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ABSTRACT

Integrating Machine Learning and Symbolic Reasoning:

Learning to Generate Symbolic Representations

from Weak Supervision

Chen Liang

Machine learning and symbolic reasoning have been two main approaches to build intelligent

systems. Symbolic reasoning has been used in many applications by making use of expressive

symbolic representations to encode prior knowledge, conduct complex reasoning and provide

explanations. Recently, machine learning has enabled various successful applications by

learning from large amount of noisy data. In this thesis, I propose to integrate these two

approaches to build more expressive, efficient and interpretable learning systems. The

main idea is, instead of training a model to predict the output directly, training a model to

generate symbolic representations and then predict the output based on the generated symbolic

representations. Incorporating symbolic representations into machine learning helps the model

conduct complex reasoning, leverage external knowledge sources and learn more efficiently

with better inductive biases. The main challenge is that the symbolic representations are

usually hard to collect because it requires expertise, so we propose to induce them from weak

supervision, which is much easier to collect. We analyze the challenges when learning from
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weak supervision and propose several novel techniques in reinforcement learning and latent

structured prediction to overcome the problems. The proposed approach is investigated in

two settings. In the first setting, to estimate the similarity between two relational structures,

we use the structural alignment between them as the symbolic representation, which is then

fed into a classifier to estimate their similarity. Experiments have shown that, with the

inductive bias from structural alignment, the learned model achieves results competitive to

state-of-the-art on paraphrase identification and knowledge base completion benchmarks

while being much simpler or using orders of magnitude less data. In the second setting,

we use compositional programs as the symbolic representations, which can be executed

against a knowledge base or database tables to answer open-domain questions. By generating

programs, the model can leverage existing knowledge and operations to perform complex

reasoning compositionally. To our knowledge, this is the first end-to-end model without

feature engineering that significantly outperforms previous state-of-the-art results on two

very competitive semantic parsing benchmarks. Besides, I will also show that the generated

symbolic representations, e.g., the structural alignment and the programs, can be inspected

and verified by the users, which makes the model more interpretable and easier to debug.
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CHAPTER 1

Introduction

1.1. Overview

Learning and reasoning are fundamental elements of intelligence. Machine learning

and symbolic reasoning have been two main approaches to build intelligent systems [114].

Recently, machine learning has enabled various successful applications by using statistical

models, such as deep neural networks (DNN) [67] and support vector machines (SVM) [23],

to learn from large amounts of data. Symbolic reasoning, on the other hand, uses expressive

symbolic representations to encode prior knowledge, conduct complex reasoning and provide

explanations [92, 16, 37]. In this thesis, I propose to integrate these two approaches by

learning to generate symbolic representations from weak supervision.

Machine learning aims to learn a mapping from input x to output y: y = f(x). The

common approach is to represent the function f as a deep neural network or SVM with

feature vectors and then learn the parameters from data, which has been successful in many

applications. To extend this success to more high-level tasks, for example, in natural language

understanding, two problems need to be solved: (1) if the mapping from x to y requires

complex reasoning and prior knowledge, it can be hard or inefficient to represent using neural

networks or SVMs with feature vectors; (2) without a good inductive bias, training these

models successfully often requires large amounts of data. Symbolic representations can be

used to address these problems.
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To incorporate symbolic representations into machine learning methods, we introduce the

symbolic representation as a latent variance z, which is usually a structured object (e.g., a

program) defined by a grammar G. Instead of learning a direct mapping from input x to

output y, the proposed approach first learns to generate the latent symbolic representation z

as z = h(x) and then predicts the final output using both x and z as y = g(z, x) = g(h(x), x).

This helps address the aforementioned problems: (1) the symbolic representations z can

be used to leverage prior knowledge and conduct complex reasoning, which enables more

expressive models. For example, it is hard to train a neural network that maps questions

about the Olympics like ”how many more gold medals did USA won than the Great Britain in

2008 Olympics?” directly to its answer ”7”, because the model needs to acquire the knowledge

about the Olympics and at the same time learn arithmetic reasoning, which is hard and

inefficient to represent and learn using a neural network. But if the model is augmented

with a knowledge base (KB) of Olympics and arithmetic functions, it is easier and more

generalizable to learn to generate a program z that queries the knowledge base and computes

the answer. In this case, the symbolic representation (the executable program) is used to

represent both the query to KB and the arithmetic reasoning process. (2) we can introduce

effective inductive bias through the symbolic representations z to learn with less data. For

example, when learning to estimate similarity between two relational structures, if we let the

model generate alignment z between the two structures first and use this alignment to make

final prediction, the model would pay more attention to the matches and mismatches between

the two rather than just looking at each one independently. This inductive bias helps it avoid

overfitting to specific inputs and generalize better. In addition, the symbolic representation

z can also be inspected by human to understand the model and verify its behavior. For

example, we could look at the generated alignment to see what matches or mismatches make
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the model draw the final conclusion. We can also check the generated program to see the

reasoning process and the knowledge used by the model to answer a certain question. This

way, it makes the model more interpretable and easier to debug.

In the proposed approach, the symbolic representation is latent and is inferred from weak

supervision. In other words, instead of learning from data annotated with the symbolic

representations {(xi, zi, yi)}, the proposed approach learns from only input-output pairs

{(xi, yi)} and induces the intermediate symbolic representations zi. Learning from weak

supervision is preferred because it is usually expensive and slow to annotate the correct

symbolic representations z for large amount of data, but it is relatively easy to collect input-

output pairs or feedback from downstream applications as weak supervision. For example,

expertise is needed to annotate each question with the reasoning process and required prior

knowledge in a formal language, but it is relatively simple and natural to let a human answer

a question or evaluate the quality of an answer.

1.2. Outline and Contributions

The thesis is organized as follows:

Chapter 2: Background Chapter 2 covers the machine learning methods that the

proposed approach is built upon. We first review the structured perceptron algorithm to

train log-linear models for structured prediction. We show how it can be extended to work

with latent variables, which is adapted and applied to text similarity in Chapter 3. Then we

review the policy gradient methods in reinforcement learning and show how it can be applied

to train recurrent neural networks for weakly-supervised sequence generation. In Chapter 4,

we propose novel policy gradient methods to enable efficient and robust deep reinforcement

learning in large search space with sparse rewards and applied it to semantic parsing.
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Chapter 3: Learning Similarity Estimation with Structural Alignment This

chapter applies the proposed approach to estimate similarity between relational structures.

The input x are two relational structures and the output y is the similarity score. Inspired by

the structure-mapping theory of human similarity judgment, we use structural alignment as

the intermediate symbolic representation z. We evaluate this approach in two tasks. The first

task is knowledge base completion or link prediction. To decide whether two entities e1 and e2

has a certain relation r or not, we compare the relational structures S1 between e1 and e2 with

a prototypical structure Sr of entities with the relation r and use their similarity to make the

prediction. The second task is text similarity. To estimate how similar two sentences are, we

compare the attributed relational graphs constructed using the linguistic annotations of the

sentences and compute their similarity. In both tasks, by generating the structural alignment

z, the model benefits from a inductive bias that focuses on the matches and mismatches

between the two structures and considers both structural similarity and local similarity. The

module that generates the structural alignment and the module that estimates the similarity

are learned jointly by tying parameters or through an iterative training process of a latent

structured prediction model. As evaluation, the proposed approach is shown to achieve

state-of-the-art results while being much simpler or uses much less data on a knowledge base

completion and a paraphrase identification benchmark. The generated alignments can be

used to justify the similarity score.

Chapter 4: Learning to Generate Programs from Natural Language This chap-

ter applies the proposed approach to semantic parsing and question answering. The input x

is a natural language question and the output y is its answer. We use compositional programs

as the symbolic representation z, which can be executed against a knowledge base or database

tables to compute the answer. By generating programs, the model can query a KB for existing
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knowledge and use external functions compositionally to perform complex reasoning. We

apply this approach to integrate deep neural networks with symbolic reasoning and propose

the Neural Symbolic Machines (NSM) framework. By using a neural sequence-to-sequence

model as the ”neural programmer” and a Lisp interpreter as the ”symbolic computer”, the

Neural Symbolic Machines learns to generate programs from weak supervision (a reward

signal) indicating if the desired goal is achieved (for example, if the correct answer is returned).

Reinforcement learning [133] is applied to learn from weak supervision (question-answer

pairs). To train NSM successfully, we propose novel techniques to improve the efficiency

and robustness of the policy gradient methods in large search space with sparse rewards.

We evaluate this framework on two competitive semantic parsing tasks. The first one is to

answer open-domain questions using Freebase [12]; the second one is to answer open-domain

questions using tables from Wikipedia [98]. Both of the datasets have been used intensively

to benchmark different methods. To our knowledge, NSM is the first end-to-end model

without feature engineering that significantly outperforms previous state-of-the-art results on

both benchmarks [70]. Besides, the generated programs can be inspected and verified by the

users, which makes the model more interpretable and easier to debug.

Conclusion and Future Directions This chapter summarizes the proposed approach

and the experiments, and discusses future directions.
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CHAPTER 2

Background

When applying the proposed approach to a task, two questions are: (1) what symbolic

representation should be used for the task; (2) what machine learning method should be used

to learn to generate structured objects (the symbolic representations) from weak supervision.

This thesis builds upon previous literature that investigated these two questions. We leave

the background on the symbolic representations to the following chapters when we apply

the proposed approach to specific tasks. In this chapter, we focus on reviewing the types of

machine learning methods our work builds upon.

The proposed approach turns the problem of learning y = f(x) into learning z = h(x) and

y = g(z, x). z is the symbolic representation, so learning h is a structured prediction problem.

When the gold symbolic representation is not available, and both h and g need to be learned

from the end task, it is considered a weakly supervised structured prediction problem. To

solve this problem, we investigate structured prediction methods with log-linear models and

reinforcement learning with neural networks and propose new techniques to improve them.

We will briefly review both topics in this chapter.

2.1. Structured Prediction with Structured Perceptron

Structured prediction refers to a set of machine learning methods that predicts structured

output such as a sequence, rather than a scalar of continuous or discrete value as in regression

or classification. It is widely applied in natural language processing [1] and computer vision

[96]. Given the structure in the symbolic representations, learning to generate symbolic

representations can be naturally viewed as a structured prediction problem. A lot of methods

have been proposed for structured prediction. In this section, we focus on a simple approach,
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log-linear models trained with structured perceptron algorithm, which is fast, effective and

can be extended to include latent variables.

2.1.1. Log-Linear Models

Log-linear models assign the joint probability of input x and output y as:

Pθ(x, y) =
exp θ · Φ(x, y)∑

x′ ,y′ exp θ · Φ(x′ , y′)
=

exp θ · Φ(x, y)

Z(θ)
(2.1)

Note that the input x and the output y can be arbitrary structures. θ is a Rd vector of feature

weights that parameterizes the model. Φ is a function that maps pairs of input and output

(x, y) to a Rd feature vector. Z(θ) is the partition function to normalize the probability to

[0, 1]. The conditional probability of the output given a certain input is represented as

Pθ(y|x) =
exp θ · Φ(x, y)∑
y′ exp θ · Φ(x, y′)

(2.2)

The inference or decoding, which generates an output for a given input, is done through

y = argmax
y′∈Y

Pθ(y|x) = argmax
y′∈Y

θ · Φ(x, y
′
) (2.3)

Y is the space of all possible values for y, which is usually exponentially large. When Φ(x, y)

can be decomposed, the argmax might be solved efficiently through dynamic programming.

In general, it needs to be approximated by beam search or greedy decoding. Given a dataset

{(xi, yi)}, the conditional log-likelihood objective can be written as

J(θ) =
1

N
log

∏
i

Pθ(yi|xi)

=
1

N

∑
i

logPθ(yi|xi)

=
1

N

∑
i

(Φ(xi, yi) · θ − logZ(θ, xi))

(2.4)
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in which

Z(θ, xi)) =
∑
y∈Y

exp(Φ(xi, y) · θ) (2.5)

So the gradient of the log-likelihood w.r.t the parameters θ is

∇θJ(θ) =
1

N

∑
i

(Φ(xi, yi)− EPθ(y|xi)[Φ(xi, y)]) (2.6)

If we introduce the latent variable z into the model, the joint probability becomes

Pθ(x, z, y) =
exp θ · Φ(x, z, y)∑
x,z,y exp θ · Φ(x, z, y)

(2.7)

The conditional log-likelihood of the output given input needs to marginalize over the latent

variable z.

Pθ(y|x) =

∑
z′ exp θ · Φ(x, z

′
, y)∑

z′ ,y′ exp θ · Φ(x, z′ , y′)
(2.8)

Then the log-likelihood objective becomes

J(θ) =
1

N
log

∏
i

Pθ(yi|xi)

=
1

N

∑
i

logPθ(yi|xi)

=
1

N

∑
i

(logZ(θ, xi, yi)− logZ(θ, xi))

(2.9)

in which

Z(θ, xi) =
∑
y,z

exp(Φ(xi, z, y) · θ)

Z(θ, xi, yi)) =
∑
z

exp(Φ(xi, z, yi) · θ)
(2.10)

And the gradient of the objective becomes

∇θJ(θ) =
1

N

∑
i

(EPθ(z|xi,yi)[Φ(xi, z, yi)]− EPθ(z,y|xi)[Φ(xi, z, y)]) (2.11)
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We can use gradient-based methods to train the model, but computation of the gradient

requires computing the expectations. In some special case, the expectations can be computed

efficiently using dynamic programming, but in general it needs to be approximated because

the space of the structured objects are usually exponentially large. In the next section, we

review a fast and effective training algorithm, which can viewed as an approximation to the

stochastic gradient descent training.

2.1.2. Structured Perceptron Algorithm

There are several methods to train a log-linear model. We focus on the structured perceptron

algorithm [21, 22], which is simple and fast, and achieves good results in a lot of NLP

applications such as POS tagging, parsing, machine translation, etc.

The algorithm is shown in Algorithm 1. It adapts the perceptron algorithm for binary

classification to structured outputs. To generalize better, the average of the weights from

different training steps are usually used as the final parameters [21].

Algorithm 1 Structured Perceptron

Input: training data D = {xi, yi}, maximum number of iterations T
Initialize: parameters θ1 = 0
Procedure:
for t in 1...T , i in 1...N do

y
′
i = argmaxy∈Y θ · Φ(xi, y)

if y
′
i 6= yi then
θ ← θ + Φ(xi, yi)− Φ(xi, y

′
i)

Output: parameters θ
Inference: y = hθ(x) = argmaxy∈Y θ · Φ(x, y)

It is proven to converge when the examples are separable or inseparable by a small margin

[21]. We can also view it as stochastic gradient descent training with an approximation of

the gradient in Equation 2.11. It approximates the expectation using the value with the

maximum probability.

EPθ(y|xi)[Φ(xi, y)] ≈ Φ(xi, y
′

i) (2.12)



22

in which

y
′

i = argmax
y∈Y

Pθ(y|xi) = argmax
y∈Y

θ · Φ(xi, y) (2.13)

2.1.3. Latent Structured Perceptron Algorithm

Following [74, 130], the structured perceptron algorithm can be adapted to include latent

variables. Similarly to Equation 2.12, the gradient of J can be approximated as

∇θJ(θ) =
∑
i

(EPθ(z|yi,xi)[Φ(xi, z, yi)]− EPθ(y,z|xi)[Φ(xi, z, y)])

≈
∑
i

(Φ(xi, z
∗
i , yi)− Φ(xi, z

′

i, y
′

i))
(2.14)

in which

(y
′

i, z
′

i) = argmax
(y,z)

θ · Φ(xi, z, y) (2.15)

z∗i = argmax
z

θ · Φ(xi, z, yi) (2.16)

Applying stochastic gradient descent with the approximation in Equation 2.14, we can get

the Latent Structured Perceptron in Algorithm 2.

Algorithm 2 Latent Structured Perceptron

Input: training data D = {xi, yi}, maximum number of iterations T
Initialize: parameters θ = 0
Procedure:
for t in 1...T , i in 1...N do

(y
′
i, z

′
i) = argmaxy∈Y,z∈Z θ · Φ(xi, z, y)

z∗i = argmaxz∈Z θ · Φ(xi, z, yi)
if (y

′
i, z

′
i) 6= (yi, z

∗
i ) then

θ ← θ + Φ(xi, z
∗
i , yi)− Φ(xi, z

′
i, y

′
i)

Output: parameters θ
Inference: y = f(x) = argmaxy′∈Y maxz′∈Z θ · Φ(x, z

′
, y
′
)

The intuition of Algorithm 2 is to “hallucinate” a gold value z∗i given (xi, yi) and use

it to update the model. When learning to generate symbolic representations from weak

supervision, the gold symbolic representation is also not given, so we need to model it as a

latent variable z. In Chapter 3, we apply a similar iterative training process by “hallucinating”
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the gold value for the latent variable z to jointly learn the parameters for structural alignment

and similarity estimation.

2.2. Structured Prediction with Deep Reinforcement Learning

Deep reinforcement learning refers to reinforcement learning methods with function

approximation using neural networks. It has been successfully applied in several applications

such as Go [124], computer games [83], robotics [68], etc. By sequentializing the generation

process of the structured objects (for example, the symbolic representations), we can turn a

structured prediction problem into a sequence generation problem. Recurrent neural network

is commonly used to define a generative model over variable-length sequences and has been

the state-of-the-art in many sequence generation tasks. Using reinforcement learning, we can

apply RNNs to the weakly supervised sequence generation / structured prediction problem.

2.2.1. Sequence Generation with Recurrent Neural Networks

Recurrent neural networks (RNN) are a type of neural networks for processing sequential

data [44]. One typical use of RNN is to define a generative model over sequences, which

can be used, for example, to generate text. It is shown to achieve state-of-the-art results

on many sequence generation tasks such as language modeling, speech recognition, machine

translation, etc.

RNNs can be used to define a probability distribution over possible sequences (y0...yT ).

In the discrete case, yi is a token from a vocabulary V, which can be represented as a one-hot

vector xi, in which only one of dimensions has the value 1 and all others are 0. A RNN

summarizes the history of a sequence in a hidden state h. Starting from a initial state h0.

The hidden state at each timestep is computed as

et =Exxt−1

at =Whhht−1 + Whxet + bh

ht = tanh(at)

(2.17)
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xt is the input at step t. Ex, Whh, Whx and bh are parameters of the RNN, which is shared

among different timesteps. In the discrete case, the hidden state of the RNN can be used to

compute a probability distribution over the next token yt with softmax function

Pθ(yt|y0, y1, ..., yT ) =Pθ(yt|x0, ...,xt)

=Pθ(yt|ht)

=f ∗(yt, ht)

=
exp(wyt

s ht + byt
s )∑

y exp(wy
s ht + by

s )

(2.18)

So the joint probability of a sequence of tokens (y0, y1, ..., yT ) can be written as:

Pθ(y0, y1, ..., yT ) =
T∏
t=1

Pθ(yt|y0, ..., yt−1)

=
T∏
t=1

Pθ(yt|ht)

(2.19)

In supervised learning, where the gold sequence is given, we can train the model by maximizing

the log-likelihood

J(θ) =
∑
i

∑
t

logPθ(yt|y0, ..., yt−1) (2.20)

We can use backpropagation through time (BPTT) to compute the gradient ∇θJ(θ) and

train the model through stochastic gradient descent. When there is only weak supervision

available, we can use reinforcement learning to train the model, which we cover in the next

section.

There are many variants of RNNs. The long-short term memory network (LSTM) [53]

addresses the vanishing and exploding gradient problem and enables learning relatively

long-term dependencies in a sequence. The sequence-to-sequence (seq2seq) models [132] uses

two RNNs, one as an encoder to generate a hidden representation for the source sequence and

the other as a decoder to generate the target sequence based on the output of the encoder. It
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has been successfully applied to many NLP tasks such as machine translation [146], dialogue

generation, question answering, etc.

In Chapter 4, we augment a RNN with an external memory to model the compositionality

in a program and use it as a decoder in a seq2seq model that translates a natural language

utterance into a program.

2.2.2. Policy Gradient methods

Reinforcement learning concerns an agent needing to learn to take actions in an environment

so as to maximize the cumulative reward [133]. Many reinforcement learning problems can

be defined as a markov decision process with (S,A,P ,R, γ). S is a set of states, A is a set

of actions, P is the transition probability, R is the reward function and γ is the discount

factor. Assuming the episodic or finite-horizon setting, the return of an episode R is the

accumulated rewards.

R =
T∑
t=0

γtrt (2.21)

The goal is to learn a policy πθ(a|s), which picks an action given a state, that maximizes the

expected return.

J(θ) = Eπθ [R] = Eπθ [
T∑
t=0

γtrt] (2.22)

θ parameterizes the policy.

Policy gradient methods are one type of RL algorithms that optimizes the expected return

objective directly using gradient descent. The gradient of the objective J is

∇θJ(θ) =∇θEπθ [R]

=Eπθ [∇θ log πθ(a|s)Qπθ(s, a)]
(2.23)

Qπθ(s, a) is the state-action value function which is defined recursively as:

Qπθ(s, a) = r(s, a) +
∑
s′

∑
a′

γP (s
′ |s, a)πθ(a

′|s′)Qπθ(s
′
, a
′
) (2.24)
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There are many approaches to estimate the gradient defined in Equation 2.23. In the

episodic or finite horizon setting, one commonly used algorithm REINFORCE [143] uses

Monte Carlo estimation for Equation 2.23. It uses the final return of an episode as the

estimate for Qπθ , which is unbiased, but has high variance.

∇θJ(θ) = Eπθ [∇θ log πθ(a|s)R] (2.25)

One common technique to reduce the variance of the gradient estimator without introducing

any bias is to subtract a constant from the gradient.

∇θJ(θ) = Eπθ [∇θ log πθ(a|s)(R− b)] (2.26)

A common choice for baseline, which is close to optimal, is the expected return under the

current policy.

b = Eπθ [R] (2.27)

There is a long line of literatures on policy gradient, which proposed methods such

as actor-critic algorithm [64, 105, 82], natural policy gradient [61], trust region policy

optimization [119] and poximal policy optimization [121], to improve the convergence speed

and robustness. Off-policy methods are also used to improve its sample efficiency [141, 33].

We apply policy gradient methods to the structured prediction problem, where, in each

episode, the policy constructs a structured output. For example, in Chapter 4, a policy

is trained to generate programs, where each action is to output one valid token in the

programming language. It is known that the policy gradient methods has bad sample

efficiency and robustness given sparse rewards in a large search space. In Chapter 4, we

propose new policy gradient methods to address these problem to successfully apply the

proposed approach, which learns from weak supervision to generate programs given natural

language utterances.
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CHAPTER 3

Learning Similarity Estimation with Structural Alignment

Similarity estimation is an important component of human intelligence [43]. The common

approach for similarity estimation assumes the inputs are vectors or can be flattened into

vectors and apply dot product or cosine similarity. However, when the input data is relational

(for example, facts from a knowledge base or syntactic structures of a sentences), flattening

them into a vector does not make effective use of the structural information. Evidence

from cognitive science has shown that structural alignment, which aligns the two relational

structures to be compared and considers both structural similarity and local similarity, is

key to similarity estimation. In this chapter, I investigate the proposed approach to generate

structural alignments as the latent symbolic representations to help similarity estimation.

We use knowledge base completion and text similarity benchmarks as evaluation.

3.1. Background: Structure-Mapping Engine

Using structural alignment as the symbolic representation to help estimate similarity is

largely inspired by the structure-mapping theory (SMT) [41], which studies how humans

make analogy and similarity judgment, and its computational model, the structure mapping

engine (SME) [34]. SME has been used to model a variety of psychological phenomena [38].

It is also the foundation of the cognitive models of analogical retrieval [39] and analogical

generalization [79].

SME takes as input two structured representations, a base and target, and produces one

or more mappings. Each mapping consists of a set of matches or correspondences (i.e. what

goes with what), a structural evaluation score that provides an overall estimate of the match

quality, and candidate inferences. The similarity score of a mapping is usually normalized to

[0,1] by dividing the raw score by the mean of the self-scores of the base and target. Forward
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candidate inferences go from base to target, reverse candidate inferences go from target to

base, which represent new facts based on the mapping.

SME ensures structural consistency in the mapping, which is defined by two constraints:

(1) the one-to-one mapping constraint, which requires that each item in the base maps to at

most one item in the target and vice versa. (2) the parallel connectivity constraint, which

requires that if a correspondence between two expressions is included in a mapping, then

correspondences between their arguments must also be included. To find the best mapping,

SME follows the principle of systematicity, which prefers mappings with systems of predicates

that contain higher-order relations, rather than to map isolated predicates.

SME has shown that structural alignment captures similarity over deep semantic repre-

sentations. In this chapter, we apply structural alignment to shallow and noisy structures

collected from crowd-sourcing and automatic extraction, for example, triplets from a knowl-

edge graph or the dependency parse of a sentence, and combine it with machine learning

methods to tackle two real world tasks, knowledge base completion (link prediction) and

paraphrase identification.

3.2. Knowledge Base Completion

3.2.1. Motivation

Intelligent systems need knowledge and the ability to reason with it. Hand-coding knowledge

and inference rules is not a scalable solution. KBs like Freebase [14], WordNet [81], and

YAGO [129] are potential sources to use and have accumulated considerable structured

data, which encodes knowledge about different domains. They are already used to support

applications like question answering and information retrieval. These KBs continue to grow

rapidly. However, using these KBs brings up two concerns. First, because the fact in the

KB can be extracted from text or collected by crowd-sourcing, they are often incomplete

and noisy. Traditional logical inference may not be sufficiently robust to reason over them.

Second, unlike images, auditory data or raw text, this data is inherently structured. Although

traditional statistical machine learning methods can handle the noise well, most such methods
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are designed to work over feature vectors, and cannot exploit the relational structure in the

data effectively.

One testbed for reasoning with these KBs is the knowledge base completion or link

prediction task. In KBs like Freebase and WordNet, knowledge is stored in the triplet format:

”entity relation entity”. Since there are only binary relations, it can be seen as a labeled,

directed graph. Each entity is a node, and each triplet between two entities is an edge

labeled with the relation. In the knowledge base completion task, the model should learn to

distinguish correct triplets like ”Obama nationality USA” from incorrect ones like ”Obama

nationality Kenya”, which can be viewed as a binary classification problem.

3.2.2. Method

The main idea is that the systems learns a parameterized template for each relation, and

then use the estimated similarity score between the facts about two entities e1 and e2 with

the template of the relation r to decide whether the relation holds for the two entities.

There are three main steps in the method as outlined in figure 3.1: (1) generate structured

representations for each triplet as preprocessing; (2) discover the templates that include the

important facts; (3) integrate SME and logistic regression to jointly learn the parameters

(weights of each fact in the template) for generating the structural alignment and estimating

the similarity.

3.2.2.1. Data Preprocessing through Path-finding. First, we perform case construc-

tion by path-finding, which finds the paths between two nodes in a graph. A case contains

structured information about a particular triplet. The idea is to include enough information

to enable a system to distinguish correct from incorrect triplets, while limiting the size of the

cases for the sake of efficiency and to reduce the number of irrelevant matches.

A KB with only triplets can be viewed as a graph. We use path-finding as a heuristic to

pick relevant facts for case construction. For example, when we want to create a case for a

triplet with e1 and e2 as head and tail entity, we use depth-first-search to find paths between

them and put all the facts along the paths into the case. In a large scale and highly connected
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Figure 3.1. SLogAn’s workflow for a possible use case: the learning system gets input from a
knowledge base, does template learning and parameter learning with the data, and, with the
learned generalizations, it is able to provide answers and explanations to the users queries.

knowledge base, an exhaustive search will be prohibitive, so we use limits on branching factor

and search depth to randomly select parts of the search tree to explore.

Since there are only positive examples in the original dataset, we corrupt the correct

triplets by changing their tail entities to wrong ones to get negative examples, which is similar

to [126]. We treat the training set as our knowledge base, and create cases from it. With

just a few cases, our method is able to learn plausible inferences. For the knowledge base

completion task, we used only 10 positive and 10 negative examples for each relation.

Second, to decide what to include in the inference, we apply SAGE (Sequential Ana-

logical Generalization Engine) [79] to learn a template for each relation. SAGE can create

generalizations by comparing examples and compressing them into one prototype. Here, a

generalization works as a template for inferring a certain relation. It is trivial to compare
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feature vectors using cosine similarity because they all share the same dimensions, but it

is non-trivial to find the best way to align two structured representations. SAGE applies

SME to find the best structural alignment between the examples, and uses these alignments

to compress the examples into one structurally consistent template. We also require the

head entity and tail entity of one triplet to be respectively matched to those of the other

triplet to make sure they are the focus of the template. Note that, unlike the way SAGE

is usually used, we first create generalizations with positive examples only, and then add

negative examples to these generalizations so that they contain facts from positive as well as

negative examples. In this way, some facts could contribute negatively to the target relation.

For example, if I know that e2 is e1’s parent, then e1 cannot be e2’s parent. Although that

fact never appears in a positive example, it is still a critical fact to consider in the inference.

3.2.2.2. Structural Alignment and Plausible Inference. In this step, given the training

examples and the templates, the model learns the parameters using an integration of SME

and logistic regression.

To represent how much each expression in the template supports or contradicts the target

relation, each expression Ei is associated with a weight wi measuring its support for the

relation to hold. Note that the weight wi will be negative if Ei contradicts with the relation

and positive if Ei supports the relation. Given an example, we compare it to the template

using SME. We use the absolute value of the weight |wi| of an expression Ei as its weight

when applying SME. In this way, SME will prefer mappings with matches of expressions

that have larger contributions to the final decision (measured by |wi|). With the resulting

structural alignment, we compute the probability of the relation being true as

p =
1

1 + es
(3.1)

s =
∑
Ei∈M

wi (3.2)
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Figure 3.2. A comparison of the standard logistic regression (on the left), which assumes
vector representation and applies dot product, and the structured logistic regression (on the
right), which assumes structured representation and uses structure mapping to compare the
template and the input.

M is the set of expressions that get matched in the given alignment. The score s is computed

as the sum of the weights of the matched expressions. The higher the score, the higher the

probability of the triplet to be true. Let θ be the parameter vector that consists of the

weights for the expressions. A comparison of the standard logistic regression with the current

model is in Figure 3.2.

We use cross entropy loss to define the training objective J(θ) and add L1 penalty to

promote sparsity in weights as regularization and to improve interpretability:

J(θ) = −
n∑
i=0

[(1− yi) log(1− pi) + yi log(pi)] + α

m∑
j=1

|wi| (3.3)

n is the number of examples in the training set. m is the number of expressions in the

template. yi and pi are the label (1 for positive, 0 for negative) and predicted probability

of the i-th example. α controls the degree of the regularization. We can then compute

the gradient ∇θJ(θ) and train the parameters θ through gradient descent. The prediction

accuracy on the validation set is used to decide early stopping.
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To evaluate the method, we compare its accuracy to the state-of-the-art on the knowledge

base completion task. We use the datasets collected by [126]. One dataset contains triplets

from Freebase consisting of 13 relations, the other dataset, from WordNet, consisting of 11

relations. More details about the datasets is shown in Table 3.1.

Table 3.2 shows the accuracy on test set. Using only 20 examples, our model has achieved

results competitive to state-of-the-art. It is 2nd on WN11 and FB13, and no method is better

than ours on both of the datasets.

Model #Relations #Entities #Train #Valid #Test
WordNet11 11 38,696 112,581 2,609 10,544
FreeBase13 13 75,043 316,232 5,908 23,733

Table 3.1. Statistics of the WordNet11 and Freebase13 datasets

Model WordNet11 FreeBase13
Distance Model 53.0 % 75.2 %
Hadamard Model 70.0% 63.7 %
Single Layer Model 69.9% 85.3 %
Bilinear Model 73.8% 84.3%
Neural Tensor Network 70.4% 87.1%
TransH 78.8% 83.3%
SLogAn (Our model) 75.3% 85.3%

Table 3.2. Knowledge base completion accuracy (%)

3.2.3. Discussion

In summary, our model learned plausible inferences from the KB with only a few examples

and achieved results competitive to the state-of-the-art on the knowledge base completion

or link prediction task. Moreover, it can provide explanations for its inference based the

structural alignment. For example, when asked about “is Taufa’ahau Tupou IVs ethnicity

Tongan?”, even though the system does not know this fact, it can learn from a few examples

how to infer the “ethnicity” relation and make an accurate prediction. If the users are only

provided with the answer, they have to decide whether to believe it or not based on their
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trust of the system. However, by examining what expressions are matched in the structural

alignment, the system can add, “I believe Taufa’ahau Tupou IVs ethnicity is Tongan, because

I know his parents’ ethnicity is Tongan, and I remember a person with the same nationality

whose ethnicity is also Tongan”. This makes the system more interpretable to the users, and

can alert them when the system makes an invalid inference.

3.2.4. Related work

Many vector embedding based methods has been tested on the knowledge base completion

tasks. [126] and [140] are the most recent and have the best accuracy. Their models are

quite different from ours. They learn vector representations for the entities that implicitly

encodes knowledge about them and use translation of the vector or tensor product for

inferring new relations. During training, they created negative examples for every triplet

in the training set and train on all of them. In contrast, our method only randomly selects

a few triplets and creates cases and corresponding negative examples for them. Instead of

implicit encoding of knowledge with vector embedding, we use the structured knowledge

directly and learn templates that explicitly encode valid inferences. This makes our model

more interpretable. Path-finding for relational learning is used by a lot of previous work.

[123] uses it to learn valid inference chains. They are using plausible inference patterns and

type information of the relations to find correct inference, while we are learning purely from

ground facts. Their way of using the existing knowledge would be a possible improvement

to our method. [110] uses path-finding to find candidate clauses for learning first-order

rules, but it is computationally expensive. [66] uses limited length path-finding in the NELL

knowledge base to create features with the paths found and do logistic regression with them.

Our model can use facts that doesn’t form a complete path in the inference. Also note that

path-finding is just one heuristic we use for case construction, analogical generalization and

structured logistic regression can be combined with other case construction methods like

dynamic case construction [86] or spreading activation as long as they generate structured

representations. Structural logistic regression [106] generates features by propositionalizing
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first-order rules learned by inductive logic programming, and uses logistic regression with

these features for classification. Relational logistic regression [62] uses logistic regression

to learn weights for first-order formulas in defining the conditional probability of a new

relation given those formulas. Their ways of adding the counts of certain facts as features are

possible improvements for the current model. Although the knowledge base completion or

link prediction task only deals with binary relations, our model has the ability to deal with

first-order and high-order relations because it builds on SME and SAGE, which can handle

both of these types of relations.

3.2.5. Conclusion

In this work, we integrate SME with logistic regression to learn to estimate the similarity

of the facts about two entities, e1 and e2, with a template of a relation, r, using structural

alignments. The similarity score is used to predict whether the triplet (e1, r, e2) is true or

not. Our model achieved state-of-the-art performance on the knowledge base completion task

with orders of magnitude less data and can provide explanations for its inference based on

the structural alignment.

3.3. Text Similarity

3.3.1. Motivation

Semantic similarity of texts is used in many tasks like paraphrase identification [30], textual

entailment [24], and question answering [137]. Although simple bag-of-words models work

well for large documents, short texts are challenging because those simple models suffer from

sparsity.

The semantics of text is often decomposed into two important parts. The first part

is the local information, i.e., semantic of lexical units. Recently there has been a lot of

improvements in semantic tasks using word embeddings learned from a large corpus [8, 80].

The second part is the structural information, i.e., syntactic and semantic structure. For

example, a sentence pair from recently introduced Stanford NLI corpus [15] “A man wearing
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padded arm protection is being bitten by a German shepherd dog / A man bit a dog” is

wrongly predicted as having entailment relation by both a lexicalized classifier and a sentence

embedding model. If explicit syntactic and semantic structures are used, the difference

between the two sentences’ meanings will be obvious. The development of natural language

analysis tools [78] makes it easy to efficiently generate a variety of syntactic and semantic

annotations like dependency parses, POS tags, entity mentions as well as semantic role

labeling and open relation extraction.

Despite the progress on both sides, how to effectively combine the local and structural

information is still an open question. Our system jointly learns to generate structural

alignments and estimate semantic similarity. It uses a hybrid representation, attributed

relational graphs [116, 159], to encode lexical, syntactic and semantic information together.

In order to exploit the relational structure, we use structural alignment as an intermediate

symbolic representation to support similarity estimation. Different from word alignments,

structural alignment forms consistent correspondences between both words and syntactic and

semantic structures of two pieces of text. To get better alignment, we introduce structural

constraints to utilize the predicate-argument structure encoded in the graphs. These structural

constraints are inspired by the structure-mapping theory [42], a cognitive theory of similarity

and analogy and its computational model, structure-mapping engine. More details can be

found in Section 3.1.

3.3.2. Related Work

A lot of different approaches have been proposed for text similarity. We focus on two main

categories most related to ours.

Neural network models extend the idea of word embedding to larger constructions like

phrases, sentences and paragraphs. A variety of architectures have been explored. The

recursive neural network in [127] used a constituency tree and recursive autoencoder to learn

composition functions of word embeddings to phrase embeddings and eventually sentence

embeddings. Tree-LSTM [134] generalizes LSTM from sequences to tree structures. Other
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recent approaches include the Siamese architecture with syntax-aware multi-sense embeddings

[19] and convolutional neural networks [50, 151]. Our approach also uses word embeddings,

but instead of trying to compress all the information into one fixed length vector, we use

word embeddings together with other linguistic structures explicitly encoded in the attributed

relational graph.

Some approaches explore syntactic structures of two sentences. Tree kernels and graph

kernels with SVM have been used on syntactic structures extended with relational links

between similar words [35] to predict relations between texts. Quasi-synchronous grammar

was used in [26] to model divergence of syntactic structure between paraphrases. [11] used

probabilistic soft logic to combine logical and distributional representations through weighted

inference rules. Our method took a similar hybrid approach, but used attributed relational

graphs as a extensible representation to encode various different kinds of lexical, syntactic

and semantic information.

Alignment has been used as an intermediate step in several NLP tasks. For example,

[115] used alignment of structured annotations from different resources for textual entailment.

Word alignment as latent variable was used in machine translation [75]. Neural attention

models in machine translation [6] and textual entailment [111] can be seen as jointly learning

soft alignments between words in source and target sentences or words in text and hypothesis.

The problem that alignments are latent in data is a common challenge for these alignment-

based approaches. Latent variable model and joint learning is a commonly used solution.

We take a similar approach here. However, different from word alignment, our alignment is

carried on both words and linguistic structures. By using structural constraints, it utilizes

the predicate-argument structure in the text, which is generally ignored in other works.

Structural alignment as an intermediate step to support similarity estimation also has

support from cognitive science. Structure Mapping Theory (SMT) [42] states that similarity

judgment and analogy is done through structural alignment of mental representations. In the

alignment process, humans prefer structurally consistent alignment of deep nested structure,

which is called structural consistency and systematicity principle. This theory and its
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computational model Structure Mapping Engine (SME) [34] has been proven to fit human

performance in various different experiments [36]. A variant of the algorithm was used in

the IBM Watson Jeopardy system for evaluating candidate answers [88]. In the previous

section, we introduced the work [72] that combined SME with statistical learning and showed

state-of-the-art performance on knowledge base completion task using orders of magnitude

less training data than other approaches. Structural alignment is a major component of our

approach, and the structural constraints we introduced to our alignment model is inspired by

SMT’s structural consistency principle.

3.3.3. Method

The problem of semantic similarity is, given two pieces of texts, the system must produce a

score indicating the degree that their meanings are equivalent. We solve this problem with a

pipeline of three components similar to RATER [115].

(1) Graph extractor: Given two pieces of texts, it uses word embeddings and a set of

automatic annotators to extract the tokens, syntactic relations, POS tags and entity

mentions to generate the attributed relational graph.

(2) Structural aligner: Given two attributed relational graphs, the structural aligner

generates an alignment. An alignment of two attributed relational graphs is a set of

matches, and each match is a correspondence between two nodes or edges.

(3) Similarity estimator: Given an alignment, the similarity estimator produces a

similarity score between the two graphs or a label indicating whether they are similar

enough to be considered equivalent.

3.3.3.1. Data Representation and Graph Extraction. Our method uses a hybrid

representation, attributed relational graphs (directed graphs with attributes attached to the

nodes and edges). See figure 3.3 for an example. The attributes store local information

about a unit/node or a relation/edge, which will later be used to extract features for each

match between two nodes or two edges. These features are used to estimate the similarity

and importance of the match. In our experiment, for fair comparison with other methods,
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Figure 3.3. A example of annotations turned into an attributed relational graph, structural
information such as syntactic structure is encoded in the graph structure, and local informa-
tion such as word embedding or dependency label is encoded in the attributes attached to
nodes and edges

we just use tokens as units/nodes and dependency arcs as relations/edges. For attributes,

we used dependency label, token, lemma, POS tag, NER tag and word embedding. These

annotations can all be obtained easily through standard natural language analysis tools. Here

we used Stanford CoreNLP and pretrained Word2Vec word embeddings1 [80]. We refer to

this preprocessor as the graph extractor.

3.3.3.2. Structural Alignment and Similarity Estimation. The two core components

of our approach are the structural aligner and similarity estimator. Given two input graphs,

the structural aligner finds the best alignment between them, which can be seen as a structured

prediction problem. Based on the best alignment, the similarity estimator produces a score

indicating the degree of similarity or a binary output indicating whether the two sentences

1https://code.google.com/archive/p/word2vec/
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Figure 3.4. An overview of the full pipeline consisting of three main components to turn raw
texts into attributed relational graphs, structurally align them and estimate their similarity.
The color indicates how the nodes and edges from two graphs match with each other in the
alignment.

are semantically equivalent or not, which can be seen as a regression or classification task

depending on which output is produced.

An alignment is a set of matches. Each match is a pair of nodes or edges from the two

graphs. The structural alignment has two steps. First, given two graphs, the structural

aligner generates all the possible matches that pass some criteria. In this work, the criteria

we used are that (1) two matched dependency arcs must have the same dependency label; (2)

the cosine similarity between word embeddings of two matched tokens must be greater than

0.4. This value is chosen from pilot experiments with a subset of the data. The result is not

sensitive to it because most of the matches that passed this threshold have similarities much
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higher than it. Second, it selects the subset of matches that optimizes an objective defined in

Equation 3.4.

Formalized as a structured prediction problem, the input x is a pair of graphs and the

output a is an alignment. Φa(x, a) is a function mapping input graphs and a candidate

alignment to a feature vector. Details about the features can be found in the next section.

Let wa be the set of parameters for the structural aligner, and A be all the possible subsets

of all the possible matches. Finding the best alignment is solving the following problem:

apred = argmax
a∈A

wa · Φa(x, a) (3.4)

This argmax problem is intractable, so we use beam search or greedy search to find an

approximate solution.

Formalized as a regression or classification problem, the similarity estimator takes the pair

of graphs and the predicted alignment as input, and uses another feature function Φs(x, apred)

to map them to a feature vector. Let ws be the set of parameters for the similarity estimator.

Here we consider the paraphrase identification task. Since the correct similarity label ytrue

is usually given in training data, this is a supervised binary classification problem. Using a

linear classifier, the similarity label ypred is predicted as:

ypred = sgn(ws · Φs(x, apred)) (3.5)

In this work, we use a SVM to learn ws.

Learning wa is more challenging because the true alignment atrue is latent. We address

this problem using two approaches, alignment as feature extraction and alignment as latent

variable.

In the first approach, we consider the structural aligner as a feature extractor and ws as

hyperparameters, and use grid search over a validation set to select the best parameters. But

the problem is that the number of runs needed in grid search grows exponentially with the

number of hyperparameters, So we have to restrict Φs to include just a small set of features.
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To overcome these problems and utilize more features in the structural aligner, the second

approach jointly trains the structural aligner and the similarity estimator through an iterative

EM-like process, as follows. First, we initialize the parameters to some value w0
a, for example

using the values obtained from the first approach. Then we repeat two steps:

(1) Keep wa fixed, for each input xi, assume the alignments produced by the structural

aligner is “correct” and learn ws from examples {(xi, aipred, yitrue), i = 1, 2 . . . , n}.

(2) Keep ws fixed, for each input xi, hallucinate the “correct” alignment ai∗ by solving

ai∗ = argmax
a∈Ai

wa · Φa(x
i, a)− C · Loss(ytrue, ws · Φs(x

i, a)) (3.6)

where C is a hyperparameter that represents the confidence in the classifier. Since we use

SVM to learn ws, the Loss here is hinge loss. In the experiment, we set C to be very large

(106). Thus, this argmax solves for the alignment that causes the lowest prediction error and,

if there is a tie in the error, has the highest alignment score wa · Φa(x
i, a). Then, examples

{(xi, ai∗), i = 1, 2 . . . , n} are used to train the aligner using the averaged structured perceptron

algorithm [21].

Because this process will usually overfit the training data, we use the performance on a

validation set to decide when to stop.

3.3.4. Features

In this section, we discuss the features used in feature functions Φa and Φs, and focus on

how the pairwise features are used to encode the structural constraints. We first describe a

feature function Φ, then show how Φa and Φs are defined using Φ.

The (global) feature vector Φ(x, a) is a concatenation of global unary feature vector

Φu(x, a) and global pairwise feature vector Φp(x, a) .

Φ(x, a) = [Φu(x, a); Φp(x, b)] (3.7)

The global unary and pairwise feature vectors are aggregations of local unary and pairwise

feature vectors. In other words, a global feature vector is just a sum of local feature vectors.
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Recall that an alignment a is just a set of individual matches {mi}. The local unary feature

vector φu(x,mi) is computed for each individual match mi, and the local pairwise feature

vector φp(x,mi,mj) is computed for each pair of matches (mi,mj).

Φu(x, a) =
∑
i

φu(x,mi) (3.8)

Φp(x, a) =
∑
i,j

φp(x,mi,mj), i 6= j (3.9)

For the structural aligner, only the ranking of candidate alignments matters, because it

just produces the one with highest score as the output. In this case, the aggregation of local

features Φ suffices to be a good feature vector. So Φa is simply defined as:

Φa(x, a) = Φ(x, a) (3.10)

For the similarity estimator, however, the value of ws · Φs(x, apred) matters because its

sign decides the prediction and its absolute value roughly represents the confidence in the

prediction. So the feature vector needs to be normalized.

Here we use the self alignments to normalize. Note that the input x is just a pair of

attributed relational graphs (g1, g2) extracted from the pair of sentences. The self alignment

feature vector is defined as:

Φself (x) =
Φ(x1self , a

1
self ) + Φ(x2self , a

2
self )

2
(3.11)

where x1self = (g1, g1) and x2self = (g2, g2). a
1
self and a2self are the self alignments of g1 and g2,

in which each node and edge just matches to itself.

Then Φs is defined as concatenation of three vectors:

Φs(x, a) = [Φ(x, a); Φself (x);
Φself (x)− Φ(x, a)

Φself (x) + δ
] (3.12)

where δ is a very small smoothing term. The third vector is the normalized difference between

self alignment’s aggregation feature vector and the current alignment a’s aggregation feature
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vector. Because each dimension i of the vector corresponds to one feature and for most

of the features2 we used, 0 < Φ(x, a)i < Φself(x)i. So each dimension of the third term is

bounded between 0 and 1. We still include the raw aggregation feature vector Φ(x, a) and

self alignment aggregation feature vector Φself (x) in the final feature vector because the raw

values of these features are also informative and were shown to improve the performance in

the experiments.

3.3.4.1. Unary Features. Unary features are used to estimate how similar the two matched

tokens or dependency arcs are, and also how important they are in their sentence. These

features are used to compute how much this match will contribute to the alignment score or

overall similarity. Listed below are the features we used as unary features in this work.

(1) Lexical similarity: cosine similarity between word embeddings of the matched two

tokens.

(2) Lexical features: word features for words that appeared at least twice, lemma

features and an indicator feature for whether the two matched tokens have the same

lemma.

(3) Syntactic features: POS tag features, and an indicator feature of whether the

matched two token has the same POS tag; dependency label features, and an indicator

feature of whether the matched two dependency arcs have the same dependency

label.

(4) NER features: NER tag features, and two indicator features, one for whether

the matched two tokens has the same NER tag, and another one for whether the

matched two token has the same normalized entity name.

(5) Position difference feature: the difference between the positions of the matched

two tokens in the their sentences.

3.3.4.2. Pairwise Features. Pairwise features are introduced to improve alignment by

encoding the structural constraints between matches. These structural constraints ensure that

the final alignment is structurally consistent. They are inspired by the structural consistency

2The only feature that violates this is the position difference feature, so we don’t include it in this normalized
term and just keep its raw values.
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principle of Structure Mapping theory. The principle states that two constraints are used

by human when aligning predicate argument structures: (1) one-to-one mapping that one

entity or predicates should only match to one entity or predicate; (2) parallel connectivity

that if a predicate matches another predicate, their roles and arguments should also match

correspondingly.

In this work, we adapted these constraints to work on tokens and syntactic relations.

The one-to-one mapping is encoded as a hard constraint in the structural aligner so that

alignments that matches one token or relation to more than one other token or relation would

be filtered out. The parallel connectivity constraint is adapted by considering dependency

tree as an approximate predicate argument structure. So if the heads of two dependency arcs

matches, the two dependency arcs should also be more likely to match. If two dependency

arcs matches, the tail of the dependency arcs should be more likely to match as well.

These two constraints are implemented as two pairwise indicator features. For a match

mi between two tokens ta and tb, and a match mj between two dependency arcs da and db.

φp(x,mi,mj)1 =

1, if ta = head(da) & tb = head(db)

0, otherwise
(3.13)

φp(x,mi,mj)2 =

1, if ta = tail(da) & tb = tail(db)

0, otherwise
(3.14)

Note that in this work, for simplicity, we just used pairwise features to demonstrate

the utility of structural constraints. Structural constraints involving more matches can be

modeled using higher-order features, and more fine-grained constraints can make use of the

attributes of nodes and edges.
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Model Accuracy F1
Das and Smith (2009) 76.1% 82.7%
Wan et al. (2006) 75.6% 83.0%
Socher et al. (2011) 76.8% 83.6%
Madnani et al. (2012) 77.4% 84.1%
He et al. (2015) 78.6% 84.7%
Cheng and Kartsaklis (2015)∗ 78.6% 85.3%
Ji and Eisenstein (2013)∗ 80.4% 85.9%
This work
local similarity 76.9% 83.9%
+structural constraints 77.4% 84.2%
+syntactic features 78.2% 84.7%
+latent variable model 78.3% 84.9%
This work 78.3% 84.9%

Table 3.3. Test results on MSRP paraphrase dataset

3.3.5. Results & Analysis

We compared our model to other state-of-the-art models3. The result is shown in Table 3.3.

Despite its simplicity, our model is competitive to the state-of-the-art. The two results labeled

with * used extra data besides the training set. [56] used matrix factorization on both training

and test set to extract distributional features, and [19] used PPDB [40], which is several

orders of magnitude larger, as training data. [35] used trees as structured representations of

text, and lexical matching was also an important component in their method. They achieved

better results with more complex features and a thorough comparison and combination of

different graph and tree kernels, while our much simpler alignment-based method showed

comparable performance.

For different experiment settings, we kept the features used in the similarity estimator

fixed, and varied the features used in the aligner. For the first three settings, the parameters

for the aligner are decided using grid search over a validation set.

The baseline similarity estimator uses SVM with a set of simple features: (1) cosine

similarity between average word embeddings of the two sentences; (2) simple number features,

3http://aclweb.org/aclwiki/index.php?title=Paraphrase_Identification_(State_of_the_art)

http://aclweb.org/aclwiki/index.php?title=Paraphrase_Identification_(State_of_the_art)
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percentage of words in the other sentence and sentence length difference used in [127]; (3)

BLEU1 through BLEU4 as separate features.

The local similarity setting adds lexical similarity and same dependency label features.

In other words, it uses only local similarity of the matched two tokens or dependency arcs to

find the best alignment. Surprisingly, this simple approach already outperforms the baseline

and three other sophisticated models. This showed that word embeddings and shallow

features are not good enough, but the combination of word embeddings with alignment and

rich features is surprisingly effective.

Using only local similarity, the alignment contains separating matches that do not connect

with each other. The +structural constraints setting added the two pairwise indicator

features to promote structural consistency. With these two features as structural constraints,

the aligner prefers a set of consistent matches between two connected syntactic tree structure

over matches between scattered pieces. This improved the F1 score by another 0.3 percent.

Since the dependency tree is used as an approximation to the predicate-argument structure,

this approximation makes more sense for some dependency relations, such as nsubj, nsubjpass

and dobj, and some words, such as verbs and nouns, than others. Using this heuristic, the

+syntactic features setting added verb and noun POS tag features and features for those

three dependency labels. This would help the aligner focus on the words and dependency

relations that capture the predicate-argument structure better during the search for a set of

structurally consistent matches. This increased the F1 score by another 0.4 percent.

The +latent variable model setting explored the full parameter space for the aligner

using the iterative training described in Section 3.2. It takes the best parameters from last

setting as initialization. We run averaged structured perceptron for 10 epochs. The averaged

parameters after each epoch is stored as {wi, i = 1, 2, ..., 10}, and we used a validation set to

decide which one to use as the final parameters. We also used the validation set to decide

when to stop the iterative training. This further improved the F1 score by another 0.2

percent.
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We used 5-fold cross validation on the whole dataset to check the statistical significance

of the differences between settings. We found that the improvement of local similarity setting

to the baseline and the improvement of the full model to the local similarity setting are both

statistically significant. But the differences within the three structural alignment settings are

more subtle and not statistically significant.

The alignment and rich features enabled the system to learn which part of the sentences

are more important to its semantic rather than treating them all the same. This eliminates

many false positives caused by misleading lexical overlap. For example, “Gyorgy Heizler,

head of the local disaster unit, said the coach had been carrying 38 passengers.”, and “The

head of the local disaster unit, Gyorgy Heizler, said the coach driver had failed to heed red

stop lights.” was classified wrongly as paraphrase by the baseline because of high lexical

overlap, but using the local similarity setting, it made the right prediction.

Structural alignment further eliminates false positives because it helps constrain the

lexical matches. For example, “a dog bites a man” and “a man bites a dog” have a perfect

alignment in local similarity setting, but will not be recognized as similar by the full model,

because the syntactic structures lead the aligner to match “dog” with “man” and “man” with

“dog”, which are not similar.

3.3.6. Conclusion

In this work, we showed how to jointly learn to generate structural alignment and estimate

the semantic similarity of texts and evaluated it on the paraphrase identification task. We

used a hybrid representation, attributed relational graphs, to encode local and structural

information. This enables us to integrate structural alignment and similarity estimation

through two approaches: alignment as feature extraction and alignment as latent variable. In

the experiment, our approach achieved results competitive with state-of-the-art models on

the MSRP corpus.
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CHAPTER 4

Learning to Generate Programs from Natural Language

Understanding natural language is a fundamental goal for artificial intelligence. It requires

modeling the compositionality in natural language, making use of prior knowledge and

performing complex reasoning, which makes it hard for current machine learning methods,

such as neural networks. On the other hand, programs naturally handle compositionlity

through the use of memory, and can make use of external knowledge and modules by calling

predefined functions. In this chapter, I apply the proposed approach that learns to generate

programs as the latent symbolic representation from weak supervision (question-answer pairs)

to answer open-domain compositional questions using Freebase and tables.

4.1. Background: Compositional Semantics

Semantic parsing is the process of translating natural language utterance into a formal

semantic representation. Montague semantics [85, 84] is one paradigm in compositional

semantics that relies on higher-order functional models such as lambda calculus to provide

denotations for the semantic representations. Combinatory categorial grammar (CCG) [128]

is a lexicalized grammar used by many semantic parsers [156, 157, 158]. The grammar is

defined using a lexicon that maps words to categories with semantic interpretations and a

set of combinatory rules like functional application, functional composition and type-raising.

Dependency-based compositional semantics (DCS) [73] and its variants are recently proposed

semantic representations for semantic parsing. It relies on lambda calculus and the derivation

of the semantic representation is usually parallel to the syntactic dependency tree. It is used

in recent work on learning semantic parsers from weak supervision [12, 99].

We draw inspirations from these compositional semantics formalisms and take a more

practical approach by using domain specific languages implemented in Lisp as semantic
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representations. Similar to modern programming languages, the program is generated from a

bottom up manner so that the results of early expressions are saved to variables and reused by

later expressions. This representation has the same expressive power as other compositional

semantics, but easier to generate by interacting with a Lisp interpreter and easier to extend

by defining more functions in Lisp. The Lisp interpreter can also help prune the search space

by constraining the programs to be syntactically and semantically correct.

4.2. Semantic Parsing

4.2.1. Motivation

Deep neural networks have achieved impressive performance in supervised classification and

structured prediction tasks such as speech recognition [52], machine translation [6, 146] and

more. However, training neural networks for semantic parsing [155, 156, 73] or program

synthesis, where language is mapped to a symbolic representation that is executed by an

executor, through weak supervision remains challenging. This is because the model must

interact with a symbolic executor through non-differentiable operations to search over a large

program space.

In semantic parsing, recent work [31, 57] handled this by training from manually annotated

programs and avoiding program execution at training time. However, annotating programs is

known to be expensive and scales poorly. In program induction, attempts to address this

problem [45, 109, 60, 47, 4] either utilized low-level memory [154], or required memory

to be differentiable [91, 150] so that the model can be trained with backpropagation. This

makes it difficult to use the efficient discrete operations and memory of a traditional computer,

and limited the application to synthetic or small knowledge bases.

4.2.2. Method

In this work, we propose to utilize the memory and discrete operations of a traditional

computer in a novel Manager-Programmer-Computer (MPC) framework for neural program

induction, which integrates three components:
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x: Largest city in the US ⇒ y: NYC 

(USA)

(Hop v0 CityIn)

CityIn

(Argmax v1 Population)

Population

Compositionality

Large Search Space

( Argmax

Hop

v1

v0

Population

Size

Elevation

)

v2 ← 

v1 ← 

v0 ← 

Figure 4.1. The main challenges of training a semantic parser from weak supervision: (a)
compositionality : we use variables (v0, v1, v2) to store execution results of intermediate
generated programs. (b) search: we prune the search space and augment REINFORCE with
pseudo-gold programs.

(1) A manager that provides weak supervision (e.g., ‘NYC’ in Figure 4.1) through a

reward indicating how well a task is accomplished. Unlike full supervision, weak

supervision is easy to obtain at scale (Section 4.2.3.1).

(2) A programmer that takes natural language as input and generates a program that is

a sequence of tokens (Figure 4.2). The programmer learns from the reward and must

overcome the hard search problem of finding correct programs (Section 4.2.2.2).

(3) A computer that executes programs in a high level programming language. Its

non-differentiable memory enables abstract, scalable and precise operations, but

makes training more challenging (Section 4.2.2.3). To help the “programmer” prune

the search space, it provides a friendly neural computer interface, which detects and

eliminates invalid choices (Section 4.2.2.1).

Within this framework, we introduce the Neural Symbolic Machine (NSM) and apply

it to semantic parsing. NSM contains a “computer”, a non-differentiable Lisp interpreter,

which executes programs against a large KB and provides code assistance (Section 4.2.2.1),

and a seq2seq model (“programmer”), which supports compositionality using a key-variable

memory to save and reuse intermediate results (Section 4.2.2.2). We also propose a training
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procedure that is based on REINFORCE, but is augmented with pseudo-gold programs found

by an iterative ML training procedure (Section 4.2.2.3).

Before diving into details, we define the semantic parsing task: given a knowledge base K,

and a question x = (w1, w2, ..., wm), produce a program or logical form z that when executed

against K generates the right answer y. Let E denote a set of entities (e.g., AbeLincoln),1

and let P denote a set of properties (e.g., PlaceOfBirth). A knowledge base K is a set

of assertions or triples (e1, p, e2) ∈ E × P × E , such as (AbeLincoln, PlaceOfBirth,

Hodgenville).

4.2.2.1. Computer: Lisp Interpreter with Code Assistance. Semantic parsing typi-

cally requires using a set of operations to query the knowledge base and process the results.

Operations learned with neural networks such as addition and sorting do not perfectly

generalize to inputs that are larger than the ones observed in the training data [45, 109]. In

contrast, operations implemented in high level programming languages are abstract, scalable,

and precise, thus generalizes perfectly to inputs of arbitrary size. Based on this observation,

we implement operations necessary for semantic parsing with an ordinary programming

language instead of trying to learn them with a neural network.

( Hop r p ) ⇒ {e2|e1 ∈ r, (e1, p, e2) ∈ K}
( ArgMax r p ) ⇒ {e1|e1 ∈ r,∃e2 ∈ E : (e1, p, e2) ∈ K, ∀e : (e1, p, e) ∈ K, e2 ≥ e}
( ArgMin r p ) ⇒ {e1|e1 ∈ r,∃e2 ∈ E : (e1, p, e2) ∈ K, ∀e : (e1, p, e) ∈ K, e2 ≤ e}

( Filter r1 r2 p ) ⇒ {e1|e1 ∈ r1,∃e2 ∈ r2 : (e1, p, e2) ∈ K}
Table 4.1. Interpreter functions. r represents a variable, p a property in Freebase. ≥ and ≤
are defined on numbers and dates.

We adopt a Lisp interpreter as the “computer”. A program C is a list of expressions

(c1...cN), where each expression is either a special token “Return” indicating the end of the

program, or a list of tokens enclosed by parentheses “(FA1...AK)”. F is a function, which

takes as input K arguments of specific types. Table 4.8 defines the semantics of each function

and the types of its arguments (either a property p or a variable r). When a function is

1We also consider numbers (e.g., “1.33”) and date-times (e.g., “1999-1-1”) as entities.
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executed, it returns an entity list that is the expression’s denotation in K, and save it to a

new variable.

By introducing variables that save the intermediate results of execution, the program

naturally models language compositionality and describes from left to right a bottom-up

derivation of the full meaning of the natural language input, which is convenient in a seq2seq

model (Figure 4.1). This is reminiscent of the floating parser [139, 99], where a derivation

tree that is not grounded in the input is incrementally constructed.

The set of programs defined by our functions is equivalent to the subset of λ-calculus

presented in [148]. We did not use full Lisp programming language here, because constructs

like control flow and loops are unnecessary for most current semantic parsing tasks, and it is

simple to add more functions to the model when necessary.

To create a friendly “neural computer interface”, the interpreter provides code assistance

to the programmer by producing a list of valid tokens at each step. First, a valid token

should not cause a syntax error: e.g., if the previous token is “(”, the next token must be a

function name, and if the previous token is “Hop”, the next token must be a variable. More

importantly, a valid token should not cause a semantic (run-time) error: this is detected using

the denotation saved in the variables. For example, if the previously generated tokens were

“( Hop r”, the next available token is restricted to properties {p | ∃e, e′ : e ∈ r, (e, p, e′) ∈ K}

that are reachable from entities in r in the KB. These checks are enabled by the variables

and can be derived from the definition of the functions in Table 4.8. The interpreter prunes

the “programmer”’s search space by orders of magnitude, and enables learning from weak

supervision on a large KB.

4.2.2.2. Programmer: Seq2seq Model with Key-Variable Memory. Given the “com-

puter”, the “programmer” needs to map natural language into a program, which is a sequence

of tokens that reference operations and values in the “computer”. We base our programmer

on a standard seq2seq model with attention, but extend it with a key-variable memory that

allows the model to learn to represent and refer to program variables (Figure 4.2).
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Sequence-to-sequence models consist of two RNNs, an encoder and a decoder. We used a

1-layer GRU [20] for both the encoder and decoder. Given a sequence of words w1, w2...wm,

each word wt is mapped to an embedding qt (embedding details are in Section 4.3.5).

Then, the encoder reads these embeddings and updates its hidden state step by step using

ht+1 = GRU(ht, qt, θEncoder), where θEncoder are the GRU parameters. The decoder updates

its hidden states ut by ut+1 = GRU(ut, ct−1, θDecoder), where ct−1 is the embedding of last

step’s output token at−1, and θDecoder are the GRU parameters. The last hidden state of

the encoder hT is used as the decoder’s initial state. We also adopt a dot-product attention

similar to [31]. The tokens of the program a1, a2...an are generated one by one using a

softmax over the vocabulary of valid tokens at each step, as provided by the “computer”

(Section 4.2.2.1).

To achieve compositionality, the decoder must learn to represent and refer to intermediate

variables whose value was saved in the “computer” after execution. Therefore, we augment the

model with a key-variable memory, where each entry has two components: a continuous

embedding key vi, and a corresponding variable token Ri referencing the value in the

“computer” (see Figure 4.2). During encoding, we use an entity linker to link text spans (e.g.,

“US”) to KB entities. For each linked entity we add a memory entry where the key is the

average of GRU hidden states over the entity span, and the variable token (R1) is the name of

a variable in the computer holding the linked entity (m.USA) as its value. During decoding,

when a full expression is generated (i.e., the decoder generates “)”), it gets executed, and

the result is stored as the value of a new variable in the “computer”. This variable is keyed

by the GRU hidden state at that step. When a new variable R1 with key embedding v1 is

added into the key-variable memory, the token R1 is added into the decoder vocabulary with

v1 as its embedding. The final answer returned by the “programmer” is the value of the last

computed variable.

Similar to pointer networks [136], the key embeddings for variables are dynamically

generated for each example. During training, the model learns to represent variables by

backpropagating gradients from a time step where a variable is selected by the decoder,
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through the key-variable memory, to an earlier time step when the key embedding was

computed. Thus, the encoder/decoder learns to generate representations for variables such

that they can be used at the right time to construct the correct program.

While the key embeddings are differentiable, the values referenced by the variables (lists

of entities), stored in the “computer”, are symbolic and non-differentiable. This distinguishes

the key-variable memory from other memory-augmented neural networks that use continuous

differentiable embeddings as the values of memory entries [142, 46].

Figure 4.2. Semantic Parsing with NSM. The key embeddings of the key-variable memory
are the output of the sequence model at certain encoding or decoding steps. For illustration
purposes, we also show the values of the variables in parentheses, but the sequence model
never sees these values, and only references them with the name of the variable (“R1”).
A special token “GO” indicates the start of decoding, and “Return” indicates the end of
decoding.

4.2.2.3. Training NSM with Weak Supervision. NSM executes non-differentiable oper-

ations against a KB, and thus end-to-end backpropagation is not possible. Therefore, we base

our training procedure on REINFORCE [143, 94]. When the reward signal is sparse and the

search space is large, it is common to utilize some full supervision to pre-train REINFORCE

[124]. To train from weak supervision, we suggest an iterative ML procedure for finding

pseudo-gold programs that will bootstrap REINFORCE.

REINFORCE We can formulate training as a reinforcement learning problem: given

a question x, the state, action and reward at each time step t ∈ {0, 1, ..., T} are (st, at, rt).

Since the environment is deterministic, the state is defined by the question x and the action

sequence: st = (x, a0:t−1), where a0:t−1 = (a0, ..., at−1) is the history of actions at time t.

A valid action at time t is at ∈ A(st), where A(st) is the set of valid tokens given by the
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“computer”. Since each action corresponds to a token, the full history a0:T corresponds to a

program. The reward rt = I[t = T ] · F1(x, a0:T ) is non-zero only at the last step of decoding,

and is the F1 score computed comparing the gold answer and the answer generated by

executing the program a0:T . Thus, the cumulative reward of a program a0:T is

R(x, a0:T ) =
∑
t

rt = F1(x, a0:T ).

The agent’s decision making procedure at each time is defined by a policy, πθ(s, a) =

Pθ(at = a|x, a0:t−1), where θ are the model parameters. Since the environment is deterministic,

the probability of generating a program a0:T is

Pθ(a0:T |x) =
∏
t

Pθ(at | x, a0:t−1).

We can define our objective to be the expected cumulative reward and use policy gradient

methods such as REINFORCE for training. The objective and gradient are:

JRL(θ) =
∑
x

EPθ(a0:T |x)[R(x, a0:T )] (4.1)

∇θJ
RL(θ) =

∑
x

∑
a0:T

Pθ(a0:T | x) · [R(x, a0:T )−B(x)] · ∇θ logPθ(a0:T | x) (4.2)

where B(x) =
∑

a0:T
Pθ(a0:T | x)R(x, a0:T ) is a baseline that reduces the variance of the

gradient estimation without introducing bias. Having a separate network to predict the

baseline is an interesting future direction.

While REINFORCE assumes a stochastic policy, we use beam search for gradient estima-

tion. Thus, in contrast with common practice of approximating the gradient by sampling

from the model, we use the top-k action sequences (programs) in the beam with normalized

probabilities. This allows training to focus on sequences with high probability, which are on

the decision boundaries, and reduces the variance of the gradient.

Empirically (and in line with prior work), REINFORCE converged slowly and often got

stuck in local optima (see Section 4.3.5). The difficulty of training resulted from the sparse

reward signal in the large search space, which caused model probabilities for programs with
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non-zero reward to be very small at the beginning. If the beam size k is small, good programs

fall off the beam, leading to zero gradients for all programs in the beam. If the beam size

k is large, training is very slow, and the normalized probabilities of good programs when

the model is untrained are still very small, leading to (1) near zero baselines, thus near

zero gradients on “bad” programs (2) near zero gradients on good programs due to the low

probability Pθ(a0:T | x). To combat this, we present an alternative training strategy based on

maximum-likelihood.

Iterative ML If we had gold programs, we could directly optimize their likelihood.

Since we do not have gold programs, we can perform an iterative procedure (similar to hard

Expectation-Maximization (EM)), where we search for good programs given fixed parameters,

and then optimize the probability of the best program found so far. We do decoding on an

example with a large beam size and declare abest0:T (x) to be the pseudo-gold program, which

achieved highest reward with shortest length among the programs decoded on x in all previous

iterations. Then, we can optimize the ML objective:

JML(θ) =
∑
x

logPθ(a
best
0:T (x) | x) (4.3)

A question x is not included if we did not find any program with positive reward.

Training with iterative ML is fast because there is at most one program per example and

the gradient is not weighted by model probability. while decoding with a large beam size is

slow, we could train for multiple epochs after each decoding. This iterative process has a

bootstrapping effect that a better model leads to a better program abest0:T (x) through decoding,

and a better program abest0:T (x) leads to a better model through training.

Even with a large beam size, some programs are hard to find because of the large search

space. A common solution to this problem is to use curriculum learning [154, 109]. The size

of the search space is controlled by both the set of functions used in the program and the

program length. We apply curriculum learning by gradually increasing both these quantities

(see details in Section 4.3.5) when performing iterative ML.
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Nevertheless, iterative ML uses only pseudo-gold programs and does not directly optimize

the objective we truly care about. This has two adverse effects: (1) The best program abest0:T (x)

could be a spurious program that accidentally produces the correct answer (e.g., using the

property PlaceOfBirth instead of PlaceOfDeath when the two places are the same),

and thus does not generalize to other questions. (2) Because training does not observe full

negative programs, the model often fails to distinguish between tokens that are related to one

another. For example, differentiating ParentsOf vs. SiblingsOf vs. ChildrenOf can

be challenging. We now present learning where we combine iterative ML with REINFORCE.

Augmented REINFORCE To bootstrap REINFORCE, we can use iterative ML to

find pseudo-gold programs, and then add these programs to the beam with a reasonably

large probability. This is similar to methods from imitation learning [112, 58] that define a

proposal distribution by linearly interpolating the model distribution and an oracle.

Algorithm 3 IML-REINFORCE

Input: question-answer pairs D = {(xi, yi)}, mix ratio α, reward function R(·), training iterations NML,
NRL, and beam sizes BML, BRL.
Procedure:
Initialize C∗

x = ∅ the best program so far for x
Initialize model θ randomly . Iterative ML
for n = 1 to NML do

for (x, y) in D do
C← Decode BML programs given x
for j in 1...|C| do

if Rx,y(Cj) > Rx,y(C∗
x) then C∗

x ← Cj

θ ← ML training with DML = {(x,C∗
x)}

Initialize model θ randomly . REINFORCE
for n = 1 to NRL do

DRL ← ∅ is the RL training set
for (x, y) in D do

C← Decode BRL programs from x
for j in 1...|C| do

if Rx,y(Cj) > Rx,y(C∗
x) then C∗

x ← Cj

C← C ∪ {C∗
x}

for j in 1...|C| do
p̂j ← (1− α) · pj∑

j′ pj′
where pj = Pθ(Cj | x)

if Cj = C∗
x then p̂j ← p̂j + α

DRL ← DRL ∪ {(x,Cj , p̂j)}
θ ← REINFORCE training with DRL
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Algorithm 3 describes our overall training procedure. We first run iterative ML for

NML iterations and record the best program found for every example xi. Then, we run

REINFORCE, where we normalize the probabilities of the programs in beam to sum to

(1− α) and add α to the probability of the best found program C∗(xi). Consequently, the

model always puts a reasonable amount of probability on a program with high reward during

training. Note that we randomly initialized the parameters for REINFORCE, since initializing

from the final ML parameters seems to get stuck in a local optimum and produced worse

results.

On top of imitation learning, our approach is related to the common practice in rein-

forcement learning [117] to replay rare successful experiences to reduce the training variance

and improve training efficiency. This is also similar to recent developments [146] in machine

translation, where ML and RL objectives are linearly combined, because anchoring the model

to some high-reward outputs stabilizes training.

4.2.3. Experiments and Analysis

We now empirically show that NSM can learn a semantic parser from weak supervision over

a large KB. We evaluate on WebQuestionsSP, a challenging semantic parsing dataset with

strong baselines. Experiments show that NSM achieves new state-of-the-art performance on

WebQuestionsSP with weak supervision, and significantly closes the gap between weak

and full supervision for this task.

4.2.3.1. The WebQuestionsSP dataset. The WebQuestionsSP dataset [149] contains

full semantic parses for a subset of the questions from WebQuestions [12], because 18.5%

of the original dataset were found to be “not answerable”. It consists of 3,098 question-answer

pairs for training and 1,639 for testing, which were collected using Google Suggest API, and

the answers were originally obtained using Amazon Mechanical Turk workers. They were

updated in [149] by annotators who were familiar with the design of Freebase and added

semantic parses. We further separated out 620 questions from the training set as a validation

set. For query pre-processing, we used Google’s internal named entity linking system to find
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the entities in a question. The quality of the entity linker is similar to that of [148] at 94%

of the gold root entities being included. Similar to [31], we replaced named entity tokens

with a special token “ENT ”. For example, the question “who plays meg in family guy” is

changed to “who plays ENT in ENT ENT ”. This helps reduce overfitting, because instead of

memorizing the correct program for a specific entity, the model has to focus on other context

words in the sentence, which improves generalization.

Following [148] we used the last publicly available snapshot of Freebase [14]. Since NSM

training requires random access to Freebase during decoding, we preprocessed Freebase by

removing predicates that are not related to world knowledge (starting with “/common/ ”,

“/type/ ”, “/freebase/ ”),2 and removing all text valued predicates, which are rarely the answer.

Out of all 27K relations, 434 relations are removed during preprocessing. This results in a

graph that fits in memory with 23K relations, 82M nodes, and 417M edges.

4.2.3.2. Model Details. For pre-trained word embeddings, we used the 300 dimension

GloVe word embeddings trained on 840B tokens [103]. On the encoder side, we added a

projection matrix to transform the embeddings into 50 dimensions. On the decoder side,

we used the same GloVe embeddings to construct an embedding for each property using its

Freebase id, and also added a projection matrix to transform this embedding to 50 dimensions.

A Freebase id contains three parts: domain, type, and property. For example, the Freebase

id for ParentsOf is “/people/person/parents”. “people” is the domain, “person” is the type

and “parents” is the property. The embedding is constructed by concatenating the average

of word embeddings in the domain and type name to the average of word embeddings in the

property name. For example, if the embedding dimension is 300, the embedding dimension

for “/people/person/parents” will be 600. The first 300 dimensions will be the average of the

embeddings for “people” and “person”, and the second 300 dimensions will be the embedding

for “parents”.

The dimension of encoder hidden state, decoder hidden state and key embeddings are

all 50. The embeddings for the functions and special tokens (e.g., “UNK ”, “GO”) are

2We kept “/common/topic/notable types”.
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randomly initialized by a truncated normal distribution with mean=0.0 and stddev=0.1. All

the weight matrices are initialized with a uniform distribution in [−
√
3
d
,
√
3
d

] where d is the

input dimension. Dropout rate is set to 0.5, and we see a clear tendency for larger dropout

rate to produce better performance, indicating overfitting is a major problem for learning.

4.2.3.3. Training Details. In iterative ML training, the decoder uses a beam of size

k = 100 to update the pseudo-gold programs and the model is trained for 20 epochs after

each decoding step. We use the Adam optimizer [63] with initial learning rate 0.001. In our

experiment, this process usually converges after a few (5-8) iterations.

For REINFORCE training, the best hyperparameters are chosen using the validation set.

We use a beam of size k = 5 for decoding, and α is set to 0.1. Because the dataset is small

and some relations are only used once in the whole training set, we train the model on the

entire training set for 200 iterations with the best hyperparameters. Then we train the model

with learning rate decay until convergence. Learning rate is decayed as gt = g0 × β
max(0,t−ts)

m ,

where g0 = 0.001, β = 0.5 m = 1000, and ts is the number of training steps at the end of

iteration 200.

Since decoding needs to query the knowledge base (KB) constantly, the speed bottleneck

for training is decoding. We address this problem in our implementation by partitioning the

dataset, and using multiple decoders in parallel to handle each partition. We use 100 decoders,

which queries 50 KG servers, and one trainer. The neural network model is implemented in

TensorFlow. Since the model is small, we didn’t see a significant speedup by using GPU, so

all the decoders and the trainer are using CPU only.

Inspired by the staged generation process in [148], curriculum learning includes two steps.

We first run iterative ML for 10 iterations with programs constrained to only use the “Hop”

function and the maximum number of expressions is 2. Then, we run iterative ML again, but

use both “Hop” and “Filter”. The maximum number of expressions is 3, and the relations

used by “Hop” are restricted to those that appeared in abest0:T (q) in the first step.

4.2.3.4. Results and discussion. We evaluate performance using the offical evaluation

script for WebQuestionsSP. Because the answer to a question may contain multiple entities
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or values, precision, recall and F1 are computed based on the output of each individual

question, and average F1 is reported as the main evaluation metric. Accuracy measures the

proportion of questions that are answered exactly.

A comparison to STAGG, the previous state-of-the-art model [149, 148], is shown in

Table 4.2. Our model beats STAGG with weak supervision by a significant margin on all

metrics, while relying on no feature engineering or hand-crafted rules. When STAGG is

trained with strong supervision it obtains an F1 of 71.7, and thus NSM closes half the gap

between training with weak and full supervision.

Model Prec. Rec. F1 Acc.

STAGG 67.3 73.1 66.8 58.8
NSM 70.8 76.0 69.0 59.5

Table 4.2. Results on the test set. Average F1 is the main evaluation metric and NSM
outperforms STAGG with no domain-specific knowledge or feature engineering.

Four key ingredients lead to the final performance of NSM. The first one is the neural

computer interface that provides code assistance by checking for syntax and semantic errors.

We find that semantic checks are very effective for open-domain KBs with a large number of

properties. For our task, the average number of choices is reduced from 23K per step (all

properties) to less than 100 (the average number of properties connected to an entity).

The second ingredient is augmented REINFORCE training. Table 4.3 compares augmented

REINFORCE, REINFORCE, and iterative ML on the validation set. REINFORCE gets

stuck in local optimum and performs poorly. Iterative ML training is not directly optimizing

the F1 measure, and achieves sub-optimal results. In contrast, augmented REINFORCE is

able to bootstrap using pseudo-gold programs found by iterative ML and achieves the best

performance on both the training and validation set.

The third ingredient is curriculum learning during iterative ML. We compare the perfor-

mance of the best programs found with and without curriculum learning in Table 4.4. We

find that the best programs found with curriculum learning are substantially better than

those found without curriculum learning by a large margin on every metric.
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Settings Train F1 Valid F1

Iterative ML 68.6 60.1
REINFORCE 55.1 47.8
Augmented REINFORCE 83.0 67.2

Table 4.3. Average F1 on the validation set for augmented REINFORCE, REINFORCE,
and iterative ML.

Settings Prec. Rec. F1 Acc.

No curriculum 79.1 91.1 78.5 67.2
Curriculum 88.6 96.1 89.5 79.8

Table 4.4. Evaluation of the programs with the highest F1 score in the beam (abest0:t ) with
and without curriculum learning.

The last important ingredient is reducing overfitting. Given the small size of the dataset,

overfitting is a major problem for training neural network models. We show the contributions

of different techniques for controlling overfitting in Table 4.5. Note that after all the techniques

have been applied, the model is still overfitting with training F1@1=83.0% and validation

F1@1=67.2%.

Settings ∆ F1@1

−Pretrained word embeddings −5.5
−Pretrained property embeddings −2.7
−Dropout on GRU input and output −2.4
−Dropout on softmax −1.1
−Anonymize entity tokens −2.0

Table 4.5. Contributions of different overfitting techniques on the validation set.

#Expressions 0 1 2 3

Percentage 0.4% 62.9% 29.8% 6.9%
F1 0.0 73.5 59.9 70.3

Table 4.6. Percentage and performance of model generated programs with different complexity
(number of expressions).

Among the programs generated by the model, a significant portion (36.7%) uses more

than one expression. From Table 4.6, we can see that the performance doesn’t decrease



64

much as the compositional depth increases, indicating that the model is effective at capturing

compositionality. We observe that programs with three expressions use a more limited set of

properties, mainly focusing on answering a few types of questions such as “who plays meg in

family guy”, “what college did jeff corwin go to” and “which countries does russia border”.

In contrast, programs with two expressions use a more diverse set of properties, which could

explain the lower performance compared to programs with three expressions.

Error analysis on the validation set shows two main sources of errors:

(1) Search failure: Programs with high reward are not found during search for pseudo-

gold programs, either because the beam size is not large enough, or because the set

of functions implemented by the interpreter is insufficient. The 89.5% F1 score in

Table 4.4 indicates that at least 10% of the questions are of this kind.

(2) Ranking failure: Programs with high reward exist in the beam, but are not ranked

at the top during decoding. Because the training error is low, this is largely due to

overfitting or spurious programs. The 67.2% F1 score in Table 4.3 indicates that

about 20% of the questions are of this kind.

4.2.4. Related work

Among deep learning models for program induction, Reinforcement Learning Neural Turing

Machines (RL-NTMs) [154] are the most similar to NSM, as a non-differentiable machine is

controlled by a sequence model. Therefore, both models rely on REINFORCE for training.

The main difference between the two is the abstraction level of the programming language.

RL-NTM uses lower level operations such as memory address manipulation and byte read-

ing/writing, while NSM uses a high level programming language over a large knowledge base

that includes operations such as following properties from entities, or sorting based on a

property, which is more suitable for representing semantics. Earlier works such as OOPS

[118] has desirable characteristics, for example, the ability to define new functions. These

remain to be future improvements for NSM.
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We formulate NSM training as an instance of reinforcement learning [133] in order

to directly optimize the task reward of the structured prediction problem [94, 69, 152].

Compared to imitation learning methods [27, 112] that interpolate a model distribution

with an oracle, NSM needs to solve a challenging search problem of training from weak

supervisions in a large search space. Our solution employs two techniques (a) a symbolic

“computer” helps find good programs by pruning the search space (b) an iterative ML training

process, where beam search is used to find pseudo-gold programs. Wiseman and Rush [144]

proposed a max-margin approach to train a sequence-to-sequence scorer. However, their

training procedure is more involved, and we did not implement it in this work. MIXER [108]

also proposed to combine ML training and REINFORCE, but they only considered tasks

with full supervisions. Berant and Liang [13] applied imitation learning to semantic parsing,

but still requires hand crafted grammars and features.

NSM is similar to Neural Programmer [91] and Dynamic Neural Module Network [4]

in that they all solve the problem of semantic parsing from structured data, and generate

programs using similar semantics. The main difference between these approaches is how an

intermediate result (the memory) is represented. Neural Programmer and Dynamic-NMN

chose to represent results as vectors of weights (row selectors and attention vectors), which

enables backpropagation and search through all possible programs in parallel. However,

their strategy is not applicable to a large KB such as Freebase, which contains about 100M

entities, and more than 20k properties. Instead, NSM chooses a more scalable approach,

where the “computer” saves intermediate results, and the neural network only refers to them

with variable names (e.g., “R1” for all cities in the US).

NSM is similar to the Path Ranking Algorithm (PRA) [66] in that semantics is encoded

as a sequence of actions, and denotations are used to prune the search space during learning.

NSM is more powerful than PRA by 1) allowing more complex semantics to be composed

through the use of a key-variable memory; 2) controlling the search procedure with a trained

neural network, while PRA only samples actions uniformly; 3) allowing input questions to

express complex relations, and then dynamically generating action sequences. PRA can
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combine multiple semantic representations to produce the final prediction, which remains to

be future work for NSM.

4.2.5. Conclusion

We proposed the Manager-Programmer-Computer framework for neural program induction.

It integrates neural networks with a symbolic non-differentiable computer to support abstract,

scalable and precise operations through a friendly neural computer interface. Within this

framework, we introduce the Neural Symbolic Machine, which integrates a neural sequence-

to-sequence “programmer” with key-variable memory, and a symbolic Lisp interpreter with

code assistance. Because the interpreter is non-differentiable and to directly optimize the

task reward, we apply REINFORCE and use pseudo-gold programs found by an iterative

ML training process to bootstrap training. NSM achieves new state-of-the-art results on a

challenging semantic parsing dataset with weak supervision, and significantly closes the gap

between weak and full supervision. It is trained end-to-end, and does not require any feature

engineering or domain-specific knowledge.

4.3. Program Synthesis with Generalization

In the previous section, we applied Neural Symbolic Machines to semantic parsing over

Freebase. However, the main challenge in WebQuestionsSP is to match natural language

with the correct predicates in a large schema, and the length of the programs and the set of

functions used in the programs are limited [100]. It remains challenging to apply NSM and

RL to complex program synthesis or compositional semantic parsing tasks [100, 90], which

need to generate (given a natural language utterance) longer programs that use a large set of

functions. Previous work under the RL paradigm [48, 90] has shown that simply applying

on-policy RL methods like REINFORCE is usually not enough, so successfully applying NSM

to complex program synthesis and compositional semantic parsing requires more efficient RL

methods.
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In this section, we propose Memory Augmented Policy Optimization (MAPO): a novel

policy optimization formulation that incorporates a memory buffer of promising trajectories to

reduce the variance of policy gradient estimates for deterministic environments with discrete

actions. The formulation expresses the expected return objective as a weighted sum of two

terms: an expectation over a memory of trajectories with high rewards, and a separate

expectation over the trajectories outside the memory. We propose 3 techniques to make

an efficient training algorithm for MAPO: (1) distributed sampling from inside and outside

memory with an actor-learner architecture; (2) a marginal likelihood constraint over the

memory to accelerate training; (3) systematic exploration to discover high reward trajectories.

MAPO improves the sample efficiency and robustness of policy gradient, especially on

tasks with a sparse reward. We evaluate MAPO on weakly supervised program synthesis

from natural language with an emphasis on generalization. On the WikiTableQuestions

benchmark we improve the state-of-the-art by 2.5%, achieving an accuracy of 46.2%, and on

the WikiSQL benchmark, MAPO achieves an accuracy of 74.9% with only weak supervision,

outperforming several strong baselines with full supervision. Our code is open sourced at

https://github.com/crazydonkey200/neural-symbolic-machines.

4.3.1. Introduction

There has been a recent surge of interest in applying policy gradient methods to various

application domains including program synthesis [71, 48, 161, 18], dialogue generation [69,

25], architecture search [162, 164], game [125, 82] and continuous control [104, 120].

Simple policy gradient methods like REINFORCE [143] use Monte Carlo samples from

the current policy to perform an on-policy optimization of the expected return. This often

leads to unstable learning dynamics and poor sample efficiency, sometimes underperforming

random search [77].

The difficulty of gradient based policy optimization stems from a few sources: (1) policy

gradient estimates have a large variance; (2) samples from a randomly initialized policy often

attain small rewards, resulting in a slow training progress in the initial phase; (3) random

https://github.com/crazydonkey200/neural-symbolic-machines


68

policy samples do not explore the search space efficiently because many samples can be

repeated. These issues can be especially prohibitive in applications such as program synthesis

and robotics [5], which involve a large search space with sparse rewards. In such tasks, a high

reward is achieved only after a long sequence of correct actions. For instance, in program

synthesis, only a few programs in the large program space lead to the correct functional form.

Unfortunately, this often leads to forgetting a high reward trajectory unless it is re-sampled

frequently [71, 3].

This paper presents MAPO: a novel formulation of policy optimization for deterministic

environments with discrete actions, which incorporates a memory buffer of promising trajecto-

ries within the policy gradient framework. It estimates the policy gradient as a weighted sum

of an expectation over the trajectories inside the memory and a separate expectation over

those outside the memory. The gradient estimates are unbiased and attain lower variance

provided that trajectories in the memory buffer have non-negligible probability. Because

high-reward trajectories remain in the memory, it is almost impossible to forget them. To

make an efficient algorithm for MAPO, we propose 3 techniques: (1) distributed sampling

from inside and outside memory buffer in an actor-learner architecture; (2) a constraint on

the marginal likelihood of the high-reward trajectories in the memory buffer to accelerate

training at the cost of introducing some bias at the initial training stage;(3) systematic

exploration of the search space to efficiently discover the high-reward trajectories.

We assess the effectiveness of MAPO on weakly supervised program synthesis from natural

language (see Section 4.3.2). Program synthesis presents a unique opportunity to study

generalization in the context of policy optimization, while having an impact on a real world

application. On the challenging WikiTableQuestions [100] benchmark, MAPO achieves

an accuracy of 46.2% on the test set, significantly outperforming the previous state-of-the-

art of 43.7% [160]. Interestingly, on the WikiSQL [161] benchmark, MAPO achieves an

accuracy of 74.9% without the supervision of gold programs, outperforming several strong

fully supervised baselines.
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Year Venue Position Event Time
2001 Hungary 2nd 400m 47.12
2003 Finland 1st 400m 46.69
2005 Germany 11th 400m 46.62
2007 Thailand 1st relay 182.05
2008 China 7th relay 180.32

Table 4.7. x: Where did the last 1st place finish occur? y: Thailand

4.3.2. The Problem of Weakly Supervised Contextual Program Synthesis

Consider the problem of learning to map a natural language question x to a structured

query a in a programming language such as SQL (e.g., [161]), or converting a textual

problem description into a piece of source code, e.g., in python, as in programming compe-

titions (e.g., [7]). We call this family of problems contextual program synthesis and aim at

tackling such problems in a weakly supervised setting – i.e., no correct action sequence a is

given as part of the training data, and training needs to solve the hard problem of exploring

a large program space. Table 4.7 shows an example question-answer pair. The model needs

to first discover the programs that can generate the correct answer in a given context, and

then learn to generalize to new contexts.

We formulate the problem of weakly supervised contextual program synthesis as follows:

to generate a program by using a parametric mapping function, â = f(x; θ), where θ denotes

the model parameters. The quality of a generated program â is measured in terms of a

scoring or reward function R(â | x,y). The reward function may evaluate a program by

executing it on a real environment and comparing the emitted output against the correct

answer. For example, it is natural to define a binary reward that is 1 when the output equals

the answer and 0 otherwise. We assume that the context x includes both a natural language

input and an environment, for example an interpreter or a database, on which the program

will be executed. Given a dataset of context-answer pairs, {(xi,yi)}Ni=1, the goal is to find

an optimal parameter θ∗ that parameterizes a mapping of x→ a with maximum empirical

return on a heldout test set.
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One can think of the problem of contextual program synthesis as an instance of rein-

forcement learning (RL) with sparse terminal rewards and deterministic dynamics, for which

generalization plays a key role. There has been some recent attempts in the RL community

to study generalization to unseen initial conditions (e.g. [107, 93]). However, most prior

work aims to maximize empirical return on the training environment [9, 17]. The problem

of contextual program synthesis presents a natural application of RL for which generalization

is the main concern.

4.3.3. Optimization of Expected Return via Policy Gradients

To learn a mapping of (context x)→ (program a), we optimize the parameters of a conditional

distribution πθ(a | x) that assigns a probability to each program given the context. That

is, πθ is a distribution over the countable set of all possible programs, denoted A. Thus

∀a ∈ A : πθ(a | x) ≥ 0 and
∑

a∈A πθ(a | x) = 1. Then, to synthesize a program for a novel

context, one finds the most likely program under the distribution πθ via exact or approximate

inference â ≈ argmaxa∈A πθ(a | x) .

Autoregressive models present a tractable family of distributions that estimates the

probability of a sequence of tokens, one token at a time, often from left to right. To handle

variable sequence length, one includes a special end-of-sequence token at the end of the

sequences. We express the probability of a program a given x as πθ(a | x) ≡
∏|a|

i=t πθ(at |

a<t,x) ,where a<t ≡ (a1, . . . , at−1) denotes a prefix of the program a. One often uses a

recurrent neural network (e.g. [53]) to predict the probability of each token given the prefix

and the context.

In the absence of ground truth programs, policy gradient techniques present a way to

optimize the parameters of a stochastic policy πθ via optimization of expected return. Given

a training dataset of context-answer pairs, D ≡ {(xi,yi)}Ni=1, the objective is expressed as

Ea∼πθ(a|x)R(a | x,y). The reward function R(a | x,y) evaluates a complete program a, based

on the context x and the correct answer y. These assumptions characterize the problem of

program synthesis well, but they also apply to many other discrete optimization domains.
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Note that these assumptions are required for the exact unbiased gradients, but we expect

the MAPO algorithm to benefit many discrete RL benchmarks on which these assumptions

apply to a big extent.

Simplified notation. In what follows, we simplify the notation by dropping the de-

pendence of the policy and the reward on x and y. We use a notation of πθ(a) instead of

πθ(a | x) and R(a) instead of R(a | x,y), to make the formulation less cluttered, but the

equations hold in the general case.

We express the expected return objective in the simplified notation as,

OER(θ) =
∑
a∈A

πθ(a)R(a) = Ea∼πθ(a) R(a) . (4.4)

The REINFORCE [143] algorithm presents an elegant and convenient way to estimate the

gradient of the expected return (4.4) using Monte Carlo (MC) samples. Using K trajectories

sampled i.i.d. from the current policy πθ, denoted {a(1), . . . , a(K)}, the gradient estimate can

be expressed as,

∇θOER(θ) ≈ 1

K

K∑
k=1

∇ log πθ(a
(k)) [R(a(k))− b] , (4.5)

where a baseline b is subtracted from the returns to reduce the variance of gradient estimates.

A close-to-optimal form of a baseline is the on-policy average of the returns Ea∼πθ(a)R(a), often

approximated empirically as b =
∑

k R(a(k))/K. This formulation enables direct optimization

of OER via MC sampling from an unknown search space, which also serves the purpose of

exploration. To improve such exploration behavior, one often includes the entropy of the

policy as an additional term inside the objective to prevent early convergence. However,

the key limitation of the formulation stems from the difficulty of estimating the gradients

accurately only using a few fresh samples.

There has been various attempts to incorporate off-policy samples within the policy

gradient framework to improve the sample efficiency of the REINFORCE and actor-critic

algorithms (e.g., [28, 141, 122, 33]). Most of these approaches sample from an old policy

and resort to truncated importance correction to obtain a low variance, but biased estimate of
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the gradients. Previous work has aimed to incorporate a replay buffer into policy gradient in

the general RL setting of stochastic dynamics and possibly continous actions. By contrast, we

focus on deterministic environments with discrete actions and develop a formulation resulting

in an unbiased policy gradient estimate.

4.3.4. MAPO: Memory Augmented Policy Optimization

We consider a RL environment with a finite number of discrete actions, deterministic dynamics,

and deterministic terminal returns. In other words, the set of all possible action trajectories

A is countable, even though possibly infinite, and re-evaluating the return of a trajectory

R(a) twice results in the same value. These assumptions characterize the problem of program

synthesis, but also apply to many combinatorial optimization domains (e.g., [10]).

Our goal is to optimize the expected return objective (4.4) via gradient ascent. We

assume the access to a memory buffer of trajectories and their corresponding returns denoted

B ≡ {(a(i), r(i))}Mi=1, where r(i) = R(a(i)). Let Ba and Br denote the action trajectories and

the rewards stored in the memory independently, i.e. Ba ≡ {(a(i))}Mi=1 and Br ≡ {(r(i))}Mi=1.

Our key observation is that one can re-express the expected return objective in terms of a sum

of two terms: an enumeration over the memory buffer elements, and a separate enumeration

over the unknown trajectories,

OER(θ) =
∑

(a,r)∈B

πθ(a) r +
∑

a∈(A−Ba)

πθ(a)R(a), (4.6)

where A − Ba denotes the set of action trajectories not included in the memory. The

significance of this decomposition hinges on the fact that one can enumerate the trajectories

in the buffer and compute their exact expected reward and its gradient with no variance, and

use the budget of MC samples to compute the expectation only in the unexplored part of the

space.

Let πB =
∑

a∈Ba πθ(a) denote the total probability of the trajectories in the buffer, and

let π+
θ (a) and π−θ (a) denote a normalized probability distribution inside and outside of the
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buffer,

π+
θ (a) =

πθ(a)/πB if a ∈ Ba

0 if a 6∈ Ba
, π−θ (a) =

0 if a ∈ Ba

πθ(a)/(1− πB) if a 6∈ Ba
. (4.7)

Then, one can re-express the expected return objective as the linear combination of two

expectations,

OER(θ) = πB Ea∼π+
θ (a)R(a)︸ ︷︷ ︸

enumeration inside B

+ (1− πB) Ea∼π−θ (a)R(a)︸ ︷︷ ︸
sampling outside B

. (4.8)

The key intuition of the MAPO algorithm is to use enumeration to evaluate the former

expectation and πB, and MC sampling to compute the latter expectation. To sample from

π−θ (a), one can resort to rejection sampling by sampling from πθ(a) and rejecting the sample

if a ∈ Ba. We get an exact estimate of the first expectation while sampling from a smaller

stochastic space of size (1− πB) to get an estimate of the latter expectation.

Based on (4.8), using K trajectories {a(1), . . . , a(K)} sampled i.i.d. from current π−θ ,

i.e. the unexplored region of the space, we formulate an unbiased estimator of the policy

gradients as,

∇θOER(θ) ≈
∑

(a,r)∈B

∇πθ(a) [r − b] +
1− πB
K

K∑
k=1

∇ log πθ(a
(k)) [R(a(k))− b] . (4.9)

Assuming that πB > 0, using a full enumeration of the buffer and a budget of K MC

samples, the variance of the estimator in (4.9) is lower than the estimator in (4.5) because

it has less stochasticity. For practical applications in which sample evaluation is expensive,

we expect the MAPO estimator in (4.9) to significantly outperform policy gradients. Note

that even if we use sampling to approximate the first term, this can be viewed as a stratified

sampling estimator. The variance reduction still holds as long as the trajectories inside and

outside B have different distributions, which is usually true.

In the following we present 3 techniques to create an efficient algorithm. An overview of

the MAPO training algorithm is also shown in Figure 4.3.
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Figure 4.3. Overview of the MAPO algorithm with systematic exploration and marginal
likelihood constraint.

Figure 4.4. Distributed actor-learner architecture.

4.3.4.1. Distributed Sampling. An exact computation of the first term on the RHS of

(4.9) involves an enumeration over B, which is efficient only when |B| is small. If |B| is large,

enumeration can become prohibitive even though it involves no fresh samples. One solution

is to simply truncate the memory buffer to keep only a few trajectories with the highest

probabilities. However, this simple approach may lead to suboptimal result, because one

often benefits from keeping all of the promising programs in the buffer to let model select the

ones that generalize well. For example, in program synthesis, there can sometimes be many
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programs that compute the correct answer for a certain question, but only a handful will

generalize and others are spurious (getting the correct answer because of luck, e.g., using

2 + 2 to answer the question “what is two times two”). The generalizable programs could

be discarded during the truncation of the memory buffer, making it hard for the model to

overcome the spurious programs.

Alternatively, we can approximate the expectations over the trajectories both inside and

outside B using sampling. As mentioned above, this can be viewed as stratified sampling

from inside and outside the memory buffer and variance reduction still holds. A key insight

is that the cost of sampling can be distributed through an actor-learner architecture depicted

in Figure 4.4 inspired by [33]. The actors uses a stale model checkpoint to sample trajectories

from inside the memory buffer through renormalization, and uses rejection sampling to pick

trajectories from outside the memory. It also computes the weights for these trajectories using

the stale model. These trajectories and their weights are then pushed to a queue of samples.

A learner fetches samples from the queue and use them to compute gradient estimates to

update the parameters.
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Algorithm 4 Systematic Exploration

Input: context x, policy π, exploration buffer of fully explored sub-sequences Be, memory

buffer of high-reward sequences B

Initialize: empty sequence a0:0

while true do

V = {a | a0:t−1‖a /∈ Be}

if V == ∅ then

Be ← Be ∪ a0:t−1
break

sample at ∼ πV (a|a0:t−1)

a0:t ← a0:t−1‖at
if at == EOS then

if R(a0:t) > 0 then

B ← B ∪ a0:t

Be ← Be ∪ a0:t
break

4.3.4.2. Marginal Likelihood Constraint. Policy gradient methods usually suffer from

a cold start problem if the model is randomly initialized. When supervised data in the form

of demonstrations D is available, a reasonable approach (e.g., [146]) incorporates such data

by combining the expected return objective with a conditional log likelihood objective via,

OAUG(θ) = λOER(θ) + (1− λ)
∑
a∈D

log πθ(a) (4.10)

In our setup, we do not have access to demonstrations, but through exploration we accumulate

the memory buffer with various high-reward trajectories. Instead of optimizing OAUG(θ),

which introduces some bias, we adopt a clipping mechanism that ensures that the buffer

probability is greater or equal to α, i.e. πB ≥ α, otherwise clips it to α. Then, the policy

gradient estimates are forced to pay a certain amount of attention to the high-reward
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trajectories in the buffer effectively optimizing

OMML(θ) =
1

N

∑
i

log
∑
a∈Bi

πθ(a) =
1

N
log

∏
i

∑
a∈Bi

πθ(a). (4.11)

At the beginning of training, the clipping will be active and it will introduce a bias, but will

facilitate much faster training. Once the policy is off the ground, the buffer probabilities are

almost never clipped given that they are naturally larger than α and the gradients are not

biased any more.

4.3.4.3. Systematic Exploration. To avoid repeated samples during exploration, we

propose to use systematic exploration. More specifically we keep a set Be of fully explored

partial sequences, which can be efficiently implemented using a bloom filter. Then, we use it

to enforce a policy to only take actions that lead to unexplored sequences. Using a bloom

filter we can store billions of sequences in Be with only several gigabytes of memory. The

pseudo code for this approach is shown in Algorithm 4. We warm start the memory buffer

using systematic exploration from random policy as it can be trivially parallelized. In parallel

to training, we continue the systematic exploration with the current policy to discover new

high reward trajectories.
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Algorithm 5 MAPO

Input: data {(xi,yi)}Ni=1, memory and exploration buffer {(Bi,Bei )}Ni=1, constants α, ε, M

repeat . for all actors

Initialize training batch D ← ∅

Get a batch of inputs C

for (xi,yi,Bei ,Bi) ∈ C do

SystematicExploration(xi, π
old
θ ,Bei ,Bi)

Sample a+
i ∼ πoldθ over Bi

w+
i ← max(πoldθ (Bi), α)

D ← D ∪ (a+
i , R(a+

i ), w+
i )

Sample ai ∼ πoldθ

if ai /∈ Bi then

wi ← (1− w+
i )

D ← D ∪ (ai, R(ai), wi)

Push D to training queue

until converge

repeat . for the learner

Get a batch D from training queue

for (ai, R(ai), wi) ∈ D do

dθ ← dθ + wi R(ai)∇ log πθ(ai)

update θ using dθ

πoldθ ← πθ . once every M batches

until converge or a certain number of steps is reached

Output: final parameters θ

4.3.4.4. Final Algorithm. Putting things together, the final training procedure is sum-

marized in Algorithm 5. As mentioned above, we adopt the actor-learner architecture for

distributed training. It uses multiple actors to collect training samples asynchronously and
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one learner for updating the parameters based on the training samples. Each actor interacts

with a set of environments to generate new trajectories. For efficiency, an actor uses a

stale policy (πoldθ ), which is often a few steps behind the policy of the learner and will be

synchronized periodically. To apply MAPO, each actor also maintains a memory buffer Bi to

save the high-reward trajectories. To prepare training samples for the learner, the actor picks

nb samples from inside Bi and also performs rejection sampling with no on-policy samples,

both according to the actor’s policy πoldθ . We then use the actor policy to compute a weight

max(πθ(B), α) for the samples in the memory buffer, and use 1−max(πθ(B), α) for samples

outside of the buffer. These samples are pushed to a queue and the learner reads data from

the queue to compute gradients and update the parameters.

4.3.5. Experiments

We evaluate MAPO on two program synthesis from natural language (also known as semantic

parsing) benchmarks, WikiTableQuestions and WikiSQL, which requires generating

programs to query and process data from tables to answer natural language questions. We

first compare MAPO to four common baselines to show the advantage of combining samples

from inside and outside the memory buffer, and ablate systematic exploration and marginal

likelihood constraint to show their utility. Then we compare MAPO to the state-of-the-art on

these two benchmarks. On WikiTableQuestions, MAPO is the first RL-based approach

that significantly outperforms the previous state-of-the-art. On WikiSQL, MAPO trained

with weak supervision (question-answer pairs) outperforms several strong models trained

with full supervision (question-program pairs).

4.3.5.1. Experimental setup. In this section, we discuss the details of the experiments,

including the datasets, the model architecture and the training details.

Datasets. WikiTableQuestions [100] contains tables extracted from Wikipedia and

question-answer pairs about the tables. See Table 4.7 as an example. There are 2,108 tables

and 18,496 question-answer pairs. We follow the construction in [100] for converting a table

into a directed graph that can be queried, where rows and cells are converted to graph nodes
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while column names become labeled directed edges. For the questions, we use string match

to identify phrases that appear in the table. We also identify numbers and dates using the

CoreNLP annotation released with the dataset. The task is challenging in several aspects.

First, the tables are taken from Wikipedia and cover a wide range of topics. Second, at test

time, new tables that contain unseen column names appear. Third, the table contents are

not normalized as in knowledge-bases like Freebase, so there are noises and ambiguities in the

table annotation. Last, the semantics are more complex comparing to previous datasets like

WebQuestionsSP [149]. It requires multiple-step reasoning using a large set of functions,

including comparisons, superlatives, aggregations, and arithmetic operations [100].

WikiSQL [161] is a recently introduced large scale dataset on learning natural language

interfaces for databases. The dataset also uses tables extracted from Wikipedia, but is much

larger and is annotated with programs (SQL). There are 24,241 tables and 80,654 question-

program pairs in the dataset. Comparing to WikiTableQuestions, the semantics are

simpler because the SQLs use fewer operators (column selection, aggregation, and conditions).

We perform similar preprocessing as for WikiTableQuestions. Most of the state-of-the-

art models relies on question-program pairs for supervised training, while we only use the

question-answer pairs for weakly supervised training.

Model architecture. We adopt the Neural Symbolic Machines framework[71], which

combines (1) a neural “programmer”, which is a seq2seq model augmented by a key-variable

memory that can translate a natural language utterance to a program as a sequence of

tokens, and (2) a symbolic “computer”, which is an Lisp interpreter that implements a

domain specific language with built-in functions and provides code assistance by eliminating

syntactically or semantically invalid choices.

For the Lisp interpreter, we adopt a domain specific language with certain built-in

functions. A program C is a list of expressions (c1...cN), where each expression is either

a special token “EOS” indicating the end of the program, or a list of tokens enclosed by

parentheses “(FA1...AK)”. F is a function, which takes as input K arguments of specific

types. Table 4.8 defines the arguments, return value and semantics of each function. In the
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table domain, there are rows and columns. The value of the table cells can be number, date

time or string, so we also categorize the columns into number columns, date time columns

and string columns depending on the type of the cell values in the column.

In the WikiTableQuestions experiments, we used all the functions in the table. In the

WikiSQL experiments, because the semantics of the questions are simpler, we used a subset

of the functions (hop, filter=, filterin, filter>, filter<, count, maximum, minimum, average

and sum). We created the functions according to [160, 90].3

We implemented the seq2seq model augmented with key-variable memory from [71] in

TensorFlow. (1) we used a bi-directional LSTM for the encoder; (2) we used two-layer LSTM

with skip-connections in both the encoder and decoder. GloVe [103] embeddings are used

for the embedding layer in the encoder and also to create embeddings for column names

by averaging the embeddings of the words in a name. Following [90, 65], we also add a

binary feature in each step of the encoder, indicating whether this word is found in the table,

and an integer feature for a column name counting how many of the words in the column

name appear in the question. For the WikiTableQuestions dataset, we use the CoreNLP

annotation of numbers and dates released with the dataset. For the WikiSQL dataset,

only numbers are used, so we use a simple parser to identify and parse the numbers in the

questions, and the tables are already preprocessed. The tokens of the numbers and dates are

anonymized as two special tokens <NUM> and <DATE>. The hidden size of the encoder

and decoder LSTM is 200. We keep the GloVe embeddings fixed during training, but project

it to 200 dimensions using a trainable linear transformation. The same architecture is used

for both WikiTableQuestions and WikiSQL.

Training Details. We first apply systematic exploration using a random policy to

discover high-reward programs to warm start the memory buffer of each example. For

WikiTableQuestions, we generated 10k programs per example using systematic exploration

with pruning rules inspired by the grammars from [160]. We apply 0.2 dropout on both

3The only function we have added to capture some complex semantics is the same as function, but it only
appears in 1.2% of the generated programs (among which 0.6% are correct and the other 0.6% are incorrect),
so even if we remove it, the significance of the difference in Table 4.10 will not change.
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Function Arguments Returns Description

(hop v p) v: a list of rows. a list of cells. Select the given column
p: a column. of the given rows.

(argmax v p) v: a list of rows. a list of rows. Select the rows with
(argmin v p) p: a number or date the max / min value

column. in the given column.

(filter> v q p) v: a list of rows. a list of rows. From the given rows,
(filter≥ v q p) q: a number or date. select the ones whose given
(filter< v q p) p: a number or date column has certain order
(filter≤ v q p) column. relation with the given value.
(filter= v q p)
(filter 6= v q p)

(filterin v q p) v: a list of rows. a list of rows. From the given rows,
(filter!in v q p) q: a string. select the ones whose

p: a string column. given column contain / do
not contain the given string.

(first v) v: a list of rows. a row. From the given rows,
(last v) select the one with

the smallest / largest index.

(previous v) v: a row. a row. Select the row that is
(next v) above / below the given row.

(count v) v: a list of rows. a number. Count the number
of given rows.

(max v p) v: a list of rows. a number. Compute the maximum
(min v p) p: a number column. / minimum / average
(average v p) / sum of the given
(sum v p) column in the given rows.

(mode v p) v: a list of rows. a cell. Get the mode of
p: a column. the given column.

(same as v p) v: a row. a list of rows. Get the rows whose
p: a column. given column is the

same as the given row.

(diff v0 v1 p) v0: a row. a number. Compute the difference in
v1: a row. the given column of
p: a number column. the given two rows.

Table 4.8. Functions used in the experiments.
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Figure 4.5. Comparison of MAPO and 3 baselines’ dev set accuracy curves. Results on
WikiTableQuestions is on the left and results on WikiSQL is on the right. The plot is
average of 5 runs with a bar of one standard deviation. The horizontal coordinate (training
steps) is in log scale.

encoder and decoder, and 0.01 entropy regularization [82]. Each batch includes samples

from 25 examples. For experiments on WikiSQL, we generated 1k programs per example

due to computational constraint. Because the dataset is much larger, we don’t use any

regularization. Each batch includes samples from 125 questions. We use distributed sampling

for WikiTableQuestions. For WikiSQL, due to computational constraints, we use the

simple approach to truncate each memory buffer to top 5 and then enumerate all 5 programs

for training. For both experiments, the samples outside memory buffer are drawn using

rejection sampling from 1 on policy sample per example. At inference time, we apply beam

search of size 5. We evaluate the model periodically on the dev set to select the best model.

We apply a distributed actor-learner architecture for training. The actors use CPUs to

generate new trajectories and push the samples into a queue for training. The learner reads

batches of data from the queue and uses GPU to accelerate training. We use Adam optimizer

for training and the learning rate is 10−3. All the hyperparameters are tuned on the dev set.

4.3.5.2. Comparison to baselines implemented within our framework. To assess

the effectiveness of MAPO, we compare against the following baselines in a controlled manner

by using the same neural architecture and experimental framework.

I REINFORCE: We use on-policy samples to estimate the gradient of expected return as

in (4.5), not utilizing any form of memory buffer.

I MML: Maximum Marginal Likelihood maximizes the marginal probability of the memory
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Method WikiTable WikiSQL

REINFORCE < 10 < 10
MML (Soft EM) 39.7± 0.3 70.7± 0.1
Hard EM 39.3± 0.6 70.2± 0.3
IML 36.8± 0.5 70.1± 0.2
MAPO 42.3± 0.3 72.2± 0.2
No Systematic Exploration < 10 < 10
No Marginal Likelihood < 10 < 10

Table 4.9. Ablation study on both datasets. We report mean accuracy % ± standard
deviation on dev sets based on 5 runs.

buffer as in (4.11). Assuming binary rewards and assuming that the memory buffer contains

almost all of the trajectories with a reward of 1, MML optimizes the marginal probability of

generating a rewarding program. Note that under these assumptions, expected return can be

expressed as OER(θ) ≈ 1
N

∑
i

∑
a∈Bi πθ(a). Comparing the two objectives, we can see that

MML maximizes the product of marginal probabilities, whereas expected return maximizes

the sum. More discussion of these two types of objectives can be found in [48, 95, 113].

I Hard EM: Expectation-Maximization algorithm is commonly used to optimize the

marginal likelihood in the presence of latent variables. Hard EM uses the samples with the

highest probability to approximate the gradient to OMML.

I IML: Iterative Maximum Likelihood training [71] uniformly maximizes the likelihood of

all the trajectories with the highest rewards OCLL(θ) =
∑

a∈B log πθ(a). Because the memory

buffer is too large to enumerate, we use samples from the buffer to approximate the gradient

for MML and IML, and uses samples with highest πθ(a) for Hard EM.

The results are summarized in Table 4.9. We show the accuracy curves on the dev

set in Figure 4.5. Removing systematic exploration or the marginal likelihood constraint

significantly weaken MAPO possibly because high-reward trajectories are not found or easily

forgotton. REINFORCE barely learns anything useful because starting from a random policy,

most samples result in a reward of zero. MML and Hard EM converge faster, but the learned

models underperform MAPO, which suggests that the expected return is a better objective.
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Method E.S. Dev. Test

Pasupat & Liang (2015) [100] - 37.0 37.1
Neelakantan et al. (2017) [90] 1 34.1 34.2
Neelakantan et al. (2017) [90] 15 37.5 37.7
Haug et al. (2017) [49] 1 - 34.8
Haug et al. (2017) [49] 15 - 38.7
Zhang et al. (2017) [160] - 40.4 43.7
MAPO 1 42.3 43.8
MAPO (ensembled) 5 - 46.2

Table 4.10. Results on WikiTableQuestions. E.S. is the ensemble size, when applicable.

Method Dev. Test

Fully supervised

Zhong et al. (2017) [161] 60.8 59.4
Wang et al. (2017) [138] 67.1 66.8
Xu et al. (2017) [147] 69.8 68.0
Huang et al. (2018) [55] 68.3 68.0
Yu et al. (2018) [153] 74.5 73.5
Sun et al. (2018) [131] 75.1 74.6
Dong & Lapata (2018) [32] 79.0 78.5

Weakly supervised

MAPO 72.2 72.6
MAPO (ensemble of 5) - 74.9

Table 4.11. Results on WikiSQL. Unlike other methods, MAPO only uses weak supervision.

IML runs faster than MML and MAPO because it randomly samples from the buffer, but

the objective is prone to spurious programs.

4.3.5.3. Comparison to state-of-the-art. On WikiTableQuestions (Table 4.10), MAPO

is the first RL-based approach that significantly outperforms the previous state-of-the-art

by 2.5%. Unlike previous work, MAPO does not require manual feature engineering or

additional human annotation4. On WikiSQL (Table 4.11), even though MAPO does not

exploit ground truth programs and only uses weak supervision, it is able to outperform many

4Krishnamurthy et al. [65] achieved 45.9 accuracy when trained on the data collected with dynamic program-
ming and pruned with more human annotations [101, 87].
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strong baselines trained using programs as full supervision. The techniques introduced in

other models can be incorporated to further improve the result of MAPO, but we leave that

as future work. We also qualitatively analyzed a trained model and see that it can generate

fairly complex programs. Table 4.12 shows examples of several types of programs generated

by a trained model.

Statement Comment

Superlative
nt-13901: the most points were scored by which player?

(argmax all rows r.points-num) Sort all rows by column ‘points’ and take the first row.
(hop v0 r.player-str) Output the value of column ‘player’ for the rows in v0.

Difference
nt-457: how many more passengers flew to los angeles than to saskatoon?

(filterin all rows [’saskatoon’] r.city-str) Find the row with ‘saskatoon’ matched in column ‘city’.
(filterin all rows [‘los angeles’] r.city-str) Find the row with ‘los angeles’ matched in column ‘city’.
(diff v1 v0 r.passengers-num) Calculate the difference of the values

in the column ‘passenger’ of v0 and v1.

Before / After
nt-10832: which nation is before peru?

(filterin all rows [‘peru’] r.nation-str) Find the row with ‘peru’ matched in ‘nation’ column.
(previous v0) Find the row before v0.
(hop v1 r.nation-str) Output the value of column ‘nation’ of v1.

Compare & Count
nt-647: in how many games did sri lanka score at least 2 goals?

(filter≥ all rows [2] r.score-num) Select the rows whose value in the ‘score’ column ¿= 2.
(count v0) Count the number of rows in v0.

Exclusion
nt-1133: other than william stuart price, which other businessman was born in tulsa?

(filterin all rows [‘tulsa’] r.hometown-str) Find rows with ‘tulsa’ matched in column ‘hometown’.
(filter!in v0 [‘william stuart price’] r.name-str) Drop rows with ‘william stuart price’ matched in the

value of column ‘name’.
(hop v1 r.name-str) Output the value of column ‘name’ of v1.

Table 4.12. Example programs generated by a trained model.

4.3.6. Related work

Program synthesis & semantic parsing. There has been a surge of recent interest in

applying reinforcement learning to program synthesis [18, 2, 154, 89] and combinatorial
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optimization [163, 10]. Different from these efforts, we focus on the contextualized program

synthesis where generalization to new contexts is important. Semantic parsing [155, 156, 73]

maps natural language to executable symbolic representations. Training semantic parsers

through weak supervision is challenging because the model must interact with a symbolic

interpreter through non-differentiable operations to search over a large space of programs

[12, 71]. Previous work [48, 90] reports negative results when applying simple policy

gradient methods like REINFORCE [143], which highlights the difficulty of exploration and

optimization when applying RL techniques to program synthesis or semantic parsing. MAPO

takes advantage of discrete and deterministic nature of program synthesis and significantly

improves upon REINFORCE.

Experience replay. An experience replay buffer [76] enables storage and usage of past

experiences to improve the sample efficiency of RL algorithms. Prioritized experience re-

play [117] prioritizes replays based on temporal-difference error for more efficient optimization.

Hindsight experience replay [5] incorporates goals into replays to deal with sparse rewards.

MAPO also uses past experiences to tackle sparse reward problems, but by storing and reusing

high-reward trajectories, similar to [71, 97]. Previous work[71] assigns a fixed weight to the

trajectories, which introduces bias into the policy gradient estimates. More importantly, the

policy is often trained equally on the trajectories that have the same reward, which is prone

to reinforcing spurious programs. By contrast, MAPO uses the trajectories in a principled

way to obtain an unbiased low variance gradient estimate.

Variance reduction. Policy optimization via gradient descent is challenging because of:

(1) large variance in gradient estimates; (2) small gradients in the initial phase of training.

Prior variance reduction approaches [145, 143] mainly relied on control variate techniques

by introducing a critic model [64, 82, 122]. MAPO takes a different approach to reformulate

the gradient as a combination of expectations inside and outside a memory buffer. Standard

solutions to the small gradient problem involves supervised pretraining [124, 51, 108] or

using supervised data to generate rewarding samples [95, 29], which cannot be applied when

supervised data are not available. MAPO solves this problem by a soft constraint on the
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marginal likelihood of the memory buffer, which accelerates training at the beginning and

becomes unbiased once the constraint is satisfied.

Exploration. Recently there has been a lot of work on improving exploration [102, 135,

54] by introducing additional reward based on information gain or pseudo count. For program

synthesis [7, 90, 18], the search spaces are enumerable and deterministic. Therefore, we

propose to conduct systematic exploration, which ensures that only novel trajectories are

generated.

4.3.6.1. Conclusion. We present memory augmented policy optimization (MAPO) that

incorporates a memory buffer of promising action trajectories to reduce the variance of policy

gradients. We propose 3 techniques to enable an efficient training algorithm for MAPO. (1)

distributed sampling from inside and outside memory buffer in an actor-learner architecture;

(2) a constraint over the marginal likelihood of the trajectories in the memory buffer to

accelerate training; (3) systematic exploration to efficiently discover high-reward trajectories.

MAPO is evaluated on real world program synthesis from natural language tasks. On Wik-

iTableQuestions, MAPO is the first RL approach that significantly outperforms previous

state-of-the-art; on WikiSQL, MAPO trained with only weak supervision outperforms several

strong baselines trained with full supervision.
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CHAPTER 5

Conclusions

This thesis shows how to integrate machine learning with symbolic reasoning by learning

to generate symbolic representations from weak supervision. Given the problem of learning a

mapping from input x to output y, instead of directly learning the function y = f(x), the

proposed approach decomposes f into two functions: the first one generates a latent symbolic

representation z, which is usually a structured object defined by a grammar G, as z = h(x);

the second one uses the input and the symbolic representation together to predict the final

output as y = g(z, x) = g(h(x), x). Both h and g are learned in an end-to-end manner from

weak supervision, i.e., input-output pairs {(xi, yi)}. The approach has three main advantages:

(1) Efficiency By selecting the right type of symbolic representations for the task, for

example, using structural alignment for similarity estimation, we can introduce an effective

inductive bias to the model, which will make the model learn faster and require less data to

train.

(2) Expressiveness The expressive symbolic representations can be used to represent com-

plex reasoning, for example, multi-step reasoning using different operations (i.e., arithmetics,

sorting or querying external knowledge base) can be represented efficiently as compositional

programs, which is usually hard or inefficient to represent in a purely statistical model.

(3) Intepretability The generated symbolic representations, for example, alignment or

programs, can be inspected and verified by the users, which makes the model more inter-

pretable and easier to debug.

We then evaluated this approach in two settings:

(1) Learning Similarity Estimation with Structural Alignment The goal is to

learn a model that, given two structured or relational representations as the input x, can
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estimate their similarity score as the output y. By using the structural alignment as the latent

symbolic representation z, we can introduce an inductive bias into the model to let it focus

on how one structure aligns with the other structure to consider both structural and local

similarity, which makes learning much more sample-efficient. When applied to knowledge base

completion / link prediction task, this enables a model to achieve state-of-the-art accuracy

using orders of magnitude less data. On the paraphrase identification task, a simple model

using structural alignment achieved competitive results to other state-of-the-art models that

used more data or more sophisticated learning methods. Besides, the generated alignment

can be used to explain the similarity estimation by showing the contribution of each match

or mismatch.

(2) Learning to Generate Programs from Natural Language The goal is to learn a

model that, given a natural language utterance as input x, can produce the answer as output

y. By using compositional programs as the latent symbolic representations z, the model can

represent complex multi-step reasoning using different operations like arithmetics, sorting

and querying external knowledge base. It is the first end-to-end model that significantly

outperforms the previous state-of-the-art without feature engineering on two challenging

tasks: answering open-domain question using Freebase and answering compositional questions

about tables. The generated programs can also be used to verify or debug the reasoning

process of the model.

To successfully apply the proposed approach, the weakly supervised structured prediction

problem needs to be solved. In the first setting, we model the symbolic representation as a

latent variable and use a EM-like process to jointly train structural alignment using structured

perceptron and similarity estimation using SVM. In the second setting, we formalize the

problem of generating programs as reinforcement learning. To apply policy gradient methods

to this large search space with sparse rewards, we proposed novel techniques to improve its

the sample efficiency and robustness by using a replay buffer of high-reward trajectories and

systematic exploration strategy.
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The proposed approach is most applicable in high-level tasks that deals with noisy input,

i.e., natural language utterances or images, and requires explicit reasoning. For low-level

tasks in perception and motor control, for example, image segmentation or controlling a robot

arm, it might be better to apply purely statistical learning methods. And for reasoning tasks

with perfect input like solving logic puzzles or theorem proving, it is better to apply purely

symbolic reasoning methods.

Although we focus on applications in natural language understanding in this thesis, the

proposed approach is generally applicable to many tasks that requires high-level reasoning.

Some high-level vision tasks [59] also requires multi-step reasoning, for example, given a

image, to answer question like “How many cyan things are right of the gray cube or left

of the small cube”. The designing process of a neural network model can also be viewed

as generating a symbolic representation that defines the model architecture [163], and the

training signal is the performance of the generated model.

To conclude, the proposed approach presents a new way of incorporating symbolic

representations into machine learning, which fits into a long line of research that attempts to

integrate the two branches in AI. It is generally applicable to many high-level tasks where

both learning and reasoning are required, and achieved promising results in several real world

applications.
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