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ABSTRACT

Adopting a Gateway Centric View for Cellular Network Content Delivery

John Paul Rula

Mobile traffic is expected to grow tenfold by 2019, topping 24 exabytes of monthly traffic

and accounting for nearly half of all Internet traffic. This growth is driven by the increasing

number of smart phones and tablets, and the data demands of high bandwidth services

enabled by next-generation cellular networks such as LTE/5G. As in the wired Internet,

network usage is dominated by content consumption, with the vast majority served through

content delivery networks (CDNs).

CDNs host and replicate popular content across thousands of servers worldwide, directing

users to “nearby” servers. This replica selection is a key determinant of client performance,

yet replica selection for cellular clients has previously been overlooked, due to high radio

latency, inconsistent throughput, and a limited number of ingress locations which dominated

end-to-end latency. NGCNs and their improved performance place a renewed emphasis

on replica selection policies for cellular clients. We find that the performance of existing

replica selection systems in cellular networks is hindered by their opacity, the dynamic

assignment of clients to infrastructure components, the emergence of centralized DNS within

cellular networks, and the growth of public DNS in global mobile operators. This opacity

prohibits network probes from entering these networks, rendering existing monitoring and

measurement systems ineffective.

In this dissertation, I argue for the centrality of cellular network packet gateways (PGWs),

and that this centrality has critical implications on the architecture, characterization, and

performance of cellular networks. PGWs separate the interior mobile network from external

data networks, and define the independent network partitions which compose modern cellular

networks. I posit that understanding the locations of PGWs and their allocation of clients

constitutes sufficient network topology coverage. The presence of PGW’s on all routes to
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and from cellular clients make them ideal proxies of client latency for network services. I

demonstrate techniques for characterizing cellular networks which allow both the discovery of

PGW locations and their assignments of mobile clients. I designed and implemented two live

systems which utilize these techniques to characterize cellular infrastructure: tiller which

uses instrumented mobile devices to characterize cellular networks, and machete which uses

traces from external vantage points to accomplish this characterization at a global scale. I

introduce a novel method of content replica selection which chooses cellular client servers

based on the location of a client’s PGW, called Gateway-Based Replica Selection (GBRS),

and show this achieves near optimal replica selection for cellular clients.
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Chapter 1

Introduction

Mobile traffic is expected to grow tenfold by 2019, topping 24 exabytes of monthly traffic and

accounting for nearly half of all Internet traffic [35]. This growth is driven by the increasing

number of smart phones and tablets, and the data demands of high bandwidth services

enabled by next-generation cellular networks such as LTE 1/5G. As in the wired Internet,

network usage is dominated by content consumption, with the vast majority served through

content delivery networks (CDNs) [85].

CDNs host and replicate popular content across thousands of servers worldwide. Key

to their performance is accurate client localization, which allows CDNs to redirect users

to “nearby” replica servers. This redirection is commonly based on heuristics such as

the location of a user’s DNS resolver [67, 75, 109] or IP address [27]. Independent of the

chosen heuristic, CDNs conduct large numbers of both active and passive measurements

to determine the relative distance and performance of replica servers to and from clients.

Despite its role in end-usernperformance, the relative effectiveness of existing approaches has

been overlooked given the high radio latency, inconsistent throughput and limited number

of network ingress locations which previously dominated path latencies.

Improvements in radio technology and the expanded core network infrastructure of

NGCNs places a renewed emphasis on replica selection policies for cellular clients. For

1Although already deployed in certain operators, LTE accounted for only 15% of mobile subscriptions in
2015 [45].
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example, clients in LTE networks average 69.5 ms of end-to-end latency [61], compared to

the nearly 400 ms of average latency experienced in 3G networks [63]. This transition to LTE

has also seen a growth in the numbers of packet gateways (PGWs) for cellular operators,

from the 4-6 reported for U.S. MNOs in 2011 [117] to the up to 40 we have found for these

same networks (§ 5).

In this work, we find the effectiveness of existing replica selection systems in cellular

networks is hindered by these networks’ opacity, growing adoption of public DNS usage,

and the prevalence of centralized resolver architectures. The lack of visibility into these

networks, caused by the NAT and firewall policies of cellular operators, prohibits probes

from entering and measuring to common network landmarks, such as clients’ DNS servers,

depriving CDNs of fine-grained path information for cellular clients. Concurrently, the rise

of centralized resolver architectures within MNOs, and the increased reliance of public DNS

within cellular networks, both adversely affect existing DNS-based replica selection [85].

1.1 Thesis Statement

In this dissertation, I argue for the centrality of cellular network packet gateways (PGWs),

and that this centrality has critical implications the architecture, characterization, and

performance of cellular networks. PGWs separate the interior mobile network from external

data networks, and define the independent network partitions which compose modern cellular

networks. We posit that understanding the locations of PGWs and their allocation of clients

constitutes sufficient network topology coverage. The presence of PGW’s on all routes to

and from cellular clients make them ideal proxies of client latency for network services. We

demonstrate techniques for characterizing cellular networks which allow both the discovery of

PGW locations and their assignments of mobile clients. We designed and implemented two

live systems which utilize these techniques to characterize cellular infrastructure: tiller

which uses instrumented mobile devices to characterize cellular networks, and machete
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which uses traces from external vantage points to accomplish this characterization at a global

scale. We introduce a novel method of content replica selection which chooses cellular client

servers based on the location of a client’s PGW, called Gateway-Based Replica Selection

(GBRS), and show this achieves near optimal replica selection for cellular clients.

One of the challenges when studying cellular networks and their underlying infrastructure

is the lack of available information about these networks, their topologies and their policies.

The aforementioned opacity limits the effectiveness of existing tools and measurement

techniques. As part of this dissertation, we developed a mobile platform, alice , for the

measurement and characterization of cellular network infrastructure, and deployed it across

four public mobile applications over a three year period. This tool provides programmable

network experiments run from volunteer mobile devices. We used alice equipped clients to

conduct an in-depth characterization of global mobile operators, looking specifically at (i)

DNS infrastructure, (ii) PGW allocation and assignment dynamics, and (iii) inter-domain

routing policies.

Our characterization of cellular DNS infrastructure reveals an opaque and indirect

resolver structure, with inconsistent client-to-resolver mappings. Since DNS impacts nearly

all network services on mobile devices, and plays a critical role in CDN replica selection, this

dynamic behavior adversely impacts these services’ performance. We discovered instances

where CDNs were strictly mapping replica servers to individual resolvers, meaning changes

in client resolvers resulted in entirely independent, and distant, replica server sets.

We utilize the longitudinal measurements collected by alice clients to look into the

spatial and temporal assignment patterns of mobile clients to PGWs. A client’s PGW plays

an integral role in determining paths to and from network services. Knowing the locations

of these PGWs, and more importantly, determining a client’s assigned PGW location are

critical for successful replica selection in cellular networks. We find dynamic assignment

occurs between clients and cellular infrastructure, often with little spatial and temporal
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locality. This means clients may be assigned to different, and distant, PGWs over relatively

short time scales.

We use a combination of over 10 million mobile client traceroutes, directed towards large

content providers as well as other mobile clients within their own, and across other mobile

operators, to characterize the AS-level structure and connectivity of cellular networks. We

find that the structure of MNOs is often composed of multiple cooperating ASes, each

performing a individual logical function such as housing cellular clients, or interconnecting

multiple PGWs. By combining these multiple components into a single logical domain, we

more accurately are able to characterize inter-domain interactions of these networks.

Based on the results from our characterization, and the centrality of network PGWs,

we propose a novel approach for content replica selection, which chooses servers based on

the location of a client’s PGW as opposed to existing heuristic. We find this Gateway

Based Replica Selection (GBRS) provides near optimal replica selection for cellular clients,

providing equal or better performance in nearly all instances compared to existing replica

selection systems, and upwards of 60% improvement in over 20% of cases.

The challenge of this approach comes not just from discovering the number and

locations of network PGWs, but accurately determining clients’ current PGW. We develop

a methodology which both discovers cellular network PGW locations as well as their

current mobile clients. Our techniques exploit the relative stability of IP address pools

at PGWs. Once mapped, we are able to identify network PGWs by client IP addresses.

We introduce two separate systems which utilize this methodology to characterize cellular

network infrastructure. We design and implemented a system – tiller – which characterizes

cellular networks through the use of distributed, instrumented mobile clients. tiller is able

to provide highly accurate maps of cellular network infrastructure, yet suffers from coverage

problems endemic to mobile systems. To overcome this limitation, we created machete,

system for characterizing cellular networks at a global scale. machete uses traces from a
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number of distributed external vantage towards cellular IP space to cluster cellular clients

by detected PGWs. Both tiller and machete are able to partition cellular networks with

over 98% accuracy.

1.2 Summary of Major Contributions

The primary contributions of this theses are as follows:

• We show that existing approaches for client localization are ineffective for cellular

networks, and that this causes suboptimal replica server selection for CDNs.

• We present a tool for mobile end-hosts to measure and characterize next generation

cellular networks. We developed a mobile experimentation platform, alice , designed

for exploring cellular network infrastructure and its interconnection with content

delivery networks.

• Using three years of data from over 1900 volunteer mobile clients, we characterize the

DNS infrastructure, inter-domain connectivity and network assignment dynamics of

global cellular networks.

• We propose an alternative approach for CDN replica selection based on a client’s

assigned packet gateway, called Gateway-Based Replica Selection (GBRS). We develop

measurement techniques which allow PGW discovery and partitioning of cellular

networks.

• We demonstrate this measurement methodology through two separate systems. The

first system, tiller , utilizes instrumented mobile clients to collects and communicate

cellular network location information to content delivery networks. The second,

machete , uses traces from external vantage points towards cellular IP addresses

to map IP addresses to assigned PGWs.
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1.3 Roadmap

This dissertation is divided into the following chapters. In Chapter 2, we describe relevant

background information and related work for cellular networks, cellular network performance,

content delivery networks. Chapter 3 expands on the factors motivating this dissertation,

including the rise of mobile traffic and the ineffectiveness of existing replica selection systems

in cellular networks. I describe the causes of this poor performance, including the opacity

of these networks, and the rise of both centralized resolvers and public DNS services which

limit the effectiveness of existing resolver based systems.

In Chapter 4, we make the case for PGW centrality in content replica selection, and

introduce GBRS. I present the characterization of LTE network infrastructure in Chapter 5,

first by investigating the cellular DNS infrastructure and its impact on existing replica

selection systems, and then to characterize deployments of network PGWs and their client

assignment behavior. Chapter 6 presents the results of our network-level characterization of

their intra, and inter-domain connectivity.

In Chapter 7, we introduce our system for efficient mobile network characterization,

tiller . We motivate tiller’s design from an in depth study of coverage potential from

individual mobile vantage points, and use these findings to inform tiller’s adaptive probing

technique. We present machete , a scalable solution to cellular network PGW identification

and client mapping in Chapter 8. machete uses traces towards cellular clients to partition

cellular networks based on trace behavior.

I present an overview of my contributions, and conclude this dissertation in Chapter 9.

I describe the design and implementation of alice, our tool for the exploration and

characterization of cellular networks in Appendix A.
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Chapter 2

Background and Related Work

This dissertation draws from multiple areas of prior research, including current and future

cellular network infrastructure, network performance over wireless links, network topology

discovery, as well as content delivery network design and operation. We provide provide

relevant background information for each, and discuss and place our contributions in the

context of prior research endeavors.

2.1 Next-Generation Cellular Networks

Next-generation cellular networks, first coined in 2006 from the Next Generation Mobile

Network Alliance [78], describe data-centric mobile connections which enable wide area

mobile broadband connections. LTE networks, initially deployed in 2009, are considered

the first technology to meet these NGCN standards. LTE networks are expected to serve

the majority of North American devices by 2018 [34]. LTE allow speeds up 150/75 Mbps of

downstream/upstream throughput, over an order of magnitude faster than 3G networks [61].

The newly proposed successor of LTE, known as 5G networks, propose several orders of

magnitude improvements in throughput, promising speeds up to 100 Gbps, and single

millisecond access latencies [78].

LTE introduces several changes to its core network architecture which positions it

primarily as a data-first network, compared to focus on voice calls in prior network

technologies. The core networks in LTE contain substantial changes, transitioning from
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Figure 2.1: Network architecture changes cellular networks between 2/3G and LTE networks.
LTE introduces a simpler, flatter network structure and an all-IP network.

the circuit-based data connectivity of prior technologies to an all-IP network [33]. This eases

management of cellular core networks, thus allowing quicker expansion to meet growing

demand. LTE networks also implement a flatter core architecture, removing the previous

Radio Access Network (RAN) layer, combining its functionality into each eNodeB tower.

This simplifies the cellular core, and reduces latencies between clients and network services.

The key infrastructure components in LTE networks are the serving gateway (SGW), the

packet gateway (PGW) and the mobility management entity (MME). The SGW acts as

the mobility anchor for mobile clients. The PGW bounds the cellular core network from

external data networks (e.g. the Internet). All traffic from mobile clients routes through

a PGW instance before reaching the Internet. The MME maintains state information on

mobile client locations through the operator’s network. These architectural components for

LTE and prior network technologies are shown in Figure 2.1.

Operationally, modern cellular networks are divided into independent partitions based

on PGW instances. These partitions exist as logical partitions, in contrast to spatial
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partitioning, of network resources. From the perspective of cellular data traffic, all client

traffic must first traverse the region’s PGW before routing to other destinations. This is true

even for clients within the same including clients in the same partition. Additionally, clients

are isolated within their current partition, with no visibility into other network partitions.

2.2 Mobile Network Performance

Performance over cellular networks is determined by a large number of interconnected factors

which span multiple layers of the networking stack. These include radio latencies determined

by physical and MAC layer interactions, the performance of existing transport protocols such

as TCP over unpredictable and lossy wireless links, and path latencies determined by core

network latencies and distances to content replicas. In this section we describe these different

sources of cellular network performance degradation.

2.2.1 Components of Cellular Network Latency

Cellular device latencies are composed of both of control plane and user plane latencies [77].

Control plane latencies involve handsets negotiating with the core network, attaching

themselves to cellular networks and reserving resources within that network. We measure

control plane latency as the latency needed for the UE to begin sending or receiving data.

User plane latencies represent the time it takes for a data packet to travel from a UE to its

destination server.

Radio Access Latency. The control plane latency measures the time to transition a

UE from an idle state to one which is capable of sending and receiving data traffic. Control

plane latency consists of a series of interactions between the UE, the radio tower, and core

network management systems (i.e. MME).

For the UE radio there is a delay to switch the cellular radio from an idle to an active

state. These multiple states are known as radio resource states (RRC), and govern the

activity and power usage of device radios. Cellular radios consist of multiple radio states,
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Figure 2.2: Call setup procedure for LTE. Adapted from Mohan et al. [77].

with 3 for 3G radios and 2 for LTE radios. The time taken to transition from an idle state to

a transmission state is known as the promotion delay. For 3G networks this was measured

to average 582 ms, and in LTE networks averages 260 ms [62].

Carrier dependant state machines govern the transitions and set the length of timeouts

to transition from one phase to the other. These state machines have been documented

previously by Quian et al. [89] for 3G network and Huang et al. [62] for LTE networks,

finding idle timeouts (known as tail times) vary between carriers from 11-16 seconds for

investigated 3G carriers and averaging 11.5 seconds in measured LTE carriers.

Once a UE is ready to transmit, it must then negotiate with the cellular network itself,

first to request to transmit over controlled spectrum, then to request attachment to the

network. This negotiation procedure for network attachment is displayed in Figure 2.2,

featuring 20 independent messages between UE, radio tower, and core network components

such as the MME and SGW/PGW – all required before client data can be transmitted.

All of this interaction results in what is known as PDP context, a state vector for that
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cellular devices which consists of identifiers such as device IP addresses, and radio bearer

information.

Core Network Latency. User plane latencies represent the time it takes for a data

packet to travel from a UE to its destination server. User plane latencies are composed

of core network latencies as well as traditional Internet path latencies [16]. Core network

latencies result from the distance between mobile devices and packet gateways, as well as

congestion over the radio link.

Internet Latency. In the context of content consumption, Internet path latencies are

largely determined by the distance between content servers and cellular PGWs. As we show

throughout this dissertation, Internet path latencies are comprising ever greater fractions

of end-to-end latencies, driven by the improvements in cellular radio and core network

technologies.

2.2.2 Transport Performance Over Wireless Links

The quickly changing bandwidth, and lossy environment of cellular networks [73] adversely

affect general purpose transport protocols such as TCP. In this section we discuss the prior

work diagnosing poor transport performance over wireless links, and their proposed solutions.

A large body of work has diagnosed the problems facing TCP performance within cellular

networks [24, 25]. The work by Chan et al. [26] was one of the first to diagnose the poor

performance of TCP over the variable link quality, and non-congestive loss rates of TCP.

Since this early work, solutions have come in the form of MAC-level retransmissions, and

large packet queues at radio towers. These changes effectively mask radio losses from TCP

state machines.

These early solutions have themselves created performance problems stemming from

excessive queue lengths, known as bufferbloat [64]. Recent work has attempted to address

these additional challenges, designing clean-slate transport protocols to replace TCP for
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wireless connections. The Sprout protocol by Winstein et al. [115] optimizes cellular network

performance through stochastic forecasts of available bandwidth. Similarly, the Versus

protocol by Zaki et al. [119], uses adaptive congestion control for the quickly changing link

properties of cellular connections.

Another response to the heterogeneous environment of wireless links is to split TCP

connections; with one for wired Internet paths, and another for the wireless link. Gonzalez

et al. [57] was one of the first to advocate for the use of these performance-enhancing-proxies

(PEPs), to compensate for the high latency and complex MAC-layer behavior of cellular

technologies. Recently, the use of these PEPs has been studied and characterized in various

cellular networks. [55,94,118].

Our work is complementary to these approaches since, replica placement plays an

important role in overall client performance. Improved replica selection reduces overall

latency, which will only improve overall end-to-end performance.

2.3 Network Topology Discovery

This work investigates the physical infrastructure cellular networks, the locations of key

infrastructure components such as network PGWs, and peering relationships. My work

builds off the vast literature on Internet measurement and topology mapping compiled over

the last 15 years. Below we highlight some of the most influential work of Internet mapping

and measurement, and look at recent efforts to extend this towards cellular networks.

2.3.1 Wired Network Exploration

Early efforts at network mapping include Rocketfuel from Spring et al. [106]. Rocketfuel

performed efficient probing from traceroute and looking glass servers within several large

ISPs, mapping points-of-presence (PoPs) and router connectivity. Rocketfuel performed the

dual task of both identifying ISP points of presence (PoPs), and geolocating them through

techniques developed to decode location hints in router hostnames. More recently Durairajan



37

et al. [43, 44] showed that physical layer maps of long-haul fiber infrastructure provided

valuable information about Internet topology. These techniques have become standard for

Internet mapping, and we transfer these techniques to our exporation of cellular networks.

As large ISPs implemented more complicated traffic engineering policies such as MPLS,

the effectiveness of traceroute probes were hindered by the multiple paths taken by packets,

and the network tunneling procedures which failed to decrement TTL, becoming “invisible”

to these probes. In response, Augustin et al. [12] created Paris Traceroute as a tool to

view the multiple paths. Paris Traceroute sends out packets with different combinations of

header options since common traffic engineering policies attempt to keep flow-level routing

consistent. The shift of operators to more opaque network management solutions such

as MPLS motivated Sherwood et al. [102, 103] extended router level mapping utilizing

combinations of TTL based traceroute along with the IP’s route record option to map router

level paths including those hidden by MPLS network tunnels. We face similar struggles with

network topology discovery in cellulr networks, which widely use tunneling and sub-layer 3

routing within their core networks.

2.3.2 Measuring Cellular Networks

While these approaches have proven themselves in numerous Internet mapping and topology

discovery efforts, they are less effective for exploring cellular networks due to the opacity of

these networks (§ 3.4), and the lack of measurement vantage points.

Cellular network exploration suffers from the widespread opacity of cellular networks,

which prevent common approaches such as those described in the previous section. For

instance, many MNOs prevent probes launched from external vantage points from reaching

any of their clients or infrastructure. While the externalities of network opaqueness have

previously been studied in edge networks by Casado et al. [22], these were focused mainly on

the obfuscation of multiple home devices by broadband router NATs. This impact of cellular
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network opaqueness is orders of magnitude larger than this, as tens of thousands of clients

sit behind operator carrier grade NATs (CGNs) [113]. Efforts to explore the infrastructure

and policies of cellular networks therefore require measurement from instrumented mobile

devices, typically deployed as volunteer applications [47, 61,63,111,113].

Cellular networks lack common measurement vantage points, such as Looking Glass

servers [18], the Archipelago (Ark) project [23], and crowdsourced efforts such as RIPE

Atlas [93]. This coupled with the aforementioned opacity make cellular network measure-

ments difficult to obtain. The power and computational limitations from mobile devices

also exclude several common volunteer end-host monitoring systems such as Dasu [96] and

News [31]. Further complicating the issue is the independence of cellular network partitions,

which prohibit internal vantage points from accessing other network regions, requiring greater

and coordinated vantage point deployment.

These challenges in mobile network measurement motivated the creation of our mobile

experiment engine, alice (App. A) and its supporting delivery applications.

2.3.3 Prior Cellular Network Characterization Efforts

Despite these challenges, there have been several efforts to characterize cellular networks,

their infrastructure and policies. This work builds on the multiple discoveries of this prior

work

The importance of gateways in cellular networks has previously been recognized,

motivating several early efforts for their characterization. The work by Xu et al. [117]

which characterized the cellular 2G and 3G infrastructure of the four largest U.S. MNOs.

The authors cluster cellular clients based on their DNS servers, locating GGSN instances by

client’s recorded locations. Noting the importance of client gateways in content delivery, the

authors recommended placing content replicas near cellular packet gateways. Similar efforts

were conducted for earlier 4G network deployments by Zarifis et al. [120]. Here gateways
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were identified using the first public IP address in an outbound mobile client traceroute,

with gateways located based on applicable hostname location hints, or lacking those, the

centroid of client locations.

Other work has looked at policies governing network identifiers in cellular networks such

as IP addresses. Balakrishnan et al. [14] investigated the IP assignment to cellular clients,

measuring the consistency and stickiness of cellular IP addresses, finding both the potentially

rapid assignment of IP addresses to clients, and consequently the ineffectiveness of existing

IP geolocation services.

Our work builds off of these earlier efforts. Our contributions differ from these early

works in three main areas: (i) a focus on replica selection rather than replica placement

(ii) a more principled methodology for gateway identification and localization which covers

greater heterogeneity in MNO configuration (iii) longitudinal measurements of MNO policies

such as IP and gateway assignment.

2.4 Content Delivery Networks

Since their emergence in the late 1990s, content delivery networks (CDNs) have become the

primary vehicle for serving Internet content. CDNs replicate content across geographically

distributed sets of servers and redirect clients to nearby replicas to reduce access time to a

web site [70]. There is extensive literature studying CDNs, investigating their performance [4,

59,60,65,67], management [68,112] and architectures [66,83]. Our work seeks optimal replica

selection for cellular clients.

Krishnamurthy et al. [67] performed one of the earliest studies of content delivery

networks and evaluated the effectiveness of replica selection for client performance. The

effectiveness of DNS servers for content replica selection has been extensively explored before

(e.g., [75, 91, 100]). In addition, many research efforts on future name service architectures
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have incorporated replica selection into its core services, including the DONAR [114] and

Auspice [101].

Content replica selection, also known as request routing, is the process of directing client

requests to a “nearby” replica server, and is one of the key components of any content

delivery network. Effective replica selection is critical for achieving high client performance,

as well as load balancing Internet demand across CDNs’ networks. CDNs employ several

different mechanisms for replica selection, including DNS-based server selection [41], end-user

mapping [27], and anycast routing [6, 7]. We provide an overview of each method below.

DNS-Based Selection. DNS-based selection uses the location of a client’s local DNS

resolver as a proxy location for server selection, and is also the most popular method in

use today. DNS-based server selection provides the most control over client requests at the

expense of system complexity.

A client requesting a website through DNS-based selection first performs a DNS resolution

of the websites hostname through their local resolver. Though one or more recursive

resolutions, the clients local resolver eventually contacts the authoritative DNS of the CDN,

which chooses a replica IP to return based on the location of the requesting resolver. A

common approach for this redirection is through CNAME aliases. CDNs typically attain

greater control over these assignments by using short TTLs for addresses [109].

Despite their popularity, the effectiveness of DNS-based server selection faces several

challenges. The first is that local resolvers are not always good approximations of user

locations. Early work from Mao et al. [75] found that 36% of clients use DNS servers

not in their same AS. Another is the recent growth of public DNS services such as

GoogleDNS [58] and OpenDNS [84], and the deployment of centralized and hierarchical

nameserver architectures within ISPs [8, 99]. These remote resolvers further obfuscate

the distance between clients and their local resolvers, resulting in poorly located replica

severs [85].
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End-User Mapping. A proposed solution to the inaccuracies of DNS-based server

selection is to select replica servers based on the requesting client IP address. Known as

the EDNS-Client-Subnet Extension (ECS) [38, 108], this approach extends existing DNS

protocols to include client IP addresses in requests from local resolvers. While this end-

user mapping [27] potentially providing improved client localization, it greatly increases the

complexity of CDN systems.

Anycast Selection. Anycast routing utilizes BGP routing protocols to direct clients

to their closest replica server. In an anycast CDN, multiple servers advertise the same IP

address, allowing BGP to calculate the shortest paths between clients and servers. While

anycast selection suffers from its own set of problems, namely the lack of control over

client routes and slow update propagation, it can greatly reduce the complexity of selection

systems [49].

Our work is the first to investigate the effectiveness of DNS-based server selection on

cellular clients. Our analysis supported by our detailed characterization of global cellular

infrastructure, and our performance analysis from instrumented clients, highlights its poor

performance. We build on prior work improving DNS-based selection, end-user mapping,

and CDN analysis to create new approaches adapted to the unique constraints of cellular

networks.
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Chapter 3

Motivation

3.1 Overview

This dissertation is motivated by the emergence of multiple growing trends, which together

are increasing the impact of replica selection on mobile client performance. These include

(i) the improvements in cellular radio technology and expansion of cellular infrastructure,

(ii) the poor performance of existing replica selection systems, (iii) the difficulty locating

cellular clients, and (iv) the growing volume of mobile traffic.

The rise of NGCNs have brought vast improvements in cellular radio technology which

have quickly, and greatly, increased demand from mobile devices. When compared with 3G

networks, 4G LTE presents a significantly different network, with a radically larger number

of ingress points, and offers much lower radio access latency and variance. We show that

these changes make accurate content replica selection critical to the performance of end users

in cellular networks.

We find that existing replica selection systems perform poorly in cellular networks caused

by poor client localization. We show that this poor localization is caused by the opacity,

increasing use of public DNS services, and centralized resolver structures of cellular networks.

We discuss how the growth of mobile data means CDNs’ poor performance will affect an

increasing fraction of clients. We also highlight how the poor accuracy of existing systems

threatens to disrupt effective load balancing.
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We discuss how upcoming advancements in NGCNs, which will greatly improve the

latency and throughput of these connections, will impact the contributions of this work. We

posit that the improved latencies in the upcoming 5G specification, and critical application

which require them, will only increase the impact of server selection.

3.2 Advancements of NGCNs

Recent advances in cellular technology have greatly improved the performance of the radio

link, and the growing demand of cellular traffic has brought rapid expansion to cell network

infrastructure. This has resulted in the location of selected replicas becoming a larger fraction

of end-to-end latency, and with a growing number of network ingress points, CDNs have a

greater chance for selecting incorrectly.

In 3G and previous cellular technologies, the significant fraction of radio access latencies

dominated end-to-end latencies, and were measured to be 400 ms at median [63]. From the

perspective of content delivery, these high latencies dilute any of the benefits of closer content

replicas, meaning CDNs had little control over the end-to-end latency of mobile clients.

The current and future improvements of NGCNs introduce radio technology with greatly

reduced access latencies with more stable performance. LTE networks, for instance, offer

access latencies close to 10s of milliseconds,an order of magnitude lower than in 2G/3G [62],

resulting in end-to-end latencies less than 70 ms [61] at median, 5.7 times lower than prior

generations.

The expanding cellular infrastructure, and the increasing number of cellular gateways,

increases the difficulty for selecting a client’s optimal replica. Over the past 5 years, the

number of gateways per U.S. operator has increased from the 4-6 reported by Xu et al. [117]

in 2011, to the 10-20 reported by Zarifis et al. [120] in 2014. Our own results in Chapter 5

find between 25-40 PGWs in US operators. The significantly larger number of ingress points,
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Figure 3.1: Performance of current replica selection systems of a large CDN for clients in a
large U.S. mobile network operator. The CDN has agreements with network operator with
replicas located within the network. In addition, the CDN receives periodic information
regarding LDNS and client locations. Even in this “ideal” case, optimal selection is only
achieved in less than 40% of measured cases, and over 20% of clients directed to replicas
1.5x further away.

a trend clear in Zarifis et al. [120] and in our own results (Sec. 5), means that CDNs have

more options for placing and choosing content caches.

These architectural changes and the radical improvements in radio access technology,

suggest it is time to revisit the effectiveness of content delivery and the impact of existing

server selection policies in cellular networks.

3.3 Ineffectiveness of Existing Replica Selection

Existing CDN replica selection systems are challenged by cellular network structure and

policies. We show that current CDN redirection policies choose poorly performing replicas

even in best case scenarios, where the CDN has partnerships with mobile operators.

We highlight these inefficiencies by measuring the performance to a likely set of caches

for mobile operators. For each MNO, we selected a subset of a CDN’s replicas which were

either located within the operator’s network in addition to replicas located at major PoPs

and Internet exchanges near MNO coverage areas. This server information was provided
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by a large CDN. Using measurements from the mobile clients running the alice library

(App. A), we measured network latency to each replica in the each MNO’s set or servers,

and recorded the minimum round-trip-time to each replica. We compared the latencies seen

in each experiment to the replica chosen by the CDN.

Figure 3.1 shows the results of these experiments for clients in a large U.S. mobile

operator. The relatively poor performance of existing replica selection is shown both by

the overall latency difference between assigned and optimal replicas (Fig 3.1a) as well as the

relative performance differential of the assigned replica over the optimal (Fig. 3.1b). Clients

were assigned to their optimal replica less than 40% of the time, and in 20% of cases, clients

were assigned to servers 50% further away than optimal.

The performance differential is even more impressive when one considers that the chosen

CDN and operator have a deep partnership consisting of shared information of network

topology and collocated replicas within that operator’s network. This indicates the problem

with cellular request routing stems not just from inaccessibility from cellular operator’s

networks, but from the ineffectiveness of existing replica selection policies, such as DNS-

based selection, in cellular networks.

3.4 Problems Locating Cellular Clients

Our investigations into the causes of this poor performance revealed that (i) the opacity

of cellular network infrastructure and clients, (ii) a rise in public DNS use for cellular

clients, and (iii) the use of centralized resolver structures in cellular networks all degrade the

performance of existing replica selection systems. Each of these in their own way obscure the

locations of clients from CDNS, resulting in poor client localization and suboptimal replica

selection.
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Figure 3.2: Resolver opacity for U.S. and Brazilian operators. While entirely dependent on
operator policy, many MNOs such as Sprint and AT&T prohibit all probing of cellular LDNS
resolvers.

3.4.1 Cellular Network Opacity

Opacity, in this context, is the inability of externally launched probes (e.g. ping, traceroute)

to penetrate a particular network. For cellular networks, this opacity is due to firewall and

NAT policies intended to protect mobile users, which without would be open to several

attacks including data quota drain, DoS flooding and battery drain [71]. While the effects

of opacity have previously been studied by Casado et al. [22] looking at the impact of NAT

usage in edge networks, cellular networks implement this at a much greater scale, presenting

network-wide opacity.

Without the ability to probe these networks, CDNs cannot measure latencies between

replica servers and client landmarks. They are forced to make assumptions about these

black-box networks, including hypothesizing the locations of clients and their DNS resolvers.

Opacity policies differ in the extent of their impermeability between operators, challeng-

ing any one method as a general solution for all networks. We exemplify this problem by

showing the number of LDNS servers responding to ping probes in the top 4 U.S. and top 5

Brazilian MNOs. Using the set of LDNS resolvers discovered from the logs of a large content
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delivery network, we attempted to probe each resolver from a computer on our university

network using both ping and traceroute utilities. Figure 3.2 displays the fraction of resolvers

which responded to ping probes for each MNO organized by country.

The figure displays the disparity in opacity between operators. While we can ping 90%

of T-Mobile’s resolvers, we reach just over 40% of Verizon’s resolvers, and less than 1% of

both Sprint and AT%T’s. The problem is not specific to the U.S., but common worldwide.

As another example we show the reachability of the 5 largest Brazilian MNOs. We see a

range of resolvers responding to pings: as low as 0% and no higher than 80%. While ping

reachability varies across operators, not a single traceroute from the entire set of resolvers

in the two countries was completed successfully.

These opacity policies even differ within operators, varying which probes are allowed, and

where they can be used. For instance, while T-Mobile allows over 90% of their resolvers to

respond to pings, they completely disallows pings to clients and prohibit all traceroutes.

These individualized policies complicate operations for CDNs by requiring per operator

tuning of their systems.

3.4.2 Public DNS Usage for Cellular Clients

Public DNS services such as Google DNS and OpenDNS provide users fast, reliable and

secure DNS resolution service from third party resolvers. With the rise of DNS based

censorship [10], these services have also become a popular tool to circumvent common

censorship practices. Yet public DNS services affect the quality of selected replicas, since

they increase the distance between clients their local resolvers [85].

While public resolver usage has been shown to be increasing problematic in broadband

networks [27], in cellular networks it was not believed to be as prevalent due to the difficulty

in changing DNS resolvers on mobile handsets. Contrary to this assumption, we find that

many MNOs across the globe rely heavily on public DNS resolvers.
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Figure 3.3: Public resolver usage across a subset of global mobile networks. In contrast to
current assumptions, many MNOs rely heavily on public DNS services such as Google DNS
and Level 3. While the percentage varies widely across operators and countries (e.g. no U.S.
MNO has > 3% public resolver usage), certain MNOs have more than 97% requests coming
from public resolvers.

We calculate the percentage of requests coming from public DNS resolvers using request

logs from a large CDN. This log data was processed to map client IP addresses with their

requesting DNS resolvers, and calculate a normalized fraction of requests from each resolver

observed, aggregating by /24 subnet for IPv4 and /48 subnet for IPv6. Using these logs we

are able to calculate the relative request demand from cellular clients across different public

resolvers.

Our results discovered a wide range of public DNS usage in cellular operators, ranging

from less than 2% to upwards of 90% between operators. From this analysis, we selected

11 large MNOs around the globe exemplifying different fractions of public resolver usage,

displayed in Figure 3.3. These include AT&T Mobility (US,20057), Verizon Wireless

(US,22394), Nextel (BR,7738), Bharti Airtel (IN,9498), and Telecom Algiers (DZ,327712).

The figure shows the fraction of client requests sent through the four most popular public

DNS services in our dataset: Google DNS [58], OpenDNS [84], SoftLayer [105] and Level

3 [72].
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Figure 3.4: Characterization of cellular resolver requests from three large U.S. MNOs. The
x-axis represents the number of independent PGW regions observed using each resolver. The
y-axis represents the largest fraction of requests coming from a single dominant PGW region.
Resolvers located lower and further to the right indicate greater fractions of centralization.

Although public DNS usage in the U.S. is quite low, we found large numbers of global

MNOs reliant on public DNS infrastructure. For U.S. operators, both AT&T and Verizon

see less than 2% of requests sent through public resolvers. However, for Bharti Airtel in

India (ASN 9498), we see public resolver use in nearly 40% of cases. Honk Kong operators

SmarTone (ASN 9474) and China Mobile Hong Kong (ASN 9231) both use public resolvers

for upwards of 55% of requests. In the extreme case, we see 97% of request demand coming

through public DNS resolvers in Telecom Algiers (ASN 327712).

The prevalence of public DNS usage in operators in countries such as India, China and

Brazil is possibly due to the larger fraction of non-handset devices connected to cellular

networks – either connected directly or tethered through mobile hotspot. The presence of

two Hong Kong operators may indicate users wishing to bypass Chinese censorship efforts

through these public DNS services.

3.4.3 Centralized Resolver Structure

In addition to public DNS usage, LDNS based redirection effectiveness is also adversely

affected by centralized resolver structures of ISPs [85]. Centralized resolver architectures

result from ISPs coalescing their distributed resolver infrastructure to a more central location.
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These configurations present many of the same hurdles to CDNs as public DNS, by increasing

the distance from clients to resolvers [3]. We show that existing cellular networks also

utilize centralized resolvers which further hinders the effectiveness of existing replica selection

policies.

Due to their strict partitioning [121], the use of centralized resolver architectures in

cellular networks manifests as resolvers that are shared by clients from multiple PGWs.

This leads to ambiguity when attempting to locate clients based on DNS locations, since

these resolvers do not map to a specific PGW.

In order to determine PGW-to-resolver mappings, We utilize ground-truth information

from two large mobile operators in the U.S. to map client IP addresses to assigned PGW

regions. This ground truth information gives the allocation of client IP addresses to the

nearest metropolitan area of the PGW region. For the same time period, we use nameserver

logs from a large content delivery network to associate client IP CIDRs to their local DNS

resolvers. These logs give the aggregated nameserver demand for each nameserver observed

from a requesting client, for each client /24 and /48 subnet for IPv4 and IPv6.

Figure 3.4 displays the mapping of cellular resolvers to PGW regions for three large U.S.

operators. We first counted the number of client /24 subnets observed using each resolver,

mapping those to PGW regions using our ground-truth information. This is represented on

the x-axis. We then looked at the relative demand for each of those PGW regions, taking the

largest, and plotting on the y-axis. The figures display the effectiveness of each operator’s

resolver as a client locator. Resolvers near the top left represent highly localized resolvers

since they are mapped dominantly to a single PGW region, while those further towards

the lower right corner indicate higher levels of centralization, since they are shared among

multiple PGW regions, with less dominant regions.

In AT&T (Fig. 3.4a), we see that while a large fraction of resolvers use a single dominant

region, a large fraction appear to evenly share resolving duties across 2-5 PGW locations.
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Figure 3.5: Global monthly data traffic and forecast 2014-2021. Monthly mobile data traffic
is grow at a 45% CAGR, exceeding 53 Exabytes by 2021 [45]

In T-Mobile (Fig. 3.4c), we see extreme cases where resolvers are shared across nearly all 21

PGW locations. This analysis reveals that even in cases where only local resolvers are used

by cellular clients, that these can act as poor indicators of a client’s PGW.

3.5 Rise of Mobile Traffic

The inefficiencies in of current replica selection systems are magnified by the explosive growth

of mobile traffic over the past several years. The continued growth of mobile subscriptions,

coupled with the capacity improvements in cellular radio technology, have vastly increased

the traffic demand from mobile devices.

Traffic from mobile devices such as smart phones and tablets has quickly grown over

the past decade. In 2015, the number of active mobile subscriptions topped 7.2 billion,

meaning there are more mobile subscriptions than the global population [35]. For many,

mobile devices are the primary access medium for the Internet. In Vietnam for instance,

while only 34% of citizens own a computer, 82% own a mobile device [86]. That same report

projects the total number of mobile subscriptions exceed 11.5 billion by 2019.

The latest report from Ericsson predicts a 45% CAGR for mobile data over the next five

years [45], illustrated in Figure 3.5. The continued deployment of NGCNs worldwide will
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further the spread of bandwidth intensive and latency sensitive applications such as video

chat and user generated live streaming. It is already observed that users in LTE networks

consume nearly 10 times the traffic as their 3G counterparts [35]. This traffic growth rate is

only expected to increase, with the release of the next-generation 5G wireless, which support

data rates two orders of magnitude greater that cellular technology today.

This increased demand will require an improved effort by CDNs to load balance cellular

traffic in order to not overload individual replica servers. Effective load balancing is achieved

through accurate and fine-grained client localization, meaning the problems we have outlined

in this chapter caused by coarse and inaccurate information will only continue to hinder

CDNs and the clients they serve.

3.6 A Look to the Future

Future improvements to cellular technology will only increase the impact of server selection

on overall performance. The next generation of cellular technology, 5G, is expected to

support one millisecond access latencies with data rates of 100 Gb/s.

This ubiquitous and high speed connectivity is expected to transform both consumer

network services, as well as critical infrastructure. The extremely low latencies are proposed

to power real-time interactive interfaces over cellular connections. Examples of this include...

In addition critical systems are set to use this high speed data link to connect to cloud

services. For instance, many autonomous vehicles systems are designed to implement cloud-

based control – a system which requires latencies in the single milliseconds.

We posit that the improved radio latencies in the upcoming 5G specification, and critical

application which require them, will only increase the need for accurate server selection.

Such low latencies are only achieved by geographically proximal servers.
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Chapter 4

Approach

In this chapter we introduce our approach for representing cellular clients by their assigned

PGW. We begin by making the case for this client proxy, showing that it is fully captures

network distances, and greatly reduces the noise inherent to cellular measurements. We

describe our methodology for the discovery of and client assignment to PGWs from

instrumented mobile vantage points. We next apply this methodology from the data collected

from alice clients and present initial results of this characterization of global cellular network

PGW infrastructure. Last, we apply this principle to content replica selection, selecting

servers based on client PGWs. We highlight the potential benefits of this Gateway-Based

Replica Selection (GBRS) using data collected from alice clients in cooperation with a large

CDN in experimental simulations. We find that GBRS provides near optimal server selection

for cellular clients, providing equal or improved performance over DNS-based selection in all

cases.

4.1 A Case for PGW Representation of Cellular Clients

Cellular PGWs make ideal proxies for cellular client location. PGWs play an essential role

in cellular networks: among their many responsibilities, they act as ingress/egress points

for cellular data networks, manage client billing data, and perform quality of service (QoS)

adjustments. In existing cellular networks, all client traffic must traverse the same PGW for

the duration of a client’s network session, which can last several days in many cases. PGWs
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Figure 4.1: Server latency to AT&T client PGWs compared to client end-to-end latency.
We see a strong correlation between each latency, denoted by the sharp diagonal boundary
formed in the plot. The range of values along the x-axis is due to the larger in cellular radio
latency.

are located at the boundary between the internal cellular network and the public Internet,

making them the closest point of access for network services to cellular clients. We find that

a client’s assigned PGW accurately represents network distances to cellular clients, reduce

variance in network path measurements, and determines inter and intra-network locality.

PGWs Determine Network Latency. Their presence on all paths to and from

cellular clients allow PGWs to be used as proxies for client network location. We validate

this assertion through active measurements from mobile clients and content servers. We

performed symmetric latency measurements between alice clients in the U.S. and a set of

approximately 30 content replica severs from a large CDN. While each mobile client measured

the latency between itself and each server, the servers simultaneously performed a traceroute

to that client’s IP address. We use the latency to the last responding hop as that client’s

PGW latency.

We found server latencies to PGWs correlates strongly to the end-to-end latency between

cellular clients and servers. Figure 4.1 plots this relationship between these two values as a

heat map. The linear boundary formed on the left side of the point cloud is evidence of this
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strong correlation between server latency to clients’ gateways and overall end-to-end latency.

This shows that distances to client gateways are a reliable predictor of overall end-to-end

latency. We utilize this property through our select content replicas based on PGW distance

alone.

The figure also shows the different properties of cellular latency, between radio and core

network latencies, and Internet path latencies. The wide range of values along the x-axis is

evidence of the large variance cellular connections, which do not exist on server’s PGW paths.

We can use the x-intercept of the boundary line to approximate radio and core network

latencies, finding this to be approximately 25 ms for AT&T in the figure. This greater

variance leads to problems for popular methods of end-user performance measurements such

as Javascript-based measurements [20] or commercial measurement platforms 1. PGWs,

in contrast, currently provide a more predictable marker for performance than these client

measurements.

We calculated the path variance of individual server-to-PGW paths, as well as for client

end-to-end paths. For each set of latency measurements between an individual server and

clients in the same /24 prefix, we measured the standard deviation of each distribution.

We find server paths average 5.19 ms of standard deviation, while end-to-end paths average

60.4 ms of standard deviation. Active measurements to PGWs actually improve distance

accuracies since they lack the variable cellular core and radio links.

PGWs Determine Network Locality. Client network locality is important to

understand from the perspective of network services. CDNs use it to find nearby servers

as well as low cost paths to clients. Peer-to-peer services rely on this information to pair

nearby hosts for improved overall performance.

Network locality in cellular networks is entirely derived from PGW location. Users which

are geographically close to each other may be distant in the network due the locations of

1http://www.dynatrace.com , https://www.appneta.com
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clients’ PGWs. For instance, we discovered that Cricket Wireless clients in Boston, MA were

assigned to PGWs in California. A Cricket customer in Boston Skyping between himself and

another Boston resident would incur a network round-trip distance of 12,516 miles! While

this represents an extreme case, our analysis of client to PGW assignment in Chapter 5 found

multiple instances which violate the spatial locality of PGW assignment. Representing clients

by PGWs rather than alternative metrics like geographic locality allows for more accurate

and better performing mobile peer-to-peer services.

In the following section, we present our methodology for using PGWs to represent cellular

client location.

4.2 Gateway Representation of Clients

We posit that representing mobile clients solely by their assigned PGW will greatly simplify

mobile network architecture, and acts as optimal network representations of cellular clients.

The challenges involved in gateway representation are twofold. The first is the accurately

identifying the number and locations of network gateways, and the second is correctly

mapping cellular clients to their assigned gateway. In this section we introduce our

methodology which achieves this dual objective, simultaneously exploring cellular networks

and partitioning clients across found PGWs.

4.2.1 Gateway Clustering Methodology

Our approach leverages the stability of IP-to-PGW mappings, and the coalescence of all

paths at PGWs. Cellular clients are dynamically assigned addresses from the pools of IP

addresses at each PGW. These pools are allocated through carrier-grade NATs (CGNs),

typically collocated at PGW instances [92, 113]. We utilize the aggregation of paths at

cellular PGWs, since all traffic must traverse a client’s assigned PGW. We use these relatively

static mappings of IPs to PGWs, along with heuristically detected PGW router addresses

to cluster cellular networks into PGW partitions.
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Figure 4.2: Gateway clustering methodology. Cellular client IP addresses are clustered to
cellular gateway routers through community detection algorithms.

Our clustering methods utilize active measurements from instrumented mobile devices,

capturing the relationship between client IP addresses and detected PGW routers, and

partitioning them using graph clustering algorithms. An overview of this process is illustrated

in Figure 4.2. We describe our clustering methodology in detail below.

1. Client Data Collection. From instrumented mobile clients connected to cellular

interfaces, we perform active measurements to collect public IP addresses and

traceroute data. Public IP address are recorded from a public IP echo service for IPv4

(and IPv6 addresses when available). Clients perform traceroutes to popular content

destinations (both IPv4 and IPv6 when available) from large content delivery networks

or content providers. Clients report this tuple of (IP4, IP6, traceroute4, traceroute6)

to a centralized data repository.

2. Gateway Router Extraction. We then extract gateway router IP addresses from

the traceroutes collected from mobile clients. These router IP addresses are identified

using a set of heuristics detailed below.

Step 1. Determine provider primary ASN. Each provider’s ASN is determined by

calculating the ASN with the largest fraction of reported client IP addresses for that

provider from our entire dataset.
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Step 2. Filter measurements by provider ASN. Discard measurements where client

IP addresses do not match the provider ASN.

Step 3. From client traceroutes, determine the last hop which is within the

MNO. This includes private address space, addresses allocated for CGN use (e.g.

100.64.0.0./10), and addresses within each provider’s ASN. These final interior hops are

marked as that trace’s gate router. In cases of “mixed ASes”, where an AS encompasses

cellular clients, broadband customers and possible transit routers – as is the case with

T-Mobile in Germany (AS3320) – we remove the provider ASN from the set of suitable

gateway router addresses.

3. Graph Construction. Next, we construct a bipartite graph between cellular IP

addresses one one side of the graph, and gateway router IP addresses on the other for

each cellular provider. Edges connect co-occurrences of cellular IP, and gateway router

IP addresses in each client reported tuple. Edges are weighted by the total number of

such occurrences in our dataset.

4. Gateway Clustering. We cluster these operator graphs into independent gateway

regions, consisting of sets of client IP addresses and their associated gateway routers.

Unfortunately, due to the noise inherent in mobile measurements from network mobility

and standard traceroute noise, simple connected component clustering is unsuitable for

this domain. Instead, we use community detection algorithms from Clauset et al. [36]

to generate these clusters. These community detection algorithms generate group

nodes together by their modularity, or interconnectedness, and automatically select

the appropriate number of clusters for each operator.

The algorithm produces for each mobile operator a set of clusters, composed of unique sets

of client IP addresses, and gateway router addresses. In many operators, multiple PGWs are

collocated within the same facility. Each cluster represents these collocated sets of PGWs.
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Figure 4.3: Number of detected gateway clusters from our global measurements

We apply our clustering methodology to over two years of mobile data collected from

alice clients. Our data contains measurements in 94 mobile operators (both MNO and

MVNO) around the world, with a bias towards U.S. MNOs. We use this data to perform a

preliminary characterization of global MNO infrastructure, looking at the number of PGWs

per MNO. Due to the reliance on instrumented mobile clients, and the independence of PGW

partitions requiring vantage points in each for detection, our measurements do not represent

complete coverage of these networks. Instead these indicate a far lower bound for PGW

instances in these operators.

Figure 8.8 displays the detected number of PGW clusters from our methodology for

these 94 mobile operators, ordered by detected PGWs. We discovered a total of 394 unique

PGWs across all measured operators, yet with a skewed distribution. We found less than

five PGWs for over two thirds of the measured MNOs, and ten or less in all but 7 MNOs.

The MNOs with the two largest numbers of detected PGWs, AT&T with 37 and Verizon

with 39, account for 20% of total detected gateways.
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Figure 4.4: Exploration of clustering parameters for various subnet aggregations for both
client IP, and gateway router subnets.

4.2.2 Clustering Sensitivity

We next explore the sensitivity of our clustering across different aggregation levels of both

client IP and gateway router subnets. For the four largest U.S. MNOs, we compare our

clustering algorithm across this parameter space. Larger aggregate subnets trade potential

losses in accuracy for greater network coverage.

We explore this parameter space by performing our clustering algorithm across different

subnet values applied to our input measurements. In each iteration, client IP addresses were

added to operator graphs according to different subnet masks. Similarly gateway routers were

added with the chosen PGW mask. The results are plotted in Figure 4.4, which displays the

number of clusters detected for client subnets ranging from /32 to /24, and PGW subnets

across that same range.

The figure shows that at least up to /24 subnets, aggregating client prefixes results in

little change to detected clusters. It is unlikely that MNOs would allocate IP pools smaller

than /24 prefixes, which is reflected in our results.

We find that gateway router subnets can have a large impact on the numbers of detected

gateway clusters. We find that the aggregation of gateway routers to subnets larger than

/30s pose too large a risk for inaccuracy.
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Operator Client /24 Client /26 Client /28 Client /30

Sprint 0.96 0.94 0.95 0.99

T-Mobile 0.76 0.72 0.87 0.90

AT&T 0.94 0.94 0.95 0.95

Table 4.1: F1 scores for gateway clustering compared to ground-truth allocations for three
large U.S. operators. We display the scores across different client subnet sizes used during
clustering. We find that smaller client IP subnets result in more accurate clusterings.

4.2.3 Clustering Accuracy

We evaluate the accuracy of our gateway clustering algorithm using ground truth information

obtained from two large U.S. MNO: Sprint, T-Mobile, and AT&T. The ground truth

we obtained contains IP CIDRs labeled with the location of their currently assigned

gateway. Unfortunately, the output of our clustering is unlabeled, consisting only of cluster

memberships. For each of our clusters, we assign labels to each entire cluster based on the

largest fraction of ground-truth labels for contained IP addresses.

Using these labeled clusterings, we calculate the accuracy of our clustering using the F1

score, a common metric for measuring classifier accuracy. We first calculate the precision,

precision = tp
tp+fp

, and recall, recall = tp
tp+fn

, for each cluster. The F1 score is calculated as

shown below.

F1 = 2 ∗ precision ∗ recall
precision + recall

(4.1)

For each operator, we compared the accuracy of our gateway clusters to these ground

truth regions. Table 4.1 displays the F1 scores for our clusters in each of the three operators.

The results highlight the high overall accuracy of our clustering method, achieving F1 scores

of 0.99, 0.90, and 0.95 for Sprint, T-Mobile and AT&T respectively. These high F1 scores

verify that our method is accurate across different and heterogeneous MNOs, and can be

considered a general method for clustering all MNOs.
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We performed multiple clusterings for these three operators, varying the size of client

subnets used during graph creation, choosing client subnets between /24 and /30 in length.

Table 4.1 displays the results for each of these efforts. While we had assumed that larger

client subnet aggregation would increase cluster accuracy by overcoming the noise of many

mobile traceroute measurements, we in fact found the opposite. It appears that measurement

noise has the effect of joining disparate clusters at greater aggregation, rather than becoming

less significant. While there are more total incorrectly mapped subnets with /30 aggregation,

it is much smaller relative to the total overall numbers.

4.3 Gateway-Based Replica Selection

To highlight the benefits of PGW representation for cellular clients, we developed a system

for content replica selection which selects servers based on the location of a client’s assigned

gateway. We call this approach Gateway-Based Replica Selection (GBRS). For the purposes

of content distribution and replica selection, GBRS clusters cellular clients into ideal load

partitions across IP space, and provides near-optimal network landmarks for each cluster. We

evaluate the potential benefits of GBRS with experimental simulations using alice clients

in cooperation with a large CDN. Our results show that GBRS improves upon existing

methods in nearly all cases, and can decrease latency to selected replicas by over 60% in

certain operators.

In GBRS, we first cluster cellular clients by their assigned PGWs using the methods

described in the prior section. In addition to the list of IP CIDRs contained within them,

each cluster contains an IP address which is representative of each cluster’s PGW location.

This IP address is used as a network landmark for active measurement (e.g. ping and

traceroute) by CDNs. All cellular clients GBRS are therefore represented by their cluster

landmark.
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GBRS holds many advantages over existing replica selection systems such as DNS-based

redirection. GBRS clustering is ideal for existing cellular network architecture, which divides

clients among a number of isolated partitions These partitions are bounded by PGWs,

meaning that all inbound and outbound paths of clients in the same partition must traverse

the same PGW, regardless of server or client location. PGWs also represent the closest point

of access to cellular clients; one can do no better than selecting a content replica adjacent

to a client’s gateway.

In cooperation with a large CDN, we show the effectiveness of GBRS using measurements

from live mobile clients distributed across the U.S., and compare its performance to existing

DNS-based approaches. We performed active measurement experiments from alice clients

within the four largest U.S. MNOs. With data obtained from the CDN, we preselected a

set of approximately 30 replica servers at geographically diverse locations throughout the

U.S. or each of the four MNOs. In each case, preference was given to servers located within

operator networks or at operator points-of-presence (PoPs). alice clients measured the

network latency to each of these replica servers approximately every hour. We additionally

performed a DNS resolution to a popular website hosted by this CDN, and measured its

network latency to act as our baseline for existing state-of-the-art systems. During the

same time period, we directed all the chosen replica servers to measure the latency between

themselves and each PGW cluster’s landmark IP address.

Using these set of experiments we simulated GBRS replica assignment and compare

its performance to deployed systems. GBRS assignments were chosen based on the lowest

average latency between replica servers and cluster landmark IP addresses. We compare the

latency of GBRS selected replicas to those selected by DNS-based approaches. Figure 4.5

plots the performance of GBRS against existing systems for clients in AT&T, Verizon

Wireless and T-Mobile.
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The left side of each figure plots the performance of existing CDN assignments, “Chosen

Replica”, GBRS assignments, “Tiller”, and the minimum RTT measured to any server during

each experiment “Optimal”. The figure highlights the benefits of GBRS, showing improved

performance to existing systems in nearly all cases. Servers selected by existing DNS-based

approaches are consistently 5-10 ms more distant than GBRS selections. These seemingly

small latency differences between replica choices are accumulated throughout the hundreds

of round trip times needed for popular web pages.

Similarly, the right side of the figures plots the relative performance of server selection,

plotting the percent difference in latency between selected servers for each method and the

“Optimal” seen. GBRS provides optimal mapping in nearly 80% of cases, compared to the

40% of those achieved by DNS-based selection. In the top 20th percentile of cases, GBRS

selected replica servers which were upwards of 60% closer.

4.4 Summary and Contributions

In this chapter we made the following contributions:

• we introduced our approach for representing cellular clients by their assigned PGW.

• We presented our case for this client proxy, showing that client PGWs are reliable

predictors of end-to-end latency, and this representation greatly simplifies locality for

network services.

• We describe our methodology for the discovery of and client assignment to PGWs from

instrumented mobile vantage points. We next apply this methodology from the data

collected from alice clients and present initial results of this characterization of global

cellular network PGW infrastructure.

• We apply this principle to content replica selection, selecting servers based on client

PGWs. We highlight the potential benefits of this Gateway-Based Replica Selection
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(GBRS) using data collected from alice clients in cooperation with a large CDN in

experimental simulations. We find that GBRS provides near optimal server selection

for cellular clients, providing equal or improved performance over DNS-based selection

in all cases.

We implement this approach through tiller , our system for cellular network exploration

from mobile vantage points. We detail the design and implementation of tiller in

Chapter 7.



66

20 30 40 50 60 70 80
Latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Chosen Replica

Optimal

Tiller

20 0 20 40 60 80 100
End-to-End Latency % Difference

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Chosen Replica

Tiller

(a) AT&T.

20 30 40 50 60 70 80
Latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Chosen Replica

Optimal

Tiller

20 0 20 40 60 80 100
End-to-End Latency % Difference

0.0

0.2

0.4

0.6

0.8

1.0
C

D
F

Chosen Replica

Tiller

(b) Verizon.

20 30 40 50 60 70 80
Latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Chosen Replica

Optimal

Tiller

20 0 20 40 60 80 100
End-to-End Latency % Difference

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Chosen Replica

Tiller

(c) T-Mobile.

Figure 4.5: Absolute and relative network latency to Akamai replica servers for the three
largest U.S. MNOs. The figure plots the given replica performance against the measured
optimal replica, and the mapping provided by GBRS. GBRS provides equal or better
performance in nearly all cases, and a 60% improvement in latency in 20% of cases.
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Chapter 5

Cellular Infrastructure Characterization

5.1 Overview

This chapter presents a characterization of existing cellular infrastructure, with a particular

focus on key structural components – DNS and packet gateways – since they have the largest

impact to CDNs. We characterized existing cellular DNS infrastructure with experiments

from alice clients. Our findings reveal cellular DNS to be a poor proxy for client location,

resulting in suboptimal selected replica servers. Cellular operator’s use of (i) indirect

resolution methods, (ii) inconsistent client-to-resolver assignment, and (iii) opaque resolver

infrastructure, all challenge existing DNS-based replica selection systems.

We argue that instead, packet gateways should be used as location proxies for cellular

clients. Since they route all traffic to and from assigned cellular clients, PGWs represent the

closest point of access between clients and the greater Internet. We present our techniques

for identifying and locating cellular PGWs, and determining a client’s assigned PGW based

on their public IP address. We present our characterization of PGW instances for the four

largest U.S. MNOs showing the continued expansion of cellular infrastructure. We motivate

our approach through our longitudinal results, which highlight the loose locality of client

assignment to packet gateways, for which our approach is the only accurate way to determine

optimal performance.

The contributions of this chapter are summarized as follows:
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• We present results from our exploration of cellular LDNS infrastructure (§ 5.2).

We find that all investigated operators utilize indirect resolution methods which

challenge existing DNS-based replica selection. We show client-resolver mappings to be

inconsistent among cellular clients, and highlight its impact on replica mappings. We

investigate the resolution performance and distance of public DNS services to cellular

clients, longer resolution times than operator resolvers, but with much shorter tail

performance.

• We present results from our investigation into PGW locations for the four largest U.S.

MNOs (§ 5.3). We introduce our techniques of mapping clients to these instances based

on their public IP address, and show the heterogeneity in PGW subnet allocation across

operators.

• We present our longitudinal results from alice clients looking at the dynamics of

network assignment over time (§ 5.4). We find that certain operators employ weak

locality between clients and PGWs.

5.2 Cellular DNS

The domain name service (DNS) is a critical infrastructure service for nearly all networked

activity on mobile devices, translating human-readable domain names into network locatable

IP addresses. DNS is also the most commonly relied upon method for client localization in

content replica selection [75]. An understanding of cellular DNS services, and its performance

for both hostname resolution as well as client localization for replica selection, are important

for evaluating the effectiveness of existing content delivery systems.

Our investigation into cellular DNS revealed several differences from assumed DNS

behaviors, each of which impact the effectiveness as a content replica landmark. We found

that operators utilize resolution methods which increase the distance between clients and

their local DNS resolvers, and that these client-to-resolver mappings are inconsistent over
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Provider Client External Pairs Consistency %

Sprint 19 22 31 64.1
Verizon 27 27 27 100
T-Mobile 3 32 32 7.3
AT&T 5 43 43 12

SK Telecom 2 24 24 12
LG U+ 5 80 80 6.2

Table 5.1: Number of LDNS Pairs seen by our mobile clients. Network structure and
configuration varies by network in both the number of client facing and external facing
resolvers, as well as the consistency of their pairings.

time. We investigate the use of public DNS in cellular networks, finding both its resolution

performance, and distance to clients inferior to client’s local DNS options.

5.2.1 Operator DNS Characterization

In this section we present the results of our characterization of the DNS infrastructure of

four large U.S., and two large South Korean MNOs. To determine the resolver structure, we

analyze both the DNS server configured on the client, which we call the Client Resolver, and

the DNS server seen by a authoritative DNS (ADNS) run by our research group, which we

call the External Resolver. alice clients periodically resolved hostnames through our ADNS

to obtain their current external resolver, and performed latency measurements to both client

and external resolvers.

We recorded the grouping of observed client and external resolvers to understand the

configuration and dynamics of cellular infrastructure and their DNS resolvers. We refer to

each grouping as an LDNS Pair. We calculate the consistency of these resolver pairings as

the percentage of our measurements in which the client and external resolvers are paired.

The consistency of pairings captures the stability of mappings between clients, their locally

configured resolver, and the external facing resolver. For example, a client resolver equally

load balanced between two external resolvers would have a consistency of 50%. A summary

of each operator’s DNS infrastructure is given in Table 5.1.
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Within each operator, we detected the use of indirect resolution in cases where the client

resolver and external resolver are different. An indirect resolver structure typically indicates

greater distances between a client and the resolver seen by the CDN [99]. We detected

indirect resolution techniques in all of the operators investigated. These take the form of (i)

anycast resolvers, (ii) LDNS pools, and (iii) a tiered resolver hierarchy.

With anycast resolvers, all clients are assigned the same DNS resolver IP address

regardless of their location. DNS queries are directed toward nearby DNS resolvers within

the cellular network through anycast routing.

We found the use of anycast DNS within AT&T’s and T-Mobile’s networks. Both carriers

showed a limited number of configured DNS resolver addresses on client devices with a

significantly larger number of publicly visible addresses indicating the use of IP anycast for

resolvers. For example, a single AT&T address (172.26.38.1) in our measurements shows

mapping to 40 external resolver addresses.

LDNS pools, as previously described by Alzoubi et al. [8], consist of a collection of servers

which load balance DNS requests within themselves. Unlike Alzoubi et al., who detected the

presence of LDNS pools by seeing different resolvers for consecutive queries responding to a

CNAME entry, we were able to identify LDNS pools by directly comparing the configured

resolver on the mobile device with the IP address seen by our ADNS.

We discovered the presence of LDNS pools within both South Korean operators. In each

of these cases, all resolvers are public IP addresses, and all have pairs in which a client

facing resolver is observed paired with multiple external resolver addresses. For SK Telecom

and LG U+, we observed 2 and 5 client configured LDNS resolver addresses and 24 and 89

publicly visible addresses, respectively. For these carriers, each client and external pair are

contained within the same /24 prefix.

Tiered DNS servers exist as two separate public IP addresses, yet with one client resolver

and one external facing resolver. These paired resolvers also differ in latency and traceroute
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Figure 5.1: Client latency to internal and external resolver locations. Ping latencies in
Sprint, T-Mobile and AT&T reveal resolvers which are located in separate locations, with
external resolvers located further away from clients. Although no external resolvers in either
Verizon’s or LG U+’s networks responded to probes, client and external resolvers exist in
separate ASes in the case of Verizon.

hops from client probes. Tiered resolvers may indicate a hierarchy of DNS resolvers within

that operator’s network, or a centralized resolver structure, however, we are only able to

observe the end points from our experiments.

We observed the tiered resolvers in Sprint’s and Verizon’s networks. In the case of

Sprint, each resolver maintains a fairly consistent mapping between client and external

resolvers, with consistent pairs 64% of the time. Verizon was the only cellular operator

which maintained a 100% consistency between client and external facing resolvers. While

both resolver locations were public IP addresses, we were unable to measure the distance

between these resolver pairs due to unresponsive probes to external resolvers. However, each

LDNS pair within Verizon exists in different ASes: 22394 for client facing resolvers and 6167

for external facing resolvers.
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5.2.2 Cellular Resolver Distance

An important aspect of DNS in cellular networks is the network distance between clients and

their corresponding resolver infrastructure. As shown in the previous section, cellular DNS

often consists of multiple, hierarchical resolvers. Our vantage point at the mobile client, as

well as the ADNS, allows us to capture characteristics of both the client resolver configured

on each device, as well as the external resolver visible from our ADNS.

We measure the latency between these two resolvers by directing clients to ping both

sets of resolvers during each experiment. Distance to client facing resolvers is important

for resolution performance, while distance to external facing resolvers has implications on

content replica selection [85]. Figure 5.1 plots the cumulative distribution of latencies to

clients’ configured client facing resolver and external facing resolvers.

We find evidence of hierarchical resolver infrastructure in three of the four U.S. operators.

Resolvers in T-Mobile, Sprint and AT&T showed signs of distance between resolvers, with

external resolvers up to 20 ms further away in many instances. We see cases where

both resolvers have nearly equal latencies indicating either identical machines or collocated

resolvers, as is the case with SK Telecom. External resolvers for both Verizon and LG

U+ failed to respond to client measurements, preventing their characterization. While we

were unable to determine structural properties from latency measurements in Verizon, we

nonetheless infer a DNS hierarchy within Verizon since client and external resolvers reside

in separate ASes.

5.2.3 Cellular DNS Performance

We now look at the resolution performance of each mobile client’s DNS provided from their

cellular operator. We find DNS performance under LTE to be relatively consistent and

comparable to DNS performance on wired broadband.
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Figure 5.2: DNS resolution time for US
carriers measured from client devices for the
4 major US cellular providers.
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Figure 5.3: DNS resolution time for South
Korean carriers measured from client devices
for 2 major cellular providers.

Figures 5.2 and 5.3 present, respectively, CDFs of resolution time for each of the four

US carriers, and for the two South Korean carriers we studied. The figures show resolution

performance times between 30 and 50 ms for carriers in both markets. These numbers are

comparable to resolution times within the wired Internet [3] for the lower 50th percentile.

Both South Korean carriers and T-Mobile exhibit bimodal behavior above their 50th

percentile, and the remaining operators show a long tail of resolution times above the 80th

percentile. To determine measure the impact of resolver cache on resolution time tails, we

conducted back to back queries, measuring the difference between the first and second DNS

queries. The results, presented in Figure 5.4, show cache misses accounting for additional

delays approximately 20% of the time, similar to the bimodal behavior seen in Figures 5.2

and 5.3.

5.2.4 Cellular Resolver Opacity

Unlike related studies characterizing the behavior and structure of wired networks DNS

resolvers, measurement analysis of cellular DNS resolvers can only be carried from clients

within their networks. This is because most cellular operators employ NAT and firewall

policies that prohibit externally generated traffic from their network [113].
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Figure 5.4: Cache performance for clients local DNS resolvers combined for each of the four
US carriers. Although the hostnames we looked up were very popular, we see DNS cache
misses for nearly 20% of DNS requests on cellular. This is a product of the short TTLs used
by CDNs, and explains the bimodal distribution, and long tails of resolution times seen in
Figure 5.2.

Provider Total Ping Traceroute

Sprint 20 0 0
Verizon 34 32 0
AT&T 47 3 0
T-Mobile 40 40 0

SKTelecom 24 0 0
LG U+ 80 0 0

Table 5.2: Number of external DNS resolvers able to be reached externally by either ping or
traceroute probes.
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We tested the external reachability of cellular network DNS resolvers by launching

ping and traceroute probes from our university network to the observed external resolvers

(Sec. 5.2.1). Table 5.2 presents a summary of our results. Of the six major cellular carriers

we profiled, only Verizon and T-Mobile resolvers responded to a majority of ping requests.

In the case of Sprint and the two South Korean carriers we studied, no resolvers responded

to any of our ping probes. No traceroutes were successfully completed to any of the resolvers

we investigated.

In contrast, all the probes launched by our mobile clients were able to measure some

if not all of the DNS infrastructure of these carriers. Clearly the known opaqueness of

cellular networks extends to the cellular DNS infrastructure and, thus, any analysis of such

infrastructure requires the participation of devices within each cellular network.

5.2.5 Client resolver inconsistency

In this section we analyze the consistency LDNS resolver assignment for clients in each

cellular provider. The consistency (or stickiness) of a device’s LDNS resolver can significantly

impact the effectiveness of CDNs, due to the reliance of a client’s LDNS resolver as a client

locator. We recorded the occurrence of LDNS Pairs, consisting of pairings of (client resolver,

external resolver), seen by clients over time. Our analysis revealed inconsistency between a

client-to-resolver mappings in all cellular providers investigated.

Figure 5.5 shows the LDNS pairs observed by each device over time, enumerated based

on the order of appearance in our measurements. The figure displays that the type of

inconsistency of client-to-resolver mappings varies between operators. The consistency of

mapping for Sprint and Verizon clients, for instance, show relatively stable mappings while

the mappings for the remaining carriers appeared to be very unstable.

Unstable mappings are not all the same, however, as can be seen when contrasting T-

Mobile, AT&T and the two South Korean carriers. In the first two, changes in resolver
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Figure 5.5: Number of external resolvers observed by a client in each of the networks we
looked at. Bottom: number of external resolver IP addresses. Top: number of unique /24
prefixes observed by resolvers. Client DNS resolvers change not just within localized clusters,
but span multiple /24 prefixes over time.

IP addresses are typically accompanied by changes in the resolvers /24 prefix. In contrast,

while clients in the two South Korean carriers experience more frequent changes in resolver

IP addresses, the alternative resolvers are contained within one or two /24 prefixes. For

example, a client within LG U+’s network witnessed over 65 external resolver IP addresses

within a two week period, all of which were within only 2 /24 prefixes.

5.2.6 Impact on CDN Replica Selection

We now explore the impact of inconsistent resolver mappings on replica server selection. For

each mobile website in our study, we look at the number of replica IP addresses returned,

and how often each replica is chosen, for each resolver /24 subnet in each carrier. For the

selected DNS resolver, we construct a map of < replicaIP, ratio > pairs capturing, for each

replica server, the server IP address and the fraction of time that replica was used:
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Figure 5.6: Cosine similarity of replica servers for buzzfeed.com between resolvers within the
same /24 prefix, and those in separate prefixes. Resolvers within the same /24 prefix see very
similar sets of replicas (cosine similarity values close to one), and those in separate prefixes
see high set independence (values close to zero). Clients changing resolver /24 prefixes are
directed towards completely different sets of replica servers.

replica map =< (ip1,
ip1seen

total seen
), ..., (ipn,

ipnseen

total seen
) >

We then us cosine similarity [29,109] to quantify the similarity of replica servers mapped

to each DNS resolver. The cosine similarity between two vectors A and B quantifies the

degree of overlap between two vectors by computing the dot product of the vectors and

dividing by the product of their lengths:

cos sim =
A ·B
‖A‖‖B‖

Given our vectors of non-negative probabilities, cos sim ranges from 0 to 1. When cos sim =

0, the sets of redirections have no clusters in common. Values greater than 0 indicate that

some clusters are seen in both sets; cos sim = 1 means that the sets of clusters seen are

equivalent.
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We highlight the significance of resolver inconsistency by measuring the similarity between

replicas sets assigned to resolvers. We computed the cosine similarity of replica vectors for

every resolver in a carrier’s network.

Figure 5.6 shows the cosine similarity (overlap) between replica sets for DNS resolvers in

the same /24 prefix, and those in different prefixes. We see large degrees of independence

between sets from differing /24 prefixes, with over 60% of sets having a cosine similarity of

0, meaning there is no overlap at all between replica vectors. This high degree of replica

set independence becomes a significant issue since, as we showed in Section 5.2.5, cellular

clients change LDNS resolvers frequently and across /24 prefixes potentially leading to large

performance variability.

The relatively small numbers of replica servers mapped to each cellular DNS resolver,

particularly when compared to the diversity of typical CDN-resolver mappings in wired

networks [109], may be a product of cellular network opacity (Sec. 5.2.4). CDNs typically

aggregate client resolvers behind traceroute divergence points and map clients based on

active measurements to these points [74]. The opacity of cellular networks, which restricts

the reach of traceroutes, calls into question the effectiveness of this approach. Looking at

the replica maps for each cellular operator and comparing cosine similarities, it appears that

CDNs are strictly mapping replicas to resolver /24 prefix. The inconsistency of resolver

mappings means clients are sent to entirely different replicas for each resolver assigned.

5.2.7 Public DNS in Mobile Networks

In this section we investigate the resolution performance of public DNS services such as

GoogleDNS and OpenDNS, as well their impact on CDN replica selection. Despite the fact

that some cellular operators prohibit customers from configuring different DNS resolvers,1

1Mobile devices must be “rooted” in order to change these settings; and, while no longer illegal in the
United States, rooting voids the device’s warranty in most cases.
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Provider Local GoogleDNS OpenDNS

Sprint (all IPs) 24 122 38
Verizon (all IPs) 37 135 41
T-Mobile (all IPs) 38 151 49
AT&T (all IPs) 47 160 38
SKTelecom 25 33 7
LG U+ 80 47 6

Sprint (/24) 16 21 9
Verizon (/24) 37 13 7
T-Mobile (/24) 21 15 8
AT&T (/24) 27 15 6
SKTelecom (/24) 4 5 2
LG U+ (/24) 3 6 1

Table 5.3: Total number of DNS resolver IP addresses seen from our ADNS for each provider
and resolver group. While public resolvers have more total IP addresses, most are located
within the same /24 block. In addition we see more /24 blocks for local resolvers than public
ones, with the exception of Sprint.

our characterization of public DNS services provides a valuable benchmark against which to

compare the performance and localization effectiveness of different cellular operators DNS.

We characterize the number of resolvers seen from clients within each mobile provider.

Table 5.3 shows the number of unique resolver IPs seen from our clients on each mobile

provider. We see that the anycast public DNS resolvers give significantly higher numbers

of unique IP addresses to clients (GoogleDNS has over 4 times the IP addresses than the

cellular DNS providers for US carriers). This is partly due to the architecture of these public

DNS resolvers. For instance, according to their public documentation, GoogleDNS consists

of 30 geographically distributed /24 subnetworks [58].

Accounting for the clustered nature of these public DNS resolvers, the bottom half of

Table 5.3 shows the number of unique /24 subnetworks seen for each resolver. By aggregating

by /24 subnetworks, we see relatively equal numbers for all three resolver types across each

cellular provider, especially when compared to the large disparity in IP addresses shown

above.
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Figure 5.7: Client latency to public DNS resolvers, GoogleDNS and OpenDNS, compared to
their local operator provided DNS resolvers.

As in wired networks, the increased distance to public DNS resolvers could significantly

impact the web performance experienced by clients [85]. Using the methods described in

Section 5.2.1, we measure the distance to both public DNS resolvers, and compare it with

that of the cellular operator provided DNS. Figure 5.7 present CDFs of these measured

latencies for the different carriers in ours study.

The figure shows that for the carriers whose resolvers responded to our probes, the cell

DNS is commonly closer to clients than the public resolver. This is not surprising since all

public DNS resolvers are outside of cellular networks, and resolution requests would have

to leave the cellular network to complete. For the US carriers, the cell DNS resolvers is, at

median, 10-25 ms closer than the best public DNS resolver. For South Korean operators,

public DNS resolvers taken nearly twice for resolution as long at the median. On the other

hand, the figure also shows the greater performance consistency of public DNS services and

a long tail of resolution times from cell DNS. In the case of T-Mobile, public DNS resolvers

performed equal or better over 40% of the time.

In addition to analyzing the observed structure of public DNS and its relative perfor-

mance, we also explore the consistency of client-resolver mappings. We focus on Google
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Figure 5.8: Resolver consistency for GoogleDNS for users in each carrier. It is interesting to
note that even though GoogleDNS’s IP address (8.8.8.8) is anycast, users see large variability
in the /24s they are sent to. Each /24 for GoogleDNS represents one of thirty distinct
geographic locations for their services.

Public DNS, comparing the external resolver IP addresses assigned to a single client over

time, in each of the carriers in our study. Figure 5.8 presents this both for DNS resolvers and

their /24 prefix. As the figure shows, despite relying on anycast, Google users are directed

toward multiple /24 blocks of resolvers at different geographic locations, given that each /24

block represents one of the 30 geographically distinct resolver clusters. This inconsistency

could be the results of the widespread use of tunneling (e.g., via MPLS).

Figure 5.9 shows domain resolution times for the device’s locally configured DNS along

with public DNS resolvers GoogleDNS and OpenDNS. Our results show that in a majority

of cases, the locally configured resolver provides faster domain name resolutions. While the

name resolution times are greater on average for public DNS resolvers, they exhibit lower

variance in response times and have a shorter tail than all cellular operators we investigated.
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Figure 5.9: Domain resolution times for the cellular operator’s provided DNS compared
with public DNS resolvers GoogleDNS and OpenDNS. Cellular operator DNS offers lower
resolution times when compared to public DNS services.

In general, our results are consistent with those previously reported in [3, 85], where

public DNS resolvers were located further away from clients, and therefore incurred longer

domain name resolution times due to the larger round trip times to the resolvers themselves.

5.3 Cellular Gateways

Cellular packet gateways (PGWs) are critical infrastructure components for cellular networks

and their clients. Since they route all traffic to and from assigned cellular clients, PGWs

represent the closest point of access between clients and the greater Internet.

We argue that PGWs should be used as location proxies for cellular clients in network

services. Understanding the locations of cellular clients is useful for (i) content replica

selection, (ii) performance debugging of cellular clients, (iii) peer-to-peer locality. As

previously shown in Section 3.4, common heuristics like a client’s LDNS server are less

effective locators in cellular networks, and often are shared by clients in multiple PGWs.

Utilizing PGWs for network services faces two main challenges: (i) identifying PGW

locations in cellular infrastructure and (ii) determining PGW assignments of cellular clients.

We develop a clustering technique which solves each of these challenges, improving the
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accuracy of identification and geo-location, while simultaneously mapping clients to these

PGWs.

We present our techniques for identifying and locating cellular PGWs. We posit that

cellular IP addresses can be used to accurately identify PGWs, and present a novel clustering

method which groups client, and PGW IP addresses at collocated facilities. We show

that this clustering improves accuracy and reduces noise in mobile measurements, while

simultaneously discovering IP assignments to each PGW.

Using the results from this clustering, we present our characterization of PGW instances

for the four largest U.S. MNOs. We find large differences PGW configurations and allocation

patterns between operators, both in the number and size of subnets, as well as spatial

proximity and locality of user assignment.

5.3.1 Identifying Cellular Gateways

Discovering PGW locations is challenged by the opacity of cellular networks, and the growing

cellular infrastructure. We expand upon prior work to detected PGW addresses, from work

using the first public IP hop of client traceroutes [98, 117], to methods tuned for specific

operators [120]. We extend these simple heuristics, finding a general method to account for

the large variety of cellular network topologies and policies.

We identified PGW IP addresses using outbound traceroutes from alice clients,

using heuristics to identify PGW locations. We directed instrumented clients to perform

traceroutes towards major content delivery networks such as Akamai and Edgecast, as well

as large content providers such as Google and Facebook. This dataset contains only IPv4

traceroutes since Android did not have native IPv6 traceroute capability until version 4.4.

However, client PGW assignment remain the same for both IPv4 and IPv6 networks.

For outbound traceroute, we look for changes in ASes to denote PGW instances.

Specifically we look for changes in IP addresses from the first responding hop, either with



84

Operator Num. PGW Num. Client
IPs /24s

AT&T 99 42
Sprint 89 36
T-Mobile 199 70
Verizon Wireless 162 625

Table 5.4: Results from our initial exploration of cellular PGWs.

differences in the ASN, changes between private and public addresses space, or changes

within private address space (e.g. shifting from 10.0.0.0/8 to 172.16.0.0/16 addresses). We

take the final hop in the initial network to be the PGW. For example, if initial network hops

are in private address space, we take the final private hop as the PGW. We find that this

general heuristic in fact captures a wide range of MNO operator configuration.

Using the heuristics described above, we first discovered the overall number of detected

PGWs in the four largest U.S. MNOs. We then present our attempts to locate each instance

using state-of-the-art IP-geolocation databases.

In total, we discovered 89 gateway IP addresses within Sprint’s network, 162 within

Verizon Wireless, 99 within AT&T, and 199 in T-Mobile’s network. These results are

summarized in Table 5.4. A large number of these addresses were private IP addresses. For

instance, in the AT&T case, 77 of the 99 (77%) gateways detected were private addresses.

We found similar high fractions for Sprint, where 49 out of 89 gateways (55%) were private,

as were all of T-Mobile’s 199 gateways. Verizon showed a slightly different configuration

with no private IP addresses in its infrastructure, with all internal hops within ASN 6167.

Many of these PGW IP addresses are located within the same data center, therefore

we initially tried group by geographic location. To determine the locations of these PGW

instances, we attempted to geo-locate each of the gateway IP addresses identified by our

traces. Since many of our detected PGW IP addresses are in private address space, we used

geographic information from adjacent hops in these cases. For each gateway IP address and



85

(a) AT&T. (b) Sprint.

(c) T-Mobile. (d) Verizon.

Figure 5.10: Determined PGW locations from geoIP databases. Simply geolocating detected
PGW addresses is too inaccurate to determine the numbers, and locations of PGW instances.

its adjacent hops, we averaged the latitude and longitude given using Akamai’s Edgescape [5]

geo-location database.

We found that many of these address sets have poor and inconsistent geographic

information. We illustrate this by plotting the average geographic coordinates of each

detected PGW, displayed in Figure 5.10. The large number of unique locations of PGW

addresses, and their high variance, highlight the coarse and inconsistent location information

in existing databases. Both T-Mobile and Verizon show large numbers of PGW locations

evenly distributed throughout the country. These inexact locations make it difficult to

determine the numbers of distinct PGW instances. In Verizon, for instance, the Northeast

region of the U.S. appears as a single large cluster of points.
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In order to overcome the limitations of this näıve mapping effort, and to simplify the

localization problem, we attempt to cluster together traces from client at collocated PGW

instances.

Clustering PGWs. Exploiting the deployments of carrier grade NATs in cellular

networks, and the relatively stable mappings of client IP subnets to these locations, we cluster

collocated PGW instances by client IP address. We outline our clustering methodology

below:

1. Mobile clients record their public IP address from an IP echo server, and perform

traceroutes to their public IP address, yielding their assigned PGW address. The

latter sends traceroutes which terminate at the client’s current PGW.

2. We aggregate these measurements from all clients, and construct a bipartite graph for

each operators with client IP addresses on one side and PGW IP addresses on the

other. The client discovered pairs of < client ip, pgw ip > form the edges between

nodes.

3. We cluster each graph using the greedy community detection algorithm from Clauset

et al. [36], generating clusters of PGW regions, and the client IP addresses contained

within them. While connected components initially seem to fit this need, we

found small amounts of noise in our data cause connected components to greatly

underestimate the numbers of clusters.

Operator PGW Characterization. We analyze the results of our PGW clustering.

We look at the total number of clusters discovered, as well as the composition of IP pools.

We first look at the composition of subnets within each detected cluster across different

subnet sizes. From this analysis, several patterns emerge to the number and size of subnets

assigned to each PGW. Figure 5.11 displays the average number of unique prefixes observed

in each Tiller detected PGW cluster, across varying prefix lengths.
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Figure 5.11: Size of cellular network clusters across different subnet prefix lengths for both
IPv4 and IPv6. Points represent the average number of unique prefixes in each cluster, error
bars represent the 25th and 75th percentile values. The allocation of a single /24 prefix
per cluster of AT&T largely contrasts the over 30 observed in certain clusters in Verizon’s
network.

We find that certain mobile operators allocate a relatively small number of IP addresses

to each PGW. For instance, AT&T maintains a nearly one-to-one allocation of /24 prefixes

to PGWs. Both Sprint and T-Mobile also allocate small numbers of /24 subnets to each

cluster – four /24s subnets per cluster on average. Of the four operators we profiled, we

only found clusters with more than 10 /24 prefixes in Verizon, which averaged slightly above

20 /24s per cluster, and as high as 30 prefixes in some clusters. The implications of such a

small number of prefixes at each GWP is a very high rate of IP reuse among active cellular

clients. For instance, with 126 million subscribers in Q3 2015 [107], even with 100 GWP

clusters across U.S. operators, that would still translate in over 1 million subscribers per /24

prefix, assuming an even distribution.

Spatial PGW Assignment. We next view the spatial locality of clients to PGWs.

Using GPS measurements from clients, we plot the locations of alice clients in selected

clusters for each of the four operators in Figure 5.12. In the figure, we can see the different

spatial localities employed between operators.
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(a) Verizon Wireless.

(b) T-Mobile.

(c) AT&T.

(d) Sprint.

Figure 5.12: Locations of clients assigned to a PGW cluster. Each map represents the
geographic coordinates of users assigned to that PGW for Verizon Wireless (top), T-Mobile,
AT&T and Sprint (bottom). The differences in geographic locality of PGW assignment
are clear between the close geographic proximity of Verizon assignments compared to the
large geographic bounds of T-Mobile. While the large geographic range of assignment for
T-Mobile clients increases core network latency, the optimal replica remains the same.
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In all, we found Verizon and Sprint to practice the greatest spatial locality, signified

by the tight clusters of user locations in the figure. In contrast, we see clients in AT&T

and T-Mobile are assigned to PGWs from very large geographic regions, many spanning

the country. We show in the following section (§ 5.4) that T-Mobile in certain instances

maintains little if any spatial locality with PGW assignment.

In contrast to existing widsom of LTE PGW assignment, spatial locality cannot be

assumed.

5.3.2 Validation of PGW Localization

Using ground truth information from three U.S. MNOs, we evaluate the accuracy of our client

IP clustering. We compare the composition of our IP clusters to ground-truth obtained from

two large US carriers containing both the number and locations of network PGWs, along

with the allocation of IP addresses to each.

We calculate the pairwise community membership accuracy for each set of detected

clusters. This common metric captures the accuracy of membership assignments by

calculating the percentage of membership violations – an entity assigned to the wrong

community – between detected communities and ground truth data.

Sprint. In Sprint we found a high level of accuracy in our clustering achieving a near

one-to-one mapping between our detected clusters and ground-truth PGW regions. The

pairwise accuracy for the case of Sprint’s clusters was 99.3%. In all 9 discovered clusters

in Sprint, each of the /24 prefixes of the same ground-truth region were mapped to the

same cluster. In addition, all but one of the partitions mapped to unique Sprint’s gateway

partitions, with one region split across two clusters. We believe this clustering issue was

caused by a relatively low number of measurements for that region, which was insufficient

to join multiple PGW IP addresses.
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T-Mobile. The results of our clustering of T-Mobile’s PGWs yielded a pairwise accuracy

of 88.9% compared to ground-truth. We detected 18 unique PGW clusters from in T-Mobile,

comprised of 74 /24 prefixes. The inaccuracy stemmed from the combination of nearby

PGWs into single clusters. There were four cases where geographically adjacent PGWs

regions were combined into single clusters. It is interesting to note the geographic locality

of these combinations since our clustering algorithm uses no geographic information – only

client and detected PGW IP addresses – for clustering. We believe this is due to the internal

routing present in T-Mobile’s network, which challenges our trace-based approach.

5.4 Mobile Client Dynamics

In this section present the results from our longitudinal study of client network dynamics.

These network dynamics are separate from other sources of change in cellular networks such

as tower hand-off and radio control states, and refer to assignment of data network resources

such as IP addresses, DNS servers and packet gateways. While mobile devices change to

active network interfaces frequently (e.g. WiFi, cellular), we find that network operator

policies play a large role in determining a device’s network context.

We investigate the length of network sessions from our longitudinal study of alice

clients. We determine the length of individual network sessions by measuring the length

of IP assignment. We next utilize the PGW clusters we introduced in the previous section

to investigate inter-PGW dynamics. Our results reveal that although spatial locality is

generally maintained, mobile operators do assign stationary clients to multiple, often distant

PGW regions.

Client IP Assignment. We are able to detect the length of a mobile client’s network

session by the length of their IP address assignment. Due to its allocation during network

attach procedures, a client’s IP address duration can be used as a proxy for understanding

each device’s network session duration. This session length is driven by both operator policies
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Figure 5.13: Duration of public IP addresses for measured mobile clients in the four major
U.S. mobile carriers. Mobile clients see IP durations ranging from 1-3 hours at median,
indicating high churn of assigned IP addresses. Jumps in distribution are an artifact of
periodic measurements which occurred approximately every hour.

and handset behavior. Operators set the value of network idle timeouts, which detach

inactive clients from the cellular network to free up network resources. As long as a client

maintains some network activity within the timeout range, its session and current network

context will remain. Handset behavior, therefore, is a large determinant in these session

lengths.

We plot the distribution of network session times using the assignment length of cellular

IP addresses. Our instrumented clients obtained their public IP address by contacting an

IP echo service and reporting the results approximately every hour. We calculated the

time between changes in reported cellular IP addresses. We filtered our data to only

use IP addresses recorded over the cellular interface, and restricted the set to contiguous

measurements with no gaps in collected measurement longer than 6 hours.

Figure 5.13 displays the distribution of time between cellular IP address changes for our

instrumented clients in the four large U.S. MNOs for IPv4 (Fig. 5.13a) and IPv6 (Fig. 5.13b)

addresses. We observed all four operators exhibiting similar patterns of IP assignment,
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meaning either policies across operators is similar, or that length of network session is mostly

dependent on user behavior.

For IPv4 addresses, we observed a median time between address changes ranging from 1-3

hours depending on the operator, yet the longest observed IP address lengths were for nearly

7 days. We found similar distributions of assignment lengths for IPv6 addresses to that of

IPv4. This implies that mobile operators are also pooling IPv6 addresses in addition to IPv4

addresses, even though address reuse for IPv6 is not necessary due to address exhaustion.

This confirms the prior work by Plonka et al. looking at IPv6 address usage [88].

Client-Gateway Assignment. We now present our results detailing the length of time

between PGW assignment changes for the four largest U.S. mobile operators. We detect the

active PGW of cellular clients from their IP address, and the PGW clusters introduced in the

previous section. PGW changes can occur for several reasons, the most obvious being client

mobility. However, we find that in contrast to common assumptions of PGW locality, clients

may switch PGW regions solely by operator policies for purposed such as load balancing.

Since clients are assigned a new network context during each cellular network attachment

event, there is the possibility of new PGW assignment.

For cases of multiple PGW assignments, we discover two types: one which assigns clients

to nearby alternative PGWs, and the other which disregards geographic locality entirely,

assigning clients to PGWs in an apparent random fashion. Our results highlight that

geographic locality of client PGWs cannot be assumed, and more over, that instability exists

in client PGW mappings. Examples of each type are illustrated in Figure 5.14.

Clients with multiple PGWs in the same geographic region can be load balanced across

depending on individual region load. Since each PGW has a maximum capacity for

simultaneous users and limits on its available bandwidth, it is reasonable to assume that

certain PGWs may be overloaded, and more distant PGWs would need to be assigned to

clients. We observed this behavior in all four U.S. MNOs.
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(b) Chaotic PGW assignment.

Figure 5.14: PGW assignment for two separate clients in T-Mobile’s network displaying two
distinct patterns of PGW assignment, one load balancing clients to nearby PGW instances,
and the other exhibiting almost random assignment behavior. Each pattern is evidence
of non-mobility based PGW assignment, and shows how knowing client’s current PGW
assignment is invaluable for understanding cellular client performance.

Figure 5.14a shows this case for a single T-Mobile client in southern California, which

is assigned to multiple, relatively nearby PGW regions, including 2 in the Los Angeles, CA

area, one in Sacramento, CA and one in Las Vegas, NV. We verified from our measurements

that this client remained within the greater Los Angeles area during this time interval. It is

interesting to see that in addition to two different PGWs in Los Angeles, this client is also

sent to Las Vegas and Sacramento during certain periods, the latter of which is over 450

miles away. As the number of PGWs continues to increase in cellular networks, we expect

this behavior to become even more common, as cellular clients continue to greatly expand

their traffic demands.
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Figure 5.15: Interval between PGW changes measured from instrumented clients.

In contrast to the geographic locality described above, we also observed more chaotic

PGW assignment to clients. In these cases, PGWs are assigned little regard for client

location, and seem to follow either random or round-robin selection methods. This case

of assignment is displayed in Figure 5.14b. In the figure, for the period between July 1

and August 15, the client located in Chicago is cycled through 14 separate PGW locations

located as distant as Orlando, FL, Los Angeles, CA and Providence, RI.

Figure 5.15 displays the cumulative distribution of measured intervals between client

PGW changes for the four U.S. MNOs. For this we limited measurements to clients which

contained over 24 hours of contiguous measurements. The figure displays a wide range of

PGW sessions, with some lasting from 10-100 days, and others lasting mere hours (or less).

Surprisingly we find that for Verizon, AT&T and T-mobile approximately 70% of PGW

sessions lasted less than 20 hours.

5.5 Summary and Contributions

The contributions of this chapter are summarized as follows:

• We presented results from our exploration of cellular LDNS infrastructure (§ 5.2).

We find that all investigated operators utilize indirect resolution methods which
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challenge existing DNS-based replica selection. We show client-resolver mappings to be

inconsistent among cellular clients, and highlight its impact on replica mappings. We

investigate the resolution performance and distance of public DNS services to cellular

clients, longer resolution times than operator resolvers, but with much shorter tail

performance.

• We presented results from our investigation into PGW locations for the four largest

U.S. MNOs (§ 5.3). We introduce our techniques of mapping clients to these instances

based on their public IP address, and show the heterogeneity in PGW subnet allocation

across operators.

• We presented our longitudinal results from alice clients looking at the dynamics of

network assignment over time (§ 5.4). We find that certain operators employ weak

locality between clients and PGWs.
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Chapter 6

A Network-Level View of Mobile Networks

6.1 Overview

While traditionally mobile devices have been primarily traffic consumers, new applications

are turning them into major producers of Internet traffic. Mobile-to-mobile applications

such as user-generated live streaming services, IP telephony, and video chat applications,

as well as the growing number of cellular connected sensors promise to vastly increase the

generation of traffic over cellular networks. The transition to VoIP voice communication

(e.g. VoLTE) mean that these critical services are now reliant on Internet inter-domain

routing. Unfortunately we lack a thorough understanding of the network-level structure of

many cellular networks, including their AS composition, and connectivity.

We argue that new abstractions are needed to simplify the heterogeneity of mobile

networks, while still capturing relevant differences in their structures. Towards that goal, we

present the concept of a Logical Domain (LD) for mobile networks, which contains all ASes

(network components) used within each MNO for their main functions, including (i) cellular

core networks hosting client IP addresses, (ii) intra-MNO paths interconnecting multiple

cellular core instances, and (iii) Internet connectivity. We develop empirical techniques to

determine the ASes which compose a MNO’s LD, and show the benefits of this construct for

understanding MNO behavior.
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6.2 MNO Organization

In this section we describe the major components of MNOs, and decompose each MNO

into their underlying functions. We break each network into its functional components.

These components represent the functions necessary to all eyeball networks, and include (i)

hosting client IP addresses (ii) provide routing between customers within its network and

(iii) provide Internet connectivity to its clients.

This decomposition is motivated by our in-depth characterization of 125 global MNOs,

presented in detail in Section 6.4. We outline these three AS responsibilities for MNOs

below.

• Cellular Core Network. This hosts the IP addresses of mobile clients, as well as

infrastructure components such as PGWs. We define the cellular core network as

the AS hosting cellular clients, as all routes from cellular clients must originate and

terminate in this AS. We identified these cellular core ASes by looking at the IP-to-

AS mapping of public IP addresses of our instrumented mobile clients. We further

characterize our investigation of cellular core networks in Section 6.4.1.

• Internal Transit. The AS used to transfer packets between separate PGW instances.

The nature of existing cellular networks means that packet transfers must travel

between PGW instances through some network. This can be accomplished either

entirely through private networks, co-owned backbone networks, or independent transit

providers. Further analysis of intra-MNO paths is given in Section 6.4.2.

• Internet Transit. Provide Internet connectivity to cellular networks. We profile the

Internet and inter-domain connectivity in Section 6.5.

In practice we find a wide variety of mobile network configurations, with network

functions disbursed across different ASes in nearly all possible combinations. For instance,
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StarHub in Singapore hosts client IP addresses in one of three different ASes, all

interconnected through the same network. In another instance, Cricket Wireless in the

U.S. utilizes three separate, third-party ASes to interconnect its cellular core networks.

Part of this heterogeneity stems from the large variety of mobile network operators.

Aside from base MNOs, which typically own the radio and core network infrastructure,

mobile service is provided by virtual operators (MVNOs), virtual aggregators (MVNAs)

which rent radio and infrastructure resources from base MNOs. Further complicating this

landscape are roaming agreements between operators which are based on complex business

arrangements. In practice, we find that this complicated landscape further obscures paths

to and from cellular clients.

6.2.1 Logical MNO Domains

We argue for the creation of Logical Domains for MNOs, which capture the full set of

networks used within a single MNO. The existence of multiple, and geographically disjoint

ASes hosting cellular clients, and more importantly that intra-AS traffic must traverse one

or more independent ASes, significantly distances cellular AS topology from other eyeball

ASes.

In cellular networks, disjoint networks are the norm. The use of third-party transit

providers between these AS instances breaks many of the assumptions long held about the

efficacy of intra-AS routing, especially for P2P applications [30, 97]. We argue that the AS

composition of MNOs must include not just the cellular core networks (and their ASes),

but also the networks interconnecting them. The reason is that only this composition of

networks fulfills all of the functions of traditional eyeball networks. We call this collection

of an MNO’s ASes the Logical Domain of a particular MNO.
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6.2.2 MNO Motifs

From the set of LDs discovered from our dataset, we identify four motifs of MNO design.

We describe each of the four motifs below, and show examples of each in Figure 6.1.

• Monolithic AS. These MNOs operate within a single AS which hosts cellular clients,

cellular infrastructure, and provides intra/inter network routing. Example: T-Mobile

in Germany resides within Deutsche Telekom’s ASN 3320, which in addition to hosting

cellular and broadband customers, also serves as a large Tier-1 transit network.

• Self Contained MNO. These networks host all client addresses and supply internal

network transit, fully containing the itself within a single AS. In many cases, these

networks exist as entirely private address space. Example: Vodafone Espana, ASN

12357.

• Combined Internal/Internet Transit. These MNOs utilize the same provider net-

work both to provide Internet connectivity to their customers, as well as interconnect

their cellular core instances. Example: AT&T Wireless uses its national backbone

ASN 7018 to connect instances of its cellular core networks (ASN 20057).

• Functionally Independent ASes. MNOs which delegate the cellular core, internal

network transit and Internet transit into entirely separate ASes. Similar to the

previous case, traffic between cellular users passes through a separate AS to reach

independent cellular core instances, yet in these cases this internal transit AS only

connects cellular core instances, traversing through external Internet transit to reach

external destinations. Example: Verizon Wireless connects its cellular core (ASN

22394) through its internal transit (ASN 6167), and utilizes multiple Internet transit

providers to connect to external destinations.
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Figure 6.1: Cellular AS structure. We discovered operators which configured their network
for each combination of AS-level structure possible.

6.3 Data Collection

Our analysis leverages a large collection of mobile measurements collected from over 1,900

cell users worldwide. In the following paragraphs we describe our data collection process.

6.3.1 Data Sources

Instrumented Mobile Devices.

We gathered mobile client data using alice clients (Chp. A). We launched traceroutes to

top content providers (taken from Quantcast) We collected a range of contextual information,

such as network connectivity state and public IP addresses.

• Traceroutes. We directed mobile clients to traceroute websites hosted by large CDNs

and popular content providers, in light of recent work showing a majority of Internet

traffic is directed towards a small number of large content providers [69]. In addition

we directed clients to traceroute IP addresses of other mobile clients both within their

own MNO and towards clients in other MNOs. In all we recorded over 8.25 million

traceroutes from our instrumented mobile clients.
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• Public IPv4 address. Clients recorded their public IPv4 address, IP address outside

of cellular network NATs, as returned from an IPv4 echo service 1.

• Device network interface trace. Each device recorded its network connectivity

state (Connected, Disconnected), active network interface (Mobile, WiFi), and network

technology (LTE, HSPA, UTMS).

Server Traces to Mobile Clients. We performed traceroutes from servers of a large

content delivery network to each /24 IPv4 prefix in the four largest U.S. MNOs (AT&T,

Sprint, T-Mobile and Verizon Wireless). Traces were performed approximately once every

hour to each subnet, and were collected during a 5 month period between August 1, 2015

and December 31, 2015.

We pair these traces with mobile end-host traces directed at the same set of servers during

the same collection period. Traces were matched to server traces performed within the same

hour bucket as the mobile client trace, based on (client /24, server IP, date, hour), where

the client /24 subnet is based on the /24 subnet of the public IP addresses of the mobile

client, described above.

These paired client and server traceroutes allow us to explore the path symmetry between

cellular clients and content. In all, we collected over 205,000 symmetric paths from the four

U.S. carriers.

6.3.2 Mobile Traceroute Processing

The next paragraphs outline the procedures used to process mobile client traceroutes.

Raw Traceroute Processing While prior work has developed techniques for processing

end-host traces, mobile end-host traces contain significant amounts of noise unique to their

collection. The mobility of users across networks, that is between cellular and WiFi, means

a path could completely change source networks in the middle of a traceroute. In certain

1http://whatismyip.com
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Figure 6.2: Mobile traceroutes experience large numbers of missing and private hops.

cases, if the TTLs are high enough, may appear to be a valid, especially if the target network

or its provider has been reached.

We develop a series of techniques to sanitize mobile end-host traces to accounts for the

variety of confounding factors unique to them. We outline this method below.

1. Interface Filtering. As we are only interested in traces over cellular networks, we

filter out any traces where the active interface polled by the operating system was not

cellular. In addition, used the connectivity trace for each user to identify periods of

connectivity change. We filtered out any measurement which was conducted during a

connecivity change, for both network interface changes as well as network technologies

(e.g. shifting from LTE to 3G).

2. Private Addresses. MNOs utilize private addresses at much higher rates than

other eyeball networks. While previous approaches typically discard hops in private

addresses, the large percentage of traces which reside in private address space require

these to be maintained during processing. In the extreme case, T-Mobile in the U.S.

utilizes private address space for both their cellular core network as well as their

nationwide internal transit. The fraction of all traceroute hops which are private are

shown in Figure 6.2a.
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3. Missing Hops. Similarly to the private addresses of cellular core networks, there exist

much large percentages of missing hops within cellular infrastructure. The fraction of

all traceroute hops in our dataset with missing hops is shown in Figure 6.2b.

4. Unannounced Infrastructure IP addresses. We found it common that many

MNOs would use addresses for infrastructure routers which were not listed in global

routing tables. For these addresses we attempt a reverse DNS lookup, and if available,

match the domain name to a set of known MNO domains. For instance, unlisted

addresses in AT&T Wireless were identified by their reverse DNS names which resolved

to a cingular.net domain.

5. Source AS Filtering. We filtered our traces where client IPs were not in that

operator’s source AS. We define source AS as the AS in each mobile operator with the

largest fraction of recorded client IP records. While there are instances where mobile

operators utilize multiple ASes for clients, we found the vast majority of operators to

use only a single client AS.

6. Prior procedures on inter-domain path analysis. We follow the procedures of

Chen et al. [28] and Mao et al. [76] in determining AS-paths from traceroutes.

6.3.3 Logical Domain Discovery

We directed mobile clients to traceroute IP addresses within their own operator. The ASes

crossed on paths between addresses in the same cellular core AS constitute the intra-network

connectivity of an MNO. We use these intra-MNO paths to discover the internal transit

component of MNOs.

Instrumented clients were directed to periodically trace a random set of IP addresses,

taken from the same set of reported mobile IP addresses used in the previous section, which

match the AS from the requesting client. We analyze the over 208,000 traces between MNO
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peers recorded from 22 separate MNO source ASes, collected between March 1, 2016 and

June 1, 2016.

6.4 An AS-level look at MNOs

In this section we characterize the AS structure of MNOs, and present our methodology

for grouping ASes into logical MNO domains. In order to discover the organization of each

component, we perform separate experiments to discover the structure of (i) the cellular core

AS (ii) internal network transit of MNOs. Our experimental results reveal that MNOs often

utilize multiple ASes, separated by the different needs of the operator.

6.4.1 Cellular Core ASes

We define the cellular core network as the AS hosting cellular clients, as all routes from

cellular clients must originate and terminate in this AS. We identified these cellular core

ASes by looking at the IP-to-AS mapping of public IP addresses of our instrumented mobile

clients.

We polled the mobile operating system to find both the device’s mobile provider name

in addition to the active network interface. In cases where the active interface was a mobile

network, we identified public cellular IP addresses through an IPv4 echo service. Each IP

address returned was mapped to autonomous system using IP-to-AS mapping using pWhoIs

data.

We find the vast majority of MNOs utilize a single AS for their mobile clients. Within each

operator we often fine large numbers of ASes which represent a very small (<1%) percentage

of client IP addresses. These additional ASes seem to fall into three main categories:

other MNOs which have roaming agreements with the target carrier, VPN services, and

measurement errors.

We discovered several cases where the mobile operator name provided by the operating

system was paired with IP addresses in competing mobile carriers. We believe these represent
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Figure 6.3: Fraction of largest ASN share for each provider, ranked by percentage. The vast
majority of MNOs utilize a single AS for mobile clients in our dataset. A few cases exist
where providers utilize 2 or more ASes, signified by those providers on the far left of the
graph, but these isolated cases are the exception.

cases of certain roaming agreements, known as local breakout, where traffic from a roaming

user is directed out through that visiting networks’ PGWs. This is in contrast to home

routed traffic where traffic is forwarded back to the home operators’ networks. In the former

case, the visiting networks’ AS hosts the roaming user, in the latter case the home networks’

AS hosts the roaming user. These roaming scenarios While the relations between mobile

operators, and its impact on inter-domain routing is interesting, we leave that as an exercise

for future work.

Overall, our measurements data encompasses 237 unique MNOs from around the globe.

These consist of full MNOs, both light and heavy MVNOs, and MVNAs (i.e. Google Fi).

Of these providers. We focus on the top 128 mobile operators, where we have at least 10

unique mobile IP addresses for each. Keep in mind this is not just 10 unique measurements,

since PDP contexts, and consequently, IP assignment to mobile devices can last up to several

days [116].

For each of the 128 mobile operators, we took the fraction of ASes mapped to reported

IP addresses for each operator, displayed in Figure 6.3. For each operator, we took the AS

representing the largest share. In the vast majority of cases, this AS represented over 90%
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Figure 6.4: Number of hops between intra-MNO peers. The bars represent the average
traceroute hop count between peers, with the error bars displaying the standard deviation
of the distribution.

of reported IP addresses, with most substantial outliers coming from the aforementioned

roaming agreements. Notable exceptions operators which utilize multiple ASes for clients,

including the MVNA Google Fi, which in the U.S. switches between Sprint (AS 3651) and

T-Mobile (AS 21928), Starhub in Singapore which uses 3 separate ASes for its mobile clients

(AS 9874, AS 38861, AS 4657), Smart in the Phillipines (AS 132199, AS 10139). In another

case, MNO 3 operates separate services in multiple European countries, each with their own

AS, yet the provider name used is the same.

With the exception of these cases, we take the AS with the largest share for each provider

as a cellular source AS. For the remainder of our analysis, we limit our further study to the

88 ASes discovered above. Our inter-domain analysis uses these 88 ASes as cellular sources.

6.4.2 Intra-Network Connectivity

We next investigate the intra-network connectivity of cellular operators. Figure 6.4 displays

the average traceroute hop length between MNO peers, with error bars representing the

standard deviation. Hop length encompasses both private and public IP addresses. The

figure shows the differences between network size for the different MNOs, with some certain
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Figure 6.5: Fraction of AS path lengths for each cellular ASN studied. We find that traces
within MNOs can cross up to three independent ASes. The fraction of paths taken by each
is dependent on the number of paths to clients in the same, or distant PGWs.

MNOs such as Nextel in Brazil averaging over 13 hops between MNO peers, while others

such as Orange in Germany average only a single hop.

The differences between operators, as well as within operators, is dependent on the

number of gateway instances and the distance between each instance. For example, traces

between clients behind the same PGW only contain a single hop – the gateway itself. Much

of this has to do with the opacity of cellular core networks, and the structure of cellular

networks, where public IP addresses do not exist for clients until their gateway instance is

reached. The path length between PGWs therefore correlates roughly with their geographic

distance. It is unsurprising that operators in large geographic regions such as the U.S. have

large hop counts between peers. Yet even smaller geographic regions, such as Vodafone in

Greece average some of the largest hop counts between peers in our dataset.

Following the procedure outlined in the previous section, we generate AS paths for these

intra-MNO traces. From analysis of the intra-MNO AS paths, we discover that AS paths of

intra-MNO routing can cross anywhere from 0 to 3 separate ASes to interconnect disjoint
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Figure 6.6: Different patterns of intra-MNO AS routing.

core networks. In this case, 0 ASes refer to paths entirely of private addresses. Figure 6.4

displays the number of AS-hops encountered on intra-MNO traces, aggregated by source

cellular core ASN.

The figure shows that operator diversity also extends to the AS structure of MNOs in

addition to overall network size. For each path, we combine private addresses with cellular

core ASes. We find that traces MNOs can cross up to three independent ASes. The fraction

of paths taken by each is dependent on the number of paths to clients in the same, or distant

PGWs.

Looking at the AS path of intra-MNO paths, we find several patterns emerge in intra-

MNO routing, displayed in Figure 6.6.

• Private/Core Cellular Network Only. Cellular traffic is contained either entirely

within private address space, or only within the same core cellular ASN.

• Owned Backbone Network. Traffic between core network instances traverses one

or more separate ASes, yet ones that are owned by the same organization as the MNO.

• Independent Transit Network. Traffic between core network instances travels over

one or more ASes not owned by the MNO. In practice, several heavy MVNOs utilize

this model.

Figure 6.7 shows a mobile traceroute for a client in Cricket Wireless, a heavy MVNO

which runs atop AT&T’s mobile network, yet operates their own AS and cellular core
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1    10.192.0.3 private
2 192.168.189.37 private
3 192.168.125.34 private
4 205.197.242.227 AS36180 (Jasper Technologies)
5 205.197.242.226 AS36180 (Jasper Technologies
6 67.106.215.105 AS2828 (XO Communications)
7 207.88.12.179 AS2828 (XO Communications)
8 207.88.12.195 AS2828 (XO Communications)
9 207.88.12.188 AS2828 (XO Communications)
10 207.88.12.191 AS2828 (XO Communications)
11 207.88.12.160 AS2828 (XO Communications)
12 207.88.12.151 AS2828 (XO Communications)
13 216.156.16.173 AS2828 (XO Communications)
14 216.156.1.70 AS2828 (XO Communications)
15 204.16.68.8 AS31680 (Jasper Technologies)
16 204.16.68.182 AS36180 (Jasper Technologies)

Core	  Network

Intra-‐MNO	  transit	  
through	  third-‐party	  
provider

Core	  Network

Figure 6.7: Intra-MNO traceroute for Cricket Wireless client. Cricket Wireless is a heavy
MVNO which utilizes third-party transit providers to route packets between core network
instances.

network. Routes between Cricket clients traverse one of several independent transit

providers, AS 2828 or AS 6461, between its cellular core instances.

As we will see next, understanding these motifs of cellular network structure are essential

for understanding their Internet connectivity.

6.5 Cellular Internet Connectivity

In this section, we present our results on the inter-domain connectivity of MNOs. We

demonstrate that when analyzing MNOs, it is imperative to treat MNOs according to their

logical domain in order to fully capture this inter-domain connectivity and routing behavior

of MNOs.

6.5.1 Traceroute AS-Connectivity

The AS connectivity degree of MNOs appears vastly different when looking only at the

cellular core ASN compared to the MNO’s logical domain.

We chose to look at the AS connectivity of MNOs as determined by our active client

traces rather than BGP, since we found BGP derived connectivity to over represent the

connectivity of many MNOs. As our traces were directed at top content providers, as well

as other MNOs, we feel these traces to be more representative of common paths of MNO
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Figure 6.8: Traceroute determined AS-connectivity.

clients, now and in the future. When looking at the BGP connectivity from common sources

such as RouteViews, we found several cases where the AS connectivity was overrepresented

in BGP by small fractions of routes published through ASes which we never observed on any

actual path to or from cellular clients.

Figure 6.8 shows the AS connectivity degree of the 88 cellular source ASes determined in

§ 6.4.1. From these cellular core ASes alone, the connectivity degree appears quite low, with

one third of cellular networks connecting to two or fewer ASes. Looking at these core ASes

leads one to believe that most cellular networks are poorly connected, to the larger Internet.

When considering the logical domain of an MNO, however, we find that these networks

become much better connected. Table 6.1 displays the AS connectivity change between an

MNO’s cellular core AS and its logical domain for a subset of our dataset. An MNO’s logical

domain can greatly increase the measured connectivity of an MNO, and give a more accurate

view of its actual AS connectivity. As an extreme example, the cellular core AS of AT&T

Wireless is only connected to a single provider, yet its logical domain has a connectivity of

27, an increase of 2600%.

6.5.2 Path Symmetry to Content

We now look at the symmetry of paths between mobile clients and content servers from a

large content delivery network. Our analysis of path symmetry reveals two main findings.
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MNO Cellular ASN Degree Combined ASNs LD-Degree Difference
MTS (RU) 8359 6 [8359,13174] 7 +1
Verizon Wireles 22394 3 [22394,6167] 23 +20
Vivo (BR) 26599 1 [26599,27699] 3 +2
AT&T Mobility 20057 1 [20057,7018] 28 +27
Sprint 3651 1 [3651,10057,1239] 23 +22
Cricket Wireless 36180 3 [36180,2828,6461,7018] 56 +53
UniNet (MX) 8151 10 [8151,13591] 10 0

Table 6.1: Logical domains can greatly increase the connectivity degree of MNOs.
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Figure 6.9: Fraction of path asymmetry for the four largest U.S. MNOs and a large content
provider.

First, the link-level paths between cellular users and content are highly asymmetric, as are

the AS paths. Second, AS paths only match source and destination ASes when considering

the MNO’s logical domain.

We calculated path asymmetry by calculating the Levenshtein distance, often known as

the edit distance, between client and server paths. The Levenshtein distance is commonly

used to measure the difference between two sequences, and calculates the number of

“edits” needed to make the sequences match, including insertion, deletion and substitution

operations. We calculate the normalized path asymmetry as the Levenshtein distance

between the client path and the reversed server path, divided by the length of the longest

sequence.

Overall, we find link-level paths between cellular clients and servers to be highly

asymmetric. Figure 6.9 displays the normalized path asymmetry for paths, aggregated by

different length subnets. Less than 10% of paths are 30% or less asymmetric, meaning
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there are very few paths with highly similar link-level paths – even at /24 subnets. This is

confirmed by the more than 70% of /24 paths which have greater than 50% path asymmetry.

For /32 paths, over 50% of /32 paths have 100% asymmetry!

Prior work by Sanchez et al. [96] looked at the path asymmetry between edge networks

and PlanetLab, finding /24 link-level paths to exhibit near 40% normalized asymmetry at

median, compared to the 60% experienced by our mobile clients.

We also find AS paths between clients and content to experience similarly elevated levels

of asymmetry. Figure 6.10 displays the normalized path asymmetry for AS paths between

cellular clients and content servers. While nearly 40% of AS paths are completely symmetric,

another 40% have 25% asymmetry. Again this, is nearly 50% higher than prior studies to

broadband networks, which found only 40% of paths to exhibit any AS path asymmetry.

Part of the issue with asymmetry comes from the isolation and opaqueness of dedicated

cellular network ASes. Of the over 205,000 reverse paths we collected, in only 107,995

(52.5%)reverse paths do the client traces begin, and server traces end, in the same AS.

Much of this is due by client traces often not encountering their own cellular AS on their

paths, with only 22,949 (11.1%) client paths containing the client’s cellular AS, versus 59,316

(28.8%) server paths which do. This disparity is partially explainable on the client side by

client traces encountering the private interface of cellular network gateway routers, and, on

the server side by the overall opacity of the cellular network, where the entire cellular AS is

unreachable in many locations.

In many ways, this motivates the need for MNO logical domains, for understanding

path information to/from cellular clients. In each of the instances above, client and server

paths become fully symmetric regarding source and destination when we aggregate cellular

networks by the logical MNO domains

After aggregating AS paths by logical domain, we find greater path symmetry, shown

as the dashed line in Figure 6.10. We also find significantly higher source and destination
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Figure 6.10: Fraction of AS-path asymmetry for the four largest U.S. MNOs and a large
content provider.

symmetry, with 86.5% of joined paths containing source and destination AS symmetry.

Similarly the MNO logical domain is much more frequently once aggregated by logical

domain, with 69.2% of client traces and 67.2% of server traces passing through the MNO

logical domain.

Identification of MNO’s logical domain from traces is important largely due to the current

opacity of MNO’s networks, since the majority of traces to cellular end-users will not reach

their destination. Without a reliable way to detect an MNO’s network, these traces are

largely meaningless, since it cannot be determined at what point the trace terminated, either

at the entrance to cellular core AS, or elsewhere along the path.

6.6 Related Work

A large body of work has looked at modelling and observing the Internet’s AS topology [39,

48, 51]. Dhamdhere et al. [39] categorize ASes based on their connectivity and position. In

contrast to the author’s work, we showed throughout this paper that MNOs blur the lines

between traditional eyeball networks and large transit providers.

The work by Gill et al. [53] investigated AS connectivity from edge networks in relation to

large content providers, finding a much flatter topology due to expansion of content providers’

networks, and close relationships with eyeball networks. The work by Anwar et al. [11] looked

at inter-domain routing policies using traces from eyeball network vantage points toward large
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content providers. Prior work has looked AS path discovery from end-user vantage points.

Chen et al. [28] expanded the Internet AS topology map from crowdsourced end-user traces,

developing methods for processing noisy end-user traces for AS link discovery. Our work

naturally follows from these by expanding the investigation into eyeball networks to include

cellular networks, which have been the fastest growing eyeball networks in recent years with

regard to traffic volume.

Several projects have utilized instrumented mobile devices to perform network measure-

ments of MNOs [61, 95, 111]. Xu et al. [117] performed extensive traces from mobile clients

to characterize the infrastructure of the four largest MNOs in the U.S. The authors were

mainly concerned with the clustering of users to GGSNs, and in fraction of latency to popular

content within the cellular network versus the Internet. The authors do not look into the AS-

level topology or routing of these MNOs, choosing instead to investigate the infrastructure.

Our work is the first examine the AS topology and routing of MNOs, and its implications

for content placement.

Closest to our work is that from Faggiani et al. [47] which attempts to use traceroutes

from mobile devices to explore missing links not found from BGP announcements. Their

method involves large numbers of traceroutes from mobile devices, leveraging the mobility

of users to connect to multiple networks from a single vantage point, thus multiplying its

effectiveness. While the author’s work discovers connectivity of Internet links, there is no

discussion specific to MNO AS connectivity or routing. Our work focuses solely on MNO

connectivity, and develops novel techniques to process mobile end-host traces to handle the

increased noise and variability of the mobile environment.

6.7 Summary and Conclusions

In this chapter, we presented the largest investigation into the network level composition and

structure of mobile network operators worldwide. Using over 8 million traceroutes collected
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from 1900 volunteer mobile devices, we investigated the AS structure and connectivity of over

125 MNOs. We found that there exists a large variety of MNO structures, and categorize

them into four structural motifs. We introduced the concept of Logical Domains for mobile

operators which contain each of the functional components of these networks. We showed

that Logical Domains can aid the understanding of mobile networks.
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Chapter 7

tiller: An End-Host Solution for Cellular Exploration

7.1 Overview

Cellular networks are the fastest growing sector of Internet traffic. Cellular operators

have quickly been expanding their networks and technologies in order to meet this quickly

rising demand. With mobile devices becoming the dominant vehicle for user content

consumption [35], cellular networks are expected to grow at a 45% CAGR over the next

5 years [45].

Measuring cellular infrastructure is challenged by to the lack of visibility from external

vantage points, limiting the set of vantage points (VPs) to those within cellular operator

networks. The nearly universal deployment of NATs and restrictive firewall policies of

cellular operators typically prohibit common network probes such as ping or traceroute

from penetrating their networks. Attempts at mobile network exploration have therefore

had to rely measurements from instrumented mobile clients. While gaining visibility inside

these networks, mobile measurement platforms have their own unique constraints, including

(i) recruiting sufficient numbers of diverse vantage points and (ii) computational, network

and power resource constraints. These limit the coverage of these platforms as well as the

measurement capabilities of individual devices.

While accurate network topology information, ranging from AS-connectivity to the

geolocation of routers and end-hosts, is widely available for most of the Internet, this
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information is largely nonexistent for cellular networks. While topology exploration and

mapping has been studied and largely solved for wired networks, cellular networks render

common approaches largely ineffective.

The concept of coverage within cellular networks is an open question. Existing cellular

measurement efforts a vague “more is better” notion of coverage, with no objective metrics

for comparison. This problem is exacerbated by the lack of cellular network ground-truth

information available for evaluation. We attempt to take a first step towards effective cellular

network measurement by that objective metrics for network coverage are the first step toward

efficient and effective cellular network measurement.

Towards this goal, we propose a new abstraction for cellular network topology, the

Gateway Cluster (GC) which represents pools of cellular clients assigned to the same cellular

packet gateway (PGW). The use of GCs in cellular networks is based on the coalesce of all

paths at client PGWs, and the natural partitioning of cellular client IP space among PGW

instances. We argue that cellular network topology coverage can be based on the fraction of

GCs observed from measurement vantage points. Since the number of GCs for a particular

cellular operator is often unknown beforehand, as is the allocation of IP addresses to each

GC, we can approximate this GC coverage by measuring the fraction of cellular IP space

observed by vantage points.

We present the results of our analysis of into the IP allocation and usage of the four largest

U.S. cellular operators. By analyzing both BGP announcements and request logs from a large

CDN, we develop an objective methodology for deriving a baseline set of IP addresses to

represent network coverage. We use this baseline coverage to evaluate the coverage results of

over 2.5 years of mobile measurement traffic from the alice measurement platform. Looking

at the individual and combined coverage of alice VPs, we find that a relatively small number

of VPs (< 100) can provide near complete coverage of mobile networks according to our

coverage definitions.
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Using the insights learned from this analysis, we present the design and implementation

of tiller, a mobile distributed measurement system for cellular networks. Using the

concept of GCs as its metric for coverage, tiller is able to provide efficient topology

characterization through adaptive probing of cellular networks, reducing the numbers of

redundant measurements from mobile vantage points. tiller combines local cellular

topology views into a single global oracle which is distributed periodically between clients

to minimize global probing.

In this chapter we make the following contributions:

• We introduce a new abstraction for cellular topology based on network PGWs and

network IP space allocated to each, the Gateway Cluster (GC).

• We objectively define topology coverage for cellular networks based on the fraction

network GCs covered by mobile vantage points. Since the number of GCs is not known

beforehand, we approximate this coverage by the IP space observed from vantage

points.

• We present a data-driven methodology for deriving a baseline coverage of cellular IP

space using BGP announcements and request traffic from a large content delivery

network.

• Using this new metric of we present coverage analysis from 2.5 years of longitudinal

mobile measurements.

• We present the design and implementation of tiller, a mobile distributed measure-

ment system which uses adaptive probing to efficiently characterize and monitor cellular

networks.
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7.2 Cellular Network Coverage

Finding a general metric for network coverage is challenging due to the heterogeneity of

cellular networks, their infrastructure and policies, and their overall opacity. Prior efforts

at network exploration and mapping have utilized various metrics for coverage, including

network routers observed [17, 106], and edges in Internet AS topology [28]. Unfortunately

these previous metrics are ineffective for cellular topology, since much of cellular paths are

either invisible, tunneled between cellular end-points, or routed through private address

space. For instance, many cellular ASes contain no visible routing infrastructure, and instead

only exist to provide IP addresses for cellular clients.

We propose to define cellular network coverage based on the fraction of GCs observed

from mobile vantage points. Since the number of GCs is not known ahead of time, we

can approximate this coverage by the measuring the observed client IP-space from mobile

vantage points within cellular ASes. We present our method of obtaining this reprsentative

IP space later in this section.

7.2.1 Cellular Gateway Clusters

We next introduce our concept of Cellular Gateway Cluster (GCs), and show that they

provide the ideal abstraction for cellular network topology. Each Gateway Cluster is

composed of a set of IP subnets, dynamically assigned to mobile clients behind that PGW.

Formally we define each GC gi as the set of all IP addresses, s, routed through the same

PGW pi, gi = {s ∈ S : s routed through pi}

As we argued earlier in this dissertation (Chp. 4), cellular PGWs largely determine client’s

network position, influence distances to content replicas, their network locality and network

performance. From a network exploration perspective, GCs represent a natural partitioning

of cellular IP space into discreet network and physical locations. For cellular topology and
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Operator # VPs # GCs

AT&T 54 37
Sprint 18 14
T-Mobile 61 15
Verizon Wireless 89 39

Table 7.1: Summary of gateway clusters (GCs) determined for four U.S. MNOs. For each
operator, we list the number of mobile vantage points used for measurements, and the number
of GCs detected within each.

infrastructure discovery, we propose that metrics for network coverage be derived from the

GCs in each network.

Unfortunately, due to the lack of ground truth information about cellular operators, the

total number of GCs in each operator is unknown. We therefore lack an accurate target

for coverage evaluation. Since each GC exists as a collection of client IP subnets, we can

approximate GC coverage by measuring the fraction of client IP space observed from mobile

vantage points. We use this coverage as our baseline to view the marginal utility of adding

new vantage points. We also look at the marginal utility of continued measurements from

individual vantage points over time.

Preliminary Results of Gateway Clustering

Using the approach presented in Chapter 4, we present our analysis of discovered GCs in

the four largest U.S. operators. Our measurements come from 222 volunteer mobile clients

spread across the four largest U.S. MNOs: 54 in AT&T, 18 in Sprint, 61 in T-Mobile and 89

in Verizon Wireless. For each operator, we apply graph clustering to construct a set of GCs

for IPv4 addresses in these networks 1.

Table 7.1 displays a summary of detected gateway clusters in each of the four operators,

which range from the 14 detected in Sprint to the 39 discovered in Verizon Wireless.

1While each of these mobile operators have transitioned to IPv6 as of January 2016, we currently only
perform this for IPv4 addresses and gateway router addresses due to the bulk of our data being IPv4, since
IPv6 traceroutes were not available in stock Android until version 4.4
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Operator (ASN) BGP (/24) BGP (/48) CDN (/24) CDN (/48) CDN % (/24, /48)

AT&T (20057) 17,152 46,220 6,674 9,227 (38.9, 19.9)
Sprint (3651) 45,565 4,061 38,924 2,048 (85.4, 50.4)
T-Mobile (21928) 42,112 65,537 9,327 5,929 (22.1, 9.0)
Verizon (22394) 38,107 1,181,088 34,096 3,394 (89.4, 0.2)

Table 7.2: Differences in IP space visibility from BGP announcements and from a large CDN.
We find BGP announcements to be greatly over announce both IPv4 and IPv6 address space.

Unfortunately we make no assertions of network coverage from these results, or of the fraction

of GCs we have discovered within each network. Lacking ground truth information from

each operator – as is often the case – we have no way of knowing the total number of target

GCs, or our measured coverage fraction. This is one of the challenges with mobile network

measurements, a lack of an objective metric for calculating coverage.

In the following sections we address this problem of coverage, using observed cellular IP

space as a proxy for gateway cluster coverage. Using multiple data sources, we derive metrics

for determining IP coverage of cellular networks.

7.2.2 Baseline IP Coverage for Cellular Networks

In this section, we investigate cellular IP space to develop a baseline coverage for cellular

network IP space. We compare two potential data sources: BGP announcements for cellular

ASes, and the request traffic observed from a large content delivery network for these same

ASes. For this analysis, as well as that on mobile network coverage, we look at the four

largest U.S. MNOs: AT&T (AS20057), Sprint (AS3651), T-Mobile (AS21928) and Verizon

Wireless (AS22394).

Each dataset captures records from January, 2016. The BGP announcements were

obtained through logs from the large CDN for January 1, 2016. Request traffic was obtained

from logs of that CDN’s real-user monitoring system (RUM), which collects data from a

Javascript beacon embedded within participating customers. This RUM data encompasses

all of January 2016. Table 7.2 summarizes the results obtained from each dataset, and
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(a) IPv4 /24 Subnet Requests.
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(b) IPv6 /48 Subnet Requests.

Figure 7.1: CCDF of /24 and /48 subnet requests, ranked by total number of requests by
subnet descending. While /24 subnets observe a bimodal distribution where a small fraction
of addresses account for the vast majority (> 95%) of request traffic, /48 subnet requests
are distributed more evenly.

displays the total number of IPv4 /24 and IPv6 /48 subnets observed from both BGP

announcements and CDN traffic, as well as the overlap of subnets from these two datasets.

We find that as a source of cellular IP space, BGP announcements are too coarse to

be effective estimators for actual cellular IP usage. BGP announcements overestimate the

numbers of both IPv4 and IPv6 addresses. We found the overlap between IPv4 datasets

to be range from 22% in T-Mobile to the nearly 90% in Verizon. We found much greater

variance in coverage from IPv6 addresses, which announce large blocks of IPv6 addresses

that greatly over announce this space. In T-Mobile, which announces a single large /32,

of the 65,537 /48 prefixes only 5,929 (9%) of /48 subnets were observed from client traffic.

Even more extreme is Verizon Wireless which announces over 1.1 million /48 subnets, yet

only 3,394 were observed – a total of 0.2%. It is apparent that BGP announcements are not

accurate portrayals of cellular client IP space, especially for IPv6.

In light of BGP’s over announcement of cellular IP space, we derive our baseline coverage

on the IPs observed from CDN logs. We investigate the distribution of traffic across cellular

IP space by counting the total number of hits seen for each /24 and /48 subnet seen in

our CDN dataset. We find that while IPv6 addresses appear to exhibit relatively even load
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distributed, in the case of IPv4 addresses, there exists a large disparity in request volume

from for different /24 subnets. We plot the ranked cumulative request total in Figure 7.1.

Figure 7.1a plots the CCDF of /24 subnet requests, ranked by the number of requests

descending. The horizontal lines in the figure denote the 90th percentile (solid), 95th

percentile (dashed) and 99th percentile (dotted) of total requests. The figure displays a

bimodal distribution of request traffic across subnets, with small fractions of observed IP

space responsible for the vast majority of traffic. In the extreme case with T-Mobile, only

92 of the 9,327 /24 subnets (0.9%) account for over 99.9% of requests. Similar patterns are

observed across the other three MNOs, with distributions shifting at the 95th percentile for

all operators. IPv6 address usage (Fig. 7.1b) shows a much more even distribution of load

across /48 subnets. Although there does appear to be very slight bimodal behavior, it is

much less pronounced than the IPv4 cases.

We posit the cause of this distribution for /24 subnets is the frequent use of Carrier

Grade NATs (CGNs) within cellular networks, which recent work by Richter et al. [92]

found deployed in 92% of measured cellular networks. Subnets allocated to CGN pools

would potentially account for large fractions of cellular traffic. If this is the case, the

long tailed addresses would arise from would arise from traffic generated from untranslated

addresses, such as customers using static IP addresses. For IPv6 addresses, recent work by

Plonka et al. [88] found that cellular operators also dynamically assign IPv6 addresses across

clients. This dynamic assignment helps explain the more even distribution of load across

IPv6 subnets.

In light of this skewed distribution, we select a baseline set of IP addresses from those

comprising the 95th percentile of traffic for both /24 and /48 subnets for each MNO. We

consider these set of IP addresses to be the baseline coverage for these chosen cellular

operators. The selected number of subnets in each baseline coverage is shown in Table 7.3.
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Operator (ASN) /24 (CDN%) [BGP%] /48 (CDN%) [BGP%]

AT&T (20057) 168 (2.5) [0.9] 6,680 (92.3) [14.4]
Sprint (3651) 92 (0.2) [0.2] 1595 (77.8) [39.2]
T-Mobile (21928) 68 (0.7) [0.1] 3539 (59.6) [5.4]
Verizon (22394) 2257 (6.6) [5.9] 3032 (89.3) [0.2]

Table 7.3: Number of /24 and /48 subnets accounting for the 95th percentile of cellular
requests. The table shows the 95th percentile of subnets, and their corresponding fraction
of all observed prefixes for each operator. We use this subnet of IP subnets as a baseline for
cellular network coverage.

Using this baseline coverage for each operator greatly reduces the scope of network

coverage, since relatively few numbers of possible subnets account for the vast majority of

demand. For three out of the four MNOs, we see less than 170 /24 subnets comprise 95% of

mobile traffic, and that these make up 2.5%, 0.7% and 0.2% of observed subnets for AT&T,

T-Mobile and Sprint respectively! This greatly reduces the sample space for exploration

of cellular networks by at least 2-3 orders of magnitude depending on the operator. The

implications of this are that it greatly simplifies the task of cellular network exploration

from mobile devices, and presents tractable goals for measurement coverage. In the following

section, we analyze the results of our longitudinal study looking at the coverage capabilities

of individual mobile vantage points.

7.3 Mobile Vantage Point Coverage

In this section, we utilize our newly defined metrics for cellular network coverage to analyze

the results of the alice mobile measurement platform. Using over 2.5 years of measurements

across 222 mobile vantage points, we analyze the coverage of each vantage point in order

to evaluate roughly the numbers of mobile vantage points necessary for mobile network

coverage. Specifically, we attempt to answer for the first time the following questions:

• What is the possible coverage of individual vantage points?

• Are there any benefits to continuous measurements from mobile vantage points?
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• How many vantage points are needed for complete coverage in mobile networks?

alice measurements are crowdsourced from volunteer devices, and represent real-world

conditions for network behavior and device mobility. Our measurements come from 222

volunteer mobile clients spread across the four largest U.S. MNOs: 54 in AT&T, 18 in

Sprint, 61 in T-Mobile and 89 in Verizon Wireless.

7.3.1 Coverage of Individual Vantage Points

Mobile devices have the ability to act as multiple traditional network vantage points within

cellular networks. The physical mobility inherent with these devices allow single devices to

measure multiple parts of the cellular network. This coupled with the dynamics of network

operation, which can assign users to separate gateway clusters based on load/policies, mean

that instrumented mobile devices are able to expand their visibility over time.

Using our newly available metrics of coverage, we look at the cumulative network coverage

of individual vantage points from alice . Since alice crowdsources network measurements

from volunteer clients, our analysis covers real device behavior in the wild, allowing us to

view the impact of actual device mobility and network assignment policies.

We calculated the overall network coverage of each vantage point as the fraction of cellular

IP space assigned to clients for the duration of their measurements. As part of their network

characterization, alice clients periodically obtain their public IP addresses by contacting an

IP echo service which returns the IPv4 and IPv6 address seen at the server. We aggregated

client IP addresses into /24 and /48 subnets for IPv4 and IPv6 addresses respectively, as is

common practice in network analysis. From the set of unique subnets observed, we take the

intersection of this set with the baseline set of subnets determined in the previous section,

to determine a network coverage fraction for each VP.

Figure 7.2 displays the cumulative distribution of VP coverage for each operator for both

IPv4 addresses (Fig. 7.2a) and IPv6 addresses (Fig. 7.2b). While the range of coverage varies
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Figure 7.2: Coverage from individual alice clients for /24 and /48 subnets.

between VPs, we observe two trends in this coverage. The first is that a large fraction of VPs,

around 40% in AT&T and Verizon, observe less than 1% of both IPv4 and IPv6 subnets. This

is potentially due to retention issues with volunteers inherent to crowdsourced measurements.

The other is that for IPv4 addresses, a small fraction of vantage points (5-10%) were able to

observe upwards of 25% of operator networks, and in the case of 2 T-Mobile VPs, upwards of

50%. These vantage points, either through erratic network assignment policies, or frequent

device mobility, are able to cover large portions of their operator’s networks.

While we find that certain vantage points are potentially able to observe large fractions

of operator networks, the amount of time needed for this, and the rate of exploration are

unknown. We explore these temporal qualities of vantage point behavior in the following

section.

7.3.2 Vantage Point Temporal Dynamics

We next investigate the coverage of individual vantage points over time. The extent to which

mobile devices under normal conditions experience different areas of cellular networks, either

through physical mobility or network assignment policies, is unknown. We utilize our 2.5

years of mobile measurements to explore the limits of individual device visibility over time.

Figure 7.3 displays the /24 subnet coverage over time for each of the four profiled operators.
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Figure 7.3: Subnets discovered by alice clients over time plotted against their measurement
duration.

Figure 7.3a plots the total unique /24 subnets observed from mobile vantage points,

plotted against the total length of VP observation. The figure shows an overall linear

correlation with discovered subnets and time. The rate of discovery is dependent on the

overall size of IP space deployed by each operator. For example, several VPs in Verizon

observe nearly 150 unique /24 subnets, yet this accounts for less than 7% of Verizon’s IP

space at the /24 level. The nearly 50 /24s seen for certain T-Mobile clients, in contrast,

accounts for over 70% of network IP space.

While this shows the potential of individual vantage points to become exposed to

significant portions of cellular networks over large enough time scales, the figure also shows

that the challenge of crowdsourced VPs come from retention. A large majority of VPs

have less than 50 days of continuous measurements, and many have only a single recorded

measurement.
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We find that the early portion of VP measurements (< 100 days) are the most informative

for network investigation. Figure 7.3 displays the number of unique /24s observed from VPs

each day after the start of measurements, averaged for each operator. The figure shows the

information gain from each vantage point diminished over time. In particular there exists an

inflection point on each operator’s curves within the first 100 days where the rate of subnet

discovery slows, yet does not disappear. This is beneficial for crowdsourced platforms since

it means that the potentially short durations of many vantage point measurements are the

most informative for each VP.

Reasons for this drop-off in VP information gain are that VPs often remain within the

same PGW region, due to the (mostly) spatial locality of PGW assignment. The small

numbers of IP addresses assigned to each PGW, and high rates of IP assignment from these

pools, mean that measurements from users are often redundant beyond these first few days.

We can utilize this with adaptive probing to limit the numbers of probes launched from

individual VPs when we detect a previously observed area of the network.

7.3.3 How Many Vantage Points?

We utilize the data collected from alice clients to investigate the coverage achieved from

different numbers of vantage points in each network. We evaluate this accumulated coverage

looking at the overall coverage achieved by increasing the number of VPs, as well as the

marginal utility of additional VPs in mobile measurement.

We measure the accumulated coverage of VPs as the union of observed IP sets from each

VP across various aggregate subnet lengths. To calculate the coverage fraction, we take the

intersection of these subnets with the baseline subnet set derived in the previous section, and

divide the length of that by the length of the baseline set. In order to account for differences

in vantage point mobility and measurement time in our crowdsourced platform, we take the

average length of these unions from all possible combinations of VPs in our dataset. From
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Figure 7.4: IPv4 Coverage for increasing numbers of mobile vantage points. Coverage is
displayed across multiple subnet aggregations of observed IP addresses. Markers denote the
average coverage from all possible combinations of VPs, and error bars show the standard
deviation of these sets.

the set of vantage points v in each operator, and for each set size s = 1...v, we take the

average of the number of unique subnets seen across each combinations of VPs,
(
v
s

)
.

Figures 7.4 and 7.5 display the average coverage fraction for combinations of different

vantage points of increasing size for IPv4 and IPv6 addresses. In Figure 7.4, we plot the

coverage fraction for different subnet sizes, /24, /20 and /16, since subnet boundaries for

GCs are not known ahead of time. For AT&T and T-Mobile, we see high levels of coverage

even from the limited numbers of VPs available, reaching over 75% of /24 coverage in AT&T

and over 90% /24 coverage in T-Mobile. Interestingly, Verizon coverage approaches a limit

just above 40% for all subnet sizes. This is surprising especially since we had the largest
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Figure 7.5: IPv6 Coverage for increasing numbers of mobile vantage points. Coverage is
displayed across multiple subnet aggregations of observed IP addresses. Markers denote the
average coverage from all possible combinations of VPs, and error bars show the standard
deviation of these sets.

number of vantage points in Verizon’s network, 89, and the number of determined GCs

roughly matched our expectations for a network of its size and deployment. The fact that all

subnets approach the same limit lends us to believe that Verizon is partitioning its overall

IPv4 space, and that significant portions of traffic are coming from addresses allocated to

entities other than Verizon Wireless customers.

Figure 7.5 displays the same coverage analysis for IPv6 addresess. We display only T-

Mobile and Verizon’s networks since we lack sufficient IPv6 measurements for the remaining

two operators. For T-Mobile, the significantly larger IP space for IPv6 exhibits lower overall

coverage of /48 subnets, and a shallower growth curve for large prefix sizes. In contrast to

its IPv4 addresses, VPs in Verizon approach 60% of coverage for /48 subnets, and close to

100% for /40 subnets.

We can also measure the marginal utility of additional mobile vantage points by analyzing

the curvature of subnet coverage paths. The marginal utility of additional VPs in our instance

depends a variety of factors, including the on the distribution of VPs across different GCs,

the propensity of client assignment to distant GCs, and the mobility of individual devices
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across network boundaries. The utility of additional vantage points also varies by operator,

determined by the size of IP pools allocated to each GC.

These differences can be observed in Figure 7.4 by the knee in each of the coverage

curves. For instance, T-Mobile (Fig. 7.4c), with only 68 /24 subnets and high observed rates

of remote GC assignment, has a steep growth rate until it reaches approximately 20 VPs

where it then decreases rapidly. AT&T in contrast (Fig. 7.4a) with 168 /24 subnets and a

high consistency with /24 subnet assignment sees a near linear growth rate across all vantage

points. This highlights the difficulty in obtaining complete mobile network coverage, since it

depends largely on vantage point location and behavior, which is difficult to know a priori.

7.4 Tiller – An End-Host System for GBRS

We build upon these observations to design and implement tiller, a mobile distributed

measurement system. tiller is a mobile distributed system based on our concept of

gateway clusters for cellular network coverage. gateway-based replica selection for cellular

networks. tiller relies on instrumented mobile clients to discover key pieces of cellular

network infrastructure through active probing. Using this infrastructure information along

with device’s assigned client IP addresses, tiller then accurately clusters cell networks into

GCs. In this section we present the deign and implementation of tiller.

7.4.1 Tiller Architecture

tiller’s design builds on several features of modern cellular networks to accurately and

efficiently characterize mobile networks. There are two main components in tiller’s design:

(i) cellular network atlas globally aggregated and periodically distributed to tiller clients,

(ii) adaptive network probing which detects local context and adapts probing rate based on

preexisting coverage.
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Cellular Network Atlas

In this section we describe tiller’s internal representation of cellular networks, how it

aggregates the views of multiple mobile clients into a global view, and how it clusters this

view network GCs.

Each tiller instance maintains a historical mapping of its current gateway routers and

public IP addresses described in the previous section. tiller represents this information in

an undirected weighted graph G = (V,E,w), where both client IP addresses and gateway

routers are nodes, the relation between the two constitutes edges, with weights corresponding

to the number of occurrences recorded by the client. tiller maintains separate graphs for

IPv4 and IPv6 addresses and partition identifiers.

To further reduce overhead, and enhance user privacy, we aggregate client IP addresses

by /24 subnets for IPv4 addresses and /48 subnets for IPv6 addresses. For each mobile

operator we investigated, we found no smaller allocations of subnets to GWP, so assume

these aggregations sufficiently fine-grained for GWP identification.

tiller utilizes these networks maps to (i) represent cellular network topology, (ii)

determine device network locality, and (iii) monitor for network changes or reconfigurations.

Global Vantage Point. tiller aggregates the views of all clients in a particular

operator’s network to create a global view of each operator’s infrastructure. tiller’s global

network oracle receives periodic updates from its clients in the form of an adjacency list of

each client’s weighted graph. These reports are combined into a single weighted graph, by

combining the edge weights from each client’s individual graphs.

A global view is necessary for full visibility into mobile operator networks, due to the

isolation of each GWP, and the spatial and temporal locality of assignment. No single

mobile vantage point could practically measure an entire cellular network spanning a large

geographic areas such as the U.S.
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IPv4 and IPv6 Aggregation. The deployment of dual-stack networks in cellular

networks, which allow both IPv4 and IPv6 networks simultaneously for clients [56]. tiller

combines the subnet clusters at collocated GCs to better understand cellular topology.

tiller maintains a separate graph containing IPv4 and IPv6 addresses observed by devices,

with weighted edges connecting co-occurrences of addresses. These are clustered using the

same community detection algorithms as GCs, to obtain connected IPv4 and IPv6 GCs.

Combining the views of IPv4 and IPv6 networks is useful since often these networks reveal

different information about their underlying infrastructure. For instance, as we observed with

Verizon in the prior section, it appears that not all of their IPv4 address space is allocated to

Verizon Wireless customers, yet their IPv6 addresses are. Combining these views can help

derive coverage for these IPv4 addresses in this instance.

Adaptive Probing

tiller periodically runs active probes from mobile devices to determine assigned partition

and public client IP addresses. In order to ensure cellular connectivity, Tiller queries the

device’s operating system to determine its active network interface.

tiller adapts both its measurement rate, as well as the types of probes used based on the

availability of network information existent, and based on the results of initial exploratory

probes. In cases where new network topology is discovered, tiller performs additional

probes. In addition to topology exploration, tiller monitors cellular network expansion and

reconfiguration. In addition to the presence of new IP space or gateway router addresses seen

in network expansion, reconfigurations occur when IP addresses are reallocated to different

GCs. These are detected when new links form between IP addresses and existing gateway

routers.

The rate at which tiller launches active probes is determined by utility of a device’s

existing network location. tiller determines this network location in the following way:
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1. Obtain device’s IPv4 and IPv6 (if applicable) from echo server.

2. Compare each address to local network map:

• If new IP address detected: perform traceroutes to popular content. Gateway

routers are extracted from traceroute and added network map.

• If new gateway router is detected (e.g. new GC): perform additional traceroutes

for both IPv4 and IPv6 to additional destinations.

3. Perform community detection on network graph. If the number of or composition of

clustered GCs differs from previous, inform global atlas.

7.4.2 Tiller Implementation

We implemented tiller on the Android operating system. Since October 2014, Tiller has

been run on over 1900 unique volunteer mobile devices, across 96 unique mobile operators

and across 5 continents. tiller clients performed network exploration measurements

approximately every hour, contacting our IP echo services and performing outbound

traceroutes to popular content destinations. We highlight the performance of tiller from

the over 260 tiller clients in the four largest U.S. MNOs.

The operation of tiller’s network clustering can be seen in Figure 7.6, which displays

the detected number of GWPs by tiller’s aggregate view since its launch in October 2014.

New clusters appear over time as mobile clients are assigned to new gateways, discover new

partition identifiers, or relocate (or join) to new cellular network regions. Over time, clusters

may coalesce as shared IP space is discovered through continued measurement. These are

shown as dips in the cumulative cluster count in the figure.

To illustrate the limitations of individual vantage points, we calculate the number of GWP

clusters running locally on each device compared to the global aggregate view. Figure 7.7
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Figure 7.6: Tiller detected GCs for the 4 major U.S. operators over time. Spikes in number
of detected clusters are due to recruitment efforts of our mobile system, allowing Tiller to
discover new, previously unknown partitions. Dips represent coalescing of clusters when
from Tiller’s ongoing community detection algorithms.

illustrates the number of detected GWPs against the average number of detected clusters

for individual vantage points.

As seen in the figure, individual vantage points are able to detect multiple GWP clusters,

likely due to user mobility, physically relocating into different network regions, as well as

changes to operator assignment. While users average close to 5 GWPs, we observed several

clients with over 10 detected clusters. Yet this is still well below the aggregate total of nearly

40 PGW clusters observed from all vantage points.

7.5 Summary and Contributions

In this chapter, we made the following contributions:

• We introduced a new abstraction for cellular topology based on network PGWs and

network IP space allocated to each, the Gateway Cluster (GC).

• We objectively defined topology coverage for cellular networks based on the fraction

network GCs covered by mobile vantage points, and approximated this coverage by

the IP space observed from vantage points.
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Figure 7.7: Number of GCs clusters detected by tiller in its global vantage point (blue)
versus each individual vantage point (green) over time a large U.S. carrier. While individual
vantage points can detect more than a single cluster due to user mobility and operator
assignment, an aggregate view allows much greater visibility into network infrastructure.

• We derived a baseline coverage of cellular IP space using BGP announcements and

request traffic from a large content delivery network.

• Using this new metric of we presented coverage analysis from 2.5 years of longitudinal

mobile measurements.

• We presented the design and implementation of tiller, a mobile distributed

measurement system which uses adaptive probing to efficiently characterize and

monitor cellular networks.
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Chapter 8

Trace-based Clustering of Cellular End-Users

In this chapter, I examine clustering cellular end-users entirely from external vantage points.

I first present assess the feasibility of external characterization from multiple, longitudinal,

traceroute campaigns towards 9 large mobile network operators in the United States and

Brazil. Building off this initial investigation, I present the design and implementation of

machete , a system for characterizing cellular networks from external vantage points.

machete uses traceroutes toward cellular end-users to cluster cellular address space to

network PGWs. machete is currently deployed by a large content delivery network to

identify and locate groups of cellular end-uesrs. In the final part of this chapter, I discuss

some of the challenges encountered during machete’s global deployment.

8.1 Scaling Cellular Network Exploration

Network services, such as content delivery networks, have invested heavily in both hardware

and software infrastructure for monitoring Internet conditions. Unfortunately, as has been

expressed multiple times throughout this dissertation (e.g Chp. 3), systems which rely on

common tools such as ping and traceroute are ineffective in light of the opacity of modern

cellular networks.

To overcome this, several approaches have attempted to utilize instrumented mobile

handsets to identify cellular clients’ PGWs [98,117,120], as well as tiller presented in the

previous Chapter. While these approaches have shown to accurately identify mobile client’s



138

PGWs (see § 4.2), they suffer from coverage and scalability restrictions due to challenges in

recruiting, retaining and positioning mobile vantage points.

Internet-scale services require full coverage and reliable measurement vantage points, yet

neither of these can be practically achieved through instrumented handsets. The dynamic

management of cellular network resources means that handsets cannot guarantee which

PGW they are assigned, therefore attempts at full and continuous coverage would need to

over provision mobile vantage points across all global MNOs.

This chapter investigates techniques to perform cellular network characterizations – PGW

discovery and mobile client assignments – from external vantage points. Towards this goal,

it presents the results from a 11 month traceroute study of 9 large cellular operators: the

4 largest U.S. MNOs and the 5 largest Brazilian MNOs. Through our experiments we

conducted hourly traceroutes toward over 100,000 cellular client targets over an 11 month

period, collecting over 2.2 billion traceroutes.

I find that traceroutes from external vantage points are sufficient to detect cellular PGWs

and map cellular client IPs to their assigned PGW. We find that in many operators, inbound

traces are able to reach nearly to client’s PGWs. Our findings also show these PGW

mappings to be stable on the order of months in a majority of cases.

Building on these preliminary findings, I present the design and implementation of

machete , a distributed system for cellular network characterization. machete is designed

for CDNs and other Internet-scale services, and allows a reliable measurement system capable

of global coverage of cellular networks. machete operates by conducting, and processing

large numbers of traceroutes directed towards cellular IP addresses to create clusters of

cellular end-users by their assigned PGW. Using ground truth information from two large

MNOs in the U.S., machete is able to successfully map client IP addresses to their assigned

PGW instance with 95% accuracy.

This chapter contains the following contributions:
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• An 11 month study tracing large fractions of cellular end-users in 9 large cellular

networks across 2 continents.

– Analysis of the external reachability of cellular clients.

– Path symmetry between clients and external vantage points.

– Temporal stability of paths to cellular client addresses.

• Novel trace-based clustering of cellular end-users that achieves over 95% accuracy.

• Presents the design and implementation details of machete, and discusses the

experiences from its global deployment with a large content delivery network.

8.2 Data Collection

In this section we describe the dataset and methodology of our 11 months of measurements

periodically tracing towards cellular clients from a large number of distributed vantage points.

We profile the 4 largest U.S. and 5 largest Brazilian MNOs, collecting a total of over 2.2 billion

traceroutes towards 91,000 IPv4 and 8,600 IPv6 cellular targets. These carriers were chosen

for their large subscriber base and user demand, as well as their large geographic coverage

area. Table 8.1 lists the target ASN used for each mobile operator. While MNOs may use

multiple ASNs for client IP addresses, we discovered that in the operators investigated, the

vast majority of IP addresses were housed within a single ASN. We used only this primary

ASN for our target analysis for simplicity.

We selected targets using the the request logs of a large content delivery network. For

each cellular ASN investigated, we selected a single IP address for every unique /24 subnet

for IPv4 and /48 subnet for IPv6 from the CDN’s logs. The scale of the CDN’s deployment

ensures that we are selecting the addresses of active cellular clients. Targets were selected for

the U.S. MNOs using log data from July 2015, targets for Brazilian operators were selected
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Operator Name Country Primary ASN No. /24s No. /48s

AT&T US 20057 2750 186

Sprint US 3651 7917 1650

T-Mobile US 21928 303 3532

Verizon Wireless US 22394 2292 3297

Claro BR 22085 1352 0

Tim Cellular BR 26615 26594 4

Vivo BR 26599 42845 15

Oi BR 8167 2950 1

Nextel BR 53037 4217 0

Table 8.1: Mobile network operators used for our study.

using logs from December 2015. The number of subnets targeted for each operator are

summarized in Table 8.1.

Data collection occurred in two separate phases. The first phase traced U.S. MNOs from

a set of 76 vantage points geographically distributed within the U.S., with each vantage point

launching a traceroute toward each target approximately every hour. These measurements

were performed between July 2015 and December 2015. The second phase traced toward

Brazilian MNOs from a set of 115 globally distributed vantage points, half within Brazil and

half outside, with probes launched towards approximately once every three hours from each

vantage point. These measurements were collected between January and June 2016. In all

we performed 2.29 billion traceroutes, 614 million to U.S. cellular clients and 1.67 billion to

Brazilian cellular clients.

8.3 Path Characterization of Cellular Networks

The opacity of cellular network has been well established in this (Chp. 3) and prior work [117,

120], the extent of the reach, visibility and symmetry of paths to cellular clients has yet to

be fully understood. In this section we present results of our trace-based exploration of a

select group of 9 large cellular networks in the U.S. and Brazil. Specifically we look into (i)

the reachability of cellular clients, (ii) the temporal stability of paths to cellular clients and

(iii) the path symmetry between mobile clients and content providers.
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8.3.1 Traceroute Characterization

We now investigate the traceroute paths toward cellular clients and cellular IP space.

Reachability of Cellular IP Addresses

In this section we look at the reachability of cellular IP addresses. We define reachability

to be the fraction of traceroutes which reach their destination, that is, the final hop in the

traceroute is the destination IP address. While it is widely assumed that traces towards

cellular users terminate at, or well before, client PGWs [95, 117], our analysis revealed that

cellular IP reachability depends on individual operator policies. Operators either completely

restrict client access, or those provide partially reachable clients.

From the entire set of traces, we calculated each target IP address’s reachability. The

distribution of each cellular operator’s IP address reachability is shown in Figure 8.1. The

figure highlights the differences in reachability across MNOs, with many networks completely

prohibiting client access all of their addresses, and others allowing traceroute access for a

certain fraction of addresses with varying frequency.

For U.S. MNOs (Fig. 8.1a), three out of four operators have practically all their IP

addresses with zero reachability. Verizon is the only U.S. carrier to have significant reachable

addresses, with nearly 30% of addresses successful at least part of the time. These results are

roughly consistent with the prior work looking at these same, which showed largely opaque

cellular networks.

Brazilian MNOs (Fig. 8.1b), on the other hand, showed much more accessible networks.

While Nextel and Oi disallowed all client probes, the other three operators showed much

greater fractions of reachable clients – traces reached 60% of Tim Cellular’s and Claro’s

clients, and nearly 95% of clients in Vivo’s network. We validated that these traces were

indeed reaching cellular targets by looking at the final hop latencies for these successful

traces. In these cases, last hop latencies ranged from several hundreds of milliseconds to
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Figure 8.1: Fraction of traceroutes which reach their targets in U.S. and Brazilian MNOs.
While the addresses of many mobile operators are entirely unreachable, other operators allow
reachable cellular addresses with varying frequency.

several seconds in the extreme cases, leading us to conclude that these traces were successfully

reaching cellular connected devices.

While overall the fraction of successful traces followed a diurnal pattern, further

investigation into specific IP addresses yielded no discernible patterns of access. It is

unknown why certain addresses are partially reachable to begin with, or what causes the

temporal differences in reachability are unknown. In the end we find these access of individual

addresses are largely bursty and random.

To illustrate this random behavior, we selected two partially reachable IP addresses at

random from Verizon Wireless, and plotted the number of successful traces every hour for

a 30 day period, shown in Figure 8.2. The figure shows the seemingly random patterns

of access for individual IP addresses. This leads us to hypothesize that reachability is a

combination of provider policies allowing reachability, and mobile device behavior.

Path Symmetry between Cellular Client and Servers

We investigated the path symmetry between mobile clients and our trace servers to ensure

that server traces were able to capture the network locations of cellular IP addresses, and

are directed towards the correct PGW region and egress location . Using over 200 alice
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Figure 8.2: Histogram of successful traces per day for two random partially reachable Verizon
Wireless addresses. Patterns of reachability appear random for individual IP addresses
though overall patterns exhibit a minor diurnal pattern.
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Figure 8.3: Distance between client and server traces, matched on /28 subnets.

clients in the U.S., we performed traceroutes towards selected content servers involved in

tracing mobile clients from each instrumented handset. We then compared the paths from

mobile clients toward content servers, matching cellular client IP addresses by /24 subnet,

pairing with server traces performed in the matching day and hour.

While overall symmetry is important, we look at the visibility difference between

outbound mobile client traces and inbound server traces. We wish to see how close to

cellular infrastructure server traces are able to penetrate. We count the number of public

IP addresses that exist in the mobile trace of symmetric traceroutes to approximate lost

visibility from server traces.

Figure 8.3 displays the cumulative distribution of hop distances for the four U.S. MNOs.

The figure displays the different level of visibility in each network across the four operators,

with AT&T allowing the most visibility, followed by Verizon, and then Sprint and T-Mobile.
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While AT&T and Verizon have moderate losses in visibility, 2 and 4 public hops respectively,

Sprint averages 7 public IP hops and T-Mobile averages a distance of nearly 9 public IP hops.

The tails of the distribution hint at larger path asymmetries. Further investigation into

T-Mobile found that outbound packets are actually routed through a nationwide private

transit network before exiting to the Internet, meaning outbound packets may leave from

a number of different PoPs, depending on the destination AS. This may explain the large

discrepancy between outbound and inbound paths.

8.3.2 Representing Traces through Sink-Vectors

In light of the limited reachability of cellular IP space, as well as the temporally instability

of reachable targets, we propose representing cellular IP addresses based on the termination

point of traceroute probes.

As shown in the previous section, traces to cellular targets often fail to reach their

destination in some or nearly all cases depending on the operator. In these cases, traces

terminate at arbitrary routers along the path, which change based on when and where

traces are launched. Often these routers are in different ASes than the destination, making

it difficult to know whether a trace should be filtered out or can provide useful information.

We find that the combined termination points of these traces can act as an identifying set

of coordinates for cellular IPs within an operator. From the set of traces toward a particular

IP address, we represent each IP address by its sink vector, that is the set of, and frequency

of terminating routers of traceroutes. For instance, a cellular target, t, can be represented

by the vector of terminating routers, ri, and their relative frequencies, fi.

t = {r0 → 0.75, r1 → 0.2, r3 → 0.05} (8.1)

We can use these trace vectors to calculate various statistics between IP addresses. We

can compute the similarity between these vectors using vector distances such as Cosine
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Operator In/Out Similarity
AT&T 0.893
Sprint 0.926
T-Mobile 0.004
Verizon Wireless 0.775

Table 8.2: Cosine similarity between trace vectors created from vantage points located inside
target operator’s networks, and those sent from external vantage points. All U.S. MNOs
except for T-Mobile display high degrees of similarity between internal and external vantage
points.

Similarity.

cos sim =
A ·B
‖A‖‖B‖

We now use our newly defined trace vectors to measure characteristics of cellular IP

addresses and cellular IP space. Specifically, we look at (i) the visibility differences for

different vantage points, and (ii) the temporal stability of cellular IP addresses. The former is

important for selecting vantage points for cellular network exploration and characterization.

The latter is important for understanding the stability and lifespan of cellular IP address

assignments to cellular gateways.

Differences in Vantage Point Visibility

We now investigate the differences in vantage point visibility into cellular networks. Vantage

point selection is an important component of any active Internet measurement system. For

our purposes, we seek vantage points with the furthest visibility into cellular networks,

meaning the highest probability of observing PGWs (or nearby routers) of cellular networks.

In this context, visibility refers to the termination point of cellular inbound traceroutes, and

their distance from cellular end-hosts.

We analyze the differences between different vantage point traces by looking at vantage

points positioned within mobile operator’s networks. The cooperation of the large CDN, and

access to CDN replica servers as tracing vantage points, many of our traces were able to
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obtain vantage points within cellular operator networks. We consider vantage points to be

in-network when the VP is provisioned within an MNO’s facility, resides in the same ASN

as the MNO or its parent provider. This relationship information is kept by the CDN. We

assume for this portion, that VPs within an MNOs network will always have the greatest

visibility.

To compare the visibility of in-network VPs to out-of-network VPs, we construct a trace

vector from each set of in-network VPs, svi, and each set of out-of-network VPs, svo, for

each target IP address. We calculate the Cosine Similarity of each vector to determine the

trace similarity between the two vantage point sets. Table 8.2 displays the average cosine

similarity between trace vectors from in-network and out-of-network vantage points.

All U.S. MNOs except for T-Mobile display high degrees of similarity between internal

and external vantage points. For these three networks, the value of having in-network VPs

is minimal compared to their out-of-network counterparts. T-Mobile, on the other hand, has

entirely different visibility from its in-network VPs than out-of-network VPs. This indicates

that out-of-network VPs have much less visibility into its network. Further investigation

revealed this to be the case, with T-Mobile routing Internet traffic to a small number of

Points of Presence (PoPs), less than their total number of PGWs, and then routing traffic

internally to each client’s PGW. The end result of this is that traces from out-of-network

VPs see no further than these PoPs, which often have little locality to a client’s PGW.

Temporal Stability of Vectors

In order to understand how stable traces to cellular IP addresses are, we calculated the

sink-vectors for each day of traces between August 1, 2015 and December 1, 2015. This

allows us to track the transience of cellular IP addresses, and can be used to detect changes

in PGW assignment for cellular IP addresses. In addition its usefulness in furthering our

understanding of cellular networks in general, determining the rate of change of cellular
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Figure 8.4: Distribution of detected sink-vector changes per IP address for U.S. operators.
A significant change was detected when the cosine similarity between consecutive days was
less than 0.5.

targets helps to set measurement frequency for cellular topology measurement. For each

trace target, we calculated the cosine similarity between each day dn and the prior day dn−1.

For cases where the Cosine Similarity between consecutive days was less than 0.5, we mark

that as a change in trace vectors.

Figure 8.4a displays the distribution of detected changes per IP address grouped by

operator. The figure shows that for Verizon and AT&T, trace vectors remained highly

stationary, with no detected changes for most of its IP addresses during the 4 month period.

With Sprint, we see that around 25% of addresses experienced between 1 and 4 path changes

during the measurement period. While T-Mobile appears to exhibit significant changes, both

in the number of transient addresses and the number of changes, however keep in mind the

internal routing inherent to T-Mobile’s network.

For each trace vector change, we calculated the time between each change to see how

quickly each path change occurred. Figure 8.4b plots the time between trace vector changes

for each U.S. MNO. We find trace vectors exhibit two types of change behavior: transient

and stable changes. Transient changes due to the trace-vector’s sensitivity to traceroutes

which intermittently reach their destination. We found that nearly all cases where with a

change time of < 10 days was due to these types of changes. Figure 8.5a displays an example
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(a) Oscillating path change (Verizon).
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(b) Stable path change (AT&T).

Figure 8.5: Two types of path changes observed. The oscillatory changes switch between
two main states, and in this case reflect changes in path reachability of the cellular client.
The stable path change indicates a reassignment of an IP address to another PGW.

case of this behavior. Stable changes occur when operators reassign IP addresses to different

PGW locations. These changes often occur over larger time periods. Figure 8.5b displays

this type of behavior.

8.4 Clustering Approach

In this section we outline our approach for clustering cellular end-users using the trace

vectors described in the previous section. The goal of our clustering is to group of end-users

together in a way which accurately represents similar network location and performance, and

reduces the complexity of the system. Cellular networks by their design already partition

users in a way which largely determines network location by PGW allocation. Our clustering

attempts to determine the number of PGW instances within each MNO and the allocation

of IP addresses to each. PGW clustering faces several challenges, including determining an

unknown number of PGW instances of unknown size and location.

8.4.1 Similarity of Trace Vectors

We analyze the similarity of each IP’s trace vector to the entirety of an MNO’s targets. If

each vector is entirely unique (e.g a cosine similarity or 0), then trace vectors would provide
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Figure 8.6: Trace-based clustering involves three steps: (i) traceroutes to cellular IP
addresses, (ii) generation of trace vectors for each target, and (iii) clustering through either
Euclidean or graph-based methods.

little information to group similar clients together. On the other hand, if all vectors are

similar, then there will be difficulty clustering IP addresses into distinct partitions.

To estimate the effectiveness of client trace vectors, we calculated the cosine similarity

between trace vectors of all pairs of targeted subnets within each operators. To illustrate the

use of Cosine Similarities between trace vectors, and its potential usefulness for clustering,

we calculated the similarities between trace vectors for IP addresses assigned the same PGW,

and those assigned to different PGWs. This PGW membership information was taken from

ground truth data obtained from Sprint and AT&T.

Figure 8.7 plots the cumulative distribution of similarity values of those trace vectors

assigned the same PGW, and those assigned to different PGWs, for AT&T (Fig. 8.7a)

and Sprint (Fig. 8.7b). For both operators, the figure displays the high Cosine Similarities

between those trace vectors for IPs in the same PGW – nearly 1 for 60-80% of IPs – as well

as the low similarity between trace vectors for IPs in different PGWs. Over 90% of different

PGW similarities were 0 in Sprint, and nearly 100% of different PGW similarities in AT&T

were 0. These hyperbolic similarity values indicate the utility of Cosine Similarities and



150

0.0 0.2 0.4 0.6 0.8 1.0
Cosine Similarity

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Different PGW

Same PGW

(a) AT&T.

0.0 0.2 0.4 0.6 0.8 1.0
Cosine Similarity

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Different PGW

Same PGW

(b) Sprint.

Figure 8.7: Cosine Similarities for trace vectors for IP addresses within the same PGW, and
those in separate PGWs. High Cosine Similarity corresponds to PGW membership, making
it a useful distance metric for clustering.

trace vectors for inferring same PGW membership. In the following section we utilize this

fact to cluster cellular IP addresses by assigned PGW.

8.4.2 Clustering Methods

For clustering, we place each cellular IP address in a high dimensional space, with each

dimension representing one of the set of all routers existent in trace vectors for all probed IP

addresses within an operator. We evaluated several Euclidean clustering methods, including

K-Means [15] of various cluster sizes, MeanShift [37], and DBScan [46]. Since K-Means

requires a specified number of clusters, we selected 32, 64 and 128 for cluster sizes for U.S.

MNOs, and 8 and 16 for Brazilian MNOs.

In addition to these Euclidean clustering methods, we also experimented with graph-

based community detection for clustering. From the set of trace vectors for an operator, we

create a bipartite graph consisting of cellular IP addresses on one side and the set of sink

routers on the other. The edges of the graph are weighted by their frequency from each IP’s

trace vector. We utilized a common community detection approach introduced by Clauset

et al. [36] which maximizes the modularity of potential clustering within the graph.
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Clustering Results

In this section we present the results of our clustering of 9 different cellular networks in the

U.S. and Brazil. We present the results of our clustering attempts of cellular IP addresses,

utilizing different methods of Euclidean and graph clustering.

We plot the results for all 4 U.S. and 5 Brazilian MNOs in Figure 8.8. In the figure, each

x-axis item represents a determined cluster, the y-axis represents the CDN’s traffic demand

contained within that cluster. This demand is represented as a normalized fraction of the

CDN’s entire traffic volume. The cluster demand helps add context to the clusters generated

by each algorithm, since other metrics such as the number of subnets little value due to the

great inequality of demand across IP addresses in cellular networks (e.g. small numbers of

IP addresses contain the vast majority of demand due to NATting).

Comparing between the two countries, we unsurprisingly find U.S. MNOs have signif-

icantly larger numbers of clusters than the Brazilian MNOs. Much of this is due to the

larger geographic areas covered by U.S. MNOs, the deployment of dual stack networks which

create duplicate clusters for IPv4 and IPv6 addresses at the same location, and finally the

penetration of LTE networks which are typically accompanied by greater numbers of PGWs.

8.4.3 Ground-Truth Evaluation

In this section we present our evaluation of the proposed clustering algorithms, using ground

truth from two large U.S. MNOs, Sprint and AT&T. The output from our approach is a set

of clusters, which contain membership information for cellular IP addresses which we believe

are assigned to the same PGW. This set, however, is unlabeled since we do not attempt to

determine the location of client’s PGWs from the clustering. To evaluate, we use the F1

score, a common metric for measuring classifier accuracy. We generate labels for our clusters

based on the majority ground truth label within each cluster, which can be used by the F1

metric.
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Figure 8.8: Results of multiple clustering algorithms across each MNO. Each point represents
the normalized traffic demand of each cluster, as seen from the CDN, in descending cluster
size.
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Algorithm AT&T Sprint
DBScan 0.602 0.895
MeanShift 0.929 0.596
K-Means (32) 0.839 0.585
K-Means (64) 0.873 0.917
K-Means (128) 0.929 0.975
Community Detection 0.843 0.985

Table 8.3: F1-scores from labeled set of clusters.

F1 =
precision ∗ recall
precision + recall

(8.2)

Table 8.3 displays the calculated F1 scores of each clustering algorithm for the two U.S.

operators. The table reveals that when viewed with calculated labels, our clustering is able

to achieve very high classification accuracy, with the largest scores reaching 0.929 and 0.985

F1 scores for AT&T and Sprint respectively.

These results reveal that our clustering approach can determine with a high accuracy

the assignment of cellular clients’ PGWs from external trace data alone. Building off of

these results, we designed and implemented a system for the automatic data collection and

clustering of cellular clients at a global scale, machete . In the following section we discuss

the design of machete and our experiences deploying on a large CDN.

8.5 MACHETE

We now present the design of machete , our system for trace based clustering of cellular

end-users. At a high-level, machete contains 5 main components, used for selecting, tracing

and clustering cellular end-users.

• Cellular Target Selector. Processes CDN request logs to obtain a set of cellular IP

addresses, that is, IP addresses for end-hosts traversing cellular access links.
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• Vantage Point Selector. Selects the set of trace vantage points which are determined

to have the maximum visibility into each target network.

• Trace Scheduler. Dispatches trace assignments to selected vantage points. Trace

frequency is set per network, and is determined by the temporal stability of each

network operator.

• Trace ingest. Aggregates, and pre-processes completed traces. Results are stored in

a single location HDFS cluster for later processing.

• Gateway Clustering. Clusters network IP addresses into groups corresponding to

clients’ assigned PGW instances.

Cellular Target Selector

The Cellular Target Selector utilizes the log from a large CDN, specifically those from the

CDN’s Real User Monitoring (RUM) system to determine the set of IP addresses which

are cellular. In order to find which addresses traverse cellular access links, we utilize the

Network Information API [1], a Javascript API which reveals the last-mile connectivity of

the end-user. These logs are aggregated by /24 subnet for IPv4 addresses and /48 subnet

for IPv6 addresses, common address aggregation levels which have been shown to exhibit

common network properties [19, 50].

Cellular addresses are derived from a series of heuristics related to the ratio of “cellular”

to “non-cellular” hits obtained within the logs. The derivation of these heuristics is outside

the scope of this dissertation, but internal studies of this methodology have been shown

highly accurate. From this set derived cellular subnets, we select a single active IP address.

An address is active if it has completed an HTTP request during the desired time period.

For our purposes, we selected addresses active in the prior month.
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Vantage Point Selection

In order to ensure the greatest visibility of cellular networks, we select a custom set of vantage

points for each cellular ASN. These tracing vantage points double as CDN replica servers,

therefore many are deployed deeply into operator networks. As we showed previously in

Section 8.3.2, certain vantage points, especially those within cellular operator’s networks,

can have significantly greater visibility towards cellular end-users.

For each ASN, we select 20 (40 for the U.S.) geographically distributed vantage points

from this set, using the following criteria for selection.

1. Network Locality. The CDN machete is deployed on has many relationships with

network operators. We preference tracing regions which are either located within

cellular operator’s networks, or have prearranged network partnerships with the CDN.

2. Geographic Locality (Country). Aside from network locality, we place the highest

preference on vantage points in the same country as the target cellular ASN.

3. Geographic Locality (Continent). If not enough vantage points are available in the

target’s country, we relax the geographic restrictions to the contintent level, ordering

by geographic distance to the target country.

Trace Scheduling

To handle the large numbers of traceroutes to cellular end-users, the Trace Scheduler stages

tracesroutes towards each cellular network, and dispatches individual trace jobs to the

appropriate vantage points. A key part of trace scheduling is to determine the frequency of

tracing, over both near-term and long-term time scales.

For near-term time scales, we found that tracing a single target 3 times from each assigned

vantage point, approximately 8 hours apart struck a balance between trace quantity and

temporal coverage. For long-term time scales, we adjusted the periodic rate of tracing based
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on the average time between IP gateway reassignments (§ 8.3.2). Given that the majority

of IP addresses were stable during our 5 months of tracing, we found tracing each operator

once per month is more than sufficient.

Trace Ingest

Completed traceroutes from vantage points are sent to the Trace Ingest process for data

storage. The Trace Ingest process receives the successful traceroute messages from tracing

vantage points, batches them on its local disk, and periodically uploads the information to

a large HDFS cluster for storage and later processing.

Gateway Clustering

The Gateway Clustering performs procedure outlined in the previous section (§ 8.4). We

found that the graph-based community detection performed the best when balancing the

accuracy and speed of clustering algorithms. More importantly, our experience found that

the ability of community detection algorithms to determine the appropriate number of

clusters greatly exceeded that of similar Euclidean clustering algorithms, namely DBScan

and MeanShift. We found these algorithms frequently either over-fit, vastly overestimating

the numbers of clusters, or under-fit, creating a low number of very large clusters. While

prior work has attempted to position Internet users in Euclidean space [87], we leave work

on alternative projections for clustering to future work.

8.6 System Implementation

machete is implemented through the existing system of a large CDN, and was written in

a combination of C++ for existing software modules, and Python scripts for map reduce

and data processing. machete has been deployed on a live CDN since January 2017. The

clusters generated by machete are fed into the existing CDN’s request routing system

to improve the quality of cellular network request routing. machete is currently used to

characterize and cluster cellular infrastructure for over 660 global mobile network operators.
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8.6.1 Deployment Experiences

Throughout its deployment, we have encountered several obstacles related to the character-

ization of global cellular networks. At a high-level these relate to overcoming the opacity

of cellular networks, and the great variety of network configurations and operation policies.

Below, we highlight some of the most valuable lessons learned through our deployment across

the global cellular infrastructure.

Internal network routing.

Many cellular networks choose to route user traffic using their own networks. While can

lead to greater control over client traffic, we find that it extends the opaqueness of cellular

networks from external visibility. In large networks (such as T-Mobile), we find that traces

often route to the nearest point-of-presence for that particular MNO rather than near the

PGW. Internal routing appears in our data with trace vectors from different vantage points

having very dissimilar values, as traces are often routed to the nearest PoP for a particular

cellular network and then disappear into that operator’s internal network.

We developed a simple heuristic for detecting internal routing called the VP Similarity.

We calculate the VP Similarity by creating a individual trace vector for every VP and IP

address pair, and calculate the cross product of Cosine Similarities across. We then average

these values. Networks which internally route traffic typically have a very low VP Similarity

value of less than 0.2.

Figure 8.9 displays the cumulative distribution of VP Similarity values for all 660 global

MNOs currently characterized by machete. We determined that operators with a VP

Similarity less than 0.2 have a combination of significant internal routing and geographic

diversity where our trace-based clustering is ineffective. In these instances, we have worked

with mobile operators to find additional topology information as well as incorporated

alternative measurement information, such as passive network statistics, to try and cluster
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Figure 8.9: VP Similarity for the 660 global MNOs currently tracked by machete. In
our experiments, we found that networks with region similarity below 0.2 have problematic
internal routing for our trace-based clustering.

cellular users. Development of these additional data sources is ongoing, and combining it

with our trace-based approach is part of future work.

Varying reachability of cellular clients.

Our original approach was based on the observed opacity of U.S. cellular networks. However,

in cases where operators allow trace access to clients forced us to modify our original

algorithm to detect this. The challenge with reachable cellular IP addresses in our

methodology is that our method assumes that trace termination points are near PGWs.

Traces which reach their destination even some of the time have sinks (themselves) which

are not shared by any other target. One of the consequences of this in our clustering is an

increase of singleton clusters.

To combat this, we introduced an extra preprocessing step to the traceroutes before

sending them for clustering. We first compile a list of common sink routers from the sets

of traces terminating before their target IP (e.g. at or near network PGWs). We truncate

traces which reach their destination at the last router which is contained within this common

sink router set. This heuristic works well for operators with smaller fractions of reachable

IP addresses (e.g. Verizon), however, as seen in this chapter, certain mobile operators
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8.7 Summary and Contributions

In this chapter we presented our characterization of 9 large cellular networks in the U.S. and

Brazil. Our trace analysis revealed the stability of cellular IP addresses to PGWs, and the

distinct groupings of IP trace vectors motivate the trace-based clustering of cellular networks.

We introduce machete , a scalable solution for gateway-based replica selection. machete

works by clustering PGW IP addresses by trace vectors. We showed that machete is able

to accurately characterize cellular networks, and do so at a global scale.
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Chapter 9

Contributions and Conclusion

This dissertation argued for the centrality of packet gateways (PGWs) in cellular networks.

PGWs play a significant role in all cellular network functions, ranging from network

ingress/egress to client billing, to network localization, as well as being the closest point

of access for network services and content delivery networks. This dissertation’s view is that

by characterizing only these PGWs, one is able to capture all the necessary information

about these networks to functionally incorporate them into existing Internet models.

From an in depth characterization of next generation cellular networks (NGCNs), we

observed that network PGWs play a role in all aspects of cellular network’s architecture and

client performance, and affects how they should be measured and characterized.

We developed a novel method of representing cellular networks as gateway clusters (GCs),

which partition cellular network IP space across their assigned PGW instances. We utilize

these gateway clusters to create a new definition of topological network coverage for cellular

networks.

We designed and implemented two systems for cellular network characterization, tiller

and machete, which discover and partition cellular networks into their respective gateway

clusters. We showed through live deployments of each system their effectiveness and accuracy.

9.1 Summary and Contributions

The contributions of this dissertation are as follows:
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• We successfully argued for the centrality of cellular network packet gateways, showing

that they impact all aspects of cellular networks’ architecture, measurements and client

performance.

• We showed that existing approaches for client localization are ineffective for cellular

networks, and that this causes suboptimal replica server selection for CDNs.

• We presented a tool for mobile end-hosts to measure and characterize next generation

cellular networks. We developed a mobile experimentation platform, alice , designed

for exploring cellular network infrastructure and its interconnection with content

delivery networks.

• We characterized the DNS infrastructure, inter-domain connectivity and network

assignment dynamics of next generation cellular networks using three years of data

from over 1900 volunteer mobile clients.

• We proposed an alternative approach for CDN replica selection based on a client’s

assigned packet gateway, called Gateway-Based Replica Selection (GBRS). We showed

that GBRS performs near optimal replica selection for cellular clients. We demon-

strated measurement techniques which allow PGW discovery and partitioning of

cellular networks.

• We designed and implemented two systems, tiller and machete , which perform

this cellular network partitioning with high accuracy.

9.2 Future Work

Combined Network Vantage Points. The obvious next steps for this work involves

combining the view points of both tiller and machete . Each system works as a

perfect complement for the other. tiller has greater visibility into cellular networks
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and thus greater accuracy in its characterization, yet requires sufficient and continued

mobile vantage point coverage in all networks. From its position within the network core,

machete overcomes these scalability issues, yet suffers from a lack of visibility and obscured

measurements due to its external position. Exploring how even partial tiller presence can

improve the accuracy of all server side measurements is an area of open exploration.

Deploying GBRS. One of the issues in fully deploying our proposed Gateway Based

Replica Selection system is the lack of an effective client location signal. Cellular networks,

and the stability of IP addresses to PGW instances, seem a perfect fit for end-user mapping,

assuming one knows the allocation and location of network PGWs which tiller and

machete produce. The problem is that to our knowledge, no cellular operator supports

the EDNS(0) client subnet extension (ECS), and most mobile devices are prevented from

changing their DNS resolvers. We are exploring options for stub resolver on mobile devices

to implement GBRS from the client’s device.
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Appendix A

Flexible Experimentation for Mobile Networks

In this chapter, I introduce alice , A Lightweight Interface for Controlled Experiments, a

platform for mobile experimentation, and describe its design and implementation. I motivate

the need for alice despite the large body of research in mobile network measurement and

network experimentation.

A.1 A Case for More Robust Mobile Experimentation

End-host measurements are critical to understanding the performance of cellular networks.

Many MNOs prohibit external probes from reaching mobile clients or network infrastructure

such as DNS servers. Probes from mobile end-hosts, on the other hand, enjoy much greater

visibility into cellular infrastructure. In addition, in light of the large impact the radio link

has on end-to-end performance, mobile end-hosts are the only party able to capture the

impact of their context on measurements.

More than other types of connectivity, cellular performance is heavily influenced by last-

mile effects of the radio, and is many times a function of its surrounding context. The

influences on the radio interface include contention for the wireless channel, device radio

power states [62], external radio interference, device mobility and orientation [52], to name

a few. Attempts at measuring cellular network performance from server side measurements

(such as TCP round-trip-times) can be difficult to interpret, since performance degradation

caused by the client context alone may be indistinguishable from other sources (e.g. radio
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allocation, RRC configuration, etc.). These connections may originate from TCP splitters

or performance enhancing proxies (PEPs) [118] and therefore lack the ability to capture full

end-to-end performance.

In addition to the challenges faced by wired network experimentation platforms, mobile

platforms face the following unique constraints.

• Context: As previously discussed, device context has a large role in the overall

performance of cellular networks [52]. All measurements of cellular devices need to

take this context into account, either through measuring device context, or through

direct comparison in approximately the same context.

• Resource Limitations: Mobile devices have more restrictions on both power and

network usage than other end-hosts. A mobile experimentation platform must be both

lightweight to use a few resources as possible, as well as the ability to audit and temper

its resource usage.

• Coverage: Mobile networks require extensive geographic coverage, due to the high

spatial variance in radio signal infrastructure deployments. In more traditional

networks, such as broadband access networks, coverage is related to the number of

vantage points in each network, and temporal changes in network conditions. The

additional spatial changes brought upon by mobile users greatly increases the number

of measurements needed to characterize cellular performance.

• Security and Privacy: Mobile devices present more avenues for privacy intrusion and

data leakage than wired machines. Some of this information such as a device’s location,

is crucial for understanding the underlying network measurement. A platform for

mobile experimentation must balance between measurement utility and user privacy.
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In the following section we outline how these constraints existing network experimentation

platforms fail to account for these constraints.

A.1.1 Existing Network Experimentation Platforms

Mobile experimentation platforms for wired networks have shown the value of open and

flexible vantage points for network experiments. Successful efforts of these platforms include

general purpose measurement and system platforms such as PlanetLab [32] and Seattle [21].

These platforms create sandboxed environments on participating nodes which allow the

execution of, sometimes limited, but arbitrary code on these hosts.

Other systems are more focused on network measurements rather than general purpose

use. These can be implemented either through software on participating hosts such as

DipZoom [90] and Dasu [96], or through dedicated hardware in end-user networks such

as BisMark [110], SamKnows [2] and Ripe Atlas [13]. These systems present a restricted

API, generally presenting common network probe functionality such as ping, traceroute,

HTTP GET, and DNS resolution to name a few.

Each system differs along a few axes of design trends in network experimentation

platforms: programmability, security and adoption. For example, PlanetLab allows near

complete access to the assigned virtual machine, yet requires participants to provide

dedicated hardware in order to join the collective.

Numerous research projects have collected mobile performance data from mobile end-

hosts [61, 63, 79]. These projects, using specialized mobile applications on end-host devices,

can be grouped into either one-off experiments or platforms.

The one-off experiments capture measurements through a single mobile application

designed with a specific purpose. These experiments must all follow the same process

of (1) application development where experiments are designed and a individual mobile

application is developed and (2) application dissemination where that experiment application
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is distributed to volunteers under different incentives. These incentives range from free

mobile phone plans [104], to paid studies, to alternative incentives such as a speed testing

application [61,63].

To avoid repeating the same procedure for each experiment, several projects have

developed a general purpose mobile experiment platform for network performance moni-

toring. These platforms expose an API for common network measurement actions, such

as ping or traceroute, for experimentation. Existing mobile platforms include MobiPerf

(now Mobilyzer [79]) and Mitate [54]. Closest to this work is the Mobilyzer project [79],

which attempts to become a centralized platform for mobile experimentation. While the

authors have attempted to solve many of the same challenges we previously described,

the experimentation semantics is limiting, in most instances allowing only a collection of

independent measurements.

While our experience has shown that greater amounts of flexibility and programmability

are While flexibility and programmability are always appreciated for wired network

experiments, mobile devices devices demand more flexible experimentation due to their

constantly changing connectivity and context. Effective network experiments need the

ability adapt to changing context, to respond to results from previous probes, and conduct

conditional experimentation depending network changes. The design of ALICE allows for

this adaptability, offering significantly greater experiment flexibility, which is necessary for

more complex experimentation in mobile environments. In the following section, we outline

the design of Alice to provide these capabilities.

A.2 ALICE Mobile Experimentation Platform

To address these challenges, as well as provide an interface for powerful mobile network

experimentation, I designed and implemented Alice as a library for the Android mobile

operating system.
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A.2.1 Alice Design Principles

In Alice, we address each of the challenges outlined in the previous section. Below we

outline our major design decisions in Alice which differentiate if from previous iterations of

network experiment platforms.

• Flexible experimentation through data manipulation. Alice balances capability

and security by allowing fully programmable access to the result data, but not full

program execution. Alice experiment scripts are interpreted Javascript programs,

which execute in a sandboxed environment where only a small number of API calls

are allowed to access larger system resources, yet, we allow full ability to inspect,

manipulate and develop logical elements to experiment scripts within the sandbox

environment. We call this approach data manipulation, and believe it represents a

balanced compromise to future experimentation platform designs.

• Multiplexed distribution as application library. Since Alice is built as a library,

it can easily included in multiple applications, thus greatly increasing its avenues of

distribution.

• Lightweight resource usage. Alice’s execution engine is designed to audit, and limit

the amount of resources used over different time scales. These cover to rate of network

probing, overall network traffic and device uptime. Limits apply to per experiment

quotas, as well as overall device usage. These are meant less to protect devices from

malicious experimenters, and more to prevent failures from experimenter mistakes.

A.2.2 System Architecture

In this section we outline the Alice architecture, illustrated in Figure A.1. Alice operates

both on the mobile device, and through a centralized cloud service. The cloud service

orchestrates the distribution of experiment scripts to clients, ensuring scripts meet the
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Figure A.1: Architecture diagram for ALICE mobile experiment platform.

capabilities of each client and across heterogeneous version of the Alice client library. The

Alice client library handles the scheduling of experiment scripts, execution of experiment

code, and reporting of experiment data.

The client library is distributed as a add-on library to existing Android applications. By

packaging our experiment platform as a mobile library instead of a stand-alone application,

we are able to multiplex distribution across multiple distribution channels, increase adoption

chances. While this model would benefit any such experimentation platform, it is especially

required for a mobile experiment platform, since the half-life of mobile apps is significantly

lower than desktop applications, as users are more conscious of device memory and running

processes. In fact, a recent report [9] showed that 77% of daily active users are lost after 3

days, and 95% are lost after 90 days! Therefore a platform which is able to adapt to different

to the preferences of different users is necessary.

• Experiment programming. The key tenant in the design of ALICE is to lower the

barrier to complex network experimentation through ease of experiment construction.

Based on our experience operating the Dasu [96] experimentation platform, we found a
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Probe Name Type Description

DNS Active DNS resolution with functionality similar to dig.
HTTP GET Active Performs an HTTP Get request for a specified URL.
IPerf Active Bandwidth testing tool with various control parameters.
Device Info Active Records device specific information such as the device unique identifier and

available radios and sensors.
NDT Active Network Diagnostic Tool is an existing robust network performance testing

suite implemented in Java.
Network Info Active Records the active and available network interfaces (i.e. WiFI, 3g, 4g).
Wifi Scan Active Performs a WiFi access point scan.
Ping Active A ping probe which measures the RTT for a specified IP address.
Traceroute Active A traceroute probe to a specified IP address.
Traffic Stats Active Records the bytes used by each registered application, similar to running

/proc/stat/net.

Location Passive Records a users current location at a specified granularity.
Cellular Signal
Strength

Passive Records the measured cellular signal from the device for a specified time
interval.

Table A.1: Overview of available probes in Alice platform. Active probes are those which
are launched and can return a value. Passive probes are recorded in the background for a
specified period of time.

large learning curve when constructing experiments in the event-driven JBOSS Drools

language [42]. Instead, ALICE follows the example of the Fathom [40] project and

has experimenters construct network experiments through Javascript. In addition to

being one of the most common programming languages today, Javascript allows for

complicated parsing and processing of data along with loop and conditional control

structures.

Unique to Alice is the ability to create functions within the experiment itself, looping

through data structures for multiple, repetitive probes, adjust experiment to different

conditions and dynamically generate experiment probes. Figure A.2 displays the

experiment script code for parsing the results of a DNS query, returning the IP address

from any“A” records in the response.

This ability to pull information from previous experiment probes, such as the client’s

current IP address from an external web service, and to construct dynamic experiment
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function get_a_record_ip(dnsresponse) {
if (dnsresponse.answers.length > 0) {

for (var ind=0;ind < dnsresponse.answers.length; ind++) {
if (dnsresponse.answers[ind].type == "A") {

return dnsresponse.answers[ind]. address;
}

}
}
return null;

}

Figure A.2: Code for defining user-defined functions within experiments. The code above
returns the IP address from any “A” records within a DNS response, if available.

for (var i=0; i < landmark_servers.length; i++) {
var ret = AndroidMeasurementEngine.doJsDns(landmark_servers[i], "

8.8.8.8");
var dns_resp = JSON.parse(ret);
var dest_ip = get_a_record_ip(dns_resp);

if (dest_ip != null) {
AndroidMeasurementEngine.getRemoteString("http ://"+dest_ip+"

:33000/ tr?ip="+ip_str+"&trid="+tr_key);
AndroidMeasurementEngine.doTraceroute("tr -"+landmark_servers[i]+"-

"+dest_ip , dest_ip);
}

}

Figure A.3: Sample code showing several Alice features, including loops, conditionals, and
the ability to pass results from previous network probes into future probes. In the above
code, Alice loops through a list of PlanetLab servers, launching bidirectional traceroutes
between it and the mobile device.

probes (e.g. IP address and query string of the PlanetLab request), is a key feature of

Alice. We show sample code showing this paradigm in Figure A.3.

• Network probe modules. The interface between the experiment process and

executable system code are called network probes. These probes represent self

contained functions with well defined execution and output. Network probes the

functionality needed for network experimentation, while limiting the access to sockets

and other low-level system functionality to maintain system security.
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• Synchronous and parallel execution. Included in Alice are two sets of network

probes, synchronous and parallel. By default all probes are considered independent

and parallel, and thus are easier to schedule to minimize resources. Synchronous probes

are also available, and used in cases where the results of a network probe are needed

to determine program logic, or to construct an additional probe (e.g. to ping the IP

address just resolved through a specific resolver). With synchronous probes, a JSON

object is returned which can be read, manipulated, and passed on to other probes

within the code.

• Experiment dissemination. Experiments are disseminated periodically through a

centralized server interface. Each experiment contains its own scheduling information

so end-devices do not need to make contact for each execution. Experiments are

distributed depending on the particular version of Alice in use, since subsequent

versions of Alice have introduced new or enhanced API calls.

• Experiment execution. Execution access in Alice spans a two-tiered system similar

to Dasu [96]. In this two tiered system, access to low-level system commands such as

network probes are only accessible through Alice’s API. Alice enhances flexibility by

executing in a sandboxed environment, and allowing full language capability within

that environment to institute program control, define functions or other complex

language functions. The result is a execution environment which is able to perform

complex network experiments while maintaining system and resource safety through

its API.

• Balancing security with programmability. Within every experiment platform is

a balance between the freedom and flexibility of the exposed interface, and the security

of the hosting machine. For example, how can one ensure that an open, programmable

network experiment platform won’t be co-opted for malicious activity such as a DDOS
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attack or a botnet. Other instances can include non-malicious intent, but nonetheless

harmful actions to the hosting machine: such as a network experiment exceeding a

user’s data limits.

It is therefore imperative for a experiment platform to be able to ensure the safety of

its host. Alice accomplishes this through its two-tiered experiment interface, which

allows full programmability and manipulation of probe data, while only exposing a

limited interface for actual system commands. This approach yields nearly all the

programmability achieved by native code in the context of network experimentation,

while maintaining strict isolation of experiment code, and auditing of each probe

interface to prevent excessive resource usage.

A.3 Alice Implementation

Alice is implemented for the Android Mobile Operating System as a library, in 8864 SLOC

in Java. It runs as a background service on the device. as a . Alice requires minimal

integration into hosting applications. Applications need only to add a single line of code

into their main application class in order to start the service. In addition, 6 lines of XML

need to be added into the application’s Android manifest file to declare the service and its

receivers. In total, these changes only amount to 7 single lines of code modification.

A.3.1 Alice Deployments

As of December 2016, the Alice library has already been run on over 2100 unique mobile

devices. It has been included in three production Android apps: NU Signals [82], Namehelp

Mobile [81], and Application Time (AppT) [80]. Figure A.4 displays screenshots from each

existing hosting application.

During the deployment of Alice, I encountered several challenges running and main-

taining a crowdsourced mobile experiment platform for mobile. One of the largest issues

stems from user acquisition and retention. We attempted several marketing efforts from the
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(a) Namehelp Mobile (b) NUX NU Signals (c) Application Time

Figure A.4: Screenshots from each of the three Android applications which are using the
Alice experiment library.

created hosting applications, such as advertising through our University’s press team, and

promoting on several large news aggregators (e.g. Slashdot, HackerNews). More challenging

than user recruitment was user retention, ensuring that users kept our mobile applications

installed over a long period of time. As with all mobile applications, user retention is a

problem, with typical mobile applications losing 77% of daily active users after 3 days, and

95% after 3 months [9]. This is a large problem for our platform since we are interested in

longitudinal measurements from mobile clients.

Figure A.5 displays deployment statistics for Alice from October 2013 to May 2016. The

number of active users (Fig. A.5a) displays the number of unique devices which reported

measurements each day. The spikes in reported users correspond to different application

releases which were picked up by news outlets. The first spike in North American users

around April 2014 represents when Namehelp Mobile, our first hosting application, was

published in our University’s monthly magazine. The second spike, in June 2015, of European

users comes from Application Time, another of our developed hosting applications, which
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(b) Daily traceroutes conducted by Alice.

Figure A.5: Daily statistics for Alice platform aggregated by continent.

was picked up by several European online news outlets. Finally, the final spike in August

2015 comes from internal advertising within a large Internet company.
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