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ABSTRACT

Modeling Large-Scale Dynamics and Intercellular Communication in Bacterial Biofilms

Noah Ford

We present two novel, computational models of biofilm growth within an experimental flow

cell. First, we use asymptotic approximations to develop a reduced model that captures

the large-scale dynamics within an entire flow cell. The reduced model’s predicted growth

and nutrient distribution are close to the values predicted by previous models at a fraction

of the computational cost. Experimentalists can use this model to better understand

the internal concentration and growth distribution throughout their flow cells. Second,

we present a modified model of the metabolic and voltage oscillations experimentally

observed in some Bacillus subtilis cultures. We develop a two-dimensional simulation

from this model that mimics the two-dimensional structure of the experiments and allows

us to directly compare the model to experimental data. These two models provide a closer

look at some of the complex and interesting behaviors biofilms can exhibit.
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CHAPTER 1

Introduction

A biofilm is a colony of bacteria that grows on a surface. The bacteria produce extra-

cellular polymeric substance, or EPS, which forms a matrix that connects the bacteria to

the surface and to each other. These bacteria are called sessile, as opposed to the familiar

planktonic bacteria that float or swim in search of nutrients. Many types of bacteria

can switch between these two distinct modes or phenotypes. Biofilms commonly grow on

a range of surfaces that are submerged in fluid. These surfaces provide an attachment

point for the bacteria from which they consume nutrients available in the environment.

Biofilms exhibit a range of unique, collective behaviors that can benefit the individual

cells and improve their ability to survive and reproduce. Scientists study biofilms because

the colonies can greatly impact human life in a variety of ways, including by corroding

machinery and causing infections. Both experimentation and modeling are common tools

that help scientists to better understand the complex behaviors of biofilms within their

various environments.

Bacterial biofilms grow on many types of surfaces located in distinct environments.

Biofilms grow on several surfaces of humans’ and other mammals’ bodies including in the

digestive tract [12], on the skin [13], and on teeth, on which biofilms often produce dental

plaque [14]. An image of a biofilm within the intestines of a rat is shown in Figure 1.1.

Biofilms also grow in other natural and human-made environments such as in streams

[15], on plants [16], and on the hulls of ships [17]. An image of a biofilm growing in a
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stream is shown in Figure 1.2. Different bacteria or consortia of bacteria are suited to

different environments based on each environment’s nutrient availability and prevalent

stressors. Within the intestines, the bacteria consume some of the nutrients found in the

food that their host animal ingests. In stream environments, bacteria largely consume

the oxygen and various organic materials present in the flow. Because of the differences

in the environment, the types of bacteria found in an animal’s intestine will likely not

appear in the same proportions in a biofilm within a stream. A closer look at the types

of bacteria present in biofilms in these different environments is provided in [18].

Biofilms typically exhibit a defined life cycle. In this life cycle, planktonic cells attach

to a surface, change their phenotype to become sessile, grow into a mature biofilm, and

then some cells switch back into planktonic cells and detach from the biofilm to colonize

new surfaces. The biofilm life cycle is described in more detail in [19]. This cycle is a good

example of the mutualistic cooperation that arises in biofilms, in which the coordinated

growth improves the bacteria’s ability to survive. A particular example of this coordinated

growth can be seen in the development of fruiting bodies, which some biofilms create in

their detachment phase. The fruiting bodies are formations in which a group of bacteria

that are enclosed within the biofilm switch their phenotype from sessile to planktonic.

These planktonic cells contained within the biomass are sometimes referred to as seeds.

The fruiting bodies safely incubate these swimmers before they are released to colonize

other surfaces. More details on the development of these structures can be found in [20].

The development of fruiting bodies is just one example of a communal behavior ob-

served in biofilms. Biofilms exhibit many collective behaviors, which also include the

formation of complex patterns and shapes in some biofilms’ structure. The purpose of
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Figure 1.1. Reproduced
from [2]. This image de-
picts a biofilm within a
rat’s intestine that has a
diverse population. Copy-
right Springer-Verlag Berlin
Heidelberg 2007. Reprinted
by permission from Springer
Nature Customer Service
Centre GmbH: Springer
Nature, The Biofilm Primer:
Direct Observations by
J. W. Coserterton, Copy-
right 2007, Springer-Verlag
Berlin Heidelberg (2007)
https://www.springer.com/
gp/book/9783540680215

Figure 1.2. Reproduced from
[2]. Top image is of an alpine
stream under Marmolata
Spire in the Bugaboo Moun-
tains of British Columbia.
Bottom image is from a trans-
mission electron microscope
of a biofilm on a methacry-
late surface immersed in this
stream for 30 minutes. Copy-
right Springer-Verlag Berlin
Heidelberg 2007. Reprinted
by permission from Springer
Nature Customer Service
Centre GmbH: Springer
Nature, The Biofilm Primer:
The Microbiology of the
Healthy Human Body by
J. W. Coserterton, Copy-
right 2007, Springer-Verlag
Berlin Heidelberg (2007)
https://www.springer.com/
gp/book/9783540680215
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Figure 1.3. Reproduced from [2]. Images from a scanning elec-
tron microscope of a biofilm that expresses a honeycomb pattern.
Copyright Springer-Verlag Berlin Heidelberg 2007. Reprinted by
permission from Springer Nature Customer Service Centre GmbH:
Springer Nature, The Biofilm Primer: Direct Observations by J. W.
Coserterton, Copyright 2007, Springer-Verlag Berlin Heidelberg (2007)
https://www.springer.com/gp/book/9783540680215

these complex structures is often to increase the nutrient access of the bacteria throughout

the biofilm. An example of such a structure can be seen in Figure 1.3 where the bacteria

form a honeycomb pattern which promotes microscopic flow through the biomass. This

flow allows nutrients to disperse faster than diffusion alone, and the bacteria are better

able to survive. These physical structures are visual examples of the cooperative nature

of biofilms.

There are many advantages to living within a biofilm, including metabolic, genetic, and

protective benefits [2]. Biofilms can grow in many environments in which few planktonic
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bacteria could survive. For example, biofilms can survive in the low-nutrient environ-

ment of mountain streams, which typically have few free-floating, planktonic bacteria [2].

Biofilms also provide bacteria with the opportunity to share pieces of their DNA with their

neighbors, which allows the cells to incorporate advantageous genes into their genome,

improving their fitness. The connection between biofilm formation and the transfer of

genetic material is explored in [21]. Another advantage of living in a biofilm is that the

bacteria in the colony are significantly more resistant to outside stressors, most notably to

antibiotics. The possible mechanisms that contribute to bacteria’s resistance could include

the physical barrier of the colony, environmental differences, and the genetic expression of

the cells [22]. The protection provided by the physical barrier can be inferred by the lower

antibiotic susceptibility of clumps of biofilm compared to physically disrupted pieces of

biofilms [23]. A genetic component of the protection is suggested by experiments demon-

strating that biofilms of Pseudomonas aeruginosa consisting of a certain mutant strain are

more susceptible to antibiotics than biofilms consisting of wild-type bacteria [24], which

implies that the genetic expression of the bacteria may provide some of the protection.

These significant benefits of living in a biofilm demonstrate why many bacteria spend a

portion of their life living within one of these communities.

We study biofilms because they are important to both our built environment and our

bodies. Biofilms can grow on machinery and equipment, which can lead to damaging bulk

formation or the corrosion of these surface. For example, biofilm growth in ultrafiltration

systems decreases the flux of water through the filtration system reducing their efficiency

[25]. Biofilms of sulfate-reducing bacteria can also corrode machinery [26]. Scientists are

continually exploring new ways to manage biofilm growth. For example, bacteriophages
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may be able to reduce the formation of biofilms on the ultrafiltration systems and improve

the fluid flux through the filters [25]. In some filtration systems, biofilms can actually im-

prove the performance of the filters, particularly in filtering wastewater. Biofilms within

a filtration system can remove carbon from wastewater and prevent biofilms from form-

ing on downstream surfaces [27]. Reducing biofilm growth in industrial systems is only

one example of how managing biofilm growth can save substantial amounts of money in

industrial applications.

Biofilms also live in the bodies of many animals, including humans, and can greatly

impact their health. The presence of some biofilms can be beneficial to the host animal.

For example, they contribute to the digestive process within the intestines. However,

biofilms can also lead to infections particularly when there is excess growth or growth

somewhere that is typically bacteria free. Medical devices such as catheters, pacemakers,

and other implants, are ideal surfaces for biofilm growth because they are inert and do

not have the natural defenses of human cells. Biofilm colonization on venous catheters of

hospitalized patients can lead to sepsis [28]. A thick biofilm can also form on biological

surfaces in the body such as in the lungs and sinuses causing chronic infections. Biofilms

can play a role in infections, particularly in cystic fibrosis, in which biofilms often cause

chronic inflammation in patients’ lungs [29, 30]. Scientists dedicate a large amount of

resources to finding ways to fight these infections. Some of the techniques used to fight

these infections include removing infected objects, using antibiotics, and even adminis-

tering dispersal agents to prevent the bacteria from forming a biofilm [31]. Because of

biofilms’ resistance to common antibacterial methods, scientist continue to study biofilms

and their complex properties to find new ways to control their growth.
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Scientists use a combination of experiments and simulations to study biofilms. The

experiments provide important data on how a biofilm behaves in different environments,

examining behaviors such as the growth rate and how biofilms respond to various factors

such as the concentration of nutrients and the flow rate. Though bacteria are simpler

than many other types of cells, these organisms still express many complex behaviors

that are controlled by chemical pathways in the cell. These reaction networks can be

quite complicated, and we often have an incomplete picture of the networks for even the

most well-studied bacteria. Scientists perform experiments to probe the mechanisms that

give rise to an observed behavior, and they often compare wild-type bacteria to mutant

strains with the hope of connecting a difference in behavior to a difference in genes.

For example, the authors of [24] compare wild-type and mutant strains of Pseudomonas

aeruginosa to suggest that genetics may contribute to antibiotic resistance. These types

of experiments typically explore a single mechanism at a time, and the combined effect

of cellular differences can be difficult to predict. We can use modeling to methodically

combine the data from individual experiments to develop a more precise picture of the

cellular behavior.

To gain a clearer picture of the driving forces behind a biofilm’s behavior, mathe-

maticians develop models that reproduce important experimental features. A model that

reproduces the observed dynamics of the system can demonstrate that certain proposed

mechanisms of a bacterium’s chemical network are sufficient or insufficient to explain the

observed behavior. A well-fitted model that is based on known physical and biological

relationships can provide even more confidence in the proposed role of a particular mech-

anism. Models not only help us to understand the bacteria’s behavior, they can also
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be used to predict behavior and other relevant quantities within the biofilm system. A

model is particularly useful for predicting bacteria’s behavior in a new environment and

for approximating data that is difficult to measure in an experiment. Both experiments

and modeling are integral components in understanding these bacterial systems, which

can help scientists formulate control strategies for biofilms in industrial environments and

within the body.

In Chapters 3 and 4, we present two new methods to simulate biofilms that provide

insight into behaviors seen in experiments. In Chapter 3, we introduce a dimensionally

reduced model of biofilm growth within a flow cell. This model provides a closer look at

the dynamics within experimental flow cells in which biofilms are often studied. Typically

only a small portion of the cell is imaged in an experiment due to the limitations of the

microscope. Estimating the local environmental conditions at the point of observation is

challenging because upstream bacteria consume substrates and alter these concentrations

in the fluid as it moves from the inlet port to the observation point. The absence of

accurate environmental data presents a challenge to understanding biofilm growth and

quantitatively comparing observed growth to the models.

It is possible to estimate these local conditions by simulating the biofilm in the entire

chamber using existing numerical methods, but in practice this computation is expensive.

The cost of simulating a small region containing a biofilm is large to begin with, and sim-

ulating the entire flow cell is prohibitive. In Chater 3, we propose an alternative approach

that uses asymptotic approximations to reduce the dimensionality of computing biofilm

growth and the growth-limiting substrate concentration in the flow cell. This simplified
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system runs orders of magnitude faster than previous models and allows researchers to

better understand the growth and the nutrient concentrations throughout the flow cell.

In Chapter 4, we introduce a two-dimensional model of potassium signaling and os-

cillatory growth in a biofilm, which may promote nutrient sharing within the biofilm.

Biofilms often exhibit cooperative behavior to manage the distribution of nutrients, such

as developing channels and structures that enable nutrients to penetrate the biomass more

deeply. In this chapter we explore Bacillus subtilis’ oscillatory growth pattern that may

emerge from potassium signaling. This behavior was introduced in [10] and in [8] as an-

other mechanism for biofilm cooperation to improve the nutrient availability at the center

of the colony.

Previous studies, such as [9], primarily used one-dimensional models to examine this

behavior. In Chapter 4, we develop a two-dimensional model and introduce a new method

of cell-to-cell communication in which the cells react to changing potassium levels instead

of to the absolute potassium level. We show that this model can more accurately represent

some important features of the experimental data in [8], and we use the model to explore

the spatial variations in the oscillation patterns seen in these experiments.



29

CHAPTER 2

Methods

2.1. Previous Work

To simulate a biofilm growing in a flow cell, we split the domain into two regions:

the interior of the biofilm where the bacteria are located, Ω−, and the surrounding fluid

that provides the nutrients that the bacteria use to survive and grow, Ω+. We show a

visual representation of the two subregions of the domain in Figure 2.1. To simulate the

flow-cell environment, we solve for the fluid flow in Ω+, the nutrient distribution in the

entire domain, and the biomass growth in Ω−.

Wall

Wall

Biofilm Domain

Fluid Domain

Inlet Outlet

Figure 2.1. An illustration of a two-dimensional, flow-cell domain
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In the fluid domain, Ω+, we solve for the fluid velocity around the biofilm. The flow

pattern strongly influences the biofilm’s growth because the flow carries important nutri-

ents to the biofilm’s interface. Though the flow provides these essential nutrients, high

flow can create a level of shear stress that limits the biofilm’s growth. The flow can also

deform the biofilm, but typically these deformations are small enough that most models

ignore their effects. Though many environments have some fluid flow, some environments

may not have any flow in the surrounding fluid. In these environments the nutrients dif-

fuse passively through the fluid to reach the bacteria, which often exhibit limited growth

due to the lower nutrient availability. The environmental characteristics of the flow or

lack thereof greatly affect the biofilm’s growth, which makes accurately calculating the

flow an important component of the biofilm simulation.

We solve for the nutrient distribution in both the fluid, Ω+, and the biofilm, Ω−.

Modeling these nutrients in the fluid results in an advection-diffusion equation in Ω+. The

nutrients diffuse from the fluid into the biofilm at its interface. In Ω− the nutrients diffuse

through the spaces between the cells and can be carried by micro-scale flows through

channels that form within the biomass. Tracking these channels and then solving for the

flow through these spaces would be quite challenging. Most models treat the biofilm as a

homogeneous substance that has no defined channels and thus no flow. This simplification

allows the computations to consider only the diffusive transport of the nutrients. Most

models use an effective diffusion coefficient to solve for the diffusion within the biofilm.

The effective diffusion coefficient can be estimated from experiments and is generally a

fraction of the diffusion coefficient within an aqueous solution [32]. Only representing the
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diffusion and not the advection inside the biofilm can underestimate its nutrient intake

and internal transport, but we are still able to accurately represent most biofilm systems.

As the bacteria reproduce, the cells push out the biomass around them, and we track

the evolving interface between Ω+ and Ω−. In Ω−, the model represents common quantities

such as living cells, extracellular polymeric substance, and the various species of bacteria

within the biofilm. The proportions of these biological materials typically shift as bacteria

reproduce because the bacteria produce the biomass components at different rates and

the growth can push the biomass from one region into a different region. There are

three primary computational methods that have been used to track the biomass growth:

the cellular automata model [33], the agent-based model [34], and the continuum model

(the one-dimensional model was introduced in [35] and the multi-dimensional model was

introduced in [36]).

The cellular automata model tracks the growing biomass by dividing the domain of

the flow cell into a rectangular grid, and then it tracks the biomass quantities within each

grid box. One of the first applications of this model to a biofilm is discussed in [33].

It was further developed in [37], [38], and [39]. In the model, some of the grid boxes

are completely full of biomass and other boxes have no biomass and only fluid. More

detailed versions of the model may track the density of the various biomass components

in each box. Though this method allows the simulation to track the shape and makeup

of the biofilm, it’s growth algorithm often relies on bacteria from one box moving into a

randomly chosen neighboring box, which may not be physically accurate. For example,

in [40], once the biomass in one box reaches a threshold, half of the biomass in the box

is randomly displaced to a neighboring box. Under these growth conditions, changes
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to the model’s representation of the biomass can lead to differences in the mixture of

the biomass components [40]. These complications in implementation have reduced the

model’s popularity within the biofilm modeling community.

Another method to simulate the biomass growth is an agent-based model where the

simulation tracks collections of cells and biological substances within the biofilm. This

method was introduced by [34] in which the authors develop a simulation framework for

bacterial biofilms. A multidimensional model based on this method was introduced in [41]

which examines larger “particles” of biomass instead of individual cells. The model was

improved in [42] to model the EPS and cellular detachment in more depth. The growth

algorithm commonly used in these models is the shoving algorithm in which the agents

shove each other to grow outward [40]. Agent-based models provide a more detailed

representation of small collections of bacteria, which can be useful when studying many

biological phenomena that emerge from the behavior of a small number of cells. However,

since these models use the small collections of cells to represent the entire biofilm, they

may require more detail than necessary to model large-scale phenomena.

The third model commonly used for tracking the biomass growth is the continuum

model. This model is based on a volume fraction formulation that continuously defines

the proportions of each biomass at each point. For example, if the biofilm near a grid

point is made up of equal quantities of living cells and EPS, the model defines both of

these proportions to be 0.5, but it does not distinguish the precise location of the cells and

the EPS. This model was introduced by [35] as a one-dimensional model, but has since

been extended to multi-dimensional models in [36] and extended to multispecies biofilms

in [43]. The continuum model is a logical choice for simulating large-scale, aggregate
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behavior because the model can easily capture the collective behavior without delving

into the detail of tracking individual cells.

In our studies we use the continuum model to approximate the biofilm’s growth. We

use the biofilm simulation system developed in [5] as the basis of our simulations and

algorithm development. This simulation system is described in more detail within [44],

and it is used as the modeling framework in [45, 46]. This system begins by initializing

a biofilm colony from a user-prescribed shape. It can then solve for the fluid flow around

the biofilm, the nutrient distributions within the fluid and the biofilm, and the resulting

growth of the biofilm.

In [5], the simulation uses a fluid solver based on an extended finite-element method

(XFEM) formulation. This solver was developed in [47], and it solves for the flow using

a Stokes-flow approximation, which assumes that the flow is slow enough to be laminar.

The XFEM formulation allows the fluid solver to accurately capture the fluid velocities

near the biofilm interface, but the solver runs slowly. Here, we address the long runtime

by replacing the solver, which we discuss in the following section.

The biofilm simulation in [5] solves for the nutrient concentration throughout the fluid

and biomass in the domain using a quasi-steady-state approximation and a mixture of

boundary conditions to represent the physical boundaries of the flow cell. The system

solves the solute equations as quasi-steady-state because the time-scale of diffusion is much

faster than the time scales of consumption and growth. Since diffusion occurs relatively

quickly, the solute distribution is approximately equal to its diffusive steady state within

the biofilm. Here, the boundary conditions for the nutrients include a Dirichlet boundary

at the inlet, which is set to the bulk concentration, no-flux conditions at the two walls on
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the top and bottom of the flow cell, and a far-field condition at the outlet in which the

derivative in the outgoing direction is set to zero. The boundary condition at the interface

of the biofilm and the fluid requires that the concentration and the flux of the nutrients are

continuous. The resulting nutrient distribution helps to determine the biofilm’s growth,

and the simulation tracks the moving biofilm interface.

The biofilm system from [5] uses the level-set method to track the location of the

biofilm/fluid interface. This method was introduced in [48], and it is discussed further in

[49], [50], [51], and references therein. This method tracks an interface within a domain

by defining the function φ, where the zero level-set of φ corresponds to the boundary.

The interface is then the image of φ−1(0). Furthermore, φ is defined so that ||∇φ|| ≈ 1

throughout the domain so that the value of φ at any point is approximately equal to the

signed distance from that point to the nearest point on the biofilm interface. In Figure

2.2, we show that the level-set method can accurately represent the irregular boundary

of the three biofilm colonies from [8], which we will discuss in Chapter 4.

Figure 2.2. The level-set function, φ, represents the shape of the biofilms.
The zero level-set of φ, drawn in light green, defines the boundary of the
biofilm colonies. There are three distinct colonies. The regions colored
green are the biofilms and the region colored blue is the surrounding fluid.
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The continuum model solves for the biofilm’s growth using the level-set method in

which the growth velocity is the solution to the potential function

∇2Φ = g,(2.1)

~V = ∇Φ,(2.2)

where g is the local growth, Φ is the potential function, and ~V is the biomass velocity. The

biofilm interface, defined by φ, moves according to the biomass velocity, ~V from Equation

(2.2), evaluated along the boundary. The speed, F , of the moving interface is equal to

the normal component of the biomass velocity, which is calculated as F = ~V · ~n where ~n

is the unit normal at the interface. Once we have defined the speed of the interface, we

evolve φ using the level-set evolution equation:

φt + F ||φ|| = 0.(2.3)

The speed, F , is only defined at the boundary, but to evolve the level-set function, φ,

we need the values of F at the grid points. We use velocity extensions to find velocity

values at the grid points throughout the domain. The velocity extensions are constructed

so that the gradient of φ remains approximately 1, which improves the accuracy and

stability of the solution. A quick method to accurately compute velocity extensions is

provided in [52], and we use this method here. Despite our efforts to maintain the

gradient of φ using velocity extensions, the norm of φ may gradually begin to deviate from

1 after successive updates. Once the gradient sufficiently deviates from 1, we reinitialize

the surface to maintain the accuracy of the solution. [53] introduced the reinitialization
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of level-set functions to compute minimal surfaces. Since that initial usage, numerous

alternative approaches to reinitialization have been proposed. For example, an iterative

method to reinitialize the level-set function is presented in [54]. Here, we use an improved

method for reinitializing the level-set function presented in [55]. More discussion on the

implementation of the level-set method can be found in [50], [51], and references therein.

We use the biofilm simulation system developed in [5] as both a benchmark and as

a basis for new models. To use the system in these contexts, we made a few important

updates to the system. First, we updated the fluid solver in [5] simulation to improve

the entire simulation’s runtime. Second, we added the ability to solve for cellular state

variables and to solve for the nutrient distribution as time dependent. We use the updated

model to validate a new, dimensionally reduced model and to model the oscillatory growth

behavior observed in Bacillus subtilis in [8].

The fluid solver in the system from [5] ran slowly, and it accounted for the majority

of the simulation time. We replaced the fluid solver from [5] to improve the speed. We

implemented a high-performance fluid solver that runs on a Graphics Processing Unit, or

GPU, which runs up to 30 times faster than the original solver. This change improves the

simulation speed, which allows for quicker comparisons to our new, dimensionally reduced

model.

We also updated the simulation to allow it to represent cellular state variables. Models

typically represent diffusive quantities that diffuse fast enough that the biofilm’s growth

minimally affects the quantity’s distribution. However, this assumption of fast diffusion

does not apply to cellular state variables which are attached to a single cell and do

not diffuse. Since these state variables move at the same time-scale as the biofilm’s



37

growth, we account for the biofilm’s growth when solving for the state variables. The

state variables are an important component in the oscillatory growth behavior observed

in Bacillus subtilis.

We enabled the simulation to solve for the solutes and state variables as time depen-

dent. Previously, the simulation solved for all these variables as if they were at steady

state. This assumption is accurate for most biofilms in which the diffusion of the quantities

occurs more quickly than the changes in the bacteria’s intake and release. However, the

oscillatory behavior in Bacillus subtilis is based on rapid changes in the solutes, which also

affect the state variables. Solving for the solutes and state variables as time dependent

allows us to capture this oscillatory phenomenon. In the following sections, we discuss

these changes in more detail.

2.2. High-Performance Fluid Solver

We implemented a high-performance, fluid solver within the biofilm system to improve

the speed of the simulation. The original fluid solver was based on an extended finite-

element method (XFEM) formulation. Finite elements are a common choice when solving

for fluid flow around an irregular shape such as the interface of a biofilm. The elements

are able to accurately solve for fluid in the irregular domain. However, creating the

finite-element mesh can be computationally costly and time consuming. Furthermore,

the XFEM method computes the fluid velocity values near the biofilm interface using

additional basis functions. Each time the boundary moves, the simulation creates a new

set of basis functions and incorporates them into the calculation, and solving the new

system of equations can be time-consuming. This method for solving for the fluid flow
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around the irregular shape of a biofilm is presented in [47]. Thankfully, the growth is slow

enough that the system typically only recalculates the flow every 10-50 steps. However,

solving for the flow every few steps could still constitute around 90% of the simulation

time.

We introduced a high-performance, finite-difference algorithm to quickly compute the

fluid flow around the biofilm. To create this solver, we first assume that the flow is

slow enough that it can be modeled as laminar. This assumption is accurate for most

experiments performed in biofilm flow cells. If the flow is too fast near the biofilm, the

bacteria experience high levels of shear stress and cannot grow. To keep the bacteria from

detaching, experimentalists typically set the flow to be slow enough so that it is laminar.

The laminar flow assumption allows us to use a Stokes-flow approximation to solve

for the fluid velocities. This approximation provides the following set of equations:

µ∇2u =
∂P

∂x
,(2.4)

µ∇2v =
∂P

∂y
,(2.5)

∇2P = 0,(2.6)

where u is the x-directional velocity, v is the y-directional velocity, P is the pressure, and

µ is the viscosity. The domain of the flow cell is a rectangle with an inlet on the left

side, an outlet on the right side, and walls on the top and the bottom of the domain.

The fluid moves through this domain and around the biomass. At the inlet we use an

inflow boundary condition where u = u0, v = 0, and ∂u/∂x = 0, and at the outlet we

approximate a far-field boundary with the conditions ∂u/∂x = 0, v = 0, and P = 0.
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Figure 2.3. Marker-and-cell (MAC) grid for fluid solve

At the interior walls and at the biofilm interface we have a no-slip and no-penetration

boundary condition, which requires that u = 0, v = 0, and ∇P · ~n = 0, where ~n is the

outward normal.

We solve these equations by discretizing the domain using a uniform mesh with a

marker-and-cell, or MAC, grid, which is a discretized grid with staggered points for dif-

ferent variables. This grid is represented in Figure 2.3.

We discretize Equations (2.4) and (2.5) and implement a successive-over-relaxation

(SOR) scheme with a red-black ordering. In this algorithm, all the red points are updated

simultaneously and then all the black points are updated simultaneously. Once all points

of one color are updated, the points of the other color are updated using those newer

values in their calculations. In this scheme we solve for both u and v using a red-black

ordering for their respective grids. The red-black grid for u is shown in Figure 2.4.

The red-black SOR algorithm consists of the following steps to solve for u and v:
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Figure 2.4. Red-black grid for computing u, the x−directional velocity

• Update red and black grid points for u, where red nodes are updated on half

steps and black nodes are updated on whole steps

u
n+1/2
i,j = (1− ω)uni,j + ω(uni+1,j + uni−1,j + uni,j+1 + uni,j−1 + (P n

i,j − P n
i−1,j)dx/µ)/4,

(2.7)

un+1
i,j = (1− ω)u

n+1/2
i,j + ω(u

n+1/2
i+1,j + u

n+1/2
i−1,j + u

n+1/2
i,j+1 + u

n+1/2
i,j−1 + (P n

i,j − P n
i−1,j)dx/µ)/4.

(2.8)



41

• Update red and black grid points for v, where red nodes are updated on half

steps and black nodes are updated on whole steps

v
n+1/2
i,j = (1− ω)vni,j + ω(vni+1,j + vni−1,j + vni,j+1 + vni,j−1 + (P n

i,j − P n
i,j−1)dy/µ)/4,

(2.9)

vn+1
i,j = (1− ω)v

n+1/2
i,j + ω(v

n+1/2
i+1,j + v

n+1/2
i−1,j + v

n+1/2
i,j+1 + v

n+1/2
i,j−1 + (P n

i,j − P n
i,j−1)dy/µ)/4.

(2.10)

The boundary points for u and v can be updated according to the desired boundary

conditions. Near the biofilm, the no flux and no penetration boundary conditions require

that u and v are zero at the interface. We extrapolate the velocities to points within

the biofilm that border the fluid so that the velocities are approximately zero at the

boundary. These grid points inside the biofilm then have negative values for u and v.

If a grid point inside the biofilm has only one neighbor that is inside the fluid domain,

we use a one-dimensional, linear extrapolation to calculate the u and v velocities at the

interior point. If an interior grid point has multiple neighbors outside in the fluid domain,

then we perform multiple one-dimensional extrapolations and approximate the value at

the interior grid point using the average. While the boundary computations produce a

small degree of error, which we will examine in more detail below, they produce relatively

accurate solutions.

We update pressure to maintain continuity within the fluid, meaning that we ensure

that the divergence is zero. In our discretization from Figure 2.3 we ensure that the
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divergence within each square on the grid is equal to zero, which we compute as

Divergence =
un+1
i+1,j − un+1

i,j

dx
+
vn+1
i,j+1 − vn+1

i,j

dy
.(2.11)

If the divergence is negative within a box, then some amount of fluid is disappearing

there, and we increase pressure in the box to decrease the amount of fluid flowing into

it. By decreasing the amount of fluid flowing into the box, we balance the inflowing

and outflowing fluid to maintain continuity in the flow. Conversely, if the divergence is

positive in a box, then fluid is being created there, and we decrease pressure to reduce the

amount of fluid leaving the box, which balances the fluid fluxes. The pressure is updated

as follows:

P n+1
i,j = P n

i,j − α[(un+1
i+1,j − un+1

i,j )/dx+ (vn+1
i,j+1 − vn+1

i,j )/dy],(2.12)

= P n
i,j − α×Divergence in box surrounding Pi,j.(2.13)

In solving for the fluid flow, we have two iteration parameters, ω and α, where ω is the

iteration parameter for updating u and v, and α is the iteration parameter for updating P .

The pressure update does not follow the same form as an SOR update, so the user should

test various iteration parameters to find appropriate parameters for their fluid system. In

implementing this scheme, we used ω = 0.5 and α = µ, the fluid viscosity. In most of our

simulations, the fluid viscosity was set to that µ = 0.0011 kilograms per meter second.

One major benefit of using an iterative scheme is that the solver can use the values

of u, v, and P from a previous fluid solve as an initial starting point for the following

solve. Since the biofilm grows slowly, the solution to these equations only changes a small
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Figure 2.5. Comparison of runtimes of XFEM-based fluid solver and GPU-
based fluid solver on a Linux-based computer with a NVIDIA Tesla K20c
graphics card. The values on the x-axis of the figure are the number of grid
points in the x-direction of the domain. There are half as many grid points
in the y-direction.

amount as the biofilm grows. Using initial values that are close to the new solution allows

the solver to converge quickly. In the XFEM-based solver, the program updates the basis

functions near the biofilm interface each time it solves for the fluid, thereby changing

the system of equations, which the program re-solves from scratch. Though the iterative

scheme improves its speed by using previous values, the main speedup comes from our

ability to parallelize the computations on a GPU.

We implemented the fluid solver using OpenCL, which we ran on two different ma-

chines: a Macbook Pro with a Radeon Pro 560 4 GB graphics card and a Linux-based

computer with a NVIDIA Tesla K20c graphics card. The high performance fluid solver

runs about 30 times faster on the NVIDIA graphics card than the finite element solver

on the same machine. This speed provides significant improvement in the runtime of the

entire simulation. A comparison between the runtimes of the GPU fluid solver and the

XFEM fluid solver is presented in Figure 2.5.
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The x-directional fluid velocity as computed by the high-performance solver is shown

in Figure 2.6 along with errors for the computation. The relative error shows the difference

between the GPU-based fluid solver and the XFEM-based solver. The two methods differ

the most near the biofilm boundary. This error decreases as the number of grid points

increase, but both solvers provide good estimates for the fluid velocities within the context

of the biofilm simulation.

Fluid Velocity

Relative Error

Relatvie Error by Grid Size

Figure 2.6. Comparison of the high-performance fluid solver to XFEM fluid
solver. The fluid velocity and relative error are shown for a grid size of
200× 100. The relative error on this grid is the difference between the two
solvers relative to the inflow velocity. The plot on the right shows that the
infinity-norm error between the GPU solver and the XFEM solver decreases
with number of grid points.

In addition to creating a fluid solver on the GPU, we also parallelized the solute solver

on the GPU. We found that while the solute computation ran five to ten times faster

in the GPU version compared to the traditional, sparse-matrix solver, the quicker solver
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did not significantly reduce the runtime of the whole simulation because the solute solve

typically makes up less than 10% of the runtime of the entire simulation.

We gained a significant reduction in the full simulation runtime by parallelizing parts

of the code that took the most amount of time. Parallelizing the fluid solver, which

took up to 90% of the simulation time, reduced the simulation runtime significantly while

parallelizing the solute solver, which accounted for around 10% of the simulation time,

only provided a modest speedup. Though we did not see much speedup in the simulation

from parallelizing the time-independent solute solver, it is possible that we could see a

larger speedup from parallelizing the time-dependent solute solver that we discuss in the

following section.

2.3. State and time-dependent variables

We use a modified version of the biofilm simulation system presented in [5] to model

the oscillatory growth phenomenon observed in experiments of B. subtilis performed in

[8]. To model this behavior within the simulation system, we add the ability to handle

state variables that are internal quantities within the cells and the ability to solve for

the state variables and the diffusive quantities as time dependent. The time dependence

is necessary because the quantities experience fast fluctuations that occur at the same

time-scale as diffusion. Variations in time and space are intrinsic to the physics of the

biofilm behavior observed in [8], and we capture these affects within the state variables

and the time-dependent solutions.

State variables are quantities that are attached to a particular cell, which include vari-

ables such as the cell’s voltage differential, its internal potassium level, and its internal
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glutamate level. These quantities are internal to a cell and do not directly affect the cor-

responding quantities within neighboring cells. We model these quantities using ordinary

differential equations that we solve at each grid point on the spatial grid.

Since these state variables represent traits of specific cells, the values move with the

cells as they are pushed outward by the overall biomass growth. Let Q be a state variable.

Then the equation representing Q as the biofilm grows is

∂Q

∂t
= F (Q)−∇ · (Q~U),(2.14)

where F is the evolution equation for Q within a single cell, and ~U is the biomass velocity

at that point. The movement of these state variables within the biomass growth is depicted

in Figure 2.7. The values of the state variables are carried by the cellular movement in the

direction of the growth vectors. Typically, we do not incorporate this advection term while

solving for the diffusive quantities because diffusion occurs much more quickly than the

growth, meaning that the growth has little impact on the distributions. As the diffusion

coefficient limits to zero, the movement of the biomass growth becomes more influential

in the quantity’s distribution. We incorporate growth in computing the internal state

variables, which experience no diffusion.

To add state variables to the biofilm simulation system, we allow the user to specify

a zero diffusion rate for a quantity within the biofilm. This zero diffusion rate signifies

that these quantities do not diffuse from cell to cell, but remain attached to cells as they

grow. We ensure that the simulation only solves for these quantities within the biofilm,

and they are solved at the same grid points at which the solutes are calculated.
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Figure 2.7. As the biofilm grows, the state variables move with the biomass
velocity. The state variables are represented as blue dots, and they move
along the nearby vectors.

The final change we made to the biofilm simulation is that we enable the system to

solve for the state variables and the diffusive quantities as time dependent. Many biofilm

models, including the model from [5], approximate diffusive quantities within the biofilm

as though the system is at a quasi-steady state. This assumption is accurate in most

systems because diffusion occurs quickly compared to the changes in the cellular uptake

or release that would cause the solute profile to deviate from steady state. However, in

the biofilm system in [8], particularly within the potassium concentration, the diffusive

quantities can change quickly. Additionally, the state variables are highly affected by the

diffusive quantities and can change at similar time scales. Because of the speed at which

these quantities evolve, we solve for both the diffusive quantities and the state variables

as time dependent. We discuss the biofilm system in [8] in Chapter 4.
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To implement the time-dependent, solute solver, we use a Crank-Nicolson scheme for

the diffusive term and a two-step, Adams-Bashforth scheme for the nonlinear, reaction

terms. The Crank-Nicolson scheme is a semi-implicit algorithm that is second order in

time and numerically stable. The Adams-Bashforth scheme is an explicit method that is

also second order in time.

To solve the time-dependent problem, the simulation must perform more time steps

than it performed in the quasi-steady-state-approximation because it closely tracks the

small changes in the internal and diffusive quantities. Each step can be time consuming

since it requires solving a matrix equation on a two-dimensional grid with 5-10 variables.

Using a second-order scheme can reduce the number of solves required to achieve an

acceptable solution.

Figure 2.8 shows the time-dependent, oxygen distribution in a biofilm flow cell that

can accurately be modeled as quasi-steady-state, meaning that its growth and oxygen

consumption are slow-changing relative to the diffusion rate. In this environment, the

time-dependent solution and the quasi-stead-state solution should be approximately equal.

Figure 2.8 shows a comparison of these two solutions. The largest errors occur near the

boundary of the biofilm. This error, which we measure as the largest difference between

the time-dependent and time-independent solution, shrinks with smaller time steps.

Updating the model from [5] enables us to explore new problems with greater speed.

Creating the high-performance fluid solver that runs on a GPU greatly improves the run-

time of the simulation, and we harness this speed in validating a reduced model of biofilm

growth, discussed in Chapter 3. Furthermore, the added ability to handle state variables
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Oxygen Concentration

Relative Error

Relative Error by Time Step

Figure 2.8. The top left plot shows the time-dependent solution of oxygen
in a flow-cell for a 300×150 grid with a time step of 0.9 second. The bottom
left plot shows the relative error, which is defined as the distance between
the time-dependent solution and the quasi-stead-state solution relative to
the inflow concentration. The right plot shows that the infinity norm error
decreases as the time step decreases.

and time-dependent solutions allows us to model the novel, oscillatory phenomenon in B.

subtilis, discussed in Chapter 4.



50

CHAPTER 3

A Dimensionally Reduced Model for Biofilm Growth

Adapted from [1] with permission from Springer Nature1

3.1. Introduction

Bacterial biofilms are colonies of bacteria attached to surfaces. They can be exploited

in many beneficial ways such as in soil remediation, water filtration, and agriculture.

Biofilms’ presence can also be damaging to the host surface such as when biofilms foul

machinery and infect humans and animals. Because of their critical importance in both

enhancing as well as degrading human life, considerable effort is devoted to understanding,

characterizing, and controlling them.

Biofilms are often studied experimentally using flow cells, which can take various forms

such as linear or planar configurations as illustrated in Figure 3.1. While it is possible to

image most of the surface area of the flow cell, typically only a small portion of the cell

will be imaged in an experiment since a microscope can only image one small section at

a time. For example, in [4] there are nine imaged regions each with a size of 0.375 mm

by 0.375 mm out of the whole flow cell area 35 mm by 35 mm. These imaged regions

together constitute less than 1% of the flow cell. Furthermore, the imaged regions are

often located far from the inflow port due to the physical constraints imposed by the flow

1Adapted by permission from Springer Nature Customer Service Centre GmbH: Springer Na-
ture Bulletin of Mathematical Biology, A Dimensionally Reduced Model of Biofilm Growth Within
a Flow Cell, Noah Ford, David Chopp, Copyright 2020 Society for Mathematical Biology (2020)
https://www.springer.com/journal/11538
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cell and microscope structures. Estimating the local environmental conditions present at

the point of observation is challenging because upstream bacteria consume substrates and

produce waste and other byproducts that modify the conditions in the fluid as it moves

from the inlet port to the observation point. The absence of accurate environmental

data presents a challenge to understanding biofilm growth and quantitatively comparing

observed growth to computational models.

It is theoretically possible to estimate local conditions by simulating the biofilm in the

entire chamber using existing numerical methods, but this computation is expensive. The

cost of simulating a small region containing a biofilm is large to begin with, and simulating

the entire flow cell is prohibitive. In this chapter, we propose an alternative approach that

uses asymptotic approximations to reduce the dimensionality of computing biofilm growth

and the growth-limiting substrate concentration in the flow cell. We compare our results

to those from existing numerical methods to demonstrate the utility of this approach

in estimating the rate-limiting concentration of oxygen and subsequent biofilm growth.

We also compare growth and outflow oxygen concentration to experimental data from

[4] and [7]. These comparisons demonstrate that our reduced model can be used to

estimate the environmental conditions inside the experimental flow cell at the location

where experimental observations are made.

3.2. Derivation of One-Dimensional Model

Before introducing the asymptotic model, we will first consider a full continuum biofilm

model upon which our simplified model is based. A full, multi-dimensional simulation

involves tracking fluid flow, substrate outside and inside the biofilm, growth of the biofilm,
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Figure 3.1. Illustration of typical flow cell configurations for biofilm exper-
iments. (Left) Linear flow cell as described in [3]. (Right) Planar flow cell
as described in [4]. Note that the outlet ports on the planar flow cell can be
configured so that flow is straight through or turns the corner as indicated
by the arrows, and a gradient in flow rate can also be created. Images us-
ing confocal microscopy from these flow cells are typically on the order of
250µm× 250µm in the horizontal dimensions, in other words < 1% of the
available surface area.

B C D

A

Figure 3.2. Flow cell developed in Aaron Packman’s lab to create large
variations in environmental conditions within a single experiment. Image
reproduced from [4] with permission from Wiley Periodicals Inc (Copyright
2011 Wiley Periodicals, Inc.).
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and the biofilm interface. Wanner and Gujer developed a general one-dimensional model

for biofilms in [35], upon which most current models are based. For higher-dimensional

models, the location of the biofilm/fluid interface must be tracked in a different manner

than in the one-dimensional model. One common way to track the interface is through the

Level Set Method introduced in [48], and developed further in [50], [56], and references

therein. The Level Set Method was first used to track the interface of a biofilm in [57].

This method tracks and evolves the interface using the zero level set of the function φ.

Let Sj be the jth substrate with diffusion rate Dj and consumption rate ηj, U be the fluid

velocity field, Xj be the jth component of biomass, u be the biomass velocity, Φ be the

biofilm growth potential function, F be the biomass growth velocity at the fluid/biofilm

interface, n be the unit normal vector at the interface, and σ be detachment from sheer

stress. By observing that the diffusion rate of substrate is much faster than the growth

rate, we can assume substrate distribution does not depend on growth, which simplifies

the equations by treating the substrate equations as quasi-steady state. The governing
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equations are

Substrate Equations

Dj∇2Sj −∇(~USj) = 0 Outside the biofilm(3.1)

Dj∇2Sj + ηj = 0 Inside the biofilm(3.2)

Biomass Equations

∂Xj

∂t
+∇ · (~uXj) = µj(3.3)

∇2Φ =
∑

µj(3.4)

~u = ∇Φ(3.5)

Boundary Growth Equations

φt + F ||∇φ|| = 0(3.6)

F =
∂Φ

∂n
+ σ(3.7)

σ = −Fdet(3.8)

Boundary Conditions

Sj = SjBulk
At boundary with bulk fluid(3.9)

[Sj] = 0 At top boundary of biofilm(3.10) [
Dj

∂Sj
∂n

]
= 0 At top boundary of biofilm(3.11)

∂Sj
∂n

= 0 At bottom boundary of biofilm(3.12)
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These equations are represented visually in Figure 3.3. Substrate advects and diffuses

through the fluid outside the biofilm. The substrate also diffuses into the biofilm where

the bacteria consume it. The biomass uses the substrate to grow outward from the center.

Growth, however, will be limited by the erosion rate, which depends on fluid velocity. The

equations can track a rough and complex interface between the biofilm and the bulk flow

and solve for the diffusive quantities in the resulting domain. However, the intricacies

of the interface become less important when considering the biofilm from a large-scale

perspective.

In considering the large-scale dynamics of the system, the first simplification we make is

to view the biofilm as locally flat, and we assume substrate changes slowly in the upstream

and downstream directions. This simplification allows us to model the substrate flux into

the biofilm and its growth as a one-dimensional cross section. The presence of this one-

dimensional cross section allows us to represent this dimension with a one-dimensional

asymptotic expansion thereby reducing the computational complexity of the problem.

Table 3.1. Parameters Used in Reduced Model

Name Description Value Reference

ρx Biomass density 1.0250
mg VS
mm3 [58]

ρw Inactive material density 1.015
mg VS
mm3 [58]

Yx/o Yield of active biomass due to substrate

consumption

0.583
mg VS
mg O2

[59] and [60]

Continued on next page
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Table 3.1 – continued from previous page

Name Description Value Reference

Yw/o Yield of EPS due to substrate con-

sumption

0.477
mg VS
mg O2

[59] and [60]

q̂o Maximum specific substrate utilization

rate

8
mg O2

mg VS day
[60]

Ko Half-maximum-rate concentration for

utilization of substrate

5× 10−7
mg O2

mm3 [60]

d Endogenous decay rate coefficient 0.3/day [60]

Do Substrate diffusion coefficient in the

biofilm

146.88mm2

day
[61] and [62]

Jo Substrate flux at biofilm surface 103 mg O2

mm2day
Assumed

Dfl
o Substrate diffusion coefficient in the

fluid

244.8mm2

day
[61] and [62]

fD Biodegradable fraction of biomass 0.8 [60]

γ Chemical oxygen demand of VS 1.42
mg O2

mm VS [60]

adet Shear stress multiplier 0.1mm/(N/m2)b [63]

bdet Shear stress exponent 0.58 [63]

3.2.1. One-Dimensional Model Definition

We begin with a one-dimensional biofilm model, following work from [64] and further

developed in [6]. The authors assume that there are only two kinds of biomass in the
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Figure 3.3. Visual representation of full simulation system of equations.
Reproduced from [5] with permission for Elsevier Ltd. (Copyright 2009 El-
sevier Ltd., https://www.sciencedirect.com/journal/journal-of-theoretical-
biology)2

biofilm, active and inactive. Active biomass includes living cells that have the ability to

replicate while inactive biomass is made up of dead cells and biological matter such as the

extracellular matrix, which allows cells to attach to one another. The fraction of active

biomass, f , evolves according to the equation

(3.13)
∂f

∂t
= µxf −∇(uf),

where µx ≤ 1 is a function of oxygen concentration and represents the fraction of active

biomass created by the active cells, and the u term represents the biomass velocity that

shifts f as the biofilm grows.

2Reprinted from Journal of Theoretical Biology, Volume 249 Issue 4, Brian V. Merkey, Bruce E.
Rittmann, David L. Chopp, Modeling how soluble microbial products (SMP) support heterotrophic
bacteria in autotroph-based biofilms, Page No. 3, Copyright (2009), with permission from Elsevier Ltd.
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We also assume that in our case there is only one growth-limiting substrate in the

system, which we assume to be dissolved oxygen in the fluid, but it could be a number of

other diffusive substances. Oxygen is the limiting substrate for the experimental system to

which we will compare. The demand for substrate, o, within the biofilm can be described

with the equation ηo = −ρx(q̂o + γfDd) o
Ko+o

. With this utilization term, the substrate

equation is

(3.14) Do∇2o− ρx(q̂o + γfDd)
o

Ko + o
= 0,

where ρx is the biomass mass density, q̂o is the maximum substrate utilization rate, γ is the

chemical oxygen demand of the active biomass, fD is the biodegradable fraction of active

biomass, d is the endogenous decay rate, and Ko is the half-maximum-rate concentration

for the utilization of substrate. The values for these and other parameters used in the

model are given in Table 3.1. In this utilization-rate term, the q̂o term represents growth

while γfDd represents maintenance of the inactive biomass.

To obtain a non-dimensionalized form, the authors in [6] use the rescaling technique

introduced in [35] based on the variable ζ = z/L, where z is the one-dimensional vertical

direction, and L is the length of the biofilm so that 0 ≤ ζ ≤ 1 where ζ = 0 at the base

of the biofilm and ζ = 1 at the fluid/biofilm interface. Since L is time dependent, the

derivatives become

∂

∂z
→ 1

L

∂

∂ζ
,(3.15)

∂

∂t
→ ∂

∂t
+
∂ζ

∂t

∂

∂ζ
=

∂

∂t
− ζu(t, 1)

L

∂

∂ζ
,(3.16)
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where u(t, 1) = ∂L
∂t

is the velocity of the biofilm growth at the fluid/biofilm interface.

Chopp et al. [6] non dimensionalize the length scale according to

(3.17) L∗ = L/L̄, L̄ =

(
KoDo

q̂oρx

)1/2

,

where Do is the diffusion rate of oxygen in the biofilm. Similarly, to create nondimension-

alized versions of t and o, the following conversions were used

t∗ = t/t̄, t̄ =
1

Yx/oq̂o − d
,(3.18)

o∗ = o/Ko,(3.19)

where Yx/o is the yield of active biomass due to substrate consumption. In order for the

scaling paramater t̄ to be greater than zero, we have the constraint that Yx/oq̂o − d > 0,

which requires the biofilm to grow faster than it decays in the presence of sufficent oxy-

gen. In the following equations, f is the active biomass fraction of total biomass, o∗

nondimenionalized concentration, u∗ nondimensionalized biomass velocity, and L∗ nondi-

mensionalized height.

Substrate Equation
1

L∗2
∂2o∗

∂ζ2
= B̃

o∗

1 + o∗
f,(3.20)

Biomass Equations
∂f

∂t∗
=

o∗

1 + o∗
f − 1

L∗
∂u∗

∂ζ
f

+
1

L∗
(ζu∗(t∗, 1)− u∗)∂f

∂ζ
,(3.21)

u∗ = L∗
∫ ζ

0

(1 +W )
o∗

1 + o∗
fdζ,(3.22)

Boundary Growth Equation
dL∗

dt∗
= u∗(t, 1) + σ,(3.23)
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where B̃ = 1 + γfDd
q̂o

, W =
ρw((1−fD)d+Yw/oq̂o)

ρx(Yx/oq̂o−d)
, ρw is the inactive material density, and Yw/o

is the yield of extracellular matrix due to substrate consumption. These equations have

boundary conditions

∂o∗

∂ζ
(t∗, 1) = FoL

∗(o∗M − o∗(t∗, 1)),
∂o∗

∂ζ
(t∗, 0) = 0,(3.24)

∂f

∂t∗
(t∗, 0) =

o∗

1 + o∗
f(1− (1 +W )f),(3.25)

∂f

∂t∗
(t∗, 1) =

o∗

1 + o∗
f(1− (1 +W )f),(3.26)

where the boundary condition for o∗ at ζ = 1 is a flux boundary with a boundary layer

thickness defined by the constant Fo = L̄ Jo
Do

, and Jo is the substrate flux at the boundary.

In this boundary equation o∗M represents the maximum substrate concentration in the

channel.

In the biofilms considered in [6], the fraction of active biomass to total biomass re-

mains relatively constant for mature biofilms so they set f to be constant throughout the

biomass. Solving for the steady-state volume-fraction of active biomass gives the following

value for f :

(3.27) Biomass Equation f ≈ F =
1

1 +W
.

Using this constant mass fraction simplifies the substrate concentration equation, which

becomes

(3.28) Substrate Equation ε
∂2o∗

∂ζ2
=

o∗

1 + o∗
,
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where ε = 1/(FL∗2B̃) with boundary conditions ∂o∗

∂ζ
(1) = L∗Fo(o

∗
L−o∗(1)) and ∂o∗

∂ζ
(0) = 0.

Through these simplifications, we now have an appropriate one-dimensional model that

will allow us to solve for substrate flux into the biofilm and tie it directly to the biofilm

growth asymptotically.

3.2.2. Asymptotic Substrate Profile

Though this new equation for substrate is quite simple, it does not have a closed-form

solution. It is possible to solve the one-dimensional problem numerically, but this will

be computationally expensive, particularly since we need to solve many one-dimensional

problems simultaneously, as will be the case in a multidimensional flow cell. Instead,

we will use an asymptotic representation proposed by [6] that takes advantage of the

typically small boundary layer of nutrients for mature biofilms. We assume the depth

of the biofilm is larger than the substrate penetration depth, and thus ε is small. The

penetration thickness of a biofilm will remain constant once mature, as seen in Figure

3.4. This substrate penetration depth remains near 10 − 20µm as found experimentally

in [65].
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Figure 3.4. Asymptotic substrate profile of oxygen, o∗, at various biofilm
thicknesses. Penetration depth remains constant once the biofilm has
reached a critical thickness. Reproduced from [6] with permission from
Springer Nature (Copyright 2003 Society for Mathematical Biology)3

The asymptotic profile provides the following equations for the interfacial concentra-

tion, concentration profile, flux into the biofilm, and change in length:

o∗int ≈
o∗M − 3

2
− 3

√
FB̃

2Fo
+

1

2

√
(o∗M + 3)2 − 6(o∗M − 3)

√
FB̃

Fo
+

9FB̃

F 2
o

,(3.29)

o∗(ζ) ≈ o∗int
1 + o∗int/3

1 + (o∗int/3)e(ζ−1)/
√
ε
e(ζ−1)/

√
ε,(3.30)

F ∗out = −J∗o (o∗M − o∗int),(3.31)

dL∗

dt∗
≈ (FB̃)−1/2

(
o∗int + 3

o∗int + 4

)
ln((1 + o∗int/3)(1 + o∗int)),(3.32)

3Reprinted by permission from Springer Nature Customer Service Centre GmbH: Springer Nature
Bulletin of Mathematical Biology, The dependence of quorum sensing on the depth of a growing biofilm,
D.L. Chopp, M.J. Kirisits, B. Moran, M.R. Parsek, Copyright 2003 Society for Mathematical Biology
(2003), https://www.springer.com/journal/11538
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Figure 3.5. Illustration of parabolic flow and parabolic oxygen concentra-
tion with locations of oM and oint values

where o∗int is the interface substrate concentration, o∗M is the maximum substrate con-

centration in the channel, Fo is related to the diffusion rate, F is the fraction of active

biomass, J∗o = Jot̄/L̄ is the nondimensionalized dispersal coefficient, and B̃ is related to

the consumption rate. Equation (3.32) is derived in [6]. Since we are considering flow

cells with biofilms growing on the top and bottom, we will adjust these asymptotic results

to compute flux and growth using a parabolic instead of linear bulk substrate profile.

3.2.3. Calculating Flux and Growth using a Parabolic Bulk Substrate Profile

In this chapter, we expand on the model from [6] to allow for the presence of biofilms on

both the top and bottom of a channel, and we use a parabolic profile for the substrate

in the bulk flow as shown in Figure 3.5. The parabolic profile appears in flow cells such

as the ones depicted in Figure 3.1 as a vertical slice at each point in the flow cell plane.

The profile is consistent with substrate profiles seen in large-scale computations and with
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lubrication theory, which we use to calculate flow, and the profile allows for substrate flux

on both the top and bottom of the channel. The substrate profile has a maximum in the

center of the channel and slopes down toward the biofilm interfaces on either side. Let ξ

be the vertical coordinate in the channel, with ξ = 0 in the center of the channel. The

substrate profile in the channel is

(3.33) p(ξ) = −4(o∗M − o∗int)(ξ −Bw/2)(ξ +Bw/2)/B2
w + o∗int,

where Bw is the width of the bulk flow. The maximum concentration, o∗M , occurs in the

middle of the flow channel at ξ = 0, and the minimum, o∗int, occurs at the interface where

ξ = ±Bw/2. Assuming that we know o∗avg, the average substrate concentration in the

bulk fluid for a cross section, the parabolic profile assumption gives the following system

of equations for substrate

o∗int =
o∗M − 3

2
− 3

√
FB̃

2Fo
+

1

2

√
(o∗M + 3)2 − 6(o∗M − 3)

√
FB̃

Fo
+

9FB̃

F 2
o

,(3.34)

o∗M = (3o∗avg − o∗int)/2.(3.35)

Once we solve for o∗int and o∗M , we use these values and the boundary condition at the

biofilm interface, ∂o∗/∂ζ(1) = L∗Fo(o
∗
M − o∗int), to solve for the flux into the biofilm. Here

Fo is redefined as 4Dfl
o /(DoBw/L̄) from the parabolic substrate assumption, Dfl

o is the

diffusion rate of oxygen in the fluid and Do is still the diffusion rate in the biofilm. Since

flux out of the fluid is equal to −Do/L × ∂o∗/∂ζ(1), the one-sided, nondimensionalized
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flux out of the bulk is

(3.36) F ∗out = −4Dfl∗
o

B∗w
(o∗M − o∗int),

where Dfl∗
o = Dfl

o t̄/L̄
2 is the nondimensionalized diffusion coefficent in the fluid, and B∗w =

Bw/L̄ is the nondimensionalized channel width. The asymptotic growth is calculated as

before using Equation (3.32).

As in Zhang et al. 2011 [4], we assume that fluid flow in the channel is parabolic with

the maximum flow in the center and with a no-slip boundary condition at the biofilm

interface. Under these conditions, stress, which we define as τ = µ∂u
∂ξ

, where µ is viscosity

and u is fluid flow, is calculated as

(3.37) τ =
6µUavg
Bw

,

where Uavg is the average velocity above the biofilm and Bw is the width of the channel.

This stress will erode bacteria at the surface of the biofilm. We calculate this erosion rate,

dimensional and nondimensional, as

(3.38) Fdet = adetτ
bdet , F ∗det = Fdet

t̄

L̄
,

where bdet = 0.58, and adet = 0.02 and adet = 0.1 for low and high growth limitation due

to stress. These parameters are taken from [63] where they are fit to experimental data.

This model for detachment is attractive because it is physically based on the shear stress

that biofilms experience. Furthermore, the approximation has been used in the literature

such as in [66]. However, its parameters can vary based on the experimental setup and
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may need to be fitted to each biofilm system separately. In this chapter we use the original

values from [63] unless otherwise specified. There are other detachment models that can

be used such as a standard model where detachment is proportional to the square of the

biofilm height, but these models are often less physically motivated than the shear stress

model and are more difficult to use with the growth equation from this model.

Note that this stress-based erosion model does not include large-scale sloughing in

which sections of the biofilm detach, which typically does not occur in slow flows and in

the thin biofilms that we are discussing. For simplicity we also assume that the bacteria

that detach do not reattach farther down the flow cell. This additional feature could be

added to the model if desired. The asymptotic growth with shear detachment, which we

label Ga, defines the growth of the biofilm length, L∗, for partially penetrated biofilm in

the following equation

(3.39)
dL∗

dt∗
= Ga = (FB̃)−1/2

(
o∗int + 3

o∗int + 4

)
ln((1 + o∗int/3)(1 + o∗int))− F ∗det,

which is the same equation from [6] with an added detachment term. Using Equations

(3.36) and (3.39), if we know o∗int and o∗M , we can solve for substrate flux and biofilm growth

at that point for a partially penetrated biofilm. While these equations are accurate for

most mature biofilms (biofilms that have grown for a day or so on the surface of interest),

we want to expand our model to include thin and developing biofilms.

3.2.4. Approximating Growth and Flux for a Fully Penetrated Biofilm

The asymptotic substrate profile introduced by [6] and used in our analysis assumes that

the substrate penetration layer in the biofilm is small compared to the biofilm depth.
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We would like to extend the flux and growth calculations to a biofilm that is either

newly developing or is limited in growth and is fully penetrated by the substrate. We

approximate growth and flux in a thin biofilm as though the biofilm is fully penetrated

with constant concentration, which simplifies the consumption and growth calculations.

We set this constant concentration equal to the interfacial concentration. Because o∗ is

constant within the biofilm, our growth calculation becomes

(3.40)
dL∗

dt∗
= L∗

∫ 1

0

1

F

o∗

1 + o∗
fdζ ≈ L∗

o∗int
1 + o∗int

,

since f ≈ F . Accounting for detachment due to shear stress gives the following growth

equation for a fully penetrated biofilm, which we use to define the growth of the biofilm

length, L∗, in our computation

(3.41)
dL∗

dt∗
= Gp = L∗

o∗int
1 + o∗int

− F ∗det,

where Gp is the estimate of growth of a fully penetrated biofilm. This expression will

overestimate growth, but remains relatively accurate for a thin biofilm. We define the

transition between the fully penetrated growth model and the partially penetrated growth

model with a simple minimum function. Let

(3.42) Growth =
dL∗

dt∗
= min(Gp, Ga),

where Ga is the asymptotic growth approximation given in Equation (3.39). We do the

same procedure for substrate flux into the biofilm, but since flux is negative (substrate is
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leaving the fluid into the biofilm), we take the maximum.

(3.43) Flux = max

(
−4(Dfl

o )∗

B∗w
(o∗M − o∗int),−FBL∗

o∗int
1 + o∗int

)
,

where B = ρx(q̂o+γfDd)
Ko(Yx/oq̂o−d)

. Figure 3.6 shows the error in growth and flux from these ap-

proximations. The approximations overestimate the flux and growth near the transition

between fully penetrated to partially penetrated, but otherwise reproduce the trend rea-

sonably well. As shown in Figure 3.6, the biofilm typically passes through this transition

point within a few hours in both experiments and in the model, so this larger transitional

error will have a small affect on the overall computation. This approximation is similar

to that in [67], but we use a lower-order approximation, which has a similar accuracy for

this problem. Now that we have approximations for flux and growth at each longitudinal

point in a partially and fully penetrated biofilm, we can use these equations to solve for

the flux and the growth throughout a multi-dimensional flow cell.

3.3. The 1+1 Dimensional Model

In the 1 + 1 Dimensional Model, we solve for substrate concentration in a two-

dimensional domain using finite differences in the horizontal direction and using the as-

ymptotic approximation in the vertical direction. Using this model, we solve for fluid flow,

solute concentration, and biofilm growth in a two-dimensional channel with a biofilm grow-

ing on the top and the bottom of the channel. Figure 3.7 provides a visual representation

of the setup for this system.
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Figure 3.6. Asymptotic versus numerically computed flux and growth at
various biofilm heights and at various times in growth. Calculations use an
interfacial oxygen concentration of 1× 10−6 mg/mm3

We solve for fluid velocity using Lubrication Theory as detailed in [68], which pro-

vides the leading-order term of an asymptotic expansion calculating flow through a chan-

nel. This approximation is accurate when the channel’s height is small compared to its

longitudinal direction, which is true for most flow cells. With ε = H/L the ratio of
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characteristic height to length, the zeroth order equations are the following

∂u

∂x∗
+
∂v

∂ξ∗
= 0,(3.44)

∂2u

∂(ξ∗)2
=
∂P

∂x∗
,(3.45)

∂P

∂ξ∗
= O(ε2),(3.46)

where u is the zeroth order velocity term in the horizontal and scaled x∗ direction, v is

the zeroth order velocity term in the vertical and scaled ξ∗ direction, and P is the zeroth

order pressure term. Solving these equations gives

u =
1

2

(
dP

dx∗
(ξ∗ +B∗w/2)(ξ∗ −B∗w/2)

)
,(3.47)

v =
1

2

dP

dx∗
dB∗w
dx∗

(
(ξ∗ +B∗w/2)2

2

)
− 1

2

d2P

d(x∗)2

(
(ξ∗ +B∗w/2)3

3
− (ξ∗ +B∗w/2)2B∗w

2

)
,(3.48)

0 =
d

dx

(
(B∗w)3

dP

dx∗

)
.(3.49)

In calculating the advection of the substrate within the fluid flow, we are primarily con-

cerned with the horizontal, or x∗-directional, movement. The horizontal advection is much

larger than the vertical, or ξ∗-directional, advection, which is essentially zero for laminar

flow across a smooth surface. We simplify the equations above by ignoring vertical flow,

v, and take the average of the horizontal flow, u, leading to the following equation

(3.50) U∗avg = −(B∗w)2

12

dP ∗

dx∗
.
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Equations (3.49) and (3.50) are the fluid equations for the 1 + 1 Dimensional Model.

In two-dimensions the lubrication theory approximation is equal to the fluid velocity

calculated by conservation of mass.

Using this fluid velocity, we calculate substrate concentration at each vertical section

of the flow cell. The parabolic profile assumption of substrate gives the following equation

for average substrate in a column o∗avg = (2o∗M + o∗int)/3. The following set of equations

represent solute concentration, biofilm growth, and flow in the flow cell.

(3.51) (Dfl
o )∗

d

dx∗

(
B∗w

do∗avg
dx∗

)
− d

dx∗
(
o∗avgB

∗
wU
∗
avg

)
+ 2F ∗out = 0

(3.52) o∗int =
o∗M − 3

2
− 3

√
FB̃

2Fo
+

1

2

√
(o∗M + 3)2 − 6(o∗M − 3)

√
FB̃

Fo
+

9FB̃

F 2
o

,

(3.53) o∗M = (3o∗avg − o∗int)/2,

(3.54) F ∗out = max

(
−4(Dfl

o )∗

B∗w
(o∗M − o∗int),−FBL∗

o∗int
1 + o∗int

)
,

(3.55)
d

dx∗

(
(B∗w)3

dP ∗

dx∗

)
= 0, U∗avg = −(B∗w)2

12

dP ∗

dx∗
,

(3.56) shear stress = τ =
6µU∗avg
B∗w t̄

, detachment force = F ∗det = adetτ
bdet

t̄

L̄
,

(3.57) Ga = (FB̃)−1/2
(
o∗int + 3

o∗int + 4

)
ln((1 + o∗int/3)(1 + o∗int))− F ∗det,
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Concentration of Oxygen for Full 2D Simulation
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Figure 3.7. 1+1 Dimensional Model with asymptotic profile calculated in
vertical direction

(3.58) Gp = L∗
o∗int

1 + o∗int
− F ∗det,

(3.59) Growth =
dL∗

dt∗
= min(Gp, Ga),

where U∗avg is the nondimensionalized mean velocity, and F ∗out is the flux of substrate

out of the channel at the top and bottom. The boundary conditions for substrate are

o∗avg(0) = CI and ∂o∗(0)avg/∂x
∗(L∗y) = 0 where CI is the inflow concentration and L∗y is

the length of the flow cell. The boundary conditions for pressure are ∂P ∗

∂x∗
=
−12U∗

in

(B∗
w)2

at the

inlet, and P ∗(L∗y) = 0 at the outlet. Since F ∗out is a function of o∗M and o∗int, which are only

defined through o∗avg(x
∗), we must iterate to solve for the substrate concentration. We

use a successive over-relation (SOR) step in the iteration to solve this advection-diffusion

equation.

3.3.1. SOR Iteration for Substrate Concentration

We must iterate to solve for substrate concentration. There are three concentrations

that we must track: the maximum, the interfacial concentration (the minimum), and the

average. It is only necessary to know two of the concentrations since the parabolic profile
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determines the third, o∗avg = (2o∗M+o∗int)/3. We first initialize the maximum concentration

to be the initial condition, and then loop over the following steps until convergence:

(1) Calculate the interfacial concentration using the maximum concentration:

(3.60) o∗int =
o∗M − 3

2
− 3

√
FB̃

2Fo
+

1

2

√
(o∗M + 3)2 − 6(o∗M − 3)

√
FB̃

Fo
+

9FB̃

F 2
o

(2) Calculate the flux into biofilm with maximum and interface concentrations:

(3.61) F ∗out = max

(
−4(Dfl

o )∗

B∗w
(o∗M − o∗int),−FBL∗

o∗int
1 + o∗int

)

(3) Update the average substrate concentration, o∗avg using an SOR method:

(3.62) (Dfl
o )∗

d

dx∗

(
B∗w

do∗avg
dx∗

)
− d

dx∗
(
o∗avgB

∗
wU
∗
avg

)
+ 2F ∗out = 0

(4) Update the maximum concentration using the average concentration:

(3.63) o∗M = (3o∗avg − o∗int)/2

Since the flux equations depend nonlinearly on concentration, we choose a relaxation

parameter ω < 1 for the SOR step. However, for most problems, ω ≈ 1 exhibits fast

convergence.

3.3.2. Validation

In [6], the one-dimensional, asymptotic concentration profile is compared to the computed

profile and good agreement was found between the two profiles once the biofilm is mature

enough to be only partially penetrated by the substrate. A linear boundary layer in the
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fluid was used in the fluid for the comparisons. In this chapter, we validate the asymptotic

profile with the parabolic substrate concentration in the bulk flow. We compare the

asymptotic profile of a two-sided biofilm (top and bottom of the channel) to cross sections

of concentration from the full two-dimensional simulation based on the method developed

in [5]. This two-dimensional model is a continuum model based on the Wanner-Gujer

model from Section 3.2. This model solves for fluid flow in the channel, advection and

diffusion of the substrates, and tracks biomass growth using a level-set method. Figure

3.8 shows the full channel distribution of the substrate concentration for a flow cell (1

mm width and 10 mm length) using both models. Both models were initialized with a

constant height of biofilm for all points. The distribution of substrates match poorly near

the inflow of the channel because the substrate in the full two-dimensional simulation has

not yet developed the parabolic profile. However, as the fluid moves farther into the flow

cell, the substrate profile in the flow quickly resembles the parabolic profile. Despite this

mismatch in distribution near the inlet of the flow cell, the asymptotic model matches

the average concentration value at each cross section quite well. Though the asymptotic

model assumes that the biofilm surface is locally flat and cannot capture the small-scale

detail of the biofilm interface, it can also be used to model biofilms that have surfaces

with large-scale variation, as shown in Figure 3.9. We initialize the biofilm’s surface to be

constant within sections that are 1 mm in length with a variation in height of .025 mm

between sections. In addition to the error near the inlet, there are smaller errors near the

edges of the bumps, but the overall substrate distribution still matches well.

We further compare the one-dimensional profiles in Figure 3.10. This figure repre-

sents a comparison between an asymptotic substrate profile in the biofilm, a numerically
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Figure 3.8. Comparison of substrate distribution of full 2D simulation to
asymptotic model. The green lines in the image represent the location of
the biofilms, which has a height of .05mm on the top and bottom of the
channel. The full 2D simulation does not have biomass in the 0.5mm section
next to the inlet and outlet.

computed, one-dimensional profile within the biofilm with a parabolic substrate profile

in bulk, and a cross section from the full two-dimensional model for a channel of width

0.1mm. This small channel size was chosen for viewing purposes because the substrate

profile within the biofilm is quite shallow. The three profiles have similar shapes with

comparable fluxes and growth rates.

Since the shapes of the profiles look qualitatively similar, we quantitatively compare

the flux and growth from the asymptotic flow cell to the full two-dimensional biofilm

model. In the comparison, we consider a flow cell with a height of 0.6mm, which is a

common height for flow cells. We find good agreement between our asymptotic model and
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Figure 3.9. Comparison of substrate distribution of full 2D simulation to
asymptotic model with uneven biofilm surface. This surface is piecewise
constant in 1mm-wide regions. The protruding regions are 50% larger than
the surrounding regions of height .05mm. The green lines in the image
represent the location of the biofilms. The full 2D simulation does not have
biomass in the 0.5mm section next to the inlet and outlet.

the two-dimensional model for substrate flux, biofilm growth, and interfacial concentration

at low substrate concentrations as shown in Figure 3.11.

For high concentrations, the flux and growth in the asymptotic model begin to devi-

ate from the full two-dimensional model. However, the error at these concentrations is

minimally important because these concentrations are far above the saturation level of

oxygen in water at 20 degrees Celsius at sea level, which is approximately 9mg/L. We

find that the 1 + 1 Dimensional Model predicts growth and flux with similar accuracy to

the full, two-dimensional simulation while running orders of magnitude faster.
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Asymptotic profile. Growth is 0.0381
mm/day and flux into the biofilm is 0.0368

mg/mm2/day.

Profile from full 2D simulation. Growth is
0.0285 mm/day and flux into the biofilm is

0.0335 mg/mm2/day.

Computed biofilm profile with parabolic
bulk concentration profile. Growth is

0.0357 mm/day and flux into the biofilm is
0.0367 mg/mm2/day.

Comparison of the three concentration
profiles.

Figure 3.10. Computed and asymptotic concentration profiles compared to
cross section of a full 2D simulation for mean substrate concentration 3.47×
10−6 mg/mm3 in bulk channel. The biofilm height is set to .02mm at the top
and bottom of channel in all three simulations. The computed concentration
profile has an error of 2.07× 10−6 mg/mm3 and of 1.08× 10−6 mg/mm3 in
L∞ and L2 respectively compared to full 2D cross section. The asymptotic
profile has an error of 2.26× 10−6 mg/mm3 and of 1.18× 10−6 mg/mm3 in
L∞ and L2 respectively compared to full 2D cross section.
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Figure 3.11. Comparison of flux, growth, and interfacial concentration be-
tween asymptotic simulation and full two-dimensional simulation for vary-
ing mean oxygen concentrations within the channel cross section

As previously discussed, the main benefit of the asymptotic model is that it runs much

faster than the full two-dimensional simulation, and we show this comparison in Figure

3.12. For the simulation conditions tested the asymptotic model runs about 100 times

faster. This speed difference is most noticeable for highly resolved computations because

the asymptotic model’s run time is proportional to the number of x grid points while the

full two-dimensional model’s run time scales more closely with the square of the number

of x grid points. An additional benefit is that the asymptotic solver is computationally

much simpler. The full two-dimensional model uses the Intel MKL Pardiso sparse matrix
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Figure 3.12. Comparison of computation times for full two-dimensional sys-
tem and asymptotic model. The size of the computation follows the number
of x grid points. For the full simulation the number of y grid points scales
with the number of grid points in the x direction. The machine’s CPU is
an Intel Xeon E5-2667v3. The GPU is an NVIDIA Tesla K20c.

solver [69, 70, 71], a parallelized fluid solver that runs on a GPU, and a complex level-

set library to track the biofilm-fluid interface. In comparison, the asymptotic simulation

consists of just a few hundred lines of code and the Pardiso matrix solver. Even with

the high-performance fluid solver, the full model runs much slower than the asymptotic

model.

3.4. The 2+1 Dimensional Model

The 2 + 1 Dimensional Model is designed to simulate three-dimensional flow through

a planar flow cell by solving the substrate equation using finite differences in two longitu-

dinal dimensions and using the asymptotic approximation in the vertical dimension. This

setup is shown visually in Figure 3.13. The 2 + 1 Dimensional Model equations are

(3.64) (Dfl
o )∗∇

(
B∗w∇o∗avg

)
−∇ · (o∗avgB∗w〈U∗avg, V ∗avg〉) + 2F ∗out = 0,
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(3.65)
∂

∂x∗

(
(B∗w)3

∂P ∗

∂x∗

)
+

∂

∂y∗

(
(B∗w)3

∂P ∗

∂y∗

)
= 0,

(3.66) U∗avg = −(B∗w)2

12

∂P ∗

∂x∗
, V ∗avg = −(B∗w)2

12

∂P ∗

∂y∗
,

shear stress = τ =
6µ
√

(U∗)2avg + (V ∗)2avg

B∗w t̄
,

detachment force = F ∗det = adetτ
bdet

t̄

L̄
,(3.67)

with equations for oxygen concentration, flux, and biofilm growth the same as in the

1 + 1 Dimensional Model, Equations (3.52, 3.53, 3.54, 3.57, 3.58, 3.59). For the substrate

equations, we use the boundary condition, o∗avg = CI where CI is the inflow oxygen

concentration at the inlet and the boundary condition
∂o∗avg
∂n

= 0, at outlets and at the

interior walls of the flow cell. For pressure, we let ∂P ∗

∂n
=
−12U∗

in

(B∗
w)2

at the inlet, P ∗ = 0 at

the outlet, and ∂P ∗

∂n
= 0 at the interior walls. We solve the equations using the same SOR

method described in the 1 + 1 Dimensional Model, Equations (3.60, 3.61, 3.62, 3.63), but

now we use a two-dimensional grid.

3.4.1. Validation

We compare our results to the turning flow cell experiment designed by Zhang et al. [4]

from Figure 3.2. The cell is 35 mm by 35 mm with a thickness of 0.6 mm and has a turning

flow that is designed to exhibit a large variety of flow speeds and substrate concentrations

within a single experiment. The flow arcs from the inlets on the right side to the outlets

at bottom of the image. We initialized the biofilm to be a constant height throughout the
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Figure 3.13. 2+1 Dimensional Model with asymptotic profile calculated in
vertical direction. Flow cell image reproduced from [4] with permission
from Wiley Periodicals Inc. (Copyright 2011 Wiley Periodicals, Inc.)

flow cell and simulate the flow cell for seven days. Computed concentration and biomass

quantity are plotted for low flow (0.16 ml/min) in Figure 3.14. Growth occurs mainly

near the inlet since the biofilm consumes most of the substrate before the flow reaches the

middle. Concentration and biomass quantity are plotted for high flow (0.8 ml/min) in

Figure 3.15. The growth mainly occurs in quiescent regions of the cell like in the region far

from the inflow and outlet and in the spaces between the inlets and between the outlets.

This variation in biomass between the inlet and the points of observation is precisely why

this model is needed.

We would ideally validate our model by comparing the oxygen concentrations between

the experiment and the simulation. However, we do not have access to oxygen concen-

trations in the interior of experimental flow cells, which is why we developed this model

to estimate these quantities. Without oxygen concentration data, we compare regional

biomass growth between the experiment and the simulations as a proxy. We fit our model
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to six data points from [4] by hand using a flat biofilm as the initial conditions. At the

seven-day mark, we find that the simulation reproduces the same trend in growth as the

experiment. In Figure 3.16 we see low growth in regions that experience low fluid ve-

locity because oxygen, the growth-limiting nutrient in the system, flows too slowly from

the inlet to reach the region. Regions that experience high speeds also have low growth

because they experience high shear stress. The highest biomass growth occurs in regions

that experience moderate speeds so that the bacteria receive enough nutrients without

experiencing high levels of shear stress. The estimated flow speeds are lower than the

estimates from [4] which may be due to the difference in estimation techniques since the

experiment did not measure flow speed directly. These computed results are sensitive

to the growth rate, shear rate, and initial conditions, and the parameters must be fitted

to individual experiments. We initialize a bumpy biofilm surface and show the resulting

biofilm height on the seventh day in Figure 3.17. Though after seven days the biofilm has

more biomass in regions that began with more biomass, the variation decreases in relative

size with time to converge to a similar spatial pattern as the biofilm from the simulations

with constant initial biofilm height.

We also compare oxygen concentration seen experimentally in the outflow of the linear

flow cell in [7] to the concentration predicted by our model. The authors measure oxygen

concentration in the outflow of a flow cell that is 35mm long by 4mm wide by 1mm high.

In the simulation, we find that the outflow concentrations change similarly with time. The

decrease in outflow concentration begins slowly as the bacteria form a thin covering of the

flow-cell walls as plotted in Figure 3.18. As the biofilm becomes thicker, the growth rate

and the change in consumption increase. As a result, the concentration decreases at an
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accelerated pace until most of the biofilm is partially penetrated leading to an asymptote

in outflow oxygen concentration. The simulations for all three growth rates, q̂ = 8, 16, 32,

reach a similar asymptote, as shown in Figure 3.18. However, the experimental outflow

concentration is lower than the concentration seen in the simulation. One reason that the

model underestimates the biofilm’s oxygen consumption is that the parabolic substrate

profile underestimates the flux near the inlet before the profile relaxes to parabolic. A

second reason for the underestimation of consumption is that the model assumes that

only bacteria on the top and the bottom of the flow cell consume oxygen and does not

account for the consumption by bacteria on the side walls. For certain flow cells, such as

the linear flow cell from Figure 3.1, these side walls can make up a large proportion of

the total surface area of the flow cell. A final contributing factor to the underestimated

consumption is that the asymptotic model does not account for the presence of detached

bacteria in the bulk flow. In the experimental flow cell, detached bacteria will enter the

bulk flow and consume some of the oxygen in the fluid. While there are some discrepancies

between the asymptotic model and experimental results, the 2 + 1 Dimensional Model

does a good job of capturing the trend in the data.

The computational cost of the 2 + 1 Dimensional Model is quite reasonable as shown

in Figure 3.19. Because of the complexity of implementation, we do not have a fully-

resolved, three-dimensional biofilm model to which we can compare these run times. We

can estimate the computational time by multiplying the two-dimensional computational

time by the number of points in the added third dimension. With an x grid size of 250,

the full two-dimensional model has a run time of 86 seconds. Multiplying by the added

250 grid points in the added direction, the full three-dimensional run time could be near
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Figure 3.14. Concentration and growth after seven days in turning flow cell
with flow of .16 ml/min (slow flow)

Figure 3.15. Concentration and growth after seven days in turning flow cell
with flow of .8 ml/min (fast flow)

21, 500 seconds, or about 6 hours, compared to the 2+1 Dimensional Model’s run time of

70 seconds. Even if researchers have easy access to a full three-dimensional model, they

may still prefer to run the asymptotic model because of its comparative speed.
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Figure 3.16. Speed and growth comparison after seven days between sim-
ulated and experimental data. Growth rate and detachment strength were
fit by hand to data points labeled R6, R8, and R9 for both slow flow and
fast flow producing the values q̂ = 2.15 and adet = .07 with an L2 error of
1.8 µm. Experimental data is given as regional biomass per surface area,
which is equivalent to average height for the region. The filled diamonds in
experimental data represent measurements from low flow conditions. The
empty squares represent data from high flow conditions. R6, R8, and R9
are measurements are taken from the lower right region of the flow cell.
Experimental biofilm height is reproduced from [4] with permission from
Wiley Periodicals Inc. (Copyright 2011 Wiley Periodicals, Inc.)

3.5. Outward Growth

To this point, we have assumed that growth only occurs upward. In particular, if a

grid point begins with no biofilm height, there is no way for it to transition to containing

biomass even if it is next to a grid point that has a nonzero biofilm height. We address

this outward growth and lateral movement of biofilm by adjusting the growth calculation.

First, we calculate normal-directional growth for a fully penetrated biofilm using an up-

dated height. Instead of using the biofilm’s vertical height to calculate growth, we use

the depth of the biofilm in the direction orthogonal to the surface,

(3.68) Gp = max

(
L∗
√

1 + ||∇L∗||2 o∗int
1 + o∗int

− F ∗det, 0
)
,
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Figure 3.17. Biofilm height calculation for turning flow with scalloped initial
conditions.

where
√

1 + ||∇L∗||2 adjusts the growth speed to reflect the slope of the biofilm. We

do not need to adjust the growth for the asymptotic growth calculation because this

calculation does not depend on biofilm height. Now that we have the normal-directional

growth of the biofilm, we use the factor
√

1 + ||∇L∗||2 to transform orthogonal growth to

vertical growth at each grid point,

(3.69) L∗t+1 = L∗t +G
√

1 + ||∇L∗||2 × dt,
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Simulated outflow concentration Experimental outflow concentration

Figure 3.18. Outflow oxygen concentration comparison between simulated
and experimental data. The experimental data we consider are the points
for P. aeruginosa. The L2 error between the model and data for growth rate
q̂ = 8 is 3.4 mg/L. The error for q̂ = 16 is 2.1 mg/L. The error for q̂ = 32 is
1.5 mg/L. Experimental outflow concentration is reproduced from [7] with
permission from Oxford University Press. (Copyright FEMS 2015)4

Figure 3.19. Plot of computational time for asymptotic three-dimensional
model. The computations were performed over a square grid.

where G = max(Ga, Gp) as before. These geometric adjustments are shown for the

two-dimensional case in Figure 3.20.

4Alessandro Culotti, Aaron I. Packman, Pseudomonas aeruginosa facilitates Campylobacter jejuni
growth in biofilms under oxic flow conditions, FEMS Microbiology Ecology, 2015 Volume 91, Issue 12,
page 6, by permission of Oxford University Press, Copyright FEMS 2015
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Figure 3.20. Outward growth adjustments of 2D biofilm

To allow the biofilm to grow horizontally, we linearly extrapolate the height of the

biofilm to regions without biomass (in which the extrapolated height will be negative).

We use linear extrapolation to ensure the edge of the biofilm grows horizontally at the

rate of G
√

1 + 1/||∇L∗||2. When we update the biofilm height within the region that

already has biomass, we also grow the biofilm height in the regions of “negative” biofilm

height using the growth speed from its nearest neighbor with biomass. This procedure

allows for outward biofilm growth and the spread of biomass to new regions. It also allows

for two non-connected colonies to grow together.

For the 1+1 Dimensional Model, the process of linear extrapolation is simple. However,

the bilinear extrapolation required by the 2 + 1 Model is more complicated since the

biofilm’s slope varies along its edge. We solve this problem by using a method developed

in [72] to extend surfaces when the rate of extension, defined here by the slope of the

biofilm at its edge, changes along the interface. However, this extension can become

unstable the farther one extrapolates from the biofilm’s edge. In this simulation, we only

extrapolate to grid points that are directly adjacent to the region with biomass, which
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limits the outward growth of the biofilm possible in one time step to less than two times

the spacing between adjacent grid points.

In Figure 3.21 we show the outward growth of a small semicircle of biofilm in a flow

cell of height 0.5 mm. The biofilm then grows outward and preferentially toward the

inlet. We see the creation of fins in the downstream direction, which represent regions

of the flow cell that experience a higher substrate concentration than the region that is

directly downstream from the biomass. This low-growth zone on the downstream side

of the biomass appears in other biofilm models such as in [73]. The outward growth

toward regions of higher substrate concentration demonstrates our model’s more realistic

representation of biofilm growth compared to having solely upward growth.

This growth calculation also allows for colonies to combine and for biomass to spread

to regions of high shear within the turning flow cell studied in Section 3.4.1. First, we

show that isolated biofilm colonies can merge into a single mass in Figure 3.22, which is

another property of biofilms seen in experiments. Second, we show that including outward

growth increases biofilm growth near the inlets and outlets of the flow cell from Figure 3.15

for both the biofilm initialized to be flat and the biofilm initialized to be scalloped. The

difference between the biofilm height in the model with outward growth and the model

with no outward growth is shown in Figure 3.23. The biofilm spreads from the quiescent

regions between the inlets and outlets toward areas closer the openings that experience

higher stress. This spreading to parts of the flow cell with high nutrient concentrations

and high shear stress is sometimes seen in experiments when biomass clogs the inlet ports.

We do not see much difference in biofilm height within the center of the flow cell because

the slope of the surface of the biofilm is relatively small. The smooth surface does not
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encourage much spreading. This spreading of biomass from regions with higher quantities

of biomass suggests that this updated model could be more realistic.

3.6. Discussion and Conclusion

In this chapter we developed a fast model of large-scale dynamics in biofilm flow cells

using a one-dimensional asymptotic profile. We created a 1 + 1 Dimensional Model to

simulate two-dimensional dynamics and a 2 + 1 Dimensional Model to simulate three-

dimensional dynamics. The simulations have similar accuracy to the high-resolution,

non-simplified models for large-scale behavior. We also showed that the predictions from

the simulations agree qualitatively with experiments in both the growth speed and the

substrate concentration.

The largest benefit of this model compared to prior methods is that it is computa-

tionally much simpler. Because of its simplicity, it runs orders of magnitude faster than

other methods. Also, the model non-dimensionalizes the equations which hides much of

the parametric complexity from the experimentalists. Most variation in behavior of the

model can be controlled by the parameters of growth rate, erosion rate, and initial biofilm

height, which allows users to better conceptualize the system and minimizes the work

required to fit to data.

This model has a few limitations that arise from the assumptions used in the deriva-

tion. First, we only track the growth-limiting substrate and assume other nutrients are

saturating, which means that the model cannot be used for systems that have more com-

plex substrate interactions. Second, the model does not track sloughing events or reat-

tachment of eroded cells, though this could be easily added, nor does it track biomass on
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Initial location of biomass in flow cell

Biomass distribution after 4 days without outward growth

Biomass distribution after 4 days with outward growth

Figure 3.21. Outward growth of biomass in a flow cell of height .5mm with
flow moving from left to right
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Figure 3.22. Outward growth adjustment allows two separate colonies to
merge into a single colony.

the sides of the flow cell, which could underestimate biomass and substrate consumption

near the side walls. Also, the parabolic substrate profile assumption will underestimate

substrate consumption before the concentration relaxes to parabolic. If the flow in the

channel is very fast, the profile may not relax to parabolic within the flow cell leading

to a larger discrepancy in the outflow concentration when compared to data. Adjusting

the model for these faster-flow conditions will be considered in future work. The model’s

representation of the biomass distribution is limited to large-scale features. Since the

system only models large-scale behavior it cannot capture the small-scale variation in a

biofilm’s surface even if the user increases the grid resolution. The model assumes that

the biofilm surface varies smoothly and slowly and will not be able to accurately solve

for substrate concentration and growth for a biofilm in which nearby regions exhibit large

variations in biomass. Despite these limitations, the model can be usefully applied to a

large number of experimental systems.
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Figure 3.23. Computed biofilm height of system from Figure 3.15 with out-
ward growth and the difference between this computed biofilm height and
previous height computed with no outward growth. The model with out-
ward growth has higher growth between the inlets and outlets due to the
spreading of biomass from the center of these sheltered regions.

This model bridges the gap between bacterial colonies and large-scale flow cell dynam-

ics. It will be useful to experimentalists interested in predicting environmental conditions

in the small, imaged regions of the flow cell. The model can also provide boundary con-

ditions to be used in more detailed biofilm simulations representing these imaged regions.

Using this model, biofilm researchers can also begin to understand the biomass distribu-

tion and substrate concentration in parts of flow cells that are not directly observable,
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which often constitute a large portion of the flow cell. This asymptotic model will help

facilitate research into biofilms, improving our understanding of these widespread and

complex bacterial communities.
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CHAPTER 4

Modeling Electrical Communication in Biofilm

4.1. Introduction

Biofilms are collections of bacteria that grow on surfaces, and they can exhibit many

unique, collective behaviors that allow them to survive in a variety of environments.

Some known, collective behaviors include symbiotic relationships between multiple species

within a biofilm and the development of physical channels between cells to facilitate

nutrient penetration and distribution. More information on these well-studied, collective

behaviors can be found in [2]. In this chapter we explore Bacillus subtilis’ oscillatory

growth pattern that emerges from potassium signaling, which was introduced in [10] and

in [8] as another mechanism for cooperation within a biofilm.

Cells within a biofilm depend on nutrients from the surrounding fluid to survive, and

these nutrients must diffuse into the biomass to reach bacteria throughout the biofilm.

As a biofilm grows larger, cells near the interior often become starved for nutrients that

must travel farther through active biomass to reach the interior. In the experiments

in [8] the primary nutrient is glutamate, which is a nitrogen source that cells use for

both growth and maintenance. This conflict between the growth of cells near the biofilm

interface and the maintenance of the interior cells is discussed in [10]. As shown in [8],

the electrochemical signaling is driven by the cellular release and uptake of potassium, a

positive ion that the cells use to regulate their voltage differential. When cells become
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metabolically stressed, they release potassium and hyperpolarize as shown in [8]. This

release of potassium causes neighboring cells to uptake potassium and briefly depolarize,

which interferes with their metabolic processes. Once these neighboring cells become

stressed, they also release potassium and hyperpolarize, as shown experimentally in [8].

Collectively the cells generate a potassium wave that travels from the nutrient-starved

interior to the exterior of the biofilm. This wave disrupts the entire biofilm’s nutrient

consumption. The disruption in consumption allows nutrients to diffuse deeper into the

biofilm toward the starving interior cells. This mechanism enables the biofilm to continue

to grow while avoiding a destabilizing level of cell death in its interior, as explained in

[10].

Previous work using one-dimensional models also suggests that the oscillations arise

from metabolic stress and propagate through changes in potassium, as demonstrated by

the model introduced in [9]. In this chapter, we build on this metabolic propagation

mechanism by introducing a new method of cell-to-cell communication in which the cells

react to changing potassium levels instead of the absolute potassium level. This model

is consistent with the observation that bacteria can adjust to living in environments that

possess a range of potassium concentrations. The mechanisms through which B. subtilis

adapts to these environments are discussed in [74]. We then use this set of equations to

develop a two-dimensional model to more accurately represent the experiments in [8] and

to study variations in the oscillation patterns seen in these experiments. This model is

useful in studying multi-dimensional phenomena that appear within biofilm systems such

as the communication between separated colonies.
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4.2. One-Dimensional Model

We first develop a one-dimensional model that represents a cross section of the biofilm,

and it is based on the continuum model developed in [35]. The model relies on cellular

metabolism to initiate and propagate the signal. These oscillations have been linked to

metabolism in previous research, such as in [10] and in [75]. A biofilm begins to oscillate

at a smaller size in environments with lower ambient glutamate as shown in [9]. This

result suggests that there is a glutamate threshold under which the cells become stressed

and hyperpolarize. The timescale of the oscillation, which has a period near two to three

hours, is also consistent with the timescale of nutrient consumption. Metabolism also

plays an important role in the model we develop in this chapter.

In developing our model we consider a model proposed by [9] that is able to replicate

much of the behavior that we see in experiments. The main differences between the

model from [9] and the model introduced here is that we change the cells’ response to

extracellular potassium, we simplify the boundary condition, and we account for the

decrease in extracellular potassium as potassium molecules leak into the cell. We find

that this updated model better captures the inverse relationship between the voltage and

the extracellular potassium seen in experiments from [8].

We first consider how a rise in the external potassium concentration can affect the me-

tabolism of a cell. We assume that a rise in environmental potassium causes potassium to

leak into the bacteria, thereby depolarizing the cell and affecting its glutamate consump-

tion. While there are a few ways through which voltage changes can affect consumption,

[9] assumes that a bacterium cannot uptake glutamate if it is depolarized away from its

homeostatic voltage even if glutamate is environmentally available. It is possible that the
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voltage change affects other cellular processes and molecules such as ammonium within

the cell instead of the glutamate intake, which would in turn affect the usage of gluta-

mate. The role of ammonium in these oscillations is examined in [10]. A model based

on changes to other metabolic processes would lead to a similar decrease in the cellular

metabolism of depolarized cells as the model that is based on a diminished glutamate

uptake. While the biological processes that lead to the stressed response are worthy of

further study, we cannot fully address them in this modeling study. The important effect

for the purposes of this model is that depolarized cells metabolize glutamate more slowly,

and they become stressed and hyperpolarize to recover. The mechanism for the reduced

glutamate metabolism that we use in this model is the same as that used in [9], which

assumes that depolarized cells cannot uptake glutamate.

In our model we introduce a diffusive-flux boundary condition at the biofilm interface.

The model in [9] uses an artificial approximation to calculate the glutamate and potassium

influx. It defines the exchange of these molecules at a point within the biofilm as a function

of that point’s distance to the exterior interface. In this model we replace this boundary

calculation with a traditional Neumann flux boundary condition because the Neumann

boundary condition is simpler to implement for two-dimensional biofilms with irregular

shapes.

Potassium, a positively charged ion, is the main signaling molecule in this model, and

it diffuses in the spaces between the cells. We do not have experimental results that

allow us to directly measure this diffusion process. Instead, we fit the model’s potassium

distribution to the potassium distribution observed in experiments. In the experiments

we see high concentrations of potassium throughout the biofilm for an extended period
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after the cells hyperpolarize. Many biofilm models assume that the diffusion rate inside

the biofilm is around 60% of the diffusion rate in the fluid, and we use this assumption

here to set the glutamate diffusion rate. We find that a model with a potassium diffusion

rate in the biofilm that is less than 60% of the fluid diffusion rate better matches the

higher experimental potassium concentrations. A high diffusion rate leads the potassium

to diffuse too quickly out of the biofilm and into the flow. Our usage of a lower diffusion

rate corresponds with the results from [76] in which the potassium diffusion is modeled

as a percolation process where potassium released from one cell can only affect the cell’s

direct neighbors. The authors find that the percentage of cells that participate in the

voltage oscillations reflects the percentage required for efficient transmission in percolation

theory. This result suggests that potassium cannot diffuse far from the cell from which

it originates. We model this confined movement by setting the diffusion coefficient for

potassium within the biofilm to be significantly smaller than the coefficient within the

fluid.

The equations for the external glutamate and potassium concentrations, G and K

respectively, within the biofilm are defined below:

∂G

∂t
= DG

∂2G

∂x2
− δG

(1 + exp(V − Vth))
G(Gmax −Gin),(4.1)

∂K

∂t
= DK

∂2K

∂x2
+ FgKn

4(V − VK) + FgL(V − VL)

−max(γKK(Kmax −Kin), 0).(4.2)

Glutamate and potassium diffuse through the biofilm in the spaces between the cells,

and this diffusion is represented by the first terms of Equations (4.1) and (4.2). Their
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diffusion rates are defined as DG and DK respectively. The values used for these and

other parameters in the simulations are listed in Table 4.1.

The second term in Equation (4.1) models the glutamate uptake by the bacteria. The

bacteria uptake glutamate if they are sufficiently polarized, there is glutamate in the en-

vironment, and the cells’ internal glutamate level is below their maximum concentration.

The cells uptake glutamate using transporters powered by the proton motive force, which

is explained in [9]. The cells must maintain a certain level of polarization to uptake

glutamate, which is examined in [77]. We use the same function for the dependence of

glutamate uptake on voltage as [9]. The exponential term in this expression corresponds

to the quick halting of glutamate uptake if the cells’ voltage differential, V , moves above

their homeostatic voltage differential, Vth, thereby decreasing the magnitude of their volt-

age differential. This exponential relationship reflects the sensitivity of the glutamate

transporters. Glutamate uptake is also dependent on the glutamate availability in the en-

vironment and on the cells’ need for glutamate, which we define as the difference between

the maximum interior glutamate level, Gmax, and the cells’ internal glutamate level, Gin.

Equation (4.2) represents the external potassium concentration as the molecules diffuse

through the biofilm and move through the cellular membrane both passively and actively.

Potassium moves passively through the potassium gates and through the leak gates. The

potassium gates are channels that the cell can open and close to allow potassium to

enter or leave the cell. The leak gates represent the permeability of the cell membrane,

which allows potassium to enter or leave the cell through small holes. In the model, the

potassium and leak gate are controlled by the openness of the potassium gates, n, and

the corresponding reversal potentials for the potassium and leak gates, VK and VL. Here,
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F is a factor converting the voltage change to a potassium change. We approximate the

potassium uptake and release through the potassium and leak gates using terms from the

Hodgkins-Huxley model introduced in [78]. Allowing the extracellular potassium to move

into the cells through the leak gates and decrease the external potassium concentration is

a new feature of this model that reflects the mechanism through which the extracellular

potassium depolarizes a cell. A higher concentration of extracellular potassium increases

the potassium uptake due to an increased osmotic pressure. Previous models focused

on how this potassium movement through the leak gates affects the voltage differential

but did not account for the effects within the potassium concentration itself. Including

this uptake in the model ensures that the increase in extracellular potassium during a

depolarization event is moderated by the potassium uptake of the depolarizing cells. The

final term in Equation (4.2) represents the cells’ potassium pumps through which they

can actively uptake nearby potassium if their internal potassium concentration, Kin, falls

below a threshold, Kmax. The max function in this potassium pump term ensures that

the cells only use this pathway to uptake potassium and not to release potassium.

The boundary conditions for glutamate and potassium at the biofilm’s exterior in-

terface require that the concentrations are continuous across the boundary and that the

fluxes are continuous as well, which are described by the Neumann flux conditions below:

DG
∂G

∂x
= Dfl

G (G0 −Gint)/BL,(4.3)

DK
∂K

∂x
= Dfl

K(K0 −Kint)/BL,(4.4)

where Dfl
G and Dfl

K are the diffusion rates of glutamate and potassium in the fluid, G0

and K0 are the long-range glutamate and potassium concentrations, Gint and Kint are
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the interfacial glutamate and potassium concentrations, and BL is the boundary layer

width. At the interior interface at x = 0 the boundary conditions are no-flux in which,

∂G/∂x = ∂K/∂x = 0.

The corresponding equations for the glutamate and potassium concentrations in the

interior of the cell, Gin and Kin respectively, are as follows:

dGin

dt
=

δG
(1 + exp(V − Vth))

G(Gmax −Gin)− γGGin(Mgrow + rb)

− ∂

∂x
(UGin),(4.5)

dKin

dt
= −FgKn4(V − VK)− FgL(V − VL) + max(γKK(Kmax −Kin), 0)

− ∂

∂x
(UKin).(4.6)

Equation (4.5) models the glutamate concentration inside the bacteria. The first term

represents the cells’ glutamate intake. This term balances the external glutamate con-

centration in Equation (4.1), but with an opposite sign to represent the transport of

glutamate across the cell membrane. The second term represents the cells’ glutamate

consumption for both its base metabolism and growth, where γG is the glutamate con-

sumption rate. The cells require glutamate to perform their base metabolic functions,

and this need is represented as rb in the equation. The cells also use glutamate to grow,

and their growth propensity is represented by the variable Mgrow. Growth can only occur

when the bacteria are in “Grow Mode,” or when Mgrow is high. When the bacteria are

stressed, Mgrow is low, which slows the glutamate consumption of the bacteria and allows

for the glutamate to penetrate the biofilm more deeply. A prominent feature of the model

in [9] is that the cells uptake more glutamate when they have a higher internal glutamate
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level. This property creates a delay in the glutamate uptake that prevents the bacteria

from reaching a steady state, which allows for sustained oscillations. In this model we use

Mgrow as a variant of this consumption delay where the biofilm cannot be hyperpolarized

and grow. We discuss the variable Mgrow in more detail below.

Equation (4.6) represents the cells internal potassium concentration. The first three

terms of this equation are also found in Equation (4.2) to represent the transport of

potassium across the cell membrane.

The advection terms within Equations (4.5) and (4.6) reflect that Gin and Kin are

quantities within an individual cell that are pushed outward as the biofilm grows. Here,

U is the biofilm growth velocity defined throughout the biofilm. The growth velocity at

each point in a one-dimensional cross section of a biofilm is the sum of the biomass growth

between that point and the wall. As bacteria reproduce, they push the biomass above

them farther into the fluid flow, which is discussed in [35]. All non-diffusive quantities

in this system move with the cellular growth and have a corresponding advection term in

their equations.

The following equations define Mgrow and the corresponding growth equations:

Mgrow =
Gin

Gin +Gu

/(
Gin

(Gin +Gu)
+ (ηV tanh(γV (−V/Vlow − 1)) + 1)

)
,(4.7)

U(x) = δgrow

∫ x

0

GinMgrowdx,(4.8)

dL

dt
= δgrow

∫ L

0

GinMgrowdx.(4.9)
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Equation (4.7) defines the variable Mgrow, which reflects the growth propensity of

the cells. The variable Mgrow varies between zero and one where the cells grow faster if

Mgrow is close to one. Let TG = Gin

Gin+Gu
and TV = (ηV tanh(γV (−V/Vlow − 1)) + 1). Then

TG is a Hill activation function that is large when Gin is higher than the lower bound

Gu, and TV is a hyperbolic tangent activation function that is large when V is above

the bound Vlow. The parameters ηV and γV are shape parameters for the hyperbolic

tangent activation function. Equation (4.7) is the steady-state solution of the differential

equation ∂Mgrow

∂t
= (1 − Mgrow)TG − MgrowTV . Then Mgrow will be close to 1 and the

bacteria will grow if TG is much larger than TV . The variable Mgrow ensures that the cells

only grow when both their internal glutamate is high, making TG large, and they are not

hyperpolarized, making TV small. Since cells consume glutamate at a much lower rate

when hyperpolarized, the nutrients can penetrate deeper into the biofilm and arrive at the

starving cells near the interior. The requirement that the cells be near their homeostatic

voltage differential in order to grow reflects what we see in experimental data from [76].

As developed in [35], Equations (4.8) and (4.9) represents the biofilm’s growth, where

δgrow is the growth rate. Equation (4.8) computes the growth at any point within the

biofilm as an integral of the biomass growth between that point and the base of the

biofilm. Equation (4.9) represents the growth of the biofilm’s length, L, which is the

distance between the base and the edge of the biofilm.

The most important difference in this model compared to previous ones relates to

how the cells react to potassium. In our model cells respond to changes in potassium

instead of the absolute potassium level as represented in Figure 4.1. We assume that

only the newly arriving potassium molecules affect the cells’ voltages. We base this
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Figure 4.1. Depolarization of cells due to the influx of potassium near the
center of the biofilm versus near the exterior. The potassium colored orange
are newly arrived molecules, and we assume that they have same depolariz-
ing effect on both cells despite differing ambient potassium concentrations.

assumption on the evidence that bacteria can adjust to a range of potassium levels over

time. For example, Escherichia coli have mechanisms to adjust their internal potassium

level to reach a homeostasis [79, 80]. Furthermore, E. coli can grow under a range of

external potassium levels [81]. B. subtilis has similar mechanisms to adapt to a variety

of environmental potassium concentrations, which are discussed in [74]. A change in

environmental potassium is likely a better indicator of cellular stress since the change in

potassium forces bacteria out of their equilibrium state. We create the variable Kacclimated

to represent the potassium level to which the cells are accustomed. This variable then

follows K linearly at a rate of ηK in the following equation:

dKacclimated

dt
= ηK(K −Kacclimated)−

∂

∂x
(UKacclimated).(4.10)

The voltage is affected by the difference between the environmental potassium level,

K, and the level to which it is accustomed, Kacclimated, which is incorporated into the
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reversal potential for the leak gates VL. The following set of equations describe the

voltage differential within the biofilm:

dV

dt
= −gkn4(V − VK)− gL(V − VL)− ∂

∂x
(UV ),(4.11)

dn

dt
= α

(Gmax −Gin)m

(Gmax −Gl)m + (Gmax −Gin)m
(1− n)− βn− ∂

∂x
(Un),(4.12)

VK = VK0 + δKK,(4.13)

VL = VL0 + δL(K −Kacclimated).(4.14)

Equation (4.11) represents the voltage differential across the cells’ membranes, V . In

this model, the cells use potassium to modify this voltage differential. The terms in this

equation are from the Hodkin-Huxley model, and they correspond to the potassium and

leak gate terms from the potassium equations, Equations (4.2) and (4.6).

Equation (4.12) represents the openness of the cells’ potassium gates, n. The gates

open with the opening rate α according to the expression

(Gmax −Gin)m

(Gmax −Gl)m + (Gmax −Gin)m
,

which is similar to a Hill function with m as the Hill coefficient. However, this expression

is large when Gin < Gl and small when Gin > Gl. This expression activates the starving

response in the bacteria when their internal glutamate level is low. With low internal glu-

tamate, the bacteria open their potassium gates to release potassium and hyperpolarize.

The decay term in Equation (4.12) represents that bacteria close their potassium gates

at a decay rate of β if they are not experiencing stress.
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The reversal potentials VK and VL are defined in Equations (4.13) and (4.14). The

reversal potential for the potassium gates, defined in Equation (4.13), has a base value of

VK0 and is affected by the external potassium concentration with an influence strength

of δK . The reversal potential for the leak gates, defined in Equation (4.14), has a base

value of VL0 and is affected by the difference between the environmental potassium level,

K, and the level to which it is accustomed, Kacclimated. The parameter δL defines the

strength of this influence. A rise in the external potassium leads the potassium to leak

into the bacteria causing the cells to depolarize.

Most experimental data from these systems is reported as the fluorescence of molecular

indicators. We convert both the voltage and potassium concentrations to their correspond-

ing fluorescent indicators, thioflavin T (ThT) and asante potassium green (APG), named

T and A respectively in the equations below:

dT

dt
=

αT
1 + exp(gT (V − V0T ))

− γTT −
∂

∂x
(UT ),(4.15)

dA

dt
= αAK − γAA−

∂

∂x
(UA).(4.16)

Equation (4.15) is the same equation for ThT fluorescence used in [9]. The indicator

ThT fluoresces if the voltage falls below the threshold V0T . The exponential term produces

a strong transition point for ThT fluorescence if the voltage differential drops below V0T .

The parameter gT adjusts ThT’s sensitivity to this transition point, and γT is the decay

rate of the indicator. Equation (4.16) uses a linear model to represent the fluorescence

of APG where αA is the activation strength of APG, and γA is the decay rate of the

indicator.
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Together these equations form an oscillatory system for both the growth and the

voltage differential. The starving cells release potassium, which disrupts the metabolism

of neighboring cells, causing them to become stressed and stop growing. The cells release

potassium to hyperpolarize when stressed which creates the potassium wave that moves

from the center of the biofilm to the exterior. The hyperpolarized bacteria refrain from

growing while recovering, allowing glutamate to diffuse deeper into the biofilm. This one-

dimensional model reproduces prominent features from experiments as discussed in the

following sections.

Table 4.1. Parameters Used in Oscillatory Model

Name Description Value Reference

DG Glutamate diffusion coefficient in

biofilm

0.540 mm2

day
Assumed

DK Potassium diffusion coefficient in

biofilm

0.497 mm2

day
Fitted

Dfl
G Glutamate diffusion coefficient in fluid 0.900 mm2

day
Known

Dfl
K Potassium diffusion coefficient in fluid 4.97 mm2

day
Known

G0 Glutamate concentration at inlet 30 mM [8]

K0 Potassium concentration at inlet 8 mM [8]

δG Glutamate uptake rate 10 1

hour
Fitted

Vth Voltage above which cells cannot up-

take glutamate

-150 mV [8]

Continued on next page
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Table 4.1 – continued from previous page

Name Description Value Reference

Gmax Maximum glutamate concentration in

cell

20 mM Fitted

F Voltage to potassium conversion factor 5.6mM K
mV [8]

gK Potassium gate strength 180/hour Fitted

gL Leak gate strength 1.2/hour Fitted

γK Potassium pump strength 2/(hour×mM K) Fitted

BL Boundary layer length 0.5 mm Fitted

γG Glutamate consumption rate .75/hour Fitted

rb Glutamate basal consumptions rate 0.1 (dimensionless) Fitted

Gu Glutamate bound below which the cells

do not grow

18 mM Glutamate Fitted

ηV Voltage influence in Mgrow 20 (dimensionless) Fitted

γV Voltage transition speed in Mgrow 20 (dimensionless) Fitted

Vlow Voltage below which cells do not grow 180 mV Fitted

δgrow Biomass produced in growth 0.005mm
mM Glutamate×hour

Fitted

ηK Cells’ acclimation rate to potassium

change

30/hour Fitted

α Potassium gate opening rate 5/hour Fitted

β Potassium gate closing rate 2.5/hour Fitted

m Potassium gate exponent 2 (dimensionless) Fitted

Continued on next page
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Table 4.1 – continued from previous page

Name Description Value Reference

Gl Glutamate level below which cells hy-

perpolarize

10 mM Glutamate Fitted

VK0 Basal potassium gate reversal potential -380 mV [8]

VL0 Basal leak gate reversal potential -156 mV [8]

δK Potassium gate reversal change 1 mV
mM [8]

δL Leak gate reversal change 60 mV
mM Fitted

αT ThT fluorescence strength 20 mM
hour

[9]

gT ThT relation to voltage 0.3 mV [9]

V0T Voltage level below which ThT fluo-

resces

-170 mV Fitted

γT ThT decay rate 10/hour [9]

αA APG fluorescence strength 0.5/hour Fitted

γA APG decay rate 1/hour Fitted

4.2.1. Comparing Voltage, Growth, and Potassium to Experiments

To validate the set of equations introduced in the previous section, we compare important

quantities from the model to the experimental data such as the relationship between

voltage oscillations, the growth, and the potassium concentration. Experiments show

that a biofilm typically grows when its cells are not hyperpolarized. Hyperpolarized cells

are in the process of recovering from a disruption in their metabolism. Data demonstrating
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the trade-off between growth and hyperpolarization is shown in [76]. The model prevents

bacteria from growing while hyperpolarized through the Mgrow variable. This effect can

be seen in Figure 4.2, which shows that the biofilm grows faster when its average voltage

is higher. We compare this relationship to experimental data from [8] in Figure 4.3.

We see that in both the experimental data and the simulation that growth is high when

the fluorescence indicating hyperpolarization is low, and the growth is low when the

fluorescence is high.

We see that in experiments from [8] the average external potassium increases within

the biofilm as the average voltage differential decreases. This property is integral to the

system because it reflects how the signal is propagated within the biofilm. If a cell releases

potassium, its voltage differential becomes more negative as it is losing a positive ion. A

newly released potassium ion may enter a neighboring cell, but the voltage change from

this uptake cannot more than offset the voltage change in the biofilm caused by the ion

leaving its previous cell. This property has not been adequately reflected in previous

models, such as in [9]. We implemented the model from this paper, and while voltage

and potassium are inversely related in the model’s original form, this relationship changes

when we update the flux boundary at the biofilm interface to a Neumann boundary so

that we can use the model in a multi-dimensional simulation. When we make this change

and set the interior diffusion rate to be constant, the potassium and voltage are no longer

inversely related. We show the data from our implementation of this model in Figure 4.5.

We see that the voltage and potassium are inversely related in the original form, but the

modified model shows an increase in the voltage during a period when cells are releasing

potassium, which appears to be nonphysical. In Figure 4.2, we see that our model correctly
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Figure 4.2. (Left) Mean voltage and growth over time from the model. Volt-
age is positively related to growth. The oscillations become stronger over
time. Growth occurs when the biofilm is not hyperpolarized. (Right) Mean
voltage and mean potassium over time from model. Voltage is negatively
related to potassium. Potassium is at its highest when the biofilm is depo-
larizing as the cells release potassium. Potassium begins to fall before the
voltage increases because some of the potassium diffuses into the bulk flow.

indicates that the voltage falls as the external potassium increases. Potassium and voltage

are not strictly inversely related because the potassium diffuses out of the biofilm causing

the potassium levels to drop before the rise in the voltage. We compare these quantities

to data from [8] in Figure 4.4 where the fluorescence indicating hyperpolarization and the

fluorescence indicating external potassium rise and fall in relative synchronicity for both

the experimental and the model data. The initial conditions used in the one-dimensional

simulations are G = 30, K = 8, Gin = 20, Kin = 200, Kacclimated = 8, V = −156, and

n = 0.1.

4.2.2. Size at Oscillation Onset and Period Length

The size at which the biofilm initiates its first oscillation depends on the nutrient avail-

ability and the cellular consumption rate of the glutamate within the biofilm. We fit the
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Figure 4.3. (Left) Experimental mean voltage fluorescence and growth
adapted from [8]1. Voltage is measured as its fluorescent indicator, ThT,
which exhibits higher fluorescence when the cell is more polarized meaning
that the voltage differential is more negative. The voltage fluorescence and
the growth are inversely related. (Right) Mean voltage fluorescence and
growth from the model. The quantities from the model demonstrate a sim-
ilar pattern to those from the experiment. Note that the fluorescence data
from the experiment are scaled differently than the model data.

growth rate of the model so that the biofilm initiates its oscillatory behavior at the same

size seen in experimental biofilms in 30 millimolar glutamate solutions. In Figure 4.6 we

see that in both the experiments and the model the mean size at which the biofilms begin

to oscillate is near 500 microns in diameter. The experiments have a larger variability

around the mean than the model, which is typical of the natural variability inherent in

physical systems.

In both the model and the experiments, we see that the period of oscillation increases

as the biofilm size increases, as shown in Figure 4.7. This effect could make strategic

sense as a larger biofilm may need to halt growth for a longer time to allow nutrients to

1Adapted by permission from Springer Nature Customer Service Centre GmbH: Springer Nature,
Nature, Ion channels enable electrical communication in bacterial communities, Prindle et al. Copyright
2015 Macmillan Publishers Limited. (2015), https://www.nature.com
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Figure 4.4. (Left) Experimental mean voltage and potassium fluorescence
adapted from [8]2. The fluorescence of the voltage indicator, ThT, is higher
when the cell is more polarized, and the fluorescence of the potassium in-
dicator, APG, is higher when the extracellular potassium concentration is
higher. The fluorescence for voltage and potassium are highly correlated.
(Right) Mean voltage and potassium fluorescence from the model. The
quantities from the model show a similar pattern to those in the exper-
iment. Note that the fluorescence data from the experiment are scaled
differently than the model data.

penetrate more deeply to under-served regions. In the model, the biofilm takes longer to

recover from a hyperpolarization event because the biofilm is slower to rid itself of the

excess extracellular potassium. In the model data, we also see a convergence to a longer

period of oscillation in Figure 4.7. This convergence occurs because only a portion of

the biofilm participates in the oscillations. The depth of this participatory portion near

the fluid interface reaches a limit as the biofilm grows larger. The center of the biofilm

remains constantly hyperpolarized and has little effect on the oscillations.

2Adapted by permission from Springer Nature Customer Service Centre GmbH: Springer Nature,
Nature, Ion channels enable electrical communication in bacterial communities, Prindle et al. Copyright
2015 Macmillan Publishers Limited. (2015), https://www.nature.com
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Figure 4.5. (Left) Mean voltage and potassium from an implementation of
the model from [9]. In this model, voltage and potassium appear to be
inversely related. (Right) Mean voltage and potassium from an implemen-
tation of the same model but with a Neumann flux boundary condition and
a constant internal diffusion rate. Here, we see that extracellular potas-
sium is increasing while mean voltage initially rises, which appears to be
nonphysical.

Having validated our one-dimensional model by comparing the quantities of mean

voltage differential, mean potassium concentration, and oscillation period, we use this set

of equations to create a two-dimensional model in the following section.

4.3. Two-Dimensional Model

In this section we introduce a two-dimensional model to represent the data from the

experiments performed in [8]. The flow cell in their experiment is about 3mm long and

3mm wide but only about 5-7 microns in depth. The narrow depth only allows the biofilm

to grow about 5-7 cells deep, which confines the colony to a natural two-dimensional cross

section. This cross section allows the experimentalists to visualize properties within the

biofilm that would typically not be visible from the exterior of a three-dimensional colony.

By imaging an interior slice of a colony, we can track how the electrical impulse moves
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Figure 4.6. (Left) Experimental colony size at the onset of oscillations in
30 millimolar solution of glutamate, adapted from [10]3. The plot has 53
observations. The mean diameter at oscillation onset is about 500 µm.
(Right) Onset size of oscillations for model biofilm under the same gluta-
mate concentration. The size is calculated as the mean of the biofilm’s size
at the start and at the end of the oscillation. The plot has 20 observations.
The model also shows a mean onset size of about 500 µm. The small varia-
tion seen in the model is due to randomly initiating the biofilm’s size at the
start of the simulation. The experiment has a higher standard deviation,
which is common in physical systems.

from the interior to the exterior of the colony. We model the propagation of this signal

using a two-dimensional model based on the continuum model developed in [5]. This

system uses a Stokes-flow approximation to solve for the fluid velocity through the flow

cell. Let u and v be the x− and y−directional fluid velocities, µ be the fluid viscosity,

3Adapted by permission from Springer Nature Customer Service Centre GmbH: Springer Nature,
Nature, Metabolic co-dependence gives rise to collective oscillations within biofilms, Jintao Liu et Al.
Copyright 2015 Macmillan Publishers Limited. (2015), https://www.nature.com
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Figure 4.7. (Left) Experimental period of oscillation by biofilm size adapted
from [11] with permission from Rosa Martinez-Corral. The oscillation pe-
riod lengthens as the biofilm grows. (Right) Period of oscillation by biofilm
size from the model. The size is calculated as the mean of the biofilm’s size
at the start and at the end of the oscillation. To the left of the dashed line
is model data from the same domain as the experimental data. To the right
of the dashed line is predicted data. The model also shows that the period
lengthens as the biofilm grows, and it predicts that the biofilm will reach a
maximum oscillation period as it grows larger.

and P be the pressure field. Then the reduced equations for the fluid flow are

µ∇2u =
∂P

∂x
,

µ∇2v =
∂P

∂y
,

∇2P = 0.

The flow cell has a rectangular shape defined by an inlet on the left side, an outlet on the

right side, and walls on the top and the bottom of the domain. The boundary condition for

the fluid at the interior walls and at the biofilm boundary is a no-slip and no-penetration

boundary condition where u = 0, v = 0, and ∇P · ~n = 0, where ~n in the outward normal.
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At the inlet we use the boundary conditions u = u0, v = 0, and ∂u/∂x = 0, where u0 is

the initial speed. At the outlet we approximate a far-field boundary with the conditions

∂u/∂x = 0, v = 0, and P = 0.

We then solve for the concentrations of the diffusive quantities glutamate and potas-

sium in both the fluid and the biofilm. In the fluid these equations are

Dfl
G∇

2G−∇ · (G〈u, v〉) = 0,(4.17)

Dfl
K∇

2K −∇ · (K〈u, v〉) = 0,(4.18)

with the boundary conditions G = G0 and K = K0 at the inlet, no-flux conditions at the

interior walls in which ∇G ·~n = ∇K ·~n = 0, and far-field conditions at the outlet in which

∇G · ~n = ∇K · ~n = 0 where ~n represents the outward normal at the boundary. At the

biofilm interface, the boundary conditions for G and K require that the concentrations

and the fluxes are continuous across the interface, which lead to the following equations:

DG∇Gint · ~n = Dfl
G∇Gext · ~n,(4.19)

Gint = Gext,(4.20)

DK∇Kint · ~n = Dfl
K∇Kext · ~n,(4.21)

Kint = Kext,(4.22)

where Gint, Gext, Kint, Kext refer to the glutamate and potassium concentrations inside

and outside the biofilm at the interface respectively, and ~n is the outward normal.

We solve the same equations as in the one-dimensional model for the diffusive quanti-

ties glutamate and potassium within the biofilm using Equations (4.1) and (4.2). We solve
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the non-diffusive quantities, or the cellular state variables, only within the biofilm and not

in the surrounding fluid. For the cellular state variables we use Equations (4.5-4.7) and

(4.10-4.16) where the advection component of the equations uses the multidimensional

biomass velocity and the multidimensional ∇ operator. We solve these equations on a

two-dimensional grid that covers the flow-cell domain.

In the two dimensional model the growth equations, which replace Equations (4.8)

and (4.9), use a potential function to approximate the viscous flow induced by the cellular

growth throughout the biofilm

Ω = δgrow∇2 (Mgrow ×Gin) ,(4.23)

~U = ∇Ω,(4.24)

where ~U evaluated at the boundary of the biofilm gives the directional growth of the

boundary. We track the biofilm growth and the moving biofilm-fluid interface using the

level-set method. The level-set method was introduced in [48] and discussed further in

[50], [56], and references therein. Following work from [5], we use the zero level-set

function of φ to track the biofilm interface, where φ solves the following equation:

(4.25)
∂φ

∂t
= ~U · ~n||∇φ||,

where ~n is the outward normal evaluated at the points along the biofilm boundary where

φ = 0. The level-set method ensures that the boundary grows at the rate determined

by Equation (4.24). After implementing this set of equations within a two-dimensional

simulation, we compare the model results to experiments.
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4.3.1. Comparing the Two-Dimensional Model to Experiments

The true benefit of the two-dimensional model is that we can directly model the behavior of

a biofilm from an experiment by inputting the colony’s complex shape into the simulation.

In this paper, we initialize a biofilm colony to be the same shape as a colony from the

experiments in [8] with fluid flowing from left to right around the biofilm. The fluid

velocity at the inlet is parabolic with a maximum velocity of 100 millimeters per hour

in the center and 0 at the top and bottom of the flow cell. The velocity at the inlet

was chosen to be fast enough so that both the leading and trailing edges of the colony

participate in the oscillations, and it is not equal to the experimental velocity. Bacteria

that are located farther from the fluid interface become stressed due to nutrient limitation,

and they release potassium to hyperpolarize. This voltage change travels from the interior

of the biofilm near the flow-cell wall to the exterior interface. In this process the whole

biofilm hyperpolarizes.

The results of this model are shown in Figure 4.8 in which we can see the hyper-

polarization and the potassium wave spread throughout the simulated biofilm. As the

biofilm expands, the center of the biomass becomes consistently hyperpolarized because

the biofilm is too large for these regions to receive sufficient nutrients even with the higher

nutrient penetration resulting from the growth oscillations. As the biofilm grows, the re-

gions that surround this hyperpolarized core also become stressed, and these bacteria

hyperpolarize and initiate the potassium wave.

The spreading of this hyperpolarization can be seen in Figure 4.8 which shows the

voltage and potassium within the biofilm during a hyperpolarization event. The voltage
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plots show that the hyperpolarization moves from the center of the biomass to the fluid in-

terface. The regions of the biofilm that are next to the fluid interface do not hyperpolarize

as much as the center, but they still experience a significant level of hyperpolarization.

The potassium plots in Figure 4.8 show that the potassium pulse is initiated by bac-

teria at the edge of the hyperpolarized region. The initiating region forms a curve inside

the biofilm that roughly follows the same shape as the biofilm boundary. Regions that

are thicker, in this case the left and right side of the biofilm, experience a higher level

of initial potassium release and hyperpolarization. After the initial potassium pulse, the

potassium wave moves through the rest of the biofilm. The waves from the left and right

side meet in the center of the colony, which causes this thinner region to hyperpolarize as

well. The wave speed of the potassium signal in the model is about 10 microns per minute,

which is similar to the wave speed seen in experiments. The experimental wave speed

is demonstrated in [9] in which the authors show an example of a spreading potassium

wave that travels at approximately 10 microns per minute. Each oscillation period lasts

between two and three hours, which matches the oscillation period from experiments.

Potassium is not confined to the interior of the biofilm, and it diffuses out of the

biofilm and flows downstream. The release of potassium affects other bacteria within the

flow cell. We take a closer look at the effects of potassium within the fluid in the following

section in which we model multiple biofilm colonies within the same flow cell.

We also model ThT fluorescence within the biofilm and compare these distributions

to experimental data in Figure 4.9. The modeled ThT fluorescence does not match the

experiment at every point, but the hyperpolarization pattern is qualitatively similar. In

both the experiment and the model the fluorescence is high near the interior wall of the
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flow cell, away from the fluid interface. We also see the spread of high fluorescence from

the interior to the exterior, which indicates the spread of hyperpolarization.

Another spatial feature present in the data is the depolarization wave, which we see in

the ThT fluorescence data from both the experiment and the model. In the experimental

fluorescence data at Minute 20, we see a depolarization wave near the boundary of the

region that is highly polarized and is fluorescing. The wave appears as a thin layer

that is less fluorescent than the region above and below it, meaning that the area is less

polarized. This wave front corresponds to bacteria that are experiencing a rise in the

external potassium concentration and depolarize briefly before hyperpolarizing. We see a

similar wave in the model data at Minute 20 just above the highly hyperpolarized center.

The model can capture these important spatial components of this phenomenon, which

allows for further study of these behaviors. Now that we have compared the simulated

behavior of a single colony to the experimental data, we demonstrate the full utility of

this two-dimensional model in modeling an entire flow cell in the following section.

4.3.2. Modeling Multiple Biofilm Colonies within a Flow Cell

One-dimensional models are not able to capture the interactions between multiple colonies

within a single flow cell. However, many of the experiments performed on this biofilm

system are implemented within flow cells with multiple colonies of biofilm. The flow cells

often have multiple cell traps that catch bacteria in the fluid and provide the base for

distinct colonies. These colonies grow and influence their neighbors both by consuming

glutamate and by releasing potassium. We demonstrate that this simulation developed

here is capable of modeling flow cells with multiple colonies.
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Voltage Potassium

Minute 0

Minute 20

Minute 40

Minute 60

Figure 4.8. Voltage and potassium within a two-dimensional biofilm simu-
lation during one oscillation. In the plots of the potassium concentration,
particularly at Minute 20, you can clearly observe the potassium wave.

We use our two-dimensional simulation to model multiple colonies in a two-dimensional

flow cell that is 3 millimeters by 3 millimeters. The fluid velocity at the inlet is parabolic

with a maximum velocity of 10 millimeters per hour in the center and 0 at the top and

bottom of the flow cell. The velocity at the inlet was chosen so that each colony oscillates
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Experiment Simulation

Minute 40

Minute 20

Minute 60

Minute 0

Figure 4.9. ThT fluorescence from an experiment compared to a simula-
tion during one oscillation. The imaged region in the experimental data
has a length of 3mm and a height of 1mm. The two vertical lines in the
experimental fluorescence data correspond to slight changes in the flow-cell
depth.

at its initial size, and it is not equal to the experimental velocity. We calculate the

voltage, potassium, and ThT from the experimental setup in [8], and we show the results

in Figure 4.10. We simulate three colonies in the flow cell: a large colony on the bottom
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and two smaller colonies above the larger one. The large colony begins to oscillate first

because its size leads the bacteria at its center to become nutrient starved at an earlier

time than the bacteria in the other colonies. We see that the oscillations in voltage,

potassium, and ThT of each colony in the model are synchronized since they are driven

by the hyperpolarization of the largest biofilm at the bottom wall. In the experimental

ThT fluorescence in Figure 4.10 we also see the synchronization of the oscillations that

are driven by the larger biofilm at the bottom of the flow cell. We will explore properties

of this synchronization in future work.

4.4. Conclusion

In this chapter we introduced and discussed a new model for electrical communication

in B. subtilis. We updated the propagation mechanism to depend on the change in

potassium level instead of the absolute potassium level, which incorporates bacteria’s

ability to adjust to environmental changes and creates more robust oscillations. We

also updated the boundary condition at the biofilm interface and the potassium leak

mechanism so that the potassium and the voltage oscillations are more synchronized.

Using this new model, we explored the relationship between voltage, growth, and

potassium, showing that the voltage and the growth follow a similar pattern to each

other while the voltage differential and the extracellular potassium are closer to inversely

related. We also examined the diffusive properties of the system including the size of the

biofilm at its initial oscillation and the how a colony’s size relates to its oscillation period.

We then turned this model into a two-dimensional system using the level-set method

to track the boundary. The ability to simulate a two-dimensional biofilm allows us to
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Voltage

Potassium

ThT Fluorescence

Minute 0 Minute 30 Minute 60

Experimental ThT Fluorescence

Figure 4.10. Voltage, potassium, and ThT fluorescence of multiple colonies
within a single flow cell. We compare the data to experimental ThT fluores-
cence. The depolarization spreads between separated colonies as potassium
diffuses within the fluid. The depolarization wave begins in the large colony
on the bottom of the cell and spreads to the other colonies. The imaged
region in the experimental data has a length of 3mm and a height of 3mm.
The vertical line in the experimental fluorescence of the biofilm on the bot-
tom wall corresponds to a slight change in the flow-cell depth.
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copy a biofilm’s shape from an experiment and closely compare the model to the physical

system. We examined the voltage, the potassium, and the ThT and APG fluorescence

within the model. We are also able to examine multiple colonies within a single flow cell

and observe how separated colonies synchronize by releasing potassium into the flow. The

model demonstrates synchronization patterns much like what we see in experiments.

This model can enable researchers to computationally explore this biofilm system in

connection with their experiments. This model can be used to test hypotheses about the

bacteria such as those relating to the growth speed, the affect of potassium on cells, and

how collective oscillations can arise or fail to arise based on the individual behavior of

the cells. The greatest benefit of this model is that we can directly compare the model’s

results to experiments by copying the shapes of the biofilms, which allows researchers to

study the two-dimensional properties of the system. For example, researchers can study

the wave speed of the potassium signal through spatially segregated cells of differing

phenotypes. We can also explore properties such as the emergence of oscillations within

a single colony and the synchronization between separated colonies within a single flow

cell. Understanding the spatial properties of the system can help scientists find methods

to control the biofilm’s growth and dispersal in more realistic environments, potentially

leading to new ways to treat biofilm growth and any associated infections.

In future research, we would like to further explore cellular metabolism and the syn-

chronization of oscillations within a colony. First we would like to understand how a rise

in external potassium disrupts cellular consumption. We believe that this study could

provide a better understanding of the cellular mechanisms that create colony-wide oscil-

lations. In particular, studying metabolism could give us further insight into the recovery
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process of a cell and how it regulates growth. We would then like to explore how metab-

olism and changes in growth rates either lead to synchronicity within the colony or allow

for regional divergence in oscillations within large biofilms.

This oscillatory behavior of Bacillus subtilis involves many complex processes, and we

are just beginning to put the pieces together. Understanding the components of the oscil-

lations could inspire new methods to influence and even control certain biofilms’ behavior

such as the attachment and growth of the colony. For example, scientists could discover

a method to modify a biofilm’s growth by solely changing the environmental potassium.

These new control methods would not rely on harsh treatments such as antibiotics but

on adjusting the biofilm’s environmental conditions to influence its oscillatory behavior.
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CHAPTER 5

Conclusion

Biofilms are communities of bacteria that exhibit complex behaviors enabling them

to survive and even thrive in a range of environments. In the work presented here, we

developed two models that capture several important aspects of biofilm behavior: a model

that quantifies the large-scale dynamics of a biofilm flow cell and a model that explores a

novel oscillatory phenomenon observed in B. subtilis as presented in [8].

We based these studies on the biofilm simulation system from [5] with a few important

modifications. First, we replaced the fluid solver, which was based on an XFEM formu-

lation, with a high-performance fluid solver that runs on a GPU. By replacing the fluid

solver, the entire simulation’s runtime decreased by around 80%. This significant gain in

speed greatly improved our ability to perform quick simulations within the two projects.

In addition to replacing the fluid solver, we modified the simulation so that it can track

cellular state variables and solve for the state variables and the solutes as time dependent.

These modifications in solving for the state and solute variables were necessary to simu-

late the oscillatory behavior observed in [8]. We used the modified simulation system to

develop two novel models of biofilms’ behavior.

In Chapter 3, we introduced a reduced model to approximate the nutrient concentra-

tions and the biofilm growth throughout an experimental flow cell. Flow cells often have

heterogeneous nutrient concentrations and fluid velocities within a single experiment that

lead to varying biofilm growth patterns. To understand these growth patterns, we can
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quantify the important elements of the flow cell using a model. Simulating an entire flow

cell using previously available models is computationally expensive, particularly in three

dimensions. In the reduced model, we used an asymptotic approximation to reduce the

dimensionality of the problem and simplify the calculations. With this simplification, the

model runs nearly 100 times faster than previous models for many grid sizes. The relative

speed allows experimentalists to use this model to better understand the experimental

environment. The model can quantify the distribution of quantities, such as oxygen,

which are difficult to measure within the confines of the experiment, and it can predict

the bacterial growth in parts of the flow cell that may not be directly observable. This

model connects biofilms’ growth to the heterogeneous environment in the flow cell. The

environmental heterogeneity seen in flow cells is often present in real-world settings such

as in water pipes and in catheters. By studying the biofilm growth in these flow cells,

scientists can better understand the formation of biofilms in many other environments.

In Chapter 4, we developed a modified model of an oscillatory growth pattern observed

in experiments from [8], and we used this model to create a two-dimensional simulation.

The model describes a biofilm in which starving cells at the center of the biofilm initiate

each oscillation using a potassium signal. The potassium wave travels through the biofilm

and interrupts the cellular consumption of the entire biofilm, allowing nutrients to diffuse

deeper into the biofilm. Though a few scientists have developed models to describe this

system, we presented a modified model with a modified cellular communication mecha-

nism, and the modified model better matches the potassium dynamics of the experimental

data. We used this modified model to develop a two-dimensional simulation that repli-

cates the multidimensional wave patterns observed in experiments. This two-dimensional
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model can be used to further explore the spatial dynamics of the two-dimensional oscilla-

tions. The oscillatory growth has primarily been studied in colonies formed by B. subtilis,

but there is evidence that other species of bacteria, such as P. aeruginosa, may also react

to potassium signaling [82]. This signaling could allow scientists to influence bacterial

movement and biofilm growth through changes in potassium concentrations, which could

lead to new, low-impact control strategies for biofilms in a variety of natural settings.

These two models provide a better understanding of biofilms’ complex behaviors,

notably as they grow in heterogeneous environments and as certain colonies exhibit os-

cillatory growth. A large portion of current research on biofilms focuses on mitigating

certain biofilms’ deleterious effects within the human body. In particular, scientists study

biofilms on medical devices because they can lead to serious infections and even sepsis.

Mitigating these infections requires examining and understanding the various complex

behaviors of biofilms that allow colonies to survive. Experimentalists and modelers must

work together to address these challenges.

In future research, we would like to improve the accuracy of the reduced model of a

biofilm flow cell. In particular, the asymptotic model assumes that the oxygen concentra-

tion profile has a parabolic shape in the flow. However, the oxygen profile may not relax

to parabolic quickly enough to be accurately modeled as parabolic near the inlet or in

fast flow. Approximating the profile as parabolic at locations where the assumption does

not hold underestimates the oxygen usage and the growth of the biofilm at that location.

One idea for improving this approximation is to use some piecewise-defined function that

can capture the steep gradient of the oxygen profile near the biofilm interface.
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In the oscillatory model, future work should examine oscillations in heterogeneous

biofilm and the possible desynchronization of a biofilm’s oscillations. Biofilms can exhibit

spatial heterogeneity in which certain cell types cluster in different regions. We would

like to explore how these variations in the biomass affect the emergence and the spread

of oscillations. Future work should also address the possibility of desynchronization in

biofilms’ oscillations. We can consider a variety of variables that could lead to a potential

desychronization, such as a biofilm’s size or the environmental nutrient concentration.

In certain cases, the regions of the biofilm could experience localized oscillations that

do not influence the other parts of the biofilm. There are a large number of possible

two-dimensional properties that can be explored using the two-dimensional model.

In future work, we would also like to develop a detailed, three-dimensional biofilm

model. This three-dimensional model would allow us to study the intricate, higher-

dimensional structures of biofilms. Most experimental data of biofilm growth is three-

dimensional, and the ability to model the precise shapes of the biofilm would allow scien-

tists to explore the properties inherent in these multi-dimensional structures.

Mathematical modeling provides a way to quantitatively study a variety of biologi-

cal phenomena. Experimental biologists continue to discover and document a range of

interesting phenomona that modelers can quantitatively explore. The unique behaviors

of biofilms make up only a small subset of these novel, biological properties. While the

methods used for modeling continue to evolve, modeling and simulation remain important

tools that will lead to transformative discoveries in biology.
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Arjes, Lev Tsimring, and Gürol M Süel. Species-independent attraction to biofilms
through electrical signaling. Cell, 168(1-2):200–209.e12, 2017.


	ABSTRACT
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Chapter 1. Introduction
	Chapter 2. Methods
	2.1. Previous Work
	2.2. High-Performance Fluid Solver
	2.3. State and time-dependent variables

	Chapter 3. A Dimensionally Reduced Model for Biofilm Growth Adapted from FordNoah2020ADRM with permission from Springer NatureAdapted by permission from Springer Nature Customer Service Centre GmbH: Springer Nature Bulletin of Mathematical Biology, A Dimensionally Reduced Model of Biofilm Growth Within a Flow Cell, Noah Ford, David Chopp, Copyright 2020 Society for Mathematical Biology (2020) https://www.springer.com/journal/11538 
	3.1. Introduction
	3.2. Derivation of One-Dimensional Model
	3.3. The 1+1 Dimensional Model
	3.4. The 2+1 Dimensional Model
	3.5. Outward Growth
	3.6. Discussion and Conclusion

	Chapter 4. Modeling Electrical Communication in Biofilm
	4.1. Introduction
	4.2. One-Dimensional Model
	4.3. Two-Dimensional Model
	4.4. Conclusion

	Chapter 5. Conclusion
	References

