian random

measurement noise vector with zero mean and covariance matrix Rn.
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Since the dynamical system is both linear and Gaussian, the conditional probability

density functions (pdfs) of p�xnSxn�1� and p�ynSxn� are given by Gaussian pdfs

(C.2)
p�xnSxn�1� � N�xn;Fnxn�1,Qn�

p�ynSxn� � N�yn;Hnxn,Rn�

Where N��;m,P � denotes a Gaussian pdf with mean m and covariance P . Under these

stated conditions, the posterior pdf of p�xnSYn� where Yn is the set of all measurements up

to the time step n can also be shown to be Gaussian, as represented below.

(C.3) p�xnSYn� � N�xn;mnSn, PnSn�

In this notation, mnSn and PnSn denote the Gaussian posterior mean and covariance at

time step n computed using measurements up to time step n. To explain the subscripts

further, the notation of mnSn�1 and PnSn�1 would indicate the mean and covariance of the

Gaussian pdf describing xn computed with measurements up to time step n � 1 and then

predicted to time step n with the state evolution as described in Equation C.1.

Using this notation, the Kalman �lter equations are given by Kovvali et al. (2013)

(C.4)

mnSn�1 � Fnmn�1Sn�1

PnSn�1 � FnPn�1Sn�1F T
n �Qn

Sn �HnPnSn�1HT
n �Rn

Kn � PnSn�1HT
n S

�1
n

mnSn �mnSn�1 �Kn�yn �HnmnSn�1�
PnSn � PnSn�1 �KnHnPnSn�1
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Here the �rst two lines of Equation C.4 compromise the prediction step and the last four

lines compromise the update step. The Kalman �lter equations must be computed for each

time step to obtain new pdfs of the state variables.

To perform the computations above, we must specify values of m0S0 and P0S0 which are

the mean and covariance describing the initial estimates of the state of the system before

any measurements. Along with these initial estimates, we must de�ne Fn, Hn, Qn, and Rn

which are constants parameterizing the system. Finally, with each iteration we will provide

yn which is the measurement at time step n. We used mnSn as our estimate for xn which was

a 2�1 vector containing the angular size and expansion rate as each element.

In this study, we were estimating angular size θn and expansion rate θ̇n from a mea-

surement of angular size yn. The relationship between the state variables can be linearly

approximated by the following state evolution.

(C.5)
θn � θn�1 � θ̇n�1 � vn,1

θ̇n � θ̇n�1 � vn,2

restated in matrix form

(C.6)

����
θn

θ̇n

����
�

����
1 1

0 1

����
����
θn�1

θ̇n�1

����
�

����
vn,1

vn,2

����
In this situation, since we only have a measurement for angular size, the measurement

process is of the following form

(C.7) yn � �1 0�
����
θn

θ̇n

����
�wn

Therefore,
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(C.8)

Hn � �1 0�
wn � N�0,Rn�

where Rn is the angular visual acuity squared (3.12) to represent the variance in mea-

surement noise. However, it can be set to values 3�4� larger than this without changing the

conclusions of this study. For the state evolution,

(C.9)

Fn �

����
1 1

0 1

����
����
vn,1

vn,2

����
� N

����
����

0

0

����
,Qn

����
For the dynamical system in Equation C.5, Qn can be shown to be of the form Kovvali

et al. (2013)

(C.10) Qn � σ
2
θ

����
1
3

1
2

1
2 1

����
In Qn, the term σ2

θ represents the variance of the process noise in angular size. After

testing a range of values, we set this value at 0.008. An order of magnitude di�erence in

either direction from this value did not change the general results of this study regarding

the timing of maximum η�t�. However, setting this value beyond this range produced 1)

very noisy estimates of angular size and expansion rate when the value was large or 2) very

smooth estimates that poorly approximated the true angular size and expansion rate when

the value was small.
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Finally, we speci�ed the values of the mean and covariance describing the initial estimates

of the state of the system, m0S0 and P0S0. The initial estimate of the mean for both angular

size and expansion rate were set to 0. The covariance matrix of the state was a diagonal

matrix with large variances (10000) for both angular size and expansion rate to allow the

system to take on any values once measurements were considered.

When producing smooth estimates, the Kalman-�ltered expansion rate consistently un-

derestimated the true expansion rate. This happened because the state evolution as de�ned

by Equation C.5 assumes that the expansion rate��rst time derivative of θ�persists through

each time-step with some error vn,2. However, the time-varying angular size of the looming

stimulus as described by Equation 4.1 is in�nitely di�erentiable with respect to time. This

suggests that including higher-order derivatives in the state evolution would improve the

estimate of the �rst derivative. However, it is unclear whether these higher-order derivatives

are used by or represented in the nervous systems of animals for computations relevant to

the looming stimulus. Therefore, they were excluded from the state evolution. Notably, the

error term vn,2 in Equation C.5 is used to represent some of the dynamics of the higher-order

derivatives by allowing the expansion rate to change with each time-step. However, allowing

this error-term to be large, as discussed earlier, produced highly unstable estimates of expan-

sion rate. A complete discussion of this issue is outside the scope of this manuscript but has

been covered in detail in other literature Liu et al. (2011a). Critically, for our purposes, η�t�
computed from the the Kalman-�ltered estimates of θ�t� and θ̇�t� still produced maxima

near the maximum of the true η�t� (Fig. 4.3).
The Kalman-�ltered estimates of angular size and expansion rate were used to calculate

η�t� using Equation 4.2. Since the noisy measured angular size was created by adding zero-

centered Gaussian noise to the true angular size, estimates of angular size and expansion
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rate were di�erent for multiple simulations of the same looming rate. To create Figure

4.3B and D, the maximum value of η�t� was identi�ed during the looming stimulus and

the distribution of times at maximum was �t using the default setting of a kernel density

estimator native to Matlab called `ksdensity '.

C.4. The leaky-integrate-and-�re Mauthner cell model

The leaky-integrate-and-�re model of a neuron is parameterized by the current injec-

tion Ie�t�, the membrane voltage Vm�t�, the membrane time constant τm, the membrane

capacitance Cm, and the membrane resistance Rm Burkitt (2006).

(C.11)
Ie�t� � τmdVm�t�

dt
� Vm�t�

τm � RmCm

The di�erential equation de�ned in Equation C.11 can be solved numerically in discrete

time for membrane voltage where Ie�t� is the time-varying current injection into the model

Burkitt (2006).

(C.12) Vm�t � 1� � Vm�t� � ∆t

τm
���Vm�t� � Ve� � Ie�t�Rm�

In Equation C.12, t is now discrete and represents the immediate time step, Vm�t� and
Ie�t� represent the membrane voltage and current input at the immediate time step while

Vm�t � 1� represents the membrane voltage at the next time step. The constants ∆t and

Ve represent the time step size and the resting membrane voltage, respectively. In our

implementation of this solution, when Vm�t� reaches a value above a threshold voltage Vth, it
is set to a spike voltage Vs and Vm�t�1� is not solved for with the equation but rather set to

a reset voltage Vr. Since a single Mauthner cell (M-cell) spike produces the escape response,
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Constant Value

τm 23 ms
Rm 10 MOhms
Ve -75 mV
Vth -61 mV
Vr -79 mV
Vs 20 mV
∆t 0.5 ms

we were only concerned about the timing of the �rst spike when providing the time-varying

current injection.

The values for the membrane time constant τm, the membrane resistance Rm, the resting

membrane voltage Ve, the threshold voltage Vth, and the reset voltage Vr were all chosen

from an established leaky-integrate-and-�re model of the M-cell Koyama et al. (2016). The

remainder of the constants which include the time step size ∆t and the spike voltage Vs were

chosen so the model produced reasonable results. The values of all constants are provided

in the table.
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Figure C.2. M-cell recruitment for L
V = 0.8 s varies with β.

Figure C.2 details: A) As the value of β in Equation 4.3 is changed, the probability of recruiting the

M-cell for L
V

= 0.8 s changes. Dashed vertical line marks the β value 3.18�10-10 chosen for simulations.
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B) As the value of β is changed, the correspondence of the time of the �rst M-cell spike and the time at

maximum Ie changes.

We multiplied η�t� by a constant β to provide the time-varying current injection Ie�t�
into the neuron model (Eq. 4.3). This constant had to be much smaller than 1 since the

values of η ranged from 2�6 (Fig. 4.3) while the current injection values needed to be on

the order of 10-9 Amperes. The β value we used was 3.18�10-10. To determine this constant,

we �rst interpolated η�t� so it was resolved at the time step size (0.5 ms) needed for the

numerical solution (Eq. C.12). Then we tested a range of values for β to see how M-cell

recruitment varied for L
V = 0.8 s.

We found that values of β that were smaller than 3.18�10-10 did not recruit the M-cell at

all and values that were larger recruited the M-cell with 100% likelihood for L
V = 0.8 s (Fig.

C.2A). Furthermore, we chose the value of β for which the time of the �rst M-cell spike and

the time of maximum Ie coincided (Fig. C.2B). Values of β that were larger recruited the

M-cell soon after the onset of the current injection and before it reached its maximum value.

This would produce many M-cell spikes through the duration of the looming stimulus which

is not encountered experimentally. Critically, the β value of 3.18�10-10 that we chose also

reproduced the experimentally observed timing of M-cell spikes for L
V = 0.4 s and L

V = 1.0 s.

C.5. Finding the boundary between M-cell active and silent cases

The linear boundary between M-cell active and silent cases seen in Figure 4.5F was found

using a native Matlab function called `�tcdiscr ' which �ts a discriminant analysis classi�er

to data with binary labels. In our case, the data labels were M-cell active or M-cell silent

and the data points had two attributes: Ie max. and Time at Ie max. We �t this boundary
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to determine if the time of maximum Ie and the value of maximum Ie interacted to produce

M-cell active and M-cell silent cases or if one attribute was far more determinative of M-cell

activity than the other.

We chose a linear boundary over other more complex boundaries since it's easier to

interpret the linear result. We also used 10-fold cross-validation to verify that higher-order

polynomial boundaries (second thru �fth order) were not signi�cantly more accurate in

classifying M-cell active versus M-cell silent cases than the linear boundary.

The equation of the linear boundary in Figure 4.5F is:

Ie max. = �0.023nA
sec
�Time at Ie max. � 1.4 nA


